Fix gdb build on 32-bit hosts w/ --enable-64-bit-bfd
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 bool producer_is_icc : 1;
555 unsigned int producer_is_icc_lt_14 : 1;
556 bool producer_is_codewarrior : 1;
557
558 /* When set, the file that we're processing is known to have
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
562 unsigned int processing_has_namespace_info : 1;
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
565 };
566
567 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570 struct stmt_list_hash
571 {
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
576 sect_offset line_sect_off;
577 };
578
579 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582 struct type_unit_group
583 {
584 /* dwarf2read.c's main "handle" on a TU symtab.
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
589 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
590 struct dwarf2_per_cu_data per_cu;
591
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
596
597 /* The compunit symtab.
598 Type units in a group needn't all be defined in the same source file,
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
601
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618 };
619
620 /* These sections are what may appear in a (real or virtual) DWO file. */
621
622 struct dwo_sections
623 {
624 struct dwarf2_section_info abbrev;
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
627 struct dwarf2_section_info loclists;
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
634 VEC (dwarf2_section_info_def) *types;
635 };
636
637 /* CUs/TUs in DWP/DWO files. */
638
639 struct dwo_unit
640 {
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
650 struct dwarf2_section_info *section;
651
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658 };
659
660 /* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664 enum dwp_v2_section_ids
665 {
666 DW_SECT_MIN = 1
667 };
668
669 /* Data for one DWO file.
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
679
680 struct dwo_file
681 {
682 /* The DW_AT_GNU_dwo_name attribute.
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
690
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
694
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
698 struct dwo_sections sections;
699
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709 };
710
711 /* These sections are what may appear in a DWP file. */
712
713 struct dwp_sections
714 {
715 /* These are used by both DWP version 1 and 2. */
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
736 };
737
738 /* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
740
741 struct virtual_v1_dwo_sections
742 {
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
750 That is recorded here, and copied to dwo_unit.section. */
751 struct dwarf2_section_info info_or_types;
752 };
753
754 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759 struct virtual_v2_dwo_sections
760 {
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783 };
784
785 /* Contents of DWP hash tables. */
786
787 struct dwp_hash_table
788 {
789 uint32_t version, nr_columns;
790 uint32_t nr_units, nr_slots;
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802 #define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
814 };
815
816 /* Data for one DWP file. */
817
818 struct dwp_file
819 {
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
826 /* Name of the file. */
827 const char *name;
828
829 /* File format version. */
830 int version = 0;
831
832 /* The bfd. */
833 gdb_bfd_ref_ptr dbfd;
834
835 /* Section info for this file. */
836 struct dwp_sections sections {};
837
838 /* Table of CUs in the file. */
839 const struct dwp_hash_table *cus = nullptr;
840
841 /* Table of TUs in the file. */
842 const struct dwp_hash_table *tus = nullptr;
843
844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
847
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
852 };
853
854 /* This represents a '.dwz' file. */
855
856 struct dwz_file
857 {
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
863 /* A dwz file can only contain a few sections. */
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
871
872 /* The dwz's BFD. */
873 gdb_bfd_ref_ptr dwz_bfd;
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
911 };
912
913 /* Type of function passed to init_cutu_and_read_dies, et.al. */
914 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
915 const gdb_byte *info_ptr,
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
920 /* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923 enum class dir_index : unsigned int {};
924
925 /* Likewise, a 1-based file name index. */
926 enum class file_name_index : unsigned int {};
927
928 struct file_entry
929 {
930 file_entry () = default;
931
932 file_entry (const char *name_, dir_index d_index_,
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
935 d_index (d_index_),
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
942 const char *include_dir (const line_header *lh) const;
943
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
948 /* The directory index (1-based). */
949 dir_index d_index {};
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
958 /* The associated symbol table, if any. */
959 struct symtab *symtab {};
960 };
961
962 /* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965 struct line_header
966 {
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
975 void add_file_name (const char *name, dir_index d_index,
976 unsigned int mod_time, unsigned int length);
977
978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
979 is out of bounds. */
980 const char *include_dir_at (dir_index index) const
981 {
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
987 return NULL;
988 return include_dirs[vec_index];
989 }
990
991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
992 is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
1000 return NULL;
1001 return &file_names[vec_index];
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
1012 /* Offset of line number information in .debug_line section. */
1013 sect_offset sect_off {};
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1033
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
1037
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
1040
1041 /* The start and end of the statement program following this
1042 header. These point into dwarf2_per_objfile->line_buffer. */
1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
1044 };
1045
1046 typedef std::unique_ptr<line_header> line_header_up;
1047
1048 const char *
1049 file_entry::include_dir (const line_header *lh) const
1050 {
1051 return lh->include_dir_at (d_index);
1052 }
1053
1054 /* When we construct a partial symbol table entry we only
1055 need this much information. */
1056 struct partial_die_info : public allocate_on_obstack
1057 {
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
1075 /* Offset of this DIE. */
1076 const sect_offset sect_off;
1077
1078 /* DWARF-2 tag for this DIE. */
1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1080
1081 /* Assorted flags describing the data found in this DIE. */
1082 const unsigned int has_children : 1;
1083
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name = nullptr;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name = nullptr;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope = nullptr;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset sect_off;
1136 } d {};
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling = nullptr;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset {};
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
1188 };
1189
1190 /* This data structure holds the information of an abbrev. */
1191 struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201 struct attr_abbrev
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
1208 };
1209
1210 /* Size of abbrev_table.abbrev_hash_table. */
1211 #define ABBREV_HASH_SIZE 121
1212
1213 /* Top level data structure to contain an abbreviation table. */
1214
1215 struct abbrev_table
1216 {
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
1220 m_abbrevs =
1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
1242 const sect_offset sect_off;
1243
1244 /* Storage for the abbrev table. */
1245 auto_obstack abbrev_obstack;
1246
1247 private:
1248
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
1253 struct abbrev_info **m_abbrevs;
1254 };
1255
1256 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
1258 /* Attributes have a name and a value. */
1259 struct attribute
1260 {
1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
1269 union
1270 {
1271 const char *str;
1272 struct dwarf_block *blk;
1273 ULONGEST unsnd;
1274 LONGEST snd;
1275 CORE_ADDR addr;
1276 ULONGEST signature;
1277 }
1278 u;
1279 };
1280
1281 /* This data structure holds a complete die structure. */
1282 struct die_info
1283 {
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
1293
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
1300 /* Offset in .debug_info or .debug_types section. */
1301 sect_offset sect_off;
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
1306 together via their SIBLING fields. */
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
1310
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
1315 };
1316
1317 /* Get at parts of an attribute structure. */
1318
1319 #define DW_STRING(attr) ((attr)->u.str)
1320 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1321 #define DW_UNSND(attr) ((attr)->u.unsnd)
1322 #define DW_BLOCK(attr) ((attr)->u.blk)
1323 #define DW_SND(attr) ((attr)->u.snd)
1324 #define DW_ADDR(attr) ((attr)->u.addr)
1325 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1326
1327 /* Blocks are a bunch of untyped bytes. */
1328 struct dwarf_block
1329 {
1330 size_t size;
1331
1332 /* Valid only if SIZE is not zero. */
1333 const gdb_byte *data;
1334 };
1335
1336 #ifndef ATTR_ALLOC_CHUNK
1337 #define ATTR_ALLOC_CHUNK 4
1338 #endif
1339
1340 /* Allocate fields for structs, unions and enums in this size. */
1341 #ifndef DW_FIELD_ALLOC_CHUNK
1342 #define DW_FIELD_ALLOC_CHUNK 4
1343 #endif
1344
1345 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348 static int bits_per_byte = 8;
1349
1350 /* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354 struct variant_field
1355 {
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365 };
1366
1367 struct nextfield
1368 {
1369 int accessibility = 0;
1370 int virtuality = 0;
1371 /* Extra information to describe a variant or variant part. */
1372 struct variant_field variant {};
1373 struct field field {};
1374 };
1375
1376 struct fnfieldlist
1377 {
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
1380 };
1381
1382 /* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385 struct field_info
1386 {
1387 /* List of data member and baseclasses fields. */
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
1390
1391 /* Number of fields (including baseclasses). */
1392 int nfields = 0;
1393
1394 /* Set if the accesibility of one of the fields is not public. */
1395 int non_public_fields = 0;
1396
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
1400 std::vector<struct fnfieldlist> fnfieldlists;
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1404 std::vector<struct decl_field> typedef_field_list;
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
1408 std::vector<struct decl_field> nested_types_list;
1409 };
1410
1411 /* One item on the queue of compilation units to read in full symbols
1412 for. */
1413 struct dwarf2_queue_item
1414 {
1415 struct dwarf2_per_cu_data *per_cu;
1416 enum language pretend_language;
1417 struct dwarf2_queue_item *next;
1418 };
1419
1420 /* The current queue. */
1421 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
1423 /* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
1428 static int dwarf_max_cache_age = 5;
1429 static void
1430 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
1432 {
1433 fprintf_filtered (file, _("The upper bound on the age of cached "
1434 "DWARF compilation units is %s.\n"),
1435 value);
1436 }
1437 \f
1438 /* local function prototypes */
1439
1440 static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442 static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
1444 static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
1447 static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
1450 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
1455 static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1457
1458 static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 int, struct dwarf2_cu *);
1461
1462 static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
1464
1465 static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int set_addrmap, struct dwarf2_cu *cu);
1468
1469 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1470 CORE_ADDR *highpc, int set_addrmap,
1471 struct dwarf2_cu *cu);
1472
1473 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
1475
1476 static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1478 int need_pc, struct dwarf2_cu *cu);
1479
1480 static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
1482
1483 static void psymtab_to_symtab_1 (struct partial_symtab *);
1484
1485 static abbrev_table_up abbrev_table_read_table
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
1488
1489 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1490
1491 static struct partial_die_info *load_partial_dies
1492 (const struct die_reader_specs *, const gdb_byte *, int);
1493
1494 static struct partial_die_info *find_partial_die (sect_offset, int,
1495 struct dwarf2_cu *);
1496
1497 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
1500
1501 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1502
1503 static int read_1_signed_byte (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1506
1507 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1508
1509 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1510
1511 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1512 unsigned int *);
1513
1514 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static LONGEST read_checked_initial_length_and_offset
1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1518 unsigned int *, unsigned int *);
1519
1520 static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
1522 unsigned int *);
1523
1524 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1525
1526 static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
1529
1530 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1531
1532 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1533
1534 static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
1537
1538 static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
1541
1542 static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
1545
1546 static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
1548
1549 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
1553 unsigned int *);
1554
1555 static const char *read_str_index (const struct die_reader_specs *reader,
1556 ULONGEST str_index);
1557
1558 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1559
1560 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
1562
1563 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1564 unsigned int);
1565
1566 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
1569 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
1572 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1573
1574 static struct die_info *die_specification (struct die_info *die,
1575 struct dwarf2_cu **);
1576
1577 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1578 struct dwarf2_cu *cu);
1579
1580 static void dwarf_decode_lines (struct line_header *, const char *,
1581 struct dwarf2_cu *, struct partial_symtab *,
1582 CORE_ADDR, int decode_mapping);
1583
1584 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
1586
1587 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
1590
1591 static struct symbol *new_symbol (struct die_info *, struct type *,
1592 struct dwarf2_cu *, struct symbol * = NULL);
1593
1594 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_const_value_attr (const struct attribute *attr,
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
1601 struct dwarf2_cu *cu, LONGEST *value,
1602 const gdb_byte **bytes,
1603 struct dwarf2_locexpr_baton **baton);
1604
1605 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1606
1607 static int need_gnat_info (struct dwarf2_cu *);
1608
1609 static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
1611
1612 static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1622
1623 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
1625 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1626
1627 static char *typename_concat (struct obstack *obs, const char *prefix,
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
1630
1631 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1638
1639 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
1643 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
1646 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1647 values. Keep the items ordered with increasing constraints compliance. */
1648 enum pc_bounds_kind
1649 {
1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1651 PC_BOUNDS_NOT_PRESENT,
1652
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662 };
1663
1664 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
1668
1669 static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
1676 static void dwarf2_add_field (struct field_info *, struct die_info *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fields_to_type (struct field_info *,
1680 struct type *, struct dwarf2_cu *);
1681
1682 static void dwarf2_add_member_fn (struct field_info *,
1683 struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1687 struct type *,
1688 struct dwarf2_cu *);
1689
1690 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1693
1694 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1695
1696 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
1698 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1699
1700 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
1702 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
1704 static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
1707 static const char *namespace_name (struct die_info *die,
1708 int *is_anonymous, struct dwarf2_cu *);
1709
1710 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1711
1712 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1713
1714 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct die_info *read_die_and_siblings_1
1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1719 struct die_info *);
1720
1721 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
1724 struct die_info *parent);
1725
1726 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
1729
1730 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
1733
1734 static void process_die (struct die_info *, struct dwarf2_cu *);
1735
1736 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
1738
1739 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1740
1741 static const char *dwarf2_full_name (const char *name,
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
1745 static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748 static struct die_info *dwarf2_extension (struct die_info *die,
1749 struct dwarf2_cu **);
1750
1751 static const char *dwarf_tag_name (unsigned int);
1752
1753 static const char *dwarf_attr_name (unsigned int);
1754
1755 static const char *dwarf_form_name (unsigned int);
1756
1757 static const char *dwarf_bool_name (unsigned int);
1758
1759 static const char *dwarf_type_encoding_name (unsigned int);
1760
1761 static struct die_info *sibling_die (struct die_info *);
1762
1763 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765 static void dump_die_for_error (struct die_info *);
1766
1767 static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
1769
1770 /*static*/ void dump_die (struct die_info *, int max_level);
1771
1772 static void store_in_ref_table (struct die_info *,
1773 struct dwarf2_cu *);
1774
1775 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1776
1777 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1778
1779 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1780 const struct attribute *,
1781 struct dwarf2_cu **);
1782
1783 static struct die_info *follow_die_ref (struct die_info *,
1784 const struct attribute *,
1785 struct dwarf2_cu **);
1786
1787 static struct die_info *follow_die_sig (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu **);
1790
1791 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794 static struct type *get_DW_AT_signature_type (struct die_info *,
1795 const struct attribute *,
1796 struct dwarf2_cu *);
1797
1798 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1799
1800 static void read_signatured_type (struct signatured_type *);
1801
1802 static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
1806 /* memory allocation interface */
1807
1808 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1809
1810 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1811
1812 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1813
1814 static int attr_form_is_block (const struct attribute *);
1815
1816 static int attr_form_is_section_offset (const struct attribute *);
1817
1818 static int attr_form_is_constant (const struct attribute *);
1819
1820 static int attr_form_is_ref (const struct attribute *);
1821
1822 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
1824 const struct attribute *attr);
1825
1826 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1827 struct symbol *sym,
1828 struct dwarf2_cu *cu,
1829 int is_block);
1830
1831 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
1834
1835 static hashval_t partial_die_hash (const void *item);
1836
1837 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
1839 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
1842
1843 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
1846
1847 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1850
1851 static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1853
1854 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1859 enum language);
1860
1861 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
1863
1864 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
1867 static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
1870 static void dwarf2_mark (struct dwarf2_cu *);
1871
1872 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
1874 static struct type *get_die_type_at_offset (sect_offset,
1875 struct dwarf2_per_cu_data *);
1876
1877 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1878
1879 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
1882 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 /* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889 class dwarf2_queue_guard
1890 {
1891 public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919 };
1920
1921 /* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924 struct file_and_directory
1925 {
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938 };
1939
1940 static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
1942
1943 static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
1946 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947 enum class rcuh_kind { COMPILE, TYPE };
1948
1949 static const gdb_byte *read_and_check_comp_unit_head
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
1952 struct dwarf2_section_info *section,
1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1954 rcuh_kind section_kind);
1955
1956 static void init_cutu_and_read_dies
1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1958 int use_existing_cu, int keep, bool skip_partial,
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
1961 static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
1964
1965 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1966
1967 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
1969 static struct dwo_unit *lookup_dwo_unit_in_dwp
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
1972 ULONGEST signature, int is_debug_types);
1973
1974 static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1976
1977 static struct dwo_unit *lookup_dwo_comp_unit
1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1979
1980 static struct dwo_unit *lookup_dwo_type_unit
1981 (struct signatured_type *, const char *, const char *);
1982
1983 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
1985 static void free_dwo_file (struct dwo_file *);
1986
1987 /* A unique_ptr helper to free a dwo_file. */
1988
1989 struct dwo_file_deleter
1990 {
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
1995 };
1996
1997 /* A unique pointer to a dwo_file. */
1998
1999 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
2001 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2002
2003 static void check_producer (struct dwarf2_cu *cu);
2004
2005 static void free_line_header_voidp (void *arg);
2006 \f
2007 /* Various complaints about symbol reading that don't abort the process. */
2008
2009 static void
2010 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011 {
2012 complaint (_("statement list doesn't fit in .debug_line section"));
2013 }
2014
2015 static void
2016 dwarf2_debug_line_missing_file_complaint (void)
2017 {
2018 complaint (_(".debug_line section has line data without a file"));
2019 }
2020
2021 static void
2022 dwarf2_debug_line_missing_end_sequence_complaint (void)
2023 {
2024 complaint (_(".debug_line section has line "
2025 "program sequence without an end"));
2026 }
2027
2028 static void
2029 dwarf2_complex_location_expr_complaint (void)
2030 {
2031 complaint (_("location expression too complex"));
2032 }
2033
2034 static void
2035 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037 {
2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2039 arg1, arg2, arg3);
2040 }
2041
2042 static void
2043 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044 {
2045 complaint (_("debug info runs off end of %s section"
2046 " [in module %s]"),
2047 get_section_name (section),
2048 get_section_file_name (section));
2049 }
2050
2051 static void
2052 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053 {
2054 complaint (_("macro debug info contains a "
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057 }
2058
2059 static void
2060 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061 {
2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2063 arg1, arg2);
2064 }
2065
2066 /* Hash function for line_header_hash. */
2067
2068 static hashval_t
2069 line_header_hash (const struct line_header *ofs)
2070 {
2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2072 }
2073
2074 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076 static hashval_t
2077 line_header_hash_voidp (const void *item)
2078 {
2079 const struct line_header *ofs = (const struct line_header *) item;
2080
2081 return line_header_hash (ofs);
2082 }
2083
2084 /* Equality function for line_header_hash. */
2085
2086 static int
2087 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088 {
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2091
2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094 }
2095
2096 \f
2097
2098 /* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101 static CORE_ADDR
2102 attr_value_as_address (struct attribute *attr)
2103 {
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126 }
2127
2128 /* See declaration. */
2129
2130 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133 {
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141 }
2142
2143 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
2166
2167 /* Everything else should be on the objfile obstack. */
2168 }
2169
2170 /* See declaration. */
2171
2172 void
2173 dwarf2_per_objfile::free_cached_comp_units ()
2174 {
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
2181 delete per_cu->cu;
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185 }
2186
2187 /* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190 class free_cached_comp_units
2191 {
2192 public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206 private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209 };
2210
2211 /* Try to locate the sections we need for DWARF 2 debugging
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
2215
2216 int
2217 dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
2219 {
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
2227 {
2228 /* Initialize per-objfile state. */
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2233 }
2234 return (!dwarf2_per_objfile->info.is_virtual
2235 && dwarf2_per_objfile->info.s.section != NULL
2236 && !dwarf2_per_objfile->abbrev.is_virtual
2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
2238 }
2239
2240 /* Return the containing section of virtual section SECTION. */
2241
2242 static struct dwarf2_section_info *
2243 get_containing_section (const struct dwarf2_section_info *section)
2244 {
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
2247 }
2248
2249 /* Return the bfd owner of SECTION. */
2250
2251 static struct bfd *
2252 get_section_bfd_owner (const struct dwarf2_section_info *section)
2253 {
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
2259 return section->s.section->owner;
2260 }
2261
2262 /* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265 static asection *
2266 get_section_bfd_section (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section;
2274 }
2275
2276 /* Return the name of SECTION. */
2277
2278 static const char *
2279 get_section_name (const struct dwarf2_section_info *section)
2280 {
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285 }
2286
2287 /* Return the name of the file SECTION is in. */
2288
2289 static const char *
2290 get_section_file_name (const struct dwarf2_section_info *section)
2291 {
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295 }
2296
2297 /* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300 static int
2301 get_section_id (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308 }
2309
2310 /* Return the flags of SECTION.
2311 SECTION (or containing section if this is a virtual section) must exist. */
2312
2313 static int
2314 get_section_flags (const struct dwarf2_section_info *section)
2315 {
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320 }
2321
2322 /* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
2324
2325 static int
2326 section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
2328 {
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
2336 }
2337
2338 /* See declaration. */
2339
2340 void
2341 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
2343 {
2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
2345
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
2349 else if (section_is_p (sectp->name, &names.info))
2350 {
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
2353 }
2354 else if (section_is_p (sectp->name, &names.abbrev))
2355 {
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
2358 }
2359 else if (section_is_p (sectp->name, &names.line))
2360 {
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
2363 }
2364 else if (section_is_p (sectp->name, &names.loc))
2365 {
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
2368 }
2369 else if (section_is_p (sectp->name, &names.loclists))
2370 {
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
2373 }
2374 else if (section_is_p (sectp->name, &names.macinfo))
2375 {
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
2378 }
2379 else if (section_is_p (sectp->name, &names.macro))
2380 {
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
2383 }
2384 else if (section_is_p (sectp->name, &names.str))
2385 {
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
2388 }
2389 else if (section_is_p (sectp->name, &names.line_str))
2390 {
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
2393 }
2394 else if (section_is_p (sectp->name, &names.addr))
2395 {
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
2398 }
2399 else if (section_is_p (sectp->name, &names.frame))
2400 {
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.eh_frame))
2405 {
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
2408 }
2409 else if (section_is_p (sectp->name, &names.ranges))
2410 {
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
2413 }
2414 else if (section_is_p (sectp->name, &names.rnglists))
2415 {
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
2418 }
2419 else if (section_is_p (sectp->name, &names.types))
2420 {
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
2424 type_section.s.section = sectp;
2425 type_section.size = bfd_get_section_size (sectp);
2426
2427 VEC_safe_push (dwarf2_section_info_def, this->types,
2428 &type_section);
2429 }
2430 else if (section_is_p (sectp->name, &names.gdb_index))
2431 {
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
2445
2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2447 && bfd_section_vma (abfd, sectp) == 0)
2448 this->has_section_at_zero = true;
2449 }
2450
2451 /* A helper function that decides whether a section is empty,
2452 or not present. */
2453
2454 static int
2455 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2456 {
2457 if (section->is_virtual)
2458 return section->size == 0;
2459 return section->s.section == NULL || section->size == 0;
2460 }
2461
2462 /* See dwarf2read.h. */
2463
2464 void
2465 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2466 {
2467 asection *sectp;
2468 bfd *abfd;
2469 gdb_byte *buf, *retbuf;
2470
2471 if (info->readin)
2472 return;
2473 info->buffer = NULL;
2474 info->readin = 1;
2475
2476 if (dwarf2_section_empty_p (info))
2477 return;
2478
2479 sectp = get_section_bfd_section (info);
2480
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
2509 {
2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2511 return;
2512 }
2513
2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 info->buffer = buf;
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
2538 }
2539
2540 /* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547 static bfd_size_type
2548 dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550 {
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554 }
2555
2556 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2557 SECTION_NAME. */
2558
2559 void
2560 dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
2562 asection **sectp, const gdb_byte **bufp,
2563 bfd_size_type *sizep)
2564 {
2565 struct dwarf2_per_objfile *data
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
2568 struct dwarf2_section_info *info;
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
2590
2591 dwarf2_read_section (objfile, info);
2592
2593 *sectp = get_section_bfd_section (info);
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596 }
2597
2598 /* A helper function to find the sections for a .dwz file. */
2599
2600 static void
2601 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602 {
2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
2609 dwz_file->abbrev.s.section = sectp;
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
2614 dwz_file->info.s.section = sectp;
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
2619 dwz_file->str.s.section = sectp;
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
2624 dwz_file->line.s.section = sectp;
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
2629 dwz_file->macro.s.section = sectp;
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
2634 dwz_file->gdb_index.s.section = sectp;
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
2642 }
2643
2644 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
2647
2648 static struct dwz_file *
2649 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2650 {
2651 const char *filename;
2652 bfd_size_type buildid_len_arg;
2653 size_t buildid_len;
2654 bfd_byte *buildid;
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
2657 return dwarf2_per_objfile->dwz_file.get ();
2658
2659 bfd_set_error (bfd_error_no_error);
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2672
2673 buildid_len = (size_t) buildid_len_arg;
2674
2675 filename = data.get ();
2676
2677 std::string abs_storage;
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2682
2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2684 filename = abs_storage.c_str ();
2685 }
2686
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2690 if (dwz_bfd != NULL)
2691 {
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
2694 }
2695
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
2705
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
2708
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
2713 }
2714 \f
2715 /* DWARF quick_symbols_functions support. */
2716
2717 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722 struct quick_file_names
2723 {
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737 };
2738
2739 /* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742 struct dwarf2_per_cu_quick_data
2743 {
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
2751 struct compunit_symtab *compunit_symtab;
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760 };
2761
2762 /* Utility hash function for a stmt_list_hash. */
2763
2764 static hashval_t
2765 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766 {
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2771 v += to_underlying (stmt_list_hash->line_sect_off);
2772 return v;
2773 }
2774
2775 /* Utility equality function for a stmt_list_hash. */
2776
2777 static int
2778 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780 {
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
2787 return lhs->line_sect_off == rhs->line_sect_off;
2788 }
2789
2790 /* Hash function for a quick_file_names. */
2791
2792 static hashval_t
2793 hash_file_name_entry (const void *e)
2794 {
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
2797
2798 return hash_stmt_list_entry (&file_data->hash);
2799 }
2800
2801 /* Equality function for a quick_file_names. */
2802
2803 static int
2804 eq_file_name_entry (const void *a, const void *b)
2805 {
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2808
2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2810 }
2811
2812 /* Delete function for a quick_file_names. */
2813
2814 static void
2815 delete_file_name_entry (void *e)
2816 {
2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829 }
2830
2831 /* Create a quick_file_names hash table. */
2832
2833 static htab_t
2834 create_quick_file_names_table (unsigned int nr_initial_entries)
2835 {
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839 }
2840
2841 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845 static void
2846 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2847 {
2848 if (per_cu->is_debug_types)
2849 load_full_type_unit (per_cu);
2850 else
2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2852
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2857 }
2858
2859 /* Read in the symbols for PER_CU. */
2860
2861 static void
2862 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2863 {
2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2865
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
2875
2876 if (dwarf2_per_objfile->using_index
2877 ? per_cu->v.quick->compunit_symtab == NULL
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
2881 load_cu (per_cu, skip_partial);
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
2887 && per_cu->cu != NULL
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
2893 queue_and_load_all_dwo_tus (per_cu);
2894 }
2895
2896 process_queue (dwarf2_per_objfile);
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
2900 age_cached_comp_units (dwarf2_per_objfile);
2901 }
2902
2903 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2906
2907 static struct compunit_symtab *
2908 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2909 {
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
2912 gdb_assert (dwarf2_per_objfile->using_index);
2913 if (!per_cu->v.quick->compunit_symtab)
2914 {
2915 free_cached_comp_units freer (dwarf2_per_objfile);
2916 scoped_restore decrementer = increment_reading_symtab ();
2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
2918 process_cu_includes (dwarf2_per_objfile);
2919 }
2920
2921 return per_cu->v.quick->compunit_symtab;
2922 }
2923
2924 /* See declaration. */
2925
2926 dwarf2_per_cu_data *
2927 dwarf2_per_objfile::get_cutu (int index)
2928 {
2929 if (index >= this->all_comp_units.size ())
2930 {
2931 index -= this->all_comp_units.size ();
2932 gdb_assert (index < this->all_type_units.size ());
2933 return &this->all_type_units[index]->per_cu;
2934 }
2935
2936 return this->all_comp_units[index];
2937 }
2938
2939 /* See declaration. */
2940
2941 dwarf2_per_cu_data *
2942 dwarf2_per_objfile::get_cu (int index)
2943 {
2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2945
2946 return this->all_comp_units[index];
2947 }
2948
2949 /* See declaration. */
2950
2951 signatured_type *
2952 dwarf2_per_objfile::get_tu (int index)
2953 {
2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2955
2956 return this->all_type_units[index];
2957 }
2958
2959 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963 static dwarf2_per_cu_data *
2964 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968 {
2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981 }
2982
2983 /* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2985
2986 static void
2987 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
2990 int is_dwz)
2991 {
2992 for (offset_type i = 0; i < n_elements; i += 2)
2993 {
2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2999 cu_list += 2 * 8;
3000
3001 dwarf2_per_cu_data *per_cu
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3005 }
3006 }
3007
3008 /* Read the CU list from the mapped index, and use it to create all
3009 the CU objects for this objfile. */
3010
3011 static void
3012 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015 {
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
3019
3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3021 &dwarf2_per_objfile->info, 0);
3022
3023 if (dwz_elements == 0)
3024 return;
3025
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3028 &dwz->info, 1);
3029 }
3030
3031 /* Create the signatured type hash table from the index. */
3032
3033 static void
3034 create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
3039 {
3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
3041
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3044
3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3046
3047 for (offset_type i = 0; i < elements; i += 3)
3048 {
3049 struct signatured_type *sig_type;
3050 ULONGEST signature;
3051 void **slot;
3052 cu_offset type_offset_in_tu;
3053
3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3064 struct signatured_type);
3065 sig_type->signature = signature;
3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3067 sig_type->per_cu.is_debug_types = 1;
3068 sig_type->per_cu.section = section;
3069 sig_type->per_cu.sect_off = sect_off;
3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3071 sig_type->per_cu.v.quick
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
3077
3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3079 }
3080
3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
3082 }
3083
3084 /* Create the signatured type hash table from .debug_names. */
3085
3086 static void
3087 create_signatured_type_table_from_debug_names
3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092 {
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
3106 void **slot;
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139 }
3140
3141 /* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
3143
3144 static void
3145 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
3147 {
3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3150 const gdb_byte *iter, *end;
3151 struct addrmap *mutable_map;
3152 CORE_ADDR baseaddr;
3153
3154 auto_obstack temp_obstack;
3155
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
3172
3173 if (lo > hi)
3174 {
3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3176 hex_string (lo), hex_string (hi));
3177 continue;
3178 }
3179
3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3181 {
3182 complaint (_(".gdb_index address table has invalid CU number %u"),
3183 (unsigned) cu_index);
3184 continue;
3185 }
3186
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3189 addrmap_set_empty (mutable_map, lo, hi - 1,
3190 dwarf2_per_objfile->get_cu (cu_index));
3191 }
3192
3193 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3194 &objfile->objfile_obstack);
3195 }
3196
3197 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200 static void
3201 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3202 struct dwarf2_section_info *section)
3203 {
3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3218 {
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3355 &objfile->objfile_obstack);
3356 }
3357
3358 /* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
3362
3363 static bool
3364 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366 {
3367 offset_type hash;
3368 offset_type slot, step;
3369 int (*cmp) (const char *, const char *);
3370
3371 gdb::unique_xmalloc_ptr<char> without_params;
3372 if (current_language->la_language == language_cplus
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
3378
3379 if (strchr (name, '(') != NULL)
3380 {
3381 without_params = cp_remove_params (name);
3382
3383 if (without_params != NULL)
3384 name = without_params.get ();
3385 }
3386 }
3387
3388 /* Index version 4 did not support case insensitive searches. But the
3389 indices for case insensitive languages are built in lowercase, therefore
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3399
3400 for (;;)
3401 {
3402 const char *str;
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
3406 return false;
3407
3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3409 if (!cmp (name, str))
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
3412 + MAYBE_SWAP (bucket.vec));
3413 return true;
3414 }
3415
3416 slot = (slot + step) & (index->symbol_table.size () - 1);
3417 }
3418 }
3419
3420 /* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
3422 it is used for error reporting. DEPRECATED_OK is true if it is
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
3429 Returns true if all went well, false otherwise. */
3430
3431 static bool
3432 read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441 {
3442 const gdb_byte *addr = &buffer[0];
3443
3444 /* Version check. */
3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 int i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Callback types for dwarf2_read_gdb_index. */
3532
3533 typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536 typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
3540 /* Read .gdb_index. If everything went ok, initialize the "quick"
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543 static int
3544 dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3548 {
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3551 struct dwz_file *dwz;
3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
3553
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
3566 return 0;
3567
3568 /* Don't use the index if it's empty. */
3569 if (map->symbol_table.empty ())
3570 return 0;
3571
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3575 if (dwz != NULL)
3576 {
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
3602
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
3617 }
3618
3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3620
3621 dwarf2_per_objfile->index_table = std::move (map);
3622 dwarf2_per_objfile->using_index = 1;
3623 dwarf2_per_objfile->quick_file_names_table =
3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3625
3626 return 1;
3627 }
3628
3629 /* die_reader_func for dw2_get_file_names. */
3630
3631 static void
3632 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3633 const gdb_byte *info_ptr,
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
3637 {
3638 struct dwarf2_cu *cu = reader->cu;
3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
3643 struct dwarf2_per_cu_data *lh_cu;
3644 struct attribute *attr;
3645 int i;
3646 void **slot;
3647 struct quick_file_names *qfn;
3648
3649 gdb_assert (! this_cu->is_debug_types);
3650
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
3659 lh_cu = this_cu;
3660 slot = NULL;
3661
3662 line_header_up lh;
3663 sect_offset line_offset {};
3664
3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3666 if (attr)
3667 {
3668 struct quick_file_names find_entry;
3669
3670 line_offset = (sect_offset) DW_UNSND (attr);
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
3674 find_entry.hash.dwo_unit = cu->dwo_unit;
3675 find_entry.hash.line_sect_off = line_offset;
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3681 return;
3682 }
3683
3684 lh = dwarf_decode_line_header (line_offset, cu);
3685 }
3686 if (lh == NULL)
3687 {
3688 lh_cu->v.quick->no_file_data = 1;
3689 return;
3690 }
3691
3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3693 qfn->hash.dwo_unit = cu->dwo_unit;
3694 qfn->hash.line_sect_off = line_offset;
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
3697
3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3699
3700 qfn->num_file_names = lh->file_names.size ();
3701 qfn->file_names =
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3705 qfn->real_names = NULL;
3706
3707 lh_cu->v.quick->file_names = qfn;
3708 }
3709
3710 /* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713 static struct quick_file_names *
3714 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3715 {
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3720
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
3732 }
3733
3734 /* A helper for the "quick" functions which computes and caches the
3735 real path for a given file name from the line table. */
3736
3737 static const char *
3738 dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
3740 {
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3743 qfn->num_file_names, const char *);
3744
3745 if (qfn->real_names[index] == NULL)
3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3747
3748 return qfn->real_names[index];
3749 }
3750
3751 static struct symtab *
3752 dw2_find_last_source_symtab (struct objfile *objfile)
3753 {
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3758
3759 if (cust == NULL)
3760 return NULL;
3761
3762 return compunit_primary_filetab (cust);
3763 }
3764
3765 /* Traversal function for dw2_forget_cached_source_info. */
3766
3767 static int
3768 dw2_free_cached_file_names (void **slot, void *info)
3769 {
3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3771
3772 if (file_data->real_names)
3773 {
3774 int i;
3775
3776 for (i = 0; i < file_data->num_file_names; ++i)
3777 {
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
3780 }
3781 }
3782
3783 return 1;
3784 }
3785
3786 static void
3787 dw2_forget_cached_source_info (struct objfile *objfile)
3788 {
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
3794 }
3795
3796 /* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799 static int
3800 dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
3802 const char *name, const char *real_path,
3803 gdb::function_view<bool (symtab *)> callback)
3804 {
3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3806
3807 /* Don't visit already-expanded CUs. */
3808 if (per_cu->v.quick->compunit_symtab)
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
3813 dw2_instantiate_symtab (per_cu, false);
3814
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
3817 }
3818
3819 /* Implementation of the map_symtabs_matching_filename method. */
3820
3821 static bool
3822 dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
3825 {
3826 const char *name_basename = lbasename (name);
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
3829
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
3832
3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3834 {
3835 /* We only need to look at symtabs not already expanded. */
3836 if (per_cu->v.quick->compunit_symtab)
3837 continue;
3838
3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
3840 if (file_data == NULL)
3841 continue;
3842
3843 for (int j = 0; j < file_data->num_file_names; ++j)
3844 {
3845 const char *this_name = file_data->file_names[j];
3846 const char *this_real_name;
3847
3848 if (compare_filenames_for_search (this_name, name))
3849 {
3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3851 callback))
3852 return true;
3853 continue;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870
3871 if (real_path != NULL)
3872 {
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
3875 if (this_real_name != NULL
3876 && FILENAME_CMP (real_path, this_real_name) == 0)
3877 {
3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3879 callback))
3880 return true;
3881 continue;
3882 }
3883 }
3884 }
3885 }
3886
3887 return false;
3888 }
3889
3890 /* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892 struct dw2_symtab_iterator
3893 {
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
3915 };
3916
3917 /* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3920
3921 static void
3922 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928 {
3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
3934 iter->global_seen = 0;
3935
3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946 }
3947
3948 /* Return the next matching CU or NULL if there are no more. */
3949
3950 static struct dwarf2_per_cu_data *
3951 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952 {
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
3970 (dwarf2_per_objfile->index_table->version >= 7
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3973 /* Don't crash on bad data. */
3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3975 + dwarf2_per_objfile->all_type_units.size ()))
3976 {
3977 complaint (_(".gdb_index entry has bad CU index"
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3980 continue;
3981 }
3982
3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3984
3985 /* Skip if already read in. */
3986 if (per_cu->v.quick->compunit_symtab)
3987 continue;
3988
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032 }
4033
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
4037 {
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4041
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4046
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4048
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4055
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
4059
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4063
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
4070
4071 /* Keep looking through other CUs. */
4072 }
4073
4074 return stab_best;
4075 }
4076
4077 static void
4078 dw2_print_stats (struct objfile *objfile)
4079 {
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4084 int count = 0;
4085
4086 for (int i = 0; i < total; ++i)
4087 {
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4089
4090 if (!per_cu->v.quick->compunit_symtab)
4091 ++count;
4092 }
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 }
4096
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
4102 static void
4103 dw2_dump (struct objfile *objfile)
4104 {
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4118 }
4119
4120 static void
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123 {
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4126
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4129
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
4133
4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4135 dw2_instantiate_symtab (per_cu, false);
4136
4137 }
4138
4139 static void
4140 dw2_expand_all_symtabs (struct objfile *objfile)
4141 {
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4145 + dwarf2_per_objfile->all_type_units.size ());
4146
4147 for (int i = 0; i < total_units; ++i)
4148 {
4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4150
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
4157 }
4158 }
4159
4160 static void
4161 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
4163 {
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4173 {
4174 /* We only need to look at symtabs not already expanded. */
4175 if (per_cu->v.quick->compunit_symtab)
4176 continue;
4177
4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
4179 if (file_data == NULL)
4180 continue;
4181
4182 for (int j = 0; j < file_data->num_file_names; ++j)
4183 {
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
4187 {
4188 dw2_instantiate_symtab (per_cu, false);
4189 break;
4190 }
4191 }
4192 }
4193 }
4194
4195 static void
4196 dw2_map_matching_symbols (struct objfile *objfile,
4197 const char * name, domain_enum domain,
4198 int global,
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
4201 void *data, symbol_name_match_type match,
4202 symbol_compare_ftype *ordered_compare)
4203 {
4204 /* Currently unimplemented; used for Ada. The function can be called if the
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
4207 }
4208
4209 /* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232 */
4233 class gdb_index_symbol_name_matcher
4234 {
4235 public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243 private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250 };
4251
4252 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255 {
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
4268 symbol_name_matcher_ftype *name_matcher
4269 = get_symbol_name_matcher (lang, m_lookup_name);
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
4283 }
4284 }
4285
4286 bool
4287 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288 {
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294 }
4295
4296 /* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301 static std::string
4302 make_sort_after_prefix_name (const char *search_name)
4303 {
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367 }
4368
4369 /* See declaration. */
4370
4371 std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
4373 mapped_index_base::find_name_components_bounds
4374 (const lookup_name_info &lookup_name_without_params) const
4375 {
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4378
4379 const char *cplus
4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4381
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
4417 if (lookup_name_without_params.completion_mode ())
4418 {
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
4432 return end;
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
4440 return {lower, upper};
4441 }
4442
4443 /* See declaration. */
4444
4445 void
4446 mapped_index_base::build_name_components ()
4447 {
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
4464 {
4465 if (this->symbol_name_slot_invalid (idx))
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501 }
4502
4503 /* Helper for dw2_expand_symtabs_matching that works with a
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
4508 symbol's index in the mapped_index_base symbol table. */
4509
4510 static void
4511 dw2_expand_symtabs_matching_symbol
4512 (mapped_index_base &index,
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517 {
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
4540 matches.reserve (std::distance (bounds.first, bounds.second));
4541
4542 for (; bounds.first != bounds.second; ++bounds.first)
4543 {
4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4548 continue;
4549
4550 matches.push_back (bounds.first->idx);
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569 }
4570
4571 #if GDB_SELF_TEST
4572
4573 namespace selftests { namespace dw2_expand_symtabs_matching {
4574
4575 /* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579 class mock_mapped_index : public mapped_index_base
4580 {
4581 public:
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
4584 {}
4585
4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4587
4588 /* Return the number of names in the symbol table. */
4589 size_t symbol_name_count () const override
4590 {
4591 return m_symbol_table.size ();
4592 }
4593
4594 /* Get the name of the symbol at IDX in the symbol table. */
4595 const char *symbol_name_at (offset_type idx) const override
4596 {
4597 return m_symbol_table[idx];
4598 }
4599
4600 private:
4601 gdb::array_view<const char *> m_symbol_table;
4602 };
4603
4604 /* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607 static const char *
4608 string_or_null (const char *str)
4609 {
4610 return str != NULL ? str : "<null>";
4611 }
4612
4613 /* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620 static bool
4621 check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626 {
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
4650 const char *matched_name = mock_index.symbol_name_at (idx);
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664 }
4665
4666 /* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668 static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
4679
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702 #define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708 };
4709
4710 /* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
4713
4714 static bool
4715 check_find_bounds_finds (mapped_index_base &index,
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718 {
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737 }
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
4742 static void
4743 test_mapped_index_find_name_component_bounds ()
4744 {
4745 mock_mapped_index mock_index (test_symbols);
4746
4747 mock_index.build_name_components ();
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
4755 };
4756
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
4768 SELF_CHECK (check_find_bounds_finds (mock_index,
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
4774 SELF_CHECK (check_find_bounds_finds (mock_index,
4775 "\377\377", expected_syms2));
4776 }
4777 }
4778
4779 /* Test dw2_expand_symtabs_matching_symbol. */
4780
4781 static void
4782 test_dw2_expand_symtabs_matching_symbol ()
4783 {
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793 #define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
4979 SELF_CHECK (!any_mismatch);
4980
4981 #undef EXPECT
4982 #undef CHECK_MATCH
4983 }
4984
4985 static void
4986 run_test ()
4987 {
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990 }
4991
4992 }} // namespace selftests::dw2_expand_symtabs_matching
4993
4994 #endif /* GDB_SELF_TEST */
4995
4996 /* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001 static void
5002 dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006 {
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
5012 dw2_instantiate_symtab (per_cu, false);
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019 }
5020
5021 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025 static void
5026 dw2_expand_marked_cus
5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031 {
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
5034 mapped_index &index = *dwarf2_per_objfile->index_table;
5035
5036 vec = (offset_type *) (index.constant_pool
5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
5057 {
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
5063
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
5068 {
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5075 continue;
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
5083 }
5084 }
5085
5086 /* Don't crash on bad data. */
5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5088 + dwarf2_per_objfile->all_type_units.size ()))
5089 {
5090 complaint (_(".gdb_index entry has bad CU index"
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
5093 continue;
5094 }
5095
5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
5099 }
5100 }
5101
5102 /* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
5106 static void
5107 dw_expand_symtabs_matching_file_matcher
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5110 {
5111 if (file_matcher == NULL)
5112 return;
5113
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
5122
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
5125
5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5127 {
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
5148 for (int j = 0; j < file_data->num_file_names; ++j)
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
5177 *slot = file_data;
5178 }
5179 }
5180
5181 static void
5182 dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189 {
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5206 expansion_notify, kind);
5207 });
5208 }
5209
5210 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213 static struct compunit_symtab *
5214 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216 {
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236 }
5237
5238 static struct compunit_symtab *
5239 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244 {
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
5248 if (!objfile->psymtabs_addrmap)
5249 return NULL;
5250
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
5253 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5254 pc - baseaddr);
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268 }
5269
5270 static void
5271 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273 {
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5290 {
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5302 {
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
5308 if (file_data == NULL)
5309 continue;
5310
5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335 }
5336
5337 static int
5338 dw2_has_symbols (struct objfile *objfile)
5339 {
5340 return 1;
5341 }
5342
5343 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344 {
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360 };
5361
5362 /* DWARF-5 debug_names reader. */
5363
5364 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367 /* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373 static bool
5374 read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378 {
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548 }
5549
5550 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553 static void
5554 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
5557 bool is_dwz)
5558 {
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
5576 dwarf2_per_cu_data *per_cu
5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5578 sect_off_prev, length);
5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583 }
5584
5585 /* Read the CU list from the mapped index, and use it to create all
5586 the CU objects for this dwarf2_per_objfile. */
5587
5588 static void
5589 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592 {
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5595
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
5598 false /* is_dwz */);
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5605 true /* is_dwz */);
5606 }
5607
5608 /* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611 static bool
5612 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5613 {
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
5621 *map))
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
5625 if (map->name_count == 0)
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5644
5645 if (map->tu_count != 0)
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5657 }
5658
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
5661
5662 dwarf2_per_objfile->debug_names_table = std::move (map);
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5666
5667 return true;
5668 }
5669
5670 /* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673 class dw2_debug_names_iterator
5674 {
5675 public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697 private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721 };
5722
5723 const char *
5724 mapped_debug_names::namei_to_name (uint32_t namei) const
5725 {
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5733 }
5734
5735 /* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739 const gdb_byte *
5740 dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742 {
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5778 "[in module %s]"),
5779 namei, map.name_count,
5780 objfile_name (map.dwarf2_per_objfile->objfile));
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797 #if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
5800 complaint (_("Wrong .debug_names hash for string at index %u "
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805 #endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821 }
5822
5823 const gdb_byte *
5824 dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826 {
5827 if (namei >= map.name_count)
5828 {
5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5830 "[in module %s]"),
5831 namei, map.name_count,
5832 objfile_name (map.dwarf2_per_objfile->objfile));
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842
5843 /* See dw2_debug_names_iterator. */
5844
5845 dwarf2_per_cu_data *
5846 dw2_debug_names_iterator::next ()
5847 {
5848 if (m_addr == NULL)
5849 return NULL;
5850
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
5867 "[in module %s]"),
5868 pulongest (abbrev), objfile_name (objfile));
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5892 dwarf_form_name (attr.form),
5893 objfile_name (objfile));
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5901 {
5902 complaint (_(".debug_names entry has bad CU index %s"
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
5909 break;
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5913 {
5914 complaint (_(".debug_names entry has bad TU index %s"
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5921 break;
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
5993 {
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
5996 {
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
6010 }
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
6024 }
6025
6026 return per_cu;
6027 }
6028
6029 static struct compunit_symtab *
6030 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
6032 {
6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
6036
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
6039 {
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
6044
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
6047
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6056
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
6060
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
6064
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
6071
6072 /* Keep looking through other CUs. */
6073 }
6074
6075 return stab_best;
6076 }
6077
6078 /* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
6081
6082 static void
6083 dw2_debug_names_dump (struct objfile *objfile)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
6095 }
6096
6097 static void
6098 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
6100 {
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
6103
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
6106 {
6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6108
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6112
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
6115 dw2_instantiate_symtab (per_cu, false);
6116 }
6117 }
6118
6119 static void
6120 dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
6134
6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6136
6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6138
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
6142 {
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
6146
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
6151 });
6152 }
6153
6154 const struct quick_symbol_functions dwarf2_debug_names_functions =
6155 {
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
6159 dw2_map_symtabs_matching_filename,
6160 dw2_debug_names_lookup_symbol,
6161 dw2_print_stats,
6162 dw2_debug_names_dump,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176 template <typename T>
6177 static gdb::array_view<const gdb_byte>
6178 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179 {
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
6192 /* dwarf2_section_info::size is a bfd_size_type, while
6193 gdb::array_view works with size_t. On 32-bit hosts, with
6194 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6195 is 32-bit. So we need an explicit narrowing conversion here.
6196 This is fine, because it's impossible to allocate or mmap an
6197 array/buffer larger than what size_t can represent. */
6198 return gdb::make_array_view (section->buffer, section->size);
6199 }
6200
6201 /* Lookup the index cache for the contents of the index associated to
6202 DWARF2_OBJ. */
6203
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6206 {
6207 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6208 if (build_id == nullptr)
6209 return {};
6210
6211 return global_index_cache.lookup_gdb_index (build_id,
6212 &dwarf2_obj->index_cache_res);
6213 }
6214
6215 /* Same as the above, but for DWZ. */
6216
6217 static gdb::array_view<const gdb_byte>
6218 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6219 {
6220 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6221 if (build_id == nullptr)
6222 return {};
6223
6224 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6225 }
6226
6227 /* See symfile.h. */
6228
6229 bool
6230 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 /* If we're about to read full symbols, don't bother with the
6236 indices. In this case we also don't care if some other debug
6237 format is making psymtabs, because they are all about to be
6238 expanded anyway. */
6239 if ((objfile->flags & OBJF_READNOW))
6240 {
6241 dwarf2_per_objfile->using_index = 1;
6242 create_all_comp_units (dwarf2_per_objfile);
6243 create_all_type_units (dwarf2_per_objfile);
6244 dwarf2_per_objfile->quick_file_names_table
6245 = create_quick_file_names_table
6246 (dwarf2_per_objfile->all_comp_units.size ());
6247
6248 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6249 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6250 {
6251 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6252
6253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6254 struct dwarf2_per_cu_quick_data);
6255 }
6256
6257 /* Return 1 so that gdb sees the "quick" functions. However,
6258 these functions will be no-ops because we will have expanded
6259 all symtabs. */
6260 *index_kind = dw_index_kind::GDB_INDEX;
6261 return true;
6262 }
6263
6264 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6265 {
6266 *index_kind = dw_index_kind::DEBUG_NAMES;
6267 return true;
6268 }
6269
6270 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6271 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6272 get_gdb_index_contents_from_section<dwz_file>))
6273 {
6274 *index_kind = dw_index_kind::GDB_INDEX;
6275 return true;
6276 }
6277
6278 /* ... otherwise, try to find the index in the index cache. */
6279 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6280 get_gdb_index_contents_from_cache,
6281 get_gdb_index_contents_from_cache_dwz))
6282 {
6283 global_index_cache.hit ();
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 global_index_cache.miss ();
6289 return false;
6290 }
6291
6292 \f
6293
6294 /* Build a partial symbol table. */
6295
6296 void
6297 dwarf2_build_psymtabs (struct objfile *objfile)
6298 {
6299 struct dwarf2_per_objfile *dwarf2_per_objfile
6300 = get_dwarf2_per_objfile (objfile);
6301
6302 if (objfile->global_psymbols.capacity () == 0
6303 && objfile->static_psymbols.capacity () == 0)
6304 init_psymbol_list (objfile, 1024);
6305
6306 TRY
6307 {
6308 /* This isn't really ideal: all the data we allocate on the
6309 objfile's obstack is still uselessly kept around. However,
6310 freeing it seems unsafe. */
6311 psymtab_discarder psymtabs (objfile);
6312 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6313 psymtabs.keep ();
6314
6315 /* (maybe) store an index in the cache. */
6316 global_index_cache.store (dwarf2_per_objfile);
6317 }
6318 CATCH (except, RETURN_MASK_ERROR)
6319 {
6320 exception_print (gdb_stderr, except);
6321 }
6322 END_CATCH
6323 }
6324
6325 /* Return the total length of the CU described by HEADER. */
6326
6327 static unsigned int
6328 get_cu_length (const struct comp_unit_head *header)
6329 {
6330 return header->initial_length_size + header->length;
6331 }
6332
6333 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6334
6335 static inline bool
6336 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6337 {
6338 sect_offset bottom = cu_header->sect_off;
6339 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6340
6341 return sect_off >= bottom && sect_off < top;
6342 }
6343
6344 /* Find the base address of the compilation unit for range lists and
6345 location lists. It will normally be specified by DW_AT_low_pc.
6346 In DWARF-3 draft 4, the base address could be overridden by
6347 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6348 compilation units with discontinuous ranges. */
6349
6350 static void
6351 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6352 {
6353 struct attribute *attr;
6354
6355 cu->base_known = 0;
6356 cu->base_address = 0;
6357
6358 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6359 if (attr)
6360 {
6361 cu->base_address = attr_value_as_address (attr);
6362 cu->base_known = 1;
6363 }
6364 else
6365 {
6366 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6367 if (attr)
6368 {
6369 cu->base_address = attr_value_as_address (attr);
6370 cu->base_known = 1;
6371 }
6372 }
6373 }
6374
6375 /* Read in the comp unit header information from the debug_info at info_ptr.
6376 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6377 NOTE: This leaves members offset, first_die_offset to be filled in
6378 by the caller. */
6379
6380 static const gdb_byte *
6381 read_comp_unit_head (struct comp_unit_head *cu_header,
6382 const gdb_byte *info_ptr,
6383 struct dwarf2_section_info *section,
6384 rcuh_kind section_kind)
6385 {
6386 int signed_addr;
6387 unsigned int bytes_read;
6388 const char *filename = get_section_file_name (section);
6389 bfd *abfd = get_section_bfd_owner (section);
6390
6391 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6392 cu_header->initial_length_size = bytes_read;
6393 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6394 info_ptr += bytes_read;
6395 cu_header->version = read_2_bytes (abfd, info_ptr);
6396 if (cu_header->version < 2 || cu_header->version > 5)
6397 error (_("Dwarf Error: wrong version in compilation unit header "
6398 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6399 cu_header->version, filename);
6400 info_ptr += 2;
6401 if (cu_header->version < 5)
6402 switch (section_kind)
6403 {
6404 case rcuh_kind::COMPILE:
6405 cu_header->unit_type = DW_UT_compile;
6406 break;
6407 case rcuh_kind::TYPE:
6408 cu_header->unit_type = DW_UT_type;
6409 break;
6410 default:
6411 internal_error (__FILE__, __LINE__,
6412 _("read_comp_unit_head: invalid section_kind"));
6413 }
6414 else
6415 {
6416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6417 (read_1_byte (abfd, info_ptr));
6418 info_ptr += 1;
6419 switch (cu_header->unit_type)
6420 {
6421 case DW_UT_compile:
6422 if (section_kind != rcuh_kind::COMPILE)
6423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6425 filename);
6426 break;
6427 case DW_UT_type:
6428 section_kind = rcuh_kind::TYPE;
6429 break;
6430 default:
6431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6432 "(is %d, should be %d or %d) [in module %s]"),
6433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6434 }
6435
6436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6437 info_ptr += 1;
6438 }
6439 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6440 cu_header,
6441 &bytes_read);
6442 info_ptr += bytes_read;
6443 if (cu_header->version < 5)
6444 {
6445 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6446 info_ptr += 1;
6447 }
6448 signed_addr = bfd_get_sign_extend_vma (abfd);
6449 if (signed_addr < 0)
6450 internal_error (__FILE__, __LINE__,
6451 _("read_comp_unit_head: dwarf from non elf file"));
6452 cu_header->signed_addr_p = signed_addr;
6453
6454 if (section_kind == rcuh_kind::TYPE)
6455 {
6456 LONGEST type_offset;
6457
6458 cu_header->signature = read_8_bytes (abfd, info_ptr);
6459 info_ptr += 8;
6460
6461 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6462 info_ptr += bytes_read;
6463 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6464 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6465 error (_("Dwarf Error: Too big type_offset in compilation unit "
6466 "header (is %s) [in module %s]"), plongest (type_offset),
6467 filename);
6468 }
6469
6470 return info_ptr;
6471 }
6472
6473 /* Helper function that returns the proper abbrev section for
6474 THIS_CU. */
6475
6476 static struct dwarf2_section_info *
6477 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6478 {
6479 struct dwarf2_section_info *abbrev;
6480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6481
6482 if (this_cu->is_dwz)
6483 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6484 else
6485 abbrev = &dwarf2_per_objfile->abbrev;
6486
6487 return abbrev;
6488 }
6489
6490 /* Subroutine of read_and_check_comp_unit_head and
6491 read_and_check_type_unit_head to simplify them.
6492 Perform various error checking on the header. */
6493
6494 static void
6495 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6496 struct comp_unit_head *header,
6497 struct dwarf2_section_info *section,
6498 struct dwarf2_section_info *abbrev_section)
6499 {
6500 const char *filename = get_section_file_name (section);
6501
6502 if (to_underlying (header->abbrev_sect_off)
6503 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6504 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6505 "(offset %s + 6) [in module %s]"),
6506 sect_offset_str (header->abbrev_sect_off),
6507 sect_offset_str (header->sect_off),
6508 filename);
6509
6510 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6511 avoid potential 32-bit overflow. */
6512 if (((ULONGEST) header->sect_off + get_cu_length (header))
6513 > section->size)
6514 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6515 "(offset %s + 0) [in module %s]"),
6516 header->length, sect_offset_str (header->sect_off),
6517 filename);
6518 }
6519
6520 /* Read in a CU/TU header and perform some basic error checking.
6521 The contents of the header are stored in HEADER.
6522 The result is a pointer to the start of the first DIE. */
6523
6524 static const gdb_byte *
6525 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section,
6529 const gdb_byte *info_ptr,
6530 rcuh_kind section_kind)
6531 {
6532 const gdb_byte *beg_of_comp_unit = info_ptr;
6533
6534 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6535
6536 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6537
6538 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6539
6540 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6541 abbrev_section);
6542
6543 return info_ptr;
6544 }
6545
6546 /* Fetch the abbreviation table offset from a comp or type unit header. */
6547
6548 static sect_offset
6549 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct dwarf2_section_info *section,
6551 sect_offset sect_off)
6552 {
6553 bfd *abfd = get_section_bfd_owner (section);
6554 const gdb_byte *info_ptr;
6555 unsigned int initial_length_size, offset_size;
6556 uint16_t version;
6557
6558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6559 info_ptr = section->buffer + to_underlying (sect_off);
6560 read_initial_length (abfd, info_ptr, &initial_length_size);
6561 offset_size = initial_length_size == 4 ? 4 : 8;
6562 info_ptr += initial_length_size;
6563
6564 version = read_2_bytes (abfd, info_ptr);
6565 info_ptr += 2;
6566 if (version >= 5)
6567 {
6568 /* Skip unit type and address size. */
6569 info_ptr += 2;
6570 }
6571
6572 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6573 }
6574
6575 /* Allocate a new partial symtab for file named NAME and mark this new
6576 partial symtab as being an include of PST. */
6577
6578 static void
6579 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6580 struct objfile *objfile)
6581 {
6582 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6583
6584 if (!IS_ABSOLUTE_PATH (subpst->filename))
6585 {
6586 /* It shares objfile->objfile_obstack. */
6587 subpst->dirname = pst->dirname;
6588 }
6589
6590 subpst->dependencies
6591 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6592 subpst->dependencies[0] = pst;
6593 subpst->number_of_dependencies = 1;
6594
6595 subpst->globals_offset = 0;
6596 subpst->n_global_syms = 0;
6597 subpst->statics_offset = 0;
6598 subpst->n_static_syms = 0;
6599 subpst->compunit_symtab = NULL;
6600 subpst->read_symtab = pst->read_symtab;
6601 subpst->readin = 0;
6602
6603 /* No private part is necessary for include psymtabs. This property
6604 can be used to differentiate between such include psymtabs and
6605 the regular ones. */
6606 subpst->read_symtab_private = NULL;
6607 }
6608
6609 /* Read the Line Number Program data and extract the list of files
6610 included by the source file represented by PST. Build an include
6611 partial symtab for each of these included files. */
6612
6613 static void
6614 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6615 struct die_info *die,
6616 struct partial_symtab *pst)
6617 {
6618 line_header_up lh;
6619 struct attribute *attr;
6620
6621 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6622 if (attr)
6623 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6624 if (lh == NULL)
6625 return; /* No linetable, so no includes. */
6626
6627 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6628 that we pass in the raw text_low here; that is ok because we're
6629 only decoding the line table to make include partial symtabs, and
6630 so the addresses aren't really used. */
6631 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6632 pst->raw_text_low (), 1);
6633 }
6634
6635 static hashval_t
6636 hash_signatured_type (const void *item)
6637 {
6638 const struct signatured_type *sig_type
6639 = (const struct signatured_type *) item;
6640
6641 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6642 return sig_type->signature;
6643 }
6644
6645 static int
6646 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6647 {
6648 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6649 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6650
6651 return lhs->signature == rhs->signature;
6652 }
6653
6654 /* Allocate a hash table for signatured types. */
6655
6656 static htab_t
6657 allocate_signatured_type_table (struct objfile *objfile)
6658 {
6659 return htab_create_alloc_ex (41,
6660 hash_signatured_type,
6661 eq_signatured_type,
6662 NULL,
6663 &objfile->objfile_obstack,
6664 hashtab_obstack_allocate,
6665 dummy_obstack_deallocate);
6666 }
6667
6668 /* A helper function to add a signatured type CU to a table. */
6669
6670 static int
6671 add_signatured_type_cu_to_table (void **slot, void *datum)
6672 {
6673 struct signatured_type *sigt = (struct signatured_type *) *slot;
6674 std::vector<signatured_type *> *all_type_units
6675 = (std::vector<signatured_type *> *) datum;
6676
6677 all_type_units->push_back (sigt);
6678
6679 return 1;
6680 }
6681
6682 /* A helper for create_debug_types_hash_table. Read types from SECTION
6683 and fill them into TYPES_HTAB. It will process only type units,
6684 therefore DW_UT_type. */
6685
6686 static void
6687 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6688 struct dwo_file *dwo_file,
6689 dwarf2_section_info *section, htab_t &types_htab,
6690 rcuh_kind section_kind)
6691 {
6692 struct objfile *objfile = dwarf2_per_objfile->objfile;
6693 struct dwarf2_section_info *abbrev_section;
6694 bfd *abfd;
6695 const gdb_byte *info_ptr, *end_ptr;
6696
6697 abbrev_section = (dwo_file != NULL
6698 ? &dwo_file->sections.abbrev
6699 : &dwarf2_per_objfile->abbrev);
6700
6701 if (dwarf_read_debug)
6702 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6703 get_section_name (section),
6704 get_section_file_name (abbrev_section));
6705
6706 dwarf2_read_section (objfile, section);
6707 info_ptr = section->buffer;
6708
6709 if (info_ptr == NULL)
6710 return;
6711
6712 /* We can't set abfd until now because the section may be empty or
6713 not present, in which case the bfd is unknown. */
6714 abfd = get_section_bfd_owner (section);
6715
6716 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6717 because we don't need to read any dies: the signature is in the
6718 header. */
6719
6720 end_ptr = info_ptr + section->size;
6721 while (info_ptr < end_ptr)
6722 {
6723 struct signatured_type *sig_type;
6724 struct dwo_unit *dwo_tu;
6725 void **slot;
6726 const gdb_byte *ptr = info_ptr;
6727 struct comp_unit_head header;
6728 unsigned int length;
6729
6730 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6731
6732 /* Initialize it due to a false compiler warning. */
6733 header.signature = -1;
6734 header.type_cu_offset_in_tu = (cu_offset) -1;
6735
6736 /* We need to read the type's signature in order to build the hash
6737 table, but we don't need anything else just yet. */
6738
6739 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6740 abbrev_section, ptr, section_kind);
6741
6742 length = get_cu_length (&header);
6743
6744 /* Skip dummy type units. */
6745 if (ptr >= info_ptr + length
6746 || peek_abbrev_code (abfd, ptr) == 0
6747 || header.unit_type != DW_UT_type)
6748 {
6749 info_ptr += length;
6750 continue;
6751 }
6752
6753 if (types_htab == NULL)
6754 {
6755 if (dwo_file)
6756 types_htab = allocate_dwo_unit_table (objfile);
6757 else
6758 types_htab = allocate_signatured_type_table (objfile);
6759 }
6760
6761 if (dwo_file)
6762 {
6763 sig_type = NULL;
6764 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6765 struct dwo_unit);
6766 dwo_tu->dwo_file = dwo_file;
6767 dwo_tu->signature = header.signature;
6768 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6769 dwo_tu->section = section;
6770 dwo_tu->sect_off = sect_off;
6771 dwo_tu->length = length;
6772 }
6773 else
6774 {
6775 /* N.B.: type_offset is not usable if this type uses a DWO file.
6776 The real type_offset is in the DWO file. */
6777 dwo_tu = NULL;
6778 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6779 struct signatured_type);
6780 sig_type->signature = header.signature;
6781 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6782 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6783 sig_type->per_cu.is_debug_types = 1;
6784 sig_type->per_cu.section = section;
6785 sig_type->per_cu.sect_off = sect_off;
6786 sig_type->per_cu.length = length;
6787 }
6788
6789 slot = htab_find_slot (types_htab,
6790 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6791 INSERT);
6792 gdb_assert (slot != NULL);
6793 if (*slot != NULL)
6794 {
6795 sect_offset dup_sect_off;
6796
6797 if (dwo_file)
6798 {
6799 const struct dwo_unit *dup_tu
6800 = (const struct dwo_unit *) *slot;
6801
6802 dup_sect_off = dup_tu->sect_off;
6803 }
6804 else
6805 {
6806 const struct signatured_type *dup_tu
6807 = (const struct signatured_type *) *slot;
6808
6809 dup_sect_off = dup_tu->per_cu.sect_off;
6810 }
6811
6812 complaint (_("debug type entry at offset %s is duplicate to"
6813 " the entry at offset %s, signature %s"),
6814 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6815 hex_string (header.signature));
6816 }
6817 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6818
6819 if (dwarf_read_debug > 1)
6820 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6821 sect_offset_str (sect_off),
6822 hex_string (header.signature));
6823
6824 info_ptr += length;
6825 }
6826 }
6827
6828 /* Create the hash table of all entries in the .debug_types
6829 (or .debug_types.dwo) section(s).
6830 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6831 otherwise it is NULL.
6832
6833 The result is a pointer to the hash table or NULL if there are no types.
6834
6835 Note: This function processes DWO files only, not DWP files. */
6836
6837 static void
6838 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6839 struct dwo_file *dwo_file,
6840 VEC (dwarf2_section_info_def) *types,
6841 htab_t &types_htab)
6842 {
6843 int ix;
6844 struct dwarf2_section_info *section;
6845
6846 if (VEC_empty (dwarf2_section_info_def, types))
6847 return;
6848
6849 for (ix = 0;
6850 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6851 ++ix)
6852 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6853 types_htab, rcuh_kind::TYPE);
6854 }
6855
6856 /* Create the hash table of all entries in the .debug_types section,
6857 and initialize all_type_units.
6858 The result is zero if there is an error (e.g. missing .debug_types section),
6859 otherwise non-zero. */
6860
6861 static int
6862 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6863 {
6864 htab_t types_htab = NULL;
6865
6866 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6867 &dwarf2_per_objfile->info, types_htab,
6868 rcuh_kind::COMPILE);
6869 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6870 dwarf2_per_objfile->types, types_htab);
6871 if (types_htab == NULL)
6872 {
6873 dwarf2_per_objfile->signatured_types = NULL;
6874 return 0;
6875 }
6876
6877 dwarf2_per_objfile->signatured_types = types_htab;
6878
6879 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6880 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6881
6882 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6883 &dwarf2_per_objfile->all_type_units);
6884
6885 return 1;
6886 }
6887
6888 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6889 If SLOT is non-NULL, it is the entry to use in the hash table.
6890 Otherwise we find one. */
6891
6892 static struct signatured_type *
6893 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6894 void **slot)
6895 {
6896 struct objfile *objfile = dwarf2_per_objfile->objfile;
6897
6898 if (dwarf2_per_objfile->all_type_units.size ()
6899 == dwarf2_per_objfile->all_type_units.capacity ())
6900 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6901
6902 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6903 struct signatured_type);
6904
6905 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6906 sig_type->signature = sig;
6907 sig_type->per_cu.is_debug_types = 1;
6908 if (dwarf2_per_objfile->using_index)
6909 {
6910 sig_type->per_cu.v.quick =
6911 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6912 struct dwarf2_per_cu_quick_data);
6913 }
6914
6915 if (slot == NULL)
6916 {
6917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6918 sig_type, INSERT);
6919 }
6920 gdb_assert (*slot == NULL);
6921 *slot = sig_type;
6922 /* The rest of sig_type must be filled in by the caller. */
6923 return sig_type;
6924 }
6925
6926 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6927 Fill in SIG_ENTRY with DWO_ENTRY. */
6928
6929 static void
6930 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6931 struct signatured_type *sig_entry,
6932 struct dwo_unit *dwo_entry)
6933 {
6934 /* Make sure we're not clobbering something we don't expect to. */
6935 gdb_assert (! sig_entry->per_cu.queued);
6936 gdb_assert (sig_entry->per_cu.cu == NULL);
6937 if (dwarf2_per_objfile->using_index)
6938 {
6939 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6940 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6941 }
6942 else
6943 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6944 gdb_assert (sig_entry->signature == dwo_entry->signature);
6945 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6946 gdb_assert (sig_entry->type_unit_group == NULL);
6947 gdb_assert (sig_entry->dwo_unit == NULL);
6948
6949 sig_entry->per_cu.section = dwo_entry->section;
6950 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6951 sig_entry->per_cu.length = dwo_entry->length;
6952 sig_entry->per_cu.reading_dwo_directly = 1;
6953 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6954 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6955 sig_entry->dwo_unit = dwo_entry;
6956 }
6957
6958 /* Subroutine of lookup_signatured_type.
6959 If we haven't read the TU yet, create the signatured_type data structure
6960 for a TU to be read in directly from a DWO file, bypassing the stub.
6961 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6962 using .gdb_index, then when reading a CU we want to stay in the DWO file
6963 containing that CU. Otherwise we could end up reading several other DWO
6964 files (due to comdat folding) to process the transitive closure of all the
6965 mentioned TUs, and that can be slow. The current DWO file will have every
6966 type signature that it needs.
6967 We only do this for .gdb_index because in the psymtab case we already have
6968 to read all the DWOs to build the type unit groups. */
6969
6970 static struct signatured_type *
6971 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6972 {
6973 struct dwarf2_per_objfile *dwarf2_per_objfile
6974 = cu->per_cu->dwarf2_per_objfile;
6975 struct objfile *objfile = dwarf2_per_objfile->objfile;
6976 struct dwo_file *dwo_file;
6977 struct dwo_unit find_dwo_entry, *dwo_entry;
6978 struct signatured_type find_sig_entry, *sig_entry;
6979 void **slot;
6980
6981 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6982
6983 /* If TU skeletons have been removed then we may not have read in any
6984 TUs yet. */
6985 if (dwarf2_per_objfile->signatured_types == NULL)
6986 {
6987 dwarf2_per_objfile->signatured_types
6988 = allocate_signatured_type_table (objfile);
6989 }
6990
6991 /* We only ever need to read in one copy of a signatured type.
6992 Use the global signatured_types array to do our own comdat-folding
6993 of types. If this is the first time we're reading this TU, and
6994 the TU has an entry in .gdb_index, replace the recorded data from
6995 .gdb_index with this TU. */
6996
6997 find_sig_entry.signature = sig;
6998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6999 &find_sig_entry, INSERT);
7000 sig_entry = (struct signatured_type *) *slot;
7001
7002 /* We can get here with the TU already read, *or* in the process of being
7003 read. Don't reassign the global entry to point to this DWO if that's
7004 the case. Also note that if the TU is already being read, it may not
7005 have come from a DWO, the program may be a mix of Fission-compiled
7006 code and non-Fission-compiled code. */
7007
7008 /* Have we already tried to read this TU?
7009 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7010 needn't exist in the global table yet). */
7011 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7012 return sig_entry;
7013
7014 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7015 dwo_unit of the TU itself. */
7016 dwo_file = cu->dwo_unit->dwo_file;
7017
7018 /* Ok, this is the first time we're reading this TU. */
7019 if (dwo_file->tus == NULL)
7020 return NULL;
7021 find_dwo_entry.signature = sig;
7022 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7023 if (dwo_entry == NULL)
7024 return NULL;
7025
7026 /* If the global table doesn't have an entry for this TU, add one. */
7027 if (sig_entry == NULL)
7028 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7029
7030 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7031 sig_entry->per_cu.tu_read = 1;
7032 return sig_entry;
7033 }
7034
7035 /* Subroutine of lookup_signatured_type.
7036 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7037 then try the DWP file. If the TU stub (skeleton) has been removed then
7038 it won't be in .gdb_index. */
7039
7040 static struct signatured_type *
7041 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7042 {
7043 struct dwarf2_per_objfile *dwarf2_per_objfile
7044 = cu->per_cu->dwarf2_per_objfile;
7045 struct objfile *objfile = dwarf2_per_objfile->objfile;
7046 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7047 struct dwo_unit *dwo_entry;
7048 struct signatured_type find_sig_entry, *sig_entry;
7049 void **slot;
7050
7051 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7052 gdb_assert (dwp_file != NULL);
7053
7054 /* If TU skeletons have been removed then we may not have read in any
7055 TUs yet. */
7056 if (dwarf2_per_objfile->signatured_types == NULL)
7057 {
7058 dwarf2_per_objfile->signatured_types
7059 = allocate_signatured_type_table (objfile);
7060 }
7061
7062 find_sig_entry.signature = sig;
7063 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7064 &find_sig_entry, INSERT);
7065 sig_entry = (struct signatured_type *) *slot;
7066
7067 /* Have we already tried to read this TU?
7068 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7069 needn't exist in the global table yet). */
7070 if (sig_entry != NULL)
7071 return sig_entry;
7072
7073 if (dwp_file->tus == NULL)
7074 return NULL;
7075 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7076 sig, 1 /* is_debug_types */);
7077 if (dwo_entry == NULL)
7078 return NULL;
7079
7080 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7081 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7082
7083 return sig_entry;
7084 }
7085
7086 /* Lookup a signature based type for DW_FORM_ref_sig8.
7087 Returns NULL if signature SIG is not present in the table.
7088 It is up to the caller to complain about this. */
7089
7090 static struct signatured_type *
7091 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7092 {
7093 struct dwarf2_per_objfile *dwarf2_per_objfile
7094 = cu->per_cu->dwarf2_per_objfile;
7095
7096 if (cu->dwo_unit
7097 && dwarf2_per_objfile->using_index)
7098 {
7099 /* We're in a DWO/DWP file, and we're using .gdb_index.
7100 These cases require special processing. */
7101 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7102 return lookup_dwo_signatured_type (cu, sig);
7103 else
7104 return lookup_dwp_signatured_type (cu, sig);
7105 }
7106 else
7107 {
7108 struct signatured_type find_entry, *entry;
7109
7110 if (dwarf2_per_objfile->signatured_types == NULL)
7111 return NULL;
7112 find_entry.signature = sig;
7113 entry = ((struct signatured_type *)
7114 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7115 return entry;
7116 }
7117 }
7118 \f
7119 /* Low level DIE reading support. */
7120
7121 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7122
7123 static void
7124 init_cu_die_reader (struct die_reader_specs *reader,
7125 struct dwarf2_cu *cu,
7126 struct dwarf2_section_info *section,
7127 struct dwo_file *dwo_file,
7128 struct abbrev_table *abbrev_table)
7129 {
7130 gdb_assert (section->readin && section->buffer != NULL);
7131 reader->abfd = get_section_bfd_owner (section);
7132 reader->cu = cu;
7133 reader->dwo_file = dwo_file;
7134 reader->die_section = section;
7135 reader->buffer = section->buffer;
7136 reader->buffer_end = section->buffer + section->size;
7137 reader->comp_dir = NULL;
7138 reader->abbrev_table = abbrev_table;
7139 }
7140
7141 /* Subroutine of init_cutu_and_read_dies to simplify it.
7142 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7143 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7144 already.
7145
7146 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7147 from it to the DIE in the DWO. If NULL we are skipping the stub.
7148 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7149 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7150 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7151 STUB_COMP_DIR may be non-NULL.
7152 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7153 are filled in with the info of the DIE from the DWO file.
7154 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7155 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7156 kept around for at least as long as *RESULT_READER.
7157
7158 The result is non-zero if a valid (non-dummy) DIE was found. */
7159
7160 static int
7161 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7162 struct dwo_unit *dwo_unit,
7163 struct die_info *stub_comp_unit_die,
7164 const char *stub_comp_dir,
7165 struct die_reader_specs *result_reader,
7166 const gdb_byte **result_info_ptr,
7167 struct die_info **result_comp_unit_die,
7168 int *result_has_children,
7169 abbrev_table_up *result_dwo_abbrev_table)
7170 {
7171 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7172 struct objfile *objfile = dwarf2_per_objfile->objfile;
7173 struct dwarf2_cu *cu = this_cu->cu;
7174 bfd *abfd;
7175 const gdb_byte *begin_info_ptr, *info_ptr;
7176 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7177 int i,num_extra_attrs;
7178 struct dwarf2_section_info *dwo_abbrev_section;
7179 struct attribute *attr;
7180 struct die_info *comp_unit_die;
7181
7182 /* At most one of these may be provided. */
7183 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7184
7185 /* These attributes aren't processed until later:
7186 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7187 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7188 referenced later. However, these attributes are found in the stub
7189 which we won't have later. In order to not impose this complication
7190 on the rest of the code, we read them here and copy them to the
7191 DWO CU/TU die. */
7192
7193 stmt_list = NULL;
7194 low_pc = NULL;
7195 high_pc = NULL;
7196 ranges = NULL;
7197 comp_dir = NULL;
7198
7199 if (stub_comp_unit_die != NULL)
7200 {
7201 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7202 DWO file. */
7203 if (! this_cu->is_debug_types)
7204 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7205 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7206 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7207 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7208 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7209
7210 /* There should be a DW_AT_addr_base attribute here (if needed).
7211 We need the value before we can process DW_FORM_GNU_addr_index. */
7212 cu->addr_base = 0;
7213 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7214 if (attr)
7215 cu->addr_base = DW_UNSND (attr);
7216
7217 /* There should be a DW_AT_ranges_base attribute here (if needed).
7218 We need the value before we can process DW_AT_ranges. */
7219 cu->ranges_base = 0;
7220 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7221 if (attr)
7222 cu->ranges_base = DW_UNSND (attr);
7223 }
7224 else if (stub_comp_dir != NULL)
7225 {
7226 /* Reconstruct the comp_dir attribute to simplify the code below. */
7227 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7228 comp_dir->name = DW_AT_comp_dir;
7229 comp_dir->form = DW_FORM_string;
7230 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7231 DW_STRING (comp_dir) = stub_comp_dir;
7232 }
7233
7234 /* Set up for reading the DWO CU/TU. */
7235 cu->dwo_unit = dwo_unit;
7236 dwarf2_section_info *section = dwo_unit->section;
7237 dwarf2_read_section (objfile, section);
7238 abfd = get_section_bfd_owner (section);
7239 begin_info_ptr = info_ptr = (section->buffer
7240 + to_underlying (dwo_unit->sect_off));
7241 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7242
7243 if (this_cu->is_debug_types)
7244 {
7245 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7246
7247 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7248 &cu->header, section,
7249 dwo_abbrev_section,
7250 info_ptr, rcuh_kind::TYPE);
7251 /* This is not an assert because it can be caused by bad debug info. */
7252 if (sig_type->signature != cu->header.signature)
7253 {
7254 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7255 " TU at offset %s [in module %s]"),
7256 hex_string (sig_type->signature),
7257 hex_string (cu->header.signature),
7258 sect_offset_str (dwo_unit->sect_off),
7259 bfd_get_filename (abfd));
7260 }
7261 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7262 /* For DWOs coming from DWP files, we don't know the CU length
7263 nor the type's offset in the TU until now. */
7264 dwo_unit->length = get_cu_length (&cu->header);
7265 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7266
7267 /* Establish the type offset that can be used to lookup the type.
7268 For DWO files, we don't know it until now. */
7269 sig_type->type_offset_in_section
7270 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7271 }
7272 else
7273 {
7274 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7275 &cu->header, section,
7276 dwo_abbrev_section,
7277 info_ptr, rcuh_kind::COMPILE);
7278 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7279 /* For DWOs coming from DWP files, we don't know the CU length
7280 until now. */
7281 dwo_unit->length = get_cu_length (&cu->header);
7282 }
7283
7284 *result_dwo_abbrev_table
7285 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7286 cu->header.abbrev_sect_off);
7287 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7288 result_dwo_abbrev_table->get ());
7289
7290 /* Read in the die, but leave space to copy over the attributes
7291 from the stub. This has the benefit of simplifying the rest of
7292 the code - all the work to maintain the illusion of a single
7293 DW_TAG_{compile,type}_unit DIE is done here. */
7294 num_extra_attrs = ((stmt_list != NULL)
7295 + (low_pc != NULL)
7296 + (high_pc != NULL)
7297 + (ranges != NULL)
7298 + (comp_dir != NULL));
7299 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7300 result_has_children, num_extra_attrs);
7301
7302 /* Copy over the attributes from the stub to the DIE we just read in. */
7303 comp_unit_die = *result_comp_unit_die;
7304 i = comp_unit_die->num_attrs;
7305 if (stmt_list != NULL)
7306 comp_unit_die->attrs[i++] = *stmt_list;
7307 if (low_pc != NULL)
7308 comp_unit_die->attrs[i++] = *low_pc;
7309 if (high_pc != NULL)
7310 comp_unit_die->attrs[i++] = *high_pc;
7311 if (ranges != NULL)
7312 comp_unit_die->attrs[i++] = *ranges;
7313 if (comp_dir != NULL)
7314 comp_unit_die->attrs[i++] = *comp_dir;
7315 comp_unit_die->num_attrs += num_extra_attrs;
7316
7317 if (dwarf_die_debug)
7318 {
7319 fprintf_unfiltered (gdb_stdlog,
7320 "Read die from %s@0x%x of %s:\n",
7321 get_section_name (section),
7322 (unsigned) (begin_info_ptr - section->buffer),
7323 bfd_get_filename (abfd));
7324 dump_die (comp_unit_die, dwarf_die_debug);
7325 }
7326
7327 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7328 TUs by skipping the stub and going directly to the entry in the DWO file.
7329 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7330 to get it via circuitous means. Blech. */
7331 if (comp_dir != NULL)
7332 result_reader->comp_dir = DW_STRING (comp_dir);
7333
7334 /* Skip dummy compilation units. */
7335 if (info_ptr >= begin_info_ptr + dwo_unit->length
7336 || peek_abbrev_code (abfd, info_ptr) == 0)
7337 return 0;
7338
7339 *result_info_ptr = info_ptr;
7340 return 1;
7341 }
7342
7343 /* Subroutine of init_cutu_and_read_dies to simplify it.
7344 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7345 Returns NULL if the specified DWO unit cannot be found. */
7346
7347 static struct dwo_unit *
7348 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7349 struct die_info *comp_unit_die)
7350 {
7351 struct dwarf2_cu *cu = this_cu->cu;
7352 ULONGEST signature;
7353 struct dwo_unit *dwo_unit;
7354 const char *comp_dir, *dwo_name;
7355
7356 gdb_assert (cu != NULL);
7357
7358 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7359 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7360 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7361
7362 if (this_cu->is_debug_types)
7363 {
7364 struct signatured_type *sig_type;
7365
7366 /* Since this_cu is the first member of struct signatured_type,
7367 we can go from a pointer to one to a pointer to the other. */
7368 sig_type = (struct signatured_type *) this_cu;
7369 signature = sig_type->signature;
7370 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7371 }
7372 else
7373 {
7374 struct attribute *attr;
7375
7376 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7377 if (! attr)
7378 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7379 " [in module %s]"),
7380 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7381 signature = DW_UNSND (attr);
7382 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7383 signature);
7384 }
7385
7386 return dwo_unit;
7387 }
7388
7389 /* Subroutine of init_cutu_and_read_dies to simplify it.
7390 See it for a description of the parameters.
7391 Read a TU directly from a DWO file, bypassing the stub. */
7392
7393 static void
7394 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7395 int use_existing_cu, int keep,
7396 die_reader_func_ftype *die_reader_func,
7397 void *data)
7398 {
7399 std::unique_ptr<dwarf2_cu> new_cu;
7400 struct signatured_type *sig_type;
7401 struct die_reader_specs reader;
7402 const gdb_byte *info_ptr;
7403 struct die_info *comp_unit_die;
7404 int has_children;
7405 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7406
7407 /* Verify we can do the following downcast, and that we have the
7408 data we need. */
7409 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7410 sig_type = (struct signatured_type *) this_cu;
7411 gdb_assert (sig_type->dwo_unit != NULL);
7412
7413 if (use_existing_cu && this_cu->cu != NULL)
7414 {
7415 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7416 /* There's no need to do the rereading_dwo_cu handling that
7417 init_cutu_and_read_dies does since we don't read the stub. */
7418 }
7419 else
7420 {
7421 /* If !use_existing_cu, this_cu->cu must be NULL. */
7422 gdb_assert (this_cu->cu == NULL);
7423 new_cu.reset (new dwarf2_cu (this_cu));
7424 }
7425
7426 /* A future optimization, if needed, would be to use an existing
7427 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7428 could share abbrev tables. */
7429
7430 /* The abbreviation table used by READER, this must live at least as long as
7431 READER. */
7432 abbrev_table_up dwo_abbrev_table;
7433
7434 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7435 NULL /* stub_comp_unit_die */,
7436 sig_type->dwo_unit->dwo_file->comp_dir,
7437 &reader, &info_ptr,
7438 &comp_unit_die, &has_children,
7439 &dwo_abbrev_table) == 0)
7440 {
7441 /* Dummy die. */
7442 return;
7443 }
7444
7445 /* All the "real" work is done here. */
7446 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7447
7448 /* This duplicates the code in init_cutu_and_read_dies,
7449 but the alternative is making the latter more complex.
7450 This function is only for the special case of using DWO files directly:
7451 no point in overly complicating the general case just to handle this. */
7452 if (new_cu != NULL && keep)
7453 {
7454 /* Link this CU into read_in_chain. */
7455 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7456 dwarf2_per_objfile->read_in_chain = this_cu;
7457 /* The chain owns it now. */
7458 new_cu.release ();
7459 }
7460 }
7461
7462 /* Initialize a CU (or TU) and read its DIEs.
7463 If the CU defers to a DWO file, read the DWO file as well.
7464
7465 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7466 Otherwise the table specified in the comp unit header is read in and used.
7467 This is an optimization for when we already have the abbrev table.
7468
7469 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7470 Otherwise, a new CU is allocated with xmalloc.
7471
7472 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7473 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7474
7475 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7476 linker) then DIE_READER_FUNC will not get called. */
7477
7478 static void
7479 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7480 struct abbrev_table *abbrev_table,
7481 int use_existing_cu, int keep,
7482 bool skip_partial,
7483 die_reader_func_ftype *die_reader_func,
7484 void *data)
7485 {
7486 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7487 struct objfile *objfile = dwarf2_per_objfile->objfile;
7488 struct dwarf2_section_info *section = this_cu->section;
7489 bfd *abfd = get_section_bfd_owner (section);
7490 struct dwarf2_cu *cu;
7491 const gdb_byte *begin_info_ptr, *info_ptr;
7492 struct die_reader_specs reader;
7493 struct die_info *comp_unit_die;
7494 int has_children;
7495 struct attribute *attr;
7496 struct signatured_type *sig_type = NULL;
7497 struct dwarf2_section_info *abbrev_section;
7498 /* Non-zero if CU currently points to a DWO file and we need to
7499 reread it. When this happens we need to reread the skeleton die
7500 before we can reread the DWO file (this only applies to CUs, not TUs). */
7501 int rereading_dwo_cu = 0;
7502
7503 if (dwarf_die_debug)
7504 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7505 this_cu->is_debug_types ? "type" : "comp",
7506 sect_offset_str (this_cu->sect_off));
7507
7508 if (use_existing_cu)
7509 gdb_assert (keep);
7510
7511 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7512 file (instead of going through the stub), short-circuit all of this. */
7513 if (this_cu->reading_dwo_directly)
7514 {
7515 /* Narrow down the scope of possibilities to have to understand. */
7516 gdb_assert (this_cu->is_debug_types);
7517 gdb_assert (abbrev_table == NULL);
7518 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7519 die_reader_func, data);
7520 return;
7521 }
7522
7523 /* This is cheap if the section is already read in. */
7524 dwarf2_read_section (objfile, section);
7525
7526 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7527
7528 abbrev_section = get_abbrev_section_for_cu (this_cu);
7529
7530 std::unique_ptr<dwarf2_cu> new_cu;
7531 if (use_existing_cu && this_cu->cu != NULL)
7532 {
7533 cu = this_cu->cu;
7534 /* If this CU is from a DWO file we need to start over, we need to
7535 refetch the attributes from the skeleton CU.
7536 This could be optimized by retrieving those attributes from when we
7537 were here the first time: the previous comp_unit_die was stored in
7538 comp_unit_obstack. But there's no data yet that we need this
7539 optimization. */
7540 if (cu->dwo_unit != NULL)
7541 rereading_dwo_cu = 1;
7542 }
7543 else
7544 {
7545 /* If !use_existing_cu, this_cu->cu must be NULL. */
7546 gdb_assert (this_cu->cu == NULL);
7547 new_cu.reset (new dwarf2_cu (this_cu));
7548 cu = new_cu.get ();
7549 }
7550
7551 /* Get the header. */
7552 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7553 {
7554 /* We already have the header, there's no need to read it in again. */
7555 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7556 }
7557 else
7558 {
7559 if (this_cu->is_debug_types)
7560 {
7561 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7562 &cu->header, section,
7563 abbrev_section, info_ptr,
7564 rcuh_kind::TYPE);
7565
7566 /* Since per_cu is the first member of struct signatured_type,
7567 we can go from a pointer to one to a pointer to the other. */
7568 sig_type = (struct signatured_type *) this_cu;
7569 gdb_assert (sig_type->signature == cu->header.signature);
7570 gdb_assert (sig_type->type_offset_in_tu
7571 == cu->header.type_cu_offset_in_tu);
7572 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7573
7574 /* LENGTH has not been set yet for type units if we're
7575 using .gdb_index. */
7576 this_cu->length = get_cu_length (&cu->header);
7577
7578 /* Establish the type offset that can be used to lookup the type. */
7579 sig_type->type_offset_in_section =
7580 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7581
7582 this_cu->dwarf_version = cu->header.version;
7583 }
7584 else
7585 {
7586 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7587 &cu->header, section,
7588 abbrev_section,
7589 info_ptr,
7590 rcuh_kind::COMPILE);
7591
7592 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7593 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7594 this_cu->dwarf_version = cu->header.version;
7595 }
7596 }
7597
7598 /* Skip dummy compilation units. */
7599 if (info_ptr >= begin_info_ptr + this_cu->length
7600 || peek_abbrev_code (abfd, info_ptr) == 0)
7601 return;
7602
7603 /* If we don't have them yet, read the abbrevs for this compilation unit.
7604 And if we need to read them now, make sure they're freed when we're
7605 done (own the table through ABBREV_TABLE_HOLDER). */
7606 abbrev_table_up abbrev_table_holder;
7607 if (abbrev_table != NULL)
7608 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7609 else
7610 {
7611 abbrev_table_holder
7612 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7613 cu->header.abbrev_sect_off);
7614 abbrev_table = abbrev_table_holder.get ();
7615 }
7616
7617 /* Read the top level CU/TU die. */
7618 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7619 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7620
7621 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7622 return;
7623
7624 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7625 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7626 table from the DWO file and pass the ownership over to us. It will be
7627 referenced from READER, so we must make sure to free it after we're done
7628 with READER.
7629
7630 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7631 DWO CU, that this test will fail (the attribute will not be present). */
7632 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7633 abbrev_table_up dwo_abbrev_table;
7634 if (attr)
7635 {
7636 struct dwo_unit *dwo_unit;
7637 struct die_info *dwo_comp_unit_die;
7638
7639 if (has_children)
7640 {
7641 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7642 " has children (offset %s) [in module %s]"),
7643 sect_offset_str (this_cu->sect_off),
7644 bfd_get_filename (abfd));
7645 }
7646 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7647 if (dwo_unit != NULL)
7648 {
7649 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7650 comp_unit_die, NULL,
7651 &reader, &info_ptr,
7652 &dwo_comp_unit_die, &has_children,
7653 &dwo_abbrev_table) == 0)
7654 {
7655 /* Dummy die. */
7656 return;
7657 }
7658 comp_unit_die = dwo_comp_unit_die;
7659 }
7660 else
7661 {
7662 /* Yikes, we couldn't find the rest of the DIE, we only have
7663 the stub. A complaint has already been logged. There's
7664 not much more we can do except pass on the stub DIE to
7665 die_reader_func. We don't want to throw an error on bad
7666 debug info. */
7667 }
7668 }
7669
7670 /* All of the above is setup for this call. Yikes. */
7671 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7672
7673 /* Done, clean up. */
7674 if (new_cu != NULL && keep)
7675 {
7676 /* Link this CU into read_in_chain. */
7677 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7678 dwarf2_per_objfile->read_in_chain = this_cu;
7679 /* The chain owns it now. */
7680 new_cu.release ();
7681 }
7682 }
7683
7684 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7685 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7686 to have already done the lookup to find the DWO file).
7687
7688 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7689 THIS_CU->is_debug_types, but nothing else.
7690
7691 We fill in THIS_CU->length.
7692
7693 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7694 linker) then DIE_READER_FUNC will not get called.
7695
7696 THIS_CU->cu is always freed when done.
7697 This is done in order to not leave THIS_CU->cu in a state where we have
7698 to care whether it refers to the "main" CU or the DWO CU. */
7699
7700 static void
7701 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7702 struct dwo_file *dwo_file,
7703 die_reader_func_ftype *die_reader_func,
7704 void *data)
7705 {
7706 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7707 struct objfile *objfile = dwarf2_per_objfile->objfile;
7708 struct dwarf2_section_info *section = this_cu->section;
7709 bfd *abfd = get_section_bfd_owner (section);
7710 struct dwarf2_section_info *abbrev_section;
7711 const gdb_byte *begin_info_ptr, *info_ptr;
7712 struct die_reader_specs reader;
7713 struct die_info *comp_unit_die;
7714 int has_children;
7715
7716 if (dwarf_die_debug)
7717 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7718 this_cu->is_debug_types ? "type" : "comp",
7719 sect_offset_str (this_cu->sect_off));
7720
7721 gdb_assert (this_cu->cu == NULL);
7722
7723 abbrev_section = (dwo_file != NULL
7724 ? &dwo_file->sections.abbrev
7725 : get_abbrev_section_for_cu (this_cu));
7726
7727 /* This is cheap if the section is already read in. */
7728 dwarf2_read_section (objfile, section);
7729
7730 struct dwarf2_cu cu (this_cu);
7731
7732 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7733 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7734 &cu.header, section,
7735 abbrev_section, info_ptr,
7736 (this_cu->is_debug_types
7737 ? rcuh_kind::TYPE
7738 : rcuh_kind::COMPILE));
7739
7740 this_cu->length = get_cu_length (&cu.header);
7741
7742 /* Skip dummy compilation units. */
7743 if (info_ptr >= begin_info_ptr + this_cu->length
7744 || peek_abbrev_code (abfd, info_ptr) == 0)
7745 return;
7746
7747 abbrev_table_up abbrev_table
7748 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7749 cu.header.abbrev_sect_off);
7750
7751 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7752 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7753
7754 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7755 }
7756
7757 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7758 does not lookup the specified DWO file.
7759 This cannot be used to read DWO files.
7760
7761 THIS_CU->cu is always freed when done.
7762 This is done in order to not leave THIS_CU->cu in a state where we have
7763 to care whether it refers to the "main" CU or the DWO CU.
7764 We can revisit this if the data shows there's a performance issue. */
7765
7766 static void
7767 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7768 die_reader_func_ftype *die_reader_func,
7769 void *data)
7770 {
7771 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7772 }
7773 \f
7774 /* Type Unit Groups.
7775
7776 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7777 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7778 so that all types coming from the same compilation (.o file) are grouped
7779 together. A future step could be to put the types in the same symtab as
7780 the CU the types ultimately came from. */
7781
7782 static hashval_t
7783 hash_type_unit_group (const void *item)
7784 {
7785 const struct type_unit_group *tu_group
7786 = (const struct type_unit_group *) item;
7787
7788 return hash_stmt_list_entry (&tu_group->hash);
7789 }
7790
7791 static int
7792 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7793 {
7794 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7795 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7796
7797 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7798 }
7799
7800 /* Allocate a hash table for type unit groups. */
7801
7802 static htab_t
7803 allocate_type_unit_groups_table (struct objfile *objfile)
7804 {
7805 return htab_create_alloc_ex (3,
7806 hash_type_unit_group,
7807 eq_type_unit_group,
7808 NULL,
7809 &objfile->objfile_obstack,
7810 hashtab_obstack_allocate,
7811 dummy_obstack_deallocate);
7812 }
7813
7814 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7815 partial symtabs. We combine several TUs per psymtab to not let the size
7816 of any one psymtab grow too big. */
7817 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7818 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7819
7820 /* Helper routine for get_type_unit_group.
7821 Create the type_unit_group object used to hold one or more TUs. */
7822
7823 static struct type_unit_group *
7824 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7825 {
7826 struct dwarf2_per_objfile *dwarf2_per_objfile
7827 = cu->per_cu->dwarf2_per_objfile;
7828 struct objfile *objfile = dwarf2_per_objfile->objfile;
7829 struct dwarf2_per_cu_data *per_cu;
7830 struct type_unit_group *tu_group;
7831
7832 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7833 struct type_unit_group);
7834 per_cu = &tu_group->per_cu;
7835 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7836
7837 if (dwarf2_per_objfile->using_index)
7838 {
7839 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7840 struct dwarf2_per_cu_quick_data);
7841 }
7842 else
7843 {
7844 unsigned int line_offset = to_underlying (line_offset_struct);
7845 struct partial_symtab *pst;
7846 std::string name;
7847
7848 /* Give the symtab a useful name for debug purposes. */
7849 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7850 name = string_printf ("<type_units_%d>",
7851 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7852 else
7853 name = string_printf ("<type_units_at_0x%x>", line_offset);
7854
7855 pst = create_partial_symtab (per_cu, name.c_str ());
7856 pst->anonymous = 1;
7857 }
7858
7859 tu_group->hash.dwo_unit = cu->dwo_unit;
7860 tu_group->hash.line_sect_off = line_offset_struct;
7861
7862 return tu_group;
7863 }
7864
7865 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7866 STMT_LIST is a DW_AT_stmt_list attribute. */
7867
7868 static struct type_unit_group *
7869 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7870 {
7871 struct dwarf2_per_objfile *dwarf2_per_objfile
7872 = cu->per_cu->dwarf2_per_objfile;
7873 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7874 struct type_unit_group *tu_group;
7875 void **slot;
7876 unsigned int line_offset;
7877 struct type_unit_group type_unit_group_for_lookup;
7878
7879 if (dwarf2_per_objfile->type_unit_groups == NULL)
7880 {
7881 dwarf2_per_objfile->type_unit_groups =
7882 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7883 }
7884
7885 /* Do we need to create a new group, or can we use an existing one? */
7886
7887 if (stmt_list)
7888 {
7889 line_offset = DW_UNSND (stmt_list);
7890 ++tu_stats->nr_symtab_sharers;
7891 }
7892 else
7893 {
7894 /* Ugh, no stmt_list. Rare, but we have to handle it.
7895 We can do various things here like create one group per TU or
7896 spread them over multiple groups to split up the expansion work.
7897 To avoid worst case scenarios (too many groups or too large groups)
7898 we, umm, group them in bunches. */
7899 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7900 | (tu_stats->nr_stmt_less_type_units
7901 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7902 ++tu_stats->nr_stmt_less_type_units;
7903 }
7904
7905 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7906 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7907 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7908 &type_unit_group_for_lookup, INSERT);
7909 if (*slot != NULL)
7910 {
7911 tu_group = (struct type_unit_group *) *slot;
7912 gdb_assert (tu_group != NULL);
7913 }
7914 else
7915 {
7916 sect_offset line_offset_struct = (sect_offset) line_offset;
7917 tu_group = create_type_unit_group (cu, line_offset_struct);
7918 *slot = tu_group;
7919 ++tu_stats->nr_symtabs;
7920 }
7921
7922 return tu_group;
7923 }
7924 \f
7925 /* Partial symbol tables. */
7926
7927 /* Create a psymtab named NAME and assign it to PER_CU.
7928
7929 The caller must fill in the following details:
7930 dirname, textlow, texthigh. */
7931
7932 static struct partial_symtab *
7933 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7934 {
7935 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7936 struct partial_symtab *pst;
7937
7938 pst = start_psymtab_common (objfile, name, 0,
7939 objfile->global_psymbols,
7940 objfile->static_psymbols);
7941
7942 pst->psymtabs_addrmap_supported = 1;
7943
7944 /* This is the glue that links PST into GDB's symbol API. */
7945 pst->read_symtab_private = per_cu;
7946 pst->read_symtab = dwarf2_read_symtab;
7947 per_cu->v.psymtab = pst;
7948
7949 return pst;
7950 }
7951
7952 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7953 type. */
7954
7955 struct process_psymtab_comp_unit_data
7956 {
7957 /* True if we are reading a DW_TAG_partial_unit. */
7958
7959 int want_partial_unit;
7960
7961 /* The "pretend" language that is used if the CU doesn't declare a
7962 language. */
7963
7964 enum language pretend_language;
7965 };
7966
7967 /* die_reader_func for process_psymtab_comp_unit. */
7968
7969 static void
7970 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7971 const gdb_byte *info_ptr,
7972 struct die_info *comp_unit_die,
7973 int has_children,
7974 void *data)
7975 {
7976 struct dwarf2_cu *cu = reader->cu;
7977 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7978 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7979 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7980 CORE_ADDR baseaddr;
7981 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7982 struct partial_symtab *pst;
7983 enum pc_bounds_kind cu_bounds_kind;
7984 const char *filename;
7985 struct process_psymtab_comp_unit_data *info
7986 = (struct process_psymtab_comp_unit_data *) data;
7987
7988 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7989 return;
7990
7991 gdb_assert (! per_cu->is_debug_types);
7992
7993 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7994
7995 /* Allocate a new partial symbol table structure. */
7996 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7997 if (filename == NULL)
7998 filename = "";
7999
8000 pst = create_partial_symtab (per_cu, filename);
8001
8002 /* This must be done before calling dwarf2_build_include_psymtabs. */
8003 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8004
8005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8006
8007 dwarf2_find_base_address (comp_unit_die, cu);
8008
8009 /* Possibly set the default values of LOWPC and HIGHPC from
8010 `DW_AT_ranges'. */
8011 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8012 &best_highpc, cu, pst);
8013 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8014 {
8015 CORE_ADDR low
8016 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8017 - baseaddr);
8018 CORE_ADDR high
8019 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8020 - baseaddr - 1);
8021 /* Store the contiguous range if it is not empty; it can be
8022 empty for CUs with no code. */
8023 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8024 }
8025
8026 /* Check if comp unit has_children.
8027 If so, read the rest of the partial symbols from this comp unit.
8028 If not, there's no more debug_info for this comp unit. */
8029 if (has_children)
8030 {
8031 struct partial_die_info *first_die;
8032 CORE_ADDR lowpc, highpc;
8033
8034 lowpc = ((CORE_ADDR) -1);
8035 highpc = ((CORE_ADDR) 0);
8036
8037 first_die = load_partial_dies (reader, info_ptr, 1);
8038
8039 scan_partial_symbols (first_die, &lowpc, &highpc,
8040 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8041
8042 /* If we didn't find a lowpc, set it to highpc to avoid
8043 complaints from `maint check'. */
8044 if (lowpc == ((CORE_ADDR) -1))
8045 lowpc = highpc;
8046
8047 /* If the compilation unit didn't have an explicit address range,
8048 then use the information extracted from its child dies. */
8049 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8050 {
8051 best_lowpc = lowpc;
8052 best_highpc = highpc;
8053 }
8054 }
8055 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8056 best_lowpc + baseaddr)
8057 - baseaddr);
8058 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8059 best_highpc + baseaddr)
8060 - baseaddr);
8061
8062 end_psymtab_common (objfile, pst);
8063
8064 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8065 {
8066 int i;
8067 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8068 struct dwarf2_per_cu_data *iter;
8069
8070 /* Fill in 'dependencies' here; we fill in 'users' in a
8071 post-pass. */
8072 pst->number_of_dependencies = len;
8073 pst->dependencies =
8074 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8075 for (i = 0;
8076 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8077 i, iter);
8078 ++i)
8079 pst->dependencies[i] = iter->v.psymtab;
8080
8081 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8082 }
8083
8084 /* Get the list of files included in the current compilation unit,
8085 and build a psymtab for each of them. */
8086 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8087
8088 if (dwarf_read_debug)
8089 fprintf_unfiltered (gdb_stdlog,
8090 "Psymtab for %s unit @%s: %s - %s"
8091 ", %d global, %d static syms\n",
8092 per_cu->is_debug_types ? "type" : "comp",
8093 sect_offset_str (per_cu->sect_off),
8094 paddress (gdbarch, pst->text_low (objfile)),
8095 paddress (gdbarch, pst->text_high (objfile)),
8096 pst->n_global_syms, pst->n_static_syms);
8097 }
8098
8099 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8100 Process compilation unit THIS_CU for a psymtab. */
8101
8102 static void
8103 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8104 int want_partial_unit,
8105 enum language pretend_language)
8106 {
8107 /* If this compilation unit was already read in, free the
8108 cached copy in order to read it in again. This is
8109 necessary because we skipped some symbols when we first
8110 read in the compilation unit (see load_partial_dies).
8111 This problem could be avoided, but the benefit is unclear. */
8112 if (this_cu->cu != NULL)
8113 free_one_cached_comp_unit (this_cu);
8114
8115 if (this_cu->is_debug_types)
8116 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8117 build_type_psymtabs_reader, NULL);
8118 else
8119 {
8120 process_psymtab_comp_unit_data info;
8121 info.want_partial_unit = want_partial_unit;
8122 info.pretend_language = pretend_language;
8123 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8124 process_psymtab_comp_unit_reader, &info);
8125 }
8126
8127 /* Age out any secondary CUs. */
8128 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8129 }
8130
8131 /* Reader function for build_type_psymtabs. */
8132
8133 static void
8134 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8135 const gdb_byte *info_ptr,
8136 struct die_info *type_unit_die,
8137 int has_children,
8138 void *data)
8139 {
8140 struct dwarf2_per_objfile *dwarf2_per_objfile
8141 = reader->cu->per_cu->dwarf2_per_objfile;
8142 struct objfile *objfile = dwarf2_per_objfile->objfile;
8143 struct dwarf2_cu *cu = reader->cu;
8144 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8145 struct signatured_type *sig_type;
8146 struct type_unit_group *tu_group;
8147 struct attribute *attr;
8148 struct partial_die_info *first_die;
8149 CORE_ADDR lowpc, highpc;
8150 struct partial_symtab *pst;
8151
8152 gdb_assert (data == NULL);
8153 gdb_assert (per_cu->is_debug_types);
8154 sig_type = (struct signatured_type *) per_cu;
8155
8156 if (! has_children)
8157 return;
8158
8159 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8160 tu_group = get_type_unit_group (cu, attr);
8161
8162 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8163
8164 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8165 pst = create_partial_symtab (per_cu, "");
8166 pst->anonymous = 1;
8167
8168 first_die = load_partial_dies (reader, info_ptr, 1);
8169
8170 lowpc = (CORE_ADDR) -1;
8171 highpc = (CORE_ADDR) 0;
8172 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8173
8174 end_psymtab_common (objfile, pst);
8175 }
8176
8177 /* Struct used to sort TUs by their abbreviation table offset. */
8178
8179 struct tu_abbrev_offset
8180 {
8181 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8182 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8183 {}
8184
8185 signatured_type *sig_type;
8186 sect_offset abbrev_offset;
8187 };
8188
8189 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8190
8191 static bool
8192 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8193 const struct tu_abbrev_offset &b)
8194 {
8195 return a.abbrev_offset < b.abbrev_offset;
8196 }
8197
8198 /* Efficiently read all the type units.
8199 This does the bulk of the work for build_type_psymtabs.
8200
8201 The efficiency is because we sort TUs by the abbrev table they use and
8202 only read each abbrev table once. In one program there are 200K TUs
8203 sharing 8K abbrev tables.
8204
8205 The main purpose of this function is to support building the
8206 dwarf2_per_objfile->type_unit_groups table.
8207 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8208 can collapse the search space by grouping them by stmt_list.
8209 The savings can be significant, in the same program from above the 200K TUs
8210 share 8K stmt_list tables.
8211
8212 FUNC is expected to call get_type_unit_group, which will create the
8213 struct type_unit_group if necessary and add it to
8214 dwarf2_per_objfile->type_unit_groups. */
8215
8216 static void
8217 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8218 {
8219 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8220 abbrev_table_up abbrev_table;
8221 sect_offset abbrev_offset;
8222
8223 /* It's up to the caller to not call us multiple times. */
8224 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8225
8226 if (dwarf2_per_objfile->all_type_units.empty ())
8227 return;
8228
8229 /* TUs typically share abbrev tables, and there can be way more TUs than
8230 abbrev tables. Sort by abbrev table to reduce the number of times we
8231 read each abbrev table in.
8232 Alternatives are to punt or to maintain a cache of abbrev tables.
8233 This is simpler and efficient enough for now.
8234
8235 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8236 symtab to use). Typically TUs with the same abbrev offset have the same
8237 stmt_list value too so in practice this should work well.
8238
8239 The basic algorithm here is:
8240
8241 sort TUs by abbrev table
8242 for each TU with same abbrev table:
8243 read abbrev table if first user
8244 read TU top level DIE
8245 [IWBN if DWO skeletons had DW_AT_stmt_list]
8246 call FUNC */
8247
8248 if (dwarf_read_debug)
8249 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8250
8251 /* Sort in a separate table to maintain the order of all_type_units
8252 for .gdb_index: TU indices directly index all_type_units. */
8253 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8254 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8255
8256 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8257 sorted_by_abbrev.emplace_back
8258 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8259 sig_type->per_cu.section,
8260 sig_type->per_cu.sect_off));
8261
8262 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8263 sort_tu_by_abbrev_offset);
8264
8265 abbrev_offset = (sect_offset) ~(unsigned) 0;
8266
8267 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8268 {
8269 /* Switch to the next abbrev table if necessary. */
8270 if (abbrev_table == NULL
8271 || tu.abbrev_offset != abbrev_offset)
8272 {
8273 abbrev_offset = tu.abbrev_offset;
8274 abbrev_table =
8275 abbrev_table_read_table (dwarf2_per_objfile,
8276 &dwarf2_per_objfile->abbrev,
8277 abbrev_offset);
8278 ++tu_stats->nr_uniq_abbrev_tables;
8279 }
8280
8281 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8282 0, 0, false, build_type_psymtabs_reader, NULL);
8283 }
8284 }
8285
8286 /* Print collected type unit statistics. */
8287
8288 static void
8289 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8290 {
8291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8292
8293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8294 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8295 dwarf2_per_objfile->all_type_units.size ());
8296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8297 tu_stats->nr_uniq_abbrev_tables);
8298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8299 tu_stats->nr_symtabs);
8300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8301 tu_stats->nr_symtab_sharers);
8302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8303 tu_stats->nr_stmt_less_type_units);
8304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8305 tu_stats->nr_all_type_units_reallocs);
8306 }
8307
8308 /* Traversal function for build_type_psymtabs. */
8309
8310 static int
8311 build_type_psymtab_dependencies (void **slot, void *info)
8312 {
8313 struct dwarf2_per_objfile *dwarf2_per_objfile
8314 = (struct dwarf2_per_objfile *) info;
8315 struct objfile *objfile = dwarf2_per_objfile->objfile;
8316 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8317 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8318 struct partial_symtab *pst = per_cu->v.psymtab;
8319 int len = VEC_length (sig_type_ptr, tu_group->tus);
8320 struct signatured_type *iter;
8321 int i;
8322
8323 gdb_assert (len > 0);
8324 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8325
8326 pst->number_of_dependencies = len;
8327 pst->dependencies =
8328 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8329 for (i = 0;
8330 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8331 ++i)
8332 {
8333 gdb_assert (iter->per_cu.is_debug_types);
8334 pst->dependencies[i] = iter->per_cu.v.psymtab;
8335 iter->type_unit_group = tu_group;
8336 }
8337
8338 VEC_free (sig_type_ptr, tu_group->tus);
8339
8340 return 1;
8341 }
8342
8343 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8344 Build partial symbol tables for the .debug_types comp-units. */
8345
8346 static void
8347 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8348 {
8349 if (! create_all_type_units (dwarf2_per_objfile))
8350 return;
8351
8352 build_type_psymtabs_1 (dwarf2_per_objfile);
8353 }
8354
8355 /* Traversal function for process_skeletonless_type_unit.
8356 Read a TU in a DWO file and build partial symbols for it. */
8357
8358 static int
8359 process_skeletonless_type_unit (void **slot, void *info)
8360 {
8361 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8362 struct dwarf2_per_objfile *dwarf2_per_objfile
8363 = (struct dwarf2_per_objfile *) info;
8364 struct signatured_type find_entry, *entry;
8365
8366 /* If this TU doesn't exist in the global table, add it and read it in. */
8367
8368 if (dwarf2_per_objfile->signatured_types == NULL)
8369 {
8370 dwarf2_per_objfile->signatured_types
8371 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8372 }
8373
8374 find_entry.signature = dwo_unit->signature;
8375 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8376 INSERT);
8377 /* If we've already seen this type there's nothing to do. What's happening
8378 is we're doing our own version of comdat-folding here. */
8379 if (*slot != NULL)
8380 return 1;
8381
8382 /* This does the job that create_all_type_units would have done for
8383 this TU. */
8384 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8385 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8386 *slot = entry;
8387
8388 /* This does the job that build_type_psymtabs_1 would have done. */
8389 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8390 build_type_psymtabs_reader, NULL);
8391
8392 return 1;
8393 }
8394
8395 /* Traversal function for process_skeletonless_type_units. */
8396
8397 static int
8398 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8399 {
8400 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8401
8402 if (dwo_file->tus != NULL)
8403 {
8404 htab_traverse_noresize (dwo_file->tus,
8405 process_skeletonless_type_unit, info);
8406 }
8407
8408 return 1;
8409 }
8410
8411 /* Scan all TUs of DWO files, verifying we've processed them.
8412 This is needed in case a TU was emitted without its skeleton.
8413 Note: This can't be done until we know what all the DWO files are. */
8414
8415 static void
8416 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8417 {
8418 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8419 if (get_dwp_file (dwarf2_per_objfile) == NULL
8420 && dwarf2_per_objfile->dwo_files != NULL)
8421 {
8422 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8423 process_dwo_file_for_skeletonless_type_units,
8424 dwarf2_per_objfile);
8425 }
8426 }
8427
8428 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8429
8430 static void
8431 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8432 {
8433 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8434 {
8435 struct partial_symtab *pst = per_cu->v.psymtab;
8436
8437 if (pst == NULL)
8438 continue;
8439
8440 for (int j = 0; j < pst->number_of_dependencies; ++j)
8441 {
8442 /* Set the 'user' field only if it is not already set. */
8443 if (pst->dependencies[j]->user == NULL)
8444 pst->dependencies[j]->user = pst;
8445 }
8446 }
8447 }
8448
8449 /* Build the partial symbol table by doing a quick pass through the
8450 .debug_info and .debug_abbrev sections. */
8451
8452 static void
8453 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8454 {
8455 struct objfile *objfile = dwarf2_per_objfile->objfile;
8456
8457 if (dwarf_read_debug)
8458 {
8459 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8460 objfile_name (objfile));
8461 }
8462
8463 dwarf2_per_objfile->reading_partial_symbols = 1;
8464
8465 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8466
8467 /* Any cached compilation units will be linked by the per-objfile
8468 read_in_chain. Make sure to free them when we're done. */
8469 free_cached_comp_units freer (dwarf2_per_objfile);
8470
8471 build_type_psymtabs (dwarf2_per_objfile);
8472
8473 create_all_comp_units (dwarf2_per_objfile);
8474
8475 /* Create a temporary address map on a temporary obstack. We later
8476 copy this to the final obstack. */
8477 auto_obstack temp_obstack;
8478
8479 scoped_restore save_psymtabs_addrmap
8480 = make_scoped_restore (&objfile->psymtabs_addrmap,
8481 addrmap_create_mutable (&temp_obstack));
8482
8483 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8485
8486 /* This has to wait until we read the CUs, we need the list of DWOs. */
8487 process_skeletonless_type_units (dwarf2_per_objfile);
8488
8489 /* Now that all TUs have been processed we can fill in the dependencies. */
8490 if (dwarf2_per_objfile->type_unit_groups != NULL)
8491 {
8492 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8493 build_type_psymtab_dependencies, dwarf2_per_objfile);
8494 }
8495
8496 if (dwarf_read_debug)
8497 print_tu_stats (dwarf2_per_objfile);
8498
8499 set_partial_user (dwarf2_per_objfile);
8500
8501 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8502 &objfile->objfile_obstack);
8503 /* At this point we want to keep the address map. */
8504 save_psymtabs_addrmap.release ();
8505
8506 if (dwarf_read_debug)
8507 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8508 objfile_name (objfile));
8509 }
8510
8511 /* die_reader_func for load_partial_comp_unit. */
8512
8513 static void
8514 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8515 const gdb_byte *info_ptr,
8516 struct die_info *comp_unit_die,
8517 int has_children,
8518 void *data)
8519 {
8520 struct dwarf2_cu *cu = reader->cu;
8521
8522 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8523
8524 /* Check if comp unit has_children.
8525 If so, read the rest of the partial symbols from this comp unit.
8526 If not, there's no more debug_info for this comp unit. */
8527 if (has_children)
8528 load_partial_dies (reader, info_ptr, 0);
8529 }
8530
8531 /* Load the partial DIEs for a secondary CU into memory.
8532 This is also used when rereading a primary CU with load_all_dies. */
8533
8534 static void
8535 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8536 {
8537 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8538 load_partial_comp_unit_reader, NULL);
8539 }
8540
8541 static void
8542 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8543 struct dwarf2_section_info *section,
8544 struct dwarf2_section_info *abbrev_section,
8545 unsigned int is_dwz)
8546 {
8547 const gdb_byte *info_ptr;
8548 struct objfile *objfile = dwarf2_per_objfile->objfile;
8549
8550 if (dwarf_read_debug)
8551 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8552 get_section_name (section),
8553 get_section_file_name (section));
8554
8555 dwarf2_read_section (objfile, section);
8556
8557 info_ptr = section->buffer;
8558
8559 while (info_ptr < section->buffer + section->size)
8560 {
8561 struct dwarf2_per_cu_data *this_cu;
8562
8563 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8564
8565 comp_unit_head cu_header;
8566 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8567 abbrev_section, info_ptr,
8568 rcuh_kind::COMPILE);
8569
8570 /* Save the compilation unit for later lookup. */
8571 if (cu_header.unit_type != DW_UT_type)
8572 {
8573 this_cu = XOBNEW (&objfile->objfile_obstack,
8574 struct dwarf2_per_cu_data);
8575 memset (this_cu, 0, sizeof (*this_cu));
8576 }
8577 else
8578 {
8579 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8580 struct signatured_type);
8581 memset (sig_type, 0, sizeof (*sig_type));
8582 sig_type->signature = cu_header.signature;
8583 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8584 this_cu = &sig_type->per_cu;
8585 }
8586 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8587 this_cu->sect_off = sect_off;
8588 this_cu->length = cu_header.length + cu_header.initial_length_size;
8589 this_cu->is_dwz = is_dwz;
8590 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8591 this_cu->section = section;
8592
8593 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8594
8595 info_ptr = info_ptr + this_cu->length;
8596 }
8597 }
8598
8599 /* Create a list of all compilation units in OBJFILE.
8600 This is only done for -readnow and building partial symtabs. */
8601
8602 static void
8603 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8604 {
8605 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8606 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8607 &dwarf2_per_objfile->abbrev, 0);
8608
8609 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8610 if (dwz != NULL)
8611 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8612 1);
8613 }
8614
8615 /* Process all loaded DIEs for compilation unit CU, starting at
8616 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8617 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8618 DW_AT_ranges). See the comments of add_partial_subprogram on how
8619 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8620
8621 static void
8622 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8623 CORE_ADDR *highpc, int set_addrmap,
8624 struct dwarf2_cu *cu)
8625 {
8626 struct partial_die_info *pdi;
8627
8628 /* Now, march along the PDI's, descending into ones which have
8629 interesting children but skipping the children of the other ones,
8630 until we reach the end of the compilation unit. */
8631
8632 pdi = first_die;
8633
8634 while (pdi != NULL)
8635 {
8636 pdi->fixup (cu);
8637
8638 /* Anonymous namespaces or modules have no name but have interesting
8639 children, so we need to look at them. Ditto for anonymous
8640 enums. */
8641
8642 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8643 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8644 || pdi->tag == DW_TAG_imported_unit
8645 || pdi->tag == DW_TAG_inlined_subroutine)
8646 {
8647 switch (pdi->tag)
8648 {
8649 case DW_TAG_subprogram:
8650 case DW_TAG_inlined_subroutine:
8651 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8652 break;
8653 case DW_TAG_constant:
8654 case DW_TAG_variable:
8655 case DW_TAG_typedef:
8656 case DW_TAG_union_type:
8657 if (!pdi->is_declaration)
8658 {
8659 add_partial_symbol (pdi, cu);
8660 }
8661 break;
8662 case DW_TAG_class_type:
8663 case DW_TAG_interface_type:
8664 case DW_TAG_structure_type:
8665 if (!pdi->is_declaration)
8666 {
8667 add_partial_symbol (pdi, cu);
8668 }
8669 if ((cu->language == language_rust
8670 || cu->language == language_cplus) && pdi->has_children)
8671 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8672 set_addrmap, cu);
8673 break;
8674 case DW_TAG_enumeration_type:
8675 if (!pdi->is_declaration)
8676 add_partial_enumeration (pdi, cu);
8677 break;
8678 case DW_TAG_base_type:
8679 case DW_TAG_subrange_type:
8680 /* File scope base type definitions are added to the partial
8681 symbol table. */
8682 add_partial_symbol (pdi, cu);
8683 break;
8684 case DW_TAG_namespace:
8685 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8686 break;
8687 case DW_TAG_module:
8688 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8689 break;
8690 case DW_TAG_imported_unit:
8691 {
8692 struct dwarf2_per_cu_data *per_cu;
8693
8694 /* For now we don't handle imported units in type units. */
8695 if (cu->per_cu->is_debug_types)
8696 {
8697 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8698 " supported in type units [in module %s]"),
8699 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8700 }
8701
8702 per_cu = dwarf2_find_containing_comp_unit
8703 (pdi->d.sect_off, pdi->is_dwz,
8704 cu->per_cu->dwarf2_per_objfile);
8705
8706 /* Go read the partial unit, if needed. */
8707 if (per_cu->v.psymtab == NULL)
8708 process_psymtab_comp_unit (per_cu, 1, cu->language);
8709
8710 VEC_safe_push (dwarf2_per_cu_ptr,
8711 cu->per_cu->imported_symtabs, per_cu);
8712 }
8713 break;
8714 case DW_TAG_imported_declaration:
8715 add_partial_symbol (pdi, cu);
8716 break;
8717 default:
8718 break;
8719 }
8720 }
8721
8722 /* If the die has a sibling, skip to the sibling. */
8723
8724 pdi = pdi->die_sibling;
8725 }
8726 }
8727
8728 /* Functions used to compute the fully scoped name of a partial DIE.
8729
8730 Normally, this is simple. For C++, the parent DIE's fully scoped
8731 name is concatenated with "::" and the partial DIE's name.
8732 Enumerators are an exception; they use the scope of their parent
8733 enumeration type, i.e. the name of the enumeration type is not
8734 prepended to the enumerator.
8735
8736 There are two complexities. One is DW_AT_specification; in this
8737 case "parent" means the parent of the target of the specification,
8738 instead of the direct parent of the DIE. The other is compilers
8739 which do not emit DW_TAG_namespace; in this case we try to guess
8740 the fully qualified name of structure types from their members'
8741 linkage names. This must be done using the DIE's children rather
8742 than the children of any DW_AT_specification target. We only need
8743 to do this for structures at the top level, i.e. if the target of
8744 any DW_AT_specification (if any; otherwise the DIE itself) does not
8745 have a parent. */
8746
8747 /* Compute the scope prefix associated with PDI's parent, in
8748 compilation unit CU. The result will be allocated on CU's
8749 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8750 field. NULL is returned if no prefix is necessary. */
8751 static const char *
8752 partial_die_parent_scope (struct partial_die_info *pdi,
8753 struct dwarf2_cu *cu)
8754 {
8755 const char *grandparent_scope;
8756 struct partial_die_info *parent, *real_pdi;
8757
8758 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8759 then this means the parent of the specification DIE. */
8760
8761 real_pdi = pdi;
8762 while (real_pdi->has_specification)
8763 real_pdi = find_partial_die (real_pdi->spec_offset,
8764 real_pdi->spec_is_dwz, cu);
8765
8766 parent = real_pdi->die_parent;
8767 if (parent == NULL)
8768 return NULL;
8769
8770 if (parent->scope_set)
8771 return parent->scope;
8772
8773 parent->fixup (cu);
8774
8775 grandparent_scope = partial_die_parent_scope (parent, cu);
8776
8777 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8778 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8779 Work around this problem here. */
8780 if (cu->language == language_cplus
8781 && parent->tag == DW_TAG_namespace
8782 && strcmp (parent->name, "::") == 0
8783 && grandparent_scope == NULL)
8784 {
8785 parent->scope = NULL;
8786 parent->scope_set = 1;
8787 return NULL;
8788 }
8789
8790 if (pdi->tag == DW_TAG_enumerator)
8791 /* Enumerators should not get the name of the enumeration as a prefix. */
8792 parent->scope = grandparent_scope;
8793 else if (parent->tag == DW_TAG_namespace
8794 || parent->tag == DW_TAG_module
8795 || parent->tag == DW_TAG_structure_type
8796 || parent->tag == DW_TAG_class_type
8797 || parent->tag == DW_TAG_interface_type
8798 || parent->tag == DW_TAG_union_type
8799 || parent->tag == DW_TAG_enumeration_type)
8800 {
8801 if (grandparent_scope == NULL)
8802 parent->scope = parent->name;
8803 else
8804 parent->scope = typename_concat (&cu->comp_unit_obstack,
8805 grandparent_scope,
8806 parent->name, 0, cu);
8807 }
8808 else
8809 {
8810 /* FIXME drow/2004-04-01: What should we be doing with
8811 function-local names? For partial symbols, we should probably be
8812 ignoring them. */
8813 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8814 parent->tag, sect_offset_str (pdi->sect_off));
8815 parent->scope = grandparent_scope;
8816 }
8817
8818 parent->scope_set = 1;
8819 return parent->scope;
8820 }
8821
8822 /* Return the fully scoped name associated with PDI, from compilation unit
8823 CU. The result will be allocated with malloc. */
8824
8825 static char *
8826 partial_die_full_name (struct partial_die_info *pdi,
8827 struct dwarf2_cu *cu)
8828 {
8829 const char *parent_scope;
8830
8831 /* If this is a template instantiation, we can not work out the
8832 template arguments from partial DIEs. So, unfortunately, we have
8833 to go through the full DIEs. At least any work we do building
8834 types here will be reused if full symbols are loaded later. */
8835 if (pdi->has_template_arguments)
8836 {
8837 pdi->fixup (cu);
8838
8839 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8840 {
8841 struct die_info *die;
8842 struct attribute attr;
8843 struct dwarf2_cu *ref_cu = cu;
8844
8845 /* DW_FORM_ref_addr is using section offset. */
8846 attr.name = (enum dwarf_attribute) 0;
8847 attr.form = DW_FORM_ref_addr;
8848 attr.u.unsnd = to_underlying (pdi->sect_off);
8849 die = follow_die_ref (NULL, &attr, &ref_cu);
8850
8851 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8852 }
8853 }
8854
8855 parent_scope = partial_die_parent_scope (pdi, cu);
8856 if (parent_scope == NULL)
8857 return NULL;
8858 else
8859 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8860 }
8861
8862 static void
8863 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8864 {
8865 struct dwarf2_per_objfile *dwarf2_per_objfile
8866 = cu->per_cu->dwarf2_per_objfile;
8867 struct objfile *objfile = dwarf2_per_objfile->objfile;
8868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8869 CORE_ADDR addr = 0;
8870 const char *actual_name = NULL;
8871 CORE_ADDR baseaddr;
8872 char *built_actual_name;
8873
8874 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8875
8876 built_actual_name = partial_die_full_name (pdi, cu);
8877 if (built_actual_name != NULL)
8878 actual_name = built_actual_name;
8879
8880 if (actual_name == NULL)
8881 actual_name = pdi->name;
8882
8883 switch (pdi->tag)
8884 {
8885 case DW_TAG_inlined_subroutine:
8886 case DW_TAG_subprogram:
8887 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8888 - baseaddr);
8889 if (pdi->is_external || cu->language == language_ada)
8890 {
8891 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8892 of the global scope. But in Ada, we want to be able to access
8893 nested procedures globally. So all Ada subprograms are stored
8894 in the global scope. */
8895 add_psymbol_to_list (actual_name, strlen (actual_name),
8896 built_actual_name != NULL,
8897 VAR_DOMAIN, LOC_BLOCK,
8898 SECT_OFF_TEXT (objfile),
8899 &objfile->global_psymbols,
8900 addr,
8901 cu->language, objfile);
8902 }
8903 else
8904 {
8905 add_psymbol_to_list (actual_name, strlen (actual_name),
8906 built_actual_name != NULL,
8907 VAR_DOMAIN, LOC_BLOCK,
8908 SECT_OFF_TEXT (objfile),
8909 &objfile->static_psymbols,
8910 addr, cu->language, objfile);
8911 }
8912
8913 if (pdi->main_subprogram && actual_name != NULL)
8914 set_objfile_main_name (objfile, actual_name, cu->language);
8915 break;
8916 case DW_TAG_constant:
8917 {
8918 std::vector<partial_symbol *> *list;
8919
8920 if (pdi->is_external)
8921 list = &objfile->global_psymbols;
8922 else
8923 list = &objfile->static_psymbols;
8924 add_psymbol_to_list (actual_name, strlen (actual_name),
8925 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8926 -1, list, 0, cu->language, objfile);
8927 }
8928 break;
8929 case DW_TAG_variable:
8930 if (pdi->d.locdesc)
8931 addr = decode_locdesc (pdi->d.locdesc, cu);
8932
8933 if (pdi->d.locdesc
8934 && addr == 0
8935 && !dwarf2_per_objfile->has_section_at_zero)
8936 {
8937 /* A global or static variable may also have been stripped
8938 out by the linker if unused, in which case its address
8939 will be nullified; do not add such variables into partial
8940 symbol table then. */
8941 }
8942 else if (pdi->is_external)
8943 {
8944 /* Global Variable.
8945 Don't enter into the minimal symbol tables as there is
8946 a minimal symbol table entry from the ELF symbols already.
8947 Enter into partial symbol table if it has a location
8948 descriptor or a type.
8949 If the location descriptor is missing, new_symbol will create
8950 a LOC_UNRESOLVED symbol, the address of the variable will then
8951 be determined from the minimal symbol table whenever the variable
8952 is referenced.
8953 The address for the partial symbol table entry is not
8954 used by GDB, but it comes in handy for debugging partial symbol
8955 table building. */
8956
8957 if (pdi->d.locdesc || pdi->has_type)
8958 add_psymbol_to_list (actual_name, strlen (actual_name),
8959 built_actual_name != NULL,
8960 VAR_DOMAIN, LOC_STATIC,
8961 SECT_OFF_TEXT (objfile),
8962 &objfile->global_psymbols,
8963 addr, cu->language, objfile);
8964 }
8965 else
8966 {
8967 int has_loc = pdi->d.locdesc != NULL;
8968
8969 /* Static Variable. Skip symbols whose value we cannot know (those
8970 without location descriptors or constant values). */
8971 if (!has_loc && !pdi->has_const_value)
8972 {
8973 xfree (built_actual_name);
8974 return;
8975 }
8976
8977 add_psymbol_to_list (actual_name, strlen (actual_name),
8978 built_actual_name != NULL,
8979 VAR_DOMAIN, LOC_STATIC,
8980 SECT_OFF_TEXT (objfile),
8981 &objfile->static_psymbols,
8982 has_loc ? addr : 0,
8983 cu->language, objfile);
8984 }
8985 break;
8986 case DW_TAG_typedef:
8987 case DW_TAG_base_type:
8988 case DW_TAG_subrange_type:
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
8991 VAR_DOMAIN, LOC_TYPEDEF, -1,
8992 &objfile->static_psymbols,
8993 0, cu->language, objfile);
8994 break;
8995 case DW_TAG_imported_declaration:
8996 case DW_TAG_namespace:
8997 add_psymbol_to_list (actual_name, strlen (actual_name),
8998 built_actual_name != NULL,
8999 VAR_DOMAIN, LOC_TYPEDEF, -1,
9000 &objfile->global_psymbols,
9001 0, cu->language, objfile);
9002 break;
9003 case DW_TAG_module:
9004 add_psymbol_to_list (actual_name, strlen (actual_name),
9005 built_actual_name != NULL,
9006 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9007 &objfile->global_psymbols,
9008 0, cu->language, objfile);
9009 break;
9010 case DW_TAG_class_type:
9011 case DW_TAG_interface_type:
9012 case DW_TAG_structure_type:
9013 case DW_TAG_union_type:
9014 case DW_TAG_enumeration_type:
9015 /* Skip external references. The DWARF standard says in the section
9016 about "Structure, Union, and Class Type Entries": "An incomplete
9017 structure, union or class type is represented by a structure,
9018 union or class entry that does not have a byte size attribute
9019 and that has a DW_AT_declaration attribute." */
9020 if (!pdi->has_byte_size && pdi->is_declaration)
9021 {
9022 xfree (built_actual_name);
9023 return;
9024 }
9025
9026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9027 static vs. global. */
9028 add_psymbol_to_list (actual_name, strlen (actual_name),
9029 built_actual_name != NULL,
9030 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9031 cu->language == language_cplus
9032 ? &objfile->global_psymbols
9033 : &objfile->static_psymbols,
9034 0, cu->language, objfile);
9035
9036 break;
9037 case DW_TAG_enumerator:
9038 add_psymbol_to_list (actual_name, strlen (actual_name),
9039 built_actual_name != NULL,
9040 VAR_DOMAIN, LOC_CONST, -1,
9041 cu->language == language_cplus
9042 ? &objfile->global_psymbols
9043 : &objfile->static_psymbols,
9044 0, cu->language, objfile);
9045 break;
9046 default:
9047 break;
9048 }
9049
9050 xfree (built_actual_name);
9051 }
9052
9053 /* Read a partial die corresponding to a namespace; also, add a symbol
9054 corresponding to that namespace to the symbol table. NAMESPACE is
9055 the name of the enclosing namespace. */
9056
9057 static void
9058 add_partial_namespace (struct partial_die_info *pdi,
9059 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9060 int set_addrmap, struct dwarf2_cu *cu)
9061 {
9062 /* Add a symbol for the namespace. */
9063
9064 add_partial_symbol (pdi, cu);
9065
9066 /* Now scan partial symbols in that namespace. */
9067
9068 if (pdi->has_children)
9069 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9070 }
9071
9072 /* Read a partial die corresponding to a Fortran module. */
9073
9074 static void
9075 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9076 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9077 {
9078 /* Add a symbol for the namespace. */
9079
9080 add_partial_symbol (pdi, cu);
9081
9082 /* Now scan partial symbols in that module. */
9083
9084 if (pdi->has_children)
9085 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9086 }
9087
9088 /* Read a partial die corresponding to a subprogram or an inlined
9089 subprogram and create a partial symbol for that subprogram.
9090 When the CU language allows it, this routine also defines a partial
9091 symbol for each nested subprogram that this subprogram contains.
9092 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9093 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9094
9095 PDI may also be a lexical block, in which case we simply search
9096 recursively for subprograms defined inside that lexical block.
9097 Again, this is only performed when the CU language allows this
9098 type of definitions. */
9099
9100 static void
9101 add_partial_subprogram (struct partial_die_info *pdi,
9102 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9103 int set_addrmap, struct dwarf2_cu *cu)
9104 {
9105 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9106 {
9107 if (pdi->has_pc_info)
9108 {
9109 if (pdi->lowpc < *lowpc)
9110 *lowpc = pdi->lowpc;
9111 if (pdi->highpc > *highpc)
9112 *highpc = pdi->highpc;
9113 if (set_addrmap)
9114 {
9115 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9117 CORE_ADDR baseaddr;
9118 CORE_ADDR this_highpc;
9119 CORE_ADDR this_lowpc;
9120
9121 baseaddr = ANOFFSET (objfile->section_offsets,
9122 SECT_OFF_TEXT (objfile));
9123 this_lowpc
9124 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9125 pdi->lowpc + baseaddr)
9126 - baseaddr);
9127 this_highpc
9128 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9129 pdi->highpc + baseaddr)
9130 - baseaddr);
9131 addrmap_set_empty (objfile->psymtabs_addrmap,
9132 this_lowpc, this_highpc - 1,
9133 cu->per_cu->v.psymtab);
9134 }
9135 }
9136
9137 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9138 {
9139 if (!pdi->is_declaration)
9140 /* Ignore subprogram DIEs that do not have a name, they are
9141 illegal. Do not emit a complaint at this point, we will
9142 do so when we convert this psymtab into a symtab. */
9143 if (pdi->name)
9144 add_partial_symbol (pdi, cu);
9145 }
9146 }
9147
9148 if (! pdi->has_children)
9149 return;
9150
9151 if (cu->language == language_ada)
9152 {
9153 pdi = pdi->die_child;
9154 while (pdi != NULL)
9155 {
9156 pdi->fixup (cu);
9157 if (pdi->tag == DW_TAG_subprogram
9158 || pdi->tag == DW_TAG_inlined_subroutine
9159 || pdi->tag == DW_TAG_lexical_block)
9160 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9161 pdi = pdi->die_sibling;
9162 }
9163 }
9164 }
9165
9166 /* Read a partial die corresponding to an enumeration type. */
9167
9168 static void
9169 add_partial_enumeration (struct partial_die_info *enum_pdi,
9170 struct dwarf2_cu *cu)
9171 {
9172 struct partial_die_info *pdi;
9173
9174 if (enum_pdi->name != NULL)
9175 add_partial_symbol (enum_pdi, cu);
9176
9177 pdi = enum_pdi->die_child;
9178 while (pdi)
9179 {
9180 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9181 complaint (_("malformed enumerator DIE ignored"));
9182 else
9183 add_partial_symbol (pdi, cu);
9184 pdi = pdi->die_sibling;
9185 }
9186 }
9187
9188 /* Return the initial uleb128 in the die at INFO_PTR. */
9189
9190 static unsigned int
9191 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9192 {
9193 unsigned int bytes_read;
9194
9195 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9196 }
9197
9198 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9199 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9200
9201 Return the corresponding abbrev, or NULL if the number is zero (indicating
9202 an empty DIE). In either case *BYTES_READ will be set to the length of
9203 the initial number. */
9204
9205 static struct abbrev_info *
9206 peek_die_abbrev (const die_reader_specs &reader,
9207 const gdb_byte *info_ptr, unsigned int *bytes_read)
9208 {
9209 dwarf2_cu *cu = reader.cu;
9210 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9211 unsigned int abbrev_number
9212 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9213
9214 if (abbrev_number == 0)
9215 return NULL;
9216
9217 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9218 if (!abbrev)
9219 {
9220 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9221 " at offset %s [in module %s]"),
9222 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9223 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9224 }
9225
9226 return abbrev;
9227 }
9228
9229 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9230 Returns a pointer to the end of a series of DIEs, terminated by an empty
9231 DIE. Any children of the skipped DIEs will also be skipped. */
9232
9233 static const gdb_byte *
9234 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9235 {
9236 while (1)
9237 {
9238 unsigned int bytes_read;
9239 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9240
9241 if (abbrev == NULL)
9242 return info_ptr + bytes_read;
9243 else
9244 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9245 }
9246 }
9247
9248 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9249 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9250 abbrev corresponding to that skipped uleb128 should be passed in
9251 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9252 children. */
9253
9254 static const gdb_byte *
9255 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9256 struct abbrev_info *abbrev)
9257 {
9258 unsigned int bytes_read;
9259 struct attribute attr;
9260 bfd *abfd = reader->abfd;
9261 struct dwarf2_cu *cu = reader->cu;
9262 const gdb_byte *buffer = reader->buffer;
9263 const gdb_byte *buffer_end = reader->buffer_end;
9264 unsigned int form, i;
9265
9266 for (i = 0; i < abbrev->num_attrs; i++)
9267 {
9268 /* The only abbrev we care about is DW_AT_sibling. */
9269 if (abbrev->attrs[i].name == DW_AT_sibling)
9270 {
9271 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9272 if (attr.form == DW_FORM_ref_addr)
9273 complaint (_("ignoring absolute DW_AT_sibling"));
9274 else
9275 {
9276 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9277 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9278
9279 if (sibling_ptr < info_ptr)
9280 complaint (_("DW_AT_sibling points backwards"));
9281 else if (sibling_ptr > reader->buffer_end)
9282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9283 else
9284 return sibling_ptr;
9285 }
9286 }
9287
9288 /* If it isn't DW_AT_sibling, skip this attribute. */
9289 form = abbrev->attrs[i].form;
9290 skip_attribute:
9291 switch (form)
9292 {
9293 case DW_FORM_ref_addr:
9294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9295 and later it is offset sized. */
9296 if (cu->header.version == 2)
9297 info_ptr += cu->header.addr_size;
9298 else
9299 info_ptr += cu->header.offset_size;
9300 break;
9301 case DW_FORM_GNU_ref_alt:
9302 info_ptr += cu->header.offset_size;
9303 break;
9304 case DW_FORM_addr:
9305 info_ptr += cu->header.addr_size;
9306 break;
9307 case DW_FORM_data1:
9308 case DW_FORM_ref1:
9309 case DW_FORM_flag:
9310 info_ptr += 1;
9311 break;
9312 case DW_FORM_flag_present:
9313 case DW_FORM_implicit_const:
9314 break;
9315 case DW_FORM_data2:
9316 case DW_FORM_ref2:
9317 info_ptr += 2;
9318 break;
9319 case DW_FORM_data4:
9320 case DW_FORM_ref4:
9321 info_ptr += 4;
9322 break;
9323 case DW_FORM_data8:
9324 case DW_FORM_ref8:
9325 case DW_FORM_ref_sig8:
9326 info_ptr += 8;
9327 break;
9328 case DW_FORM_data16:
9329 info_ptr += 16;
9330 break;
9331 case DW_FORM_string:
9332 read_direct_string (abfd, info_ptr, &bytes_read);
9333 info_ptr += bytes_read;
9334 break;
9335 case DW_FORM_sec_offset:
9336 case DW_FORM_strp:
9337 case DW_FORM_GNU_strp_alt:
9338 info_ptr += cu->header.offset_size;
9339 break;
9340 case DW_FORM_exprloc:
9341 case DW_FORM_block:
9342 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9343 info_ptr += bytes_read;
9344 break;
9345 case DW_FORM_block1:
9346 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9347 break;
9348 case DW_FORM_block2:
9349 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9350 break;
9351 case DW_FORM_block4:
9352 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9353 break;
9354 case DW_FORM_sdata:
9355 case DW_FORM_udata:
9356 case DW_FORM_ref_udata:
9357 case DW_FORM_GNU_addr_index:
9358 case DW_FORM_GNU_str_index:
9359 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9360 break;
9361 case DW_FORM_indirect:
9362 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9363 info_ptr += bytes_read;
9364 /* We need to continue parsing from here, so just go back to
9365 the top. */
9366 goto skip_attribute;
9367
9368 default:
9369 error (_("Dwarf Error: Cannot handle %s "
9370 "in DWARF reader [in module %s]"),
9371 dwarf_form_name (form),
9372 bfd_get_filename (abfd));
9373 }
9374 }
9375
9376 if (abbrev->has_children)
9377 return skip_children (reader, info_ptr);
9378 else
9379 return info_ptr;
9380 }
9381
9382 /* Locate ORIG_PDI's sibling.
9383 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9384
9385 static const gdb_byte *
9386 locate_pdi_sibling (const struct die_reader_specs *reader,
9387 struct partial_die_info *orig_pdi,
9388 const gdb_byte *info_ptr)
9389 {
9390 /* Do we know the sibling already? */
9391
9392 if (orig_pdi->sibling)
9393 return orig_pdi->sibling;
9394
9395 /* Are there any children to deal with? */
9396
9397 if (!orig_pdi->has_children)
9398 return info_ptr;
9399
9400 /* Skip the children the long way. */
9401
9402 return skip_children (reader, info_ptr);
9403 }
9404
9405 /* Expand this partial symbol table into a full symbol table. SELF is
9406 not NULL. */
9407
9408 static void
9409 dwarf2_read_symtab (struct partial_symtab *self,
9410 struct objfile *objfile)
9411 {
9412 struct dwarf2_per_objfile *dwarf2_per_objfile
9413 = get_dwarf2_per_objfile (objfile);
9414
9415 if (self->readin)
9416 {
9417 warning (_("bug: psymtab for %s is already read in."),
9418 self->filename);
9419 }
9420 else
9421 {
9422 if (info_verbose)
9423 {
9424 printf_filtered (_("Reading in symbols for %s..."),
9425 self->filename);
9426 gdb_flush (gdb_stdout);
9427 }
9428
9429 /* If this psymtab is constructed from a debug-only objfile, the
9430 has_section_at_zero flag will not necessarily be correct. We
9431 can get the correct value for this flag by looking at the data
9432 associated with the (presumably stripped) associated objfile. */
9433 if (objfile->separate_debug_objfile_backlink)
9434 {
9435 struct dwarf2_per_objfile *dpo_backlink
9436 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9437
9438 dwarf2_per_objfile->has_section_at_zero
9439 = dpo_backlink->has_section_at_zero;
9440 }
9441
9442 dwarf2_per_objfile->reading_partial_symbols = 0;
9443
9444 psymtab_to_symtab_1 (self);
9445
9446 /* Finish up the debug error message. */
9447 if (info_verbose)
9448 printf_filtered (_("done.\n"));
9449 }
9450
9451 process_cu_includes (dwarf2_per_objfile);
9452 }
9453 \f
9454 /* Reading in full CUs. */
9455
9456 /* Add PER_CU to the queue. */
9457
9458 static void
9459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9460 enum language pretend_language)
9461 {
9462 struct dwarf2_queue_item *item;
9463
9464 per_cu->queued = 1;
9465 item = XNEW (struct dwarf2_queue_item);
9466 item->per_cu = per_cu;
9467 item->pretend_language = pretend_language;
9468 item->next = NULL;
9469
9470 if (dwarf2_queue == NULL)
9471 dwarf2_queue = item;
9472 else
9473 dwarf2_queue_tail->next = item;
9474
9475 dwarf2_queue_tail = item;
9476 }
9477
9478 /* If PER_CU is not yet queued, add it to the queue.
9479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9480 dependency.
9481 The result is non-zero if PER_CU was queued, otherwise the result is zero
9482 meaning either PER_CU is already queued or it is already loaded.
9483
9484 N.B. There is an invariant here that if a CU is queued then it is loaded.
9485 The caller is required to load PER_CU if we return non-zero. */
9486
9487 static int
9488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9489 struct dwarf2_per_cu_data *per_cu,
9490 enum language pretend_language)
9491 {
9492 /* We may arrive here during partial symbol reading, if we need full
9493 DIEs to process an unusual case (e.g. template arguments). Do
9494 not queue PER_CU, just tell our caller to load its DIEs. */
9495 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9496 {
9497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9498 return 1;
9499 return 0;
9500 }
9501
9502 /* Mark the dependence relation so that we don't flush PER_CU
9503 too early. */
9504 if (dependent_cu != NULL)
9505 dwarf2_add_dependence (dependent_cu, per_cu);
9506
9507 /* If it's already on the queue, we have nothing to do. */
9508 if (per_cu->queued)
9509 return 0;
9510
9511 /* If the compilation unit is already loaded, just mark it as
9512 used. */
9513 if (per_cu->cu != NULL)
9514 {
9515 per_cu->cu->last_used = 0;
9516 return 0;
9517 }
9518
9519 /* Add it to the queue. */
9520 queue_comp_unit (per_cu, pretend_language);
9521
9522 return 1;
9523 }
9524
9525 /* Process the queue. */
9526
9527 static void
9528 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9529 {
9530 struct dwarf2_queue_item *item, *next_item;
9531
9532 if (dwarf_read_debug)
9533 {
9534 fprintf_unfiltered (gdb_stdlog,
9535 "Expanding one or more symtabs of objfile %s ...\n",
9536 objfile_name (dwarf2_per_objfile->objfile));
9537 }
9538
9539 /* The queue starts out with one item, but following a DIE reference
9540 may load a new CU, adding it to the end of the queue. */
9541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9542 {
9543 if ((dwarf2_per_objfile->using_index
9544 ? !item->per_cu->v.quick->compunit_symtab
9545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9546 /* Skip dummy CUs. */
9547 && item->per_cu->cu != NULL)
9548 {
9549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9550 unsigned int debug_print_threshold;
9551 char buf[100];
9552
9553 if (per_cu->is_debug_types)
9554 {
9555 struct signatured_type *sig_type =
9556 (struct signatured_type *) per_cu;
9557
9558 sprintf (buf, "TU %s at offset %s",
9559 hex_string (sig_type->signature),
9560 sect_offset_str (per_cu->sect_off));
9561 /* There can be 100s of TUs.
9562 Only print them in verbose mode. */
9563 debug_print_threshold = 2;
9564 }
9565 else
9566 {
9567 sprintf (buf, "CU at offset %s",
9568 sect_offset_str (per_cu->sect_off));
9569 debug_print_threshold = 1;
9570 }
9571
9572 if (dwarf_read_debug >= debug_print_threshold)
9573 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9574
9575 if (per_cu->is_debug_types)
9576 process_full_type_unit (per_cu, item->pretend_language);
9577 else
9578 process_full_comp_unit (per_cu, item->pretend_language);
9579
9580 if (dwarf_read_debug >= debug_print_threshold)
9581 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9582 }
9583
9584 item->per_cu->queued = 0;
9585 next_item = item->next;
9586 xfree (item);
9587 }
9588
9589 dwarf2_queue_tail = NULL;
9590
9591 if (dwarf_read_debug)
9592 {
9593 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9594 objfile_name (dwarf2_per_objfile->objfile));
9595 }
9596 }
9597
9598 /* Read in full symbols for PST, and anything it depends on. */
9599
9600 static void
9601 psymtab_to_symtab_1 (struct partial_symtab *pst)
9602 {
9603 struct dwarf2_per_cu_data *per_cu;
9604 int i;
9605
9606 if (pst->readin)
9607 return;
9608
9609 for (i = 0; i < pst->number_of_dependencies; i++)
9610 if (!pst->dependencies[i]->readin
9611 && pst->dependencies[i]->user == NULL)
9612 {
9613 /* Inform about additional files that need to be read in. */
9614 if (info_verbose)
9615 {
9616 /* FIXME: i18n: Need to make this a single string. */
9617 fputs_filtered (" ", gdb_stdout);
9618 wrap_here ("");
9619 fputs_filtered ("and ", gdb_stdout);
9620 wrap_here ("");
9621 printf_filtered ("%s...", pst->dependencies[i]->filename);
9622 wrap_here (""); /* Flush output. */
9623 gdb_flush (gdb_stdout);
9624 }
9625 psymtab_to_symtab_1 (pst->dependencies[i]);
9626 }
9627
9628 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9629
9630 if (per_cu == NULL)
9631 {
9632 /* It's an include file, no symbols to read for it.
9633 Everything is in the parent symtab. */
9634 pst->readin = 1;
9635 return;
9636 }
9637
9638 dw2_do_instantiate_symtab (per_cu, false);
9639 }
9640
9641 /* Trivial hash function for die_info: the hash value of a DIE
9642 is its offset in .debug_info for this objfile. */
9643
9644 static hashval_t
9645 die_hash (const void *item)
9646 {
9647 const struct die_info *die = (const struct die_info *) item;
9648
9649 return to_underlying (die->sect_off);
9650 }
9651
9652 /* Trivial comparison function for die_info structures: two DIEs
9653 are equal if they have the same offset. */
9654
9655 static int
9656 die_eq (const void *item_lhs, const void *item_rhs)
9657 {
9658 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9659 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9660
9661 return die_lhs->sect_off == die_rhs->sect_off;
9662 }
9663
9664 /* die_reader_func for load_full_comp_unit.
9665 This is identical to read_signatured_type_reader,
9666 but is kept separate for now. */
9667
9668 static void
9669 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9670 const gdb_byte *info_ptr,
9671 struct die_info *comp_unit_die,
9672 int has_children,
9673 void *data)
9674 {
9675 struct dwarf2_cu *cu = reader->cu;
9676 enum language *language_ptr = (enum language *) data;
9677
9678 gdb_assert (cu->die_hash == NULL);
9679 cu->die_hash =
9680 htab_create_alloc_ex (cu->header.length / 12,
9681 die_hash,
9682 die_eq,
9683 NULL,
9684 &cu->comp_unit_obstack,
9685 hashtab_obstack_allocate,
9686 dummy_obstack_deallocate);
9687
9688 if (has_children)
9689 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9690 &info_ptr, comp_unit_die);
9691 cu->dies = comp_unit_die;
9692 /* comp_unit_die is not stored in die_hash, no need. */
9693
9694 /* We try not to read any attributes in this function, because not
9695 all CUs needed for references have been loaded yet, and symbol
9696 table processing isn't initialized. But we have to set the CU language,
9697 or we won't be able to build types correctly.
9698 Similarly, if we do not read the producer, we can not apply
9699 producer-specific interpretation. */
9700 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9701 }
9702
9703 /* Load the DIEs associated with PER_CU into memory. */
9704
9705 static void
9706 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9707 bool skip_partial,
9708 enum language pretend_language)
9709 {
9710 gdb_assert (! this_cu->is_debug_types);
9711
9712 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9713 load_full_comp_unit_reader, &pretend_language);
9714 }
9715
9716 /* Add a DIE to the delayed physname list. */
9717
9718 static void
9719 add_to_method_list (struct type *type, int fnfield_index, int index,
9720 const char *name, struct die_info *die,
9721 struct dwarf2_cu *cu)
9722 {
9723 struct delayed_method_info mi;
9724 mi.type = type;
9725 mi.fnfield_index = fnfield_index;
9726 mi.index = index;
9727 mi.name = name;
9728 mi.die = die;
9729 cu->method_list.push_back (mi);
9730 }
9731
9732 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9733 "const" / "volatile". If so, decrements LEN by the length of the
9734 modifier and return true. Otherwise return false. */
9735
9736 template<size_t N>
9737 static bool
9738 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9739 {
9740 size_t mod_len = sizeof (mod) - 1;
9741 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9742 {
9743 len -= mod_len;
9744 return true;
9745 }
9746 return false;
9747 }
9748
9749 /* Compute the physnames of any methods on the CU's method list.
9750
9751 The computation of method physnames is delayed in order to avoid the
9752 (bad) condition that one of the method's formal parameters is of an as yet
9753 incomplete type. */
9754
9755 static void
9756 compute_delayed_physnames (struct dwarf2_cu *cu)
9757 {
9758 /* Only C++ delays computing physnames. */
9759 if (cu->method_list.empty ())
9760 return;
9761 gdb_assert (cu->language == language_cplus);
9762
9763 for (const delayed_method_info &mi : cu->method_list)
9764 {
9765 const char *physname;
9766 struct fn_fieldlist *fn_flp
9767 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9768 physname = dwarf2_physname (mi.name, mi.die, cu);
9769 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9770 = physname ? physname : "";
9771
9772 /* Since there's no tag to indicate whether a method is a
9773 const/volatile overload, extract that information out of the
9774 demangled name. */
9775 if (physname != NULL)
9776 {
9777 size_t len = strlen (physname);
9778
9779 while (1)
9780 {
9781 if (physname[len] == ')') /* shortcut */
9782 break;
9783 else if (check_modifier (physname, len, " const"))
9784 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9785 else if (check_modifier (physname, len, " volatile"))
9786 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9787 else
9788 break;
9789 }
9790 }
9791 }
9792
9793 /* The list is no longer needed. */
9794 cu->method_list.clear ();
9795 }
9796
9797 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9798 the same as all other symbols in LISTHEAD. If a new symbol is added
9799 with a different language, this function asserts. */
9800
9801 static inline void
9802 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9803 {
9804 /* Only assert if LISTHEAD already contains symbols of a different
9805 language (dict_create_hashed/insert_symbol_hashed requires that all
9806 symbols in this list are of the same language). */
9807 gdb_assert ((*listhead) == NULL
9808 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9809 == SYMBOL_LANGUAGE (symbol)));
9810
9811 add_symbol_to_list (symbol, listhead);
9812 }
9813
9814 /* Go objects should be embedded in a DW_TAG_module DIE,
9815 and it's not clear if/how imported objects will appear.
9816 To keep Go support simple until that's worked out,
9817 go back through what we've read and create something usable.
9818 We could do this while processing each DIE, and feels kinda cleaner,
9819 but that way is more invasive.
9820 This is to, for example, allow the user to type "p var" or "b main"
9821 without having to specify the package name, and allow lookups
9822 of module.object to work in contexts that use the expression
9823 parser. */
9824
9825 static void
9826 fixup_go_packaging (struct dwarf2_cu *cu)
9827 {
9828 char *package_name = NULL;
9829 struct pending *list;
9830 int i;
9831
9832 for (list = *cu->builder->get_global_symbols ();
9833 list != NULL;
9834 list = list->next)
9835 {
9836 for (i = 0; i < list->nsyms; ++i)
9837 {
9838 struct symbol *sym = list->symbol[i];
9839
9840 if (SYMBOL_LANGUAGE (sym) == language_go
9841 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9842 {
9843 char *this_package_name = go_symbol_package_name (sym);
9844
9845 if (this_package_name == NULL)
9846 continue;
9847 if (package_name == NULL)
9848 package_name = this_package_name;
9849 else
9850 {
9851 struct objfile *objfile
9852 = cu->per_cu->dwarf2_per_objfile->objfile;
9853 if (strcmp (package_name, this_package_name) != 0)
9854 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9855 (symbol_symtab (sym) != NULL
9856 ? symtab_to_filename_for_display
9857 (symbol_symtab (sym))
9858 : objfile_name (objfile)),
9859 this_package_name, package_name);
9860 xfree (this_package_name);
9861 }
9862 }
9863 }
9864 }
9865
9866 if (package_name != NULL)
9867 {
9868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9869 const char *saved_package_name
9870 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9871 package_name,
9872 strlen (package_name));
9873 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9874 saved_package_name);
9875 struct symbol *sym;
9876
9877 sym = allocate_symbol (objfile);
9878 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9879 SYMBOL_SET_NAMES (sym, saved_package_name,
9880 strlen (saved_package_name), 0, objfile);
9881 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9882 e.g., "main" finds the "main" module and not C's main(). */
9883 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9884 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9885 SYMBOL_TYPE (sym) = type;
9886
9887 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9888
9889 xfree (package_name);
9890 }
9891 }
9892
9893 /* Allocate a fully-qualified name consisting of the two parts on the
9894 obstack. */
9895
9896 static const char *
9897 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9898 {
9899 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9900 }
9901
9902 /* A helper that allocates a struct discriminant_info to attach to a
9903 union type. */
9904
9905 static struct discriminant_info *
9906 alloc_discriminant_info (struct type *type, int discriminant_index,
9907 int default_index)
9908 {
9909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9910 gdb_assert (discriminant_index == -1
9911 || (discriminant_index >= 0
9912 && discriminant_index < TYPE_NFIELDS (type)));
9913 gdb_assert (default_index == -1
9914 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9915
9916 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9917
9918 struct discriminant_info *disc
9919 = ((struct discriminant_info *)
9920 TYPE_ZALLOC (type,
9921 offsetof (struct discriminant_info, discriminants)
9922 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9923 disc->default_index = default_index;
9924 disc->discriminant_index = discriminant_index;
9925
9926 struct dynamic_prop prop;
9927 prop.kind = PROP_UNDEFINED;
9928 prop.data.baton = disc;
9929
9930 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9931
9932 return disc;
9933 }
9934
9935 /* Some versions of rustc emitted enums in an unusual way.
9936
9937 Ordinary enums were emitted as unions. The first element of each
9938 structure in the union was named "RUST$ENUM$DISR". This element
9939 held the discriminant.
9940
9941 These versions of Rust also implemented the "non-zero"
9942 optimization. When the enum had two values, and one is empty and
9943 the other holds a pointer that cannot be zero, the pointer is used
9944 as the discriminant, with a zero value meaning the empty variant.
9945 Here, the union's first member is of the form
9946 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9947 where the fieldnos are the indices of the fields that should be
9948 traversed in order to find the field (which may be several fields deep)
9949 and the variantname is the name of the variant of the case when the
9950 field is zero.
9951
9952 This function recognizes whether TYPE is of one of these forms,
9953 and, if so, smashes it to be a variant type. */
9954
9955 static void
9956 quirk_rust_enum (struct type *type, struct objfile *objfile)
9957 {
9958 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9959
9960 /* We don't need to deal with empty enums. */
9961 if (TYPE_NFIELDS (type) == 0)
9962 return;
9963
9964 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9965 if (TYPE_NFIELDS (type) == 1
9966 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9967 {
9968 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9969
9970 /* Decode the field name to find the offset of the
9971 discriminant. */
9972 ULONGEST bit_offset = 0;
9973 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9974 while (name[0] >= '0' && name[0] <= '9')
9975 {
9976 char *tail;
9977 unsigned long index = strtoul (name, &tail, 10);
9978 name = tail;
9979 if (*name != '$'
9980 || index >= TYPE_NFIELDS (field_type)
9981 || (TYPE_FIELD_LOC_KIND (field_type, index)
9982 != FIELD_LOC_KIND_BITPOS))
9983 {
9984 complaint (_("Could not parse Rust enum encoding string \"%s\""
9985 "[in module %s]"),
9986 TYPE_FIELD_NAME (type, 0),
9987 objfile_name (objfile));
9988 return;
9989 }
9990 ++name;
9991
9992 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9993 field_type = TYPE_FIELD_TYPE (field_type, index);
9994 }
9995
9996 /* Make a union to hold the variants. */
9997 struct type *union_type = alloc_type (objfile);
9998 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9999 TYPE_NFIELDS (union_type) = 3;
10000 TYPE_FIELDS (union_type)
10001 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10002 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10003 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10004
10005 /* Put the discriminant must at index 0. */
10006 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10007 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10008 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10009 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10010
10011 /* The order of fields doesn't really matter, so put the real
10012 field at index 1 and the data-less field at index 2. */
10013 struct discriminant_info *disc
10014 = alloc_discriminant_info (union_type, 0, 1);
10015 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10016 TYPE_FIELD_NAME (union_type, 1)
10017 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10018 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10019 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10020 TYPE_FIELD_NAME (union_type, 1));
10021
10022 const char *dataless_name
10023 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10024 name);
10025 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10026 dataless_name);
10027 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10028 /* NAME points into the original discriminant name, which
10029 already has the correct lifetime. */
10030 TYPE_FIELD_NAME (union_type, 2) = name;
10031 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10032 disc->discriminants[2] = 0;
10033
10034 /* Smash this type to be a structure type. We have to do this
10035 because the type has already been recorded. */
10036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10037 TYPE_NFIELDS (type) = 1;
10038 TYPE_FIELDS (type)
10039 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10040
10041 /* Install the variant part. */
10042 TYPE_FIELD_TYPE (type, 0) = union_type;
10043 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10044 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10045 }
10046 else if (TYPE_NFIELDS (type) == 1)
10047 {
10048 /* We assume that a union with a single field is a univariant
10049 enum. */
10050 /* Smash this type to be a structure type. We have to do this
10051 because the type has already been recorded. */
10052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10053
10054 /* Make a union to hold the variants. */
10055 struct type *union_type = alloc_type (objfile);
10056 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10057 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10058 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10059 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10060 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10061
10062 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10063 const char *variant_name
10064 = rust_last_path_segment (TYPE_NAME (field_type));
10065 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10066 TYPE_NAME (field_type)
10067 = rust_fully_qualify (&objfile->objfile_obstack,
10068 TYPE_NAME (type), variant_name);
10069
10070 /* Install the union in the outer struct type. */
10071 TYPE_NFIELDS (type) = 1;
10072 TYPE_FIELDS (type)
10073 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10074 TYPE_FIELD_TYPE (type, 0) = union_type;
10075 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10076 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10077
10078 alloc_discriminant_info (union_type, -1, 0);
10079 }
10080 else
10081 {
10082 struct type *disr_type = nullptr;
10083 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10084 {
10085 disr_type = TYPE_FIELD_TYPE (type, i);
10086
10087 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10088 {
10089 /* All fields of a true enum will be structs. */
10090 return;
10091 }
10092 else if (TYPE_NFIELDS (disr_type) == 0)
10093 {
10094 /* Could be data-less variant, so keep going. */
10095 disr_type = nullptr;
10096 }
10097 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10098 "RUST$ENUM$DISR") != 0)
10099 {
10100 /* Not a Rust enum. */
10101 return;
10102 }
10103 else
10104 {
10105 /* Found one. */
10106 break;
10107 }
10108 }
10109
10110 /* If we got here without a discriminant, then it's probably
10111 just a union. */
10112 if (disr_type == nullptr)
10113 return;
10114
10115 /* Smash this type to be a structure type. We have to do this
10116 because the type has already been recorded. */
10117 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10118
10119 /* Make a union to hold the variants. */
10120 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10121 struct type *union_type = alloc_type (objfile);
10122 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10123 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10124 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10125 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10126 TYPE_FIELDS (union_type)
10127 = (struct field *) TYPE_ZALLOC (union_type,
10128 (TYPE_NFIELDS (union_type)
10129 * sizeof (struct field)));
10130
10131 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10132 TYPE_NFIELDS (type) * sizeof (struct field));
10133
10134 /* Install the discriminant at index 0 in the union. */
10135 TYPE_FIELD (union_type, 0) = *disr_field;
10136 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10137 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10138
10139 /* Install the union in the outer struct type. */
10140 TYPE_FIELD_TYPE (type, 0) = union_type;
10141 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10142 TYPE_NFIELDS (type) = 1;
10143
10144 /* Set the size and offset of the union type. */
10145 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10146
10147 /* We need a way to find the correct discriminant given a
10148 variant name. For convenience we build a map here. */
10149 struct type *enum_type = FIELD_TYPE (*disr_field);
10150 std::unordered_map<std::string, ULONGEST> discriminant_map;
10151 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10152 {
10153 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10154 {
10155 const char *name
10156 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10157 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10158 }
10159 }
10160
10161 int n_fields = TYPE_NFIELDS (union_type);
10162 struct discriminant_info *disc
10163 = alloc_discriminant_info (union_type, 0, -1);
10164 /* Skip the discriminant here. */
10165 for (int i = 1; i < n_fields; ++i)
10166 {
10167 /* Find the final word in the name of this variant's type.
10168 That name can be used to look up the correct
10169 discriminant. */
10170 const char *variant_name
10171 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10172 i)));
10173
10174 auto iter = discriminant_map.find (variant_name);
10175 if (iter != discriminant_map.end ())
10176 disc->discriminants[i] = iter->second;
10177
10178 /* Remove the discriminant field, if it exists. */
10179 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10180 if (TYPE_NFIELDS (sub_type) > 0)
10181 {
10182 --TYPE_NFIELDS (sub_type);
10183 ++TYPE_FIELDS (sub_type);
10184 }
10185 TYPE_FIELD_NAME (union_type, i) = variant_name;
10186 TYPE_NAME (sub_type)
10187 = rust_fully_qualify (&objfile->objfile_obstack,
10188 TYPE_NAME (type), variant_name);
10189 }
10190 }
10191 }
10192
10193 /* Rewrite some Rust unions to be structures with variants parts. */
10194
10195 static void
10196 rust_union_quirks (struct dwarf2_cu *cu)
10197 {
10198 gdb_assert (cu->language == language_rust);
10199 for (type *type_ : cu->rust_unions)
10200 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10201 /* We don't need this any more. */
10202 cu->rust_unions.clear ();
10203 }
10204
10205 /* Return the symtab for PER_CU. This works properly regardless of
10206 whether we're using the index or psymtabs. */
10207
10208 static struct compunit_symtab *
10209 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10210 {
10211 return (per_cu->dwarf2_per_objfile->using_index
10212 ? per_cu->v.quick->compunit_symtab
10213 : per_cu->v.psymtab->compunit_symtab);
10214 }
10215
10216 /* A helper function for computing the list of all symbol tables
10217 included by PER_CU. */
10218
10219 static void
10220 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10221 htab_t all_children, htab_t all_type_symtabs,
10222 struct dwarf2_per_cu_data *per_cu,
10223 struct compunit_symtab *immediate_parent)
10224 {
10225 void **slot;
10226 int ix;
10227 struct compunit_symtab *cust;
10228 struct dwarf2_per_cu_data *iter;
10229
10230 slot = htab_find_slot (all_children, per_cu, INSERT);
10231 if (*slot != NULL)
10232 {
10233 /* This inclusion and its children have been processed. */
10234 return;
10235 }
10236
10237 *slot = per_cu;
10238 /* Only add a CU if it has a symbol table. */
10239 cust = get_compunit_symtab (per_cu);
10240 if (cust != NULL)
10241 {
10242 /* If this is a type unit only add its symbol table if we haven't
10243 seen it yet (type unit per_cu's can share symtabs). */
10244 if (per_cu->is_debug_types)
10245 {
10246 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10247 if (*slot == NULL)
10248 {
10249 *slot = cust;
10250 result->push_back (cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10253 }
10254 }
10255 else
10256 {
10257 result->push_back (cust);
10258 if (cust->user == NULL)
10259 cust->user = immediate_parent;
10260 }
10261 }
10262
10263 for (ix = 0;
10264 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10265 ++ix)
10266 {
10267 recursively_compute_inclusions (result, all_children,
10268 all_type_symtabs, iter, cust);
10269 }
10270 }
10271
10272 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10273 PER_CU. */
10274
10275 static void
10276 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10277 {
10278 gdb_assert (! per_cu->is_debug_types);
10279
10280 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10281 {
10282 int ix, len;
10283 struct dwarf2_per_cu_data *per_cu_iter;
10284 std::vector<compunit_symtab *> result_symtabs;
10285 htab_t all_children, all_type_symtabs;
10286 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10287
10288 /* If we don't have a symtab, we can just skip this case. */
10289 if (cust == NULL)
10290 return;
10291
10292 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10293 NULL, xcalloc, xfree);
10294 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10296
10297 for (ix = 0;
10298 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10299 ix, per_cu_iter);
10300 ++ix)
10301 {
10302 recursively_compute_inclusions (&result_symtabs, all_children,
10303 all_type_symtabs, per_cu_iter,
10304 cust);
10305 }
10306
10307 /* Now we have a transitive closure of all the included symtabs. */
10308 len = result_symtabs.size ();
10309 cust->includes
10310 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10311 struct compunit_symtab *, len + 1);
10312 memcpy (cust->includes, result_symtabs.data (),
10313 len * sizeof (compunit_symtab *));
10314 cust->includes[len] = NULL;
10315
10316 htab_delete (all_children);
10317 htab_delete (all_type_symtabs);
10318 }
10319 }
10320
10321 /* Compute the 'includes' field for the symtabs of all the CUs we just
10322 read. */
10323
10324 static void
10325 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10326 {
10327 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10328 {
10329 if (! iter->is_debug_types)
10330 compute_compunit_symtab_includes (iter);
10331 }
10332
10333 dwarf2_per_objfile->just_read_cus.clear ();
10334 }
10335
10336 /* Generate full symbol information for PER_CU, whose DIEs have
10337 already been loaded into memory. */
10338
10339 static void
10340 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10342 {
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10347 CORE_ADDR lowpc, highpc;
10348 struct compunit_symtab *cust;
10349 CORE_ADDR baseaddr;
10350 struct block *static_block;
10351 CORE_ADDR addr;
10352
10353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10354
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10357
10358 cu->language = pretend_language;
10359 cu->language_defn = language_def (cu->language);
10360
10361 /* Do line number decoding in read_file_scope () */
10362 process_die (cu->dies, cu);
10363
10364 /* For now fudge the Go package. */
10365 if (cu->language == language_go)
10366 fixup_go_packaging (cu);
10367
10368 /* Now that we have processed all the DIEs in the CU, all the types
10369 should be complete, and it should now be safe to compute all of the
10370 physnames. */
10371 compute_delayed_physnames (cu);
10372
10373 if (cu->language == language_rust)
10374 rust_union_quirks (cu);
10375
10376 /* Some compilers don't define a DW_AT_high_pc attribute for the
10377 compilation unit. If the DW_AT_high_pc is missing, synthesize
10378 it, by scanning the DIE's below the compilation unit. */
10379 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10380
10381 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10382 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10383
10384 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10385 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10386 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10387 addrmap to help ensure it has an accurate map of pc values belonging to
10388 this comp unit. */
10389 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10390
10391 cust = cu->builder->end_symtab_from_static_block (static_block,
10392 SECT_OFF_TEXT (objfile),
10393 0);
10394
10395 if (cust != NULL)
10396 {
10397 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10398
10399 /* Set symtab language to language from DW_AT_language. If the
10400 compilation is from a C file generated by language preprocessors, do
10401 not set the language if it was already deduced by start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10405
10406 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10407 produce DW_AT_location with location lists but it can be possibly
10408 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10409 there were bugs in prologue debug info, fixed later in GCC-4.5
10410 by "unwind info for epilogues" patch (which is not directly related).
10411
10412 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10413 needed, it would be wrong due to missing DW_AT_producer there.
10414
10415 Still one can confuse GDB by using non-standard GCC compilation
10416 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10417 */
10418 if (cu->has_loclist && gcc_4_minor >= 5)
10419 cust->locations_valid = 1;
10420
10421 if (gcc_4_minor >= 5)
10422 cust->epilogue_unwind_valid = 1;
10423
10424 cust->call_site_htab = cu->call_site_htab;
10425 }
10426
10427 if (dwarf2_per_objfile->using_index)
10428 per_cu->v.quick->compunit_symtab = cust;
10429 else
10430 {
10431 struct partial_symtab *pst = per_cu->v.psymtab;
10432 pst->compunit_symtab = cust;
10433 pst->readin = 1;
10434 }
10435
10436 /* Push it for inclusion processing later. */
10437 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10438
10439 /* Not needed any more. */
10440 cu->builder.reset ();
10441 }
10442
10443 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10444 already been loaded into memory. */
10445
10446 static void
10447 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10448 enum language pretend_language)
10449 {
10450 struct dwarf2_cu *cu = per_cu->cu;
10451 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
10453 struct compunit_symtab *cust;
10454 struct signatured_type *sig_type;
10455
10456 gdb_assert (per_cu->is_debug_types);
10457 sig_type = (struct signatured_type *) per_cu;
10458
10459 /* Clear the list here in case something was left over. */
10460 cu->method_list.clear ();
10461
10462 cu->language = pretend_language;
10463 cu->language_defn = language_def (cu->language);
10464
10465 /* The symbol tables are set up in read_type_unit_scope. */
10466 process_die (cu->dies, cu);
10467
10468 /* For now fudge the Go package. */
10469 if (cu->language == language_go)
10470 fixup_go_packaging (cu);
10471
10472 /* Now that we have processed all the DIEs in the CU, all the types
10473 should be complete, and it should now be safe to compute all of the
10474 physnames. */
10475 compute_delayed_physnames (cu);
10476
10477 if (cu->language == language_rust)
10478 rust_union_quirks (cu);
10479
10480 /* TUs share symbol tables.
10481 If this is the first TU to use this symtab, complete the construction
10482 of it with end_expandable_symtab. Otherwise, complete the addition of
10483 this TU's symbols to the existing symtab. */
10484 if (sig_type->type_unit_group->compunit_symtab == NULL)
10485 {
10486 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10487 sig_type->type_unit_group->compunit_symtab = cust;
10488
10489 if (cust != NULL)
10490 {
10491 /* Set symtab language to language from DW_AT_language. If the
10492 compilation is from a C file generated by language preprocessors,
10493 do not set the language if it was already deduced by
10494 start_subfile. */
10495 if (!(cu->language == language_c
10496 && COMPUNIT_FILETABS (cust)->language != language_c))
10497 COMPUNIT_FILETABS (cust)->language = cu->language;
10498 }
10499 }
10500 else
10501 {
10502 cu->builder->augment_type_symtab ();
10503 cust = sig_type->type_unit_group->compunit_symtab;
10504 }
10505
10506 if (dwarf2_per_objfile->using_index)
10507 per_cu->v.quick->compunit_symtab = cust;
10508 else
10509 {
10510 struct partial_symtab *pst = per_cu->v.psymtab;
10511 pst->compunit_symtab = cust;
10512 pst->readin = 1;
10513 }
10514
10515 /* Not needed any more. */
10516 cu->builder.reset ();
10517 }
10518
10519 /* Process an imported unit DIE. */
10520
10521 static void
10522 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10523 {
10524 struct attribute *attr;
10525
10526 /* For now we don't handle imported units in type units. */
10527 if (cu->per_cu->is_debug_types)
10528 {
10529 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10530 " supported in type units [in module %s]"),
10531 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10532 }
10533
10534 attr = dwarf2_attr (die, DW_AT_import, cu);
10535 if (attr != NULL)
10536 {
10537 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10538 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10539 dwarf2_per_cu_data *per_cu
10540 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10541 cu->per_cu->dwarf2_per_objfile);
10542
10543 /* If necessary, add it to the queue and load its DIEs. */
10544 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10545 load_full_comp_unit (per_cu, false, cu->language);
10546
10547 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10548 per_cu);
10549 }
10550 }
10551
10552 /* RAII object that represents a process_die scope: i.e.,
10553 starts/finishes processing a DIE. */
10554 class process_die_scope
10555 {
10556 public:
10557 process_die_scope (die_info *die, dwarf2_cu *cu)
10558 : m_die (die), m_cu (cu)
10559 {
10560 /* We should only be processing DIEs not already in process. */
10561 gdb_assert (!m_die->in_process);
10562 m_die->in_process = true;
10563 }
10564
10565 ~process_die_scope ()
10566 {
10567 m_die->in_process = false;
10568
10569 /* If we're done processing the DIE for the CU that owns the line
10570 header, we don't need the line header anymore. */
10571 if (m_cu->line_header_die_owner == m_die)
10572 {
10573 delete m_cu->line_header;
10574 m_cu->line_header = NULL;
10575 m_cu->line_header_die_owner = NULL;
10576 }
10577 }
10578
10579 private:
10580 die_info *m_die;
10581 dwarf2_cu *m_cu;
10582 };
10583
10584 /* Process a die and its children. */
10585
10586 static void
10587 process_die (struct die_info *die, struct dwarf2_cu *cu)
10588 {
10589 process_die_scope scope (die, cu);
10590
10591 switch (die->tag)
10592 {
10593 case DW_TAG_padding:
10594 break;
10595 case DW_TAG_compile_unit:
10596 case DW_TAG_partial_unit:
10597 read_file_scope (die, cu);
10598 break;
10599 case DW_TAG_type_unit:
10600 read_type_unit_scope (die, cu);
10601 break;
10602 case DW_TAG_subprogram:
10603 case DW_TAG_inlined_subroutine:
10604 read_func_scope (die, cu);
10605 break;
10606 case DW_TAG_lexical_block:
10607 case DW_TAG_try_block:
10608 case DW_TAG_catch_block:
10609 read_lexical_block_scope (die, cu);
10610 break;
10611 case DW_TAG_call_site:
10612 case DW_TAG_GNU_call_site:
10613 read_call_site_scope (die, cu);
10614 break;
10615 case DW_TAG_class_type:
10616 case DW_TAG_interface_type:
10617 case DW_TAG_structure_type:
10618 case DW_TAG_union_type:
10619 process_structure_scope (die, cu);
10620 break;
10621 case DW_TAG_enumeration_type:
10622 process_enumeration_scope (die, cu);
10623 break;
10624
10625 /* These dies have a type, but processing them does not create
10626 a symbol or recurse to process the children. Therefore we can
10627 read them on-demand through read_type_die. */
10628 case DW_TAG_subroutine_type:
10629 case DW_TAG_set_type:
10630 case DW_TAG_array_type:
10631 case DW_TAG_pointer_type:
10632 case DW_TAG_ptr_to_member_type:
10633 case DW_TAG_reference_type:
10634 case DW_TAG_rvalue_reference_type:
10635 case DW_TAG_string_type:
10636 break;
10637
10638 case DW_TAG_base_type:
10639 case DW_TAG_subrange_type:
10640 case DW_TAG_typedef:
10641 /* Add a typedef symbol for the type definition, if it has a
10642 DW_AT_name. */
10643 new_symbol (die, read_type_die (die, cu), cu);
10644 break;
10645 case DW_TAG_common_block:
10646 read_common_block (die, cu);
10647 break;
10648 case DW_TAG_common_inclusion:
10649 break;
10650 case DW_TAG_namespace:
10651 cu->processing_has_namespace_info = 1;
10652 read_namespace (die, cu);
10653 break;
10654 case DW_TAG_module:
10655 cu->processing_has_namespace_info = 1;
10656 read_module (die, cu);
10657 break;
10658 case DW_TAG_imported_declaration:
10659 cu->processing_has_namespace_info = 1;
10660 if (read_namespace_alias (die, cu))
10661 break;
10662 /* The declaration is not a global namespace alias. */
10663 /* Fall through. */
10664 case DW_TAG_imported_module:
10665 cu->processing_has_namespace_info = 1;
10666 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10667 || cu->language != language_fortran))
10668 complaint (_("Tag '%s' has unexpected children"),
10669 dwarf_tag_name (die->tag));
10670 read_import_statement (die, cu);
10671 break;
10672
10673 case DW_TAG_imported_unit:
10674 process_imported_unit_die (die, cu);
10675 break;
10676
10677 case DW_TAG_variable:
10678 read_variable (die, cu);
10679 break;
10680
10681 default:
10682 new_symbol (die, NULL, cu);
10683 break;
10684 }
10685 }
10686 \f
10687 /* DWARF name computation. */
10688
10689 /* A helper function for dwarf2_compute_name which determines whether DIE
10690 needs to have the name of the scope prepended to the name listed in the
10691 die. */
10692
10693 static int
10694 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10695 {
10696 struct attribute *attr;
10697
10698 switch (die->tag)
10699 {
10700 case DW_TAG_namespace:
10701 case DW_TAG_typedef:
10702 case DW_TAG_class_type:
10703 case DW_TAG_interface_type:
10704 case DW_TAG_structure_type:
10705 case DW_TAG_union_type:
10706 case DW_TAG_enumeration_type:
10707 case DW_TAG_enumerator:
10708 case DW_TAG_subprogram:
10709 case DW_TAG_inlined_subroutine:
10710 case DW_TAG_member:
10711 case DW_TAG_imported_declaration:
10712 return 1;
10713
10714 case DW_TAG_variable:
10715 case DW_TAG_constant:
10716 /* We only need to prefix "globally" visible variables. These include
10717 any variable marked with DW_AT_external or any variable that
10718 lives in a namespace. [Variables in anonymous namespaces
10719 require prefixing, but they are not DW_AT_external.] */
10720
10721 if (dwarf2_attr (die, DW_AT_specification, cu))
10722 {
10723 struct dwarf2_cu *spec_cu = cu;
10724
10725 return die_needs_namespace (die_specification (die, &spec_cu),
10726 spec_cu);
10727 }
10728
10729 attr = dwarf2_attr (die, DW_AT_external, cu);
10730 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10731 && die->parent->tag != DW_TAG_module)
10732 return 0;
10733 /* A variable in a lexical block of some kind does not need a
10734 namespace, even though in C++ such variables may be external
10735 and have a mangled name. */
10736 if (die->parent->tag == DW_TAG_lexical_block
10737 || die->parent->tag == DW_TAG_try_block
10738 || die->parent->tag == DW_TAG_catch_block
10739 || die->parent->tag == DW_TAG_subprogram)
10740 return 0;
10741 return 1;
10742
10743 default:
10744 return 0;
10745 }
10746 }
10747
10748 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10749 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10750 defined for the given DIE. */
10751
10752 static struct attribute *
10753 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10754 {
10755 struct attribute *attr;
10756
10757 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10758 if (attr == NULL)
10759 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10760
10761 return attr;
10762 }
10763
10764 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10765 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10766 defined for the given DIE. */
10767
10768 static const char *
10769 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10770 {
10771 const char *linkage_name;
10772
10773 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10774 if (linkage_name == NULL)
10775 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10776
10777 return linkage_name;
10778 }
10779
10780 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10781 compute the physname for the object, which include a method's:
10782 - formal parameters (C++),
10783 - receiver type (Go),
10784
10785 The term "physname" is a bit confusing.
10786 For C++, for example, it is the demangled name.
10787 For Go, for example, it's the mangled name.
10788
10789 For Ada, return the DIE's linkage name rather than the fully qualified
10790 name. PHYSNAME is ignored..
10791
10792 The result is allocated on the objfile_obstack and canonicalized. */
10793
10794 static const char *
10795 dwarf2_compute_name (const char *name,
10796 struct die_info *die, struct dwarf2_cu *cu,
10797 int physname)
10798 {
10799 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10800
10801 if (name == NULL)
10802 name = dwarf2_name (die, cu);
10803
10804 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10805 but otherwise compute it by typename_concat inside GDB.
10806 FIXME: Actually this is not really true, or at least not always true.
10807 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10808 Fortran names because there is no mangling standard. So new_symbol
10809 will set the demangled name to the result of dwarf2_full_name, and it is
10810 the demangled name that GDB uses if it exists. */
10811 if (cu->language == language_ada
10812 || (cu->language == language_fortran && physname))
10813 {
10814 /* For Ada unit, we prefer the linkage name over the name, as
10815 the former contains the exported name, which the user expects
10816 to be able to reference. Ideally, we want the user to be able
10817 to reference this entity using either natural or linkage name,
10818 but we haven't started looking at this enhancement yet. */
10819 const char *linkage_name = dw2_linkage_name (die, cu);
10820
10821 if (linkage_name != NULL)
10822 return linkage_name;
10823 }
10824
10825 /* These are the only languages we know how to qualify names in. */
10826 if (name != NULL
10827 && (cu->language == language_cplus
10828 || cu->language == language_fortran || cu->language == language_d
10829 || cu->language == language_rust))
10830 {
10831 if (die_needs_namespace (die, cu))
10832 {
10833 const char *prefix;
10834 const char *canonical_name = NULL;
10835
10836 string_file buf;
10837
10838 prefix = determine_prefix (die, cu);
10839 if (*prefix != '\0')
10840 {
10841 char *prefixed_name = typename_concat (NULL, prefix, name,
10842 physname, cu);
10843
10844 buf.puts (prefixed_name);
10845 xfree (prefixed_name);
10846 }
10847 else
10848 buf.puts (name);
10849
10850 /* Template parameters may be specified in the DIE's DW_AT_name, or
10851 as children with DW_TAG_template_type_param or
10852 DW_TAG_value_type_param. If the latter, add them to the name
10853 here. If the name already has template parameters, then
10854 skip this step; some versions of GCC emit both, and
10855 it is more efficient to use the pre-computed name.
10856
10857 Something to keep in mind about this process: it is very
10858 unlikely, or in some cases downright impossible, to produce
10859 something that will match the mangled name of a function.
10860 If the definition of the function has the same debug info,
10861 we should be able to match up with it anyway. But fallbacks
10862 using the minimal symbol, for instance to find a method
10863 implemented in a stripped copy of libstdc++, will not work.
10864 If we do not have debug info for the definition, we will have to
10865 match them up some other way.
10866
10867 When we do name matching there is a related problem with function
10868 templates; two instantiated function templates are allowed to
10869 differ only by their return types, which we do not add here. */
10870
10871 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10872 {
10873 struct attribute *attr;
10874 struct die_info *child;
10875 int first = 1;
10876
10877 die->building_fullname = 1;
10878
10879 for (child = die->child; child != NULL; child = child->sibling)
10880 {
10881 struct type *type;
10882 LONGEST value;
10883 const gdb_byte *bytes;
10884 struct dwarf2_locexpr_baton *baton;
10885 struct value *v;
10886
10887 if (child->tag != DW_TAG_template_type_param
10888 && child->tag != DW_TAG_template_value_param)
10889 continue;
10890
10891 if (first)
10892 {
10893 buf.puts ("<");
10894 first = 0;
10895 }
10896 else
10897 buf.puts (", ");
10898
10899 attr = dwarf2_attr (child, DW_AT_type, cu);
10900 if (attr == NULL)
10901 {
10902 complaint (_("template parameter missing DW_AT_type"));
10903 buf.puts ("UNKNOWN_TYPE");
10904 continue;
10905 }
10906 type = die_type (child, cu);
10907
10908 if (child->tag == DW_TAG_template_type_param)
10909 {
10910 c_print_type (type, "", &buf, -1, 0, cu->language,
10911 &type_print_raw_options);
10912 continue;
10913 }
10914
10915 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10916 if (attr == NULL)
10917 {
10918 complaint (_("template parameter missing "
10919 "DW_AT_const_value"));
10920 buf.puts ("UNKNOWN_VALUE");
10921 continue;
10922 }
10923
10924 dwarf2_const_value_attr (attr, type, name,
10925 &cu->comp_unit_obstack, cu,
10926 &value, &bytes, &baton);
10927
10928 if (TYPE_NOSIGN (type))
10929 /* GDB prints characters as NUMBER 'CHAR'. If that's
10930 changed, this can use value_print instead. */
10931 c_printchar (value, type, &buf);
10932 else
10933 {
10934 struct value_print_options opts;
10935
10936 if (baton != NULL)
10937 v = dwarf2_evaluate_loc_desc (type, NULL,
10938 baton->data,
10939 baton->size,
10940 baton->per_cu);
10941 else if (bytes != NULL)
10942 {
10943 v = allocate_value (type);
10944 memcpy (value_contents_writeable (v), bytes,
10945 TYPE_LENGTH (type));
10946 }
10947 else
10948 v = value_from_longest (type, value);
10949
10950 /* Specify decimal so that we do not depend on
10951 the radix. */
10952 get_formatted_print_options (&opts, 'd');
10953 opts.raw = 1;
10954 value_print (v, &buf, &opts);
10955 release_value (v);
10956 }
10957 }
10958
10959 die->building_fullname = 0;
10960
10961 if (!first)
10962 {
10963 /* Close the argument list, with a space if necessary
10964 (nested templates). */
10965 if (!buf.empty () && buf.string ().back () == '>')
10966 buf.puts (" >");
10967 else
10968 buf.puts (">");
10969 }
10970 }
10971
10972 /* For C++ methods, append formal parameter type
10973 information, if PHYSNAME. */
10974
10975 if (physname && die->tag == DW_TAG_subprogram
10976 && cu->language == language_cplus)
10977 {
10978 struct type *type = read_type_die (die, cu);
10979
10980 c_type_print_args (type, &buf, 1, cu->language,
10981 &type_print_raw_options);
10982
10983 if (cu->language == language_cplus)
10984 {
10985 /* Assume that an artificial first parameter is
10986 "this", but do not crash if it is not. RealView
10987 marks unnamed (and thus unused) parameters as
10988 artificial; there is no way to differentiate
10989 the two cases. */
10990 if (TYPE_NFIELDS (type) > 0
10991 && TYPE_FIELD_ARTIFICIAL (type, 0)
10992 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10993 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10994 0))))
10995 buf.puts (" const");
10996 }
10997 }
10998
10999 const std::string &intermediate_name = buf.string ();
11000
11001 if (cu->language == language_cplus)
11002 canonical_name
11003 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11004 &objfile->per_bfd->storage_obstack);
11005
11006 /* If we only computed INTERMEDIATE_NAME, or if
11007 INTERMEDIATE_NAME is already canonical, then we need to
11008 copy it to the appropriate obstack. */
11009 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11010 name = ((const char *)
11011 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11012 intermediate_name.c_str (),
11013 intermediate_name.length ()));
11014 else
11015 name = canonical_name;
11016 }
11017 }
11018
11019 return name;
11020 }
11021
11022 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11023 If scope qualifiers are appropriate they will be added. The result
11024 will be allocated on the storage_obstack, or NULL if the DIE does
11025 not have a name. NAME may either be from a previous call to
11026 dwarf2_name or NULL.
11027
11028 The output string will be canonicalized (if C++). */
11029
11030 static const char *
11031 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11032 {
11033 return dwarf2_compute_name (name, die, cu, 0);
11034 }
11035
11036 /* Construct a physname for the given DIE in CU. NAME may either be
11037 from a previous call to dwarf2_name or NULL. The result will be
11038 allocated on the objfile_objstack or NULL if the DIE does not have a
11039 name.
11040
11041 The output string will be canonicalized (if C++). */
11042
11043 static const char *
11044 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11045 {
11046 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11047 const char *retval, *mangled = NULL, *canon = NULL;
11048 int need_copy = 1;
11049
11050 /* In this case dwarf2_compute_name is just a shortcut not building anything
11051 on its own. */
11052 if (!die_needs_namespace (die, cu))
11053 return dwarf2_compute_name (name, die, cu, 1);
11054
11055 mangled = dw2_linkage_name (die, cu);
11056
11057 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11058 See https://github.com/rust-lang/rust/issues/32925. */
11059 if (cu->language == language_rust && mangled != NULL
11060 && strchr (mangled, '{') != NULL)
11061 mangled = NULL;
11062
11063 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11064 has computed. */
11065 gdb::unique_xmalloc_ptr<char> demangled;
11066 if (mangled != NULL)
11067 {
11068
11069 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11070 {
11071 /* Do nothing (do not demangle the symbol name). */
11072 }
11073 else if (cu->language == language_go)
11074 {
11075 /* This is a lie, but we already lie to the caller new_symbol.
11076 new_symbol assumes we return the mangled name.
11077 This just undoes that lie until things are cleaned up. */
11078 }
11079 else
11080 {
11081 /* Use DMGL_RET_DROP for C++ template functions to suppress
11082 their return type. It is easier for GDB users to search
11083 for such functions as `name(params)' than `long name(params)'.
11084 In such case the minimal symbol names do not match the full
11085 symbol names but for template functions there is never a need
11086 to look up their definition from their declaration so
11087 the only disadvantage remains the minimal symbol variant
11088 `long name(params)' does not have the proper inferior type. */
11089 demangled.reset (gdb_demangle (mangled,
11090 (DMGL_PARAMS | DMGL_ANSI
11091 | DMGL_RET_DROP)));
11092 }
11093 if (demangled)
11094 canon = demangled.get ();
11095 else
11096 {
11097 canon = mangled;
11098 need_copy = 0;
11099 }
11100 }
11101
11102 if (canon == NULL || check_physname)
11103 {
11104 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11105
11106 if (canon != NULL && strcmp (physname, canon) != 0)
11107 {
11108 /* It may not mean a bug in GDB. The compiler could also
11109 compute DW_AT_linkage_name incorrectly. But in such case
11110 GDB would need to be bug-to-bug compatible. */
11111
11112 complaint (_("Computed physname <%s> does not match demangled <%s> "
11113 "(from linkage <%s>) - DIE at %s [in module %s]"),
11114 physname, canon, mangled, sect_offset_str (die->sect_off),
11115 objfile_name (objfile));
11116
11117 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11118 is available here - over computed PHYSNAME. It is safer
11119 against both buggy GDB and buggy compilers. */
11120
11121 retval = canon;
11122 }
11123 else
11124 {
11125 retval = physname;
11126 need_copy = 0;
11127 }
11128 }
11129 else
11130 retval = canon;
11131
11132 if (need_copy)
11133 retval = ((const char *)
11134 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11135 retval, strlen (retval)));
11136
11137 return retval;
11138 }
11139
11140 /* Inspect DIE in CU for a namespace alias. If one exists, record
11141 a new symbol for it.
11142
11143 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11144
11145 static int
11146 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11147 {
11148 struct attribute *attr;
11149
11150 /* If the die does not have a name, this is not a namespace
11151 alias. */
11152 attr = dwarf2_attr (die, DW_AT_name, cu);
11153 if (attr != NULL)
11154 {
11155 int num;
11156 struct die_info *d = die;
11157 struct dwarf2_cu *imported_cu = cu;
11158
11159 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11160 keep inspecting DIEs until we hit the underlying import. */
11161 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11162 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11163 {
11164 attr = dwarf2_attr (d, DW_AT_import, cu);
11165 if (attr == NULL)
11166 break;
11167
11168 d = follow_die_ref (d, attr, &imported_cu);
11169 if (d->tag != DW_TAG_imported_declaration)
11170 break;
11171 }
11172
11173 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11174 {
11175 complaint (_("DIE at %s has too many recursively imported "
11176 "declarations"), sect_offset_str (d->sect_off));
11177 return 0;
11178 }
11179
11180 if (attr != NULL)
11181 {
11182 struct type *type;
11183 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11184
11185 type = get_die_type_at_offset (sect_off, cu->per_cu);
11186 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11187 {
11188 /* This declaration is a global namespace alias. Add
11189 a symbol for it whose type is the aliased namespace. */
11190 new_symbol (die, type, cu);
11191 return 1;
11192 }
11193 }
11194 }
11195
11196 return 0;
11197 }
11198
11199 /* Return the using directives repository (global or local?) to use in the
11200 current context for CU.
11201
11202 For Ada, imported declarations can materialize renamings, which *may* be
11203 global. However it is impossible (for now?) in DWARF to distinguish
11204 "external" imported declarations and "static" ones. As all imported
11205 declarations seem to be static in all other languages, make them all CU-wide
11206 global only in Ada. */
11207
11208 static struct using_direct **
11209 using_directives (struct dwarf2_cu *cu)
11210 {
11211 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11212 return cu->builder->get_global_using_directives ();
11213 else
11214 return cu->builder->get_local_using_directives ();
11215 }
11216
11217 /* Read the import statement specified by the given die and record it. */
11218
11219 static void
11220 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11221 {
11222 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11223 struct attribute *import_attr;
11224 struct die_info *imported_die, *child_die;
11225 struct dwarf2_cu *imported_cu;
11226 const char *imported_name;
11227 const char *imported_name_prefix;
11228 const char *canonical_name;
11229 const char *import_alias;
11230 const char *imported_declaration = NULL;
11231 const char *import_prefix;
11232 std::vector<const char *> excludes;
11233
11234 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11235 if (import_attr == NULL)
11236 {
11237 complaint (_("Tag '%s' has no DW_AT_import"),
11238 dwarf_tag_name (die->tag));
11239 return;
11240 }
11241
11242 imported_cu = cu;
11243 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11244 imported_name = dwarf2_name (imported_die, imported_cu);
11245 if (imported_name == NULL)
11246 {
11247 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11248
11249 The import in the following code:
11250 namespace A
11251 {
11252 typedef int B;
11253 }
11254
11255 int main ()
11256 {
11257 using A::B;
11258 B b;
11259 return b;
11260 }
11261
11262 ...
11263 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11264 <52> DW_AT_decl_file : 1
11265 <53> DW_AT_decl_line : 6
11266 <54> DW_AT_import : <0x75>
11267 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11268 <59> DW_AT_name : B
11269 <5b> DW_AT_decl_file : 1
11270 <5c> DW_AT_decl_line : 2
11271 <5d> DW_AT_type : <0x6e>
11272 ...
11273 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11274 <76> DW_AT_byte_size : 4
11275 <77> DW_AT_encoding : 5 (signed)
11276
11277 imports the wrong die ( 0x75 instead of 0x58 ).
11278 This case will be ignored until the gcc bug is fixed. */
11279 return;
11280 }
11281
11282 /* Figure out the local name after import. */
11283 import_alias = dwarf2_name (die, cu);
11284
11285 /* Figure out where the statement is being imported to. */
11286 import_prefix = determine_prefix (die, cu);
11287
11288 /* Figure out what the scope of the imported die is and prepend it
11289 to the name of the imported die. */
11290 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11291
11292 if (imported_die->tag != DW_TAG_namespace
11293 && imported_die->tag != DW_TAG_module)
11294 {
11295 imported_declaration = imported_name;
11296 canonical_name = imported_name_prefix;
11297 }
11298 else if (strlen (imported_name_prefix) > 0)
11299 canonical_name = obconcat (&objfile->objfile_obstack,
11300 imported_name_prefix,
11301 (cu->language == language_d ? "." : "::"),
11302 imported_name, (char *) NULL);
11303 else
11304 canonical_name = imported_name;
11305
11306 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11307 for (child_die = die->child; child_die && child_die->tag;
11308 child_die = sibling_die (child_die))
11309 {
11310 /* DWARF-4: A Fortran use statement with a “rename list” may be
11311 represented by an imported module entry with an import attribute
11312 referring to the module and owned entries corresponding to those
11313 entities that are renamed as part of being imported. */
11314
11315 if (child_die->tag != DW_TAG_imported_declaration)
11316 {
11317 complaint (_("child DW_TAG_imported_declaration expected "
11318 "- DIE at %s [in module %s]"),
11319 sect_offset_str (child_die->sect_off),
11320 objfile_name (objfile));
11321 continue;
11322 }
11323
11324 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11325 if (import_attr == NULL)
11326 {
11327 complaint (_("Tag '%s' has no DW_AT_import"),
11328 dwarf_tag_name (child_die->tag));
11329 continue;
11330 }
11331
11332 imported_cu = cu;
11333 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11334 &imported_cu);
11335 imported_name = dwarf2_name (imported_die, imported_cu);
11336 if (imported_name == NULL)
11337 {
11338 complaint (_("child DW_TAG_imported_declaration has unknown "
11339 "imported name - DIE at %s [in module %s]"),
11340 sect_offset_str (child_die->sect_off),
11341 objfile_name (objfile));
11342 continue;
11343 }
11344
11345 excludes.push_back (imported_name);
11346
11347 process_die (child_die, cu);
11348 }
11349
11350 add_using_directive (using_directives (cu),
11351 import_prefix,
11352 canonical_name,
11353 import_alias,
11354 imported_declaration,
11355 excludes,
11356 0,
11357 &objfile->objfile_obstack);
11358 }
11359
11360 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11361 types, but gives them a size of zero. Starting with version 14,
11362 ICC is compatible with GCC. */
11363
11364 static int
11365 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11366 {
11367 if (!cu->checked_producer)
11368 check_producer (cu);
11369
11370 return cu->producer_is_icc_lt_14;
11371 }
11372
11373 /* ICC generates a DW_AT_type for C void functions. This was observed on
11374 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11375 which says that void functions should not have a DW_AT_type. */
11376
11377 static bool
11378 producer_is_icc (struct dwarf2_cu *cu)
11379 {
11380 if (!cu->checked_producer)
11381 check_producer (cu);
11382
11383 return cu->producer_is_icc;
11384 }
11385
11386 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11387 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11388 this, it was first present in GCC release 4.3.0. */
11389
11390 static int
11391 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11392 {
11393 if (!cu->checked_producer)
11394 check_producer (cu);
11395
11396 return cu->producer_is_gcc_lt_4_3;
11397 }
11398
11399 static file_and_directory
11400 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11401 {
11402 file_and_directory res;
11403
11404 /* Find the filename. Do not use dwarf2_name here, since the filename
11405 is not a source language identifier. */
11406 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11407 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11408
11409 if (res.comp_dir == NULL
11410 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11411 && IS_ABSOLUTE_PATH (res.name))
11412 {
11413 res.comp_dir_storage = ldirname (res.name);
11414 if (!res.comp_dir_storage.empty ())
11415 res.comp_dir = res.comp_dir_storage.c_str ();
11416 }
11417 if (res.comp_dir != NULL)
11418 {
11419 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11420 directory, get rid of it. */
11421 const char *cp = strchr (res.comp_dir, ':');
11422
11423 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11424 res.comp_dir = cp + 1;
11425 }
11426
11427 if (res.name == NULL)
11428 res.name = "<unknown>";
11429
11430 return res;
11431 }
11432
11433 /* Handle DW_AT_stmt_list for a compilation unit.
11434 DIE is the DW_TAG_compile_unit die for CU.
11435 COMP_DIR is the compilation directory. LOWPC is passed to
11436 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11437
11438 static void
11439 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11440 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11441 {
11442 struct dwarf2_per_objfile *dwarf2_per_objfile
11443 = cu->per_cu->dwarf2_per_objfile;
11444 struct objfile *objfile = dwarf2_per_objfile->objfile;
11445 struct attribute *attr;
11446 struct line_header line_header_local;
11447 hashval_t line_header_local_hash;
11448 void **slot;
11449 int decode_mapping;
11450
11451 gdb_assert (! cu->per_cu->is_debug_types);
11452
11453 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11454 if (attr == NULL)
11455 return;
11456
11457 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11458
11459 /* The line header hash table is only created if needed (it exists to
11460 prevent redundant reading of the line table for partial_units).
11461 If we're given a partial_unit, we'll need it. If we're given a
11462 compile_unit, then use the line header hash table if it's already
11463 created, but don't create one just yet. */
11464
11465 if (dwarf2_per_objfile->line_header_hash == NULL
11466 && die->tag == DW_TAG_partial_unit)
11467 {
11468 dwarf2_per_objfile->line_header_hash
11469 = htab_create_alloc_ex (127, line_header_hash_voidp,
11470 line_header_eq_voidp,
11471 free_line_header_voidp,
11472 &objfile->objfile_obstack,
11473 hashtab_obstack_allocate,
11474 dummy_obstack_deallocate);
11475 }
11476
11477 line_header_local.sect_off = line_offset;
11478 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11479 line_header_local_hash = line_header_hash (&line_header_local);
11480 if (dwarf2_per_objfile->line_header_hash != NULL)
11481 {
11482 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11483 &line_header_local,
11484 line_header_local_hash, NO_INSERT);
11485
11486 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11487 is not present in *SLOT (since if there is something in *SLOT then
11488 it will be for a partial_unit). */
11489 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11490 {
11491 gdb_assert (*slot != NULL);
11492 cu->line_header = (struct line_header *) *slot;
11493 return;
11494 }
11495 }
11496
11497 /* dwarf_decode_line_header does not yet provide sufficient information.
11498 We always have to call also dwarf_decode_lines for it. */
11499 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11500 if (lh == NULL)
11501 return;
11502
11503 cu->line_header = lh.release ();
11504 cu->line_header_die_owner = die;
11505
11506 if (dwarf2_per_objfile->line_header_hash == NULL)
11507 slot = NULL;
11508 else
11509 {
11510 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11511 &line_header_local,
11512 line_header_local_hash, INSERT);
11513 gdb_assert (slot != NULL);
11514 }
11515 if (slot != NULL && *slot == NULL)
11516 {
11517 /* This newly decoded line number information unit will be owned
11518 by line_header_hash hash table. */
11519 *slot = cu->line_header;
11520 cu->line_header_die_owner = NULL;
11521 }
11522 else
11523 {
11524 /* We cannot free any current entry in (*slot) as that struct line_header
11525 may be already used by multiple CUs. Create only temporary decoded
11526 line_header for this CU - it may happen at most once for each line
11527 number information unit. And if we're not using line_header_hash
11528 then this is what we want as well. */
11529 gdb_assert (die->tag != DW_TAG_partial_unit);
11530 }
11531 decode_mapping = (die->tag != DW_TAG_partial_unit);
11532 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11533 decode_mapping);
11534
11535 }
11536
11537 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11538
11539 static void
11540 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11541 {
11542 struct dwarf2_per_objfile *dwarf2_per_objfile
11543 = cu->per_cu->dwarf2_per_objfile;
11544 struct objfile *objfile = dwarf2_per_objfile->objfile;
11545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11546 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11547 CORE_ADDR highpc = ((CORE_ADDR) 0);
11548 struct attribute *attr;
11549 struct die_info *child_die;
11550 CORE_ADDR baseaddr;
11551
11552 prepare_one_comp_unit (cu, die, cu->language);
11553 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11554
11555 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11556
11557 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11558 from finish_block. */
11559 if (lowpc == ((CORE_ADDR) -1))
11560 lowpc = highpc;
11561 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11562
11563 file_and_directory fnd = find_file_and_directory (die, cu);
11564
11565 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11566 standardised yet. As a workaround for the language detection we fall
11567 back to the DW_AT_producer string. */
11568 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11569 cu->language = language_opencl;
11570
11571 /* Similar hack for Go. */
11572 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11573 set_cu_language (DW_LANG_Go, cu);
11574
11575 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11576
11577 /* Decode line number information if present. We do this before
11578 processing child DIEs, so that the line header table is available
11579 for DW_AT_decl_file. */
11580 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11581
11582 /* Process all dies in compilation unit. */
11583 if (die->child != NULL)
11584 {
11585 child_die = die->child;
11586 while (child_die && child_die->tag)
11587 {
11588 process_die (child_die, cu);
11589 child_die = sibling_die (child_die);
11590 }
11591 }
11592
11593 /* Decode macro information, if present. Dwarf 2 macro information
11594 refers to information in the line number info statement program
11595 header, so we can only read it if we've read the header
11596 successfully. */
11597 attr = dwarf2_attr (die, DW_AT_macros, cu);
11598 if (attr == NULL)
11599 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11600 if (attr && cu->line_header)
11601 {
11602 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11603 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11604
11605 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11606 }
11607 else
11608 {
11609 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11610 if (attr && cu->line_header)
11611 {
11612 unsigned int macro_offset = DW_UNSND (attr);
11613
11614 dwarf_decode_macros (cu, macro_offset, 0);
11615 }
11616 }
11617 }
11618
11619 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11620 Create the set of symtabs used by this TU, or if this TU is sharing
11621 symtabs with another TU and the symtabs have already been created
11622 then restore those symtabs in the line header.
11623 We don't need the pc/line-number mapping for type units. */
11624
11625 static void
11626 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11627 {
11628 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11629 struct type_unit_group *tu_group;
11630 int first_time;
11631 struct attribute *attr;
11632 unsigned int i;
11633 struct signatured_type *sig_type;
11634
11635 gdb_assert (per_cu->is_debug_types);
11636 sig_type = (struct signatured_type *) per_cu;
11637
11638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11639
11640 /* If we're using .gdb_index (includes -readnow) then
11641 per_cu->type_unit_group may not have been set up yet. */
11642 if (sig_type->type_unit_group == NULL)
11643 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11644 tu_group = sig_type->type_unit_group;
11645
11646 /* If we've already processed this stmt_list there's no real need to
11647 do it again, we could fake it and just recreate the part we need
11648 (file name,index -> symtab mapping). If data shows this optimization
11649 is useful we can do it then. */
11650 first_time = tu_group->compunit_symtab == NULL;
11651
11652 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11653 debug info. */
11654 line_header_up lh;
11655 if (attr != NULL)
11656 {
11657 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11658 lh = dwarf_decode_line_header (line_offset, cu);
11659 }
11660 if (lh == NULL)
11661 {
11662 if (first_time)
11663 dwarf2_start_symtab (cu, "", NULL, 0);
11664 else
11665 {
11666 gdb_assert (tu_group->symtabs == NULL);
11667 gdb_assert (cu->builder == nullptr);
11668 struct compunit_symtab *cust = tu_group->compunit_symtab;
11669 cu->builder.reset (new struct buildsym_compunit
11670 (COMPUNIT_OBJFILE (cust), "",
11671 COMPUNIT_DIRNAME (cust),
11672 compunit_language (cust),
11673 0, cust));
11674 }
11675 return;
11676 }
11677
11678 cu->line_header = lh.release ();
11679 cu->line_header_die_owner = die;
11680
11681 if (first_time)
11682 {
11683 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11684
11685 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11686 still initializing it, and our caller (a few levels up)
11687 process_full_type_unit still needs to know if this is the first
11688 time. */
11689
11690 tu_group->num_symtabs = cu->line_header->file_names.size ();
11691 tu_group->symtabs = XNEWVEC (struct symtab *,
11692 cu->line_header->file_names.size ());
11693
11694 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11695 {
11696 file_entry &fe = cu->line_header->file_names[i];
11697
11698 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11699
11700 if (cu->builder->get_current_subfile ()->symtab == NULL)
11701 {
11702 /* NOTE: start_subfile will recognize when it's been
11703 passed a file it has already seen. So we can't
11704 assume there's a simple mapping from
11705 cu->line_header->file_names to subfiles, plus
11706 cu->line_header->file_names may contain dups. */
11707 cu->builder->get_current_subfile ()->symtab
11708 = allocate_symtab (cust,
11709 cu->builder->get_current_subfile ()->name);
11710 }
11711
11712 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11713 tu_group->symtabs[i] = fe.symtab;
11714 }
11715 }
11716 else
11717 {
11718 gdb_assert (cu->builder == nullptr);
11719 struct compunit_symtab *cust = tu_group->compunit_symtab;
11720 cu->builder.reset (new struct buildsym_compunit
11721 (COMPUNIT_OBJFILE (cust), "",
11722 COMPUNIT_DIRNAME (cust),
11723 compunit_language (cust),
11724 0, cust));
11725
11726 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11727 {
11728 file_entry &fe = cu->line_header->file_names[i];
11729
11730 fe.symtab = tu_group->symtabs[i];
11731 }
11732 }
11733
11734 /* The main symtab is allocated last. Type units don't have DW_AT_name
11735 so they don't have a "real" (so to speak) symtab anyway.
11736 There is later code that will assign the main symtab to all symbols
11737 that don't have one. We need to handle the case of a symbol with a
11738 missing symtab (DW_AT_decl_file) anyway. */
11739 }
11740
11741 /* Process DW_TAG_type_unit.
11742 For TUs we want to skip the first top level sibling if it's not the
11743 actual type being defined by this TU. In this case the first top
11744 level sibling is there to provide context only. */
11745
11746 static void
11747 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11748 {
11749 struct die_info *child_die;
11750
11751 prepare_one_comp_unit (cu, die, language_minimal);
11752
11753 /* Initialize (or reinitialize) the machinery for building symtabs.
11754 We do this before processing child DIEs, so that the line header table
11755 is available for DW_AT_decl_file. */
11756 setup_type_unit_groups (die, cu);
11757
11758 if (die->child != NULL)
11759 {
11760 child_die = die->child;
11761 while (child_die && child_die->tag)
11762 {
11763 process_die (child_die, cu);
11764 child_die = sibling_die (child_die);
11765 }
11766 }
11767 }
11768 \f
11769 /* DWO/DWP files.
11770
11771 http://gcc.gnu.org/wiki/DebugFission
11772 http://gcc.gnu.org/wiki/DebugFissionDWP
11773
11774 To simplify handling of both DWO files ("object" files with the DWARF info)
11775 and DWP files (a file with the DWOs packaged up into one file), we treat
11776 DWP files as having a collection of virtual DWO files. */
11777
11778 static hashval_t
11779 hash_dwo_file (const void *item)
11780 {
11781 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11782 hashval_t hash;
11783
11784 hash = htab_hash_string (dwo_file->dwo_name);
11785 if (dwo_file->comp_dir != NULL)
11786 hash += htab_hash_string (dwo_file->comp_dir);
11787 return hash;
11788 }
11789
11790 static int
11791 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11792 {
11793 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11794 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11795
11796 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11797 return 0;
11798 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11799 return lhs->comp_dir == rhs->comp_dir;
11800 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11801 }
11802
11803 /* Allocate a hash table for DWO files. */
11804
11805 static htab_t
11806 allocate_dwo_file_hash_table (struct objfile *objfile)
11807 {
11808 return htab_create_alloc_ex (41,
11809 hash_dwo_file,
11810 eq_dwo_file,
11811 NULL,
11812 &objfile->objfile_obstack,
11813 hashtab_obstack_allocate,
11814 dummy_obstack_deallocate);
11815 }
11816
11817 /* Lookup DWO file DWO_NAME. */
11818
11819 static void **
11820 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11821 const char *dwo_name,
11822 const char *comp_dir)
11823 {
11824 struct dwo_file find_entry;
11825 void **slot;
11826
11827 if (dwarf2_per_objfile->dwo_files == NULL)
11828 dwarf2_per_objfile->dwo_files
11829 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11830
11831 memset (&find_entry, 0, sizeof (find_entry));
11832 find_entry.dwo_name = dwo_name;
11833 find_entry.comp_dir = comp_dir;
11834 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11835
11836 return slot;
11837 }
11838
11839 static hashval_t
11840 hash_dwo_unit (const void *item)
11841 {
11842 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11843
11844 /* This drops the top 32 bits of the id, but is ok for a hash. */
11845 return dwo_unit->signature;
11846 }
11847
11848 static int
11849 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11850 {
11851 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11852 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11853
11854 /* The signature is assumed to be unique within the DWO file.
11855 So while object file CU dwo_id's always have the value zero,
11856 that's OK, assuming each object file DWO file has only one CU,
11857 and that's the rule for now. */
11858 return lhs->signature == rhs->signature;
11859 }
11860
11861 /* Allocate a hash table for DWO CUs,TUs.
11862 There is one of these tables for each of CUs,TUs for each DWO file. */
11863
11864 static htab_t
11865 allocate_dwo_unit_table (struct objfile *objfile)
11866 {
11867 /* Start out with a pretty small number.
11868 Generally DWO files contain only one CU and maybe some TUs. */
11869 return htab_create_alloc_ex (3,
11870 hash_dwo_unit,
11871 eq_dwo_unit,
11872 NULL,
11873 &objfile->objfile_obstack,
11874 hashtab_obstack_allocate,
11875 dummy_obstack_deallocate);
11876 }
11877
11878 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11879
11880 struct create_dwo_cu_data
11881 {
11882 struct dwo_file *dwo_file;
11883 struct dwo_unit dwo_unit;
11884 };
11885
11886 /* die_reader_func for create_dwo_cu. */
11887
11888 static void
11889 create_dwo_cu_reader (const struct die_reader_specs *reader,
11890 const gdb_byte *info_ptr,
11891 struct die_info *comp_unit_die,
11892 int has_children,
11893 void *datap)
11894 {
11895 struct dwarf2_cu *cu = reader->cu;
11896 sect_offset sect_off = cu->per_cu->sect_off;
11897 struct dwarf2_section_info *section = cu->per_cu->section;
11898 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11899 struct dwo_file *dwo_file = data->dwo_file;
11900 struct dwo_unit *dwo_unit = &data->dwo_unit;
11901 struct attribute *attr;
11902
11903 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11904 if (attr == NULL)
11905 {
11906 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11907 " its dwo_id [in module %s]"),
11908 sect_offset_str (sect_off), dwo_file->dwo_name);
11909 return;
11910 }
11911
11912 dwo_unit->dwo_file = dwo_file;
11913 dwo_unit->signature = DW_UNSND (attr);
11914 dwo_unit->section = section;
11915 dwo_unit->sect_off = sect_off;
11916 dwo_unit->length = cu->per_cu->length;
11917
11918 if (dwarf_read_debug)
11919 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11920 sect_offset_str (sect_off),
11921 hex_string (dwo_unit->signature));
11922 }
11923
11924 /* Create the dwo_units for the CUs in a DWO_FILE.
11925 Note: This function processes DWO files only, not DWP files. */
11926
11927 static void
11928 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11929 struct dwo_file &dwo_file, dwarf2_section_info &section,
11930 htab_t &cus_htab)
11931 {
11932 struct objfile *objfile = dwarf2_per_objfile->objfile;
11933 const gdb_byte *info_ptr, *end_ptr;
11934
11935 dwarf2_read_section (objfile, &section);
11936 info_ptr = section.buffer;
11937
11938 if (info_ptr == NULL)
11939 return;
11940
11941 if (dwarf_read_debug)
11942 {
11943 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11944 get_section_name (&section),
11945 get_section_file_name (&section));
11946 }
11947
11948 end_ptr = info_ptr + section.size;
11949 while (info_ptr < end_ptr)
11950 {
11951 struct dwarf2_per_cu_data per_cu;
11952 struct create_dwo_cu_data create_dwo_cu_data;
11953 struct dwo_unit *dwo_unit;
11954 void **slot;
11955 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11956
11957 memset (&create_dwo_cu_data.dwo_unit, 0,
11958 sizeof (create_dwo_cu_data.dwo_unit));
11959 memset (&per_cu, 0, sizeof (per_cu));
11960 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11961 per_cu.is_debug_types = 0;
11962 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11963 per_cu.section = &section;
11964 create_dwo_cu_data.dwo_file = &dwo_file;
11965
11966 init_cutu_and_read_dies_no_follow (
11967 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11968 info_ptr += per_cu.length;
11969
11970 // If the unit could not be parsed, skip it.
11971 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11972 continue;
11973
11974 if (cus_htab == NULL)
11975 cus_htab = allocate_dwo_unit_table (objfile);
11976
11977 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11978 *dwo_unit = create_dwo_cu_data.dwo_unit;
11979 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11980 gdb_assert (slot != NULL);
11981 if (*slot != NULL)
11982 {
11983 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11984 sect_offset dup_sect_off = dup_cu->sect_off;
11985
11986 complaint (_("debug cu entry at offset %s is duplicate to"
11987 " the entry at offset %s, signature %s"),
11988 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11989 hex_string (dwo_unit->signature));
11990 }
11991 *slot = (void *)dwo_unit;
11992 }
11993 }
11994
11995 /* DWP file .debug_{cu,tu}_index section format:
11996 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11997
11998 DWP Version 1:
11999
12000 Both index sections have the same format, and serve to map a 64-bit
12001 signature to a set of section numbers. Each section begins with a header,
12002 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12003 indexes, and a pool of 32-bit section numbers. The index sections will be
12004 aligned at 8-byte boundaries in the file.
12005
12006 The index section header consists of:
12007
12008 V, 32 bit version number
12009 -, 32 bits unused
12010 N, 32 bit number of compilation units or type units in the index
12011 M, 32 bit number of slots in the hash table
12012
12013 Numbers are recorded using the byte order of the application binary.
12014
12015 The hash table begins at offset 16 in the section, and consists of an array
12016 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12017 order of the application binary). Unused slots in the hash table are 0.
12018 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12019
12020 The parallel table begins immediately after the hash table
12021 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12022 array of 32-bit indexes (using the byte order of the application binary),
12023 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12024 table contains a 32-bit index into the pool of section numbers. For unused
12025 hash table slots, the corresponding entry in the parallel table will be 0.
12026
12027 The pool of section numbers begins immediately following the hash table
12028 (at offset 16 + 12 * M from the beginning of the section). The pool of
12029 section numbers consists of an array of 32-bit words (using the byte order
12030 of the application binary). Each item in the array is indexed starting
12031 from 0. The hash table entry provides the index of the first section
12032 number in the set. Additional section numbers in the set follow, and the
12033 set is terminated by a 0 entry (section number 0 is not used in ELF).
12034
12035 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12036 section must be the first entry in the set, and the .debug_abbrev.dwo must
12037 be the second entry. Other members of the set may follow in any order.
12038
12039 ---
12040
12041 DWP Version 2:
12042
12043 DWP Version 2 combines all the .debug_info, etc. sections into one,
12044 and the entries in the index tables are now offsets into these sections.
12045 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12046 section.
12047
12048 Index Section Contents:
12049 Header
12050 Hash Table of Signatures dwp_hash_table.hash_table
12051 Parallel Table of Indices dwp_hash_table.unit_table
12052 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12053 Table of Section Sizes dwp_hash_table.v2.sizes
12054
12055 The index section header consists of:
12056
12057 V, 32 bit version number
12058 L, 32 bit number of columns in the table of section offsets
12059 N, 32 bit number of compilation units or type units in the index
12060 M, 32 bit number of slots in the hash table
12061
12062 Numbers are recorded using the byte order of the application binary.
12063
12064 The hash table has the same format as version 1.
12065 The parallel table of indices has the same format as version 1,
12066 except that the entries are origin-1 indices into the table of sections
12067 offsets and the table of section sizes.
12068
12069 The table of offsets begins immediately following the parallel table
12070 (at offset 16 + 12 * M from the beginning of the section). The table is
12071 a two-dimensional array of 32-bit words (using the byte order of the
12072 application binary), with L columns and N+1 rows, in row-major order.
12073 Each row in the array is indexed starting from 0. The first row provides
12074 a key to the remaining rows: each column in this row provides an identifier
12075 for a debug section, and the offsets in the same column of subsequent rows
12076 refer to that section. The section identifiers are:
12077
12078 DW_SECT_INFO 1 .debug_info.dwo
12079 DW_SECT_TYPES 2 .debug_types.dwo
12080 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12081 DW_SECT_LINE 4 .debug_line.dwo
12082 DW_SECT_LOC 5 .debug_loc.dwo
12083 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12084 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12085 DW_SECT_MACRO 8 .debug_macro.dwo
12086
12087 The offsets provided by the CU and TU index sections are the base offsets
12088 for the contributions made by each CU or TU to the corresponding section
12089 in the package file. Each CU and TU header contains an abbrev_offset
12090 field, used to find the abbreviations table for that CU or TU within the
12091 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12092 be interpreted as relative to the base offset given in the index section.
12093 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12094 should be interpreted as relative to the base offset for .debug_line.dwo,
12095 and offsets into other debug sections obtained from DWARF attributes should
12096 also be interpreted as relative to the corresponding base offset.
12097
12098 The table of sizes begins immediately following the table of offsets.
12099 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12100 with L columns and N rows, in row-major order. Each row in the array is
12101 indexed starting from 1 (row 0 is shared by the two tables).
12102
12103 ---
12104
12105 Hash table lookup is handled the same in version 1 and 2:
12106
12107 We assume that N and M will not exceed 2^32 - 1.
12108 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12109
12110 Given a 64-bit compilation unit signature or a type signature S, an entry
12111 in the hash table is located as follows:
12112
12113 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12114 the low-order k bits all set to 1.
12115
12116 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12117
12118 3) If the hash table entry at index H matches the signature, use that
12119 entry. If the hash table entry at index H is unused (all zeroes),
12120 terminate the search: the signature is not present in the table.
12121
12122 4) Let H = (H + H') modulo M. Repeat at Step 3.
12123
12124 Because M > N and H' and M are relatively prime, the search is guaranteed
12125 to stop at an unused slot or find the match. */
12126
12127 /* Create a hash table to map DWO IDs to their CU/TU entry in
12128 .debug_{info,types}.dwo in DWP_FILE.
12129 Returns NULL if there isn't one.
12130 Note: This function processes DWP files only, not DWO files. */
12131
12132 static struct dwp_hash_table *
12133 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12134 struct dwp_file *dwp_file, int is_debug_types)
12135 {
12136 struct objfile *objfile = dwarf2_per_objfile->objfile;
12137 bfd *dbfd = dwp_file->dbfd.get ();
12138 const gdb_byte *index_ptr, *index_end;
12139 struct dwarf2_section_info *index;
12140 uint32_t version, nr_columns, nr_units, nr_slots;
12141 struct dwp_hash_table *htab;
12142
12143 if (is_debug_types)
12144 index = &dwp_file->sections.tu_index;
12145 else
12146 index = &dwp_file->sections.cu_index;
12147
12148 if (dwarf2_section_empty_p (index))
12149 return NULL;
12150 dwarf2_read_section (objfile, index);
12151
12152 index_ptr = index->buffer;
12153 index_end = index_ptr + index->size;
12154
12155 version = read_4_bytes (dbfd, index_ptr);
12156 index_ptr += 4;
12157 if (version == 2)
12158 nr_columns = read_4_bytes (dbfd, index_ptr);
12159 else
12160 nr_columns = 0;
12161 index_ptr += 4;
12162 nr_units = read_4_bytes (dbfd, index_ptr);
12163 index_ptr += 4;
12164 nr_slots = read_4_bytes (dbfd, index_ptr);
12165 index_ptr += 4;
12166
12167 if (version != 1 && version != 2)
12168 {
12169 error (_("Dwarf Error: unsupported DWP file version (%s)"
12170 " [in module %s]"),
12171 pulongest (version), dwp_file->name);
12172 }
12173 if (nr_slots != (nr_slots & -nr_slots))
12174 {
12175 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12176 " is not power of 2 [in module %s]"),
12177 pulongest (nr_slots), dwp_file->name);
12178 }
12179
12180 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12181 htab->version = version;
12182 htab->nr_columns = nr_columns;
12183 htab->nr_units = nr_units;
12184 htab->nr_slots = nr_slots;
12185 htab->hash_table = index_ptr;
12186 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12187
12188 /* Exit early if the table is empty. */
12189 if (nr_slots == 0 || nr_units == 0
12190 || (version == 2 && nr_columns == 0))
12191 {
12192 /* All must be zero. */
12193 if (nr_slots != 0 || nr_units != 0
12194 || (version == 2 && nr_columns != 0))
12195 {
12196 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12197 " all zero [in modules %s]"),
12198 dwp_file->name);
12199 }
12200 return htab;
12201 }
12202
12203 if (version == 1)
12204 {
12205 htab->section_pool.v1.indices =
12206 htab->unit_table + sizeof (uint32_t) * nr_slots;
12207 /* It's harder to decide whether the section is too small in v1.
12208 V1 is deprecated anyway so we punt. */
12209 }
12210 else
12211 {
12212 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12213 int *ids = htab->section_pool.v2.section_ids;
12214 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12215 /* Reverse map for error checking. */
12216 int ids_seen[DW_SECT_MAX + 1];
12217 int i;
12218
12219 if (nr_columns < 2)
12220 {
12221 error (_("Dwarf Error: bad DWP hash table, too few columns"
12222 " in section table [in module %s]"),
12223 dwp_file->name);
12224 }
12225 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12226 {
12227 error (_("Dwarf Error: bad DWP hash table, too many columns"
12228 " in section table [in module %s]"),
12229 dwp_file->name);
12230 }
12231 memset (ids, 255, sizeof_ids);
12232 memset (ids_seen, 255, sizeof (ids_seen));
12233 for (i = 0; i < nr_columns; ++i)
12234 {
12235 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12236
12237 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12238 {
12239 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12240 " in section table [in module %s]"),
12241 id, dwp_file->name);
12242 }
12243 if (ids_seen[id] != -1)
12244 {
12245 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12246 " id %d in section table [in module %s]"),
12247 id, dwp_file->name);
12248 }
12249 ids_seen[id] = i;
12250 ids[i] = id;
12251 }
12252 /* Must have exactly one info or types section. */
12253 if (((ids_seen[DW_SECT_INFO] != -1)
12254 + (ids_seen[DW_SECT_TYPES] != -1))
12255 != 1)
12256 {
12257 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12258 " DWO info/types section [in module %s]"),
12259 dwp_file->name);
12260 }
12261 /* Must have an abbrev section. */
12262 if (ids_seen[DW_SECT_ABBREV] == -1)
12263 {
12264 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12265 " section [in module %s]"),
12266 dwp_file->name);
12267 }
12268 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12269 htab->section_pool.v2.sizes =
12270 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12271 * nr_units * nr_columns);
12272 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12273 * nr_units * nr_columns))
12274 > index_end)
12275 {
12276 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12277 " [in module %s]"),
12278 dwp_file->name);
12279 }
12280 }
12281
12282 return htab;
12283 }
12284
12285 /* Update SECTIONS with the data from SECTP.
12286
12287 This function is like the other "locate" section routines that are
12288 passed to bfd_map_over_sections, but in this context the sections to
12289 read comes from the DWP V1 hash table, not the full ELF section table.
12290
12291 The result is non-zero for success, or zero if an error was found. */
12292
12293 static int
12294 locate_v1_virtual_dwo_sections (asection *sectp,
12295 struct virtual_v1_dwo_sections *sections)
12296 {
12297 const struct dwop_section_names *names = &dwop_section_names;
12298
12299 if (section_is_p (sectp->name, &names->abbrev_dwo))
12300 {
12301 /* There can be only one. */
12302 if (sections->abbrev.s.section != NULL)
12303 return 0;
12304 sections->abbrev.s.section = sectp;
12305 sections->abbrev.size = bfd_get_section_size (sectp);
12306 }
12307 else if (section_is_p (sectp->name, &names->info_dwo)
12308 || section_is_p (sectp->name, &names->types_dwo))
12309 {
12310 /* There can be only one. */
12311 if (sections->info_or_types.s.section != NULL)
12312 return 0;
12313 sections->info_or_types.s.section = sectp;
12314 sections->info_or_types.size = bfd_get_section_size (sectp);
12315 }
12316 else if (section_is_p (sectp->name, &names->line_dwo))
12317 {
12318 /* There can be only one. */
12319 if (sections->line.s.section != NULL)
12320 return 0;
12321 sections->line.s.section = sectp;
12322 sections->line.size = bfd_get_section_size (sectp);
12323 }
12324 else if (section_is_p (sectp->name, &names->loc_dwo))
12325 {
12326 /* There can be only one. */
12327 if (sections->loc.s.section != NULL)
12328 return 0;
12329 sections->loc.s.section = sectp;
12330 sections->loc.size = bfd_get_section_size (sectp);
12331 }
12332 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12333 {
12334 /* There can be only one. */
12335 if (sections->macinfo.s.section != NULL)
12336 return 0;
12337 sections->macinfo.s.section = sectp;
12338 sections->macinfo.size = bfd_get_section_size (sectp);
12339 }
12340 else if (section_is_p (sectp->name, &names->macro_dwo))
12341 {
12342 /* There can be only one. */
12343 if (sections->macro.s.section != NULL)
12344 return 0;
12345 sections->macro.s.section = sectp;
12346 sections->macro.size = bfd_get_section_size (sectp);
12347 }
12348 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12349 {
12350 /* There can be only one. */
12351 if (sections->str_offsets.s.section != NULL)
12352 return 0;
12353 sections->str_offsets.s.section = sectp;
12354 sections->str_offsets.size = bfd_get_section_size (sectp);
12355 }
12356 else
12357 {
12358 /* No other kind of section is valid. */
12359 return 0;
12360 }
12361
12362 return 1;
12363 }
12364
12365 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12366 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12367 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12368 This is for DWP version 1 files. */
12369
12370 static struct dwo_unit *
12371 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12372 struct dwp_file *dwp_file,
12373 uint32_t unit_index,
12374 const char *comp_dir,
12375 ULONGEST signature, int is_debug_types)
12376 {
12377 struct objfile *objfile = dwarf2_per_objfile->objfile;
12378 const struct dwp_hash_table *dwp_htab =
12379 is_debug_types ? dwp_file->tus : dwp_file->cus;
12380 bfd *dbfd = dwp_file->dbfd.get ();
12381 const char *kind = is_debug_types ? "TU" : "CU";
12382 struct dwo_file *dwo_file;
12383 struct dwo_unit *dwo_unit;
12384 struct virtual_v1_dwo_sections sections;
12385 void **dwo_file_slot;
12386 int i;
12387
12388 gdb_assert (dwp_file->version == 1);
12389
12390 if (dwarf_read_debug)
12391 {
12392 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12393 kind,
12394 pulongest (unit_index), hex_string (signature),
12395 dwp_file->name);
12396 }
12397
12398 /* Fetch the sections of this DWO unit.
12399 Put a limit on the number of sections we look for so that bad data
12400 doesn't cause us to loop forever. */
12401
12402 #define MAX_NR_V1_DWO_SECTIONS \
12403 (1 /* .debug_info or .debug_types */ \
12404 + 1 /* .debug_abbrev */ \
12405 + 1 /* .debug_line */ \
12406 + 1 /* .debug_loc */ \
12407 + 1 /* .debug_str_offsets */ \
12408 + 1 /* .debug_macro or .debug_macinfo */ \
12409 + 1 /* trailing zero */)
12410
12411 memset (&sections, 0, sizeof (sections));
12412
12413 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12414 {
12415 asection *sectp;
12416 uint32_t section_nr =
12417 read_4_bytes (dbfd,
12418 dwp_htab->section_pool.v1.indices
12419 + (unit_index + i) * sizeof (uint32_t));
12420
12421 if (section_nr == 0)
12422 break;
12423 if (section_nr >= dwp_file->num_sections)
12424 {
12425 error (_("Dwarf Error: bad DWP hash table, section number too large"
12426 " [in module %s]"),
12427 dwp_file->name);
12428 }
12429
12430 sectp = dwp_file->elf_sections[section_nr];
12431 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12432 {
12433 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12434 " [in module %s]"),
12435 dwp_file->name);
12436 }
12437 }
12438
12439 if (i < 2
12440 || dwarf2_section_empty_p (&sections.info_or_types)
12441 || dwarf2_section_empty_p (&sections.abbrev))
12442 {
12443 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12444 " [in module %s]"),
12445 dwp_file->name);
12446 }
12447 if (i == MAX_NR_V1_DWO_SECTIONS)
12448 {
12449 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12450 " [in module %s]"),
12451 dwp_file->name);
12452 }
12453
12454 /* It's easier for the rest of the code if we fake a struct dwo_file and
12455 have dwo_unit "live" in that. At least for now.
12456
12457 The DWP file can be made up of a random collection of CUs and TUs.
12458 However, for each CU + set of TUs that came from the same original DWO
12459 file, we can combine them back into a virtual DWO file to save space
12460 (fewer struct dwo_file objects to allocate). Remember that for really
12461 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12462
12463 std::string virtual_dwo_name =
12464 string_printf ("virtual-dwo/%d-%d-%d-%d",
12465 get_section_id (&sections.abbrev),
12466 get_section_id (&sections.line),
12467 get_section_id (&sections.loc),
12468 get_section_id (&sections.str_offsets));
12469 /* Can we use an existing virtual DWO file? */
12470 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12471 virtual_dwo_name.c_str (),
12472 comp_dir);
12473 /* Create one if necessary. */
12474 if (*dwo_file_slot == NULL)
12475 {
12476 if (dwarf_read_debug)
12477 {
12478 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12479 virtual_dwo_name.c_str ());
12480 }
12481 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12482 dwo_file->dwo_name
12483 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12484 virtual_dwo_name.c_str (),
12485 virtual_dwo_name.size ());
12486 dwo_file->comp_dir = comp_dir;
12487 dwo_file->sections.abbrev = sections.abbrev;
12488 dwo_file->sections.line = sections.line;
12489 dwo_file->sections.loc = sections.loc;
12490 dwo_file->sections.macinfo = sections.macinfo;
12491 dwo_file->sections.macro = sections.macro;
12492 dwo_file->sections.str_offsets = sections.str_offsets;
12493 /* The "str" section is global to the entire DWP file. */
12494 dwo_file->sections.str = dwp_file->sections.str;
12495 /* The info or types section is assigned below to dwo_unit,
12496 there's no need to record it in dwo_file.
12497 Also, we can't simply record type sections in dwo_file because
12498 we record a pointer into the vector in dwo_unit. As we collect more
12499 types we'll grow the vector and eventually have to reallocate space
12500 for it, invalidating all copies of pointers into the previous
12501 contents. */
12502 *dwo_file_slot = dwo_file;
12503 }
12504 else
12505 {
12506 if (dwarf_read_debug)
12507 {
12508 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12509 virtual_dwo_name.c_str ());
12510 }
12511 dwo_file = (struct dwo_file *) *dwo_file_slot;
12512 }
12513
12514 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12515 dwo_unit->dwo_file = dwo_file;
12516 dwo_unit->signature = signature;
12517 dwo_unit->section =
12518 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12519 *dwo_unit->section = sections.info_or_types;
12520 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12521
12522 return dwo_unit;
12523 }
12524
12525 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12526 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12527 piece within that section used by a TU/CU, return a virtual section
12528 of just that piece. */
12529
12530 static struct dwarf2_section_info
12531 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12532 struct dwarf2_section_info *section,
12533 bfd_size_type offset, bfd_size_type size)
12534 {
12535 struct dwarf2_section_info result;
12536 asection *sectp;
12537
12538 gdb_assert (section != NULL);
12539 gdb_assert (!section->is_virtual);
12540
12541 memset (&result, 0, sizeof (result));
12542 result.s.containing_section = section;
12543 result.is_virtual = 1;
12544
12545 if (size == 0)
12546 return result;
12547
12548 sectp = get_section_bfd_section (section);
12549
12550 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12551 bounds of the real section. This is a pretty-rare event, so just
12552 flag an error (easier) instead of a warning and trying to cope. */
12553 if (sectp == NULL
12554 || offset + size > bfd_get_section_size (sectp))
12555 {
12556 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12557 " in section %s [in module %s]"),
12558 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12559 objfile_name (dwarf2_per_objfile->objfile));
12560 }
12561
12562 result.virtual_offset = offset;
12563 result.size = size;
12564 return result;
12565 }
12566
12567 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12568 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12569 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12570 This is for DWP version 2 files. */
12571
12572 static struct dwo_unit *
12573 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12574 struct dwp_file *dwp_file,
12575 uint32_t unit_index,
12576 const char *comp_dir,
12577 ULONGEST signature, int is_debug_types)
12578 {
12579 struct objfile *objfile = dwarf2_per_objfile->objfile;
12580 const struct dwp_hash_table *dwp_htab =
12581 is_debug_types ? dwp_file->tus : dwp_file->cus;
12582 bfd *dbfd = dwp_file->dbfd.get ();
12583 const char *kind = is_debug_types ? "TU" : "CU";
12584 struct dwo_file *dwo_file;
12585 struct dwo_unit *dwo_unit;
12586 struct virtual_v2_dwo_sections sections;
12587 void **dwo_file_slot;
12588 int i;
12589
12590 gdb_assert (dwp_file->version == 2);
12591
12592 if (dwarf_read_debug)
12593 {
12594 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12595 kind,
12596 pulongest (unit_index), hex_string (signature),
12597 dwp_file->name);
12598 }
12599
12600 /* Fetch the section offsets of this DWO unit. */
12601
12602 memset (&sections, 0, sizeof (sections));
12603
12604 for (i = 0; i < dwp_htab->nr_columns; ++i)
12605 {
12606 uint32_t offset = read_4_bytes (dbfd,
12607 dwp_htab->section_pool.v2.offsets
12608 + (((unit_index - 1) * dwp_htab->nr_columns
12609 + i)
12610 * sizeof (uint32_t)));
12611 uint32_t size = read_4_bytes (dbfd,
12612 dwp_htab->section_pool.v2.sizes
12613 + (((unit_index - 1) * dwp_htab->nr_columns
12614 + i)
12615 * sizeof (uint32_t)));
12616
12617 switch (dwp_htab->section_pool.v2.section_ids[i])
12618 {
12619 case DW_SECT_INFO:
12620 case DW_SECT_TYPES:
12621 sections.info_or_types_offset = offset;
12622 sections.info_or_types_size = size;
12623 break;
12624 case DW_SECT_ABBREV:
12625 sections.abbrev_offset = offset;
12626 sections.abbrev_size = size;
12627 break;
12628 case DW_SECT_LINE:
12629 sections.line_offset = offset;
12630 sections.line_size = size;
12631 break;
12632 case DW_SECT_LOC:
12633 sections.loc_offset = offset;
12634 sections.loc_size = size;
12635 break;
12636 case DW_SECT_STR_OFFSETS:
12637 sections.str_offsets_offset = offset;
12638 sections.str_offsets_size = size;
12639 break;
12640 case DW_SECT_MACINFO:
12641 sections.macinfo_offset = offset;
12642 sections.macinfo_size = size;
12643 break;
12644 case DW_SECT_MACRO:
12645 sections.macro_offset = offset;
12646 sections.macro_size = size;
12647 break;
12648 }
12649 }
12650
12651 /* It's easier for the rest of the code if we fake a struct dwo_file and
12652 have dwo_unit "live" in that. At least for now.
12653
12654 The DWP file can be made up of a random collection of CUs and TUs.
12655 However, for each CU + set of TUs that came from the same original DWO
12656 file, we can combine them back into a virtual DWO file to save space
12657 (fewer struct dwo_file objects to allocate). Remember that for really
12658 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12659
12660 std::string virtual_dwo_name =
12661 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12662 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12663 (long) (sections.line_size ? sections.line_offset : 0),
12664 (long) (sections.loc_size ? sections.loc_offset : 0),
12665 (long) (sections.str_offsets_size
12666 ? sections.str_offsets_offset : 0));
12667 /* Can we use an existing virtual DWO file? */
12668 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12669 virtual_dwo_name.c_str (),
12670 comp_dir);
12671 /* Create one if necessary. */
12672 if (*dwo_file_slot == NULL)
12673 {
12674 if (dwarf_read_debug)
12675 {
12676 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12677 virtual_dwo_name.c_str ());
12678 }
12679 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12680 dwo_file->dwo_name
12681 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12682 virtual_dwo_name.c_str (),
12683 virtual_dwo_name.size ());
12684 dwo_file->comp_dir = comp_dir;
12685 dwo_file->sections.abbrev =
12686 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12687 sections.abbrev_offset, sections.abbrev_size);
12688 dwo_file->sections.line =
12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12690 sections.line_offset, sections.line_size);
12691 dwo_file->sections.loc =
12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12693 sections.loc_offset, sections.loc_size);
12694 dwo_file->sections.macinfo =
12695 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12696 sections.macinfo_offset, sections.macinfo_size);
12697 dwo_file->sections.macro =
12698 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12699 sections.macro_offset, sections.macro_size);
12700 dwo_file->sections.str_offsets =
12701 create_dwp_v2_section (dwarf2_per_objfile,
12702 &dwp_file->sections.str_offsets,
12703 sections.str_offsets_offset,
12704 sections.str_offsets_size);
12705 /* The "str" section is global to the entire DWP file. */
12706 dwo_file->sections.str = dwp_file->sections.str;
12707 /* The info or types section is assigned below to dwo_unit,
12708 there's no need to record it in dwo_file.
12709 Also, we can't simply record type sections in dwo_file because
12710 we record a pointer into the vector in dwo_unit. As we collect more
12711 types we'll grow the vector and eventually have to reallocate space
12712 for it, invalidating all copies of pointers into the previous
12713 contents. */
12714 *dwo_file_slot = dwo_file;
12715 }
12716 else
12717 {
12718 if (dwarf_read_debug)
12719 {
12720 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12721 virtual_dwo_name.c_str ());
12722 }
12723 dwo_file = (struct dwo_file *) *dwo_file_slot;
12724 }
12725
12726 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12727 dwo_unit->dwo_file = dwo_file;
12728 dwo_unit->signature = signature;
12729 dwo_unit->section =
12730 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12731 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12732 is_debug_types
12733 ? &dwp_file->sections.types
12734 : &dwp_file->sections.info,
12735 sections.info_or_types_offset,
12736 sections.info_or_types_size);
12737 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12738
12739 return dwo_unit;
12740 }
12741
12742 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12743 Returns NULL if the signature isn't found. */
12744
12745 static struct dwo_unit *
12746 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12747 struct dwp_file *dwp_file, const char *comp_dir,
12748 ULONGEST signature, int is_debug_types)
12749 {
12750 const struct dwp_hash_table *dwp_htab =
12751 is_debug_types ? dwp_file->tus : dwp_file->cus;
12752 bfd *dbfd = dwp_file->dbfd.get ();
12753 uint32_t mask = dwp_htab->nr_slots - 1;
12754 uint32_t hash = signature & mask;
12755 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12756 unsigned int i;
12757 void **slot;
12758 struct dwo_unit find_dwo_cu;
12759
12760 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12761 find_dwo_cu.signature = signature;
12762 slot = htab_find_slot (is_debug_types
12763 ? dwp_file->loaded_tus
12764 : dwp_file->loaded_cus,
12765 &find_dwo_cu, INSERT);
12766
12767 if (*slot != NULL)
12768 return (struct dwo_unit *) *slot;
12769
12770 /* Use a for loop so that we don't loop forever on bad debug info. */
12771 for (i = 0; i < dwp_htab->nr_slots; ++i)
12772 {
12773 ULONGEST signature_in_table;
12774
12775 signature_in_table =
12776 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12777 if (signature_in_table == signature)
12778 {
12779 uint32_t unit_index =
12780 read_4_bytes (dbfd,
12781 dwp_htab->unit_table + hash * sizeof (uint32_t));
12782
12783 if (dwp_file->version == 1)
12784 {
12785 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12786 dwp_file, unit_index,
12787 comp_dir, signature,
12788 is_debug_types);
12789 }
12790 else
12791 {
12792 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12793 dwp_file, unit_index,
12794 comp_dir, signature,
12795 is_debug_types);
12796 }
12797 return (struct dwo_unit *) *slot;
12798 }
12799 if (signature_in_table == 0)
12800 return NULL;
12801 hash = (hash + hash2) & mask;
12802 }
12803
12804 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12805 " [in module %s]"),
12806 dwp_file->name);
12807 }
12808
12809 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12810 Open the file specified by FILE_NAME and hand it off to BFD for
12811 preliminary analysis. Return a newly initialized bfd *, which
12812 includes a canonicalized copy of FILE_NAME.
12813 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12814 SEARCH_CWD is true if the current directory is to be searched.
12815 It will be searched before debug-file-directory.
12816 If successful, the file is added to the bfd include table of the
12817 objfile's bfd (see gdb_bfd_record_inclusion).
12818 If unable to find/open the file, return NULL.
12819 NOTE: This function is derived from symfile_bfd_open. */
12820
12821 static gdb_bfd_ref_ptr
12822 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12823 const char *file_name, int is_dwp, int search_cwd)
12824 {
12825 int desc;
12826 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12827 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12828 to debug_file_directory. */
12829 const char *search_path;
12830 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12831
12832 gdb::unique_xmalloc_ptr<char> search_path_holder;
12833 if (search_cwd)
12834 {
12835 if (*debug_file_directory != '\0')
12836 {
12837 search_path_holder.reset (concat (".", dirname_separator_string,
12838 debug_file_directory,
12839 (char *) NULL));
12840 search_path = search_path_holder.get ();
12841 }
12842 else
12843 search_path = ".";
12844 }
12845 else
12846 search_path = debug_file_directory;
12847
12848 openp_flags flags = OPF_RETURN_REALPATH;
12849 if (is_dwp)
12850 flags |= OPF_SEARCH_IN_PATH;
12851
12852 gdb::unique_xmalloc_ptr<char> absolute_name;
12853 desc = openp (search_path, flags, file_name,
12854 O_RDONLY | O_BINARY, &absolute_name);
12855 if (desc < 0)
12856 return NULL;
12857
12858 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12859 gnutarget, desc));
12860 if (sym_bfd == NULL)
12861 return NULL;
12862 bfd_set_cacheable (sym_bfd.get (), 1);
12863
12864 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12865 return NULL;
12866
12867 /* Success. Record the bfd as having been included by the objfile's bfd.
12868 This is important because things like demangled_names_hash lives in the
12869 objfile's per_bfd space and may have references to things like symbol
12870 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12871 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12872
12873 return sym_bfd;
12874 }
12875
12876 /* Try to open DWO file FILE_NAME.
12877 COMP_DIR is the DW_AT_comp_dir attribute.
12878 The result is the bfd handle of the file.
12879 If there is a problem finding or opening the file, return NULL.
12880 Upon success, the canonicalized path of the file is stored in the bfd,
12881 same as symfile_bfd_open. */
12882
12883 static gdb_bfd_ref_ptr
12884 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12885 const char *file_name, const char *comp_dir)
12886 {
12887 if (IS_ABSOLUTE_PATH (file_name))
12888 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12889 0 /*is_dwp*/, 0 /*search_cwd*/);
12890
12891 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12892
12893 if (comp_dir != NULL)
12894 {
12895 char *path_to_try = concat (comp_dir, SLASH_STRING,
12896 file_name, (char *) NULL);
12897
12898 /* NOTE: If comp_dir is a relative path, this will also try the
12899 search path, which seems useful. */
12900 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12901 path_to_try,
12902 0 /*is_dwp*/,
12903 1 /*search_cwd*/));
12904 xfree (path_to_try);
12905 if (abfd != NULL)
12906 return abfd;
12907 }
12908
12909 /* That didn't work, try debug-file-directory, which, despite its name,
12910 is a list of paths. */
12911
12912 if (*debug_file_directory == '\0')
12913 return NULL;
12914
12915 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12916 0 /*is_dwp*/, 1 /*search_cwd*/);
12917 }
12918
12919 /* This function is mapped across the sections and remembers the offset and
12920 size of each of the DWO debugging sections we are interested in. */
12921
12922 static void
12923 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12924 {
12925 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12926 const struct dwop_section_names *names = &dwop_section_names;
12927
12928 if (section_is_p (sectp->name, &names->abbrev_dwo))
12929 {
12930 dwo_sections->abbrev.s.section = sectp;
12931 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->info_dwo))
12934 {
12935 dwo_sections->info.s.section = sectp;
12936 dwo_sections->info.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->line_dwo))
12939 {
12940 dwo_sections->line.s.section = sectp;
12941 dwo_sections->line.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->loc_dwo))
12944 {
12945 dwo_sections->loc.s.section = sectp;
12946 dwo_sections->loc.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12949 {
12950 dwo_sections->macinfo.s.section = sectp;
12951 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->macro_dwo))
12954 {
12955 dwo_sections->macro.s.section = sectp;
12956 dwo_sections->macro.size = bfd_get_section_size (sectp);
12957 }
12958 else if (section_is_p (sectp->name, &names->str_dwo))
12959 {
12960 dwo_sections->str.s.section = sectp;
12961 dwo_sections->str.size = bfd_get_section_size (sectp);
12962 }
12963 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12964 {
12965 dwo_sections->str_offsets.s.section = sectp;
12966 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12967 }
12968 else if (section_is_p (sectp->name, &names->types_dwo))
12969 {
12970 struct dwarf2_section_info type_section;
12971
12972 memset (&type_section, 0, sizeof (type_section));
12973 type_section.s.section = sectp;
12974 type_section.size = bfd_get_section_size (sectp);
12975 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12976 &type_section);
12977 }
12978 }
12979
12980 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12981 by PER_CU. This is for the non-DWP case.
12982 The result is NULL if DWO_NAME can't be found. */
12983
12984 static struct dwo_file *
12985 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12986 const char *dwo_name, const char *comp_dir)
12987 {
12988 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12989 struct objfile *objfile = dwarf2_per_objfile->objfile;
12990
12991 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12992 if (dbfd == NULL)
12993 {
12994 if (dwarf_read_debug)
12995 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12996 return NULL;
12997 }
12998
12999 /* We use a unique pointer here, despite the obstack allocation,
13000 because a dwo_file needs some cleanup if it is abandoned. */
13001 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
13002 struct dwo_file));
13003 dwo_file->dwo_name = dwo_name;
13004 dwo_file->comp_dir = comp_dir;
13005 dwo_file->dbfd = dbfd.release ();
13006
13007 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13008 &dwo_file->sections);
13009
13010 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13011 dwo_file->cus);
13012
13013 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13014 dwo_file->sections.types, dwo_file->tus);
13015
13016 if (dwarf_read_debug)
13017 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13018
13019 return dwo_file.release ();
13020 }
13021
13022 /* This function is mapped across the sections and remembers the offset and
13023 size of each of the DWP debugging sections common to version 1 and 2 that
13024 we are interested in. */
13025
13026 static void
13027 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13028 void *dwp_file_ptr)
13029 {
13030 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13031 const struct dwop_section_names *names = &dwop_section_names;
13032 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13033
13034 /* Record the ELF section number for later lookup: this is what the
13035 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13036 gdb_assert (elf_section_nr < dwp_file->num_sections);
13037 dwp_file->elf_sections[elf_section_nr] = sectp;
13038
13039 /* Look for specific sections that we need. */
13040 if (section_is_p (sectp->name, &names->str_dwo))
13041 {
13042 dwp_file->sections.str.s.section = sectp;
13043 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13044 }
13045 else if (section_is_p (sectp->name, &names->cu_index))
13046 {
13047 dwp_file->sections.cu_index.s.section = sectp;
13048 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13049 }
13050 else if (section_is_p (sectp->name, &names->tu_index))
13051 {
13052 dwp_file->sections.tu_index.s.section = sectp;
13053 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13054 }
13055 }
13056
13057 /* This function is mapped across the sections and remembers the offset and
13058 size of each of the DWP version 2 debugging sections that we are interested
13059 in. This is split into a separate function because we don't know if we
13060 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13061
13062 static void
13063 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13064 {
13065 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13066 const struct dwop_section_names *names = &dwop_section_names;
13067 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13068
13069 /* Record the ELF section number for later lookup: this is what the
13070 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13071 gdb_assert (elf_section_nr < dwp_file->num_sections);
13072 dwp_file->elf_sections[elf_section_nr] = sectp;
13073
13074 /* Look for specific sections that we need. */
13075 if (section_is_p (sectp->name, &names->abbrev_dwo))
13076 {
13077 dwp_file->sections.abbrev.s.section = sectp;
13078 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->info_dwo))
13081 {
13082 dwp_file->sections.info.s.section = sectp;
13083 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->line_dwo))
13086 {
13087 dwp_file->sections.line.s.section = sectp;
13088 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->loc_dwo))
13091 {
13092 dwp_file->sections.loc.s.section = sectp;
13093 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13096 {
13097 dwp_file->sections.macinfo.s.section = sectp;
13098 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13099 }
13100 else if (section_is_p (sectp->name, &names->macro_dwo))
13101 {
13102 dwp_file->sections.macro.s.section = sectp;
13103 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13104 }
13105 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13106 {
13107 dwp_file->sections.str_offsets.s.section = sectp;
13108 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13109 }
13110 else if (section_is_p (sectp->name, &names->types_dwo))
13111 {
13112 dwp_file->sections.types.s.section = sectp;
13113 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13114 }
13115 }
13116
13117 /* Hash function for dwp_file loaded CUs/TUs. */
13118
13119 static hashval_t
13120 hash_dwp_loaded_cutus (const void *item)
13121 {
13122 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13123
13124 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13125 return dwo_unit->signature;
13126 }
13127
13128 /* Equality function for dwp_file loaded CUs/TUs. */
13129
13130 static int
13131 eq_dwp_loaded_cutus (const void *a, const void *b)
13132 {
13133 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13134 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13135
13136 return dua->signature == dub->signature;
13137 }
13138
13139 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13140
13141 static htab_t
13142 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13143 {
13144 return htab_create_alloc_ex (3,
13145 hash_dwp_loaded_cutus,
13146 eq_dwp_loaded_cutus,
13147 NULL,
13148 &objfile->objfile_obstack,
13149 hashtab_obstack_allocate,
13150 dummy_obstack_deallocate);
13151 }
13152
13153 /* Try to open DWP file FILE_NAME.
13154 The result is the bfd handle of the file.
13155 If there is a problem finding or opening the file, return NULL.
13156 Upon success, the canonicalized path of the file is stored in the bfd,
13157 same as symfile_bfd_open. */
13158
13159 static gdb_bfd_ref_ptr
13160 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13161 const char *file_name)
13162 {
13163 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13164 1 /*is_dwp*/,
13165 1 /*search_cwd*/));
13166 if (abfd != NULL)
13167 return abfd;
13168
13169 /* Work around upstream bug 15652.
13170 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13171 [Whether that's a "bug" is debatable, but it is getting in our way.]
13172 We have no real idea where the dwp file is, because gdb's realpath-ing
13173 of the executable's path may have discarded the needed info.
13174 [IWBN if the dwp file name was recorded in the executable, akin to
13175 .gnu_debuglink, but that doesn't exist yet.]
13176 Strip the directory from FILE_NAME and search again. */
13177 if (*debug_file_directory != '\0')
13178 {
13179 /* Don't implicitly search the current directory here.
13180 If the user wants to search "." to handle this case,
13181 it must be added to debug-file-directory. */
13182 return try_open_dwop_file (dwarf2_per_objfile,
13183 lbasename (file_name), 1 /*is_dwp*/,
13184 0 /*search_cwd*/);
13185 }
13186
13187 return NULL;
13188 }
13189
13190 /* Initialize the use of the DWP file for the current objfile.
13191 By convention the name of the DWP file is ${objfile}.dwp.
13192 The result is NULL if it can't be found. */
13193
13194 static std::unique_ptr<struct dwp_file>
13195 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13196 {
13197 struct objfile *objfile = dwarf2_per_objfile->objfile;
13198
13199 /* Try to find first .dwp for the binary file before any symbolic links
13200 resolving. */
13201
13202 /* If the objfile is a debug file, find the name of the real binary
13203 file and get the name of dwp file from there. */
13204 std::string dwp_name;
13205 if (objfile->separate_debug_objfile_backlink != NULL)
13206 {
13207 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13208 const char *backlink_basename = lbasename (backlink->original_name);
13209
13210 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13211 }
13212 else
13213 dwp_name = objfile->original_name;
13214
13215 dwp_name += ".dwp";
13216
13217 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13218 if (dbfd == NULL
13219 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13220 {
13221 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13222 dwp_name = objfile_name (objfile);
13223 dwp_name += ".dwp";
13224 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13225 }
13226
13227 if (dbfd == NULL)
13228 {
13229 if (dwarf_read_debug)
13230 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13231 return std::unique_ptr<dwp_file> ();
13232 }
13233
13234 const char *name = bfd_get_filename (dbfd.get ());
13235 std::unique_ptr<struct dwp_file> dwp_file
13236 (new struct dwp_file (name, std::move (dbfd)));
13237
13238 /* +1: section 0 is unused */
13239 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13240 dwp_file->elf_sections =
13241 OBSTACK_CALLOC (&objfile->objfile_obstack,
13242 dwp_file->num_sections, asection *);
13243
13244 bfd_map_over_sections (dwp_file->dbfd.get (),
13245 dwarf2_locate_common_dwp_sections,
13246 dwp_file.get ());
13247
13248 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13249 0);
13250
13251 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13252 1);
13253
13254 /* The DWP file version is stored in the hash table. Oh well. */
13255 if (dwp_file->cus && dwp_file->tus
13256 && dwp_file->cus->version != dwp_file->tus->version)
13257 {
13258 /* Technically speaking, we should try to limp along, but this is
13259 pretty bizarre. We use pulongest here because that's the established
13260 portability solution (e.g, we cannot use %u for uint32_t). */
13261 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13262 " TU version %s [in DWP file %s]"),
13263 pulongest (dwp_file->cus->version),
13264 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13265 }
13266
13267 if (dwp_file->cus)
13268 dwp_file->version = dwp_file->cus->version;
13269 else if (dwp_file->tus)
13270 dwp_file->version = dwp_file->tus->version;
13271 else
13272 dwp_file->version = 2;
13273
13274 if (dwp_file->version == 2)
13275 bfd_map_over_sections (dwp_file->dbfd.get (),
13276 dwarf2_locate_v2_dwp_sections,
13277 dwp_file.get ());
13278
13279 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13280 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13281
13282 if (dwarf_read_debug)
13283 {
13284 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13285 fprintf_unfiltered (gdb_stdlog,
13286 " %s CUs, %s TUs\n",
13287 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13288 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13289 }
13290
13291 return dwp_file;
13292 }
13293
13294 /* Wrapper around open_and_init_dwp_file, only open it once. */
13295
13296 static struct dwp_file *
13297 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13298 {
13299 if (! dwarf2_per_objfile->dwp_checked)
13300 {
13301 dwarf2_per_objfile->dwp_file
13302 = open_and_init_dwp_file (dwarf2_per_objfile);
13303 dwarf2_per_objfile->dwp_checked = 1;
13304 }
13305 return dwarf2_per_objfile->dwp_file.get ();
13306 }
13307
13308 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13309 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13310 or in the DWP file for the objfile, referenced by THIS_UNIT.
13311 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13312 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13313
13314 This is called, for example, when wanting to read a variable with a
13315 complex location. Therefore we don't want to do file i/o for every call.
13316 Therefore we don't want to look for a DWO file on every call.
13317 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13318 then we check if we've already seen DWO_NAME, and only THEN do we check
13319 for a DWO file.
13320
13321 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13322 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13323
13324 static struct dwo_unit *
13325 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13326 const char *dwo_name, const char *comp_dir,
13327 ULONGEST signature, int is_debug_types)
13328 {
13329 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13330 struct objfile *objfile = dwarf2_per_objfile->objfile;
13331 const char *kind = is_debug_types ? "TU" : "CU";
13332 void **dwo_file_slot;
13333 struct dwo_file *dwo_file;
13334 struct dwp_file *dwp_file;
13335
13336 /* First see if there's a DWP file.
13337 If we have a DWP file but didn't find the DWO inside it, don't
13338 look for the original DWO file. It makes gdb behave differently
13339 depending on whether one is debugging in the build tree. */
13340
13341 dwp_file = get_dwp_file (dwarf2_per_objfile);
13342 if (dwp_file != NULL)
13343 {
13344 const struct dwp_hash_table *dwp_htab =
13345 is_debug_types ? dwp_file->tus : dwp_file->cus;
13346
13347 if (dwp_htab != NULL)
13348 {
13349 struct dwo_unit *dwo_cutu =
13350 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13351 signature, is_debug_types);
13352
13353 if (dwo_cutu != NULL)
13354 {
13355 if (dwarf_read_debug)
13356 {
13357 fprintf_unfiltered (gdb_stdlog,
13358 "Virtual DWO %s %s found: @%s\n",
13359 kind, hex_string (signature),
13360 host_address_to_string (dwo_cutu));
13361 }
13362 return dwo_cutu;
13363 }
13364 }
13365 }
13366 else
13367 {
13368 /* No DWP file, look for the DWO file. */
13369
13370 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13371 dwo_name, comp_dir);
13372 if (*dwo_file_slot == NULL)
13373 {
13374 /* Read in the file and build a table of the CUs/TUs it contains. */
13375 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13376 }
13377 /* NOTE: This will be NULL if unable to open the file. */
13378 dwo_file = (struct dwo_file *) *dwo_file_slot;
13379
13380 if (dwo_file != NULL)
13381 {
13382 struct dwo_unit *dwo_cutu = NULL;
13383
13384 if (is_debug_types && dwo_file->tus)
13385 {
13386 struct dwo_unit find_dwo_cutu;
13387
13388 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13389 find_dwo_cutu.signature = signature;
13390 dwo_cutu
13391 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13392 }
13393 else if (!is_debug_types && dwo_file->cus)
13394 {
13395 struct dwo_unit find_dwo_cutu;
13396
13397 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13398 find_dwo_cutu.signature = signature;
13399 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13400 &find_dwo_cutu);
13401 }
13402
13403 if (dwo_cutu != NULL)
13404 {
13405 if (dwarf_read_debug)
13406 {
13407 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13408 kind, dwo_name, hex_string (signature),
13409 host_address_to_string (dwo_cutu));
13410 }
13411 return dwo_cutu;
13412 }
13413 }
13414 }
13415
13416 /* We didn't find it. This could mean a dwo_id mismatch, or
13417 someone deleted the DWO/DWP file, or the search path isn't set up
13418 correctly to find the file. */
13419
13420 if (dwarf_read_debug)
13421 {
13422 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13423 kind, dwo_name, hex_string (signature));
13424 }
13425
13426 /* This is a warning and not a complaint because it can be caused by
13427 pilot error (e.g., user accidentally deleting the DWO). */
13428 {
13429 /* Print the name of the DWP file if we looked there, helps the user
13430 better diagnose the problem. */
13431 std::string dwp_text;
13432
13433 if (dwp_file != NULL)
13434 dwp_text = string_printf (" [in DWP file %s]",
13435 lbasename (dwp_file->name));
13436
13437 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13438 " [in module %s]"),
13439 kind, dwo_name, hex_string (signature),
13440 dwp_text.c_str (),
13441 this_unit->is_debug_types ? "TU" : "CU",
13442 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13443 }
13444 return NULL;
13445 }
13446
13447 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13448 See lookup_dwo_cutu_unit for details. */
13449
13450 static struct dwo_unit *
13451 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13452 const char *dwo_name, const char *comp_dir,
13453 ULONGEST signature)
13454 {
13455 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13456 }
13457
13458 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13459 See lookup_dwo_cutu_unit for details. */
13460
13461 static struct dwo_unit *
13462 lookup_dwo_type_unit (struct signatured_type *this_tu,
13463 const char *dwo_name, const char *comp_dir)
13464 {
13465 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13466 }
13467
13468 /* Traversal function for queue_and_load_all_dwo_tus. */
13469
13470 static int
13471 queue_and_load_dwo_tu (void **slot, void *info)
13472 {
13473 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13474 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13475 ULONGEST signature = dwo_unit->signature;
13476 struct signatured_type *sig_type =
13477 lookup_dwo_signatured_type (per_cu->cu, signature);
13478
13479 if (sig_type != NULL)
13480 {
13481 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13482
13483 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13484 a real dependency of PER_CU on SIG_TYPE. That is detected later
13485 while processing PER_CU. */
13486 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13487 load_full_type_unit (sig_cu);
13488 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13489 }
13490
13491 return 1;
13492 }
13493
13494 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13495 The DWO may have the only definition of the type, though it may not be
13496 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13497 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13498
13499 static void
13500 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13501 {
13502 struct dwo_unit *dwo_unit;
13503 struct dwo_file *dwo_file;
13504
13505 gdb_assert (!per_cu->is_debug_types);
13506 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13507 gdb_assert (per_cu->cu != NULL);
13508
13509 dwo_unit = per_cu->cu->dwo_unit;
13510 gdb_assert (dwo_unit != NULL);
13511
13512 dwo_file = dwo_unit->dwo_file;
13513 if (dwo_file->tus != NULL)
13514 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13515 }
13516
13517 /* Free all resources associated with DWO_FILE.
13518 Close the DWO file and munmap the sections. */
13519
13520 static void
13521 free_dwo_file (struct dwo_file *dwo_file)
13522 {
13523 /* Note: dbfd is NULL for virtual DWO files. */
13524 gdb_bfd_unref (dwo_file->dbfd);
13525
13526 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13527 }
13528
13529 /* Traversal function for free_dwo_files. */
13530
13531 static int
13532 free_dwo_file_from_slot (void **slot, void *info)
13533 {
13534 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13535
13536 free_dwo_file (dwo_file);
13537
13538 return 1;
13539 }
13540
13541 /* Free all resources associated with DWO_FILES. */
13542
13543 static void
13544 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13545 {
13546 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13547 }
13548 \f
13549 /* Read in various DIEs. */
13550
13551 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13552 Inherit only the children of the DW_AT_abstract_origin DIE not being
13553 already referenced by DW_AT_abstract_origin from the children of the
13554 current DIE. */
13555
13556 static void
13557 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13558 {
13559 struct die_info *child_die;
13560 sect_offset *offsetp;
13561 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13562 struct die_info *origin_die;
13563 /* Iterator of the ORIGIN_DIE children. */
13564 struct die_info *origin_child_die;
13565 struct attribute *attr;
13566 struct dwarf2_cu *origin_cu;
13567 struct pending **origin_previous_list_in_scope;
13568
13569 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13570 if (!attr)
13571 return;
13572
13573 /* Note that following die references may follow to a die in a
13574 different cu. */
13575
13576 origin_cu = cu;
13577 origin_die = follow_die_ref (die, attr, &origin_cu);
13578
13579 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13580 symbols in. */
13581 origin_previous_list_in_scope = origin_cu->list_in_scope;
13582 origin_cu->list_in_scope = cu->list_in_scope;
13583
13584 if (die->tag != origin_die->tag
13585 && !(die->tag == DW_TAG_inlined_subroutine
13586 && origin_die->tag == DW_TAG_subprogram))
13587 complaint (_("DIE %s and its abstract origin %s have different tags"),
13588 sect_offset_str (die->sect_off),
13589 sect_offset_str (origin_die->sect_off));
13590
13591 std::vector<sect_offset> offsets;
13592
13593 for (child_die = die->child;
13594 child_die && child_die->tag;
13595 child_die = sibling_die (child_die))
13596 {
13597 struct die_info *child_origin_die;
13598 struct dwarf2_cu *child_origin_cu;
13599
13600 /* We are trying to process concrete instance entries:
13601 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13602 it's not relevant to our analysis here. i.e. detecting DIEs that are
13603 present in the abstract instance but not referenced in the concrete
13604 one. */
13605 if (child_die->tag == DW_TAG_call_site
13606 || child_die->tag == DW_TAG_GNU_call_site)
13607 continue;
13608
13609 /* For each CHILD_DIE, find the corresponding child of
13610 ORIGIN_DIE. If there is more than one layer of
13611 DW_AT_abstract_origin, follow them all; there shouldn't be,
13612 but GCC versions at least through 4.4 generate this (GCC PR
13613 40573). */
13614 child_origin_die = child_die;
13615 child_origin_cu = cu;
13616 while (1)
13617 {
13618 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13619 child_origin_cu);
13620 if (attr == NULL)
13621 break;
13622 child_origin_die = follow_die_ref (child_origin_die, attr,
13623 &child_origin_cu);
13624 }
13625
13626 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13627 counterpart may exist. */
13628 if (child_origin_die != child_die)
13629 {
13630 if (child_die->tag != child_origin_die->tag
13631 && !(child_die->tag == DW_TAG_inlined_subroutine
13632 && child_origin_die->tag == DW_TAG_subprogram))
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different tags"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 if (child_origin_die->parent != origin_die)
13638 complaint (_("Child DIE %s and its abstract origin %s have "
13639 "different parents"),
13640 sect_offset_str (child_die->sect_off),
13641 sect_offset_str (child_origin_die->sect_off));
13642 else
13643 offsets.push_back (child_origin_die->sect_off);
13644 }
13645 }
13646 std::sort (offsets.begin (), offsets.end ());
13647 sect_offset *offsets_end = offsets.data () + offsets.size ();
13648 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13649 if (offsetp[-1] == *offsetp)
13650 complaint (_("Multiple children of DIE %s refer "
13651 "to DIE %s as their abstract origin"),
13652 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13653
13654 offsetp = offsets.data ();
13655 origin_child_die = origin_die->child;
13656 while (origin_child_die && origin_child_die->tag)
13657 {
13658 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13659 while (offsetp < offsets_end
13660 && *offsetp < origin_child_die->sect_off)
13661 offsetp++;
13662 if (offsetp >= offsets_end
13663 || *offsetp > origin_child_die->sect_off)
13664 {
13665 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13666 Check whether we're already processing ORIGIN_CHILD_DIE.
13667 This can happen with mutually referenced abstract_origins.
13668 PR 16581. */
13669 if (!origin_child_die->in_process)
13670 process_die (origin_child_die, origin_cu);
13671 }
13672 origin_child_die = sibling_die (origin_child_die);
13673 }
13674 origin_cu->list_in_scope = origin_previous_list_in_scope;
13675 }
13676
13677 static void
13678 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13679 {
13680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13682 struct context_stack *newobj;
13683 CORE_ADDR lowpc;
13684 CORE_ADDR highpc;
13685 struct die_info *child_die;
13686 struct attribute *attr, *call_line, *call_file;
13687 const char *name;
13688 CORE_ADDR baseaddr;
13689 struct block *block;
13690 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13691 std::vector<struct symbol *> template_args;
13692 struct template_symbol *templ_func = NULL;
13693
13694 if (inlined_func)
13695 {
13696 /* If we do not have call site information, we can't show the
13697 caller of this inlined function. That's too confusing, so
13698 only use the scope for local variables. */
13699 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13700 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13701 if (call_line == NULL || call_file == NULL)
13702 {
13703 read_lexical_block_scope (die, cu);
13704 return;
13705 }
13706 }
13707
13708 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13709
13710 name = dwarf2_name (die, cu);
13711
13712 /* Ignore functions with missing or empty names. These are actually
13713 illegal according to the DWARF standard. */
13714 if (name == NULL)
13715 {
13716 complaint (_("missing name for subprogram DIE at %s"),
13717 sect_offset_str (die->sect_off));
13718 return;
13719 }
13720
13721 /* Ignore functions with missing or invalid low and high pc attributes. */
13722 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13723 <= PC_BOUNDS_INVALID)
13724 {
13725 attr = dwarf2_attr (die, DW_AT_external, cu);
13726 if (!attr || !DW_UNSND (attr))
13727 complaint (_("cannot get low and high bounds "
13728 "for subprogram DIE at %s"),
13729 sect_offset_str (die->sect_off));
13730 return;
13731 }
13732
13733 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13734 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13735
13736 /* If we have any template arguments, then we must allocate a
13737 different sort of symbol. */
13738 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13739 {
13740 if (child_die->tag == DW_TAG_template_type_param
13741 || child_die->tag == DW_TAG_template_value_param)
13742 {
13743 templ_func = allocate_template_symbol (objfile);
13744 templ_func->subclass = SYMBOL_TEMPLATE;
13745 break;
13746 }
13747 }
13748
13749 newobj = cu->builder->push_context (0, lowpc);
13750 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13751 (struct symbol *) templ_func);
13752
13753 /* If there is a location expression for DW_AT_frame_base, record
13754 it. */
13755 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13756 if (attr)
13757 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13758
13759 /* If there is a location for the static link, record it. */
13760 newobj->static_link = NULL;
13761 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13762 if (attr)
13763 {
13764 newobj->static_link
13765 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13766 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13767 }
13768
13769 cu->list_in_scope = cu->builder->get_local_symbols ();
13770
13771 if (die->child != NULL)
13772 {
13773 child_die = die->child;
13774 while (child_die && child_die->tag)
13775 {
13776 if (child_die->tag == DW_TAG_template_type_param
13777 || child_die->tag == DW_TAG_template_value_param)
13778 {
13779 struct symbol *arg = new_symbol (child_die, NULL, cu);
13780
13781 if (arg != NULL)
13782 template_args.push_back (arg);
13783 }
13784 else
13785 process_die (child_die, cu);
13786 child_die = sibling_die (child_die);
13787 }
13788 }
13789
13790 inherit_abstract_dies (die, cu);
13791
13792 /* If we have a DW_AT_specification, we might need to import using
13793 directives from the context of the specification DIE. See the
13794 comment in determine_prefix. */
13795 if (cu->language == language_cplus
13796 && dwarf2_attr (die, DW_AT_specification, cu))
13797 {
13798 struct dwarf2_cu *spec_cu = cu;
13799 struct die_info *spec_die = die_specification (die, &spec_cu);
13800
13801 while (spec_die)
13802 {
13803 child_die = spec_die->child;
13804 while (child_die && child_die->tag)
13805 {
13806 if (child_die->tag == DW_TAG_imported_module)
13807 process_die (child_die, spec_cu);
13808 child_die = sibling_die (child_die);
13809 }
13810
13811 /* In some cases, GCC generates specification DIEs that
13812 themselves contain DW_AT_specification attributes. */
13813 spec_die = die_specification (spec_die, &spec_cu);
13814 }
13815 }
13816
13817 struct context_stack cstk = cu->builder->pop_context ();
13818 /* Make a block for the local symbols within. */
13819 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13820 cstk.static_link, lowpc, highpc);
13821
13822 /* For C++, set the block's scope. */
13823 if ((cu->language == language_cplus
13824 || cu->language == language_fortran
13825 || cu->language == language_d
13826 || cu->language == language_rust)
13827 && cu->processing_has_namespace_info)
13828 block_set_scope (block, determine_prefix (die, cu),
13829 &objfile->objfile_obstack);
13830
13831 /* If we have address ranges, record them. */
13832 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13833
13834 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13835
13836 /* Attach template arguments to function. */
13837 if (!template_args.empty ())
13838 {
13839 gdb_assert (templ_func != NULL);
13840
13841 templ_func->n_template_arguments = template_args.size ();
13842 templ_func->template_arguments
13843 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13844 templ_func->n_template_arguments);
13845 memcpy (templ_func->template_arguments,
13846 template_args.data (),
13847 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13848
13849 /* Make sure that the symtab is set on the new symbols. Even
13850 though they don't appear in this symtab directly, other parts
13851 of gdb assume that symbols do, and this is reasonably
13852 true. */
13853 for (symbol *sym : template_args)
13854 symbol_set_symtab (sym, symbol_symtab (templ_func));
13855 }
13856
13857 /* In C++, we can have functions nested inside functions (e.g., when
13858 a function declares a class that has methods). This means that
13859 when we finish processing a function scope, we may need to go
13860 back to building a containing block's symbol lists. */
13861 *cu->builder->get_local_symbols () = cstk.locals;
13862 cu->builder->set_local_using_directives (cstk.local_using_directives);
13863
13864 /* If we've finished processing a top-level function, subsequent
13865 symbols go in the file symbol list. */
13866 if (cu->builder->outermost_context_p ())
13867 cu->list_in_scope = cu->builder->get_file_symbols ();
13868 }
13869
13870 /* Process all the DIES contained within a lexical block scope. Start
13871 a new scope, process the dies, and then close the scope. */
13872
13873 static void
13874 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13875 {
13876 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13878 CORE_ADDR lowpc, highpc;
13879 struct die_info *child_die;
13880 CORE_ADDR baseaddr;
13881
13882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13883
13884 /* Ignore blocks with missing or invalid low and high pc attributes. */
13885 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13886 as multiple lexical blocks? Handling children in a sane way would
13887 be nasty. Might be easier to properly extend generic blocks to
13888 describe ranges. */
13889 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13890 {
13891 case PC_BOUNDS_NOT_PRESENT:
13892 /* DW_TAG_lexical_block has no attributes, process its children as if
13893 there was no wrapping by that DW_TAG_lexical_block.
13894 GCC does no longer produces such DWARF since GCC r224161. */
13895 for (child_die = die->child;
13896 child_die != NULL && child_die->tag;
13897 child_die = sibling_die (child_die))
13898 process_die (child_die, cu);
13899 return;
13900 case PC_BOUNDS_INVALID:
13901 return;
13902 }
13903 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13904 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13905
13906 cu->builder->push_context (0, lowpc);
13907 if (die->child != NULL)
13908 {
13909 child_die = die->child;
13910 while (child_die && child_die->tag)
13911 {
13912 process_die (child_die, cu);
13913 child_die = sibling_die (child_die);
13914 }
13915 }
13916 inherit_abstract_dies (die, cu);
13917 struct context_stack cstk = cu->builder->pop_context ();
13918
13919 if (*cu->builder->get_local_symbols () != NULL
13920 || (*cu->builder->get_local_using_directives ()) != NULL)
13921 {
13922 struct block *block
13923 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13924 cstk.start_addr, highpc);
13925
13926 /* Note that recording ranges after traversing children, as we
13927 do here, means that recording a parent's ranges entails
13928 walking across all its children's ranges as they appear in
13929 the address map, which is quadratic behavior.
13930
13931 It would be nicer to record the parent's ranges before
13932 traversing its children, simply overriding whatever you find
13933 there. But since we don't even decide whether to create a
13934 block until after we've traversed its children, that's hard
13935 to do. */
13936 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13937 }
13938 *cu->builder->get_local_symbols () = cstk.locals;
13939 cu->builder->set_local_using_directives (cstk.local_using_directives);
13940 }
13941
13942 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13943
13944 static void
13945 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13946 {
13947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13948 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13949 CORE_ADDR pc, baseaddr;
13950 struct attribute *attr;
13951 struct call_site *call_site, call_site_local;
13952 void **slot;
13953 int nparams;
13954 struct die_info *child_die;
13955
13956 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13957
13958 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13959 if (attr == NULL)
13960 {
13961 /* This was a pre-DWARF-5 GNU extension alias
13962 for DW_AT_call_return_pc. */
13963 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13964 }
13965 if (!attr)
13966 {
13967 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13968 "DIE %s [in module %s]"),
13969 sect_offset_str (die->sect_off), objfile_name (objfile));
13970 return;
13971 }
13972 pc = attr_value_as_address (attr) + baseaddr;
13973 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13974
13975 if (cu->call_site_htab == NULL)
13976 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13977 NULL, &objfile->objfile_obstack,
13978 hashtab_obstack_allocate, NULL);
13979 call_site_local.pc = pc;
13980 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13981 if (*slot != NULL)
13982 {
13983 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13984 "DIE %s [in module %s]"),
13985 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13986 objfile_name (objfile));
13987 return;
13988 }
13989
13990 /* Count parameters at the caller. */
13991
13992 nparams = 0;
13993 for (child_die = die->child; child_die && child_die->tag;
13994 child_die = sibling_die (child_die))
13995 {
13996 if (child_die->tag != DW_TAG_call_site_parameter
13997 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13998 {
13999 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14000 "DW_TAG_call_site child DIE %s [in module %s]"),
14001 child_die->tag, sect_offset_str (child_die->sect_off),
14002 objfile_name (objfile));
14003 continue;
14004 }
14005
14006 nparams++;
14007 }
14008
14009 call_site
14010 = ((struct call_site *)
14011 obstack_alloc (&objfile->objfile_obstack,
14012 sizeof (*call_site)
14013 + (sizeof (*call_site->parameter) * (nparams - 1))));
14014 *slot = call_site;
14015 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14016 call_site->pc = pc;
14017
14018 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14019 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14020 {
14021 struct die_info *func_die;
14022
14023 /* Skip also over DW_TAG_inlined_subroutine. */
14024 for (func_die = die->parent;
14025 func_die && func_die->tag != DW_TAG_subprogram
14026 && func_die->tag != DW_TAG_subroutine_type;
14027 func_die = func_die->parent);
14028
14029 /* DW_AT_call_all_calls is a superset
14030 of DW_AT_call_all_tail_calls. */
14031 if (func_die
14032 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14033 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14034 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14035 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14036 {
14037 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14038 not complete. But keep CALL_SITE for look ups via call_site_htab,
14039 both the initial caller containing the real return address PC and
14040 the final callee containing the current PC of a chain of tail
14041 calls do not need to have the tail call list complete. But any
14042 function candidate for a virtual tail call frame searched via
14043 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14044 determined unambiguously. */
14045 }
14046 else
14047 {
14048 struct type *func_type = NULL;
14049
14050 if (func_die)
14051 func_type = get_die_type (func_die, cu);
14052 if (func_type != NULL)
14053 {
14054 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14055
14056 /* Enlist this call site to the function. */
14057 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14058 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14059 }
14060 else
14061 complaint (_("Cannot find function owning DW_TAG_call_site "
14062 "DIE %s [in module %s]"),
14063 sect_offset_str (die->sect_off), objfile_name (objfile));
14064 }
14065 }
14066
14067 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14068 if (attr == NULL)
14069 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14070 if (attr == NULL)
14071 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14072 if (attr == NULL)
14073 {
14074 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14075 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14076 }
14077 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14078 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14079 /* Keep NULL DWARF_BLOCK. */;
14080 else if (attr_form_is_block (attr))
14081 {
14082 struct dwarf2_locexpr_baton *dlbaton;
14083
14084 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14085 dlbaton->data = DW_BLOCK (attr)->data;
14086 dlbaton->size = DW_BLOCK (attr)->size;
14087 dlbaton->per_cu = cu->per_cu;
14088
14089 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14090 }
14091 else if (attr_form_is_ref (attr))
14092 {
14093 struct dwarf2_cu *target_cu = cu;
14094 struct die_info *target_die;
14095
14096 target_die = follow_die_ref (die, attr, &target_cu);
14097 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14098 if (die_is_declaration (target_die, target_cu))
14099 {
14100 const char *target_physname;
14101
14102 /* Prefer the mangled name; otherwise compute the demangled one. */
14103 target_physname = dw2_linkage_name (target_die, target_cu);
14104 if (target_physname == NULL)
14105 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14106 if (target_physname == NULL)
14107 complaint (_("DW_AT_call_target target DIE has invalid "
14108 "physname, for referencing DIE %s [in module %s]"),
14109 sect_offset_str (die->sect_off), objfile_name (objfile));
14110 else
14111 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14112 }
14113 else
14114 {
14115 CORE_ADDR lowpc;
14116
14117 /* DW_AT_entry_pc should be preferred. */
14118 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14119 <= PC_BOUNDS_INVALID)
14120 complaint (_("DW_AT_call_target target DIE has invalid "
14121 "low pc, for referencing DIE %s [in module %s]"),
14122 sect_offset_str (die->sect_off), objfile_name (objfile));
14123 else
14124 {
14125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14126 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14127 }
14128 }
14129 }
14130 else
14131 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14132 "block nor reference, for DIE %s [in module %s]"),
14133 sect_offset_str (die->sect_off), objfile_name (objfile));
14134
14135 call_site->per_cu = cu->per_cu;
14136
14137 for (child_die = die->child;
14138 child_die && child_die->tag;
14139 child_die = sibling_die (child_die))
14140 {
14141 struct call_site_parameter *parameter;
14142 struct attribute *loc, *origin;
14143
14144 if (child_die->tag != DW_TAG_call_site_parameter
14145 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14146 {
14147 /* Already printed the complaint above. */
14148 continue;
14149 }
14150
14151 gdb_assert (call_site->parameter_count < nparams);
14152 parameter = &call_site->parameter[call_site->parameter_count];
14153
14154 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14155 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14156 register is contained in DW_AT_call_value. */
14157
14158 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14159 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14160 if (origin == NULL)
14161 {
14162 /* This was a pre-DWARF-5 GNU extension alias
14163 for DW_AT_call_parameter. */
14164 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14165 }
14166 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14167 {
14168 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14169
14170 sect_offset sect_off
14171 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14172 if (!offset_in_cu_p (&cu->header, sect_off))
14173 {
14174 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14175 binding can be done only inside one CU. Such referenced DIE
14176 therefore cannot be even moved to DW_TAG_partial_unit. */
14177 complaint (_("DW_AT_call_parameter offset is not in CU for "
14178 "DW_TAG_call_site child DIE %s [in module %s]"),
14179 sect_offset_str (child_die->sect_off),
14180 objfile_name (objfile));
14181 continue;
14182 }
14183 parameter->u.param_cu_off
14184 = (cu_offset) (sect_off - cu->header.sect_off);
14185 }
14186 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14187 {
14188 complaint (_("No DW_FORM_block* DW_AT_location for "
14189 "DW_TAG_call_site child DIE %s [in module %s]"),
14190 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14191 continue;
14192 }
14193 else
14194 {
14195 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14196 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14197 if (parameter->u.dwarf_reg != -1)
14198 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14199 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14200 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14201 &parameter->u.fb_offset))
14202 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14203 else
14204 {
14205 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14206 "for DW_FORM_block* DW_AT_location is supported for "
14207 "DW_TAG_call_site child DIE %s "
14208 "[in module %s]"),
14209 sect_offset_str (child_die->sect_off),
14210 objfile_name (objfile));
14211 continue;
14212 }
14213 }
14214
14215 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14216 if (attr == NULL)
14217 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14218 if (!attr_form_is_block (attr))
14219 {
14220 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14221 "DW_TAG_call_site child DIE %s [in module %s]"),
14222 sect_offset_str (child_die->sect_off),
14223 objfile_name (objfile));
14224 continue;
14225 }
14226 parameter->value = DW_BLOCK (attr)->data;
14227 parameter->value_size = DW_BLOCK (attr)->size;
14228
14229 /* Parameters are not pre-cleared by memset above. */
14230 parameter->data_value = NULL;
14231 parameter->data_value_size = 0;
14232 call_site->parameter_count++;
14233
14234 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14235 if (attr == NULL)
14236 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14237 if (attr)
14238 {
14239 if (!attr_form_is_block (attr))
14240 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14241 "DW_TAG_call_site child DIE %s [in module %s]"),
14242 sect_offset_str (child_die->sect_off),
14243 objfile_name (objfile));
14244 else
14245 {
14246 parameter->data_value = DW_BLOCK (attr)->data;
14247 parameter->data_value_size = DW_BLOCK (attr)->size;
14248 }
14249 }
14250 }
14251 }
14252
14253 /* Helper function for read_variable. If DIE represents a virtual
14254 table, then return the type of the concrete object that is
14255 associated with the virtual table. Otherwise, return NULL. */
14256
14257 static struct type *
14258 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14259 {
14260 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14261 if (attr == NULL)
14262 return NULL;
14263
14264 /* Find the type DIE. */
14265 struct die_info *type_die = NULL;
14266 struct dwarf2_cu *type_cu = cu;
14267
14268 if (attr_form_is_ref (attr))
14269 type_die = follow_die_ref (die, attr, &type_cu);
14270 if (type_die == NULL)
14271 return NULL;
14272
14273 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14274 return NULL;
14275 return die_containing_type (type_die, type_cu);
14276 }
14277
14278 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14279
14280 static void
14281 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14282 {
14283 struct rust_vtable_symbol *storage = NULL;
14284
14285 if (cu->language == language_rust)
14286 {
14287 struct type *containing_type = rust_containing_type (die, cu);
14288
14289 if (containing_type != NULL)
14290 {
14291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14292
14293 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14294 struct rust_vtable_symbol);
14295 initialize_objfile_symbol (storage);
14296 storage->concrete_type = containing_type;
14297 storage->subclass = SYMBOL_RUST_VTABLE;
14298 }
14299 }
14300
14301 struct symbol *res = new_symbol (die, NULL, cu, storage);
14302 struct attribute *abstract_origin
14303 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14304 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14305 if (res == NULL && loc && abstract_origin)
14306 {
14307 /* We have a variable without a name, but with a location and an abstract
14308 origin. This may be a concrete instance of an abstract variable
14309 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14310 later. */
14311 struct dwarf2_cu *origin_cu = cu;
14312 struct die_info *origin_die
14313 = follow_die_ref (die, abstract_origin, &origin_cu);
14314 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14315 dpo->abstract_to_concrete[origin_die].push_back (die);
14316 }
14317 }
14318
14319 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14320 reading .debug_rnglists.
14321 Callback's type should be:
14322 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14323 Return true if the attributes are present and valid, otherwise,
14324 return false. */
14325
14326 template <typename Callback>
14327 static bool
14328 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14329 Callback &&callback)
14330 {
14331 struct dwarf2_per_objfile *dwarf2_per_objfile
14332 = cu->per_cu->dwarf2_per_objfile;
14333 struct objfile *objfile = dwarf2_per_objfile->objfile;
14334 bfd *obfd = objfile->obfd;
14335 /* Base address selection entry. */
14336 CORE_ADDR base;
14337 int found_base;
14338 const gdb_byte *buffer;
14339 CORE_ADDR baseaddr;
14340 bool overflow = false;
14341
14342 found_base = cu->base_known;
14343 base = cu->base_address;
14344
14345 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14346 if (offset >= dwarf2_per_objfile->rnglists.size)
14347 {
14348 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14349 offset);
14350 return false;
14351 }
14352 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14353
14354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14355
14356 while (1)
14357 {
14358 /* Initialize it due to a false compiler warning. */
14359 CORE_ADDR range_beginning = 0, range_end = 0;
14360 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14361 + dwarf2_per_objfile->rnglists.size);
14362 unsigned int bytes_read;
14363
14364 if (buffer == buf_end)
14365 {
14366 overflow = true;
14367 break;
14368 }
14369 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14370 switch (rlet)
14371 {
14372 case DW_RLE_end_of_list:
14373 break;
14374 case DW_RLE_base_address:
14375 if (buffer + cu->header.addr_size > buf_end)
14376 {
14377 overflow = true;
14378 break;
14379 }
14380 base = read_address (obfd, buffer, cu, &bytes_read);
14381 found_base = 1;
14382 buffer += bytes_read;
14383 break;
14384 case DW_RLE_start_length:
14385 if (buffer + cu->header.addr_size > buf_end)
14386 {
14387 overflow = true;
14388 break;
14389 }
14390 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14391 buffer += bytes_read;
14392 range_end = (range_beginning
14393 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14394 buffer += bytes_read;
14395 if (buffer > buf_end)
14396 {
14397 overflow = true;
14398 break;
14399 }
14400 break;
14401 case DW_RLE_offset_pair:
14402 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14403 buffer += bytes_read;
14404 if (buffer > buf_end)
14405 {
14406 overflow = true;
14407 break;
14408 }
14409 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14410 buffer += bytes_read;
14411 if (buffer > buf_end)
14412 {
14413 overflow = true;
14414 break;
14415 }
14416 break;
14417 case DW_RLE_start_end:
14418 if (buffer + 2 * cu->header.addr_size > buf_end)
14419 {
14420 overflow = true;
14421 break;
14422 }
14423 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14424 buffer += bytes_read;
14425 range_end = read_address (obfd, buffer, cu, &bytes_read);
14426 buffer += bytes_read;
14427 break;
14428 default:
14429 complaint (_("Invalid .debug_rnglists data (no base address)"));
14430 return false;
14431 }
14432 if (rlet == DW_RLE_end_of_list || overflow)
14433 break;
14434 if (rlet == DW_RLE_base_address)
14435 continue;
14436
14437 if (!found_base)
14438 {
14439 /* We have no valid base address for the ranges
14440 data. */
14441 complaint (_("Invalid .debug_rnglists data (no base address)"));
14442 return false;
14443 }
14444
14445 if (range_beginning > range_end)
14446 {
14447 /* Inverted range entries are invalid. */
14448 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14449 return false;
14450 }
14451
14452 /* Empty range entries have no effect. */
14453 if (range_beginning == range_end)
14454 continue;
14455
14456 range_beginning += base;
14457 range_end += base;
14458
14459 /* A not-uncommon case of bad debug info.
14460 Don't pollute the addrmap with bad data. */
14461 if (range_beginning + baseaddr == 0
14462 && !dwarf2_per_objfile->has_section_at_zero)
14463 {
14464 complaint (_(".debug_rnglists entry has start address of zero"
14465 " [in module %s]"), objfile_name (objfile));
14466 continue;
14467 }
14468
14469 callback (range_beginning, range_end);
14470 }
14471
14472 if (overflow)
14473 {
14474 complaint (_("Offset %d is not terminated "
14475 "for DW_AT_ranges attribute"),
14476 offset);
14477 return false;
14478 }
14479
14480 return true;
14481 }
14482
14483 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14484 Callback's type should be:
14485 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14486 Return 1 if the attributes are present and valid, otherwise, return 0. */
14487
14488 template <typename Callback>
14489 static int
14490 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14491 Callback &&callback)
14492 {
14493 struct dwarf2_per_objfile *dwarf2_per_objfile
14494 = cu->per_cu->dwarf2_per_objfile;
14495 struct objfile *objfile = dwarf2_per_objfile->objfile;
14496 struct comp_unit_head *cu_header = &cu->header;
14497 bfd *obfd = objfile->obfd;
14498 unsigned int addr_size = cu_header->addr_size;
14499 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14500 /* Base address selection entry. */
14501 CORE_ADDR base;
14502 int found_base;
14503 unsigned int dummy;
14504 const gdb_byte *buffer;
14505 CORE_ADDR baseaddr;
14506
14507 if (cu_header->version >= 5)
14508 return dwarf2_rnglists_process (offset, cu, callback);
14509
14510 found_base = cu->base_known;
14511 base = cu->base_address;
14512
14513 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14514 if (offset >= dwarf2_per_objfile->ranges.size)
14515 {
14516 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14517 offset);
14518 return 0;
14519 }
14520 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14521
14522 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14523
14524 while (1)
14525 {
14526 CORE_ADDR range_beginning, range_end;
14527
14528 range_beginning = read_address (obfd, buffer, cu, &dummy);
14529 buffer += addr_size;
14530 range_end = read_address (obfd, buffer, cu, &dummy);
14531 buffer += addr_size;
14532 offset += 2 * addr_size;
14533
14534 /* An end of list marker is a pair of zero addresses. */
14535 if (range_beginning == 0 && range_end == 0)
14536 /* Found the end of list entry. */
14537 break;
14538
14539 /* Each base address selection entry is a pair of 2 values.
14540 The first is the largest possible address, the second is
14541 the base address. Check for a base address here. */
14542 if ((range_beginning & mask) == mask)
14543 {
14544 /* If we found the largest possible address, then we already
14545 have the base address in range_end. */
14546 base = range_end;
14547 found_base = 1;
14548 continue;
14549 }
14550
14551 if (!found_base)
14552 {
14553 /* We have no valid base address for the ranges
14554 data. */
14555 complaint (_("Invalid .debug_ranges data (no base address)"));
14556 return 0;
14557 }
14558
14559 if (range_beginning > range_end)
14560 {
14561 /* Inverted range entries are invalid. */
14562 complaint (_("Invalid .debug_ranges data (inverted range)"));
14563 return 0;
14564 }
14565
14566 /* Empty range entries have no effect. */
14567 if (range_beginning == range_end)
14568 continue;
14569
14570 range_beginning += base;
14571 range_end += base;
14572
14573 /* A not-uncommon case of bad debug info.
14574 Don't pollute the addrmap with bad data. */
14575 if (range_beginning + baseaddr == 0
14576 && !dwarf2_per_objfile->has_section_at_zero)
14577 {
14578 complaint (_(".debug_ranges entry has start address of zero"
14579 " [in module %s]"), objfile_name (objfile));
14580 continue;
14581 }
14582
14583 callback (range_beginning, range_end);
14584 }
14585
14586 return 1;
14587 }
14588
14589 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14590 Return 1 if the attributes are present and valid, otherwise, return 0.
14591 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14592
14593 static int
14594 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14595 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14596 struct partial_symtab *ranges_pst)
14597 {
14598 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14600 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14601 SECT_OFF_TEXT (objfile));
14602 int low_set = 0;
14603 CORE_ADDR low = 0;
14604 CORE_ADDR high = 0;
14605 int retval;
14606
14607 retval = dwarf2_ranges_process (offset, cu,
14608 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14609 {
14610 if (ranges_pst != NULL)
14611 {
14612 CORE_ADDR lowpc;
14613 CORE_ADDR highpc;
14614
14615 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14616 range_beginning + baseaddr)
14617 - baseaddr);
14618 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14619 range_end + baseaddr)
14620 - baseaddr);
14621 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14622 ranges_pst);
14623 }
14624
14625 /* FIXME: This is recording everything as a low-high
14626 segment of consecutive addresses. We should have a
14627 data structure for discontiguous block ranges
14628 instead. */
14629 if (! low_set)
14630 {
14631 low = range_beginning;
14632 high = range_end;
14633 low_set = 1;
14634 }
14635 else
14636 {
14637 if (range_beginning < low)
14638 low = range_beginning;
14639 if (range_end > high)
14640 high = range_end;
14641 }
14642 });
14643 if (!retval)
14644 return 0;
14645
14646 if (! low_set)
14647 /* If the first entry is an end-of-list marker, the range
14648 describes an empty scope, i.e. no instructions. */
14649 return 0;
14650
14651 if (low_return)
14652 *low_return = low;
14653 if (high_return)
14654 *high_return = high;
14655 return 1;
14656 }
14657
14658 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14659 definition for the return value. *LOWPC and *HIGHPC are set iff
14660 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14661
14662 static enum pc_bounds_kind
14663 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14664 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14665 struct partial_symtab *pst)
14666 {
14667 struct dwarf2_per_objfile *dwarf2_per_objfile
14668 = cu->per_cu->dwarf2_per_objfile;
14669 struct attribute *attr;
14670 struct attribute *attr_high;
14671 CORE_ADDR low = 0;
14672 CORE_ADDR high = 0;
14673 enum pc_bounds_kind ret;
14674
14675 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14676 if (attr_high)
14677 {
14678 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14679 if (attr)
14680 {
14681 low = attr_value_as_address (attr);
14682 high = attr_value_as_address (attr_high);
14683 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14684 high += low;
14685 }
14686 else
14687 /* Found high w/o low attribute. */
14688 return PC_BOUNDS_INVALID;
14689
14690 /* Found consecutive range of addresses. */
14691 ret = PC_BOUNDS_HIGH_LOW;
14692 }
14693 else
14694 {
14695 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14696 if (attr != NULL)
14697 {
14698 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14699 We take advantage of the fact that DW_AT_ranges does not appear
14700 in DW_TAG_compile_unit of DWO files. */
14701 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14702 unsigned int ranges_offset = (DW_UNSND (attr)
14703 + (need_ranges_base
14704 ? cu->ranges_base
14705 : 0));
14706
14707 /* Value of the DW_AT_ranges attribute is the offset in the
14708 .debug_ranges section. */
14709 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14710 return PC_BOUNDS_INVALID;
14711 /* Found discontinuous range of addresses. */
14712 ret = PC_BOUNDS_RANGES;
14713 }
14714 else
14715 return PC_BOUNDS_NOT_PRESENT;
14716 }
14717
14718 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14719 if (high <= low)
14720 return PC_BOUNDS_INVALID;
14721
14722 /* When using the GNU linker, .gnu.linkonce. sections are used to
14723 eliminate duplicate copies of functions and vtables and such.
14724 The linker will arbitrarily choose one and discard the others.
14725 The AT_*_pc values for such functions refer to local labels in
14726 these sections. If the section from that file was discarded, the
14727 labels are not in the output, so the relocs get a value of 0.
14728 If this is a discarded function, mark the pc bounds as invalid,
14729 so that GDB will ignore it. */
14730 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14731 return PC_BOUNDS_INVALID;
14732
14733 *lowpc = low;
14734 if (highpc)
14735 *highpc = high;
14736 return ret;
14737 }
14738
14739 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14740 its low and high PC addresses. Do nothing if these addresses could not
14741 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14742 and HIGHPC to the high address if greater than HIGHPC. */
14743
14744 static void
14745 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14746 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14747 struct dwarf2_cu *cu)
14748 {
14749 CORE_ADDR low, high;
14750 struct die_info *child = die->child;
14751
14752 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14753 {
14754 *lowpc = std::min (*lowpc, low);
14755 *highpc = std::max (*highpc, high);
14756 }
14757
14758 /* If the language does not allow nested subprograms (either inside
14759 subprograms or lexical blocks), we're done. */
14760 if (cu->language != language_ada)
14761 return;
14762
14763 /* Check all the children of the given DIE. If it contains nested
14764 subprograms, then check their pc bounds. Likewise, we need to
14765 check lexical blocks as well, as they may also contain subprogram
14766 definitions. */
14767 while (child && child->tag)
14768 {
14769 if (child->tag == DW_TAG_subprogram
14770 || child->tag == DW_TAG_lexical_block)
14771 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14772 child = sibling_die (child);
14773 }
14774 }
14775
14776 /* Get the low and high pc's represented by the scope DIE, and store
14777 them in *LOWPC and *HIGHPC. If the correct values can't be
14778 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14779
14780 static void
14781 get_scope_pc_bounds (struct die_info *die,
14782 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14783 struct dwarf2_cu *cu)
14784 {
14785 CORE_ADDR best_low = (CORE_ADDR) -1;
14786 CORE_ADDR best_high = (CORE_ADDR) 0;
14787 CORE_ADDR current_low, current_high;
14788
14789 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14790 >= PC_BOUNDS_RANGES)
14791 {
14792 best_low = current_low;
14793 best_high = current_high;
14794 }
14795 else
14796 {
14797 struct die_info *child = die->child;
14798
14799 while (child && child->tag)
14800 {
14801 switch (child->tag) {
14802 case DW_TAG_subprogram:
14803 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14804 break;
14805 case DW_TAG_namespace:
14806 case DW_TAG_module:
14807 /* FIXME: carlton/2004-01-16: Should we do this for
14808 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14809 that current GCC's always emit the DIEs corresponding
14810 to definitions of methods of classes as children of a
14811 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14812 the DIEs giving the declarations, which could be
14813 anywhere). But I don't see any reason why the
14814 standards says that they have to be there. */
14815 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14816
14817 if (current_low != ((CORE_ADDR) -1))
14818 {
14819 best_low = std::min (best_low, current_low);
14820 best_high = std::max (best_high, current_high);
14821 }
14822 break;
14823 default:
14824 /* Ignore. */
14825 break;
14826 }
14827
14828 child = sibling_die (child);
14829 }
14830 }
14831
14832 *lowpc = best_low;
14833 *highpc = best_high;
14834 }
14835
14836 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14837 in DIE. */
14838
14839 static void
14840 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14841 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14842 {
14843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14845 struct attribute *attr;
14846 struct attribute *attr_high;
14847
14848 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14849 if (attr_high)
14850 {
14851 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14852 if (attr)
14853 {
14854 CORE_ADDR low = attr_value_as_address (attr);
14855 CORE_ADDR high = attr_value_as_address (attr_high);
14856
14857 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14858 high += low;
14859
14860 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14861 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14862 cu->builder->record_block_range (block, low, high - 1);
14863 }
14864 }
14865
14866 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14867 if (attr)
14868 {
14869 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14870 We take advantage of the fact that DW_AT_ranges does not appear
14871 in DW_TAG_compile_unit of DWO files. */
14872 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14873
14874 /* The value of the DW_AT_ranges attribute is the offset of the
14875 address range list in the .debug_ranges section. */
14876 unsigned long offset = (DW_UNSND (attr)
14877 + (need_ranges_base ? cu->ranges_base : 0));
14878
14879 std::vector<blockrange> blockvec;
14880 dwarf2_ranges_process (offset, cu,
14881 [&] (CORE_ADDR start, CORE_ADDR end)
14882 {
14883 start += baseaddr;
14884 end += baseaddr;
14885 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14886 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14887 cu->builder->record_block_range (block, start, end - 1);
14888 blockvec.emplace_back (start, end);
14889 });
14890
14891 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14892 }
14893 }
14894
14895 /* Check whether the producer field indicates either of GCC < 4.6, or the
14896 Intel C/C++ compiler, and cache the result in CU. */
14897
14898 static void
14899 check_producer (struct dwarf2_cu *cu)
14900 {
14901 int major, minor;
14902
14903 if (cu->producer == NULL)
14904 {
14905 /* For unknown compilers expect their behavior is DWARF version
14906 compliant.
14907
14908 GCC started to support .debug_types sections by -gdwarf-4 since
14909 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14910 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14911 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14912 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14913 }
14914 else if (producer_is_gcc (cu->producer, &major, &minor))
14915 {
14916 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14917 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14918 }
14919 else if (producer_is_icc (cu->producer, &major, &minor))
14920 {
14921 cu->producer_is_icc = true;
14922 cu->producer_is_icc_lt_14 = major < 14;
14923 }
14924 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14925 cu->producer_is_codewarrior = true;
14926 else
14927 {
14928 /* For other non-GCC compilers, expect their behavior is DWARF version
14929 compliant. */
14930 }
14931
14932 cu->checked_producer = 1;
14933 }
14934
14935 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14936 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14937 during 4.6.0 experimental. */
14938
14939 static int
14940 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14941 {
14942 if (!cu->checked_producer)
14943 check_producer (cu);
14944
14945 return cu->producer_is_gxx_lt_4_6;
14946 }
14947
14948
14949 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14950 with incorrect is_stmt attributes. */
14951
14952 static bool
14953 producer_is_codewarrior (struct dwarf2_cu *cu)
14954 {
14955 if (!cu->checked_producer)
14956 check_producer (cu);
14957
14958 return cu->producer_is_codewarrior;
14959 }
14960
14961 /* Return the default accessibility type if it is not overriden by
14962 DW_AT_accessibility. */
14963
14964 static enum dwarf_access_attribute
14965 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14966 {
14967 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14968 {
14969 /* The default DWARF 2 accessibility for members is public, the default
14970 accessibility for inheritance is private. */
14971
14972 if (die->tag != DW_TAG_inheritance)
14973 return DW_ACCESS_public;
14974 else
14975 return DW_ACCESS_private;
14976 }
14977 else
14978 {
14979 /* DWARF 3+ defines the default accessibility a different way. The same
14980 rules apply now for DW_TAG_inheritance as for the members and it only
14981 depends on the container kind. */
14982
14983 if (die->parent->tag == DW_TAG_class_type)
14984 return DW_ACCESS_private;
14985 else
14986 return DW_ACCESS_public;
14987 }
14988 }
14989
14990 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14991 offset. If the attribute was not found return 0, otherwise return
14992 1. If it was found but could not properly be handled, set *OFFSET
14993 to 0. */
14994
14995 static int
14996 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14997 LONGEST *offset)
14998 {
14999 struct attribute *attr;
15000
15001 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15002 if (attr != NULL)
15003 {
15004 *offset = 0;
15005
15006 /* Note that we do not check for a section offset first here.
15007 This is because DW_AT_data_member_location is new in DWARF 4,
15008 so if we see it, we can assume that a constant form is really
15009 a constant and not a section offset. */
15010 if (attr_form_is_constant (attr))
15011 *offset = dwarf2_get_attr_constant_value (attr, 0);
15012 else if (attr_form_is_section_offset (attr))
15013 dwarf2_complex_location_expr_complaint ();
15014 else if (attr_form_is_block (attr))
15015 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15016 else
15017 dwarf2_complex_location_expr_complaint ();
15018
15019 return 1;
15020 }
15021
15022 return 0;
15023 }
15024
15025 /* Add an aggregate field to the field list. */
15026
15027 static void
15028 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15029 struct dwarf2_cu *cu)
15030 {
15031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15032 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15033 struct nextfield *new_field;
15034 struct attribute *attr;
15035 struct field *fp;
15036 const char *fieldname = "";
15037
15038 if (die->tag == DW_TAG_inheritance)
15039 {
15040 fip->baseclasses.emplace_back ();
15041 new_field = &fip->baseclasses.back ();
15042 }
15043 else
15044 {
15045 fip->fields.emplace_back ();
15046 new_field = &fip->fields.back ();
15047 }
15048
15049 fip->nfields++;
15050
15051 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15052 if (attr)
15053 new_field->accessibility = DW_UNSND (attr);
15054 else
15055 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15056 if (new_field->accessibility != DW_ACCESS_public)
15057 fip->non_public_fields = 1;
15058
15059 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15060 if (attr)
15061 new_field->virtuality = DW_UNSND (attr);
15062 else
15063 new_field->virtuality = DW_VIRTUALITY_none;
15064
15065 fp = &new_field->field;
15066
15067 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15068 {
15069 LONGEST offset;
15070
15071 /* Data member other than a C++ static data member. */
15072
15073 /* Get type of field. */
15074 fp->type = die_type (die, cu);
15075
15076 SET_FIELD_BITPOS (*fp, 0);
15077
15078 /* Get bit size of field (zero if none). */
15079 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15080 if (attr)
15081 {
15082 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15083 }
15084 else
15085 {
15086 FIELD_BITSIZE (*fp) = 0;
15087 }
15088
15089 /* Get bit offset of field. */
15090 if (handle_data_member_location (die, cu, &offset))
15091 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15092 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15093 if (attr)
15094 {
15095 if (gdbarch_bits_big_endian (gdbarch))
15096 {
15097 /* For big endian bits, the DW_AT_bit_offset gives the
15098 additional bit offset from the MSB of the containing
15099 anonymous object to the MSB of the field. We don't
15100 have to do anything special since we don't need to
15101 know the size of the anonymous object. */
15102 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15103 }
15104 else
15105 {
15106 /* For little endian bits, compute the bit offset to the
15107 MSB of the anonymous object, subtract off the number of
15108 bits from the MSB of the field to the MSB of the
15109 object, and then subtract off the number of bits of
15110 the field itself. The result is the bit offset of
15111 the LSB of the field. */
15112 int anonymous_size;
15113 int bit_offset = DW_UNSND (attr);
15114
15115 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15116 if (attr)
15117 {
15118 /* The size of the anonymous object containing
15119 the bit field is explicit, so use the
15120 indicated size (in bytes). */
15121 anonymous_size = DW_UNSND (attr);
15122 }
15123 else
15124 {
15125 /* The size of the anonymous object containing
15126 the bit field must be inferred from the type
15127 attribute of the data member containing the
15128 bit field. */
15129 anonymous_size = TYPE_LENGTH (fp->type);
15130 }
15131 SET_FIELD_BITPOS (*fp,
15132 (FIELD_BITPOS (*fp)
15133 + anonymous_size * bits_per_byte
15134 - bit_offset - FIELD_BITSIZE (*fp)));
15135 }
15136 }
15137 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15138 if (attr != NULL)
15139 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15140 + dwarf2_get_attr_constant_value (attr, 0)));
15141
15142 /* Get name of field. */
15143 fieldname = dwarf2_name (die, cu);
15144 if (fieldname == NULL)
15145 fieldname = "";
15146
15147 /* The name is already allocated along with this objfile, so we don't
15148 need to duplicate it for the type. */
15149 fp->name = fieldname;
15150
15151 /* Change accessibility for artificial fields (e.g. virtual table
15152 pointer or virtual base class pointer) to private. */
15153 if (dwarf2_attr (die, DW_AT_artificial, cu))
15154 {
15155 FIELD_ARTIFICIAL (*fp) = 1;
15156 new_field->accessibility = DW_ACCESS_private;
15157 fip->non_public_fields = 1;
15158 }
15159 }
15160 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15161 {
15162 /* C++ static member. */
15163
15164 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15165 is a declaration, but all versions of G++ as of this writing
15166 (so through at least 3.2.1) incorrectly generate
15167 DW_TAG_variable tags. */
15168
15169 const char *physname;
15170
15171 /* Get name of field. */
15172 fieldname = dwarf2_name (die, cu);
15173 if (fieldname == NULL)
15174 return;
15175
15176 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15177 if (attr
15178 /* Only create a symbol if this is an external value.
15179 new_symbol checks this and puts the value in the global symbol
15180 table, which we want. If it is not external, new_symbol
15181 will try to put the value in cu->list_in_scope which is wrong. */
15182 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15183 {
15184 /* A static const member, not much different than an enum as far as
15185 we're concerned, except that we can support more types. */
15186 new_symbol (die, NULL, cu);
15187 }
15188
15189 /* Get physical name. */
15190 physname = dwarf2_physname (fieldname, die, cu);
15191
15192 /* The name is already allocated along with this objfile, so we don't
15193 need to duplicate it for the type. */
15194 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15195 FIELD_TYPE (*fp) = die_type (die, cu);
15196 FIELD_NAME (*fp) = fieldname;
15197 }
15198 else if (die->tag == DW_TAG_inheritance)
15199 {
15200 LONGEST offset;
15201
15202 /* C++ base class field. */
15203 if (handle_data_member_location (die, cu, &offset))
15204 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15205 FIELD_BITSIZE (*fp) = 0;
15206 FIELD_TYPE (*fp) = die_type (die, cu);
15207 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15208 }
15209 else if (die->tag == DW_TAG_variant_part)
15210 {
15211 /* process_structure_scope will treat this DIE as a union. */
15212 process_structure_scope (die, cu);
15213
15214 /* The variant part is relative to the start of the enclosing
15215 structure. */
15216 SET_FIELD_BITPOS (*fp, 0);
15217 fp->type = get_die_type (die, cu);
15218 fp->artificial = 1;
15219 fp->name = "<<variant>>";
15220
15221 /* Normally a DW_TAG_variant_part won't have a size, but our
15222 representation requires one, so set it to the maximum of the
15223 child sizes. */
15224 if (TYPE_LENGTH (fp->type) == 0)
15225 {
15226 unsigned max = 0;
15227 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15228 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15229 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15230 TYPE_LENGTH (fp->type) = max;
15231 }
15232 }
15233 else
15234 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15235 }
15236
15237 /* Can the type given by DIE define another type? */
15238
15239 static bool
15240 type_can_define_types (const struct die_info *die)
15241 {
15242 switch (die->tag)
15243 {
15244 case DW_TAG_typedef:
15245 case DW_TAG_class_type:
15246 case DW_TAG_structure_type:
15247 case DW_TAG_union_type:
15248 case DW_TAG_enumeration_type:
15249 return true;
15250
15251 default:
15252 return false;
15253 }
15254 }
15255
15256 /* Add a type definition defined in the scope of the FIP's class. */
15257
15258 static void
15259 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15260 struct dwarf2_cu *cu)
15261 {
15262 struct decl_field fp;
15263 memset (&fp, 0, sizeof (fp));
15264
15265 gdb_assert (type_can_define_types (die));
15266
15267 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15268 fp.name = dwarf2_name (die, cu);
15269 fp.type = read_type_die (die, cu);
15270
15271 /* Save accessibility. */
15272 enum dwarf_access_attribute accessibility;
15273 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15274 if (attr != NULL)
15275 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15276 else
15277 accessibility = dwarf2_default_access_attribute (die, cu);
15278 switch (accessibility)
15279 {
15280 case DW_ACCESS_public:
15281 /* The assumed value if neither private nor protected. */
15282 break;
15283 case DW_ACCESS_private:
15284 fp.is_private = 1;
15285 break;
15286 case DW_ACCESS_protected:
15287 fp.is_protected = 1;
15288 break;
15289 default:
15290 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15291 }
15292
15293 if (die->tag == DW_TAG_typedef)
15294 fip->typedef_field_list.push_back (fp);
15295 else
15296 fip->nested_types_list.push_back (fp);
15297 }
15298
15299 /* Create the vector of fields, and attach it to the type. */
15300
15301 static void
15302 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15303 struct dwarf2_cu *cu)
15304 {
15305 int nfields = fip->nfields;
15306
15307 /* Record the field count, allocate space for the array of fields,
15308 and create blank accessibility bitfields if necessary. */
15309 TYPE_NFIELDS (type) = nfields;
15310 TYPE_FIELDS (type) = (struct field *)
15311 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15312
15313 if (fip->non_public_fields && cu->language != language_ada)
15314 {
15315 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15316
15317 TYPE_FIELD_PRIVATE_BITS (type) =
15318 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15319 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15320
15321 TYPE_FIELD_PROTECTED_BITS (type) =
15322 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15323 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15324
15325 TYPE_FIELD_IGNORE_BITS (type) =
15326 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15327 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15328 }
15329
15330 /* If the type has baseclasses, allocate and clear a bit vector for
15331 TYPE_FIELD_VIRTUAL_BITS. */
15332 if (!fip->baseclasses.empty () && cu->language != language_ada)
15333 {
15334 int num_bytes = B_BYTES (fip->baseclasses.size ());
15335 unsigned char *pointer;
15336
15337 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15338 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15339 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15340 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15341 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15342 }
15343
15344 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15345 {
15346 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15347
15348 for (int index = 0; index < nfields; ++index)
15349 {
15350 struct nextfield &field = fip->fields[index];
15351
15352 if (field.variant.is_discriminant)
15353 di->discriminant_index = index;
15354 else if (field.variant.default_branch)
15355 di->default_index = index;
15356 else
15357 di->discriminants[index] = field.variant.discriminant_value;
15358 }
15359 }
15360
15361 /* Copy the saved-up fields into the field vector. */
15362 for (int i = 0; i < nfields; ++i)
15363 {
15364 struct nextfield &field
15365 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15366 : fip->fields[i - fip->baseclasses.size ()]);
15367
15368 TYPE_FIELD (type, i) = field.field;
15369 switch (field.accessibility)
15370 {
15371 case DW_ACCESS_private:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PRIVATE (type, i);
15374 break;
15375
15376 case DW_ACCESS_protected:
15377 if (cu->language != language_ada)
15378 SET_TYPE_FIELD_PROTECTED (type, i);
15379 break;
15380
15381 case DW_ACCESS_public:
15382 break;
15383
15384 default:
15385 /* Unknown accessibility. Complain and treat it as public. */
15386 {
15387 complaint (_("unsupported accessibility %d"),
15388 field.accessibility);
15389 }
15390 break;
15391 }
15392 if (i < fip->baseclasses.size ())
15393 {
15394 switch (field.virtuality)
15395 {
15396 case DW_VIRTUALITY_virtual:
15397 case DW_VIRTUALITY_pure_virtual:
15398 if (cu->language == language_ada)
15399 error (_("unexpected virtuality in component of Ada type"));
15400 SET_TYPE_FIELD_VIRTUAL (type, i);
15401 break;
15402 }
15403 }
15404 }
15405 }
15406
15407 /* Return true if this member function is a constructor, false
15408 otherwise. */
15409
15410 static int
15411 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15412 {
15413 const char *fieldname;
15414 const char *type_name;
15415 int len;
15416
15417 if (die->parent == NULL)
15418 return 0;
15419
15420 if (die->parent->tag != DW_TAG_structure_type
15421 && die->parent->tag != DW_TAG_union_type
15422 && die->parent->tag != DW_TAG_class_type)
15423 return 0;
15424
15425 fieldname = dwarf2_name (die, cu);
15426 type_name = dwarf2_name (die->parent, cu);
15427 if (fieldname == NULL || type_name == NULL)
15428 return 0;
15429
15430 len = strlen (fieldname);
15431 return (strncmp (fieldname, type_name, len) == 0
15432 && (type_name[len] == '\0' || type_name[len] == '<'));
15433 }
15434
15435 /* Add a member function to the proper fieldlist. */
15436
15437 static void
15438 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15439 struct type *type, struct dwarf2_cu *cu)
15440 {
15441 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15442 struct attribute *attr;
15443 int i;
15444 struct fnfieldlist *flp = nullptr;
15445 struct fn_field *fnp;
15446 const char *fieldname;
15447 struct type *this_type;
15448 enum dwarf_access_attribute accessibility;
15449
15450 if (cu->language == language_ada)
15451 error (_("unexpected member function in Ada type"));
15452
15453 /* Get name of member function. */
15454 fieldname = dwarf2_name (die, cu);
15455 if (fieldname == NULL)
15456 return;
15457
15458 /* Look up member function name in fieldlist. */
15459 for (i = 0; i < fip->fnfieldlists.size (); i++)
15460 {
15461 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15462 {
15463 flp = &fip->fnfieldlists[i];
15464 break;
15465 }
15466 }
15467
15468 /* Create a new fnfieldlist if necessary. */
15469 if (flp == nullptr)
15470 {
15471 fip->fnfieldlists.emplace_back ();
15472 flp = &fip->fnfieldlists.back ();
15473 flp->name = fieldname;
15474 i = fip->fnfieldlists.size () - 1;
15475 }
15476
15477 /* Create a new member function field and add it to the vector of
15478 fnfieldlists. */
15479 flp->fnfields.emplace_back ();
15480 fnp = &flp->fnfields.back ();
15481
15482 /* Delay processing of the physname until later. */
15483 if (cu->language == language_cplus)
15484 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15485 die, cu);
15486 else
15487 {
15488 const char *physname = dwarf2_physname (fieldname, die, cu);
15489 fnp->physname = physname ? physname : "";
15490 }
15491
15492 fnp->type = alloc_type (objfile);
15493 this_type = read_type_die (die, cu);
15494 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15495 {
15496 int nparams = TYPE_NFIELDS (this_type);
15497
15498 /* TYPE is the domain of this method, and THIS_TYPE is the type
15499 of the method itself (TYPE_CODE_METHOD). */
15500 smash_to_method_type (fnp->type, type,
15501 TYPE_TARGET_TYPE (this_type),
15502 TYPE_FIELDS (this_type),
15503 TYPE_NFIELDS (this_type),
15504 TYPE_VARARGS (this_type));
15505
15506 /* Handle static member functions.
15507 Dwarf2 has no clean way to discern C++ static and non-static
15508 member functions. G++ helps GDB by marking the first
15509 parameter for non-static member functions (which is the this
15510 pointer) as artificial. We obtain this information from
15511 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15512 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15513 fnp->voffset = VOFFSET_STATIC;
15514 }
15515 else
15516 complaint (_("member function type missing for '%s'"),
15517 dwarf2_full_name (fieldname, die, cu));
15518
15519 /* Get fcontext from DW_AT_containing_type if present. */
15520 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15521 fnp->fcontext = die_containing_type (die, cu);
15522
15523 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15524 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15525
15526 /* Get accessibility. */
15527 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15528 if (attr)
15529 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15530 else
15531 accessibility = dwarf2_default_access_attribute (die, cu);
15532 switch (accessibility)
15533 {
15534 case DW_ACCESS_private:
15535 fnp->is_private = 1;
15536 break;
15537 case DW_ACCESS_protected:
15538 fnp->is_protected = 1;
15539 break;
15540 }
15541
15542 /* Check for artificial methods. */
15543 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15544 if (attr && DW_UNSND (attr) != 0)
15545 fnp->is_artificial = 1;
15546
15547 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15548
15549 /* Get index in virtual function table if it is a virtual member
15550 function. For older versions of GCC, this is an offset in the
15551 appropriate virtual table, as specified by DW_AT_containing_type.
15552 For everyone else, it is an expression to be evaluated relative
15553 to the object address. */
15554
15555 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15556 if (attr)
15557 {
15558 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15559 {
15560 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15561 {
15562 /* Old-style GCC. */
15563 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15564 }
15565 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15566 || (DW_BLOCK (attr)->size > 1
15567 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15568 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15569 {
15570 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15571 if ((fnp->voffset % cu->header.addr_size) != 0)
15572 dwarf2_complex_location_expr_complaint ();
15573 else
15574 fnp->voffset /= cu->header.addr_size;
15575 fnp->voffset += 2;
15576 }
15577 else
15578 dwarf2_complex_location_expr_complaint ();
15579
15580 if (!fnp->fcontext)
15581 {
15582 /* If there is no `this' field and no DW_AT_containing_type,
15583 we cannot actually find a base class context for the
15584 vtable! */
15585 if (TYPE_NFIELDS (this_type) == 0
15586 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15587 {
15588 complaint (_("cannot determine context for virtual member "
15589 "function \"%s\" (offset %s)"),
15590 fieldname, sect_offset_str (die->sect_off));
15591 }
15592 else
15593 {
15594 fnp->fcontext
15595 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15596 }
15597 }
15598 }
15599 else if (attr_form_is_section_offset (attr))
15600 {
15601 dwarf2_complex_location_expr_complaint ();
15602 }
15603 else
15604 {
15605 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15606 fieldname);
15607 }
15608 }
15609 else
15610 {
15611 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15612 if (attr && DW_UNSND (attr))
15613 {
15614 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15615 complaint (_("Member function \"%s\" (offset %s) is virtual "
15616 "but the vtable offset is not specified"),
15617 fieldname, sect_offset_str (die->sect_off));
15618 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15619 TYPE_CPLUS_DYNAMIC (type) = 1;
15620 }
15621 }
15622 }
15623
15624 /* Create the vector of member function fields, and attach it to the type. */
15625
15626 static void
15627 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15628 struct dwarf2_cu *cu)
15629 {
15630 if (cu->language == language_ada)
15631 error (_("unexpected member functions in Ada type"));
15632
15633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15634 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15635 TYPE_ALLOC (type,
15636 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15637
15638 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15639 {
15640 struct fnfieldlist &nf = fip->fnfieldlists[i];
15641 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15642
15643 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15644 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15645 fn_flp->fn_fields = (struct fn_field *)
15646 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15647
15648 for (int k = 0; k < nf.fnfields.size (); ++k)
15649 fn_flp->fn_fields[k] = nf.fnfields[k];
15650 }
15651
15652 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15653 }
15654
15655 /* Returns non-zero if NAME is the name of a vtable member in CU's
15656 language, zero otherwise. */
15657 static int
15658 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15659 {
15660 static const char vptr[] = "_vptr";
15661
15662 /* Look for the C++ form of the vtable. */
15663 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15664 return 1;
15665
15666 return 0;
15667 }
15668
15669 /* GCC outputs unnamed structures that are really pointers to member
15670 functions, with the ABI-specified layout. If TYPE describes
15671 such a structure, smash it into a member function type.
15672
15673 GCC shouldn't do this; it should just output pointer to member DIEs.
15674 This is GCC PR debug/28767. */
15675
15676 static void
15677 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15678 {
15679 struct type *pfn_type, *self_type, *new_type;
15680
15681 /* Check for a structure with no name and two children. */
15682 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15683 return;
15684
15685 /* Check for __pfn and __delta members. */
15686 if (TYPE_FIELD_NAME (type, 0) == NULL
15687 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15688 || TYPE_FIELD_NAME (type, 1) == NULL
15689 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15690 return;
15691
15692 /* Find the type of the method. */
15693 pfn_type = TYPE_FIELD_TYPE (type, 0);
15694 if (pfn_type == NULL
15695 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15696 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15697 return;
15698
15699 /* Look for the "this" argument. */
15700 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15701 if (TYPE_NFIELDS (pfn_type) == 0
15702 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15703 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15704 return;
15705
15706 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15707 new_type = alloc_type (objfile);
15708 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15709 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15710 TYPE_VARARGS (pfn_type));
15711 smash_to_methodptr_type (type, new_type);
15712 }
15713
15714 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15715 appropriate error checking and issuing complaints if there is a
15716 problem. */
15717
15718 static ULONGEST
15719 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15720 {
15721 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15722
15723 if (attr == nullptr)
15724 return 0;
15725
15726 if (!attr_form_is_constant (attr))
15727 {
15728 complaint (_("DW_AT_alignment must have constant form"
15729 " - DIE at %s [in module %s]"),
15730 sect_offset_str (die->sect_off),
15731 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15732 return 0;
15733 }
15734
15735 ULONGEST align;
15736 if (attr->form == DW_FORM_sdata)
15737 {
15738 LONGEST val = DW_SND (attr);
15739 if (val < 0)
15740 {
15741 complaint (_("DW_AT_alignment value must not be negative"
15742 " - DIE at %s [in module %s]"),
15743 sect_offset_str (die->sect_off),
15744 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 return 0;
15746 }
15747 align = val;
15748 }
15749 else
15750 align = DW_UNSND (attr);
15751
15752 if (align == 0)
15753 {
15754 complaint (_("DW_AT_alignment value must not be zero"
15755 " - DIE at %s [in module %s]"),
15756 sect_offset_str (die->sect_off),
15757 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15758 return 0;
15759 }
15760 if ((align & (align - 1)) != 0)
15761 {
15762 complaint (_("DW_AT_alignment value must be a power of 2"
15763 " - DIE at %s [in module %s]"),
15764 sect_offset_str (die->sect_off),
15765 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15766 return 0;
15767 }
15768
15769 return align;
15770 }
15771
15772 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15773 the alignment for TYPE. */
15774
15775 static void
15776 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15777 struct type *type)
15778 {
15779 if (!set_type_align (type, get_alignment (cu, die)))
15780 complaint (_("DW_AT_alignment value too large"
15781 " - DIE at %s [in module %s]"),
15782 sect_offset_str (die->sect_off),
15783 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15784 }
15785
15786 /* Called when we find the DIE that starts a structure or union scope
15787 (definition) to create a type for the structure or union. Fill in
15788 the type's name and general properties; the members will not be
15789 processed until process_structure_scope. A symbol table entry for
15790 the type will also not be done until process_structure_scope (assuming
15791 the type has a name).
15792
15793 NOTE: we need to call these functions regardless of whether or not the
15794 DIE has a DW_AT_name attribute, since it might be an anonymous
15795 structure or union. This gets the type entered into our set of
15796 user defined types. */
15797
15798 static struct type *
15799 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15800 {
15801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15802 struct type *type;
15803 struct attribute *attr;
15804 const char *name;
15805
15806 /* If the definition of this type lives in .debug_types, read that type.
15807 Don't follow DW_AT_specification though, that will take us back up
15808 the chain and we want to go down. */
15809 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15810 if (attr)
15811 {
15812 type = get_DW_AT_signature_type (die, attr, cu);
15813
15814 /* The type's CU may not be the same as CU.
15815 Ensure TYPE is recorded with CU in die_type_hash. */
15816 return set_die_type (die, type, cu);
15817 }
15818
15819 type = alloc_type (objfile);
15820 INIT_CPLUS_SPECIFIC (type);
15821
15822 name = dwarf2_name (die, cu);
15823 if (name != NULL)
15824 {
15825 if (cu->language == language_cplus
15826 || cu->language == language_d
15827 || cu->language == language_rust)
15828 {
15829 const char *full_name = dwarf2_full_name (name, die, cu);
15830
15831 /* dwarf2_full_name might have already finished building the DIE's
15832 type. If so, there is no need to continue. */
15833 if (get_die_type (die, cu) != NULL)
15834 return get_die_type (die, cu);
15835
15836 TYPE_NAME (type) = full_name;
15837 }
15838 else
15839 {
15840 /* The name is already allocated along with this objfile, so
15841 we don't need to duplicate it for the type. */
15842 TYPE_NAME (type) = name;
15843 }
15844 }
15845
15846 if (die->tag == DW_TAG_structure_type)
15847 {
15848 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15849 }
15850 else if (die->tag == DW_TAG_union_type)
15851 {
15852 TYPE_CODE (type) = TYPE_CODE_UNION;
15853 }
15854 else if (die->tag == DW_TAG_variant_part)
15855 {
15856 TYPE_CODE (type) = TYPE_CODE_UNION;
15857 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15858 }
15859 else
15860 {
15861 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15862 }
15863
15864 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15865 TYPE_DECLARED_CLASS (type) = 1;
15866
15867 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15868 if (attr)
15869 {
15870 if (attr_form_is_constant (attr))
15871 TYPE_LENGTH (type) = DW_UNSND (attr);
15872 else
15873 {
15874 /* For the moment, dynamic type sizes are not supported
15875 by GDB's struct type. The actual size is determined
15876 on-demand when resolving the type of a given object,
15877 so set the type's length to zero for now. Otherwise,
15878 we record an expression as the length, and that expression
15879 could lead to a very large value, which could eventually
15880 lead to us trying to allocate that much memory when creating
15881 a value of that type. */
15882 TYPE_LENGTH (type) = 0;
15883 }
15884 }
15885 else
15886 {
15887 TYPE_LENGTH (type) = 0;
15888 }
15889
15890 maybe_set_alignment (cu, die, type);
15891
15892 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15893 {
15894 /* ICC<14 does not output the required DW_AT_declaration on
15895 incomplete types, but gives them a size of zero. */
15896 TYPE_STUB (type) = 1;
15897 }
15898 else
15899 TYPE_STUB_SUPPORTED (type) = 1;
15900
15901 if (die_is_declaration (die, cu))
15902 TYPE_STUB (type) = 1;
15903 else if (attr == NULL && die->child == NULL
15904 && producer_is_realview (cu->producer))
15905 /* RealView does not output the required DW_AT_declaration
15906 on incomplete types. */
15907 TYPE_STUB (type) = 1;
15908
15909 /* We need to add the type field to the die immediately so we don't
15910 infinitely recurse when dealing with pointers to the structure
15911 type within the structure itself. */
15912 set_die_type (die, type, cu);
15913
15914 /* set_die_type should be already done. */
15915 set_descriptive_type (type, die, cu);
15916
15917 return type;
15918 }
15919
15920 /* A helper for process_structure_scope that handles a single member
15921 DIE. */
15922
15923 static void
15924 handle_struct_member_die (struct die_info *child_die, struct type *type,
15925 struct field_info *fi,
15926 std::vector<struct symbol *> *template_args,
15927 struct dwarf2_cu *cu)
15928 {
15929 if (child_die->tag == DW_TAG_member
15930 || child_die->tag == DW_TAG_variable
15931 || child_die->tag == DW_TAG_variant_part)
15932 {
15933 /* NOTE: carlton/2002-11-05: A C++ static data member
15934 should be a DW_TAG_member that is a declaration, but
15935 all versions of G++ as of this writing (so through at
15936 least 3.2.1) incorrectly generate DW_TAG_variable
15937 tags for them instead. */
15938 dwarf2_add_field (fi, child_die, cu);
15939 }
15940 else if (child_die->tag == DW_TAG_subprogram)
15941 {
15942 /* Rust doesn't have member functions in the C++ sense.
15943 However, it does emit ordinary functions as children
15944 of a struct DIE. */
15945 if (cu->language == language_rust)
15946 read_func_scope (child_die, cu);
15947 else
15948 {
15949 /* C++ member function. */
15950 dwarf2_add_member_fn (fi, child_die, type, cu);
15951 }
15952 }
15953 else if (child_die->tag == DW_TAG_inheritance)
15954 {
15955 /* C++ base class field. */
15956 dwarf2_add_field (fi, child_die, cu);
15957 }
15958 else if (type_can_define_types (child_die))
15959 dwarf2_add_type_defn (fi, child_die, cu);
15960 else if (child_die->tag == DW_TAG_template_type_param
15961 || child_die->tag == DW_TAG_template_value_param)
15962 {
15963 struct symbol *arg = new_symbol (child_die, NULL, cu);
15964
15965 if (arg != NULL)
15966 template_args->push_back (arg);
15967 }
15968 else if (child_die->tag == DW_TAG_variant)
15969 {
15970 /* In a variant we want to get the discriminant and also add a
15971 field for our sole member child. */
15972 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15973
15974 for (struct die_info *variant_child = child_die->child;
15975 variant_child != NULL;
15976 variant_child = sibling_die (variant_child))
15977 {
15978 if (variant_child->tag == DW_TAG_member)
15979 {
15980 handle_struct_member_die (variant_child, type, fi,
15981 template_args, cu);
15982 /* Only handle the one. */
15983 break;
15984 }
15985 }
15986
15987 /* We don't handle this but we might as well report it if we see
15988 it. */
15989 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15990 complaint (_("DW_AT_discr_list is not supported yet"
15991 " - DIE at %s [in module %s]"),
15992 sect_offset_str (child_die->sect_off),
15993 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15994
15995 /* The first field was just added, so we can stash the
15996 discriminant there. */
15997 gdb_assert (!fi->fields.empty ());
15998 if (discr == NULL)
15999 fi->fields.back ().variant.default_branch = true;
16000 else
16001 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16002 }
16003 }
16004
16005 /* Finish creating a structure or union type, including filling in
16006 its members and creating a symbol for it. */
16007
16008 static void
16009 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16010 {
16011 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16012 struct die_info *child_die;
16013 struct type *type;
16014
16015 type = get_die_type (die, cu);
16016 if (type == NULL)
16017 type = read_structure_type (die, cu);
16018
16019 /* When reading a DW_TAG_variant_part, we need to notice when we
16020 read the discriminant member, so we can record it later in the
16021 discriminant_info. */
16022 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16023 sect_offset discr_offset;
16024 bool has_template_parameters = false;
16025
16026 if (is_variant_part)
16027 {
16028 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16029 if (discr == NULL)
16030 {
16031 /* Maybe it's a univariant form, an extension we support.
16032 In this case arrange not to check the offset. */
16033 is_variant_part = false;
16034 }
16035 else if (attr_form_is_ref (discr))
16036 {
16037 struct dwarf2_cu *target_cu = cu;
16038 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16039
16040 discr_offset = target_die->sect_off;
16041 }
16042 else
16043 {
16044 complaint (_("DW_AT_discr does not have DIE reference form"
16045 " - DIE at %s [in module %s]"),
16046 sect_offset_str (die->sect_off),
16047 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16048 is_variant_part = false;
16049 }
16050 }
16051
16052 if (die->child != NULL && ! die_is_declaration (die, cu))
16053 {
16054 struct field_info fi;
16055 std::vector<struct symbol *> template_args;
16056
16057 child_die = die->child;
16058
16059 while (child_die && child_die->tag)
16060 {
16061 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16062
16063 if (is_variant_part && discr_offset == child_die->sect_off)
16064 fi.fields.back ().variant.is_discriminant = true;
16065
16066 child_die = sibling_die (child_die);
16067 }
16068
16069 /* Attach template arguments to type. */
16070 if (!template_args.empty ())
16071 {
16072 has_template_parameters = true;
16073 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16074 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16075 TYPE_TEMPLATE_ARGUMENTS (type)
16076 = XOBNEWVEC (&objfile->objfile_obstack,
16077 struct symbol *,
16078 TYPE_N_TEMPLATE_ARGUMENTS (type));
16079 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16080 template_args.data (),
16081 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16082 * sizeof (struct symbol *)));
16083 }
16084
16085 /* Attach fields and member functions to the type. */
16086 if (fi.nfields)
16087 dwarf2_attach_fields_to_type (&fi, type, cu);
16088 if (!fi.fnfieldlists.empty ())
16089 {
16090 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16091
16092 /* Get the type which refers to the base class (possibly this
16093 class itself) which contains the vtable pointer for the current
16094 class from the DW_AT_containing_type attribute. This use of
16095 DW_AT_containing_type is a GNU extension. */
16096
16097 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16098 {
16099 struct type *t = die_containing_type (die, cu);
16100
16101 set_type_vptr_basetype (type, t);
16102 if (type == t)
16103 {
16104 int i;
16105
16106 /* Our own class provides vtbl ptr. */
16107 for (i = TYPE_NFIELDS (t) - 1;
16108 i >= TYPE_N_BASECLASSES (t);
16109 --i)
16110 {
16111 const char *fieldname = TYPE_FIELD_NAME (t, i);
16112
16113 if (is_vtable_name (fieldname, cu))
16114 {
16115 set_type_vptr_fieldno (type, i);
16116 break;
16117 }
16118 }
16119
16120 /* Complain if virtual function table field not found. */
16121 if (i < TYPE_N_BASECLASSES (t))
16122 complaint (_("virtual function table pointer "
16123 "not found when defining class '%s'"),
16124 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16125 }
16126 else
16127 {
16128 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16129 }
16130 }
16131 else if (cu->producer
16132 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16133 {
16134 /* The IBM XLC compiler does not provide direct indication
16135 of the containing type, but the vtable pointer is
16136 always named __vfp. */
16137
16138 int i;
16139
16140 for (i = TYPE_NFIELDS (type) - 1;
16141 i >= TYPE_N_BASECLASSES (type);
16142 --i)
16143 {
16144 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16145 {
16146 set_type_vptr_fieldno (type, i);
16147 set_type_vptr_basetype (type, type);
16148 break;
16149 }
16150 }
16151 }
16152 }
16153
16154 /* Copy fi.typedef_field_list linked list elements content into the
16155 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16156 if (!fi.typedef_field_list.empty ())
16157 {
16158 int count = fi.typedef_field_list.size ();
16159
16160 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16161 TYPE_TYPEDEF_FIELD_ARRAY (type)
16162 = ((struct decl_field *)
16163 TYPE_ALLOC (type,
16164 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16165 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16166
16167 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16168 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16169 }
16170
16171 /* Copy fi.nested_types_list linked list elements content into the
16172 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16173 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16174 {
16175 int count = fi.nested_types_list.size ();
16176
16177 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16178 TYPE_NESTED_TYPES_ARRAY (type)
16179 = ((struct decl_field *)
16180 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16181 TYPE_NESTED_TYPES_COUNT (type) = count;
16182
16183 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16184 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16185 }
16186 }
16187
16188 quirk_gcc_member_function_pointer (type, objfile);
16189 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16190 cu->rust_unions.push_back (type);
16191
16192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16193 snapshots) has been known to create a die giving a declaration
16194 for a class that has, as a child, a die giving a definition for a
16195 nested class. So we have to process our children even if the
16196 current die is a declaration. Normally, of course, a declaration
16197 won't have any children at all. */
16198
16199 child_die = die->child;
16200
16201 while (child_die != NULL && child_die->tag)
16202 {
16203 if (child_die->tag == DW_TAG_member
16204 || child_die->tag == DW_TAG_variable
16205 || child_die->tag == DW_TAG_inheritance
16206 || child_die->tag == DW_TAG_template_value_param
16207 || child_die->tag == DW_TAG_template_type_param)
16208 {
16209 /* Do nothing. */
16210 }
16211 else
16212 process_die (child_die, cu);
16213
16214 child_die = sibling_die (child_die);
16215 }
16216
16217 /* Do not consider external references. According to the DWARF standard,
16218 these DIEs are identified by the fact that they have no byte_size
16219 attribute, and a declaration attribute. */
16220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16221 || !die_is_declaration (die, cu))
16222 {
16223 struct symbol *sym = new_symbol (die, type, cu);
16224
16225 if (has_template_parameters)
16226 {
16227 /* Make sure that the symtab is set on the new symbols.
16228 Even though they don't appear in this symtab directly,
16229 other parts of gdb assume that symbols do, and this is
16230 reasonably true. */
16231 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16232 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16233 symbol_symtab (sym));
16234 }
16235 }
16236 }
16237
16238 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16239 update TYPE using some information only available in DIE's children. */
16240
16241 static void
16242 update_enumeration_type_from_children (struct die_info *die,
16243 struct type *type,
16244 struct dwarf2_cu *cu)
16245 {
16246 struct die_info *child_die;
16247 int unsigned_enum = 1;
16248 int flag_enum = 1;
16249 ULONGEST mask = 0;
16250
16251 auto_obstack obstack;
16252
16253 for (child_die = die->child;
16254 child_die != NULL && child_die->tag;
16255 child_die = sibling_die (child_die))
16256 {
16257 struct attribute *attr;
16258 LONGEST value;
16259 const gdb_byte *bytes;
16260 struct dwarf2_locexpr_baton *baton;
16261 const char *name;
16262
16263 if (child_die->tag != DW_TAG_enumerator)
16264 continue;
16265
16266 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16267 if (attr == NULL)
16268 continue;
16269
16270 name = dwarf2_name (child_die, cu);
16271 if (name == NULL)
16272 name = "<anonymous enumerator>";
16273
16274 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16275 &value, &bytes, &baton);
16276 if (value < 0)
16277 {
16278 unsigned_enum = 0;
16279 flag_enum = 0;
16280 }
16281 else if ((mask & value) != 0)
16282 flag_enum = 0;
16283 else
16284 mask |= value;
16285
16286 /* If we already know that the enum type is neither unsigned, nor
16287 a flag type, no need to look at the rest of the enumerates. */
16288 if (!unsigned_enum && !flag_enum)
16289 break;
16290 }
16291
16292 if (unsigned_enum)
16293 TYPE_UNSIGNED (type) = 1;
16294 if (flag_enum)
16295 TYPE_FLAG_ENUM (type) = 1;
16296 }
16297
16298 /* Given a DW_AT_enumeration_type die, set its type. We do not
16299 complete the type's fields yet, or create any symbols. */
16300
16301 static struct type *
16302 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16303 {
16304 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16305 struct type *type;
16306 struct attribute *attr;
16307 const char *name;
16308
16309 /* If the definition of this type lives in .debug_types, read that type.
16310 Don't follow DW_AT_specification though, that will take us back up
16311 the chain and we want to go down. */
16312 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16313 if (attr)
16314 {
16315 type = get_DW_AT_signature_type (die, attr, cu);
16316
16317 /* The type's CU may not be the same as CU.
16318 Ensure TYPE is recorded with CU in die_type_hash. */
16319 return set_die_type (die, type, cu);
16320 }
16321
16322 type = alloc_type (objfile);
16323
16324 TYPE_CODE (type) = TYPE_CODE_ENUM;
16325 name = dwarf2_full_name (NULL, die, cu);
16326 if (name != NULL)
16327 TYPE_NAME (type) = name;
16328
16329 attr = dwarf2_attr (die, DW_AT_type, cu);
16330 if (attr != NULL)
16331 {
16332 struct type *underlying_type = die_type (die, cu);
16333
16334 TYPE_TARGET_TYPE (type) = underlying_type;
16335 }
16336
16337 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16338 if (attr)
16339 {
16340 TYPE_LENGTH (type) = DW_UNSND (attr);
16341 }
16342 else
16343 {
16344 TYPE_LENGTH (type) = 0;
16345 }
16346
16347 maybe_set_alignment (cu, die, type);
16348
16349 /* The enumeration DIE can be incomplete. In Ada, any type can be
16350 declared as private in the package spec, and then defined only
16351 inside the package body. Such types are known as Taft Amendment
16352 Types. When another package uses such a type, an incomplete DIE
16353 may be generated by the compiler. */
16354 if (die_is_declaration (die, cu))
16355 TYPE_STUB (type) = 1;
16356
16357 /* Finish the creation of this type by using the enum's children.
16358 We must call this even when the underlying type has been provided
16359 so that we can determine if we're looking at a "flag" enum. */
16360 update_enumeration_type_from_children (die, type, cu);
16361
16362 /* If this type has an underlying type that is not a stub, then we
16363 may use its attributes. We always use the "unsigned" attribute
16364 in this situation, because ordinarily we guess whether the type
16365 is unsigned -- but the guess can be wrong and the underlying type
16366 can tell us the reality. However, we defer to a local size
16367 attribute if one exists, because this lets the compiler override
16368 the underlying type if needed. */
16369 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16370 {
16371 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16372 if (TYPE_LENGTH (type) == 0)
16373 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16374 if (TYPE_RAW_ALIGN (type) == 0
16375 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16376 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16377 }
16378
16379 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16380
16381 return set_die_type (die, type, cu);
16382 }
16383
16384 /* Given a pointer to a die which begins an enumeration, process all
16385 the dies that define the members of the enumeration, and create the
16386 symbol for the enumeration type.
16387
16388 NOTE: We reverse the order of the element list. */
16389
16390 static void
16391 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16392 {
16393 struct type *this_type;
16394
16395 this_type = get_die_type (die, cu);
16396 if (this_type == NULL)
16397 this_type = read_enumeration_type (die, cu);
16398
16399 if (die->child != NULL)
16400 {
16401 struct die_info *child_die;
16402 struct symbol *sym;
16403 struct field *fields = NULL;
16404 int num_fields = 0;
16405 const char *name;
16406
16407 child_die = die->child;
16408 while (child_die && child_die->tag)
16409 {
16410 if (child_die->tag != DW_TAG_enumerator)
16411 {
16412 process_die (child_die, cu);
16413 }
16414 else
16415 {
16416 name = dwarf2_name (child_die, cu);
16417 if (name)
16418 {
16419 sym = new_symbol (child_die, this_type, cu);
16420
16421 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16422 {
16423 fields = (struct field *)
16424 xrealloc (fields,
16425 (num_fields + DW_FIELD_ALLOC_CHUNK)
16426 * sizeof (struct field));
16427 }
16428
16429 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16430 FIELD_TYPE (fields[num_fields]) = NULL;
16431 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16432 FIELD_BITSIZE (fields[num_fields]) = 0;
16433
16434 num_fields++;
16435 }
16436 }
16437
16438 child_die = sibling_die (child_die);
16439 }
16440
16441 if (num_fields)
16442 {
16443 TYPE_NFIELDS (this_type) = num_fields;
16444 TYPE_FIELDS (this_type) = (struct field *)
16445 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16446 memcpy (TYPE_FIELDS (this_type), fields,
16447 sizeof (struct field) * num_fields);
16448 xfree (fields);
16449 }
16450 }
16451
16452 /* If we are reading an enum from a .debug_types unit, and the enum
16453 is a declaration, and the enum is not the signatured type in the
16454 unit, then we do not want to add a symbol for it. Adding a
16455 symbol would in some cases obscure the true definition of the
16456 enum, giving users an incomplete type when the definition is
16457 actually available. Note that we do not want to do this for all
16458 enums which are just declarations, because C++0x allows forward
16459 enum declarations. */
16460 if (cu->per_cu->is_debug_types
16461 && die_is_declaration (die, cu))
16462 {
16463 struct signatured_type *sig_type;
16464
16465 sig_type = (struct signatured_type *) cu->per_cu;
16466 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16467 if (sig_type->type_offset_in_section != die->sect_off)
16468 return;
16469 }
16470
16471 new_symbol (die, this_type, cu);
16472 }
16473
16474 /* Extract all information from a DW_TAG_array_type DIE and put it in
16475 the DIE's type field. For now, this only handles one dimensional
16476 arrays. */
16477
16478 static struct type *
16479 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16480 {
16481 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16482 struct die_info *child_die;
16483 struct type *type;
16484 struct type *element_type, *range_type, *index_type;
16485 struct attribute *attr;
16486 const char *name;
16487 struct dynamic_prop *byte_stride_prop = NULL;
16488 unsigned int bit_stride = 0;
16489
16490 element_type = die_type (die, cu);
16491
16492 /* The die_type call above may have already set the type for this DIE. */
16493 type = get_die_type (die, cu);
16494 if (type)
16495 return type;
16496
16497 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16498 if (attr != NULL)
16499 {
16500 int stride_ok;
16501
16502 byte_stride_prop
16503 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16504 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16505 if (!stride_ok)
16506 {
16507 complaint (_("unable to read array DW_AT_byte_stride "
16508 " - DIE at %s [in module %s]"),
16509 sect_offset_str (die->sect_off),
16510 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16511 /* Ignore this attribute. We will likely not be able to print
16512 arrays of this type correctly, but there is little we can do
16513 to help if we cannot read the attribute's value. */
16514 byte_stride_prop = NULL;
16515 }
16516 }
16517
16518 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16519 if (attr != NULL)
16520 bit_stride = DW_UNSND (attr);
16521
16522 /* Irix 6.2 native cc creates array types without children for
16523 arrays with unspecified length. */
16524 if (die->child == NULL)
16525 {
16526 index_type = objfile_type (objfile)->builtin_int;
16527 range_type = create_static_range_type (NULL, index_type, 0, -1);
16528 type = create_array_type_with_stride (NULL, element_type, range_type,
16529 byte_stride_prop, bit_stride);
16530 return set_die_type (die, type, cu);
16531 }
16532
16533 std::vector<struct type *> range_types;
16534 child_die = die->child;
16535 while (child_die && child_die->tag)
16536 {
16537 if (child_die->tag == DW_TAG_subrange_type)
16538 {
16539 struct type *child_type = read_type_die (child_die, cu);
16540
16541 if (child_type != NULL)
16542 {
16543 /* The range type was succesfully read. Save it for the
16544 array type creation. */
16545 range_types.push_back (child_type);
16546 }
16547 }
16548 child_die = sibling_die (child_die);
16549 }
16550
16551 /* Dwarf2 dimensions are output from left to right, create the
16552 necessary array types in backwards order. */
16553
16554 type = element_type;
16555
16556 if (read_array_order (die, cu) == DW_ORD_col_major)
16557 {
16558 int i = 0;
16559
16560 while (i < range_types.size ())
16561 type = create_array_type_with_stride (NULL, type, range_types[i++],
16562 byte_stride_prop, bit_stride);
16563 }
16564 else
16565 {
16566 size_t ndim = range_types.size ();
16567 while (ndim-- > 0)
16568 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16569 byte_stride_prop, bit_stride);
16570 }
16571
16572 /* Understand Dwarf2 support for vector types (like they occur on
16573 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16574 array type. This is not part of the Dwarf2/3 standard yet, but a
16575 custom vendor extension. The main difference between a regular
16576 array and the vector variant is that vectors are passed by value
16577 to functions. */
16578 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16579 if (attr)
16580 make_vector_type (type);
16581
16582 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16583 implementation may choose to implement triple vectors using this
16584 attribute. */
16585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16586 if (attr)
16587 {
16588 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16589 TYPE_LENGTH (type) = DW_UNSND (attr);
16590 else
16591 complaint (_("DW_AT_byte_size for array type smaller "
16592 "than the total size of elements"));
16593 }
16594
16595 name = dwarf2_name (die, cu);
16596 if (name)
16597 TYPE_NAME (type) = name;
16598
16599 maybe_set_alignment (cu, die, type);
16600
16601 /* Install the type in the die. */
16602 set_die_type (die, type, cu);
16603
16604 /* set_die_type should be already done. */
16605 set_descriptive_type (type, die, cu);
16606
16607 return type;
16608 }
16609
16610 static enum dwarf_array_dim_ordering
16611 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16612 {
16613 struct attribute *attr;
16614
16615 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16616
16617 if (attr)
16618 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16619
16620 /* GNU F77 is a special case, as at 08/2004 array type info is the
16621 opposite order to the dwarf2 specification, but data is still
16622 laid out as per normal fortran.
16623
16624 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16625 version checking. */
16626
16627 if (cu->language == language_fortran
16628 && cu->producer && strstr (cu->producer, "GNU F77"))
16629 {
16630 return DW_ORD_row_major;
16631 }
16632
16633 switch (cu->language_defn->la_array_ordering)
16634 {
16635 case array_column_major:
16636 return DW_ORD_col_major;
16637 case array_row_major:
16638 default:
16639 return DW_ORD_row_major;
16640 };
16641 }
16642
16643 /* Extract all information from a DW_TAG_set_type DIE and put it in
16644 the DIE's type field. */
16645
16646 static struct type *
16647 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16648 {
16649 struct type *domain_type, *set_type;
16650 struct attribute *attr;
16651
16652 domain_type = die_type (die, cu);
16653
16654 /* The die_type call above may have already set the type for this DIE. */
16655 set_type = get_die_type (die, cu);
16656 if (set_type)
16657 return set_type;
16658
16659 set_type = create_set_type (NULL, domain_type);
16660
16661 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16662 if (attr)
16663 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16664
16665 maybe_set_alignment (cu, die, set_type);
16666
16667 return set_die_type (die, set_type, cu);
16668 }
16669
16670 /* A helper for read_common_block that creates a locexpr baton.
16671 SYM is the symbol which we are marking as computed.
16672 COMMON_DIE is the DIE for the common block.
16673 COMMON_LOC is the location expression attribute for the common
16674 block itself.
16675 MEMBER_LOC is the location expression attribute for the particular
16676 member of the common block that we are processing.
16677 CU is the CU from which the above come. */
16678
16679 static void
16680 mark_common_block_symbol_computed (struct symbol *sym,
16681 struct die_info *common_die,
16682 struct attribute *common_loc,
16683 struct attribute *member_loc,
16684 struct dwarf2_cu *cu)
16685 {
16686 struct dwarf2_per_objfile *dwarf2_per_objfile
16687 = cu->per_cu->dwarf2_per_objfile;
16688 struct objfile *objfile = dwarf2_per_objfile->objfile;
16689 struct dwarf2_locexpr_baton *baton;
16690 gdb_byte *ptr;
16691 unsigned int cu_off;
16692 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16693 LONGEST offset = 0;
16694
16695 gdb_assert (common_loc && member_loc);
16696 gdb_assert (attr_form_is_block (common_loc));
16697 gdb_assert (attr_form_is_block (member_loc)
16698 || attr_form_is_constant (member_loc));
16699
16700 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16701 baton->per_cu = cu->per_cu;
16702 gdb_assert (baton->per_cu);
16703
16704 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16705
16706 if (attr_form_is_constant (member_loc))
16707 {
16708 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16709 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16710 }
16711 else
16712 baton->size += DW_BLOCK (member_loc)->size;
16713
16714 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16715 baton->data = ptr;
16716
16717 *ptr++ = DW_OP_call4;
16718 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16719 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16720 ptr += 4;
16721
16722 if (attr_form_is_constant (member_loc))
16723 {
16724 *ptr++ = DW_OP_addr;
16725 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16726 ptr += cu->header.addr_size;
16727 }
16728 else
16729 {
16730 /* We have to copy the data here, because DW_OP_call4 will only
16731 use a DW_AT_location attribute. */
16732 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16733 ptr += DW_BLOCK (member_loc)->size;
16734 }
16735
16736 *ptr++ = DW_OP_plus;
16737 gdb_assert (ptr - baton->data == baton->size);
16738
16739 SYMBOL_LOCATION_BATON (sym) = baton;
16740 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16741 }
16742
16743 /* Create appropriate locally-scoped variables for all the
16744 DW_TAG_common_block entries. Also create a struct common_block
16745 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16746 is used to sepate the common blocks name namespace from regular
16747 variable names. */
16748
16749 static void
16750 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16751 {
16752 struct attribute *attr;
16753
16754 attr = dwarf2_attr (die, DW_AT_location, cu);
16755 if (attr)
16756 {
16757 /* Support the .debug_loc offsets. */
16758 if (attr_form_is_block (attr))
16759 {
16760 /* Ok. */
16761 }
16762 else if (attr_form_is_section_offset (attr))
16763 {
16764 dwarf2_complex_location_expr_complaint ();
16765 attr = NULL;
16766 }
16767 else
16768 {
16769 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16770 "common block member");
16771 attr = NULL;
16772 }
16773 }
16774
16775 if (die->child != NULL)
16776 {
16777 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16778 struct die_info *child_die;
16779 size_t n_entries = 0, size;
16780 struct common_block *common_block;
16781 struct symbol *sym;
16782
16783 for (child_die = die->child;
16784 child_die && child_die->tag;
16785 child_die = sibling_die (child_die))
16786 ++n_entries;
16787
16788 size = (sizeof (struct common_block)
16789 + (n_entries - 1) * sizeof (struct symbol *));
16790 common_block
16791 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16792 size);
16793 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16794 common_block->n_entries = 0;
16795
16796 for (child_die = die->child;
16797 child_die && child_die->tag;
16798 child_die = sibling_die (child_die))
16799 {
16800 /* Create the symbol in the DW_TAG_common_block block in the current
16801 symbol scope. */
16802 sym = new_symbol (child_die, NULL, cu);
16803 if (sym != NULL)
16804 {
16805 struct attribute *member_loc;
16806
16807 common_block->contents[common_block->n_entries++] = sym;
16808
16809 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16810 cu);
16811 if (member_loc)
16812 {
16813 /* GDB has handled this for a long time, but it is
16814 not specified by DWARF. It seems to have been
16815 emitted by gfortran at least as recently as:
16816 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16817 complaint (_("Variable in common block has "
16818 "DW_AT_data_member_location "
16819 "- DIE at %s [in module %s]"),
16820 sect_offset_str (child_die->sect_off),
16821 objfile_name (objfile));
16822
16823 if (attr_form_is_section_offset (member_loc))
16824 dwarf2_complex_location_expr_complaint ();
16825 else if (attr_form_is_constant (member_loc)
16826 || attr_form_is_block (member_loc))
16827 {
16828 if (attr)
16829 mark_common_block_symbol_computed (sym, die, attr,
16830 member_loc, cu);
16831 }
16832 else
16833 dwarf2_complex_location_expr_complaint ();
16834 }
16835 }
16836 }
16837
16838 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16839 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16840 }
16841 }
16842
16843 /* Create a type for a C++ namespace. */
16844
16845 static struct type *
16846 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16847 {
16848 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16849 const char *previous_prefix, *name;
16850 int is_anonymous;
16851 struct type *type;
16852
16853 /* For extensions, reuse the type of the original namespace. */
16854 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16855 {
16856 struct die_info *ext_die;
16857 struct dwarf2_cu *ext_cu = cu;
16858
16859 ext_die = dwarf2_extension (die, &ext_cu);
16860 type = read_type_die (ext_die, ext_cu);
16861
16862 /* EXT_CU may not be the same as CU.
16863 Ensure TYPE is recorded with CU in die_type_hash. */
16864 return set_die_type (die, type, cu);
16865 }
16866
16867 name = namespace_name (die, &is_anonymous, cu);
16868
16869 /* Now build the name of the current namespace. */
16870
16871 previous_prefix = determine_prefix (die, cu);
16872 if (previous_prefix[0] != '\0')
16873 name = typename_concat (&objfile->objfile_obstack,
16874 previous_prefix, name, 0, cu);
16875
16876 /* Create the type. */
16877 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16878
16879 return set_die_type (die, type, cu);
16880 }
16881
16882 /* Read a namespace scope. */
16883
16884 static void
16885 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16886 {
16887 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16888 int is_anonymous;
16889
16890 /* Add a symbol associated to this if we haven't seen the namespace
16891 before. Also, add a using directive if it's an anonymous
16892 namespace. */
16893
16894 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16895 {
16896 struct type *type;
16897
16898 type = read_type_die (die, cu);
16899 new_symbol (die, type, cu);
16900
16901 namespace_name (die, &is_anonymous, cu);
16902 if (is_anonymous)
16903 {
16904 const char *previous_prefix = determine_prefix (die, cu);
16905
16906 std::vector<const char *> excludes;
16907 add_using_directive (using_directives (cu),
16908 previous_prefix, TYPE_NAME (type), NULL,
16909 NULL, excludes, 0, &objfile->objfile_obstack);
16910 }
16911 }
16912
16913 if (die->child != NULL)
16914 {
16915 struct die_info *child_die = die->child;
16916
16917 while (child_die && child_die->tag)
16918 {
16919 process_die (child_die, cu);
16920 child_die = sibling_die (child_die);
16921 }
16922 }
16923 }
16924
16925 /* Read a Fortran module as type. This DIE can be only a declaration used for
16926 imported module. Still we need that type as local Fortran "use ... only"
16927 declaration imports depend on the created type in determine_prefix. */
16928
16929 static struct type *
16930 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16931 {
16932 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16933 const char *module_name;
16934 struct type *type;
16935
16936 module_name = dwarf2_name (die, cu);
16937 if (!module_name)
16938 complaint (_("DW_TAG_module has no name, offset %s"),
16939 sect_offset_str (die->sect_off));
16940 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16941
16942 return set_die_type (die, type, cu);
16943 }
16944
16945 /* Read a Fortran module. */
16946
16947 static void
16948 read_module (struct die_info *die, struct dwarf2_cu *cu)
16949 {
16950 struct die_info *child_die = die->child;
16951 struct type *type;
16952
16953 type = read_type_die (die, cu);
16954 new_symbol (die, type, cu);
16955
16956 while (child_die && child_die->tag)
16957 {
16958 process_die (child_die, cu);
16959 child_die = sibling_die (child_die);
16960 }
16961 }
16962
16963 /* Return the name of the namespace represented by DIE. Set
16964 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16965 namespace. */
16966
16967 static const char *
16968 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16969 {
16970 struct die_info *current_die;
16971 const char *name = NULL;
16972
16973 /* Loop through the extensions until we find a name. */
16974
16975 for (current_die = die;
16976 current_die != NULL;
16977 current_die = dwarf2_extension (die, &cu))
16978 {
16979 /* We don't use dwarf2_name here so that we can detect the absence
16980 of a name -> anonymous namespace. */
16981 name = dwarf2_string_attr (die, DW_AT_name, cu);
16982
16983 if (name != NULL)
16984 break;
16985 }
16986
16987 /* Is it an anonymous namespace? */
16988
16989 *is_anonymous = (name == NULL);
16990 if (*is_anonymous)
16991 name = CP_ANONYMOUS_NAMESPACE_STR;
16992
16993 return name;
16994 }
16995
16996 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16997 the user defined type vector. */
16998
16999 static struct type *
17000 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17001 {
17002 struct gdbarch *gdbarch
17003 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17004 struct comp_unit_head *cu_header = &cu->header;
17005 struct type *type;
17006 struct attribute *attr_byte_size;
17007 struct attribute *attr_address_class;
17008 int byte_size, addr_class;
17009 struct type *target_type;
17010
17011 target_type = die_type (die, cu);
17012
17013 /* The die_type call above may have already set the type for this DIE. */
17014 type = get_die_type (die, cu);
17015 if (type)
17016 return type;
17017
17018 type = lookup_pointer_type (target_type);
17019
17020 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17021 if (attr_byte_size)
17022 byte_size = DW_UNSND (attr_byte_size);
17023 else
17024 byte_size = cu_header->addr_size;
17025
17026 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17027 if (attr_address_class)
17028 addr_class = DW_UNSND (attr_address_class);
17029 else
17030 addr_class = DW_ADDR_none;
17031
17032 ULONGEST alignment = get_alignment (cu, die);
17033
17034 /* If the pointer size, alignment, or address class is different
17035 than the default, create a type variant marked as such and set
17036 the length accordingly. */
17037 if (TYPE_LENGTH (type) != byte_size
17038 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17039 && alignment != TYPE_RAW_ALIGN (type))
17040 || addr_class != DW_ADDR_none)
17041 {
17042 if (gdbarch_address_class_type_flags_p (gdbarch))
17043 {
17044 int type_flags;
17045
17046 type_flags = gdbarch_address_class_type_flags
17047 (gdbarch, byte_size, addr_class);
17048 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17049 == 0);
17050 type = make_type_with_address_space (type, type_flags);
17051 }
17052 else if (TYPE_LENGTH (type) != byte_size)
17053 {
17054 complaint (_("invalid pointer size %d"), byte_size);
17055 }
17056 else if (TYPE_RAW_ALIGN (type) != alignment)
17057 {
17058 complaint (_("Invalid DW_AT_alignment"
17059 " - DIE at %s [in module %s]"),
17060 sect_offset_str (die->sect_off),
17061 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17062 }
17063 else
17064 {
17065 /* Should we also complain about unhandled address classes? */
17066 }
17067 }
17068
17069 TYPE_LENGTH (type) = byte_size;
17070 set_type_align (type, alignment);
17071 return set_die_type (die, type, cu);
17072 }
17073
17074 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17075 the user defined type vector. */
17076
17077 static struct type *
17078 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17079 {
17080 struct type *type;
17081 struct type *to_type;
17082 struct type *domain;
17083
17084 to_type = die_type (die, cu);
17085 domain = die_containing_type (die, cu);
17086
17087 /* The calls above may have already set the type for this DIE. */
17088 type = get_die_type (die, cu);
17089 if (type)
17090 return type;
17091
17092 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17093 type = lookup_methodptr_type (to_type);
17094 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17095 {
17096 struct type *new_type
17097 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17098
17099 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17100 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17101 TYPE_VARARGS (to_type));
17102 type = lookup_methodptr_type (new_type);
17103 }
17104 else
17105 type = lookup_memberptr_type (to_type, domain);
17106
17107 return set_die_type (die, type, cu);
17108 }
17109
17110 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17111 the user defined type vector. */
17112
17113 static struct type *
17114 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17115 enum type_code refcode)
17116 {
17117 struct comp_unit_head *cu_header = &cu->header;
17118 struct type *type, *target_type;
17119 struct attribute *attr;
17120
17121 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17122
17123 target_type = die_type (die, cu);
17124
17125 /* The die_type call above may have already set the type for this DIE. */
17126 type = get_die_type (die, cu);
17127 if (type)
17128 return type;
17129
17130 type = lookup_reference_type (target_type, refcode);
17131 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17132 if (attr)
17133 {
17134 TYPE_LENGTH (type) = DW_UNSND (attr);
17135 }
17136 else
17137 {
17138 TYPE_LENGTH (type) = cu_header->addr_size;
17139 }
17140 maybe_set_alignment (cu, die, type);
17141 return set_die_type (die, type, cu);
17142 }
17143
17144 /* Add the given cv-qualifiers to the element type of the array. GCC
17145 outputs DWARF type qualifiers that apply to an array, not the
17146 element type. But GDB relies on the array element type to carry
17147 the cv-qualifiers. This mimics section 6.7.3 of the C99
17148 specification. */
17149
17150 static struct type *
17151 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17152 struct type *base_type, int cnst, int voltl)
17153 {
17154 struct type *el_type, *inner_array;
17155
17156 base_type = copy_type (base_type);
17157 inner_array = base_type;
17158
17159 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17160 {
17161 TYPE_TARGET_TYPE (inner_array) =
17162 copy_type (TYPE_TARGET_TYPE (inner_array));
17163 inner_array = TYPE_TARGET_TYPE (inner_array);
17164 }
17165
17166 el_type = TYPE_TARGET_TYPE (inner_array);
17167 cnst |= TYPE_CONST (el_type);
17168 voltl |= TYPE_VOLATILE (el_type);
17169 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17170
17171 return set_die_type (die, base_type, cu);
17172 }
17173
17174 static struct type *
17175 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17176 {
17177 struct type *base_type, *cv_type;
17178
17179 base_type = die_type (die, cu);
17180
17181 /* The die_type call above may have already set the type for this DIE. */
17182 cv_type = get_die_type (die, cu);
17183 if (cv_type)
17184 return cv_type;
17185
17186 /* In case the const qualifier is applied to an array type, the element type
17187 is so qualified, not the array type (section 6.7.3 of C99). */
17188 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17189 return add_array_cv_type (die, cu, base_type, 1, 0);
17190
17191 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17192 return set_die_type (die, cv_type, cu);
17193 }
17194
17195 static struct type *
17196 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17197 {
17198 struct type *base_type, *cv_type;
17199
17200 base_type = die_type (die, cu);
17201
17202 /* The die_type call above may have already set the type for this DIE. */
17203 cv_type = get_die_type (die, cu);
17204 if (cv_type)
17205 return cv_type;
17206
17207 /* In case the volatile qualifier is applied to an array type, the
17208 element type is so qualified, not the array type (section 6.7.3
17209 of C99). */
17210 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17211 return add_array_cv_type (die, cu, base_type, 0, 1);
17212
17213 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17214 return set_die_type (die, cv_type, cu);
17215 }
17216
17217 /* Handle DW_TAG_restrict_type. */
17218
17219 static struct type *
17220 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17221 {
17222 struct type *base_type, *cv_type;
17223
17224 base_type = die_type (die, cu);
17225
17226 /* The die_type call above may have already set the type for this DIE. */
17227 cv_type = get_die_type (die, cu);
17228 if (cv_type)
17229 return cv_type;
17230
17231 cv_type = make_restrict_type (base_type);
17232 return set_die_type (die, cv_type, cu);
17233 }
17234
17235 /* Handle DW_TAG_atomic_type. */
17236
17237 static struct type *
17238 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17239 {
17240 struct type *base_type, *cv_type;
17241
17242 base_type = die_type (die, cu);
17243
17244 /* The die_type call above may have already set the type for this DIE. */
17245 cv_type = get_die_type (die, cu);
17246 if (cv_type)
17247 return cv_type;
17248
17249 cv_type = make_atomic_type (base_type);
17250 return set_die_type (die, cv_type, cu);
17251 }
17252
17253 /* Extract all information from a DW_TAG_string_type DIE and add to
17254 the user defined type vector. It isn't really a user defined type,
17255 but it behaves like one, with other DIE's using an AT_user_def_type
17256 attribute to reference it. */
17257
17258 static struct type *
17259 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17260 {
17261 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17262 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17263 struct type *type, *range_type, *index_type, *char_type;
17264 struct attribute *attr;
17265 unsigned int length;
17266
17267 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17268 if (attr)
17269 {
17270 length = DW_UNSND (attr);
17271 }
17272 else
17273 {
17274 /* Check for the DW_AT_byte_size attribute. */
17275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17276 if (attr)
17277 {
17278 length = DW_UNSND (attr);
17279 }
17280 else
17281 {
17282 length = 1;
17283 }
17284 }
17285
17286 index_type = objfile_type (objfile)->builtin_int;
17287 range_type = create_static_range_type (NULL, index_type, 1, length);
17288 char_type = language_string_char_type (cu->language_defn, gdbarch);
17289 type = create_string_type (NULL, char_type, range_type);
17290
17291 return set_die_type (die, type, cu);
17292 }
17293
17294 /* Assuming that DIE corresponds to a function, returns nonzero
17295 if the function is prototyped. */
17296
17297 static int
17298 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17299 {
17300 struct attribute *attr;
17301
17302 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17303 if (attr && (DW_UNSND (attr) != 0))
17304 return 1;
17305
17306 /* The DWARF standard implies that the DW_AT_prototyped attribute
17307 is only meaninful for C, but the concept also extends to other
17308 languages that allow unprototyped functions (Eg: Objective C).
17309 For all other languages, assume that functions are always
17310 prototyped. */
17311 if (cu->language != language_c
17312 && cu->language != language_objc
17313 && cu->language != language_opencl)
17314 return 1;
17315
17316 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17317 prototyped and unprototyped functions; default to prototyped,
17318 since that is more common in modern code (and RealView warns
17319 about unprototyped functions). */
17320 if (producer_is_realview (cu->producer))
17321 return 1;
17322
17323 return 0;
17324 }
17325
17326 /* Handle DIES due to C code like:
17327
17328 struct foo
17329 {
17330 int (*funcp)(int a, long l);
17331 int b;
17332 };
17333
17334 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17335
17336 static struct type *
17337 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17338 {
17339 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17340 struct type *type; /* Type that this function returns. */
17341 struct type *ftype; /* Function that returns above type. */
17342 struct attribute *attr;
17343
17344 type = die_type (die, cu);
17345
17346 /* The die_type call above may have already set the type for this DIE. */
17347 ftype = get_die_type (die, cu);
17348 if (ftype)
17349 return ftype;
17350
17351 ftype = lookup_function_type (type);
17352
17353 if (prototyped_function_p (die, cu))
17354 TYPE_PROTOTYPED (ftype) = 1;
17355
17356 /* Store the calling convention in the type if it's available in
17357 the subroutine die. Otherwise set the calling convention to
17358 the default value DW_CC_normal. */
17359 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17360 if (attr)
17361 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17362 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17363 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17364 else
17365 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17366
17367 /* Record whether the function returns normally to its caller or not
17368 if the DWARF producer set that information. */
17369 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17370 if (attr && (DW_UNSND (attr) != 0))
17371 TYPE_NO_RETURN (ftype) = 1;
17372
17373 /* We need to add the subroutine type to the die immediately so
17374 we don't infinitely recurse when dealing with parameters
17375 declared as the same subroutine type. */
17376 set_die_type (die, ftype, cu);
17377
17378 if (die->child != NULL)
17379 {
17380 struct type *void_type = objfile_type (objfile)->builtin_void;
17381 struct die_info *child_die;
17382 int nparams, iparams;
17383
17384 /* Count the number of parameters.
17385 FIXME: GDB currently ignores vararg functions, but knows about
17386 vararg member functions. */
17387 nparams = 0;
17388 child_die = die->child;
17389 while (child_die && child_die->tag)
17390 {
17391 if (child_die->tag == DW_TAG_formal_parameter)
17392 nparams++;
17393 else if (child_die->tag == DW_TAG_unspecified_parameters)
17394 TYPE_VARARGS (ftype) = 1;
17395 child_die = sibling_die (child_die);
17396 }
17397
17398 /* Allocate storage for parameters and fill them in. */
17399 TYPE_NFIELDS (ftype) = nparams;
17400 TYPE_FIELDS (ftype) = (struct field *)
17401 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17402
17403 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17404 even if we error out during the parameters reading below. */
17405 for (iparams = 0; iparams < nparams; iparams++)
17406 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17407
17408 iparams = 0;
17409 child_die = die->child;
17410 while (child_die && child_die->tag)
17411 {
17412 if (child_die->tag == DW_TAG_formal_parameter)
17413 {
17414 struct type *arg_type;
17415
17416 /* DWARF version 2 has no clean way to discern C++
17417 static and non-static member functions. G++ helps
17418 GDB by marking the first parameter for non-static
17419 member functions (which is the this pointer) as
17420 artificial. We pass this information to
17421 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17422
17423 DWARF version 3 added DW_AT_object_pointer, which GCC
17424 4.5 does not yet generate. */
17425 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17426 if (attr)
17427 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17428 else
17429 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17430 arg_type = die_type (child_die, cu);
17431
17432 /* RealView does not mark THIS as const, which the testsuite
17433 expects. GCC marks THIS as const in method definitions,
17434 but not in the class specifications (GCC PR 43053). */
17435 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17436 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17437 {
17438 int is_this = 0;
17439 struct dwarf2_cu *arg_cu = cu;
17440 const char *name = dwarf2_name (child_die, cu);
17441
17442 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17443 if (attr)
17444 {
17445 /* If the compiler emits this, use it. */
17446 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17447 is_this = 1;
17448 }
17449 else if (name && strcmp (name, "this") == 0)
17450 /* Function definitions will have the argument names. */
17451 is_this = 1;
17452 else if (name == NULL && iparams == 0)
17453 /* Declarations may not have the names, so like
17454 elsewhere in GDB, assume an artificial first
17455 argument is "this". */
17456 is_this = 1;
17457
17458 if (is_this)
17459 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17460 arg_type, 0);
17461 }
17462
17463 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17464 iparams++;
17465 }
17466 child_die = sibling_die (child_die);
17467 }
17468 }
17469
17470 return ftype;
17471 }
17472
17473 static struct type *
17474 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17475 {
17476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17477 const char *name = NULL;
17478 struct type *this_type, *target_type;
17479
17480 name = dwarf2_full_name (NULL, die, cu);
17481 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17482 TYPE_TARGET_STUB (this_type) = 1;
17483 set_die_type (die, this_type, cu);
17484 target_type = die_type (die, cu);
17485 if (target_type != this_type)
17486 TYPE_TARGET_TYPE (this_type) = target_type;
17487 else
17488 {
17489 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17490 spec and cause infinite loops in GDB. */
17491 complaint (_("Self-referential DW_TAG_typedef "
17492 "- DIE at %s [in module %s]"),
17493 sect_offset_str (die->sect_off), objfile_name (objfile));
17494 TYPE_TARGET_TYPE (this_type) = NULL;
17495 }
17496 return this_type;
17497 }
17498
17499 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17500 (which may be different from NAME) to the architecture back-end to allow
17501 it to guess the correct format if necessary. */
17502
17503 static struct type *
17504 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17505 const char *name_hint)
17506 {
17507 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17508 const struct floatformat **format;
17509 struct type *type;
17510
17511 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17512 if (format)
17513 type = init_float_type (objfile, bits, name, format);
17514 else
17515 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17516
17517 return type;
17518 }
17519
17520 /* Allocate an integer type of size BITS and name NAME. */
17521
17522 static struct type *
17523 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17524 int bits, int unsigned_p, const char *name)
17525 {
17526 struct type *type;
17527
17528 /* Versions of Intel's C Compiler generate an integer type called "void"
17529 instead of using DW_TAG_unspecified_type. This has been seen on
17530 at least versions 14, 17, and 18. */
17531 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17532 && strcmp (name, "void") == 0)
17533 type = objfile_type (objfile)->builtin_void;
17534 else
17535 type = init_integer_type (objfile, bits, unsigned_p, name);
17536
17537 return type;
17538 }
17539
17540 /* Find a representation of a given base type and install
17541 it in the TYPE field of the die. */
17542
17543 static struct type *
17544 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17545 {
17546 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17547 struct type *type;
17548 struct attribute *attr;
17549 int encoding = 0, bits = 0;
17550 const char *name;
17551
17552 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17553 if (attr)
17554 {
17555 encoding = DW_UNSND (attr);
17556 }
17557 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17558 if (attr)
17559 {
17560 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17561 }
17562 name = dwarf2_name (die, cu);
17563 if (!name)
17564 {
17565 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17566 }
17567
17568 switch (encoding)
17569 {
17570 case DW_ATE_address:
17571 /* Turn DW_ATE_address into a void * pointer. */
17572 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17573 type = init_pointer_type (objfile, bits, name, type);
17574 break;
17575 case DW_ATE_boolean:
17576 type = init_boolean_type (objfile, bits, 1, name);
17577 break;
17578 case DW_ATE_complex_float:
17579 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17580 type = init_complex_type (objfile, name, type);
17581 break;
17582 case DW_ATE_decimal_float:
17583 type = init_decfloat_type (objfile, bits, name);
17584 break;
17585 case DW_ATE_float:
17586 type = dwarf2_init_float_type (objfile, bits, name, name);
17587 break;
17588 case DW_ATE_signed:
17589 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17590 break;
17591 case DW_ATE_unsigned:
17592 if (cu->language == language_fortran
17593 && name
17594 && startswith (name, "character("))
17595 type = init_character_type (objfile, bits, 1, name);
17596 else
17597 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17598 break;
17599 case DW_ATE_signed_char:
17600 if (cu->language == language_ada || cu->language == language_m2
17601 || cu->language == language_pascal
17602 || cu->language == language_fortran)
17603 type = init_character_type (objfile, bits, 0, name);
17604 else
17605 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17606 break;
17607 case DW_ATE_unsigned_char:
17608 if (cu->language == language_ada || cu->language == language_m2
17609 || cu->language == language_pascal
17610 || cu->language == language_fortran
17611 || cu->language == language_rust)
17612 type = init_character_type (objfile, bits, 1, name);
17613 else
17614 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17615 break;
17616 case DW_ATE_UTF:
17617 {
17618 gdbarch *arch = get_objfile_arch (objfile);
17619
17620 if (bits == 16)
17621 type = builtin_type (arch)->builtin_char16;
17622 else if (bits == 32)
17623 type = builtin_type (arch)->builtin_char32;
17624 else
17625 {
17626 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17627 bits);
17628 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17629 }
17630 return set_die_type (die, type, cu);
17631 }
17632 break;
17633
17634 default:
17635 complaint (_("unsupported DW_AT_encoding: '%s'"),
17636 dwarf_type_encoding_name (encoding));
17637 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17638 break;
17639 }
17640
17641 if (name && strcmp (name, "char") == 0)
17642 TYPE_NOSIGN (type) = 1;
17643
17644 maybe_set_alignment (cu, die, type);
17645
17646 return set_die_type (die, type, cu);
17647 }
17648
17649 /* Parse dwarf attribute if it's a block, reference or constant and put the
17650 resulting value of the attribute into struct bound_prop.
17651 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17652
17653 static int
17654 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17655 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17656 {
17657 struct dwarf2_property_baton *baton;
17658 struct obstack *obstack
17659 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17660
17661 if (attr == NULL || prop == NULL)
17662 return 0;
17663
17664 if (attr_form_is_block (attr))
17665 {
17666 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17667 baton->referenced_type = NULL;
17668 baton->locexpr.per_cu = cu->per_cu;
17669 baton->locexpr.size = DW_BLOCK (attr)->size;
17670 baton->locexpr.data = DW_BLOCK (attr)->data;
17671 prop->data.baton = baton;
17672 prop->kind = PROP_LOCEXPR;
17673 gdb_assert (prop->data.baton != NULL);
17674 }
17675 else if (attr_form_is_ref (attr))
17676 {
17677 struct dwarf2_cu *target_cu = cu;
17678 struct die_info *target_die;
17679 struct attribute *target_attr;
17680
17681 target_die = follow_die_ref (die, attr, &target_cu);
17682 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17683 if (target_attr == NULL)
17684 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17685 target_cu);
17686 if (target_attr == NULL)
17687 return 0;
17688
17689 switch (target_attr->name)
17690 {
17691 case DW_AT_location:
17692 if (attr_form_is_section_offset (target_attr))
17693 {
17694 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17695 baton->referenced_type = die_type (target_die, target_cu);
17696 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17697 prop->data.baton = baton;
17698 prop->kind = PROP_LOCLIST;
17699 gdb_assert (prop->data.baton != NULL);
17700 }
17701 else if (attr_form_is_block (target_attr))
17702 {
17703 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17704 baton->referenced_type = die_type (target_die, target_cu);
17705 baton->locexpr.per_cu = cu->per_cu;
17706 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17707 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17708 prop->data.baton = baton;
17709 prop->kind = PROP_LOCEXPR;
17710 gdb_assert (prop->data.baton != NULL);
17711 }
17712 else
17713 {
17714 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17715 "dynamic property");
17716 return 0;
17717 }
17718 break;
17719 case DW_AT_data_member_location:
17720 {
17721 LONGEST offset;
17722
17723 if (!handle_data_member_location (target_die, target_cu,
17724 &offset))
17725 return 0;
17726
17727 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17728 baton->referenced_type = read_type_die (target_die->parent,
17729 target_cu);
17730 baton->offset_info.offset = offset;
17731 baton->offset_info.type = die_type (target_die, target_cu);
17732 prop->data.baton = baton;
17733 prop->kind = PROP_ADDR_OFFSET;
17734 break;
17735 }
17736 }
17737 }
17738 else if (attr_form_is_constant (attr))
17739 {
17740 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17741 prop->kind = PROP_CONST;
17742 }
17743 else
17744 {
17745 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17746 dwarf2_name (die, cu));
17747 return 0;
17748 }
17749
17750 return 1;
17751 }
17752
17753 /* Read the given DW_AT_subrange DIE. */
17754
17755 static struct type *
17756 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17757 {
17758 struct type *base_type, *orig_base_type;
17759 struct type *range_type;
17760 struct attribute *attr;
17761 struct dynamic_prop low, high;
17762 int low_default_is_valid;
17763 int high_bound_is_count = 0;
17764 const char *name;
17765 ULONGEST negative_mask;
17766
17767 orig_base_type = die_type (die, cu);
17768 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17769 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17770 creating the range type, but we use the result of check_typedef
17771 when examining properties of the type. */
17772 base_type = check_typedef (orig_base_type);
17773
17774 /* The die_type call above may have already set the type for this DIE. */
17775 range_type = get_die_type (die, cu);
17776 if (range_type)
17777 return range_type;
17778
17779 low.kind = PROP_CONST;
17780 high.kind = PROP_CONST;
17781 high.data.const_val = 0;
17782
17783 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17784 omitting DW_AT_lower_bound. */
17785 switch (cu->language)
17786 {
17787 case language_c:
17788 case language_cplus:
17789 low.data.const_val = 0;
17790 low_default_is_valid = 1;
17791 break;
17792 case language_fortran:
17793 low.data.const_val = 1;
17794 low_default_is_valid = 1;
17795 break;
17796 case language_d:
17797 case language_objc:
17798 case language_rust:
17799 low.data.const_val = 0;
17800 low_default_is_valid = (cu->header.version >= 4);
17801 break;
17802 case language_ada:
17803 case language_m2:
17804 case language_pascal:
17805 low.data.const_val = 1;
17806 low_default_is_valid = (cu->header.version >= 4);
17807 break;
17808 default:
17809 low.data.const_val = 0;
17810 low_default_is_valid = 0;
17811 break;
17812 }
17813
17814 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17815 if (attr)
17816 attr_to_dynamic_prop (attr, die, cu, &low);
17817 else if (!low_default_is_valid)
17818 complaint (_("Missing DW_AT_lower_bound "
17819 "- DIE at %s [in module %s]"),
17820 sect_offset_str (die->sect_off),
17821 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17822
17823 struct attribute *attr_ub, *attr_count;
17824 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17825 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17826 {
17827 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17828 if (attr_to_dynamic_prop (attr, die, cu, &high))
17829 {
17830 /* If bounds are constant do the final calculation here. */
17831 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17832 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17833 else
17834 high_bound_is_count = 1;
17835 }
17836 else
17837 {
17838 if (attr_ub != NULL)
17839 complaint (_("Unresolved DW_AT_upper_bound "
17840 "- DIE at %s [in module %s]"),
17841 sect_offset_str (die->sect_off),
17842 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17843 if (attr_count != NULL)
17844 complaint (_("Unresolved DW_AT_count "
17845 "- DIE at %s [in module %s]"),
17846 sect_offset_str (die->sect_off),
17847 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17848 }
17849
17850 }
17851
17852 /* Dwarf-2 specifications explicitly allows to create subrange types
17853 without specifying a base type.
17854 In that case, the base type must be set to the type of
17855 the lower bound, upper bound or count, in that order, if any of these
17856 three attributes references an object that has a type.
17857 If no base type is found, the Dwarf-2 specifications say that
17858 a signed integer type of size equal to the size of an address should
17859 be used.
17860 For the following C code: `extern char gdb_int [];'
17861 GCC produces an empty range DIE.
17862 FIXME: muller/2010-05-28: Possible references to object for low bound,
17863 high bound or count are not yet handled by this code. */
17864 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17865 {
17866 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17867 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17868 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17869 struct type *int_type = objfile_type (objfile)->builtin_int;
17870
17871 /* Test "int", "long int", and "long long int" objfile types,
17872 and select the first one having a size above or equal to the
17873 architecture address size. */
17874 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17875 base_type = int_type;
17876 else
17877 {
17878 int_type = objfile_type (objfile)->builtin_long;
17879 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17880 base_type = int_type;
17881 else
17882 {
17883 int_type = objfile_type (objfile)->builtin_long_long;
17884 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17885 base_type = int_type;
17886 }
17887 }
17888 }
17889
17890 /* Normally, the DWARF producers are expected to use a signed
17891 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17892 But this is unfortunately not always the case, as witnessed
17893 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17894 is used instead. To work around that ambiguity, we treat
17895 the bounds as signed, and thus sign-extend their values, when
17896 the base type is signed. */
17897 negative_mask =
17898 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17899 if (low.kind == PROP_CONST
17900 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17901 low.data.const_val |= negative_mask;
17902 if (high.kind == PROP_CONST
17903 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17904 high.data.const_val |= negative_mask;
17905
17906 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17907
17908 if (high_bound_is_count)
17909 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17910
17911 /* Ada expects an empty array on no boundary attributes. */
17912 if (attr == NULL && cu->language != language_ada)
17913 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17914
17915 name = dwarf2_name (die, cu);
17916 if (name)
17917 TYPE_NAME (range_type) = name;
17918
17919 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17920 if (attr)
17921 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17922
17923 maybe_set_alignment (cu, die, range_type);
17924
17925 set_die_type (die, range_type, cu);
17926
17927 /* set_die_type should be already done. */
17928 set_descriptive_type (range_type, die, cu);
17929
17930 return range_type;
17931 }
17932
17933 static struct type *
17934 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17935 {
17936 struct type *type;
17937
17938 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17939 NULL);
17940 TYPE_NAME (type) = dwarf2_name (die, cu);
17941
17942 /* In Ada, an unspecified type is typically used when the description
17943 of the type is defered to a different unit. When encountering
17944 such a type, we treat it as a stub, and try to resolve it later on,
17945 when needed. */
17946 if (cu->language == language_ada)
17947 TYPE_STUB (type) = 1;
17948
17949 return set_die_type (die, type, cu);
17950 }
17951
17952 /* Read a single die and all its descendents. Set the die's sibling
17953 field to NULL; set other fields in the die correctly, and set all
17954 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17955 location of the info_ptr after reading all of those dies. PARENT
17956 is the parent of the die in question. */
17957
17958 static struct die_info *
17959 read_die_and_children (const struct die_reader_specs *reader,
17960 const gdb_byte *info_ptr,
17961 const gdb_byte **new_info_ptr,
17962 struct die_info *parent)
17963 {
17964 struct die_info *die;
17965 const gdb_byte *cur_ptr;
17966 int has_children;
17967
17968 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17969 if (die == NULL)
17970 {
17971 *new_info_ptr = cur_ptr;
17972 return NULL;
17973 }
17974 store_in_ref_table (die, reader->cu);
17975
17976 if (has_children)
17977 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17978 else
17979 {
17980 die->child = NULL;
17981 *new_info_ptr = cur_ptr;
17982 }
17983
17984 die->sibling = NULL;
17985 die->parent = parent;
17986 return die;
17987 }
17988
17989 /* Read a die, all of its descendents, and all of its siblings; set
17990 all of the fields of all of the dies correctly. Arguments are as
17991 in read_die_and_children. */
17992
17993 static struct die_info *
17994 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17995 const gdb_byte *info_ptr,
17996 const gdb_byte **new_info_ptr,
17997 struct die_info *parent)
17998 {
17999 struct die_info *first_die, *last_sibling;
18000 const gdb_byte *cur_ptr;
18001
18002 cur_ptr = info_ptr;
18003 first_die = last_sibling = NULL;
18004
18005 while (1)
18006 {
18007 struct die_info *die
18008 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18009
18010 if (die == NULL)
18011 {
18012 *new_info_ptr = cur_ptr;
18013 return first_die;
18014 }
18015
18016 if (!first_die)
18017 first_die = die;
18018 else
18019 last_sibling->sibling = die;
18020
18021 last_sibling = die;
18022 }
18023 }
18024
18025 /* Read a die, all of its descendents, and all of its siblings; set
18026 all of the fields of all of the dies correctly. Arguments are as
18027 in read_die_and_children.
18028 This the main entry point for reading a DIE and all its children. */
18029
18030 static struct die_info *
18031 read_die_and_siblings (const struct die_reader_specs *reader,
18032 const gdb_byte *info_ptr,
18033 const gdb_byte **new_info_ptr,
18034 struct die_info *parent)
18035 {
18036 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18037 new_info_ptr, parent);
18038
18039 if (dwarf_die_debug)
18040 {
18041 fprintf_unfiltered (gdb_stdlog,
18042 "Read die from %s@0x%x of %s:\n",
18043 get_section_name (reader->die_section),
18044 (unsigned) (info_ptr - reader->die_section->buffer),
18045 bfd_get_filename (reader->abfd));
18046 dump_die (die, dwarf_die_debug);
18047 }
18048
18049 return die;
18050 }
18051
18052 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18053 attributes.
18054 The caller is responsible for filling in the extra attributes
18055 and updating (*DIEP)->num_attrs.
18056 Set DIEP to point to a newly allocated die with its information,
18057 except for its child, sibling, and parent fields.
18058 Set HAS_CHILDREN to tell whether the die has children or not. */
18059
18060 static const gdb_byte *
18061 read_full_die_1 (const struct die_reader_specs *reader,
18062 struct die_info **diep, const gdb_byte *info_ptr,
18063 int *has_children, int num_extra_attrs)
18064 {
18065 unsigned int abbrev_number, bytes_read, i;
18066 struct abbrev_info *abbrev;
18067 struct die_info *die;
18068 struct dwarf2_cu *cu = reader->cu;
18069 bfd *abfd = reader->abfd;
18070
18071 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18072 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18073 info_ptr += bytes_read;
18074 if (!abbrev_number)
18075 {
18076 *diep = NULL;
18077 *has_children = 0;
18078 return info_ptr;
18079 }
18080
18081 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18082 if (!abbrev)
18083 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18084 abbrev_number,
18085 bfd_get_filename (abfd));
18086
18087 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18088 die->sect_off = sect_off;
18089 die->tag = abbrev->tag;
18090 die->abbrev = abbrev_number;
18091
18092 /* Make the result usable.
18093 The caller needs to update num_attrs after adding the extra
18094 attributes. */
18095 die->num_attrs = abbrev->num_attrs;
18096
18097 for (i = 0; i < abbrev->num_attrs; ++i)
18098 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18099 info_ptr);
18100
18101 *diep = die;
18102 *has_children = abbrev->has_children;
18103 return info_ptr;
18104 }
18105
18106 /* Read a die and all its attributes.
18107 Set DIEP to point to a newly allocated die with its information,
18108 except for its child, sibling, and parent fields.
18109 Set HAS_CHILDREN to tell whether the die has children or not. */
18110
18111 static const gdb_byte *
18112 read_full_die (const struct die_reader_specs *reader,
18113 struct die_info **diep, const gdb_byte *info_ptr,
18114 int *has_children)
18115 {
18116 const gdb_byte *result;
18117
18118 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18119
18120 if (dwarf_die_debug)
18121 {
18122 fprintf_unfiltered (gdb_stdlog,
18123 "Read die from %s@0x%x of %s:\n",
18124 get_section_name (reader->die_section),
18125 (unsigned) (info_ptr - reader->die_section->buffer),
18126 bfd_get_filename (reader->abfd));
18127 dump_die (*diep, dwarf_die_debug);
18128 }
18129
18130 return result;
18131 }
18132 \f
18133 /* Abbreviation tables.
18134
18135 In DWARF version 2, the description of the debugging information is
18136 stored in a separate .debug_abbrev section. Before we read any
18137 dies from a section we read in all abbreviations and install them
18138 in a hash table. */
18139
18140 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18141
18142 struct abbrev_info *
18143 abbrev_table::alloc_abbrev ()
18144 {
18145 struct abbrev_info *abbrev;
18146
18147 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18148 memset (abbrev, 0, sizeof (struct abbrev_info));
18149
18150 return abbrev;
18151 }
18152
18153 /* Add an abbreviation to the table. */
18154
18155 void
18156 abbrev_table::add_abbrev (unsigned int abbrev_number,
18157 struct abbrev_info *abbrev)
18158 {
18159 unsigned int hash_number;
18160
18161 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18162 abbrev->next = m_abbrevs[hash_number];
18163 m_abbrevs[hash_number] = abbrev;
18164 }
18165
18166 /* Look up an abbrev in the table.
18167 Returns NULL if the abbrev is not found. */
18168
18169 struct abbrev_info *
18170 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18171 {
18172 unsigned int hash_number;
18173 struct abbrev_info *abbrev;
18174
18175 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18176 abbrev = m_abbrevs[hash_number];
18177
18178 while (abbrev)
18179 {
18180 if (abbrev->number == abbrev_number)
18181 return abbrev;
18182 abbrev = abbrev->next;
18183 }
18184 return NULL;
18185 }
18186
18187 /* Read in an abbrev table. */
18188
18189 static abbrev_table_up
18190 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18191 struct dwarf2_section_info *section,
18192 sect_offset sect_off)
18193 {
18194 struct objfile *objfile = dwarf2_per_objfile->objfile;
18195 bfd *abfd = get_section_bfd_owner (section);
18196 const gdb_byte *abbrev_ptr;
18197 struct abbrev_info *cur_abbrev;
18198 unsigned int abbrev_number, bytes_read, abbrev_name;
18199 unsigned int abbrev_form;
18200 struct attr_abbrev *cur_attrs;
18201 unsigned int allocated_attrs;
18202
18203 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18204
18205 dwarf2_read_section (objfile, section);
18206 abbrev_ptr = section->buffer + to_underlying (sect_off);
18207 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18208 abbrev_ptr += bytes_read;
18209
18210 allocated_attrs = ATTR_ALLOC_CHUNK;
18211 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18212
18213 /* Loop until we reach an abbrev number of 0. */
18214 while (abbrev_number)
18215 {
18216 cur_abbrev = abbrev_table->alloc_abbrev ();
18217
18218 /* read in abbrev header */
18219 cur_abbrev->number = abbrev_number;
18220 cur_abbrev->tag
18221 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18222 abbrev_ptr += bytes_read;
18223 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18224 abbrev_ptr += 1;
18225
18226 /* now read in declarations */
18227 for (;;)
18228 {
18229 LONGEST implicit_const;
18230
18231 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18232 abbrev_ptr += bytes_read;
18233 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18234 abbrev_ptr += bytes_read;
18235 if (abbrev_form == DW_FORM_implicit_const)
18236 {
18237 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18238 &bytes_read);
18239 abbrev_ptr += bytes_read;
18240 }
18241 else
18242 {
18243 /* Initialize it due to a false compiler warning. */
18244 implicit_const = -1;
18245 }
18246
18247 if (abbrev_name == 0)
18248 break;
18249
18250 if (cur_abbrev->num_attrs == allocated_attrs)
18251 {
18252 allocated_attrs += ATTR_ALLOC_CHUNK;
18253 cur_attrs
18254 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18255 }
18256
18257 cur_attrs[cur_abbrev->num_attrs].name
18258 = (enum dwarf_attribute) abbrev_name;
18259 cur_attrs[cur_abbrev->num_attrs].form
18260 = (enum dwarf_form) abbrev_form;
18261 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18262 ++cur_abbrev->num_attrs;
18263 }
18264
18265 cur_abbrev->attrs =
18266 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18267 cur_abbrev->num_attrs);
18268 memcpy (cur_abbrev->attrs, cur_attrs,
18269 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18270
18271 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18272
18273 /* Get next abbreviation.
18274 Under Irix6 the abbreviations for a compilation unit are not
18275 always properly terminated with an abbrev number of 0.
18276 Exit loop if we encounter an abbreviation which we have
18277 already read (which means we are about to read the abbreviations
18278 for the next compile unit) or if the end of the abbreviation
18279 table is reached. */
18280 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18281 break;
18282 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18283 abbrev_ptr += bytes_read;
18284 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18285 break;
18286 }
18287
18288 xfree (cur_attrs);
18289 return abbrev_table;
18290 }
18291
18292 /* Returns nonzero if TAG represents a type that we might generate a partial
18293 symbol for. */
18294
18295 static int
18296 is_type_tag_for_partial (int tag)
18297 {
18298 switch (tag)
18299 {
18300 #if 0
18301 /* Some types that would be reasonable to generate partial symbols for,
18302 that we don't at present. */
18303 case DW_TAG_array_type:
18304 case DW_TAG_file_type:
18305 case DW_TAG_ptr_to_member_type:
18306 case DW_TAG_set_type:
18307 case DW_TAG_string_type:
18308 case DW_TAG_subroutine_type:
18309 #endif
18310 case DW_TAG_base_type:
18311 case DW_TAG_class_type:
18312 case DW_TAG_interface_type:
18313 case DW_TAG_enumeration_type:
18314 case DW_TAG_structure_type:
18315 case DW_TAG_subrange_type:
18316 case DW_TAG_typedef:
18317 case DW_TAG_union_type:
18318 return 1;
18319 default:
18320 return 0;
18321 }
18322 }
18323
18324 /* Load all DIEs that are interesting for partial symbols into memory. */
18325
18326 static struct partial_die_info *
18327 load_partial_dies (const struct die_reader_specs *reader,
18328 const gdb_byte *info_ptr, int building_psymtab)
18329 {
18330 struct dwarf2_cu *cu = reader->cu;
18331 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18332 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18333 unsigned int bytes_read;
18334 unsigned int load_all = 0;
18335 int nesting_level = 1;
18336
18337 parent_die = NULL;
18338 last_die = NULL;
18339
18340 gdb_assert (cu->per_cu != NULL);
18341 if (cu->per_cu->load_all_dies)
18342 load_all = 1;
18343
18344 cu->partial_dies
18345 = htab_create_alloc_ex (cu->header.length / 12,
18346 partial_die_hash,
18347 partial_die_eq,
18348 NULL,
18349 &cu->comp_unit_obstack,
18350 hashtab_obstack_allocate,
18351 dummy_obstack_deallocate);
18352
18353 while (1)
18354 {
18355 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18356
18357 /* A NULL abbrev means the end of a series of children. */
18358 if (abbrev == NULL)
18359 {
18360 if (--nesting_level == 0)
18361 return first_die;
18362
18363 info_ptr += bytes_read;
18364 last_die = parent_die;
18365 parent_die = parent_die->die_parent;
18366 continue;
18367 }
18368
18369 /* Check for template arguments. We never save these; if
18370 they're seen, we just mark the parent, and go on our way. */
18371 if (parent_die != NULL
18372 && cu->language == language_cplus
18373 && (abbrev->tag == DW_TAG_template_type_param
18374 || abbrev->tag == DW_TAG_template_value_param))
18375 {
18376 parent_die->has_template_arguments = 1;
18377
18378 if (!load_all)
18379 {
18380 /* We don't need a partial DIE for the template argument. */
18381 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18382 continue;
18383 }
18384 }
18385
18386 /* We only recurse into c++ subprograms looking for template arguments.
18387 Skip their other children. */
18388 if (!load_all
18389 && cu->language == language_cplus
18390 && parent_die != NULL
18391 && parent_die->tag == DW_TAG_subprogram)
18392 {
18393 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18394 continue;
18395 }
18396
18397 /* Check whether this DIE is interesting enough to save. Normally
18398 we would not be interested in members here, but there may be
18399 later variables referencing them via DW_AT_specification (for
18400 static members). */
18401 if (!load_all
18402 && !is_type_tag_for_partial (abbrev->tag)
18403 && abbrev->tag != DW_TAG_constant
18404 && abbrev->tag != DW_TAG_enumerator
18405 && abbrev->tag != DW_TAG_subprogram
18406 && abbrev->tag != DW_TAG_inlined_subroutine
18407 && abbrev->tag != DW_TAG_lexical_block
18408 && abbrev->tag != DW_TAG_variable
18409 && abbrev->tag != DW_TAG_namespace
18410 && abbrev->tag != DW_TAG_module
18411 && abbrev->tag != DW_TAG_member
18412 && abbrev->tag != DW_TAG_imported_unit
18413 && abbrev->tag != DW_TAG_imported_declaration)
18414 {
18415 /* Otherwise we skip to the next sibling, if any. */
18416 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18417 continue;
18418 }
18419
18420 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18421 abbrev);
18422
18423 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18424
18425 /* This two-pass algorithm for processing partial symbols has a
18426 high cost in cache pressure. Thus, handle some simple cases
18427 here which cover the majority of C partial symbols. DIEs
18428 which neither have specification tags in them, nor could have
18429 specification tags elsewhere pointing at them, can simply be
18430 processed and discarded.
18431
18432 This segment is also optional; scan_partial_symbols and
18433 add_partial_symbol will handle these DIEs if we chain
18434 them in normally. When compilers which do not emit large
18435 quantities of duplicate debug information are more common,
18436 this code can probably be removed. */
18437
18438 /* Any complete simple types at the top level (pretty much all
18439 of them, for a language without namespaces), can be processed
18440 directly. */
18441 if (parent_die == NULL
18442 && pdi.has_specification == 0
18443 && pdi.is_declaration == 0
18444 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18445 || pdi.tag == DW_TAG_base_type
18446 || pdi.tag == DW_TAG_subrange_type))
18447 {
18448 if (building_psymtab && pdi.name != NULL)
18449 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18450 VAR_DOMAIN, LOC_TYPEDEF, -1,
18451 &objfile->static_psymbols,
18452 0, cu->language, objfile);
18453 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18454 continue;
18455 }
18456
18457 /* The exception for DW_TAG_typedef with has_children above is
18458 a workaround of GCC PR debug/47510. In the case of this complaint
18459 type_name_or_error will error on such types later.
18460
18461 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18462 it could not find the child DIEs referenced later, this is checked
18463 above. In correct DWARF DW_TAG_typedef should have no children. */
18464
18465 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18466 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18467 "- DIE at %s [in module %s]"),
18468 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18469
18470 /* If we're at the second level, and we're an enumerator, and
18471 our parent has no specification (meaning possibly lives in a
18472 namespace elsewhere), then we can add the partial symbol now
18473 instead of queueing it. */
18474 if (pdi.tag == DW_TAG_enumerator
18475 && parent_die != NULL
18476 && parent_die->die_parent == NULL
18477 && parent_die->tag == DW_TAG_enumeration_type
18478 && parent_die->has_specification == 0)
18479 {
18480 if (pdi.name == NULL)
18481 complaint (_("malformed enumerator DIE ignored"));
18482 else if (building_psymtab)
18483 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18484 VAR_DOMAIN, LOC_CONST, -1,
18485 cu->language == language_cplus
18486 ? &objfile->global_psymbols
18487 : &objfile->static_psymbols,
18488 0, cu->language, objfile);
18489
18490 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18491 continue;
18492 }
18493
18494 struct partial_die_info *part_die
18495 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18496
18497 /* We'll save this DIE so link it in. */
18498 part_die->die_parent = parent_die;
18499 part_die->die_sibling = NULL;
18500 part_die->die_child = NULL;
18501
18502 if (last_die && last_die == parent_die)
18503 last_die->die_child = part_die;
18504 else if (last_die)
18505 last_die->die_sibling = part_die;
18506
18507 last_die = part_die;
18508
18509 if (first_die == NULL)
18510 first_die = part_die;
18511
18512 /* Maybe add the DIE to the hash table. Not all DIEs that we
18513 find interesting need to be in the hash table, because we
18514 also have the parent/sibling/child chains; only those that we
18515 might refer to by offset later during partial symbol reading.
18516
18517 For now this means things that might have be the target of a
18518 DW_AT_specification, DW_AT_abstract_origin, or
18519 DW_AT_extension. DW_AT_extension will refer only to
18520 namespaces; DW_AT_abstract_origin refers to functions (and
18521 many things under the function DIE, but we do not recurse
18522 into function DIEs during partial symbol reading) and
18523 possibly variables as well; DW_AT_specification refers to
18524 declarations. Declarations ought to have the DW_AT_declaration
18525 flag. It happens that GCC forgets to put it in sometimes, but
18526 only for functions, not for types.
18527
18528 Adding more things than necessary to the hash table is harmless
18529 except for the performance cost. Adding too few will result in
18530 wasted time in find_partial_die, when we reread the compilation
18531 unit with load_all_dies set. */
18532
18533 if (load_all
18534 || abbrev->tag == DW_TAG_constant
18535 || abbrev->tag == DW_TAG_subprogram
18536 || abbrev->tag == DW_TAG_variable
18537 || abbrev->tag == DW_TAG_namespace
18538 || part_die->is_declaration)
18539 {
18540 void **slot;
18541
18542 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18543 to_underlying (part_die->sect_off),
18544 INSERT);
18545 *slot = part_die;
18546 }
18547
18548 /* For some DIEs we want to follow their children (if any). For C
18549 we have no reason to follow the children of structures; for other
18550 languages we have to, so that we can get at method physnames
18551 to infer fully qualified class names, for DW_AT_specification,
18552 and for C++ template arguments. For C++, we also look one level
18553 inside functions to find template arguments (if the name of the
18554 function does not already contain the template arguments).
18555
18556 For Ada, we need to scan the children of subprograms and lexical
18557 blocks as well because Ada allows the definition of nested
18558 entities that could be interesting for the debugger, such as
18559 nested subprograms for instance. */
18560 if (last_die->has_children
18561 && (load_all
18562 || last_die->tag == DW_TAG_namespace
18563 || last_die->tag == DW_TAG_module
18564 || last_die->tag == DW_TAG_enumeration_type
18565 || (cu->language == language_cplus
18566 && last_die->tag == DW_TAG_subprogram
18567 && (last_die->name == NULL
18568 || strchr (last_die->name, '<') == NULL))
18569 || (cu->language != language_c
18570 && (last_die->tag == DW_TAG_class_type
18571 || last_die->tag == DW_TAG_interface_type
18572 || last_die->tag == DW_TAG_structure_type
18573 || last_die->tag == DW_TAG_union_type))
18574 || (cu->language == language_ada
18575 && (last_die->tag == DW_TAG_subprogram
18576 || last_die->tag == DW_TAG_lexical_block))))
18577 {
18578 nesting_level++;
18579 parent_die = last_die;
18580 continue;
18581 }
18582
18583 /* Otherwise we skip to the next sibling, if any. */
18584 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18585
18586 /* Back to the top, do it again. */
18587 }
18588 }
18589
18590 partial_die_info::partial_die_info (sect_offset sect_off_,
18591 struct abbrev_info *abbrev)
18592 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18593 {
18594 }
18595
18596 /* Read a minimal amount of information into the minimal die structure.
18597 INFO_PTR should point just after the initial uleb128 of a DIE. */
18598
18599 const gdb_byte *
18600 partial_die_info::read (const struct die_reader_specs *reader,
18601 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18602 {
18603 struct dwarf2_cu *cu = reader->cu;
18604 struct dwarf2_per_objfile *dwarf2_per_objfile
18605 = cu->per_cu->dwarf2_per_objfile;
18606 unsigned int i;
18607 int has_low_pc_attr = 0;
18608 int has_high_pc_attr = 0;
18609 int high_pc_relative = 0;
18610
18611 for (i = 0; i < abbrev.num_attrs; ++i)
18612 {
18613 struct attribute attr;
18614
18615 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18616
18617 /* Store the data if it is of an attribute we want to keep in a
18618 partial symbol table. */
18619 switch (attr.name)
18620 {
18621 case DW_AT_name:
18622 switch (tag)
18623 {
18624 case DW_TAG_compile_unit:
18625 case DW_TAG_partial_unit:
18626 case DW_TAG_type_unit:
18627 /* Compilation units have a DW_AT_name that is a filename, not
18628 a source language identifier. */
18629 case DW_TAG_enumeration_type:
18630 case DW_TAG_enumerator:
18631 /* These tags always have simple identifiers already; no need
18632 to canonicalize them. */
18633 name = DW_STRING (&attr);
18634 break;
18635 default:
18636 {
18637 struct objfile *objfile = dwarf2_per_objfile->objfile;
18638
18639 name
18640 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18641 &objfile->per_bfd->storage_obstack);
18642 }
18643 break;
18644 }
18645 break;
18646 case DW_AT_linkage_name:
18647 case DW_AT_MIPS_linkage_name:
18648 /* Note that both forms of linkage name might appear. We
18649 assume they will be the same, and we only store the last
18650 one we see. */
18651 if (cu->language == language_ada)
18652 name = DW_STRING (&attr);
18653 linkage_name = DW_STRING (&attr);
18654 break;
18655 case DW_AT_low_pc:
18656 has_low_pc_attr = 1;
18657 lowpc = attr_value_as_address (&attr);
18658 break;
18659 case DW_AT_high_pc:
18660 has_high_pc_attr = 1;
18661 highpc = attr_value_as_address (&attr);
18662 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18663 high_pc_relative = 1;
18664 break;
18665 case DW_AT_location:
18666 /* Support the .debug_loc offsets. */
18667 if (attr_form_is_block (&attr))
18668 {
18669 d.locdesc = DW_BLOCK (&attr);
18670 }
18671 else if (attr_form_is_section_offset (&attr))
18672 {
18673 dwarf2_complex_location_expr_complaint ();
18674 }
18675 else
18676 {
18677 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18678 "partial symbol information");
18679 }
18680 break;
18681 case DW_AT_external:
18682 is_external = DW_UNSND (&attr);
18683 break;
18684 case DW_AT_declaration:
18685 is_declaration = DW_UNSND (&attr);
18686 break;
18687 case DW_AT_type:
18688 has_type = 1;
18689 break;
18690 case DW_AT_abstract_origin:
18691 case DW_AT_specification:
18692 case DW_AT_extension:
18693 has_specification = 1;
18694 spec_offset = dwarf2_get_ref_die_offset (&attr);
18695 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18696 || cu->per_cu->is_dwz);
18697 break;
18698 case DW_AT_sibling:
18699 /* Ignore absolute siblings, they might point outside of
18700 the current compile unit. */
18701 if (attr.form == DW_FORM_ref_addr)
18702 complaint (_("ignoring absolute DW_AT_sibling"));
18703 else
18704 {
18705 const gdb_byte *buffer = reader->buffer;
18706 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18707 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18708
18709 if (sibling_ptr < info_ptr)
18710 complaint (_("DW_AT_sibling points backwards"));
18711 else if (sibling_ptr > reader->buffer_end)
18712 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18713 else
18714 sibling = sibling_ptr;
18715 }
18716 break;
18717 case DW_AT_byte_size:
18718 has_byte_size = 1;
18719 break;
18720 case DW_AT_const_value:
18721 has_const_value = 1;
18722 break;
18723 case DW_AT_calling_convention:
18724 /* DWARF doesn't provide a way to identify a program's source-level
18725 entry point. DW_AT_calling_convention attributes are only meant
18726 to describe functions' calling conventions.
18727
18728 However, because it's a necessary piece of information in
18729 Fortran, and before DWARF 4 DW_CC_program was the only
18730 piece of debugging information whose definition refers to
18731 a 'main program' at all, several compilers marked Fortran
18732 main programs with DW_CC_program --- even when those
18733 functions use the standard calling conventions.
18734
18735 Although DWARF now specifies a way to provide this
18736 information, we support this practice for backward
18737 compatibility. */
18738 if (DW_UNSND (&attr) == DW_CC_program
18739 && cu->language == language_fortran)
18740 main_subprogram = 1;
18741 break;
18742 case DW_AT_inline:
18743 if (DW_UNSND (&attr) == DW_INL_inlined
18744 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18745 may_be_inlined = 1;
18746 break;
18747
18748 case DW_AT_import:
18749 if (tag == DW_TAG_imported_unit)
18750 {
18751 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18752 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18753 || cu->per_cu->is_dwz);
18754 }
18755 break;
18756
18757 case DW_AT_main_subprogram:
18758 main_subprogram = DW_UNSND (&attr);
18759 break;
18760
18761 default:
18762 break;
18763 }
18764 }
18765
18766 if (high_pc_relative)
18767 highpc += lowpc;
18768
18769 if (has_low_pc_attr && has_high_pc_attr)
18770 {
18771 /* When using the GNU linker, .gnu.linkonce. sections are used to
18772 eliminate duplicate copies of functions and vtables and such.
18773 The linker will arbitrarily choose one and discard the others.
18774 The AT_*_pc values for such functions refer to local labels in
18775 these sections. If the section from that file was discarded, the
18776 labels are not in the output, so the relocs get a value of 0.
18777 If this is a discarded function, mark the pc bounds as invalid,
18778 so that GDB will ignore it. */
18779 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18780 {
18781 struct objfile *objfile = dwarf2_per_objfile->objfile;
18782 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18783
18784 complaint (_("DW_AT_low_pc %s is zero "
18785 "for DIE at %s [in module %s]"),
18786 paddress (gdbarch, lowpc),
18787 sect_offset_str (sect_off),
18788 objfile_name (objfile));
18789 }
18790 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18791 else if (lowpc >= highpc)
18792 {
18793 struct objfile *objfile = dwarf2_per_objfile->objfile;
18794 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18795
18796 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18797 "for DIE at %s [in module %s]"),
18798 paddress (gdbarch, lowpc),
18799 paddress (gdbarch, highpc),
18800 sect_offset_str (sect_off),
18801 objfile_name (objfile));
18802 }
18803 else
18804 has_pc_info = 1;
18805 }
18806
18807 return info_ptr;
18808 }
18809
18810 /* Find a cached partial DIE at OFFSET in CU. */
18811
18812 struct partial_die_info *
18813 dwarf2_cu::find_partial_die (sect_offset sect_off)
18814 {
18815 struct partial_die_info *lookup_die = NULL;
18816 struct partial_die_info part_die (sect_off);
18817
18818 lookup_die = ((struct partial_die_info *)
18819 htab_find_with_hash (partial_dies, &part_die,
18820 to_underlying (sect_off)));
18821
18822 return lookup_die;
18823 }
18824
18825 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18826 except in the case of .debug_types DIEs which do not reference
18827 outside their CU (they do however referencing other types via
18828 DW_FORM_ref_sig8). */
18829
18830 static struct partial_die_info *
18831 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18832 {
18833 struct dwarf2_per_objfile *dwarf2_per_objfile
18834 = cu->per_cu->dwarf2_per_objfile;
18835 struct objfile *objfile = dwarf2_per_objfile->objfile;
18836 struct dwarf2_per_cu_data *per_cu = NULL;
18837 struct partial_die_info *pd = NULL;
18838
18839 if (offset_in_dwz == cu->per_cu->is_dwz
18840 && offset_in_cu_p (&cu->header, sect_off))
18841 {
18842 pd = cu->find_partial_die (sect_off);
18843 if (pd != NULL)
18844 return pd;
18845 /* We missed recording what we needed.
18846 Load all dies and try again. */
18847 per_cu = cu->per_cu;
18848 }
18849 else
18850 {
18851 /* TUs don't reference other CUs/TUs (except via type signatures). */
18852 if (cu->per_cu->is_debug_types)
18853 {
18854 error (_("Dwarf Error: Type Unit at offset %s contains"
18855 " external reference to offset %s [in module %s].\n"),
18856 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18857 bfd_get_filename (objfile->obfd));
18858 }
18859 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18860 dwarf2_per_objfile);
18861
18862 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18863 load_partial_comp_unit (per_cu);
18864
18865 per_cu->cu->last_used = 0;
18866 pd = per_cu->cu->find_partial_die (sect_off);
18867 }
18868
18869 /* If we didn't find it, and not all dies have been loaded,
18870 load them all and try again. */
18871
18872 if (pd == NULL && per_cu->load_all_dies == 0)
18873 {
18874 per_cu->load_all_dies = 1;
18875
18876 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18877 THIS_CU->cu may already be in use. So we can't just free it and
18878 replace its DIEs with the ones we read in. Instead, we leave those
18879 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18880 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18881 set. */
18882 load_partial_comp_unit (per_cu);
18883
18884 pd = per_cu->cu->find_partial_die (sect_off);
18885 }
18886
18887 if (pd == NULL)
18888 internal_error (__FILE__, __LINE__,
18889 _("could not find partial DIE %s "
18890 "in cache [from module %s]\n"),
18891 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18892 return pd;
18893 }
18894
18895 /* See if we can figure out if the class lives in a namespace. We do
18896 this by looking for a member function; its demangled name will
18897 contain namespace info, if there is any. */
18898
18899 static void
18900 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18901 struct dwarf2_cu *cu)
18902 {
18903 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18904 what template types look like, because the demangler
18905 frequently doesn't give the same name as the debug info. We
18906 could fix this by only using the demangled name to get the
18907 prefix (but see comment in read_structure_type). */
18908
18909 struct partial_die_info *real_pdi;
18910 struct partial_die_info *child_pdi;
18911
18912 /* If this DIE (this DIE's specification, if any) has a parent, then
18913 we should not do this. We'll prepend the parent's fully qualified
18914 name when we create the partial symbol. */
18915
18916 real_pdi = struct_pdi;
18917 while (real_pdi->has_specification)
18918 real_pdi = find_partial_die (real_pdi->spec_offset,
18919 real_pdi->spec_is_dwz, cu);
18920
18921 if (real_pdi->die_parent != NULL)
18922 return;
18923
18924 for (child_pdi = struct_pdi->die_child;
18925 child_pdi != NULL;
18926 child_pdi = child_pdi->die_sibling)
18927 {
18928 if (child_pdi->tag == DW_TAG_subprogram
18929 && child_pdi->linkage_name != NULL)
18930 {
18931 char *actual_class_name
18932 = language_class_name_from_physname (cu->language_defn,
18933 child_pdi->linkage_name);
18934 if (actual_class_name != NULL)
18935 {
18936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18937 struct_pdi->name
18938 = ((const char *)
18939 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18940 actual_class_name,
18941 strlen (actual_class_name)));
18942 xfree (actual_class_name);
18943 }
18944 break;
18945 }
18946 }
18947 }
18948
18949 void
18950 partial_die_info::fixup (struct dwarf2_cu *cu)
18951 {
18952 /* Once we've fixed up a die, there's no point in doing so again.
18953 This also avoids a memory leak if we were to call
18954 guess_partial_die_structure_name multiple times. */
18955 if (fixup_called)
18956 return;
18957
18958 /* If we found a reference attribute and the DIE has no name, try
18959 to find a name in the referred to DIE. */
18960
18961 if (name == NULL && has_specification)
18962 {
18963 struct partial_die_info *spec_die;
18964
18965 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18966
18967 spec_die->fixup (cu);
18968
18969 if (spec_die->name)
18970 {
18971 name = spec_die->name;
18972
18973 /* Copy DW_AT_external attribute if it is set. */
18974 if (spec_die->is_external)
18975 is_external = spec_die->is_external;
18976 }
18977 }
18978
18979 /* Set default names for some unnamed DIEs. */
18980
18981 if (name == NULL && tag == DW_TAG_namespace)
18982 name = CP_ANONYMOUS_NAMESPACE_STR;
18983
18984 /* If there is no parent die to provide a namespace, and there are
18985 children, see if we can determine the namespace from their linkage
18986 name. */
18987 if (cu->language == language_cplus
18988 && !VEC_empty (dwarf2_section_info_def,
18989 cu->per_cu->dwarf2_per_objfile->types)
18990 && die_parent == NULL
18991 && has_children
18992 && (tag == DW_TAG_class_type
18993 || tag == DW_TAG_structure_type
18994 || tag == DW_TAG_union_type))
18995 guess_partial_die_structure_name (this, cu);
18996
18997 /* GCC might emit a nameless struct or union that has a linkage
18998 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18999 if (name == NULL
19000 && (tag == DW_TAG_class_type
19001 || tag == DW_TAG_interface_type
19002 || tag == DW_TAG_structure_type
19003 || tag == DW_TAG_union_type)
19004 && linkage_name != NULL)
19005 {
19006 char *demangled;
19007
19008 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19009 if (demangled)
19010 {
19011 const char *base;
19012
19013 /* Strip any leading namespaces/classes, keep only the base name.
19014 DW_AT_name for named DIEs does not contain the prefixes. */
19015 base = strrchr (demangled, ':');
19016 if (base && base > demangled && base[-1] == ':')
19017 base++;
19018 else
19019 base = demangled;
19020
19021 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19022 name
19023 = ((const char *)
19024 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19025 base, strlen (base)));
19026 xfree (demangled);
19027 }
19028 }
19029
19030 fixup_called = 1;
19031 }
19032
19033 /* Read an attribute value described by an attribute form. */
19034
19035 static const gdb_byte *
19036 read_attribute_value (const struct die_reader_specs *reader,
19037 struct attribute *attr, unsigned form,
19038 LONGEST implicit_const, const gdb_byte *info_ptr)
19039 {
19040 struct dwarf2_cu *cu = reader->cu;
19041 struct dwarf2_per_objfile *dwarf2_per_objfile
19042 = cu->per_cu->dwarf2_per_objfile;
19043 struct objfile *objfile = dwarf2_per_objfile->objfile;
19044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19045 bfd *abfd = reader->abfd;
19046 struct comp_unit_head *cu_header = &cu->header;
19047 unsigned int bytes_read;
19048 struct dwarf_block *blk;
19049
19050 attr->form = (enum dwarf_form) form;
19051 switch (form)
19052 {
19053 case DW_FORM_ref_addr:
19054 if (cu->header.version == 2)
19055 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19056 else
19057 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19058 &cu->header, &bytes_read);
19059 info_ptr += bytes_read;
19060 break;
19061 case DW_FORM_GNU_ref_alt:
19062 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19063 info_ptr += bytes_read;
19064 break;
19065 case DW_FORM_addr:
19066 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19067 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19068 info_ptr += bytes_read;
19069 break;
19070 case DW_FORM_block2:
19071 blk = dwarf_alloc_block (cu);
19072 blk->size = read_2_bytes (abfd, info_ptr);
19073 info_ptr += 2;
19074 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19075 info_ptr += blk->size;
19076 DW_BLOCK (attr) = blk;
19077 break;
19078 case DW_FORM_block4:
19079 blk = dwarf_alloc_block (cu);
19080 blk->size = read_4_bytes (abfd, info_ptr);
19081 info_ptr += 4;
19082 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19083 info_ptr += blk->size;
19084 DW_BLOCK (attr) = blk;
19085 break;
19086 case DW_FORM_data2:
19087 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19088 info_ptr += 2;
19089 break;
19090 case DW_FORM_data4:
19091 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19092 info_ptr += 4;
19093 break;
19094 case DW_FORM_data8:
19095 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19096 info_ptr += 8;
19097 break;
19098 case DW_FORM_data16:
19099 blk = dwarf_alloc_block (cu);
19100 blk->size = 16;
19101 blk->data = read_n_bytes (abfd, info_ptr, 16);
19102 info_ptr += 16;
19103 DW_BLOCK (attr) = blk;
19104 break;
19105 case DW_FORM_sec_offset:
19106 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_string:
19110 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19111 DW_STRING_IS_CANONICAL (attr) = 0;
19112 info_ptr += bytes_read;
19113 break;
19114 case DW_FORM_strp:
19115 if (!cu->per_cu->is_dwz)
19116 {
19117 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19118 abfd, info_ptr, cu_header,
19119 &bytes_read);
19120 DW_STRING_IS_CANONICAL (attr) = 0;
19121 info_ptr += bytes_read;
19122 break;
19123 }
19124 /* FALLTHROUGH */
19125 case DW_FORM_line_strp:
19126 if (!cu->per_cu->is_dwz)
19127 {
19128 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19129 abfd, info_ptr,
19130 cu_header, &bytes_read);
19131 DW_STRING_IS_CANONICAL (attr) = 0;
19132 info_ptr += bytes_read;
19133 break;
19134 }
19135 /* FALLTHROUGH */
19136 case DW_FORM_GNU_strp_alt:
19137 {
19138 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19139 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19140 &bytes_read);
19141
19142 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19143 dwz, str_offset);
19144 DW_STRING_IS_CANONICAL (attr) = 0;
19145 info_ptr += bytes_read;
19146 }
19147 break;
19148 case DW_FORM_exprloc:
19149 case DW_FORM_block:
19150 blk = dwarf_alloc_block (cu);
19151 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19152 info_ptr += bytes_read;
19153 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19154 info_ptr += blk->size;
19155 DW_BLOCK (attr) = blk;
19156 break;
19157 case DW_FORM_block1:
19158 blk = dwarf_alloc_block (cu);
19159 blk->size = read_1_byte (abfd, info_ptr);
19160 info_ptr += 1;
19161 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19162 info_ptr += blk->size;
19163 DW_BLOCK (attr) = blk;
19164 break;
19165 case DW_FORM_data1:
19166 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19167 info_ptr += 1;
19168 break;
19169 case DW_FORM_flag:
19170 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19171 info_ptr += 1;
19172 break;
19173 case DW_FORM_flag_present:
19174 DW_UNSND (attr) = 1;
19175 break;
19176 case DW_FORM_sdata:
19177 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19178 info_ptr += bytes_read;
19179 break;
19180 case DW_FORM_udata:
19181 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19182 info_ptr += bytes_read;
19183 break;
19184 case DW_FORM_ref1:
19185 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19186 + read_1_byte (abfd, info_ptr));
19187 info_ptr += 1;
19188 break;
19189 case DW_FORM_ref2:
19190 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19191 + read_2_bytes (abfd, info_ptr));
19192 info_ptr += 2;
19193 break;
19194 case DW_FORM_ref4:
19195 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19196 + read_4_bytes (abfd, info_ptr));
19197 info_ptr += 4;
19198 break;
19199 case DW_FORM_ref8:
19200 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19201 + read_8_bytes (abfd, info_ptr));
19202 info_ptr += 8;
19203 break;
19204 case DW_FORM_ref_sig8:
19205 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19206 info_ptr += 8;
19207 break;
19208 case DW_FORM_ref_udata:
19209 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19210 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19211 info_ptr += bytes_read;
19212 break;
19213 case DW_FORM_indirect:
19214 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19215 info_ptr += bytes_read;
19216 if (form == DW_FORM_implicit_const)
19217 {
19218 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19219 info_ptr += bytes_read;
19220 }
19221 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19222 info_ptr);
19223 break;
19224 case DW_FORM_implicit_const:
19225 DW_SND (attr) = implicit_const;
19226 break;
19227 case DW_FORM_GNU_addr_index:
19228 if (reader->dwo_file == NULL)
19229 {
19230 /* For now flag a hard error.
19231 Later we can turn this into a complaint. */
19232 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19233 dwarf_form_name (form),
19234 bfd_get_filename (abfd));
19235 }
19236 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19237 info_ptr += bytes_read;
19238 break;
19239 case DW_FORM_GNU_str_index:
19240 if (reader->dwo_file == NULL)
19241 {
19242 /* For now flag a hard error.
19243 Later we can turn this into a complaint if warranted. */
19244 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19245 dwarf_form_name (form),
19246 bfd_get_filename (abfd));
19247 }
19248 {
19249 ULONGEST str_index =
19250 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19251
19252 DW_STRING (attr) = read_str_index (reader, str_index);
19253 DW_STRING_IS_CANONICAL (attr) = 0;
19254 info_ptr += bytes_read;
19255 }
19256 break;
19257 default:
19258 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19259 dwarf_form_name (form),
19260 bfd_get_filename (abfd));
19261 }
19262
19263 /* Super hack. */
19264 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19265 attr->form = DW_FORM_GNU_ref_alt;
19266
19267 /* We have seen instances where the compiler tried to emit a byte
19268 size attribute of -1 which ended up being encoded as an unsigned
19269 0xffffffff. Although 0xffffffff is technically a valid size value,
19270 an object of this size seems pretty unlikely so we can relatively
19271 safely treat these cases as if the size attribute was invalid and
19272 treat them as zero by default. */
19273 if (attr->name == DW_AT_byte_size
19274 && form == DW_FORM_data4
19275 && DW_UNSND (attr) >= 0xffffffff)
19276 {
19277 complaint
19278 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19279 hex_string (DW_UNSND (attr)));
19280 DW_UNSND (attr) = 0;
19281 }
19282
19283 return info_ptr;
19284 }
19285
19286 /* Read an attribute described by an abbreviated attribute. */
19287
19288 static const gdb_byte *
19289 read_attribute (const struct die_reader_specs *reader,
19290 struct attribute *attr, struct attr_abbrev *abbrev,
19291 const gdb_byte *info_ptr)
19292 {
19293 attr->name = abbrev->name;
19294 return read_attribute_value (reader, attr, abbrev->form,
19295 abbrev->implicit_const, info_ptr);
19296 }
19297
19298 /* Read dwarf information from a buffer. */
19299
19300 static unsigned int
19301 read_1_byte (bfd *abfd, const gdb_byte *buf)
19302 {
19303 return bfd_get_8 (abfd, buf);
19304 }
19305
19306 static int
19307 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19308 {
19309 return bfd_get_signed_8 (abfd, buf);
19310 }
19311
19312 static unsigned int
19313 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19314 {
19315 return bfd_get_16 (abfd, buf);
19316 }
19317
19318 static int
19319 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19320 {
19321 return bfd_get_signed_16 (abfd, buf);
19322 }
19323
19324 static unsigned int
19325 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19326 {
19327 return bfd_get_32 (abfd, buf);
19328 }
19329
19330 static int
19331 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19332 {
19333 return bfd_get_signed_32 (abfd, buf);
19334 }
19335
19336 static ULONGEST
19337 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19338 {
19339 return bfd_get_64 (abfd, buf);
19340 }
19341
19342 static CORE_ADDR
19343 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19344 unsigned int *bytes_read)
19345 {
19346 struct comp_unit_head *cu_header = &cu->header;
19347 CORE_ADDR retval = 0;
19348
19349 if (cu_header->signed_addr_p)
19350 {
19351 switch (cu_header->addr_size)
19352 {
19353 case 2:
19354 retval = bfd_get_signed_16 (abfd, buf);
19355 break;
19356 case 4:
19357 retval = bfd_get_signed_32 (abfd, buf);
19358 break;
19359 case 8:
19360 retval = bfd_get_signed_64 (abfd, buf);
19361 break;
19362 default:
19363 internal_error (__FILE__, __LINE__,
19364 _("read_address: bad switch, signed [in module %s]"),
19365 bfd_get_filename (abfd));
19366 }
19367 }
19368 else
19369 {
19370 switch (cu_header->addr_size)
19371 {
19372 case 2:
19373 retval = bfd_get_16 (abfd, buf);
19374 break;
19375 case 4:
19376 retval = bfd_get_32 (abfd, buf);
19377 break;
19378 case 8:
19379 retval = bfd_get_64 (abfd, buf);
19380 break;
19381 default:
19382 internal_error (__FILE__, __LINE__,
19383 _("read_address: bad switch, "
19384 "unsigned [in module %s]"),
19385 bfd_get_filename (abfd));
19386 }
19387 }
19388
19389 *bytes_read = cu_header->addr_size;
19390 return retval;
19391 }
19392
19393 /* Read the initial length from a section. The (draft) DWARF 3
19394 specification allows the initial length to take up either 4 bytes
19395 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19396 bytes describe the length and all offsets will be 8 bytes in length
19397 instead of 4.
19398
19399 An older, non-standard 64-bit format is also handled by this
19400 function. The older format in question stores the initial length
19401 as an 8-byte quantity without an escape value. Lengths greater
19402 than 2^32 aren't very common which means that the initial 4 bytes
19403 is almost always zero. Since a length value of zero doesn't make
19404 sense for the 32-bit format, this initial zero can be considered to
19405 be an escape value which indicates the presence of the older 64-bit
19406 format. As written, the code can't detect (old format) lengths
19407 greater than 4GB. If it becomes necessary to handle lengths
19408 somewhat larger than 4GB, we could allow other small values (such
19409 as the non-sensical values of 1, 2, and 3) to also be used as
19410 escape values indicating the presence of the old format.
19411
19412 The value returned via bytes_read should be used to increment the
19413 relevant pointer after calling read_initial_length().
19414
19415 [ Note: read_initial_length() and read_offset() are based on the
19416 document entitled "DWARF Debugging Information Format", revision
19417 3, draft 8, dated November 19, 2001. This document was obtained
19418 from:
19419
19420 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19421
19422 This document is only a draft and is subject to change. (So beware.)
19423
19424 Details regarding the older, non-standard 64-bit format were
19425 determined empirically by examining 64-bit ELF files produced by
19426 the SGI toolchain on an IRIX 6.5 machine.
19427
19428 - Kevin, July 16, 2002
19429 ] */
19430
19431 static LONGEST
19432 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19433 {
19434 LONGEST length = bfd_get_32 (abfd, buf);
19435
19436 if (length == 0xffffffff)
19437 {
19438 length = bfd_get_64 (abfd, buf + 4);
19439 *bytes_read = 12;
19440 }
19441 else if (length == 0)
19442 {
19443 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19444 length = bfd_get_64 (abfd, buf);
19445 *bytes_read = 8;
19446 }
19447 else
19448 {
19449 *bytes_read = 4;
19450 }
19451
19452 return length;
19453 }
19454
19455 /* Cover function for read_initial_length.
19456 Returns the length of the object at BUF, and stores the size of the
19457 initial length in *BYTES_READ and stores the size that offsets will be in
19458 *OFFSET_SIZE.
19459 If the initial length size is not equivalent to that specified in
19460 CU_HEADER then issue a complaint.
19461 This is useful when reading non-comp-unit headers. */
19462
19463 static LONGEST
19464 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19465 const struct comp_unit_head *cu_header,
19466 unsigned int *bytes_read,
19467 unsigned int *offset_size)
19468 {
19469 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19470
19471 gdb_assert (cu_header->initial_length_size == 4
19472 || cu_header->initial_length_size == 8
19473 || cu_header->initial_length_size == 12);
19474
19475 if (cu_header->initial_length_size != *bytes_read)
19476 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19477
19478 *offset_size = (*bytes_read == 4) ? 4 : 8;
19479 return length;
19480 }
19481
19482 /* Read an offset from the data stream. The size of the offset is
19483 given by cu_header->offset_size. */
19484
19485 static LONGEST
19486 read_offset (bfd *abfd, const gdb_byte *buf,
19487 const struct comp_unit_head *cu_header,
19488 unsigned int *bytes_read)
19489 {
19490 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19491
19492 *bytes_read = cu_header->offset_size;
19493 return offset;
19494 }
19495
19496 /* Read an offset from the data stream. */
19497
19498 static LONGEST
19499 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19500 {
19501 LONGEST retval = 0;
19502
19503 switch (offset_size)
19504 {
19505 case 4:
19506 retval = bfd_get_32 (abfd, buf);
19507 break;
19508 case 8:
19509 retval = bfd_get_64 (abfd, buf);
19510 break;
19511 default:
19512 internal_error (__FILE__, __LINE__,
19513 _("read_offset_1: bad switch [in module %s]"),
19514 bfd_get_filename (abfd));
19515 }
19516
19517 return retval;
19518 }
19519
19520 static const gdb_byte *
19521 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19522 {
19523 /* If the size of a host char is 8 bits, we can return a pointer
19524 to the buffer, otherwise we have to copy the data to a buffer
19525 allocated on the temporary obstack. */
19526 gdb_assert (HOST_CHAR_BIT == 8);
19527 return buf;
19528 }
19529
19530 static const char *
19531 read_direct_string (bfd *abfd, const gdb_byte *buf,
19532 unsigned int *bytes_read_ptr)
19533 {
19534 /* If the size of a host char is 8 bits, we can return a pointer
19535 to the string, otherwise we have to copy the string to a buffer
19536 allocated on the temporary obstack. */
19537 gdb_assert (HOST_CHAR_BIT == 8);
19538 if (*buf == '\0')
19539 {
19540 *bytes_read_ptr = 1;
19541 return NULL;
19542 }
19543 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19544 return (const char *) buf;
19545 }
19546
19547 /* Return pointer to string at section SECT offset STR_OFFSET with error
19548 reporting strings FORM_NAME and SECT_NAME. */
19549
19550 static const char *
19551 read_indirect_string_at_offset_from (struct objfile *objfile,
19552 bfd *abfd, LONGEST str_offset,
19553 struct dwarf2_section_info *sect,
19554 const char *form_name,
19555 const char *sect_name)
19556 {
19557 dwarf2_read_section (objfile, sect);
19558 if (sect->buffer == NULL)
19559 error (_("%s used without %s section [in module %s]"),
19560 form_name, sect_name, bfd_get_filename (abfd));
19561 if (str_offset >= sect->size)
19562 error (_("%s pointing outside of %s section [in module %s]"),
19563 form_name, sect_name, bfd_get_filename (abfd));
19564 gdb_assert (HOST_CHAR_BIT == 8);
19565 if (sect->buffer[str_offset] == '\0')
19566 return NULL;
19567 return (const char *) (sect->buffer + str_offset);
19568 }
19569
19570 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19571
19572 static const char *
19573 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19574 bfd *abfd, LONGEST str_offset)
19575 {
19576 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19577 abfd, str_offset,
19578 &dwarf2_per_objfile->str,
19579 "DW_FORM_strp", ".debug_str");
19580 }
19581
19582 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19583
19584 static const char *
19585 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19586 bfd *abfd, LONGEST str_offset)
19587 {
19588 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19589 abfd, str_offset,
19590 &dwarf2_per_objfile->line_str,
19591 "DW_FORM_line_strp",
19592 ".debug_line_str");
19593 }
19594
19595 /* Read a string at offset STR_OFFSET in the .debug_str section from
19596 the .dwz file DWZ. Throw an error if the offset is too large. If
19597 the string consists of a single NUL byte, return NULL; otherwise
19598 return a pointer to the string. */
19599
19600 static const char *
19601 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19602 LONGEST str_offset)
19603 {
19604 dwarf2_read_section (objfile, &dwz->str);
19605
19606 if (dwz->str.buffer == NULL)
19607 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19608 "section [in module %s]"),
19609 bfd_get_filename (dwz->dwz_bfd));
19610 if (str_offset >= dwz->str.size)
19611 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19612 ".debug_str section [in module %s]"),
19613 bfd_get_filename (dwz->dwz_bfd));
19614 gdb_assert (HOST_CHAR_BIT == 8);
19615 if (dwz->str.buffer[str_offset] == '\0')
19616 return NULL;
19617 return (const char *) (dwz->str.buffer + str_offset);
19618 }
19619
19620 /* Return pointer to string at .debug_str offset as read from BUF.
19621 BUF is assumed to be in a compilation unit described by CU_HEADER.
19622 Return *BYTES_READ_PTR count of bytes read from BUF. */
19623
19624 static const char *
19625 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19626 const gdb_byte *buf,
19627 const struct comp_unit_head *cu_header,
19628 unsigned int *bytes_read_ptr)
19629 {
19630 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19631
19632 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19633 }
19634
19635 /* Return pointer to string at .debug_line_str offset as read from BUF.
19636 BUF is assumed to be in a compilation unit described by CU_HEADER.
19637 Return *BYTES_READ_PTR count of bytes read from BUF. */
19638
19639 static const char *
19640 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19641 bfd *abfd, const gdb_byte *buf,
19642 const struct comp_unit_head *cu_header,
19643 unsigned int *bytes_read_ptr)
19644 {
19645 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19646
19647 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19648 str_offset);
19649 }
19650
19651 ULONGEST
19652 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19653 unsigned int *bytes_read_ptr)
19654 {
19655 ULONGEST result;
19656 unsigned int num_read;
19657 int shift;
19658 unsigned char byte;
19659
19660 result = 0;
19661 shift = 0;
19662 num_read = 0;
19663 while (1)
19664 {
19665 byte = bfd_get_8 (abfd, buf);
19666 buf++;
19667 num_read++;
19668 result |= ((ULONGEST) (byte & 127) << shift);
19669 if ((byte & 128) == 0)
19670 {
19671 break;
19672 }
19673 shift += 7;
19674 }
19675 *bytes_read_ptr = num_read;
19676 return result;
19677 }
19678
19679 static LONGEST
19680 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19681 unsigned int *bytes_read_ptr)
19682 {
19683 ULONGEST result;
19684 int shift, num_read;
19685 unsigned char byte;
19686
19687 result = 0;
19688 shift = 0;
19689 num_read = 0;
19690 while (1)
19691 {
19692 byte = bfd_get_8 (abfd, buf);
19693 buf++;
19694 num_read++;
19695 result |= ((ULONGEST) (byte & 127) << shift);
19696 shift += 7;
19697 if ((byte & 128) == 0)
19698 {
19699 break;
19700 }
19701 }
19702 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19703 result |= -(((ULONGEST) 1) << shift);
19704 *bytes_read_ptr = num_read;
19705 return result;
19706 }
19707
19708 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19709 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19710 ADDR_SIZE is the size of addresses from the CU header. */
19711
19712 static CORE_ADDR
19713 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19714 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19715 {
19716 struct objfile *objfile = dwarf2_per_objfile->objfile;
19717 bfd *abfd = objfile->obfd;
19718 const gdb_byte *info_ptr;
19719
19720 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19721 if (dwarf2_per_objfile->addr.buffer == NULL)
19722 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19723 objfile_name (objfile));
19724 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19725 error (_("DW_FORM_addr_index pointing outside of "
19726 ".debug_addr section [in module %s]"),
19727 objfile_name (objfile));
19728 info_ptr = (dwarf2_per_objfile->addr.buffer
19729 + addr_base + addr_index * addr_size);
19730 if (addr_size == 4)
19731 return bfd_get_32 (abfd, info_ptr);
19732 else
19733 return bfd_get_64 (abfd, info_ptr);
19734 }
19735
19736 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19737
19738 static CORE_ADDR
19739 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19740 {
19741 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19742 cu->addr_base, cu->header.addr_size);
19743 }
19744
19745 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19746
19747 static CORE_ADDR
19748 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19749 unsigned int *bytes_read)
19750 {
19751 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19752 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19753
19754 return read_addr_index (cu, addr_index);
19755 }
19756
19757 /* Data structure to pass results from dwarf2_read_addr_index_reader
19758 back to dwarf2_read_addr_index. */
19759
19760 struct dwarf2_read_addr_index_data
19761 {
19762 ULONGEST addr_base;
19763 int addr_size;
19764 };
19765
19766 /* die_reader_func for dwarf2_read_addr_index. */
19767
19768 static void
19769 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19770 const gdb_byte *info_ptr,
19771 struct die_info *comp_unit_die,
19772 int has_children,
19773 void *data)
19774 {
19775 struct dwarf2_cu *cu = reader->cu;
19776 struct dwarf2_read_addr_index_data *aidata =
19777 (struct dwarf2_read_addr_index_data *) data;
19778
19779 aidata->addr_base = cu->addr_base;
19780 aidata->addr_size = cu->header.addr_size;
19781 }
19782
19783 /* Given an index in .debug_addr, fetch the value.
19784 NOTE: This can be called during dwarf expression evaluation,
19785 long after the debug information has been read, and thus per_cu->cu
19786 may no longer exist. */
19787
19788 CORE_ADDR
19789 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19790 unsigned int addr_index)
19791 {
19792 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19793 struct dwarf2_cu *cu = per_cu->cu;
19794 ULONGEST addr_base;
19795 int addr_size;
19796
19797 /* We need addr_base and addr_size.
19798 If we don't have PER_CU->cu, we have to get it.
19799 Nasty, but the alternative is storing the needed info in PER_CU,
19800 which at this point doesn't seem justified: it's not clear how frequently
19801 it would get used and it would increase the size of every PER_CU.
19802 Entry points like dwarf2_per_cu_addr_size do a similar thing
19803 so we're not in uncharted territory here.
19804 Alas we need to be a bit more complicated as addr_base is contained
19805 in the DIE.
19806
19807 We don't need to read the entire CU(/TU).
19808 We just need the header and top level die.
19809
19810 IWBN to use the aging mechanism to let us lazily later discard the CU.
19811 For now we skip this optimization. */
19812
19813 if (cu != NULL)
19814 {
19815 addr_base = cu->addr_base;
19816 addr_size = cu->header.addr_size;
19817 }
19818 else
19819 {
19820 struct dwarf2_read_addr_index_data aidata;
19821
19822 /* Note: We can't use init_cutu_and_read_dies_simple here,
19823 we need addr_base. */
19824 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19825 dwarf2_read_addr_index_reader, &aidata);
19826 addr_base = aidata.addr_base;
19827 addr_size = aidata.addr_size;
19828 }
19829
19830 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19831 addr_size);
19832 }
19833
19834 /* Given a DW_FORM_GNU_str_index, fetch the string.
19835 This is only used by the Fission support. */
19836
19837 static const char *
19838 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19839 {
19840 struct dwarf2_cu *cu = reader->cu;
19841 struct dwarf2_per_objfile *dwarf2_per_objfile
19842 = cu->per_cu->dwarf2_per_objfile;
19843 struct objfile *objfile = dwarf2_per_objfile->objfile;
19844 const char *objf_name = objfile_name (objfile);
19845 bfd *abfd = objfile->obfd;
19846 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19847 struct dwarf2_section_info *str_offsets_section =
19848 &reader->dwo_file->sections.str_offsets;
19849 const gdb_byte *info_ptr;
19850 ULONGEST str_offset;
19851 static const char form_name[] = "DW_FORM_GNU_str_index";
19852
19853 dwarf2_read_section (objfile, str_section);
19854 dwarf2_read_section (objfile, str_offsets_section);
19855 if (str_section->buffer == NULL)
19856 error (_("%s used without .debug_str.dwo section"
19857 " in CU at offset %s [in module %s]"),
19858 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19859 if (str_offsets_section->buffer == NULL)
19860 error (_("%s used without .debug_str_offsets.dwo section"
19861 " in CU at offset %s [in module %s]"),
19862 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19863 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19864 error (_("%s pointing outside of .debug_str_offsets.dwo"
19865 " section in CU at offset %s [in module %s]"),
19866 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19867 info_ptr = (str_offsets_section->buffer
19868 + str_index * cu->header.offset_size);
19869 if (cu->header.offset_size == 4)
19870 str_offset = bfd_get_32 (abfd, info_ptr);
19871 else
19872 str_offset = bfd_get_64 (abfd, info_ptr);
19873 if (str_offset >= str_section->size)
19874 error (_("Offset from %s pointing outside of"
19875 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19876 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19877 return (const char *) (str_section->buffer + str_offset);
19878 }
19879
19880 /* Return the length of an LEB128 number in BUF. */
19881
19882 static int
19883 leb128_size (const gdb_byte *buf)
19884 {
19885 const gdb_byte *begin = buf;
19886 gdb_byte byte;
19887
19888 while (1)
19889 {
19890 byte = *buf++;
19891 if ((byte & 128) == 0)
19892 return buf - begin;
19893 }
19894 }
19895
19896 static void
19897 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19898 {
19899 switch (lang)
19900 {
19901 case DW_LANG_C89:
19902 case DW_LANG_C99:
19903 case DW_LANG_C11:
19904 case DW_LANG_C:
19905 case DW_LANG_UPC:
19906 cu->language = language_c;
19907 break;
19908 case DW_LANG_Java:
19909 case DW_LANG_C_plus_plus:
19910 case DW_LANG_C_plus_plus_11:
19911 case DW_LANG_C_plus_plus_14:
19912 cu->language = language_cplus;
19913 break;
19914 case DW_LANG_D:
19915 cu->language = language_d;
19916 break;
19917 case DW_LANG_Fortran77:
19918 case DW_LANG_Fortran90:
19919 case DW_LANG_Fortran95:
19920 case DW_LANG_Fortran03:
19921 case DW_LANG_Fortran08:
19922 cu->language = language_fortran;
19923 break;
19924 case DW_LANG_Go:
19925 cu->language = language_go;
19926 break;
19927 case DW_LANG_Mips_Assembler:
19928 cu->language = language_asm;
19929 break;
19930 case DW_LANG_Ada83:
19931 case DW_LANG_Ada95:
19932 cu->language = language_ada;
19933 break;
19934 case DW_LANG_Modula2:
19935 cu->language = language_m2;
19936 break;
19937 case DW_LANG_Pascal83:
19938 cu->language = language_pascal;
19939 break;
19940 case DW_LANG_ObjC:
19941 cu->language = language_objc;
19942 break;
19943 case DW_LANG_Rust:
19944 case DW_LANG_Rust_old:
19945 cu->language = language_rust;
19946 break;
19947 case DW_LANG_Cobol74:
19948 case DW_LANG_Cobol85:
19949 default:
19950 cu->language = language_minimal;
19951 break;
19952 }
19953 cu->language_defn = language_def (cu->language);
19954 }
19955
19956 /* Return the named attribute or NULL if not there. */
19957
19958 static struct attribute *
19959 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19960 {
19961 for (;;)
19962 {
19963 unsigned int i;
19964 struct attribute *spec = NULL;
19965
19966 for (i = 0; i < die->num_attrs; ++i)
19967 {
19968 if (die->attrs[i].name == name)
19969 return &die->attrs[i];
19970 if (die->attrs[i].name == DW_AT_specification
19971 || die->attrs[i].name == DW_AT_abstract_origin)
19972 spec = &die->attrs[i];
19973 }
19974
19975 if (!spec)
19976 break;
19977
19978 die = follow_die_ref (die, spec, &cu);
19979 }
19980
19981 return NULL;
19982 }
19983
19984 /* Return the named attribute or NULL if not there,
19985 but do not follow DW_AT_specification, etc.
19986 This is for use in contexts where we're reading .debug_types dies.
19987 Following DW_AT_specification, DW_AT_abstract_origin will take us
19988 back up the chain, and we want to go down. */
19989
19990 static struct attribute *
19991 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19992 {
19993 unsigned int i;
19994
19995 for (i = 0; i < die->num_attrs; ++i)
19996 if (die->attrs[i].name == name)
19997 return &die->attrs[i];
19998
19999 return NULL;
20000 }
20001
20002 /* Return the string associated with a string-typed attribute, or NULL if it
20003 is either not found or is of an incorrect type. */
20004
20005 static const char *
20006 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20007 {
20008 struct attribute *attr;
20009 const char *str = NULL;
20010
20011 attr = dwarf2_attr (die, name, cu);
20012
20013 if (attr != NULL)
20014 {
20015 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20016 || attr->form == DW_FORM_string
20017 || attr->form == DW_FORM_GNU_str_index
20018 || attr->form == DW_FORM_GNU_strp_alt)
20019 str = DW_STRING (attr);
20020 else
20021 complaint (_("string type expected for attribute %s for "
20022 "DIE at %s in module %s"),
20023 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20024 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20025 }
20026
20027 return str;
20028 }
20029
20030 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20031 and holds a non-zero value. This function should only be used for
20032 DW_FORM_flag or DW_FORM_flag_present attributes. */
20033
20034 static int
20035 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20036 {
20037 struct attribute *attr = dwarf2_attr (die, name, cu);
20038
20039 return (attr && DW_UNSND (attr));
20040 }
20041
20042 static int
20043 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20044 {
20045 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20046 which value is non-zero. However, we have to be careful with
20047 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20048 (via dwarf2_flag_true_p) follows this attribute. So we may
20049 end up accidently finding a declaration attribute that belongs
20050 to a different DIE referenced by the specification attribute,
20051 even though the given DIE does not have a declaration attribute. */
20052 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20053 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20054 }
20055
20056 /* Return the die giving the specification for DIE, if there is
20057 one. *SPEC_CU is the CU containing DIE on input, and the CU
20058 containing the return value on output. If there is no
20059 specification, but there is an abstract origin, that is
20060 returned. */
20061
20062 static struct die_info *
20063 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20064 {
20065 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20066 *spec_cu);
20067
20068 if (spec_attr == NULL)
20069 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20070
20071 if (spec_attr == NULL)
20072 return NULL;
20073 else
20074 return follow_die_ref (die, spec_attr, spec_cu);
20075 }
20076
20077 /* Stub for free_line_header to match void * callback types. */
20078
20079 static void
20080 free_line_header_voidp (void *arg)
20081 {
20082 struct line_header *lh = (struct line_header *) arg;
20083
20084 delete lh;
20085 }
20086
20087 void
20088 line_header::add_include_dir (const char *include_dir)
20089 {
20090 if (dwarf_line_debug >= 2)
20091 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20092 include_dirs.size () + 1, include_dir);
20093
20094 include_dirs.push_back (include_dir);
20095 }
20096
20097 void
20098 line_header::add_file_name (const char *name,
20099 dir_index d_index,
20100 unsigned int mod_time,
20101 unsigned int length)
20102 {
20103 if (dwarf_line_debug >= 2)
20104 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20105 (unsigned) file_names.size () + 1, name);
20106
20107 file_names.emplace_back (name, d_index, mod_time, length);
20108 }
20109
20110 /* A convenience function to find the proper .debug_line section for a CU. */
20111
20112 static struct dwarf2_section_info *
20113 get_debug_line_section (struct dwarf2_cu *cu)
20114 {
20115 struct dwarf2_section_info *section;
20116 struct dwarf2_per_objfile *dwarf2_per_objfile
20117 = cu->per_cu->dwarf2_per_objfile;
20118
20119 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20120 DWO file. */
20121 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20122 section = &cu->dwo_unit->dwo_file->sections.line;
20123 else if (cu->per_cu->is_dwz)
20124 {
20125 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20126
20127 section = &dwz->line;
20128 }
20129 else
20130 section = &dwarf2_per_objfile->line;
20131
20132 return section;
20133 }
20134
20135 /* Read directory or file name entry format, starting with byte of
20136 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20137 entries count and the entries themselves in the described entry
20138 format. */
20139
20140 static void
20141 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20142 bfd *abfd, const gdb_byte **bufp,
20143 struct line_header *lh,
20144 const struct comp_unit_head *cu_header,
20145 void (*callback) (struct line_header *lh,
20146 const char *name,
20147 dir_index d_index,
20148 unsigned int mod_time,
20149 unsigned int length))
20150 {
20151 gdb_byte format_count, formati;
20152 ULONGEST data_count, datai;
20153 const gdb_byte *buf = *bufp;
20154 const gdb_byte *format_header_data;
20155 unsigned int bytes_read;
20156
20157 format_count = read_1_byte (abfd, buf);
20158 buf += 1;
20159 format_header_data = buf;
20160 for (formati = 0; formati < format_count; formati++)
20161 {
20162 read_unsigned_leb128 (abfd, buf, &bytes_read);
20163 buf += bytes_read;
20164 read_unsigned_leb128 (abfd, buf, &bytes_read);
20165 buf += bytes_read;
20166 }
20167
20168 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20169 buf += bytes_read;
20170 for (datai = 0; datai < data_count; datai++)
20171 {
20172 const gdb_byte *format = format_header_data;
20173 struct file_entry fe;
20174
20175 for (formati = 0; formati < format_count; formati++)
20176 {
20177 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20178 format += bytes_read;
20179
20180 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20181 format += bytes_read;
20182
20183 gdb::optional<const char *> string;
20184 gdb::optional<unsigned int> uint;
20185
20186 switch (form)
20187 {
20188 case DW_FORM_string:
20189 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20190 buf += bytes_read;
20191 break;
20192
20193 case DW_FORM_line_strp:
20194 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20195 abfd, buf,
20196 cu_header,
20197 &bytes_read));
20198 buf += bytes_read;
20199 break;
20200
20201 case DW_FORM_data1:
20202 uint.emplace (read_1_byte (abfd, buf));
20203 buf += 1;
20204 break;
20205
20206 case DW_FORM_data2:
20207 uint.emplace (read_2_bytes (abfd, buf));
20208 buf += 2;
20209 break;
20210
20211 case DW_FORM_data4:
20212 uint.emplace (read_4_bytes (abfd, buf));
20213 buf += 4;
20214 break;
20215
20216 case DW_FORM_data8:
20217 uint.emplace (read_8_bytes (abfd, buf));
20218 buf += 8;
20219 break;
20220
20221 case DW_FORM_udata:
20222 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20223 buf += bytes_read;
20224 break;
20225
20226 case DW_FORM_block:
20227 /* It is valid only for DW_LNCT_timestamp which is ignored by
20228 current GDB. */
20229 break;
20230 }
20231
20232 switch (content_type)
20233 {
20234 case DW_LNCT_path:
20235 if (string.has_value ())
20236 fe.name = *string;
20237 break;
20238 case DW_LNCT_directory_index:
20239 if (uint.has_value ())
20240 fe.d_index = (dir_index) *uint;
20241 break;
20242 case DW_LNCT_timestamp:
20243 if (uint.has_value ())
20244 fe.mod_time = *uint;
20245 break;
20246 case DW_LNCT_size:
20247 if (uint.has_value ())
20248 fe.length = *uint;
20249 break;
20250 case DW_LNCT_MD5:
20251 break;
20252 default:
20253 complaint (_("Unknown format content type %s"),
20254 pulongest (content_type));
20255 }
20256 }
20257
20258 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20259 }
20260
20261 *bufp = buf;
20262 }
20263
20264 /* Read the statement program header starting at OFFSET in
20265 .debug_line, or .debug_line.dwo. Return a pointer
20266 to a struct line_header, allocated using xmalloc.
20267 Returns NULL if there is a problem reading the header, e.g., if it
20268 has a version we don't understand.
20269
20270 NOTE: the strings in the include directory and file name tables of
20271 the returned object point into the dwarf line section buffer,
20272 and must not be freed. */
20273
20274 static line_header_up
20275 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20276 {
20277 const gdb_byte *line_ptr;
20278 unsigned int bytes_read, offset_size;
20279 int i;
20280 const char *cur_dir, *cur_file;
20281 struct dwarf2_section_info *section;
20282 bfd *abfd;
20283 struct dwarf2_per_objfile *dwarf2_per_objfile
20284 = cu->per_cu->dwarf2_per_objfile;
20285
20286 section = get_debug_line_section (cu);
20287 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20288 if (section->buffer == NULL)
20289 {
20290 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20291 complaint (_("missing .debug_line.dwo section"));
20292 else
20293 complaint (_("missing .debug_line section"));
20294 return 0;
20295 }
20296
20297 /* We can't do this until we know the section is non-empty.
20298 Only then do we know we have such a section. */
20299 abfd = get_section_bfd_owner (section);
20300
20301 /* Make sure that at least there's room for the total_length field.
20302 That could be 12 bytes long, but we're just going to fudge that. */
20303 if (to_underlying (sect_off) + 4 >= section->size)
20304 {
20305 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20306 return 0;
20307 }
20308
20309 line_header_up lh (new line_header ());
20310
20311 lh->sect_off = sect_off;
20312 lh->offset_in_dwz = cu->per_cu->is_dwz;
20313
20314 line_ptr = section->buffer + to_underlying (sect_off);
20315
20316 /* Read in the header. */
20317 lh->total_length =
20318 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20319 &bytes_read, &offset_size);
20320 line_ptr += bytes_read;
20321 if (line_ptr + lh->total_length > (section->buffer + section->size))
20322 {
20323 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20324 return 0;
20325 }
20326 lh->statement_program_end = line_ptr + lh->total_length;
20327 lh->version = read_2_bytes (abfd, line_ptr);
20328 line_ptr += 2;
20329 if (lh->version > 5)
20330 {
20331 /* This is a version we don't understand. The format could have
20332 changed in ways we don't handle properly so just punt. */
20333 complaint (_("unsupported version in .debug_line section"));
20334 return NULL;
20335 }
20336 if (lh->version >= 5)
20337 {
20338 gdb_byte segment_selector_size;
20339
20340 /* Skip address size. */
20341 read_1_byte (abfd, line_ptr);
20342 line_ptr += 1;
20343
20344 segment_selector_size = read_1_byte (abfd, line_ptr);
20345 line_ptr += 1;
20346 if (segment_selector_size != 0)
20347 {
20348 complaint (_("unsupported segment selector size %u "
20349 "in .debug_line section"),
20350 segment_selector_size);
20351 return NULL;
20352 }
20353 }
20354 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20355 line_ptr += offset_size;
20356 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20357 line_ptr += 1;
20358 if (lh->version >= 4)
20359 {
20360 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20361 line_ptr += 1;
20362 }
20363 else
20364 lh->maximum_ops_per_instruction = 1;
20365
20366 if (lh->maximum_ops_per_instruction == 0)
20367 {
20368 lh->maximum_ops_per_instruction = 1;
20369 complaint (_("invalid maximum_ops_per_instruction "
20370 "in `.debug_line' section"));
20371 }
20372
20373 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20374 line_ptr += 1;
20375 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20376 line_ptr += 1;
20377 lh->line_range = read_1_byte (abfd, line_ptr);
20378 line_ptr += 1;
20379 lh->opcode_base = read_1_byte (abfd, line_ptr);
20380 line_ptr += 1;
20381 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20382
20383 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20384 for (i = 1; i < lh->opcode_base; ++i)
20385 {
20386 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20387 line_ptr += 1;
20388 }
20389
20390 if (lh->version >= 5)
20391 {
20392 /* Read directory table. */
20393 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20394 &cu->header,
20395 [] (struct line_header *header, const char *name,
20396 dir_index d_index, unsigned int mod_time,
20397 unsigned int length)
20398 {
20399 header->add_include_dir (name);
20400 });
20401
20402 /* Read file name table. */
20403 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20404 &cu->header,
20405 [] (struct line_header *header, const char *name,
20406 dir_index d_index, unsigned int mod_time,
20407 unsigned int length)
20408 {
20409 header->add_file_name (name, d_index, mod_time, length);
20410 });
20411 }
20412 else
20413 {
20414 /* Read directory table. */
20415 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20416 {
20417 line_ptr += bytes_read;
20418 lh->add_include_dir (cur_dir);
20419 }
20420 line_ptr += bytes_read;
20421
20422 /* Read file name table. */
20423 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20424 {
20425 unsigned int mod_time, length;
20426 dir_index d_index;
20427
20428 line_ptr += bytes_read;
20429 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20430 line_ptr += bytes_read;
20431 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20432 line_ptr += bytes_read;
20433 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20434 line_ptr += bytes_read;
20435
20436 lh->add_file_name (cur_file, d_index, mod_time, length);
20437 }
20438 line_ptr += bytes_read;
20439 }
20440 lh->statement_program_start = line_ptr;
20441
20442 if (line_ptr > (section->buffer + section->size))
20443 complaint (_("line number info header doesn't "
20444 "fit in `.debug_line' section"));
20445
20446 return lh;
20447 }
20448
20449 /* Subroutine of dwarf_decode_lines to simplify it.
20450 Return the file name of the psymtab for included file FILE_INDEX
20451 in line header LH of PST.
20452 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20453 If space for the result is malloc'd, *NAME_HOLDER will be set.
20454 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20455
20456 static const char *
20457 psymtab_include_file_name (const struct line_header *lh, int file_index,
20458 const struct partial_symtab *pst,
20459 const char *comp_dir,
20460 gdb::unique_xmalloc_ptr<char> *name_holder)
20461 {
20462 const file_entry &fe = lh->file_names[file_index];
20463 const char *include_name = fe.name;
20464 const char *include_name_to_compare = include_name;
20465 const char *pst_filename;
20466 int file_is_pst;
20467
20468 const char *dir_name = fe.include_dir (lh);
20469
20470 gdb::unique_xmalloc_ptr<char> hold_compare;
20471 if (!IS_ABSOLUTE_PATH (include_name)
20472 && (dir_name != NULL || comp_dir != NULL))
20473 {
20474 /* Avoid creating a duplicate psymtab for PST.
20475 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20476 Before we do the comparison, however, we need to account
20477 for DIR_NAME and COMP_DIR.
20478 First prepend dir_name (if non-NULL). If we still don't
20479 have an absolute path prepend comp_dir (if non-NULL).
20480 However, the directory we record in the include-file's
20481 psymtab does not contain COMP_DIR (to match the
20482 corresponding symtab(s)).
20483
20484 Example:
20485
20486 bash$ cd /tmp
20487 bash$ gcc -g ./hello.c
20488 include_name = "hello.c"
20489 dir_name = "."
20490 DW_AT_comp_dir = comp_dir = "/tmp"
20491 DW_AT_name = "./hello.c"
20492
20493 */
20494
20495 if (dir_name != NULL)
20496 {
20497 name_holder->reset (concat (dir_name, SLASH_STRING,
20498 include_name, (char *) NULL));
20499 include_name = name_holder->get ();
20500 include_name_to_compare = include_name;
20501 }
20502 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20503 {
20504 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20505 include_name, (char *) NULL));
20506 include_name_to_compare = hold_compare.get ();
20507 }
20508 }
20509
20510 pst_filename = pst->filename;
20511 gdb::unique_xmalloc_ptr<char> copied_name;
20512 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20513 {
20514 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20515 pst_filename, (char *) NULL));
20516 pst_filename = copied_name.get ();
20517 }
20518
20519 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20520
20521 if (file_is_pst)
20522 return NULL;
20523 return include_name;
20524 }
20525
20526 /* State machine to track the state of the line number program. */
20527
20528 class lnp_state_machine
20529 {
20530 public:
20531 /* Initialize a machine state for the start of a line number
20532 program. */
20533 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20534 bool record_lines_p);
20535
20536 file_entry *current_file ()
20537 {
20538 /* lh->file_names is 0-based, but the file name numbers in the
20539 statement program are 1-based. */
20540 return m_line_header->file_name_at (m_file);
20541 }
20542
20543 /* Record the line in the state machine. END_SEQUENCE is true if
20544 we're processing the end of a sequence. */
20545 void record_line (bool end_sequence);
20546
20547 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20548 nop-out rest of the lines in this sequence. */
20549 void check_line_address (struct dwarf2_cu *cu,
20550 const gdb_byte *line_ptr,
20551 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20552
20553 void handle_set_discriminator (unsigned int discriminator)
20554 {
20555 m_discriminator = discriminator;
20556 m_line_has_non_zero_discriminator |= discriminator != 0;
20557 }
20558
20559 /* Handle DW_LNE_set_address. */
20560 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20561 {
20562 m_op_index = 0;
20563 address += baseaddr;
20564 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20565 }
20566
20567 /* Handle DW_LNS_advance_pc. */
20568 void handle_advance_pc (CORE_ADDR adjust);
20569
20570 /* Handle a special opcode. */
20571 void handle_special_opcode (unsigned char op_code);
20572
20573 /* Handle DW_LNS_advance_line. */
20574 void handle_advance_line (int line_delta)
20575 {
20576 advance_line (line_delta);
20577 }
20578
20579 /* Handle DW_LNS_set_file. */
20580 void handle_set_file (file_name_index file);
20581
20582 /* Handle DW_LNS_negate_stmt. */
20583 void handle_negate_stmt ()
20584 {
20585 m_is_stmt = !m_is_stmt;
20586 }
20587
20588 /* Handle DW_LNS_const_add_pc. */
20589 void handle_const_add_pc ();
20590
20591 /* Handle DW_LNS_fixed_advance_pc. */
20592 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20593 {
20594 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20595 m_op_index = 0;
20596 }
20597
20598 /* Handle DW_LNS_copy. */
20599 void handle_copy ()
20600 {
20601 record_line (false);
20602 m_discriminator = 0;
20603 }
20604
20605 /* Handle DW_LNE_end_sequence. */
20606 void handle_end_sequence ()
20607 {
20608 m_currently_recording_lines = true;
20609 }
20610
20611 private:
20612 /* Advance the line by LINE_DELTA. */
20613 void advance_line (int line_delta)
20614 {
20615 m_line += line_delta;
20616
20617 if (line_delta != 0)
20618 m_line_has_non_zero_discriminator = m_discriminator != 0;
20619 }
20620
20621 struct dwarf2_cu *m_cu;
20622
20623 gdbarch *m_gdbarch;
20624
20625 /* True if we're recording lines.
20626 Otherwise we're building partial symtabs and are just interested in
20627 finding include files mentioned by the line number program. */
20628 bool m_record_lines_p;
20629
20630 /* The line number header. */
20631 line_header *m_line_header;
20632
20633 /* These are part of the standard DWARF line number state machine,
20634 and initialized according to the DWARF spec. */
20635
20636 unsigned char m_op_index = 0;
20637 /* The line table index (1-based) of the current file. */
20638 file_name_index m_file = (file_name_index) 1;
20639 unsigned int m_line = 1;
20640
20641 /* These are initialized in the constructor. */
20642
20643 CORE_ADDR m_address;
20644 bool m_is_stmt;
20645 unsigned int m_discriminator;
20646
20647 /* Additional bits of state we need to track. */
20648
20649 /* The last file that we called dwarf2_start_subfile for.
20650 This is only used for TLLs. */
20651 unsigned int m_last_file = 0;
20652 /* The last file a line number was recorded for. */
20653 struct subfile *m_last_subfile = NULL;
20654
20655 /* When true, record the lines we decode. */
20656 bool m_currently_recording_lines = false;
20657
20658 /* The last line number that was recorded, used to coalesce
20659 consecutive entries for the same line. This can happen, for
20660 example, when discriminators are present. PR 17276. */
20661 unsigned int m_last_line = 0;
20662 bool m_line_has_non_zero_discriminator = false;
20663 };
20664
20665 void
20666 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20667 {
20668 CORE_ADDR addr_adj = (((m_op_index + adjust)
20669 / m_line_header->maximum_ops_per_instruction)
20670 * m_line_header->minimum_instruction_length);
20671 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20672 m_op_index = ((m_op_index + adjust)
20673 % m_line_header->maximum_ops_per_instruction);
20674 }
20675
20676 void
20677 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20678 {
20679 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20680 CORE_ADDR addr_adj = (((m_op_index
20681 + (adj_opcode / m_line_header->line_range))
20682 / m_line_header->maximum_ops_per_instruction)
20683 * m_line_header->minimum_instruction_length);
20684 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20685 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20686 % m_line_header->maximum_ops_per_instruction);
20687
20688 int line_delta = (m_line_header->line_base
20689 + (adj_opcode % m_line_header->line_range));
20690 advance_line (line_delta);
20691 record_line (false);
20692 m_discriminator = 0;
20693 }
20694
20695 void
20696 lnp_state_machine::handle_set_file (file_name_index file)
20697 {
20698 m_file = file;
20699
20700 const file_entry *fe = current_file ();
20701 if (fe == NULL)
20702 dwarf2_debug_line_missing_file_complaint ();
20703 else if (m_record_lines_p)
20704 {
20705 const char *dir = fe->include_dir (m_line_header);
20706
20707 m_last_subfile = m_cu->builder->get_current_subfile ();
20708 m_line_has_non_zero_discriminator = m_discriminator != 0;
20709 dwarf2_start_subfile (m_cu, fe->name, dir);
20710 }
20711 }
20712
20713 void
20714 lnp_state_machine::handle_const_add_pc ()
20715 {
20716 CORE_ADDR adjust
20717 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20718
20719 CORE_ADDR addr_adj
20720 = (((m_op_index + adjust)
20721 / m_line_header->maximum_ops_per_instruction)
20722 * m_line_header->minimum_instruction_length);
20723
20724 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20725 m_op_index = ((m_op_index + adjust)
20726 % m_line_header->maximum_ops_per_instruction);
20727 }
20728
20729 /* Return non-zero if we should add LINE to the line number table.
20730 LINE is the line to add, LAST_LINE is the last line that was added,
20731 LAST_SUBFILE is the subfile for LAST_LINE.
20732 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20733 had a non-zero discriminator.
20734
20735 We have to be careful in the presence of discriminators.
20736 E.g., for this line:
20737
20738 for (i = 0; i < 100000; i++);
20739
20740 clang can emit four line number entries for that one line,
20741 each with a different discriminator.
20742 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20743
20744 However, we want gdb to coalesce all four entries into one.
20745 Otherwise the user could stepi into the middle of the line and
20746 gdb would get confused about whether the pc really was in the
20747 middle of the line.
20748
20749 Things are further complicated by the fact that two consecutive
20750 line number entries for the same line is a heuristic used by gcc
20751 to denote the end of the prologue. So we can't just discard duplicate
20752 entries, we have to be selective about it. The heuristic we use is
20753 that we only collapse consecutive entries for the same line if at least
20754 one of those entries has a non-zero discriminator. PR 17276.
20755
20756 Note: Addresses in the line number state machine can never go backwards
20757 within one sequence, thus this coalescing is ok. */
20758
20759 static int
20760 dwarf_record_line_p (struct dwarf2_cu *cu,
20761 unsigned int line, unsigned int last_line,
20762 int line_has_non_zero_discriminator,
20763 struct subfile *last_subfile)
20764 {
20765 if (cu->builder->get_current_subfile () != last_subfile)
20766 return 1;
20767 if (line != last_line)
20768 return 1;
20769 /* Same line for the same file that we've seen already.
20770 As a last check, for pr 17276, only record the line if the line
20771 has never had a non-zero discriminator. */
20772 if (!line_has_non_zero_discriminator)
20773 return 1;
20774 return 0;
20775 }
20776
20777 /* Use the CU's builder to record line number LINE beginning at
20778 address ADDRESS in the line table of subfile SUBFILE. */
20779
20780 static void
20781 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20782 unsigned int line, CORE_ADDR address,
20783 struct dwarf2_cu *cu)
20784 {
20785 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20786
20787 if (dwarf_line_debug)
20788 {
20789 fprintf_unfiltered (gdb_stdlog,
20790 "Recording line %u, file %s, address %s\n",
20791 line, lbasename (subfile->name),
20792 paddress (gdbarch, address));
20793 }
20794
20795 if (cu != nullptr)
20796 cu->builder->record_line (subfile, line, addr);
20797 }
20798
20799 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20800 Mark the end of a set of line number records.
20801 The arguments are the same as for dwarf_record_line_1.
20802 If SUBFILE is NULL the request is ignored. */
20803
20804 static void
20805 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20806 CORE_ADDR address, struct dwarf2_cu *cu)
20807 {
20808 if (subfile == NULL)
20809 return;
20810
20811 if (dwarf_line_debug)
20812 {
20813 fprintf_unfiltered (gdb_stdlog,
20814 "Finishing current line, file %s, address %s\n",
20815 lbasename (subfile->name),
20816 paddress (gdbarch, address));
20817 }
20818
20819 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20820 }
20821
20822 void
20823 lnp_state_machine::record_line (bool end_sequence)
20824 {
20825 if (dwarf_line_debug)
20826 {
20827 fprintf_unfiltered (gdb_stdlog,
20828 "Processing actual line %u: file %u,"
20829 " address %s, is_stmt %u, discrim %u\n",
20830 m_line, to_underlying (m_file),
20831 paddress (m_gdbarch, m_address),
20832 m_is_stmt, m_discriminator);
20833 }
20834
20835 file_entry *fe = current_file ();
20836
20837 if (fe == NULL)
20838 dwarf2_debug_line_missing_file_complaint ();
20839 /* For now we ignore lines not starting on an instruction boundary.
20840 But not when processing end_sequence for compatibility with the
20841 previous version of the code. */
20842 else if (m_op_index == 0 || end_sequence)
20843 {
20844 fe->included_p = 1;
20845 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20846 {
20847 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20848 || end_sequence)
20849 {
20850 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20851 m_currently_recording_lines ? m_cu : nullptr);
20852 }
20853
20854 if (!end_sequence)
20855 {
20856 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20857 m_line_has_non_zero_discriminator,
20858 m_last_subfile))
20859 {
20860 dwarf_record_line_1 (m_gdbarch,
20861 m_cu->builder->get_current_subfile (),
20862 m_line, m_address,
20863 m_currently_recording_lines ? m_cu : nullptr);
20864 }
20865 m_last_subfile = m_cu->builder->get_current_subfile ();
20866 m_last_line = m_line;
20867 }
20868 }
20869 }
20870 }
20871
20872 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20873 line_header *lh, bool record_lines_p)
20874 {
20875 m_cu = cu;
20876 m_gdbarch = arch;
20877 m_record_lines_p = record_lines_p;
20878 m_line_header = lh;
20879
20880 m_currently_recording_lines = true;
20881
20882 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20883 was a line entry for it so that the backend has a chance to adjust it
20884 and also record it in case it needs it. This is currently used by MIPS
20885 code, cf. `mips_adjust_dwarf2_line'. */
20886 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20887 m_is_stmt = lh->default_is_stmt;
20888 m_discriminator = 0;
20889 }
20890
20891 void
20892 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20893 const gdb_byte *line_ptr,
20894 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20895 {
20896 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20897 the pc range of the CU. However, we restrict the test to only ADDRESS
20898 values of zero to preserve GDB's previous behaviour which is to handle
20899 the specific case of a function being GC'd by the linker. */
20900
20901 if (address == 0 && address < unrelocated_lowpc)
20902 {
20903 /* This line table is for a function which has been
20904 GCd by the linker. Ignore it. PR gdb/12528 */
20905
20906 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20907 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20908
20909 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20910 line_offset, objfile_name (objfile));
20911 m_currently_recording_lines = false;
20912 /* Note: m_currently_recording_lines is left as false until we see
20913 DW_LNE_end_sequence. */
20914 }
20915 }
20916
20917 /* Subroutine of dwarf_decode_lines to simplify it.
20918 Process the line number information in LH.
20919 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20920 program in order to set included_p for every referenced header. */
20921
20922 static void
20923 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20924 const int decode_for_pst_p, CORE_ADDR lowpc)
20925 {
20926 const gdb_byte *line_ptr, *extended_end;
20927 const gdb_byte *line_end;
20928 unsigned int bytes_read, extended_len;
20929 unsigned char op_code, extended_op;
20930 CORE_ADDR baseaddr;
20931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20932 bfd *abfd = objfile->obfd;
20933 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20934 /* True if we're recording line info (as opposed to building partial
20935 symtabs and just interested in finding include files mentioned by
20936 the line number program). */
20937 bool record_lines_p = !decode_for_pst_p;
20938
20939 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20940
20941 line_ptr = lh->statement_program_start;
20942 line_end = lh->statement_program_end;
20943
20944 /* Read the statement sequences until there's nothing left. */
20945 while (line_ptr < line_end)
20946 {
20947 /* The DWARF line number program state machine. Reset the state
20948 machine at the start of each sequence. */
20949 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20950 bool end_sequence = false;
20951
20952 if (record_lines_p)
20953 {
20954 /* Start a subfile for the current file of the state
20955 machine. */
20956 const file_entry *fe = state_machine.current_file ();
20957
20958 if (fe != NULL)
20959 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20960 }
20961
20962 /* Decode the table. */
20963 while (line_ptr < line_end && !end_sequence)
20964 {
20965 op_code = read_1_byte (abfd, line_ptr);
20966 line_ptr += 1;
20967
20968 if (op_code >= lh->opcode_base)
20969 {
20970 /* Special opcode. */
20971 state_machine.handle_special_opcode (op_code);
20972 }
20973 else switch (op_code)
20974 {
20975 case DW_LNS_extended_op:
20976 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20977 &bytes_read);
20978 line_ptr += bytes_read;
20979 extended_end = line_ptr + extended_len;
20980 extended_op = read_1_byte (abfd, line_ptr);
20981 line_ptr += 1;
20982 switch (extended_op)
20983 {
20984 case DW_LNE_end_sequence:
20985 state_machine.handle_end_sequence ();
20986 end_sequence = true;
20987 break;
20988 case DW_LNE_set_address:
20989 {
20990 CORE_ADDR address
20991 = read_address (abfd, line_ptr, cu, &bytes_read);
20992 line_ptr += bytes_read;
20993
20994 state_machine.check_line_address (cu, line_ptr,
20995 lowpc - baseaddr, address);
20996 state_machine.handle_set_address (baseaddr, address);
20997 }
20998 break;
20999 case DW_LNE_define_file:
21000 {
21001 const char *cur_file;
21002 unsigned int mod_time, length;
21003 dir_index dindex;
21004
21005 cur_file = read_direct_string (abfd, line_ptr,
21006 &bytes_read);
21007 line_ptr += bytes_read;
21008 dindex = (dir_index)
21009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21010 line_ptr += bytes_read;
21011 mod_time =
21012 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21013 line_ptr += bytes_read;
21014 length =
21015 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21016 line_ptr += bytes_read;
21017 lh->add_file_name (cur_file, dindex, mod_time, length);
21018 }
21019 break;
21020 case DW_LNE_set_discriminator:
21021 {
21022 /* The discriminator is not interesting to the
21023 debugger; just ignore it. We still need to
21024 check its value though:
21025 if there are consecutive entries for the same
21026 (non-prologue) line we want to coalesce them.
21027 PR 17276. */
21028 unsigned int discr
21029 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21030 line_ptr += bytes_read;
21031
21032 state_machine.handle_set_discriminator (discr);
21033 }
21034 break;
21035 default:
21036 complaint (_("mangled .debug_line section"));
21037 return;
21038 }
21039 /* Make sure that we parsed the extended op correctly. If e.g.
21040 we expected a different address size than the producer used,
21041 we may have read the wrong number of bytes. */
21042 if (line_ptr != extended_end)
21043 {
21044 complaint (_("mangled .debug_line section"));
21045 return;
21046 }
21047 break;
21048 case DW_LNS_copy:
21049 state_machine.handle_copy ();
21050 break;
21051 case DW_LNS_advance_pc:
21052 {
21053 CORE_ADDR adjust
21054 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21055 line_ptr += bytes_read;
21056
21057 state_machine.handle_advance_pc (adjust);
21058 }
21059 break;
21060 case DW_LNS_advance_line:
21061 {
21062 int line_delta
21063 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21064 line_ptr += bytes_read;
21065
21066 state_machine.handle_advance_line (line_delta);
21067 }
21068 break;
21069 case DW_LNS_set_file:
21070 {
21071 file_name_index file
21072 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21073 &bytes_read);
21074 line_ptr += bytes_read;
21075
21076 state_machine.handle_set_file (file);
21077 }
21078 break;
21079 case DW_LNS_set_column:
21080 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21081 line_ptr += bytes_read;
21082 break;
21083 case DW_LNS_negate_stmt:
21084 state_machine.handle_negate_stmt ();
21085 break;
21086 case DW_LNS_set_basic_block:
21087 break;
21088 /* Add to the address register of the state machine the
21089 address increment value corresponding to special opcode
21090 255. I.e., this value is scaled by the minimum
21091 instruction length since special opcode 255 would have
21092 scaled the increment. */
21093 case DW_LNS_const_add_pc:
21094 state_machine.handle_const_add_pc ();
21095 break;
21096 case DW_LNS_fixed_advance_pc:
21097 {
21098 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21099 line_ptr += 2;
21100
21101 state_machine.handle_fixed_advance_pc (addr_adj);
21102 }
21103 break;
21104 default:
21105 {
21106 /* Unknown standard opcode, ignore it. */
21107 int i;
21108
21109 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21110 {
21111 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21112 line_ptr += bytes_read;
21113 }
21114 }
21115 }
21116 }
21117
21118 if (!end_sequence)
21119 dwarf2_debug_line_missing_end_sequence_complaint ();
21120
21121 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21122 in which case we still finish recording the last line). */
21123 state_machine.record_line (true);
21124 }
21125 }
21126
21127 /* Decode the Line Number Program (LNP) for the given line_header
21128 structure and CU. The actual information extracted and the type
21129 of structures created from the LNP depends on the value of PST.
21130
21131 1. If PST is NULL, then this procedure uses the data from the program
21132 to create all necessary symbol tables, and their linetables.
21133
21134 2. If PST is not NULL, this procedure reads the program to determine
21135 the list of files included by the unit represented by PST, and
21136 builds all the associated partial symbol tables.
21137
21138 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21139 It is used for relative paths in the line table.
21140 NOTE: When processing partial symtabs (pst != NULL),
21141 comp_dir == pst->dirname.
21142
21143 NOTE: It is important that psymtabs have the same file name (via strcmp)
21144 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21145 symtab we don't use it in the name of the psymtabs we create.
21146 E.g. expand_line_sal requires this when finding psymtabs to expand.
21147 A good testcase for this is mb-inline.exp.
21148
21149 LOWPC is the lowest address in CU (or 0 if not known).
21150
21151 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21152 for its PC<->lines mapping information. Otherwise only the filename
21153 table is read in. */
21154
21155 static void
21156 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21157 struct dwarf2_cu *cu, struct partial_symtab *pst,
21158 CORE_ADDR lowpc, int decode_mapping)
21159 {
21160 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21161 const int decode_for_pst_p = (pst != NULL);
21162
21163 if (decode_mapping)
21164 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21165
21166 if (decode_for_pst_p)
21167 {
21168 int file_index;
21169
21170 /* Now that we're done scanning the Line Header Program, we can
21171 create the psymtab of each included file. */
21172 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21173 if (lh->file_names[file_index].included_p == 1)
21174 {
21175 gdb::unique_xmalloc_ptr<char> name_holder;
21176 const char *include_name =
21177 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21178 &name_holder);
21179 if (include_name != NULL)
21180 dwarf2_create_include_psymtab (include_name, pst, objfile);
21181 }
21182 }
21183 else
21184 {
21185 /* Make sure a symtab is created for every file, even files
21186 which contain only variables (i.e. no code with associated
21187 line numbers). */
21188 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21189 int i;
21190
21191 for (i = 0; i < lh->file_names.size (); i++)
21192 {
21193 file_entry &fe = lh->file_names[i];
21194
21195 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21196
21197 if (cu->builder->get_current_subfile ()->symtab == NULL)
21198 {
21199 cu->builder->get_current_subfile ()->symtab
21200 = allocate_symtab (cust,
21201 cu->builder->get_current_subfile ()->name);
21202 }
21203 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21204 }
21205 }
21206 }
21207
21208 /* Start a subfile for DWARF. FILENAME is the name of the file and
21209 DIRNAME the name of the source directory which contains FILENAME
21210 or NULL if not known.
21211 This routine tries to keep line numbers from identical absolute and
21212 relative file names in a common subfile.
21213
21214 Using the `list' example from the GDB testsuite, which resides in
21215 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21216 of /srcdir/list0.c yields the following debugging information for list0.c:
21217
21218 DW_AT_name: /srcdir/list0.c
21219 DW_AT_comp_dir: /compdir
21220 files.files[0].name: list0.h
21221 files.files[0].dir: /srcdir
21222 files.files[1].name: list0.c
21223 files.files[1].dir: /srcdir
21224
21225 The line number information for list0.c has to end up in a single
21226 subfile, so that `break /srcdir/list0.c:1' works as expected.
21227 start_subfile will ensure that this happens provided that we pass the
21228 concatenation of files.files[1].dir and files.files[1].name as the
21229 subfile's name. */
21230
21231 static void
21232 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21233 const char *dirname)
21234 {
21235 char *copy = NULL;
21236
21237 /* In order not to lose the line information directory,
21238 we concatenate it to the filename when it makes sense.
21239 Note that the Dwarf3 standard says (speaking of filenames in line
21240 information): ``The directory index is ignored for file names
21241 that represent full path names''. Thus ignoring dirname in the
21242 `else' branch below isn't an issue. */
21243
21244 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21245 {
21246 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21247 filename = copy;
21248 }
21249
21250 cu->builder->start_subfile (filename);
21251
21252 if (copy != NULL)
21253 xfree (copy);
21254 }
21255
21256 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21257 buildsym_compunit constructor. */
21258
21259 static struct compunit_symtab *
21260 dwarf2_start_symtab (struct dwarf2_cu *cu,
21261 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21262 {
21263 gdb_assert (cu->builder == nullptr);
21264
21265 cu->builder.reset (new struct buildsym_compunit
21266 (cu->per_cu->dwarf2_per_objfile->objfile,
21267 name, comp_dir, cu->language, low_pc));
21268
21269 cu->list_in_scope = cu->builder->get_file_symbols ();
21270
21271 cu->builder->record_debugformat ("DWARF 2");
21272 cu->builder->record_producer (cu->producer);
21273
21274 cu->processing_has_namespace_info = 0;
21275
21276 return cu->builder->get_compunit_symtab ();
21277 }
21278
21279 static void
21280 var_decode_location (struct attribute *attr, struct symbol *sym,
21281 struct dwarf2_cu *cu)
21282 {
21283 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21284 struct comp_unit_head *cu_header = &cu->header;
21285
21286 /* NOTE drow/2003-01-30: There used to be a comment and some special
21287 code here to turn a symbol with DW_AT_external and a
21288 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21289 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21290 with some versions of binutils) where shared libraries could have
21291 relocations against symbols in their debug information - the
21292 minimal symbol would have the right address, but the debug info
21293 would not. It's no longer necessary, because we will explicitly
21294 apply relocations when we read in the debug information now. */
21295
21296 /* A DW_AT_location attribute with no contents indicates that a
21297 variable has been optimized away. */
21298 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21299 {
21300 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21301 return;
21302 }
21303
21304 /* Handle one degenerate form of location expression specially, to
21305 preserve GDB's previous behavior when section offsets are
21306 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21307 then mark this symbol as LOC_STATIC. */
21308
21309 if (attr_form_is_block (attr)
21310 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21311 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21312 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21313 && (DW_BLOCK (attr)->size
21314 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21315 {
21316 unsigned int dummy;
21317
21318 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21319 SYMBOL_VALUE_ADDRESS (sym) =
21320 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21321 else
21322 SYMBOL_VALUE_ADDRESS (sym) =
21323 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21324 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21325 fixup_symbol_section (sym, objfile);
21326 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21327 SYMBOL_SECTION (sym));
21328 return;
21329 }
21330
21331 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21332 expression evaluator, and use LOC_COMPUTED only when necessary
21333 (i.e. when the value of a register or memory location is
21334 referenced, or a thread-local block, etc.). Then again, it might
21335 not be worthwhile. I'm assuming that it isn't unless performance
21336 or memory numbers show me otherwise. */
21337
21338 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21339
21340 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21341 cu->has_loclist = 1;
21342 }
21343
21344 /* Given a pointer to a DWARF information entry, figure out if we need
21345 to make a symbol table entry for it, and if so, create a new entry
21346 and return a pointer to it.
21347 If TYPE is NULL, determine symbol type from the die, otherwise
21348 used the passed type.
21349 If SPACE is not NULL, use it to hold the new symbol. If it is
21350 NULL, allocate a new symbol on the objfile's obstack. */
21351
21352 static struct symbol *
21353 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21354 struct symbol *space)
21355 {
21356 struct dwarf2_per_objfile *dwarf2_per_objfile
21357 = cu->per_cu->dwarf2_per_objfile;
21358 struct objfile *objfile = dwarf2_per_objfile->objfile;
21359 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21360 struct symbol *sym = NULL;
21361 const char *name;
21362 struct attribute *attr = NULL;
21363 struct attribute *attr2 = NULL;
21364 CORE_ADDR baseaddr;
21365 struct pending **list_to_add = NULL;
21366
21367 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21368
21369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21370
21371 name = dwarf2_name (die, cu);
21372 if (name)
21373 {
21374 const char *linkagename;
21375 int suppress_add = 0;
21376
21377 if (space)
21378 sym = space;
21379 else
21380 sym = allocate_symbol (objfile);
21381 OBJSTAT (objfile, n_syms++);
21382
21383 /* Cache this symbol's name and the name's demangled form (if any). */
21384 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21385 linkagename = dwarf2_physname (name, die, cu);
21386 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21387
21388 /* Fortran does not have mangling standard and the mangling does differ
21389 between gfortran, iFort etc. */
21390 if (cu->language == language_fortran
21391 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21392 symbol_set_demangled_name (&(sym->ginfo),
21393 dwarf2_full_name (name, die, cu),
21394 NULL);
21395
21396 /* Default assumptions.
21397 Use the passed type or decode it from the die. */
21398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21400 if (type != NULL)
21401 SYMBOL_TYPE (sym) = type;
21402 else
21403 SYMBOL_TYPE (sym) = die_type (die, cu);
21404 attr = dwarf2_attr (die,
21405 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21406 cu);
21407 if (attr)
21408 {
21409 SYMBOL_LINE (sym) = DW_UNSND (attr);
21410 }
21411
21412 attr = dwarf2_attr (die,
21413 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21414 cu);
21415 if (attr)
21416 {
21417 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21418 struct file_entry *fe;
21419
21420 if (cu->line_header != NULL)
21421 fe = cu->line_header->file_name_at (file_index);
21422 else
21423 fe = NULL;
21424
21425 if (fe == NULL)
21426 complaint (_("file index out of range"));
21427 else
21428 symbol_set_symtab (sym, fe->symtab);
21429 }
21430
21431 switch (die->tag)
21432 {
21433 case DW_TAG_label:
21434 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21435 if (attr)
21436 {
21437 CORE_ADDR addr;
21438
21439 addr = attr_value_as_address (attr);
21440 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21441 SYMBOL_VALUE_ADDRESS (sym) = addr;
21442 }
21443 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21444 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21445 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21446 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21447 break;
21448 case DW_TAG_subprogram:
21449 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21450 finish_block. */
21451 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21452 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21453 if ((attr2 && (DW_UNSND (attr2) != 0))
21454 || cu->language == language_ada)
21455 {
21456 /* Subprograms marked external are stored as a global symbol.
21457 Ada subprograms, whether marked external or not, are always
21458 stored as a global symbol, because we want to be able to
21459 access them globally. For instance, we want to be able
21460 to break on a nested subprogram without having to
21461 specify the context. */
21462 list_to_add = cu->builder->get_global_symbols ();
21463 }
21464 else
21465 {
21466 list_to_add = cu->list_in_scope;
21467 }
21468 break;
21469 case DW_TAG_inlined_subroutine:
21470 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21471 finish_block. */
21472 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21473 SYMBOL_INLINED (sym) = 1;
21474 list_to_add = cu->list_in_scope;
21475 break;
21476 case DW_TAG_template_value_param:
21477 suppress_add = 1;
21478 /* Fall through. */
21479 case DW_TAG_constant:
21480 case DW_TAG_variable:
21481 case DW_TAG_member:
21482 /* Compilation with minimal debug info may result in
21483 variables with missing type entries. Change the
21484 misleading `void' type to something sensible. */
21485 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21486 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21487
21488 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21489 /* In the case of DW_TAG_member, we should only be called for
21490 static const members. */
21491 if (die->tag == DW_TAG_member)
21492 {
21493 /* dwarf2_add_field uses die_is_declaration,
21494 so we do the same. */
21495 gdb_assert (die_is_declaration (die, cu));
21496 gdb_assert (attr);
21497 }
21498 if (attr)
21499 {
21500 dwarf2_const_value (attr, sym, cu);
21501 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21502 if (!suppress_add)
21503 {
21504 if (attr2 && (DW_UNSND (attr2) != 0))
21505 list_to_add = cu->builder->get_global_symbols ();
21506 else
21507 list_to_add = cu->list_in_scope;
21508 }
21509 break;
21510 }
21511 attr = dwarf2_attr (die, DW_AT_location, cu);
21512 if (attr)
21513 {
21514 var_decode_location (attr, sym, cu);
21515 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21516
21517 /* Fortran explicitly imports any global symbols to the local
21518 scope by DW_TAG_common_block. */
21519 if (cu->language == language_fortran && die->parent
21520 && die->parent->tag == DW_TAG_common_block)
21521 attr2 = NULL;
21522
21523 if (SYMBOL_CLASS (sym) == LOC_STATIC
21524 && SYMBOL_VALUE_ADDRESS (sym) == 0
21525 && !dwarf2_per_objfile->has_section_at_zero)
21526 {
21527 /* When a static variable is eliminated by the linker,
21528 the corresponding debug information is not stripped
21529 out, but the variable address is set to null;
21530 do not add such variables into symbol table. */
21531 }
21532 else if (attr2 && (DW_UNSND (attr2) != 0))
21533 {
21534 /* Workaround gfortran PR debug/40040 - it uses
21535 DW_AT_location for variables in -fPIC libraries which may
21536 get overriden by other libraries/executable and get
21537 a different address. Resolve it by the minimal symbol
21538 which may come from inferior's executable using copy
21539 relocation. Make this workaround only for gfortran as for
21540 other compilers GDB cannot guess the minimal symbol
21541 Fortran mangling kind. */
21542 if (cu->language == language_fortran && die->parent
21543 && die->parent->tag == DW_TAG_module
21544 && cu->producer
21545 && startswith (cu->producer, "GNU Fortran"))
21546 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21547
21548 /* A variable with DW_AT_external is never static,
21549 but it may be block-scoped. */
21550 list_to_add
21551 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21552 ? cu->builder->get_global_symbols ()
21553 : cu->list_in_scope);
21554 }
21555 else
21556 list_to_add = cu->list_in_scope;
21557 }
21558 else
21559 {
21560 /* We do not know the address of this symbol.
21561 If it is an external symbol and we have type information
21562 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21563 The address of the variable will then be determined from
21564 the minimal symbol table whenever the variable is
21565 referenced. */
21566 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21567
21568 /* Fortran explicitly imports any global symbols to the local
21569 scope by DW_TAG_common_block. */
21570 if (cu->language == language_fortran && die->parent
21571 && die->parent->tag == DW_TAG_common_block)
21572 {
21573 /* SYMBOL_CLASS doesn't matter here because
21574 read_common_block is going to reset it. */
21575 if (!suppress_add)
21576 list_to_add = cu->list_in_scope;
21577 }
21578 else if (attr2 && (DW_UNSND (attr2) != 0)
21579 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21580 {
21581 /* A variable with DW_AT_external is never static, but it
21582 may be block-scoped. */
21583 list_to_add
21584 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21585 ? cu->builder->get_global_symbols ()
21586 : cu->list_in_scope);
21587
21588 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21589 }
21590 else if (!die_is_declaration (die, cu))
21591 {
21592 /* Use the default LOC_OPTIMIZED_OUT class. */
21593 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21594 if (!suppress_add)
21595 list_to_add = cu->list_in_scope;
21596 }
21597 }
21598 break;
21599 case DW_TAG_formal_parameter:
21600 {
21601 /* If we are inside a function, mark this as an argument. If
21602 not, we might be looking at an argument to an inlined function
21603 when we do not have enough information to show inlined frames;
21604 pretend it's a local variable in that case so that the user can
21605 still see it. */
21606 struct context_stack *curr
21607 = cu->builder->get_current_context_stack ();
21608 if (curr != nullptr && curr->name != nullptr)
21609 SYMBOL_IS_ARGUMENT (sym) = 1;
21610 attr = dwarf2_attr (die, DW_AT_location, cu);
21611 if (attr)
21612 {
21613 var_decode_location (attr, sym, cu);
21614 }
21615 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21616 if (attr)
21617 {
21618 dwarf2_const_value (attr, sym, cu);
21619 }
21620
21621 list_to_add = cu->list_in_scope;
21622 }
21623 break;
21624 case DW_TAG_unspecified_parameters:
21625 /* From varargs functions; gdb doesn't seem to have any
21626 interest in this information, so just ignore it for now.
21627 (FIXME?) */
21628 break;
21629 case DW_TAG_template_type_param:
21630 suppress_add = 1;
21631 /* Fall through. */
21632 case DW_TAG_class_type:
21633 case DW_TAG_interface_type:
21634 case DW_TAG_structure_type:
21635 case DW_TAG_union_type:
21636 case DW_TAG_set_type:
21637 case DW_TAG_enumeration_type:
21638 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21639 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21640
21641 {
21642 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21643 really ever be static objects: otherwise, if you try
21644 to, say, break of a class's method and you're in a file
21645 which doesn't mention that class, it won't work unless
21646 the check for all static symbols in lookup_symbol_aux
21647 saves you. See the OtherFileClass tests in
21648 gdb.c++/namespace.exp. */
21649
21650 if (!suppress_add)
21651 {
21652 list_to_add
21653 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21654 && cu->language == language_cplus
21655 ? cu->builder->get_global_symbols ()
21656 : cu->list_in_scope);
21657
21658 /* The semantics of C++ state that "struct foo {
21659 ... }" also defines a typedef for "foo". */
21660 if (cu->language == language_cplus
21661 || cu->language == language_ada
21662 || cu->language == language_d
21663 || cu->language == language_rust)
21664 {
21665 /* The symbol's name is already allocated along
21666 with this objfile, so we don't need to
21667 duplicate it for the type. */
21668 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21669 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21670 }
21671 }
21672 }
21673 break;
21674 case DW_TAG_typedef:
21675 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21676 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21677 list_to_add = cu->list_in_scope;
21678 break;
21679 case DW_TAG_base_type:
21680 case DW_TAG_subrange_type:
21681 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21683 list_to_add = cu->list_in_scope;
21684 break;
21685 case DW_TAG_enumerator:
21686 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21687 if (attr)
21688 {
21689 dwarf2_const_value (attr, sym, cu);
21690 }
21691 {
21692 /* NOTE: carlton/2003-11-10: See comment above in the
21693 DW_TAG_class_type, etc. block. */
21694
21695 list_to_add
21696 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21697 && cu->language == language_cplus
21698 ? cu->builder->get_global_symbols ()
21699 : cu->list_in_scope);
21700 }
21701 break;
21702 case DW_TAG_imported_declaration:
21703 case DW_TAG_namespace:
21704 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21705 list_to_add = cu->builder->get_global_symbols ();
21706 break;
21707 case DW_TAG_module:
21708 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21709 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21710 list_to_add = cu->builder->get_global_symbols ();
21711 break;
21712 case DW_TAG_common_block:
21713 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21714 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21715 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21716 break;
21717 default:
21718 /* Not a tag we recognize. Hopefully we aren't processing
21719 trash data, but since we must specifically ignore things
21720 we don't recognize, there is nothing else we should do at
21721 this point. */
21722 complaint (_("unsupported tag: '%s'"),
21723 dwarf_tag_name (die->tag));
21724 break;
21725 }
21726
21727 if (suppress_add)
21728 {
21729 sym->hash_next = objfile->template_symbols;
21730 objfile->template_symbols = sym;
21731 list_to_add = NULL;
21732 }
21733
21734 if (list_to_add != NULL)
21735 dw2_add_symbol_to_list (sym, list_to_add);
21736
21737 /* For the benefit of old versions of GCC, check for anonymous
21738 namespaces based on the demangled name. */
21739 if (!cu->processing_has_namespace_info
21740 && cu->language == language_cplus)
21741 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21742 }
21743 return (sym);
21744 }
21745
21746 /* Given an attr with a DW_FORM_dataN value in host byte order,
21747 zero-extend it as appropriate for the symbol's type. The DWARF
21748 standard (v4) is not entirely clear about the meaning of using
21749 DW_FORM_dataN for a constant with a signed type, where the type is
21750 wider than the data. The conclusion of a discussion on the DWARF
21751 list was that this is unspecified. We choose to always zero-extend
21752 because that is the interpretation long in use by GCC. */
21753
21754 static gdb_byte *
21755 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21756 struct dwarf2_cu *cu, LONGEST *value, int bits)
21757 {
21758 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21759 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21760 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21761 LONGEST l = DW_UNSND (attr);
21762
21763 if (bits < sizeof (*value) * 8)
21764 {
21765 l &= ((LONGEST) 1 << bits) - 1;
21766 *value = l;
21767 }
21768 else if (bits == sizeof (*value) * 8)
21769 *value = l;
21770 else
21771 {
21772 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21773 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21774 return bytes;
21775 }
21776
21777 return NULL;
21778 }
21779
21780 /* Read a constant value from an attribute. Either set *VALUE, or if
21781 the value does not fit in *VALUE, set *BYTES - either already
21782 allocated on the objfile obstack, or newly allocated on OBSTACK,
21783 or, set *BATON, if we translated the constant to a location
21784 expression. */
21785
21786 static void
21787 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21788 const char *name, struct obstack *obstack,
21789 struct dwarf2_cu *cu,
21790 LONGEST *value, const gdb_byte **bytes,
21791 struct dwarf2_locexpr_baton **baton)
21792 {
21793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21794 struct comp_unit_head *cu_header = &cu->header;
21795 struct dwarf_block *blk;
21796 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21797 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21798
21799 *value = 0;
21800 *bytes = NULL;
21801 *baton = NULL;
21802
21803 switch (attr->form)
21804 {
21805 case DW_FORM_addr:
21806 case DW_FORM_GNU_addr_index:
21807 {
21808 gdb_byte *data;
21809
21810 if (TYPE_LENGTH (type) != cu_header->addr_size)
21811 dwarf2_const_value_length_mismatch_complaint (name,
21812 cu_header->addr_size,
21813 TYPE_LENGTH (type));
21814 /* Symbols of this form are reasonably rare, so we just
21815 piggyback on the existing location code rather than writing
21816 a new implementation of symbol_computed_ops. */
21817 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21818 (*baton)->per_cu = cu->per_cu;
21819 gdb_assert ((*baton)->per_cu);
21820
21821 (*baton)->size = 2 + cu_header->addr_size;
21822 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21823 (*baton)->data = data;
21824
21825 data[0] = DW_OP_addr;
21826 store_unsigned_integer (&data[1], cu_header->addr_size,
21827 byte_order, DW_ADDR (attr));
21828 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21829 }
21830 break;
21831 case DW_FORM_string:
21832 case DW_FORM_strp:
21833 case DW_FORM_GNU_str_index:
21834 case DW_FORM_GNU_strp_alt:
21835 /* DW_STRING is already allocated on the objfile obstack, point
21836 directly to it. */
21837 *bytes = (const gdb_byte *) DW_STRING (attr);
21838 break;
21839 case DW_FORM_block1:
21840 case DW_FORM_block2:
21841 case DW_FORM_block4:
21842 case DW_FORM_block:
21843 case DW_FORM_exprloc:
21844 case DW_FORM_data16:
21845 blk = DW_BLOCK (attr);
21846 if (TYPE_LENGTH (type) != blk->size)
21847 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21848 TYPE_LENGTH (type));
21849 *bytes = blk->data;
21850 break;
21851
21852 /* The DW_AT_const_value attributes are supposed to carry the
21853 symbol's value "represented as it would be on the target
21854 architecture." By the time we get here, it's already been
21855 converted to host endianness, so we just need to sign- or
21856 zero-extend it as appropriate. */
21857 case DW_FORM_data1:
21858 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21859 break;
21860 case DW_FORM_data2:
21861 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21862 break;
21863 case DW_FORM_data4:
21864 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21865 break;
21866 case DW_FORM_data8:
21867 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21868 break;
21869
21870 case DW_FORM_sdata:
21871 case DW_FORM_implicit_const:
21872 *value = DW_SND (attr);
21873 break;
21874
21875 case DW_FORM_udata:
21876 *value = DW_UNSND (attr);
21877 break;
21878
21879 default:
21880 complaint (_("unsupported const value attribute form: '%s'"),
21881 dwarf_form_name (attr->form));
21882 *value = 0;
21883 break;
21884 }
21885 }
21886
21887
21888 /* Copy constant value from an attribute to a symbol. */
21889
21890 static void
21891 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21892 struct dwarf2_cu *cu)
21893 {
21894 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21895 LONGEST value;
21896 const gdb_byte *bytes;
21897 struct dwarf2_locexpr_baton *baton;
21898
21899 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21900 SYMBOL_PRINT_NAME (sym),
21901 &objfile->objfile_obstack, cu,
21902 &value, &bytes, &baton);
21903
21904 if (baton != NULL)
21905 {
21906 SYMBOL_LOCATION_BATON (sym) = baton;
21907 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21908 }
21909 else if (bytes != NULL)
21910 {
21911 SYMBOL_VALUE_BYTES (sym) = bytes;
21912 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21913 }
21914 else
21915 {
21916 SYMBOL_VALUE (sym) = value;
21917 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21918 }
21919 }
21920
21921 /* Return the type of the die in question using its DW_AT_type attribute. */
21922
21923 static struct type *
21924 die_type (struct die_info *die, struct dwarf2_cu *cu)
21925 {
21926 struct attribute *type_attr;
21927
21928 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21929 if (!type_attr)
21930 {
21931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21932 /* A missing DW_AT_type represents a void type. */
21933 return objfile_type (objfile)->builtin_void;
21934 }
21935
21936 return lookup_die_type (die, type_attr, cu);
21937 }
21938
21939 /* True iff CU's producer generates GNAT Ada auxiliary information
21940 that allows to find parallel types through that information instead
21941 of having to do expensive parallel lookups by type name. */
21942
21943 static int
21944 need_gnat_info (struct dwarf2_cu *cu)
21945 {
21946 /* Assume that the Ada compiler was GNAT, which always produces
21947 the auxiliary information. */
21948 return (cu->language == language_ada);
21949 }
21950
21951 /* Return the auxiliary type of the die in question using its
21952 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21953 attribute is not present. */
21954
21955 static struct type *
21956 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21957 {
21958 struct attribute *type_attr;
21959
21960 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21961 if (!type_attr)
21962 return NULL;
21963
21964 return lookup_die_type (die, type_attr, cu);
21965 }
21966
21967 /* If DIE has a descriptive_type attribute, then set the TYPE's
21968 descriptive type accordingly. */
21969
21970 static void
21971 set_descriptive_type (struct type *type, struct die_info *die,
21972 struct dwarf2_cu *cu)
21973 {
21974 struct type *descriptive_type = die_descriptive_type (die, cu);
21975
21976 if (descriptive_type)
21977 {
21978 ALLOCATE_GNAT_AUX_TYPE (type);
21979 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21980 }
21981 }
21982
21983 /* Return the containing type of the die in question using its
21984 DW_AT_containing_type attribute. */
21985
21986 static struct type *
21987 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21988 {
21989 struct attribute *type_attr;
21990 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21991
21992 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21993 if (!type_attr)
21994 error (_("Dwarf Error: Problem turning containing type into gdb type "
21995 "[in module %s]"), objfile_name (objfile));
21996
21997 return lookup_die_type (die, type_attr, cu);
21998 }
21999
22000 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22001
22002 static struct type *
22003 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22004 {
22005 struct dwarf2_per_objfile *dwarf2_per_objfile
22006 = cu->per_cu->dwarf2_per_objfile;
22007 struct objfile *objfile = dwarf2_per_objfile->objfile;
22008 char *saved;
22009
22010 std::string message
22011 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22012 objfile_name (objfile),
22013 sect_offset_str (cu->header.sect_off),
22014 sect_offset_str (die->sect_off));
22015 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22016 message.c_str (), message.length ());
22017
22018 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22019 }
22020
22021 /* Look up the type of DIE in CU using its type attribute ATTR.
22022 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22023 DW_AT_containing_type.
22024 If there is no type substitute an error marker. */
22025
22026 static struct type *
22027 lookup_die_type (struct die_info *die, const struct attribute *attr,
22028 struct dwarf2_cu *cu)
22029 {
22030 struct dwarf2_per_objfile *dwarf2_per_objfile
22031 = cu->per_cu->dwarf2_per_objfile;
22032 struct objfile *objfile = dwarf2_per_objfile->objfile;
22033 struct type *this_type;
22034
22035 gdb_assert (attr->name == DW_AT_type
22036 || attr->name == DW_AT_GNAT_descriptive_type
22037 || attr->name == DW_AT_containing_type);
22038
22039 /* First see if we have it cached. */
22040
22041 if (attr->form == DW_FORM_GNU_ref_alt)
22042 {
22043 struct dwarf2_per_cu_data *per_cu;
22044 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22045
22046 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22047 dwarf2_per_objfile);
22048 this_type = get_die_type_at_offset (sect_off, per_cu);
22049 }
22050 else if (attr_form_is_ref (attr))
22051 {
22052 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22053
22054 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22055 }
22056 else if (attr->form == DW_FORM_ref_sig8)
22057 {
22058 ULONGEST signature = DW_SIGNATURE (attr);
22059
22060 return get_signatured_type (die, signature, cu);
22061 }
22062 else
22063 {
22064 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22065 " at %s [in module %s]"),
22066 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22067 objfile_name (objfile));
22068 return build_error_marker_type (cu, die);
22069 }
22070
22071 /* If not cached we need to read it in. */
22072
22073 if (this_type == NULL)
22074 {
22075 struct die_info *type_die = NULL;
22076 struct dwarf2_cu *type_cu = cu;
22077
22078 if (attr_form_is_ref (attr))
22079 type_die = follow_die_ref (die, attr, &type_cu);
22080 if (type_die == NULL)
22081 return build_error_marker_type (cu, die);
22082 /* If we find the type now, it's probably because the type came
22083 from an inter-CU reference and the type's CU got expanded before
22084 ours. */
22085 this_type = read_type_die (type_die, type_cu);
22086 }
22087
22088 /* If we still don't have a type use an error marker. */
22089
22090 if (this_type == NULL)
22091 return build_error_marker_type (cu, die);
22092
22093 return this_type;
22094 }
22095
22096 /* Return the type in DIE, CU.
22097 Returns NULL for invalid types.
22098
22099 This first does a lookup in die_type_hash,
22100 and only reads the die in if necessary.
22101
22102 NOTE: This can be called when reading in partial or full symbols. */
22103
22104 static struct type *
22105 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22106 {
22107 struct type *this_type;
22108
22109 this_type = get_die_type (die, cu);
22110 if (this_type)
22111 return this_type;
22112
22113 return read_type_die_1 (die, cu);
22114 }
22115
22116 /* Read the type in DIE, CU.
22117 Returns NULL for invalid types. */
22118
22119 static struct type *
22120 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22121 {
22122 struct type *this_type = NULL;
22123
22124 switch (die->tag)
22125 {
22126 case DW_TAG_class_type:
22127 case DW_TAG_interface_type:
22128 case DW_TAG_structure_type:
22129 case DW_TAG_union_type:
22130 this_type = read_structure_type (die, cu);
22131 break;
22132 case DW_TAG_enumeration_type:
22133 this_type = read_enumeration_type (die, cu);
22134 break;
22135 case DW_TAG_subprogram:
22136 case DW_TAG_subroutine_type:
22137 case DW_TAG_inlined_subroutine:
22138 this_type = read_subroutine_type (die, cu);
22139 break;
22140 case DW_TAG_array_type:
22141 this_type = read_array_type (die, cu);
22142 break;
22143 case DW_TAG_set_type:
22144 this_type = read_set_type (die, cu);
22145 break;
22146 case DW_TAG_pointer_type:
22147 this_type = read_tag_pointer_type (die, cu);
22148 break;
22149 case DW_TAG_ptr_to_member_type:
22150 this_type = read_tag_ptr_to_member_type (die, cu);
22151 break;
22152 case DW_TAG_reference_type:
22153 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22154 break;
22155 case DW_TAG_rvalue_reference_type:
22156 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22157 break;
22158 case DW_TAG_const_type:
22159 this_type = read_tag_const_type (die, cu);
22160 break;
22161 case DW_TAG_volatile_type:
22162 this_type = read_tag_volatile_type (die, cu);
22163 break;
22164 case DW_TAG_restrict_type:
22165 this_type = read_tag_restrict_type (die, cu);
22166 break;
22167 case DW_TAG_string_type:
22168 this_type = read_tag_string_type (die, cu);
22169 break;
22170 case DW_TAG_typedef:
22171 this_type = read_typedef (die, cu);
22172 break;
22173 case DW_TAG_subrange_type:
22174 this_type = read_subrange_type (die, cu);
22175 break;
22176 case DW_TAG_base_type:
22177 this_type = read_base_type (die, cu);
22178 break;
22179 case DW_TAG_unspecified_type:
22180 this_type = read_unspecified_type (die, cu);
22181 break;
22182 case DW_TAG_namespace:
22183 this_type = read_namespace_type (die, cu);
22184 break;
22185 case DW_TAG_module:
22186 this_type = read_module_type (die, cu);
22187 break;
22188 case DW_TAG_atomic_type:
22189 this_type = read_tag_atomic_type (die, cu);
22190 break;
22191 default:
22192 complaint (_("unexpected tag in read_type_die: '%s'"),
22193 dwarf_tag_name (die->tag));
22194 break;
22195 }
22196
22197 return this_type;
22198 }
22199
22200 /* See if we can figure out if the class lives in a namespace. We do
22201 this by looking for a member function; its demangled name will
22202 contain namespace info, if there is any.
22203 Return the computed name or NULL.
22204 Space for the result is allocated on the objfile's obstack.
22205 This is the full-die version of guess_partial_die_structure_name.
22206 In this case we know DIE has no useful parent. */
22207
22208 static char *
22209 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22210 {
22211 struct die_info *spec_die;
22212 struct dwarf2_cu *spec_cu;
22213 struct die_info *child;
22214 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22215
22216 spec_cu = cu;
22217 spec_die = die_specification (die, &spec_cu);
22218 if (spec_die != NULL)
22219 {
22220 die = spec_die;
22221 cu = spec_cu;
22222 }
22223
22224 for (child = die->child;
22225 child != NULL;
22226 child = child->sibling)
22227 {
22228 if (child->tag == DW_TAG_subprogram)
22229 {
22230 const char *linkage_name = dw2_linkage_name (child, cu);
22231
22232 if (linkage_name != NULL)
22233 {
22234 char *actual_name
22235 = language_class_name_from_physname (cu->language_defn,
22236 linkage_name);
22237 char *name = NULL;
22238
22239 if (actual_name != NULL)
22240 {
22241 const char *die_name = dwarf2_name (die, cu);
22242
22243 if (die_name != NULL
22244 && strcmp (die_name, actual_name) != 0)
22245 {
22246 /* Strip off the class name from the full name.
22247 We want the prefix. */
22248 int die_name_len = strlen (die_name);
22249 int actual_name_len = strlen (actual_name);
22250
22251 /* Test for '::' as a sanity check. */
22252 if (actual_name_len > die_name_len + 2
22253 && actual_name[actual_name_len
22254 - die_name_len - 1] == ':')
22255 name = (char *) obstack_copy0 (
22256 &objfile->per_bfd->storage_obstack,
22257 actual_name, actual_name_len - die_name_len - 2);
22258 }
22259 }
22260 xfree (actual_name);
22261 return name;
22262 }
22263 }
22264 }
22265
22266 return NULL;
22267 }
22268
22269 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22270 prefix part in such case. See
22271 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22272
22273 static const char *
22274 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22275 {
22276 struct attribute *attr;
22277 const char *base;
22278
22279 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22280 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22281 return NULL;
22282
22283 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22284 return NULL;
22285
22286 attr = dw2_linkage_name_attr (die, cu);
22287 if (attr == NULL || DW_STRING (attr) == NULL)
22288 return NULL;
22289
22290 /* dwarf2_name had to be already called. */
22291 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22292
22293 /* Strip the base name, keep any leading namespaces/classes. */
22294 base = strrchr (DW_STRING (attr), ':');
22295 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22296 return "";
22297
22298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22299 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22300 DW_STRING (attr),
22301 &base[-1] - DW_STRING (attr));
22302 }
22303
22304 /* Return the name of the namespace/class that DIE is defined within,
22305 or "" if we can't tell. The caller should not xfree the result.
22306
22307 For example, if we're within the method foo() in the following
22308 code:
22309
22310 namespace N {
22311 class C {
22312 void foo () {
22313 }
22314 };
22315 }
22316
22317 then determine_prefix on foo's die will return "N::C". */
22318
22319 static const char *
22320 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22321 {
22322 struct dwarf2_per_objfile *dwarf2_per_objfile
22323 = cu->per_cu->dwarf2_per_objfile;
22324 struct die_info *parent, *spec_die;
22325 struct dwarf2_cu *spec_cu;
22326 struct type *parent_type;
22327 const char *retval;
22328
22329 if (cu->language != language_cplus
22330 && cu->language != language_fortran && cu->language != language_d
22331 && cu->language != language_rust)
22332 return "";
22333
22334 retval = anonymous_struct_prefix (die, cu);
22335 if (retval)
22336 return retval;
22337
22338 /* We have to be careful in the presence of DW_AT_specification.
22339 For example, with GCC 3.4, given the code
22340
22341 namespace N {
22342 void foo() {
22343 // Definition of N::foo.
22344 }
22345 }
22346
22347 then we'll have a tree of DIEs like this:
22348
22349 1: DW_TAG_compile_unit
22350 2: DW_TAG_namespace // N
22351 3: DW_TAG_subprogram // declaration of N::foo
22352 4: DW_TAG_subprogram // definition of N::foo
22353 DW_AT_specification // refers to die #3
22354
22355 Thus, when processing die #4, we have to pretend that we're in
22356 the context of its DW_AT_specification, namely the contex of die
22357 #3. */
22358 spec_cu = cu;
22359 spec_die = die_specification (die, &spec_cu);
22360 if (spec_die == NULL)
22361 parent = die->parent;
22362 else
22363 {
22364 parent = spec_die->parent;
22365 cu = spec_cu;
22366 }
22367
22368 if (parent == NULL)
22369 return "";
22370 else if (parent->building_fullname)
22371 {
22372 const char *name;
22373 const char *parent_name;
22374
22375 /* It has been seen on RealView 2.2 built binaries,
22376 DW_TAG_template_type_param types actually _defined_ as
22377 children of the parent class:
22378
22379 enum E {};
22380 template class <class Enum> Class{};
22381 Class<enum E> class_e;
22382
22383 1: DW_TAG_class_type (Class)
22384 2: DW_TAG_enumeration_type (E)
22385 3: DW_TAG_enumerator (enum1:0)
22386 3: DW_TAG_enumerator (enum2:1)
22387 ...
22388 2: DW_TAG_template_type_param
22389 DW_AT_type DW_FORM_ref_udata (E)
22390
22391 Besides being broken debug info, it can put GDB into an
22392 infinite loop. Consider:
22393
22394 When we're building the full name for Class<E>, we'll start
22395 at Class, and go look over its template type parameters,
22396 finding E. We'll then try to build the full name of E, and
22397 reach here. We're now trying to build the full name of E,
22398 and look over the parent DIE for containing scope. In the
22399 broken case, if we followed the parent DIE of E, we'd again
22400 find Class, and once again go look at its template type
22401 arguments, etc., etc. Simply don't consider such parent die
22402 as source-level parent of this die (it can't be, the language
22403 doesn't allow it), and break the loop here. */
22404 name = dwarf2_name (die, cu);
22405 parent_name = dwarf2_name (parent, cu);
22406 complaint (_("template param type '%s' defined within parent '%s'"),
22407 name ? name : "<unknown>",
22408 parent_name ? parent_name : "<unknown>");
22409 return "";
22410 }
22411 else
22412 switch (parent->tag)
22413 {
22414 case DW_TAG_namespace:
22415 parent_type = read_type_die (parent, cu);
22416 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22417 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22418 Work around this problem here. */
22419 if (cu->language == language_cplus
22420 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22421 return "";
22422 /* We give a name to even anonymous namespaces. */
22423 return TYPE_NAME (parent_type);
22424 case DW_TAG_class_type:
22425 case DW_TAG_interface_type:
22426 case DW_TAG_structure_type:
22427 case DW_TAG_union_type:
22428 case DW_TAG_module:
22429 parent_type = read_type_die (parent, cu);
22430 if (TYPE_NAME (parent_type) != NULL)
22431 return TYPE_NAME (parent_type);
22432 else
22433 /* An anonymous structure is only allowed non-static data
22434 members; no typedefs, no member functions, et cetera.
22435 So it does not need a prefix. */
22436 return "";
22437 case DW_TAG_compile_unit:
22438 case DW_TAG_partial_unit:
22439 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22440 if (cu->language == language_cplus
22441 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22442 && die->child != NULL
22443 && (die->tag == DW_TAG_class_type
22444 || die->tag == DW_TAG_structure_type
22445 || die->tag == DW_TAG_union_type))
22446 {
22447 char *name = guess_full_die_structure_name (die, cu);
22448 if (name != NULL)
22449 return name;
22450 }
22451 return "";
22452 case DW_TAG_enumeration_type:
22453 parent_type = read_type_die (parent, cu);
22454 if (TYPE_DECLARED_CLASS (parent_type))
22455 {
22456 if (TYPE_NAME (parent_type) != NULL)
22457 return TYPE_NAME (parent_type);
22458 return "";
22459 }
22460 /* Fall through. */
22461 default:
22462 return determine_prefix (parent, cu);
22463 }
22464 }
22465
22466 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22467 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22468 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22469 an obconcat, otherwise allocate storage for the result. The CU argument is
22470 used to determine the language and hence, the appropriate separator. */
22471
22472 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22473
22474 static char *
22475 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22476 int physname, struct dwarf2_cu *cu)
22477 {
22478 const char *lead = "";
22479 const char *sep;
22480
22481 if (suffix == NULL || suffix[0] == '\0'
22482 || prefix == NULL || prefix[0] == '\0')
22483 sep = "";
22484 else if (cu->language == language_d)
22485 {
22486 /* For D, the 'main' function could be defined in any module, but it
22487 should never be prefixed. */
22488 if (strcmp (suffix, "D main") == 0)
22489 {
22490 prefix = "";
22491 sep = "";
22492 }
22493 else
22494 sep = ".";
22495 }
22496 else if (cu->language == language_fortran && physname)
22497 {
22498 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22499 DW_AT_MIPS_linkage_name is preferred and used instead. */
22500
22501 lead = "__";
22502 sep = "_MOD_";
22503 }
22504 else
22505 sep = "::";
22506
22507 if (prefix == NULL)
22508 prefix = "";
22509 if (suffix == NULL)
22510 suffix = "";
22511
22512 if (obs == NULL)
22513 {
22514 char *retval
22515 = ((char *)
22516 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22517
22518 strcpy (retval, lead);
22519 strcat (retval, prefix);
22520 strcat (retval, sep);
22521 strcat (retval, suffix);
22522 return retval;
22523 }
22524 else
22525 {
22526 /* We have an obstack. */
22527 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22528 }
22529 }
22530
22531 /* Return sibling of die, NULL if no sibling. */
22532
22533 static struct die_info *
22534 sibling_die (struct die_info *die)
22535 {
22536 return die->sibling;
22537 }
22538
22539 /* Get name of a die, return NULL if not found. */
22540
22541 static const char *
22542 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22543 struct obstack *obstack)
22544 {
22545 if (name && cu->language == language_cplus)
22546 {
22547 std::string canon_name = cp_canonicalize_string (name);
22548
22549 if (!canon_name.empty ())
22550 {
22551 if (canon_name != name)
22552 name = (const char *) obstack_copy0 (obstack,
22553 canon_name.c_str (),
22554 canon_name.length ());
22555 }
22556 }
22557
22558 return name;
22559 }
22560
22561 /* Get name of a die, return NULL if not found.
22562 Anonymous namespaces are converted to their magic string. */
22563
22564 static const char *
22565 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22566 {
22567 struct attribute *attr;
22568 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22569
22570 attr = dwarf2_attr (die, DW_AT_name, cu);
22571 if ((!attr || !DW_STRING (attr))
22572 && die->tag != DW_TAG_namespace
22573 && die->tag != DW_TAG_class_type
22574 && die->tag != DW_TAG_interface_type
22575 && die->tag != DW_TAG_structure_type
22576 && die->tag != DW_TAG_union_type)
22577 return NULL;
22578
22579 switch (die->tag)
22580 {
22581 case DW_TAG_compile_unit:
22582 case DW_TAG_partial_unit:
22583 /* Compilation units have a DW_AT_name that is a filename, not
22584 a source language identifier. */
22585 case DW_TAG_enumeration_type:
22586 case DW_TAG_enumerator:
22587 /* These tags always have simple identifiers already; no need
22588 to canonicalize them. */
22589 return DW_STRING (attr);
22590
22591 case DW_TAG_namespace:
22592 if (attr != NULL && DW_STRING (attr) != NULL)
22593 return DW_STRING (attr);
22594 return CP_ANONYMOUS_NAMESPACE_STR;
22595
22596 case DW_TAG_class_type:
22597 case DW_TAG_interface_type:
22598 case DW_TAG_structure_type:
22599 case DW_TAG_union_type:
22600 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22601 structures or unions. These were of the form "._%d" in GCC 4.1,
22602 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22603 and GCC 4.4. We work around this problem by ignoring these. */
22604 if (attr && DW_STRING (attr)
22605 && (startswith (DW_STRING (attr), "._")
22606 || startswith (DW_STRING (attr), "<anonymous")))
22607 return NULL;
22608
22609 /* GCC might emit a nameless typedef that has a linkage name. See
22610 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22611 if (!attr || DW_STRING (attr) == NULL)
22612 {
22613 char *demangled = NULL;
22614
22615 attr = dw2_linkage_name_attr (die, cu);
22616 if (attr == NULL || DW_STRING (attr) == NULL)
22617 return NULL;
22618
22619 /* Avoid demangling DW_STRING (attr) the second time on a second
22620 call for the same DIE. */
22621 if (!DW_STRING_IS_CANONICAL (attr))
22622 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22623
22624 if (demangled)
22625 {
22626 const char *base;
22627
22628 /* FIXME: we already did this for the partial symbol... */
22629 DW_STRING (attr)
22630 = ((const char *)
22631 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22632 demangled, strlen (demangled)));
22633 DW_STRING_IS_CANONICAL (attr) = 1;
22634 xfree (demangled);
22635
22636 /* Strip any leading namespaces/classes, keep only the base name.
22637 DW_AT_name for named DIEs does not contain the prefixes. */
22638 base = strrchr (DW_STRING (attr), ':');
22639 if (base && base > DW_STRING (attr) && base[-1] == ':')
22640 return &base[1];
22641 else
22642 return DW_STRING (attr);
22643 }
22644 }
22645 break;
22646
22647 default:
22648 break;
22649 }
22650
22651 if (!DW_STRING_IS_CANONICAL (attr))
22652 {
22653 DW_STRING (attr)
22654 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22655 &objfile->per_bfd->storage_obstack);
22656 DW_STRING_IS_CANONICAL (attr) = 1;
22657 }
22658 return DW_STRING (attr);
22659 }
22660
22661 /* Return the die that this die in an extension of, or NULL if there
22662 is none. *EXT_CU is the CU containing DIE on input, and the CU
22663 containing the return value on output. */
22664
22665 static struct die_info *
22666 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22667 {
22668 struct attribute *attr;
22669
22670 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22671 if (attr == NULL)
22672 return NULL;
22673
22674 return follow_die_ref (die, attr, ext_cu);
22675 }
22676
22677 /* Convert a DIE tag into its string name. */
22678
22679 static const char *
22680 dwarf_tag_name (unsigned tag)
22681 {
22682 const char *name = get_DW_TAG_name (tag);
22683
22684 if (name == NULL)
22685 return "DW_TAG_<unknown>";
22686
22687 return name;
22688 }
22689
22690 /* Convert a DWARF attribute code into its string name. */
22691
22692 static const char *
22693 dwarf_attr_name (unsigned attr)
22694 {
22695 const char *name;
22696
22697 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22698 if (attr == DW_AT_MIPS_fde)
22699 return "DW_AT_MIPS_fde";
22700 #else
22701 if (attr == DW_AT_HP_block_index)
22702 return "DW_AT_HP_block_index";
22703 #endif
22704
22705 name = get_DW_AT_name (attr);
22706
22707 if (name == NULL)
22708 return "DW_AT_<unknown>";
22709
22710 return name;
22711 }
22712
22713 /* Convert a DWARF value form code into its string name. */
22714
22715 static const char *
22716 dwarf_form_name (unsigned form)
22717 {
22718 const char *name = get_DW_FORM_name (form);
22719
22720 if (name == NULL)
22721 return "DW_FORM_<unknown>";
22722
22723 return name;
22724 }
22725
22726 static const char *
22727 dwarf_bool_name (unsigned mybool)
22728 {
22729 if (mybool)
22730 return "TRUE";
22731 else
22732 return "FALSE";
22733 }
22734
22735 /* Convert a DWARF type code into its string name. */
22736
22737 static const char *
22738 dwarf_type_encoding_name (unsigned enc)
22739 {
22740 const char *name = get_DW_ATE_name (enc);
22741
22742 if (name == NULL)
22743 return "DW_ATE_<unknown>";
22744
22745 return name;
22746 }
22747
22748 static void
22749 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22750 {
22751 unsigned int i;
22752
22753 print_spaces (indent, f);
22754 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22755 dwarf_tag_name (die->tag), die->abbrev,
22756 sect_offset_str (die->sect_off));
22757
22758 if (die->parent != NULL)
22759 {
22760 print_spaces (indent, f);
22761 fprintf_unfiltered (f, " parent at offset: %s\n",
22762 sect_offset_str (die->parent->sect_off));
22763 }
22764
22765 print_spaces (indent, f);
22766 fprintf_unfiltered (f, " has children: %s\n",
22767 dwarf_bool_name (die->child != NULL));
22768
22769 print_spaces (indent, f);
22770 fprintf_unfiltered (f, " attributes:\n");
22771
22772 for (i = 0; i < die->num_attrs; ++i)
22773 {
22774 print_spaces (indent, f);
22775 fprintf_unfiltered (f, " %s (%s) ",
22776 dwarf_attr_name (die->attrs[i].name),
22777 dwarf_form_name (die->attrs[i].form));
22778
22779 switch (die->attrs[i].form)
22780 {
22781 case DW_FORM_addr:
22782 case DW_FORM_GNU_addr_index:
22783 fprintf_unfiltered (f, "address: ");
22784 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22785 break;
22786 case DW_FORM_block2:
22787 case DW_FORM_block4:
22788 case DW_FORM_block:
22789 case DW_FORM_block1:
22790 fprintf_unfiltered (f, "block: size %s",
22791 pulongest (DW_BLOCK (&die->attrs[i])->size));
22792 break;
22793 case DW_FORM_exprloc:
22794 fprintf_unfiltered (f, "expression: size %s",
22795 pulongest (DW_BLOCK (&die->attrs[i])->size));
22796 break;
22797 case DW_FORM_data16:
22798 fprintf_unfiltered (f, "constant of 16 bytes");
22799 break;
22800 case DW_FORM_ref_addr:
22801 fprintf_unfiltered (f, "ref address: ");
22802 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22803 break;
22804 case DW_FORM_GNU_ref_alt:
22805 fprintf_unfiltered (f, "alt ref address: ");
22806 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22807 break;
22808 case DW_FORM_ref1:
22809 case DW_FORM_ref2:
22810 case DW_FORM_ref4:
22811 case DW_FORM_ref8:
22812 case DW_FORM_ref_udata:
22813 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22814 (long) (DW_UNSND (&die->attrs[i])));
22815 break;
22816 case DW_FORM_data1:
22817 case DW_FORM_data2:
22818 case DW_FORM_data4:
22819 case DW_FORM_data8:
22820 case DW_FORM_udata:
22821 case DW_FORM_sdata:
22822 fprintf_unfiltered (f, "constant: %s",
22823 pulongest (DW_UNSND (&die->attrs[i])));
22824 break;
22825 case DW_FORM_sec_offset:
22826 fprintf_unfiltered (f, "section offset: %s",
22827 pulongest (DW_UNSND (&die->attrs[i])));
22828 break;
22829 case DW_FORM_ref_sig8:
22830 fprintf_unfiltered (f, "signature: %s",
22831 hex_string (DW_SIGNATURE (&die->attrs[i])));
22832 break;
22833 case DW_FORM_string:
22834 case DW_FORM_strp:
22835 case DW_FORM_line_strp:
22836 case DW_FORM_GNU_str_index:
22837 case DW_FORM_GNU_strp_alt:
22838 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22839 DW_STRING (&die->attrs[i])
22840 ? DW_STRING (&die->attrs[i]) : "",
22841 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22842 break;
22843 case DW_FORM_flag:
22844 if (DW_UNSND (&die->attrs[i]))
22845 fprintf_unfiltered (f, "flag: TRUE");
22846 else
22847 fprintf_unfiltered (f, "flag: FALSE");
22848 break;
22849 case DW_FORM_flag_present:
22850 fprintf_unfiltered (f, "flag: TRUE");
22851 break;
22852 case DW_FORM_indirect:
22853 /* The reader will have reduced the indirect form to
22854 the "base form" so this form should not occur. */
22855 fprintf_unfiltered (f,
22856 "unexpected attribute form: DW_FORM_indirect");
22857 break;
22858 case DW_FORM_implicit_const:
22859 fprintf_unfiltered (f, "constant: %s",
22860 plongest (DW_SND (&die->attrs[i])));
22861 break;
22862 default:
22863 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22864 die->attrs[i].form);
22865 break;
22866 }
22867 fprintf_unfiltered (f, "\n");
22868 }
22869 }
22870
22871 static void
22872 dump_die_for_error (struct die_info *die)
22873 {
22874 dump_die_shallow (gdb_stderr, 0, die);
22875 }
22876
22877 static void
22878 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22879 {
22880 int indent = level * 4;
22881
22882 gdb_assert (die != NULL);
22883
22884 if (level >= max_level)
22885 return;
22886
22887 dump_die_shallow (f, indent, die);
22888
22889 if (die->child != NULL)
22890 {
22891 print_spaces (indent, f);
22892 fprintf_unfiltered (f, " Children:");
22893 if (level + 1 < max_level)
22894 {
22895 fprintf_unfiltered (f, "\n");
22896 dump_die_1 (f, level + 1, max_level, die->child);
22897 }
22898 else
22899 {
22900 fprintf_unfiltered (f,
22901 " [not printed, max nesting level reached]\n");
22902 }
22903 }
22904
22905 if (die->sibling != NULL && level > 0)
22906 {
22907 dump_die_1 (f, level, max_level, die->sibling);
22908 }
22909 }
22910
22911 /* This is called from the pdie macro in gdbinit.in.
22912 It's not static so gcc will keep a copy callable from gdb. */
22913
22914 void
22915 dump_die (struct die_info *die, int max_level)
22916 {
22917 dump_die_1 (gdb_stdlog, 0, max_level, die);
22918 }
22919
22920 static void
22921 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22922 {
22923 void **slot;
22924
22925 slot = htab_find_slot_with_hash (cu->die_hash, die,
22926 to_underlying (die->sect_off),
22927 INSERT);
22928
22929 *slot = die;
22930 }
22931
22932 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22933 required kind. */
22934
22935 static sect_offset
22936 dwarf2_get_ref_die_offset (const struct attribute *attr)
22937 {
22938 if (attr_form_is_ref (attr))
22939 return (sect_offset) DW_UNSND (attr);
22940
22941 complaint (_("unsupported die ref attribute form: '%s'"),
22942 dwarf_form_name (attr->form));
22943 return {};
22944 }
22945
22946 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22947 * the value held by the attribute is not constant. */
22948
22949 static LONGEST
22950 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22951 {
22952 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22953 return DW_SND (attr);
22954 else if (attr->form == DW_FORM_udata
22955 || attr->form == DW_FORM_data1
22956 || attr->form == DW_FORM_data2
22957 || attr->form == DW_FORM_data4
22958 || attr->form == DW_FORM_data8)
22959 return DW_UNSND (attr);
22960 else
22961 {
22962 /* For DW_FORM_data16 see attr_form_is_constant. */
22963 complaint (_("Attribute value is not a constant (%s)"),
22964 dwarf_form_name (attr->form));
22965 return default_value;
22966 }
22967 }
22968
22969 /* Follow reference or signature attribute ATTR of SRC_DIE.
22970 On entry *REF_CU is the CU of SRC_DIE.
22971 On exit *REF_CU is the CU of the result. */
22972
22973 static struct die_info *
22974 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22975 struct dwarf2_cu **ref_cu)
22976 {
22977 struct die_info *die;
22978
22979 if (attr_form_is_ref (attr))
22980 die = follow_die_ref (src_die, attr, ref_cu);
22981 else if (attr->form == DW_FORM_ref_sig8)
22982 die = follow_die_sig (src_die, attr, ref_cu);
22983 else
22984 {
22985 dump_die_for_error (src_die);
22986 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22987 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22988 }
22989
22990 return die;
22991 }
22992
22993 /* Follow reference OFFSET.
22994 On entry *REF_CU is the CU of the source die referencing OFFSET.
22995 On exit *REF_CU is the CU of the result.
22996 Returns NULL if OFFSET is invalid. */
22997
22998 static struct die_info *
22999 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23000 struct dwarf2_cu **ref_cu)
23001 {
23002 struct die_info temp_die;
23003 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23004 struct dwarf2_per_objfile *dwarf2_per_objfile
23005 = cu->per_cu->dwarf2_per_objfile;
23006
23007 gdb_assert (cu->per_cu != NULL);
23008
23009 target_cu = cu;
23010
23011 if (cu->per_cu->is_debug_types)
23012 {
23013 /* .debug_types CUs cannot reference anything outside their CU.
23014 If they need to, they have to reference a signatured type via
23015 DW_FORM_ref_sig8. */
23016 if (!offset_in_cu_p (&cu->header, sect_off))
23017 return NULL;
23018 }
23019 else if (offset_in_dwz != cu->per_cu->is_dwz
23020 || !offset_in_cu_p (&cu->header, sect_off))
23021 {
23022 struct dwarf2_per_cu_data *per_cu;
23023
23024 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23025 dwarf2_per_objfile);
23026
23027 /* If necessary, add it to the queue and load its DIEs. */
23028 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23029 load_full_comp_unit (per_cu, false, cu->language);
23030
23031 target_cu = per_cu->cu;
23032 }
23033 else if (cu->dies == NULL)
23034 {
23035 /* We're loading full DIEs during partial symbol reading. */
23036 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23037 load_full_comp_unit (cu->per_cu, false, language_minimal);
23038 }
23039
23040 *ref_cu = target_cu;
23041 temp_die.sect_off = sect_off;
23042 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23043 &temp_die,
23044 to_underlying (sect_off));
23045 }
23046
23047 /* Follow reference attribute ATTR of SRC_DIE.
23048 On entry *REF_CU is the CU of SRC_DIE.
23049 On exit *REF_CU is the CU of the result. */
23050
23051 static struct die_info *
23052 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23053 struct dwarf2_cu **ref_cu)
23054 {
23055 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23056 struct dwarf2_cu *cu = *ref_cu;
23057 struct die_info *die;
23058
23059 die = follow_die_offset (sect_off,
23060 (attr->form == DW_FORM_GNU_ref_alt
23061 || cu->per_cu->is_dwz),
23062 ref_cu);
23063 if (!die)
23064 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23065 "at %s [in module %s]"),
23066 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23067 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23068
23069 return die;
23070 }
23071
23072 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23073 Returned value is intended for DW_OP_call*. Returned
23074 dwarf2_locexpr_baton->data has lifetime of
23075 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23076
23077 struct dwarf2_locexpr_baton
23078 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23079 struct dwarf2_per_cu_data *per_cu,
23080 CORE_ADDR (*get_frame_pc) (void *baton),
23081 void *baton, bool resolve_abstract_p)
23082 {
23083 struct dwarf2_cu *cu;
23084 struct die_info *die;
23085 struct attribute *attr;
23086 struct dwarf2_locexpr_baton retval;
23087 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23088 struct objfile *objfile = dwarf2_per_objfile->objfile;
23089
23090 if (per_cu->cu == NULL)
23091 load_cu (per_cu, false);
23092 cu = per_cu->cu;
23093 if (cu == NULL)
23094 {
23095 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23096 Instead just throw an error, not much else we can do. */
23097 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23098 sect_offset_str (sect_off), objfile_name (objfile));
23099 }
23100
23101 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23102 if (!die)
23103 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23104 sect_offset_str (sect_off), objfile_name (objfile));
23105
23106 attr = dwarf2_attr (die, DW_AT_location, cu);
23107 if (!attr && resolve_abstract_p
23108 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23109 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23110 {
23111 CORE_ADDR pc = (*get_frame_pc) (baton);
23112
23113 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23114 {
23115 if (!cand->parent
23116 || cand->parent->tag != DW_TAG_subprogram)
23117 continue;
23118
23119 CORE_ADDR pc_low, pc_high;
23120 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23121 if (pc_low == ((CORE_ADDR) -1)
23122 || !(pc_low <= pc && pc < pc_high))
23123 continue;
23124
23125 die = cand;
23126 attr = dwarf2_attr (die, DW_AT_location, cu);
23127 break;
23128 }
23129 }
23130
23131 if (!attr)
23132 {
23133 /* DWARF: "If there is no such attribute, then there is no effect.".
23134 DATA is ignored if SIZE is 0. */
23135
23136 retval.data = NULL;
23137 retval.size = 0;
23138 }
23139 else if (attr_form_is_section_offset (attr))
23140 {
23141 struct dwarf2_loclist_baton loclist_baton;
23142 CORE_ADDR pc = (*get_frame_pc) (baton);
23143 size_t size;
23144
23145 fill_in_loclist_baton (cu, &loclist_baton, attr);
23146
23147 retval.data = dwarf2_find_location_expression (&loclist_baton,
23148 &size, pc);
23149 retval.size = size;
23150 }
23151 else
23152 {
23153 if (!attr_form_is_block (attr))
23154 error (_("Dwarf Error: DIE at %s referenced in module %s "
23155 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23156 sect_offset_str (sect_off), objfile_name (objfile));
23157
23158 retval.data = DW_BLOCK (attr)->data;
23159 retval.size = DW_BLOCK (attr)->size;
23160 }
23161 retval.per_cu = cu->per_cu;
23162
23163 age_cached_comp_units (dwarf2_per_objfile);
23164
23165 return retval;
23166 }
23167
23168 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23169 offset. */
23170
23171 struct dwarf2_locexpr_baton
23172 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23173 struct dwarf2_per_cu_data *per_cu,
23174 CORE_ADDR (*get_frame_pc) (void *baton),
23175 void *baton)
23176 {
23177 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23178
23179 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23180 }
23181
23182 /* Write a constant of a given type as target-ordered bytes into
23183 OBSTACK. */
23184
23185 static const gdb_byte *
23186 write_constant_as_bytes (struct obstack *obstack,
23187 enum bfd_endian byte_order,
23188 struct type *type,
23189 ULONGEST value,
23190 LONGEST *len)
23191 {
23192 gdb_byte *result;
23193
23194 *len = TYPE_LENGTH (type);
23195 result = (gdb_byte *) obstack_alloc (obstack, *len);
23196 store_unsigned_integer (result, *len, byte_order, value);
23197
23198 return result;
23199 }
23200
23201 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23202 pointer to the constant bytes and set LEN to the length of the
23203 data. If memory is needed, allocate it on OBSTACK. If the DIE
23204 does not have a DW_AT_const_value, return NULL. */
23205
23206 const gdb_byte *
23207 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23208 struct dwarf2_per_cu_data *per_cu,
23209 struct obstack *obstack,
23210 LONGEST *len)
23211 {
23212 struct dwarf2_cu *cu;
23213 struct die_info *die;
23214 struct attribute *attr;
23215 const gdb_byte *result = NULL;
23216 struct type *type;
23217 LONGEST value;
23218 enum bfd_endian byte_order;
23219 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23220
23221 if (per_cu->cu == NULL)
23222 load_cu (per_cu, false);
23223 cu = per_cu->cu;
23224 if (cu == NULL)
23225 {
23226 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23227 Instead just throw an error, not much else we can do. */
23228 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23229 sect_offset_str (sect_off), objfile_name (objfile));
23230 }
23231
23232 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23233 if (!die)
23234 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23235 sect_offset_str (sect_off), objfile_name (objfile));
23236
23237 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23238 if (attr == NULL)
23239 return NULL;
23240
23241 byte_order = (bfd_big_endian (objfile->obfd)
23242 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23243
23244 switch (attr->form)
23245 {
23246 case DW_FORM_addr:
23247 case DW_FORM_GNU_addr_index:
23248 {
23249 gdb_byte *tem;
23250
23251 *len = cu->header.addr_size;
23252 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23253 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23254 result = tem;
23255 }
23256 break;
23257 case DW_FORM_string:
23258 case DW_FORM_strp:
23259 case DW_FORM_GNU_str_index:
23260 case DW_FORM_GNU_strp_alt:
23261 /* DW_STRING is already allocated on the objfile obstack, point
23262 directly to it. */
23263 result = (const gdb_byte *) DW_STRING (attr);
23264 *len = strlen (DW_STRING (attr));
23265 break;
23266 case DW_FORM_block1:
23267 case DW_FORM_block2:
23268 case DW_FORM_block4:
23269 case DW_FORM_block:
23270 case DW_FORM_exprloc:
23271 case DW_FORM_data16:
23272 result = DW_BLOCK (attr)->data;
23273 *len = DW_BLOCK (attr)->size;
23274 break;
23275
23276 /* The DW_AT_const_value attributes are supposed to carry the
23277 symbol's value "represented as it would be on the target
23278 architecture." By the time we get here, it's already been
23279 converted to host endianness, so we just need to sign- or
23280 zero-extend it as appropriate. */
23281 case DW_FORM_data1:
23282 type = die_type (die, cu);
23283 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23284 if (result == NULL)
23285 result = write_constant_as_bytes (obstack, byte_order,
23286 type, value, len);
23287 break;
23288 case DW_FORM_data2:
23289 type = die_type (die, cu);
23290 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23291 if (result == NULL)
23292 result = write_constant_as_bytes (obstack, byte_order,
23293 type, value, len);
23294 break;
23295 case DW_FORM_data4:
23296 type = die_type (die, cu);
23297 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23298 if (result == NULL)
23299 result = write_constant_as_bytes (obstack, byte_order,
23300 type, value, len);
23301 break;
23302 case DW_FORM_data8:
23303 type = die_type (die, cu);
23304 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23305 if (result == NULL)
23306 result = write_constant_as_bytes (obstack, byte_order,
23307 type, value, len);
23308 break;
23309
23310 case DW_FORM_sdata:
23311 case DW_FORM_implicit_const:
23312 type = die_type (die, cu);
23313 result = write_constant_as_bytes (obstack, byte_order,
23314 type, DW_SND (attr), len);
23315 break;
23316
23317 case DW_FORM_udata:
23318 type = die_type (die, cu);
23319 result = write_constant_as_bytes (obstack, byte_order,
23320 type, DW_UNSND (attr), len);
23321 break;
23322
23323 default:
23324 complaint (_("unsupported const value attribute form: '%s'"),
23325 dwarf_form_name (attr->form));
23326 break;
23327 }
23328
23329 return result;
23330 }
23331
23332 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23333 valid type for this die is found. */
23334
23335 struct type *
23336 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23337 struct dwarf2_per_cu_data *per_cu)
23338 {
23339 struct dwarf2_cu *cu;
23340 struct die_info *die;
23341
23342 if (per_cu->cu == NULL)
23343 load_cu (per_cu, false);
23344 cu = per_cu->cu;
23345 if (!cu)
23346 return NULL;
23347
23348 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23349 if (!die)
23350 return NULL;
23351
23352 return die_type (die, cu);
23353 }
23354
23355 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23356 PER_CU. */
23357
23358 struct type *
23359 dwarf2_get_die_type (cu_offset die_offset,
23360 struct dwarf2_per_cu_data *per_cu)
23361 {
23362 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23363 return get_die_type_at_offset (die_offset_sect, per_cu);
23364 }
23365
23366 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23367 On entry *REF_CU is the CU of SRC_DIE.
23368 On exit *REF_CU is the CU of the result.
23369 Returns NULL if the referenced DIE isn't found. */
23370
23371 static struct die_info *
23372 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23373 struct dwarf2_cu **ref_cu)
23374 {
23375 struct die_info temp_die;
23376 struct dwarf2_cu *sig_cu;
23377 struct die_info *die;
23378
23379 /* While it might be nice to assert sig_type->type == NULL here,
23380 we can get here for DW_AT_imported_declaration where we need
23381 the DIE not the type. */
23382
23383 /* If necessary, add it to the queue and load its DIEs. */
23384
23385 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23386 read_signatured_type (sig_type);
23387
23388 sig_cu = sig_type->per_cu.cu;
23389 gdb_assert (sig_cu != NULL);
23390 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23391 temp_die.sect_off = sig_type->type_offset_in_section;
23392 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23393 to_underlying (temp_die.sect_off));
23394 if (die)
23395 {
23396 struct dwarf2_per_objfile *dwarf2_per_objfile
23397 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23398
23399 /* For .gdb_index version 7 keep track of included TUs.
23400 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23401 if (dwarf2_per_objfile->index_table != NULL
23402 && dwarf2_per_objfile->index_table->version <= 7)
23403 {
23404 VEC_safe_push (dwarf2_per_cu_ptr,
23405 (*ref_cu)->per_cu->imported_symtabs,
23406 sig_cu->per_cu);
23407 }
23408
23409 *ref_cu = sig_cu;
23410 return die;
23411 }
23412
23413 return NULL;
23414 }
23415
23416 /* Follow signatured type referenced by ATTR in SRC_DIE.
23417 On entry *REF_CU is the CU of SRC_DIE.
23418 On exit *REF_CU is the CU of the result.
23419 The result is the DIE of the type.
23420 If the referenced type cannot be found an error is thrown. */
23421
23422 static struct die_info *
23423 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23424 struct dwarf2_cu **ref_cu)
23425 {
23426 ULONGEST signature = DW_SIGNATURE (attr);
23427 struct signatured_type *sig_type;
23428 struct die_info *die;
23429
23430 gdb_assert (attr->form == DW_FORM_ref_sig8);
23431
23432 sig_type = lookup_signatured_type (*ref_cu, signature);
23433 /* sig_type will be NULL if the signatured type is missing from
23434 the debug info. */
23435 if (sig_type == NULL)
23436 {
23437 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23438 " from DIE at %s [in module %s]"),
23439 hex_string (signature), sect_offset_str (src_die->sect_off),
23440 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23441 }
23442
23443 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23444 if (die == NULL)
23445 {
23446 dump_die_for_error (src_die);
23447 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23448 " from DIE at %s [in module %s]"),
23449 hex_string (signature), sect_offset_str (src_die->sect_off),
23450 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23451 }
23452
23453 return die;
23454 }
23455
23456 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23457 reading in and processing the type unit if necessary. */
23458
23459 static struct type *
23460 get_signatured_type (struct die_info *die, ULONGEST signature,
23461 struct dwarf2_cu *cu)
23462 {
23463 struct dwarf2_per_objfile *dwarf2_per_objfile
23464 = cu->per_cu->dwarf2_per_objfile;
23465 struct signatured_type *sig_type;
23466 struct dwarf2_cu *type_cu;
23467 struct die_info *type_die;
23468 struct type *type;
23469
23470 sig_type = lookup_signatured_type (cu, signature);
23471 /* sig_type will be NULL if the signatured type is missing from
23472 the debug info. */
23473 if (sig_type == NULL)
23474 {
23475 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23476 " from DIE at %s [in module %s]"),
23477 hex_string (signature), sect_offset_str (die->sect_off),
23478 objfile_name (dwarf2_per_objfile->objfile));
23479 return build_error_marker_type (cu, die);
23480 }
23481
23482 /* If we already know the type we're done. */
23483 if (sig_type->type != NULL)
23484 return sig_type->type;
23485
23486 type_cu = cu;
23487 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23488 if (type_die != NULL)
23489 {
23490 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23491 is created. This is important, for example, because for c++ classes
23492 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23493 type = read_type_die (type_die, type_cu);
23494 if (type == NULL)
23495 {
23496 complaint (_("Dwarf Error: Cannot build signatured type %s"
23497 " referenced from DIE at %s [in module %s]"),
23498 hex_string (signature), sect_offset_str (die->sect_off),
23499 objfile_name (dwarf2_per_objfile->objfile));
23500 type = build_error_marker_type (cu, die);
23501 }
23502 }
23503 else
23504 {
23505 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23506 " from DIE at %s [in module %s]"),
23507 hex_string (signature), sect_offset_str (die->sect_off),
23508 objfile_name (dwarf2_per_objfile->objfile));
23509 type = build_error_marker_type (cu, die);
23510 }
23511 sig_type->type = type;
23512
23513 return type;
23514 }
23515
23516 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23517 reading in and processing the type unit if necessary. */
23518
23519 static struct type *
23520 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23521 struct dwarf2_cu *cu) /* ARI: editCase function */
23522 {
23523 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23524 if (attr_form_is_ref (attr))
23525 {
23526 struct dwarf2_cu *type_cu = cu;
23527 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23528
23529 return read_type_die (type_die, type_cu);
23530 }
23531 else if (attr->form == DW_FORM_ref_sig8)
23532 {
23533 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23534 }
23535 else
23536 {
23537 struct dwarf2_per_objfile *dwarf2_per_objfile
23538 = cu->per_cu->dwarf2_per_objfile;
23539
23540 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23541 " at %s [in module %s]"),
23542 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23543 objfile_name (dwarf2_per_objfile->objfile));
23544 return build_error_marker_type (cu, die);
23545 }
23546 }
23547
23548 /* Load the DIEs associated with type unit PER_CU into memory. */
23549
23550 static void
23551 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23552 {
23553 struct signatured_type *sig_type;
23554
23555 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23556 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23557
23558 /* We have the per_cu, but we need the signatured_type.
23559 Fortunately this is an easy translation. */
23560 gdb_assert (per_cu->is_debug_types);
23561 sig_type = (struct signatured_type *) per_cu;
23562
23563 gdb_assert (per_cu->cu == NULL);
23564
23565 read_signatured_type (sig_type);
23566
23567 gdb_assert (per_cu->cu != NULL);
23568 }
23569
23570 /* die_reader_func for read_signatured_type.
23571 This is identical to load_full_comp_unit_reader,
23572 but is kept separate for now. */
23573
23574 static void
23575 read_signatured_type_reader (const struct die_reader_specs *reader,
23576 const gdb_byte *info_ptr,
23577 struct die_info *comp_unit_die,
23578 int has_children,
23579 void *data)
23580 {
23581 struct dwarf2_cu *cu = reader->cu;
23582
23583 gdb_assert (cu->die_hash == NULL);
23584 cu->die_hash =
23585 htab_create_alloc_ex (cu->header.length / 12,
23586 die_hash,
23587 die_eq,
23588 NULL,
23589 &cu->comp_unit_obstack,
23590 hashtab_obstack_allocate,
23591 dummy_obstack_deallocate);
23592
23593 if (has_children)
23594 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23595 &info_ptr, comp_unit_die);
23596 cu->dies = comp_unit_die;
23597 /* comp_unit_die is not stored in die_hash, no need. */
23598
23599 /* We try not to read any attributes in this function, because not
23600 all CUs needed for references have been loaded yet, and symbol
23601 table processing isn't initialized. But we have to set the CU language,
23602 or we won't be able to build types correctly.
23603 Similarly, if we do not read the producer, we can not apply
23604 producer-specific interpretation. */
23605 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23606 }
23607
23608 /* Read in a signatured type and build its CU and DIEs.
23609 If the type is a stub for the real type in a DWO file,
23610 read in the real type from the DWO file as well. */
23611
23612 static void
23613 read_signatured_type (struct signatured_type *sig_type)
23614 {
23615 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23616
23617 gdb_assert (per_cu->is_debug_types);
23618 gdb_assert (per_cu->cu == NULL);
23619
23620 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23621 read_signatured_type_reader, NULL);
23622 sig_type->per_cu.tu_read = 1;
23623 }
23624
23625 /* Decode simple location descriptions.
23626 Given a pointer to a dwarf block that defines a location, compute
23627 the location and return the value.
23628
23629 NOTE drow/2003-11-18: This function is called in two situations
23630 now: for the address of static or global variables (partial symbols
23631 only) and for offsets into structures which are expected to be
23632 (more or less) constant. The partial symbol case should go away,
23633 and only the constant case should remain. That will let this
23634 function complain more accurately. A few special modes are allowed
23635 without complaint for global variables (for instance, global
23636 register values and thread-local values).
23637
23638 A location description containing no operations indicates that the
23639 object is optimized out. The return value is 0 for that case.
23640 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23641 callers will only want a very basic result and this can become a
23642 complaint.
23643
23644 Note that stack[0] is unused except as a default error return. */
23645
23646 static CORE_ADDR
23647 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23648 {
23649 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23650 size_t i;
23651 size_t size = blk->size;
23652 const gdb_byte *data = blk->data;
23653 CORE_ADDR stack[64];
23654 int stacki;
23655 unsigned int bytes_read, unsnd;
23656 gdb_byte op;
23657
23658 i = 0;
23659 stacki = 0;
23660 stack[stacki] = 0;
23661 stack[++stacki] = 0;
23662
23663 while (i < size)
23664 {
23665 op = data[i++];
23666 switch (op)
23667 {
23668 case DW_OP_lit0:
23669 case DW_OP_lit1:
23670 case DW_OP_lit2:
23671 case DW_OP_lit3:
23672 case DW_OP_lit4:
23673 case DW_OP_lit5:
23674 case DW_OP_lit6:
23675 case DW_OP_lit7:
23676 case DW_OP_lit8:
23677 case DW_OP_lit9:
23678 case DW_OP_lit10:
23679 case DW_OP_lit11:
23680 case DW_OP_lit12:
23681 case DW_OP_lit13:
23682 case DW_OP_lit14:
23683 case DW_OP_lit15:
23684 case DW_OP_lit16:
23685 case DW_OP_lit17:
23686 case DW_OP_lit18:
23687 case DW_OP_lit19:
23688 case DW_OP_lit20:
23689 case DW_OP_lit21:
23690 case DW_OP_lit22:
23691 case DW_OP_lit23:
23692 case DW_OP_lit24:
23693 case DW_OP_lit25:
23694 case DW_OP_lit26:
23695 case DW_OP_lit27:
23696 case DW_OP_lit28:
23697 case DW_OP_lit29:
23698 case DW_OP_lit30:
23699 case DW_OP_lit31:
23700 stack[++stacki] = op - DW_OP_lit0;
23701 break;
23702
23703 case DW_OP_reg0:
23704 case DW_OP_reg1:
23705 case DW_OP_reg2:
23706 case DW_OP_reg3:
23707 case DW_OP_reg4:
23708 case DW_OP_reg5:
23709 case DW_OP_reg6:
23710 case DW_OP_reg7:
23711 case DW_OP_reg8:
23712 case DW_OP_reg9:
23713 case DW_OP_reg10:
23714 case DW_OP_reg11:
23715 case DW_OP_reg12:
23716 case DW_OP_reg13:
23717 case DW_OP_reg14:
23718 case DW_OP_reg15:
23719 case DW_OP_reg16:
23720 case DW_OP_reg17:
23721 case DW_OP_reg18:
23722 case DW_OP_reg19:
23723 case DW_OP_reg20:
23724 case DW_OP_reg21:
23725 case DW_OP_reg22:
23726 case DW_OP_reg23:
23727 case DW_OP_reg24:
23728 case DW_OP_reg25:
23729 case DW_OP_reg26:
23730 case DW_OP_reg27:
23731 case DW_OP_reg28:
23732 case DW_OP_reg29:
23733 case DW_OP_reg30:
23734 case DW_OP_reg31:
23735 stack[++stacki] = op - DW_OP_reg0;
23736 if (i < size)
23737 dwarf2_complex_location_expr_complaint ();
23738 break;
23739
23740 case DW_OP_regx:
23741 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23742 i += bytes_read;
23743 stack[++stacki] = unsnd;
23744 if (i < size)
23745 dwarf2_complex_location_expr_complaint ();
23746 break;
23747
23748 case DW_OP_addr:
23749 stack[++stacki] = read_address (objfile->obfd, &data[i],
23750 cu, &bytes_read);
23751 i += bytes_read;
23752 break;
23753
23754 case DW_OP_const1u:
23755 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23756 i += 1;
23757 break;
23758
23759 case DW_OP_const1s:
23760 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23761 i += 1;
23762 break;
23763
23764 case DW_OP_const2u:
23765 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23766 i += 2;
23767 break;
23768
23769 case DW_OP_const2s:
23770 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23771 i += 2;
23772 break;
23773
23774 case DW_OP_const4u:
23775 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23776 i += 4;
23777 break;
23778
23779 case DW_OP_const4s:
23780 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23781 i += 4;
23782 break;
23783
23784 case DW_OP_const8u:
23785 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23786 i += 8;
23787 break;
23788
23789 case DW_OP_constu:
23790 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23791 &bytes_read);
23792 i += bytes_read;
23793 break;
23794
23795 case DW_OP_consts:
23796 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23797 i += bytes_read;
23798 break;
23799
23800 case DW_OP_dup:
23801 stack[stacki + 1] = stack[stacki];
23802 stacki++;
23803 break;
23804
23805 case DW_OP_plus:
23806 stack[stacki - 1] += stack[stacki];
23807 stacki--;
23808 break;
23809
23810 case DW_OP_plus_uconst:
23811 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23812 &bytes_read);
23813 i += bytes_read;
23814 break;
23815
23816 case DW_OP_minus:
23817 stack[stacki - 1] -= stack[stacki];
23818 stacki--;
23819 break;
23820
23821 case DW_OP_deref:
23822 /* If we're not the last op, then we definitely can't encode
23823 this using GDB's address_class enum. This is valid for partial
23824 global symbols, although the variable's address will be bogus
23825 in the psymtab. */
23826 if (i < size)
23827 dwarf2_complex_location_expr_complaint ();
23828 break;
23829
23830 case DW_OP_GNU_push_tls_address:
23831 case DW_OP_form_tls_address:
23832 /* The top of the stack has the offset from the beginning
23833 of the thread control block at which the variable is located. */
23834 /* Nothing should follow this operator, so the top of stack would
23835 be returned. */
23836 /* This is valid for partial global symbols, but the variable's
23837 address will be bogus in the psymtab. Make it always at least
23838 non-zero to not look as a variable garbage collected by linker
23839 which have DW_OP_addr 0. */
23840 if (i < size)
23841 dwarf2_complex_location_expr_complaint ();
23842 stack[stacki]++;
23843 break;
23844
23845 case DW_OP_GNU_uninit:
23846 break;
23847
23848 case DW_OP_GNU_addr_index:
23849 case DW_OP_GNU_const_index:
23850 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23851 &bytes_read);
23852 i += bytes_read;
23853 break;
23854
23855 default:
23856 {
23857 const char *name = get_DW_OP_name (op);
23858
23859 if (name)
23860 complaint (_("unsupported stack op: '%s'"),
23861 name);
23862 else
23863 complaint (_("unsupported stack op: '%02x'"),
23864 op);
23865 }
23866
23867 return (stack[stacki]);
23868 }
23869
23870 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23871 outside of the allocated space. Also enforce minimum>0. */
23872 if (stacki >= ARRAY_SIZE (stack) - 1)
23873 {
23874 complaint (_("location description stack overflow"));
23875 return 0;
23876 }
23877
23878 if (stacki <= 0)
23879 {
23880 complaint (_("location description stack underflow"));
23881 return 0;
23882 }
23883 }
23884 return (stack[stacki]);
23885 }
23886
23887 /* memory allocation interface */
23888
23889 static struct dwarf_block *
23890 dwarf_alloc_block (struct dwarf2_cu *cu)
23891 {
23892 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23893 }
23894
23895 static struct die_info *
23896 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23897 {
23898 struct die_info *die;
23899 size_t size = sizeof (struct die_info);
23900
23901 if (num_attrs > 1)
23902 size += (num_attrs - 1) * sizeof (struct attribute);
23903
23904 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23905 memset (die, 0, sizeof (struct die_info));
23906 return (die);
23907 }
23908
23909 \f
23910 /* Macro support. */
23911
23912 /* Return file name relative to the compilation directory of file number I in
23913 *LH's file name table. The result is allocated using xmalloc; the caller is
23914 responsible for freeing it. */
23915
23916 static char *
23917 file_file_name (int file, struct line_header *lh)
23918 {
23919 /* Is the file number a valid index into the line header's file name
23920 table? Remember that file numbers start with one, not zero. */
23921 if (1 <= file && file <= lh->file_names.size ())
23922 {
23923 const file_entry &fe = lh->file_names[file - 1];
23924
23925 if (!IS_ABSOLUTE_PATH (fe.name))
23926 {
23927 const char *dir = fe.include_dir (lh);
23928 if (dir != NULL)
23929 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23930 }
23931 return xstrdup (fe.name);
23932 }
23933 else
23934 {
23935 /* The compiler produced a bogus file number. We can at least
23936 record the macro definitions made in the file, even if we
23937 won't be able to find the file by name. */
23938 char fake_name[80];
23939
23940 xsnprintf (fake_name, sizeof (fake_name),
23941 "<bad macro file number %d>", file);
23942
23943 complaint (_("bad file number in macro information (%d)"),
23944 file);
23945
23946 return xstrdup (fake_name);
23947 }
23948 }
23949
23950 /* Return the full name of file number I in *LH's file name table.
23951 Use COMP_DIR as the name of the current directory of the
23952 compilation. The result is allocated using xmalloc; the caller is
23953 responsible for freeing it. */
23954 static char *
23955 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23956 {
23957 /* Is the file number a valid index into the line header's file name
23958 table? Remember that file numbers start with one, not zero. */
23959 if (1 <= file && file <= lh->file_names.size ())
23960 {
23961 char *relative = file_file_name (file, lh);
23962
23963 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23964 return relative;
23965 return reconcat (relative, comp_dir, SLASH_STRING,
23966 relative, (char *) NULL);
23967 }
23968 else
23969 return file_file_name (file, lh);
23970 }
23971
23972
23973 static struct macro_source_file *
23974 macro_start_file (struct dwarf2_cu *cu,
23975 int file, int line,
23976 struct macro_source_file *current_file,
23977 struct line_header *lh)
23978 {
23979 /* File name relative to the compilation directory of this source file. */
23980 char *file_name = file_file_name (file, lh);
23981
23982 if (! current_file)
23983 {
23984 /* Note: We don't create a macro table for this compilation unit
23985 at all until we actually get a filename. */
23986 struct macro_table *macro_table = cu->builder->get_macro_table ();
23987
23988 /* If we have no current file, then this must be the start_file
23989 directive for the compilation unit's main source file. */
23990 current_file = macro_set_main (macro_table, file_name);
23991 macro_define_special (macro_table);
23992 }
23993 else
23994 current_file = macro_include (current_file, line, file_name);
23995
23996 xfree (file_name);
23997
23998 return current_file;
23999 }
24000
24001 static const char *
24002 consume_improper_spaces (const char *p, const char *body)
24003 {
24004 if (*p == ' ')
24005 {
24006 complaint (_("macro definition contains spaces "
24007 "in formal argument list:\n`%s'"),
24008 body);
24009
24010 while (*p == ' ')
24011 p++;
24012 }
24013
24014 return p;
24015 }
24016
24017
24018 static void
24019 parse_macro_definition (struct macro_source_file *file, int line,
24020 const char *body)
24021 {
24022 const char *p;
24023
24024 /* The body string takes one of two forms. For object-like macro
24025 definitions, it should be:
24026
24027 <macro name> " " <definition>
24028
24029 For function-like macro definitions, it should be:
24030
24031 <macro name> "() " <definition>
24032 or
24033 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24034
24035 Spaces may appear only where explicitly indicated, and in the
24036 <definition>.
24037
24038 The Dwarf 2 spec says that an object-like macro's name is always
24039 followed by a space, but versions of GCC around March 2002 omit
24040 the space when the macro's definition is the empty string.
24041
24042 The Dwarf 2 spec says that there should be no spaces between the
24043 formal arguments in a function-like macro's formal argument list,
24044 but versions of GCC around March 2002 include spaces after the
24045 commas. */
24046
24047
24048 /* Find the extent of the macro name. The macro name is terminated
24049 by either a space or null character (for an object-like macro) or
24050 an opening paren (for a function-like macro). */
24051 for (p = body; *p; p++)
24052 if (*p == ' ' || *p == '(')
24053 break;
24054
24055 if (*p == ' ' || *p == '\0')
24056 {
24057 /* It's an object-like macro. */
24058 int name_len = p - body;
24059 char *name = savestring (body, name_len);
24060 const char *replacement;
24061
24062 if (*p == ' ')
24063 replacement = body + name_len + 1;
24064 else
24065 {
24066 dwarf2_macro_malformed_definition_complaint (body);
24067 replacement = body + name_len;
24068 }
24069
24070 macro_define_object (file, line, name, replacement);
24071
24072 xfree (name);
24073 }
24074 else if (*p == '(')
24075 {
24076 /* It's a function-like macro. */
24077 char *name = savestring (body, p - body);
24078 int argc = 0;
24079 int argv_size = 1;
24080 char **argv = XNEWVEC (char *, argv_size);
24081
24082 p++;
24083
24084 p = consume_improper_spaces (p, body);
24085
24086 /* Parse the formal argument list. */
24087 while (*p && *p != ')')
24088 {
24089 /* Find the extent of the current argument name. */
24090 const char *arg_start = p;
24091
24092 while (*p && *p != ',' && *p != ')' && *p != ' ')
24093 p++;
24094
24095 if (! *p || p == arg_start)
24096 dwarf2_macro_malformed_definition_complaint (body);
24097 else
24098 {
24099 /* Make sure argv has room for the new argument. */
24100 if (argc >= argv_size)
24101 {
24102 argv_size *= 2;
24103 argv = XRESIZEVEC (char *, argv, argv_size);
24104 }
24105
24106 argv[argc++] = savestring (arg_start, p - arg_start);
24107 }
24108
24109 p = consume_improper_spaces (p, body);
24110
24111 /* Consume the comma, if present. */
24112 if (*p == ',')
24113 {
24114 p++;
24115
24116 p = consume_improper_spaces (p, body);
24117 }
24118 }
24119
24120 if (*p == ')')
24121 {
24122 p++;
24123
24124 if (*p == ' ')
24125 /* Perfectly formed definition, no complaints. */
24126 macro_define_function (file, line, name,
24127 argc, (const char **) argv,
24128 p + 1);
24129 else if (*p == '\0')
24130 {
24131 /* Complain, but do define it. */
24132 dwarf2_macro_malformed_definition_complaint (body);
24133 macro_define_function (file, line, name,
24134 argc, (const char **) argv,
24135 p);
24136 }
24137 else
24138 /* Just complain. */
24139 dwarf2_macro_malformed_definition_complaint (body);
24140 }
24141 else
24142 /* Just complain. */
24143 dwarf2_macro_malformed_definition_complaint (body);
24144
24145 xfree (name);
24146 {
24147 int i;
24148
24149 for (i = 0; i < argc; i++)
24150 xfree (argv[i]);
24151 }
24152 xfree (argv);
24153 }
24154 else
24155 dwarf2_macro_malformed_definition_complaint (body);
24156 }
24157
24158 /* Skip some bytes from BYTES according to the form given in FORM.
24159 Returns the new pointer. */
24160
24161 static const gdb_byte *
24162 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24163 enum dwarf_form form,
24164 unsigned int offset_size,
24165 struct dwarf2_section_info *section)
24166 {
24167 unsigned int bytes_read;
24168
24169 switch (form)
24170 {
24171 case DW_FORM_data1:
24172 case DW_FORM_flag:
24173 ++bytes;
24174 break;
24175
24176 case DW_FORM_data2:
24177 bytes += 2;
24178 break;
24179
24180 case DW_FORM_data4:
24181 bytes += 4;
24182 break;
24183
24184 case DW_FORM_data8:
24185 bytes += 8;
24186 break;
24187
24188 case DW_FORM_data16:
24189 bytes += 16;
24190 break;
24191
24192 case DW_FORM_string:
24193 read_direct_string (abfd, bytes, &bytes_read);
24194 bytes += bytes_read;
24195 break;
24196
24197 case DW_FORM_sec_offset:
24198 case DW_FORM_strp:
24199 case DW_FORM_GNU_strp_alt:
24200 bytes += offset_size;
24201 break;
24202
24203 case DW_FORM_block:
24204 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24205 bytes += bytes_read;
24206 break;
24207
24208 case DW_FORM_block1:
24209 bytes += 1 + read_1_byte (abfd, bytes);
24210 break;
24211 case DW_FORM_block2:
24212 bytes += 2 + read_2_bytes (abfd, bytes);
24213 break;
24214 case DW_FORM_block4:
24215 bytes += 4 + read_4_bytes (abfd, bytes);
24216 break;
24217
24218 case DW_FORM_sdata:
24219 case DW_FORM_udata:
24220 case DW_FORM_GNU_addr_index:
24221 case DW_FORM_GNU_str_index:
24222 bytes = gdb_skip_leb128 (bytes, buffer_end);
24223 if (bytes == NULL)
24224 {
24225 dwarf2_section_buffer_overflow_complaint (section);
24226 return NULL;
24227 }
24228 break;
24229
24230 case DW_FORM_implicit_const:
24231 break;
24232
24233 default:
24234 {
24235 complaint (_("invalid form 0x%x in `%s'"),
24236 form, get_section_name (section));
24237 return NULL;
24238 }
24239 }
24240
24241 return bytes;
24242 }
24243
24244 /* A helper for dwarf_decode_macros that handles skipping an unknown
24245 opcode. Returns an updated pointer to the macro data buffer; or,
24246 on error, issues a complaint and returns NULL. */
24247
24248 static const gdb_byte *
24249 skip_unknown_opcode (unsigned int opcode,
24250 const gdb_byte **opcode_definitions,
24251 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24252 bfd *abfd,
24253 unsigned int offset_size,
24254 struct dwarf2_section_info *section)
24255 {
24256 unsigned int bytes_read, i;
24257 unsigned long arg;
24258 const gdb_byte *defn;
24259
24260 if (opcode_definitions[opcode] == NULL)
24261 {
24262 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24263 opcode);
24264 return NULL;
24265 }
24266
24267 defn = opcode_definitions[opcode];
24268 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24269 defn += bytes_read;
24270
24271 for (i = 0; i < arg; ++i)
24272 {
24273 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24274 (enum dwarf_form) defn[i], offset_size,
24275 section);
24276 if (mac_ptr == NULL)
24277 {
24278 /* skip_form_bytes already issued the complaint. */
24279 return NULL;
24280 }
24281 }
24282
24283 return mac_ptr;
24284 }
24285
24286 /* A helper function which parses the header of a macro section.
24287 If the macro section is the extended (for now called "GNU") type,
24288 then this updates *OFFSET_SIZE. Returns a pointer to just after
24289 the header, or issues a complaint and returns NULL on error. */
24290
24291 static const gdb_byte *
24292 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24293 bfd *abfd,
24294 const gdb_byte *mac_ptr,
24295 unsigned int *offset_size,
24296 int section_is_gnu)
24297 {
24298 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24299
24300 if (section_is_gnu)
24301 {
24302 unsigned int version, flags;
24303
24304 version = read_2_bytes (abfd, mac_ptr);
24305 if (version != 4 && version != 5)
24306 {
24307 complaint (_("unrecognized version `%d' in .debug_macro section"),
24308 version);
24309 return NULL;
24310 }
24311 mac_ptr += 2;
24312
24313 flags = read_1_byte (abfd, mac_ptr);
24314 ++mac_ptr;
24315 *offset_size = (flags & 1) ? 8 : 4;
24316
24317 if ((flags & 2) != 0)
24318 /* We don't need the line table offset. */
24319 mac_ptr += *offset_size;
24320
24321 /* Vendor opcode descriptions. */
24322 if ((flags & 4) != 0)
24323 {
24324 unsigned int i, count;
24325
24326 count = read_1_byte (abfd, mac_ptr);
24327 ++mac_ptr;
24328 for (i = 0; i < count; ++i)
24329 {
24330 unsigned int opcode, bytes_read;
24331 unsigned long arg;
24332
24333 opcode = read_1_byte (abfd, mac_ptr);
24334 ++mac_ptr;
24335 opcode_definitions[opcode] = mac_ptr;
24336 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24337 mac_ptr += bytes_read;
24338 mac_ptr += arg;
24339 }
24340 }
24341 }
24342
24343 return mac_ptr;
24344 }
24345
24346 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24347 including DW_MACRO_import. */
24348
24349 static void
24350 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24351 bfd *abfd,
24352 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24353 struct macro_source_file *current_file,
24354 struct line_header *lh,
24355 struct dwarf2_section_info *section,
24356 int section_is_gnu, int section_is_dwz,
24357 unsigned int offset_size,
24358 htab_t include_hash)
24359 {
24360 struct dwarf2_per_objfile *dwarf2_per_objfile
24361 = cu->per_cu->dwarf2_per_objfile;
24362 struct objfile *objfile = dwarf2_per_objfile->objfile;
24363 enum dwarf_macro_record_type macinfo_type;
24364 int at_commandline;
24365 const gdb_byte *opcode_definitions[256];
24366
24367 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24368 &offset_size, section_is_gnu);
24369 if (mac_ptr == NULL)
24370 {
24371 /* We already issued a complaint. */
24372 return;
24373 }
24374
24375 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24376 GDB is still reading the definitions from command line. First
24377 DW_MACINFO_start_file will need to be ignored as it was already executed
24378 to create CURRENT_FILE for the main source holding also the command line
24379 definitions. On first met DW_MACINFO_start_file this flag is reset to
24380 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24381
24382 at_commandline = 1;
24383
24384 do
24385 {
24386 /* Do we at least have room for a macinfo type byte? */
24387 if (mac_ptr >= mac_end)
24388 {
24389 dwarf2_section_buffer_overflow_complaint (section);
24390 break;
24391 }
24392
24393 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24394 mac_ptr++;
24395
24396 /* Note that we rely on the fact that the corresponding GNU and
24397 DWARF constants are the same. */
24398 DIAGNOSTIC_PUSH
24399 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24400 switch (macinfo_type)
24401 {
24402 /* A zero macinfo type indicates the end of the macro
24403 information. */
24404 case 0:
24405 break;
24406
24407 case DW_MACRO_define:
24408 case DW_MACRO_undef:
24409 case DW_MACRO_define_strp:
24410 case DW_MACRO_undef_strp:
24411 case DW_MACRO_define_sup:
24412 case DW_MACRO_undef_sup:
24413 {
24414 unsigned int bytes_read;
24415 int line;
24416 const char *body;
24417 int is_define;
24418
24419 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24420 mac_ptr += bytes_read;
24421
24422 if (macinfo_type == DW_MACRO_define
24423 || macinfo_type == DW_MACRO_undef)
24424 {
24425 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24426 mac_ptr += bytes_read;
24427 }
24428 else
24429 {
24430 LONGEST str_offset;
24431
24432 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24433 mac_ptr += offset_size;
24434
24435 if (macinfo_type == DW_MACRO_define_sup
24436 || macinfo_type == DW_MACRO_undef_sup
24437 || section_is_dwz)
24438 {
24439 struct dwz_file *dwz
24440 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24441
24442 body = read_indirect_string_from_dwz (objfile,
24443 dwz, str_offset);
24444 }
24445 else
24446 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24447 abfd, str_offset);
24448 }
24449
24450 is_define = (macinfo_type == DW_MACRO_define
24451 || macinfo_type == DW_MACRO_define_strp
24452 || macinfo_type == DW_MACRO_define_sup);
24453 if (! current_file)
24454 {
24455 /* DWARF violation as no main source is present. */
24456 complaint (_("debug info with no main source gives macro %s "
24457 "on line %d: %s"),
24458 is_define ? _("definition") : _("undefinition"),
24459 line, body);
24460 break;
24461 }
24462 if ((line == 0 && !at_commandline)
24463 || (line != 0 && at_commandline))
24464 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24465 at_commandline ? _("command-line") : _("in-file"),
24466 is_define ? _("definition") : _("undefinition"),
24467 line == 0 ? _("zero") : _("non-zero"), line, body);
24468
24469 if (is_define)
24470 parse_macro_definition (current_file, line, body);
24471 else
24472 {
24473 gdb_assert (macinfo_type == DW_MACRO_undef
24474 || macinfo_type == DW_MACRO_undef_strp
24475 || macinfo_type == DW_MACRO_undef_sup);
24476 macro_undef (current_file, line, body);
24477 }
24478 }
24479 break;
24480
24481 case DW_MACRO_start_file:
24482 {
24483 unsigned int bytes_read;
24484 int line, file;
24485
24486 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24487 mac_ptr += bytes_read;
24488 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24489 mac_ptr += bytes_read;
24490
24491 if ((line == 0 && !at_commandline)
24492 || (line != 0 && at_commandline))
24493 complaint (_("debug info gives source %d included "
24494 "from %s at %s line %d"),
24495 file, at_commandline ? _("command-line") : _("file"),
24496 line == 0 ? _("zero") : _("non-zero"), line);
24497
24498 if (at_commandline)
24499 {
24500 /* This DW_MACRO_start_file was executed in the
24501 pass one. */
24502 at_commandline = 0;
24503 }
24504 else
24505 current_file = macro_start_file (cu, file, line, current_file,
24506 lh);
24507 }
24508 break;
24509
24510 case DW_MACRO_end_file:
24511 if (! current_file)
24512 complaint (_("macro debug info has an unmatched "
24513 "`close_file' directive"));
24514 else
24515 {
24516 current_file = current_file->included_by;
24517 if (! current_file)
24518 {
24519 enum dwarf_macro_record_type next_type;
24520
24521 /* GCC circa March 2002 doesn't produce the zero
24522 type byte marking the end of the compilation
24523 unit. Complain if it's not there, but exit no
24524 matter what. */
24525
24526 /* Do we at least have room for a macinfo type byte? */
24527 if (mac_ptr >= mac_end)
24528 {
24529 dwarf2_section_buffer_overflow_complaint (section);
24530 return;
24531 }
24532
24533 /* We don't increment mac_ptr here, so this is just
24534 a look-ahead. */
24535 next_type
24536 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24537 mac_ptr);
24538 if (next_type != 0)
24539 complaint (_("no terminating 0-type entry for "
24540 "macros in `.debug_macinfo' section"));
24541
24542 return;
24543 }
24544 }
24545 break;
24546
24547 case DW_MACRO_import:
24548 case DW_MACRO_import_sup:
24549 {
24550 LONGEST offset;
24551 void **slot;
24552 bfd *include_bfd = abfd;
24553 struct dwarf2_section_info *include_section = section;
24554 const gdb_byte *include_mac_end = mac_end;
24555 int is_dwz = section_is_dwz;
24556 const gdb_byte *new_mac_ptr;
24557
24558 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24559 mac_ptr += offset_size;
24560
24561 if (macinfo_type == DW_MACRO_import_sup)
24562 {
24563 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24564
24565 dwarf2_read_section (objfile, &dwz->macro);
24566
24567 include_section = &dwz->macro;
24568 include_bfd = get_section_bfd_owner (include_section);
24569 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24570 is_dwz = 1;
24571 }
24572
24573 new_mac_ptr = include_section->buffer + offset;
24574 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24575
24576 if (*slot != NULL)
24577 {
24578 /* This has actually happened; see
24579 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24580 complaint (_("recursive DW_MACRO_import in "
24581 ".debug_macro section"));
24582 }
24583 else
24584 {
24585 *slot = (void *) new_mac_ptr;
24586
24587 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24588 include_mac_end, current_file, lh,
24589 section, section_is_gnu, is_dwz,
24590 offset_size, include_hash);
24591
24592 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24593 }
24594 }
24595 break;
24596
24597 case DW_MACINFO_vendor_ext:
24598 if (!section_is_gnu)
24599 {
24600 unsigned int bytes_read;
24601
24602 /* This reads the constant, but since we don't recognize
24603 any vendor extensions, we ignore it. */
24604 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24605 mac_ptr += bytes_read;
24606 read_direct_string (abfd, mac_ptr, &bytes_read);
24607 mac_ptr += bytes_read;
24608
24609 /* We don't recognize any vendor extensions. */
24610 break;
24611 }
24612 /* FALLTHROUGH */
24613
24614 default:
24615 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24616 mac_ptr, mac_end, abfd, offset_size,
24617 section);
24618 if (mac_ptr == NULL)
24619 return;
24620 break;
24621 }
24622 DIAGNOSTIC_POP
24623 } while (macinfo_type != 0);
24624 }
24625
24626 static void
24627 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24628 int section_is_gnu)
24629 {
24630 struct dwarf2_per_objfile *dwarf2_per_objfile
24631 = cu->per_cu->dwarf2_per_objfile;
24632 struct objfile *objfile = dwarf2_per_objfile->objfile;
24633 struct line_header *lh = cu->line_header;
24634 bfd *abfd;
24635 const gdb_byte *mac_ptr, *mac_end;
24636 struct macro_source_file *current_file = 0;
24637 enum dwarf_macro_record_type macinfo_type;
24638 unsigned int offset_size = cu->header.offset_size;
24639 const gdb_byte *opcode_definitions[256];
24640 void **slot;
24641 struct dwarf2_section_info *section;
24642 const char *section_name;
24643
24644 if (cu->dwo_unit != NULL)
24645 {
24646 if (section_is_gnu)
24647 {
24648 section = &cu->dwo_unit->dwo_file->sections.macro;
24649 section_name = ".debug_macro.dwo";
24650 }
24651 else
24652 {
24653 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24654 section_name = ".debug_macinfo.dwo";
24655 }
24656 }
24657 else
24658 {
24659 if (section_is_gnu)
24660 {
24661 section = &dwarf2_per_objfile->macro;
24662 section_name = ".debug_macro";
24663 }
24664 else
24665 {
24666 section = &dwarf2_per_objfile->macinfo;
24667 section_name = ".debug_macinfo";
24668 }
24669 }
24670
24671 dwarf2_read_section (objfile, section);
24672 if (section->buffer == NULL)
24673 {
24674 complaint (_("missing %s section"), section_name);
24675 return;
24676 }
24677 abfd = get_section_bfd_owner (section);
24678
24679 /* First pass: Find the name of the base filename.
24680 This filename is needed in order to process all macros whose definition
24681 (or undefinition) comes from the command line. These macros are defined
24682 before the first DW_MACINFO_start_file entry, and yet still need to be
24683 associated to the base file.
24684
24685 To determine the base file name, we scan the macro definitions until we
24686 reach the first DW_MACINFO_start_file entry. We then initialize
24687 CURRENT_FILE accordingly so that any macro definition found before the
24688 first DW_MACINFO_start_file can still be associated to the base file. */
24689
24690 mac_ptr = section->buffer + offset;
24691 mac_end = section->buffer + section->size;
24692
24693 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24694 &offset_size, section_is_gnu);
24695 if (mac_ptr == NULL)
24696 {
24697 /* We already issued a complaint. */
24698 return;
24699 }
24700
24701 do
24702 {
24703 /* Do we at least have room for a macinfo type byte? */
24704 if (mac_ptr >= mac_end)
24705 {
24706 /* Complaint is printed during the second pass as GDB will probably
24707 stop the first pass earlier upon finding
24708 DW_MACINFO_start_file. */
24709 break;
24710 }
24711
24712 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24713 mac_ptr++;
24714
24715 /* Note that we rely on the fact that the corresponding GNU and
24716 DWARF constants are the same. */
24717 DIAGNOSTIC_PUSH
24718 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24719 switch (macinfo_type)
24720 {
24721 /* A zero macinfo type indicates the end of the macro
24722 information. */
24723 case 0:
24724 break;
24725
24726 case DW_MACRO_define:
24727 case DW_MACRO_undef:
24728 /* Only skip the data by MAC_PTR. */
24729 {
24730 unsigned int bytes_read;
24731
24732 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24733 mac_ptr += bytes_read;
24734 read_direct_string (abfd, mac_ptr, &bytes_read);
24735 mac_ptr += bytes_read;
24736 }
24737 break;
24738
24739 case DW_MACRO_start_file:
24740 {
24741 unsigned int bytes_read;
24742 int line, file;
24743
24744 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24745 mac_ptr += bytes_read;
24746 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24747 mac_ptr += bytes_read;
24748
24749 current_file = macro_start_file (cu, file, line, current_file, lh);
24750 }
24751 break;
24752
24753 case DW_MACRO_end_file:
24754 /* No data to skip by MAC_PTR. */
24755 break;
24756
24757 case DW_MACRO_define_strp:
24758 case DW_MACRO_undef_strp:
24759 case DW_MACRO_define_sup:
24760 case DW_MACRO_undef_sup:
24761 {
24762 unsigned int bytes_read;
24763
24764 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24765 mac_ptr += bytes_read;
24766 mac_ptr += offset_size;
24767 }
24768 break;
24769
24770 case DW_MACRO_import:
24771 case DW_MACRO_import_sup:
24772 /* Note that, according to the spec, a transparent include
24773 chain cannot call DW_MACRO_start_file. So, we can just
24774 skip this opcode. */
24775 mac_ptr += offset_size;
24776 break;
24777
24778 case DW_MACINFO_vendor_ext:
24779 /* Only skip the data by MAC_PTR. */
24780 if (!section_is_gnu)
24781 {
24782 unsigned int bytes_read;
24783
24784 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24785 mac_ptr += bytes_read;
24786 read_direct_string (abfd, mac_ptr, &bytes_read);
24787 mac_ptr += bytes_read;
24788 }
24789 /* FALLTHROUGH */
24790
24791 default:
24792 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24793 mac_ptr, mac_end, abfd, offset_size,
24794 section);
24795 if (mac_ptr == NULL)
24796 return;
24797 break;
24798 }
24799 DIAGNOSTIC_POP
24800 } while (macinfo_type != 0 && current_file == NULL);
24801
24802 /* Second pass: Process all entries.
24803
24804 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24805 command-line macro definitions/undefinitions. This flag is unset when we
24806 reach the first DW_MACINFO_start_file entry. */
24807
24808 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24809 htab_eq_pointer,
24810 NULL, xcalloc, xfree));
24811 mac_ptr = section->buffer + offset;
24812 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24813 *slot = (void *) mac_ptr;
24814 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24815 current_file, lh, section,
24816 section_is_gnu, 0, offset_size,
24817 include_hash.get ());
24818 }
24819
24820 /* Check if the attribute's form is a DW_FORM_block*
24821 if so return true else false. */
24822
24823 static int
24824 attr_form_is_block (const struct attribute *attr)
24825 {
24826 return (attr == NULL ? 0 :
24827 attr->form == DW_FORM_block1
24828 || attr->form == DW_FORM_block2
24829 || attr->form == DW_FORM_block4
24830 || attr->form == DW_FORM_block
24831 || attr->form == DW_FORM_exprloc);
24832 }
24833
24834 /* Return non-zero if ATTR's value is a section offset --- classes
24835 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24836 You may use DW_UNSND (attr) to retrieve such offsets.
24837
24838 Section 7.5.4, "Attribute Encodings", explains that no attribute
24839 may have a value that belongs to more than one of these classes; it
24840 would be ambiguous if we did, because we use the same forms for all
24841 of them. */
24842
24843 static int
24844 attr_form_is_section_offset (const struct attribute *attr)
24845 {
24846 return (attr->form == DW_FORM_data4
24847 || attr->form == DW_FORM_data8
24848 || attr->form == DW_FORM_sec_offset);
24849 }
24850
24851 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24852 zero otherwise. When this function returns true, you can apply
24853 dwarf2_get_attr_constant_value to it.
24854
24855 However, note that for some attributes you must check
24856 attr_form_is_section_offset before using this test. DW_FORM_data4
24857 and DW_FORM_data8 are members of both the constant class, and of
24858 the classes that contain offsets into other debug sections
24859 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24860 that, if an attribute's can be either a constant or one of the
24861 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24862 taken as section offsets, not constants.
24863
24864 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24865 cannot handle that. */
24866
24867 static int
24868 attr_form_is_constant (const struct attribute *attr)
24869 {
24870 switch (attr->form)
24871 {
24872 case DW_FORM_sdata:
24873 case DW_FORM_udata:
24874 case DW_FORM_data1:
24875 case DW_FORM_data2:
24876 case DW_FORM_data4:
24877 case DW_FORM_data8:
24878 case DW_FORM_implicit_const:
24879 return 1;
24880 default:
24881 return 0;
24882 }
24883 }
24884
24885
24886 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24887 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24888
24889 static int
24890 attr_form_is_ref (const struct attribute *attr)
24891 {
24892 switch (attr->form)
24893 {
24894 case DW_FORM_ref_addr:
24895 case DW_FORM_ref1:
24896 case DW_FORM_ref2:
24897 case DW_FORM_ref4:
24898 case DW_FORM_ref8:
24899 case DW_FORM_ref_udata:
24900 case DW_FORM_GNU_ref_alt:
24901 return 1;
24902 default:
24903 return 0;
24904 }
24905 }
24906
24907 /* Return the .debug_loc section to use for CU.
24908 For DWO files use .debug_loc.dwo. */
24909
24910 static struct dwarf2_section_info *
24911 cu_debug_loc_section (struct dwarf2_cu *cu)
24912 {
24913 struct dwarf2_per_objfile *dwarf2_per_objfile
24914 = cu->per_cu->dwarf2_per_objfile;
24915
24916 if (cu->dwo_unit)
24917 {
24918 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24919
24920 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24921 }
24922 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24923 : &dwarf2_per_objfile->loc);
24924 }
24925
24926 /* A helper function that fills in a dwarf2_loclist_baton. */
24927
24928 static void
24929 fill_in_loclist_baton (struct dwarf2_cu *cu,
24930 struct dwarf2_loclist_baton *baton,
24931 const struct attribute *attr)
24932 {
24933 struct dwarf2_per_objfile *dwarf2_per_objfile
24934 = cu->per_cu->dwarf2_per_objfile;
24935 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24936
24937 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24938
24939 baton->per_cu = cu->per_cu;
24940 gdb_assert (baton->per_cu);
24941 /* We don't know how long the location list is, but make sure we
24942 don't run off the edge of the section. */
24943 baton->size = section->size - DW_UNSND (attr);
24944 baton->data = section->buffer + DW_UNSND (attr);
24945 baton->base_address = cu->base_address;
24946 baton->from_dwo = cu->dwo_unit != NULL;
24947 }
24948
24949 static void
24950 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24951 struct dwarf2_cu *cu, int is_block)
24952 {
24953 struct dwarf2_per_objfile *dwarf2_per_objfile
24954 = cu->per_cu->dwarf2_per_objfile;
24955 struct objfile *objfile = dwarf2_per_objfile->objfile;
24956 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24957
24958 if (attr_form_is_section_offset (attr)
24959 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24960 the section. If so, fall through to the complaint in the
24961 other branch. */
24962 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24963 {
24964 struct dwarf2_loclist_baton *baton;
24965
24966 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24967
24968 fill_in_loclist_baton (cu, baton, attr);
24969
24970 if (cu->base_known == 0)
24971 complaint (_("Location list used without "
24972 "specifying the CU base address."));
24973
24974 SYMBOL_ACLASS_INDEX (sym) = (is_block
24975 ? dwarf2_loclist_block_index
24976 : dwarf2_loclist_index);
24977 SYMBOL_LOCATION_BATON (sym) = baton;
24978 }
24979 else
24980 {
24981 struct dwarf2_locexpr_baton *baton;
24982
24983 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24984 baton->per_cu = cu->per_cu;
24985 gdb_assert (baton->per_cu);
24986
24987 if (attr_form_is_block (attr))
24988 {
24989 /* Note that we're just copying the block's data pointer
24990 here, not the actual data. We're still pointing into the
24991 info_buffer for SYM's objfile; right now we never release
24992 that buffer, but when we do clean up properly this may
24993 need to change. */
24994 baton->size = DW_BLOCK (attr)->size;
24995 baton->data = DW_BLOCK (attr)->data;
24996 }
24997 else
24998 {
24999 dwarf2_invalid_attrib_class_complaint ("location description",
25000 SYMBOL_NATURAL_NAME (sym));
25001 baton->size = 0;
25002 }
25003
25004 SYMBOL_ACLASS_INDEX (sym) = (is_block
25005 ? dwarf2_locexpr_block_index
25006 : dwarf2_locexpr_index);
25007 SYMBOL_LOCATION_BATON (sym) = baton;
25008 }
25009 }
25010
25011 /* Return the OBJFILE associated with the compilation unit CU. If CU
25012 came from a separate debuginfo file, then the master objfile is
25013 returned. */
25014
25015 struct objfile *
25016 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25017 {
25018 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25019
25020 /* Return the master objfile, so that we can report and look up the
25021 correct file containing this variable. */
25022 if (objfile->separate_debug_objfile_backlink)
25023 objfile = objfile->separate_debug_objfile_backlink;
25024
25025 return objfile;
25026 }
25027
25028 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25029 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25030 CU_HEADERP first. */
25031
25032 static const struct comp_unit_head *
25033 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25034 struct dwarf2_per_cu_data *per_cu)
25035 {
25036 const gdb_byte *info_ptr;
25037
25038 if (per_cu->cu)
25039 return &per_cu->cu->header;
25040
25041 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25042
25043 memset (cu_headerp, 0, sizeof (*cu_headerp));
25044 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25045 rcuh_kind::COMPILE);
25046
25047 return cu_headerp;
25048 }
25049
25050 /* Return the address size given in the compilation unit header for CU. */
25051
25052 int
25053 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25054 {
25055 struct comp_unit_head cu_header_local;
25056 const struct comp_unit_head *cu_headerp;
25057
25058 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25059
25060 return cu_headerp->addr_size;
25061 }
25062
25063 /* Return the offset size given in the compilation unit header for CU. */
25064
25065 int
25066 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25067 {
25068 struct comp_unit_head cu_header_local;
25069 const struct comp_unit_head *cu_headerp;
25070
25071 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25072
25073 return cu_headerp->offset_size;
25074 }
25075
25076 /* See its dwarf2loc.h declaration. */
25077
25078 int
25079 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25080 {
25081 struct comp_unit_head cu_header_local;
25082 const struct comp_unit_head *cu_headerp;
25083
25084 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25085
25086 if (cu_headerp->version == 2)
25087 return cu_headerp->addr_size;
25088 else
25089 return cu_headerp->offset_size;
25090 }
25091
25092 /* Return the text offset of the CU. The returned offset comes from
25093 this CU's objfile. If this objfile came from a separate debuginfo
25094 file, then the offset may be different from the corresponding
25095 offset in the parent objfile. */
25096
25097 CORE_ADDR
25098 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25099 {
25100 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25101
25102 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25103 }
25104
25105 /* Return DWARF version number of PER_CU. */
25106
25107 short
25108 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25109 {
25110 return per_cu->dwarf_version;
25111 }
25112
25113 /* Locate the .debug_info compilation unit from CU's objfile which contains
25114 the DIE at OFFSET. Raises an error on failure. */
25115
25116 static struct dwarf2_per_cu_data *
25117 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25118 unsigned int offset_in_dwz,
25119 struct dwarf2_per_objfile *dwarf2_per_objfile)
25120 {
25121 struct dwarf2_per_cu_data *this_cu;
25122 int low, high;
25123 const sect_offset *cu_off;
25124
25125 low = 0;
25126 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25127 while (high > low)
25128 {
25129 struct dwarf2_per_cu_data *mid_cu;
25130 int mid = low + (high - low) / 2;
25131
25132 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25133 cu_off = &mid_cu->sect_off;
25134 if (mid_cu->is_dwz > offset_in_dwz
25135 || (mid_cu->is_dwz == offset_in_dwz
25136 && *cu_off + mid_cu->length >= sect_off))
25137 high = mid;
25138 else
25139 low = mid + 1;
25140 }
25141 gdb_assert (low == high);
25142 this_cu = dwarf2_per_objfile->all_comp_units[low];
25143 cu_off = &this_cu->sect_off;
25144 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25145 {
25146 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25147 error (_("Dwarf Error: could not find partial DIE containing "
25148 "offset %s [in module %s]"),
25149 sect_offset_str (sect_off),
25150 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25151
25152 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25153 <= sect_off);
25154 return dwarf2_per_objfile->all_comp_units[low-1];
25155 }
25156 else
25157 {
25158 this_cu = dwarf2_per_objfile->all_comp_units[low];
25159 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25160 && sect_off >= this_cu->sect_off + this_cu->length)
25161 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25162 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25163 return this_cu;
25164 }
25165 }
25166
25167 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25168
25169 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25170 : per_cu (per_cu_),
25171 mark (0),
25172 has_loclist (0),
25173 checked_producer (0),
25174 producer_is_gxx_lt_4_6 (0),
25175 producer_is_gcc_lt_4_3 (0),
25176 producer_is_icc (false),
25177 producer_is_icc_lt_14 (0),
25178 producer_is_codewarrior (false),
25179 processing_has_namespace_info (0)
25180 {
25181 per_cu->cu = this;
25182 }
25183
25184 /* Destroy a dwarf2_cu. */
25185
25186 dwarf2_cu::~dwarf2_cu ()
25187 {
25188 per_cu->cu = NULL;
25189 }
25190
25191 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25192
25193 static void
25194 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25195 enum language pretend_language)
25196 {
25197 struct attribute *attr;
25198
25199 /* Set the language we're debugging. */
25200 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25201 if (attr)
25202 set_cu_language (DW_UNSND (attr), cu);
25203 else
25204 {
25205 cu->language = pretend_language;
25206 cu->language_defn = language_def (cu->language);
25207 }
25208
25209 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25210 }
25211
25212 /* Increase the age counter on each cached compilation unit, and free
25213 any that are too old. */
25214
25215 static void
25216 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25217 {
25218 struct dwarf2_per_cu_data *per_cu, **last_chain;
25219
25220 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25221 per_cu = dwarf2_per_objfile->read_in_chain;
25222 while (per_cu != NULL)
25223 {
25224 per_cu->cu->last_used ++;
25225 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25226 dwarf2_mark (per_cu->cu);
25227 per_cu = per_cu->cu->read_in_chain;
25228 }
25229
25230 per_cu = dwarf2_per_objfile->read_in_chain;
25231 last_chain = &dwarf2_per_objfile->read_in_chain;
25232 while (per_cu != NULL)
25233 {
25234 struct dwarf2_per_cu_data *next_cu;
25235
25236 next_cu = per_cu->cu->read_in_chain;
25237
25238 if (!per_cu->cu->mark)
25239 {
25240 delete per_cu->cu;
25241 *last_chain = next_cu;
25242 }
25243 else
25244 last_chain = &per_cu->cu->read_in_chain;
25245
25246 per_cu = next_cu;
25247 }
25248 }
25249
25250 /* Remove a single compilation unit from the cache. */
25251
25252 static void
25253 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25254 {
25255 struct dwarf2_per_cu_data *per_cu, **last_chain;
25256 struct dwarf2_per_objfile *dwarf2_per_objfile
25257 = target_per_cu->dwarf2_per_objfile;
25258
25259 per_cu = dwarf2_per_objfile->read_in_chain;
25260 last_chain = &dwarf2_per_objfile->read_in_chain;
25261 while (per_cu != NULL)
25262 {
25263 struct dwarf2_per_cu_data *next_cu;
25264
25265 next_cu = per_cu->cu->read_in_chain;
25266
25267 if (per_cu == target_per_cu)
25268 {
25269 delete per_cu->cu;
25270 per_cu->cu = NULL;
25271 *last_chain = next_cu;
25272 break;
25273 }
25274 else
25275 last_chain = &per_cu->cu->read_in_chain;
25276
25277 per_cu = next_cu;
25278 }
25279 }
25280
25281 /* Cleanup function for the dwarf2_per_objfile data. */
25282
25283 static void
25284 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25285 {
25286 struct dwarf2_per_objfile *dwarf2_per_objfile
25287 = static_cast<struct dwarf2_per_objfile *> (datum);
25288
25289 delete dwarf2_per_objfile;
25290 }
25291
25292 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25293 We store these in a hash table separate from the DIEs, and preserve them
25294 when the DIEs are flushed out of cache.
25295
25296 The CU "per_cu" pointer is needed because offset alone is not enough to
25297 uniquely identify the type. A file may have multiple .debug_types sections,
25298 or the type may come from a DWO file. Furthermore, while it's more logical
25299 to use per_cu->section+offset, with Fission the section with the data is in
25300 the DWO file but we don't know that section at the point we need it.
25301 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25302 because we can enter the lookup routine, get_die_type_at_offset, from
25303 outside this file, and thus won't necessarily have PER_CU->cu.
25304 Fortunately, PER_CU is stable for the life of the objfile. */
25305
25306 struct dwarf2_per_cu_offset_and_type
25307 {
25308 const struct dwarf2_per_cu_data *per_cu;
25309 sect_offset sect_off;
25310 struct type *type;
25311 };
25312
25313 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25314
25315 static hashval_t
25316 per_cu_offset_and_type_hash (const void *item)
25317 {
25318 const struct dwarf2_per_cu_offset_and_type *ofs
25319 = (const struct dwarf2_per_cu_offset_and_type *) item;
25320
25321 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25322 }
25323
25324 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25325
25326 static int
25327 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25328 {
25329 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25330 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25331 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25332 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25333
25334 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25335 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25336 }
25337
25338 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25339 table if necessary. For convenience, return TYPE.
25340
25341 The DIEs reading must have careful ordering to:
25342 * Not cause infite loops trying to read in DIEs as a prerequisite for
25343 reading current DIE.
25344 * Not trying to dereference contents of still incompletely read in types
25345 while reading in other DIEs.
25346 * Enable referencing still incompletely read in types just by a pointer to
25347 the type without accessing its fields.
25348
25349 Therefore caller should follow these rules:
25350 * Try to fetch any prerequisite types we may need to build this DIE type
25351 before building the type and calling set_die_type.
25352 * After building type call set_die_type for current DIE as soon as
25353 possible before fetching more types to complete the current type.
25354 * Make the type as complete as possible before fetching more types. */
25355
25356 static struct type *
25357 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25358 {
25359 struct dwarf2_per_objfile *dwarf2_per_objfile
25360 = cu->per_cu->dwarf2_per_objfile;
25361 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25362 struct objfile *objfile = dwarf2_per_objfile->objfile;
25363 struct attribute *attr;
25364 struct dynamic_prop prop;
25365
25366 /* For Ada types, make sure that the gnat-specific data is always
25367 initialized (if not already set). There are a few types where
25368 we should not be doing so, because the type-specific area is
25369 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25370 where the type-specific area is used to store the floatformat).
25371 But this is not a problem, because the gnat-specific information
25372 is actually not needed for these types. */
25373 if (need_gnat_info (cu)
25374 && TYPE_CODE (type) != TYPE_CODE_FUNC
25375 && TYPE_CODE (type) != TYPE_CODE_FLT
25376 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25377 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25378 && TYPE_CODE (type) != TYPE_CODE_METHOD
25379 && !HAVE_GNAT_AUX_INFO (type))
25380 INIT_GNAT_SPECIFIC (type);
25381
25382 /* Read DW_AT_allocated and set in type. */
25383 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25384 if (attr_form_is_block (attr))
25385 {
25386 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25387 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25388 }
25389 else if (attr != NULL)
25390 {
25391 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25392 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25393 sect_offset_str (die->sect_off));
25394 }
25395
25396 /* Read DW_AT_associated and set in type. */
25397 attr = dwarf2_attr (die, DW_AT_associated, cu);
25398 if (attr_form_is_block (attr))
25399 {
25400 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25401 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25402 }
25403 else if (attr != NULL)
25404 {
25405 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25406 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25407 sect_offset_str (die->sect_off));
25408 }
25409
25410 /* Read DW_AT_data_location and set in type. */
25411 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25412 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25413 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25414
25415 if (dwarf2_per_objfile->die_type_hash == NULL)
25416 {
25417 dwarf2_per_objfile->die_type_hash =
25418 htab_create_alloc_ex (127,
25419 per_cu_offset_and_type_hash,
25420 per_cu_offset_and_type_eq,
25421 NULL,
25422 &objfile->objfile_obstack,
25423 hashtab_obstack_allocate,
25424 dummy_obstack_deallocate);
25425 }
25426
25427 ofs.per_cu = cu->per_cu;
25428 ofs.sect_off = die->sect_off;
25429 ofs.type = type;
25430 slot = (struct dwarf2_per_cu_offset_and_type **)
25431 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25432 if (*slot)
25433 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25434 sect_offset_str (die->sect_off));
25435 *slot = XOBNEW (&objfile->objfile_obstack,
25436 struct dwarf2_per_cu_offset_and_type);
25437 **slot = ofs;
25438 return type;
25439 }
25440
25441 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25442 or return NULL if the die does not have a saved type. */
25443
25444 static struct type *
25445 get_die_type_at_offset (sect_offset sect_off,
25446 struct dwarf2_per_cu_data *per_cu)
25447 {
25448 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25449 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25450
25451 if (dwarf2_per_objfile->die_type_hash == NULL)
25452 return NULL;
25453
25454 ofs.per_cu = per_cu;
25455 ofs.sect_off = sect_off;
25456 slot = ((struct dwarf2_per_cu_offset_and_type *)
25457 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25458 if (slot)
25459 return slot->type;
25460 else
25461 return NULL;
25462 }
25463
25464 /* Look up the type for DIE in CU in die_type_hash,
25465 or return NULL if DIE does not have a saved type. */
25466
25467 static struct type *
25468 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25469 {
25470 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25471 }
25472
25473 /* Add a dependence relationship from CU to REF_PER_CU. */
25474
25475 static void
25476 dwarf2_add_dependence (struct dwarf2_cu *cu,
25477 struct dwarf2_per_cu_data *ref_per_cu)
25478 {
25479 void **slot;
25480
25481 if (cu->dependencies == NULL)
25482 cu->dependencies
25483 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25484 NULL, &cu->comp_unit_obstack,
25485 hashtab_obstack_allocate,
25486 dummy_obstack_deallocate);
25487
25488 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25489 if (*slot == NULL)
25490 *slot = ref_per_cu;
25491 }
25492
25493 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25494 Set the mark field in every compilation unit in the
25495 cache that we must keep because we are keeping CU. */
25496
25497 static int
25498 dwarf2_mark_helper (void **slot, void *data)
25499 {
25500 struct dwarf2_per_cu_data *per_cu;
25501
25502 per_cu = (struct dwarf2_per_cu_data *) *slot;
25503
25504 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25505 reading of the chain. As such dependencies remain valid it is not much
25506 useful to track and undo them during QUIT cleanups. */
25507 if (per_cu->cu == NULL)
25508 return 1;
25509
25510 if (per_cu->cu->mark)
25511 return 1;
25512 per_cu->cu->mark = 1;
25513
25514 if (per_cu->cu->dependencies != NULL)
25515 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25516
25517 return 1;
25518 }
25519
25520 /* Set the mark field in CU and in every other compilation unit in the
25521 cache that we must keep because we are keeping CU. */
25522
25523 static void
25524 dwarf2_mark (struct dwarf2_cu *cu)
25525 {
25526 if (cu->mark)
25527 return;
25528 cu->mark = 1;
25529 if (cu->dependencies != NULL)
25530 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25531 }
25532
25533 static void
25534 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25535 {
25536 while (per_cu)
25537 {
25538 per_cu->cu->mark = 0;
25539 per_cu = per_cu->cu->read_in_chain;
25540 }
25541 }
25542
25543 /* Trivial hash function for partial_die_info: the hash value of a DIE
25544 is its offset in .debug_info for this objfile. */
25545
25546 static hashval_t
25547 partial_die_hash (const void *item)
25548 {
25549 const struct partial_die_info *part_die
25550 = (const struct partial_die_info *) item;
25551
25552 return to_underlying (part_die->sect_off);
25553 }
25554
25555 /* Trivial comparison function for partial_die_info structures: two DIEs
25556 are equal if they have the same offset. */
25557
25558 static int
25559 partial_die_eq (const void *item_lhs, const void *item_rhs)
25560 {
25561 const struct partial_die_info *part_die_lhs
25562 = (const struct partial_die_info *) item_lhs;
25563 const struct partial_die_info *part_die_rhs
25564 = (const struct partial_die_info *) item_rhs;
25565
25566 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25567 }
25568
25569 struct cmd_list_element *set_dwarf_cmdlist;
25570 struct cmd_list_element *show_dwarf_cmdlist;
25571
25572 static void
25573 set_dwarf_cmd (const char *args, int from_tty)
25574 {
25575 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25576 gdb_stdout);
25577 }
25578
25579 static void
25580 show_dwarf_cmd (const char *args, int from_tty)
25581 {
25582 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25583 }
25584
25585 int dwarf_always_disassemble;
25586
25587 static void
25588 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25589 struct cmd_list_element *c, const char *value)
25590 {
25591 fprintf_filtered (file,
25592 _("Whether to always disassemble "
25593 "DWARF expressions is %s.\n"),
25594 value);
25595 }
25596
25597 static void
25598 show_check_physname (struct ui_file *file, int from_tty,
25599 struct cmd_list_element *c, const char *value)
25600 {
25601 fprintf_filtered (file,
25602 _("Whether to check \"physname\" is %s.\n"),
25603 value);
25604 }
25605
25606 void
25607 _initialize_dwarf2_read (void)
25608 {
25609 dwarf2_objfile_data_key
25610 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25611
25612 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25613 Set DWARF specific variables.\n\
25614 Configure DWARF variables such as the cache size"),
25615 &set_dwarf_cmdlist, "maintenance set dwarf ",
25616 0/*allow-unknown*/, &maintenance_set_cmdlist);
25617
25618 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25619 Show DWARF specific variables\n\
25620 Show DWARF variables such as the cache size"),
25621 &show_dwarf_cmdlist, "maintenance show dwarf ",
25622 0/*allow-unknown*/, &maintenance_show_cmdlist);
25623
25624 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25625 &dwarf_max_cache_age, _("\
25626 Set the upper bound on the age of cached DWARF compilation units."), _("\
25627 Show the upper bound on the age of cached DWARF compilation units."), _("\
25628 A higher limit means that cached compilation units will be stored\n\
25629 in memory longer, and more total memory will be used. Zero disables\n\
25630 caching, which can slow down startup."),
25631 NULL,
25632 show_dwarf_max_cache_age,
25633 &set_dwarf_cmdlist,
25634 &show_dwarf_cmdlist);
25635
25636 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25637 &dwarf_always_disassemble, _("\
25638 Set whether `info address' always disassembles DWARF expressions."), _("\
25639 Show whether `info address' always disassembles DWARF expressions."), _("\
25640 When enabled, DWARF expressions are always printed in an assembly-like\n\
25641 syntax. When disabled, expressions will be printed in a more\n\
25642 conversational style, when possible."),
25643 NULL,
25644 show_dwarf_always_disassemble,
25645 &set_dwarf_cmdlist,
25646 &show_dwarf_cmdlist);
25647
25648 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25649 Set debugging of the DWARF reader."), _("\
25650 Show debugging of the DWARF reader."), _("\
25651 When enabled (non-zero), debugging messages are printed during DWARF\n\
25652 reading and symtab expansion. A value of 1 (one) provides basic\n\
25653 information. A value greater than 1 provides more verbose information."),
25654 NULL,
25655 NULL,
25656 &setdebuglist, &showdebuglist);
25657
25658 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25659 Set debugging of the DWARF DIE reader."), _("\
25660 Show debugging of the DWARF DIE reader."), _("\
25661 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25662 The value is the maximum depth to print."),
25663 NULL,
25664 NULL,
25665 &setdebuglist, &showdebuglist);
25666
25667 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25668 Set debugging of the dwarf line reader."), _("\
25669 Show debugging of the dwarf line reader."), _("\
25670 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25671 A value of 1 (one) provides basic information.\n\
25672 A value greater than 1 provides more verbose information."),
25673 NULL,
25674 NULL,
25675 &setdebuglist, &showdebuglist);
25676
25677 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25678 Set cross-checking of \"physname\" code against demangler."), _("\
25679 Show cross-checking of \"physname\" code against demangler."), _("\
25680 When enabled, GDB's internal \"physname\" code is checked against\n\
25681 the demangler."),
25682 NULL, show_check_physname,
25683 &setdebuglist, &showdebuglist);
25684
25685 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25686 no_class, &use_deprecated_index_sections, _("\
25687 Set whether to use deprecated gdb_index sections."), _("\
25688 Show whether to use deprecated gdb_index sections."), _("\
25689 When enabled, deprecated .gdb_index sections are used anyway.\n\
25690 Normally they are ignored either because of a missing feature or\n\
25691 performance issue.\n\
25692 Warning: This option must be enabled before gdb reads the file."),
25693 NULL,
25694 NULL,
25695 &setlist, &showlist);
25696
25697 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25698 &dwarf2_locexpr_funcs);
25699 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25700 &dwarf2_loclist_funcs);
25701
25702 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25703 &dwarf2_block_frame_base_locexpr_funcs);
25704 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25705 &dwarf2_block_frame_base_loclist_funcs);
25706
25707 #if GDB_SELF_TEST
25708 selftests::register_test ("dw2_expand_symtabs_matching",
25709 selftests::dw2_expand_symtabs_matching::run_test);
25710 #endif
25711 }
This page took 1.012555 seconds and 4 git commands to generate.