Move TYPE_SELF_TYPE into new field type_specific.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 /* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
205 struct dwarf2_per_objfile
206 {
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
212 struct dwarf2_section_info macro;
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
215 struct dwarf2_section_info addr;
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
218 struct dwarf2_section_info gdb_index;
219
220 VEC (dwarf2_section_info_def) *types;
221
222 /* Back link. */
223 struct objfile *objfile;
224
225 /* Table of all the compilation units. This is used to locate
226 the target compilation unit of a particular reference. */
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
232 /* The number of .debug_types-related CUs. */
233 int n_type_units;
234
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
241 struct signatured_type **all_type_units;
242
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
246
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
259 int nr_all_type_units_reallocs;
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
283
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
286 unsigned char using_index;
287
288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
289 struct mapped_index *index_table;
290
291 /* When using index_table, this keeps track of all quick_file_names entries.
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
298 htab_t quick_file_names_table;
299
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
303
304 /* Table mapping type DIEs to their struct type *.
305 This is NULL if not allocated yet.
306 The mapping is done via (CU/TU + DIE offset) -> type. */
307 htab_t die_type_hash;
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
311
312 /* Table containing line_header indexed by offset and offset_in_dwz. */
313 htab_t line_header_hash;
314 };
315
316 static struct dwarf2_per_objfile *dwarf2_per_objfile;
317
318 /* Default names of the debugging sections. */
319
320 /* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
323 static const struct dwarf2_debug_sections dwarf2_elf_names =
324 {
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
330 { ".debug_macro", ".zdebug_macro" },
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
334 { ".debug_addr", ".zdebug_addr" },
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
337 { ".gdb_index", ".zgdb_index" },
338 23
339 };
340
341 /* List of DWO/DWP sections. */
342
343 static const struct dwop_section_names
344 {
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
356 }
357 dwop_section_names =
358 {
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
370 };
371
372 /* local data types */
373
374 /* The data in a compilation unit header, after target2host
375 translation, looks like this. */
376 struct comp_unit_head
377 {
378 unsigned int length;
379 short version;
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
382 sect_offset abbrev_offset;
383
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
386
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
389
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
392 sect_offset offset;
393
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
396 cu_offset first_die_offset;
397 };
398
399 /* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401 struct delayed_method_info
402 {
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417 };
418
419 typedef struct delayed_method_info delayed_method_info;
420 DEF_VEC_O (delayed_method_info);
421
422 /* Internal state when decoding a particular compilation unit. */
423 struct dwarf2_cu
424 {
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header;
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
441 const char *producer;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
458
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
473 /* Backlink to our per_cu entry. */
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
481 htab_t die_hash;
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
514 Note this value comes from the Fission stub CU/TU's DIE. */
515 ULONGEST addr_base;
516
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base;
528
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
536 unsigned int has_loclist : 1;
537
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
544 unsigned int producer_is_gcc_lt_4_3 : 1;
545 unsigned int producer_is_icc : 1;
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
552 };
553
554 /* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
556 read_symtab_private field of the psymtab. */
557
558 struct dwarf2_per_cu_data
559 {
560 /* The start offset and length of this compilation unit.
561 NOTE: Unlike comp_unit_head.length, this length includes
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
565 sect_offset offset;
566 unsigned int length;
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
570 unsigned int queued : 1;
571
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
581 unsigned int is_debug_types : 1;
582
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
605 struct dwarf2_section_info *section;
606
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
609 struct dwarf2_cu *cu;
610
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
614 struct objfile *objfile;
615
616 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
617 is active. Otherwise, the 'psymtab' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
621 or NULL for unread partial units. */
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
627
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
647 };
648
649 /* Entry in the signatured_types hash table. */
650
651 struct signatured_type
652 {
653 /* The "per_cu" object of this type.
654 This struct is used iff per_cu.is_debug_types.
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
659 /* The type's signature. */
660 ULONGEST signature;
661
662 /* Offset in the TU of the type's DIE, as read from the TU header.
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
686 };
687
688 typedef struct signatured_type *sig_type_ptr;
689 DEF_VEC_P (sig_type_ptr);
690
691 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694 struct stmt_list_hash
695 {
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701 };
702
703 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706 struct type_unit_group
707 {
708 /* dwarf2read.c's main "handle" on a TU symtab.
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
713 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
714 struct dwarf2_per_cu_data per_cu;
715
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
720
721 /* The compunit symtab.
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the compunit symtab. */
724 struct compunit_symtab *compunit_symtab;
725
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742 };
743
744 /* These sections are what may appear in a (real or virtual) DWO file. */
745
746 struct dwo_sections
747 {
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
757 VEC (dwarf2_section_info_def) *types;
758 };
759
760 /* CUs/TUs in DWP/DWO files. */
761
762 struct dwo_unit
763 {
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
773 struct dwarf2_section_info *section;
774
775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781 };
782
783 /* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787 enum dwp_v2_section_ids
788 {
789 DW_SECT_MIN = 1
790 };
791
792 /* Data for one DWO file.
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
802
803 struct dwo_file
804 {
805 /* The DW_AT_GNU_dwo_name attribute.
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
813
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
817
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
821 struct dwo_sections sections;
822
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833 };
834
835 /* These sections are what may appear in a DWP file. */
836
837 struct dwp_sections
838 {
839 /* These are used by both DWP version 1 and 2. */
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
860 };
861
862 /* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
864
865 struct virtual_v1_dwo_sections
866 {
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
874 That is recorded here, and copied to dwo_unit.section. */
875 struct dwarf2_section_info info_or_types;
876 };
877
878 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883 struct virtual_v2_dwo_sections
884 {
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907 };
908
909 /* Contents of DWP hash tables. */
910
911 struct dwp_hash_table
912 {
913 uint32_t version, nr_columns;
914 uint32_t nr_units, nr_slots;
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926 #define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
938 };
939
940 /* Data for one DWP file. */
941
942 struct dwp_file
943 {
944 /* Name of the file. */
945 const char *name;
946
947 /* File format version. */
948 int version;
949
950 /* The bfd. */
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
956 /* Table of CUs in the file. */
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
965
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
968 unsigned int num_sections;
969 asection **elf_sections;
970 };
971
972 /* This represents a '.dwz' file. */
973
974 struct dwz_file
975 {
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
982 struct dwarf2_section_info gdb_index;
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986 };
987
988 /* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
991 struct exists to abstract away the constant parameters of die reading. */
992
993 struct die_reader_specs
994 {
995 /* The bfd of die_section. */
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1002 struct dwo_file *dwo_file;
1003
1004 /* The section the die comes from.
1005 This is either .debug_info or .debug_types, or the .dwo variants. */
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
1009 const gdb_byte *buffer;
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
1016 };
1017
1018 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1019 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1020 const gdb_byte *info_ptr,
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
1025 /* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028 struct line_header
1029 {
1030 /* Offset of line number information in .debug_line section. */
1031 sect_offset offset;
1032
1033 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1034 unsigned offset_in_dwz : 1;
1035
1036 unsigned int total_length;
1037 unsigned short version;
1038 unsigned int header_length;
1039 unsigned char minimum_instruction_length;
1040 unsigned char maximum_ops_per_instruction;
1041 unsigned char default_is_stmt;
1042 int line_base;
1043 unsigned char line_range;
1044 unsigned char opcode_base;
1045
1046 /* standard_opcode_lengths[i] is the number of operands for the
1047 standard opcode whose value is i. This means that
1048 standard_opcode_lengths[0] is unused, and the last meaningful
1049 element is standard_opcode_lengths[opcode_base - 1]. */
1050 unsigned char *standard_opcode_lengths;
1051
1052 /* The include_directories table. NOTE! These strings are not
1053 allocated with xmalloc; instead, they are pointers into
1054 debug_line_buffer. If you try to free them, `free' will get
1055 indigestion. */
1056 unsigned int num_include_dirs, include_dirs_size;
1057 const char **include_dirs;
1058
1059 /* The file_names table. NOTE! These strings are not allocated
1060 with xmalloc; instead, they are pointers into debug_line_buffer.
1061 Don't try to free them directly. */
1062 unsigned int num_file_names, file_names_size;
1063 struct file_entry
1064 {
1065 const char *name;
1066 unsigned int dir_index;
1067 unsigned int mod_time;
1068 unsigned int length;
1069 int included_p; /* Non-zero if referenced by the Line Number Program. */
1070 struct symtab *symtab; /* The associated symbol table, if any. */
1071 } *file_names;
1072
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start, *statement_program_end;
1076 };
1077
1078 /* When we construct a partial symbol table entry we only
1079 need this much information. */
1080 struct partial_die_info
1081 {
1082 /* Offset of this DIE. */
1083 sect_offset offset;
1084
1085 /* DWARF-2 tag for this DIE. */
1086 ENUM_BITFIELD(dwarf_tag) tag : 16;
1087
1088 /* Assorted flags describing the data found in this DIE. */
1089 unsigned int has_children : 1;
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* Flag set if the SCOPE field of this structure has been
1098 computed. */
1099 unsigned int scope_set : 1;
1100
1101 /* Flag set if the DIE has a byte_size attribute. */
1102 unsigned int has_byte_size : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup_partial_die has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset offset;
1136 } d;
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc;
1140 CORE_ADDR highpc;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, read_partial_die could
1145 return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset;
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent, *die_child, *die_sibling;
1156 };
1157
1158 /* This data structure holds the information of an abbrev. */
1159 struct abbrev_info
1160 {
1161 unsigned int number; /* number identifying abbrev */
1162 enum dwarf_tag tag; /* dwarf tag */
1163 unsigned short has_children; /* boolean */
1164 unsigned short num_attrs; /* number of attributes */
1165 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1166 struct abbrev_info *next; /* next in chain */
1167 };
1168
1169 struct attr_abbrev
1170 {
1171 ENUM_BITFIELD(dwarf_attribute) name : 16;
1172 ENUM_BITFIELD(dwarf_form) form : 16;
1173 };
1174
1175 /* Size of abbrev_table.abbrev_hash_table. */
1176 #define ABBREV_HASH_SIZE 121
1177
1178 /* Top level data structure to contain an abbreviation table. */
1179
1180 struct abbrev_table
1181 {
1182 /* Where the abbrev table came from.
1183 This is used as a sanity check when the table is used. */
1184 sect_offset offset;
1185
1186 /* Storage for the abbrev table. */
1187 struct obstack abbrev_obstack;
1188
1189 /* Hash table of abbrevs.
1190 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1191 It could be statically allocated, but the previous code didn't so we
1192 don't either. */
1193 struct abbrev_info **abbrevs;
1194 };
1195
1196 /* Attributes have a name and a value. */
1197 struct attribute
1198 {
1199 ENUM_BITFIELD(dwarf_attribute) name : 16;
1200 ENUM_BITFIELD(dwarf_form) form : 15;
1201
1202 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1203 field should be in u.str (existing only for DW_STRING) but it is kept
1204 here for better struct attribute alignment. */
1205 unsigned int string_is_canonical : 1;
1206
1207 union
1208 {
1209 const char *str;
1210 struct dwarf_block *blk;
1211 ULONGEST unsnd;
1212 LONGEST snd;
1213 CORE_ADDR addr;
1214 ULONGEST signature;
1215 }
1216 u;
1217 };
1218
1219 /* This data structure holds a complete die structure. */
1220 struct die_info
1221 {
1222 /* DWARF-2 tag for this DIE. */
1223 ENUM_BITFIELD(dwarf_tag) tag : 16;
1224
1225 /* Number of attributes */
1226 unsigned char num_attrs;
1227
1228 /* True if we're presently building the full type name for the
1229 type derived from this DIE. */
1230 unsigned char building_fullname : 1;
1231
1232 /* True if this die is in process. PR 16581. */
1233 unsigned char in_process : 1;
1234
1235 /* Abbrev number */
1236 unsigned int abbrev;
1237
1238 /* Offset in .debug_info or .debug_types section. */
1239 sect_offset offset;
1240
1241 /* The dies in a compilation unit form an n-ary tree. PARENT
1242 points to this die's parent; CHILD points to the first child of
1243 this node; and all the children of a given node are chained
1244 together via their SIBLING fields. */
1245 struct die_info *child; /* Its first child, if any. */
1246 struct die_info *sibling; /* Its next sibling, if any. */
1247 struct die_info *parent; /* Its parent, if any. */
1248
1249 /* An array of attributes, with NUM_ATTRS elements. There may be
1250 zero, but it's not common and zero-sized arrays are not
1251 sufficiently portable C. */
1252 struct attribute attrs[1];
1253 };
1254
1255 /* Get at parts of an attribute structure. */
1256
1257 #define DW_STRING(attr) ((attr)->u.str)
1258 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1259 #define DW_UNSND(attr) ((attr)->u.unsnd)
1260 #define DW_BLOCK(attr) ((attr)->u.blk)
1261 #define DW_SND(attr) ((attr)->u.snd)
1262 #define DW_ADDR(attr) ((attr)->u.addr)
1263 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1264
1265 /* Blocks are a bunch of untyped bytes. */
1266 struct dwarf_block
1267 {
1268 size_t size;
1269
1270 /* Valid only if SIZE is not zero. */
1271 const gdb_byte *data;
1272 };
1273
1274 #ifndef ATTR_ALLOC_CHUNK
1275 #define ATTR_ALLOC_CHUNK 4
1276 #endif
1277
1278 /* Allocate fields for structs, unions and enums in this size. */
1279 #ifndef DW_FIELD_ALLOC_CHUNK
1280 #define DW_FIELD_ALLOC_CHUNK 4
1281 #endif
1282
1283 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1284 but this would require a corresponding change in unpack_field_as_long
1285 and friends. */
1286 static int bits_per_byte = 8;
1287
1288 /* The routines that read and process dies for a C struct or C++ class
1289 pass lists of data member fields and lists of member function fields
1290 in an instance of a field_info structure, as defined below. */
1291 struct field_info
1292 {
1293 /* List of data member and baseclasses fields. */
1294 struct nextfield
1295 {
1296 struct nextfield *next;
1297 int accessibility;
1298 int virtuality;
1299 struct field field;
1300 }
1301 *fields, *baseclasses;
1302
1303 /* Number of fields (including baseclasses). */
1304 int nfields;
1305
1306 /* Number of baseclasses. */
1307 int nbaseclasses;
1308
1309 /* Set if the accesibility of one of the fields is not public. */
1310 int non_public_fields;
1311
1312 /* Member function fields array, entries are allocated in the order they
1313 are encountered in the object file. */
1314 struct nextfnfield
1315 {
1316 struct nextfnfield *next;
1317 struct fn_field fnfield;
1318 }
1319 *fnfields;
1320
1321 /* Member function fieldlist array, contains name of possibly overloaded
1322 member function, number of overloaded member functions and a pointer
1323 to the head of the member function field chain. */
1324 struct fnfieldlist
1325 {
1326 const char *name;
1327 int length;
1328 struct nextfnfield *head;
1329 }
1330 *fnfieldlists;
1331
1332 /* Number of entries in the fnfieldlists array. */
1333 int nfnfields;
1334
1335 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1336 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1337 struct typedef_field_list
1338 {
1339 struct typedef_field field;
1340 struct typedef_field_list *next;
1341 }
1342 *typedef_field_list;
1343 unsigned typedef_field_list_count;
1344 };
1345
1346 /* One item on the queue of compilation units to read in full symbols
1347 for. */
1348 struct dwarf2_queue_item
1349 {
1350 struct dwarf2_per_cu_data *per_cu;
1351 enum language pretend_language;
1352 struct dwarf2_queue_item *next;
1353 };
1354
1355 /* The current queue. */
1356 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1357
1358 /* Loaded secondary compilation units are kept in memory until they
1359 have not been referenced for the processing of this many
1360 compilation units. Set this to zero to disable caching. Cache
1361 sizes of up to at least twenty will improve startup time for
1362 typical inter-CU-reference binaries, at an obvious memory cost. */
1363 static int dwarf2_max_cache_age = 5;
1364 static void
1365 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c, const char *value)
1367 {
1368 fprintf_filtered (file, _("The upper bound on the age of cached "
1369 "dwarf2 compilation units is %s.\n"),
1370 value);
1371 }
1372 \f
1373 /* local function prototypes */
1374
1375 static const char *get_section_name (const struct dwarf2_section_info *);
1376
1377 static const char *get_section_file_name (const struct dwarf2_section_info *);
1378
1379 static void dwarf2_locate_sections (bfd *, asection *, void *);
1380
1381 static void dwarf2_find_base_address (struct die_info *die,
1382 struct dwarf2_cu *cu);
1383
1384 static struct partial_symtab *create_partial_symtab
1385 (struct dwarf2_per_cu_data *per_cu, const char *name);
1386
1387 static void dwarf2_build_psymtabs_hard (struct objfile *);
1388
1389 static void scan_partial_symbols (struct partial_die_info *,
1390 CORE_ADDR *, CORE_ADDR *,
1391 int, struct dwarf2_cu *);
1392
1393 static void add_partial_symbol (struct partial_die_info *,
1394 struct dwarf2_cu *);
1395
1396 static void add_partial_namespace (struct partial_die_info *pdi,
1397 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1398 int set_addrmap, struct dwarf2_cu *cu);
1399
1400 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1401 CORE_ADDR *highpc, int set_addrmap,
1402 struct dwarf2_cu *cu);
1403
1404 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1405 struct dwarf2_cu *cu);
1406
1407 static void add_partial_subprogram (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1409 int need_pc, struct dwarf2_cu *cu);
1410
1411 static void dwarf2_read_symtab (struct partial_symtab *,
1412 struct objfile *);
1413
1414 static void psymtab_to_symtab_1 (struct partial_symtab *);
1415
1416 static struct abbrev_info *abbrev_table_lookup_abbrev
1417 (const struct abbrev_table *, unsigned int);
1418
1419 static struct abbrev_table *abbrev_table_read_table
1420 (struct dwarf2_section_info *, sect_offset);
1421
1422 static void abbrev_table_free (struct abbrev_table *);
1423
1424 static void abbrev_table_free_cleanup (void *);
1425
1426 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1427 struct dwarf2_section_info *);
1428
1429 static void dwarf2_free_abbrev_table (void *);
1430
1431 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1432
1433 static struct partial_die_info *load_partial_dies
1434 (const struct die_reader_specs *, const gdb_byte *, int);
1435
1436 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1437 struct partial_die_info *,
1438 struct abbrev_info *,
1439 unsigned int,
1440 const gdb_byte *);
1441
1442 static struct partial_die_info *find_partial_die (sect_offset, int,
1443 struct dwarf2_cu *);
1444
1445 static void fixup_partial_die (struct partial_die_info *,
1446 struct dwarf2_cu *);
1447
1448 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1449 struct attribute *, struct attr_abbrev *,
1450 const gdb_byte *);
1451
1452 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1453
1454 static int read_1_signed_byte (bfd *, const gdb_byte *);
1455
1456 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1457
1458 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1459
1460 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1461
1462 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1463 unsigned int *);
1464
1465 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1466
1467 static LONGEST read_checked_initial_length_and_offset
1468 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1469 unsigned int *, unsigned int *);
1470
1471 static LONGEST read_offset (bfd *, const gdb_byte *,
1472 const struct comp_unit_head *,
1473 unsigned int *);
1474
1475 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1476
1477 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1478 sect_offset);
1479
1480 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1481
1482 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1483
1484 static const char *read_indirect_string (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
1487
1488 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1489
1490 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1491
1492 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1495 const gdb_byte *,
1496 unsigned int *);
1497
1498 static const char *read_str_index (const struct die_reader_specs *reader,
1499 ULONGEST str_index);
1500
1501 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1502
1503 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1504 struct dwarf2_cu *);
1505
1506 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1507 unsigned int);
1508
1509 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1510 struct dwarf2_cu *cu);
1511
1512 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1513
1514 static struct die_info *die_specification (struct die_info *die,
1515 struct dwarf2_cu **);
1516
1517 static void free_line_header (struct line_header *lh);
1518
1519 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1520 struct dwarf2_cu *cu);
1521
1522 static void dwarf_decode_lines (struct line_header *, const char *,
1523 struct dwarf2_cu *, struct partial_symtab *,
1524 CORE_ADDR, int decode_mapping);
1525
1526 static void dwarf2_start_subfile (const char *, const char *);
1527
1528 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1529 const char *, const char *,
1530 CORE_ADDR);
1531
1532 static struct symbol *new_symbol (struct die_info *, struct type *,
1533 struct dwarf2_cu *);
1534
1535 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1536 struct dwarf2_cu *, struct symbol *);
1537
1538 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1539 struct dwarf2_cu *);
1540
1541 static void dwarf2_const_value_attr (const struct attribute *attr,
1542 struct type *type,
1543 const char *name,
1544 struct obstack *obstack,
1545 struct dwarf2_cu *cu, LONGEST *value,
1546 const gdb_byte **bytes,
1547 struct dwarf2_locexpr_baton **baton);
1548
1549 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1550
1551 static int need_gnat_info (struct dwarf2_cu *);
1552
1553 static struct type *die_descriptive_type (struct die_info *,
1554 struct dwarf2_cu *);
1555
1556 static void set_descriptive_type (struct type *, struct die_info *,
1557 struct dwarf2_cu *);
1558
1559 static struct type *die_containing_type (struct die_info *,
1560 struct dwarf2_cu *);
1561
1562 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1563 struct dwarf2_cu *);
1564
1565 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1566
1567 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1568
1569 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1570
1571 static char *typename_concat (struct obstack *obs, const char *prefix,
1572 const char *suffix, int physname,
1573 struct dwarf2_cu *cu);
1574
1575 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1576
1577 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1578
1579 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1580
1581 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1582
1583 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1584
1585 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1586 struct dwarf2_cu *, struct partial_symtab *);
1587
1588 static int dwarf2_get_pc_bounds (struct die_info *,
1589 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1590 struct partial_symtab *);
1591
1592 static void get_scope_pc_bounds (struct die_info *,
1593 CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *);
1595
1596 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1597 CORE_ADDR, struct dwarf2_cu *);
1598
1599 static void dwarf2_add_field (struct field_info *, struct die_info *,
1600 struct dwarf2_cu *);
1601
1602 static void dwarf2_attach_fields_to_type (struct field_info *,
1603 struct type *, struct dwarf2_cu *);
1604
1605 static void dwarf2_add_member_fn (struct field_info *,
1606 struct die_info *, struct type *,
1607 struct dwarf2_cu *);
1608
1609 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1610 struct type *,
1611 struct dwarf2_cu *);
1612
1613 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1614
1615 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1616
1617 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1618
1619 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1620
1621 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1622
1623 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1624
1625 static struct type *read_module_type (struct die_info *die,
1626 struct dwarf2_cu *cu);
1627
1628 static const char *namespace_name (struct die_info *die,
1629 int *is_anonymous, struct dwarf2_cu *);
1630
1631 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1634
1635 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1636 struct dwarf2_cu *);
1637
1638 static struct die_info *read_die_and_siblings_1
1639 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1640 struct die_info *);
1641
1642 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1643 const gdb_byte *info_ptr,
1644 const gdb_byte **new_info_ptr,
1645 struct die_info *parent);
1646
1647 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1648 struct die_info **, const gdb_byte *,
1649 int *, int);
1650
1651 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1652 struct die_info **, const gdb_byte *,
1653 int *);
1654
1655 static void process_die (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1658 struct obstack *);
1659
1660 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1661
1662 static const char *dwarf2_full_name (const char *name,
1663 struct die_info *die,
1664 struct dwarf2_cu *cu);
1665
1666 static const char *dwarf2_physname (const char *name, struct die_info *die,
1667 struct dwarf2_cu *cu);
1668
1669 static struct die_info *dwarf2_extension (struct die_info *die,
1670 struct dwarf2_cu **);
1671
1672 static const char *dwarf_tag_name (unsigned int);
1673
1674 static const char *dwarf_attr_name (unsigned int);
1675
1676 static const char *dwarf_form_name (unsigned int);
1677
1678 static char *dwarf_bool_name (unsigned int);
1679
1680 static const char *dwarf_type_encoding_name (unsigned int);
1681
1682 static struct die_info *sibling_die (struct die_info *);
1683
1684 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1685
1686 static void dump_die_for_error (struct die_info *);
1687
1688 static void dump_die_1 (struct ui_file *, int level, int max_level,
1689 struct die_info *);
1690
1691 /*static*/ void dump_die (struct die_info *, int max_level);
1692
1693 static void store_in_ref_table (struct die_info *,
1694 struct dwarf2_cu *);
1695
1696 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1697
1698 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1699
1700 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1701 const struct attribute *,
1702 struct dwarf2_cu **);
1703
1704 static struct die_info *follow_die_ref (struct die_info *,
1705 const struct attribute *,
1706 struct dwarf2_cu **);
1707
1708 static struct die_info *follow_die_sig (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu **);
1711
1712 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1713 struct dwarf2_cu *);
1714
1715 static struct type *get_DW_AT_signature_type (struct die_info *,
1716 const struct attribute *,
1717 struct dwarf2_cu *);
1718
1719 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1720
1721 static void read_signatured_type (struct signatured_type *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1730
1731 static int attr_form_is_block (const struct attribute *);
1732
1733 static int attr_form_is_section_offset (const struct attribute *);
1734
1735 static int attr_form_is_constant (const struct attribute *);
1736
1737 static int attr_form_is_ref (const struct attribute *);
1738
1739 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1740 struct dwarf2_loclist_baton *baton,
1741 const struct attribute *attr);
1742
1743 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1744 struct symbol *sym,
1745 struct dwarf2_cu *cu,
1746 int is_block);
1747
1748 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1749 const gdb_byte *info_ptr,
1750 struct abbrev_info *abbrev);
1751
1752 static void free_stack_comp_unit (void *);
1753
1754 static hashval_t partial_die_hash (const void *item);
1755
1756 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1757
1758 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1759 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1760
1761 static void init_one_comp_unit (struct dwarf2_cu *cu,
1762 struct dwarf2_per_cu_data *per_cu);
1763
1764 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1765 struct die_info *comp_unit_die,
1766 enum language pretend_language);
1767
1768 static void free_heap_comp_unit (void *);
1769
1770 static void free_cached_comp_units (void *);
1771
1772 static void age_cached_comp_units (void);
1773
1774 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1775
1776 static struct type *set_die_type (struct die_info *, struct type *,
1777 struct dwarf2_cu *);
1778
1779 static void create_all_comp_units (struct objfile *);
1780
1781 static int create_all_type_units (struct objfile *);
1782
1783 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
1786 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1787 enum language);
1788
1789 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1790 enum language);
1791
1792 static void dwarf2_add_dependence (struct dwarf2_cu *,
1793 struct dwarf2_per_cu_data *);
1794
1795 static void dwarf2_mark (struct dwarf2_cu *);
1796
1797 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1798
1799 static struct type *get_die_type_at_offset (sect_offset,
1800 struct dwarf2_per_cu_data *);
1801
1802 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1803
1804 static void dwarf2_release_queue (void *dummy);
1805
1806 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1807 enum language pretend_language);
1808
1809 static void process_queue (void);
1810
1811 static void find_file_and_directory (struct die_info *die,
1812 struct dwarf2_cu *cu,
1813 const char **name, const char **comp_dir);
1814
1815 static char *file_full_name (int file, struct line_header *lh,
1816 const char *comp_dir);
1817
1818 static const gdb_byte *read_and_check_comp_unit_head
1819 (struct comp_unit_head *header,
1820 struct dwarf2_section_info *section,
1821 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1822 int is_debug_types_section);
1823
1824 static void init_cutu_and_read_dies
1825 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1826 int use_existing_cu, int keep,
1827 die_reader_func_ftype *die_reader_func, void *data);
1828
1829 static void init_cutu_and_read_dies_simple
1830 (struct dwarf2_per_cu_data *this_cu,
1831 die_reader_func_ftype *die_reader_func, void *data);
1832
1833 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1834
1835 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1836
1837 static struct dwo_unit *lookup_dwo_unit_in_dwp
1838 (struct dwp_file *dwp_file, const char *comp_dir,
1839 ULONGEST signature, int is_debug_types);
1840
1841 static struct dwp_file *get_dwp_file (void);
1842
1843 static struct dwo_unit *lookup_dwo_comp_unit
1844 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1845
1846 static struct dwo_unit *lookup_dwo_type_unit
1847 (struct signatured_type *, const char *, const char *);
1848
1849 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1850
1851 static void free_dwo_file_cleanup (void *);
1852
1853 static void process_cu_includes (void);
1854
1855 static void check_producer (struct dwarf2_cu *cu);
1856
1857 static void free_line_header_voidp (void *arg);
1858 \f
1859 /* Various complaints about symbol reading that don't abort the process. */
1860
1861 static void
1862 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1863 {
1864 complaint (&symfile_complaints,
1865 _("statement list doesn't fit in .debug_line section"));
1866 }
1867
1868 static void
1869 dwarf2_debug_line_missing_file_complaint (void)
1870 {
1871 complaint (&symfile_complaints,
1872 _(".debug_line section has line data without a file"));
1873 }
1874
1875 static void
1876 dwarf2_debug_line_missing_end_sequence_complaint (void)
1877 {
1878 complaint (&symfile_complaints,
1879 _(".debug_line section has line "
1880 "program sequence without an end"));
1881 }
1882
1883 static void
1884 dwarf2_complex_location_expr_complaint (void)
1885 {
1886 complaint (&symfile_complaints, _("location expression too complex"));
1887 }
1888
1889 static void
1890 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1891 int arg3)
1892 {
1893 complaint (&symfile_complaints,
1894 _("const value length mismatch for '%s', got %d, expected %d"),
1895 arg1, arg2, arg3);
1896 }
1897
1898 static void
1899 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1900 {
1901 complaint (&symfile_complaints,
1902 _("debug info runs off end of %s section"
1903 " [in module %s]"),
1904 get_section_name (section),
1905 get_section_file_name (section));
1906 }
1907
1908 static void
1909 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1910 {
1911 complaint (&symfile_complaints,
1912 _("macro debug info contains a "
1913 "malformed macro definition:\n`%s'"),
1914 arg1);
1915 }
1916
1917 static void
1918 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1919 {
1920 complaint (&symfile_complaints,
1921 _("invalid attribute class or form for '%s' in '%s'"),
1922 arg1, arg2);
1923 }
1924
1925 /* Hash function for line_header_hash. */
1926
1927 static hashval_t
1928 line_header_hash (const struct line_header *ofs)
1929 {
1930 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1931 }
1932
1933 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1934
1935 static hashval_t
1936 line_header_hash_voidp (const void *item)
1937 {
1938 const struct line_header *ofs = item;
1939
1940 return line_header_hash (ofs);
1941 }
1942
1943 /* Equality function for line_header_hash. */
1944
1945 static int
1946 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1947 {
1948 const struct line_header *ofs_lhs = item_lhs;
1949 const struct line_header *ofs_rhs = item_rhs;
1950
1951 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1952 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1953 }
1954
1955 \f
1956 #if WORDS_BIGENDIAN
1957
1958 /* Convert VALUE between big- and little-endian. */
1959 static offset_type
1960 byte_swap (offset_type value)
1961 {
1962 offset_type result;
1963
1964 result = (value & 0xff) << 24;
1965 result |= (value & 0xff00) << 8;
1966 result |= (value & 0xff0000) >> 8;
1967 result |= (value & 0xff000000) >> 24;
1968 return result;
1969 }
1970
1971 #define MAYBE_SWAP(V) byte_swap (V)
1972
1973 #else
1974 #define MAYBE_SWAP(V) (V)
1975 #endif /* WORDS_BIGENDIAN */
1976
1977 /* Read the given attribute value as an address, taking the attribute's
1978 form into account. */
1979
1980 static CORE_ADDR
1981 attr_value_as_address (struct attribute *attr)
1982 {
1983 CORE_ADDR addr;
1984
1985 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1986 {
1987 /* Aside from a few clearly defined exceptions, attributes that
1988 contain an address must always be in DW_FORM_addr form.
1989 Unfortunately, some compilers happen to be violating this
1990 requirement by encoding addresses using other forms, such
1991 as DW_FORM_data4 for example. For those broken compilers,
1992 we try to do our best, without any guarantee of success,
1993 to interpret the address correctly. It would also be nice
1994 to generate a complaint, but that would require us to maintain
1995 a list of legitimate cases where a non-address form is allowed,
1996 as well as update callers to pass in at least the CU's DWARF
1997 version. This is more overhead than what we're willing to
1998 expand for a pretty rare case. */
1999 addr = DW_UNSND (attr);
2000 }
2001 else
2002 addr = DW_ADDR (attr);
2003
2004 return addr;
2005 }
2006
2007 /* The suffix for an index file. */
2008 #define INDEX_SUFFIX ".gdb-index"
2009
2010 /* Try to locate the sections we need for DWARF 2 debugging
2011 information and return true if we have enough to do something.
2012 NAMES points to the dwarf2 section names, or is NULL if the standard
2013 ELF names are used. */
2014
2015 int
2016 dwarf2_has_info (struct objfile *objfile,
2017 const struct dwarf2_debug_sections *names)
2018 {
2019 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2020 if (!dwarf2_per_objfile)
2021 {
2022 /* Initialize per-objfile state. */
2023 struct dwarf2_per_objfile *data
2024 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2025
2026 memset (data, 0, sizeof (*data));
2027 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2028 dwarf2_per_objfile = data;
2029
2030 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2031 (void *) names);
2032 dwarf2_per_objfile->objfile = objfile;
2033 }
2034 return (!dwarf2_per_objfile->info.is_virtual
2035 && dwarf2_per_objfile->info.s.asection != NULL
2036 && !dwarf2_per_objfile->abbrev.is_virtual
2037 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2038 }
2039
2040 /* Return the containing section of virtual section SECTION. */
2041
2042 static struct dwarf2_section_info *
2043 get_containing_section (const struct dwarf2_section_info *section)
2044 {
2045 gdb_assert (section->is_virtual);
2046 return section->s.containing_section;
2047 }
2048
2049 /* Return the bfd owner of SECTION. */
2050
2051 static struct bfd *
2052 get_section_bfd_owner (const struct dwarf2_section_info *section)
2053 {
2054 if (section->is_virtual)
2055 {
2056 section = get_containing_section (section);
2057 gdb_assert (!section->is_virtual);
2058 }
2059 return section->s.asection->owner;
2060 }
2061
2062 /* Return the bfd section of SECTION.
2063 Returns NULL if the section is not present. */
2064
2065 static asection *
2066 get_section_bfd_section (const struct dwarf2_section_info *section)
2067 {
2068 if (section->is_virtual)
2069 {
2070 section = get_containing_section (section);
2071 gdb_assert (!section->is_virtual);
2072 }
2073 return section->s.asection;
2074 }
2075
2076 /* Return the name of SECTION. */
2077
2078 static const char *
2079 get_section_name (const struct dwarf2_section_info *section)
2080 {
2081 asection *sectp = get_section_bfd_section (section);
2082
2083 gdb_assert (sectp != NULL);
2084 return bfd_section_name (get_section_bfd_owner (section), sectp);
2085 }
2086
2087 /* Return the name of the file SECTION is in. */
2088
2089 static const char *
2090 get_section_file_name (const struct dwarf2_section_info *section)
2091 {
2092 bfd *abfd = get_section_bfd_owner (section);
2093
2094 return bfd_get_filename (abfd);
2095 }
2096
2097 /* Return the id of SECTION.
2098 Returns 0 if SECTION doesn't exist. */
2099
2100 static int
2101 get_section_id (const struct dwarf2_section_info *section)
2102 {
2103 asection *sectp = get_section_bfd_section (section);
2104
2105 if (sectp == NULL)
2106 return 0;
2107 return sectp->id;
2108 }
2109
2110 /* Return the flags of SECTION.
2111 SECTION (or containing section if this is a virtual section) must exist. */
2112
2113 static int
2114 get_section_flags (const struct dwarf2_section_info *section)
2115 {
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 gdb_assert (sectp != NULL);
2119 return bfd_get_section_flags (sectp->owner, sectp);
2120 }
2121
2122 /* When loading sections, we look either for uncompressed section or for
2123 compressed section names. */
2124
2125 static int
2126 section_is_p (const char *section_name,
2127 const struct dwarf2_section_names *names)
2128 {
2129 if (names->normal != NULL
2130 && strcmp (section_name, names->normal) == 0)
2131 return 1;
2132 if (names->compressed != NULL
2133 && strcmp (section_name, names->compressed) == 0)
2134 return 1;
2135 return 0;
2136 }
2137
2138 /* This function is mapped across the sections and remembers the
2139 offset and size of each of the debugging sections we are interested
2140 in. */
2141
2142 static void
2143 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2144 {
2145 const struct dwarf2_debug_sections *names;
2146 flagword aflag = bfd_get_section_flags (abfd, sectp);
2147
2148 if (vnames == NULL)
2149 names = &dwarf2_elf_names;
2150 else
2151 names = (const struct dwarf2_debug_sections *) vnames;
2152
2153 if ((aflag & SEC_HAS_CONTENTS) == 0)
2154 {
2155 }
2156 else if (section_is_p (sectp->name, &names->info))
2157 {
2158 dwarf2_per_objfile->info.s.asection = sectp;
2159 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2160 }
2161 else if (section_is_p (sectp->name, &names->abbrev))
2162 {
2163 dwarf2_per_objfile->abbrev.s.asection = sectp;
2164 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2165 }
2166 else if (section_is_p (sectp->name, &names->line))
2167 {
2168 dwarf2_per_objfile->line.s.asection = sectp;
2169 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2170 }
2171 else if (section_is_p (sectp->name, &names->loc))
2172 {
2173 dwarf2_per_objfile->loc.s.asection = sectp;
2174 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2175 }
2176 else if (section_is_p (sectp->name, &names->macinfo))
2177 {
2178 dwarf2_per_objfile->macinfo.s.asection = sectp;
2179 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2180 }
2181 else if (section_is_p (sectp->name, &names->macro))
2182 {
2183 dwarf2_per_objfile->macro.s.asection = sectp;
2184 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2185 }
2186 else if (section_is_p (sectp->name, &names->str))
2187 {
2188 dwarf2_per_objfile->str.s.asection = sectp;
2189 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2190 }
2191 else if (section_is_p (sectp->name, &names->addr))
2192 {
2193 dwarf2_per_objfile->addr.s.asection = sectp;
2194 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2195 }
2196 else if (section_is_p (sectp->name, &names->frame))
2197 {
2198 dwarf2_per_objfile->frame.s.asection = sectp;
2199 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2200 }
2201 else if (section_is_p (sectp->name, &names->eh_frame))
2202 {
2203 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2204 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2205 }
2206 else if (section_is_p (sectp->name, &names->ranges))
2207 {
2208 dwarf2_per_objfile->ranges.s.asection = sectp;
2209 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->types))
2212 {
2213 struct dwarf2_section_info type_section;
2214
2215 memset (&type_section, 0, sizeof (type_section));
2216 type_section.s.asection = sectp;
2217 type_section.size = bfd_get_section_size (sectp);
2218
2219 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2220 &type_section);
2221 }
2222 else if (section_is_p (sectp->name, &names->gdb_index))
2223 {
2224 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2225 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2226 }
2227
2228 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2229 && bfd_section_vma (abfd, sectp) == 0)
2230 dwarf2_per_objfile->has_section_at_zero = 1;
2231 }
2232
2233 /* A helper function that decides whether a section is empty,
2234 or not present. */
2235
2236 static int
2237 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2238 {
2239 if (section->is_virtual)
2240 return section->size == 0;
2241 return section->s.asection == NULL || section->size == 0;
2242 }
2243
2244 /* Read the contents of the section INFO.
2245 OBJFILE is the main object file, but not necessarily the file where
2246 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2247 of the DWO file.
2248 If the section is compressed, uncompress it before returning. */
2249
2250 static void
2251 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2252 {
2253 asection *sectp;
2254 bfd *abfd;
2255 gdb_byte *buf, *retbuf;
2256
2257 if (info->readin)
2258 return;
2259 info->buffer = NULL;
2260 info->readin = 1;
2261
2262 if (dwarf2_section_empty_p (info))
2263 return;
2264
2265 sectp = get_section_bfd_section (info);
2266
2267 /* If this is a virtual section we need to read in the real one first. */
2268 if (info->is_virtual)
2269 {
2270 struct dwarf2_section_info *containing_section =
2271 get_containing_section (info);
2272
2273 gdb_assert (sectp != NULL);
2274 if ((sectp->flags & SEC_RELOC) != 0)
2275 {
2276 error (_("Dwarf Error: DWP format V2 with relocations is not"
2277 " supported in section %s [in module %s]"),
2278 get_section_name (info), get_section_file_name (info));
2279 }
2280 dwarf2_read_section (objfile, containing_section);
2281 /* Other code should have already caught virtual sections that don't
2282 fit. */
2283 gdb_assert (info->virtual_offset + info->size
2284 <= containing_section->size);
2285 /* If the real section is empty or there was a problem reading the
2286 section we shouldn't get here. */
2287 gdb_assert (containing_section->buffer != NULL);
2288 info->buffer = containing_section->buffer + info->virtual_offset;
2289 return;
2290 }
2291
2292 /* If the section has relocations, we must read it ourselves.
2293 Otherwise we attach it to the BFD. */
2294 if ((sectp->flags & SEC_RELOC) == 0)
2295 {
2296 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2297 return;
2298 }
2299
2300 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2301 info->buffer = buf;
2302
2303 /* When debugging .o files, we may need to apply relocations; see
2304 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2305 We never compress sections in .o files, so we only need to
2306 try this when the section is not compressed. */
2307 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2308 if (retbuf != NULL)
2309 {
2310 info->buffer = retbuf;
2311 return;
2312 }
2313
2314 abfd = get_section_bfd_owner (info);
2315 gdb_assert (abfd != NULL);
2316
2317 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2318 || bfd_bread (buf, info->size, abfd) != info->size)
2319 {
2320 error (_("Dwarf Error: Can't read DWARF data"
2321 " in section %s [in module %s]"),
2322 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2323 }
2324 }
2325
2326 /* A helper function that returns the size of a section in a safe way.
2327 If you are positive that the section has been read before using the
2328 size, then it is safe to refer to the dwarf2_section_info object's
2329 "size" field directly. In other cases, you must call this
2330 function, because for compressed sections the size field is not set
2331 correctly until the section has been read. */
2332
2333 static bfd_size_type
2334 dwarf2_section_size (struct objfile *objfile,
2335 struct dwarf2_section_info *info)
2336 {
2337 if (!info->readin)
2338 dwarf2_read_section (objfile, info);
2339 return info->size;
2340 }
2341
2342 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2343 SECTION_NAME. */
2344
2345 void
2346 dwarf2_get_section_info (struct objfile *objfile,
2347 enum dwarf2_section_enum sect,
2348 asection **sectp, const gdb_byte **bufp,
2349 bfd_size_type *sizep)
2350 {
2351 struct dwarf2_per_objfile *data
2352 = objfile_data (objfile, dwarf2_objfile_data_key);
2353 struct dwarf2_section_info *info;
2354
2355 /* We may see an objfile without any DWARF, in which case we just
2356 return nothing. */
2357 if (data == NULL)
2358 {
2359 *sectp = NULL;
2360 *bufp = NULL;
2361 *sizep = 0;
2362 return;
2363 }
2364 switch (sect)
2365 {
2366 case DWARF2_DEBUG_FRAME:
2367 info = &data->frame;
2368 break;
2369 case DWARF2_EH_FRAME:
2370 info = &data->eh_frame;
2371 break;
2372 default:
2373 gdb_assert_not_reached ("unexpected section");
2374 }
2375
2376 dwarf2_read_section (objfile, info);
2377
2378 *sectp = get_section_bfd_section (info);
2379 *bufp = info->buffer;
2380 *sizep = info->size;
2381 }
2382
2383 /* A helper function to find the sections for a .dwz file. */
2384
2385 static void
2386 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2387 {
2388 struct dwz_file *dwz_file = arg;
2389
2390 /* Note that we only support the standard ELF names, because .dwz
2391 is ELF-only (at the time of writing). */
2392 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2393 {
2394 dwz_file->abbrev.s.asection = sectp;
2395 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2398 {
2399 dwz_file->info.s.asection = sectp;
2400 dwz_file->info.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2403 {
2404 dwz_file->str.s.asection = sectp;
2405 dwz_file->str.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2408 {
2409 dwz_file->line.s.asection = sectp;
2410 dwz_file->line.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2413 {
2414 dwz_file->macro.s.asection = sectp;
2415 dwz_file->macro.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2418 {
2419 dwz_file->gdb_index.s.asection = sectp;
2420 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2421 }
2422 }
2423
2424 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2425 there is no .gnu_debugaltlink section in the file. Error if there
2426 is such a section but the file cannot be found. */
2427
2428 static struct dwz_file *
2429 dwarf2_get_dwz_file (void)
2430 {
2431 bfd *dwz_bfd;
2432 char *data;
2433 struct cleanup *cleanup;
2434 const char *filename;
2435 struct dwz_file *result;
2436 bfd_size_type buildid_len_arg;
2437 size_t buildid_len;
2438 bfd_byte *buildid;
2439
2440 if (dwarf2_per_objfile->dwz_file != NULL)
2441 return dwarf2_per_objfile->dwz_file;
2442
2443 bfd_set_error (bfd_error_no_error);
2444 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2445 &buildid_len_arg, &buildid);
2446 if (data == NULL)
2447 {
2448 if (bfd_get_error () == bfd_error_no_error)
2449 return NULL;
2450 error (_("could not read '.gnu_debugaltlink' section: %s"),
2451 bfd_errmsg (bfd_get_error ()));
2452 }
2453 cleanup = make_cleanup (xfree, data);
2454 make_cleanup (xfree, buildid);
2455
2456 buildid_len = (size_t) buildid_len_arg;
2457
2458 filename = (const char *) data;
2459 if (!IS_ABSOLUTE_PATH (filename))
2460 {
2461 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2462 char *rel;
2463
2464 make_cleanup (xfree, abs);
2465 abs = ldirname (abs);
2466 make_cleanup (xfree, abs);
2467
2468 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2469 make_cleanup (xfree, rel);
2470 filename = rel;
2471 }
2472
2473 /* First try the file name given in the section. If that doesn't
2474 work, try to use the build-id instead. */
2475 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2476 if (dwz_bfd != NULL)
2477 {
2478 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2479 {
2480 gdb_bfd_unref (dwz_bfd);
2481 dwz_bfd = NULL;
2482 }
2483 }
2484
2485 if (dwz_bfd == NULL)
2486 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2487
2488 if (dwz_bfd == NULL)
2489 error (_("could not find '.gnu_debugaltlink' file for %s"),
2490 objfile_name (dwarf2_per_objfile->objfile));
2491
2492 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2493 struct dwz_file);
2494 result->dwz_bfd = dwz_bfd;
2495
2496 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2497
2498 do_cleanups (cleanup);
2499
2500 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2501 dwarf2_per_objfile->dwz_file = result;
2502 return result;
2503 }
2504 \f
2505 /* DWARF quick_symbols_functions support. */
2506
2507 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2508 unique line tables, so we maintain a separate table of all .debug_line
2509 derived entries to support the sharing.
2510 All the quick functions need is the list of file names. We discard the
2511 line_header when we're done and don't need to record it here. */
2512 struct quick_file_names
2513 {
2514 /* The data used to construct the hash key. */
2515 struct stmt_list_hash hash;
2516
2517 /* The number of entries in file_names, real_names. */
2518 unsigned int num_file_names;
2519
2520 /* The file names from the line table, after being run through
2521 file_full_name. */
2522 const char **file_names;
2523
2524 /* The file names from the line table after being run through
2525 gdb_realpath. These are computed lazily. */
2526 const char **real_names;
2527 };
2528
2529 /* When using the index (and thus not using psymtabs), each CU has an
2530 object of this type. This is used to hold information needed by
2531 the various "quick" methods. */
2532 struct dwarf2_per_cu_quick_data
2533 {
2534 /* The file table. This can be NULL if there was no file table
2535 or it's currently not read in.
2536 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2537 struct quick_file_names *file_names;
2538
2539 /* The corresponding symbol table. This is NULL if symbols for this
2540 CU have not yet been read. */
2541 struct compunit_symtab *compunit_symtab;
2542
2543 /* A temporary mark bit used when iterating over all CUs in
2544 expand_symtabs_matching. */
2545 unsigned int mark : 1;
2546
2547 /* True if we've tried to read the file table and found there isn't one.
2548 There will be no point in trying to read it again next time. */
2549 unsigned int no_file_data : 1;
2550 };
2551
2552 /* Utility hash function for a stmt_list_hash. */
2553
2554 static hashval_t
2555 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2556 {
2557 hashval_t v = 0;
2558
2559 if (stmt_list_hash->dwo_unit != NULL)
2560 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2561 v += stmt_list_hash->line_offset.sect_off;
2562 return v;
2563 }
2564
2565 /* Utility equality function for a stmt_list_hash. */
2566
2567 static int
2568 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2569 const struct stmt_list_hash *rhs)
2570 {
2571 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2572 return 0;
2573 if (lhs->dwo_unit != NULL
2574 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2575 return 0;
2576
2577 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2578 }
2579
2580 /* Hash function for a quick_file_names. */
2581
2582 static hashval_t
2583 hash_file_name_entry (const void *e)
2584 {
2585 const struct quick_file_names *file_data = e;
2586
2587 return hash_stmt_list_entry (&file_data->hash);
2588 }
2589
2590 /* Equality function for a quick_file_names. */
2591
2592 static int
2593 eq_file_name_entry (const void *a, const void *b)
2594 {
2595 const struct quick_file_names *ea = a;
2596 const struct quick_file_names *eb = b;
2597
2598 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2599 }
2600
2601 /* Delete function for a quick_file_names. */
2602
2603 static void
2604 delete_file_name_entry (void *e)
2605 {
2606 struct quick_file_names *file_data = e;
2607 int i;
2608
2609 for (i = 0; i < file_data->num_file_names; ++i)
2610 {
2611 xfree ((void*) file_data->file_names[i]);
2612 if (file_data->real_names)
2613 xfree ((void*) file_data->real_names[i]);
2614 }
2615
2616 /* The space for the struct itself lives on objfile_obstack,
2617 so we don't free it here. */
2618 }
2619
2620 /* Create a quick_file_names hash table. */
2621
2622 static htab_t
2623 create_quick_file_names_table (unsigned int nr_initial_entries)
2624 {
2625 return htab_create_alloc (nr_initial_entries,
2626 hash_file_name_entry, eq_file_name_entry,
2627 delete_file_name_entry, xcalloc, xfree);
2628 }
2629
2630 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2631 have to be created afterwards. You should call age_cached_comp_units after
2632 processing PER_CU->CU. dw2_setup must have been already called. */
2633
2634 static void
2635 load_cu (struct dwarf2_per_cu_data *per_cu)
2636 {
2637 if (per_cu->is_debug_types)
2638 load_full_type_unit (per_cu);
2639 else
2640 load_full_comp_unit (per_cu, language_minimal);
2641
2642 gdb_assert (per_cu->cu != NULL);
2643
2644 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2645 }
2646
2647 /* Read in the symbols for PER_CU. */
2648
2649 static void
2650 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2651 {
2652 struct cleanup *back_to;
2653
2654 /* Skip type_unit_groups, reading the type units they contain
2655 is handled elsewhere. */
2656 if (IS_TYPE_UNIT_GROUP (per_cu))
2657 return;
2658
2659 back_to = make_cleanup (dwarf2_release_queue, NULL);
2660
2661 if (dwarf2_per_objfile->using_index
2662 ? per_cu->v.quick->compunit_symtab == NULL
2663 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2664 {
2665 queue_comp_unit (per_cu, language_minimal);
2666 load_cu (per_cu);
2667
2668 /* If we just loaded a CU from a DWO, and we're working with an index
2669 that may badly handle TUs, load all the TUs in that DWO as well.
2670 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2671 if (!per_cu->is_debug_types
2672 && per_cu->cu->dwo_unit != NULL
2673 && dwarf2_per_objfile->index_table != NULL
2674 && dwarf2_per_objfile->index_table->version <= 7
2675 /* DWP files aren't supported yet. */
2676 && get_dwp_file () == NULL)
2677 queue_and_load_all_dwo_tus (per_cu);
2678 }
2679
2680 process_queue ();
2681
2682 /* Age the cache, releasing compilation units that have not
2683 been used recently. */
2684 age_cached_comp_units ();
2685
2686 do_cleanups (back_to);
2687 }
2688
2689 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2690 the objfile from which this CU came. Returns the resulting symbol
2691 table. */
2692
2693 static struct compunit_symtab *
2694 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2695 {
2696 gdb_assert (dwarf2_per_objfile->using_index);
2697 if (!per_cu->v.quick->compunit_symtab)
2698 {
2699 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2700 increment_reading_symtab ();
2701 dw2_do_instantiate_symtab (per_cu);
2702 process_cu_includes ();
2703 do_cleanups (back_to);
2704 }
2705
2706 return per_cu->v.quick->compunit_symtab;
2707 }
2708
2709 /* Return the CU/TU given its index.
2710
2711 This is intended for loops like:
2712
2713 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2714 + dwarf2_per_objfile->n_type_units); ++i)
2715 {
2716 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2717
2718 ...;
2719 }
2720 */
2721
2722 static struct dwarf2_per_cu_data *
2723 dw2_get_cutu (int index)
2724 {
2725 if (index >= dwarf2_per_objfile->n_comp_units)
2726 {
2727 index -= dwarf2_per_objfile->n_comp_units;
2728 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2729 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2730 }
2731
2732 return dwarf2_per_objfile->all_comp_units[index];
2733 }
2734
2735 /* Return the CU given its index.
2736 This differs from dw2_get_cutu in that it's for when you know INDEX
2737 refers to a CU. */
2738
2739 static struct dwarf2_per_cu_data *
2740 dw2_get_cu (int index)
2741 {
2742 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2743
2744 return dwarf2_per_objfile->all_comp_units[index];
2745 }
2746
2747 /* A helper for create_cus_from_index that handles a given list of
2748 CUs. */
2749
2750 static void
2751 create_cus_from_index_list (struct objfile *objfile,
2752 const gdb_byte *cu_list, offset_type n_elements,
2753 struct dwarf2_section_info *section,
2754 int is_dwz,
2755 int base_offset)
2756 {
2757 offset_type i;
2758
2759 for (i = 0; i < n_elements; i += 2)
2760 {
2761 struct dwarf2_per_cu_data *the_cu;
2762 ULONGEST offset, length;
2763
2764 gdb_static_assert (sizeof (ULONGEST) >= 8);
2765 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2766 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2767 cu_list += 2 * 8;
2768
2769 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2770 struct dwarf2_per_cu_data);
2771 the_cu->offset.sect_off = offset;
2772 the_cu->length = length;
2773 the_cu->objfile = objfile;
2774 the_cu->section = section;
2775 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2776 struct dwarf2_per_cu_quick_data);
2777 the_cu->is_dwz = is_dwz;
2778 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2779 }
2780 }
2781
2782 /* Read the CU list from the mapped index, and use it to create all
2783 the CU objects for this objfile. */
2784
2785 static void
2786 create_cus_from_index (struct objfile *objfile,
2787 const gdb_byte *cu_list, offset_type cu_list_elements,
2788 const gdb_byte *dwz_list, offset_type dwz_elements)
2789 {
2790 struct dwz_file *dwz;
2791
2792 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2793 dwarf2_per_objfile->all_comp_units
2794 = obstack_alloc (&objfile->objfile_obstack,
2795 dwarf2_per_objfile->n_comp_units
2796 * sizeof (struct dwarf2_per_cu_data *));
2797
2798 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2799 &dwarf2_per_objfile->info, 0, 0);
2800
2801 if (dwz_elements == 0)
2802 return;
2803
2804 dwz = dwarf2_get_dwz_file ();
2805 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2806 cu_list_elements / 2);
2807 }
2808
2809 /* Create the signatured type hash table from the index. */
2810
2811 static void
2812 create_signatured_type_table_from_index (struct objfile *objfile,
2813 struct dwarf2_section_info *section,
2814 const gdb_byte *bytes,
2815 offset_type elements)
2816 {
2817 offset_type i;
2818 htab_t sig_types_hash;
2819
2820 dwarf2_per_objfile->n_type_units
2821 = dwarf2_per_objfile->n_allocated_type_units
2822 = elements / 3;
2823 dwarf2_per_objfile->all_type_units
2824 = xmalloc (dwarf2_per_objfile->n_type_units
2825 * sizeof (struct signatured_type *));
2826
2827 sig_types_hash = allocate_signatured_type_table (objfile);
2828
2829 for (i = 0; i < elements; i += 3)
2830 {
2831 struct signatured_type *sig_type;
2832 ULONGEST offset, type_offset_in_tu, signature;
2833 void **slot;
2834
2835 gdb_static_assert (sizeof (ULONGEST) >= 8);
2836 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2837 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2838 BFD_ENDIAN_LITTLE);
2839 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2840 bytes += 3 * 8;
2841
2842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2843 struct signatured_type);
2844 sig_type->signature = signature;
2845 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2846 sig_type->per_cu.is_debug_types = 1;
2847 sig_type->per_cu.section = section;
2848 sig_type->per_cu.offset.sect_off = offset;
2849 sig_type->per_cu.objfile = objfile;
2850 sig_type->per_cu.v.quick
2851 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2852 struct dwarf2_per_cu_quick_data);
2853
2854 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2855 *slot = sig_type;
2856
2857 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2858 }
2859
2860 dwarf2_per_objfile->signatured_types = sig_types_hash;
2861 }
2862
2863 /* Read the address map data from the mapped index, and use it to
2864 populate the objfile's psymtabs_addrmap. */
2865
2866 static void
2867 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2868 {
2869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2870 const gdb_byte *iter, *end;
2871 struct obstack temp_obstack;
2872 struct addrmap *mutable_map;
2873 struct cleanup *cleanup;
2874 CORE_ADDR baseaddr;
2875
2876 obstack_init (&temp_obstack);
2877 cleanup = make_cleanup_obstack_free (&temp_obstack);
2878 mutable_map = addrmap_create_mutable (&temp_obstack);
2879
2880 iter = index->address_table;
2881 end = iter + index->address_table_size;
2882
2883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2884
2885 while (iter < end)
2886 {
2887 ULONGEST hi, lo, cu_index;
2888 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2889 iter += 8;
2890 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2891 iter += 8;
2892 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2893 iter += 4;
2894
2895 if (lo > hi)
2896 {
2897 complaint (&symfile_complaints,
2898 _(".gdb_index address table has invalid range (%s - %s)"),
2899 hex_string (lo), hex_string (hi));
2900 continue;
2901 }
2902
2903 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid CU number %u"),
2907 (unsigned) cu_index);
2908 continue;
2909 }
2910
2911 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2912 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2913 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2914 }
2915
2916 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2917 &objfile->objfile_obstack);
2918 do_cleanups (cleanup);
2919 }
2920
2921 /* The hash function for strings in the mapped index. This is the same as
2922 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2923 implementation. This is necessary because the hash function is tied to the
2924 format of the mapped index file. The hash values do not have to match with
2925 SYMBOL_HASH_NEXT.
2926
2927 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2928
2929 static hashval_t
2930 mapped_index_string_hash (int index_version, const void *p)
2931 {
2932 const unsigned char *str = (const unsigned char *) p;
2933 hashval_t r = 0;
2934 unsigned char c;
2935
2936 while ((c = *str++) != 0)
2937 {
2938 if (index_version >= 5)
2939 c = tolower (c);
2940 r = r * 67 + c - 113;
2941 }
2942
2943 return r;
2944 }
2945
2946 /* Find a slot in the mapped index INDEX for the object named NAME.
2947 If NAME is found, set *VEC_OUT to point to the CU vector in the
2948 constant pool and return 1. If NAME cannot be found, return 0. */
2949
2950 static int
2951 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2952 offset_type **vec_out)
2953 {
2954 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2955 offset_type hash;
2956 offset_type slot, step;
2957 int (*cmp) (const char *, const char *);
2958
2959 if (current_language->la_language == language_cplus
2960 || current_language->la_language == language_java
2961 || current_language->la_language == language_fortran)
2962 {
2963 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2964 not contain any. */
2965
2966 if (strchr (name, '(') != NULL)
2967 {
2968 char *without_params = cp_remove_params (name);
2969
2970 if (without_params != NULL)
2971 {
2972 make_cleanup (xfree, without_params);
2973 name = without_params;
2974 }
2975 }
2976 }
2977
2978 /* Index version 4 did not support case insensitive searches. But the
2979 indices for case insensitive languages are built in lowercase, therefore
2980 simulate our NAME being searched is also lowercased. */
2981 hash = mapped_index_string_hash ((index->version == 4
2982 && case_sensitivity == case_sensitive_off
2983 ? 5 : index->version),
2984 name);
2985
2986 slot = hash & (index->symbol_table_slots - 1);
2987 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2988 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2989
2990 for (;;)
2991 {
2992 /* Convert a slot number to an offset into the table. */
2993 offset_type i = 2 * slot;
2994 const char *str;
2995 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2996 {
2997 do_cleanups (back_to);
2998 return 0;
2999 }
3000
3001 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3002 if (!cmp (name, str))
3003 {
3004 *vec_out = (offset_type *) (index->constant_pool
3005 + MAYBE_SWAP (index->symbol_table[i + 1]));
3006 do_cleanups (back_to);
3007 return 1;
3008 }
3009
3010 slot = (slot + step) & (index->symbol_table_slots - 1);
3011 }
3012 }
3013
3014 /* A helper function that reads the .gdb_index from SECTION and fills
3015 in MAP. FILENAME is the name of the file containing the section;
3016 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3017 ok to use deprecated sections.
3018
3019 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3020 out parameters that are filled in with information about the CU and
3021 TU lists in the section.
3022
3023 Returns 1 if all went well, 0 otherwise. */
3024
3025 static int
3026 read_index_from_section (struct objfile *objfile,
3027 const char *filename,
3028 int deprecated_ok,
3029 struct dwarf2_section_info *section,
3030 struct mapped_index *map,
3031 const gdb_byte **cu_list,
3032 offset_type *cu_list_elements,
3033 const gdb_byte **types_list,
3034 offset_type *types_list_elements)
3035 {
3036 const gdb_byte *addr;
3037 offset_type version;
3038 offset_type *metadata;
3039 int i;
3040
3041 if (dwarf2_section_empty_p (section))
3042 return 0;
3043
3044 /* Older elfutils strip versions could keep the section in the main
3045 executable while splitting it for the separate debug info file. */
3046 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3047 return 0;
3048
3049 dwarf2_read_section (objfile, section);
3050
3051 addr = section->buffer;
3052 /* Version check. */
3053 version = MAYBE_SWAP (*(offset_type *) addr);
3054 /* Versions earlier than 3 emitted every copy of a psymbol. This
3055 causes the index to behave very poorly for certain requests. Version 3
3056 contained incomplete addrmap. So, it seems better to just ignore such
3057 indices. */
3058 if (version < 4)
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("Skipping obsolete .gdb_index section in %s."),
3064 filename);
3065 warning_printed = 1;
3066 }
3067 return 0;
3068 }
3069 /* Index version 4 uses a different hash function than index version
3070 5 and later.
3071
3072 Versions earlier than 6 did not emit psymbols for inlined
3073 functions. Using these files will cause GDB not to be able to
3074 set breakpoints on inlined functions by name, so we ignore these
3075 indices unless the user has done
3076 "set use-deprecated-index-sections on". */
3077 if (version < 6 && !deprecated_ok)
3078 {
3079 static int warning_printed = 0;
3080 if (!warning_printed)
3081 {
3082 warning (_("\
3083 Skipping deprecated .gdb_index section in %s.\n\
3084 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3085 to use the section anyway."),
3086 filename);
3087 warning_printed = 1;
3088 }
3089 return 0;
3090 }
3091 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3092 of the TU (for symbols coming from TUs),
3093 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3094 Plus gold-generated indices can have duplicate entries for global symbols,
3095 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3096 These are just performance bugs, and we can't distinguish gdb-generated
3097 indices from gold-generated ones, so issue no warning here. */
3098
3099 /* Indexes with higher version than the one supported by GDB may be no
3100 longer backward compatible. */
3101 if (version > 8)
3102 return 0;
3103
3104 map->version = version;
3105 map->total_size = section->size;
3106
3107 metadata = (offset_type *) (addr + sizeof (offset_type));
3108
3109 i = 0;
3110 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3111 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3112 / 8);
3113 ++i;
3114
3115 *types_list = addr + MAYBE_SWAP (metadata[i]);
3116 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3117 - MAYBE_SWAP (metadata[i]))
3118 / 8);
3119 ++i;
3120
3121 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3122 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3123 - MAYBE_SWAP (metadata[i]));
3124 ++i;
3125
3126 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3127 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / (2 * sizeof (offset_type)));
3130 ++i;
3131
3132 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3133
3134 return 1;
3135 }
3136
3137
3138 /* Read the index file. If everything went ok, initialize the "quick"
3139 elements of all the CUs and return 1. Otherwise, return 0. */
3140
3141 static int
3142 dwarf2_read_index (struct objfile *objfile)
3143 {
3144 struct mapped_index local_map, *map;
3145 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3146 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3147 struct dwz_file *dwz;
3148
3149 if (!read_index_from_section (objfile, objfile_name (objfile),
3150 use_deprecated_index_sections,
3151 &dwarf2_per_objfile->gdb_index, &local_map,
3152 &cu_list, &cu_list_elements,
3153 &types_list, &types_list_elements))
3154 return 0;
3155
3156 /* Don't use the index if it's empty. */
3157 if (local_map.symbol_table_slots == 0)
3158 return 0;
3159
3160 /* If there is a .dwz file, read it so we can get its CU list as
3161 well. */
3162 dwz = dwarf2_get_dwz_file ();
3163 if (dwz != NULL)
3164 {
3165 struct mapped_index dwz_map;
3166 const gdb_byte *dwz_types_ignore;
3167 offset_type dwz_types_elements_ignore;
3168
3169 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3170 1,
3171 &dwz->gdb_index, &dwz_map,
3172 &dwz_list, &dwz_list_elements,
3173 &dwz_types_ignore,
3174 &dwz_types_elements_ignore))
3175 {
3176 warning (_("could not read '.gdb_index' section from %s; skipping"),
3177 bfd_get_filename (dwz->dwz_bfd));
3178 return 0;
3179 }
3180 }
3181
3182 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3183 dwz_list_elements);
3184
3185 if (types_list_elements)
3186 {
3187 struct dwarf2_section_info *section;
3188
3189 /* We can only handle a single .debug_types when we have an
3190 index. */
3191 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3192 return 0;
3193
3194 section = VEC_index (dwarf2_section_info_def,
3195 dwarf2_per_objfile->types, 0);
3196
3197 create_signatured_type_table_from_index (objfile, section, types_list,
3198 types_list_elements);
3199 }
3200
3201 create_addrmap_from_index (objfile, &local_map);
3202
3203 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3204 *map = local_map;
3205
3206 dwarf2_per_objfile->index_table = map;
3207 dwarf2_per_objfile->using_index = 1;
3208 dwarf2_per_objfile->quick_file_names_table =
3209 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3210
3211 return 1;
3212 }
3213
3214 /* A helper for the "quick" functions which sets the global
3215 dwarf2_per_objfile according to OBJFILE. */
3216
3217 static void
3218 dw2_setup (struct objfile *objfile)
3219 {
3220 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3221 gdb_assert (dwarf2_per_objfile);
3222 }
3223
3224 /* die_reader_func for dw2_get_file_names. */
3225
3226 static void
3227 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3228 const gdb_byte *info_ptr,
3229 struct die_info *comp_unit_die,
3230 int has_children,
3231 void *data)
3232 {
3233 struct dwarf2_cu *cu = reader->cu;
3234 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3235 struct objfile *objfile = dwarf2_per_objfile->objfile;
3236 struct dwarf2_per_cu_data *lh_cu;
3237 struct line_header *lh;
3238 struct attribute *attr;
3239 int i;
3240 const char *name, *comp_dir;
3241 void **slot;
3242 struct quick_file_names *qfn;
3243 unsigned int line_offset;
3244
3245 gdb_assert (! this_cu->is_debug_types);
3246
3247 /* Our callers never want to match partial units -- instead they
3248 will match the enclosing full CU. */
3249 if (comp_unit_die->tag == DW_TAG_partial_unit)
3250 {
3251 this_cu->v.quick->no_file_data = 1;
3252 return;
3253 }
3254
3255 lh_cu = this_cu;
3256 lh = NULL;
3257 slot = NULL;
3258 line_offset = 0;
3259
3260 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3261 if (attr)
3262 {
3263 struct quick_file_names find_entry;
3264
3265 line_offset = DW_UNSND (attr);
3266
3267 /* We may have already read in this line header (TU line header sharing).
3268 If we have we're done. */
3269 find_entry.hash.dwo_unit = cu->dwo_unit;
3270 find_entry.hash.line_offset.sect_off = line_offset;
3271 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3272 &find_entry, INSERT);
3273 if (*slot != NULL)
3274 {
3275 lh_cu->v.quick->file_names = *slot;
3276 return;
3277 }
3278
3279 lh = dwarf_decode_line_header (line_offset, cu);
3280 }
3281 if (lh == NULL)
3282 {
3283 lh_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
3287 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3288 qfn->hash.dwo_unit = cu->dwo_unit;
3289 qfn->hash.line_offset.sect_off = line_offset;
3290 gdb_assert (slot != NULL);
3291 *slot = qfn;
3292
3293 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3294
3295 qfn->num_file_names = lh->num_file_names;
3296 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3297 lh->num_file_names * sizeof (char *));
3298 for (i = 0; i < lh->num_file_names; ++i)
3299 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3300 qfn->real_names = NULL;
3301
3302 free_line_header (lh);
3303
3304 lh_cu->v.quick->file_names = qfn;
3305 }
3306
3307 /* A helper for the "quick" functions which attempts to read the line
3308 table for THIS_CU. */
3309
3310 static struct quick_file_names *
3311 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3312 {
3313 /* This should never be called for TUs. */
3314 gdb_assert (! this_cu->is_debug_types);
3315 /* Nor type unit groups. */
3316 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3317
3318 if (this_cu->v.quick->file_names != NULL)
3319 return this_cu->v.quick->file_names;
3320 /* If we know there is no line data, no point in looking again. */
3321 if (this_cu->v.quick->no_file_data)
3322 return NULL;
3323
3324 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3325
3326 if (this_cu->v.quick->no_file_data)
3327 return NULL;
3328 return this_cu->v.quick->file_names;
3329 }
3330
3331 /* A helper for the "quick" functions which computes and caches the
3332 real path for a given file name from the line table. */
3333
3334 static const char *
3335 dw2_get_real_path (struct objfile *objfile,
3336 struct quick_file_names *qfn, int index)
3337 {
3338 if (qfn->real_names == NULL)
3339 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3340 qfn->num_file_names, const char *);
3341
3342 if (qfn->real_names[index] == NULL)
3343 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3344
3345 return qfn->real_names[index];
3346 }
3347
3348 static struct symtab *
3349 dw2_find_last_source_symtab (struct objfile *objfile)
3350 {
3351 struct compunit_symtab *cust;
3352 int index;
3353
3354 dw2_setup (objfile);
3355 index = dwarf2_per_objfile->n_comp_units - 1;
3356 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3357 if (cust == NULL)
3358 return NULL;
3359 return compunit_primary_filetab (cust);
3360 }
3361
3362 /* Traversal function for dw2_forget_cached_source_info. */
3363
3364 static int
3365 dw2_free_cached_file_names (void **slot, void *info)
3366 {
3367 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3368
3369 if (file_data->real_names)
3370 {
3371 int i;
3372
3373 for (i = 0; i < file_data->num_file_names; ++i)
3374 {
3375 xfree ((void*) file_data->real_names[i]);
3376 file_data->real_names[i] = NULL;
3377 }
3378 }
3379
3380 return 1;
3381 }
3382
3383 static void
3384 dw2_forget_cached_source_info (struct objfile *objfile)
3385 {
3386 dw2_setup (objfile);
3387
3388 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3389 dw2_free_cached_file_names, NULL);
3390 }
3391
3392 /* Helper function for dw2_map_symtabs_matching_filename that expands
3393 the symtabs and calls the iterator. */
3394
3395 static int
3396 dw2_map_expand_apply (struct objfile *objfile,
3397 struct dwarf2_per_cu_data *per_cu,
3398 const char *name, const char *real_path,
3399 int (*callback) (struct symtab *, void *),
3400 void *data)
3401 {
3402 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3403
3404 /* Don't visit already-expanded CUs. */
3405 if (per_cu->v.quick->compunit_symtab)
3406 return 0;
3407
3408 /* This may expand more than one symtab, and we want to iterate over
3409 all of them. */
3410 dw2_instantiate_symtab (per_cu);
3411
3412 return iterate_over_some_symtabs (name, real_path, callback, data,
3413 objfile->compunit_symtabs, last_made);
3414 }
3415
3416 /* Implementation of the map_symtabs_matching_filename method. */
3417
3418 static int
3419 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3420 const char *real_path,
3421 int (*callback) (struct symtab *, void *),
3422 void *data)
3423 {
3424 int i;
3425 const char *name_basename = lbasename (name);
3426
3427 dw2_setup (objfile);
3428
3429 /* The rule is CUs specify all the files, including those used by
3430 any TU, so there's no need to scan TUs here. */
3431
3432 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3433 {
3434 int j;
3435 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3436 struct quick_file_names *file_data;
3437
3438 /* We only need to look at symtabs not already expanded. */
3439 if (per_cu->v.quick->compunit_symtab)
3440 continue;
3441
3442 file_data = dw2_get_file_names (per_cu);
3443 if (file_data == NULL)
3444 continue;
3445
3446 for (j = 0; j < file_data->num_file_names; ++j)
3447 {
3448 const char *this_name = file_data->file_names[j];
3449 const char *this_real_name;
3450
3451 if (compare_filenames_for_search (this_name, name))
3452 {
3453 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3454 callback, data))
3455 return 1;
3456 continue;
3457 }
3458
3459 /* Before we invoke realpath, which can get expensive when many
3460 files are involved, do a quick comparison of the basenames. */
3461 if (! basenames_may_differ
3462 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3463 continue;
3464
3465 this_real_name = dw2_get_real_path (objfile, file_data, j);
3466 if (compare_filenames_for_search (this_real_name, name))
3467 {
3468 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3469 callback, data))
3470 return 1;
3471 continue;
3472 }
3473
3474 if (real_path != NULL)
3475 {
3476 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3477 gdb_assert (IS_ABSOLUTE_PATH (name));
3478 if (this_real_name != NULL
3479 && FILENAME_CMP (real_path, this_real_name) == 0)
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486 }
3487 }
3488 }
3489
3490 return 0;
3491 }
3492
3493 /* Struct used to manage iterating over all CUs looking for a symbol. */
3494
3495 struct dw2_symtab_iterator
3496 {
3497 /* The internalized form of .gdb_index. */
3498 struct mapped_index *index;
3499 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3500 int want_specific_block;
3501 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3502 Unused if !WANT_SPECIFIC_BLOCK. */
3503 int block_index;
3504 /* The kind of symbol we're looking for. */
3505 domain_enum domain;
3506 /* The list of CUs from the index entry of the symbol,
3507 or NULL if not found. */
3508 offset_type *vec;
3509 /* The next element in VEC to look at. */
3510 int next;
3511 /* The number of elements in VEC, or zero if there is no match. */
3512 int length;
3513 /* Have we seen a global version of the symbol?
3514 If so we can ignore all further global instances.
3515 This is to work around gold/15646, inefficient gold-generated
3516 indices. */
3517 int global_seen;
3518 };
3519
3520 /* Initialize the index symtab iterator ITER.
3521 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3522 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3523
3524 static void
3525 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3526 struct mapped_index *index,
3527 int want_specific_block,
3528 int block_index,
3529 domain_enum domain,
3530 const char *name)
3531 {
3532 iter->index = index;
3533 iter->want_specific_block = want_specific_block;
3534 iter->block_index = block_index;
3535 iter->domain = domain;
3536 iter->next = 0;
3537 iter->global_seen = 0;
3538
3539 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3540 iter->length = MAYBE_SWAP (*iter->vec);
3541 else
3542 {
3543 iter->vec = NULL;
3544 iter->length = 0;
3545 }
3546 }
3547
3548 /* Return the next matching CU or NULL if there are no more. */
3549
3550 static struct dwarf2_per_cu_data *
3551 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3552 {
3553 for ( ; iter->next < iter->length; ++iter->next)
3554 {
3555 offset_type cu_index_and_attrs =
3556 MAYBE_SWAP (iter->vec[iter->next + 1]);
3557 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3558 struct dwarf2_per_cu_data *per_cu;
3559 int want_static = iter->block_index != GLOBAL_BLOCK;
3560 /* This value is only valid for index versions >= 7. */
3561 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3562 gdb_index_symbol_kind symbol_kind =
3563 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3564 /* Only check the symbol attributes if they're present.
3565 Indices prior to version 7 don't record them,
3566 and indices >= 7 may elide them for certain symbols
3567 (gold does this). */
3568 int attrs_valid =
3569 (iter->index->version >= 7
3570 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3571
3572 /* Don't crash on bad data. */
3573 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3574 + dwarf2_per_objfile->n_type_units))
3575 {
3576 complaint (&symfile_complaints,
3577 _(".gdb_index entry has bad CU index"
3578 " [in module %s]"),
3579 objfile_name (dwarf2_per_objfile->objfile));
3580 continue;
3581 }
3582
3583 per_cu = dw2_get_cutu (cu_index);
3584
3585 /* Skip if already read in. */
3586 if (per_cu->v.quick->compunit_symtab)
3587 continue;
3588
3589 /* Check static vs global. */
3590 if (attrs_valid)
3591 {
3592 if (iter->want_specific_block
3593 && want_static != is_static)
3594 continue;
3595 /* Work around gold/15646. */
3596 if (!is_static && iter->global_seen)
3597 continue;
3598 if (!is_static)
3599 iter->global_seen = 1;
3600 }
3601
3602 /* Only check the symbol's kind if it has one. */
3603 if (attrs_valid)
3604 {
3605 switch (iter->domain)
3606 {
3607 case VAR_DOMAIN:
3608 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3609 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3610 /* Some types are also in VAR_DOMAIN. */
3611 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3612 continue;
3613 break;
3614 case STRUCT_DOMAIN:
3615 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3616 continue;
3617 break;
3618 case LABEL_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3620 continue;
3621 break;
3622 default:
3623 break;
3624 }
3625 }
3626
3627 ++iter->next;
3628 return per_cu;
3629 }
3630
3631 return NULL;
3632 }
3633
3634 static struct compunit_symtab *
3635 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3636 const char *name, domain_enum domain)
3637 {
3638 struct compunit_symtab *stab_best = NULL;
3639 struct mapped_index *index;
3640
3641 dw2_setup (objfile);
3642
3643 index = dwarf2_per_objfile->index_table;
3644
3645 /* index is NULL if OBJF_READNOW. */
3646 if (index)
3647 {
3648 struct dw2_symtab_iterator iter;
3649 struct dwarf2_per_cu_data *per_cu;
3650
3651 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3652
3653 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3654 {
3655 struct symbol *sym = NULL;
3656 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3657 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3658 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3659
3660 /* Some caution must be observed with overloaded functions
3661 and methods, since the index will not contain any overload
3662 information (but NAME might contain it). */
3663 sym = block_lookup_symbol (block, name, domain);
3664
3665 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3666 {
3667 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3668 return stab;
3669
3670 stab_best = stab;
3671 }
3672
3673 /* Keep looking through other CUs. */
3674 }
3675 }
3676
3677 return stab_best;
3678 }
3679
3680 static void
3681 dw2_print_stats (struct objfile *objfile)
3682 {
3683 int i, total, count;
3684
3685 dw2_setup (objfile);
3686 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3687 count = 0;
3688 for (i = 0; i < total; ++i)
3689 {
3690 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3691
3692 if (!per_cu->v.quick->compunit_symtab)
3693 ++count;
3694 }
3695 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3696 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3697 }
3698
3699 /* This dumps minimal information about the index.
3700 It is called via "mt print objfiles".
3701 One use is to verify .gdb_index has been loaded by the
3702 gdb.dwarf2/gdb-index.exp testcase. */
3703
3704 static void
3705 dw2_dump (struct objfile *objfile)
3706 {
3707 dw2_setup (objfile);
3708 gdb_assert (dwarf2_per_objfile->using_index);
3709 printf_filtered (".gdb_index:");
3710 if (dwarf2_per_objfile->index_table != NULL)
3711 {
3712 printf_filtered (" version %d\n",
3713 dwarf2_per_objfile->index_table->version);
3714 }
3715 else
3716 printf_filtered (" faked for \"readnow\"\n");
3717 printf_filtered ("\n");
3718 }
3719
3720 static void
3721 dw2_relocate (struct objfile *objfile,
3722 const struct section_offsets *new_offsets,
3723 const struct section_offsets *delta)
3724 {
3725 /* There's nothing to relocate here. */
3726 }
3727
3728 static void
3729 dw2_expand_symtabs_for_function (struct objfile *objfile,
3730 const char *func_name)
3731 {
3732 struct mapped_index *index;
3733
3734 dw2_setup (objfile);
3735
3736 index = dwarf2_per_objfile->index_table;
3737
3738 /* index is NULL if OBJF_READNOW. */
3739 if (index)
3740 {
3741 struct dw2_symtab_iterator iter;
3742 struct dwarf2_per_cu_data *per_cu;
3743
3744 /* Note: It doesn't matter what we pass for block_index here. */
3745 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3746 func_name);
3747
3748 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3749 dw2_instantiate_symtab (per_cu);
3750 }
3751 }
3752
3753 static void
3754 dw2_expand_all_symtabs (struct objfile *objfile)
3755 {
3756 int i;
3757
3758 dw2_setup (objfile);
3759
3760 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3761 + dwarf2_per_objfile->n_type_units); ++i)
3762 {
3763 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3764
3765 dw2_instantiate_symtab (per_cu);
3766 }
3767 }
3768
3769 static void
3770 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3771 const char *fullname)
3772 {
3773 int i;
3774
3775 dw2_setup (objfile);
3776
3777 /* We don't need to consider type units here.
3778 This is only called for examining code, e.g. expand_line_sal.
3779 There can be an order of magnitude (or more) more type units
3780 than comp units, and we avoid them if we can. */
3781
3782 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3783 {
3784 int j;
3785 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3786 struct quick_file_names *file_data;
3787
3788 /* We only need to look at symtabs not already expanded. */
3789 if (per_cu->v.quick->compunit_symtab)
3790 continue;
3791
3792 file_data = dw2_get_file_names (per_cu);
3793 if (file_data == NULL)
3794 continue;
3795
3796 for (j = 0; j < file_data->num_file_names; ++j)
3797 {
3798 const char *this_fullname = file_data->file_names[j];
3799
3800 if (filename_cmp (this_fullname, fullname) == 0)
3801 {
3802 dw2_instantiate_symtab (per_cu);
3803 break;
3804 }
3805 }
3806 }
3807 }
3808
3809 static void
3810 dw2_map_matching_symbols (struct objfile *objfile,
3811 const char * name, domain_enum namespace,
3812 int global,
3813 int (*callback) (struct block *,
3814 struct symbol *, void *),
3815 void *data, symbol_compare_ftype *match,
3816 symbol_compare_ftype *ordered_compare)
3817 {
3818 /* Currently unimplemented; used for Ada. The function can be called if the
3819 current language is Ada for a non-Ada objfile using GNU index. As Ada
3820 does not look for non-Ada symbols this function should just return. */
3821 }
3822
3823 static void
3824 dw2_expand_symtabs_matching
3825 (struct objfile *objfile,
3826 expand_symtabs_file_matcher_ftype *file_matcher,
3827 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3828 expand_symtabs_exp_notify_ftype *expansion_notify,
3829 enum search_domain kind,
3830 void *data)
3831 {
3832 int i;
3833 offset_type iter;
3834 struct mapped_index *index;
3835
3836 dw2_setup (objfile);
3837
3838 /* index_table is NULL if OBJF_READNOW. */
3839 if (!dwarf2_per_objfile->index_table)
3840 return;
3841 index = dwarf2_per_objfile->index_table;
3842
3843 if (file_matcher != NULL)
3844 {
3845 struct cleanup *cleanup;
3846 htab_t visited_found, visited_not_found;
3847
3848 visited_found = htab_create_alloc (10,
3849 htab_hash_pointer, htab_eq_pointer,
3850 NULL, xcalloc, xfree);
3851 cleanup = make_cleanup_htab_delete (visited_found);
3852 visited_not_found = htab_create_alloc (10,
3853 htab_hash_pointer, htab_eq_pointer,
3854 NULL, xcalloc, xfree);
3855 make_cleanup_htab_delete (visited_not_found);
3856
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3861 {
3862 int j;
3863 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3864 struct quick_file_names *file_data;
3865 void **slot;
3866
3867 per_cu->v.quick->mark = 0;
3868
3869 /* We only need to look at symtabs not already expanded. */
3870 if (per_cu->v.quick->compunit_symtab)
3871 continue;
3872
3873 file_data = dw2_get_file_names (per_cu);
3874 if (file_data == NULL)
3875 continue;
3876
3877 if (htab_find (visited_not_found, file_data) != NULL)
3878 continue;
3879 else if (htab_find (visited_found, file_data) != NULL)
3880 {
3881 per_cu->v.quick->mark = 1;
3882 continue;
3883 }
3884
3885 for (j = 0; j < file_data->num_file_names; ++j)
3886 {
3887 const char *this_real_name;
3888
3889 if (file_matcher (file_data->file_names[j], data, 0))
3890 {
3891 per_cu->v.quick->mark = 1;
3892 break;
3893 }
3894
3895 /* Before we invoke realpath, which can get expensive when many
3896 files are involved, do a quick comparison of the basenames. */
3897 if (!basenames_may_differ
3898 && !file_matcher (lbasename (file_data->file_names[j]),
3899 data, 1))
3900 continue;
3901
3902 this_real_name = dw2_get_real_path (objfile, file_data, j);
3903 if (file_matcher (this_real_name, data, 0))
3904 {
3905 per_cu->v.quick->mark = 1;
3906 break;
3907 }
3908 }
3909
3910 slot = htab_find_slot (per_cu->v.quick->mark
3911 ? visited_found
3912 : visited_not_found,
3913 file_data, INSERT);
3914 *slot = file_data;
3915 }
3916
3917 do_cleanups (cleanup);
3918 }
3919
3920 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3921 {
3922 offset_type idx = 2 * iter;
3923 const char *name;
3924 offset_type *vec, vec_len, vec_idx;
3925 int global_seen = 0;
3926
3927 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3928 continue;
3929
3930 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3931
3932 if (! (*symbol_matcher) (name, data))
3933 continue;
3934
3935 /* The name was matched, now expand corresponding CUs that were
3936 marked. */
3937 vec = (offset_type *) (index->constant_pool
3938 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3939 vec_len = MAYBE_SWAP (vec[0]);
3940 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3941 {
3942 struct dwarf2_per_cu_data *per_cu;
3943 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3944 /* This value is only valid for index versions >= 7. */
3945 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3946 gdb_index_symbol_kind symbol_kind =
3947 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3948 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3949 /* Only check the symbol attributes if they're present.
3950 Indices prior to version 7 don't record them,
3951 and indices >= 7 may elide them for certain symbols
3952 (gold does this). */
3953 int attrs_valid =
3954 (index->version >= 7
3955 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3956
3957 /* Work around gold/15646. */
3958 if (attrs_valid)
3959 {
3960 if (!is_static && global_seen)
3961 continue;
3962 if (!is_static)
3963 global_seen = 1;
3964 }
3965
3966 /* Only check the symbol's kind if it has one. */
3967 if (attrs_valid)
3968 {
3969 switch (kind)
3970 {
3971 case VARIABLES_DOMAIN:
3972 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3973 continue;
3974 break;
3975 case FUNCTIONS_DOMAIN:
3976 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3977 continue;
3978 break;
3979 case TYPES_DOMAIN:
3980 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3981 continue;
3982 break;
3983 default:
3984 break;
3985 }
3986 }
3987
3988 /* Don't crash on bad data. */
3989 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3990 + dwarf2_per_objfile->n_type_units))
3991 {
3992 complaint (&symfile_complaints,
3993 _(".gdb_index entry has bad CU index"
3994 " [in module %s]"), objfile_name (objfile));
3995 continue;
3996 }
3997
3998 per_cu = dw2_get_cutu (cu_index);
3999 if (file_matcher == NULL || per_cu->v.quick->mark)
4000 {
4001 int symtab_was_null =
4002 (per_cu->v.quick->compunit_symtab == NULL);
4003
4004 dw2_instantiate_symtab (per_cu);
4005
4006 if (expansion_notify != NULL
4007 && symtab_was_null
4008 && per_cu->v.quick->compunit_symtab != NULL)
4009 {
4010 expansion_notify (per_cu->v.quick->compunit_symtab,
4011 data);
4012 }
4013 }
4014 }
4015 }
4016 }
4017
4018 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4019 symtab. */
4020
4021 static struct compunit_symtab *
4022 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4023 CORE_ADDR pc)
4024 {
4025 int i;
4026
4027 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4028 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4029 return cust;
4030
4031 if (cust->includes == NULL)
4032 return NULL;
4033
4034 for (i = 0; cust->includes[i]; ++i)
4035 {
4036 struct compunit_symtab *s = cust->includes[i];
4037
4038 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4039 if (s != NULL)
4040 return s;
4041 }
4042
4043 return NULL;
4044 }
4045
4046 static struct compunit_symtab *
4047 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4048 struct bound_minimal_symbol msymbol,
4049 CORE_ADDR pc,
4050 struct obj_section *section,
4051 int warn_if_readin)
4052 {
4053 struct dwarf2_per_cu_data *data;
4054 struct compunit_symtab *result;
4055
4056 dw2_setup (objfile);
4057
4058 if (!objfile->psymtabs_addrmap)
4059 return NULL;
4060
4061 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4062 if (!data)
4063 return NULL;
4064
4065 if (warn_if_readin && data->v.quick->compunit_symtab)
4066 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4067 paddress (get_objfile_arch (objfile), pc));
4068
4069 result
4070 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4071 pc);
4072 gdb_assert (result != NULL);
4073 return result;
4074 }
4075
4076 static void
4077 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4078 void *data, int need_fullname)
4079 {
4080 int i;
4081 struct cleanup *cleanup;
4082 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4083 NULL, xcalloc, xfree);
4084
4085 cleanup = make_cleanup_htab_delete (visited);
4086 dw2_setup (objfile);
4087
4088 /* The rule is CUs specify all the files, including those used by
4089 any TU, so there's no need to scan TUs here.
4090 We can ignore file names coming from already-expanded CUs. */
4091
4092 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4093 {
4094 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4095
4096 if (per_cu->v.quick->compunit_symtab)
4097 {
4098 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4099 INSERT);
4100
4101 *slot = per_cu->v.quick->file_names;
4102 }
4103 }
4104
4105 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4106 {
4107 int j;
4108 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4109 struct quick_file_names *file_data;
4110 void **slot;
4111
4112 /* We only need to look at symtabs not already expanded. */
4113 if (per_cu->v.quick->compunit_symtab)
4114 continue;
4115
4116 file_data = dw2_get_file_names (per_cu);
4117 if (file_data == NULL)
4118 continue;
4119
4120 slot = htab_find_slot (visited, file_data, INSERT);
4121 if (*slot)
4122 {
4123 /* Already visited. */
4124 continue;
4125 }
4126 *slot = file_data;
4127
4128 for (j = 0; j < file_data->num_file_names; ++j)
4129 {
4130 const char *this_real_name;
4131
4132 if (need_fullname)
4133 this_real_name = dw2_get_real_path (objfile, file_data, j);
4134 else
4135 this_real_name = NULL;
4136 (*fun) (file_data->file_names[j], this_real_name, data);
4137 }
4138 }
4139
4140 do_cleanups (cleanup);
4141 }
4142
4143 static int
4144 dw2_has_symbols (struct objfile *objfile)
4145 {
4146 return 1;
4147 }
4148
4149 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4150 {
4151 dw2_has_symbols,
4152 dw2_find_last_source_symtab,
4153 dw2_forget_cached_source_info,
4154 dw2_map_symtabs_matching_filename,
4155 dw2_lookup_symbol,
4156 dw2_print_stats,
4157 dw2_dump,
4158 dw2_relocate,
4159 dw2_expand_symtabs_for_function,
4160 dw2_expand_all_symtabs,
4161 dw2_expand_symtabs_with_fullname,
4162 dw2_map_matching_symbols,
4163 dw2_expand_symtabs_matching,
4164 dw2_find_pc_sect_compunit_symtab,
4165 dw2_map_symbol_filenames
4166 };
4167
4168 /* Initialize for reading DWARF for this objfile. Return 0 if this
4169 file will use psymtabs, or 1 if using the GNU index. */
4170
4171 int
4172 dwarf2_initialize_objfile (struct objfile *objfile)
4173 {
4174 /* If we're about to read full symbols, don't bother with the
4175 indices. In this case we also don't care if some other debug
4176 format is making psymtabs, because they are all about to be
4177 expanded anyway. */
4178 if ((objfile->flags & OBJF_READNOW))
4179 {
4180 int i;
4181
4182 dwarf2_per_objfile->using_index = 1;
4183 create_all_comp_units (objfile);
4184 create_all_type_units (objfile);
4185 dwarf2_per_objfile->quick_file_names_table =
4186 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4187
4188 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4189 + dwarf2_per_objfile->n_type_units); ++i)
4190 {
4191 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4192
4193 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4194 struct dwarf2_per_cu_quick_data);
4195 }
4196
4197 /* Return 1 so that gdb sees the "quick" functions. However,
4198 these functions will be no-ops because we will have expanded
4199 all symtabs. */
4200 return 1;
4201 }
4202
4203 if (dwarf2_read_index (objfile))
4204 return 1;
4205
4206 return 0;
4207 }
4208
4209 \f
4210
4211 /* Build a partial symbol table. */
4212
4213 void
4214 dwarf2_build_psymtabs (struct objfile *objfile)
4215 {
4216 volatile struct gdb_exception except;
4217
4218 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4219 {
4220 init_psymbol_list (objfile, 1024);
4221 }
4222
4223 TRY_CATCH (except, RETURN_MASK_ERROR)
4224 {
4225 /* This isn't really ideal: all the data we allocate on the
4226 objfile's obstack is still uselessly kept around. However,
4227 freeing it seems unsafe. */
4228 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4229
4230 dwarf2_build_psymtabs_hard (objfile);
4231 discard_cleanups (cleanups);
4232 }
4233 if (except.reason < 0)
4234 exception_print (gdb_stderr, except);
4235 }
4236
4237 /* Return the total length of the CU described by HEADER. */
4238
4239 static unsigned int
4240 get_cu_length (const struct comp_unit_head *header)
4241 {
4242 return header->initial_length_size + header->length;
4243 }
4244
4245 /* Return TRUE if OFFSET is within CU_HEADER. */
4246
4247 static inline int
4248 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4249 {
4250 sect_offset bottom = { cu_header->offset.sect_off };
4251 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4252
4253 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4254 }
4255
4256 /* Find the base address of the compilation unit for range lists and
4257 location lists. It will normally be specified by DW_AT_low_pc.
4258 In DWARF-3 draft 4, the base address could be overridden by
4259 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4260 compilation units with discontinuous ranges. */
4261
4262 static void
4263 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4264 {
4265 struct attribute *attr;
4266
4267 cu->base_known = 0;
4268 cu->base_address = 0;
4269
4270 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4271 if (attr)
4272 {
4273 cu->base_address = attr_value_as_address (attr);
4274 cu->base_known = 1;
4275 }
4276 else
4277 {
4278 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4279 if (attr)
4280 {
4281 cu->base_address = attr_value_as_address (attr);
4282 cu->base_known = 1;
4283 }
4284 }
4285 }
4286
4287 /* Read in the comp unit header information from the debug_info at info_ptr.
4288 NOTE: This leaves members offset, first_die_offset to be filled in
4289 by the caller. */
4290
4291 static const gdb_byte *
4292 read_comp_unit_head (struct comp_unit_head *cu_header,
4293 const gdb_byte *info_ptr, bfd *abfd)
4294 {
4295 int signed_addr;
4296 unsigned int bytes_read;
4297
4298 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4299 cu_header->initial_length_size = bytes_read;
4300 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4301 info_ptr += bytes_read;
4302 cu_header->version = read_2_bytes (abfd, info_ptr);
4303 info_ptr += 2;
4304 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4305 &bytes_read);
4306 info_ptr += bytes_read;
4307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4308 info_ptr += 1;
4309 signed_addr = bfd_get_sign_extend_vma (abfd);
4310 if (signed_addr < 0)
4311 internal_error (__FILE__, __LINE__,
4312 _("read_comp_unit_head: dwarf from non elf file"));
4313 cu_header->signed_addr_p = signed_addr;
4314
4315 return info_ptr;
4316 }
4317
4318 /* Helper function that returns the proper abbrev section for
4319 THIS_CU. */
4320
4321 static struct dwarf2_section_info *
4322 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4323 {
4324 struct dwarf2_section_info *abbrev;
4325
4326 if (this_cu->is_dwz)
4327 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4328 else
4329 abbrev = &dwarf2_per_objfile->abbrev;
4330
4331 return abbrev;
4332 }
4333
4334 /* Subroutine of read_and_check_comp_unit_head and
4335 read_and_check_type_unit_head to simplify them.
4336 Perform various error checking on the header. */
4337
4338 static void
4339 error_check_comp_unit_head (struct comp_unit_head *header,
4340 struct dwarf2_section_info *section,
4341 struct dwarf2_section_info *abbrev_section)
4342 {
4343 bfd *abfd = get_section_bfd_owner (section);
4344 const char *filename = get_section_file_name (section);
4345
4346 if (header->version != 2 && header->version != 3 && header->version != 4)
4347 error (_("Dwarf Error: wrong version in compilation unit header "
4348 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4349 filename);
4350
4351 if (header->abbrev_offset.sect_off
4352 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4353 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4354 "(offset 0x%lx + 6) [in module %s]"),
4355 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4356 filename);
4357
4358 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4359 avoid potential 32-bit overflow. */
4360 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4361 > section->size)
4362 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4363 "(offset 0x%lx + 0) [in module %s]"),
4364 (long) header->length, (long) header->offset.sect_off,
4365 filename);
4366 }
4367
4368 /* Read in a CU/TU header and perform some basic error checking.
4369 The contents of the header are stored in HEADER.
4370 The result is a pointer to the start of the first DIE. */
4371
4372 static const gdb_byte *
4373 read_and_check_comp_unit_head (struct comp_unit_head *header,
4374 struct dwarf2_section_info *section,
4375 struct dwarf2_section_info *abbrev_section,
4376 const gdb_byte *info_ptr,
4377 int is_debug_types_section)
4378 {
4379 const gdb_byte *beg_of_comp_unit = info_ptr;
4380 bfd *abfd = get_section_bfd_owner (section);
4381
4382 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4383
4384 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4385
4386 /* If we're reading a type unit, skip over the signature and
4387 type_offset fields. */
4388 if (is_debug_types_section)
4389 info_ptr += 8 /*signature*/ + header->offset_size;
4390
4391 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4392
4393 error_check_comp_unit_head (header, section, abbrev_section);
4394
4395 return info_ptr;
4396 }
4397
4398 /* Read in the types comp unit header information from .debug_types entry at
4399 types_ptr. The result is a pointer to one past the end of the header. */
4400
4401 static const gdb_byte *
4402 read_and_check_type_unit_head (struct comp_unit_head *header,
4403 struct dwarf2_section_info *section,
4404 struct dwarf2_section_info *abbrev_section,
4405 const gdb_byte *info_ptr,
4406 ULONGEST *signature,
4407 cu_offset *type_offset_in_tu)
4408 {
4409 const gdb_byte *beg_of_comp_unit = info_ptr;
4410 bfd *abfd = get_section_bfd_owner (section);
4411
4412 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4413
4414 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4415
4416 /* If we're reading a type unit, skip over the signature and
4417 type_offset fields. */
4418 if (signature != NULL)
4419 *signature = read_8_bytes (abfd, info_ptr);
4420 info_ptr += 8;
4421 if (type_offset_in_tu != NULL)
4422 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4423 header->offset_size);
4424 info_ptr += header->offset_size;
4425
4426 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4427
4428 error_check_comp_unit_head (header, section, abbrev_section);
4429
4430 return info_ptr;
4431 }
4432
4433 /* Fetch the abbreviation table offset from a comp or type unit header. */
4434
4435 static sect_offset
4436 read_abbrev_offset (struct dwarf2_section_info *section,
4437 sect_offset offset)
4438 {
4439 bfd *abfd = get_section_bfd_owner (section);
4440 const gdb_byte *info_ptr;
4441 unsigned int length, initial_length_size, offset_size;
4442 sect_offset abbrev_offset;
4443
4444 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4445 info_ptr = section->buffer + offset.sect_off;
4446 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4447 offset_size = initial_length_size == 4 ? 4 : 8;
4448 info_ptr += initial_length_size + 2 /*version*/;
4449 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4450 return abbrev_offset;
4451 }
4452
4453 /* Allocate a new partial symtab for file named NAME and mark this new
4454 partial symtab as being an include of PST. */
4455
4456 static void
4457 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4458 struct objfile *objfile)
4459 {
4460 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4461
4462 if (!IS_ABSOLUTE_PATH (subpst->filename))
4463 {
4464 /* It shares objfile->objfile_obstack. */
4465 subpst->dirname = pst->dirname;
4466 }
4467
4468 subpst->section_offsets = pst->section_offsets;
4469 subpst->textlow = 0;
4470 subpst->texthigh = 0;
4471
4472 subpst->dependencies = (struct partial_symtab **)
4473 obstack_alloc (&objfile->objfile_obstack,
4474 sizeof (struct partial_symtab *));
4475 subpst->dependencies[0] = pst;
4476 subpst->number_of_dependencies = 1;
4477
4478 subpst->globals_offset = 0;
4479 subpst->n_global_syms = 0;
4480 subpst->statics_offset = 0;
4481 subpst->n_static_syms = 0;
4482 subpst->compunit_symtab = NULL;
4483 subpst->read_symtab = pst->read_symtab;
4484 subpst->readin = 0;
4485
4486 /* No private part is necessary for include psymtabs. This property
4487 can be used to differentiate between such include psymtabs and
4488 the regular ones. */
4489 subpst->read_symtab_private = NULL;
4490 }
4491
4492 /* Read the Line Number Program data and extract the list of files
4493 included by the source file represented by PST. Build an include
4494 partial symtab for each of these included files. */
4495
4496 static void
4497 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4498 struct die_info *die,
4499 struct partial_symtab *pst)
4500 {
4501 struct line_header *lh = NULL;
4502 struct attribute *attr;
4503
4504 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4505 if (attr)
4506 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4507 if (lh == NULL)
4508 return; /* No linetable, so no includes. */
4509
4510 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4511 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4512
4513 free_line_header (lh);
4514 }
4515
4516 static hashval_t
4517 hash_signatured_type (const void *item)
4518 {
4519 const struct signatured_type *sig_type = item;
4520
4521 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4522 return sig_type->signature;
4523 }
4524
4525 static int
4526 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4527 {
4528 const struct signatured_type *lhs = item_lhs;
4529 const struct signatured_type *rhs = item_rhs;
4530
4531 return lhs->signature == rhs->signature;
4532 }
4533
4534 /* Allocate a hash table for signatured types. */
4535
4536 static htab_t
4537 allocate_signatured_type_table (struct objfile *objfile)
4538 {
4539 return htab_create_alloc_ex (41,
4540 hash_signatured_type,
4541 eq_signatured_type,
4542 NULL,
4543 &objfile->objfile_obstack,
4544 hashtab_obstack_allocate,
4545 dummy_obstack_deallocate);
4546 }
4547
4548 /* A helper function to add a signatured type CU to a table. */
4549
4550 static int
4551 add_signatured_type_cu_to_table (void **slot, void *datum)
4552 {
4553 struct signatured_type *sigt = *slot;
4554 struct signatured_type ***datap = datum;
4555
4556 **datap = sigt;
4557 ++*datap;
4558
4559 return 1;
4560 }
4561
4562 /* Create the hash table of all entries in the .debug_types
4563 (or .debug_types.dwo) section(s).
4564 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4565 otherwise it is NULL.
4566
4567 The result is a pointer to the hash table or NULL if there are no types.
4568
4569 Note: This function processes DWO files only, not DWP files. */
4570
4571 static htab_t
4572 create_debug_types_hash_table (struct dwo_file *dwo_file,
4573 VEC (dwarf2_section_info_def) *types)
4574 {
4575 struct objfile *objfile = dwarf2_per_objfile->objfile;
4576 htab_t types_htab = NULL;
4577 int ix;
4578 struct dwarf2_section_info *section;
4579 struct dwarf2_section_info *abbrev_section;
4580
4581 if (VEC_empty (dwarf2_section_info_def, types))
4582 return NULL;
4583
4584 abbrev_section = (dwo_file != NULL
4585 ? &dwo_file->sections.abbrev
4586 : &dwarf2_per_objfile->abbrev);
4587
4588 if (dwarf2_read_debug)
4589 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4590 dwo_file ? ".dwo" : "",
4591 get_section_file_name (abbrev_section));
4592
4593 for (ix = 0;
4594 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4595 ++ix)
4596 {
4597 bfd *abfd;
4598 const gdb_byte *info_ptr, *end_ptr;
4599
4600 dwarf2_read_section (objfile, section);
4601 info_ptr = section->buffer;
4602
4603 if (info_ptr == NULL)
4604 continue;
4605
4606 /* We can't set abfd until now because the section may be empty or
4607 not present, in which case the bfd is unknown. */
4608 abfd = get_section_bfd_owner (section);
4609
4610 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4611 because we don't need to read any dies: the signature is in the
4612 header. */
4613
4614 end_ptr = info_ptr + section->size;
4615 while (info_ptr < end_ptr)
4616 {
4617 sect_offset offset;
4618 cu_offset type_offset_in_tu;
4619 ULONGEST signature;
4620 struct signatured_type *sig_type;
4621 struct dwo_unit *dwo_tu;
4622 void **slot;
4623 const gdb_byte *ptr = info_ptr;
4624 struct comp_unit_head header;
4625 unsigned int length;
4626
4627 offset.sect_off = ptr - section->buffer;
4628
4629 /* We need to read the type's signature in order to build the hash
4630 table, but we don't need anything else just yet. */
4631
4632 ptr = read_and_check_type_unit_head (&header, section,
4633 abbrev_section, ptr,
4634 &signature, &type_offset_in_tu);
4635
4636 length = get_cu_length (&header);
4637
4638 /* Skip dummy type units. */
4639 if (ptr >= info_ptr + length
4640 || peek_abbrev_code (abfd, ptr) == 0)
4641 {
4642 info_ptr += length;
4643 continue;
4644 }
4645
4646 if (types_htab == NULL)
4647 {
4648 if (dwo_file)
4649 types_htab = allocate_dwo_unit_table (objfile);
4650 else
4651 types_htab = allocate_signatured_type_table (objfile);
4652 }
4653
4654 if (dwo_file)
4655 {
4656 sig_type = NULL;
4657 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4658 struct dwo_unit);
4659 dwo_tu->dwo_file = dwo_file;
4660 dwo_tu->signature = signature;
4661 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4662 dwo_tu->section = section;
4663 dwo_tu->offset = offset;
4664 dwo_tu->length = length;
4665 }
4666 else
4667 {
4668 /* N.B.: type_offset is not usable if this type uses a DWO file.
4669 The real type_offset is in the DWO file. */
4670 dwo_tu = NULL;
4671 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4672 struct signatured_type);
4673 sig_type->signature = signature;
4674 sig_type->type_offset_in_tu = type_offset_in_tu;
4675 sig_type->per_cu.objfile = objfile;
4676 sig_type->per_cu.is_debug_types = 1;
4677 sig_type->per_cu.section = section;
4678 sig_type->per_cu.offset = offset;
4679 sig_type->per_cu.length = length;
4680 }
4681
4682 slot = htab_find_slot (types_htab,
4683 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4684 INSERT);
4685 gdb_assert (slot != NULL);
4686 if (*slot != NULL)
4687 {
4688 sect_offset dup_offset;
4689
4690 if (dwo_file)
4691 {
4692 const struct dwo_unit *dup_tu = *slot;
4693
4694 dup_offset = dup_tu->offset;
4695 }
4696 else
4697 {
4698 const struct signatured_type *dup_tu = *slot;
4699
4700 dup_offset = dup_tu->per_cu.offset;
4701 }
4702
4703 complaint (&symfile_complaints,
4704 _("debug type entry at offset 0x%x is duplicate to"
4705 " the entry at offset 0x%x, signature %s"),
4706 offset.sect_off, dup_offset.sect_off,
4707 hex_string (signature));
4708 }
4709 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4710
4711 if (dwarf2_read_debug > 1)
4712 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4713 offset.sect_off,
4714 hex_string (signature));
4715
4716 info_ptr += length;
4717 }
4718 }
4719
4720 return types_htab;
4721 }
4722
4723 /* Create the hash table of all entries in the .debug_types section,
4724 and initialize all_type_units.
4725 The result is zero if there is an error (e.g. missing .debug_types section),
4726 otherwise non-zero. */
4727
4728 static int
4729 create_all_type_units (struct objfile *objfile)
4730 {
4731 htab_t types_htab;
4732 struct signatured_type **iter;
4733
4734 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4735 if (types_htab == NULL)
4736 {
4737 dwarf2_per_objfile->signatured_types = NULL;
4738 return 0;
4739 }
4740
4741 dwarf2_per_objfile->signatured_types = types_htab;
4742
4743 dwarf2_per_objfile->n_type_units
4744 = dwarf2_per_objfile->n_allocated_type_units
4745 = htab_elements (types_htab);
4746 dwarf2_per_objfile->all_type_units
4747 = xmalloc (dwarf2_per_objfile->n_type_units
4748 * sizeof (struct signatured_type *));
4749 iter = &dwarf2_per_objfile->all_type_units[0];
4750 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4751 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4752 == dwarf2_per_objfile->n_type_units);
4753
4754 return 1;
4755 }
4756
4757 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4758 If SLOT is non-NULL, it is the entry to use in the hash table.
4759 Otherwise we find one. */
4760
4761 static struct signatured_type *
4762 add_type_unit (ULONGEST sig, void **slot)
4763 {
4764 struct objfile *objfile = dwarf2_per_objfile->objfile;
4765 int n_type_units = dwarf2_per_objfile->n_type_units;
4766 struct signatured_type *sig_type;
4767
4768 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4769 ++n_type_units;
4770 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4771 {
4772 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4773 dwarf2_per_objfile->n_allocated_type_units = 1;
4774 dwarf2_per_objfile->n_allocated_type_units *= 2;
4775 dwarf2_per_objfile->all_type_units
4776 = xrealloc (dwarf2_per_objfile->all_type_units,
4777 dwarf2_per_objfile->n_allocated_type_units
4778 * sizeof (struct signatured_type *));
4779 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4780 }
4781 dwarf2_per_objfile->n_type_units = n_type_units;
4782
4783 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4784 struct signatured_type);
4785 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4786 sig_type->signature = sig;
4787 sig_type->per_cu.is_debug_types = 1;
4788 if (dwarf2_per_objfile->using_index)
4789 {
4790 sig_type->per_cu.v.quick =
4791 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4792 struct dwarf2_per_cu_quick_data);
4793 }
4794
4795 if (slot == NULL)
4796 {
4797 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4798 sig_type, INSERT);
4799 }
4800 gdb_assert (*slot == NULL);
4801 *slot = sig_type;
4802 /* The rest of sig_type must be filled in by the caller. */
4803 return sig_type;
4804 }
4805
4806 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4807 Fill in SIG_ENTRY with DWO_ENTRY. */
4808
4809 static void
4810 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4811 struct signatured_type *sig_entry,
4812 struct dwo_unit *dwo_entry)
4813 {
4814 /* Make sure we're not clobbering something we don't expect to. */
4815 gdb_assert (! sig_entry->per_cu.queued);
4816 gdb_assert (sig_entry->per_cu.cu == NULL);
4817 if (dwarf2_per_objfile->using_index)
4818 {
4819 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4820 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4821 }
4822 else
4823 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4824 gdb_assert (sig_entry->signature == dwo_entry->signature);
4825 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4826 gdb_assert (sig_entry->type_unit_group == NULL);
4827 gdb_assert (sig_entry->dwo_unit == NULL);
4828
4829 sig_entry->per_cu.section = dwo_entry->section;
4830 sig_entry->per_cu.offset = dwo_entry->offset;
4831 sig_entry->per_cu.length = dwo_entry->length;
4832 sig_entry->per_cu.reading_dwo_directly = 1;
4833 sig_entry->per_cu.objfile = objfile;
4834 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4835 sig_entry->dwo_unit = dwo_entry;
4836 }
4837
4838 /* Subroutine of lookup_signatured_type.
4839 If we haven't read the TU yet, create the signatured_type data structure
4840 for a TU to be read in directly from a DWO file, bypassing the stub.
4841 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4842 using .gdb_index, then when reading a CU we want to stay in the DWO file
4843 containing that CU. Otherwise we could end up reading several other DWO
4844 files (due to comdat folding) to process the transitive closure of all the
4845 mentioned TUs, and that can be slow. The current DWO file will have every
4846 type signature that it needs.
4847 We only do this for .gdb_index because in the psymtab case we already have
4848 to read all the DWOs to build the type unit groups. */
4849
4850 static struct signatured_type *
4851 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4852 {
4853 struct objfile *objfile = dwarf2_per_objfile->objfile;
4854 struct dwo_file *dwo_file;
4855 struct dwo_unit find_dwo_entry, *dwo_entry;
4856 struct signatured_type find_sig_entry, *sig_entry;
4857 void **slot;
4858
4859 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4860
4861 /* If TU skeletons have been removed then we may not have read in any
4862 TUs yet. */
4863 if (dwarf2_per_objfile->signatured_types == NULL)
4864 {
4865 dwarf2_per_objfile->signatured_types
4866 = allocate_signatured_type_table (objfile);
4867 }
4868
4869 /* We only ever need to read in one copy of a signatured type.
4870 Use the global signatured_types array to do our own comdat-folding
4871 of types. If this is the first time we're reading this TU, and
4872 the TU has an entry in .gdb_index, replace the recorded data from
4873 .gdb_index with this TU. */
4874
4875 find_sig_entry.signature = sig;
4876 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4877 &find_sig_entry, INSERT);
4878 sig_entry = *slot;
4879
4880 /* We can get here with the TU already read, *or* in the process of being
4881 read. Don't reassign the global entry to point to this DWO if that's
4882 the case. Also note that if the TU is already being read, it may not
4883 have come from a DWO, the program may be a mix of Fission-compiled
4884 code and non-Fission-compiled code. */
4885
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4890 return sig_entry;
4891
4892 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4893 dwo_unit of the TU itself. */
4894 dwo_file = cu->dwo_unit->dwo_file;
4895
4896 /* Ok, this is the first time we're reading this TU. */
4897 if (dwo_file->tus == NULL)
4898 return NULL;
4899 find_dwo_entry.signature = sig;
4900 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4901 if (dwo_entry == NULL)
4902 return NULL;
4903
4904 /* If the global table doesn't have an entry for this TU, add one. */
4905 if (sig_entry == NULL)
4906 sig_entry = add_type_unit (sig, slot);
4907
4908 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4909 sig_entry->per_cu.tu_read = 1;
4910 return sig_entry;
4911 }
4912
4913 /* Subroutine of lookup_signatured_type.
4914 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4915 then try the DWP file. If the TU stub (skeleton) has been removed then
4916 it won't be in .gdb_index. */
4917
4918 static struct signatured_type *
4919 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4920 {
4921 struct objfile *objfile = dwarf2_per_objfile->objfile;
4922 struct dwp_file *dwp_file = get_dwp_file ();
4923 struct dwo_unit *dwo_entry;
4924 struct signatured_type find_sig_entry, *sig_entry;
4925 void **slot;
4926
4927 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4928 gdb_assert (dwp_file != NULL);
4929
4930 /* If TU skeletons have been removed then we may not have read in any
4931 TUs yet. */
4932 if (dwarf2_per_objfile->signatured_types == NULL)
4933 {
4934 dwarf2_per_objfile->signatured_types
4935 = allocate_signatured_type_table (objfile);
4936 }
4937
4938 find_sig_entry.signature = sig;
4939 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4940 &find_sig_entry, INSERT);
4941 sig_entry = *slot;
4942
4943 /* Have we already tried to read this TU?
4944 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4945 needn't exist in the global table yet). */
4946 if (sig_entry != NULL)
4947 return sig_entry;
4948
4949 if (dwp_file->tus == NULL)
4950 return NULL;
4951 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4952 sig, 1 /* is_debug_types */);
4953 if (dwo_entry == NULL)
4954 return NULL;
4955
4956 sig_entry = add_type_unit (sig, slot);
4957 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4958
4959 return sig_entry;
4960 }
4961
4962 /* Lookup a signature based type for DW_FORM_ref_sig8.
4963 Returns NULL if signature SIG is not present in the table.
4964 It is up to the caller to complain about this. */
4965
4966 static struct signatured_type *
4967 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4968 {
4969 if (cu->dwo_unit
4970 && dwarf2_per_objfile->using_index)
4971 {
4972 /* We're in a DWO/DWP file, and we're using .gdb_index.
4973 These cases require special processing. */
4974 if (get_dwp_file () == NULL)
4975 return lookup_dwo_signatured_type (cu, sig);
4976 else
4977 return lookup_dwp_signatured_type (cu, sig);
4978 }
4979 else
4980 {
4981 struct signatured_type find_entry, *entry;
4982
4983 if (dwarf2_per_objfile->signatured_types == NULL)
4984 return NULL;
4985 find_entry.signature = sig;
4986 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4987 return entry;
4988 }
4989 }
4990 \f
4991 /* Low level DIE reading support. */
4992
4993 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4994
4995 static void
4996 init_cu_die_reader (struct die_reader_specs *reader,
4997 struct dwarf2_cu *cu,
4998 struct dwarf2_section_info *section,
4999 struct dwo_file *dwo_file)
5000 {
5001 gdb_assert (section->readin && section->buffer != NULL);
5002 reader->abfd = get_section_bfd_owner (section);
5003 reader->cu = cu;
5004 reader->dwo_file = dwo_file;
5005 reader->die_section = section;
5006 reader->buffer = section->buffer;
5007 reader->buffer_end = section->buffer + section->size;
5008 reader->comp_dir = NULL;
5009 }
5010
5011 /* Subroutine of init_cutu_and_read_dies to simplify it.
5012 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5013 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5014 already.
5015
5016 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5017 from it to the DIE in the DWO. If NULL we are skipping the stub.
5018 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5019 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5020 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5021 STUB_COMP_DIR may be non-NULL.
5022 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5023 are filled in with the info of the DIE from the DWO file.
5024 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5025 provided an abbrev table to use.
5026 The result is non-zero if a valid (non-dummy) DIE was found. */
5027
5028 static int
5029 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5030 struct dwo_unit *dwo_unit,
5031 int abbrev_table_provided,
5032 struct die_info *stub_comp_unit_die,
5033 const char *stub_comp_dir,
5034 struct die_reader_specs *result_reader,
5035 const gdb_byte **result_info_ptr,
5036 struct die_info **result_comp_unit_die,
5037 int *result_has_children)
5038 {
5039 struct objfile *objfile = dwarf2_per_objfile->objfile;
5040 struct dwarf2_cu *cu = this_cu->cu;
5041 struct dwarf2_section_info *section;
5042 bfd *abfd;
5043 const gdb_byte *begin_info_ptr, *info_ptr;
5044 ULONGEST signature; /* Or dwo_id. */
5045 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5046 int i,num_extra_attrs;
5047 struct dwarf2_section_info *dwo_abbrev_section;
5048 struct attribute *attr;
5049 struct die_info *comp_unit_die;
5050
5051 /* At most one of these may be provided. */
5052 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5053
5054 /* These attributes aren't processed until later:
5055 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5056 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5057 referenced later. However, these attributes are found in the stub
5058 which we won't have later. In order to not impose this complication
5059 on the rest of the code, we read them here and copy them to the
5060 DWO CU/TU die. */
5061
5062 stmt_list = NULL;
5063 low_pc = NULL;
5064 high_pc = NULL;
5065 ranges = NULL;
5066 comp_dir = NULL;
5067
5068 if (stub_comp_unit_die != NULL)
5069 {
5070 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5071 DWO file. */
5072 if (! this_cu->is_debug_types)
5073 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5074 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5075 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5076 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5077 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5078
5079 /* There should be a DW_AT_addr_base attribute here (if needed).
5080 We need the value before we can process DW_FORM_GNU_addr_index. */
5081 cu->addr_base = 0;
5082 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5083 if (attr)
5084 cu->addr_base = DW_UNSND (attr);
5085
5086 /* There should be a DW_AT_ranges_base attribute here (if needed).
5087 We need the value before we can process DW_AT_ranges. */
5088 cu->ranges_base = 0;
5089 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5090 if (attr)
5091 cu->ranges_base = DW_UNSND (attr);
5092 }
5093 else if (stub_comp_dir != NULL)
5094 {
5095 /* Reconstruct the comp_dir attribute to simplify the code below. */
5096 comp_dir = (struct attribute *)
5097 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5098 comp_dir->name = DW_AT_comp_dir;
5099 comp_dir->form = DW_FORM_string;
5100 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5101 DW_STRING (comp_dir) = stub_comp_dir;
5102 }
5103
5104 /* Set up for reading the DWO CU/TU. */
5105 cu->dwo_unit = dwo_unit;
5106 section = dwo_unit->section;
5107 dwarf2_read_section (objfile, section);
5108 abfd = get_section_bfd_owner (section);
5109 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5110 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5111 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5112
5113 if (this_cu->is_debug_types)
5114 {
5115 ULONGEST header_signature;
5116 cu_offset type_offset_in_tu;
5117 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5118
5119 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5120 dwo_abbrev_section,
5121 info_ptr,
5122 &header_signature,
5123 &type_offset_in_tu);
5124 /* This is not an assert because it can be caused by bad debug info. */
5125 if (sig_type->signature != header_signature)
5126 {
5127 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5128 " TU at offset 0x%x [in module %s]"),
5129 hex_string (sig_type->signature),
5130 hex_string (header_signature),
5131 dwo_unit->offset.sect_off,
5132 bfd_get_filename (abfd));
5133 }
5134 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5135 /* For DWOs coming from DWP files, we don't know the CU length
5136 nor the type's offset in the TU until now. */
5137 dwo_unit->length = get_cu_length (&cu->header);
5138 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5139
5140 /* Establish the type offset that can be used to lookup the type.
5141 For DWO files, we don't know it until now. */
5142 sig_type->type_offset_in_section.sect_off =
5143 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5144 }
5145 else
5146 {
5147 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5148 dwo_abbrev_section,
5149 info_ptr, 0);
5150 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5151 /* For DWOs coming from DWP files, we don't know the CU length
5152 until now. */
5153 dwo_unit->length = get_cu_length (&cu->header);
5154 }
5155
5156 /* Replace the CU's original abbrev table with the DWO's.
5157 Reminder: We can't read the abbrev table until we've read the header. */
5158 if (abbrev_table_provided)
5159 {
5160 /* Don't free the provided abbrev table, the caller of
5161 init_cutu_and_read_dies owns it. */
5162 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5163 /* Ensure the DWO abbrev table gets freed. */
5164 make_cleanup (dwarf2_free_abbrev_table, cu);
5165 }
5166 else
5167 {
5168 dwarf2_free_abbrev_table (cu);
5169 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5170 /* Leave any existing abbrev table cleanup as is. */
5171 }
5172
5173 /* Read in the die, but leave space to copy over the attributes
5174 from the stub. This has the benefit of simplifying the rest of
5175 the code - all the work to maintain the illusion of a single
5176 DW_TAG_{compile,type}_unit DIE is done here. */
5177 num_extra_attrs = ((stmt_list != NULL)
5178 + (low_pc != NULL)
5179 + (high_pc != NULL)
5180 + (ranges != NULL)
5181 + (comp_dir != NULL));
5182 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5183 result_has_children, num_extra_attrs);
5184
5185 /* Copy over the attributes from the stub to the DIE we just read in. */
5186 comp_unit_die = *result_comp_unit_die;
5187 i = comp_unit_die->num_attrs;
5188 if (stmt_list != NULL)
5189 comp_unit_die->attrs[i++] = *stmt_list;
5190 if (low_pc != NULL)
5191 comp_unit_die->attrs[i++] = *low_pc;
5192 if (high_pc != NULL)
5193 comp_unit_die->attrs[i++] = *high_pc;
5194 if (ranges != NULL)
5195 comp_unit_die->attrs[i++] = *ranges;
5196 if (comp_dir != NULL)
5197 comp_unit_die->attrs[i++] = *comp_dir;
5198 comp_unit_die->num_attrs += num_extra_attrs;
5199
5200 if (dwarf2_die_debug)
5201 {
5202 fprintf_unfiltered (gdb_stdlog,
5203 "Read die from %s@0x%x of %s:\n",
5204 get_section_name (section),
5205 (unsigned) (begin_info_ptr - section->buffer),
5206 bfd_get_filename (abfd));
5207 dump_die (comp_unit_die, dwarf2_die_debug);
5208 }
5209
5210 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5211 TUs by skipping the stub and going directly to the entry in the DWO file.
5212 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5213 to get it via circuitous means. Blech. */
5214 if (comp_dir != NULL)
5215 result_reader->comp_dir = DW_STRING (comp_dir);
5216
5217 /* Skip dummy compilation units. */
5218 if (info_ptr >= begin_info_ptr + dwo_unit->length
5219 || peek_abbrev_code (abfd, info_ptr) == 0)
5220 return 0;
5221
5222 *result_info_ptr = info_ptr;
5223 return 1;
5224 }
5225
5226 /* Subroutine of init_cutu_and_read_dies to simplify it.
5227 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5228 Returns NULL if the specified DWO unit cannot be found. */
5229
5230 static struct dwo_unit *
5231 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5232 struct die_info *comp_unit_die)
5233 {
5234 struct dwarf2_cu *cu = this_cu->cu;
5235 struct attribute *attr;
5236 ULONGEST signature;
5237 struct dwo_unit *dwo_unit;
5238 const char *comp_dir, *dwo_name;
5239
5240 gdb_assert (cu != NULL);
5241
5242 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5243 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5244 gdb_assert (attr != NULL);
5245 dwo_name = DW_STRING (attr);
5246 comp_dir = NULL;
5247 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5248 if (attr)
5249 comp_dir = DW_STRING (attr);
5250
5251 if (this_cu->is_debug_types)
5252 {
5253 struct signatured_type *sig_type;
5254
5255 /* Since this_cu is the first member of struct signatured_type,
5256 we can go from a pointer to one to a pointer to the other. */
5257 sig_type = (struct signatured_type *) this_cu;
5258 signature = sig_type->signature;
5259 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5260 }
5261 else
5262 {
5263 struct attribute *attr;
5264
5265 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5266 if (! attr)
5267 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5268 " [in module %s]"),
5269 dwo_name, objfile_name (this_cu->objfile));
5270 signature = DW_UNSND (attr);
5271 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5272 signature);
5273 }
5274
5275 return dwo_unit;
5276 }
5277
5278 /* Subroutine of init_cutu_and_read_dies to simplify it.
5279 See it for a description of the parameters.
5280 Read a TU directly from a DWO file, bypassing the stub.
5281
5282 Note: This function could be a little bit simpler if we shared cleanups
5283 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5284 to do, so we keep this function self-contained. Or we could move this
5285 into our caller, but it's complex enough already. */
5286
5287 static void
5288 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5289 int use_existing_cu, int keep,
5290 die_reader_func_ftype *die_reader_func,
5291 void *data)
5292 {
5293 struct dwarf2_cu *cu;
5294 struct signatured_type *sig_type;
5295 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5296 struct die_reader_specs reader;
5297 const gdb_byte *info_ptr;
5298 struct die_info *comp_unit_die;
5299 int has_children;
5300
5301 /* Verify we can do the following downcast, and that we have the
5302 data we need. */
5303 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5304 sig_type = (struct signatured_type *) this_cu;
5305 gdb_assert (sig_type->dwo_unit != NULL);
5306
5307 cleanups = make_cleanup (null_cleanup, NULL);
5308
5309 if (use_existing_cu && this_cu->cu != NULL)
5310 {
5311 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5312 cu = this_cu->cu;
5313 /* There's no need to do the rereading_dwo_cu handling that
5314 init_cutu_and_read_dies does since we don't read the stub. */
5315 }
5316 else
5317 {
5318 /* If !use_existing_cu, this_cu->cu must be NULL. */
5319 gdb_assert (this_cu->cu == NULL);
5320 cu = xmalloc (sizeof (*cu));
5321 init_one_comp_unit (cu, this_cu);
5322 /* If an error occurs while loading, release our storage. */
5323 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5324 }
5325
5326 /* A future optimization, if needed, would be to use an existing
5327 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5328 could share abbrev tables. */
5329
5330 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5331 0 /* abbrev_table_provided */,
5332 NULL /* stub_comp_unit_die */,
5333 sig_type->dwo_unit->dwo_file->comp_dir,
5334 &reader, &info_ptr,
5335 &comp_unit_die, &has_children) == 0)
5336 {
5337 /* Dummy die. */
5338 do_cleanups (cleanups);
5339 return;
5340 }
5341
5342 /* All the "real" work is done here. */
5343 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5344
5345 /* This duplicates the code in init_cutu_and_read_dies,
5346 but the alternative is making the latter more complex.
5347 This function is only for the special case of using DWO files directly:
5348 no point in overly complicating the general case just to handle this. */
5349 if (free_cu_cleanup != NULL)
5350 {
5351 if (keep)
5352 {
5353 /* We've successfully allocated this compilation unit. Let our
5354 caller clean it up when finished with it. */
5355 discard_cleanups (free_cu_cleanup);
5356
5357 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5358 So we have to manually free the abbrev table. */
5359 dwarf2_free_abbrev_table (cu);
5360
5361 /* Link this CU into read_in_chain. */
5362 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5363 dwarf2_per_objfile->read_in_chain = this_cu;
5364 }
5365 else
5366 do_cleanups (free_cu_cleanup);
5367 }
5368
5369 do_cleanups (cleanups);
5370 }
5371
5372 /* Initialize a CU (or TU) and read its DIEs.
5373 If the CU defers to a DWO file, read the DWO file as well.
5374
5375 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5376 Otherwise the table specified in the comp unit header is read in and used.
5377 This is an optimization for when we already have the abbrev table.
5378
5379 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5380 Otherwise, a new CU is allocated with xmalloc.
5381
5382 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5383 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5384
5385 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5386 linker) then DIE_READER_FUNC will not get called. */
5387
5388 static void
5389 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5390 struct abbrev_table *abbrev_table,
5391 int use_existing_cu, int keep,
5392 die_reader_func_ftype *die_reader_func,
5393 void *data)
5394 {
5395 struct objfile *objfile = dwarf2_per_objfile->objfile;
5396 struct dwarf2_section_info *section = this_cu->section;
5397 bfd *abfd = get_section_bfd_owner (section);
5398 struct dwarf2_cu *cu;
5399 const gdb_byte *begin_info_ptr, *info_ptr;
5400 struct die_reader_specs reader;
5401 struct die_info *comp_unit_die;
5402 int has_children;
5403 struct attribute *attr;
5404 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5405 struct signatured_type *sig_type = NULL;
5406 struct dwarf2_section_info *abbrev_section;
5407 /* Non-zero if CU currently points to a DWO file and we need to
5408 reread it. When this happens we need to reread the skeleton die
5409 before we can reread the DWO file (this only applies to CUs, not TUs). */
5410 int rereading_dwo_cu = 0;
5411
5412 if (dwarf2_die_debug)
5413 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5414 this_cu->is_debug_types ? "type" : "comp",
5415 this_cu->offset.sect_off);
5416
5417 if (use_existing_cu)
5418 gdb_assert (keep);
5419
5420 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5421 file (instead of going through the stub), short-circuit all of this. */
5422 if (this_cu->reading_dwo_directly)
5423 {
5424 /* Narrow down the scope of possibilities to have to understand. */
5425 gdb_assert (this_cu->is_debug_types);
5426 gdb_assert (abbrev_table == NULL);
5427 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5428 die_reader_func, data);
5429 return;
5430 }
5431
5432 cleanups = make_cleanup (null_cleanup, NULL);
5433
5434 /* This is cheap if the section is already read in. */
5435 dwarf2_read_section (objfile, section);
5436
5437 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5438
5439 abbrev_section = get_abbrev_section_for_cu (this_cu);
5440
5441 if (use_existing_cu && this_cu->cu != NULL)
5442 {
5443 cu = this_cu->cu;
5444 /* If this CU is from a DWO file we need to start over, we need to
5445 refetch the attributes from the skeleton CU.
5446 This could be optimized by retrieving those attributes from when we
5447 were here the first time: the previous comp_unit_die was stored in
5448 comp_unit_obstack. But there's no data yet that we need this
5449 optimization. */
5450 if (cu->dwo_unit != NULL)
5451 rereading_dwo_cu = 1;
5452 }
5453 else
5454 {
5455 /* If !use_existing_cu, this_cu->cu must be NULL. */
5456 gdb_assert (this_cu->cu == NULL);
5457 cu = xmalloc (sizeof (*cu));
5458 init_one_comp_unit (cu, this_cu);
5459 /* If an error occurs while loading, release our storage. */
5460 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5461 }
5462
5463 /* Get the header. */
5464 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5465 {
5466 /* We already have the header, there's no need to read it in again. */
5467 info_ptr += cu->header.first_die_offset.cu_off;
5468 }
5469 else
5470 {
5471 if (this_cu->is_debug_types)
5472 {
5473 ULONGEST signature;
5474 cu_offset type_offset_in_tu;
5475
5476 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5477 abbrev_section, info_ptr,
5478 &signature,
5479 &type_offset_in_tu);
5480
5481 /* Since per_cu is the first member of struct signatured_type,
5482 we can go from a pointer to one to a pointer to the other. */
5483 sig_type = (struct signatured_type *) this_cu;
5484 gdb_assert (sig_type->signature == signature);
5485 gdb_assert (sig_type->type_offset_in_tu.cu_off
5486 == type_offset_in_tu.cu_off);
5487 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5488
5489 /* LENGTH has not been set yet for type units if we're
5490 using .gdb_index. */
5491 this_cu->length = get_cu_length (&cu->header);
5492
5493 /* Establish the type offset that can be used to lookup the type. */
5494 sig_type->type_offset_in_section.sect_off =
5495 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5496 }
5497 else
5498 {
5499 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5500 abbrev_section,
5501 info_ptr, 0);
5502
5503 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5504 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5505 }
5506 }
5507
5508 /* Skip dummy compilation units. */
5509 if (info_ptr >= begin_info_ptr + this_cu->length
5510 || peek_abbrev_code (abfd, info_ptr) == 0)
5511 {
5512 do_cleanups (cleanups);
5513 return;
5514 }
5515
5516 /* If we don't have them yet, read the abbrevs for this compilation unit.
5517 And if we need to read them now, make sure they're freed when we're
5518 done. Note that it's important that if the CU had an abbrev table
5519 on entry we don't free it when we're done: Somewhere up the call stack
5520 it may be in use. */
5521 if (abbrev_table != NULL)
5522 {
5523 gdb_assert (cu->abbrev_table == NULL);
5524 gdb_assert (cu->header.abbrev_offset.sect_off
5525 == abbrev_table->offset.sect_off);
5526 cu->abbrev_table = abbrev_table;
5527 }
5528 else if (cu->abbrev_table == NULL)
5529 {
5530 dwarf2_read_abbrevs (cu, abbrev_section);
5531 make_cleanup (dwarf2_free_abbrev_table, cu);
5532 }
5533 else if (rereading_dwo_cu)
5534 {
5535 dwarf2_free_abbrev_table (cu);
5536 dwarf2_read_abbrevs (cu, abbrev_section);
5537 }
5538
5539 /* Read the top level CU/TU die. */
5540 init_cu_die_reader (&reader, cu, section, NULL);
5541 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5542
5543 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5544 from the DWO file.
5545 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5546 DWO CU, that this test will fail (the attribute will not be present). */
5547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5548 if (attr)
5549 {
5550 struct dwo_unit *dwo_unit;
5551 struct die_info *dwo_comp_unit_die;
5552
5553 if (has_children)
5554 {
5555 complaint (&symfile_complaints,
5556 _("compilation unit with DW_AT_GNU_dwo_name"
5557 " has children (offset 0x%x) [in module %s]"),
5558 this_cu->offset.sect_off, bfd_get_filename (abfd));
5559 }
5560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5561 if (dwo_unit != NULL)
5562 {
5563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5564 abbrev_table != NULL,
5565 comp_unit_die, NULL,
5566 &reader, &info_ptr,
5567 &dwo_comp_unit_die, &has_children) == 0)
5568 {
5569 /* Dummy die. */
5570 do_cleanups (cleanups);
5571 return;
5572 }
5573 comp_unit_die = dwo_comp_unit_die;
5574 }
5575 else
5576 {
5577 /* Yikes, we couldn't find the rest of the DIE, we only have
5578 the stub. A complaint has already been logged. There's
5579 not much more we can do except pass on the stub DIE to
5580 die_reader_func. We don't want to throw an error on bad
5581 debug info. */
5582 }
5583 }
5584
5585 /* All of the above is setup for this call. Yikes. */
5586 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5587
5588 /* Done, clean up. */
5589 if (free_cu_cleanup != NULL)
5590 {
5591 if (keep)
5592 {
5593 /* We've successfully allocated this compilation unit. Let our
5594 caller clean it up when finished with it. */
5595 discard_cleanups (free_cu_cleanup);
5596
5597 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5598 So we have to manually free the abbrev table. */
5599 dwarf2_free_abbrev_table (cu);
5600
5601 /* Link this CU into read_in_chain. */
5602 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5603 dwarf2_per_objfile->read_in_chain = this_cu;
5604 }
5605 else
5606 do_cleanups (free_cu_cleanup);
5607 }
5608
5609 do_cleanups (cleanups);
5610 }
5611
5612 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5614 to have already done the lookup to find the DWO file).
5615
5616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5617 THIS_CU->is_debug_types, but nothing else.
5618
5619 We fill in THIS_CU->length.
5620
5621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5622 linker) then DIE_READER_FUNC will not get called.
5623
5624 THIS_CU->cu is always freed when done.
5625 This is done in order to not leave THIS_CU->cu in a state where we have
5626 to care whether it refers to the "main" CU or the DWO CU. */
5627
5628 static void
5629 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5630 struct dwo_file *dwo_file,
5631 die_reader_func_ftype *die_reader_func,
5632 void *data)
5633 {
5634 struct objfile *objfile = dwarf2_per_objfile->objfile;
5635 struct dwarf2_section_info *section = this_cu->section;
5636 bfd *abfd = get_section_bfd_owner (section);
5637 struct dwarf2_section_info *abbrev_section;
5638 struct dwarf2_cu cu;
5639 const gdb_byte *begin_info_ptr, *info_ptr;
5640 struct die_reader_specs reader;
5641 struct cleanup *cleanups;
5642 struct die_info *comp_unit_die;
5643 int has_children;
5644
5645 if (dwarf2_die_debug)
5646 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5647 this_cu->is_debug_types ? "type" : "comp",
5648 this_cu->offset.sect_off);
5649
5650 gdb_assert (this_cu->cu == NULL);
5651
5652 abbrev_section = (dwo_file != NULL
5653 ? &dwo_file->sections.abbrev
5654 : get_abbrev_section_for_cu (this_cu));
5655
5656 /* This is cheap if the section is already read in. */
5657 dwarf2_read_section (objfile, section);
5658
5659 init_one_comp_unit (&cu, this_cu);
5660
5661 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5662
5663 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5664 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5665 abbrev_section, info_ptr,
5666 this_cu->is_debug_types);
5667
5668 this_cu->length = get_cu_length (&cu.header);
5669
5670 /* Skip dummy compilation units. */
5671 if (info_ptr >= begin_info_ptr + this_cu->length
5672 || peek_abbrev_code (abfd, info_ptr) == 0)
5673 {
5674 do_cleanups (cleanups);
5675 return;
5676 }
5677
5678 dwarf2_read_abbrevs (&cu, abbrev_section);
5679 make_cleanup (dwarf2_free_abbrev_table, &cu);
5680
5681 init_cu_die_reader (&reader, &cu, section, dwo_file);
5682 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5683
5684 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5685
5686 do_cleanups (cleanups);
5687 }
5688
5689 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5690 does not lookup the specified DWO file.
5691 This cannot be used to read DWO files.
5692
5693 THIS_CU->cu is always freed when done.
5694 This is done in order to not leave THIS_CU->cu in a state where we have
5695 to care whether it refers to the "main" CU or the DWO CU.
5696 We can revisit this if the data shows there's a performance issue. */
5697
5698 static void
5699 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5700 die_reader_func_ftype *die_reader_func,
5701 void *data)
5702 {
5703 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5704 }
5705 \f
5706 /* Type Unit Groups.
5707
5708 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5709 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5710 so that all types coming from the same compilation (.o file) are grouped
5711 together. A future step could be to put the types in the same symtab as
5712 the CU the types ultimately came from. */
5713
5714 static hashval_t
5715 hash_type_unit_group (const void *item)
5716 {
5717 const struct type_unit_group *tu_group = item;
5718
5719 return hash_stmt_list_entry (&tu_group->hash);
5720 }
5721
5722 static int
5723 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5724 {
5725 const struct type_unit_group *lhs = item_lhs;
5726 const struct type_unit_group *rhs = item_rhs;
5727
5728 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5729 }
5730
5731 /* Allocate a hash table for type unit groups. */
5732
5733 static htab_t
5734 allocate_type_unit_groups_table (void)
5735 {
5736 return htab_create_alloc_ex (3,
5737 hash_type_unit_group,
5738 eq_type_unit_group,
5739 NULL,
5740 &dwarf2_per_objfile->objfile->objfile_obstack,
5741 hashtab_obstack_allocate,
5742 dummy_obstack_deallocate);
5743 }
5744
5745 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5746 partial symtabs. We combine several TUs per psymtab to not let the size
5747 of any one psymtab grow too big. */
5748 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5749 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5750
5751 /* Helper routine for get_type_unit_group.
5752 Create the type_unit_group object used to hold one or more TUs. */
5753
5754 static struct type_unit_group *
5755 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5756 {
5757 struct objfile *objfile = dwarf2_per_objfile->objfile;
5758 struct dwarf2_per_cu_data *per_cu;
5759 struct type_unit_group *tu_group;
5760
5761 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5762 struct type_unit_group);
5763 per_cu = &tu_group->per_cu;
5764 per_cu->objfile = objfile;
5765
5766 if (dwarf2_per_objfile->using_index)
5767 {
5768 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5769 struct dwarf2_per_cu_quick_data);
5770 }
5771 else
5772 {
5773 unsigned int line_offset = line_offset_struct.sect_off;
5774 struct partial_symtab *pst;
5775 char *name;
5776
5777 /* Give the symtab a useful name for debug purposes. */
5778 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5779 name = xstrprintf ("<type_units_%d>",
5780 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5781 else
5782 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5783
5784 pst = create_partial_symtab (per_cu, name);
5785 pst->anonymous = 1;
5786
5787 xfree (name);
5788 }
5789
5790 tu_group->hash.dwo_unit = cu->dwo_unit;
5791 tu_group->hash.line_offset = line_offset_struct;
5792
5793 return tu_group;
5794 }
5795
5796 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5797 STMT_LIST is a DW_AT_stmt_list attribute. */
5798
5799 static struct type_unit_group *
5800 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5801 {
5802 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5803 struct type_unit_group *tu_group;
5804 void **slot;
5805 unsigned int line_offset;
5806 struct type_unit_group type_unit_group_for_lookup;
5807
5808 if (dwarf2_per_objfile->type_unit_groups == NULL)
5809 {
5810 dwarf2_per_objfile->type_unit_groups =
5811 allocate_type_unit_groups_table ();
5812 }
5813
5814 /* Do we need to create a new group, or can we use an existing one? */
5815
5816 if (stmt_list)
5817 {
5818 line_offset = DW_UNSND (stmt_list);
5819 ++tu_stats->nr_symtab_sharers;
5820 }
5821 else
5822 {
5823 /* Ugh, no stmt_list. Rare, but we have to handle it.
5824 We can do various things here like create one group per TU or
5825 spread them over multiple groups to split up the expansion work.
5826 To avoid worst case scenarios (too many groups or too large groups)
5827 we, umm, group them in bunches. */
5828 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5829 | (tu_stats->nr_stmt_less_type_units
5830 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5831 ++tu_stats->nr_stmt_less_type_units;
5832 }
5833
5834 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5835 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5836 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5837 &type_unit_group_for_lookup, INSERT);
5838 if (*slot != NULL)
5839 {
5840 tu_group = *slot;
5841 gdb_assert (tu_group != NULL);
5842 }
5843 else
5844 {
5845 sect_offset line_offset_struct;
5846
5847 line_offset_struct.sect_off = line_offset;
5848 tu_group = create_type_unit_group (cu, line_offset_struct);
5849 *slot = tu_group;
5850 ++tu_stats->nr_symtabs;
5851 }
5852
5853 return tu_group;
5854 }
5855 \f
5856 /* Partial symbol tables. */
5857
5858 /* Create a psymtab named NAME and assign it to PER_CU.
5859
5860 The caller must fill in the following details:
5861 dirname, textlow, texthigh. */
5862
5863 static struct partial_symtab *
5864 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5865 {
5866 struct objfile *objfile = per_cu->objfile;
5867 struct partial_symtab *pst;
5868
5869 pst = start_psymtab_common (objfile, objfile->section_offsets,
5870 name, 0,
5871 objfile->global_psymbols.next,
5872 objfile->static_psymbols.next);
5873
5874 pst->psymtabs_addrmap_supported = 1;
5875
5876 /* This is the glue that links PST into GDB's symbol API. */
5877 pst->read_symtab_private = per_cu;
5878 pst->read_symtab = dwarf2_read_symtab;
5879 per_cu->v.psymtab = pst;
5880
5881 return pst;
5882 }
5883
5884 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5885 type. */
5886
5887 struct process_psymtab_comp_unit_data
5888 {
5889 /* True if we are reading a DW_TAG_partial_unit. */
5890
5891 int want_partial_unit;
5892
5893 /* The "pretend" language that is used if the CU doesn't declare a
5894 language. */
5895
5896 enum language pretend_language;
5897 };
5898
5899 /* die_reader_func for process_psymtab_comp_unit. */
5900
5901 static void
5902 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5903 const gdb_byte *info_ptr,
5904 struct die_info *comp_unit_die,
5905 int has_children,
5906 void *data)
5907 {
5908 struct dwarf2_cu *cu = reader->cu;
5909 struct objfile *objfile = cu->objfile;
5910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5911 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5912 struct attribute *attr;
5913 CORE_ADDR baseaddr;
5914 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5915 struct partial_symtab *pst;
5916 int has_pc_info;
5917 const char *filename;
5918 struct process_psymtab_comp_unit_data *info = data;
5919
5920 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5921 return;
5922
5923 gdb_assert (! per_cu->is_debug_types);
5924
5925 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5926
5927 cu->list_in_scope = &file_symbols;
5928
5929 /* Allocate a new partial symbol table structure. */
5930 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5931 if (attr == NULL || !DW_STRING (attr))
5932 filename = "";
5933 else
5934 filename = DW_STRING (attr);
5935
5936 pst = create_partial_symtab (per_cu, filename);
5937
5938 /* This must be done before calling dwarf2_build_include_psymtabs. */
5939 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5940 if (attr != NULL)
5941 pst->dirname = DW_STRING (attr);
5942
5943 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5944
5945 dwarf2_find_base_address (comp_unit_die, cu);
5946
5947 /* Possibly set the default values of LOWPC and HIGHPC from
5948 `DW_AT_ranges'. */
5949 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5950 &best_highpc, cu, pst);
5951 if (has_pc_info == 1 && best_lowpc < best_highpc)
5952 /* Store the contiguous range if it is not empty; it can be empty for
5953 CUs with no code. */
5954 addrmap_set_empty (objfile->psymtabs_addrmap,
5955 gdbarch_adjust_dwarf2_addr (gdbarch,
5956 best_lowpc + baseaddr),
5957 gdbarch_adjust_dwarf2_addr (gdbarch,
5958 best_highpc + baseaddr) - 1,
5959 pst);
5960
5961 /* Check if comp unit has_children.
5962 If so, read the rest of the partial symbols from this comp unit.
5963 If not, there's no more debug_info for this comp unit. */
5964 if (has_children)
5965 {
5966 struct partial_die_info *first_die;
5967 CORE_ADDR lowpc, highpc;
5968
5969 lowpc = ((CORE_ADDR) -1);
5970 highpc = ((CORE_ADDR) 0);
5971
5972 first_die = load_partial_dies (reader, info_ptr, 1);
5973
5974 scan_partial_symbols (first_die, &lowpc, &highpc,
5975 ! has_pc_info, cu);
5976
5977 /* If we didn't find a lowpc, set it to highpc to avoid
5978 complaints from `maint check'. */
5979 if (lowpc == ((CORE_ADDR) -1))
5980 lowpc = highpc;
5981
5982 /* If the compilation unit didn't have an explicit address range,
5983 then use the information extracted from its child dies. */
5984 if (! has_pc_info)
5985 {
5986 best_lowpc = lowpc;
5987 best_highpc = highpc;
5988 }
5989 }
5990 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5991 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
5992
5993 pst->n_global_syms = objfile->global_psymbols.next -
5994 (objfile->global_psymbols.list + pst->globals_offset);
5995 pst->n_static_syms = objfile->static_psymbols.next -
5996 (objfile->static_psymbols.list + pst->statics_offset);
5997 sort_pst_symbols (objfile, pst);
5998
5999 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6000 {
6001 int i;
6002 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6003 struct dwarf2_per_cu_data *iter;
6004
6005 /* Fill in 'dependencies' here; we fill in 'users' in a
6006 post-pass. */
6007 pst->number_of_dependencies = len;
6008 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6009 len * sizeof (struct symtab *));
6010 for (i = 0;
6011 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6012 i, iter);
6013 ++i)
6014 pst->dependencies[i] = iter->v.psymtab;
6015
6016 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6017 }
6018
6019 /* Get the list of files included in the current compilation unit,
6020 and build a psymtab for each of them. */
6021 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6022
6023 if (dwarf2_read_debug)
6024 {
6025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6026
6027 fprintf_unfiltered (gdb_stdlog,
6028 "Psymtab for %s unit @0x%x: %s - %s"
6029 ", %d global, %d static syms\n",
6030 per_cu->is_debug_types ? "type" : "comp",
6031 per_cu->offset.sect_off,
6032 paddress (gdbarch, pst->textlow),
6033 paddress (gdbarch, pst->texthigh),
6034 pst->n_global_syms, pst->n_static_syms);
6035 }
6036 }
6037
6038 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6039 Process compilation unit THIS_CU for a psymtab. */
6040
6041 static void
6042 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6043 int want_partial_unit,
6044 enum language pretend_language)
6045 {
6046 struct process_psymtab_comp_unit_data info;
6047
6048 /* If this compilation unit was already read in, free the
6049 cached copy in order to read it in again. This is
6050 necessary because we skipped some symbols when we first
6051 read in the compilation unit (see load_partial_dies).
6052 This problem could be avoided, but the benefit is unclear. */
6053 if (this_cu->cu != NULL)
6054 free_one_cached_comp_unit (this_cu);
6055
6056 gdb_assert (! this_cu->is_debug_types);
6057 info.want_partial_unit = want_partial_unit;
6058 info.pretend_language = pretend_language;
6059 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6060 process_psymtab_comp_unit_reader,
6061 &info);
6062
6063 /* Age out any secondary CUs. */
6064 age_cached_comp_units ();
6065 }
6066
6067 /* Reader function for build_type_psymtabs. */
6068
6069 static void
6070 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6071 const gdb_byte *info_ptr,
6072 struct die_info *type_unit_die,
6073 int has_children,
6074 void *data)
6075 {
6076 struct objfile *objfile = dwarf2_per_objfile->objfile;
6077 struct dwarf2_cu *cu = reader->cu;
6078 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6079 struct signatured_type *sig_type;
6080 struct type_unit_group *tu_group;
6081 struct attribute *attr;
6082 struct partial_die_info *first_die;
6083 CORE_ADDR lowpc, highpc;
6084 struct partial_symtab *pst;
6085
6086 gdb_assert (data == NULL);
6087 gdb_assert (per_cu->is_debug_types);
6088 sig_type = (struct signatured_type *) per_cu;
6089
6090 if (! has_children)
6091 return;
6092
6093 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6094 tu_group = get_type_unit_group (cu, attr);
6095
6096 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6097
6098 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6099 cu->list_in_scope = &file_symbols;
6100 pst = create_partial_symtab (per_cu, "");
6101 pst->anonymous = 1;
6102
6103 first_die = load_partial_dies (reader, info_ptr, 1);
6104
6105 lowpc = (CORE_ADDR) -1;
6106 highpc = (CORE_ADDR) 0;
6107 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6108
6109 pst->n_global_syms = objfile->global_psymbols.next -
6110 (objfile->global_psymbols.list + pst->globals_offset);
6111 pst->n_static_syms = objfile->static_psymbols.next -
6112 (objfile->static_psymbols.list + pst->statics_offset);
6113 sort_pst_symbols (objfile, pst);
6114 }
6115
6116 /* Struct used to sort TUs by their abbreviation table offset. */
6117
6118 struct tu_abbrev_offset
6119 {
6120 struct signatured_type *sig_type;
6121 sect_offset abbrev_offset;
6122 };
6123
6124 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6125
6126 static int
6127 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6128 {
6129 const struct tu_abbrev_offset * const *a = ap;
6130 const struct tu_abbrev_offset * const *b = bp;
6131 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6132 unsigned int boff = (*b)->abbrev_offset.sect_off;
6133
6134 return (aoff > boff) - (aoff < boff);
6135 }
6136
6137 /* Efficiently read all the type units.
6138 This does the bulk of the work for build_type_psymtabs.
6139
6140 The efficiency is because we sort TUs by the abbrev table they use and
6141 only read each abbrev table once. In one program there are 200K TUs
6142 sharing 8K abbrev tables.
6143
6144 The main purpose of this function is to support building the
6145 dwarf2_per_objfile->type_unit_groups table.
6146 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6147 can collapse the search space by grouping them by stmt_list.
6148 The savings can be significant, in the same program from above the 200K TUs
6149 share 8K stmt_list tables.
6150
6151 FUNC is expected to call get_type_unit_group, which will create the
6152 struct type_unit_group if necessary and add it to
6153 dwarf2_per_objfile->type_unit_groups. */
6154
6155 static void
6156 build_type_psymtabs_1 (void)
6157 {
6158 struct objfile *objfile = dwarf2_per_objfile->objfile;
6159 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6160 struct cleanup *cleanups;
6161 struct abbrev_table *abbrev_table;
6162 sect_offset abbrev_offset;
6163 struct tu_abbrev_offset *sorted_by_abbrev;
6164 struct type_unit_group **iter;
6165 int i;
6166
6167 /* It's up to the caller to not call us multiple times. */
6168 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6169
6170 if (dwarf2_per_objfile->n_type_units == 0)
6171 return;
6172
6173 /* TUs typically share abbrev tables, and there can be way more TUs than
6174 abbrev tables. Sort by abbrev table to reduce the number of times we
6175 read each abbrev table in.
6176 Alternatives are to punt or to maintain a cache of abbrev tables.
6177 This is simpler and efficient enough for now.
6178
6179 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6180 symtab to use). Typically TUs with the same abbrev offset have the same
6181 stmt_list value too so in practice this should work well.
6182
6183 The basic algorithm here is:
6184
6185 sort TUs by abbrev table
6186 for each TU with same abbrev table:
6187 read abbrev table if first user
6188 read TU top level DIE
6189 [IWBN if DWO skeletons had DW_AT_stmt_list]
6190 call FUNC */
6191
6192 if (dwarf2_read_debug)
6193 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6194
6195 /* Sort in a separate table to maintain the order of all_type_units
6196 for .gdb_index: TU indices directly index all_type_units. */
6197 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6198 dwarf2_per_objfile->n_type_units);
6199 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6200 {
6201 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6202
6203 sorted_by_abbrev[i].sig_type = sig_type;
6204 sorted_by_abbrev[i].abbrev_offset =
6205 read_abbrev_offset (sig_type->per_cu.section,
6206 sig_type->per_cu.offset);
6207 }
6208 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6209 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6210 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6211
6212 abbrev_offset.sect_off = ~(unsigned) 0;
6213 abbrev_table = NULL;
6214 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6215
6216 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6217 {
6218 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6219
6220 /* Switch to the next abbrev table if necessary. */
6221 if (abbrev_table == NULL
6222 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6223 {
6224 if (abbrev_table != NULL)
6225 {
6226 abbrev_table_free (abbrev_table);
6227 /* Reset to NULL in case abbrev_table_read_table throws
6228 an error: abbrev_table_free_cleanup will get called. */
6229 abbrev_table = NULL;
6230 }
6231 abbrev_offset = tu->abbrev_offset;
6232 abbrev_table =
6233 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6234 abbrev_offset);
6235 ++tu_stats->nr_uniq_abbrev_tables;
6236 }
6237
6238 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6239 build_type_psymtabs_reader, NULL);
6240 }
6241
6242 do_cleanups (cleanups);
6243 }
6244
6245 /* Print collected type unit statistics. */
6246
6247 static void
6248 print_tu_stats (void)
6249 {
6250 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6251
6252 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6253 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6254 dwarf2_per_objfile->n_type_units);
6255 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6256 tu_stats->nr_uniq_abbrev_tables);
6257 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6258 tu_stats->nr_symtabs);
6259 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6260 tu_stats->nr_symtab_sharers);
6261 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6262 tu_stats->nr_stmt_less_type_units);
6263 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6264 tu_stats->nr_all_type_units_reallocs);
6265 }
6266
6267 /* Traversal function for build_type_psymtabs. */
6268
6269 static int
6270 build_type_psymtab_dependencies (void **slot, void *info)
6271 {
6272 struct objfile *objfile = dwarf2_per_objfile->objfile;
6273 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6274 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6275 struct partial_symtab *pst = per_cu->v.psymtab;
6276 int len = VEC_length (sig_type_ptr, tu_group->tus);
6277 struct signatured_type *iter;
6278 int i;
6279
6280 gdb_assert (len > 0);
6281 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6282
6283 pst->number_of_dependencies = len;
6284 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6285 len * sizeof (struct psymtab *));
6286 for (i = 0;
6287 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6288 ++i)
6289 {
6290 gdb_assert (iter->per_cu.is_debug_types);
6291 pst->dependencies[i] = iter->per_cu.v.psymtab;
6292 iter->type_unit_group = tu_group;
6293 }
6294
6295 VEC_free (sig_type_ptr, tu_group->tus);
6296
6297 return 1;
6298 }
6299
6300 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6301 Build partial symbol tables for the .debug_types comp-units. */
6302
6303 static void
6304 build_type_psymtabs (struct objfile *objfile)
6305 {
6306 if (! create_all_type_units (objfile))
6307 return;
6308
6309 build_type_psymtabs_1 ();
6310 }
6311
6312 /* Traversal function for process_skeletonless_type_unit.
6313 Read a TU in a DWO file and build partial symbols for it. */
6314
6315 static int
6316 process_skeletonless_type_unit (void **slot, void *info)
6317 {
6318 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6319 struct objfile *objfile = info;
6320 struct signatured_type find_entry, *entry;
6321
6322 /* If this TU doesn't exist in the global table, add it and read it in. */
6323
6324 if (dwarf2_per_objfile->signatured_types == NULL)
6325 {
6326 dwarf2_per_objfile->signatured_types
6327 = allocate_signatured_type_table (objfile);
6328 }
6329
6330 find_entry.signature = dwo_unit->signature;
6331 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6332 INSERT);
6333 /* If we've already seen this type there's nothing to do. What's happening
6334 is we're doing our own version of comdat-folding here. */
6335 if (*slot != NULL)
6336 return 1;
6337
6338 /* This does the job that create_all_type_units would have done for
6339 this TU. */
6340 entry = add_type_unit (dwo_unit->signature, slot);
6341 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6342 *slot = entry;
6343
6344 /* This does the job that build_type_psymtabs_1 would have done. */
6345 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6346 build_type_psymtabs_reader, NULL);
6347
6348 return 1;
6349 }
6350
6351 /* Traversal function for process_skeletonless_type_units. */
6352
6353 static int
6354 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6355 {
6356 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6357
6358 if (dwo_file->tus != NULL)
6359 {
6360 htab_traverse_noresize (dwo_file->tus,
6361 process_skeletonless_type_unit, info);
6362 }
6363
6364 return 1;
6365 }
6366
6367 /* Scan all TUs of DWO files, verifying we've processed them.
6368 This is needed in case a TU was emitted without its skeleton.
6369 Note: This can't be done until we know what all the DWO files are. */
6370
6371 static void
6372 process_skeletonless_type_units (struct objfile *objfile)
6373 {
6374 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6375 if (get_dwp_file () == NULL
6376 && dwarf2_per_objfile->dwo_files != NULL)
6377 {
6378 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6379 process_dwo_file_for_skeletonless_type_units,
6380 objfile);
6381 }
6382 }
6383
6384 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6385
6386 static void
6387 psymtabs_addrmap_cleanup (void *o)
6388 {
6389 struct objfile *objfile = o;
6390
6391 objfile->psymtabs_addrmap = NULL;
6392 }
6393
6394 /* Compute the 'user' field for each psymtab in OBJFILE. */
6395
6396 static void
6397 set_partial_user (struct objfile *objfile)
6398 {
6399 int i;
6400
6401 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6402 {
6403 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6404 struct partial_symtab *pst = per_cu->v.psymtab;
6405 int j;
6406
6407 if (pst == NULL)
6408 continue;
6409
6410 for (j = 0; j < pst->number_of_dependencies; ++j)
6411 {
6412 /* Set the 'user' field only if it is not already set. */
6413 if (pst->dependencies[j]->user == NULL)
6414 pst->dependencies[j]->user = pst;
6415 }
6416 }
6417 }
6418
6419 /* Build the partial symbol table by doing a quick pass through the
6420 .debug_info and .debug_abbrev sections. */
6421
6422 static void
6423 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6424 {
6425 struct cleanup *back_to, *addrmap_cleanup;
6426 struct obstack temp_obstack;
6427 int i;
6428
6429 if (dwarf2_read_debug)
6430 {
6431 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6432 objfile_name (objfile));
6433 }
6434
6435 dwarf2_per_objfile->reading_partial_symbols = 1;
6436
6437 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6438
6439 /* Any cached compilation units will be linked by the per-objfile
6440 read_in_chain. Make sure to free them when we're done. */
6441 back_to = make_cleanup (free_cached_comp_units, NULL);
6442
6443 build_type_psymtabs (objfile);
6444
6445 create_all_comp_units (objfile);
6446
6447 /* Create a temporary address map on a temporary obstack. We later
6448 copy this to the final obstack. */
6449 obstack_init (&temp_obstack);
6450 make_cleanup_obstack_free (&temp_obstack);
6451 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6452 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6453
6454 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6455 {
6456 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6457
6458 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6459 }
6460
6461 /* This has to wait until we read the CUs, we need the list of DWOs. */
6462 process_skeletonless_type_units (objfile);
6463
6464 /* Now that all TUs have been processed we can fill in the dependencies. */
6465 if (dwarf2_per_objfile->type_unit_groups != NULL)
6466 {
6467 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6468 build_type_psymtab_dependencies, NULL);
6469 }
6470
6471 if (dwarf2_read_debug)
6472 print_tu_stats ();
6473
6474 set_partial_user (objfile);
6475
6476 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6477 &objfile->objfile_obstack);
6478 discard_cleanups (addrmap_cleanup);
6479
6480 do_cleanups (back_to);
6481
6482 if (dwarf2_read_debug)
6483 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6484 objfile_name (objfile));
6485 }
6486
6487 /* die_reader_func for load_partial_comp_unit. */
6488
6489 static void
6490 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6491 const gdb_byte *info_ptr,
6492 struct die_info *comp_unit_die,
6493 int has_children,
6494 void *data)
6495 {
6496 struct dwarf2_cu *cu = reader->cu;
6497
6498 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6499
6500 /* Check if comp unit has_children.
6501 If so, read the rest of the partial symbols from this comp unit.
6502 If not, there's no more debug_info for this comp unit. */
6503 if (has_children)
6504 load_partial_dies (reader, info_ptr, 0);
6505 }
6506
6507 /* Load the partial DIEs for a secondary CU into memory.
6508 This is also used when rereading a primary CU with load_all_dies. */
6509
6510 static void
6511 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6512 {
6513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6514 load_partial_comp_unit_reader, NULL);
6515 }
6516
6517 static void
6518 read_comp_units_from_section (struct objfile *objfile,
6519 struct dwarf2_section_info *section,
6520 unsigned int is_dwz,
6521 int *n_allocated,
6522 int *n_comp_units,
6523 struct dwarf2_per_cu_data ***all_comp_units)
6524 {
6525 const gdb_byte *info_ptr;
6526 bfd *abfd = get_section_bfd_owner (section);
6527
6528 if (dwarf2_read_debug)
6529 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6530 get_section_name (section),
6531 get_section_file_name (section));
6532
6533 dwarf2_read_section (objfile, section);
6534
6535 info_ptr = section->buffer;
6536
6537 while (info_ptr < section->buffer + section->size)
6538 {
6539 unsigned int length, initial_length_size;
6540 struct dwarf2_per_cu_data *this_cu;
6541 sect_offset offset;
6542
6543 offset.sect_off = info_ptr - section->buffer;
6544
6545 /* Read just enough information to find out where the next
6546 compilation unit is. */
6547 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6548
6549 /* Save the compilation unit for later lookup. */
6550 this_cu = obstack_alloc (&objfile->objfile_obstack,
6551 sizeof (struct dwarf2_per_cu_data));
6552 memset (this_cu, 0, sizeof (*this_cu));
6553 this_cu->offset = offset;
6554 this_cu->length = length + initial_length_size;
6555 this_cu->is_dwz = is_dwz;
6556 this_cu->objfile = objfile;
6557 this_cu->section = section;
6558
6559 if (*n_comp_units == *n_allocated)
6560 {
6561 *n_allocated *= 2;
6562 *all_comp_units = xrealloc (*all_comp_units,
6563 *n_allocated
6564 * sizeof (struct dwarf2_per_cu_data *));
6565 }
6566 (*all_comp_units)[*n_comp_units] = this_cu;
6567 ++*n_comp_units;
6568
6569 info_ptr = info_ptr + this_cu->length;
6570 }
6571 }
6572
6573 /* Create a list of all compilation units in OBJFILE.
6574 This is only done for -readnow and building partial symtabs. */
6575
6576 static void
6577 create_all_comp_units (struct objfile *objfile)
6578 {
6579 int n_allocated;
6580 int n_comp_units;
6581 struct dwarf2_per_cu_data **all_comp_units;
6582 struct dwz_file *dwz;
6583
6584 n_comp_units = 0;
6585 n_allocated = 10;
6586 all_comp_units = xmalloc (n_allocated
6587 * sizeof (struct dwarf2_per_cu_data *));
6588
6589 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6590 &n_allocated, &n_comp_units, &all_comp_units);
6591
6592 dwz = dwarf2_get_dwz_file ();
6593 if (dwz != NULL)
6594 read_comp_units_from_section (objfile, &dwz->info, 1,
6595 &n_allocated, &n_comp_units,
6596 &all_comp_units);
6597
6598 dwarf2_per_objfile->all_comp_units
6599 = obstack_alloc (&objfile->objfile_obstack,
6600 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6601 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6602 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6603 xfree (all_comp_units);
6604 dwarf2_per_objfile->n_comp_units = n_comp_units;
6605 }
6606
6607 /* Process all loaded DIEs for compilation unit CU, starting at
6608 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6609 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6610 DW_AT_ranges). See the comments of add_partial_subprogram on how
6611 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6612
6613 static void
6614 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6615 CORE_ADDR *highpc, int set_addrmap,
6616 struct dwarf2_cu *cu)
6617 {
6618 struct partial_die_info *pdi;
6619
6620 /* Now, march along the PDI's, descending into ones which have
6621 interesting children but skipping the children of the other ones,
6622 until we reach the end of the compilation unit. */
6623
6624 pdi = first_die;
6625
6626 while (pdi != NULL)
6627 {
6628 fixup_partial_die (pdi, cu);
6629
6630 /* Anonymous namespaces or modules have no name but have interesting
6631 children, so we need to look at them. Ditto for anonymous
6632 enums. */
6633
6634 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6635 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6636 || pdi->tag == DW_TAG_imported_unit)
6637 {
6638 switch (pdi->tag)
6639 {
6640 case DW_TAG_subprogram:
6641 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6642 break;
6643 case DW_TAG_constant:
6644 case DW_TAG_variable:
6645 case DW_TAG_typedef:
6646 case DW_TAG_union_type:
6647 if (!pdi->is_declaration)
6648 {
6649 add_partial_symbol (pdi, cu);
6650 }
6651 break;
6652 case DW_TAG_class_type:
6653 case DW_TAG_interface_type:
6654 case DW_TAG_structure_type:
6655 if (!pdi->is_declaration)
6656 {
6657 add_partial_symbol (pdi, cu);
6658 }
6659 break;
6660 case DW_TAG_enumeration_type:
6661 if (!pdi->is_declaration)
6662 add_partial_enumeration (pdi, cu);
6663 break;
6664 case DW_TAG_base_type:
6665 case DW_TAG_subrange_type:
6666 /* File scope base type definitions are added to the partial
6667 symbol table. */
6668 add_partial_symbol (pdi, cu);
6669 break;
6670 case DW_TAG_namespace:
6671 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6672 break;
6673 case DW_TAG_module:
6674 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6675 break;
6676 case DW_TAG_imported_unit:
6677 {
6678 struct dwarf2_per_cu_data *per_cu;
6679
6680 /* For now we don't handle imported units in type units. */
6681 if (cu->per_cu->is_debug_types)
6682 {
6683 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6684 " supported in type units [in module %s]"),
6685 objfile_name (cu->objfile));
6686 }
6687
6688 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6689 pdi->is_dwz,
6690 cu->objfile);
6691
6692 /* Go read the partial unit, if needed. */
6693 if (per_cu->v.psymtab == NULL)
6694 process_psymtab_comp_unit (per_cu, 1, cu->language);
6695
6696 VEC_safe_push (dwarf2_per_cu_ptr,
6697 cu->per_cu->imported_symtabs, per_cu);
6698 }
6699 break;
6700 case DW_TAG_imported_declaration:
6701 add_partial_symbol (pdi, cu);
6702 break;
6703 default:
6704 break;
6705 }
6706 }
6707
6708 /* If the die has a sibling, skip to the sibling. */
6709
6710 pdi = pdi->die_sibling;
6711 }
6712 }
6713
6714 /* Functions used to compute the fully scoped name of a partial DIE.
6715
6716 Normally, this is simple. For C++, the parent DIE's fully scoped
6717 name is concatenated with "::" and the partial DIE's name. For
6718 Java, the same thing occurs except that "." is used instead of "::".
6719 Enumerators are an exception; they use the scope of their parent
6720 enumeration type, i.e. the name of the enumeration type is not
6721 prepended to the enumerator.
6722
6723 There are two complexities. One is DW_AT_specification; in this
6724 case "parent" means the parent of the target of the specification,
6725 instead of the direct parent of the DIE. The other is compilers
6726 which do not emit DW_TAG_namespace; in this case we try to guess
6727 the fully qualified name of structure types from their members'
6728 linkage names. This must be done using the DIE's children rather
6729 than the children of any DW_AT_specification target. We only need
6730 to do this for structures at the top level, i.e. if the target of
6731 any DW_AT_specification (if any; otherwise the DIE itself) does not
6732 have a parent. */
6733
6734 /* Compute the scope prefix associated with PDI's parent, in
6735 compilation unit CU. The result will be allocated on CU's
6736 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6737 field. NULL is returned if no prefix is necessary. */
6738 static const char *
6739 partial_die_parent_scope (struct partial_die_info *pdi,
6740 struct dwarf2_cu *cu)
6741 {
6742 const char *grandparent_scope;
6743 struct partial_die_info *parent, *real_pdi;
6744
6745 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6746 then this means the parent of the specification DIE. */
6747
6748 real_pdi = pdi;
6749 while (real_pdi->has_specification)
6750 real_pdi = find_partial_die (real_pdi->spec_offset,
6751 real_pdi->spec_is_dwz, cu);
6752
6753 parent = real_pdi->die_parent;
6754 if (parent == NULL)
6755 return NULL;
6756
6757 if (parent->scope_set)
6758 return parent->scope;
6759
6760 fixup_partial_die (parent, cu);
6761
6762 grandparent_scope = partial_die_parent_scope (parent, cu);
6763
6764 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6765 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6766 Work around this problem here. */
6767 if (cu->language == language_cplus
6768 && parent->tag == DW_TAG_namespace
6769 && strcmp (parent->name, "::") == 0
6770 && grandparent_scope == NULL)
6771 {
6772 parent->scope = NULL;
6773 parent->scope_set = 1;
6774 return NULL;
6775 }
6776
6777 if (pdi->tag == DW_TAG_enumerator)
6778 /* Enumerators should not get the name of the enumeration as a prefix. */
6779 parent->scope = grandparent_scope;
6780 else if (parent->tag == DW_TAG_namespace
6781 || parent->tag == DW_TAG_module
6782 || parent->tag == DW_TAG_structure_type
6783 || parent->tag == DW_TAG_class_type
6784 || parent->tag == DW_TAG_interface_type
6785 || parent->tag == DW_TAG_union_type
6786 || parent->tag == DW_TAG_enumeration_type)
6787 {
6788 if (grandparent_scope == NULL)
6789 parent->scope = parent->name;
6790 else
6791 parent->scope = typename_concat (&cu->comp_unit_obstack,
6792 grandparent_scope,
6793 parent->name, 0, cu);
6794 }
6795 else
6796 {
6797 /* FIXME drow/2004-04-01: What should we be doing with
6798 function-local names? For partial symbols, we should probably be
6799 ignoring them. */
6800 complaint (&symfile_complaints,
6801 _("unhandled containing DIE tag %d for DIE at %d"),
6802 parent->tag, pdi->offset.sect_off);
6803 parent->scope = grandparent_scope;
6804 }
6805
6806 parent->scope_set = 1;
6807 return parent->scope;
6808 }
6809
6810 /* Return the fully scoped name associated with PDI, from compilation unit
6811 CU. The result will be allocated with malloc. */
6812
6813 static char *
6814 partial_die_full_name (struct partial_die_info *pdi,
6815 struct dwarf2_cu *cu)
6816 {
6817 const char *parent_scope;
6818
6819 /* If this is a template instantiation, we can not work out the
6820 template arguments from partial DIEs. So, unfortunately, we have
6821 to go through the full DIEs. At least any work we do building
6822 types here will be reused if full symbols are loaded later. */
6823 if (pdi->has_template_arguments)
6824 {
6825 fixup_partial_die (pdi, cu);
6826
6827 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6828 {
6829 struct die_info *die;
6830 struct attribute attr;
6831 struct dwarf2_cu *ref_cu = cu;
6832
6833 /* DW_FORM_ref_addr is using section offset. */
6834 attr.name = 0;
6835 attr.form = DW_FORM_ref_addr;
6836 attr.u.unsnd = pdi->offset.sect_off;
6837 die = follow_die_ref (NULL, &attr, &ref_cu);
6838
6839 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6840 }
6841 }
6842
6843 parent_scope = partial_die_parent_scope (pdi, cu);
6844 if (parent_scope == NULL)
6845 return NULL;
6846 else
6847 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6848 }
6849
6850 static void
6851 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6852 {
6853 struct objfile *objfile = cu->objfile;
6854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6855 CORE_ADDR addr = 0;
6856 const char *actual_name = NULL;
6857 CORE_ADDR baseaddr;
6858 char *built_actual_name;
6859
6860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6861
6862 built_actual_name = partial_die_full_name (pdi, cu);
6863 if (built_actual_name != NULL)
6864 actual_name = built_actual_name;
6865
6866 if (actual_name == NULL)
6867 actual_name = pdi->name;
6868
6869 switch (pdi->tag)
6870 {
6871 case DW_TAG_subprogram:
6872 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6873 if (pdi->is_external || cu->language == language_ada)
6874 {
6875 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6876 of the global scope. But in Ada, we want to be able to access
6877 nested procedures globally. So all Ada subprograms are stored
6878 in the global scope. */
6879 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6880 objfile); */
6881 add_psymbol_to_list (actual_name, strlen (actual_name),
6882 built_actual_name != NULL,
6883 VAR_DOMAIN, LOC_BLOCK,
6884 &objfile->global_psymbols,
6885 0, addr, cu->language, objfile);
6886 }
6887 else
6888 {
6889 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6890 objfile); */
6891 add_psymbol_to_list (actual_name, strlen (actual_name),
6892 built_actual_name != NULL,
6893 VAR_DOMAIN, LOC_BLOCK,
6894 &objfile->static_psymbols,
6895 0, addr, cu->language, objfile);
6896 }
6897 break;
6898 case DW_TAG_constant:
6899 {
6900 struct psymbol_allocation_list *list;
6901
6902 if (pdi->is_external)
6903 list = &objfile->global_psymbols;
6904 else
6905 list = &objfile->static_psymbols;
6906 add_psymbol_to_list (actual_name, strlen (actual_name),
6907 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6908 list, 0, 0, cu->language, objfile);
6909 }
6910 break;
6911 case DW_TAG_variable:
6912 if (pdi->d.locdesc)
6913 addr = decode_locdesc (pdi->d.locdesc, cu);
6914
6915 if (pdi->d.locdesc
6916 && addr == 0
6917 && !dwarf2_per_objfile->has_section_at_zero)
6918 {
6919 /* A global or static variable may also have been stripped
6920 out by the linker if unused, in which case its address
6921 will be nullified; do not add such variables into partial
6922 symbol table then. */
6923 }
6924 else if (pdi->is_external)
6925 {
6926 /* Global Variable.
6927 Don't enter into the minimal symbol tables as there is
6928 a minimal symbol table entry from the ELF symbols already.
6929 Enter into partial symbol table if it has a location
6930 descriptor or a type.
6931 If the location descriptor is missing, new_symbol will create
6932 a LOC_UNRESOLVED symbol, the address of the variable will then
6933 be determined from the minimal symbol table whenever the variable
6934 is referenced.
6935 The address for the partial symbol table entry is not
6936 used by GDB, but it comes in handy for debugging partial symbol
6937 table building. */
6938
6939 if (pdi->d.locdesc || pdi->has_type)
6940 add_psymbol_to_list (actual_name, strlen (actual_name),
6941 built_actual_name != NULL,
6942 VAR_DOMAIN, LOC_STATIC,
6943 &objfile->global_psymbols,
6944 0, addr + baseaddr,
6945 cu->language, objfile);
6946 }
6947 else
6948 {
6949 /* Static Variable. Skip symbols without location descriptors. */
6950 if (pdi->d.locdesc == NULL)
6951 {
6952 xfree (built_actual_name);
6953 return;
6954 }
6955 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6956 mst_file_data, objfile); */
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_STATIC,
6960 &objfile->static_psymbols,
6961 0, addr + baseaddr,
6962 cu->language, objfile);
6963 }
6964 break;
6965 case DW_TAG_typedef:
6966 case DW_TAG_base_type:
6967 case DW_TAG_subrange_type:
6968 add_psymbol_to_list (actual_name, strlen (actual_name),
6969 built_actual_name != NULL,
6970 VAR_DOMAIN, LOC_TYPEDEF,
6971 &objfile->static_psymbols,
6972 0, (CORE_ADDR) 0, cu->language, objfile);
6973 break;
6974 case DW_TAG_imported_declaration:
6975 case DW_TAG_namespace:
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
6977 built_actual_name != NULL,
6978 VAR_DOMAIN, LOC_TYPEDEF,
6979 &objfile->global_psymbols,
6980 0, (CORE_ADDR) 0, cu->language, objfile);
6981 break;
6982 case DW_TAG_module:
6983 add_psymbol_to_list (actual_name, strlen (actual_name),
6984 built_actual_name != NULL,
6985 MODULE_DOMAIN, LOC_TYPEDEF,
6986 &objfile->global_psymbols,
6987 0, (CORE_ADDR) 0, cu->language, objfile);
6988 break;
6989 case DW_TAG_class_type:
6990 case DW_TAG_interface_type:
6991 case DW_TAG_structure_type:
6992 case DW_TAG_union_type:
6993 case DW_TAG_enumeration_type:
6994 /* Skip external references. The DWARF standard says in the section
6995 about "Structure, Union, and Class Type Entries": "An incomplete
6996 structure, union or class type is represented by a structure,
6997 union or class entry that does not have a byte size attribute
6998 and that has a DW_AT_declaration attribute." */
6999 if (!pdi->has_byte_size && pdi->is_declaration)
7000 {
7001 xfree (built_actual_name);
7002 return;
7003 }
7004
7005 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7006 static vs. global. */
7007 add_psymbol_to_list (actual_name, strlen (actual_name),
7008 built_actual_name != NULL,
7009 STRUCT_DOMAIN, LOC_TYPEDEF,
7010 (cu->language == language_cplus
7011 || cu->language == language_java)
7012 ? &objfile->global_psymbols
7013 : &objfile->static_psymbols,
7014 0, (CORE_ADDR) 0, cu->language, objfile);
7015
7016 break;
7017 case DW_TAG_enumerator:
7018 add_psymbol_to_list (actual_name, strlen (actual_name),
7019 built_actual_name != NULL,
7020 VAR_DOMAIN, LOC_CONST,
7021 (cu->language == language_cplus
7022 || cu->language == language_java)
7023 ? &objfile->global_psymbols
7024 : &objfile->static_psymbols,
7025 0, (CORE_ADDR) 0, cu->language, objfile);
7026 break;
7027 default:
7028 break;
7029 }
7030
7031 xfree (built_actual_name);
7032 }
7033
7034 /* Read a partial die corresponding to a namespace; also, add a symbol
7035 corresponding to that namespace to the symbol table. NAMESPACE is
7036 the name of the enclosing namespace. */
7037
7038 static void
7039 add_partial_namespace (struct partial_die_info *pdi,
7040 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7041 int set_addrmap, struct dwarf2_cu *cu)
7042 {
7043 /* Add a symbol for the namespace. */
7044
7045 add_partial_symbol (pdi, cu);
7046
7047 /* Now scan partial symbols in that namespace. */
7048
7049 if (pdi->has_children)
7050 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7051 }
7052
7053 /* Read a partial die corresponding to a Fortran module. */
7054
7055 static void
7056 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7057 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7058 {
7059 /* Add a symbol for the namespace. */
7060
7061 add_partial_symbol (pdi, cu);
7062
7063 /* Now scan partial symbols in that module. */
7064
7065 if (pdi->has_children)
7066 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7067 }
7068
7069 /* Read a partial die corresponding to a subprogram and create a partial
7070 symbol for that subprogram. When the CU language allows it, this
7071 routine also defines a partial symbol for each nested subprogram
7072 that this subprogram contains. If SET_ADDRMAP is true, record the
7073 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7074 and highest PC values found in PDI.
7075
7076 PDI may also be a lexical block, in which case we simply search
7077 recursively for subprograms defined inside that lexical block.
7078 Again, this is only performed when the CU language allows this
7079 type of definitions. */
7080
7081 static void
7082 add_partial_subprogram (struct partial_die_info *pdi,
7083 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7084 int set_addrmap, struct dwarf2_cu *cu)
7085 {
7086 if (pdi->tag == DW_TAG_subprogram)
7087 {
7088 if (pdi->has_pc_info)
7089 {
7090 if (pdi->lowpc < *lowpc)
7091 *lowpc = pdi->lowpc;
7092 if (pdi->highpc > *highpc)
7093 *highpc = pdi->highpc;
7094 if (set_addrmap)
7095 {
7096 struct objfile *objfile = cu->objfile;
7097 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7098 CORE_ADDR baseaddr;
7099 CORE_ADDR highpc;
7100 CORE_ADDR lowpc;
7101
7102 baseaddr = ANOFFSET (objfile->section_offsets,
7103 SECT_OFF_TEXT (objfile));
7104 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7105 pdi->lowpc + baseaddr);
7106 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7107 pdi->highpc + baseaddr);
7108 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7109 cu->per_cu->v.psymtab);
7110 }
7111 }
7112
7113 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7114 {
7115 if (!pdi->is_declaration)
7116 /* Ignore subprogram DIEs that do not have a name, they are
7117 illegal. Do not emit a complaint at this point, we will
7118 do so when we convert this psymtab into a symtab. */
7119 if (pdi->name)
7120 add_partial_symbol (pdi, cu);
7121 }
7122 }
7123
7124 if (! pdi->has_children)
7125 return;
7126
7127 if (cu->language == language_ada)
7128 {
7129 pdi = pdi->die_child;
7130 while (pdi != NULL)
7131 {
7132 fixup_partial_die (pdi, cu);
7133 if (pdi->tag == DW_TAG_subprogram
7134 || pdi->tag == DW_TAG_lexical_block)
7135 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7136 pdi = pdi->die_sibling;
7137 }
7138 }
7139 }
7140
7141 /* Read a partial die corresponding to an enumeration type. */
7142
7143 static void
7144 add_partial_enumeration (struct partial_die_info *enum_pdi,
7145 struct dwarf2_cu *cu)
7146 {
7147 struct partial_die_info *pdi;
7148
7149 if (enum_pdi->name != NULL)
7150 add_partial_symbol (enum_pdi, cu);
7151
7152 pdi = enum_pdi->die_child;
7153 while (pdi)
7154 {
7155 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7156 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7157 else
7158 add_partial_symbol (pdi, cu);
7159 pdi = pdi->die_sibling;
7160 }
7161 }
7162
7163 /* Return the initial uleb128 in the die at INFO_PTR. */
7164
7165 static unsigned int
7166 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7167 {
7168 unsigned int bytes_read;
7169
7170 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7171 }
7172
7173 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7174 Return the corresponding abbrev, or NULL if the number is zero (indicating
7175 an empty DIE). In either case *BYTES_READ will be set to the length of
7176 the initial number. */
7177
7178 static struct abbrev_info *
7179 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7180 struct dwarf2_cu *cu)
7181 {
7182 bfd *abfd = cu->objfile->obfd;
7183 unsigned int abbrev_number;
7184 struct abbrev_info *abbrev;
7185
7186 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7187
7188 if (abbrev_number == 0)
7189 return NULL;
7190
7191 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7192 if (!abbrev)
7193 {
7194 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7195 " at offset 0x%x [in module %s]"),
7196 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7197 cu->header.offset.sect_off, bfd_get_filename (abfd));
7198 }
7199
7200 return abbrev;
7201 }
7202
7203 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7204 Returns a pointer to the end of a series of DIEs, terminated by an empty
7205 DIE. Any children of the skipped DIEs will also be skipped. */
7206
7207 static const gdb_byte *
7208 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7209 {
7210 struct dwarf2_cu *cu = reader->cu;
7211 struct abbrev_info *abbrev;
7212 unsigned int bytes_read;
7213
7214 while (1)
7215 {
7216 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7217 if (abbrev == NULL)
7218 return info_ptr + bytes_read;
7219 else
7220 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7221 }
7222 }
7223
7224 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7226 abbrev corresponding to that skipped uleb128 should be passed in
7227 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7228 children. */
7229
7230 static const gdb_byte *
7231 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7232 struct abbrev_info *abbrev)
7233 {
7234 unsigned int bytes_read;
7235 struct attribute attr;
7236 bfd *abfd = reader->abfd;
7237 struct dwarf2_cu *cu = reader->cu;
7238 const gdb_byte *buffer = reader->buffer;
7239 const gdb_byte *buffer_end = reader->buffer_end;
7240 const gdb_byte *start_info_ptr = info_ptr;
7241 unsigned int form, i;
7242
7243 for (i = 0; i < abbrev->num_attrs; i++)
7244 {
7245 /* The only abbrev we care about is DW_AT_sibling. */
7246 if (abbrev->attrs[i].name == DW_AT_sibling)
7247 {
7248 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7249 if (attr.form == DW_FORM_ref_addr)
7250 complaint (&symfile_complaints,
7251 _("ignoring absolute DW_AT_sibling"));
7252 else
7253 {
7254 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7255 const gdb_byte *sibling_ptr = buffer + off;
7256
7257 if (sibling_ptr < info_ptr)
7258 complaint (&symfile_complaints,
7259 _("DW_AT_sibling points backwards"));
7260 else if (sibling_ptr > reader->buffer_end)
7261 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7262 else
7263 return sibling_ptr;
7264 }
7265 }
7266
7267 /* If it isn't DW_AT_sibling, skip this attribute. */
7268 form = abbrev->attrs[i].form;
7269 skip_attribute:
7270 switch (form)
7271 {
7272 case DW_FORM_ref_addr:
7273 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7274 and later it is offset sized. */
7275 if (cu->header.version == 2)
7276 info_ptr += cu->header.addr_size;
7277 else
7278 info_ptr += cu->header.offset_size;
7279 break;
7280 case DW_FORM_GNU_ref_alt:
7281 info_ptr += cu->header.offset_size;
7282 break;
7283 case DW_FORM_addr:
7284 info_ptr += cu->header.addr_size;
7285 break;
7286 case DW_FORM_data1:
7287 case DW_FORM_ref1:
7288 case DW_FORM_flag:
7289 info_ptr += 1;
7290 break;
7291 case DW_FORM_flag_present:
7292 break;
7293 case DW_FORM_data2:
7294 case DW_FORM_ref2:
7295 info_ptr += 2;
7296 break;
7297 case DW_FORM_data4:
7298 case DW_FORM_ref4:
7299 info_ptr += 4;
7300 break;
7301 case DW_FORM_data8:
7302 case DW_FORM_ref8:
7303 case DW_FORM_ref_sig8:
7304 info_ptr += 8;
7305 break;
7306 case DW_FORM_string:
7307 read_direct_string (abfd, info_ptr, &bytes_read);
7308 info_ptr += bytes_read;
7309 break;
7310 case DW_FORM_sec_offset:
7311 case DW_FORM_strp:
7312 case DW_FORM_GNU_strp_alt:
7313 info_ptr += cu->header.offset_size;
7314 break;
7315 case DW_FORM_exprloc:
7316 case DW_FORM_block:
7317 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7318 info_ptr += bytes_read;
7319 break;
7320 case DW_FORM_block1:
7321 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7322 break;
7323 case DW_FORM_block2:
7324 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7325 break;
7326 case DW_FORM_block4:
7327 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7328 break;
7329 case DW_FORM_sdata:
7330 case DW_FORM_udata:
7331 case DW_FORM_ref_udata:
7332 case DW_FORM_GNU_addr_index:
7333 case DW_FORM_GNU_str_index:
7334 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7335 break;
7336 case DW_FORM_indirect:
7337 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7338 info_ptr += bytes_read;
7339 /* We need to continue parsing from here, so just go back to
7340 the top. */
7341 goto skip_attribute;
7342
7343 default:
7344 error (_("Dwarf Error: Cannot handle %s "
7345 "in DWARF reader [in module %s]"),
7346 dwarf_form_name (form),
7347 bfd_get_filename (abfd));
7348 }
7349 }
7350
7351 if (abbrev->has_children)
7352 return skip_children (reader, info_ptr);
7353 else
7354 return info_ptr;
7355 }
7356
7357 /* Locate ORIG_PDI's sibling.
7358 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7359
7360 static const gdb_byte *
7361 locate_pdi_sibling (const struct die_reader_specs *reader,
7362 struct partial_die_info *orig_pdi,
7363 const gdb_byte *info_ptr)
7364 {
7365 /* Do we know the sibling already? */
7366
7367 if (orig_pdi->sibling)
7368 return orig_pdi->sibling;
7369
7370 /* Are there any children to deal with? */
7371
7372 if (!orig_pdi->has_children)
7373 return info_ptr;
7374
7375 /* Skip the children the long way. */
7376
7377 return skip_children (reader, info_ptr);
7378 }
7379
7380 /* Expand this partial symbol table into a full symbol table. SELF is
7381 not NULL. */
7382
7383 static void
7384 dwarf2_read_symtab (struct partial_symtab *self,
7385 struct objfile *objfile)
7386 {
7387 if (self->readin)
7388 {
7389 warning (_("bug: psymtab for %s is already read in."),
7390 self->filename);
7391 }
7392 else
7393 {
7394 if (info_verbose)
7395 {
7396 printf_filtered (_("Reading in symbols for %s..."),
7397 self->filename);
7398 gdb_flush (gdb_stdout);
7399 }
7400
7401 /* Restore our global data. */
7402 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7403
7404 /* If this psymtab is constructed from a debug-only objfile, the
7405 has_section_at_zero flag will not necessarily be correct. We
7406 can get the correct value for this flag by looking at the data
7407 associated with the (presumably stripped) associated objfile. */
7408 if (objfile->separate_debug_objfile_backlink)
7409 {
7410 struct dwarf2_per_objfile *dpo_backlink
7411 = objfile_data (objfile->separate_debug_objfile_backlink,
7412 dwarf2_objfile_data_key);
7413
7414 dwarf2_per_objfile->has_section_at_zero
7415 = dpo_backlink->has_section_at_zero;
7416 }
7417
7418 dwarf2_per_objfile->reading_partial_symbols = 0;
7419
7420 psymtab_to_symtab_1 (self);
7421
7422 /* Finish up the debug error message. */
7423 if (info_verbose)
7424 printf_filtered (_("done.\n"));
7425 }
7426
7427 process_cu_includes ();
7428 }
7429 \f
7430 /* Reading in full CUs. */
7431
7432 /* Add PER_CU to the queue. */
7433
7434 static void
7435 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7436 enum language pretend_language)
7437 {
7438 struct dwarf2_queue_item *item;
7439
7440 per_cu->queued = 1;
7441 item = xmalloc (sizeof (*item));
7442 item->per_cu = per_cu;
7443 item->pretend_language = pretend_language;
7444 item->next = NULL;
7445
7446 if (dwarf2_queue == NULL)
7447 dwarf2_queue = item;
7448 else
7449 dwarf2_queue_tail->next = item;
7450
7451 dwarf2_queue_tail = item;
7452 }
7453
7454 /* If PER_CU is not yet queued, add it to the queue.
7455 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7456 dependency.
7457 The result is non-zero if PER_CU was queued, otherwise the result is zero
7458 meaning either PER_CU is already queued or it is already loaded.
7459
7460 N.B. There is an invariant here that if a CU is queued then it is loaded.
7461 The caller is required to load PER_CU if we return non-zero. */
7462
7463 static int
7464 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7465 struct dwarf2_per_cu_data *per_cu,
7466 enum language pretend_language)
7467 {
7468 /* We may arrive here during partial symbol reading, if we need full
7469 DIEs to process an unusual case (e.g. template arguments). Do
7470 not queue PER_CU, just tell our caller to load its DIEs. */
7471 if (dwarf2_per_objfile->reading_partial_symbols)
7472 {
7473 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7474 return 1;
7475 return 0;
7476 }
7477
7478 /* Mark the dependence relation so that we don't flush PER_CU
7479 too early. */
7480 if (dependent_cu != NULL)
7481 dwarf2_add_dependence (dependent_cu, per_cu);
7482
7483 /* If it's already on the queue, we have nothing to do. */
7484 if (per_cu->queued)
7485 return 0;
7486
7487 /* If the compilation unit is already loaded, just mark it as
7488 used. */
7489 if (per_cu->cu != NULL)
7490 {
7491 per_cu->cu->last_used = 0;
7492 return 0;
7493 }
7494
7495 /* Add it to the queue. */
7496 queue_comp_unit (per_cu, pretend_language);
7497
7498 return 1;
7499 }
7500
7501 /* Process the queue. */
7502
7503 static void
7504 process_queue (void)
7505 {
7506 struct dwarf2_queue_item *item, *next_item;
7507
7508 if (dwarf2_read_debug)
7509 {
7510 fprintf_unfiltered (gdb_stdlog,
7511 "Expanding one or more symtabs of objfile %s ...\n",
7512 objfile_name (dwarf2_per_objfile->objfile));
7513 }
7514
7515 /* The queue starts out with one item, but following a DIE reference
7516 may load a new CU, adding it to the end of the queue. */
7517 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7518 {
7519 if (dwarf2_per_objfile->using_index
7520 ? !item->per_cu->v.quick->compunit_symtab
7521 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7522 {
7523 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7524 unsigned int debug_print_threshold;
7525 char buf[100];
7526
7527 if (per_cu->is_debug_types)
7528 {
7529 struct signatured_type *sig_type =
7530 (struct signatured_type *) per_cu;
7531
7532 sprintf (buf, "TU %s at offset 0x%x",
7533 hex_string (sig_type->signature),
7534 per_cu->offset.sect_off);
7535 /* There can be 100s of TUs.
7536 Only print them in verbose mode. */
7537 debug_print_threshold = 2;
7538 }
7539 else
7540 {
7541 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7542 debug_print_threshold = 1;
7543 }
7544
7545 if (dwarf2_read_debug >= debug_print_threshold)
7546 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7547
7548 if (per_cu->is_debug_types)
7549 process_full_type_unit (per_cu, item->pretend_language);
7550 else
7551 process_full_comp_unit (per_cu, item->pretend_language);
7552
7553 if (dwarf2_read_debug >= debug_print_threshold)
7554 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7555 }
7556
7557 item->per_cu->queued = 0;
7558 next_item = item->next;
7559 xfree (item);
7560 }
7561
7562 dwarf2_queue_tail = NULL;
7563
7564 if (dwarf2_read_debug)
7565 {
7566 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7567 objfile_name (dwarf2_per_objfile->objfile));
7568 }
7569 }
7570
7571 /* Free all allocated queue entries. This function only releases anything if
7572 an error was thrown; if the queue was processed then it would have been
7573 freed as we went along. */
7574
7575 static void
7576 dwarf2_release_queue (void *dummy)
7577 {
7578 struct dwarf2_queue_item *item, *last;
7579
7580 item = dwarf2_queue;
7581 while (item)
7582 {
7583 /* Anything still marked queued is likely to be in an
7584 inconsistent state, so discard it. */
7585 if (item->per_cu->queued)
7586 {
7587 if (item->per_cu->cu != NULL)
7588 free_one_cached_comp_unit (item->per_cu);
7589 item->per_cu->queued = 0;
7590 }
7591
7592 last = item;
7593 item = item->next;
7594 xfree (last);
7595 }
7596
7597 dwarf2_queue = dwarf2_queue_tail = NULL;
7598 }
7599
7600 /* Read in full symbols for PST, and anything it depends on. */
7601
7602 static void
7603 psymtab_to_symtab_1 (struct partial_symtab *pst)
7604 {
7605 struct dwarf2_per_cu_data *per_cu;
7606 int i;
7607
7608 if (pst->readin)
7609 return;
7610
7611 for (i = 0; i < pst->number_of_dependencies; i++)
7612 if (!pst->dependencies[i]->readin
7613 && pst->dependencies[i]->user == NULL)
7614 {
7615 /* Inform about additional files that need to be read in. */
7616 if (info_verbose)
7617 {
7618 /* FIXME: i18n: Need to make this a single string. */
7619 fputs_filtered (" ", gdb_stdout);
7620 wrap_here ("");
7621 fputs_filtered ("and ", gdb_stdout);
7622 wrap_here ("");
7623 printf_filtered ("%s...", pst->dependencies[i]->filename);
7624 wrap_here (""); /* Flush output. */
7625 gdb_flush (gdb_stdout);
7626 }
7627 psymtab_to_symtab_1 (pst->dependencies[i]);
7628 }
7629
7630 per_cu = pst->read_symtab_private;
7631
7632 if (per_cu == NULL)
7633 {
7634 /* It's an include file, no symbols to read for it.
7635 Everything is in the parent symtab. */
7636 pst->readin = 1;
7637 return;
7638 }
7639
7640 dw2_do_instantiate_symtab (per_cu);
7641 }
7642
7643 /* Trivial hash function for die_info: the hash value of a DIE
7644 is its offset in .debug_info for this objfile. */
7645
7646 static hashval_t
7647 die_hash (const void *item)
7648 {
7649 const struct die_info *die = item;
7650
7651 return die->offset.sect_off;
7652 }
7653
7654 /* Trivial comparison function for die_info structures: two DIEs
7655 are equal if they have the same offset. */
7656
7657 static int
7658 die_eq (const void *item_lhs, const void *item_rhs)
7659 {
7660 const struct die_info *die_lhs = item_lhs;
7661 const struct die_info *die_rhs = item_rhs;
7662
7663 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7664 }
7665
7666 /* die_reader_func for load_full_comp_unit.
7667 This is identical to read_signatured_type_reader,
7668 but is kept separate for now. */
7669
7670 static void
7671 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7672 const gdb_byte *info_ptr,
7673 struct die_info *comp_unit_die,
7674 int has_children,
7675 void *data)
7676 {
7677 struct dwarf2_cu *cu = reader->cu;
7678 enum language *language_ptr = data;
7679
7680 gdb_assert (cu->die_hash == NULL);
7681 cu->die_hash =
7682 htab_create_alloc_ex (cu->header.length / 12,
7683 die_hash,
7684 die_eq,
7685 NULL,
7686 &cu->comp_unit_obstack,
7687 hashtab_obstack_allocate,
7688 dummy_obstack_deallocate);
7689
7690 if (has_children)
7691 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7692 &info_ptr, comp_unit_die);
7693 cu->dies = comp_unit_die;
7694 /* comp_unit_die is not stored in die_hash, no need. */
7695
7696 /* We try not to read any attributes in this function, because not
7697 all CUs needed for references have been loaded yet, and symbol
7698 table processing isn't initialized. But we have to set the CU language,
7699 or we won't be able to build types correctly.
7700 Similarly, if we do not read the producer, we can not apply
7701 producer-specific interpretation. */
7702 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7703 }
7704
7705 /* Load the DIEs associated with PER_CU into memory. */
7706
7707 static void
7708 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7709 enum language pretend_language)
7710 {
7711 gdb_assert (! this_cu->is_debug_types);
7712
7713 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7714 load_full_comp_unit_reader, &pretend_language);
7715 }
7716
7717 /* Add a DIE to the delayed physname list. */
7718
7719 static void
7720 add_to_method_list (struct type *type, int fnfield_index, int index,
7721 const char *name, struct die_info *die,
7722 struct dwarf2_cu *cu)
7723 {
7724 struct delayed_method_info mi;
7725 mi.type = type;
7726 mi.fnfield_index = fnfield_index;
7727 mi.index = index;
7728 mi.name = name;
7729 mi.die = die;
7730 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7731 }
7732
7733 /* A cleanup for freeing the delayed method list. */
7734
7735 static void
7736 free_delayed_list (void *ptr)
7737 {
7738 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7739 if (cu->method_list != NULL)
7740 {
7741 VEC_free (delayed_method_info, cu->method_list);
7742 cu->method_list = NULL;
7743 }
7744 }
7745
7746 /* Compute the physnames of any methods on the CU's method list.
7747
7748 The computation of method physnames is delayed in order to avoid the
7749 (bad) condition that one of the method's formal parameters is of an as yet
7750 incomplete type. */
7751
7752 static void
7753 compute_delayed_physnames (struct dwarf2_cu *cu)
7754 {
7755 int i;
7756 struct delayed_method_info *mi;
7757 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7758 {
7759 const char *physname;
7760 struct fn_fieldlist *fn_flp
7761 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7762 physname = dwarf2_physname (mi->name, mi->die, cu);
7763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7764 = physname ? physname : "";
7765 }
7766 }
7767
7768 /* Go objects should be embedded in a DW_TAG_module DIE,
7769 and it's not clear if/how imported objects will appear.
7770 To keep Go support simple until that's worked out,
7771 go back through what we've read and create something usable.
7772 We could do this while processing each DIE, and feels kinda cleaner,
7773 but that way is more invasive.
7774 This is to, for example, allow the user to type "p var" or "b main"
7775 without having to specify the package name, and allow lookups
7776 of module.object to work in contexts that use the expression
7777 parser. */
7778
7779 static void
7780 fixup_go_packaging (struct dwarf2_cu *cu)
7781 {
7782 char *package_name = NULL;
7783 struct pending *list;
7784 int i;
7785
7786 for (list = global_symbols; list != NULL; list = list->next)
7787 {
7788 for (i = 0; i < list->nsyms; ++i)
7789 {
7790 struct symbol *sym = list->symbol[i];
7791
7792 if (SYMBOL_LANGUAGE (sym) == language_go
7793 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7794 {
7795 char *this_package_name = go_symbol_package_name (sym);
7796
7797 if (this_package_name == NULL)
7798 continue;
7799 if (package_name == NULL)
7800 package_name = this_package_name;
7801 else
7802 {
7803 if (strcmp (package_name, this_package_name) != 0)
7804 complaint (&symfile_complaints,
7805 _("Symtab %s has objects from two different Go packages: %s and %s"),
7806 (symbol_symtab (sym) != NULL
7807 ? symtab_to_filename_for_display
7808 (symbol_symtab (sym))
7809 : objfile_name (cu->objfile)),
7810 this_package_name, package_name);
7811 xfree (this_package_name);
7812 }
7813 }
7814 }
7815 }
7816
7817 if (package_name != NULL)
7818 {
7819 struct objfile *objfile = cu->objfile;
7820 const char *saved_package_name
7821 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7822 package_name,
7823 strlen (package_name));
7824 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7825 saved_package_name, objfile);
7826 struct symbol *sym;
7827
7828 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7829
7830 sym = allocate_symbol (objfile);
7831 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7832 SYMBOL_SET_NAMES (sym, saved_package_name,
7833 strlen (saved_package_name), 0, objfile);
7834 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7835 e.g., "main" finds the "main" module and not C's main(). */
7836 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7837 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7838 SYMBOL_TYPE (sym) = type;
7839
7840 add_symbol_to_list (sym, &global_symbols);
7841
7842 xfree (package_name);
7843 }
7844 }
7845
7846 /* Return the symtab for PER_CU. This works properly regardless of
7847 whether we're using the index or psymtabs. */
7848
7849 static struct compunit_symtab *
7850 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7851 {
7852 return (dwarf2_per_objfile->using_index
7853 ? per_cu->v.quick->compunit_symtab
7854 : per_cu->v.psymtab->compunit_symtab);
7855 }
7856
7857 /* A helper function for computing the list of all symbol tables
7858 included by PER_CU. */
7859
7860 static void
7861 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7862 htab_t all_children, htab_t all_type_symtabs,
7863 struct dwarf2_per_cu_data *per_cu,
7864 struct compunit_symtab *immediate_parent)
7865 {
7866 void **slot;
7867 int ix;
7868 struct compunit_symtab *cust;
7869 struct dwarf2_per_cu_data *iter;
7870
7871 slot = htab_find_slot (all_children, per_cu, INSERT);
7872 if (*slot != NULL)
7873 {
7874 /* This inclusion and its children have been processed. */
7875 return;
7876 }
7877
7878 *slot = per_cu;
7879 /* Only add a CU if it has a symbol table. */
7880 cust = get_compunit_symtab (per_cu);
7881 if (cust != NULL)
7882 {
7883 /* If this is a type unit only add its symbol table if we haven't
7884 seen it yet (type unit per_cu's can share symtabs). */
7885 if (per_cu->is_debug_types)
7886 {
7887 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7888 if (*slot == NULL)
7889 {
7890 *slot = cust;
7891 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7892 if (cust->user == NULL)
7893 cust->user = immediate_parent;
7894 }
7895 }
7896 else
7897 {
7898 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7899 if (cust->user == NULL)
7900 cust->user = immediate_parent;
7901 }
7902 }
7903
7904 for (ix = 0;
7905 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7906 ++ix)
7907 {
7908 recursively_compute_inclusions (result, all_children,
7909 all_type_symtabs, iter, cust);
7910 }
7911 }
7912
7913 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7914 PER_CU. */
7915
7916 static void
7917 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7918 {
7919 gdb_assert (! per_cu->is_debug_types);
7920
7921 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7922 {
7923 int ix, len;
7924 struct dwarf2_per_cu_data *per_cu_iter;
7925 struct compunit_symtab *compunit_symtab_iter;
7926 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7927 htab_t all_children, all_type_symtabs;
7928 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7929
7930 /* If we don't have a symtab, we can just skip this case. */
7931 if (cust == NULL)
7932 return;
7933
7934 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7935 NULL, xcalloc, xfree);
7936 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7937 NULL, xcalloc, xfree);
7938
7939 for (ix = 0;
7940 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7941 ix, per_cu_iter);
7942 ++ix)
7943 {
7944 recursively_compute_inclusions (&result_symtabs, all_children,
7945 all_type_symtabs, per_cu_iter,
7946 cust);
7947 }
7948
7949 /* Now we have a transitive closure of all the included symtabs. */
7950 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7951 cust->includes
7952 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7953 (len + 1) * sizeof (struct symtab *));
7954 for (ix = 0;
7955 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7956 compunit_symtab_iter);
7957 ++ix)
7958 cust->includes[ix] = compunit_symtab_iter;
7959 cust->includes[len] = NULL;
7960
7961 VEC_free (compunit_symtab_ptr, result_symtabs);
7962 htab_delete (all_children);
7963 htab_delete (all_type_symtabs);
7964 }
7965 }
7966
7967 /* Compute the 'includes' field for the symtabs of all the CUs we just
7968 read. */
7969
7970 static void
7971 process_cu_includes (void)
7972 {
7973 int ix;
7974 struct dwarf2_per_cu_data *iter;
7975
7976 for (ix = 0;
7977 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7978 ix, iter);
7979 ++ix)
7980 {
7981 if (! iter->is_debug_types)
7982 compute_compunit_symtab_includes (iter);
7983 }
7984
7985 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7986 }
7987
7988 /* Generate full symbol information for PER_CU, whose DIEs have
7989 already been loaded into memory. */
7990
7991 static void
7992 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7993 enum language pretend_language)
7994 {
7995 struct dwarf2_cu *cu = per_cu->cu;
7996 struct objfile *objfile = per_cu->objfile;
7997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7998 CORE_ADDR lowpc, highpc;
7999 struct compunit_symtab *cust;
8000 struct cleanup *back_to, *delayed_list_cleanup;
8001 CORE_ADDR baseaddr;
8002 struct block *static_block;
8003 CORE_ADDR addr;
8004
8005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8006
8007 buildsym_init ();
8008 back_to = make_cleanup (really_free_pendings, NULL);
8009 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8010
8011 cu->list_in_scope = &file_symbols;
8012
8013 cu->language = pretend_language;
8014 cu->language_defn = language_def (cu->language);
8015
8016 /* Do line number decoding in read_file_scope () */
8017 process_die (cu->dies, cu);
8018
8019 /* For now fudge the Go package. */
8020 if (cu->language == language_go)
8021 fixup_go_packaging (cu);
8022
8023 /* Now that we have processed all the DIEs in the CU, all the types
8024 should be complete, and it should now be safe to compute all of the
8025 physnames. */
8026 compute_delayed_physnames (cu);
8027 do_cleanups (delayed_list_cleanup);
8028
8029 /* Some compilers don't define a DW_AT_high_pc attribute for the
8030 compilation unit. If the DW_AT_high_pc is missing, synthesize
8031 it, by scanning the DIE's below the compilation unit. */
8032 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8033
8034 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8035 static_block = end_symtab_get_static_block (addr, 0, 1);
8036
8037 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8038 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8039 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8040 addrmap to help ensure it has an accurate map of pc values belonging to
8041 this comp unit. */
8042 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8043
8044 cust = end_symtab_from_static_block (static_block,
8045 SECT_OFF_TEXT (objfile), 0);
8046
8047 if (cust != NULL)
8048 {
8049 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8050
8051 /* Set symtab language to language from DW_AT_language. If the
8052 compilation is from a C file generated by language preprocessors, do
8053 not set the language if it was already deduced by start_subfile. */
8054 if (!(cu->language == language_c
8055 && COMPUNIT_FILETABS (cust)->language != language_c))
8056 COMPUNIT_FILETABS (cust)->language = cu->language;
8057
8058 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8059 produce DW_AT_location with location lists but it can be possibly
8060 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8061 there were bugs in prologue debug info, fixed later in GCC-4.5
8062 by "unwind info for epilogues" patch (which is not directly related).
8063
8064 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8065 needed, it would be wrong due to missing DW_AT_producer there.
8066
8067 Still one can confuse GDB by using non-standard GCC compilation
8068 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8069 */
8070 if (cu->has_loclist && gcc_4_minor >= 5)
8071 cust->locations_valid = 1;
8072
8073 if (gcc_4_minor >= 5)
8074 cust->epilogue_unwind_valid = 1;
8075
8076 cust->call_site_htab = cu->call_site_htab;
8077 }
8078
8079 if (dwarf2_per_objfile->using_index)
8080 per_cu->v.quick->compunit_symtab = cust;
8081 else
8082 {
8083 struct partial_symtab *pst = per_cu->v.psymtab;
8084 pst->compunit_symtab = cust;
8085 pst->readin = 1;
8086 }
8087
8088 /* Push it for inclusion processing later. */
8089 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8090
8091 do_cleanups (back_to);
8092 }
8093
8094 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8095 already been loaded into memory. */
8096
8097 static void
8098 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8099 enum language pretend_language)
8100 {
8101 struct dwarf2_cu *cu = per_cu->cu;
8102 struct objfile *objfile = per_cu->objfile;
8103 struct compunit_symtab *cust;
8104 struct cleanup *back_to, *delayed_list_cleanup;
8105 struct signatured_type *sig_type;
8106
8107 gdb_assert (per_cu->is_debug_types);
8108 sig_type = (struct signatured_type *) per_cu;
8109
8110 buildsym_init ();
8111 back_to = make_cleanup (really_free_pendings, NULL);
8112 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8113
8114 cu->list_in_scope = &file_symbols;
8115
8116 cu->language = pretend_language;
8117 cu->language_defn = language_def (cu->language);
8118
8119 /* The symbol tables are set up in read_type_unit_scope. */
8120 process_die (cu->dies, cu);
8121
8122 /* For now fudge the Go package. */
8123 if (cu->language == language_go)
8124 fixup_go_packaging (cu);
8125
8126 /* Now that we have processed all the DIEs in the CU, all the types
8127 should be complete, and it should now be safe to compute all of the
8128 physnames. */
8129 compute_delayed_physnames (cu);
8130 do_cleanups (delayed_list_cleanup);
8131
8132 /* TUs share symbol tables.
8133 If this is the first TU to use this symtab, complete the construction
8134 of it with end_expandable_symtab. Otherwise, complete the addition of
8135 this TU's symbols to the existing symtab. */
8136 if (sig_type->type_unit_group->compunit_symtab == NULL)
8137 {
8138 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8139 sig_type->type_unit_group->compunit_symtab = cust;
8140
8141 if (cust != NULL)
8142 {
8143 /* Set symtab language to language from DW_AT_language. If the
8144 compilation is from a C file generated by language preprocessors,
8145 do not set the language if it was already deduced by
8146 start_subfile. */
8147 if (!(cu->language == language_c
8148 && COMPUNIT_FILETABS (cust)->language != language_c))
8149 COMPUNIT_FILETABS (cust)->language = cu->language;
8150 }
8151 }
8152 else
8153 {
8154 augment_type_symtab ();
8155 cust = sig_type->type_unit_group->compunit_symtab;
8156 }
8157
8158 if (dwarf2_per_objfile->using_index)
8159 per_cu->v.quick->compunit_symtab = cust;
8160 else
8161 {
8162 struct partial_symtab *pst = per_cu->v.psymtab;
8163 pst->compunit_symtab = cust;
8164 pst->readin = 1;
8165 }
8166
8167 do_cleanups (back_to);
8168 }
8169
8170 /* Process an imported unit DIE. */
8171
8172 static void
8173 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8174 {
8175 struct attribute *attr;
8176
8177 /* For now we don't handle imported units in type units. */
8178 if (cu->per_cu->is_debug_types)
8179 {
8180 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8181 " supported in type units [in module %s]"),
8182 objfile_name (cu->objfile));
8183 }
8184
8185 attr = dwarf2_attr (die, DW_AT_import, cu);
8186 if (attr != NULL)
8187 {
8188 struct dwarf2_per_cu_data *per_cu;
8189 struct symtab *imported_symtab;
8190 sect_offset offset;
8191 int is_dwz;
8192
8193 offset = dwarf2_get_ref_die_offset (attr);
8194 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8195 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8196
8197 /* If necessary, add it to the queue and load its DIEs. */
8198 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8199 load_full_comp_unit (per_cu, cu->language);
8200
8201 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8202 per_cu);
8203 }
8204 }
8205
8206 /* Reset the in_process bit of a die. */
8207
8208 static void
8209 reset_die_in_process (void *arg)
8210 {
8211 struct die_info *die = arg;
8212
8213 die->in_process = 0;
8214 }
8215
8216 /* Process a die and its children. */
8217
8218 static void
8219 process_die (struct die_info *die, struct dwarf2_cu *cu)
8220 {
8221 struct cleanup *in_process;
8222
8223 /* We should only be processing those not already in process. */
8224 gdb_assert (!die->in_process);
8225
8226 die->in_process = 1;
8227 in_process = make_cleanup (reset_die_in_process,die);
8228
8229 switch (die->tag)
8230 {
8231 case DW_TAG_padding:
8232 break;
8233 case DW_TAG_compile_unit:
8234 case DW_TAG_partial_unit:
8235 read_file_scope (die, cu);
8236 break;
8237 case DW_TAG_type_unit:
8238 read_type_unit_scope (die, cu);
8239 break;
8240 case DW_TAG_subprogram:
8241 case DW_TAG_inlined_subroutine:
8242 read_func_scope (die, cu);
8243 break;
8244 case DW_TAG_lexical_block:
8245 case DW_TAG_try_block:
8246 case DW_TAG_catch_block:
8247 read_lexical_block_scope (die, cu);
8248 break;
8249 case DW_TAG_GNU_call_site:
8250 read_call_site_scope (die, cu);
8251 break;
8252 case DW_TAG_class_type:
8253 case DW_TAG_interface_type:
8254 case DW_TAG_structure_type:
8255 case DW_TAG_union_type:
8256 process_structure_scope (die, cu);
8257 break;
8258 case DW_TAG_enumeration_type:
8259 process_enumeration_scope (die, cu);
8260 break;
8261
8262 /* These dies have a type, but processing them does not create
8263 a symbol or recurse to process the children. Therefore we can
8264 read them on-demand through read_type_die. */
8265 case DW_TAG_subroutine_type:
8266 case DW_TAG_set_type:
8267 case DW_TAG_array_type:
8268 case DW_TAG_pointer_type:
8269 case DW_TAG_ptr_to_member_type:
8270 case DW_TAG_reference_type:
8271 case DW_TAG_string_type:
8272 break;
8273
8274 case DW_TAG_base_type:
8275 case DW_TAG_subrange_type:
8276 case DW_TAG_typedef:
8277 /* Add a typedef symbol for the type definition, if it has a
8278 DW_AT_name. */
8279 new_symbol (die, read_type_die (die, cu), cu);
8280 break;
8281 case DW_TAG_common_block:
8282 read_common_block (die, cu);
8283 break;
8284 case DW_TAG_common_inclusion:
8285 break;
8286 case DW_TAG_namespace:
8287 cu->processing_has_namespace_info = 1;
8288 read_namespace (die, cu);
8289 break;
8290 case DW_TAG_module:
8291 cu->processing_has_namespace_info = 1;
8292 read_module (die, cu);
8293 break;
8294 case DW_TAG_imported_declaration:
8295 cu->processing_has_namespace_info = 1;
8296 if (read_namespace_alias (die, cu))
8297 break;
8298 /* The declaration is not a global namespace alias: fall through. */
8299 case DW_TAG_imported_module:
8300 cu->processing_has_namespace_info = 1;
8301 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8302 || cu->language != language_fortran))
8303 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8304 dwarf_tag_name (die->tag));
8305 read_import_statement (die, cu);
8306 break;
8307
8308 case DW_TAG_imported_unit:
8309 process_imported_unit_die (die, cu);
8310 break;
8311
8312 default:
8313 new_symbol (die, NULL, cu);
8314 break;
8315 }
8316
8317 do_cleanups (in_process);
8318 }
8319 \f
8320 /* DWARF name computation. */
8321
8322 /* A helper function for dwarf2_compute_name which determines whether DIE
8323 needs to have the name of the scope prepended to the name listed in the
8324 die. */
8325
8326 static int
8327 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8328 {
8329 struct attribute *attr;
8330
8331 switch (die->tag)
8332 {
8333 case DW_TAG_namespace:
8334 case DW_TAG_typedef:
8335 case DW_TAG_class_type:
8336 case DW_TAG_interface_type:
8337 case DW_TAG_structure_type:
8338 case DW_TAG_union_type:
8339 case DW_TAG_enumeration_type:
8340 case DW_TAG_enumerator:
8341 case DW_TAG_subprogram:
8342 case DW_TAG_member:
8343 case DW_TAG_imported_declaration:
8344 return 1;
8345
8346 case DW_TAG_variable:
8347 case DW_TAG_constant:
8348 /* We only need to prefix "globally" visible variables. These include
8349 any variable marked with DW_AT_external or any variable that
8350 lives in a namespace. [Variables in anonymous namespaces
8351 require prefixing, but they are not DW_AT_external.] */
8352
8353 if (dwarf2_attr (die, DW_AT_specification, cu))
8354 {
8355 struct dwarf2_cu *spec_cu = cu;
8356
8357 return die_needs_namespace (die_specification (die, &spec_cu),
8358 spec_cu);
8359 }
8360
8361 attr = dwarf2_attr (die, DW_AT_external, cu);
8362 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8363 && die->parent->tag != DW_TAG_module)
8364 return 0;
8365 /* A variable in a lexical block of some kind does not need a
8366 namespace, even though in C++ such variables may be external
8367 and have a mangled name. */
8368 if (die->parent->tag == DW_TAG_lexical_block
8369 || die->parent->tag == DW_TAG_try_block
8370 || die->parent->tag == DW_TAG_catch_block
8371 || die->parent->tag == DW_TAG_subprogram)
8372 return 0;
8373 return 1;
8374
8375 default:
8376 return 0;
8377 }
8378 }
8379
8380 /* Retrieve the last character from a mem_file. */
8381
8382 static void
8383 do_ui_file_peek_last (void *object, const char *buffer, long length)
8384 {
8385 char *last_char_p = (char *) object;
8386
8387 if (length > 0)
8388 *last_char_p = buffer[length - 1];
8389 }
8390
8391 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8392 compute the physname for the object, which include a method's:
8393 - formal parameters (C++/Java),
8394 - receiver type (Go),
8395 - return type (Java).
8396
8397 The term "physname" is a bit confusing.
8398 For C++, for example, it is the demangled name.
8399 For Go, for example, it's the mangled name.
8400
8401 For Ada, return the DIE's linkage name rather than the fully qualified
8402 name. PHYSNAME is ignored..
8403
8404 The result is allocated on the objfile_obstack and canonicalized. */
8405
8406 static const char *
8407 dwarf2_compute_name (const char *name,
8408 struct die_info *die, struct dwarf2_cu *cu,
8409 int physname)
8410 {
8411 struct objfile *objfile = cu->objfile;
8412
8413 if (name == NULL)
8414 name = dwarf2_name (die, cu);
8415
8416 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8417 compute it by typename_concat inside GDB. */
8418 if (cu->language == language_ada
8419 || (cu->language == language_fortran && physname))
8420 {
8421 /* For Ada unit, we prefer the linkage name over the name, as
8422 the former contains the exported name, which the user expects
8423 to be able to reference. Ideally, we want the user to be able
8424 to reference this entity using either natural or linkage name,
8425 but we haven't started looking at this enhancement yet. */
8426 struct attribute *attr;
8427
8428 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8429 if (attr == NULL)
8430 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8431 if (attr && DW_STRING (attr))
8432 return DW_STRING (attr);
8433 }
8434
8435 /* These are the only languages we know how to qualify names in. */
8436 if (name != NULL
8437 && (cu->language == language_cplus || cu->language == language_java
8438 || cu->language == language_fortran))
8439 {
8440 if (die_needs_namespace (die, cu))
8441 {
8442 long length;
8443 const char *prefix;
8444 struct ui_file *buf;
8445 char *intermediate_name;
8446 const char *canonical_name = NULL;
8447
8448 prefix = determine_prefix (die, cu);
8449 buf = mem_fileopen ();
8450 if (*prefix != '\0')
8451 {
8452 char *prefixed_name = typename_concat (NULL, prefix, name,
8453 physname, cu);
8454
8455 fputs_unfiltered (prefixed_name, buf);
8456 xfree (prefixed_name);
8457 }
8458 else
8459 fputs_unfiltered (name, buf);
8460
8461 /* Template parameters may be specified in the DIE's DW_AT_name, or
8462 as children with DW_TAG_template_type_param or
8463 DW_TAG_value_type_param. If the latter, add them to the name
8464 here. If the name already has template parameters, then
8465 skip this step; some versions of GCC emit both, and
8466 it is more efficient to use the pre-computed name.
8467
8468 Something to keep in mind about this process: it is very
8469 unlikely, or in some cases downright impossible, to produce
8470 something that will match the mangled name of a function.
8471 If the definition of the function has the same debug info,
8472 we should be able to match up with it anyway. But fallbacks
8473 using the minimal symbol, for instance to find a method
8474 implemented in a stripped copy of libstdc++, will not work.
8475 If we do not have debug info for the definition, we will have to
8476 match them up some other way.
8477
8478 When we do name matching there is a related problem with function
8479 templates; two instantiated function templates are allowed to
8480 differ only by their return types, which we do not add here. */
8481
8482 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8483 {
8484 struct attribute *attr;
8485 struct die_info *child;
8486 int first = 1;
8487
8488 die->building_fullname = 1;
8489
8490 for (child = die->child; child != NULL; child = child->sibling)
8491 {
8492 struct type *type;
8493 LONGEST value;
8494 const gdb_byte *bytes;
8495 struct dwarf2_locexpr_baton *baton;
8496 struct value *v;
8497
8498 if (child->tag != DW_TAG_template_type_param
8499 && child->tag != DW_TAG_template_value_param)
8500 continue;
8501
8502 if (first)
8503 {
8504 fputs_unfiltered ("<", buf);
8505 first = 0;
8506 }
8507 else
8508 fputs_unfiltered (", ", buf);
8509
8510 attr = dwarf2_attr (child, DW_AT_type, cu);
8511 if (attr == NULL)
8512 {
8513 complaint (&symfile_complaints,
8514 _("template parameter missing DW_AT_type"));
8515 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8516 continue;
8517 }
8518 type = die_type (child, cu);
8519
8520 if (child->tag == DW_TAG_template_type_param)
8521 {
8522 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8523 continue;
8524 }
8525
8526 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8527 if (attr == NULL)
8528 {
8529 complaint (&symfile_complaints,
8530 _("template parameter missing "
8531 "DW_AT_const_value"));
8532 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8533 continue;
8534 }
8535
8536 dwarf2_const_value_attr (attr, type, name,
8537 &cu->comp_unit_obstack, cu,
8538 &value, &bytes, &baton);
8539
8540 if (TYPE_NOSIGN (type))
8541 /* GDB prints characters as NUMBER 'CHAR'. If that's
8542 changed, this can use value_print instead. */
8543 c_printchar (value, type, buf);
8544 else
8545 {
8546 struct value_print_options opts;
8547
8548 if (baton != NULL)
8549 v = dwarf2_evaluate_loc_desc (type, NULL,
8550 baton->data,
8551 baton->size,
8552 baton->per_cu);
8553 else if (bytes != NULL)
8554 {
8555 v = allocate_value (type);
8556 memcpy (value_contents_writeable (v), bytes,
8557 TYPE_LENGTH (type));
8558 }
8559 else
8560 v = value_from_longest (type, value);
8561
8562 /* Specify decimal so that we do not depend on
8563 the radix. */
8564 get_formatted_print_options (&opts, 'd');
8565 opts.raw = 1;
8566 value_print (v, buf, &opts);
8567 release_value (v);
8568 value_free (v);
8569 }
8570 }
8571
8572 die->building_fullname = 0;
8573
8574 if (!first)
8575 {
8576 /* Close the argument list, with a space if necessary
8577 (nested templates). */
8578 char last_char = '\0';
8579 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8580 if (last_char == '>')
8581 fputs_unfiltered (" >", buf);
8582 else
8583 fputs_unfiltered (">", buf);
8584 }
8585 }
8586
8587 /* For Java and C++ methods, append formal parameter type
8588 information, if PHYSNAME. */
8589
8590 if (physname && die->tag == DW_TAG_subprogram
8591 && (cu->language == language_cplus
8592 || cu->language == language_java))
8593 {
8594 struct type *type = read_type_die (die, cu);
8595
8596 c_type_print_args (type, buf, 1, cu->language,
8597 &type_print_raw_options);
8598
8599 if (cu->language == language_java)
8600 {
8601 /* For java, we must append the return type to method
8602 names. */
8603 if (die->tag == DW_TAG_subprogram)
8604 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8605 0, 0, &type_print_raw_options);
8606 }
8607 else if (cu->language == language_cplus)
8608 {
8609 /* Assume that an artificial first parameter is
8610 "this", but do not crash if it is not. RealView
8611 marks unnamed (and thus unused) parameters as
8612 artificial; there is no way to differentiate
8613 the two cases. */
8614 if (TYPE_NFIELDS (type) > 0
8615 && TYPE_FIELD_ARTIFICIAL (type, 0)
8616 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8617 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8618 0))))
8619 fputs_unfiltered (" const", buf);
8620 }
8621 }
8622
8623 intermediate_name = ui_file_xstrdup (buf, &length);
8624 ui_file_delete (buf);
8625
8626 if (cu->language == language_cplus)
8627 canonical_name
8628 = dwarf2_canonicalize_name (intermediate_name, cu,
8629 &objfile->per_bfd->storage_obstack);
8630
8631 /* If we only computed INTERMEDIATE_NAME, or if
8632 INTERMEDIATE_NAME is already canonical, then we need to
8633 copy it to the appropriate obstack. */
8634 if (canonical_name == NULL || canonical_name == intermediate_name)
8635 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8636 intermediate_name,
8637 strlen (intermediate_name));
8638 else
8639 name = canonical_name;
8640
8641 xfree (intermediate_name);
8642 }
8643 }
8644
8645 return name;
8646 }
8647
8648 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8649 If scope qualifiers are appropriate they will be added. The result
8650 will be allocated on the storage_obstack, or NULL if the DIE does
8651 not have a name. NAME may either be from a previous call to
8652 dwarf2_name or NULL.
8653
8654 The output string will be canonicalized (if C++/Java). */
8655
8656 static const char *
8657 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8658 {
8659 return dwarf2_compute_name (name, die, cu, 0);
8660 }
8661
8662 /* Construct a physname for the given DIE in CU. NAME may either be
8663 from a previous call to dwarf2_name or NULL. The result will be
8664 allocated on the objfile_objstack or NULL if the DIE does not have a
8665 name.
8666
8667 The output string will be canonicalized (if C++/Java). */
8668
8669 static const char *
8670 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8671 {
8672 struct objfile *objfile = cu->objfile;
8673 struct attribute *attr;
8674 const char *retval, *mangled = NULL, *canon = NULL;
8675 struct cleanup *back_to;
8676 int need_copy = 1;
8677
8678 /* In this case dwarf2_compute_name is just a shortcut not building anything
8679 on its own. */
8680 if (!die_needs_namespace (die, cu))
8681 return dwarf2_compute_name (name, die, cu, 1);
8682
8683 back_to = make_cleanup (null_cleanup, NULL);
8684
8685 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8686 if (!attr)
8687 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8688
8689 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8690 has computed. */
8691 if (attr && DW_STRING (attr))
8692 {
8693 char *demangled;
8694
8695 mangled = DW_STRING (attr);
8696
8697 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8698 type. It is easier for GDB users to search for such functions as
8699 `name(params)' than `long name(params)'. In such case the minimal
8700 symbol names do not match the full symbol names but for template
8701 functions there is never a need to look up their definition from their
8702 declaration so the only disadvantage remains the minimal symbol
8703 variant `long name(params)' does not have the proper inferior type.
8704 */
8705
8706 if (cu->language == language_go)
8707 {
8708 /* This is a lie, but we already lie to the caller new_symbol_full.
8709 new_symbol_full assumes we return the mangled name.
8710 This just undoes that lie until things are cleaned up. */
8711 demangled = NULL;
8712 }
8713 else
8714 {
8715 demangled = gdb_demangle (mangled,
8716 (DMGL_PARAMS | DMGL_ANSI
8717 | (cu->language == language_java
8718 ? DMGL_JAVA | DMGL_RET_POSTFIX
8719 : DMGL_RET_DROP)));
8720 }
8721 if (demangled)
8722 {
8723 make_cleanup (xfree, demangled);
8724 canon = demangled;
8725 }
8726 else
8727 {
8728 canon = mangled;
8729 need_copy = 0;
8730 }
8731 }
8732
8733 if (canon == NULL || check_physname)
8734 {
8735 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8736
8737 if (canon != NULL && strcmp (physname, canon) != 0)
8738 {
8739 /* It may not mean a bug in GDB. The compiler could also
8740 compute DW_AT_linkage_name incorrectly. But in such case
8741 GDB would need to be bug-to-bug compatible. */
8742
8743 complaint (&symfile_complaints,
8744 _("Computed physname <%s> does not match demangled <%s> "
8745 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8746 physname, canon, mangled, die->offset.sect_off,
8747 objfile_name (objfile));
8748
8749 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8750 is available here - over computed PHYSNAME. It is safer
8751 against both buggy GDB and buggy compilers. */
8752
8753 retval = canon;
8754 }
8755 else
8756 {
8757 retval = physname;
8758 need_copy = 0;
8759 }
8760 }
8761 else
8762 retval = canon;
8763
8764 if (need_copy)
8765 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8766 retval, strlen (retval));
8767
8768 do_cleanups (back_to);
8769 return retval;
8770 }
8771
8772 /* Inspect DIE in CU for a namespace alias. If one exists, record
8773 a new symbol for it.
8774
8775 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8776
8777 static int
8778 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8779 {
8780 struct attribute *attr;
8781
8782 /* If the die does not have a name, this is not a namespace
8783 alias. */
8784 attr = dwarf2_attr (die, DW_AT_name, cu);
8785 if (attr != NULL)
8786 {
8787 int num;
8788 struct die_info *d = die;
8789 struct dwarf2_cu *imported_cu = cu;
8790
8791 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8792 keep inspecting DIEs until we hit the underlying import. */
8793 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8794 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8795 {
8796 attr = dwarf2_attr (d, DW_AT_import, cu);
8797 if (attr == NULL)
8798 break;
8799
8800 d = follow_die_ref (d, attr, &imported_cu);
8801 if (d->tag != DW_TAG_imported_declaration)
8802 break;
8803 }
8804
8805 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8806 {
8807 complaint (&symfile_complaints,
8808 _("DIE at 0x%x has too many recursively imported "
8809 "declarations"), d->offset.sect_off);
8810 return 0;
8811 }
8812
8813 if (attr != NULL)
8814 {
8815 struct type *type;
8816 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8817
8818 type = get_die_type_at_offset (offset, cu->per_cu);
8819 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8820 {
8821 /* This declaration is a global namespace alias. Add
8822 a symbol for it whose type is the aliased namespace. */
8823 new_symbol (die, type, cu);
8824 return 1;
8825 }
8826 }
8827 }
8828
8829 return 0;
8830 }
8831
8832 /* Read the import statement specified by the given die and record it. */
8833
8834 static void
8835 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8836 {
8837 struct objfile *objfile = cu->objfile;
8838 struct attribute *import_attr;
8839 struct die_info *imported_die, *child_die;
8840 struct dwarf2_cu *imported_cu;
8841 const char *imported_name;
8842 const char *imported_name_prefix;
8843 const char *canonical_name;
8844 const char *import_alias;
8845 const char *imported_declaration = NULL;
8846 const char *import_prefix;
8847 VEC (const_char_ptr) *excludes = NULL;
8848 struct cleanup *cleanups;
8849
8850 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8851 if (import_attr == NULL)
8852 {
8853 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8854 dwarf_tag_name (die->tag));
8855 return;
8856 }
8857
8858 imported_cu = cu;
8859 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8860 imported_name = dwarf2_name (imported_die, imported_cu);
8861 if (imported_name == NULL)
8862 {
8863 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8864
8865 The import in the following code:
8866 namespace A
8867 {
8868 typedef int B;
8869 }
8870
8871 int main ()
8872 {
8873 using A::B;
8874 B b;
8875 return b;
8876 }
8877
8878 ...
8879 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8880 <52> DW_AT_decl_file : 1
8881 <53> DW_AT_decl_line : 6
8882 <54> DW_AT_import : <0x75>
8883 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8884 <59> DW_AT_name : B
8885 <5b> DW_AT_decl_file : 1
8886 <5c> DW_AT_decl_line : 2
8887 <5d> DW_AT_type : <0x6e>
8888 ...
8889 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8890 <76> DW_AT_byte_size : 4
8891 <77> DW_AT_encoding : 5 (signed)
8892
8893 imports the wrong die ( 0x75 instead of 0x58 ).
8894 This case will be ignored until the gcc bug is fixed. */
8895 return;
8896 }
8897
8898 /* Figure out the local name after import. */
8899 import_alias = dwarf2_name (die, cu);
8900
8901 /* Figure out where the statement is being imported to. */
8902 import_prefix = determine_prefix (die, cu);
8903
8904 /* Figure out what the scope of the imported die is and prepend it
8905 to the name of the imported die. */
8906 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8907
8908 if (imported_die->tag != DW_TAG_namespace
8909 && imported_die->tag != DW_TAG_module)
8910 {
8911 imported_declaration = imported_name;
8912 canonical_name = imported_name_prefix;
8913 }
8914 else if (strlen (imported_name_prefix) > 0)
8915 canonical_name = obconcat (&objfile->objfile_obstack,
8916 imported_name_prefix, "::", imported_name,
8917 (char *) NULL);
8918 else
8919 canonical_name = imported_name;
8920
8921 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8922
8923 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8924 for (child_die = die->child; child_die && child_die->tag;
8925 child_die = sibling_die (child_die))
8926 {
8927 /* DWARF-4: A Fortran use statement with a “rename list” may be
8928 represented by an imported module entry with an import attribute
8929 referring to the module and owned entries corresponding to those
8930 entities that are renamed as part of being imported. */
8931
8932 if (child_die->tag != DW_TAG_imported_declaration)
8933 {
8934 complaint (&symfile_complaints,
8935 _("child DW_TAG_imported_declaration expected "
8936 "- DIE at 0x%x [in module %s]"),
8937 child_die->offset.sect_off, objfile_name (objfile));
8938 continue;
8939 }
8940
8941 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8942 if (import_attr == NULL)
8943 {
8944 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8945 dwarf_tag_name (child_die->tag));
8946 continue;
8947 }
8948
8949 imported_cu = cu;
8950 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8951 &imported_cu);
8952 imported_name = dwarf2_name (imported_die, imported_cu);
8953 if (imported_name == NULL)
8954 {
8955 complaint (&symfile_complaints,
8956 _("child DW_TAG_imported_declaration has unknown "
8957 "imported name - DIE at 0x%x [in module %s]"),
8958 child_die->offset.sect_off, objfile_name (objfile));
8959 continue;
8960 }
8961
8962 VEC_safe_push (const_char_ptr, excludes, imported_name);
8963
8964 process_die (child_die, cu);
8965 }
8966
8967 cp_add_using_directive (import_prefix,
8968 canonical_name,
8969 import_alias,
8970 imported_declaration,
8971 excludes,
8972 0,
8973 &objfile->objfile_obstack);
8974
8975 do_cleanups (cleanups);
8976 }
8977
8978 /* Cleanup function for handle_DW_AT_stmt_list. */
8979
8980 static void
8981 free_cu_line_header (void *arg)
8982 {
8983 struct dwarf2_cu *cu = arg;
8984
8985 free_line_header (cu->line_header);
8986 cu->line_header = NULL;
8987 }
8988
8989 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8990 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8991 this, it was first present in GCC release 4.3.0. */
8992
8993 static int
8994 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8995 {
8996 if (!cu->checked_producer)
8997 check_producer (cu);
8998
8999 return cu->producer_is_gcc_lt_4_3;
9000 }
9001
9002 static void
9003 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9004 const char **name, const char **comp_dir)
9005 {
9006 struct attribute *attr;
9007
9008 *name = NULL;
9009 *comp_dir = NULL;
9010
9011 /* Find the filename. Do not use dwarf2_name here, since the filename
9012 is not a source language identifier. */
9013 attr = dwarf2_attr (die, DW_AT_name, cu);
9014 if (attr)
9015 {
9016 *name = DW_STRING (attr);
9017 }
9018
9019 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9020 if (attr)
9021 *comp_dir = DW_STRING (attr);
9022 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9023 && IS_ABSOLUTE_PATH (*name))
9024 {
9025 char *d = ldirname (*name);
9026
9027 *comp_dir = d;
9028 if (d != NULL)
9029 make_cleanup (xfree, d);
9030 }
9031 if (*comp_dir != NULL)
9032 {
9033 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9034 directory, get rid of it. */
9035 char *cp = strchr (*comp_dir, ':');
9036
9037 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9038 *comp_dir = cp + 1;
9039 }
9040
9041 if (*name == NULL)
9042 *name = "<unknown>";
9043 }
9044
9045 /* Handle DW_AT_stmt_list for a compilation unit.
9046 DIE is the DW_TAG_compile_unit die for CU.
9047 COMP_DIR is the compilation directory. LOWPC is passed to
9048 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9049
9050 static void
9051 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9052 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9053 {
9054 struct objfile *objfile = dwarf2_per_objfile->objfile;
9055 struct attribute *attr;
9056 unsigned int line_offset;
9057 struct line_header line_header_local;
9058 hashval_t line_header_local_hash;
9059 unsigned u;
9060 void **slot;
9061 int decode_mapping;
9062
9063 gdb_assert (! cu->per_cu->is_debug_types);
9064
9065 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9066 if (attr == NULL)
9067 return;
9068
9069 line_offset = DW_UNSND (attr);
9070
9071 /* The line header hash table is only created if needed (it exists to
9072 prevent redundant reading of the line table for partial_units).
9073 If we're given a partial_unit, we'll need it. If we're given a
9074 compile_unit, then use the line header hash table if it's already
9075 created, but don't create one just yet. */
9076
9077 if (dwarf2_per_objfile->line_header_hash == NULL
9078 && die->tag == DW_TAG_partial_unit)
9079 {
9080 dwarf2_per_objfile->line_header_hash
9081 = htab_create_alloc_ex (127, line_header_hash_voidp,
9082 line_header_eq_voidp,
9083 free_line_header_voidp,
9084 &objfile->objfile_obstack,
9085 hashtab_obstack_allocate,
9086 dummy_obstack_deallocate);
9087 }
9088
9089 line_header_local.offset.sect_off = line_offset;
9090 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9091 line_header_local_hash = line_header_hash (&line_header_local);
9092 if (dwarf2_per_objfile->line_header_hash != NULL)
9093 {
9094 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9095 &line_header_local,
9096 line_header_local_hash, NO_INSERT);
9097
9098 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9099 is not present in *SLOT (since if there is something in *SLOT then
9100 it will be for a partial_unit). */
9101 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9102 {
9103 gdb_assert (*slot != NULL);
9104 cu->line_header = *slot;
9105 return;
9106 }
9107 }
9108
9109 /* dwarf_decode_line_header does not yet provide sufficient information.
9110 We always have to call also dwarf_decode_lines for it. */
9111 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9112 if (cu->line_header == NULL)
9113 return;
9114
9115 if (dwarf2_per_objfile->line_header_hash == NULL)
9116 slot = NULL;
9117 else
9118 {
9119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9120 &line_header_local,
9121 line_header_local_hash, INSERT);
9122 gdb_assert (slot != NULL);
9123 }
9124 if (slot != NULL && *slot == NULL)
9125 {
9126 /* This newly decoded line number information unit will be owned
9127 by line_header_hash hash table. */
9128 *slot = cu->line_header;
9129 }
9130 else
9131 {
9132 /* We cannot free any current entry in (*slot) as that struct line_header
9133 may be already used by multiple CUs. Create only temporary decoded
9134 line_header for this CU - it may happen at most once for each line
9135 number information unit. And if we're not using line_header_hash
9136 then this is what we want as well. */
9137 gdb_assert (die->tag != DW_TAG_partial_unit);
9138 make_cleanup (free_cu_line_header, cu);
9139 }
9140 decode_mapping = (die->tag != DW_TAG_partial_unit);
9141 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9142 decode_mapping);
9143 }
9144
9145 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9146
9147 static void
9148 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9149 {
9150 struct objfile *objfile = dwarf2_per_objfile->objfile;
9151 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9152 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9153 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9154 CORE_ADDR highpc = ((CORE_ADDR) 0);
9155 struct attribute *attr;
9156 const char *name = NULL;
9157 const char *comp_dir = NULL;
9158 struct die_info *child_die;
9159 bfd *abfd = objfile->obfd;
9160 CORE_ADDR baseaddr;
9161
9162 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9163
9164 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9165
9166 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9167 from finish_block. */
9168 if (lowpc == ((CORE_ADDR) -1))
9169 lowpc = highpc;
9170 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9171
9172 find_file_and_directory (die, cu, &name, &comp_dir);
9173
9174 prepare_one_comp_unit (cu, die, cu->language);
9175
9176 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9177 standardised yet. As a workaround for the language detection we fall
9178 back to the DW_AT_producer string. */
9179 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9180 cu->language = language_opencl;
9181
9182 /* Similar hack for Go. */
9183 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9184 set_cu_language (DW_LANG_Go, cu);
9185
9186 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9187
9188 /* Decode line number information if present. We do this before
9189 processing child DIEs, so that the line header table is available
9190 for DW_AT_decl_file. */
9191 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9192
9193 /* Process all dies in compilation unit. */
9194 if (die->child != NULL)
9195 {
9196 child_die = die->child;
9197 while (child_die && child_die->tag)
9198 {
9199 process_die (child_die, cu);
9200 child_die = sibling_die (child_die);
9201 }
9202 }
9203
9204 /* Decode macro information, if present. Dwarf 2 macro information
9205 refers to information in the line number info statement program
9206 header, so we can only read it if we've read the header
9207 successfully. */
9208 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9209 if (attr && cu->line_header)
9210 {
9211 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9212 complaint (&symfile_complaints,
9213 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9214
9215 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9216 }
9217 else
9218 {
9219 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9220 if (attr && cu->line_header)
9221 {
9222 unsigned int macro_offset = DW_UNSND (attr);
9223
9224 dwarf_decode_macros (cu, macro_offset, 0);
9225 }
9226 }
9227
9228 do_cleanups (back_to);
9229 }
9230
9231 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9232 Create the set of symtabs used by this TU, or if this TU is sharing
9233 symtabs with another TU and the symtabs have already been created
9234 then restore those symtabs in the line header.
9235 We don't need the pc/line-number mapping for type units. */
9236
9237 static void
9238 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9239 {
9240 struct objfile *objfile = dwarf2_per_objfile->objfile;
9241 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9242 struct type_unit_group *tu_group;
9243 int first_time;
9244 struct line_header *lh;
9245 struct attribute *attr;
9246 unsigned int i, line_offset;
9247 struct signatured_type *sig_type;
9248
9249 gdb_assert (per_cu->is_debug_types);
9250 sig_type = (struct signatured_type *) per_cu;
9251
9252 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9253
9254 /* If we're using .gdb_index (includes -readnow) then
9255 per_cu->type_unit_group may not have been set up yet. */
9256 if (sig_type->type_unit_group == NULL)
9257 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9258 tu_group = sig_type->type_unit_group;
9259
9260 /* If we've already processed this stmt_list there's no real need to
9261 do it again, we could fake it and just recreate the part we need
9262 (file name,index -> symtab mapping). If data shows this optimization
9263 is useful we can do it then. */
9264 first_time = tu_group->compunit_symtab == NULL;
9265
9266 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9267 debug info. */
9268 lh = NULL;
9269 if (attr != NULL)
9270 {
9271 line_offset = DW_UNSND (attr);
9272 lh = dwarf_decode_line_header (line_offset, cu);
9273 }
9274 if (lh == NULL)
9275 {
9276 if (first_time)
9277 dwarf2_start_symtab (cu, "", NULL, 0);
9278 else
9279 {
9280 gdb_assert (tu_group->symtabs == NULL);
9281 restart_symtab (tu_group->compunit_symtab, "", 0);
9282 }
9283 return;
9284 }
9285
9286 cu->line_header = lh;
9287 make_cleanup (free_cu_line_header, cu);
9288
9289 if (first_time)
9290 {
9291 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9292
9293 tu_group->num_symtabs = lh->num_file_names;
9294 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9295
9296 for (i = 0; i < lh->num_file_names; ++i)
9297 {
9298 const char *dir = NULL;
9299 struct file_entry *fe = &lh->file_names[i];
9300
9301 if (fe->dir_index)
9302 dir = lh->include_dirs[fe->dir_index - 1];
9303 dwarf2_start_subfile (fe->name, dir);
9304
9305 if (current_subfile->symtab == NULL)
9306 {
9307 /* NOTE: start_subfile will recognize when it's been passed
9308 a file it has already seen. So we can't assume there's a
9309 simple mapping from lh->file_names to subfiles, plus
9310 lh->file_names may contain dups. */
9311 current_subfile->symtab
9312 = allocate_symtab (cust, current_subfile->name);
9313 }
9314
9315 fe->symtab = current_subfile->symtab;
9316 tu_group->symtabs[i] = fe->symtab;
9317 }
9318 }
9319 else
9320 {
9321 restart_symtab (tu_group->compunit_symtab, "", 0);
9322
9323 for (i = 0; i < lh->num_file_names; ++i)
9324 {
9325 struct file_entry *fe = &lh->file_names[i];
9326
9327 fe->symtab = tu_group->symtabs[i];
9328 }
9329 }
9330
9331 /* The main symtab is allocated last. Type units don't have DW_AT_name
9332 so they don't have a "real" (so to speak) symtab anyway.
9333 There is later code that will assign the main symtab to all symbols
9334 that don't have one. We need to handle the case of a symbol with a
9335 missing symtab (DW_AT_decl_file) anyway. */
9336 }
9337
9338 /* Process DW_TAG_type_unit.
9339 For TUs we want to skip the first top level sibling if it's not the
9340 actual type being defined by this TU. In this case the first top
9341 level sibling is there to provide context only. */
9342
9343 static void
9344 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9345 {
9346 struct die_info *child_die;
9347
9348 prepare_one_comp_unit (cu, die, language_minimal);
9349
9350 /* Initialize (or reinitialize) the machinery for building symtabs.
9351 We do this before processing child DIEs, so that the line header table
9352 is available for DW_AT_decl_file. */
9353 setup_type_unit_groups (die, cu);
9354
9355 if (die->child != NULL)
9356 {
9357 child_die = die->child;
9358 while (child_die && child_die->tag)
9359 {
9360 process_die (child_die, cu);
9361 child_die = sibling_die (child_die);
9362 }
9363 }
9364 }
9365 \f
9366 /* DWO/DWP files.
9367
9368 http://gcc.gnu.org/wiki/DebugFission
9369 http://gcc.gnu.org/wiki/DebugFissionDWP
9370
9371 To simplify handling of both DWO files ("object" files with the DWARF info)
9372 and DWP files (a file with the DWOs packaged up into one file), we treat
9373 DWP files as having a collection of virtual DWO files. */
9374
9375 static hashval_t
9376 hash_dwo_file (const void *item)
9377 {
9378 const struct dwo_file *dwo_file = item;
9379 hashval_t hash;
9380
9381 hash = htab_hash_string (dwo_file->dwo_name);
9382 if (dwo_file->comp_dir != NULL)
9383 hash += htab_hash_string (dwo_file->comp_dir);
9384 return hash;
9385 }
9386
9387 static int
9388 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9389 {
9390 const struct dwo_file *lhs = item_lhs;
9391 const struct dwo_file *rhs = item_rhs;
9392
9393 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9394 return 0;
9395 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9396 return lhs->comp_dir == rhs->comp_dir;
9397 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9398 }
9399
9400 /* Allocate a hash table for DWO files. */
9401
9402 static htab_t
9403 allocate_dwo_file_hash_table (void)
9404 {
9405 struct objfile *objfile = dwarf2_per_objfile->objfile;
9406
9407 return htab_create_alloc_ex (41,
9408 hash_dwo_file,
9409 eq_dwo_file,
9410 NULL,
9411 &objfile->objfile_obstack,
9412 hashtab_obstack_allocate,
9413 dummy_obstack_deallocate);
9414 }
9415
9416 /* Lookup DWO file DWO_NAME. */
9417
9418 static void **
9419 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9420 {
9421 struct dwo_file find_entry;
9422 void **slot;
9423
9424 if (dwarf2_per_objfile->dwo_files == NULL)
9425 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9426
9427 memset (&find_entry, 0, sizeof (find_entry));
9428 find_entry.dwo_name = dwo_name;
9429 find_entry.comp_dir = comp_dir;
9430 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9431
9432 return slot;
9433 }
9434
9435 static hashval_t
9436 hash_dwo_unit (const void *item)
9437 {
9438 const struct dwo_unit *dwo_unit = item;
9439
9440 /* This drops the top 32 bits of the id, but is ok for a hash. */
9441 return dwo_unit->signature;
9442 }
9443
9444 static int
9445 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9446 {
9447 const struct dwo_unit *lhs = item_lhs;
9448 const struct dwo_unit *rhs = item_rhs;
9449
9450 /* The signature is assumed to be unique within the DWO file.
9451 So while object file CU dwo_id's always have the value zero,
9452 that's OK, assuming each object file DWO file has only one CU,
9453 and that's the rule for now. */
9454 return lhs->signature == rhs->signature;
9455 }
9456
9457 /* Allocate a hash table for DWO CUs,TUs.
9458 There is one of these tables for each of CUs,TUs for each DWO file. */
9459
9460 static htab_t
9461 allocate_dwo_unit_table (struct objfile *objfile)
9462 {
9463 /* Start out with a pretty small number.
9464 Generally DWO files contain only one CU and maybe some TUs. */
9465 return htab_create_alloc_ex (3,
9466 hash_dwo_unit,
9467 eq_dwo_unit,
9468 NULL,
9469 &objfile->objfile_obstack,
9470 hashtab_obstack_allocate,
9471 dummy_obstack_deallocate);
9472 }
9473
9474 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9475
9476 struct create_dwo_cu_data
9477 {
9478 struct dwo_file *dwo_file;
9479 struct dwo_unit dwo_unit;
9480 };
9481
9482 /* die_reader_func for create_dwo_cu. */
9483
9484 static void
9485 create_dwo_cu_reader (const struct die_reader_specs *reader,
9486 const gdb_byte *info_ptr,
9487 struct die_info *comp_unit_die,
9488 int has_children,
9489 void *datap)
9490 {
9491 struct dwarf2_cu *cu = reader->cu;
9492 struct objfile *objfile = dwarf2_per_objfile->objfile;
9493 sect_offset offset = cu->per_cu->offset;
9494 struct dwarf2_section_info *section = cu->per_cu->section;
9495 struct create_dwo_cu_data *data = datap;
9496 struct dwo_file *dwo_file = data->dwo_file;
9497 struct dwo_unit *dwo_unit = &data->dwo_unit;
9498 struct attribute *attr;
9499
9500 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9501 if (attr == NULL)
9502 {
9503 complaint (&symfile_complaints,
9504 _("Dwarf Error: debug entry at offset 0x%x is missing"
9505 " its dwo_id [in module %s]"),
9506 offset.sect_off, dwo_file->dwo_name);
9507 return;
9508 }
9509
9510 dwo_unit->dwo_file = dwo_file;
9511 dwo_unit->signature = DW_UNSND (attr);
9512 dwo_unit->section = section;
9513 dwo_unit->offset = offset;
9514 dwo_unit->length = cu->per_cu->length;
9515
9516 if (dwarf2_read_debug)
9517 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9518 offset.sect_off, hex_string (dwo_unit->signature));
9519 }
9520
9521 /* Create the dwo_unit for the lone CU in DWO_FILE.
9522 Note: This function processes DWO files only, not DWP files. */
9523
9524 static struct dwo_unit *
9525 create_dwo_cu (struct dwo_file *dwo_file)
9526 {
9527 struct objfile *objfile = dwarf2_per_objfile->objfile;
9528 struct dwarf2_section_info *section = &dwo_file->sections.info;
9529 bfd *abfd;
9530 htab_t cu_htab;
9531 const gdb_byte *info_ptr, *end_ptr;
9532 struct create_dwo_cu_data create_dwo_cu_data;
9533 struct dwo_unit *dwo_unit;
9534
9535 dwarf2_read_section (objfile, section);
9536 info_ptr = section->buffer;
9537
9538 if (info_ptr == NULL)
9539 return NULL;
9540
9541 /* We can't set abfd until now because the section may be empty or
9542 not present, in which case section->asection will be NULL. */
9543 abfd = get_section_bfd_owner (section);
9544
9545 if (dwarf2_read_debug)
9546 {
9547 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9548 get_section_name (section),
9549 get_section_file_name (section));
9550 }
9551
9552 create_dwo_cu_data.dwo_file = dwo_file;
9553 dwo_unit = NULL;
9554
9555 end_ptr = info_ptr + section->size;
9556 while (info_ptr < end_ptr)
9557 {
9558 struct dwarf2_per_cu_data per_cu;
9559
9560 memset (&create_dwo_cu_data.dwo_unit, 0,
9561 sizeof (create_dwo_cu_data.dwo_unit));
9562 memset (&per_cu, 0, sizeof (per_cu));
9563 per_cu.objfile = objfile;
9564 per_cu.is_debug_types = 0;
9565 per_cu.offset.sect_off = info_ptr - section->buffer;
9566 per_cu.section = section;
9567
9568 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9569 create_dwo_cu_reader,
9570 &create_dwo_cu_data);
9571
9572 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9573 {
9574 /* If we've already found one, complain. We only support one
9575 because having more than one requires hacking the dwo_name of
9576 each to match, which is highly unlikely to happen. */
9577 if (dwo_unit != NULL)
9578 {
9579 complaint (&symfile_complaints,
9580 _("Multiple CUs in DWO file %s [in module %s]"),
9581 dwo_file->dwo_name, objfile_name (objfile));
9582 break;
9583 }
9584
9585 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9586 *dwo_unit = create_dwo_cu_data.dwo_unit;
9587 }
9588
9589 info_ptr += per_cu.length;
9590 }
9591
9592 return dwo_unit;
9593 }
9594
9595 /* DWP file .debug_{cu,tu}_index section format:
9596 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9597
9598 DWP Version 1:
9599
9600 Both index sections have the same format, and serve to map a 64-bit
9601 signature to a set of section numbers. Each section begins with a header,
9602 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9603 indexes, and a pool of 32-bit section numbers. The index sections will be
9604 aligned at 8-byte boundaries in the file.
9605
9606 The index section header consists of:
9607
9608 V, 32 bit version number
9609 -, 32 bits unused
9610 N, 32 bit number of compilation units or type units in the index
9611 M, 32 bit number of slots in the hash table
9612
9613 Numbers are recorded using the byte order of the application binary.
9614
9615 The hash table begins at offset 16 in the section, and consists of an array
9616 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9617 order of the application binary). Unused slots in the hash table are 0.
9618 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9619
9620 The parallel table begins immediately after the hash table
9621 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9622 array of 32-bit indexes (using the byte order of the application binary),
9623 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9624 table contains a 32-bit index into the pool of section numbers. For unused
9625 hash table slots, the corresponding entry in the parallel table will be 0.
9626
9627 The pool of section numbers begins immediately following the hash table
9628 (at offset 16 + 12 * M from the beginning of the section). The pool of
9629 section numbers consists of an array of 32-bit words (using the byte order
9630 of the application binary). Each item in the array is indexed starting
9631 from 0. The hash table entry provides the index of the first section
9632 number in the set. Additional section numbers in the set follow, and the
9633 set is terminated by a 0 entry (section number 0 is not used in ELF).
9634
9635 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9636 section must be the first entry in the set, and the .debug_abbrev.dwo must
9637 be the second entry. Other members of the set may follow in any order.
9638
9639 ---
9640
9641 DWP Version 2:
9642
9643 DWP Version 2 combines all the .debug_info, etc. sections into one,
9644 and the entries in the index tables are now offsets into these sections.
9645 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9646 section.
9647
9648 Index Section Contents:
9649 Header
9650 Hash Table of Signatures dwp_hash_table.hash_table
9651 Parallel Table of Indices dwp_hash_table.unit_table
9652 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9653 Table of Section Sizes dwp_hash_table.v2.sizes
9654
9655 The index section header consists of:
9656
9657 V, 32 bit version number
9658 L, 32 bit number of columns in the table of section offsets
9659 N, 32 bit number of compilation units or type units in the index
9660 M, 32 bit number of slots in the hash table
9661
9662 Numbers are recorded using the byte order of the application binary.
9663
9664 The hash table has the same format as version 1.
9665 The parallel table of indices has the same format as version 1,
9666 except that the entries are origin-1 indices into the table of sections
9667 offsets and the table of section sizes.
9668
9669 The table of offsets begins immediately following the parallel table
9670 (at offset 16 + 12 * M from the beginning of the section). The table is
9671 a two-dimensional array of 32-bit words (using the byte order of the
9672 application binary), with L columns and N+1 rows, in row-major order.
9673 Each row in the array is indexed starting from 0. The first row provides
9674 a key to the remaining rows: each column in this row provides an identifier
9675 for a debug section, and the offsets in the same column of subsequent rows
9676 refer to that section. The section identifiers are:
9677
9678 DW_SECT_INFO 1 .debug_info.dwo
9679 DW_SECT_TYPES 2 .debug_types.dwo
9680 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9681 DW_SECT_LINE 4 .debug_line.dwo
9682 DW_SECT_LOC 5 .debug_loc.dwo
9683 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9684 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9685 DW_SECT_MACRO 8 .debug_macro.dwo
9686
9687 The offsets provided by the CU and TU index sections are the base offsets
9688 for the contributions made by each CU or TU to the corresponding section
9689 in the package file. Each CU and TU header contains an abbrev_offset
9690 field, used to find the abbreviations table for that CU or TU within the
9691 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9692 be interpreted as relative to the base offset given in the index section.
9693 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9694 should be interpreted as relative to the base offset for .debug_line.dwo,
9695 and offsets into other debug sections obtained from DWARF attributes should
9696 also be interpreted as relative to the corresponding base offset.
9697
9698 The table of sizes begins immediately following the table of offsets.
9699 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9700 with L columns and N rows, in row-major order. Each row in the array is
9701 indexed starting from 1 (row 0 is shared by the two tables).
9702
9703 ---
9704
9705 Hash table lookup is handled the same in version 1 and 2:
9706
9707 We assume that N and M will not exceed 2^32 - 1.
9708 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9709
9710 Given a 64-bit compilation unit signature or a type signature S, an entry
9711 in the hash table is located as follows:
9712
9713 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9714 the low-order k bits all set to 1.
9715
9716 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9717
9718 3) If the hash table entry at index H matches the signature, use that
9719 entry. If the hash table entry at index H is unused (all zeroes),
9720 terminate the search: the signature is not present in the table.
9721
9722 4) Let H = (H + H') modulo M. Repeat at Step 3.
9723
9724 Because M > N and H' and M are relatively prime, the search is guaranteed
9725 to stop at an unused slot or find the match. */
9726
9727 /* Create a hash table to map DWO IDs to their CU/TU entry in
9728 .debug_{info,types}.dwo in DWP_FILE.
9729 Returns NULL if there isn't one.
9730 Note: This function processes DWP files only, not DWO files. */
9731
9732 static struct dwp_hash_table *
9733 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9734 {
9735 struct objfile *objfile = dwarf2_per_objfile->objfile;
9736 bfd *dbfd = dwp_file->dbfd;
9737 const gdb_byte *index_ptr, *index_end;
9738 struct dwarf2_section_info *index;
9739 uint32_t version, nr_columns, nr_units, nr_slots;
9740 struct dwp_hash_table *htab;
9741
9742 if (is_debug_types)
9743 index = &dwp_file->sections.tu_index;
9744 else
9745 index = &dwp_file->sections.cu_index;
9746
9747 if (dwarf2_section_empty_p (index))
9748 return NULL;
9749 dwarf2_read_section (objfile, index);
9750
9751 index_ptr = index->buffer;
9752 index_end = index_ptr + index->size;
9753
9754 version = read_4_bytes (dbfd, index_ptr);
9755 index_ptr += 4;
9756 if (version == 2)
9757 nr_columns = read_4_bytes (dbfd, index_ptr);
9758 else
9759 nr_columns = 0;
9760 index_ptr += 4;
9761 nr_units = read_4_bytes (dbfd, index_ptr);
9762 index_ptr += 4;
9763 nr_slots = read_4_bytes (dbfd, index_ptr);
9764 index_ptr += 4;
9765
9766 if (version != 1 && version != 2)
9767 {
9768 error (_("Dwarf Error: unsupported DWP file version (%s)"
9769 " [in module %s]"),
9770 pulongest (version), dwp_file->name);
9771 }
9772 if (nr_slots != (nr_slots & -nr_slots))
9773 {
9774 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9775 " is not power of 2 [in module %s]"),
9776 pulongest (nr_slots), dwp_file->name);
9777 }
9778
9779 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9780 htab->version = version;
9781 htab->nr_columns = nr_columns;
9782 htab->nr_units = nr_units;
9783 htab->nr_slots = nr_slots;
9784 htab->hash_table = index_ptr;
9785 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9786
9787 /* Exit early if the table is empty. */
9788 if (nr_slots == 0 || nr_units == 0
9789 || (version == 2 && nr_columns == 0))
9790 {
9791 /* All must be zero. */
9792 if (nr_slots != 0 || nr_units != 0
9793 || (version == 2 && nr_columns != 0))
9794 {
9795 complaint (&symfile_complaints,
9796 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9797 " all zero [in modules %s]"),
9798 dwp_file->name);
9799 }
9800 return htab;
9801 }
9802
9803 if (version == 1)
9804 {
9805 htab->section_pool.v1.indices =
9806 htab->unit_table + sizeof (uint32_t) * nr_slots;
9807 /* It's harder to decide whether the section is too small in v1.
9808 V1 is deprecated anyway so we punt. */
9809 }
9810 else
9811 {
9812 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9813 int *ids = htab->section_pool.v2.section_ids;
9814 /* Reverse map for error checking. */
9815 int ids_seen[DW_SECT_MAX + 1];
9816 int i;
9817
9818 if (nr_columns < 2)
9819 {
9820 error (_("Dwarf Error: bad DWP hash table, too few columns"
9821 " in section table [in module %s]"),
9822 dwp_file->name);
9823 }
9824 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9825 {
9826 error (_("Dwarf Error: bad DWP hash table, too many columns"
9827 " in section table [in module %s]"),
9828 dwp_file->name);
9829 }
9830 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9831 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9832 for (i = 0; i < nr_columns; ++i)
9833 {
9834 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9835
9836 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9837 {
9838 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9839 " in section table [in module %s]"),
9840 id, dwp_file->name);
9841 }
9842 if (ids_seen[id] != -1)
9843 {
9844 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9845 " id %d in section table [in module %s]"),
9846 id, dwp_file->name);
9847 }
9848 ids_seen[id] = i;
9849 ids[i] = id;
9850 }
9851 /* Must have exactly one info or types section. */
9852 if (((ids_seen[DW_SECT_INFO] != -1)
9853 + (ids_seen[DW_SECT_TYPES] != -1))
9854 != 1)
9855 {
9856 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9857 " DWO info/types section [in module %s]"),
9858 dwp_file->name);
9859 }
9860 /* Must have an abbrev section. */
9861 if (ids_seen[DW_SECT_ABBREV] == -1)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9864 " section [in module %s]"),
9865 dwp_file->name);
9866 }
9867 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9868 htab->section_pool.v2.sizes =
9869 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9870 * nr_units * nr_columns);
9871 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9872 * nr_units * nr_columns))
9873 > index_end)
9874 {
9875 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9876 " [in module %s]"),
9877 dwp_file->name);
9878 }
9879 }
9880
9881 return htab;
9882 }
9883
9884 /* Update SECTIONS with the data from SECTP.
9885
9886 This function is like the other "locate" section routines that are
9887 passed to bfd_map_over_sections, but in this context the sections to
9888 read comes from the DWP V1 hash table, not the full ELF section table.
9889
9890 The result is non-zero for success, or zero if an error was found. */
9891
9892 static int
9893 locate_v1_virtual_dwo_sections (asection *sectp,
9894 struct virtual_v1_dwo_sections *sections)
9895 {
9896 const struct dwop_section_names *names = &dwop_section_names;
9897
9898 if (section_is_p (sectp->name, &names->abbrev_dwo))
9899 {
9900 /* There can be only one. */
9901 if (sections->abbrev.s.asection != NULL)
9902 return 0;
9903 sections->abbrev.s.asection = sectp;
9904 sections->abbrev.size = bfd_get_section_size (sectp);
9905 }
9906 else if (section_is_p (sectp->name, &names->info_dwo)
9907 || section_is_p (sectp->name, &names->types_dwo))
9908 {
9909 /* There can be only one. */
9910 if (sections->info_or_types.s.asection != NULL)
9911 return 0;
9912 sections->info_or_types.s.asection = sectp;
9913 sections->info_or_types.size = bfd_get_section_size (sectp);
9914 }
9915 else if (section_is_p (sectp->name, &names->line_dwo))
9916 {
9917 /* There can be only one. */
9918 if (sections->line.s.asection != NULL)
9919 return 0;
9920 sections->line.s.asection = sectp;
9921 sections->line.size = bfd_get_section_size (sectp);
9922 }
9923 else if (section_is_p (sectp->name, &names->loc_dwo))
9924 {
9925 /* There can be only one. */
9926 if (sections->loc.s.asection != NULL)
9927 return 0;
9928 sections->loc.s.asection = sectp;
9929 sections->loc.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9932 {
9933 /* There can be only one. */
9934 if (sections->macinfo.s.asection != NULL)
9935 return 0;
9936 sections->macinfo.s.asection = sectp;
9937 sections->macinfo.size = bfd_get_section_size (sectp);
9938 }
9939 else if (section_is_p (sectp->name, &names->macro_dwo))
9940 {
9941 /* There can be only one. */
9942 if (sections->macro.s.asection != NULL)
9943 return 0;
9944 sections->macro.s.asection = sectp;
9945 sections->macro.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9948 {
9949 /* There can be only one. */
9950 if (sections->str_offsets.s.asection != NULL)
9951 return 0;
9952 sections->str_offsets.s.asection = sectp;
9953 sections->str_offsets.size = bfd_get_section_size (sectp);
9954 }
9955 else
9956 {
9957 /* No other kind of section is valid. */
9958 return 0;
9959 }
9960
9961 return 1;
9962 }
9963
9964 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9965 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9966 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9967 This is for DWP version 1 files. */
9968
9969 static struct dwo_unit *
9970 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9971 uint32_t unit_index,
9972 const char *comp_dir,
9973 ULONGEST signature, int is_debug_types)
9974 {
9975 struct objfile *objfile = dwarf2_per_objfile->objfile;
9976 const struct dwp_hash_table *dwp_htab =
9977 is_debug_types ? dwp_file->tus : dwp_file->cus;
9978 bfd *dbfd = dwp_file->dbfd;
9979 const char *kind = is_debug_types ? "TU" : "CU";
9980 struct dwo_file *dwo_file;
9981 struct dwo_unit *dwo_unit;
9982 struct virtual_v1_dwo_sections sections;
9983 void **dwo_file_slot;
9984 char *virtual_dwo_name;
9985 struct dwarf2_section_info *cutu;
9986 struct cleanup *cleanups;
9987 int i;
9988
9989 gdb_assert (dwp_file->version == 1);
9990
9991 if (dwarf2_read_debug)
9992 {
9993 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9994 kind,
9995 pulongest (unit_index), hex_string (signature),
9996 dwp_file->name);
9997 }
9998
9999 /* Fetch the sections of this DWO unit.
10000 Put a limit on the number of sections we look for so that bad data
10001 doesn't cause us to loop forever. */
10002
10003 #define MAX_NR_V1_DWO_SECTIONS \
10004 (1 /* .debug_info or .debug_types */ \
10005 + 1 /* .debug_abbrev */ \
10006 + 1 /* .debug_line */ \
10007 + 1 /* .debug_loc */ \
10008 + 1 /* .debug_str_offsets */ \
10009 + 1 /* .debug_macro or .debug_macinfo */ \
10010 + 1 /* trailing zero */)
10011
10012 memset (&sections, 0, sizeof (sections));
10013 cleanups = make_cleanup (null_cleanup, 0);
10014
10015 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10016 {
10017 asection *sectp;
10018 uint32_t section_nr =
10019 read_4_bytes (dbfd,
10020 dwp_htab->section_pool.v1.indices
10021 + (unit_index + i) * sizeof (uint32_t));
10022
10023 if (section_nr == 0)
10024 break;
10025 if (section_nr >= dwp_file->num_sections)
10026 {
10027 error (_("Dwarf Error: bad DWP hash table, section number too large"
10028 " [in module %s]"),
10029 dwp_file->name);
10030 }
10031
10032 sectp = dwp_file->elf_sections[section_nr];
10033 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10034 {
10035 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10036 " [in module %s]"),
10037 dwp_file->name);
10038 }
10039 }
10040
10041 if (i < 2
10042 || dwarf2_section_empty_p (&sections.info_or_types)
10043 || dwarf2_section_empty_p (&sections.abbrev))
10044 {
10045 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10046 " [in module %s]"),
10047 dwp_file->name);
10048 }
10049 if (i == MAX_NR_V1_DWO_SECTIONS)
10050 {
10051 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055
10056 /* It's easier for the rest of the code if we fake a struct dwo_file and
10057 have dwo_unit "live" in that. At least for now.
10058
10059 The DWP file can be made up of a random collection of CUs and TUs.
10060 However, for each CU + set of TUs that came from the same original DWO
10061 file, we can combine them back into a virtual DWO file to save space
10062 (fewer struct dwo_file objects to allocate). Remember that for really
10063 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10064
10065 virtual_dwo_name =
10066 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10067 get_section_id (&sections.abbrev),
10068 get_section_id (&sections.line),
10069 get_section_id (&sections.loc),
10070 get_section_id (&sections.str_offsets));
10071 make_cleanup (xfree, virtual_dwo_name);
10072 /* Can we use an existing virtual DWO file? */
10073 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10074 /* Create one if necessary. */
10075 if (*dwo_file_slot == NULL)
10076 {
10077 if (dwarf2_read_debug)
10078 {
10079 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10080 virtual_dwo_name);
10081 }
10082 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10083 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10084 virtual_dwo_name,
10085 strlen (virtual_dwo_name));
10086 dwo_file->comp_dir = comp_dir;
10087 dwo_file->sections.abbrev = sections.abbrev;
10088 dwo_file->sections.line = sections.line;
10089 dwo_file->sections.loc = sections.loc;
10090 dwo_file->sections.macinfo = sections.macinfo;
10091 dwo_file->sections.macro = sections.macro;
10092 dwo_file->sections.str_offsets = sections.str_offsets;
10093 /* The "str" section is global to the entire DWP file. */
10094 dwo_file->sections.str = dwp_file->sections.str;
10095 /* The info or types section is assigned below to dwo_unit,
10096 there's no need to record it in dwo_file.
10097 Also, we can't simply record type sections in dwo_file because
10098 we record a pointer into the vector in dwo_unit. As we collect more
10099 types we'll grow the vector and eventually have to reallocate space
10100 for it, invalidating all copies of pointers into the previous
10101 contents. */
10102 *dwo_file_slot = dwo_file;
10103 }
10104 else
10105 {
10106 if (dwarf2_read_debug)
10107 {
10108 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10109 virtual_dwo_name);
10110 }
10111 dwo_file = *dwo_file_slot;
10112 }
10113 do_cleanups (cleanups);
10114
10115 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10116 dwo_unit->dwo_file = dwo_file;
10117 dwo_unit->signature = signature;
10118 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10119 sizeof (struct dwarf2_section_info));
10120 *dwo_unit->section = sections.info_or_types;
10121 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10122
10123 return dwo_unit;
10124 }
10125
10126 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10127 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10128 piece within that section used by a TU/CU, return a virtual section
10129 of just that piece. */
10130
10131 static struct dwarf2_section_info
10132 create_dwp_v2_section (struct dwarf2_section_info *section,
10133 bfd_size_type offset, bfd_size_type size)
10134 {
10135 struct dwarf2_section_info result;
10136 asection *sectp;
10137
10138 gdb_assert (section != NULL);
10139 gdb_assert (!section->is_virtual);
10140
10141 memset (&result, 0, sizeof (result));
10142 result.s.containing_section = section;
10143 result.is_virtual = 1;
10144
10145 if (size == 0)
10146 return result;
10147
10148 sectp = get_section_bfd_section (section);
10149
10150 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10151 bounds of the real section. This is a pretty-rare event, so just
10152 flag an error (easier) instead of a warning and trying to cope. */
10153 if (sectp == NULL
10154 || offset + size > bfd_get_section_size (sectp))
10155 {
10156 bfd *abfd = sectp->owner;
10157
10158 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10159 " in section %s [in module %s]"),
10160 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10161 objfile_name (dwarf2_per_objfile->objfile));
10162 }
10163
10164 result.virtual_offset = offset;
10165 result.size = size;
10166 return result;
10167 }
10168
10169 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10170 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10171 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10172 This is for DWP version 2 files. */
10173
10174 static struct dwo_unit *
10175 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10176 uint32_t unit_index,
10177 const char *comp_dir,
10178 ULONGEST signature, int is_debug_types)
10179 {
10180 struct objfile *objfile = dwarf2_per_objfile->objfile;
10181 const struct dwp_hash_table *dwp_htab =
10182 is_debug_types ? dwp_file->tus : dwp_file->cus;
10183 bfd *dbfd = dwp_file->dbfd;
10184 const char *kind = is_debug_types ? "TU" : "CU";
10185 struct dwo_file *dwo_file;
10186 struct dwo_unit *dwo_unit;
10187 struct virtual_v2_dwo_sections sections;
10188 void **dwo_file_slot;
10189 char *virtual_dwo_name;
10190 struct dwarf2_section_info *cutu;
10191 struct cleanup *cleanups;
10192 int i;
10193
10194 gdb_assert (dwp_file->version == 2);
10195
10196 if (dwarf2_read_debug)
10197 {
10198 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10199 kind,
10200 pulongest (unit_index), hex_string (signature),
10201 dwp_file->name);
10202 }
10203
10204 /* Fetch the section offsets of this DWO unit. */
10205
10206 memset (&sections, 0, sizeof (sections));
10207 cleanups = make_cleanup (null_cleanup, 0);
10208
10209 for (i = 0; i < dwp_htab->nr_columns; ++i)
10210 {
10211 uint32_t offset = read_4_bytes (dbfd,
10212 dwp_htab->section_pool.v2.offsets
10213 + (((unit_index - 1) * dwp_htab->nr_columns
10214 + i)
10215 * sizeof (uint32_t)));
10216 uint32_t size = read_4_bytes (dbfd,
10217 dwp_htab->section_pool.v2.sizes
10218 + (((unit_index - 1) * dwp_htab->nr_columns
10219 + i)
10220 * sizeof (uint32_t)));
10221
10222 switch (dwp_htab->section_pool.v2.section_ids[i])
10223 {
10224 case DW_SECT_INFO:
10225 case DW_SECT_TYPES:
10226 sections.info_or_types_offset = offset;
10227 sections.info_or_types_size = size;
10228 break;
10229 case DW_SECT_ABBREV:
10230 sections.abbrev_offset = offset;
10231 sections.abbrev_size = size;
10232 break;
10233 case DW_SECT_LINE:
10234 sections.line_offset = offset;
10235 sections.line_size = size;
10236 break;
10237 case DW_SECT_LOC:
10238 sections.loc_offset = offset;
10239 sections.loc_size = size;
10240 break;
10241 case DW_SECT_STR_OFFSETS:
10242 sections.str_offsets_offset = offset;
10243 sections.str_offsets_size = size;
10244 break;
10245 case DW_SECT_MACINFO:
10246 sections.macinfo_offset = offset;
10247 sections.macinfo_size = size;
10248 break;
10249 case DW_SECT_MACRO:
10250 sections.macro_offset = offset;
10251 sections.macro_size = size;
10252 break;
10253 }
10254 }
10255
10256 /* It's easier for the rest of the code if we fake a struct dwo_file and
10257 have dwo_unit "live" in that. At least for now.
10258
10259 The DWP file can be made up of a random collection of CUs and TUs.
10260 However, for each CU + set of TUs that came from the same original DWO
10261 file, we can combine them back into a virtual DWO file to save space
10262 (fewer struct dwo_file objects to allocate). Remember that for really
10263 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10264
10265 virtual_dwo_name =
10266 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10267 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10268 (long) (sections.line_size ? sections.line_offset : 0),
10269 (long) (sections.loc_size ? sections.loc_offset : 0),
10270 (long) (sections.str_offsets_size
10271 ? sections.str_offsets_offset : 0));
10272 make_cleanup (xfree, virtual_dwo_name);
10273 /* Can we use an existing virtual DWO file? */
10274 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10275 /* Create one if necessary. */
10276 if (*dwo_file_slot == NULL)
10277 {
10278 if (dwarf2_read_debug)
10279 {
10280 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10281 virtual_dwo_name);
10282 }
10283 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10284 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10285 virtual_dwo_name,
10286 strlen (virtual_dwo_name));
10287 dwo_file->comp_dir = comp_dir;
10288 dwo_file->sections.abbrev =
10289 create_dwp_v2_section (&dwp_file->sections.abbrev,
10290 sections.abbrev_offset, sections.abbrev_size);
10291 dwo_file->sections.line =
10292 create_dwp_v2_section (&dwp_file->sections.line,
10293 sections.line_offset, sections.line_size);
10294 dwo_file->sections.loc =
10295 create_dwp_v2_section (&dwp_file->sections.loc,
10296 sections.loc_offset, sections.loc_size);
10297 dwo_file->sections.macinfo =
10298 create_dwp_v2_section (&dwp_file->sections.macinfo,
10299 sections.macinfo_offset, sections.macinfo_size);
10300 dwo_file->sections.macro =
10301 create_dwp_v2_section (&dwp_file->sections.macro,
10302 sections.macro_offset, sections.macro_size);
10303 dwo_file->sections.str_offsets =
10304 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10305 sections.str_offsets_offset,
10306 sections.str_offsets_size);
10307 /* The "str" section is global to the entire DWP file. */
10308 dwo_file->sections.str = dwp_file->sections.str;
10309 /* The info or types section is assigned below to dwo_unit,
10310 there's no need to record it in dwo_file.
10311 Also, we can't simply record type sections in dwo_file because
10312 we record a pointer into the vector in dwo_unit. As we collect more
10313 types we'll grow the vector and eventually have to reallocate space
10314 for it, invalidating all copies of pointers into the previous
10315 contents. */
10316 *dwo_file_slot = dwo_file;
10317 }
10318 else
10319 {
10320 if (dwarf2_read_debug)
10321 {
10322 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10323 virtual_dwo_name);
10324 }
10325 dwo_file = *dwo_file_slot;
10326 }
10327 do_cleanups (cleanups);
10328
10329 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10330 dwo_unit->dwo_file = dwo_file;
10331 dwo_unit->signature = signature;
10332 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10333 sizeof (struct dwarf2_section_info));
10334 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10335 ? &dwp_file->sections.types
10336 : &dwp_file->sections.info,
10337 sections.info_or_types_offset,
10338 sections.info_or_types_size);
10339 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10340
10341 return dwo_unit;
10342 }
10343
10344 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10345 Returns NULL if the signature isn't found. */
10346
10347 static struct dwo_unit *
10348 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10349 ULONGEST signature, int is_debug_types)
10350 {
10351 const struct dwp_hash_table *dwp_htab =
10352 is_debug_types ? dwp_file->tus : dwp_file->cus;
10353 bfd *dbfd = dwp_file->dbfd;
10354 uint32_t mask = dwp_htab->nr_slots - 1;
10355 uint32_t hash = signature & mask;
10356 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10357 unsigned int i;
10358 void **slot;
10359 struct dwo_unit find_dwo_cu, *dwo_cu;
10360
10361 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10362 find_dwo_cu.signature = signature;
10363 slot = htab_find_slot (is_debug_types
10364 ? dwp_file->loaded_tus
10365 : dwp_file->loaded_cus,
10366 &find_dwo_cu, INSERT);
10367
10368 if (*slot != NULL)
10369 return *slot;
10370
10371 /* Use a for loop so that we don't loop forever on bad debug info. */
10372 for (i = 0; i < dwp_htab->nr_slots; ++i)
10373 {
10374 ULONGEST signature_in_table;
10375
10376 signature_in_table =
10377 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10378 if (signature_in_table == signature)
10379 {
10380 uint32_t unit_index =
10381 read_4_bytes (dbfd,
10382 dwp_htab->unit_table + hash * sizeof (uint32_t));
10383
10384 if (dwp_file->version == 1)
10385 {
10386 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10387 comp_dir, signature,
10388 is_debug_types);
10389 }
10390 else
10391 {
10392 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10393 comp_dir, signature,
10394 is_debug_types);
10395 }
10396 return *slot;
10397 }
10398 if (signature_in_table == 0)
10399 return NULL;
10400 hash = (hash + hash2) & mask;
10401 }
10402
10403 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10404 " [in module %s]"),
10405 dwp_file->name);
10406 }
10407
10408 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10409 Open the file specified by FILE_NAME and hand it off to BFD for
10410 preliminary analysis. Return a newly initialized bfd *, which
10411 includes a canonicalized copy of FILE_NAME.
10412 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10413 SEARCH_CWD is true if the current directory is to be searched.
10414 It will be searched before debug-file-directory.
10415 If successful, the file is added to the bfd include table of the
10416 objfile's bfd (see gdb_bfd_record_inclusion).
10417 If unable to find/open the file, return NULL.
10418 NOTE: This function is derived from symfile_bfd_open. */
10419
10420 static bfd *
10421 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10422 {
10423 bfd *sym_bfd;
10424 int desc, flags;
10425 char *absolute_name;
10426 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10427 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10428 to debug_file_directory. */
10429 char *search_path;
10430 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10431
10432 if (search_cwd)
10433 {
10434 if (*debug_file_directory != '\0')
10435 search_path = concat (".", dirname_separator_string,
10436 debug_file_directory, NULL);
10437 else
10438 search_path = xstrdup (".");
10439 }
10440 else
10441 search_path = xstrdup (debug_file_directory);
10442
10443 flags = OPF_RETURN_REALPATH;
10444 if (is_dwp)
10445 flags |= OPF_SEARCH_IN_PATH;
10446 desc = openp (search_path, flags, file_name,
10447 O_RDONLY | O_BINARY, &absolute_name);
10448 xfree (search_path);
10449 if (desc < 0)
10450 return NULL;
10451
10452 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10453 xfree (absolute_name);
10454 if (sym_bfd == NULL)
10455 return NULL;
10456 bfd_set_cacheable (sym_bfd, 1);
10457
10458 if (!bfd_check_format (sym_bfd, bfd_object))
10459 {
10460 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10461 return NULL;
10462 }
10463
10464 /* Success. Record the bfd as having been included by the objfile's bfd.
10465 This is important because things like demangled_names_hash lives in the
10466 objfile's per_bfd space and may have references to things like symbol
10467 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10469
10470 return sym_bfd;
10471 }
10472
10473 /* Try to open DWO file FILE_NAME.
10474 COMP_DIR is the DW_AT_comp_dir attribute.
10475 The result is the bfd handle of the file.
10476 If there is a problem finding or opening the file, return NULL.
10477 Upon success, the canonicalized path of the file is stored in the bfd,
10478 same as symfile_bfd_open. */
10479
10480 static bfd *
10481 open_dwo_file (const char *file_name, const char *comp_dir)
10482 {
10483 bfd *abfd;
10484
10485 if (IS_ABSOLUTE_PATH (file_name))
10486 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10487
10488 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10489
10490 if (comp_dir != NULL)
10491 {
10492 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10493
10494 /* NOTE: If comp_dir is a relative path, this will also try the
10495 search path, which seems useful. */
10496 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10497 xfree (path_to_try);
10498 if (abfd != NULL)
10499 return abfd;
10500 }
10501
10502 /* That didn't work, try debug-file-directory, which, despite its name,
10503 is a list of paths. */
10504
10505 if (*debug_file_directory == '\0')
10506 return NULL;
10507
10508 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10509 }
10510
10511 /* This function is mapped across the sections and remembers the offset and
10512 size of each of the DWO debugging sections we are interested in. */
10513
10514 static void
10515 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10516 {
10517 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10518 const struct dwop_section_names *names = &dwop_section_names;
10519
10520 if (section_is_p (sectp->name, &names->abbrev_dwo))
10521 {
10522 dwo_sections->abbrev.s.asection = sectp;
10523 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10524 }
10525 else if (section_is_p (sectp->name, &names->info_dwo))
10526 {
10527 dwo_sections->info.s.asection = sectp;
10528 dwo_sections->info.size = bfd_get_section_size (sectp);
10529 }
10530 else if (section_is_p (sectp->name, &names->line_dwo))
10531 {
10532 dwo_sections->line.s.asection = sectp;
10533 dwo_sections->line.size = bfd_get_section_size (sectp);
10534 }
10535 else if (section_is_p (sectp->name, &names->loc_dwo))
10536 {
10537 dwo_sections->loc.s.asection = sectp;
10538 dwo_sections->loc.size = bfd_get_section_size (sectp);
10539 }
10540 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10541 {
10542 dwo_sections->macinfo.s.asection = sectp;
10543 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->macro_dwo))
10546 {
10547 dwo_sections->macro.s.asection = sectp;
10548 dwo_sections->macro.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->str_dwo))
10551 {
10552 dwo_sections->str.s.asection = sectp;
10553 dwo_sections->str.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10556 {
10557 dwo_sections->str_offsets.s.asection = sectp;
10558 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->types_dwo))
10561 {
10562 struct dwarf2_section_info type_section;
10563
10564 memset (&type_section, 0, sizeof (type_section));
10565 type_section.s.asection = sectp;
10566 type_section.size = bfd_get_section_size (sectp);
10567 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10568 &type_section);
10569 }
10570 }
10571
10572 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10573 by PER_CU. This is for the non-DWP case.
10574 The result is NULL if DWO_NAME can't be found. */
10575
10576 static struct dwo_file *
10577 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10578 const char *dwo_name, const char *comp_dir)
10579 {
10580 struct objfile *objfile = dwarf2_per_objfile->objfile;
10581 struct dwo_file *dwo_file;
10582 bfd *dbfd;
10583 struct cleanup *cleanups;
10584
10585 dbfd = open_dwo_file (dwo_name, comp_dir);
10586 if (dbfd == NULL)
10587 {
10588 if (dwarf2_read_debug)
10589 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10590 return NULL;
10591 }
10592 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10593 dwo_file->dwo_name = dwo_name;
10594 dwo_file->comp_dir = comp_dir;
10595 dwo_file->dbfd = dbfd;
10596
10597 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10598
10599 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10600
10601 dwo_file->cu = create_dwo_cu (dwo_file);
10602
10603 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10604 dwo_file->sections.types);
10605
10606 discard_cleanups (cleanups);
10607
10608 if (dwarf2_read_debug)
10609 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10610
10611 return dwo_file;
10612 }
10613
10614 /* This function is mapped across the sections and remembers the offset and
10615 size of each of the DWP debugging sections common to version 1 and 2 that
10616 we are interested in. */
10617
10618 static void
10619 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10620 void *dwp_file_ptr)
10621 {
10622 struct dwp_file *dwp_file = dwp_file_ptr;
10623 const struct dwop_section_names *names = &dwop_section_names;
10624 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10625
10626 /* Record the ELF section number for later lookup: this is what the
10627 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10628 gdb_assert (elf_section_nr < dwp_file->num_sections);
10629 dwp_file->elf_sections[elf_section_nr] = sectp;
10630
10631 /* Look for specific sections that we need. */
10632 if (section_is_p (sectp->name, &names->str_dwo))
10633 {
10634 dwp_file->sections.str.s.asection = sectp;
10635 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10636 }
10637 else if (section_is_p (sectp->name, &names->cu_index))
10638 {
10639 dwp_file->sections.cu_index.s.asection = sectp;
10640 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10641 }
10642 else if (section_is_p (sectp->name, &names->tu_index))
10643 {
10644 dwp_file->sections.tu_index.s.asection = sectp;
10645 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10646 }
10647 }
10648
10649 /* This function is mapped across the sections and remembers the offset and
10650 size of each of the DWP version 2 debugging sections that we are interested
10651 in. This is split into a separate function because we don't know if we
10652 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10653
10654 static void
10655 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10656 {
10657 struct dwp_file *dwp_file = dwp_file_ptr;
10658 const struct dwop_section_names *names = &dwop_section_names;
10659 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10660
10661 /* Record the ELF section number for later lookup: this is what the
10662 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10663 gdb_assert (elf_section_nr < dwp_file->num_sections);
10664 dwp_file->elf_sections[elf_section_nr] = sectp;
10665
10666 /* Look for specific sections that we need. */
10667 if (section_is_p (sectp->name, &names->abbrev_dwo))
10668 {
10669 dwp_file->sections.abbrev.s.asection = sectp;
10670 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10671 }
10672 else if (section_is_p (sectp->name, &names->info_dwo))
10673 {
10674 dwp_file->sections.info.s.asection = sectp;
10675 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10676 }
10677 else if (section_is_p (sectp->name, &names->line_dwo))
10678 {
10679 dwp_file->sections.line.s.asection = sectp;
10680 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10681 }
10682 else if (section_is_p (sectp->name, &names->loc_dwo))
10683 {
10684 dwp_file->sections.loc.s.asection = sectp;
10685 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10686 }
10687 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10688 {
10689 dwp_file->sections.macinfo.s.asection = sectp;
10690 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10691 }
10692 else if (section_is_p (sectp->name, &names->macro_dwo))
10693 {
10694 dwp_file->sections.macro.s.asection = sectp;
10695 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10698 {
10699 dwp_file->sections.str_offsets.s.asection = sectp;
10700 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->types_dwo))
10703 {
10704 dwp_file->sections.types.s.asection = sectp;
10705 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10706 }
10707 }
10708
10709 /* Hash function for dwp_file loaded CUs/TUs. */
10710
10711 static hashval_t
10712 hash_dwp_loaded_cutus (const void *item)
10713 {
10714 const struct dwo_unit *dwo_unit = item;
10715
10716 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10717 return dwo_unit->signature;
10718 }
10719
10720 /* Equality function for dwp_file loaded CUs/TUs. */
10721
10722 static int
10723 eq_dwp_loaded_cutus (const void *a, const void *b)
10724 {
10725 const struct dwo_unit *dua = a;
10726 const struct dwo_unit *dub = b;
10727
10728 return dua->signature == dub->signature;
10729 }
10730
10731 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10732
10733 static htab_t
10734 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10735 {
10736 return htab_create_alloc_ex (3,
10737 hash_dwp_loaded_cutus,
10738 eq_dwp_loaded_cutus,
10739 NULL,
10740 &objfile->objfile_obstack,
10741 hashtab_obstack_allocate,
10742 dummy_obstack_deallocate);
10743 }
10744
10745 /* Try to open DWP file FILE_NAME.
10746 The result is the bfd handle of the file.
10747 If there is a problem finding or opening the file, return NULL.
10748 Upon success, the canonicalized path of the file is stored in the bfd,
10749 same as symfile_bfd_open. */
10750
10751 static bfd *
10752 open_dwp_file (const char *file_name)
10753 {
10754 bfd *abfd;
10755
10756 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10757 if (abfd != NULL)
10758 return abfd;
10759
10760 /* Work around upstream bug 15652.
10761 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10762 [Whether that's a "bug" is debatable, but it is getting in our way.]
10763 We have no real idea where the dwp file is, because gdb's realpath-ing
10764 of the executable's path may have discarded the needed info.
10765 [IWBN if the dwp file name was recorded in the executable, akin to
10766 .gnu_debuglink, but that doesn't exist yet.]
10767 Strip the directory from FILE_NAME and search again. */
10768 if (*debug_file_directory != '\0')
10769 {
10770 /* Don't implicitly search the current directory here.
10771 If the user wants to search "." to handle this case,
10772 it must be added to debug-file-directory. */
10773 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10774 0 /*search_cwd*/);
10775 }
10776
10777 return NULL;
10778 }
10779
10780 /* Initialize the use of the DWP file for the current objfile.
10781 By convention the name of the DWP file is ${objfile}.dwp.
10782 The result is NULL if it can't be found. */
10783
10784 static struct dwp_file *
10785 open_and_init_dwp_file (void)
10786 {
10787 struct objfile *objfile = dwarf2_per_objfile->objfile;
10788 struct dwp_file *dwp_file;
10789 char *dwp_name;
10790 bfd *dbfd;
10791 struct cleanup *cleanups;
10792
10793 /* Try to find first .dwp for the binary file before any symbolic links
10794 resolving. */
10795 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10796 cleanups = make_cleanup (xfree, dwp_name);
10797
10798 dbfd = open_dwp_file (dwp_name);
10799 if (dbfd == NULL
10800 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10801 {
10802 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10803 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10804 make_cleanup (xfree, dwp_name);
10805 dbfd = open_dwp_file (dwp_name);
10806 }
10807
10808 if (dbfd == NULL)
10809 {
10810 if (dwarf2_read_debug)
10811 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10812 do_cleanups (cleanups);
10813 return NULL;
10814 }
10815 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10816 dwp_file->name = bfd_get_filename (dbfd);
10817 dwp_file->dbfd = dbfd;
10818 do_cleanups (cleanups);
10819
10820 /* +1: section 0 is unused */
10821 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10822 dwp_file->elf_sections =
10823 OBSTACK_CALLOC (&objfile->objfile_obstack,
10824 dwp_file->num_sections, asection *);
10825
10826 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10827
10828 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10829
10830 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10831
10832 /* The DWP file version is stored in the hash table. Oh well. */
10833 if (dwp_file->cus->version != dwp_file->tus->version)
10834 {
10835 /* Technically speaking, we should try to limp along, but this is
10836 pretty bizarre. We use pulongest here because that's the established
10837 portability solution (e.g, we cannot use %u for uint32_t). */
10838 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10839 " TU version %s [in DWP file %s]"),
10840 pulongest (dwp_file->cus->version),
10841 pulongest (dwp_file->tus->version), dwp_name);
10842 }
10843 dwp_file->version = dwp_file->cus->version;
10844
10845 if (dwp_file->version == 2)
10846 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10847
10848 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10849 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10850
10851 if (dwarf2_read_debug)
10852 {
10853 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10854 fprintf_unfiltered (gdb_stdlog,
10855 " %s CUs, %s TUs\n",
10856 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10857 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10858 }
10859
10860 return dwp_file;
10861 }
10862
10863 /* Wrapper around open_and_init_dwp_file, only open it once. */
10864
10865 static struct dwp_file *
10866 get_dwp_file (void)
10867 {
10868 if (! dwarf2_per_objfile->dwp_checked)
10869 {
10870 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10871 dwarf2_per_objfile->dwp_checked = 1;
10872 }
10873 return dwarf2_per_objfile->dwp_file;
10874 }
10875
10876 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10877 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10878 or in the DWP file for the objfile, referenced by THIS_UNIT.
10879 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10880 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10881
10882 This is called, for example, when wanting to read a variable with a
10883 complex location. Therefore we don't want to do file i/o for every call.
10884 Therefore we don't want to look for a DWO file on every call.
10885 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10886 then we check if we've already seen DWO_NAME, and only THEN do we check
10887 for a DWO file.
10888
10889 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10890 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10891
10892 static struct dwo_unit *
10893 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10894 const char *dwo_name, const char *comp_dir,
10895 ULONGEST signature, int is_debug_types)
10896 {
10897 struct objfile *objfile = dwarf2_per_objfile->objfile;
10898 const char *kind = is_debug_types ? "TU" : "CU";
10899 void **dwo_file_slot;
10900 struct dwo_file *dwo_file;
10901 struct dwp_file *dwp_file;
10902
10903 /* First see if there's a DWP file.
10904 If we have a DWP file but didn't find the DWO inside it, don't
10905 look for the original DWO file. It makes gdb behave differently
10906 depending on whether one is debugging in the build tree. */
10907
10908 dwp_file = get_dwp_file ();
10909 if (dwp_file != NULL)
10910 {
10911 const struct dwp_hash_table *dwp_htab =
10912 is_debug_types ? dwp_file->tus : dwp_file->cus;
10913
10914 if (dwp_htab != NULL)
10915 {
10916 struct dwo_unit *dwo_cutu =
10917 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10918 signature, is_debug_types);
10919
10920 if (dwo_cutu != NULL)
10921 {
10922 if (dwarf2_read_debug)
10923 {
10924 fprintf_unfiltered (gdb_stdlog,
10925 "Virtual DWO %s %s found: @%s\n",
10926 kind, hex_string (signature),
10927 host_address_to_string (dwo_cutu));
10928 }
10929 return dwo_cutu;
10930 }
10931 }
10932 }
10933 else
10934 {
10935 /* No DWP file, look for the DWO file. */
10936
10937 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10938 if (*dwo_file_slot == NULL)
10939 {
10940 /* Read in the file and build a table of the CUs/TUs it contains. */
10941 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10942 }
10943 /* NOTE: This will be NULL if unable to open the file. */
10944 dwo_file = *dwo_file_slot;
10945
10946 if (dwo_file != NULL)
10947 {
10948 struct dwo_unit *dwo_cutu = NULL;
10949
10950 if (is_debug_types && dwo_file->tus)
10951 {
10952 struct dwo_unit find_dwo_cutu;
10953
10954 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10955 find_dwo_cutu.signature = signature;
10956 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10957 }
10958 else if (!is_debug_types && dwo_file->cu)
10959 {
10960 if (signature == dwo_file->cu->signature)
10961 dwo_cutu = dwo_file->cu;
10962 }
10963
10964 if (dwo_cutu != NULL)
10965 {
10966 if (dwarf2_read_debug)
10967 {
10968 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10969 kind, dwo_name, hex_string (signature),
10970 host_address_to_string (dwo_cutu));
10971 }
10972 return dwo_cutu;
10973 }
10974 }
10975 }
10976
10977 /* We didn't find it. This could mean a dwo_id mismatch, or
10978 someone deleted the DWO/DWP file, or the search path isn't set up
10979 correctly to find the file. */
10980
10981 if (dwarf2_read_debug)
10982 {
10983 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10984 kind, dwo_name, hex_string (signature));
10985 }
10986
10987 /* This is a warning and not a complaint because it can be caused by
10988 pilot error (e.g., user accidentally deleting the DWO). */
10989 {
10990 /* Print the name of the DWP file if we looked there, helps the user
10991 better diagnose the problem. */
10992 char *dwp_text = NULL;
10993 struct cleanup *cleanups;
10994
10995 if (dwp_file != NULL)
10996 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10997 cleanups = make_cleanup (xfree, dwp_text);
10998
10999 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11000 " [in module %s]"),
11001 kind, dwo_name, hex_string (signature),
11002 dwp_text != NULL ? dwp_text : "",
11003 this_unit->is_debug_types ? "TU" : "CU",
11004 this_unit->offset.sect_off, objfile_name (objfile));
11005
11006 do_cleanups (cleanups);
11007 }
11008 return NULL;
11009 }
11010
11011 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11012 See lookup_dwo_cutu_unit for details. */
11013
11014 static struct dwo_unit *
11015 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11016 const char *dwo_name, const char *comp_dir,
11017 ULONGEST signature)
11018 {
11019 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11020 }
11021
11022 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11023 See lookup_dwo_cutu_unit for details. */
11024
11025 static struct dwo_unit *
11026 lookup_dwo_type_unit (struct signatured_type *this_tu,
11027 const char *dwo_name, const char *comp_dir)
11028 {
11029 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11030 }
11031
11032 /* Traversal function for queue_and_load_all_dwo_tus. */
11033
11034 static int
11035 queue_and_load_dwo_tu (void **slot, void *info)
11036 {
11037 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11038 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11039 ULONGEST signature = dwo_unit->signature;
11040 struct signatured_type *sig_type =
11041 lookup_dwo_signatured_type (per_cu->cu, signature);
11042
11043 if (sig_type != NULL)
11044 {
11045 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11046
11047 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11048 a real dependency of PER_CU on SIG_TYPE. That is detected later
11049 while processing PER_CU. */
11050 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11051 load_full_type_unit (sig_cu);
11052 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11053 }
11054
11055 return 1;
11056 }
11057
11058 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11059 The DWO may have the only definition of the type, though it may not be
11060 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11061 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11062
11063 static void
11064 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11065 {
11066 struct dwo_unit *dwo_unit;
11067 struct dwo_file *dwo_file;
11068
11069 gdb_assert (!per_cu->is_debug_types);
11070 gdb_assert (get_dwp_file () == NULL);
11071 gdb_assert (per_cu->cu != NULL);
11072
11073 dwo_unit = per_cu->cu->dwo_unit;
11074 gdb_assert (dwo_unit != NULL);
11075
11076 dwo_file = dwo_unit->dwo_file;
11077 if (dwo_file->tus != NULL)
11078 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11079 }
11080
11081 /* Free all resources associated with DWO_FILE.
11082 Close the DWO file and munmap the sections.
11083 All memory should be on the objfile obstack. */
11084
11085 static void
11086 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11087 {
11088 int ix;
11089 struct dwarf2_section_info *section;
11090
11091 /* Note: dbfd is NULL for virtual DWO files. */
11092 gdb_bfd_unref (dwo_file->dbfd);
11093
11094 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11095 }
11096
11097 /* Wrapper for free_dwo_file for use in cleanups. */
11098
11099 static void
11100 free_dwo_file_cleanup (void *arg)
11101 {
11102 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11103 struct objfile *objfile = dwarf2_per_objfile->objfile;
11104
11105 free_dwo_file (dwo_file, objfile);
11106 }
11107
11108 /* Traversal function for free_dwo_files. */
11109
11110 static int
11111 free_dwo_file_from_slot (void **slot, void *info)
11112 {
11113 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11114 struct objfile *objfile = (struct objfile *) info;
11115
11116 free_dwo_file (dwo_file, objfile);
11117
11118 return 1;
11119 }
11120
11121 /* Free all resources associated with DWO_FILES. */
11122
11123 static void
11124 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11125 {
11126 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11127 }
11128 \f
11129 /* Read in various DIEs. */
11130
11131 /* qsort helper for inherit_abstract_dies. */
11132
11133 static int
11134 unsigned_int_compar (const void *ap, const void *bp)
11135 {
11136 unsigned int a = *(unsigned int *) ap;
11137 unsigned int b = *(unsigned int *) bp;
11138
11139 return (a > b) - (b > a);
11140 }
11141
11142 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11143 Inherit only the children of the DW_AT_abstract_origin DIE not being
11144 already referenced by DW_AT_abstract_origin from the children of the
11145 current DIE. */
11146
11147 static void
11148 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11149 {
11150 struct die_info *child_die;
11151 unsigned die_children_count;
11152 /* CU offsets which were referenced by children of the current DIE. */
11153 sect_offset *offsets;
11154 sect_offset *offsets_end, *offsetp;
11155 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11156 struct die_info *origin_die;
11157 /* Iterator of the ORIGIN_DIE children. */
11158 struct die_info *origin_child_die;
11159 struct cleanup *cleanups;
11160 struct attribute *attr;
11161 struct dwarf2_cu *origin_cu;
11162 struct pending **origin_previous_list_in_scope;
11163
11164 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11165 if (!attr)
11166 return;
11167
11168 /* Note that following die references may follow to a die in a
11169 different cu. */
11170
11171 origin_cu = cu;
11172 origin_die = follow_die_ref (die, attr, &origin_cu);
11173
11174 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11175 symbols in. */
11176 origin_previous_list_in_scope = origin_cu->list_in_scope;
11177 origin_cu->list_in_scope = cu->list_in_scope;
11178
11179 if (die->tag != origin_die->tag
11180 && !(die->tag == DW_TAG_inlined_subroutine
11181 && origin_die->tag == DW_TAG_subprogram))
11182 complaint (&symfile_complaints,
11183 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11184 die->offset.sect_off, origin_die->offset.sect_off);
11185
11186 child_die = die->child;
11187 die_children_count = 0;
11188 while (child_die && child_die->tag)
11189 {
11190 child_die = sibling_die (child_die);
11191 die_children_count++;
11192 }
11193 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11194 cleanups = make_cleanup (xfree, offsets);
11195
11196 offsets_end = offsets;
11197 child_die = die->child;
11198 while (child_die && child_die->tag)
11199 {
11200 /* For each CHILD_DIE, find the corresponding child of
11201 ORIGIN_DIE. If there is more than one layer of
11202 DW_AT_abstract_origin, follow them all; there shouldn't be,
11203 but GCC versions at least through 4.4 generate this (GCC PR
11204 40573). */
11205 struct die_info *child_origin_die = child_die;
11206 struct dwarf2_cu *child_origin_cu = cu;
11207
11208 while (1)
11209 {
11210 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11211 child_origin_cu);
11212 if (attr == NULL)
11213 break;
11214 child_origin_die = follow_die_ref (child_origin_die, attr,
11215 &child_origin_cu);
11216 }
11217
11218 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11219 counterpart may exist. */
11220 if (child_origin_die != child_die)
11221 {
11222 if (child_die->tag != child_origin_die->tag
11223 && !(child_die->tag == DW_TAG_inlined_subroutine
11224 && child_origin_die->tag == DW_TAG_subprogram))
11225 complaint (&symfile_complaints,
11226 _("Child DIE 0x%x and its abstract origin 0x%x have "
11227 "different tags"), child_die->offset.sect_off,
11228 child_origin_die->offset.sect_off);
11229 if (child_origin_die->parent != origin_die)
11230 complaint (&symfile_complaints,
11231 _("Child DIE 0x%x and its abstract origin 0x%x have "
11232 "different parents"), child_die->offset.sect_off,
11233 child_origin_die->offset.sect_off);
11234 else
11235 *offsets_end++ = child_origin_die->offset;
11236 }
11237 child_die = sibling_die (child_die);
11238 }
11239 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11240 unsigned_int_compar);
11241 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11242 if (offsetp[-1].sect_off == offsetp->sect_off)
11243 complaint (&symfile_complaints,
11244 _("Multiple children of DIE 0x%x refer "
11245 "to DIE 0x%x as their abstract origin"),
11246 die->offset.sect_off, offsetp->sect_off);
11247
11248 offsetp = offsets;
11249 origin_child_die = origin_die->child;
11250 while (origin_child_die && origin_child_die->tag)
11251 {
11252 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11253 while (offsetp < offsets_end
11254 && offsetp->sect_off < origin_child_die->offset.sect_off)
11255 offsetp++;
11256 if (offsetp >= offsets_end
11257 || offsetp->sect_off > origin_child_die->offset.sect_off)
11258 {
11259 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11260 Check whether we're already processing ORIGIN_CHILD_DIE.
11261 This can happen with mutually referenced abstract_origins.
11262 PR 16581. */
11263 if (!origin_child_die->in_process)
11264 process_die (origin_child_die, origin_cu);
11265 }
11266 origin_child_die = sibling_die (origin_child_die);
11267 }
11268 origin_cu->list_in_scope = origin_previous_list_in_scope;
11269
11270 do_cleanups (cleanups);
11271 }
11272
11273 static void
11274 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11275 {
11276 struct objfile *objfile = cu->objfile;
11277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11278 struct context_stack *new;
11279 CORE_ADDR lowpc;
11280 CORE_ADDR highpc;
11281 struct die_info *child_die;
11282 struct attribute *attr, *call_line, *call_file;
11283 const char *name;
11284 CORE_ADDR baseaddr;
11285 struct block *block;
11286 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11287 VEC (symbolp) *template_args = NULL;
11288 struct template_symbol *templ_func = NULL;
11289
11290 if (inlined_func)
11291 {
11292 /* If we do not have call site information, we can't show the
11293 caller of this inlined function. That's too confusing, so
11294 only use the scope for local variables. */
11295 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11296 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11297 if (call_line == NULL || call_file == NULL)
11298 {
11299 read_lexical_block_scope (die, cu);
11300 return;
11301 }
11302 }
11303
11304 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11305
11306 name = dwarf2_name (die, cu);
11307
11308 /* Ignore functions with missing or empty names. These are actually
11309 illegal according to the DWARF standard. */
11310 if (name == NULL)
11311 {
11312 complaint (&symfile_complaints,
11313 _("missing name for subprogram DIE at %d"),
11314 die->offset.sect_off);
11315 return;
11316 }
11317
11318 /* Ignore functions with missing or invalid low and high pc attributes. */
11319 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11320 {
11321 attr = dwarf2_attr (die, DW_AT_external, cu);
11322 if (!attr || !DW_UNSND (attr))
11323 complaint (&symfile_complaints,
11324 _("cannot get low and high bounds "
11325 "for subprogram DIE at %d"),
11326 die->offset.sect_off);
11327 return;
11328 }
11329
11330 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11331 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11332
11333 /* If we have any template arguments, then we must allocate a
11334 different sort of symbol. */
11335 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11336 {
11337 if (child_die->tag == DW_TAG_template_type_param
11338 || child_die->tag == DW_TAG_template_value_param)
11339 {
11340 templ_func = allocate_template_symbol (objfile);
11341 templ_func->base.is_cplus_template_function = 1;
11342 break;
11343 }
11344 }
11345
11346 new = push_context (0, lowpc);
11347 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11348 (struct symbol *) templ_func);
11349
11350 /* If there is a location expression for DW_AT_frame_base, record
11351 it. */
11352 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11353 if (attr)
11354 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11355
11356 cu->list_in_scope = &local_symbols;
11357
11358 if (die->child != NULL)
11359 {
11360 child_die = die->child;
11361 while (child_die && child_die->tag)
11362 {
11363 if (child_die->tag == DW_TAG_template_type_param
11364 || child_die->tag == DW_TAG_template_value_param)
11365 {
11366 struct symbol *arg = new_symbol (child_die, NULL, cu);
11367
11368 if (arg != NULL)
11369 VEC_safe_push (symbolp, template_args, arg);
11370 }
11371 else
11372 process_die (child_die, cu);
11373 child_die = sibling_die (child_die);
11374 }
11375 }
11376
11377 inherit_abstract_dies (die, cu);
11378
11379 /* If we have a DW_AT_specification, we might need to import using
11380 directives from the context of the specification DIE. See the
11381 comment in determine_prefix. */
11382 if (cu->language == language_cplus
11383 && dwarf2_attr (die, DW_AT_specification, cu))
11384 {
11385 struct dwarf2_cu *spec_cu = cu;
11386 struct die_info *spec_die = die_specification (die, &spec_cu);
11387
11388 while (spec_die)
11389 {
11390 child_die = spec_die->child;
11391 while (child_die && child_die->tag)
11392 {
11393 if (child_die->tag == DW_TAG_imported_module)
11394 process_die (child_die, spec_cu);
11395 child_die = sibling_die (child_die);
11396 }
11397
11398 /* In some cases, GCC generates specification DIEs that
11399 themselves contain DW_AT_specification attributes. */
11400 spec_die = die_specification (spec_die, &spec_cu);
11401 }
11402 }
11403
11404 new = pop_context ();
11405 /* Make a block for the local symbols within. */
11406 block = finish_block (new->name, &local_symbols, new->old_blocks,
11407 lowpc, highpc);
11408
11409 /* For C++, set the block's scope. */
11410 if ((cu->language == language_cplus || cu->language == language_fortran)
11411 && cu->processing_has_namespace_info)
11412 block_set_scope (block, determine_prefix (die, cu),
11413 &objfile->objfile_obstack);
11414
11415 /* If we have address ranges, record them. */
11416 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11417
11418 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11419
11420 /* Attach template arguments to function. */
11421 if (! VEC_empty (symbolp, template_args))
11422 {
11423 gdb_assert (templ_func != NULL);
11424
11425 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11426 templ_func->template_arguments
11427 = obstack_alloc (&objfile->objfile_obstack,
11428 (templ_func->n_template_arguments
11429 * sizeof (struct symbol *)));
11430 memcpy (templ_func->template_arguments,
11431 VEC_address (symbolp, template_args),
11432 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11433 VEC_free (symbolp, template_args);
11434 }
11435
11436 /* In C++, we can have functions nested inside functions (e.g., when
11437 a function declares a class that has methods). This means that
11438 when we finish processing a function scope, we may need to go
11439 back to building a containing block's symbol lists. */
11440 local_symbols = new->locals;
11441 using_directives = new->using_directives;
11442
11443 /* If we've finished processing a top-level function, subsequent
11444 symbols go in the file symbol list. */
11445 if (outermost_context_p ())
11446 cu->list_in_scope = &file_symbols;
11447 }
11448
11449 /* Process all the DIES contained within a lexical block scope. Start
11450 a new scope, process the dies, and then close the scope. */
11451
11452 static void
11453 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11454 {
11455 struct objfile *objfile = cu->objfile;
11456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11457 struct context_stack *new;
11458 CORE_ADDR lowpc, highpc;
11459 struct die_info *child_die;
11460 CORE_ADDR baseaddr;
11461
11462 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11463
11464 /* Ignore blocks with missing or invalid low and high pc attributes. */
11465 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11466 as multiple lexical blocks? Handling children in a sane way would
11467 be nasty. Might be easier to properly extend generic blocks to
11468 describe ranges. */
11469 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11470 return;
11471 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11472 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11473
11474 push_context (0, lowpc);
11475 if (die->child != NULL)
11476 {
11477 child_die = die->child;
11478 while (child_die && child_die->tag)
11479 {
11480 process_die (child_die, cu);
11481 child_die = sibling_die (child_die);
11482 }
11483 }
11484 new = pop_context ();
11485
11486 if (local_symbols != NULL || using_directives != NULL)
11487 {
11488 struct block *block
11489 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11490 highpc);
11491
11492 /* Note that recording ranges after traversing children, as we
11493 do here, means that recording a parent's ranges entails
11494 walking across all its children's ranges as they appear in
11495 the address map, which is quadratic behavior.
11496
11497 It would be nicer to record the parent's ranges before
11498 traversing its children, simply overriding whatever you find
11499 there. But since we don't even decide whether to create a
11500 block until after we've traversed its children, that's hard
11501 to do. */
11502 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11503 }
11504 local_symbols = new->locals;
11505 using_directives = new->using_directives;
11506 }
11507
11508 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11509
11510 static void
11511 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11512 {
11513 struct objfile *objfile = cu->objfile;
11514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11515 CORE_ADDR pc, baseaddr;
11516 struct attribute *attr;
11517 struct call_site *call_site, call_site_local;
11518 void **slot;
11519 int nparams;
11520 struct die_info *child_die;
11521
11522 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11523
11524 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11525 if (!attr)
11526 {
11527 complaint (&symfile_complaints,
11528 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11529 "DIE 0x%x [in module %s]"),
11530 die->offset.sect_off, objfile_name (objfile));
11531 return;
11532 }
11533 pc = attr_value_as_address (attr) + baseaddr;
11534 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11535
11536 if (cu->call_site_htab == NULL)
11537 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11538 NULL, &objfile->objfile_obstack,
11539 hashtab_obstack_allocate, NULL);
11540 call_site_local.pc = pc;
11541 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11542 if (*slot != NULL)
11543 {
11544 complaint (&symfile_complaints,
11545 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11546 "DIE 0x%x [in module %s]"),
11547 paddress (gdbarch, pc), die->offset.sect_off,
11548 objfile_name (objfile));
11549 return;
11550 }
11551
11552 /* Count parameters at the caller. */
11553
11554 nparams = 0;
11555 for (child_die = die->child; child_die && child_die->tag;
11556 child_die = sibling_die (child_die))
11557 {
11558 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11559 {
11560 complaint (&symfile_complaints,
11561 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11562 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11563 child_die->tag, child_die->offset.sect_off,
11564 objfile_name (objfile));
11565 continue;
11566 }
11567
11568 nparams++;
11569 }
11570
11571 call_site = obstack_alloc (&objfile->objfile_obstack,
11572 (sizeof (*call_site)
11573 + (sizeof (*call_site->parameter)
11574 * (nparams - 1))));
11575 *slot = call_site;
11576 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11577 call_site->pc = pc;
11578
11579 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11580 {
11581 struct die_info *func_die;
11582
11583 /* Skip also over DW_TAG_inlined_subroutine. */
11584 for (func_die = die->parent;
11585 func_die && func_die->tag != DW_TAG_subprogram
11586 && func_die->tag != DW_TAG_subroutine_type;
11587 func_die = func_die->parent);
11588
11589 /* DW_AT_GNU_all_call_sites is a superset
11590 of DW_AT_GNU_all_tail_call_sites. */
11591 if (func_die
11592 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11593 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11594 {
11595 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11596 not complete. But keep CALL_SITE for look ups via call_site_htab,
11597 both the initial caller containing the real return address PC and
11598 the final callee containing the current PC of a chain of tail
11599 calls do not need to have the tail call list complete. But any
11600 function candidate for a virtual tail call frame searched via
11601 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11602 determined unambiguously. */
11603 }
11604 else
11605 {
11606 struct type *func_type = NULL;
11607
11608 if (func_die)
11609 func_type = get_die_type (func_die, cu);
11610 if (func_type != NULL)
11611 {
11612 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11613
11614 /* Enlist this call site to the function. */
11615 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11616 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11617 }
11618 else
11619 complaint (&symfile_complaints,
11620 _("Cannot find function owning DW_TAG_GNU_call_site "
11621 "DIE 0x%x [in module %s]"),
11622 die->offset.sect_off, objfile_name (objfile));
11623 }
11624 }
11625
11626 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11627 if (attr == NULL)
11628 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11629 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11630 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11631 /* Keep NULL DWARF_BLOCK. */;
11632 else if (attr_form_is_block (attr))
11633 {
11634 struct dwarf2_locexpr_baton *dlbaton;
11635
11636 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11637 dlbaton->data = DW_BLOCK (attr)->data;
11638 dlbaton->size = DW_BLOCK (attr)->size;
11639 dlbaton->per_cu = cu->per_cu;
11640
11641 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11642 }
11643 else if (attr_form_is_ref (attr))
11644 {
11645 struct dwarf2_cu *target_cu = cu;
11646 struct die_info *target_die;
11647
11648 target_die = follow_die_ref (die, attr, &target_cu);
11649 gdb_assert (target_cu->objfile == objfile);
11650 if (die_is_declaration (target_die, target_cu))
11651 {
11652 const char *target_physname = NULL;
11653 struct attribute *target_attr;
11654
11655 /* Prefer the mangled name; otherwise compute the demangled one. */
11656 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11657 if (target_attr == NULL)
11658 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11659 target_cu);
11660 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11661 target_physname = DW_STRING (target_attr);
11662 else
11663 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11664 if (target_physname == NULL)
11665 complaint (&symfile_complaints,
11666 _("DW_AT_GNU_call_site_target target DIE has invalid "
11667 "physname, for referencing DIE 0x%x [in module %s]"),
11668 die->offset.sect_off, objfile_name (objfile));
11669 else
11670 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11671 }
11672 else
11673 {
11674 CORE_ADDR lowpc;
11675
11676 /* DW_AT_entry_pc should be preferred. */
11677 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11678 complaint (&symfile_complaints,
11679 _("DW_AT_GNU_call_site_target target DIE has invalid "
11680 "low pc, for referencing DIE 0x%x [in module %s]"),
11681 die->offset.sect_off, objfile_name (objfile));
11682 else
11683 {
11684 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11685 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11686 }
11687 }
11688 }
11689 else
11690 complaint (&symfile_complaints,
11691 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11692 "block nor reference, for DIE 0x%x [in module %s]"),
11693 die->offset.sect_off, objfile_name (objfile));
11694
11695 call_site->per_cu = cu->per_cu;
11696
11697 for (child_die = die->child;
11698 child_die && child_die->tag;
11699 child_die = sibling_die (child_die))
11700 {
11701 struct call_site_parameter *parameter;
11702 struct attribute *loc, *origin;
11703
11704 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11705 {
11706 /* Already printed the complaint above. */
11707 continue;
11708 }
11709
11710 gdb_assert (call_site->parameter_count < nparams);
11711 parameter = &call_site->parameter[call_site->parameter_count];
11712
11713 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11714 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11715 register is contained in DW_AT_GNU_call_site_value. */
11716
11717 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11718 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11719 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11720 {
11721 sect_offset offset;
11722
11723 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11724 offset = dwarf2_get_ref_die_offset (origin);
11725 if (!offset_in_cu_p (&cu->header, offset))
11726 {
11727 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11728 binding can be done only inside one CU. Such referenced DIE
11729 therefore cannot be even moved to DW_TAG_partial_unit. */
11730 complaint (&symfile_complaints,
11731 _("DW_AT_abstract_origin offset is not in CU for "
11732 "DW_TAG_GNU_call_site child DIE 0x%x "
11733 "[in module %s]"),
11734 child_die->offset.sect_off, objfile_name (objfile));
11735 continue;
11736 }
11737 parameter->u.param_offset.cu_off = (offset.sect_off
11738 - cu->header.offset.sect_off);
11739 }
11740 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11741 {
11742 complaint (&symfile_complaints,
11743 _("No DW_FORM_block* DW_AT_location for "
11744 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11745 child_die->offset.sect_off, objfile_name (objfile));
11746 continue;
11747 }
11748 else
11749 {
11750 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11751 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11752 if (parameter->u.dwarf_reg != -1)
11753 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11754 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11755 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11756 &parameter->u.fb_offset))
11757 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11758 else
11759 {
11760 complaint (&symfile_complaints,
11761 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11762 "for DW_FORM_block* DW_AT_location is supported for "
11763 "DW_TAG_GNU_call_site child DIE 0x%x "
11764 "[in module %s]"),
11765 child_die->offset.sect_off, objfile_name (objfile));
11766 continue;
11767 }
11768 }
11769
11770 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11771 if (!attr_form_is_block (attr))
11772 {
11773 complaint (&symfile_complaints,
11774 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11775 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11776 child_die->offset.sect_off, objfile_name (objfile));
11777 continue;
11778 }
11779 parameter->value = DW_BLOCK (attr)->data;
11780 parameter->value_size = DW_BLOCK (attr)->size;
11781
11782 /* Parameters are not pre-cleared by memset above. */
11783 parameter->data_value = NULL;
11784 parameter->data_value_size = 0;
11785 call_site->parameter_count++;
11786
11787 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11788 if (attr)
11789 {
11790 if (!attr_form_is_block (attr))
11791 complaint (&symfile_complaints,
11792 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11793 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11794 child_die->offset.sect_off, objfile_name (objfile));
11795 else
11796 {
11797 parameter->data_value = DW_BLOCK (attr)->data;
11798 parameter->data_value_size = DW_BLOCK (attr)->size;
11799 }
11800 }
11801 }
11802 }
11803
11804 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11805 Return 1 if the attributes are present and valid, otherwise, return 0.
11806 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11807
11808 static int
11809 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11810 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11811 struct partial_symtab *ranges_pst)
11812 {
11813 struct objfile *objfile = cu->objfile;
11814 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11815 struct comp_unit_head *cu_header = &cu->header;
11816 bfd *obfd = objfile->obfd;
11817 unsigned int addr_size = cu_header->addr_size;
11818 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11819 /* Base address selection entry. */
11820 CORE_ADDR base;
11821 int found_base;
11822 unsigned int dummy;
11823 const gdb_byte *buffer;
11824 CORE_ADDR marker;
11825 int low_set;
11826 CORE_ADDR low = 0;
11827 CORE_ADDR high = 0;
11828 CORE_ADDR baseaddr;
11829
11830 found_base = cu->base_known;
11831 base = cu->base_address;
11832
11833 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11834 if (offset >= dwarf2_per_objfile->ranges.size)
11835 {
11836 complaint (&symfile_complaints,
11837 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11838 offset);
11839 return 0;
11840 }
11841 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11842
11843 /* Read in the largest possible address. */
11844 marker = read_address (obfd, buffer, cu, &dummy);
11845 if ((marker & mask) == mask)
11846 {
11847 /* If we found the largest possible address, then
11848 read the base address. */
11849 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11850 buffer += 2 * addr_size;
11851 offset += 2 * addr_size;
11852 found_base = 1;
11853 }
11854
11855 low_set = 0;
11856
11857 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11858
11859 while (1)
11860 {
11861 CORE_ADDR range_beginning, range_end;
11862
11863 range_beginning = read_address (obfd, buffer, cu, &dummy);
11864 buffer += addr_size;
11865 range_end = read_address (obfd, buffer, cu, &dummy);
11866 buffer += addr_size;
11867 offset += 2 * addr_size;
11868
11869 /* An end of list marker is a pair of zero addresses. */
11870 if (range_beginning == 0 && range_end == 0)
11871 /* Found the end of list entry. */
11872 break;
11873
11874 /* Each base address selection entry is a pair of 2 values.
11875 The first is the largest possible address, the second is
11876 the base address. Check for a base address here. */
11877 if ((range_beginning & mask) == mask)
11878 {
11879 /* If we found the largest possible address, then
11880 read the base address. */
11881 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11882 found_base = 1;
11883 continue;
11884 }
11885
11886 if (!found_base)
11887 {
11888 /* We have no valid base address for the ranges
11889 data. */
11890 complaint (&symfile_complaints,
11891 _("Invalid .debug_ranges data (no base address)"));
11892 return 0;
11893 }
11894
11895 if (range_beginning > range_end)
11896 {
11897 /* Inverted range entries are invalid. */
11898 complaint (&symfile_complaints,
11899 _("Invalid .debug_ranges data (inverted range)"));
11900 return 0;
11901 }
11902
11903 /* Empty range entries have no effect. */
11904 if (range_beginning == range_end)
11905 continue;
11906
11907 range_beginning += base;
11908 range_end += base;
11909
11910 /* A not-uncommon case of bad debug info.
11911 Don't pollute the addrmap with bad data. */
11912 if (range_beginning + baseaddr == 0
11913 && !dwarf2_per_objfile->has_section_at_zero)
11914 {
11915 complaint (&symfile_complaints,
11916 _(".debug_ranges entry has start address of zero"
11917 " [in module %s]"), objfile_name (objfile));
11918 continue;
11919 }
11920
11921 if (ranges_pst != NULL)
11922 {
11923 CORE_ADDR lowpc;
11924 CORE_ADDR highpc;
11925
11926 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11927 range_beginning + baseaddr);
11928 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11929 range_end + baseaddr);
11930 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11931 ranges_pst);
11932 }
11933
11934 /* FIXME: This is recording everything as a low-high
11935 segment of consecutive addresses. We should have a
11936 data structure for discontiguous block ranges
11937 instead. */
11938 if (! low_set)
11939 {
11940 low = range_beginning;
11941 high = range_end;
11942 low_set = 1;
11943 }
11944 else
11945 {
11946 if (range_beginning < low)
11947 low = range_beginning;
11948 if (range_end > high)
11949 high = range_end;
11950 }
11951 }
11952
11953 if (! low_set)
11954 /* If the first entry is an end-of-list marker, the range
11955 describes an empty scope, i.e. no instructions. */
11956 return 0;
11957
11958 if (low_return)
11959 *low_return = low;
11960 if (high_return)
11961 *high_return = high;
11962 return 1;
11963 }
11964
11965 /* Get low and high pc attributes from a die. Return 1 if the attributes
11966 are present and valid, otherwise, return 0. Return -1 if the range is
11967 discontinuous, i.e. derived from DW_AT_ranges information. */
11968
11969 static int
11970 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11971 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11972 struct partial_symtab *pst)
11973 {
11974 struct attribute *attr;
11975 struct attribute *attr_high;
11976 CORE_ADDR low = 0;
11977 CORE_ADDR high = 0;
11978 int ret = 0;
11979
11980 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11981 if (attr_high)
11982 {
11983 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11984 if (attr)
11985 {
11986 low = attr_value_as_address (attr);
11987 high = attr_value_as_address (attr_high);
11988 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11989 high += low;
11990 }
11991 else
11992 /* Found high w/o low attribute. */
11993 return 0;
11994
11995 /* Found consecutive range of addresses. */
11996 ret = 1;
11997 }
11998 else
11999 {
12000 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12001 if (attr != NULL)
12002 {
12003 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12004 We take advantage of the fact that DW_AT_ranges does not appear
12005 in DW_TAG_compile_unit of DWO files. */
12006 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12007 unsigned int ranges_offset = (DW_UNSND (attr)
12008 + (need_ranges_base
12009 ? cu->ranges_base
12010 : 0));
12011
12012 /* Value of the DW_AT_ranges attribute is the offset in the
12013 .debug_ranges section. */
12014 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12015 return 0;
12016 /* Found discontinuous range of addresses. */
12017 ret = -1;
12018 }
12019 }
12020
12021 /* read_partial_die has also the strict LOW < HIGH requirement. */
12022 if (high <= low)
12023 return 0;
12024
12025 /* When using the GNU linker, .gnu.linkonce. sections are used to
12026 eliminate duplicate copies of functions and vtables and such.
12027 The linker will arbitrarily choose one and discard the others.
12028 The AT_*_pc values for such functions refer to local labels in
12029 these sections. If the section from that file was discarded, the
12030 labels are not in the output, so the relocs get a value of 0.
12031 If this is a discarded function, mark the pc bounds as invalid,
12032 so that GDB will ignore it. */
12033 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12034 return 0;
12035
12036 *lowpc = low;
12037 if (highpc)
12038 *highpc = high;
12039 return ret;
12040 }
12041
12042 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12043 its low and high PC addresses. Do nothing if these addresses could not
12044 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12045 and HIGHPC to the high address if greater than HIGHPC. */
12046
12047 static void
12048 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12049 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12050 struct dwarf2_cu *cu)
12051 {
12052 CORE_ADDR low, high;
12053 struct die_info *child = die->child;
12054
12055 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12056 {
12057 *lowpc = min (*lowpc, low);
12058 *highpc = max (*highpc, high);
12059 }
12060
12061 /* If the language does not allow nested subprograms (either inside
12062 subprograms or lexical blocks), we're done. */
12063 if (cu->language != language_ada)
12064 return;
12065
12066 /* Check all the children of the given DIE. If it contains nested
12067 subprograms, then check their pc bounds. Likewise, we need to
12068 check lexical blocks as well, as they may also contain subprogram
12069 definitions. */
12070 while (child && child->tag)
12071 {
12072 if (child->tag == DW_TAG_subprogram
12073 || child->tag == DW_TAG_lexical_block)
12074 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12075 child = sibling_die (child);
12076 }
12077 }
12078
12079 /* Get the low and high pc's represented by the scope DIE, and store
12080 them in *LOWPC and *HIGHPC. If the correct values can't be
12081 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12082
12083 static void
12084 get_scope_pc_bounds (struct die_info *die,
12085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12086 struct dwarf2_cu *cu)
12087 {
12088 CORE_ADDR best_low = (CORE_ADDR) -1;
12089 CORE_ADDR best_high = (CORE_ADDR) 0;
12090 CORE_ADDR current_low, current_high;
12091
12092 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12093 {
12094 best_low = current_low;
12095 best_high = current_high;
12096 }
12097 else
12098 {
12099 struct die_info *child = die->child;
12100
12101 while (child && child->tag)
12102 {
12103 switch (child->tag) {
12104 case DW_TAG_subprogram:
12105 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12106 break;
12107 case DW_TAG_namespace:
12108 case DW_TAG_module:
12109 /* FIXME: carlton/2004-01-16: Should we do this for
12110 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12111 that current GCC's always emit the DIEs corresponding
12112 to definitions of methods of classes as children of a
12113 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12114 the DIEs giving the declarations, which could be
12115 anywhere). But I don't see any reason why the
12116 standards says that they have to be there. */
12117 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12118
12119 if (current_low != ((CORE_ADDR) -1))
12120 {
12121 best_low = min (best_low, current_low);
12122 best_high = max (best_high, current_high);
12123 }
12124 break;
12125 default:
12126 /* Ignore. */
12127 break;
12128 }
12129
12130 child = sibling_die (child);
12131 }
12132 }
12133
12134 *lowpc = best_low;
12135 *highpc = best_high;
12136 }
12137
12138 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12139 in DIE. */
12140
12141 static void
12142 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12143 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12144 {
12145 struct objfile *objfile = cu->objfile;
12146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12147 struct attribute *attr;
12148 struct attribute *attr_high;
12149
12150 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12151 if (attr_high)
12152 {
12153 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12154 if (attr)
12155 {
12156 CORE_ADDR low = attr_value_as_address (attr);
12157 CORE_ADDR high = attr_value_as_address (attr_high);
12158
12159 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12160 high += low;
12161
12162 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12163 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12164 record_block_range (block, low, high - 1);
12165 }
12166 }
12167
12168 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12169 if (attr)
12170 {
12171 bfd *obfd = objfile->obfd;
12172 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12173 We take advantage of the fact that DW_AT_ranges does not appear
12174 in DW_TAG_compile_unit of DWO files. */
12175 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12176
12177 /* The value of the DW_AT_ranges attribute is the offset of the
12178 address range list in the .debug_ranges section. */
12179 unsigned long offset = (DW_UNSND (attr)
12180 + (need_ranges_base ? cu->ranges_base : 0));
12181 const gdb_byte *buffer;
12182
12183 /* For some target architectures, but not others, the
12184 read_address function sign-extends the addresses it returns.
12185 To recognize base address selection entries, we need a
12186 mask. */
12187 unsigned int addr_size = cu->header.addr_size;
12188 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12189
12190 /* The base address, to which the next pair is relative. Note
12191 that this 'base' is a DWARF concept: most entries in a range
12192 list are relative, to reduce the number of relocs against the
12193 debugging information. This is separate from this function's
12194 'baseaddr' argument, which GDB uses to relocate debugging
12195 information from a shared library based on the address at
12196 which the library was loaded. */
12197 CORE_ADDR base = cu->base_address;
12198 int base_known = cu->base_known;
12199
12200 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12201 if (offset >= dwarf2_per_objfile->ranges.size)
12202 {
12203 complaint (&symfile_complaints,
12204 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12205 offset);
12206 return;
12207 }
12208 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12209
12210 for (;;)
12211 {
12212 unsigned int bytes_read;
12213 CORE_ADDR start, end;
12214
12215 start = read_address (obfd, buffer, cu, &bytes_read);
12216 buffer += bytes_read;
12217 end = read_address (obfd, buffer, cu, &bytes_read);
12218 buffer += bytes_read;
12219
12220 /* Did we find the end of the range list? */
12221 if (start == 0 && end == 0)
12222 break;
12223
12224 /* Did we find a base address selection entry? */
12225 else if ((start & base_select_mask) == base_select_mask)
12226 {
12227 base = end;
12228 base_known = 1;
12229 }
12230
12231 /* We found an ordinary address range. */
12232 else
12233 {
12234 if (!base_known)
12235 {
12236 complaint (&symfile_complaints,
12237 _("Invalid .debug_ranges data "
12238 "(no base address)"));
12239 return;
12240 }
12241
12242 if (start > end)
12243 {
12244 /* Inverted range entries are invalid. */
12245 complaint (&symfile_complaints,
12246 _("Invalid .debug_ranges data "
12247 "(inverted range)"));
12248 return;
12249 }
12250
12251 /* Empty range entries have no effect. */
12252 if (start == end)
12253 continue;
12254
12255 start += base + baseaddr;
12256 end += base + baseaddr;
12257
12258 /* A not-uncommon case of bad debug info.
12259 Don't pollute the addrmap with bad data. */
12260 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12261 {
12262 complaint (&symfile_complaints,
12263 _(".debug_ranges entry has start address of zero"
12264 " [in module %s]"), objfile_name (objfile));
12265 continue;
12266 }
12267
12268 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12269 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12270 record_block_range (block, start, end - 1);
12271 }
12272 }
12273 }
12274 }
12275
12276 /* Check whether the producer field indicates either of GCC < 4.6, or the
12277 Intel C/C++ compiler, and cache the result in CU. */
12278
12279 static void
12280 check_producer (struct dwarf2_cu *cu)
12281 {
12282 const char *cs;
12283 int major, minor;
12284
12285 if (cu->producer == NULL)
12286 {
12287 /* For unknown compilers expect their behavior is DWARF version
12288 compliant.
12289
12290 GCC started to support .debug_types sections by -gdwarf-4 since
12291 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12292 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12293 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12294 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12295 }
12296 else if ((major = producer_is_gcc (cu->producer, &minor)) > 0)
12297 {
12298 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12299 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12300 }
12301 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12302 cu->producer_is_icc = 1;
12303 else
12304 {
12305 /* For other non-GCC compilers, expect their behavior is DWARF version
12306 compliant. */
12307 }
12308
12309 cu->checked_producer = 1;
12310 }
12311
12312 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12313 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12314 during 4.6.0 experimental. */
12315
12316 static int
12317 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12318 {
12319 if (!cu->checked_producer)
12320 check_producer (cu);
12321
12322 return cu->producer_is_gxx_lt_4_6;
12323 }
12324
12325 /* Return the default accessibility type if it is not overriden by
12326 DW_AT_accessibility. */
12327
12328 static enum dwarf_access_attribute
12329 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12330 {
12331 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12332 {
12333 /* The default DWARF 2 accessibility for members is public, the default
12334 accessibility for inheritance is private. */
12335
12336 if (die->tag != DW_TAG_inheritance)
12337 return DW_ACCESS_public;
12338 else
12339 return DW_ACCESS_private;
12340 }
12341 else
12342 {
12343 /* DWARF 3+ defines the default accessibility a different way. The same
12344 rules apply now for DW_TAG_inheritance as for the members and it only
12345 depends on the container kind. */
12346
12347 if (die->parent->tag == DW_TAG_class_type)
12348 return DW_ACCESS_private;
12349 else
12350 return DW_ACCESS_public;
12351 }
12352 }
12353
12354 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12355 offset. If the attribute was not found return 0, otherwise return
12356 1. If it was found but could not properly be handled, set *OFFSET
12357 to 0. */
12358
12359 static int
12360 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12361 LONGEST *offset)
12362 {
12363 struct attribute *attr;
12364
12365 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12366 if (attr != NULL)
12367 {
12368 *offset = 0;
12369
12370 /* Note that we do not check for a section offset first here.
12371 This is because DW_AT_data_member_location is new in DWARF 4,
12372 so if we see it, we can assume that a constant form is really
12373 a constant and not a section offset. */
12374 if (attr_form_is_constant (attr))
12375 *offset = dwarf2_get_attr_constant_value (attr, 0);
12376 else if (attr_form_is_section_offset (attr))
12377 dwarf2_complex_location_expr_complaint ();
12378 else if (attr_form_is_block (attr))
12379 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12380 else
12381 dwarf2_complex_location_expr_complaint ();
12382
12383 return 1;
12384 }
12385
12386 return 0;
12387 }
12388
12389 /* Add an aggregate field to the field list. */
12390
12391 static void
12392 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12393 struct dwarf2_cu *cu)
12394 {
12395 struct objfile *objfile = cu->objfile;
12396 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12397 struct nextfield *new_field;
12398 struct attribute *attr;
12399 struct field *fp;
12400 const char *fieldname = "";
12401
12402 /* Allocate a new field list entry and link it in. */
12403 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12404 make_cleanup (xfree, new_field);
12405 memset (new_field, 0, sizeof (struct nextfield));
12406
12407 if (die->tag == DW_TAG_inheritance)
12408 {
12409 new_field->next = fip->baseclasses;
12410 fip->baseclasses = new_field;
12411 }
12412 else
12413 {
12414 new_field->next = fip->fields;
12415 fip->fields = new_field;
12416 }
12417 fip->nfields++;
12418
12419 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12420 if (attr)
12421 new_field->accessibility = DW_UNSND (attr);
12422 else
12423 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12424 if (new_field->accessibility != DW_ACCESS_public)
12425 fip->non_public_fields = 1;
12426
12427 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12428 if (attr)
12429 new_field->virtuality = DW_UNSND (attr);
12430 else
12431 new_field->virtuality = DW_VIRTUALITY_none;
12432
12433 fp = &new_field->field;
12434
12435 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12436 {
12437 LONGEST offset;
12438
12439 /* Data member other than a C++ static data member. */
12440
12441 /* Get type of field. */
12442 fp->type = die_type (die, cu);
12443
12444 SET_FIELD_BITPOS (*fp, 0);
12445
12446 /* Get bit size of field (zero if none). */
12447 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12448 if (attr)
12449 {
12450 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12451 }
12452 else
12453 {
12454 FIELD_BITSIZE (*fp) = 0;
12455 }
12456
12457 /* Get bit offset of field. */
12458 if (handle_data_member_location (die, cu, &offset))
12459 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12460 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12461 if (attr)
12462 {
12463 if (gdbarch_bits_big_endian (gdbarch))
12464 {
12465 /* For big endian bits, the DW_AT_bit_offset gives the
12466 additional bit offset from the MSB of the containing
12467 anonymous object to the MSB of the field. We don't
12468 have to do anything special since we don't need to
12469 know the size of the anonymous object. */
12470 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12471 }
12472 else
12473 {
12474 /* For little endian bits, compute the bit offset to the
12475 MSB of the anonymous object, subtract off the number of
12476 bits from the MSB of the field to the MSB of the
12477 object, and then subtract off the number of bits of
12478 the field itself. The result is the bit offset of
12479 the LSB of the field. */
12480 int anonymous_size;
12481 int bit_offset = DW_UNSND (attr);
12482
12483 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12484 if (attr)
12485 {
12486 /* The size of the anonymous object containing
12487 the bit field is explicit, so use the
12488 indicated size (in bytes). */
12489 anonymous_size = DW_UNSND (attr);
12490 }
12491 else
12492 {
12493 /* The size of the anonymous object containing
12494 the bit field must be inferred from the type
12495 attribute of the data member containing the
12496 bit field. */
12497 anonymous_size = TYPE_LENGTH (fp->type);
12498 }
12499 SET_FIELD_BITPOS (*fp,
12500 (FIELD_BITPOS (*fp)
12501 + anonymous_size * bits_per_byte
12502 - bit_offset - FIELD_BITSIZE (*fp)));
12503 }
12504 }
12505
12506 /* Get name of field. */
12507 fieldname = dwarf2_name (die, cu);
12508 if (fieldname == NULL)
12509 fieldname = "";
12510
12511 /* The name is already allocated along with this objfile, so we don't
12512 need to duplicate it for the type. */
12513 fp->name = fieldname;
12514
12515 /* Change accessibility for artificial fields (e.g. virtual table
12516 pointer or virtual base class pointer) to private. */
12517 if (dwarf2_attr (die, DW_AT_artificial, cu))
12518 {
12519 FIELD_ARTIFICIAL (*fp) = 1;
12520 new_field->accessibility = DW_ACCESS_private;
12521 fip->non_public_fields = 1;
12522 }
12523 }
12524 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12525 {
12526 /* C++ static member. */
12527
12528 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12529 is a declaration, but all versions of G++ as of this writing
12530 (so through at least 3.2.1) incorrectly generate
12531 DW_TAG_variable tags. */
12532
12533 const char *physname;
12534
12535 /* Get name of field. */
12536 fieldname = dwarf2_name (die, cu);
12537 if (fieldname == NULL)
12538 return;
12539
12540 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12541 if (attr
12542 /* Only create a symbol if this is an external value.
12543 new_symbol checks this and puts the value in the global symbol
12544 table, which we want. If it is not external, new_symbol
12545 will try to put the value in cu->list_in_scope which is wrong. */
12546 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12547 {
12548 /* A static const member, not much different than an enum as far as
12549 we're concerned, except that we can support more types. */
12550 new_symbol (die, NULL, cu);
12551 }
12552
12553 /* Get physical name. */
12554 physname = dwarf2_physname (fieldname, die, cu);
12555
12556 /* The name is already allocated along with this objfile, so we don't
12557 need to duplicate it for the type. */
12558 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12559 FIELD_TYPE (*fp) = die_type (die, cu);
12560 FIELD_NAME (*fp) = fieldname;
12561 }
12562 else if (die->tag == DW_TAG_inheritance)
12563 {
12564 LONGEST offset;
12565
12566 /* C++ base class field. */
12567 if (handle_data_member_location (die, cu, &offset))
12568 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12569 FIELD_BITSIZE (*fp) = 0;
12570 FIELD_TYPE (*fp) = die_type (die, cu);
12571 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12572 fip->nbaseclasses++;
12573 }
12574 }
12575
12576 /* Add a typedef defined in the scope of the FIP's class. */
12577
12578 static void
12579 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12580 struct dwarf2_cu *cu)
12581 {
12582 struct objfile *objfile = cu->objfile;
12583 struct typedef_field_list *new_field;
12584 struct attribute *attr;
12585 struct typedef_field *fp;
12586 char *fieldname = "";
12587
12588 /* Allocate a new field list entry and link it in. */
12589 new_field = xzalloc (sizeof (*new_field));
12590 make_cleanup (xfree, new_field);
12591
12592 gdb_assert (die->tag == DW_TAG_typedef);
12593
12594 fp = &new_field->field;
12595
12596 /* Get name of field. */
12597 fp->name = dwarf2_name (die, cu);
12598 if (fp->name == NULL)
12599 return;
12600
12601 fp->type = read_type_die (die, cu);
12602
12603 new_field->next = fip->typedef_field_list;
12604 fip->typedef_field_list = new_field;
12605 fip->typedef_field_list_count++;
12606 }
12607
12608 /* Create the vector of fields, and attach it to the type. */
12609
12610 static void
12611 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12612 struct dwarf2_cu *cu)
12613 {
12614 int nfields = fip->nfields;
12615
12616 /* Record the field count, allocate space for the array of fields,
12617 and create blank accessibility bitfields if necessary. */
12618 TYPE_NFIELDS (type) = nfields;
12619 TYPE_FIELDS (type) = (struct field *)
12620 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12621 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12622
12623 if (fip->non_public_fields && cu->language != language_ada)
12624 {
12625 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12626
12627 TYPE_FIELD_PRIVATE_BITS (type) =
12628 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12629 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12630
12631 TYPE_FIELD_PROTECTED_BITS (type) =
12632 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12633 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12634
12635 TYPE_FIELD_IGNORE_BITS (type) =
12636 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12637 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12638 }
12639
12640 /* If the type has baseclasses, allocate and clear a bit vector for
12641 TYPE_FIELD_VIRTUAL_BITS. */
12642 if (fip->nbaseclasses && cu->language != language_ada)
12643 {
12644 int num_bytes = B_BYTES (fip->nbaseclasses);
12645 unsigned char *pointer;
12646
12647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12648 pointer = TYPE_ALLOC (type, num_bytes);
12649 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12650 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12651 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12652 }
12653
12654 /* Copy the saved-up fields into the field vector. Start from the head of
12655 the list, adding to the tail of the field array, so that they end up in
12656 the same order in the array in which they were added to the list. */
12657 while (nfields-- > 0)
12658 {
12659 struct nextfield *fieldp;
12660
12661 if (fip->fields)
12662 {
12663 fieldp = fip->fields;
12664 fip->fields = fieldp->next;
12665 }
12666 else
12667 {
12668 fieldp = fip->baseclasses;
12669 fip->baseclasses = fieldp->next;
12670 }
12671
12672 TYPE_FIELD (type, nfields) = fieldp->field;
12673 switch (fieldp->accessibility)
12674 {
12675 case DW_ACCESS_private:
12676 if (cu->language != language_ada)
12677 SET_TYPE_FIELD_PRIVATE (type, nfields);
12678 break;
12679
12680 case DW_ACCESS_protected:
12681 if (cu->language != language_ada)
12682 SET_TYPE_FIELD_PROTECTED (type, nfields);
12683 break;
12684
12685 case DW_ACCESS_public:
12686 break;
12687
12688 default:
12689 /* Unknown accessibility. Complain and treat it as public. */
12690 {
12691 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12692 fieldp->accessibility);
12693 }
12694 break;
12695 }
12696 if (nfields < fip->nbaseclasses)
12697 {
12698 switch (fieldp->virtuality)
12699 {
12700 case DW_VIRTUALITY_virtual:
12701 case DW_VIRTUALITY_pure_virtual:
12702 if (cu->language == language_ada)
12703 error (_("unexpected virtuality in component of Ada type"));
12704 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12705 break;
12706 }
12707 }
12708 }
12709 }
12710
12711 /* Return true if this member function is a constructor, false
12712 otherwise. */
12713
12714 static int
12715 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12716 {
12717 const char *fieldname;
12718 const char *typename;
12719 int len;
12720
12721 if (die->parent == NULL)
12722 return 0;
12723
12724 if (die->parent->tag != DW_TAG_structure_type
12725 && die->parent->tag != DW_TAG_union_type
12726 && die->parent->tag != DW_TAG_class_type)
12727 return 0;
12728
12729 fieldname = dwarf2_name (die, cu);
12730 typename = dwarf2_name (die->parent, cu);
12731 if (fieldname == NULL || typename == NULL)
12732 return 0;
12733
12734 len = strlen (fieldname);
12735 return (strncmp (fieldname, typename, len) == 0
12736 && (typename[len] == '\0' || typename[len] == '<'));
12737 }
12738
12739 /* Add a member function to the proper fieldlist. */
12740
12741 static void
12742 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12743 struct type *type, struct dwarf2_cu *cu)
12744 {
12745 struct objfile *objfile = cu->objfile;
12746 struct attribute *attr;
12747 struct fnfieldlist *flp;
12748 int i;
12749 struct fn_field *fnp;
12750 const char *fieldname;
12751 struct nextfnfield *new_fnfield;
12752 struct type *this_type;
12753 enum dwarf_access_attribute accessibility;
12754
12755 if (cu->language == language_ada)
12756 error (_("unexpected member function in Ada type"));
12757
12758 /* Get name of member function. */
12759 fieldname = dwarf2_name (die, cu);
12760 if (fieldname == NULL)
12761 return;
12762
12763 /* Look up member function name in fieldlist. */
12764 for (i = 0; i < fip->nfnfields; i++)
12765 {
12766 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12767 break;
12768 }
12769
12770 /* Create new list element if necessary. */
12771 if (i < fip->nfnfields)
12772 flp = &fip->fnfieldlists[i];
12773 else
12774 {
12775 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12776 {
12777 fip->fnfieldlists = (struct fnfieldlist *)
12778 xrealloc (fip->fnfieldlists,
12779 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12780 * sizeof (struct fnfieldlist));
12781 if (fip->nfnfields == 0)
12782 make_cleanup (free_current_contents, &fip->fnfieldlists);
12783 }
12784 flp = &fip->fnfieldlists[fip->nfnfields];
12785 flp->name = fieldname;
12786 flp->length = 0;
12787 flp->head = NULL;
12788 i = fip->nfnfields++;
12789 }
12790
12791 /* Create a new member function field and chain it to the field list
12792 entry. */
12793 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12794 make_cleanup (xfree, new_fnfield);
12795 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12796 new_fnfield->next = flp->head;
12797 flp->head = new_fnfield;
12798 flp->length++;
12799
12800 /* Fill in the member function field info. */
12801 fnp = &new_fnfield->fnfield;
12802
12803 /* Delay processing of the physname until later. */
12804 if (cu->language == language_cplus || cu->language == language_java)
12805 {
12806 add_to_method_list (type, i, flp->length - 1, fieldname,
12807 die, cu);
12808 }
12809 else
12810 {
12811 const char *physname = dwarf2_physname (fieldname, die, cu);
12812 fnp->physname = physname ? physname : "";
12813 }
12814
12815 fnp->type = alloc_type (objfile);
12816 this_type = read_type_die (die, cu);
12817 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12818 {
12819 int nparams = TYPE_NFIELDS (this_type);
12820
12821 /* TYPE is the domain of this method, and THIS_TYPE is the type
12822 of the method itself (TYPE_CODE_METHOD). */
12823 smash_to_method_type (fnp->type, type,
12824 TYPE_TARGET_TYPE (this_type),
12825 TYPE_FIELDS (this_type),
12826 TYPE_NFIELDS (this_type),
12827 TYPE_VARARGS (this_type));
12828
12829 /* Handle static member functions.
12830 Dwarf2 has no clean way to discern C++ static and non-static
12831 member functions. G++ helps GDB by marking the first
12832 parameter for non-static member functions (which is the this
12833 pointer) as artificial. We obtain this information from
12834 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12835 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12836 fnp->voffset = VOFFSET_STATIC;
12837 }
12838 else
12839 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12840 dwarf2_full_name (fieldname, die, cu));
12841
12842 /* Get fcontext from DW_AT_containing_type if present. */
12843 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12844 fnp->fcontext = die_containing_type (die, cu);
12845
12846 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12847 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12848
12849 /* Get accessibility. */
12850 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12851 if (attr)
12852 accessibility = DW_UNSND (attr);
12853 else
12854 accessibility = dwarf2_default_access_attribute (die, cu);
12855 switch (accessibility)
12856 {
12857 case DW_ACCESS_private:
12858 fnp->is_private = 1;
12859 break;
12860 case DW_ACCESS_protected:
12861 fnp->is_protected = 1;
12862 break;
12863 }
12864
12865 /* Check for artificial methods. */
12866 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12867 if (attr && DW_UNSND (attr) != 0)
12868 fnp->is_artificial = 1;
12869
12870 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12871
12872 /* Get index in virtual function table if it is a virtual member
12873 function. For older versions of GCC, this is an offset in the
12874 appropriate virtual table, as specified by DW_AT_containing_type.
12875 For everyone else, it is an expression to be evaluated relative
12876 to the object address. */
12877
12878 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12879 if (attr)
12880 {
12881 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12882 {
12883 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12884 {
12885 /* Old-style GCC. */
12886 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12887 }
12888 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12889 || (DW_BLOCK (attr)->size > 1
12890 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12891 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12892 {
12893 struct dwarf_block blk;
12894 int offset;
12895
12896 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12897 ? 1 : 2);
12898 blk.size = DW_BLOCK (attr)->size - offset;
12899 blk.data = DW_BLOCK (attr)->data + offset;
12900 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12901 if ((fnp->voffset % cu->header.addr_size) != 0)
12902 dwarf2_complex_location_expr_complaint ();
12903 else
12904 fnp->voffset /= cu->header.addr_size;
12905 fnp->voffset += 2;
12906 }
12907 else
12908 dwarf2_complex_location_expr_complaint ();
12909
12910 if (!fnp->fcontext)
12911 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12912 }
12913 else if (attr_form_is_section_offset (attr))
12914 {
12915 dwarf2_complex_location_expr_complaint ();
12916 }
12917 else
12918 {
12919 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12920 fieldname);
12921 }
12922 }
12923 else
12924 {
12925 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12926 if (attr && DW_UNSND (attr))
12927 {
12928 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12929 complaint (&symfile_complaints,
12930 _("Member function \"%s\" (offset %d) is virtual "
12931 "but the vtable offset is not specified"),
12932 fieldname, die->offset.sect_off);
12933 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12934 TYPE_CPLUS_DYNAMIC (type) = 1;
12935 }
12936 }
12937 }
12938
12939 /* Create the vector of member function fields, and attach it to the type. */
12940
12941 static void
12942 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12943 struct dwarf2_cu *cu)
12944 {
12945 struct fnfieldlist *flp;
12946 int i;
12947
12948 if (cu->language == language_ada)
12949 error (_("unexpected member functions in Ada type"));
12950
12951 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12952 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12953 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12954
12955 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12956 {
12957 struct nextfnfield *nfp = flp->head;
12958 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12959 int k;
12960
12961 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12962 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12963 fn_flp->fn_fields = (struct fn_field *)
12964 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12965 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12966 fn_flp->fn_fields[k] = nfp->fnfield;
12967 }
12968
12969 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12970 }
12971
12972 /* Returns non-zero if NAME is the name of a vtable member in CU's
12973 language, zero otherwise. */
12974 static int
12975 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12976 {
12977 static const char vptr[] = "_vptr";
12978 static const char vtable[] = "vtable";
12979
12980 /* Look for the C++ and Java forms of the vtable. */
12981 if ((cu->language == language_java
12982 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12983 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12984 && is_cplus_marker (name[sizeof (vptr) - 1])))
12985 return 1;
12986
12987 return 0;
12988 }
12989
12990 /* GCC outputs unnamed structures that are really pointers to member
12991 functions, with the ABI-specified layout. If TYPE describes
12992 such a structure, smash it into a member function type.
12993
12994 GCC shouldn't do this; it should just output pointer to member DIEs.
12995 This is GCC PR debug/28767. */
12996
12997 static void
12998 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12999 {
13000 struct type *pfn_type, *self_type, *new_type;
13001
13002 /* Check for a structure with no name and two children. */
13003 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13004 return;
13005
13006 /* Check for __pfn and __delta members. */
13007 if (TYPE_FIELD_NAME (type, 0) == NULL
13008 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13009 || TYPE_FIELD_NAME (type, 1) == NULL
13010 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13011 return;
13012
13013 /* Find the type of the method. */
13014 pfn_type = TYPE_FIELD_TYPE (type, 0);
13015 if (pfn_type == NULL
13016 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13017 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13018 return;
13019
13020 /* Look for the "this" argument. */
13021 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13022 if (TYPE_NFIELDS (pfn_type) == 0
13023 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13024 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13025 return;
13026
13027 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13028 new_type = alloc_type (objfile);
13029 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13030 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13031 TYPE_VARARGS (pfn_type));
13032 smash_to_methodptr_type (type, new_type);
13033 }
13034
13035 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13036 (icc). */
13037
13038 static int
13039 producer_is_icc (struct dwarf2_cu *cu)
13040 {
13041 if (!cu->checked_producer)
13042 check_producer (cu);
13043
13044 return cu->producer_is_icc;
13045 }
13046
13047 /* Called when we find the DIE that starts a structure or union scope
13048 (definition) to create a type for the structure or union. Fill in
13049 the type's name and general properties; the members will not be
13050 processed until process_structure_scope. A symbol table entry for
13051 the type will also not be done until process_structure_scope (assuming
13052 the type has a name).
13053
13054 NOTE: we need to call these functions regardless of whether or not the
13055 DIE has a DW_AT_name attribute, since it might be an anonymous
13056 structure or union. This gets the type entered into our set of
13057 user defined types. */
13058
13059 static struct type *
13060 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13061 {
13062 struct objfile *objfile = cu->objfile;
13063 struct type *type;
13064 struct attribute *attr;
13065 const char *name;
13066
13067 /* If the definition of this type lives in .debug_types, read that type.
13068 Don't follow DW_AT_specification though, that will take us back up
13069 the chain and we want to go down. */
13070 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13071 if (attr)
13072 {
13073 type = get_DW_AT_signature_type (die, attr, cu);
13074
13075 /* The type's CU may not be the same as CU.
13076 Ensure TYPE is recorded with CU in die_type_hash. */
13077 return set_die_type (die, type, cu);
13078 }
13079
13080 type = alloc_type (objfile);
13081 INIT_CPLUS_SPECIFIC (type);
13082
13083 name = dwarf2_name (die, cu);
13084 if (name != NULL)
13085 {
13086 if (cu->language == language_cplus
13087 || cu->language == language_java)
13088 {
13089 const char *full_name = dwarf2_full_name (name, die, cu);
13090
13091 /* dwarf2_full_name might have already finished building the DIE's
13092 type. If so, there is no need to continue. */
13093 if (get_die_type (die, cu) != NULL)
13094 return get_die_type (die, cu);
13095
13096 TYPE_TAG_NAME (type) = full_name;
13097 if (die->tag == DW_TAG_structure_type
13098 || die->tag == DW_TAG_class_type)
13099 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13100 }
13101 else
13102 {
13103 /* The name is already allocated along with this objfile, so
13104 we don't need to duplicate it for the type. */
13105 TYPE_TAG_NAME (type) = name;
13106 if (die->tag == DW_TAG_class_type)
13107 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13108 }
13109 }
13110
13111 if (die->tag == DW_TAG_structure_type)
13112 {
13113 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13114 }
13115 else if (die->tag == DW_TAG_union_type)
13116 {
13117 TYPE_CODE (type) = TYPE_CODE_UNION;
13118 }
13119 else
13120 {
13121 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13122 }
13123
13124 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13125 TYPE_DECLARED_CLASS (type) = 1;
13126
13127 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13128 if (attr)
13129 {
13130 TYPE_LENGTH (type) = DW_UNSND (attr);
13131 }
13132 else
13133 {
13134 TYPE_LENGTH (type) = 0;
13135 }
13136
13137 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13138 {
13139 /* ICC does not output the required DW_AT_declaration
13140 on incomplete types, but gives them a size of zero. */
13141 TYPE_STUB (type) = 1;
13142 }
13143 else
13144 TYPE_STUB_SUPPORTED (type) = 1;
13145
13146 if (die_is_declaration (die, cu))
13147 TYPE_STUB (type) = 1;
13148 else if (attr == NULL && die->child == NULL
13149 && producer_is_realview (cu->producer))
13150 /* RealView does not output the required DW_AT_declaration
13151 on incomplete types. */
13152 TYPE_STUB (type) = 1;
13153
13154 /* We need to add the type field to the die immediately so we don't
13155 infinitely recurse when dealing with pointers to the structure
13156 type within the structure itself. */
13157 set_die_type (die, type, cu);
13158
13159 /* set_die_type should be already done. */
13160 set_descriptive_type (type, die, cu);
13161
13162 return type;
13163 }
13164
13165 /* Finish creating a structure or union type, including filling in
13166 its members and creating a symbol for it. */
13167
13168 static void
13169 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13170 {
13171 struct objfile *objfile = cu->objfile;
13172 struct die_info *child_die;
13173 struct type *type;
13174
13175 type = get_die_type (die, cu);
13176 if (type == NULL)
13177 type = read_structure_type (die, cu);
13178
13179 if (die->child != NULL && ! die_is_declaration (die, cu))
13180 {
13181 struct field_info fi;
13182 VEC (symbolp) *template_args = NULL;
13183 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13184
13185 memset (&fi, 0, sizeof (struct field_info));
13186
13187 child_die = die->child;
13188
13189 while (child_die && child_die->tag)
13190 {
13191 if (child_die->tag == DW_TAG_member
13192 || child_die->tag == DW_TAG_variable)
13193 {
13194 /* NOTE: carlton/2002-11-05: A C++ static data member
13195 should be a DW_TAG_member that is a declaration, but
13196 all versions of G++ as of this writing (so through at
13197 least 3.2.1) incorrectly generate DW_TAG_variable
13198 tags for them instead. */
13199 dwarf2_add_field (&fi, child_die, cu);
13200 }
13201 else if (child_die->tag == DW_TAG_subprogram)
13202 {
13203 /* C++ member function. */
13204 dwarf2_add_member_fn (&fi, child_die, type, cu);
13205 }
13206 else if (child_die->tag == DW_TAG_inheritance)
13207 {
13208 /* C++ base class field. */
13209 dwarf2_add_field (&fi, child_die, cu);
13210 }
13211 else if (child_die->tag == DW_TAG_typedef)
13212 dwarf2_add_typedef (&fi, child_die, cu);
13213 else if (child_die->tag == DW_TAG_template_type_param
13214 || child_die->tag == DW_TAG_template_value_param)
13215 {
13216 struct symbol *arg = new_symbol (child_die, NULL, cu);
13217
13218 if (arg != NULL)
13219 VEC_safe_push (symbolp, template_args, arg);
13220 }
13221
13222 child_die = sibling_die (child_die);
13223 }
13224
13225 /* Attach template arguments to type. */
13226 if (! VEC_empty (symbolp, template_args))
13227 {
13228 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13229 TYPE_N_TEMPLATE_ARGUMENTS (type)
13230 = VEC_length (symbolp, template_args);
13231 TYPE_TEMPLATE_ARGUMENTS (type)
13232 = obstack_alloc (&objfile->objfile_obstack,
13233 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13234 * sizeof (struct symbol *)));
13235 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13236 VEC_address (symbolp, template_args),
13237 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13238 * sizeof (struct symbol *)));
13239 VEC_free (symbolp, template_args);
13240 }
13241
13242 /* Attach fields and member functions to the type. */
13243 if (fi.nfields)
13244 dwarf2_attach_fields_to_type (&fi, type, cu);
13245 if (fi.nfnfields)
13246 {
13247 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13248
13249 /* Get the type which refers to the base class (possibly this
13250 class itself) which contains the vtable pointer for the current
13251 class from the DW_AT_containing_type attribute. This use of
13252 DW_AT_containing_type is a GNU extension. */
13253
13254 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13255 {
13256 struct type *t = die_containing_type (die, cu);
13257
13258 TYPE_VPTR_BASETYPE (type) = t;
13259 if (type == t)
13260 {
13261 int i;
13262
13263 /* Our own class provides vtbl ptr. */
13264 for (i = TYPE_NFIELDS (t) - 1;
13265 i >= TYPE_N_BASECLASSES (t);
13266 --i)
13267 {
13268 const char *fieldname = TYPE_FIELD_NAME (t, i);
13269
13270 if (is_vtable_name (fieldname, cu))
13271 {
13272 TYPE_VPTR_FIELDNO (type) = i;
13273 break;
13274 }
13275 }
13276
13277 /* Complain if virtual function table field not found. */
13278 if (i < TYPE_N_BASECLASSES (t))
13279 complaint (&symfile_complaints,
13280 _("virtual function table pointer "
13281 "not found when defining class '%s'"),
13282 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13283 "");
13284 }
13285 else
13286 {
13287 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13288 }
13289 }
13290 else if (cu->producer
13291 && strncmp (cu->producer,
13292 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13293 {
13294 /* The IBM XLC compiler does not provide direct indication
13295 of the containing type, but the vtable pointer is
13296 always named __vfp. */
13297
13298 int i;
13299
13300 for (i = TYPE_NFIELDS (type) - 1;
13301 i >= TYPE_N_BASECLASSES (type);
13302 --i)
13303 {
13304 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13305 {
13306 TYPE_VPTR_FIELDNO (type) = i;
13307 TYPE_VPTR_BASETYPE (type) = type;
13308 break;
13309 }
13310 }
13311 }
13312 }
13313
13314 /* Copy fi.typedef_field_list linked list elements content into the
13315 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13316 if (fi.typedef_field_list)
13317 {
13318 int i = fi.typedef_field_list_count;
13319
13320 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13321 TYPE_TYPEDEF_FIELD_ARRAY (type)
13322 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13323 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13324
13325 /* Reverse the list order to keep the debug info elements order. */
13326 while (--i >= 0)
13327 {
13328 struct typedef_field *dest, *src;
13329
13330 dest = &TYPE_TYPEDEF_FIELD (type, i);
13331 src = &fi.typedef_field_list->field;
13332 fi.typedef_field_list = fi.typedef_field_list->next;
13333 *dest = *src;
13334 }
13335 }
13336
13337 do_cleanups (back_to);
13338
13339 if (HAVE_CPLUS_STRUCT (type))
13340 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13341 }
13342
13343 quirk_gcc_member_function_pointer (type, objfile);
13344
13345 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13346 snapshots) has been known to create a die giving a declaration
13347 for a class that has, as a child, a die giving a definition for a
13348 nested class. So we have to process our children even if the
13349 current die is a declaration. Normally, of course, a declaration
13350 won't have any children at all. */
13351
13352 child_die = die->child;
13353
13354 while (child_die != NULL && child_die->tag)
13355 {
13356 if (child_die->tag == DW_TAG_member
13357 || child_die->tag == DW_TAG_variable
13358 || child_die->tag == DW_TAG_inheritance
13359 || child_die->tag == DW_TAG_template_value_param
13360 || child_die->tag == DW_TAG_template_type_param)
13361 {
13362 /* Do nothing. */
13363 }
13364 else
13365 process_die (child_die, cu);
13366
13367 child_die = sibling_die (child_die);
13368 }
13369
13370 /* Do not consider external references. According to the DWARF standard,
13371 these DIEs are identified by the fact that they have no byte_size
13372 attribute, and a declaration attribute. */
13373 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13374 || !die_is_declaration (die, cu))
13375 new_symbol (die, type, cu);
13376 }
13377
13378 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13379 update TYPE using some information only available in DIE's children. */
13380
13381 static void
13382 update_enumeration_type_from_children (struct die_info *die,
13383 struct type *type,
13384 struct dwarf2_cu *cu)
13385 {
13386 struct obstack obstack;
13387 struct die_info *child_die;
13388 int unsigned_enum = 1;
13389 int flag_enum = 1;
13390 ULONGEST mask = 0;
13391 struct cleanup *old_chain;
13392
13393 obstack_init (&obstack);
13394 old_chain = make_cleanup_obstack_free (&obstack);
13395
13396 for (child_die = die->child;
13397 child_die != NULL && child_die->tag;
13398 child_die = sibling_die (child_die))
13399 {
13400 struct attribute *attr;
13401 LONGEST value;
13402 const gdb_byte *bytes;
13403 struct dwarf2_locexpr_baton *baton;
13404 const char *name;
13405
13406 if (child_die->tag != DW_TAG_enumerator)
13407 continue;
13408
13409 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13410 if (attr == NULL)
13411 continue;
13412
13413 name = dwarf2_name (child_die, cu);
13414 if (name == NULL)
13415 name = "<anonymous enumerator>";
13416
13417 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13418 &value, &bytes, &baton);
13419 if (value < 0)
13420 {
13421 unsigned_enum = 0;
13422 flag_enum = 0;
13423 }
13424 else if ((mask & value) != 0)
13425 flag_enum = 0;
13426 else
13427 mask |= value;
13428
13429 /* If we already know that the enum type is neither unsigned, nor
13430 a flag type, no need to look at the rest of the enumerates. */
13431 if (!unsigned_enum && !flag_enum)
13432 break;
13433 }
13434
13435 if (unsigned_enum)
13436 TYPE_UNSIGNED (type) = 1;
13437 if (flag_enum)
13438 TYPE_FLAG_ENUM (type) = 1;
13439
13440 do_cleanups (old_chain);
13441 }
13442
13443 /* Given a DW_AT_enumeration_type die, set its type. We do not
13444 complete the type's fields yet, or create any symbols. */
13445
13446 static struct type *
13447 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13448 {
13449 struct objfile *objfile = cu->objfile;
13450 struct type *type;
13451 struct attribute *attr;
13452 const char *name;
13453
13454 /* If the definition of this type lives in .debug_types, read that type.
13455 Don't follow DW_AT_specification though, that will take us back up
13456 the chain and we want to go down. */
13457 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13458 if (attr)
13459 {
13460 type = get_DW_AT_signature_type (die, attr, cu);
13461
13462 /* The type's CU may not be the same as CU.
13463 Ensure TYPE is recorded with CU in die_type_hash. */
13464 return set_die_type (die, type, cu);
13465 }
13466
13467 type = alloc_type (objfile);
13468
13469 TYPE_CODE (type) = TYPE_CODE_ENUM;
13470 name = dwarf2_full_name (NULL, die, cu);
13471 if (name != NULL)
13472 TYPE_TAG_NAME (type) = name;
13473
13474 attr = dwarf2_attr (die, DW_AT_type, cu);
13475 if (attr != NULL)
13476 {
13477 struct type *underlying_type = die_type (die, cu);
13478
13479 TYPE_TARGET_TYPE (type) = underlying_type;
13480 }
13481
13482 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13483 if (attr)
13484 {
13485 TYPE_LENGTH (type) = DW_UNSND (attr);
13486 }
13487 else
13488 {
13489 TYPE_LENGTH (type) = 0;
13490 }
13491
13492 /* The enumeration DIE can be incomplete. In Ada, any type can be
13493 declared as private in the package spec, and then defined only
13494 inside the package body. Such types are known as Taft Amendment
13495 Types. When another package uses such a type, an incomplete DIE
13496 may be generated by the compiler. */
13497 if (die_is_declaration (die, cu))
13498 TYPE_STUB (type) = 1;
13499
13500 /* Finish the creation of this type by using the enum's children.
13501 We must call this even when the underlying type has been provided
13502 so that we can determine if we're looking at a "flag" enum. */
13503 update_enumeration_type_from_children (die, type, cu);
13504
13505 /* If this type has an underlying type that is not a stub, then we
13506 may use its attributes. We always use the "unsigned" attribute
13507 in this situation, because ordinarily we guess whether the type
13508 is unsigned -- but the guess can be wrong and the underlying type
13509 can tell us the reality. However, we defer to a local size
13510 attribute if one exists, because this lets the compiler override
13511 the underlying type if needed. */
13512 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13513 {
13514 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13515 if (TYPE_LENGTH (type) == 0)
13516 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13517 }
13518
13519 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13520
13521 return set_die_type (die, type, cu);
13522 }
13523
13524 /* Given a pointer to a die which begins an enumeration, process all
13525 the dies that define the members of the enumeration, and create the
13526 symbol for the enumeration type.
13527
13528 NOTE: We reverse the order of the element list. */
13529
13530 static void
13531 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13532 {
13533 struct type *this_type;
13534
13535 this_type = get_die_type (die, cu);
13536 if (this_type == NULL)
13537 this_type = read_enumeration_type (die, cu);
13538
13539 if (die->child != NULL)
13540 {
13541 struct die_info *child_die;
13542 struct symbol *sym;
13543 struct field *fields = NULL;
13544 int num_fields = 0;
13545 const char *name;
13546
13547 child_die = die->child;
13548 while (child_die && child_die->tag)
13549 {
13550 if (child_die->tag != DW_TAG_enumerator)
13551 {
13552 process_die (child_die, cu);
13553 }
13554 else
13555 {
13556 name = dwarf2_name (child_die, cu);
13557 if (name)
13558 {
13559 sym = new_symbol (child_die, this_type, cu);
13560
13561 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13562 {
13563 fields = (struct field *)
13564 xrealloc (fields,
13565 (num_fields + DW_FIELD_ALLOC_CHUNK)
13566 * sizeof (struct field));
13567 }
13568
13569 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13570 FIELD_TYPE (fields[num_fields]) = NULL;
13571 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13572 FIELD_BITSIZE (fields[num_fields]) = 0;
13573
13574 num_fields++;
13575 }
13576 }
13577
13578 child_die = sibling_die (child_die);
13579 }
13580
13581 if (num_fields)
13582 {
13583 TYPE_NFIELDS (this_type) = num_fields;
13584 TYPE_FIELDS (this_type) = (struct field *)
13585 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13586 memcpy (TYPE_FIELDS (this_type), fields,
13587 sizeof (struct field) * num_fields);
13588 xfree (fields);
13589 }
13590 }
13591
13592 /* If we are reading an enum from a .debug_types unit, and the enum
13593 is a declaration, and the enum is not the signatured type in the
13594 unit, then we do not want to add a symbol for it. Adding a
13595 symbol would in some cases obscure the true definition of the
13596 enum, giving users an incomplete type when the definition is
13597 actually available. Note that we do not want to do this for all
13598 enums which are just declarations, because C++0x allows forward
13599 enum declarations. */
13600 if (cu->per_cu->is_debug_types
13601 && die_is_declaration (die, cu))
13602 {
13603 struct signatured_type *sig_type;
13604
13605 sig_type = (struct signatured_type *) cu->per_cu;
13606 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13607 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13608 return;
13609 }
13610
13611 new_symbol (die, this_type, cu);
13612 }
13613
13614 /* Extract all information from a DW_TAG_array_type DIE and put it in
13615 the DIE's type field. For now, this only handles one dimensional
13616 arrays. */
13617
13618 static struct type *
13619 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13620 {
13621 struct objfile *objfile = cu->objfile;
13622 struct die_info *child_die;
13623 struct type *type;
13624 struct type *element_type, *range_type, *index_type;
13625 struct type **range_types = NULL;
13626 struct attribute *attr;
13627 int ndim = 0;
13628 struct cleanup *back_to;
13629 const char *name;
13630 unsigned int bit_stride = 0;
13631
13632 element_type = die_type (die, cu);
13633
13634 /* The die_type call above may have already set the type for this DIE. */
13635 type = get_die_type (die, cu);
13636 if (type)
13637 return type;
13638
13639 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13640 if (attr != NULL)
13641 bit_stride = DW_UNSND (attr) * 8;
13642
13643 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13644 if (attr != NULL)
13645 bit_stride = DW_UNSND (attr);
13646
13647 /* Irix 6.2 native cc creates array types without children for
13648 arrays with unspecified length. */
13649 if (die->child == NULL)
13650 {
13651 index_type = objfile_type (objfile)->builtin_int;
13652 range_type = create_static_range_type (NULL, index_type, 0, -1);
13653 type = create_array_type_with_stride (NULL, element_type, range_type,
13654 bit_stride);
13655 return set_die_type (die, type, cu);
13656 }
13657
13658 back_to = make_cleanup (null_cleanup, NULL);
13659 child_die = die->child;
13660 while (child_die && child_die->tag)
13661 {
13662 if (child_die->tag == DW_TAG_subrange_type)
13663 {
13664 struct type *child_type = read_type_die (child_die, cu);
13665
13666 if (child_type != NULL)
13667 {
13668 /* The range type was succesfully read. Save it for the
13669 array type creation. */
13670 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13671 {
13672 range_types = (struct type **)
13673 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13674 * sizeof (struct type *));
13675 if (ndim == 0)
13676 make_cleanup (free_current_contents, &range_types);
13677 }
13678 range_types[ndim++] = child_type;
13679 }
13680 }
13681 child_die = sibling_die (child_die);
13682 }
13683
13684 /* Dwarf2 dimensions are output from left to right, create the
13685 necessary array types in backwards order. */
13686
13687 type = element_type;
13688
13689 if (read_array_order (die, cu) == DW_ORD_col_major)
13690 {
13691 int i = 0;
13692
13693 while (i < ndim)
13694 type = create_array_type_with_stride (NULL, type, range_types[i++],
13695 bit_stride);
13696 }
13697 else
13698 {
13699 while (ndim-- > 0)
13700 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13701 bit_stride);
13702 }
13703
13704 /* Understand Dwarf2 support for vector types (like they occur on
13705 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13706 array type. This is not part of the Dwarf2/3 standard yet, but a
13707 custom vendor extension. The main difference between a regular
13708 array and the vector variant is that vectors are passed by value
13709 to functions. */
13710 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13711 if (attr)
13712 make_vector_type (type);
13713
13714 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13715 implementation may choose to implement triple vectors using this
13716 attribute. */
13717 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13718 if (attr)
13719 {
13720 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13721 TYPE_LENGTH (type) = DW_UNSND (attr);
13722 else
13723 complaint (&symfile_complaints,
13724 _("DW_AT_byte_size for array type smaller "
13725 "than the total size of elements"));
13726 }
13727
13728 name = dwarf2_name (die, cu);
13729 if (name)
13730 TYPE_NAME (type) = name;
13731
13732 /* Install the type in the die. */
13733 set_die_type (die, type, cu);
13734
13735 /* set_die_type should be already done. */
13736 set_descriptive_type (type, die, cu);
13737
13738 do_cleanups (back_to);
13739
13740 return type;
13741 }
13742
13743 static enum dwarf_array_dim_ordering
13744 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13745 {
13746 struct attribute *attr;
13747
13748 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13749
13750 if (attr) return DW_SND (attr);
13751
13752 /* GNU F77 is a special case, as at 08/2004 array type info is the
13753 opposite order to the dwarf2 specification, but data is still
13754 laid out as per normal fortran.
13755
13756 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13757 version checking. */
13758
13759 if (cu->language == language_fortran
13760 && cu->producer && strstr (cu->producer, "GNU F77"))
13761 {
13762 return DW_ORD_row_major;
13763 }
13764
13765 switch (cu->language_defn->la_array_ordering)
13766 {
13767 case array_column_major:
13768 return DW_ORD_col_major;
13769 case array_row_major:
13770 default:
13771 return DW_ORD_row_major;
13772 };
13773 }
13774
13775 /* Extract all information from a DW_TAG_set_type DIE and put it in
13776 the DIE's type field. */
13777
13778 static struct type *
13779 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13780 {
13781 struct type *domain_type, *set_type;
13782 struct attribute *attr;
13783
13784 domain_type = die_type (die, cu);
13785
13786 /* The die_type call above may have already set the type for this DIE. */
13787 set_type = get_die_type (die, cu);
13788 if (set_type)
13789 return set_type;
13790
13791 set_type = create_set_type (NULL, domain_type);
13792
13793 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13794 if (attr)
13795 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13796
13797 return set_die_type (die, set_type, cu);
13798 }
13799
13800 /* A helper for read_common_block that creates a locexpr baton.
13801 SYM is the symbol which we are marking as computed.
13802 COMMON_DIE is the DIE for the common block.
13803 COMMON_LOC is the location expression attribute for the common
13804 block itself.
13805 MEMBER_LOC is the location expression attribute for the particular
13806 member of the common block that we are processing.
13807 CU is the CU from which the above come. */
13808
13809 static void
13810 mark_common_block_symbol_computed (struct symbol *sym,
13811 struct die_info *common_die,
13812 struct attribute *common_loc,
13813 struct attribute *member_loc,
13814 struct dwarf2_cu *cu)
13815 {
13816 struct objfile *objfile = dwarf2_per_objfile->objfile;
13817 struct dwarf2_locexpr_baton *baton;
13818 gdb_byte *ptr;
13819 unsigned int cu_off;
13820 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13821 LONGEST offset = 0;
13822
13823 gdb_assert (common_loc && member_loc);
13824 gdb_assert (attr_form_is_block (common_loc));
13825 gdb_assert (attr_form_is_block (member_loc)
13826 || attr_form_is_constant (member_loc));
13827
13828 baton = obstack_alloc (&objfile->objfile_obstack,
13829 sizeof (struct dwarf2_locexpr_baton));
13830 baton->per_cu = cu->per_cu;
13831 gdb_assert (baton->per_cu);
13832
13833 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13834
13835 if (attr_form_is_constant (member_loc))
13836 {
13837 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13838 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13839 }
13840 else
13841 baton->size += DW_BLOCK (member_loc)->size;
13842
13843 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13844 baton->data = ptr;
13845
13846 *ptr++ = DW_OP_call4;
13847 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13848 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13849 ptr += 4;
13850
13851 if (attr_form_is_constant (member_loc))
13852 {
13853 *ptr++ = DW_OP_addr;
13854 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13855 ptr += cu->header.addr_size;
13856 }
13857 else
13858 {
13859 /* We have to copy the data here, because DW_OP_call4 will only
13860 use a DW_AT_location attribute. */
13861 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13862 ptr += DW_BLOCK (member_loc)->size;
13863 }
13864
13865 *ptr++ = DW_OP_plus;
13866 gdb_assert (ptr - baton->data == baton->size);
13867
13868 SYMBOL_LOCATION_BATON (sym) = baton;
13869 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13870 }
13871
13872 /* Create appropriate locally-scoped variables for all the
13873 DW_TAG_common_block entries. Also create a struct common_block
13874 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13875 is used to sepate the common blocks name namespace from regular
13876 variable names. */
13877
13878 static void
13879 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13880 {
13881 struct attribute *attr;
13882
13883 attr = dwarf2_attr (die, DW_AT_location, cu);
13884 if (attr)
13885 {
13886 /* Support the .debug_loc offsets. */
13887 if (attr_form_is_block (attr))
13888 {
13889 /* Ok. */
13890 }
13891 else if (attr_form_is_section_offset (attr))
13892 {
13893 dwarf2_complex_location_expr_complaint ();
13894 attr = NULL;
13895 }
13896 else
13897 {
13898 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13899 "common block member");
13900 attr = NULL;
13901 }
13902 }
13903
13904 if (die->child != NULL)
13905 {
13906 struct objfile *objfile = cu->objfile;
13907 struct die_info *child_die;
13908 size_t n_entries = 0, size;
13909 struct common_block *common_block;
13910 struct symbol *sym;
13911
13912 for (child_die = die->child;
13913 child_die && child_die->tag;
13914 child_die = sibling_die (child_die))
13915 ++n_entries;
13916
13917 size = (sizeof (struct common_block)
13918 + (n_entries - 1) * sizeof (struct symbol *));
13919 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13920 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13921 common_block->n_entries = 0;
13922
13923 for (child_die = die->child;
13924 child_die && child_die->tag;
13925 child_die = sibling_die (child_die))
13926 {
13927 /* Create the symbol in the DW_TAG_common_block block in the current
13928 symbol scope. */
13929 sym = new_symbol (child_die, NULL, cu);
13930 if (sym != NULL)
13931 {
13932 struct attribute *member_loc;
13933
13934 common_block->contents[common_block->n_entries++] = sym;
13935
13936 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13937 cu);
13938 if (member_loc)
13939 {
13940 /* GDB has handled this for a long time, but it is
13941 not specified by DWARF. It seems to have been
13942 emitted by gfortran at least as recently as:
13943 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13944 complaint (&symfile_complaints,
13945 _("Variable in common block has "
13946 "DW_AT_data_member_location "
13947 "- DIE at 0x%x [in module %s]"),
13948 child_die->offset.sect_off,
13949 objfile_name (cu->objfile));
13950
13951 if (attr_form_is_section_offset (member_loc))
13952 dwarf2_complex_location_expr_complaint ();
13953 else if (attr_form_is_constant (member_loc)
13954 || attr_form_is_block (member_loc))
13955 {
13956 if (attr)
13957 mark_common_block_symbol_computed (sym, die, attr,
13958 member_loc, cu);
13959 }
13960 else
13961 dwarf2_complex_location_expr_complaint ();
13962 }
13963 }
13964 }
13965
13966 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13967 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13968 }
13969 }
13970
13971 /* Create a type for a C++ namespace. */
13972
13973 static struct type *
13974 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13975 {
13976 struct objfile *objfile = cu->objfile;
13977 const char *previous_prefix, *name;
13978 int is_anonymous;
13979 struct type *type;
13980
13981 /* For extensions, reuse the type of the original namespace. */
13982 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13983 {
13984 struct die_info *ext_die;
13985 struct dwarf2_cu *ext_cu = cu;
13986
13987 ext_die = dwarf2_extension (die, &ext_cu);
13988 type = read_type_die (ext_die, ext_cu);
13989
13990 /* EXT_CU may not be the same as CU.
13991 Ensure TYPE is recorded with CU in die_type_hash. */
13992 return set_die_type (die, type, cu);
13993 }
13994
13995 name = namespace_name (die, &is_anonymous, cu);
13996
13997 /* Now build the name of the current namespace. */
13998
13999 previous_prefix = determine_prefix (die, cu);
14000 if (previous_prefix[0] != '\0')
14001 name = typename_concat (&objfile->objfile_obstack,
14002 previous_prefix, name, 0, cu);
14003
14004 /* Create the type. */
14005 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14006 objfile);
14007 TYPE_NAME (type) = name;
14008 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14009
14010 return set_die_type (die, type, cu);
14011 }
14012
14013 /* Read a C++ namespace. */
14014
14015 static void
14016 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14017 {
14018 struct objfile *objfile = cu->objfile;
14019 int is_anonymous;
14020
14021 /* Add a symbol associated to this if we haven't seen the namespace
14022 before. Also, add a using directive if it's an anonymous
14023 namespace. */
14024
14025 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14026 {
14027 struct type *type;
14028
14029 type = read_type_die (die, cu);
14030 new_symbol (die, type, cu);
14031
14032 namespace_name (die, &is_anonymous, cu);
14033 if (is_anonymous)
14034 {
14035 const char *previous_prefix = determine_prefix (die, cu);
14036
14037 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14038 NULL, NULL, 0, &objfile->objfile_obstack);
14039 }
14040 }
14041
14042 if (die->child != NULL)
14043 {
14044 struct die_info *child_die = die->child;
14045
14046 while (child_die && child_die->tag)
14047 {
14048 process_die (child_die, cu);
14049 child_die = sibling_die (child_die);
14050 }
14051 }
14052 }
14053
14054 /* Read a Fortran module as type. This DIE can be only a declaration used for
14055 imported module. Still we need that type as local Fortran "use ... only"
14056 declaration imports depend on the created type in determine_prefix. */
14057
14058 static struct type *
14059 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14060 {
14061 struct objfile *objfile = cu->objfile;
14062 const char *module_name;
14063 struct type *type;
14064
14065 module_name = dwarf2_name (die, cu);
14066 if (!module_name)
14067 complaint (&symfile_complaints,
14068 _("DW_TAG_module has no name, offset 0x%x"),
14069 die->offset.sect_off);
14070 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14071
14072 /* determine_prefix uses TYPE_TAG_NAME. */
14073 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14074
14075 return set_die_type (die, type, cu);
14076 }
14077
14078 /* Read a Fortran module. */
14079
14080 static void
14081 read_module (struct die_info *die, struct dwarf2_cu *cu)
14082 {
14083 struct die_info *child_die = die->child;
14084 struct type *type;
14085
14086 type = read_type_die (die, cu);
14087 new_symbol (die, type, cu);
14088
14089 while (child_die && child_die->tag)
14090 {
14091 process_die (child_die, cu);
14092 child_die = sibling_die (child_die);
14093 }
14094 }
14095
14096 /* Return the name of the namespace represented by DIE. Set
14097 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14098 namespace. */
14099
14100 static const char *
14101 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14102 {
14103 struct die_info *current_die;
14104 const char *name = NULL;
14105
14106 /* Loop through the extensions until we find a name. */
14107
14108 for (current_die = die;
14109 current_die != NULL;
14110 current_die = dwarf2_extension (die, &cu))
14111 {
14112 name = dwarf2_name (current_die, cu);
14113 if (name != NULL)
14114 break;
14115 }
14116
14117 /* Is it an anonymous namespace? */
14118
14119 *is_anonymous = (name == NULL);
14120 if (*is_anonymous)
14121 name = CP_ANONYMOUS_NAMESPACE_STR;
14122
14123 return name;
14124 }
14125
14126 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14127 the user defined type vector. */
14128
14129 static struct type *
14130 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14131 {
14132 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14133 struct comp_unit_head *cu_header = &cu->header;
14134 struct type *type;
14135 struct attribute *attr_byte_size;
14136 struct attribute *attr_address_class;
14137 int byte_size, addr_class;
14138 struct type *target_type;
14139
14140 target_type = die_type (die, cu);
14141
14142 /* The die_type call above may have already set the type for this DIE. */
14143 type = get_die_type (die, cu);
14144 if (type)
14145 return type;
14146
14147 type = lookup_pointer_type (target_type);
14148
14149 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14150 if (attr_byte_size)
14151 byte_size = DW_UNSND (attr_byte_size);
14152 else
14153 byte_size = cu_header->addr_size;
14154
14155 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14156 if (attr_address_class)
14157 addr_class = DW_UNSND (attr_address_class);
14158 else
14159 addr_class = DW_ADDR_none;
14160
14161 /* If the pointer size or address class is different than the
14162 default, create a type variant marked as such and set the
14163 length accordingly. */
14164 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14165 {
14166 if (gdbarch_address_class_type_flags_p (gdbarch))
14167 {
14168 int type_flags;
14169
14170 type_flags = gdbarch_address_class_type_flags
14171 (gdbarch, byte_size, addr_class);
14172 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14173 == 0);
14174 type = make_type_with_address_space (type, type_flags);
14175 }
14176 else if (TYPE_LENGTH (type) != byte_size)
14177 {
14178 complaint (&symfile_complaints,
14179 _("invalid pointer size %d"), byte_size);
14180 }
14181 else
14182 {
14183 /* Should we also complain about unhandled address classes? */
14184 }
14185 }
14186
14187 TYPE_LENGTH (type) = byte_size;
14188 return set_die_type (die, type, cu);
14189 }
14190
14191 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14192 the user defined type vector. */
14193
14194 static struct type *
14195 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14196 {
14197 struct type *type;
14198 struct type *to_type;
14199 struct type *domain;
14200
14201 to_type = die_type (die, cu);
14202 domain = die_containing_type (die, cu);
14203
14204 /* The calls above may have already set the type for this DIE. */
14205 type = get_die_type (die, cu);
14206 if (type)
14207 return type;
14208
14209 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14210 type = lookup_methodptr_type (to_type);
14211 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14212 {
14213 struct type *new_type = alloc_type (cu->objfile);
14214
14215 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14216 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14217 TYPE_VARARGS (to_type));
14218 type = lookup_methodptr_type (new_type);
14219 }
14220 else
14221 type = lookup_memberptr_type (to_type, domain);
14222
14223 return set_die_type (die, type, cu);
14224 }
14225
14226 /* Extract all information from a DW_TAG_reference_type DIE and add to
14227 the user defined type vector. */
14228
14229 static struct type *
14230 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14231 {
14232 struct comp_unit_head *cu_header = &cu->header;
14233 struct type *type, *target_type;
14234 struct attribute *attr;
14235
14236 target_type = die_type (die, cu);
14237
14238 /* The die_type call above may have already set the type for this DIE. */
14239 type = get_die_type (die, cu);
14240 if (type)
14241 return type;
14242
14243 type = lookup_reference_type (target_type);
14244 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14245 if (attr)
14246 {
14247 TYPE_LENGTH (type) = DW_UNSND (attr);
14248 }
14249 else
14250 {
14251 TYPE_LENGTH (type) = cu_header->addr_size;
14252 }
14253 return set_die_type (die, type, cu);
14254 }
14255
14256 /* Add the given cv-qualifiers to the element type of the array. GCC
14257 outputs DWARF type qualifiers that apply to an array, not the
14258 element type. But GDB relies on the array element type to carry
14259 the cv-qualifiers. This mimics section 6.7.3 of the C99
14260 specification. */
14261
14262 static struct type *
14263 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14264 struct type *base_type, int cnst, int voltl)
14265 {
14266 struct type *el_type, *inner_array;
14267
14268 base_type = copy_type (base_type);
14269 inner_array = base_type;
14270
14271 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14272 {
14273 TYPE_TARGET_TYPE (inner_array) =
14274 copy_type (TYPE_TARGET_TYPE (inner_array));
14275 inner_array = TYPE_TARGET_TYPE (inner_array);
14276 }
14277
14278 el_type = TYPE_TARGET_TYPE (inner_array);
14279 cnst |= TYPE_CONST (el_type);
14280 voltl |= TYPE_VOLATILE (el_type);
14281 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14282
14283 return set_die_type (die, base_type, cu);
14284 }
14285
14286 static struct type *
14287 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14288 {
14289 struct type *base_type, *cv_type;
14290
14291 base_type = die_type (die, cu);
14292
14293 /* The die_type call above may have already set the type for this DIE. */
14294 cv_type = get_die_type (die, cu);
14295 if (cv_type)
14296 return cv_type;
14297
14298 /* In case the const qualifier is applied to an array type, the element type
14299 is so qualified, not the array type (section 6.7.3 of C99). */
14300 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14301 return add_array_cv_type (die, cu, base_type, 1, 0);
14302
14303 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14304 return set_die_type (die, cv_type, cu);
14305 }
14306
14307 static struct type *
14308 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14309 {
14310 struct type *base_type, *cv_type;
14311
14312 base_type = die_type (die, cu);
14313
14314 /* The die_type call above may have already set the type for this DIE. */
14315 cv_type = get_die_type (die, cu);
14316 if (cv_type)
14317 return cv_type;
14318
14319 /* In case the volatile qualifier is applied to an array type, the
14320 element type is so qualified, not the array type (section 6.7.3
14321 of C99). */
14322 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14323 return add_array_cv_type (die, cu, base_type, 0, 1);
14324
14325 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14326 return set_die_type (die, cv_type, cu);
14327 }
14328
14329 /* Handle DW_TAG_restrict_type. */
14330
14331 static struct type *
14332 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14333 {
14334 struct type *base_type, *cv_type;
14335
14336 base_type = die_type (die, cu);
14337
14338 /* The die_type call above may have already set the type for this DIE. */
14339 cv_type = get_die_type (die, cu);
14340 if (cv_type)
14341 return cv_type;
14342
14343 cv_type = make_restrict_type (base_type);
14344 return set_die_type (die, cv_type, cu);
14345 }
14346
14347 /* Extract all information from a DW_TAG_string_type DIE and add to
14348 the user defined type vector. It isn't really a user defined type,
14349 but it behaves like one, with other DIE's using an AT_user_def_type
14350 attribute to reference it. */
14351
14352 static struct type *
14353 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14354 {
14355 struct objfile *objfile = cu->objfile;
14356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14357 struct type *type, *range_type, *index_type, *char_type;
14358 struct attribute *attr;
14359 unsigned int length;
14360
14361 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14362 if (attr)
14363 {
14364 length = DW_UNSND (attr);
14365 }
14366 else
14367 {
14368 /* Check for the DW_AT_byte_size attribute. */
14369 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14370 if (attr)
14371 {
14372 length = DW_UNSND (attr);
14373 }
14374 else
14375 {
14376 length = 1;
14377 }
14378 }
14379
14380 index_type = objfile_type (objfile)->builtin_int;
14381 range_type = create_static_range_type (NULL, index_type, 1, length);
14382 char_type = language_string_char_type (cu->language_defn, gdbarch);
14383 type = create_string_type (NULL, char_type, range_type);
14384
14385 return set_die_type (die, type, cu);
14386 }
14387
14388 /* Assuming that DIE corresponds to a function, returns nonzero
14389 if the function is prototyped. */
14390
14391 static int
14392 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14393 {
14394 struct attribute *attr;
14395
14396 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14397 if (attr && (DW_UNSND (attr) != 0))
14398 return 1;
14399
14400 /* The DWARF standard implies that the DW_AT_prototyped attribute
14401 is only meaninful for C, but the concept also extends to other
14402 languages that allow unprototyped functions (Eg: Objective C).
14403 For all other languages, assume that functions are always
14404 prototyped. */
14405 if (cu->language != language_c
14406 && cu->language != language_objc
14407 && cu->language != language_opencl)
14408 return 1;
14409
14410 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14411 prototyped and unprototyped functions; default to prototyped,
14412 since that is more common in modern code (and RealView warns
14413 about unprototyped functions). */
14414 if (producer_is_realview (cu->producer))
14415 return 1;
14416
14417 return 0;
14418 }
14419
14420 /* Handle DIES due to C code like:
14421
14422 struct foo
14423 {
14424 int (*funcp)(int a, long l);
14425 int b;
14426 };
14427
14428 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14429
14430 static struct type *
14431 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14432 {
14433 struct objfile *objfile = cu->objfile;
14434 struct type *type; /* Type that this function returns. */
14435 struct type *ftype; /* Function that returns above type. */
14436 struct attribute *attr;
14437
14438 type = die_type (die, cu);
14439
14440 /* The die_type call above may have already set the type for this DIE. */
14441 ftype = get_die_type (die, cu);
14442 if (ftype)
14443 return ftype;
14444
14445 ftype = lookup_function_type (type);
14446
14447 if (prototyped_function_p (die, cu))
14448 TYPE_PROTOTYPED (ftype) = 1;
14449
14450 /* Store the calling convention in the type if it's available in
14451 the subroutine die. Otherwise set the calling convention to
14452 the default value DW_CC_normal. */
14453 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14454 if (attr)
14455 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14456 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14457 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14458 else
14459 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14460
14461 /* Record whether the function returns normally to its caller or not
14462 if the DWARF producer set that information. */
14463 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14464 if (attr && (DW_UNSND (attr) != 0))
14465 TYPE_NO_RETURN (ftype) = 1;
14466
14467 /* We need to add the subroutine type to the die immediately so
14468 we don't infinitely recurse when dealing with parameters
14469 declared as the same subroutine type. */
14470 set_die_type (die, ftype, cu);
14471
14472 if (die->child != NULL)
14473 {
14474 struct type *void_type = objfile_type (objfile)->builtin_void;
14475 struct die_info *child_die;
14476 int nparams, iparams;
14477
14478 /* Count the number of parameters.
14479 FIXME: GDB currently ignores vararg functions, but knows about
14480 vararg member functions. */
14481 nparams = 0;
14482 child_die = die->child;
14483 while (child_die && child_die->tag)
14484 {
14485 if (child_die->tag == DW_TAG_formal_parameter)
14486 nparams++;
14487 else if (child_die->tag == DW_TAG_unspecified_parameters)
14488 TYPE_VARARGS (ftype) = 1;
14489 child_die = sibling_die (child_die);
14490 }
14491
14492 /* Allocate storage for parameters and fill them in. */
14493 TYPE_NFIELDS (ftype) = nparams;
14494 TYPE_FIELDS (ftype) = (struct field *)
14495 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14496
14497 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14498 even if we error out during the parameters reading below. */
14499 for (iparams = 0; iparams < nparams; iparams++)
14500 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14501
14502 iparams = 0;
14503 child_die = die->child;
14504 while (child_die && child_die->tag)
14505 {
14506 if (child_die->tag == DW_TAG_formal_parameter)
14507 {
14508 struct type *arg_type;
14509
14510 /* DWARF version 2 has no clean way to discern C++
14511 static and non-static member functions. G++ helps
14512 GDB by marking the first parameter for non-static
14513 member functions (which is the this pointer) as
14514 artificial. We pass this information to
14515 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14516
14517 DWARF version 3 added DW_AT_object_pointer, which GCC
14518 4.5 does not yet generate. */
14519 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14520 if (attr)
14521 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14522 else
14523 {
14524 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14525
14526 /* GCC/43521: In java, the formal parameter
14527 "this" is sometimes not marked with DW_AT_artificial. */
14528 if (cu->language == language_java)
14529 {
14530 const char *name = dwarf2_name (child_die, cu);
14531
14532 if (name && !strcmp (name, "this"))
14533 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14534 }
14535 }
14536 arg_type = die_type (child_die, cu);
14537
14538 /* RealView does not mark THIS as const, which the testsuite
14539 expects. GCC marks THIS as const in method definitions,
14540 but not in the class specifications (GCC PR 43053). */
14541 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14542 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14543 {
14544 int is_this = 0;
14545 struct dwarf2_cu *arg_cu = cu;
14546 const char *name = dwarf2_name (child_die, cu);
14547
14548 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14549 if (attr)
14550 {
14551 /* If the compiler emits this, use it. */
14552 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14553 is_this = 1;
14554 }
14555 else if (name && strcmp (name, "this") == 0)
14556 /* Function definitions will have the argument names. */
14557 is_this = 1;
14558 else if (name == NULL && iparams == 0)
14559 /* Declarations may not have the names, so like
14560 elsewhere in GDB, assume an artificial first
14561 argument is "this". */
14562 is_this = 1;
14563
14564 if (is_this)
14565 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14566 arg_type, 0);
14567 }
14568
14569 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14570 iparams++;
14571 }
14572 child_die = sibling_die (child_die);
14573 }
14574 }
14575
14576 return ftype;
14577 }
14578
14579 static struct type *
14580 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14581 {
14582 struct objfile *objfile = cu->objfile;
14583 const char *name = NULL;
14584 struct type *this_type, *target_type;
14585
14586 name = dwarf2_full_name (NULL, die, cu);
14587 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14588 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14589 TYPE_NAME (this_type) = name;
14590 set_die_type (die, this_type, cu);
14591 target_type = die_type (die, cu);
14592 if (target_type != this_type)
14593 TYPE_TARGET_TYPE (this_type) = target_type;
14594 else
14595 {
14596 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14597 spec and cause infinite loops in GDB. */
14598 complaint (&symfile_complaints,
14599 _("Self-referential DW_TAG_typedef "
14600 "- DIE at 0x%x [in module %s]"),
14601 die->offset.sect_off, objfile_name (objfile));
14602 TYPE_TARGET_TYPE (this_type) = NULL;
14603 }
14604 return this_type;
14605 }
14606
14607 /* Find a representation of a given base type and install
14608 it in the TYPE field of the die. */
14609
14610 static struct type *
14611 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14612 {
14613 struct objfile *objfile = cu->objfile;
14614 struct type *type;
14615 struct attribute *attr;
14616 int encoding = 0, size = 0;
14617 const char *name;
14618 enum type_code code = TYPE_CODE_INT;
14619 int type_flags = 0;
14620 struct type *target_type = NULL;
14621
14622 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14623 if (attr)
14624 {
14625 encoding = DW_UNSND (attr);
14626 }
14627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14628 if (attr)
14629 {
14630 size = DW_UNSND (attr);
14631 }
14632 name = dwarf2_name (die, cu);
14633 if (!name)
14634 {
14635 complaint (&symfile_complaints,
14636 _("DW_AT_name missing from DW_TAG_base_type"));
14637 }
14638
14639 switch (encoding)
14640 {
14641 case DW_ATE_address:
14642 /* Turn DW_ATE_address into a void * pointer. */
14643 code = TYPE_CODE_PTR;
14644 type_flags |= TYPE_FLAG_UNSIGNED;
14645 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14646 break;
14647 case DW_ATE_boolean:
14648 code = TYPE_CODE_BOOL;
14649 type_flags |= TYPE_FLAG_UNSIGNED;
14650 break;
14651 case DW_ATE_complex_float:
14652 code = TYPE_CODE_COMPLEX;
14653 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14654 break;
14655 case DW_ATE_decimal_float:
14656 code = TYPE_CODE_DECFLOAT;
14657 break;
14658 case DW_ATE_float:
14659 code = TYPE_CODE_FLT;
14660 break;
14661 case DW_ATE_signed:
14662 break;
14663 case DW_ATE_unsigned:
14664 type_flags |= TYPE_FLAG_UNSIGNED;
14665 if (cu->language == language_fortran
14666 && name
14667 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14668 code = TYPE_CODE_CHAR;
14669 break;
14670 case DW_ATE_signed_char:
14671 if (cu->language == language_ada || cu->language == language_m2
14672 || cu->language == language_pascal
14673 || cu->language == language_fortran)
14674 code = TYPE_CODE_CHAR;
14675 break;
14676 case DW_ATE_unsigned_char:
14677 if (cu->language == language_ada || cu->language == language_m2
14678 || cu->language == language_pascal
14679 || cu->language == language_fortran)
14680 code = TYPE_CODE_CHAR;
14681 type_flags |= TYPE_FLAG_UNSIGNED;
14682 break;
14683 case DW_ATE_UTF:
14684 /* We just treat this as an integer and then recognize the
14685 type by name elsewhere. */
14686 break;
14687
14688 default:
14689 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14690 dwarf_type_encoding_name (encoding));
14691 break;
14692 }
14693
14694 type = init_type (code, size, type_flags, NULL, objfile);
14695 TYPE_NAME (type) = name;
14696 TYPE_TARGET_TYPE (type) = target_type;
14697
14698 if (name && strcmp (name, "char") == 0)
14699 TYPE_NOSIGN (type) = 1;
14700
14701 return set_die_type (die, type, cu);
14702 }
14703
14704 /* Parse dwarf attribute if it's a block, reference or constant and put the
14705 resulting value of the attribute into struct bound_prop.
14706 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14707
14708 static int
14709 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14710 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14711 {
14712 struct dwarf2_property_baton *baton;
14713 struct obstack *obstack = &cu->objfile->objfile_obstack;
14714
14715 if (attr == NULL || prop == NULL)
14716 return 0;
14717
14718 if (attr_form_is_block (attr))
14719 {
14720 baton = obstack_alloc (obstack, sizeof (*baton));
14721 baton->referenced_type = NULL;
14722 baton->locexpr.per_cu = cu->per_cu;
14723 baton->locexpr.size = DW_BLOCK (attr)->size;
14724 baton->locexpr.data = DW_BLOCK (attr)->data;
14725 prop->data.baton = baton;
14726 prop->kind = PROP_LOCEXPR;
14727 gdb_assert (prop->data.baton != NULL);
14728 }
14729 else if (attr_form_is_ref (attr))
14730 {
14731 struct dwarf2_cu *target_cu = cu;
14732 struct die_info *target_die;
14733 struct attribute *target_attr;
14734
14735 target_die = follow_die_ref (die, attr, &target_cu);
14736 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14737 if (target_attr == NULL)
14738 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14739 target_cu);
14740 if (target_attr == NULL)
14741 return 0;
14742
14743 switch (target_attr->name)
14744 {
14745 case DW_AT_location:
14746 if (attr_form_is_section_offset (target_attr))
14747 {
14748 baton = obstack_alloc (obstack, sizeof (*baton));
14749 baton->referenced_type = die_type (target_die, target_cu);
14750 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14751 prop->data.baton = baton;
14752 prop->kind = PROP_LOCLIST;
14753 gdb_assert (prop->data.baton != NULL);
14754 }
14755 else if (attr_form_is_block (target_attr))
14756 {
14757 baton = obstack_alloc (obstack, sizeof (*baton));
14758 baton->referenced_type = die_type (target_die, target_cu);
14759 baton->locexpr.per_cu = cu->per_cu;
14760 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14761 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14762 prop->data.baton = baton;
14763 prop->kind = PROP_LOCEXPR;
14764 gdb_assert (prop->data.baton != NULL);
14765 }
14766 else
14767 {
14768 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14769 "dynamic property");
14770 return 0;
14771 }
14772 break;
14773 case DW_AT_data_member_location:
14774 {
14775 LONGEST offset;
14776
14777 if (!handle_data_member_location (target_die, target_cu,
14778 &offset))
14779 return 0;
14780
14781 baton = obstack_alloc (obstack, sizeof (*baton));
14782 baton->referenced_type = get_die_type (target_die->parent,
14783 target_cu);
14784 baton->offset_info.offset = offset;
14785 baton->offset_info.type = die_type (target_die, target_cu);
14786 prop->data.baton = baton;
14787 prop->kind = PROP_ADDR_OFFSET;
14788 break;
14789 }
14790 }
14791 }
14792 else if (attr_form_is_constant (attr))
14793 {
14794 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14795 prop->kind = PROP_CONST;
14796 }
14797 else
14798 {
14799 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14800 dwarf2_name (die, cu));
14801 return 0;
14802 }
14803
14804 return 1;
14805 }
14806
14807 /* Read the given DW_AT_subrange DIE. */
14808
14809 static struct type *
14810 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14811 {
14812 struct type *base_type, *orig_base_type;
14813 struct type *range_type;
14814 struct attribute *attr;
14815 struct dynamic_prop low, high;
14816 int low_default_is_valid;
14817 int high_bound_is_count = 0;
14818 const char *name;
14819 LONGEST negative_mask;
14820
14821 orig_base_type = die_type (die, cu);
14822 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14823 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14824 creating the range type, but we use the result of check_typedef
14825 when examining properties of the type. */
14826 base_type = check_typedef (orig_base_type);
14827
14828 /* The die_type call above may have already set the type for this DIE. */
14829 range_type = get_die_type (die, cu);
14830 if (range_type)
14831 return range_type;
14832
14833 low.kind = PROP_CONST;
14834 high.kind = PROP_CONST;
14835 high.data.const_val = 0;
14836
14837 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14838 omitting DW_AT_lower_bound. */
14839 switch (cu->language)
14840 {
14841 case language_c:
14842 case language_cplus:
14843 low.data.const_val = 0;
14844 low_default_is_valid = 1;
14845 break;
14846 case language_fortran:
14847 low.data.const_val = 1;
14848 low_default_is_valid = 1;
14849 break;
14850 case language_d:
14851 case language_java:
14852 case language_objc:
14853 low.data.const_val = 0;
14854 low_default_is_valid = (cu->header.version >= 4);
14855 break;
14856 case language_ada:
14857 case language_m2:
14858 case language_pascal:
14859 low.data.const_val = 1;
14860 low_default_is_valid = (cu->header.version >= 4);
14861 break;
14862 default:
14863 low.data.const_val = 0;
14864 low_default_is_valid = 0;
14865 break;
14866 }
14867
14868 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14869 if (attr)
14870 attr_to_dynamic_prop (attr, die, cu, &low);
14871 else if (!low_default_is_valid)
14872 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14873 "- DIE at 0x%x [in module %s]"),
14874 die->offset.sect_off, objfile_name (cu->objfile));
14875
14876 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14877 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14878 {
14879 attr = dwarf2_attr (die, DW_AT_count, cu);
14880 if (attr_to_dynamic_prop (attr, die, cu, &high))
14881 {
14882 /* If bounds are constant do the final calculation here. */
14883 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14884 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14885 else
14886 high_bound_is_count = 1;
14887 }
14888 }
14889
14890 /* Dwarf-2 specifications explicitly allows to create subrange types
14891 without specifying a base type.
14892 In that case, the base type must be set to the type of
14893 the lower bound, upper bound or count, in that order, if any of these
14894 three attributes references an object that has a type.
14895 If no base type is found, the Dwarf-2 specifications say that
14896 a signed integer type of size equal to the size of an address should
14897 be used.
14898 For the following C code: `extern char gdb_int [];'
14899 GCC produces an empty range DIE.
14900 FIXME: muller/2010-05-28: Possible references to object for low bound,
14901 high bound or count are not yet handled by this code. */
14902 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14903 {
14904 struct objfile *objfile = cu->objfile;
14905 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14906 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14907 struct type *int_type = objfile_type (objfile)->builtin_int;
14908
14909 /* Test "int", "long int", and "long long int" objfile types,
14910 and select the first one having a size above or equal to the
14911 architecture address size. */
14912 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14913 base_type = int_type;
14914 else
14915 {
14916 int_type = objfile_type (objfile)->builtin_long;
14917 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14918 base_type = int_type;
14919 else
14920 {
14921 int_type = objfile_type (objfile)->builtin_long_long;
14922 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14923 base_type = int_type;
14924 }
14925 }
14926 }
14927
14928 /* Normally, the DWARF producers are expected to use a signed
14929 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14930 But this is unfortunately not always the case, as witnessed
14931 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14932 is used instead. To work around that ambiguity, we treat
14933 the bounds as signed, and thus sign-extend their values, when
14934 the base type is signed. */
14935 negative_mask =
14936 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14937 if (low.kind == PROP_CONST
14938 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14939 low.data.const_val |= negative_mask;
14940 if (high.kind == PROP_CONST
14941 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14942 high.data.const_val |= negative_mask;
14943
14944 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14945
14946 if (high_bound_is_count)
14947 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14948
14949 /* Ada expects an empty array on no boundary attributes. */
14950 if (attr == NULL && cu->language != language_ada)
14951 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
14952
14953 name = dwarf2_name (die, cu);
14954 if (name)
14955 TYPE_NAME (range_type) = name;
14956
14957 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14958 if (attr)
14959 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14960
14961 set_die_type (die, range_type, cu);
14962
14963 /* set_die_type should be already done. */
14964 set_descriptive_type (range_type, die, cu);
14965
14966 return range_type;
14967 }
14968
14969 static struct type *
14970 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14971 {
14972 struct type *type;
14973
14974 /* For now, we only support the C meaning of an unspecified type: void. */
14975
14976 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14977 TYPE_NAME (type) = dwarf2_name (die, cu);
14978
14979 return set_die_type (die, type, cu);
14980 }
14981
14982 /* Read a single die and all its descendents. Set the die's sibling
14983 field to NULL; set other fields in the die correctly, and set all
14984 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14985 location of the info_ptr after reading all of those dies. PARENT
14986 is the parent of the die in question. */
14987
14988 static struct die_info *
14989 read_die_and_children (const struct die_reader_specs *reader,
14990 const gdb_byte *info_ptr,
14991 const gdb_byte **new_info_ptr,
14992 struct die_info *parent)
14993 {
14994 struct die_info *die;
14995 const gdb_byte *cur_ptr;
14996 int has_children;
14997
14998 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14999 if (die == NULL)
15000 {
15001 *new_info_ptr = cur_ptr;
15002 return NULL;
15003 }
15004 store_in_ref_table (die, reader->cu);
15005
15006 if (has_children)
15007 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15008 else
15009 {
15010 die->child = NULL;
15011 *new_info_ptr = cur_ptr;
15012 }
15013
15014 die->sibling = NULL;
15015 die->parent = parent;
15016 return die;
15017 }
15018
15019 /* Read a die, all of its descendents, and all of its siblings; set
15020 all of the fields of all of the dies correctly. Arguments are as
15021 in read_die_and_children. */
15022
15023 static struct die_info *
15024 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15025 const gdb_byte *info_ptr,
15026 const gdb_byte **new_info_ptr,
15027 struct die_info *parent)
15028 {
15029 struct die_info *first_die, *last_sibling;
15030 const gdb_byte *cur_ptr;
15031
15032 cur_ptr = info_ptr;
15033 first_die = last_sibling = NULL;
15034
15035 while (1)
15036 {
15037 struct die_info *die
15038 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15039
15040 if (die == NULL)
15041 {
15042 *new_info_ptr = cur_ptr;
15043 return first_die;
15044 }
15045
15046 if (!first_die)
15047 first_die = die;
15048 else
15049 last_sibling->sibling = die;
15050
15051 last_sibling = die;
15052 }
15053 }
15054
15055 /* Read a die, all of its descendents, and all of its siblings; set
15056 all of the fields of all of the dies correctly. Arguments are as
15057 in read_die_and_children.
15058 This the main entry point for reading a DIE and all its children. */
15059
15060 static struct die_info *
15061 read_die_and_siblings (const struct die_reader_specs *reader,
15062 const gdb_byte *info_ptr,
15063 const gdb_byte **new_info_ptr,
15064 struct die_info *parent)
15065 {
15066 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15067 new_info_ptr, parent);
15068
15069 if (dwarf2_die_debug)
15070 {
15071 fprintf_unfiltered (gdb_stdlog,
15072 "Read die from %s@0x%x of %s:\n",
15073 get_section_name (reader->die_section),
15074 (unsigned) (info_ptr - reader->die_section->buffer),
15075 bfd_get_filename (reader->abfd));
15076 dump_die (die, dwarf2_die_debug);
15077 }
15078
15079 return die;
15080 }
15081
15082 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15083 attributes.
15084 The caller is responsible for filling in the extra attributes
15085 and updating (*DIEP)->num_attrs.
15086 Set DIEP to point to a newly allocated die with its information,
15087 except for its child, sibling, and parent fields.
15088 Set HAS_CHILDREN to tell whether the die has children or not. */
15089
15090 static const gdb_byte *
15091 read_full_die_1 (const struct die_reader_specs *reader,
15092 struct die_info **diep, const gdb_byte *info_ptr,
15093 int *has_children, int num_extra_attrs)
15094 {
15095 unsigned int abbrev_number, bytes_read, i;
15096 sect_offset offset;
15097 struct abbrev_info *abbrev;
15098 struct die_info *die;
15099 struct dwarf2_cu *cu = reader->cu;
15100 bfd *abfd = reader->abfd;
15101
15102 offset.sect_off = info_ptr - reader->buffer;
15103 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15104 info_ptr += bytes_read;
15105 if (!abbrev_number)
15106 {
15107 *diep = NULL;
15108 *has_children = 0;
15109 return info_ptr;
15110 }
15111
15112 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15113 if (!abbrev)
15114 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15115 abbrev_number,
15116 bfd_get_filename (abfd));
15117
15118 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15119 die->offset = offset;
15120 die->tag = abbrev->tag;
15121 die->abbrev = abbrev_number;
15122
15123 /* Make the result usable.
15124 The caller needs to update num_attrs after adding the extra
15125 attributes. */
15126 die->num_attrs = abbrev->num_attrs;
15127
15128 for (i = 0; i < abbrev->num_attrs; ++i)
15129 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15130 info_ptr);
15131
15132 *diep = die;
15133 *has_children = abbrev->has_children;
15134 return info_ptr;
15135 }
15136
15137 /* Read a die and all its attributes.
15138 Set DIEP to point to a newly allocated die with its information,
15139 except for its child, sibling, and parent fields.
15140 Set HAS_CHILDREN to tell whether the die has children or not. */
15141
15142 static const gdb_byte *
15143 read_full_die (const struct die_reader_specs *reader,
15144 struct die_info **diep, const gdb_byte *info_ptr,
15145 int *has_children)
15146 {
15147 const gdb_byte *result;
15148
15149 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15150
15151 if (dwarf2_die_debug)
15152 {
15153 fprintf_unfiltered (gdb_stdlog,
15154 "Read die from %s@0x%x of %s:\n",
15155 get_section_name (reader->die_section),
15156 (unsigned) (info_ptr - reader->die_section->buffer),
15157 bfd_get_filename (reader->abfd));
15158 dump_die (*diep, dwarf2_die_debug);
15159 }
15160
15161 return result;
15162 }
15163 \f
15164 /* Abbreviation tables.
15165
15166 In DWARF version 2, the description of the debugging information is
15167 stored in a separate .debug_abbrev section. Before we read any
15168 dies from a section we read in all abbreviations and install them
15169 in a hash table. */
15170
15171 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15172
15173 static struct abbrev_info *
15174 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15175 {
15176 struct abbrev_info *abbrev;
15177
15178 abbrev = (struct abbrev_info *)
15179 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15180 memset (abbrev, 0, sizeof (struct abbrev_info));
15181 return abbrev;
15182 }
15183
15184 /* Add an abbreviation to the table. */
15185
15186 static void
15187 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15188 unsigned int abbrev_number,
15189 struct abbrev_info *abbrev)
15190 {
15191 unsigned int hash_number;
15192
15193 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15194 abbrev->next = abbrev_table->abbrevs[hash_number];
15195 abbrev_table->abbrevs[hash_number] = abbrev;
15196 }
15197
15198 /* Look up an abbrev in the table.
15199 Returns NULL if the abbrev is not found. */
15200
15201 static struct abbrev_info *
15202 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15203 unsigned int abbrev_number)
15204 {
15205 unsigned int hash_number;
15206 struct abbrev_info *abbrev;
15207
15208 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15209 abbrev = abbrev_table->abbrevs[hash_number];
15210
15211 while (abbrev)
15212 {
15213 if (abbrev->number == abbrev_number)
15214 return abbrev;
15215 abbrev = abbrev->next;
15216 }
15217 return NULL;
15218 }
15219
15220 /* Read in an abbrev table. */
15221
15222 static struct abbrev_table *
15223 abbrev_table_read_table (struct dwarf2_section_info *section,
15224 sect_offset offset)
15225 {
15226 struct objfile *objfile = dwarf2_per_objfile->objfile;
15227 bfd *abfd = get_section_bfd_owner (section);
15228 struct abbrev_table *abbrev_table;
15229 const gdb_byte *abbrev_ptr;
15230 struct abbrev_info *cur_abbrev;
15231 unsigned int abbrev_number, bytes_read, abbrev_name;
15232 unsigned int abbrev_form;
15233 struct attr_abbrev *cur_attrs;
15234 unsigned int allocated_attrs;
15235
15236 abbrev_table = XNEW (struct abbrev_table);
15237 abbrev_table->offset = offset;
15238 obstack_init (&abbrev_table->abbrev_obstack);
15239 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15240 (ABBREV_HASH_SIZE
15241 * sizeof (struct abbrev_info *)));
15242 memset (abbrev_table->abbrevs, 0,
15243 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15244
15245 dwarf2_read_section (objfile, section);
15246 abbrev_ptr = section->buffer + offset.sect_off;
15247 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15248 abbrev_ptr += bytes_read;
15249
15250 allocated_attrs = ATTR_ALLOC_CHUNK;
15251 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15252
15253 /* Loop until we reach an abbrev number of 0. */
15254 while (abbrev_number)
15255 {
15256 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15257
15258 /* read in abbrev header */
15259 cur_abbrev->number = abbrev_number;
15260 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15261 abbrev_ptr += bytes_read;
15262 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15263 abbrev_ptr += 1;
15264
15265 /* now read in declarations */
15266 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15267 abbrev_ptr += bytes_read;
15268 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15269 abbrev_ptr += bytes_read;
15270 while (abbrev_name)
15271 {
15272 if (cur_abbrev->num_attrs == allocated_attrs)
15273 {
15274 allocated_attrs += ATTR_ALLOC_CHUNK;
15275 cur_attrs
15276 = xrealloc (cur_attrs, (allocated_attrs
15277 * sizeof (struct attr_abbrev)));
15278 }
15279
15280 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15281 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15282 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15283 abbrev_ptr += bytes_read;
15284 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15285 abbrev_ptr += bytes_read;
15286 }
15287
15288 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15289 (cur_abbrev->num_attrs
15290 * sizeof (struct attr_abbrev)));
15291 memcpy (cur_abbrev->attrs, cur_attrs,
15292 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15293
15294 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15295
15296 /* Get next abbreviation.
15297 Under Irix6 the abbreviations for a compilation unit are not
15298 always properly terminated with an abbrev number of 0.
15299 Exit loop if we encounter an abbreviation which we have
15300 already read (which means we are about to read the abbreviations
15301 for the next compile unit) or if the end of the abbreviation
15302 table is reached. */
15303 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15304 break;
15305 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15306 abbrev_ptr += bytes_read;
15307 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15308 break;
15309 }
15310
15311 xfree (cur_attrs);
15312 return abbrev_table;
15313 }
15314
15315 /* Free the resources held by ABBREV_TABLE. */
15316
15317 static void
15318 abbrev_table_free (struct abbrev_table *abbrev_table)
15319 {
15320 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15321 xfree (abbrev_table);
15322 }
15323
15324 /* Same as abbrev_table_free but as a cleanup.
15325 We pass in a pointer to the pointer to the table so that we can
15326 set the pointer to NULL when we're done. It also simplifies
15327 build_type_psymtabs_1. */
15328
15329 static void
15330 abbrev_table_free_cleanup (void *table_ptr)
15331 {
15332 struct abbrev_table **abbrev_table_ptr = table_ptr;
15333
15334 if (*abbrev_table_ptr != NULL)
15335 abbrev_table_free (*abbrev_table_ptr);
15336 *abbrev_table_ptr = NULL;
15337 }
15338
15339 /* Read the abbrev table for CU from ABBREV_SECTION. */
15340
15341 static void
15342 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15343 struct dwarf2_section_info *abbrev_section)
15344 {
15345 cu->abbrev_table =
15346 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15347 }
15348
15349 /* Release the memory used by the abbrev table for a compilation unit. */
15350
15351 static void
15352 dwarf2_free_abbrev_table (void *ptr_to_cu)
15353 {
15354 struct dwarf2_cu *cu = ptr_to_cu;
15355
15356 if (cu->abbrev_table != NULL)
15357 abbrev_table_free (cu->abbrev_table);
15358 /* Set this to NULL so that we SEGV if we try to read it later,
15359 and also because free_comp_unit verifies this is NULL. */
15360 cu->abbrev_table = NULL;
15361 }
15362 \f
15363 /* Returns nonzero if TAG represents a type that we might generate a partial
15364 symbol for. */
15365
15366 static int
15367 is_type_tag_for_partial (int tag)
15368 {
15369 switch (tag)
15370 {
15371 #if 0
15372 /* Some types that would be reasonable to generate partial symbols for,
15373 that we don't at present. */
15374 case DW_TAG_array_type:
15375 case DW_TAG_file_type:
15376 case DW_TAG_ptr_to_member_type:
15377 case DW_TAG_set_type:
15378 case DW_TAG_string_type:
15379 case DW_TAG_subroutine_type:
15380 #endif
15381 case DW_TAG_base_type:
15382 case DW_TAG_class_type:
15383 case DW_TAG_interface_type:
15384 case DW_TAG_enumeration_type:
15385 case DW_TAG_structure_type:
15386 case DW_TAG_subrange_type:
15387 case DW_TAG_typedef:
15388 case DW_TAG_union_type:
15389 return 1;
15390 default:
15391 return 0;
15392 }
15393 }
15394
15395 /* Load all DIEs that are interesting for partial symbols into memory. */
15396
15397 static struct partial_die_info *
15398 load_partial_dies (const struct die_reader_specs *reader,
15399 const gdb_byte *info_ptr, int building_psymtab)
15400 {
15401 struct dwarf2_cu *cu = reader->cu;
15402 struct objfile *objfile = cu->objfile;
15403 struct partial_die_info *part_die;
15404 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15405 struct abbrev_info *abbrev;
15406 unsigned int bytes_read;
15407 unsigned int load_all = 0;
15408 int nesting_level = 1;
15409
15410 parent_die = NULL;
15411 last_die = NULL;
15412
15413 gdb_assert (cu->per_cu != NULL);
15414 if (cu->per_cu->load_all_dies)
15415 load_all = 1;
15416
15417 cu->partial_dies
15418 = htab_create_alloc_ex (cu->header.length / 12,
15419 partial_die_hash,
15420 partial_die_eq,
15421 NULL,
15422 &cu->comp_unit_obstack,
15423 hashtab_obstack_allocate,
15424 dummy_obstack_deallocate);
15425
15426 part_die = obstack_alloc (&cu->comp_unit_obstack,
15427 sizeof (struct partial_die_info));
15428
15429 while (1)
15430 {
15431 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15432
15433 /* A NULL abbrev means the end of a series of children. */
15434 if (abbrev == NULL)
15435 {
15436 if (--nesting_level == 0)
15437 {
15438 /* PART_DIE was probably the last thing allocated on the
15439 comp_unit_obstack, so we could call obstack_free
15440 here. We don't do that because the waste is small,
15441 and will be cleaned up when we're done with this
15442 compilation unit. This way, we're also more robust
15443 against other users of the comp_unit_obstack. */
15444 return first_die;
15445 }
15446 info_ptr += bytes_read;
15447 last_die = parent_die;
15448 parent_die = parent_die->die_parent;
15449 continue;
15450 }
15451
15452 /* Check for template arguments. We never save these; if
15453 they're seen, we just mark the parent, and go on our way. */
15454 if (parent_die != NULL
15455 && cu->language == language_cplus
15456 && (abbrev->tag == DW_TAG_template_type_param
15457 || abbrev->tag == DW_TAG_template_value_param))
15458 {
15459 parent_die->has_template_arguments = 1;
15460
15461 if (!load_all)
15462 {
15463 /* We don't need a partial DIE for the template argument. */
15464 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15465 continue;
15466 }
15467 }
15468
15469 /* We only recurse into c++ subprograms looking for template arguments.
15470 Skip their other children. */
15471 if (!load_all
15472 && cu->language == language_cplus
15473 && parent_die != NULL
15474 && parent_die->tag == DW_TAG_subprogram)
15475 {
15476 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15477 continue;
15478 }
15479
15480 /* Check whether this DIE is interesting enough to save. Normally
15481 we would not be interested in members here, but there may be
15482 later variables referencing them via DW_AT_specification (for
15483 static members). */
15484 if (!load_all
15485 && !is_type_tag_for_partial (abbrev->tag)
15486 && abbrev->tag != DW_TAG_constant
15487 && abbrev->tag != DW_TAG_enumerator
15488 && abbrev->tag != DW_TAG_subprogram
15489 && abbrev->tag != DW_TAG_lexical_block
15490 && abbrev->tag != DW_TAG_variable
15491 && abbrev->tag != DW_TAG_namespace
15492 && abbrev->tag != DW_TAG_module
15493 && abbrev->tag != DW_TAG_member
15494 && abbrev->tag != DW_TAG_imported_unit
15495 && abbrev->tag != DW_TAG_imported_declaration)
15496 {
15497 /* Otherwise we skip to the next sibling, if any. */
15498 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15499 continue;
15500 }
15501
15502 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15503 info_ptr);
15504
15505 /* This two-pass algorithm for processing partial symbols has a
15506 high cost in cache pressure. Thus, handle some simple cases
15507 here which cover the majority of C partial symbols. DIEs
15508 which neither have specification tags in them, nor could have
15509 specification tags elsewhere pointing at them, can simply be
15510 processed and discarded.
15511
15512 This segment is also optional; scan_partial_symbols and
15513 add_partial_symbol will handle these DIEs if we chain
15514 them in normally. When compilers which do not emit large
15515 quantities of duplicate debug information are more common,
15516 this code can probably be removed. */
15517
15518 /* Any complete simple types at the top level (pretty much all
15519 of them, for a language without namespaces), can be processed
15520 directly. */
15521 if (parent_die == NULL
15522 && part_die->has_specification == 0
15523 && part_die->is_declaration == 0
15524 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15525 || part_die->tag == DW_TAG_base_type
15526 || part_die->tag == DW_TAG_subrange_type))
15527 {
15528 if (building_psymtab && part_die->name != NULL)
15529 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15530 VAR_DOMAIN, LOC_TYPEDEF,
15531 &objfile->static_psymbols,
15532 0, (CORE_ADDR) 0, cu->language, objfile);
15533 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15534 continue;
15535 }
15536
15537 /* The exception for DW_TAG_typedef with has_children above is
15538 a workaround of GCC PR debug/47510. In the case of this complaint
15539 type_name_no_tag_or_error will error on such types later.
15540
15541 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15542 it could not find the child DIEs referenced later, this is checked
15543 above. In correct DWARF DW_TAG_typedef should have no children. */
15544
15545 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15546 complaint (&symfile_complaints,
15547 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15548 "- DIE at 0x%x [in module %s]"),
15549 part_die->offset.sect_off, objfile_name (objfile));
15550
15551 /* If we're at the second level, and we're an enumerator, and
15552 our parent has no specification (meaning possibly lives in a
15553 namespace elsewhere), then we can add the partial symbol now
15554 instead of queueing it. */
15555 if (part_die->tag == DW_TAG_enumerator
15556 && parent_die != NULL
15557 && parent_die->die_parent == NULL
15558 && parent_die->tag == DW_TAG_enumeration_type
15559 && parent_die->has_specification == 0)
15560 {
15561 if (part_die->name == NULL)
15562 complaint (&symfile_complaints,
15563 _("malformed enumerator DIE ignored"));
15564 else if (building_psymtab)
15565 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15566 VAR_DOMAIN, LOC_CONST,
15567 (cu->language == language_cplus
15568 || cu->language == language_java)
15569 ? &objfile->global_psymbols
15570 : &objfile->static_psymbols,
15571 0, (CORE_ADDR) 0, cu->language, objfile);
15572
15573 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15574 continue;
15575 }
15576
15577 /* We'll save this DIE so link it in. */
15578 part_die->die_parent = parent_die;
15579 part_die->die_sibling = NULL;
15580 part_die->die_child = NULL;
15581
15582 if (last_die && last_die == parent_die)
15583 last_die->die_child = part_die;
15584 else if (last_die)
15585 last_die->die_sibling = part_die;
15586
15587 last_die = part_die;
15588
15589 if (first_die == NULL)
15590 first_die = part_die;
15591
15592 /* Maybe add the DIE to the hash table. Not all DIEs that we
15593 find interesting need to be in the hash table, because we
15594 also have the parent/sibling/child chains; only those that we
15595 might refer to by offset later during partial symbol reading.
15596
15597 For now this means things that might have be the target of a
15598 DW_AT_specification, DW_AT_abstract_origin, or
15599 DW_AT_extension. DW_AT_extension will refer only to
15600 namespaces; DW_AT_abstract_origin refers to functions (and
15601 many things under the function DIE, but we do not recurse
15602 into function DIEs during partial symbol reading) and
15603 possibly variables as well; DW_AT_specification refers to
15604 declarations. Declarations ought to have the DW_AT_declaration
15605 flag. It happens that GCC forgets to put it in sometimes, but
15606 only for functions, not for types.
15607
15608 Adding more things than necessary to the hash table is harmless
15609 except for the performance cost. Adding too few will result in
15610 wasted time in find_partial_die, when we reread the compilation
15611 unit with load_all_dies set. */
15612
15613 if (load_all
15614 || abbrev->tag == DW_TAG_constant
15615 || abbrev->tag == DW_TAG_subprogram
15616 || abbrev->tag == DW_TAG_variable
15617 || abbrev->tag == DW_TAG_namespace
15618 || part_die->is_declaration)
15619 {
15620 void **slot;
15621
15622 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15623 part_die->offset.sect_off, INSERT);
15624 *slot = part_die;
15625 }
15626
15627 part_die = obstack_alloc (&cu->comp_unit_obstack,
15628 sizeof (struct partial_die_info));
15629
15630 /* For some DIEs we want to follow their children (if any). For C
15631 we have no reason to follow the children of structures; for other
15632 languages we have to, so that we can get at method physnames
15633 to infer fully qualified class names, for DW_AT_specification,
15634 and for C++ template arguments. For C++, we also look one level
15635 inside functions to find template arguments (if the name of the
15636 function does not already contain the template arguments).
15637
15638 For Ada, we need to scan the children of subprograms and lexical
15639 blocks as well because Ada allows the definition of nested
15640 entities that could be interesting for the debugger, such as
15641 nested subprograms for instance. */
15642 if (last_die->has_children
15643 && (load_all
15644 || last_die->tag == DW_TAG_namespace
15645 || last_die->tag == DW_TAG_module
15646 || last_die->tag == DW_TAG_enumeration_type
15647 || (cu->language == language_cplus
15648 && last_die->tag == DW_TAG_subprogram
15649 && (last_die->name == NULL
15650 || strchr (last_die->name, '<') == NULL))
15651 || (cu->language != language_c
15652 && (last_die->tag == DW_TAG_class_type
15653 || last_die->tag == DW_TAG_interface_type
15654 || last_die->tag == DW_TAG_structure_type
15655 || last_die->tag == DW_TAG_union_type))
15656 || (cu->language == language_ada
15657 && (last_die->tag == DW_TAG_subprogram
15658 || last_die->tag == DW_TAG_lexical_block))))
15659 {
15660 nesting_level++;
15661 parent_die = last_die;
15662 continue;
15663 }
15664
15665 /* Otherwise we skip to the next sibling, if any. */
15666 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15667
15668 /* Back to the top, do it again. */
15669 }
15670 }
15671
15672 /* Read a minimal amount of information into the minimal die structure. */
15673
15674 static const gdb_byte *
15675 read_partial_die (const struct die_reader_specs *reader,
15676 struct partial_die_info *part_die,
15677 struct abbrev_info *abbrev, unsigned int abbrev_len,
15678 const gdb_byte *info_ptr)
15679 {
15680 struct dwarf2_cu *cu = reader->cu;
15681 struct objfile *objfile = cu->objfile;
15682 const gdb_byte *buffer = reader->buffer;
15683 unsigned int i;
15684 struct attribute attr;
15685 int has_low_pc_attr = 0;
15686 int has_high_pc_attr = 0;
15687 int high_pc_relative = 0;
15688
15689 memset (part_die, 0, sizeof (struct partial_die_info));
15690
15691 part_die->offset.sect_off = info_ptr - buffer;
15692
15693 info_ptr += abbrev_len;
15694
15695 if (abbrev == NULL)
15696 return info_ptr;
15697
15698 part_die->tag = abbrev->tag;
15699 part_die->has_children = abbrev->has_children;
15700
15701 for (i = 0; i < abbrev->num_attrs; ++i)
15702 {
15703 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15704
15705 /* Store the data if it is of an attribute we want to keep in a
15706 partial symbol table. */
15707 switch (attr.name)
15708 {
15709 case DW_AT_name:
15710 switch (part_die->tag)
15711 {
15712 case DW_TAG_compile_unit:
15713 case DW_TAG_partial_unit:
15714 case DW_TAG_type_unit:
15715 /* Compilation units have a DW_AT_name that is a filename, not
15716 a source language identifier. */
15717 case DW_TAG_enumeration_type:
15718 case DW_TAG_enumerator:
15719 /* These tags always have simple identifiers already; no need
15720 to canonicalize them. */
15721 part_die->name = DW_STRING (&attr);
15722 break;
15723 default:
15724 part_die->name
15725 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15726 &objfile->per_bfd->storage_obstack);
15727 break;
15728 }
15729 break;
15730 case DW_AT_linkage_name:
15731 case DW_AT_MIPS_linkage_name:
15732 /* Note that both forms of linkage name might appear. We
15733 assume they will be the same, and we only store the last
15734 one we see. */
15735 if (cu->language == language_ada)
15736 part_die->name = DW_STRING (&attr);
15737 part_die->linkage_name = DW_STRING (&attr);
15738 break;
15739 case DW_AT_low_pc:
15740 has_low_pc_attr = 1;
15741 part_die->lowpc = attr_value_as_address (&attr);
15742 break;
15743 case DW_AT_high_pc:
15744 has_high_pc_attr = 1;
15745 part_die->highpc = attr_value_as_address (&attr);
15746 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15747 high_pc_relative = 1;
15748 break;
15749 case DW_AT_location:
15750 /* Support the .debug_loc offsets. */
15751 if (attr_form_is_block (&attr))
15752 {
15753 part_die->d.locdesc = DW_BLOCK (&attr);
15754 }
15755 else if (attr_form_is_section_offset (&attr))
15756 {
15757 dwarf2_complex_location_expr_complaint ();
15758 }
15759 else
15760 {
15761 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15762 "partial symbol information");
15763 }
15764 break;
15765 case DW_AT_external:
15766 part_die->is_external = DW_UNSND (&attr);
15767 break;
15768 case DW_AT_declaration:
15769 part_die->is_declaration = DW_UNSND (&attr);
15770 break;
15771 case DW_AT_type:
15772 part_die->has_type = 1;
15773 break;
15774 case DW_AT_abstract_origin:
15775 case DW_AT_specification:
15776 case DW_AT_extension:
15777 part_die->has_specification = 1;
15778 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15779 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15780 || cu->per_cu->is_dwz);
15781 break;
15782 case DW_AT_sibling:
15783 /* Ignore absolute siblings, they might point outside of
15784 the current compile unit. */
15785 if (attr.form == DW_FORM_ref_addr)
15786 complaint (&symfile_complaints,
15787 _("ignoring absolute DW_AT_sibling"));
15788 else
15789 {
15790 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15791 const gdb_byte *sibling_ptr = buffer + off;
15792
15793 if (sibling_ptr < info_ptr)
15794 complaint (&symfile_complaints,
15795 _("DW_AT_sibling points backwards"));
15796 else if (sibling_ptr > reader->buffer_end)
15797 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15798 else
15799 part_die->sibling = sibling_ptr;
15800 }
15801 break;
15802 case DW_AT_byte_size:
15803 part_die->has_byte_size = 1;
15804 break;
15805 case DW_AT_calling_convention:
15806 /* DWARF doesn't provide a way to identify a program's source-level
15807 entry point. DW_AT_calling_convention attributes are only meant
15808 to describe functions' calling conventions.
15809
15810 However, because it's a necessary piece of information in
15811 Fortran, and because DW_CC_program is the only piece of debugging
15812 information whose definition refers to a 'main program' at all,
15813 several compilers have begun marking Fortran main programs with
15814 DW_CC_program --- even when those functions use the standard
15815 calling conventions.
15816
15817 So until DWARF specifies a way to provide this information and
15818 compilers pick up the new representation, we'll support this
15819 practice. */
15820 if (DW_UNSND (&attr) == DW_CC_program
15821 && cu->language == language_fortran)
15822 set_objfile_main_name (objfile, part_die->name, language_fortran);
15823 break;
15824 case DW_AT_inline:
15825 if (DW_UNSND (&attr) == DW_INL_inlined
15826 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15827 part_die->may_be_inlined = 1;
15828 break;
15829
15830 case DW_AT_import:
15831 if (part_die->tag == DW_TAG_imported_unit)
15832 {
15833 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15834 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15835 || cu->per_cu->is_dwz);
15836 }
15837 break;
15838
15839 default:
15840 break;
15841 }
15842 }
15843
15844 if (high_pc_relative)
15845 part_die->highpc += part_die->lowpc;
15846
15847 if (has_low_pc_attr && has_high_pc_attr)
15848 {
15849 /* When using the GNU linker, .gnu.linkonce. sections are used to
15850 eliminate duplicate copies of functions and vtables and such.
15851 The linker will arbitrarily choose one and discard the others.
15852 The AT_*_pc values for such functions refer to local labels in
15853 these sections. If the section from that file was discarded, the
15854 labels are not in the output, so the relocs get a value of 0.
15855 If this is a discarded function, mark the pc bounds as invalid,
15856 so that GDB will ignore it. */
15857 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15858 {
15859 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15860
15861 complaint (&symfile_complaints,
15862 _("DW_AT_low_pc %s is zero "
15863 "for DIE at 0x%x [in module %s]"),
15864 paddress (gdbarch, part_die->lowpc),
15865 part_die->offset.sect_off, objfile_name (objfile));
15866 }
15867 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15868 else if (part_die->lowpc >= part_die->highpc)
15869 {
15870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15871
15872 complaint (&symfile_complaints,
15873 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15874 "for DIE at 0x%x [in module %s]"),
15875 paddress (gdbarch, part_die->lowpc),
15876 paddress (gdbarch, part_die->highpc),
15877 part_die->offset.sect_off, objfile_name (objfile));
15878 }
15879 else
15880 part_die->has_pc_info = 1;
15881 }
15882
15883 return info_ptr;
15884 }
15885
15886 /* Find a cached partial DIE at OFFSET in CU. */
15887
15888 static struct partial_die_info *
15889 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15890 {
15891 struct partial_die_info *lookup_die = NULL;
15892 struct partial_die_info part_die;
15893
15894 part_die.offset = offset;
15895 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15896 offset.sect_off);
15897
15898 return lookup_die;
15899 }
15900
15901 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15902 except in the case of .debug_types DIEs which do not reference
15903 outside their CU (they do however referencing other types via
15904 DW_FORM_ref_sig8). */
15905
15906 static struct partial_die_info *
15907 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15908 {
15909 struct objfile *objfile = cu->objfile;
15910 struct dwarf2_per_cu_data *per_cu = NULL;
15911 struct partial_die_info *pd = NULL;
15912
15913 if (offset_in_dwz == cu->per_cu->is_dwz
15914 && offset_in_cu_p (&cu->header, offset))
15915 {
15916 pd = find_partial_die_in_comp_unit (offset, cu);
15917 if (pd != NULL)
15918 return pd;
15919 /* We missed recording what we needed.
15920 Load all dies and try again. */
15921 per_cu = cu->per_cu;
15922 }
15923 else
15924 {
15925 /* TUs don't reference other CUs/TUs (except via type signatures). */
15926 if (cu->per_cu->is_debug_types)
15927 {
15928 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15929 " external reference to offset 0x%lx [in module %s].\n"),
15930 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15931 bfd_get_filename (objfile->obfd));
15932 }
15933 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15934 objfile);
15935
15936 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15937 load_partial_comp_unit (per_cu);
15938
15939 per_cu->cu->last_used = 0;
15940 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15941 }
15942
15943 /* If we didn't find it, and not all dies have been loaded,
15944 load them all and try again. */
15945
15946 if (pd == NULL && per_cu->load_all_dies == 0)
15947 {
15948 per_cu->load_all_dies = 1;
15949
15950 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15951 THIS_CU->cu may already be in use. So we can't just free it and
15952 replace its DIEs with the ones we read in. Instead, we leave those
15953 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15954 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15955 set. */
15956 load_partial_comp_unit (per_cu);
15957
15958 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15959 }
15960
15961 if (pd == NULL)
15962 internal_error (__FILE__, __LINE__,
15963 _("could not find partial DIE 0x%x "
15964 "in cache [from module %s]\n"),
15965 offset.sect_off, bfd_get_filename (objfile->obfd));
15966 return pd;
15967 }
15968
15969 /* See if we can figure out if the class lives in a namespace. We do
15970 this by looking for a member function; its demangled name will
15971 contain namespace info, if there is any. */
15972
15973 static void
15974 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15975 struct dwarf2_cu *cu)
15976 {
15977 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15978 what template types look like, because the demangler
15979 frequently doesn't give the same name as the debug info. We
15980 could fix this by only using the demangled name to get the
15981 prefix (but see comment in read_structure_type). */
15982
15983 struct partial_die_info *real_pdi;
15984 struct partial_die_info *child_pdi;
15985
15986 /* If this DIE (this DIE's specification, if any) has a parent, then
15987 we should not do this. We'll prepend the parent's fully qualified
15988 name when we create the partial symbol. */
15989
15990 real_pdi = struct_pdi;
15991 while (real_pdi->has_specification)
15992 real_pdi = find_partial_die (real_pdi->spec_offset,
15993 real_pdi->spec_is_dwz, cu);
15994
15995 if (real_pdi->die_parent != NULL)
15996 return;
15997
15998 for (child_pdi = struct_pdi->die_child;
15999 child_pdi != NULL;
16000 child_pdi = child_pdi->die_sibling)
16001 {
16002 if (child_pdi->tag == DW_TAG_subprogram
16003 && child_pdi->linkage_name != NULL)
16004 {
16005 char *actual_class_name
16006 = language_class_name_from_physname (cu->language_defn,
16007 child_pdi->linkage_name);
16008 if (actual_class_name != NULL)
16009 {
16010 struct_pdi->name
16011 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16012 actual_class_name,
16013 strlen (actual_class_name));
16014 xfree (actual_class_name);
16015 }
16016 break;
16017 }
16018 }
16019 }
16020
16021 /* Adjust PART_DIE before generating a symbol for it. This function
16022 may set the is_external flag or change the DIE's name. */
16023
16024 static void
16025 fixup_partial_die (struct partial_die_info *part_die,
16026 struct dwarf2_cu *cu)
16027 {
16028 /* Once we've fixed up a die, there's no point in doing so again.
16029 This also avoids a memory leak if we were to call
16030 guess_partial_die_structure_name multiple times. */
16031 if (part_die->fixup_called)
16032 return;
16033
16034 /* If we found a reference attribute and the DIE has no name, try
16035 to find a name in the referred to DIE. */
16036
16037 if (part_die->name == NULL && part_die->has_specification)
16038 {
16039 struct partial_die_info *spec_die;
16040
16041 spec_die = find_partial_die (part_die->spec_offset,
16042 part_die->spec_is_dwz, cu);
16043
16044 fixup_partial_die (spec_die, cu);
16045
16046 if (spec_die->name)
16047 {
16048 part_die->name = spec_die->name;
16049
16050 /* Copy DW_AT_external attribute if it is set. */
16051 if (spec_die->is_external)
16052 part_die->is_external = spec_die->is_external;
16053 }
16054 }
16055
16056 /* Set default names for some unnamed DIEs. */
16057
16058 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16059 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16060
16061 /* If there is no parent die to provide a namespace, and there are
16062 children, see if we can determine the namespace from their linkage
16063 name. */
16064 if (cu->language == language_cplus
16065 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16066 && part_die->die_parent == NULL
16067 && part_die->has_children
16068 && (part_die->tag == DW_TAG_class_type
16069 || part_die->tag == DW_TAG_structure_type
16070 || part_die->tag == DW_TAG_union_type))
16071 guess_partial_die_structure_name (part_die, cu);
16072
16073 /* GCC might emit a nameless struct or union that has a linkage
16074 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16075 if (part_die->name == NULL
16076 && (part_die->tag == DW_TAG_class_type
16077 || part_die->tag == DW_TAG_interface_type
16078 || part_die->tag == DW_TAG_structure_type
16079 || part_die->tag == DW_TAG_union_type)
16080 && part_die->linkage_name != NULL)
16081 {
16082 char *demangled;
16083
16084 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16085 if (demangled)
16086 {
16087 const char *base;
16088
16089 /* Strip any leading namespaces/classes, keep only the base name.
16090 DW_AT_name for named DIEs does not contain the prefixes. */
16091 base = strrchr (demangled, ':');
16092 if (base && base > demangled && base[-1] == ':')
16093 base++;
16094 else
16095 base = demangled;
16096
16097 part_die->name
16098 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16099 base, strlen (base));
16100 xfree (demangled);
16101 }
16102 }
16103
16104 part_die->fixup_called = 1;
16105 }
16106
16107 /* Read an attribute value described by an attribute form. */
16108
16109 static const gdb_byte *
16110 read_attribute_value (const struct die_reader_specs *reader,
16111 struct attribute *attr, unsigned form,
16112 const gdb_byte *info_ptr)
16113 {
16114 struct dwarf2_cu *cu = reader->cu;
16115 struct objfile *objfile = cu->objfile;
16116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16117 bfd *abfd = reader->abfd;
16118 struct comp_unit_head *cu_header = &cu->header;
16119 unsigned int bytes_read;
16120 struct dwarf_block *blk;
16121
16122 attr->form = form;
16123 switch (form)
16124 {
16125 case DW_FORM_ref_addr:
16126 if (cu->header.version == 2)
16127 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16128 else
16129 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16130 &cu->header, &bytes_read);
16131 info_ptr += bytes_read;
16132 break;
16133 case DW_FORM_GNU_ref_alt:
16134 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16135 info_ptr += bytes_read;
16136 break;
16137 case DW_FORM_addr:
16138 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16139 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16140 info_ptr += bytes_read;
16141 break;
16142 case DW_FORM_block2:
16143 blk = dwarf_alloc_block (cu);
16144 blk->size = read_2_bytes (abfd, info_ptr);
16145 info_ptr += 2;
16146 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16147 info_ptr += blk->size;
16148 DW_BLOCK (attr) = blk;
16149 break;
16150 case DW_FORM_block4:
16151 blk = dwarf_alloc_block (cu);
16152 blk->size = read_4_bytes (abfd, info_ptr);
16153 info_ptr += 4;
16154 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16155 info_ptr += blk->size;
16156 DW_BLOCK (attr) = blk;
16157 break;
16158 case DW_FORM_data2:
16159 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16160 info_ptr += 2;
16161 break;
16162 case DW_FORM_data4:
16163 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16164 info_ptr += 4;
16165 break;
16166 case DW_FORM_data8:
16167 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16168 info_ptr += 8;
16169 break;
16170 case DW_FORM_sec_offset:
16171 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16172 info_ptr += bytes_read;
16173 break;
16174 case DW_FORM_string:
16175 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16176 DW_STRING_IS_CANONICAL (attr) = 0;
16177 info_ptr += bytes_read;
16178 break;
16179 case DW_FORM_strp:
16180 if (!cu->per_cu->is_dwz)
16181 {
16182 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16183 &bytes_read);
16184 DW_STRING_IS_CANONICAL (attr) = 0;
16185 info_ptr += bytes_read;
16186 break;
16187 }
16188 /* FALLTHROUGH */
16189 case DW_FORM_GNU_strp_alt:
16190 {
16191 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16192 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16193 &bytes_read);
16194
16195 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16196 DW_STRING_IS_CANONICAL (attr) = 0;
16197 info_ptr += bytes_read;
16198 }
16199 break;
16200 case DW_FORM_exprloc:
16201 case DW_FORM_block:
16202 blk = dwarf_alloc_block (cu);
16203 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16204 info_ptr += bytes_read;
16205 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16206 info_ptr += blk->size;
16207 DW_BLOCK (attr) = blk;
16208 break;
16209 case DW_FORM_block1:
16210 blk = dwarf_alloc_block (cu);
16211 blk->size = read_1_byte (abfd, info_ptr);
16212 info_ptr += 1;
16213 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16214 info_ptr += blk->size;
16215 DW_BLOCK (attr) = blk;
16216 break;
16217 case DW_FORM_data1:
16218 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16219 info_ptr += 1;
16220 break;
16221 case DW_FORM_flag:
16222 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16223 info_ptr += 1;
16224 break;
16225 case DW_FORM_flag_present:
16226 DW_UNSND (attr) = 1;
16227 break;
16228 case DW_FORM_sdata:
16229 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16230 info_ptr += bytes_read;
16231 break;
16232 case DW_FORM_udata:
16233 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16234 info_ptr += bytes_read;
16235 break;
16236 case DW_FORM_ref1:
16237 DW_UNSND (attr) = (cu->header.offset.sect_off
16238 + read_1_byte (abfd, info_ptr));
16239 info_ptr += 1;
16240 break;
16241 case DW_FORM_ref2:
16242 DW_UNSND (attr) = (cu->header.offset.sect_off
16243 + read_2_bytes (abfd, info_ptr));
16244 info_ptr += 2;
16245 break;
16246 case DW_FORM_ref4:
16247 DW_UNSND (attr) = (cu->header.offset.sect_off
16248 + read_4_bytes (abfd, info_ptr));
16249 info_ptr += 4;
16250 break;
16251 case DW_FORM_ref8:
16252 DW_UNSND (attr) = (cu->header.offset.sect_off
16253 + read_8_bytes (abfd, info_ptr));
16254 info_ptr += 8;
16255 break;
16256 case DW_FORM_ref_sig8:
16257 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16258 info_ptr += 8;
16259 break;
16260 case DW_FORM_ref_udata:
16261 DW_UNSND (attr) = (cu->header.offset.sect_off
16262 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16263 info_ptr += bytes_read;
16264 break;
16265 case DW_FORM_indirect:
16266 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16267 info_ptr += bytes_read;
16268 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16269 break;
16270 case DW_FORM_GNU_addr_index:
16271 if (reader->dwo_file == NULL)
16272 {
16273 /* For now flag a hard error.
16274 Later we can turn this into a complaint. */
16275 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16276 dwarf_form_name (form),
16277 bfd_get_filename (abfd));
16278 }
16279 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16280 info_ptr += bytes_read;
16281 break;
16282 case DW_FORM_GNU_str_index:
16283 if (reader->dwo_file == NULL)
16284 {
16285 /* For now flag a hard error.
16286 Later we can turn this into a complaint if warranted. */
16287 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16288 dwarf_form_name (form),
16289 bfd_get_filename (abfd));
16290 }
16291 {
16292 ULONGEST str_index =
16293 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16294
16295 DW_STRING (attr) = read_str_index (reader, str_index);
16296 DW_STRING_IS_CANONICAL (attr) = 0;
16297 info_ptr += bytes_read;
16298 }
16299 break;
16300 default:
16301 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16302 dwarf_form_name (form),
16303 bfd_get_filename (abfd));
16304 }
16305
16306 /* Super hack. */
16307 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16308 attr->form = DW_FORM_GNU_ref_alt;
16309
16310 /* We have seen instances where the compiler tried to emit a byte
16311 size attribute of -1 which ended up being encoded as an unsigned
16312 0xffffffff. Although 0xffffffff is technically a valid size value,
16313 an object of this size seems pretty unlikely so we can relatively
16314 safely treat these cases as if the size attribute was invalid and
16315 treat them as zero by default. */
16316 if (attr->name == DW_AT_byte_size
16317 && form == DW_FORM_data4
16318 && DW_UNSND (attr) >= 0xffffffff)
16319 {
16320 complaint
16321 (&symfile_complaints,
16322 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16323 hex_string (DW_UNSND (attr)));
16324 DW_UNSND (attr) = 0;
16325 }
16326
16327 return info_ptr;
16328 }
16329
16330 /* Read an attribute described by an abbreviated attribute. */
16331
16332 static const gdb_byte *
16333 read_attribute (const struct die_reader_specs *reader,
16334 struct attribute *attr, struct attr_abbrev *abbrev,
16335 const gdb_byte *info_ptr)
16336 {
16337 attr->name = abbrev->name;
16338 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16339 }
16340
16341 /* Read dwarf information from a buffer. */
16342
16343 static unsigned int
16344 read_1_byte (bfd *abfd, const gdb_byte *buf)
16345 {
16346 return bfd_get_8 (abfd, buf);
16347 }
16348
16349 static int
16350 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16351 {
16352 return bfd_get_signed_8 (abfd, buf);
16353 }
16354
16355 static unsigned int
16356 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16357 {
16358 return bfd_get_16 (abfd, buf);
16359 }
16360
16361 static int
16362 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16363 {
16364 return bfd_get_signed_16 (abfd, buf);
16365 }
16366
16367 static unsigned int
16368 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16369 {
16370 return bfd_get_32 (abfd, buf);
16371 }
16372
16373 static int
16374 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16375 {
16376 return bfd_get_signed_32 (abfd, buf);
16377 }
16378
16379 static ULONGEST
16380 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16381 {
16382 return bfd_get_64 (abfd, buf);
16383 }
16384
16385 static CORE_ADDR
16386 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16387 unsigned int *bytes_read)
16388 {
16389 struct comp_unit_head *cu_header = &cu->header;
16390 CORE_ADDR retval = 0;
16391
16392 if (cu_header->signed_addr_p)
16393 {
16394 switch (cu_header->addr_size)
16395 {
16396 case 2:
16397 retval = bfd_get_signed_16 (abfd, buf);
16398 break;
16399 case 4:
16400 retval = bfd_get_signed_32 (abfd, buf);
16401 break;
16402 case 8:
16403 retval = bfd_get_signed_64 (abfd, buf);
16404 break;
16405 default:
16406 internal_error (__FILE__, __LINE__,
16407 _("read_address: bad switch, signed [in module %s]"),
16408 bfd_get_filename (abfd));
16409 }
16410 }
16411 else
16412 {
16413 switch (cu_header->addr_size)
16414 {
16415 case 2:
16416 retval = bfd_get_16 (abfd, buf);
16417 break;
16418 case 4:
16419 retval = bfd_get_32 (abfd, buf);
16420 break;
16421 case 8:
16422 retval = bfd_get_64 (abfd, buf);
16423 break;
16424 default:
16425 internal_error (__FILE__, __LINE__,
16426 _("read_address: bad switch, "
16427 "unsigned [in module %s]"),
16428 bfd_get_filename (abfd));
16429 }
16430 }
16431
16432 *bytes_read = cu_header->addr_size;
16433 return retval;
16434 }
16435
16436 /* Read the initial length from a section. The (draft) DWARF 3
16437 specification allows the initial length to take up either 4 bytes
16438 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16439 bytes describe the length and all offsets will be 8 bytes in length
16440 instead of 4.
16441
16442 An older, non-standard 64-bit format is also handled by this
16443 function. The older format in question stores the initial length
16444 as an 8-byte quantity without an escape value. Lengths greater
16445 than 2^32 aren't very common which means that the initial 4 bytes
16446 is almost always zero. Since a length value of zero doesn't make
16447 sense for the 32-bit format, this initial zero can be considered to
16448 be an escape value which indicates the presence of the older 64-bit
16449 format. As written, the code can't detect (old format) lengths
16450 greater than 4GB. If it becomes necessary to handle lengths
16451 somewhat larger than 4GB, we could allow other small values (such
16452 as the non-sensical values of 1, 2, and 3) to also be used as
16453 escape values indicating the presence of the old format.
16454
16455 The value returned via bytes_read should be used to increment the
16456 relevant pointer after calling read_initial_length().
16457
16458 [ Note: read_initial_length() and read_offset() are based on the
16459 document entitled "DWARF Debugging Information Format", revision
16460 3, draft 8, dated November 19, 2001. This document was obtained
16461 from:
16462
16463 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16464
16465 This document is only a draft and is subject to change. (So beware.)
16466
16467 Details regarding the older, non-standard 64-bit format were
16468 determined empirically by examining 64-bit ELF files produced by
16469 the SGI toolchain on an IRIX 6.5 machine.
16470
16471 - Kevin, July 16, 2002
16472 ] */
16473
16474 static LONGEST
16475 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16476 {
16477 LONGEST length = bfd_get_32 (abfd, buf);
16478
16479 if (length == 0xffffffff)
16480 {
16481 length = bfd_get_64 (abfd, buf + 4);
16482 *bytes_read = 12;
16483 }
16484 else if (length == 0)
16485 {
16486 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16487 length = bfd_get_64 (abfd, buf);
16488 *bytes_read = 8;
16489 }
16490 else
16491 {
16492 *bytes_read = 4;
16493 }
16494
16495 return length;
16496 }
16497
16498 /* Cover function for read_initial_length.
16499 Returns the length of the object at BUF, and stores the size of the
16500 initial length in *BYTES_READ and stores the size that offsets will be in
16501 *OFFSET_SIZE.
16502 If the initial length size is not equivalent to that specified in
16503 CU_HEADER then issue a complaint.
16504 This is useful when reading non-comp-unit headers. */
16505
16506 static LONGEST
16507 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16508 const struct comp_unit_head *cu_header,
16509 unsigned int *bytes_read,
16510 unsigned int *offset_size)
16511 {
16512 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16513
16514 gdb_assert (cu_header->initial_length_size == 4
16515 || cu_header->initial_length_size == 8
16516 || cu_header->initial_length_size == 12);
16517
16518 if (cu_header->initial_length_size != *bytes_read)
16519 complaint (&symfile_complaints,
16520 _("intermixed 32-bit and 64-bit DWARF sections"));
16521
16522 *offset_size = (*bytes_read == 4) ? 4 : 8;
16523 return length;
16524 }
16525
16526 /* Read an offset from the data stream. The size of the offset is
16527 given by cu_header->offset_size. */
16528
16529 static LONGEST
16530 read_offset (bfd *abfd, const gdb_byte *buf,
16531 const struct comp_unit_head *cu_header,
16532 unsigned int *bytes_read)
16533 {
16534 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16535
16536 *bytes_read = cu_header->offset_size;
16537 return offset;
16538 }
16539
16540 /* Read an offset from the data stream. */
16541
16542 static LONGEST
16543 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16544 {
16545 LONGEST retval = 0;
16546
16547 switch (offset_size)
16548 {
16549 case 4:
16550 retval = bfd_get_32 (abfd, buf);
16551 break;
16552 case 8:
16553 retval = bfd_get_64 (abfd, buf);
16554 break;
16555 default:
16556 internal_error (__FILE__, __LINE__,
16557 _("read_offset_1: bad switch [in module %s]"),
16558 bfd_get_filename (abfd));
16559 }
16560
16561 return retval;
16562 }
16563
16564 static const gdb_byte *
16565 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16566 {
16567 /* If the size of a host char is 8 bits, we can return a pointer
16568 to the buffer, otherwise we have to copy the data to a buffer
16569 allocated on the temporary obstack. */
16570 gdb_assert (HOST_CHAR_BIT == 8);
16571 return buf;
16572 }
16573
16574 static const char *
16575 read_direct_string (bfd *abfd, const gdb_byte *buf,
16576 unsigned int *bytes_read_ptr)
16577 {
16578 /* If the size of a host char is 8 bits, we can return a pointer
16579 to the string, otherwise we have to copy the string to a buffer
16580 allocated on the temporary obstack. */
16581 gdb_assert (HOST_CHAR_BIT == 8);
16582 if (*buf == '\0')
16583 {
16584 *bytes_read_ptr = 1;
16585 return NULL;
16586 }
16587 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16588 return (const char *) buf;
16589 }
16590
16591 static const char *
16592 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16593 {
16594 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16595 if (dwarf2_per_objfile->str.buffer == NULL)
16596 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16597 bfd_get_filename (abfd));
16598 if (str_offset >= dwarf2_per_objfile->str.size)
16599 error (_("DW_FORM_strp pointing outside of "
16600 ".debug_str section [in module %s]"),
16601 bfd_get_filename (abfd));
16602 gdb_assert (HOST_CHAR_BIT == 8);
16603 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16604 return NULL;
16605 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16606 }
16607
16608 /* Read a string at offset STR_OFFSET in the .debug_str section from
16609 the .dwz file DWZ. Throw an error if the offset is too large. If
16610 the string consists of a single NUL byte, return NULL; otherwise
16611 return a pointer to the string. */
16612
16613 static const char *
16614 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16615 {
16616 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16617
16618 if (dwz->str.buffer == NULL)
16619 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16620 "section [in module %s]"),
16621 bfd_get_filename (dwz->dwz_bfd));
16622 if (str_offset >= dwz->str.size)
16623 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16624 ".debug_str section [in module %s]"),
16625 bfd_get_filename (dwz->dwz_bfd));
16626 gdb_assert (HOST_CHAR_BIT == 8);
16627 if (dwz->str.buffer[str_offset] == '\0')
16628 return NULL;
16629 return (const char *) (dwz->str.buffer + str_offset);
16630 }
16631
16632 static const char *
16633 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16634 const struct comp_unit_head *cu_header,
16635 unsigned int *bytes_read_ptr)
16636 {
16637 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16638
16639 return read_indirect_string_at_offset (abfd, str_offset);
16640 }
16641
16642 static ULONGEST
16643 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16644 unsigned int *bytes_read_ptr)
16645 {
16646 ULONGEST result;
16647 unsigned int num_read;
16648 int i, shift;
16649 unsigned char byte;
16650
16651 result = 0;
16652 shift = 0;
16653 num_read = 0;
16654 i = 0;
16655 while (1)
16656 {
16657 byte = bfd_get_8 (abfd, buf);
16658 buf++;
16659 num_read++;
16660 result |= ((ULONGEST) (byte & 127) << shift);
16661 if ((byte & 128) == 0)
16662 {
16663 break;
16664 }
16665 shift += 7;
16666 }
16667 *bytes_read_ptr = num_read;
16668 return result;
16669 }
16670
16671 static LONGEST
16672 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16673 unsigned int *bytes_read_ptr)
16674 {
16675 LONGEST result;
16676 int i, shift, num_read;
16677 unsigned char byte;
16678
16679 result = 0;
16680 shift = 0;
16681 num_read = 0;
16682 i = 0;
16683 while (1)
16684 {
16685 byte = bfd_get_8 (abfd, buf);
16686 buf++;
16687 num_read++;
16688 result |= ((LONGEST) (byte & 127) << shift);
16689 shift += 7;
16690 if ((byte & 128) == 0)
16691 {
16692 break;
16693 }
16694 }
16695 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16696 result |= -(((LONGEST) 1) << shift);
16697 *bytes_read_ptr = num_read;
16698 return result;
16699 }
16700
16701 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16702 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16703 ADDR_SIZE is the size of addresses from the CU header. */
16704
16705 static CORE_ADDR
16706 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16707 {
16708 struct objfile *objfile = dwarf2_per_objfile->objfile;
16709 bfd *abfd = objfile->obfd;
16710 const gdb_byte *info_ptr;
16711
16712 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16713 if (dwarf2_per_objfile->addr.buffer == NULL)
16714 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16715 objfile_name (objfile));
16716 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16717 error (_("DW_FORM_addr_index pointing outside of "
16718 ".debug_addr section [in module %s]"),
16719 objfile_name (objfile));
16720 info_ptr = (dwarf2_per_objfile->addr.buffer
16721 + addr_base + addr_index * addr_size);
16722 if (addr_size == 4)
16723 return bfd_get_32 (abfd, info_ptr);
16724 else
16725 return bfd_get_64 (abfd, info_ptr);
16726 }
16727
16728 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16729
16730 static CORE_ADDR
16731 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16732 {
16733 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16734 }
16735
16736 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16737
16738 static CORE_ADDR
16739 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16740 unsigned int *bytes_read)
16741 {
16742 bfd *abfd = cu->objfile->obfd;
16743 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16744
16745 return read_addr_index (cu, addr_index);
16746 }
16747
16748 /* Data structure to pass results from dwarf2_read_addr_index_reader
16749 back to dwarf2_read_addr_index. */
16750
16751 struct dwarf2_read_addr_index_data
16752 {
16753 ULONGEST addr_base;
16754 int addr_size;
16755 };
16756
16757 /* die_reader_func for dwarf2_read_addr_index. */
16758
16759 static void
16760 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16761 const gdb_byte *info_ptr,
16762 struct die_info *comp_unit_die,
16763 int has_children,
16764 void *data)
16765 {
16766 struct dwarf2_cu *cu = reader->cu;
16767 struct dwarf2_read_addr_index_data *aidata =
16768 (struct dwarf2_read_addr_index_data *) data;
16769
16770 aidata->addr_base = cu->addr_base;
16771 aidata->addr_size = cu->header.addr_size;
16772 }
16773
16774 /* Given an index in .debug_addr, fetch the value.
16775 NOTE: This can be called during dwarf expression evaluation,
16776 long after the debug information has been read, and thus per_cu->cu
16777 may no longer exist. */
16778
16779 CORE_ADDR
16780 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16781 unsigned int addr_index)
16782 {
16783 struct objfile *objfile = per_cu->objfile;
16784 struct dwarf2_cu *cu = per_cu->cu;
16785 ULONGEST addr_base;
16786 int addr_size;
16787
16788 /* This is intended to be called from outside this file. */
16789 dw2_setup (objfile);
16790
16791 /* We need addr_base and addr_size.
16792 If we don't have PER_CU->cu, we have to get it.
16793 Nasty, but the alternative is storing the needed info in PER_CU,
16794 which at this point doesn't seem justified: it's not clear how frequently
16795 it would get used and it would increase the size of every PER_CU.
16796 Entry points like dwarf2_per_cu_addr_size do a similar thing
16797 so we're not in uncharted territory here.
16798 Alas we need to be a bit more complicated as addr_base is contained
16799 in the DIE.
16800
16801 We don't need to read the entire CU(/TU).
16802 We just need the header and top level die.
16803
16804 IWBN to use the aging mechanism to let us lazily later discard the CU.
16805 For now we skip this optimization. */
16806
16807 if (cu != NULL)
16808 {
16809 addr_base = cu->addr_base;
16810 addr_size = cu->header.addr_size;
16811 }
16812 else
16813 {
16814 struct dwarf2_read_addr_index_data aidata;
16815
16816 /* Note: We can't use init_cutu_and_read_dies_simple here,
16817 we need addr_base. */
16818 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16819 dwarf2_read_addr_index_reader, &aidata);
16820 addr_base = aidata.addr_base;
16821 addr_size = aidata.addr_size;
16822 }
16823
16824 return read_addr_index_1 (addr_index, addr_base, addr_size);
16825 }
16826
16827 /* Given a DW_FORM_GNU_str_index, fetch the string.
16828 This is only used by the Fission support. */
16829
16830 static const char *
16831 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16832 {
16833 struct objfile *objfile = dwarf2_per_objfile->objfile;
16834 const char *objf_name = objfile_name (objfile);
16835 bfd *abfd = objfile->obfd;
16836 struct dwarf2_cu *cu = reader->cu;
16837 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16838 struct dwarf2_section_info *str_offsets_section =
16839 &reader->dwo_file->sections.str_offsets;
16840 const gdb_byte *info_ptr;
16841 ULONGEST str_offset;
16842 static const char form_name[] = "DW_FORM_GNU_str_index";
16843
16844 dwarf2_read_section (objfile, str_section);
16845 dwarf2_read_section (objfile, str_offsets_section);
16846 if (str_section->buffer == NULL)
16847 error (_("%s used without .debug_str.dwo section"
16848 " in CU at offset 0x%lx [in module %s]"),
16849 form_name, (long) cu->header.offset.sect_off, objf_name);
16850 if (str_offsets_section->buffer == NULL)
16851 error (_("%s used without .debug_str_offsets.dwo section"
16852 " in CU at offset 0x%lx [in module %s]"),
16853 form_name, (long) cu->header.offset.sect_off, objf_name);
16854 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16855 error (_("%s pointing outside of .debug_str_offsets.dwo"
16856 " section in CU at offset 0x%lx [in module %s]"),
16857 form_name, (long) cu->header.offset.sect_off, objf_name);
16858 info_ptr = (str_offsets_section->buffer
16859 + str_index * cu->header.offset_size);
16860 if (cu->header.offset_size == 4)
16861 str_offset = bfd_get_32 (abfd, info_ptr);
16862 else
16863 str_offset = bfd_get_64 (abfd, info_ptr);
16864 if (str_offset >= str_section->size)
16865 error (_("Offset from %s pointing outside of"
16866 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16867 form_name, (long) cu->header.offset.sect_off, objf_name);
16868 return (const char *) (str_section->buffer + str_offset);
16869 }
16870
16871 /* Return the length of an LEB128 number in BUF. */
16872
16873 static int
16874 leb128_size (const gdb_byte *buf)
16875 {
16876 const gdb_byte *begin = buf;
16877 gdb_byte byte;
16878
16879 while (1)
16880 {
16881 byte = *buf++;
16882 if ((byte & 128) == 0)
16883 return buf - begin;
16884 }
16885 }
16886
16887 static void
16888 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16889 {
16890 switch (lang)
16891 {
16892 case DW_LANG_C89:
16893 case DW_LANG_C99:
16894 case DW_LANG_C11:
16895 case DW_LANG_C:
16896 case DW_LANG_UPC:
16897 cu->language = language_c;
16898 break;
16899 case DW_LANG_C_plus_plus:
16900 case DW_LANG_C_plus_plus_11:
16901 case DW_LANG_C_plus_plus_14:
16902 cu->language = language_cplus;
16903 break;
16904 case DW_LANG_D:
16905 cu->language = language_d;
16906 break;
16907 case DW_LANG_Fortran77:
16908 case DW_LANG_Fortran90:
16909 case DW_LANG_Fortran95:
16910 cu->language = language_fortran;
16911 break;
16912 case DW_LANG_Go:
16913 cu->language = language_go;
16914 break;
16915 case DW_LANG_Mips_Assembler:
16916 cu->language = language_asm;
16917 break;
16918 case DW_LANG_Java:
16919 cu->language = language_java;
16920 break;
16921 case DW_LANG_Ada83:
16922 case DW_LANG_Ada95:
16923 cu->language = language_ada;
16924 break;
16925 case DW_LANG_Modula2:
16926 cu->language = language_m2;
16927 break;
16928 case DW_LANG_Pascal83:
16929 cu->language = language_pascal;
16930 break;
16931 case DW_LANG_ObjC:
16932 cu->language = language_objc;
16933 break;
16934 case DW_LANG_Cobol74:
16935 case DW_LANG_Cobol85:
16936 default:
16937 cu->language = language_minimal;
16938 break;
16939 }
16940 cu->language_defn = language_def (cu->language);
16941 }
16942
16943 /* Return the named attribute or NULL if not there. */
16944
16945 static struct attribute *
16946 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16947 {
16948 for (;;)
16949 {
16950 unsigned int i;
16951 struct attribute *spec = NULL;
16952
16953 for (i = 0; i < die->num_attrs; ++i)
16954 {
16955 if (die->attrs[i].name == name)
16956 return &die->attrs[i];
16957 if (die->attrs[i].name == DW_AT_specification
16958 || die->attrs[i].name == DW_AT_abstract_origin)
16959 spec = &die->attrs[i];
16960 }
16961
16962 if (!spec)
16963 break;
16964
16965 die = follow_die_ref (die, spec, &cu);
16966 }
16967
16968 return NULL;
16969 }
16970
16971 /* Return the named attribute or NULL if not there,
16972 but do not follow DW_AT_specification, etc.
16973 This is for use in contexts where we're reading .debug_types dies.
16974 Following DW_AT_specification, DW_AT_abstract_origin will take us
16975 back up the chain, and we want to go down. */
16976
16977 static struct attribute *
16978 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16979 {
16980 unsigned int i;
16981
16982 for (i = 0; i < die->num_attrs; ++i)
16983 if (die->attrs[i].name == name)
16984 return &die->attrs[i];
16985
16986 return NULL;
16987 }
16988
16989 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16990 and holds a non-zero value. This function should only be used for
16991 DW_FORM_flag or DW_FORM_flag_present attributes. */
16992
16993 static int
16994 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16995 {
16996 struct attribute *attr = dwarf2_attr (die, name, cu);
16997
16998 return (attr && DW_UNSND (attr));
16999 }
17000
17001 static int
17002 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17003 {
17004 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17005 which value is non-zero. However, we have to be careful with
17006 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17007 (via dwarf2_flag_true_p) follows this attribute. So we may
17008 end up accidently finding a declaration attribute that belongs
17009 to a different DIE referenced by the specification attribute,
17010 even though the given DIE does not have a declaration attribute. */
17011 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17012 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17013 }
17014
17015 /* Return the die giving the specification for DIE, if there is
17016 one. *SPEC_CU is the CU containing DIE on input, and the CU
17017 containing the return value on output. If there is no
17018 specification, but there is an abstract origin, that is
17019 returned. */
17020
17021 static struct die_info *
17022 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17023 {
17024 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17025 *spec_cu);
17026
17027 if (spec_attr == NULL)
17028 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17029
17030 if (spec_attr == NULL)
17031 return NULL;
17032 else
17033 return follow_die_ref (die, spec_attr, spec_cu);
17034 }
17035
17036 /* Free the line_header structure *LH, and any arrays and strings it
17037 refers to.
17038 NOTE: This is also used as a "cleanup" function. */
17039
17040 static void
17041 free_line_header (struct line_header *lh)
17042 {
17043 if (lh->standard_opcode_lengths)
17044 xfree (lh->standard_opcode_lengths);
17045
17046 /* Remember that all the lh->file_names[i].name pointers are
17047 pointers into debug_line_buffer, and don't need to be freed. */
17048 if (lh->file_names)
17049 xfree (lh->file_names);
17050
17051 /* Similarly for the include directory names. */
17052 if (lh->include_dirs)
17053 xfree (lh->include_dirs);
17054
17055 xfree (lh);
17056 }
17057
17058 /* Stub for free_line_header to match void * callback types. */
17059
17060 static void
17061 free_line_header_voidp (void *arg)
17062 {
17063 struct line_header *lh = arg;
17064
17065 free_line_header (lh);
17066 }
17067
17068 /* Add an entry to LH's include directory table. */
17069
17070 static void
17071 add_include_dir (struct line_header *lh, const char *include_dir)
17072 {
17073 /* Grow the array if necessary. */
17074 if (lh->include_dirs_size == 0)
17075 {
17076 lh->include_dirs_size = 1; /* for testing */
17077 lh->include_dirs = xmalloc (lh->include_dirs_size
17078 * sizeof (*lh->include_dirs));
17079 }
17080 else if (lh->num_include_dirs >= lh->include_dirs_size)
17081 {
17082 lh->include_dirs_size *= 2;
17083 lh->include_dirs = xrealloc (lh->include_dirs,
17084 (lh->include_dirs_size
17085 * sizeof (*lh->include_dirs)));
17086 }
17087
17088 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17089 }
17090
17091 /* Add an entry to LH's file name table. */
17092
17093 static void
17094 add_file_name (struct line_header *lh,
17095 const char *name,
17096 unsigned int dir_index,
17097 unsigned int mod_time,
17098 unsigned int length)
17099 {
17100 struct file_entry *fe;
17101
17102 /* Grow the array if necessary. */
17103 if (lh->file_names_size == 0)
17104 {
17105 lh->file_names_size = 1; /* for testing */
17106 lh->file_names = xmalloc (lh->file_names_size
17107 * sizeof (*lh->file_names));
17108 }
17109 else if (lh->num_file_names >= lh->file_names_size)
17110 {
17111 lh->file_names_size *= 2;
17112 lh->file_names = xrealloc (lh->file_names,
17113 (lh->file_names_size
17114 * sizeof (*lh->file_names)));
17115 }
17116
17117 fe = &lh->file_names[lh->num_file_names++];
17118 fe->name = name;
17119 fe->dir_index = dir_index;
17120 fe->mod_time = mod_time;
17121 fe->length = length;
17122 fe->included_p = 0;
17123 fe->symtab = NULL;
17124 }
17125
17126 /* A convenience function to find the proper .debug_line section for a
17127 CU. */
17128
17129 static struct dwarf2_section_info *
17130 get_debug_line_section (struct dwarf2_cu *cu)
17131 {
17132 struct dwarf2_section_info *section;
17133
17134 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17135 DWO file. */
17136 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17137 section = &cu->dwo_unit->dwo_file->sections.line;
17138 else if (cu->per_cu->is_dwz)
17139 {
17140 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17141
17142 section = &dwz->line;
17143 }
17144 else
17145 section = &dwarf2_per_objfile->line;
17146
17147 return section;
17148 }
17149
17150 /* Read the statement program header starting at OFFSET in
17151 .debug_line, or .debug_line.dwo. Return a pointer
17152 to a struct line_header, allocated using xmalloc.
17153 Returns NULL if there is a problem reading the header, e.g., if it
17154 has a version we don't understand.
17155
17156 NOTE: the strings in the include directory and file name tables of
17157 the returned object point into the dwarf line section buffer,
17158 and must not be freed. */
17159
17160 static struct line_header *
17161 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17162 {
17163 struct cleanup *back_to;
17164 struct line_header *lh;
17165 const gdb_byte *line_ptr;
17166 unsigned int bytes_read, offset_size;
17167 int i;
17168 const char *cur_dir, *cur_file;
17169 struct dwarf2_section_info *section;
17170 bfd *abfd;
17171
17172 section = get_debug_line_section (cu);
17173 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17174 if (section->buffer == NULL)
17175 {
17176 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17177 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17178 else
17179 complaint (&symfile_complaints, _("missing .debug_line section"));
17180 return 0;
17181 }
17182
17183 /* We can't do this until we know the section is non-empty.
17184 Only then do we know we have such a section. */
17185 abfd = get_section_bfd_owner (section);
17186
17187 /* Make sure that at least there's room for the total_length field.
17188 That could be 12 bytes long, but we're just going to fudge that. */
17189 if (offset + 4 >= section->size)
17190 {
17191 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17192 return 0;
17193 }
17194
17195 lh = xmalloc (sizeof (*lh));
17196 memset (lh, 0, sizeof (*lh));
17197 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17198 (void *) lh);
17199
17200 lh->offset.sect_off = offset;
17201 lh->offset_in_dwz = cu->per_cu->is_dwz;
17202
17203 line_ptr = section->buffer + offset;
17204
17205 /* Read in the header. */
17206 lh->total_length =
17207 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17208 &bytes_read, &offset_size);
17209 line_ptr += bytes_read;
17210 if (line_ptr + lh->total_length > (section->buffer + section->size))
17211 {
17212 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17213 do_cleanups (back_to);
17214 return 0;
17215 }
17216 lh->statement_program_end = line_ptr + lh->total_length;
17217 lh->version = read_2_bytes (abfd, line_ptr);
17218 line_ptr += 2;
17219 if (lh->version > 4)
17220 {
17221 /* This is a version we don't understand. The format could have
17222 changed in ways we don't handle properly so just punt. */
17223 complaint (&symfile_complaints,
17224 _("unsupported version in .debug_line section"));
17225 return NULL;
17226 }
17227 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17228 line_ptr += offset_size;
17229 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17230 line_ptr += 1;
17231 if (lh->version >= 4)
17232 {
17233 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17234 line_ptr += 1;
17235 }
17236 else
17237 lh->maximum_ops_per_instruction = 1;
17238
17239 if (lh->maximum_ops_per_instruction == 0)
17240 {
17241 lh->maximum_ops_per_instruction = 1;
17242 complaint (&symfile_complaints,
17243 _("invalid maximum_ops_per_instruction "
17244 "in `.debug_line' section"));
17245 }
17246
17247 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17248 line_ptr += 1;
17249 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17250 line_ptr += 1;
17251 lh->line_range = read_1_byte (abfd, line_ptr);
17252 line_ptr += 1;
17253 lh->opcode_base = read_1_byte (abfd, line_ptr);
17254 line_ptr += 1;
17255 lh->standard_opcode_lengths
17256 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17257
17258 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17259 for (i = 1; i < lh->opcode_base; ++i)
17260 {
17261 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17262 line_ptr += 1;
17263 }
17264
17265 /* Read directory table. */
17266 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17267 {
17268 line_ptr += bytes_read;
17269 add_include_dir (lh, cur_dir);
17270 }
17271 line_ptr += bytes_read;
17272
17273 /* Read file name table. */
17274 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17275 {
17276 unsigned int dir_index, mod_time, length;
17277
17278 line_ptr += bytes_read;
17279 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17280 line_ptr += bytes_read;
17281 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17282 line_ptr += bytes_read;
17283 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17284 line_ptr += bytes_read;
17285
17286 add_file_name (lh, cur_file, dir_index, mod_time, length);
17287 }
17288 line_ptr += bytes_read;
17289 lh->statement_program_start = line_ptr;
17290
17291 if (line_ptr > (section->buffer + section->size))
17292 complaint (&symfile_complaints,
17293 _("line number info header doesn't "
17294 "fit in `.debug_line' section"));
17295
17296 discard_cleanups (back_to);
17297 return lh;
17298 }
17299
17300 /* Subroutine of dwarf_decode_lines to simplify it.
17301 Return the file name of the psymtab for included file FILE_INDEX
17302 in line header LH of PST.
17303 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17304 If space for the result is malloc'd, it will be freed by a cleanup.
17305 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17306
17307 The function creates dangling cleanup registration. */
17308
17309 static const char *
17310 psymtab_include_file_name (const struct line_header *lh, int file_index,
17311 const struct partial_symtab *pst,
17312 const char *comp_dir)
17313 {
17314 const struct file_entry fe = lh->file_names [file_index];
17315 const char *include_name = fe.name;
17316 const char *include_name_to_compare = include_name;
17317 const char *dir_name = NULL;
17318 const char *pst_filename;
17319 char *copied_name = NULL;
17320 int file_is_pst;
17321
17322 if (fe.dir_index)
17323 dir_name = lh->include_dirs[fe.dir_index - 1];
17324
17325 if (!IS_ABSOLUTE_PATH (include_name)
17326 && (dir_name != NULL || comp_dir != NULL))
17327 {
17328 /* Avoid creating a duplicate psymtab for PST.
17329 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17330 Before we do the comparison, however, we need to account
17331 for DIR_NAME and COMP_DIR.
17332 First prepend dir_name (if non-NULL). If we still don't
17333 have an absolute path prepend comp_dir (if non-NULL).
17334 However, the directory we record in the include-file's
17335 psymtab does not contain COMP_DIR (to match the
17336 corresponding symtab(s)).
17337
17338 Example:
17339
17340 bash$ cd /tmp
17341 bash$ gcc -g ./hello.c
17342 include_name = "hello.c"
17343 dir_name = "."
17344 DW_AT_comp_dir = comp_dir = "/tmp"
17345 DW_AT_name = "./hello.c"
17346
17347 */
17348
17349 if (dir_name != NULL)
17350 {
17351 char *tem = concat (dir_name, SLASH_STRING,
17352 include_name, (char *)NULL);
17353
17354 make_cleanup (xfree, tem);
17355 include_name = tem;
17356 include_name_to_compare = include_name;
17357 }
17358 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17359 {
17360 char *tem = concat (comp_dir, SLASH_STRING,
17361 include_name, (char *)NULL);
17362
17363 make_cleanup (xfree, tem);
17364 include_name_to_compare = tem;
17365 }
17366 }
17367
17368 pst_filename = pst->filename;
17369 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17370 {
17371 copied_name = concat (pst->dirname, SLASH_STRING,
17372 pst_filename, (char *)NULL);
17373 pst_filename = copied_name;
17374 }
17375
17376 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17377
17378 if (copied_name != NULL)
17379 xfree (copied_name);
17380
17381 if (file_is_pst)
17382 return NULL;
17383 return include_name;
17384 }
17385
17386 /* Ignore this record_line request. */
17387
17388 static void
17389 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17390 {
17391 return;
17392 }
17393
17394 /* Return non-zero if we should add LINE to the line number table.
17395 LINE is the line to add, LAST_LINE is the last line that was added,
17396 LAST_SUBFILE is the subfile for LAST_LINE.
17397 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17398 had a non-zero discriminator.
17399
17400 We have to be careful in the presence of discriminators.
17401 E.g., for this line:
17402
17403 for (i = 0; i < 100000; i++);
17404
17405 clang can emit four line number entries for that one line,
17406 each with a different discriminator.
17407 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17408
17409 However, we want gdb to coalesce all four entries into one.
17410 Otherwise the user could stepi into the middle of the line and
17411 gdb would get confused about whether the pc really was in the
17412 middle of the line.
17413
17414 Things are further complicated by the fact that two consecutive
17415 line number entries for the same line is a heuristic used by gcc
17416 to denote the end of the prologue. So we can't just discard duplicate
17417 entries, we have to be selective about it. The heuristic we use is
17418 that we only collapse consecutive entries for the same line if at least
17419 one of those entries has a non-zero discriminator. PR 17276.
17420
17421 Note: Addresses in the line number state machine can never go backwards
17422 within one sequence, thus this coalescing is ok. */
17423
17424 static int
17425 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17426 int line_has_non_zero_discriminator,
17427 struct subfile *last_subfile)
17428 {
17429 if (current_subfile != last_subfile)
17430 return 1;
17431 if (line != last_line)
17432 return 1;
17433 /* Same line for the same file that we've seen already.
17434 As a last check, for pr 17276, only record the line if the line
17435 has never had a non-zero discriminator. */
17436 if (!line_has_non_zero_discriminator)
17437 return 1;
17438 return 0;
17439 }
17440
17441 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17442 in the line table of subfile SUBFILE. */
17443
17444 static void
17445 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17446 unsigned int line, CORE_ADDR address,
17447 record_line_ftype p_record_line)
17448 {
17449 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17450
17451 (*p_record_line) (subfile, line, addr);
17452 }
17453
17454 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17455 Mark the end of a set of line number records.
17456 The arguments are the same as for dwarf_record_line.
17457 If SUBFILE is NULL the request is ignored. */
17458
17459 static void
17460 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17461 CORE_ADDR address, record_line_ftype p_record_line)
17462 {
17463 if (subfile != NULL)
17464 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17465 }
17466
17467 /* Subroutine of dwarf_decode_lines to simplify it.
17468 Process the line number information in LH. */
17469
17470 static void
17471 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17472 const int decode_for_pst_p, CORE_ADDR lowpc)
17473 {
17474 const gdb_byte *line_ptr, *extended_end;
17475 const gdb_byte *line_end;
17476 unsigned int bytes_read, extended_len;
17477 unsigned char op_code, extended_op;
17478 CORE_ADDR baseaddr;
17479 struct objfile *objfile = cu->objfile;
17480 bfd *abfd = objfile->obfd;
17481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17482 struct subfile *last_subfile = NULL;
17483 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17484 = record_line;
17485
17486 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17487
17488 line_ptr = lh->statement_program_start;
17489 line_end = lh->statement_program_end;
17490
17491 /* Read the statement sequences until there's nothing left. */
17492 while (line_ptr < line_end)
17493 {
17494 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17495 on the initial 0 address as if there was a line entry for it
17496 so that the backend has a chance to adjust it and also record
17497 it in case it needs it. This is currently used by MIPS code,
17498 cf. `mips_adjust_dwarf2_line'. */
17499 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17500 unsigned int file = 1;
17501 unsigned int line = 1;
17502 int is_stmt = lh->default_is_stmt;
17503 int end_sequence = 0;
17504 unsigned char op_index = 0;
17505 unsigned int discriminator = 0;
17506 /* The last line number that was recorded, used to coalesce
17507 consecutive entries for the same line. This can happen, for
17508 example, when discriminators are present. PR 17276. */
17509 unsigned int last_line = 0;
17510 int line_has_non_zero_discriminator = 0;
17511
17512 if (!decode_for_pst_p && lh->num_file_names >= file)
17513 {
17514 /* Start a subfile for the current file of the state machine. */
17515 /* lh->include_dirs and lh->file_names are 0-based, but the
17516 directory and file name numbers in the statement program
17517 are 1-based. */
17518 struct file_entry *fe = &lh->file_names[file - 1];
17519 const char *dir = NULL;
17520
17521 if (fe->dir_index)
17522 dir = lh->include_dirs[fe->dir_index - 1];
17523
17524 dwarf2_start_subfile (fe->name, dir);
17525 }
17526
17527 /* Decode the table. */
17528 while (!end_sequence)
17529 {
17530 op_code = read_1_byte (abfd, line_ptr);
17531 line_ptr += 1;
17532 if (line_ptr > line_end)
17533 {
17534 dwarf2_debug_line_missing_end_sequence_complaint ();
17535 break;
17536 }
17537
17538 if (op_code >= lh->opcode_base)
17539 {
17540 /* Special opcode. */
17541 unsigned char adj_opcode;
17542 CORE_ADDR addr_adj;
17543 int line_delta;
17544
17545 adj_opcode = op_code - lh->opcode_base;
17546 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17547 / lh->maximum_ops_per_instruction)
17548 * lh->minimum_instruction_length);
17549 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17550 op_index = ((op_index + (adj_opcode / lh->line_range))
17551 % lh->maximum_ops_per_instruction);
17552 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17553 line += line_delta;
17554 if (line_delta != 0)
17555 line_has_non_zero_discriminator = discriminator != 0;
17556 if (lh->num_file_names < file || file == 0)
17557 dwarf2_debug_line_missing_file_complaint ();
17558 /* For now we ignore lines not starting on an
17559 instruction boundary. */
17560 else if (op_index == 0)
17561 {
17562 lh->file_names[file - 1].included_p = 1;
17563 if (!decode_for_pst_p && is_stmt)
17564 {
17565 if (last_subfile != current_subfile)
17566 {
17567 dwarf_finish_line (gdbarch, last_subfile,
17568 address, p_record_line);
17569 }
17570 if (dwarf_record_line_p (line, last_line,
17571 line_has_non_zero_discriminator,
17572 last_subfile))
17573 {
17574 dwarf_record_line (gdbarch, current_subfile,
17575 line, address, p_record_line);
17576 }
17577 last_subfile = current_subfile;
17578 last_line = line;
17579 }
17580 }
17581 discriminator = 0;
17582 }
17583 else switch (op_code)
17584 {
17585 case DW_LNS_extended_op:
17586 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17587 &bytes_read);
17588 line_ptr += bytes_read;
17589 extended_end = line_ptr + extended_len;
17590 extended_op = read_1_byte (abfd, line_ptr);
17591 line_ptr += 1;
17592 switch (extended_op)
17593 {
17594 case DW_LNE_end_sequence:
17595 p_record_line = record_line;
17596 end_sequence = 1;
17597 break;
17598 case DW_LNE_set_address:
17599 address = read_address (abfd, line_ptr, cu, &bytes_read);
17600
17601 /* If address < lowpc then it's not a usable value, it's
17602 outside the pc range of the CU. However, we restrict
17603 the test to only address values of zero to preserve
17604 GDB's previous behaviour which is to handle the specific
17605 case of a function being GC'd by the linker. */
17606 if (address == 0 && address < lowpc)
17607 {
17608 /* This line table is for a function which has been
17609 GCd by the linker. Ignore it. PR gdb/12528 */
17610
17611 long line_offset
17612 = line_ptr - get_debug_line_section (cu)->buffer;
17613
17614 complaint (&symfile_complaints,
17615 _(".debug_line address at offset 0x%lx is 0 "
17616 "[in module %s]"),
17617 line_offset, objfile_name (objfile));
17618 p_record_line = noop_record_line;
17619 /* Note: p_record_line is left as noop_record_line
17620 until we see DW_LNE_end_sequence. */
17621 }
17622
17623 op_index = 0;
17624 line_ptr += bytes_read;
17625 address += baseaddr;
17626 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17627 break;
17628 case DW_LNE_define_file:
17629 {
17630 const char *cur_file;
17631 unsigned int dir_index, mod_time, length;
17632
17633 cur_file = read_direct_string (abfd, line_ptr,
17634 &bytes_read);
17635 line_ptr += bytes_read;
17636 dir_index =
17637 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17638 line_ptr += bytes_read;
17639 mod_time =
17640 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17641 line_ptr += bytes_read;
17642 length =
17643 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17644 line_ptr += bytes_read;
17645 add_file_name (lh, cur_file, dir_index, mod_time, length);
17646 }
17647 break;
17648 case DW_LNE_set_discriminator:
17649 /* The discriminator is not interesting to the debugger;
17650 just ignore it. We still need to check its value though:
17651 if there are consecutive entries for the same
17652 (non-prologue) line we want to coalesce them.
17653 PR 17276. */
17654 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17655 &bytes_read);
17656 line_has_non_zero_discriminator |= discriminator != 0;
17657 line_ptr += bytes_read;
17658 break;
17659 default:
17660 complaint (&symfile_complaints,
17661 _("mangled .debug_line section"));
17662 return;
17663 }
17664 /* Make sure that we parsed the extended op correctly. If e.g.
17665 we expected a different address size than the producer used,
17666 we may have read the wrong number of bytes. */
17667 if (line_ptr != extended_end)
17668 {
17669 complaint (&symfile_complaints,
17670 _("mangled .debug_line section"));
17671 return;
17672 }
17673 break;
17674 case DW_LNS_copy:
17675 if (lh->num_file_names < file || file == 0)
17676 dwarf2_debug_line_missing_file_complaint ();
17677 else
17678 {
17679 lh->file_names[file - 1].included_p = 1;
17680 if (!decode_for_pst_p && is_stmt)
17681 {
17682 if (last_subfile != current_subfile)
17683 {
17684 dwarf_finish_line (gdbarch, last_subfile,
17685 address, p_record_line);
17686 }
17687 if (dwarf_record_line_p (line, last_line,
17688 line_has_non_zero_discriminator,
17689 last_subfile))
17690 {
17691 dwarf_record_line (gdbarch, current_subfile,
17692 line, address, p_record_line);
17693 }
17694 last_subfile = current_subfile;
17695 last_line = line;
17696 }
17697 }
17698 discriminator = 0;
17699 break;
17700 case DW_LNS_advance_pc:
17701 {
17702 CORE_ADDR adjust
17703 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17704 CORE_ADDR addr_adj;
17705
17706 addr_adj = (((op_index + adjust)
17707 / lh->maximum_ops_per_instruction)
17708 * lh->minimum_instruction_length);
17709 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17710 op_index = ((op_index + adjust)
17711 % lh->maximum_ops_per_instruction);
17712 line_ptr += bytes_read;
17713 }
17714 break;
17715 case DW_LNS_advance_line:
17716 {
17717 int line_delta
17718 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17719
17720 line += line_delta;
17721 if (line_delta != 0)
17722 line_has_non_zero_discriminator = discriminator != 0;
17723 line_ptr += bytes_read;
17724 }
17725 break;
17726 case DW_LNS_set_file:
17727 {
17728 /* The arrays lh->include_dirs and lh->file_names are
17729 0-based, but the directory and file name numbers in
17730 the statement program are 1-based. */
17731 struct file_entry *fe;
17732 const char *dir = NULL;
17733
17734 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17735 line_ptr += bytes_read;
17736 if (lh->num_file_names < file || file == 0)
17737 dwarf2_debug_line_missing_file_complaint ();
17738 else
17739 {
17740 fe = &lh->file_names[file - 1];
17741 if (fe->dir_index)
17742 dir = lh->include_dirs[fe->dir_index - 1];
17743 if (!decode_for_pst_p)
17744 {
17745 last_subfile = current_subfile;
17746 line_has_non_zero_discriminator = discriminator != 0;
17747 dwarf2_start_subfile (fe->name, dir);
17748 }
17749 }
17750 }
17751 break;
17752 case DW_LNS_set_column:
17753 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17754 line_ptr += bytes_read;
17755 break;
17756 case DW_LNS_negate_stmt:
17757 is_stmt = (!is_stmt);
17758 break;
17759 case DW_LNS_set_basic_block:
17760 break;
17761 /* Add to the address register of the state machine the
17762 address increment value corresponding to special opcode
17763 255. I.e., this value is scaled by the minimum
17764 instruction length since special opcode 255 would have
17765 scaled the increment. */
17766 case DW_LNS_const_add_pc:
17767 {
17768 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17769 CORE_ADDR addr_adj;
17770
17771 addr_adj = (((op_index + adjust)
17772 / lh->maximum_ops_per_instruction)
17773 * lh->minimum_instruction_length);
17774 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17775 op_index = ((op_index + adjust)
17776 % lh->maximum_ops_per_instruction);
17777 }
17778 break;
17779 case DW_LNS_fixed_advance_pc:
17780 {
17781 CORE_ADDR addr_adj;
17782
17783 addr_adj = read_2_bytes (abfd, line_ptr);
17784 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17785 op_index = 0;
17786 line_ptr += 2;
17787 }
17788 break;
17789 default:
17790 {
17791 /* Unknown standard opcode, ignore it. */
17792 int i;
17793
17794 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17795 {
17796 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17797 line_ptr += bytes_read;
17798 }
17799 }
17800 }
17801 }
17802 if (lh->num_file_names < file || file == 0)
17803 dwarf2_debug_line_missing_file_complaint ();
17804 else
17805 {
17806 lh->file_names[file - 1].included_p = 1;
17807 if (!decode_for_pst_p)
17808 {
17809 dwarf_finish_line (gdbarch, current_subfile, address,
17810 p_record_line);
17811 }
17812 }
17813 }
17814 }
17815
17816 /* Decode the Line Number Program (LNP) for the given line_header
17817 structure and CU. The actual information extracted and the type
17818 of structures created from the LNP depends on the value of PST.
17819
17820 1. If PST is NULL, then this procedure uses the data from the program
17821 to create all necessary symbol tables, and their linetables.
17822
17823 2. If PST is not NULL, this procedure reads the program to determine
17824 the list of files included by the unit represented by PST, and
17825 builds all the associated partial symbol tables.
17826
17827 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17828 It is used for relative paths in the line table.
17829 NOTE: When processing partial symtabs (pst != NULL),
17830 comp_dir == pst->dirname.
17831
17832 NOTE: It is important that psymtabs have the same file name (via strcmp)
17833 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17834 symtab we don't use it in the name of the psymtabs we create.
17835 E.g. expand_line_sal requires this when finding psymtabs to expand.
17836 A good testcase for this is mb-inline.exp.
17837
17838 LOWPC is the lowest address in CU (or 0 if not known).
17839
17840 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17841 for its PC<->lines mapping information. Otherwise only the filename
17842 table is read in. */
17843
17844 static void
17845 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17846 struct dwarf2_cu *cu, struct partial_symtab *pst,
17847 CORE_ADDR lowpc, int decode_mapping)
17848 {
17849 struct objfile *objfile = cu->objfile;
17850 const int decode_for_pst_p = (pst != NULL);
17851
17852 if (decode_mapping)
17853 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17854
17855 if (decode_for_pst_p)
17856 {
17857 int file_index;
17858
17859 /* Now that we're done scanning the Line Header Program, we can
17860 create the psymtab of each included file. */
17861 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17862 if (lh->file_names[file_index].included_p == 1)
17863 {
17864 const char *include_name =
17865 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17866 if (include_name != NULL)
17867 dwarf2_create_include_psymtab (include_name, pst, objfile);
17868 }
17869 }
17870 else
17871 {
17872 /* Make sure a symtab is created for every file, even files
17873 which contain only variables (i.e. no code with associated
17874 line numbers). */
17875 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17876 int i;
17877
17878 for (i = 0; i < lh->num_file_names; i++)
17879 {
17880 const char *dir = NULL;
17881 struct file_entry *fe;
17882
17883 fe = &lh->file_names[i];
17884 if (fe->dir_index)
17885 dir = lh->include_dirs[fe->dir_index - 1];
17886 dwarf2_start_subfile (fe->name, dir);
17887
17888 if (current_subfile->symtab == NULL)
17889 {
17890 current_subfile->symtab
17891 = allocate_symtab (cust, current_subfile->name);
17892 }
17893 fe->symtab = current_subfile->symtab;
17894 }
17895 }
17896 }
17897
17898 /* Start a subfile for DWARF. FILENAME is the name of the file and
17899 DIRNAME the name of the source directory which contains FILENAME
17900 or NULL if not known.
17901 This routine tries to keep line numbers from identical absolute and
17902 relative file names in a common subfile.
17903
17904 Using the `list' example from the GDB testsuite, which resides in
17905 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17906 of /srcdir/list0.c yields the following debugging information for list0.c:
17907
17908 DW_AT_name: /srcdir/list0.c
17909 DW_AT_comp_dir: /compdir
17910 files.files[0].name: list0.h
17911 files.files[0].dir: /srcdir
17912 files.files[1].name: list0.c
17913 files.files[1].dir: /srcdir
17914
17915 The line number information for list0.c has to end up in a single
17916 subfile, so that `break /srcdir/list0.c:1' works as expected.
17917 start_subfile will ensure that this happens provided that we pass the
17918 concatenation of files.files[1].dir and files.files[1].name as the
17919 subfile's name. */
17920
17921 static void
17922 dwarf2_start_subfile (const char *filename, const char *dirname)
17923 {
17924 char *copy = NULL;
17925
17926 /* In order not to lose the line information directory,
17927 we concatenate it to the filename when it makes sense.
17928 Note that the Dwarf3 standard says (speaking of filenames in line
17929 information): ``The directory index is ignored for file names
17930 that represent full path names''. Thus ignoring dirname in the
17931 `else' branch below isn't an issue. */
17932
17933 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17934 {
17935 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17936 filename = copy;
17937 }
17938
17939 start_subfile (filename);
17940
17941 if (copy != NULL)
17942 xfree (copy);
17943 }
17944
17945 /* Start a symtab for DWARF.
17946 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17947
17948 static struct compunit_symtab *
17949 dwarf2_start_symtab (struct dwarf2_cu *cu,
17950 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17951 {
17952 struct compunit_symtab *cust
17953 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17954
17955 record_debugformat ("DWARF 2");
17956 record_producer (cu->producer);
17957
17958 /* We assume that we're processing GCC output. */
17959 processing_gcc_compilation = 2;
17960
17961 cu->processing_has_namespace_info = 0;
17962
17963 return cust;
17964 }
17965
17966 static void
17967 var_decode_location (struct attribute *attr, struct symbol *sym,
17968 struct dwarf2_cu *cu)
17969 {
17970 struct objfile *objfile = cu->objfile;
17971 struct comp_unit_head *cu_header = &cu->header;
17972
17973 /* NOTE drow/2003-01-30: There used to be a comment and some special
17974 code here to turn a symbol with DW_AT_external and a
17975 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17976 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17977 with some versions of binutils) where shared libraries could have
17978 relocations against symbols in their debug information - the
17979 minimal symbol would have the right address, but the debug info
17980 would not. It's no longer necessary, because we will explicitly
17981 apply relocations when we read in the debug information now. */
17982
17983 /* A DW_AT_location attribute with no contents indicates that a
17984 variable has been optimized away. */
17985 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17986 {
17987 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17988 return;
17989 }
17990
17991 /* Handle one degenerate form of location expression specially, to
17992 preserve GDB's previous behavior when section offsets are
17993 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17994 then mark this symbol as LOC_STATIC. */
17995
17996 if (attr_form_is_block (attr)
17997 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17998 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17999 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18000 && (DW_BLOCK (attr)->size
18001 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18002 {
18003 unsigned int dummy;
18004
18005 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18006 SYMBOL_VALUE_ADDRESS (sym) =
18007 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18008 else
18009 SYMBOL_VALUE_ADDRESS (sym) =
18010 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18012 fixup_symbol_section (sym, objfile);
18013 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18014 SYMBOL_SECTION (sym));
18015 return;
18016 }
18017
18018 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18019 expression evaluator, and use LOC_COMPUTED only when necessary
18020 (i.e. when the value of a register or memory location is
18021 referenced, or a thread-local block, etc.). Then again, it might
18022 not be worthwhile. I'm assuming that it isn't unless performance
18023 or memory numbers show me otherwise. */
18024
18025 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18026
18027 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18028 cu->has_loclist = 1;
18029 }
18030
18031 /* Given a pointer to a DWARF information entry, figure out if we need
18032 to make a symbol table entry for it, and if so, create a new entry
18033 and return a pointer to it.
18034 If TYPE is NULL, determine symbol type from the die, otherwise
18035 used the passed type.
18036 If SPACE is not NULL, use it to hold the new symbol. If it is
18037 NULL, allocate a new symbol on the objfile's obstack. */
18038
18039 static struct symbol *
18040 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18041 struct symbol *space)
18042 {
18043 struct objfile *objfile = cu->objfile;
18044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18045 struct symbol *sym = NULL;
18046 const char *name;
18047 struct attribute *attr = NULL;
18048 struct attribute *attr2 = NULL;
18049 CORE_ADDR baseaddr;
18050 struct pending **list_to_add = NULL;
18051
18052 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18053
18054 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18055
18056 name = dwarf2_name (die, cu);
18057 if (name)
18058 {
18059 const char *linkagename;
18060 int suppress_add = 0;
18061
18062 if (space)
18063 sym = space;
18064 else
18065 sym = allocate_symbol (objfile);
18066 OBJSTAT (objfile, n_syms++);
18067
18068 /* Cache this symbol's name and the name's demangled form (if any). */
18069 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18070 linkagename = dwarf2_physname (name, die, cu);
18071 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18072
18073 /* Fortran does not have mangling standard and the mangling does differ
18074 between gfortran, iFort etc. */
18075 if (cu->language == language_fortran
18076 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18077 symbol_set_demangled_name (&(sym->ginfo),
18078 dwarf2_full_name (name, die, cu),
18079 NULL);
18080
18081 /* Default assumptions.
18082 Use the passed type or decode it from the die. */
18083 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18084 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18085 if (type != NULL)
18086 SYMBOL_TYPE (sym) = type;
18087 else
18088 SYMBOL_TYPE (sym) = die_type (die, cu);
18089 attr = dwarf2_attr (die,
18090 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18091 cu);
18092 if (attr)
18093 {
18094 SYMBOL_LINE (sym) = DW_UNSND (attr);
18095 }
18096
18097 attr = dwarf2_attr (die,
18098 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18099 cu);
18100 if (attr)
18101 {
18102 int file_index = DW_UNSND (attr);
18103
18104 if (cu->line_header == NULL
18105 || file_index > cu->line_header->num_file_names)
18106 complaint (&symfile_complaints,
18107 _("file index out of range"));
18108 else if (file_index > 0)
18109 {
18110 struct file_entry *fe;
18111
18112 fe = &cu->line_header->file_names[file_index - 1];
18113 symbol_set_symtab (sym, fe->symtab);
18114 }
18115 }
18116
18117 switch (die->tag)
18118 {
18119 case DW_TAG_label:
18120 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18121 if (attr)
18122 {
18123 CORE_ADDR addr;
18124
18125 addr = attr_value_as_address (attr);
18126 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18127 SYMBOL_VALUE_ADDRESS (sym) = addr;
18128 }
18129 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18130 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18131 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18132 add_symbol_to_list (sym, cu->list_in_scope);
18133 break;
18134 case DW_TAG_subprogram:
18135 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18136 finish_block. */
18137 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18138 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18139 if ((attr2 && (DW_UNSND (attr2) != 0))
18140 || cu->language == language_ada)
18141 {
18142 /* Subprograms marked external are stored as a global symbol.
18143 Ada subprograms, whether marked external or not, are always
18144 stored as a global symbol, because we want to be able to
18145 access them globally. For instance, we want to be able
18146 to break on a nested subprogram without having to
18147 specify the context. */
18148 list_to_add = &global_symbols;
18149 }
18150 else
18151 {
18152 list_to_add = cu->list_in_scope;
18153 }
18154 break;
18155 case DW_TAG_inlined_subroutine:
18156 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18157 finish_block. */
18158 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18159 SYMBOL_INLINED (sym) = 1;
18160 list_to_add = cu->list_in_scope;
18161 break;
18162 case DW_TAG_template_value_param:
18163 suppress_add = 1;
18164 /* Fall through. */
18165 case DW_TAG_constant:
18166 case DW_TAG_variable:
18167 case DW_TAG_member:
18168 /* Compilation with minimal debug info may result in
18169 variables with missing type entries. Change the
18170 misleading `void' type to something sensible. */
18171 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18172 SYMBOL_TYPE (sym)
18173 = objfile_type (objfile)->nodebug_data_symbol;
18174
18175 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18176 /* In the case of DW_TAG_member, we should only be called for
18177 static const members. */
18178 if (die->tag == DW_TAG_member)
18179 {
18180 /* dwarf2_add_field uses die_is_declaration,
18181 so we do the same. */
18182 gdb_assert (die_is_declaration (die, cu));
18183 gdb_assert (attr);
18184 }
18185 if (attr)
18186 {
18187 dwarf2_const_value (attr, sym, cu);
18188 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18189 if (!suppress_add)
18190 {
18191 if (attr2 && (DW_UNSND (attr2) != 0))
18192 list_to_add = &global_symbols;
18193 else
18194 list_to_add = cu->list_in_scope;
18195 }
18196 break;
18197 }
18198 attr = dwarf2_attr (die, DW_AT_location, cu);
18199 if (attr)
18200 {
18201 var_decode_location (attr, sym, cu);
18202 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18203
18204 /* Fortran explicitly imports any global symbols to the local
18205 scope by DW_TAG_common_block. */
18206 if (cu->language == language_fortran && die->parent
18207 && die->parent->tag == DW_TAG_common_block)
18208 attr2 = NULL;
18209
18210 if (SYMBOL_CLASS (sym) == LOC_STATIC
18211 && SYMBOL_VALUE_ADDRESS (sym) == 0
18212 && !dwarf2_per_objfile->has_section_at_zero)
18213 {
18214 /* When a static variable is eliminated by the linker,
18215 the corresponding debug information is not stripped
18216 out, but the variable address is set to null;
18217 do not add such variables into symbol table. */
18218 }
18219 else if (attr2 && (DW_UNSND (attr2) != 0))
18220 {
18221 /* Workaround gfortran PR debug/40040 - it uses
18222 DW_AT_location for variables in -fPIC libraries which may
18223 get overriden by other libraries/executable and get
18224 a different address. Resolve it by the minimal symbol
18225 which may come from inferior's executable using copy
18226 relocation. Make this workaround only for gfortran as for
18227 other compilers GDB cannot guess the minimal symbol
18228 Fortran mangling kind. */
18229 if (cu->language == language_fortran && die->parent
18230 && die->parent->tag == DW_TAG_module
18231 && cu->producer
18232 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
18233 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18234
18235 /* A variable with DW_AT_external is never static,
18236 but it may be block-scoped. */
18237 list_to_add = (cu->list_in_scope == &file_symbols
18238 ? &global_symbols : cu->list_in_scope);
18239 }
18240 else
18241 list_to_add = cu->list_in_scope;
18242 }
18243 else
18244 {
18245 /* We do not know the address of this symbol.
18246 If it is an external symbol and we have type information
18247 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18248 The address of the variable will then be determined from
18249 the minimal symbol table whenever the variable is
18250 referenced. */
18251 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18252
18253 /* Fortran explicitly imports any global symbols to the local
18254 scope by DW_TAG_common_block. */
18255 if (cu->language == language_fortran && die->parent
18256 && die->parent->tag == DW_TAG_common_block)
18257 {
18258 /* SYMBOL_CLASS doesn't matter here because
18259 read_common_block is going to reset it. */
18260 if (!suppress_add)
18261 list_to_add = cu->list_in_scope;
18262 }
18263 else if (attr2 && (DW_UNSND (attr2) != 0)
18264 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18265 {
18266 /* A variable with DW_AT_external is never static, but it
18267 may be block-scoped. */
18268 list_to_add = (cu->list_in_scope == &file_symbols
18269 ? &global_symbols : cu->list_in_scope);
18270
18271 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18272 }
18273 else if (!die_is_declaration (die, cu))
18274 {
18275 /* Use the default LOC_OPTIMIZED_OUT class. */
18276 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18277 if (!suppress_add)
18278 list_to_add = cu->list_in_scope;
18279 }
18280 }
18281 break;
18282 case DW_TAG_formal_parameter:
18283 /* If we are inside a function, mark this as an argument. If
18284 not, we might be looking at an argument to an inlined function
18285 when we do not have enough information to show inlined frames;
18286 pretend it's a local variable in that case so that the user can
18287 still see it. */
18288 if (context_stack_depth > 0
18289 && context_stack[context_stack_depth - 1].name != NULL)
18290 SYMBOL_IS_ARGUMENT (sym) = 1;
18291 attr = dwarf2_attr (die, DW_AT_location, cu);
18292 if (attr)
18293 {
18294 var_decode_location (attr, sym, cu);
18295 }
18296 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18297 if (attr)
18298 {
18299 dwarf2_const_value (attr, sym, cu);
18300 }
18301
18302 list_to_add = cu->list_in_scope;
18303 break;
18304 case DW_TAG_unspecified_parameters:
18305 /* From varargs functions; gdb doesn't seem to have any
18306 interest in this information, so just ignore it for now.
18307 (FIXME?) */
18308 break;
18309 case DW_TAG_template_type_param:
18310 suppress_add = 1;
18311 /* Fall through. */
18312 case DW_TAG_class_type:
18313 case DW_TAG_interface_type:
18314 case DW_TAG_structure_type:
18315 case DW_TAG_union_type:
18316 case DW_TAG_set_type:
18317 case DW_TAG_enumeration_type:
18318 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18319 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18320
18321 {
18322 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18323 really ever be static objects: otherwise, if you try
18324 to, say, break of a class's method and you're in a file
18325 which doesn't mention that class, it won't work unless
18326 the check for all static symbols in lookup_symbol_aux
18327 saves you. See the OtherFileClass tests in
18328 gdb.c++/namespace.exp. */
18329
18330 if (!suppress_add)
18331 {
18332 list_to_add = (cu->list_in_scope == &file_symbols
18333 && (cu->language == language_cplus
18334 || cu->language == language_java)
18335 ? &global_symbols : cu->list_in_scope);
18336
18337 /* The semantics of C++ state that "struct foo {
18338 ... }" also defines a typedef for "foo". A Java
18339 class declaration also defines a typedef for the
18340 class. */
18341 if (cu->language == language_cplus
18342 || cu->language == language_java
18343 || cu->language == language_ada)
18344 {
18345 /* The symbol's name is already allocated along
18346 with this objfile, so we don't need to
18347 duplicate it for the type. */
18348 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18349 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18350 }
18351 }
18352 }
18353 break;
18354 case DW_TAG_typedef:
18355 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18356 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18357 list_to_add = cu->list_in_scope;
18358 break;
18359 case DW_TAG_base_type:
18360 case DW_TAG_subrange_type:
18361 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18362 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18363 list_to_add = cu->list_in_scope;
18364 break;
18365 case DW_TAG_enumerator:
18366 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18367 if (attr)
18368 {
18369 dwarf2_const_value (attr, sym, cu);
18370 }
18371 {
18372 /* NOTE: carlton/2003-11-10: See comment above in the
18373 DW_TAG_class_type, etc. block. */
18374
18375 list_to_add = (cu->list_in_scope == &file_symbols
18376 && (cu->language == language_cplus
18377 || cu->language == language_java)
18378 ? &global_symbols : cu->list_in_scope);
18379 }
18380 break;
18381 case DW_TAG_imported_declaration:
18382 case DW_TAG_namespace:
18383 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18384 list_to_add = &global_symbols;
18385 break;
18386 case DW_TAG_module:
18387 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18388 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18389 list_to_add = &global_symbols;
18390 break;
18391 case DW_TAG_common_block:
18392 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18393 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18394 add_symbol_to_list (sym, cu->list_in_scope);
18395 break;
18396 default:
18397 /* Not a tag we recognize. Hopefully we aren't processing
18398 trash data, but since we must specifically ignore things
18399 we don't recognize, there is nothing else we should do at
18400 this point. */
18401 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18402 dwarf_tag_name (die->tag));
18403 break;
18404 }
18405
18406 if (suppress_add)
18407 {
18408 sym->hash_next = objfile->template_symbols;
18409 objfile->template_symbols = sym;
18410 list_to_add = NULL;
18411 }
18412
18413 if (list_to_add != NULL)
18414 add_symbol_to_list (sym, list_to_add);
18415
18416 /* For the benefit of old versions of GCC, check for anonymous
18417 namespaces based on the demangled name. */
18418 if (!cu->processing_has_namespace_info
18419 && cu->language == language_cplus)
18420 cp_scan_for_anonymous_namespaces (sym, objfile);
18421 }
18422 return (sym);
18423 }
18424
18425 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18426
18427 static struct symbol *
18428 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18429 {
18430 return new_symbol_full (die, type, cu, NULL);
18431 }
18432
18433 /* Given an attr with a DW_FORM_dataN value in host byte order,
18434 zero-extend it as appropriate for the symbol's type. The DWARF
18435 standard (v4) is not entirely clear about the meaning of using
18436 DW_FORM_dataN for a constant with a signed type, where the type is
18437 wider than the data. The conclusion of a discussion on the DWARF
18438 list was that this is unspecified. We choose to always zero-extend
18439 because that is the interpretation long in use by GCC. */
18440
18441 static gdb_byte *
18442 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18443 struct dwarf2_cu *cu, LONGEST *value, int bits)
18444 {
18445 struct objfile *objfile = cu->objfile;
18446 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18447 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18448 LONGEST l = DW_UNSND (attr);
18449
18450 if (bits < sizeof (*value) * 8)
18451 {
18452 l &= ((LONGEST) 1 << bits) - 1;
18453 *value = l;
18454 }
18455 else if (bits == sizeof (*value) * 8)
18456 *value = l;
18457 else
18458 {
18459 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18460 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18461 return bytes;
18462 }
18463
18464 return NULL;
18465 }
18466
18467 /* Read a constant value from an attribute. Either set *VALUE, or if
18468 the value does not fit in *VALUE, set *BYTES - either already
18469 allocated on the objfile obstack, or newly allocated on OBSTACK,
18470 or, set *BATON, if we translated the constant to a location
18471 expression. */
18472
18473 static void
18474 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18475 const char *name, struct obstack *obstack,
18476 struct dwarf2_cu *cu,
18477 LONGEST *value, const gdb_byte **bytes,
18478 struct dwarf2_locexpr_baton **baton)
18479 {
18480 struct objfile *objfile = cu->objfile;
18481 struct comp_unit_head *cu_header = &cu->header;
18482 struct dwarf_block *blk;
18483 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18484 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18485
18486 *value = 0;
18487 *bytes = NULL;
18488 *baton = NULL;
18489
18490 switch (attr->form)
18491 {
18492 case DW_FORM_addr:
18493 case DW_FORM_GNU_addr_index:
18494 {
18495 gdb_byte *data;
18496
18497 if (TYPE_LENGTH (type) != cu_header->addr_size)
18498 dwarf2_const_value_length_mismatch_complaint (name,
18499 cu_header->addr_size,
18500 TYPE_LENGTH (type));
18501 /* Symbols of this form are reasonably rare, so we just
18502 piggyback on the existing location code rather than writing
18503 a new implementation of symbol_computed_ops. */
18504 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18505 (*baton)->per_cu = cu->per_cu;
18506 gdb_assert ((*baton)->per_cu);
18507
18508 (*baton)->size = 2 + cu_header->addr_size;
18509 data = obstack_alloc (obstack, (*baton)->size);
18510 (*baton)->data = data;
18511
18512 data[0] = DW_OP_addr;
18513 store_unsigned_integer (&data[1], cu_header->addr_size,
18514 byte_order, DW_ADDR (attr));
18515 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18516 }
18517 break;
18518 case DW_FORM_string:
18519 case DW_FORM_strp:
18520 case DW_FORM_GNU_str_index:
18521 case DW_FORM_GNU_strp_alt:
18522 /* DW_STRING is already allocated on the objfile obstack, point
18523 directly to it. */
18524 *bytes = (const gdb_byte *) DW_STRING (attr);
18525 break;
18526 case DW_FORM_block1:
18527 case DW_FORM_block2:
18528 case DW_FORM_block4:
18529 case DW_FORM_block:
18530 case DW_FORM_exprloc:
18531 blk = DW_BLOCK (attr);
18532 if (TYPE_LENGTH (type) != blk->size)
18533 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18534 TYPE_LENGTH (type));
18535 *bytes = blk->data;
18536 break;
18537
18538 /* The DW_AT_const_value attributes are supposed to carry the
18539 symbol's value "represented as it would be on the target
18540 architecture." By the time we get here, it's already been
18541 converted to host endianness, so we just need to sign- or
18542 zero-extend it as appropriate. */
18543 case DW_FORM_data1:
18544 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18545 break;
18546 case DW_FORM_data2:
18547 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18548 break;
18549 case DW_FORM_data4:
18550 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18551 break;
18552 case DW_FORM_data8:
18553 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18554 break;
18555
18556 case DW_FORM_sdata:
18557 *value = DW_SND (attr);
18558 break;
18559
18560 case DW_FORM_udata:
18561 *value = DW_UNSND (attr);
18562 break;
18563
18564 default:
18565 complaint (&symfile_complaints,
18566 _("unsupported const value attribute form: '%s'"),
18567 dwarf_form_name (attr->form));
18568 *value = 0;
18569 break;
18570 }
18571 }
18572
18573
18574 /* Copy constant value from an attribute to a symbol. */
18575
18576 static void
18577 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18578 struct dwarf2_cu *cu)
18579 {
18580 struct objfile *objfile = cu->objfile;
18581 struct comp_unit_head *cu_header = &cu->header;
18582 LONGEST value;
18583 const gdb_byte *bytes;
18584 struct dwarf2_locexpr_baton *baton;
18585
18586 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18587 SYMBOL_PRINT_NAME (sym),
18588 &objfile->objfile_obstack, cu,
18589 &value, &bytes, &baton);
18590
18591 if (baton != NULL)
18592 {
18593 SYMBOL_LOCATION_BATON (sym) = baton;
18594 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18595 }
18596 else if (bytes != NULL)
18597 {
18598 SYMBOL_VALUE_BYTES (sym) = bytes;
18599 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18600 }
18601 else
18602 {
18603 SYMBOL_VALUE (sym) = value;
18604 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18605 }
18606 }
18607
18608 /* Return the type of the die in question using its DW_AT_type attribute. */
18609
18610 static struct type *
18611 die_type (struct die_info *die, struct dwarf2_cu *cu)
18612 {
18613 struct attribute *type_attr;
18614
18615 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18616 if (!type_attr)
18617 {
18618 /* A missing DW_AT_type represents a void type. */
18619 return objfile_type (cu->objfile)->builtin_void;
18620 }
18621
18622 return lookup_die_type (die, type_attr, cu);
18623 }
18624
18625 /* True iff CU's producer generates GNAT Ada auxiliary information
18626 that allows to find parallel types through that information instead
18627 of having to do expensive parallel lookups by type name. */
18628
18629 static int
18630 need_gnat_info (struct dwarf2_cu *cu)
18631 {
18632 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18633 of GNAT produces this auxiliary information, without any indication
18634 that it is produced. Part of enhancing the FSF version of GNAT
18635 to produce that information will be to put in place an indicator
18636 that we can use in order to determine whether the descriptive type
18637 info is available or not. One suggestion that has been made is
18638 to use a new attribute, attached to the CU die. For now, assume
18639 that the descriptive type info is not available. */
18640 return 0;
18641 }
18642
18643 /* Return the auxiliary type of the die in question using its
18644 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18645 attribute is not present. */
18646
18647 static struct type *
18648 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18649 {
18650 struct attribute *type_attr;
18651
18652 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18653 if (!type_attr)
18654 return NULL;
18655
18656 return lookup_die_type (die, type_attr, cu);
18657 }
18658
18659 /* If DIE has a descriptive_type attribute, then set the TYPE's
18660 descriptive type accordingly. */
18661
18662 static void
18663 set_descriptive_type (struct type *type, struct die_info *die,
18664 struct dwarf2_cu *cu)
18665 {
18666 struct type *descriptive_type = die_descriptive_type (die, cu);
18667
18668 if (descriptive_type)
18669 {
18670 ALLOCATE_GNAT_AUX_TYPE (type);
18671 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18672 }
18673 }
18674
18675 /* Return the containing type of the die in question using its
18676 DW_AT_containing_type attribute. */
18677
18678 static struct type *
18679 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18680 {
18681 struct attribute *type_attr;
18682
18683 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18684 if (!type_attr)
18685 error (_("Dwarf Error: Problem turning containing type into gdb type "
18686 "[in module %s]"), objfile_name (cu->objfile));
18687
18688 return lookup_die_type (die, type_attr, cu);
18689 }
18690
18691 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18692
18693 static struct type *
18694 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18695 {
18696 struct objfile *objfile = dwarf2_per_objfile->objfile;
18697 char *message, *saved;
18698
18699 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18700 objfile_name (objfile),
18701 cu->header.offset.sect_off,
18702 die->offset.sect_off);
18703 saved = obstack_copy0 (&objfile->objfile_obstack,
18704 message, strlen (message));
18705 xfree (message);
18706
18707 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18708 }
18709
18710 /* Look up the type of DIE in CU using its type attribute ATTR.
18711 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18712 DW_AT_containing_type.
18713 If there is no type substitute an error marker. */
18714
18715 static struct type *
18716 lookup_die_type (struct die_info *die, const struct attribute *attr,
18717 struct dwarf2_cu *cu)
18718 {
18719 struct objfile *objfile = cu->objfile;
18720 struct type *this_type;
18721
18722 gdb_assert (attr->name == DW_AT_type
18723 || attr->name == DW_AT_GNAT_descriptive_type
18724 || attr->name == DW_AT_containing_type);
18725
18726 /* First see if we have it cached. */
18727
18728 if (attr->form == DW_FORM_GNU_ref_alt)
18729 {
18730 struct dwarf2_per_cu_data *per_cu;
18731 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18732
18733 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18734 this_type = get_die_type_at_offset (offset, per_cu);
18735 }
18736 else if (attr_form_is_ref (attr))
18737 {
18738 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18739
18740 this_type = get_die_type_at_offset (offset, cu->per_cu);
18741 }
18742 else if (attr->form == DW_FORM_ref_sig8)
18743 {
18744 ULONGEST signature = DW_SIGNATURE (attr);
18745
18746 return get_signatured_type (die, signature, cu);
18747 }
18748 else
18749 {
18750 complaint (&symfile_complaints,
18751 _("Dwarf Error: Bad type attribute %s in DIE"
18752 " at 0x%x [in module %s]"),
18753 dwarf_attr_name (attr->name), die->offset.sect_off,
18754 objfile_name (objfile));
18755 return build_error_marker_type (cu, die);
18756 }
18757
18758 /* If not cached we need to read it in. */
18759
18760 if (this_type == NULL)
18761 {
18762 struct die_info *type_die = NULL;
18763 struct dwarf2_cu *type_cu = cu;
18764
18765 if (attr_form_is_ref (attr))
18766 type_die = follow_die_ref (die, attr, &type_cu);
18767 if (type_die == NULL)
18768 return build_error_marker_type (cu, die);
18769 /* If we find the type now, it's probably because the type came
18770 from an inter-CU reference and the type's CU got expanded before
18771 ours. */
18772 this_type = read_type_die (type_die, type_cu);
18773 }
18774
18775 /* If we still don't have a type use an error marker. */
18776
18777 if (this_type == NULL)
18778 return build_error_marker_type (cu, die);
18779
18780 return this_type;
18781 }
18782
18783 /* Return the type in DIE, CU.
18784 Returns NULL for invalid types.
18785
18786 This first does a lookup in die_type_hash,
18787 and only reads the die in if necessary.
18788
18789 NOTE: This can be called when reading in partial or full symbols. */
18790
18791 static struct type *
18792 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18793 {
18794 struct type *this_type;
18795
18796 this_type = get_die_type (die, cu);
18797 if (this_type)
18798 return this_type;
18799
18800 return read_type_die_1 (die, cu);
18801 }
18802
18803 /* Read the type in DIE, CU.
18804 Returns NULL for invalid types. */
18805
18806 static struct type *
18807 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18808 {
18809 struct type *this_type = NULL;
18810
18811 switch (die->tag)
18812 {
18813 case DW_TAG_class_type:
18814 case DW_TAG_interface_type:
18815 case DW_TAG_structure_type:
18816 case DW_TAG_union_type:
18817 this_type = read_structure_type (die, cu);
18818 break;
18819 case DW_TAG_enumeration_type:
18820 this_type = read_enumeration_type (die, cu);
18821 break;
18822 case DW_TAG_subprogram:
18823 case DW_TAG_subroutine_type:
18824 case DW_TAG_inlined_subroutine:
18825 this_type = read_subroutine_type (die, cu);
18826 break;
18827 case DW_TAG_array_type:
18828 this_type = read_array_type (die, cu);
18829 break;
18830 case DW_TAG_set_type:
18831 this_type = read_set_type (die, cu);
18832 break;
18833 case DW_TAG_pointer_type:
18834 this_type = read_tag_pointer_type (die, cu);
18835 break;
18836 case DW_TAG_ptr_to_member_type:
18837 this_type = read_tag_ptr_to_member_type (die, cu);
18838 break;
18839 case DW_TAG_reference_type:
18840 this_type = read_tag_reference_type (die, cu);
18841 break;
18842 case DW_TAG_const_type:
18843 this_type = read_tag_const_type (die, cu);
18844 break;
18845 case DW_TAG_volatile_type:
18846 this_type = read_tag_volatile_type (die, cu);
18847 break;
18848 case DW_TAG_restrict_type:
18849 this_type = read_tag_restrict_type (die, cu);
18850 break;
18851 case DW_TAG_string_type:
18852 this_type = read_tag_string_type (die, cu);
18853 break;
18854 case DW_TAG_typedef:
18855 this_type = read_typedef (die, cu);
18856 break;
18857 case DW_TAG_subrange_type:
18858 this_type = read_subrange_type (die, cu);
18859 break;
18860 case DW_TAG_base_type:
18861 this_type = read_base_type (die, cu);
18862 break;
18863 case DW_TAG_unspecified_type:
18864 this_type = read_unspecified_type (die, cu);
18865 break;
18866 case DW_TAG_namespace:
18867 this_type = read_namespace_type (die, cu);
18868 break;
18869 case DW_TAG_module:
18870 this_type = read_module_type (die, cu);
18871 break;
18872 default:
18873 complaint (&symfile_complaints,
18874 _("unexpected tag in read_type_die: '%s'"),
18875 dwarf_tag_name (die->tag));
18876 break;
18877 }
18878
18879 return this_type;
18880 }
18881
18882 /* See if we can figure out if the class lives in a namespace. We do
18883 this by looking for a member function; its demangled name will
18884 contain namespace info, if there is any.
18885 Return the computed name or NULL.
18886 Space for the result is allocated on the objfile's obstack.
18887 This is the full-die version of guess_partial_die_structure_name.
18888 In this case we know DIE has no useful parent. */
18889
18890 static char *
18891 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18892 {
18893 struct die_info *spec_die;
18894 struct dwarf2_cu *spec_cu;
18895 struct die_info *child;
18896
18897 spec_cu = cu;
18898 spec_die = die_specification (die, &spec_cu);
18899 if (spec_die != NULL)
18900 {
18901 die = spec_die;
18902 cu = spec_cu;
18903 }
18904
18905 for (child = die->child;
18906 child != NULL;
18907 child = child->sibling)
18908 {
18909 if (child->tag == DW_TAG_subprogram)
18910 {
18911 struct attribute *attr;
18912
18913 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18914 if (attr == NULL)
18915 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18916 if (attr != NULL)
18917 {
18918 char *actual_name
18919 = language_class_name_from_physname (cu->language_defn,
18920 DW_STRING (attr));
18921 char *name = NULL;
18922
18923 if (actual_name != NULL)
18924 {
18925 const char *die_name = dwarf2_name (die, cu);
18926
18927 if (die_name != NULL
18928 && strcmp (die_name, actual_name) != 0)
18929 {
18930 /* Strip off the class name from the full name.
18931 We want the prefix. */
18932 int die_name_len = strlen (die_name);
18933 int actual_name_len = strlen (actual_name);
18934
18935 /* Test for '::' as a sanity check. */
18936 if (actual_name_len > die_name_len + 2
18937 && actual_name[actual_name_len
18938 - die_name_len - 1] == ':')
18939 name =
18940 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18941 actual_name,
18942 actual_name_len - die_name_len - 2);
18943 }
18944 }
18945 xfree (actual_name);
18946 return name;
18947 }
18948 }
18949 }
18950
18951 return NULL;
18952 }
18953
18954 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18955 prefix part in such case. See
18956 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18957
18958 static char *
18959 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18960 {
18961 struct attribute *attr;
18962 char *base;
18963
18964 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18965 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18966 return NULL;
18967
18968 attr = dwarf2_attr (die, DW_AT_name, cu);
18969 if (attr != NULL && DW_STRING (attr) != NULL)
18970 return NULL;
18971
18972 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18973 if (attr == NULL)
18974 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18975 if (attr == NULL || DW_STRING (attr) == NULL)
18976 return NULL;
18977
18978 /* dwarf2_name had to be already called. */
18979 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18980
18981 /* Strip the base name, keep any leading namespaces/classes. */
18982 base = strrchr (DW_STRING (attr), ':');
18983 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18984 return "";
18985
18986 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18987 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18988 }
18989
18990 /* Return the name of the namespace/class that DIE is defined within,
18991 or "" if we can't tell. The caller should not xfree the result.
18992
18993 For example, if we're within the method foo() in the following
18994 code:
18995
18996 namespace N {
18997 class C {
18998 void foo () {
18999 }
19000 };
19001 }
19002
19003 then determine_prefix on foo's die will return "N::C". */
19004
19005 static const char *
19006 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19007 {
19008 struct die_info *parent, *spec_die;
19009 struct dwarf2_cu *spec_cu;
19010 struct type *parent_type;
19011 char *retval;
19012
19013 if (cu->language != language_cplus && cu->language != language_java
19014 && cu->language != language_fortran)
19015 return "";
19016
19017 retval = anonymous_struct_prefix (die, cu);
19018 if (retval)
19019 return retval;
19020
19021 /* We have to be careful in the presence of DW_AT_specification.
19022 For example, with GCC 3.4, given the code
19023
19024 namespace N {
19025 void foo() {
19026 // Definition of N::foo.
19027 }
19028 }
19029
19030 then we'll have a tree of DIEs like this:
19031
19032 1: DW_TAG_compile_unit
19033 2: DW_TAG_namespace // N
19034 3: DW_TAG_subprogram // declaration of N::foo
19035 4: DW_TAG_subprogram // definition of N::foo
19036 DW_AT_specification // refers to die #3
19037
19038 Thus, when processing die #4, we have to pretend that we're in
19039 the context of its DW_AT_specification, namely the contex of die
19040 #3. */
19041 spec_cu = cu;
19042 spec_die = die_specification (die, &spec_cu);
19043 if (spec_die == NULL)
19044 parent = die->parent;
19045 else
19046 {
19047 parent = spec_die->parent;
19048 cu = spec_cu;
19049 }
19050
19051 if (parent == NULL)
19052 return "";
19053 else if (parent->building_fullname)
19054 {
19055 const char *name;
19056 const char *parent_name;
19057
19058 /* It has been seen on RealView 2.2 built binaries,
19059 DW_TAG_template_type_param types actually _defined_ as
19060 children of the parent class:
19061
19062 enum E {};
19063 template class <class Enum> Class{};
19064 Class<enum E> class_e;
19065
19066 1: DW_TAG_class_type (Class)
19067 2: DW_TAG_enumeration_type (E)
19068 3: DW_TAG_enumerator (enum1:0)
19069 3: DW_TAG_enumerator (enum2:1)
19070 ...
19071 2: DW_TAG_template_type_param
19072 DW_AT_type DW_FORM_ref_udata (E)
19073
19074 Besides being broken debug info, it can put GDB into an
19075 infinite loop. Consider:
19076
19077 When we're building the full name for Class<E>, we'll start
19078 at Class, and go look over its template type parameters,
19079 finding E. We'll then try to build the full name of E, and
19080 reach here. We're now trying to build the full name of E,
19081 and look over the parent DIE for containing scope. In the
19082 broken case, if we followed the parent DIE of E, we'd again
19083 find Class, and once again go look at its template type
19084 arguments, etc., etc. Simply don't consider such parent die
19085 as source-level parent of this die (it can't be, the language
19086 doesn't allow it), and break the loop here. */
19087 name = dwarf2_name (die, cu);
19088 parent_name = dwarf2_name (parent, cu);
19089 complaint (&symfile_complaints,
19090 _("template param type '%s' defined within parent '%s'"),
19091 name ? name : "<unknown>",
19092 parent_name ? parent_name : "<unknown>");
19093 return "";
19094 }
19095 else
19096 switch (parent->tag)
19097 {
19098 case DW_TAG_namespace:
19099 parent_type = read_type_die (parent, cu);
19100 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19101 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19102 Work around this problem here. */
19103 if (cu->language == language_cplus
19104 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19105 return "";
19106 /* We give a name to even anonymous namespaces. */
19107 return TYPE_TAG_NAME (parent_type);
19108 case DW_TAG_class_type:
19109 case DW_TAG_interface_type:
19110 case DW_TAG_structure_type:
19111 case DW_TAG_union_type:
19112 case DW_TAG_module:
19113 parent_type = read_type_die (parent, cu);
19114 if (TYPE_TAG_NAME (parent_type) != NULL)
19115 return TYPE_TAG_NAME (parent_type);
19116 else
19117 /* An anonymous structure is only allowed non-static data
19118 members; no typedefs, no member functions, et cetera.
19119 So it does not need a prefix. */
19120 return "";
19121 case DW_TAG_compile_unit:
19122 case DW_TAG_partial_unit:
19123 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19124 if (cu->language == language_cplus
19125 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19126 && die->child != NULL
19127 && (die->tag == DW_TAG_class_type
19128 || die->tag == DW_TAG_structure_type
19129 || die->tag == DW_TAG_union_type))
19130 {
19131 char *name = guess_full_die_structure_name (die, cu);
19132 if (name != NULL)
19133 return name;
19134 }
19135 return "";
19136 case DW_TAG_enumeration_type:
19137 parent_type = read_type_die (parent, cu);
19138 if (TYPE_DECLARED_CLASS (parent_type))
19139 {
19140 if (TYPE_TAG_NAME (parent_type) != NULL)
19141 return TYPE_TAG_NAME (parent_type);
19142 return "";
19143 }
19144 /* Fall through. */
19145 default:
19146 return determine_prefix (parent, cu);
19147 }
19148 }
19149
19150 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19151 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19152 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19153 an obconcat, otherwise allocate storage for the result. The CU argument is
19154 used to determine the language and hence, the appropriate separator. */
19155
19156 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19157
19158 static char *
19159 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19160 int physname, struct dwarf2_cu *cu)
19161 {
19162 const char *lead = "";
19163 const char *sep;
19164
19165 if (suffix == NULL || suffix[0] == '\0'
19166 || prefix == NULL || prefix[0] == '\0')
19167 sep = "";
19168 else if (cu->language == language_java)
19169 sep = ".";
19170 else if (cu->language == language_fortran && physname)
19171 {
19172 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19173 DW_AT_MIPS_linkage_name is preferred and used instead. */
19174
19175 lead = "__";
19176 sep = "_MOD_";
19177 }
19178 else
19179 sep = "::";
19180
19181 if (prefix == NULL)
19182 prefix = "";
19183 if (suffix == NULL)
19184 suffix = "";
19185
19186 if (obs == NULL)
19187 {
19188 char *retval
19189 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19190
19191 strcpy (retval, lead);
19192 strcat (retval, prefix);
19193 strcat (retval, sep);
19194 strcat (retval, suffix);
19195 return retval;
19196 }
19197 else
19198 {
19199 /* We have an obstack. */
19200 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19201 }
19202 }
19203
19204 /* Return sibling of die, NULL if no sibling. */
19205
19206 static struct die_info *
19207 sibling_die (struct die_info *die)
19208 {
19209 return die->sibling;
19210 }
19211
19212 /* Get name of a die, return NULL if not found. */
19213
19214 static const char *
19215 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19216 struct obstack *obstack)
19217 {
19218 if (name && cu->language == language_cplus)
19219 {
19220 char *canon_name = cp_canonicalize_string (name);
19221
19222 if (canon_name != NULL)
19223 {
19224 if (strcmp (canon_name, name) != 0)
19225 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19226 xfree (canon_name);
19227 }
19228 }
19229
19230 return name;
19231 }
19232
19233 /* Get name of a die, return NULL if not found. */
19234
19235 static const char *
19236 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19237 {
19238 struct attribute *attr;
19239
19240 attr = dwarf2_attr (die, DW_AT_name, cu);
19241 if ((!attr || !DW_STRING (attr))
19242 && die->tag != DW_TAG_class_type
19243 && die->tag != DW_TAG_interface_type
19244 && die->tag != DW_TAG_structure_type
19245 && die->tag != DW_TAG_union_type)
19246 return NULL;
19247
19248 switch (die->tag)
19249 {
19250 case DW_TAG_compile_unit:
19251 case DW_TAG_partial_unit:
19252 /* Compilation units have a DW_AT_name that is a filename, not
19253 a source language identifier. */
19254 case DW_TAG_enumeration_type:
19255 case DW_TAG_enumerator:
19256 /* These tags always have simple identifiers already; no need
19257 to canonicalize them. */
19258 return DW_STRING (attr);
19259
19260 case DW_TAG_subprogram:
19261 /* Java constructors will all be named "<init>", so return
19262 the class name when we see this special case. */
19263 if (cu->language == language_java
19264 && DW_STRING (attr) != NULL
19265 && strcmp (DW_STRING (attr), "<init>") == 0)
19266 {
19267 struct dwarf2_cu *spec_cu = cu;
19268 struct die_info *spec_die;
19269
19270 /* GCJ will output '<init>' for Java constructor names.
19271 For this special case, return the name of the parent class. */
19272
19273 /* GCJ may output subprogram DIEs with AT_specification set.
19274 If so, use the name of the specified DIE. */
19275 spec_die = die_specification (die, &spec_cu);
19276 if (spec_die != NULL)
19277 return dwarf2_name (spec_die, spec_cu);
19278
19279 do
19280 {
19281 die = die->parent;
19282 if (die->tag == DW_TAG_class_type)
19283 return dwarf2_name (die, cu);
19284 }
19285 while (die->tag != DW_TAG_compile_unit
19286 && die->tag != DW_TAG_partial_unit);
19287 }
19288 break;
19289
19290 case DW_TAG_class_type:
19291 case DW_TAG_interface_type:
19292 case DW_TAG_structure_type:
19293 case DW_TAG_union_type:
19294 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19295 structures or unions. These were of the form "._%d" in GCC 4.1,
19296 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19297 and GCC 4.4. We work around this problem by ignoring these. */
19298 if (attr && DW_STRING (attr)
19299 && (strncmp (DW_STRING (attr), "._", 2) == 0
19300 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
19301 return NULL;
19302
19303 /* GCC might emit a nameless typedef that has a linkage name. See
19304 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19305 if (!attr || DW_STRING (attr) == NULL)
19306 {
19307 char *demangled = NULL;
19308
19309 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19310 if (attr == NULL)
19311 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19312
19313 if (attr == NULL || DW_STRING (attr) == NULL)
19314 return NULL;
19315
19316 /* Avoid demangling DW_STRING (attr) the second time on a second
19317 call for the same DIE. */
19318 if (!DW_STRING_IS_CANONICAL (attr))
19319 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19320
19321 if (demangled)
19322 {
19323 char *base;
19324
19325 /* FIXME: we already did this for the partial symbol... */
19326 DW_STRING (attr)
19327 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19328 demangled, strlen (demangled));
19329 DW_STRING_IS_CANONICAL (attr) = 1;
19330 xfree (demangled);
19331
19332 /* Strip any leading namespaces/classes, keep only the base name.
19333 DW_AT_name for named DIEs does not contain the prefixes. */
19334 base = strrchr (DW_STRING (attr), ':');
19335 if (base && base > DW_STRING (attr) && base[-1] == ':')
19336 return &base[1];
19337 else
19338 return DW_STRING (attr);
19339 }
19340 }
19341 break;
19342
19343 default:
19344 break;
19345 }
19346
19347 if (!DW_STRING_IS_CANONICAL (attr))
19348 {
19349 DW_STRING (attr)
19350 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19351 &cu->objfile->per_bfd->storage_obstack);
19352 DW_STRING_IS_CANONICAL (attr) = 1;
19353 }
19354 return DW_STRING (attr);
19355 }
19356
19357 /* Return the die that this die in an extension of, or NULL if there
19358 is none. *EXT_CU is the CU containing DIE on input, and the CU
19359 containing the return value on output. */
19360
19361 static struct die_info *
19362 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19363 {
19364 struct attribute *attr;
19365
19366 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19367 if (attr == NULL)
19368 return NULL;
19369
19370 return follow_die_ref (die, attr, ext_cu);
19371 }
19372
19373 /* Convert a DIE tag into its string name. */
19374
19375 static const char *
19376 dwarf_tag_name (unsigned tag)
19377 {
19378 const char *name = get_DW_TAG_name (tag);
19379
19380 if (name == NULL)
19381 return "DW_TAG_<unknown>";
19382
19383 return name;
19384 }
19385
19386 /* Convert a DWARF attribute code into its string name. */
19387
19388 static const char *
19389 dwarf_attr_name (unsigned attr)
19390 {
19391 const char *name;
19392
19393 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19394 if (attr == DW_AT_MIPS_fde)
19395 return "DW_AT_MIPS_fde";
19396 #else
19397 if (attr == DW_AT_HP_block_index)
19398 return "DW_AT_HP_block_index";
19399 #endif
19400
19401 name = get_DW_AT_name (attr);
19402
19403 if (name == NULL)
19404 return "DW_AT_<unknown>";
19405
19406 return name;
19407 }
19408
19409 /* Convert a DWARF value form code into its string name. */
19410
19411 static const char *
19412 dwarf_form_name (unsigned form)
19413 {
19414 const char *name = get_DW_FORM_name (form);
19415
19416 if (name == NULL)
19417 return "DW_FORM_<unknown>";
19418
19419 return name;
19420 }
19421
19422 static char *
19423 dwarf_bool_name (unsigned mybool)
19424 {
19425 if (mybool)
19426 return "TRUE";
19427 else
19428 return "FALSE";
19429 }
19430
19431 /* Convert a DWARF type code into its string name. */
19432
19433 static const char *
19434 dwarf_type_encoding_name (unsigned enc)
19435 {
19436 const char *name = get_DW_ATE_name (enc);
19437
19438 if (name == NULL)
19439 return "DW_ATE_<unknown>";
19440
19441 return name;
19442 }
19443
19444 static void
19445 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19446 {
19447 unsigned int i;
19448
19449 print_spaces (indent, f);
19450 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19451 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19452
19453 if (die->parent != NULL)
19454 {
19455 print_spaces (indent, f);
19456 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19457 die->parent->offset.sect_off);
19458 }
19459
19460 print_spaces (indent, f);
19461 fprintf_unfiltered (f, " has children: %s\n",
19462 dwarf_bool_name (die->child != NULL));
19463
19464 print_spaces (indent, f);
19465 fprintf_unfiltered (f, " attributes:\n");
19466
19467 for (i = 0; i < die->num_attrs; ++i)
19468 {
19469 print_spaces (indent, f);
19470 fprintf_unfiltered (f, " %s (%s) ",
19471 dwarf_attr_name (die->attrs[i].name),
19472 dwarf_form_name (die->attrs[i].form));
19473
19474 switch (die->attrs[i].form)
19475 {
19476 case DW_FORM_addr:
19477 case DW_FORM_GNU_addr_index:
19478 fprintf_unfiltered (f, "address: ");
19479 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19480 break;
19481 case DW_FORM_block2:
19482 case DW_FORM_block4:
19483 case DW_FORM_block:
19484 case DW_FORM_block1:
19485 fprintf_unfiltered (f, "block: size %s",
19486 pulongest (DW_BLOCK (&die->attrs[i])->size));
19487 break;
19488 case DW_FORM_exprloc:
19489 fprintf_unfiltered (f, "expression: size %s",
19490 pulongest (DW_BLOCK (&die->attrs[i])->size));
19491 break;
19492 case DW_FORM_ref_addr:
19493 fprintf_unfiltered (f, "ref address: ");
19494 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19495 break;
19496 case DW_FORM_GNU_ref_alt:
19497 fprintf_unfiltered (f, "alt ref address: ");
19498 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19499 break;
19500 case DW_FORM_ref1:
19501 case DW_FORM_ref2:
19502 case DW_FORM_ref4:
19503 case DW_FORM_ref8:
19504 case DW_FORM_ref_udata:
19505 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19506 (long) (DW_UNSND (&die->attrs[i])));
19507 break;
19508 case DW_FORM_data1:
19509 case DW_FORM_data2:
19510 case DW_FORM_data4:
19511 case DW_FORM_data8:
19512 case DW_FORM_udata:
19513 case DW_FORM_sdata:
19514 fprintf_unfiltered (f, "constant: %s",
19515 pulongest (DW_UNSND (&die->attrs[i])));
19516 break;
19517 case DW_FORM_sec_offset:
19518 fprintf_unfiltered (f, "section offset: %s",
19519 pulongest (DW_UNSND (&die->attrs[i])));
19520 break;
19521 case DW_FORM_ref_sig8:
19522 fprintf_unfiltered (f, "signature: %s",
19523 hex_string (DW_SIGNATURE (&die->attrs[i])));
19524 break;
19525 case DW_FORM_string:
19526 case DW_FORM_strp:
19527 case DW_FORM_GNU_str_index:
19528 case DW_FORM_GNU_strp_alt:
19529 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19530 DW_STRING (&die->attrs[i])
19531 ? DW_STRING (&die->attrs[i]) : "",
19532 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19533 break;
19534 case DW_FORM_flag:
19535 if (DW_UNSND (&die->attrs[i]))
19536 fprintf_unfiltered (f, "flag: TRUE");
19537 else
19538 fprintf_unfiltered (f, "flag: FALSE");
19539 break;
19540 case DW_FORM_flag_present:
19541 fprintf_unfiltered (f, "flag: TRUE");
19542 break;
19543 case DW_FORM_indirect:
19544 /* The reader will have reduced the indirect form to
19545 the "base form" so this form should not occur. */
19546 fprintf_unfiltered (f,
19547 "unexpected attribute form: DW_FORM_indirect");
19548 break;
19549 default:
19550 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19551 die->attrs[i].form);
19552 break;
19553 }
19554 fprintf_unfiltered (f, "\n");
19555 }
19556 }
19557
19558 static void
19559 dump_die_for_error (struct die_info *die)
19560 {
19561 dump_die_shallow (gdb_stderr, 0, die);
19562 }
19563
19564 static void
19565 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19566 {
19567 int indent = level * 4;
19568
19569 gdb_assert (die != NULL);
19570
19571 if (level >= max_level)
19572 return;
19573
19574 dump_die_shallow (f, indent, die);
19575
19576 if (die->child != NULL)
19577 {
19578 print_spaces (indent, f);
19579 fprintf_unfiltered (f, " Children:");
19580 if (level + 1 < max_level)
19581 {
19582 fprintf_unfiltered (f, "\n");
19583 dump_die_1 (f, level + 1, max_level, die->child);
19584 }
19585 else
19586 {
19587 fprintf_unfiltered (f,
19588 " [not printed, max nesting level reached]\n");
19589 }
19590 }
19591
19592 if (die->sibling != NULL && level > 0)
19593 {
19594 dump_die_1 (f, level, max_level, die->sibling);
19595 }
19596 }
19597
19598 /* This is called from the pdie macro in gdbinit.in.
19599 It's not static so gcc will keep a copy callable from gdb. */
19600
19601 void
19602 dump_die (struct die_info *die, int max_level)
19603 {
19604 dump_die_1 (gdb_stdlog, 0, max_level, die);
19605 }
19606
19607 static void
19608 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19609 {
19610 void **slot;
19611
19612 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19613 INSERT);
19614
19615 *slot = die;
19616 }
19617
19618 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19619 required kind. */
19620
19621 static sect_offset
19622 dwarf2_get_ref_die_offset (const struct attribute *attr)
19623 {
19624 sect_offset retval = { DW_UNSND (attr) };
19625
19626 if (attr_form_is_ref (attr))
19627 return retval;
19628
19629 retval.sect_off = 0;
19630 complaint (&symfile_complaints,
19631 _("unsupported die ref attribute form: '%s'"),
19632 dwarf_form_name (attr->form));
19633 return retval;
19634 }
19635
19636 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19637 * the value held by the attribute is not constant. */
19638
19639 static LONGEST
19640 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19641 {
19642 if (attr->form == DW_FORM_sdata)
19643 return DW_SND (attr);
19644 else if (attr->form == DW_FORM_udata
19645 || attr->form == DW_FORM_data1
19646 || attr->form == DW_FORM_data2
19647 || attr->form == DW_FORM_data4
19648 || attr->form == DW_FORM_data8)
19649 return DW_UNSND (attr);
19650 else
19651 {
19652 complaint (&symfile_complaints,
19653 _("Attribute value is not a constant (%s)"),
19654 dwarf_form_name (attr->form));
19655 return default_value;
19656 }
19657 }
19658
19659 /* Follow reference or signature attribute ATTR of SRC_DIE.
19660 On entry *REF_CU is the CU of SRC_DIE.
19661 On exit *REF_CU is the CU of the result. */
19662
19663 static struct die_info *
19664 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19665 struct dwarf2_cu **ref_cu)
19666 {
19667 struct die_info *die;
19668
19669 if (attr_form_is_ref (attr))
19670 die = follow_die_ref (src_die, attr, ref_cu);
19671 else if (attr->form == DW_FORM_ref_sig8)
19672 die = follow_die_sig (src_die, attr, ref_cu);
19673 else
19674 {
19675 dump_die_for_error (src_die);
19676 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19677 objfile_name ((*ref_cu)->objfile));
19678 }
19679
19680 return die;
19681 }
19682
19683 /* Follow reference OFFSET.
19684 On entry *REF_CU is the CU of the source die referencing OFFSET.
19685 On exit *REF_CU is the CU of the result.
19686 Returns NULL if OFFSET is invalid. */
19687
19688 static struct die_info *
19689 follow_die_offset (sect_offset offset, int offset_in_dwz,
19690 struct dwarf2_cu **ref_cu)
19691 {
19692 struct die_info temp_die;
19693 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19694
19695 gdb_assert (cu->per_cu != NULL);
19696
19697 target_cu = cu;
19698
19699 if (cu->per_cu->is_debug_types)
19700 {
19701 /* .debug_types CUs cannot reference anything outside their CU.
19702 If they need to, they have to reference a signatured type via
19703 DW_FORM_ref_sig8. */
19704 if (! offset_in_cu_p (&cu->header, offset))
19705 return NULL;
19706 }
19707 else if (offset_in_dwz != cu->per_cu->is_dwz
19708 || ! offset_in_cu_p (&cu->header, offset))
19709 {
19710 struct dwarf2_per_cu_data *per_cu;
19711
19712 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19713 cu->objfile);
19714
19715 /* If necessary, add it to the queue and load its DIEs. */
19716 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19717 load_full_comp_unit (per_cu, cu->language);
19718
19719 target_cu = per_cu->cu;
19720 }
19721 else if (cu->dies == NULL)
19722 {
19723 /* We're loading full DIEs during partial symbol reading. */
19724 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19725 load_full_comp_unit (cu->per_cu, language_minimal);
19726 }
19727
19728 *ref_cu = target_cu;
19729 temp_die.offset = offset;
19730 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19731 }
19732
19733 /* Follow reference attribute ATTR of SRC_DIE.
19734 On entry *REF_CU is the CU of SRC_DIE.
19735 On exit *REF_CU is the CU of the result. */
19736
19737 static struct die_info *
19738 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19739 struct dwarf2_cu **ref_cu)
19740 {
19741 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19742 struct dwarf2_cu *cu = *ref_cu;
19743 struct die_info *die;
19744
19745 die = follow_die_offset (offset,
19746 (attr->form == DW_FORM_GNU_ref_alt
19747 || cu->per_cu->is_dwz),
19748 ref_cu);
19749 if (!die)
19750 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19751 "at 0x%x [in module %s]"),
19752 offset.sect_off, src_die->offset.sect_off,
19753 objfile_name (cu->objfile));
19754
19755 return die;
19756 }
19757
19758 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19759 Returned value is intended for DW_OP_call*. Returned
19760 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19761
19762 struct dwarf2_locexpr_baton
19763 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19764 struct dwarf2_per_cu_data *per_cu,
19765 CORE_ADDR (*get_frame_pc) (void *baton),
19766 void *baton)
19767 {
19768 struct dwarf2_cu *cu;
19769 struct die_info *die;
19770 struct attribute *attr;
19771 struct dwarf2_locexpr_baton retval;
19772
19773 dw2_setup (per_cu->objfile);
19774
19775 if (per_cu->cu == NULL)
19776 load_cu (per_cu);
19777 cu = per_cu->cu;
19778
19779 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19780 if (!die)
19781 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19782 offset.sect_off, objfile_name (per_cu->objfile));
19783
19784 attr = dwarf2_attr (die, DW_AT_location, cu);
19785 if (!attr)
19786 {
19787 /* DWARF: "If there is no such attribute, then there is no effect.".
19788 DATA is ignored if SIZE is 0. */
19789
19790 retval.data = NULL;
19791 retval.size = 0;
19792 }
19793 else if (attr_form_is_section_offset (attr))
19794 {
19795 struct dwarf2_loclist_baton loclist_baton;
19796 CORE_ADDR pc = (*get_frame_pc) (baton);
19797 size_t size;
19798
19799 fill_in_loclist_baton (cu, &loclist_baton, attr);
19800
19801 retval.data = dwarf2_find_location_expression (&loclist_baton,
19802 &size, pc);
19803 retval.size = size;
19804 }
19805 else
19806 {
19807 if (!attr_form_is_block (attr))
19808 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19809 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19810 offset.sect_off, objfile_name (per_cu->objfile));
19811
19812 retval.data = DW_BLOCK (attr)->data;
19813 retval.size = DW_BLOCK (attr)->size;
19814 }
19815 retval.per_cu = cu->per_cu;
19816
19817 age_cached_comp_units ();
19818
19819 return retval;
19820 }
19821
19822 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19823 offset. */
19824
19825 struct dwarf2_locexpr_baton
19826 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19827 struct dwarf2_per_cu_data *per_cu,
19828 CORE_ADDR (*get_frame_pc) (void *baton),
19829 void *baton)
19830 {
19831 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19832
19833 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19834 }
19835
19836 /* Write a constant of a given type as target-ordered bytes into
19837 OBSTACK. */
19838
19839 static const gdb_byte *
19840 write_constant_as_bytes (struct obstack *obstack,
19841 enum bfd_endian byte_order,
19842 struct type *type,
19843 ULONGEST value,
19844 LONGEST *len)
19845 {
19846 gdb_byte *result;
19847
19848 *len = TYPE_LENGTH (type);
19849 result = obstack_alloc (obstack, *len);
19850 store_unsigned_integer (result, *len, byte_order, value);
19851
19852 return result;
19853 }
19854
19855 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19856 pointer to the constant bytes and set LEN to the length of the
19857 data. If memory is needed, allocate it on OBSTACK. If the DIE
19858 does not have a DW_AT_const_value, return NULL. */
19859
19860 const gdb_byte *
19861 dwarf2_fetch_constant_bytes (sect_offset offset,
19862 struct dwarf2_per_cu_data *per_cu,
19863 struct obstack *obstack,
19864 LONGEST *len)
19865 {
19866 struct dwarf2_cu *cu;
19867 struct die_info *die;
19868 struct attribute *attr;
19869 const gdb_byte *result = NULL;
19870 struct type *type;
19871 LONGEST value;
19872 enum bfd_endian byte_order;
19873
19874 dw2_setup (per_cu->objfile);
19875
19876 if (per_cu->cu == NULL)
19877 load_cu (per_cu);
19878 cu = per_cu->cu;
19879
19880 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19881 if (!die)
19882 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19883 offset.sect_off, objfile_name (per_cu->objfile));
19884
19885
19886 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19887 if (attr == NULL)
19888 return NULL;
19889
19890 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19891 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19892
19893 switch (attr->form)
19894 {
19895 case DW_FORM_addr:
19896 case DW_FORM_GNU_addr_index:
19897 {
19898 gdb_byte *tem;
19899
19900 *len = cu->header.addr_size;
19901 tem = obstack_alloc (obstack, *len);
19902 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19903 result = tem;
19904 }
19905 break;
19906 case DW_FORM_string:
19907 case DW_FORM_strp:
19908 case DW_FORM_GNU_str_index:
19909 case DW_FORM_GNU_strp_alt:
19910 /* DW_STRING is already allocated on the objfile obstack, point
19911 directly to it. */
19912 result = (const gdb_byte *) DW_STRING (attr);
19913 *len = strlen (DW_STRING (attr));
19914 break;
19915 case DW_FORM_block1:
19916 case DW_FORM_block2:
19917 case DW_FORM_block4:
19918 case DW_FORM_block:
19919 case DW_FORM_exprloc:
19920 result = DW_BLOCK (attr)->data;
19921 *len = DW_BLOCK (attr)->size;
19922 break;
19923
19924 /* The DW_AT_const_value attributes are supposed to carry the
19925 symbol's value "represented as it would be on the target
19926 architecture." By the time we get here, it's already been
19927 converted to host endianness, so we just need to sign- or
19928 zero-extend it as appropriate. */
19929 case DW_FORM_data1:
19930 type = die_type (die, cu);
19931 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19932 if (result == NULL)
19933 result = write_constant_as_bytes (obstack, byte_order,
19934 type, value, len);
19935 break;
19936 case DW_FORM_data2:
19937 type = die_type (die, cu);
19938 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19939 if (result == NULL)
19940 result = write_constant_as_bytes (obstack, byte_order,
19941 type, value, len);
19942 break;
19943 case DW_FORM_data4:
19944 type = die_type (die, cu);
19945 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19946 if (result == NULL)
19947 result = write_constant_as_bytes (obstack, byte_order,
19948 type, value, len);
19949 break;
19950 case DW_FORM_data8:
19951 type = die_type (die, cu);
19952 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19953 if (result == NULL)
19954 result = write_constant_as_bytes (obstack, byte_order,
19955 type, value, len);
19956 break;
19957
19958 case DW_FORM_sdata:
19959 type = die_type (die, cu);
19960 result = write_constant_as_bytes (obstack, byte_order,
19961 type, DW_SND (attr), len);
19962 break;
19963
19964 case DW_FORM_udata:
19965 type = die_type (die, cu);
19966 result = write_constant_as_bytes (obstack, byte_order,
19967 type, DW_UNSND (attr), len);
19968 break;
19969
19970 default:
19971 complaint (&symfile_complaints,
19972 _("unsupported const value attribute form: '%s'"),
19973 dwarf_form_name (attr->form));
19974 break;
19975 }
19976
19977 return result;
19978 }
19979
19980 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19981 PER_CU. */
19982
19983 struct type *
19984 dwarf2_get_die_type (cu_offset die_offset,
19985 struct dwarf2_per_cu_data *per_cu)
19986 {
19987 sect_offset die_offset_sect;
19988
19989 dw2_setup (per_cu->objfile);
19990
19991 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19992 return get_die_type_at_offset (die_offset_sect, per_cu);
19993 }
19994
19995 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19996 On entry *REF_CU is the CU of SRC_DIE.
19997 On exit *REF_CU is the CU of the result.
19998 Returns NULL if the referenced DIE isn't found. */
19999
20000 static struct die_info *
20001 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20002 struct dwarf2_cu **ref_cu)
20003 {
20004 struct objfile *objfile = (*ref_cu)->objfile;
20005 struct die_info temp_die;
20006 struct dwarf2_cu *sig_cu;
20007 struct die_info *die;
20008
20009 /* While it might be nice to assert sig_type->type == NULL here,
20010 we can get here for DW_AT_imported_declaration where we need
20011 the DIE not the type. */
20012
20013 /* If necessary, add it to the queue and load its DIEs. */
20014
20015 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20016 read_signatured_type (sig_type);
20017
20018 sig_cu = sig_type->per_cu.cu;
20019 gdb_assert (sig_cu != NULL);
20020 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20021 temp_die.offset = sig_type->type_offset_in_section;
20022 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20023 temp_die.offset.sect_off);
20024 if (die)
20025 {
20026 /* For .gdb_index version 7 keep track of included TUs.
20027 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20028 if (dwarf2_per_objfile->index_table != NULL
20029 && dwarf2_per_objfile->index_table->version <= 7)
20030 {
20031 VEC_safe_push (dwarf2_per_cu_ptr,
20032 (*ref_cu)->per_cu->imported_symtabs,
20033 sig_cu->per_cu);
20034 }
20035
20036 *ref_cu = sig_cu;
20037 return die;
20038 }
20039
20040 return NULL;
20041 }
20042
20043 /* Follow signatured type referenced by ATTR in SRC_DIE.
20044 On entry *REF_CU is the CU of SRC_DIE.
20045 On exit *REF_CU is the CU of the result.
20046 The result is the DIE of the type.
20047 If the referenced type cannot be found an error is thrown. */
20048
20049 static struct die_info *
20050 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20051 struct dwarf2_cu **ref_cu)
20052 {
20053 ULONGEST signature = DW_SIGNATURE (attr);
20054 struct signatured_type *sig_type;
20055 struct die_info *die;
20056
20057 gdb_assert (attr->form == DW_FORM_ref_sig8);
20058
20059 sig_type = lookup_signatured_type (*ref_cu, signature);
20060 /* sig_type will be NULL if the signatured type is missing from
20061 the debug info. */
20062 if (sig_type == NULL)
20063 {
20064 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20065 " from DIE at 0x%x [in module %s]"),
20066 hex_string (signature), src_die->offset.sect_off,
20067 objfile_name ((*ref_cu)->objfile));
20068 }
20069
20070 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20071 if (die == NULL)
20072 {
20073 dump_die_for_error (src_die);
20074 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20075 " from DIE at 0x%x [in module %s]"),
20076 hex_string (signature), src_die->offset.sect_off,
20077 objfile_name ((*ref_cu)->objfile));
20078 }
20079
20080 return die;
20081 }
20082
20083 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20084 reading in and processing the type unit if necessary. */
20085
20086 static struct type *
20087 get_signatured_type (struct die_info *die, ULONGEST signature,
20088 struct dwarf2_cu *cu)
20089 {
20090 struct signatured_type *sig_type;
20091 struct dwarf2_cu *type_cu;
20092 struct die_info *type_die;
20093 struct type *type;
20094
20095 sig_type = lookup_signatured_type (cu, signature);
20096 /* sig_type will be NULL if the signatured type is missing from
20097 the debug info. */
20098 if (sig_type == NULL)
20099 {
20100 complaint (&symfile_complaints,
20101 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20102 " from DIE at 0x%x [in module %s]"),
20103 hex_string (signature), die->offset.sect_off,
20104 objfile_name (dwarf2_per_objfile->objfile));
20105 return build_error_marker_type (cu, die);
20106 }
20107
20108 /* If we already know the type we're done. */
20109 if (sig_type->type != NULL)
20110 return sig_type->type;
20111
20112 type_cu = cu;
20113 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20114 if (type_die != NULL)
20115 {
20116 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20117 is created. This is important, for example, because for c++ classes
20118 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20119 type = read_type_die (type_die, type_cu);
20120 if (type == NULL)
20121 {
20122 complaint (&symfile_complaints,
20123 _("Dwarf Error: Cannot build signatured type %s"
20124 " referenced from DIE at 0x%x [in module %s]"),
20125 hex_string (signature), die->offset.sect_off,
20126 objfile_name (dwarf2_per_objfile->objfile));
20127 type = build_error_marker_type (cu, die);
20128 }
20129 }
20130 else
20131 {
20132 complaint (&symfile_complaints,
20133 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20134 " from DIE at 0x%x [in module %s]"),
20135 hex_string (signature), die->offset.sect_off,
20136 objfile_name (dwarf2_per_objfile->objfile));
20137 type = build_error_marker_type (cu, die);
20138 }
20139 sig_type->type = type;
20140
20141 return type;
20142 }
20143
20144 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20145 reading in and processing the type unit if necessary. */
20146
20147 static struct type *
20148 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20149 struct dwarf2_cu *cu) /* ARI: editCase function */
20150 {
20151 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20152 if (attr_form_is_ref (attr))
20153 {
20154 struct dwarf2_cu *type_cu = cu;
20155 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20156
20157 return read_type_die (type_die, type_cu);
20158 }
20159 else if (attr->form == DW_FORM_ref_sig8)
20160 {
20161 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20162 }
20163 else
20164 {
20165 complaint (&symfile_complaints,
20166 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20167 " at 0x%x [in module %s]"),
20168 dwarf_form_name (attr->form), die->offset.sect_off,
20169 objfile_name (dwarf2_per_objfile->objfile));
20170 return build_error_marker_type (cu, die);
20171 }
20172 }
20173
20174 /* Load the DIEs associated with type unit PER_CU into memory. */
20175
20176 static void
20177 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20178 {
20179 struct signatured_type *sig_type;
20180
20181 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20182 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20183
20184 /* We have the per_cu, but we need the signatured_type.
20185 Fortunately this is an easy translation. */
20186 gdb_assert (per_cu->is_debug_types);
20187 sig_type = (struct signatured_type *) per_cu;
20188
20189 gdb_assert (per_cu->cu == NULL);
20190
20191 read_signatured_type (sig_type);
20192
20193 gdb_assert (per_cu->cu != NULL);
20194 }
20195
20196 /* die_reader_func for read_signatured_type.
20197 This is identical to load_full_comp_unit_reader,
20198 but is kept separate for now. */
20199
20200 static void
20201 read_signatured_type_reader (const struct die_reader_specs *reader,
20202 const gdb_byte *info_ptr,
20203 struct die_info *comp_unit_die,
20204 int has_children,
20205 void *data)
20206 {
20207 struct dwarf2_cu *cu = reader->cu;
20208
20209 gdb_assert (cu->die_hash == NULL);
20210 cu->die_hash =
20211 htab_create_alloc_ex (cu->header.length / 12,
20212 die_hash,
20213 die_eq,
20214 NULL,
20215 &cu->comp_unit_obstack,
20216 hashtab_obstack_allocate,
20217 dummy_obstack_deallocate);
20218
20219 if (has_children)
20220 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20221 &info_ptr, comp_unit_die);
20222 cu->dies = comp_unit_die;
20223 /* comp_unit_die is not stored in die_hash, no need. */
20224
20225 /* We try not to read any attributes in this function, because not
20226 all CUs needed for references have been loaded yet, and symbol
20227 table processing isn't initialized. But we have to set the CU language,
20228 or we won't be able to build types correctly.
20229 Similarly, if we do not read the producer, we can not apply
20230 producer-specific interpretation. */
20231 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20232 }
20233
20234 /* Read in a signatured type and build its CU and DIEs.
20235 If the type is a stub for the real type in a DWO file,
20236 read in the real type from the DWO file as well. */
20237
20238 static void
20239 read_signatured_type (struct signatured_type *sig_type)
20240 {
20241 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20242
20243 gdb_assert (per_cu->is_debug_types);
20244 gdb_assert (per_cu->cu == NULL);
20245
20246 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20247 read_signatured_type_reader, NULL);
20248 sig_type->per_cu.tu_read = 1;
20249 }
20250
20251 /* Decode simple location descriptions.
20252 Given a pointer to a dwarf block that defines a location, compute
20253 the location and return the value.
20254
20255 NOTE drow/2003-11-18: This function is called in two situations
20256 now: for the address of static or global variables (partial symbols
20257 only) and for offsets into structures which are expected to be
20258 (more or less) constant. The partial symbol case should go away,
20259 and only the constant case should remain. That will let this
20260 function complain more accurately. A few special modes are allowed
20261 without complaint for global variables (for instance, global
20262 register values and thread-local values).
20263
20264 A location description containing no operations indicates that the
20265 object is optimized out. The return value is 0 for that case.
20266 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20267 callers will only want a very basic result and this can become a
20268 complaint.
20269
20270 Note that stack[0] is unused except as a default error return. */
20271
20272 static CORE_ADDR
20273 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20274 {
20275 struct objfile *objfile = cu->objfile;
20276 size_t i;
20277 size_t size = blk->size;
20278 const gdb_byte *data = blk->data;
20279 CORE_ADDR stack[64];
20280 int stacki;
20281 unsigned int bytes_read, unsnd;
20282 gdb_byte op;
20283
20284 i = 0;
20285 stacki = 0;
20286 stack[stacki] = 0;
20287 stack[++stacki] = 0;
20288
20289 while (i < size)
20290 {
20291 op = data[i++];
20292 switch (op)
20293 {
20294 case DW_OP_lit0:
20295 case DW_OP_lit1:
20296 case DW_OP_lit2:
20297 case DW_OP_lit3:
20298 case DW_OP_lit4:
20299 case DW_OP_lit5:
20300 case DW_OP_lit6:
20301 case DW_OP_lit7:
20302 case DW_OP_lit8:
20303 case DW_OP_lit9:
20304 case DW_OP_lit10:
20305 case DW_OP_lit11:
20306 case DW_OP_lit12:
20307 case DW_OP_lit13:
20308 case DW_OP_lit14:
20309 case DW_OP_lit15:
20310 case DW_OP_lit16:
20311 case DW_OP_lit17:
20312 case DW_OP_lit18:
20313 case DW_OP_lit19:
20314 case DW_OP_lit20:
20315 case DW_OP_lit21:
20316 case DW_OP_lit22:
20317 case DW_OP_lit23:
20318 case DW_OP_lit24:
20319 case DW_OP_lit25:
20320 case DW_OP_lit26:
20321 case DW_OP_lit27:
20322 case DW_OP_lit28:
20323 case DW_OP_lit29:
20324 case DW_OP_lit30:
20325 case DW_OP_lit31:
20326 stack[++stacki] = op - DW_OP_lit0;
20327 break;
20328
20329 case DW_OP_reg0:
20330 case DW_OP_reg1:
20331 case DW_OP_reg2:
20332 case DW_OP_reg3:
20333 case DW_OP_reg4:
20334 case DW_OP_reg5:
20335 case DW_OP_reg6:
20336 case DW_OP_reg7:
20337 case DW_OP_reg8:
20338 case DW_OP_reg9:
20339 case DW_OP_reg10:
20340 case DW_OP_reg11:
20341 case DW_OP_reg12:
20342 case DW_OP_reg13:
20343 case DW_OP_reg14:
20344 case DW_OP_reg15:
20345 case DW_OP_reg16:
20346 case DW_OP_reg17:
20347 case DW_OP_reg18:
20348 case DW_OP_reg19:
20349 case DW_OP_reg20:
20350 case DW_OP_reg21:
20351 case DW_OP_reg22:
20352 case DW_OP_reg23:
20353 case DW_OP_reg24:
20354 case DW_OP_reg25:
20355 case DW_OP_reg26:
20356 case DW_OP_reg27:
20357 case DW_OP_reg28:
20358 case DW_OP_reg29:
20359 case DW_OP_reg30:
20360 case DW_OP_reg31:
20361 stack[++stacki] = op - DW_OP_reg0;
20362 if (i < size)
20363 dwarf2_complex_location_expr_complaint ();
20364 break;
20365
20366 case DW_OP_regx:
20367 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20368 i += bytes_read;
20369 stack[++stacki] = unsnd;
20370 if (i < size)
20371 dwarf2_complex_location_expr_complaint ();
20372 break;
20373
20374 case DW_OP_addr:
20375 stack[++stacki] = read_address (objfile->obfd, &data[i],
20376 cu, &bytes_read);
20377 i += bytes_read;
20378 break;
20379
20380 case DW_OP_const1u:
20381 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20382 i += 1;
20383 break;
20384
20385 case DW_OP_const1s:
20386 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20387 i += 1;
20388 break;
20389
20390 case DW_OP_const2u:
20391 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20392 i += 2;
20393 break;
20394
20395 case DW_OP_const2s:
20396 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20397 i += 2;
20398 break;
20399
20400 case DW_OP_const4u:
20401 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20402 i += 4;
20403 break;
20404
20405 case DW_OP_const4s:
20406 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20407 i += 4;
20408 break;
20409
20410 case DW_OP_const8u:
20411 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20412 i += 8;
20413 break;
20414
20415 case DW_OP_constu:
20416 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20417 &bytes_read);
20418 i += bytes_read;
20419 break;
20420
20421 case DW_OP_consts:
20422 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20423 i += bytes_read;
20424 break;
20425
20426 case DW_OP_dup:
20427 stack[stacki + 1] = stack[stacki];
20428 stacki++;
20429 break;
20430
20431 case DW_OP_plus:
20432 stack[stacki - 1] += stack[stacki];
20433 stacki--;
20434 break;
20435
20436 case DW_OP_plus_uconst:
20437 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20438 &bytes_read);
20439 i += bytes_read;
20440 break;
20441
20442 case DW_OP_minus:
20443 stack[stacki - 1] -= stack[stacki];
20444 stacki--;
20445 break;
20446
20447 case DW_OP_deref:
20448 /* If we're not the last op, then we definitely can't encode
20449 this using GDB's address_class enum. This is valid for partial
20450 global symbols, although the variable's address will be bogus
20451 in the psymtab. */
20452 if (i < size)
20453 dwarf2_complex_location_expr_complaint ();
20454 break;
20455
20456 case DW_OP_GNU_push_tls_address:
20457 /* The top of the stack has the offset from the beginning
20458 of the thread control block at which the variable is located. */
20459 /* Nothing should follow this operator, so the top of stack would
20460 be returned. */
20461 /* This is valid for partial global symbols, but the variable's
20462 address will be bogus in the psymtab. Make it always at least
20463 non-zero to not look as a variable garbage collected by linker
20464 which have DW_OP_addr 0. */
20465 if (i < size)
20466 dwarf2_complex_location_expr_complaint ();
20467 stack[stacki]++;
20468 break;
20469
20470 case DW_OP_GNU_uninit:
20471 break;
20472
20473 case DW_OP_GNU_addr_index:
20474 case DW_OP_GNU_const_index:
20475 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20476 &bytes_read);
20477 i += bytes_read;
20478 break;
20479
20480 default:
20481 {
20482 const char *name = get_DW_OP_name (op);
20483
20484 if (name)
20485 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20486 name);
20487 else
20488 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20489 op);
20490 }
20491
20492 return (stack[stacki]);
20493 }
20494
20495 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20496 outside of the allocated space. Also enforce minimum>0. */
20497 if (stacki >= ARRAY_SIZE (stack) - 1)
20498 {
20499 complaint (&symfile_complaints,
20500 _("location description stack overflow"));
20501 return 0;
20502 }
20503
20504 if (stacki <= 0)
20505 {
20506 complaint (&symfile_complaints,
20507 _("location description stack underflow"));
20508 return 0;
20509 }
20510 }
20511 return (stack[stacki]);
20512 }
20513
20514 /* memory allocation interface */
20515
20516 static struct dwarf_block *
20517 dwarf_alloc_block (struct dwarf2_cu *cu)
20518 {
20519 struct dwarf_block *blk;
20520
20521 blk = (struct dwarf_block *)
20522 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20523 return (blk);
20524 }
20525
20526 static struct die_info *
20527 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20528 {
20529 struct die_info *die;
20530 size_t size = sizeof (struct die_info);
20531
20532 if (num_attrs > 1)
20533 size += (num_attrs - 1) * sizeof (struct attribute);
20534
20535 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20536 memset (die, 0, sizeof (struct die_info));
20537 return (die);
20538 }
20539
20540 \f
20541 /* Macro support. */
20542
20543 /* Return file name relative to the compilation directory of file number I in
20544 *LH's file name table. The result is allocated using xmalloc; the caller is
20545 responsible for freeing it. */
20546
20547 static char *
20548 file_file_name (int file, struct line_header *lh)
20549 {
20550 /* Is the file number a valid index into the line header's file name
20551 table? Remember that file numbers start with one, not zero. */
20552 if (1 <= file && file <= lh->num_file_names)
20553 {
20554 struct file_entry *fe = &lh->file_names[file - 1];
20555
20556 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20557 return xstrdup (fe->name);
20558 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20559 fe->name, NULL);
20560 }
20561 else
20562 {
20563 /* The compiler produced a bogus file number. We can at least
20564 record the macro definitions made in the file, even if we
20565 won't be able to find the file by name. */
20566 char fake_name[80];
20567
20568 xsnprintf (fake_name, sizeof (fake_name),
20569 "<bad macro file number %d>", file);
20570
20571 complaint (&symfile_complaints,
20572 _("bad file number in macro information (%d)"),
20573 file);
20574
20575 return xstrdup (fake_name);
20576 }
20577 }
20578
20579 /* Return the full name of file number I in *LH's file name table.
20580 Use COMP_DIR as the name of the current directory of the
20581 compilation. The result is allocated using xmalloc; the caller is
20582 responsible for freeing it. */
20583 static char *
20584 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20585 {
20586 /* Is the file number a valid index into the line header's file name
20587 table? Remember that file numbers start with one, not zero. */
20588 if (1 <= file && file <= lh->num_file_names)
20589 {
20590 char *relative = file_file_name (file, lh);
20591
20592 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20593 return relative;
20594 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20595 }
20596 else
20597 return file_file_name (file, lh);
20598 }
20599
20600
20601 static struct macro_source_file *
20602 macro_start_file (int file, int line,
20603 struct macro_source_file *current_file,
20604 struct line_header *lh)
20605 {
20606 /* File name relative to the compilation directory of this source file. */
20607 char *file_name = file_file_name (file, lh);
20608
20609 if (! current_file)
20610 {
20611 /* Note: We don't create a macro table for this compilation unit
20612 at all until we actually get a filename. */
20613 struct macro_table *macro_table = get_macro_table ();
20614
20615 /* If we have no current file, then this must be the start_file
20616 directive for the compilation unit's main source file. */
20617 current_file = macro_set_main (macro_table, file_name);
20618 macro_define_special (macro_table);
20619 }
20620 else
20621 current_file = macro_include (current_file, line, file_name);
20622
20623 xfree (file_name);
20624
20625 return current_file;
20626 }
20627
20628
20629 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20630 followed by a null byte. */
20631 static char *
20632 copy_string (const char *buf, int len)
20633 {
20634 char *s = xmalloc (len + 1);
20635
20636 memcpy (s, buf, len);
20637 s[len] = '\0';
20638 return s;
20639 }
20640
20641
20642 static const char *
20643 consume_improper_spaces (const char *p, const char *body)
20644 {
20645 if (*p == ' ')
20646 {
20647 complaint (&symfile_complaints,
20648 _("macro definition contains spaces "
20649 "in formal argument list:\n`%s'"),
20650 body);
20651
20652 while (*p == ' ')
20653 p++;
20654 }
20655
20656 return p;
20657 }
20658
20659
20660 static void
20661 parse_macro_definition (struct macro_source_file *file, int line,
20662 const char *body)
20663 {
20664 const char *p;
20665
20666 /* The body string takes one of two forms. For object-like macro
20667 definitions, it should be:
20668
20669 <macro name> " " <definition>
20670
20671 For function-like macro definitions, it should be:
20672
20673 <macro name> "() " <definition>
20674 or
20675 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20676
20677 Spaces may appear only where explicitly indicated, and in the
20678 <definition>.
20679
20680 The Dwarf 2 spec says that an object-like macro's name is always
20681 followed by a space, but versions of GCC around March 2002 omit
20682 the space when the macro's definition is the empty string.
20683
20684 The Dwarf 2 spec says that there should be no spaces between the
20685 formal arguments in a function-like macro's formal argument list,
20686 but versions of GCC around March 2002 include spaces after the
20687 commas. */
20688
20689
20690 /* Find the extent of the macro name. The macro name is terminated
20691 by either a space or null character (for an object-like macro) or
20692 an opening paren (for a function-like macro). */
20693 for (p = body; *p; p++)
20694 if (*p == ' ' || *p == '(')
20695 break;
20696
20697 if (*p == ' ' || *p == '\0')
20698 {
20699 /* It's an object-like macro. */
20700 int name_len = p - body;
20701 char *name = copy_string (body, name_len);
20702 const char *replacement;
20703
20704 if (*p == ' ')
20705 replacement = body + name_len + 1;
20706 else
20707 {
20708 dwarf2_macro_malformed_definition_complaint (body);
20709 replacement = body + name_len;
20710 }
20711
20712 macro_define_object (file, line, name, replacement);
20713
20714 xfree (name);
20715 }
20716 else if (*p == '(')
20717 {
20718 /* It's a function-like macro. */
20719 char *name = copy_string (body, p - body);
20720 int argc = 0;
20721 int argv_size = 1;
20722 char **argv = xmalloc (argv_size * sizeof (*argv));
20723
20724 p++;
20725
20726 p = consume_improper_spaces (p, body);
20727
20728 /* Parse the formal argument list. */
20729 while (*p && *p != ')')
20730 {
20731 /* Find the extent of the current argument name. */
20732 const char *arg_start = p;
20733
20734 while (*p && *p != ',' && *p != ')' && *p != ' ')
20735 p++;
20736
20737 if (! *p || p == arg_start)
20738 dwarf2_macro_malformed_definition_complaint (body);
20739 else
20740 {
20741 /* Make sure argv has room for the new argument. */
20742 if (argc >= argv_size)
20743 {
20744 argv_size *= 2;
20745 argv = xrealloc (argv, argv_size * sizeof (*argv));
20746 }
20747
20748 argv[argc++] = copy_string (arg_start, p - arg_start);
20749 }
20750
20751 p = consume_improper_spaces (p, body);
20752
20753 /* Consume the comma, if present. */
20754 if (*p == ',')
20755 {
20756 p++;
20757
20758 p = consume_improper_spaces (p, body);
20759 }
20760 }
20761
20762 if (*p == ')')
20763 {
20764 p++;
20765
20766 if (*p == ' ')
20767 /* Perfectly formed definition, no complaints. */
20768 macro_define_function (file, line, name,
20769 argc, (const char **) argv,
20770 p + 1);
20771 else if (*p == '\0')
20772 {
20773 /* Complain, but do define it. */
20774 dwarf2_macro_malformed_definition_complaint (body);
20775 macro_define_function (file, line, name,
20776 argc, (const char **) argv,
20777 p);
20778 }
20779 else
20780 /* Just complain. */
20781 dwarf2_macro_malformed_definition_complaint (body);
20782 }
20783 else
20784 /* Just complain. */
20785 dwarf2_macro_malformed_definition_complaint (body);
20786
20787 xfree (name);
20788 {
20789 int i;
20790
20791 for (i = 0; i < argc; i++)
20792 xfree (argv[i]);
20793 }
20794 xfree (argv);
20795 }
20796 else
20797 dwarf2_macro_malformed_definition_complaint (body);
20798 }
20799
20800 /* Skip some bytes from BYTES according to the form given in FORM.
20801 Returns the new pointer. */
20802
20803 static const gdb_byte *
20804 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20805 enum dwarf_form form,
20806 unsigned int offset_size,
20807 struct dwarf2_section_info *section)
20808 {
20809 unsigned int bytes_read;
20810
20811 switch (form)
20812 {
20813 case DW_FORM_data1:
20814 case DW_FORM_flag:
20815 ++bytes;
20816 break;
20817
20818 case DW_FORM_data2:
20819 bytes += 2;
20820 break;
20821
20822 case DW_FORM_data4:
20823 bytes += 4;
20824 break;
20825
20826 case DW_FORM_data8:
20827 bytes += 8;
20828 break;
20829
20830 case DW_FORM_string:
20831 read_direct_string (abfd, bytes, &bytes_read);
20832 bytes += bytes_read;
20833 break;
20834
20835 case DW_FORM_sec_offset:
20836 case DW_FORM_strp:
20837 case DW_FORM_GNU_strp_alt:
20838 bytes += offset_size;
20839 break;
20840
20841 case DW_FORM_block:
20842 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20843 bytes += bytes_read;
20844 break;
20845
20846 case DW_FORM_block1:
20847 bytes += 1 + read_1_byte (abfd, bytes);
20848 break;
20849 case DW_FORM_block2:
20850 bytes += 2 + read_2_bytes (abfd, bytes);
20851 break;
20852 case DW_FORM_block4:
20853 bytes += 4 + read_4_bytes (abfd, bytes);
20854 break;
20855
20856 case DW_FORM_sdata:
20857 case DW_FORM_udata:
20858 case DW_FORM_GNU_addr_index:
20859 case DW_FORM_GNU_str_index:
20860 bytes = gdb_skip_leb128 (bytes, buffer_end);
20861 if (bytes == NULL)
20862 {
20863 dwarf2_section_buffer_overflow_complaint (section);
20864 return NULL;
20865 }
20866 break;
20867
20868 default:
20869 {
20870 complain:
20871 complaint (&symfile_complaints,
20872 _("invalid form 0x%x in `%s'"),
20873 form, get_section_name (section));
20874 return NULL;
20875 }
20876 }
20877
20878 return bytes;
20879 }
20880
20881 /* A helper for dwarf_decode_macros that handles skipping an unknown
20882 opcode. Returns an updated pointer to the macro data buffer; or,
20883 on error, issues a complaint and returns NULL. */
20884
20885 static const gdb_byte *
20886 skip_unknown_opcode (unsigned int opcode,
20887 const gdb_byte **opcode_definitions,
20888 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20889 bfd *abfd,
20890 unsigned int offset_size,
20891 struct dwarf2_section_info *section)
20892 {
20893 unsigned int bytes_read, i;
20894 unsigned long arg;
20895 const gdb_byte *defn;
20896
20897 if (opcode_definitions[opcode] == NULL)
20898 {
20899 complaint (&symfile_complaints,
20900 _("unrecognized DW_MACFINO opcode 0x%x"),
20901 opcode);
20902 return NULL;
20903 }
20904
20905 defn = opcode_definitions[opcode];
20906 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20907 defn += bytes_read;
20908
20909 for (i = 0; i < arg; ++i)
20910 {
20911 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20912 section);
20913 if (mac_ptr == NULL)
20914 {
20915 /* skip_form_bytes already issued the complaint. */
20916 return NULL;
20917 }
20918 }
20919
20920 return mac_ptr;
20921 }
20922
20923 /* A helper function which parses the header of a macro section.
20924 If the macro section is the extended (for now called "GNU") type,
20925 then this updates *OFFSET_SIZE. Returns a pointer to just after
20926 the header, or issues a complaint and returns NULL on error. */
20927
20928 static const gdb_byte *
20929 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20930 bfd *abfd,
20931 const gdb_byte *mac_ptr,
20932 unsigned int *offset_size,
20933 int section_is_gnu)
20934 {
20935 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20936
20937 if (section_is_gnu)
20938 {
20939 unsigned int version, flags;
20940
20941 version = read_2_bytes (abfd, mac_ptr);
20942 if (version != 4)
20943 {
20944 complaint (&symfile_complaints,
20945 _("unrecognized version `%d' in .debug_macro section"),
20946 version);
20947 return NULL;
20948 }
20949 mac_ptr += 2;
20950
20951 flags = read_1_byte (abfd, mac_ptr);
20952 ++mac_ptr;
20953 *offset_size = (flags & 1) ? 8 : 4;
20954
20955 if ((flags & 2) != 0)
20956 /* We don't need the line table offset. */
20957 mac_ptr += *offset_size;
20958
20959 /* Vendor opcode descriptions. */
20960 if ((flags & 4) != 0)
20961 {
20962 unsigned int i, count;
20963
20964 count = read_1_byte (abfd, mac_ptr);
20965 ++mac_ptr;
20966 for (i = 0; i < count; ++i)
20967 {
20968 unsigned int opcode, bytes_read;
20969 unsigned long arg;
20970
20971 opcode = read_1_byte (abfd, mac_ptr);
20972 ++mac_ptr;
20973 opcode_definitions[opcode] = mac_ptr;
20974 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20975 mac_ptr += bytes_read;
20976 mac_ptr += arg;
20977 }
20978 }
20979 }
20980
20981 return mac_ptr;
20982 }
20983
20984 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20985 including DW_MACRO_GNU_transparent_include. */
20986
20987 static void
20988 dwarf_decode_macro_bytes (bfd *abfd,
20989 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20990 struct macro_source_file *current_file,
20991 struct line_header *lh,
20992 struct dwarf2_section_info *section,
20993 int section_is_gnu, int section_is_dwz,
20994 unsigned int offset_size,
20995 htab_t include_hash)
20996 {
20997 struct objfile *objfile = dwarf2_per_objfile->objfile;
20998 enum dwarf_macro_record_type macinfo_type;
20999 int at_commandline;
21000 const gdb_byte *opcode_definitions[256];
21001
21002 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21003 &offset_size, section_is_gnu);
21004 if (mac_ptr == NULL)
21005 {
21006 /* We already issued a complaint. */
21007 return;
21008 }
21009
21010 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21011 GDB is still reading the definitions from command line. First
21012 DW_MACINFO_start_file will need to be ignored as it was already executed
21013 to create CURRENT_FILE for the main source holding also the command line
21014 definitions. On first met DW_MACINFO_start_file this flag is reset to
21015 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21016
21017 at_commandline = 1;
21018
21019 do
21020 {
21021 /* Do we at least have room for a macinfo type byte? */
21022 if (mac_ptr >= mac_end)
21023 {
21024 dwarf2_section_buffer_overflow_complaint (section);
21025 break;
21026 }
21027
21028 macinfo_type = read_1_byte (abfd, mac_ptr);
21029 mac_ptr++;
21030
21031 /* Note that we rely on the fact that the corresponding GNU and
21032 DWARF constants are the same. */
21033 switch (macinfo_type)
21034 {
21035 /* A zero macinfo type indicates the end of the macro
21036 information. */
21037 case 0:
21038 break;
21039
21040 case DW_MACRO_GNU_define:
21041 case DW_MACRO_GNU_undef:
21042 case DW_MACRO_GNU_define_indirect:
21043 case DW_MACRO_GNU_undef_indirect:
21044 case DW_MACRO_GNU_define_indirect_alt:
21045 case DW_MACRO_GNU_undef_indirect_alt:
21046 {
21047 unsigned int bytes_read;
21048 int line;
21049 const char *body;
21050 int is_define;
21051
21052 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21053 mac_ptr += bytes_read;
21054
21055 if (macinfo_type == DW_MACRO_GNU_define
21056 || macinfo_type == DW_MACRO_GNU_undef)
21057 {
21058 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21059 mac_ptr += bytes_read;
21060 }
21061 else
21062 {
21063 LONGEST str_offset;
21064
21065 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21066 mac_ptr += offset_size;
21067
21068 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21069 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21070 || section_is_dwz)
21071 {
21072 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21073
21074 body = read_indirect_string_from_dwz (dwz, str_offset);
21075 }
21076 else
21077 body = read_indirect_string_at_offset (abfd, str_offset);
21078 }
21079
21080 is_define = (macinfo_type == DW_MACRO_GNU_define
21081 || macinfo_type == DW_MACRO_GNU_define_indirect
21082 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21083 if (! current_file)
21084 {
21085 /* DWARF violation as no main source is present. */
21086 complaint (&symfile_complaints,
21087 _("debug info with no main source gives macro %s "
21088 "on line %d: %s"),
21089 is_define ? _("definition") : _("undefinition"),
21090 line, body);
21091 break;
21092 }
21093 if ((line == 0 && !at_commandline)
21094 || (line != 0 && at_commandline))
21095 complaint (&symfile_complaints,
21096 _("debug info gives %s macro %s with %s line %d: %s"),
21097 at_commandline ? _("command-line") : _("in-file"),
21098 is_define ? _("definition") : _("undefinition"),
21099 line == 0 ? _("zero") : _("non-zero"), line, body);
21100
21101 if (is_define)
21102 parse_macro_definition (current_file, line, body);
21103 else
21104 {
21105 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21106 || macinfo_type == DW_MACRO_GNU_undef_indirect
21107 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21108 macro_undef (current_file, line, body);
21109 }
21110 }
21111 break;
21112
21113 case DW_MACRO_GNU_start_file:
21114 {
21115 unsigned int bytes_read;
21116 int line, file;
21117
21118 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21119 mac_ptr += bytes_read;
21120 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21121 mac_ptr += bytes_read;
21122
21123 if ((line == 0 && !at_commandline)
21124 || (line != 0 && at_commandline))
21125 complaint (&symfile_complaints,
21126 _("debug info gives source %d included "
21127 "from %s at %s line %d"),
21128 file, at_commandline ? _("command-line") : _("file"),
21129 line == 0 ? _("zero") : _("non-zero"), line);
21130
21131 if (at_commandline)
21132 {
21133 /* This DW_MACRO_GNU_start_file was executed in the
21134 pass one. */
21135 at_commandline = 0;
21136 }
21137 else
21138 current_file = macro_start_file (file, line, current_file, lh);
21139 }
21140 break;
21141
21142 case DW_MACRO_GNU_end_file:
21143 if (! current_file)
21144 complaint (&symfile_complaints,
21145 _("macro debug info has an unmatched "
21146 "`close_file' directive"));
21147 else
21148 {
21149 current_file = current_file->included_by;
21150 if (! current_file)
21151 {
21152 enum dwarf_macro_record_type next_type;
21153
21154 /* GCC circa March 2002 doesn't produce the zero
21155 type byte marking the end of the compilation
21156 unit. Complain if it's not there, but exit no
21157 matter what. */
21158
21159 /* Do we at least have room for a macinfo type byte? */
21160 if (mac_ptr >= mac_end)
21161 {
21162 dwarf2_section_buffer_overflow_complaint (section);
21163 return;
21164 }
21165
21166 /* We don't increment mac_ptr here, so this is just
21167 a look-ahead. */
21168 next_type = read_1_byte (abfd, mac_ptr);
21169 if (next_type != 0)
21170 complaint (&symfile_complaints,
21171 _("no terminating 0-type entry for "
21172 "macros in `.debug_macinfo' section"));
21173
21174 return;
21175 }
21176 }
21177 break;
21178
21179 case DW_MACRO_GNU_transparent_include:
21180 case DW_MACRO_GNU_transparent_include_alt:
21181 {
21182 LONGEST offset;
21183 void **slot;
21184 bfd *include_bfd = abfd;
21185 struct dwarf2_section_info *include_section = section;
21186 struct dwarf2_section_info alt_section;
21187 const gdb_byte *include_mac_end = mac_end;
21188 int is_dwz = section_is_dwz;
21189 const gdb_byte *new_mac_ptr;
21190
21191 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21192 mac_ptr += offset_size;
21193
21194 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21195 {
21196 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21197
21198 dwarf2_read_section (objfile, &dwz->macro);
21199
21200 include_section = &dwz->macro;
21201 include_bfd = get_section_bfd_owner (include_section);
21202 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21203 is_dwz = 1;
21204 }
21205
21206 new_mac_ptr = include_section->buffer + offset;
21207 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21208
21209 if (*slot != NULL)
21210 {
21211 /* This has actually happened; see
21212 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21213 complaint (&symfile_complaints,
21214 _("recursive DW_MACRO_GNU_transparent_include in "
21215 ".debug_macro section"));
21216 }
21217 else
21218 {
21219 *slot = (void *) new_mac_ptr;
21220
21221 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21222 include_mac_end, current_file, lh,
21223 section, section_is_gnu, is_dwz,
21224 offset_size, include_hash);
21225
21226 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21227 }
21228 }
21229 break;
21230
21231 case DW_MACINFO_vendor_ext:
21232 if (!section_is_gnu)
21233 {
21234 unsigned int bytes_read;
21235 int constant;
21236
21237 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21238 mac_ptr += bytes_read;
21239 read_direct_string (abfd, mac_ptr, &bytes_read);
21240 mac_ptr += bytes_read;
21241
21242 /* We don't recognize any vendor extensions. */
21243 break;
21244 }
21245 /* FALLTHROUGH */
21246
21247 default:
21248 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21249 mac_ptr, mac_end, abfd, offset_size,
21250 section);
21251 if (mac_ptr == NULL)
21252 return;
21253 break;
21254 }
21255 } while (macinfo_type != 0);
21256 }
21257
21258 static void
21259 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21260 int section_is_gnu)
21261 {
21262 struct objfile *objfile = dwarf2_per_objfile->objfile;
21263 struct line_header *lh = cu->line_header;
21264 bfd *abfd;
21265 const gdb_byte *mac_ptr, *mac_end;
21266 struct macro_source_file *current_file = 0;
21267 enum dwarf_macro_record_type macinfo_type;
21268 unsigned int offset_size = cu->header.offset_size;
21269 const gdb_byte *opcode_definitions[256];
21270 struct cleanup *cleanup;
21271 htab_t include_hash;
21272 void **slot;
21273 struct dwarf2_section_info *section;
21274 const char *section_name;
21275
21276 if (cu->dwo_unit != NULL)
21277 {
21278 if (section_is_gnu)
21279 {
21280 section = &cu->dwo_unit->dwo_file->sections.macro;
21281 section_name = ".debug_macro.dwo";
21282 }
21283 else
21284 {
21285 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21286 section_name = ".debug_macinfo.dwo";
21287 }
21288 }
21289 else
21290 {
21291 if (section_is_gnu)
21292 {
21293 section = &dwarf2_per_objfile->macro;
21294 section_name = ".debug_macro";
21295 }
21296 else
21297 {
21298 section = &dwarf2_per_objfile->macinfo;
21299 section_name = ".debug_macinfo";
21300 }
21301 }
21302
21303 dwarf2_read_section (objfile, section);
21304 if (section->buffer == NULL)
21305 {
21306 complaint (&symfile_complaints, _("missing %s section"), section_name);
21307 return;
21308 }
21309 abfd = get_section_bfd_owner (section);
21310
21311 /* First pass: Find the name of the base filename.
21312 This filename is needed in order to process all macros whose definition
21313 (or undefinition) comes from the command line. These macros are defined
21314 before the first DW_MACINFO_start_file entry, and yet still need to be
21315 associated to the base file.
21316
21317 To determine the base file name, we scan the macro definitions until we
21318 reach the first DW_MACINFO_start_file entry. We then initialize
21319 CURRENT_FILE accordingly so that any macro definition found before the
21320 first DW_MACINFO_start_file can still be associated to the base file. */
21321
21322 mac_ptr = section->buffer + offset;
21323 mac_end = section->buffer + section->size;
21324
21325 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21326 &offset_size, section_is_gnu);
21327 if (mac_ptr == NULL)
21328 {
21329 /* We already issued a complaint. */
21330 return;
21331 }
21332
21333 do
21334 {
21335 /* Do we at least have room for a macinfo type byte? */
21336 if (mac_ptr >= mac_end)
21337 {
21338 /* Complaint is printed during the second pass as GDB will probably
21339 stop the first pass earlier upon finding
21340 DW_MACINFO_start_file. */
21341 break;
21342 }
21343
21344 macinfo_type = read_1_byte (abfd, mac_ptr);
21345 mac_ptr++;
21346
21347 /* Note that we rely on the fact that the corresponding GNU and
21348 DWARF constants are the same. */
21349 switch (macinfo_type)
21350 {
21351 /* A zero macinfo type indicates the end of the macro
21352 information. */
21353 case 0:
21354 break;
21355
21356 case DW_MACRO_GNU_define:
21357 case DW_MACRO_GNU_undef:
21358 /* Only skip the data by MAC_PTR. */
21359 {
21360 unsigned int bytes_read;
21361
21362 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364 read_direct_string (abfd, mac_ptr, &bytes_read);
21365 mac_ptr += bytes_read;
21366 }
21367 break;
21368
21369 case DW_MACRO_GNU_start_file:
21370 {
21371 unsigned int bytes_read;
21372 int line, file;
21373
21374 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21375 mac_ptr += bytes_read;
21376 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21377 mac_ptr += bytes_read;
21378
21379 current_file = macro_start_file (file, line, current_file, lh);
21380 }
21381 break;
21382
21383 case DW_MACRO_GNU_end_file:
21384 /* No data to skip by MAC_PTR. */
21385 break;
21386
21387 case DW_MACRO_GNU_define_indirect:
21388 case DW_MACRO_GNU_undef_indirect:
21389 case DW_MACRO_GNU_define_indirect_alt:
21390 case DW_MACRO_GNU_undef_indirect_alt:
21391 {
21392 unsigned int bytes_read;
21393
21394 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21395 mac_ptr += bytes_read;
21396 mac_ptr += offset_size;
21397 }
21398 break;
21399
21400 case DW_MACRO_GNU_transparent_include:
21401 case DW_MACRO_GNU_transparent_include_alt:
21402 /* Note that, according to the spec, a transparent include
21403 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21404 skip this opcode. */
21405 mac_ptr += offset_size;
21406 break;
21407
21408 case DW_MACINFO_vendor_ext:
21409 /* Only skip the data by MAC_PTR. */
21410 if (!section_is_gnu)
21411 {
21412 unsigned int bytes_read;
21413
21414 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21415 mac_ptr += bytes_read;
21416 read_direct_string (abfd, mac_ptr, &bytes_read);
21417 mac_ptr += bytes_read;
21418 }
21419 /* FALLTHROUGH */
21420
21421 default:
21422 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21423 mac_ptr, mac_end, abfd, offset_size,
21424 section);
21425 if (mac_ptr == NULL)
21426 return;
21427 break;
21428 }
21429 } while (macinfo_type != 0 && current_file == NULL);
21430
21431 /* Second pass: Process all entries.
21432
21433 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21434 command-line macro definitions/undefinitions. This flag is unset when we
21435 reach the first DW_MACINFO_start_file entry. */
21436
21437 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21438 NULL, xcalloc, xfree);
21439 cleanup = make_cleanup_htab_delete (include_hash);
21440 mac_ptr = section->buffer + offset;
21441 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21442 *slot = (void *) mac_ptr;
21443 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21444 current_file, lh, section,
21445 section_is_gnu, 0, offset_size, include_hash);
21446 do_cleanups (cleanup);
21447 }
21448
21449 /* Check if the attribute's form is a DW_FORM_block*
21450 if so return true else false. */
21451
21452 static int
21453 attr_form_is_block (const struct attribute *attr)
21454 {
21455 return (attr == NULL ? 0 :
21456 attr->form == DW_FORM_block1
21457 || attr->form == DW_FORM_block2
21458 || attr->form == DW_FORM_block4
21459 || attr->form == DW_FORM_block
21460 || attr->form == DW_FORM_exprloc);
21461 }
21462
21463 /* Return non-zero if ATTR's value is a section offset --- classes
21464 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21465 You may use DW_UNSND (attr) to retrieve such offsets.
21466
21467 Section 7.5.4, "Attribute Encodings", explains that no attribute
21468 may have a value that belongs to more than one of these classes; it
21469 would be ambiguous if we did, because we use the same forms for all
21470 of them. */
21471
21472 static int
21473 attr_form_is_section_offset (const struct attribute *attr)
21474 {
21475 return (attr->form == DW_FORM_data4
21476 || attr->form == DW_FORM_data8
21477 || attr->form == DW_FORM_sec_offset);
21478 }
21479
21480 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21481 zero otherwise. When this function returns true, you can apply
21482 dwarf2_get_attr_constant_value to it.
21483
21484 However, note that for some attributes you must check
21485 attr_form_is_section_offset before using this test. DW_FORM_data4
21486 and DW_FORM_data8 are members of both the constant class, and of
21487 the classes that contain offsets into other debug sections
21488 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21489 that, if an attribute's can be either a constant or one of the
21490 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21491 taken as section offsets, not constants. */
21492
21493 static int
21494 attr_form_is_constant (const struct attribute *attr)
21495 {
21496 switch (attr->form)
21497 {
21498 case DW_FORM_sdata:
21499 case DW_FORM_udata:
21500 case DW_FORM_data1:
21501 case DW_FORM_data2:
21502 case DW_FORM_data4:
21503 case DW_FORM_data8:
21504 return 1;
21505 default:
21506 return 0;
21507 }
21508 }
21509
21510
21511 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21512 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21513
21514 static int
21515 attr_form_is_ref (const struct attribute *attr)
21516 {
21517 switch (attr->form)
21518 {
21519 case DW_FORM_ref_addr:
21520 case DW_FORM_ref1:
21521 case DW_FORM_ref2:
21522 case DW_FORM_ref4:
21523 case DW_FORM_ref8:
21524 case DW_FORM_ref_udata:
21525 case DW_FORM_GNU_ref_alt:
21526 return 1;
21527 default:
21528 return 0;
21529 }
21530 }
21531
21532 /* Return the .debug_loc section to use for CU.
21533 For DWO files use .debug_loc.dwo. */
21534
21535 static struct dwarf2_section_info *
21536 cu_debug_loc_section (struct dwarf2_cu *cu)
21537 {
21538 if (cu->dwo_unit)
21539 return &cu->dwo_unit->dwo_file->sections.loc;
21540 return &dwarf2_per_objfile->loc;
21541 }
21542
21543 /* A helper function that fills in a dwarf2_loclist_baton. */
21544
21545 static void
21546 fill_in_loclist_baton (struct dwarf2_cu *cu,
21547 struct dwarf2_loclist_baton *baton,
21548 const struct attribute *attr)
21549 {
21550 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21551
21552 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21553
21554 baton->per_cu = cu->per_cu;
21555 gdb_assert (baton->per_cu);
21556 /* We don't know how long the location list is, but make sure we
21557 don't run off the edge of the section. */
21558 baton->size = section->size - DW_UNSND (attr);
21559 baton->data = section->buffer + DW_UNSND (attr);
21560 baton->base_address = cu->base_address;
21561 baton->from_dwo = cu->dwo_unit != NULL;
21562 }
21563
21564 static void
21565 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21566 struct dwarf2_cu *cu, int is_block)
21567 {
21568 struct objfile *objfile = dwarf2_per_objfile->objfile;
21569 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21570
21571 if (attr_form_is_section_offset (attr)
21572 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21573 the section. If so, fall through to the complaint in the
21574 other branch. */
21575 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21576 {
21577 struct dwarf2_loclist_baton *baton;
21578
21579 baton = obstack_alloc (&objfile->objfile_obstack,
21580 sizeof (struct dwarf2_loclist_baton));
21581
21582 fill_in_loclist_baton (cu, baton, attr);
21583
21584 if (cu->base_known == 0)
21585 complaint (&symfile_complaints,
21586 _("Location list used without "
21587 "specifying the CU base address."));
21588
21589 SYMBOL_ACLASS_INDEX (sym) = (is_block
21590 ? dwarf2_loclist_block_index
21591 : dwarf2_loclist_index);
21592 SYMBOL_LOCATION_BATON (sym) = baton;
21593 }
21594 else
21595 {
21596 struct dwarf2_locexpr_baton *baton;
21597
21598 baton = obstack_alloc (&objfile->objfile_obstack,
21599 sizeof (struct dwarf2_locexpr_baton));
21600 baton->per_cu = cu->per_cu;
21601 gdb_assert (baton->per_cu);
21602
21603 if (attr_form_is_block (attr))
21604 {
21605 /* Note that we're just copying the block's data pointer
21606 here, not the actual data. We're still pointing into the
21607 info_buffer for SYM's objfile; right now we never release
21608 that buffer, but when we do clean up properly this may
21609 need to change. */
21610 baton->size = DW_BLOCK (attr)->size;
21611 baton->data = DW_BLOCK (attr)->data;
21612 }
21613 else
21614 {
21615 dwarf2_invalid_attrib_class_complaint ("location description",
21616 SYMBOL_NATURAL_NAME (sym));
21617 baton->size = 0;
21618 }
21619
21620 SYMBOL_ACLASS_INDEX (sym) = (is_block
21621 ? dwarf2_locexpr_block_index
21622 : dwarf2_locexpr_index);
21623 SYMBOL_LOCATION_BATON (sym) = baton;
21624 }
21625 }
21626
21627 /* Return the OBJFILE associated with the compilation unit CU. If CU
21628 came from a separate debuginfo file, then the master objfile is
21629 returned. */
21630
21631 struct objfile *
21632 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21633 {
21634 struct objfile *objfile = per_cu->objfile;
21635
21636 /* Return the master objfile, so that we can report and look up the
21637 correct file containing this variable. */
21638 if (objfile->separate_debug_objfile_backlink)
21639 objfile = objfile->separate_debug_objfile_backlink;
21640
21641 return objfile;
21642 }
21643
21644 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21645 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21646 CU_HEADERP first. */
21647
21648 static const struct comp_unit_head *
21649 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21650 struct dwarf2_per_cu_data *per_cu)
21651 {
21652 const gdb_byte *info_ptr;
21653
21654 if (per_cu->cu)
21655 return &per_cu->cu->header;
21656
21657 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21658
21659 memset (cu_headerp, 0, sizeof (*cu_headerp));
21660 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21661
21662 return cu_headerp;
21663 }
21664
21665 /* Return the address size given in the compilation unit header for CU. */
21666
21667 int
21668 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21669 {
21670 struct comp_unit_head cu_header_local;
21671 const struct comp_unit_head *cu_headerp;
21672
21673 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21674
21675 return cu_headerp->addr_size;
21676 }
21677
21678 /* Return the offset size given in the compilation unit header for CU. */
21679
21680 int
21681 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21682 {
21683 struct comp_unit_head cu_header_local;
21684 const struct comp_unit_head *cu_headerp;
21685
21686 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21687
21688 return cu_headerp->offset_size;
21689 }
21690
21691 /* See its dwarf2loc.h declaration. */
21692
21693 int
21694 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21695 {
21696 struct comp_unit_head cu_header_local;
21697 const struct comp_unit_head *cu_headerp;
21698
21699 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21700
21701 if (cu_headerp->version == 2)
21702 return cu_headerp->addr_size;
21703 else
21704 return cu_headerp->offset_size;
21705 }
21706
21707 /* Return the text offset of the CU. The returned offset comes from
21708 this CU's objfile. If this objfile came from a separate debuginfo
21709 file, then the offset may be different from the corresponding
21710 offset in the parent objfile. */
21711
21712 CORE_ADDR
21713 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21714 {
21715 struct objfile *objfile = per_cu->objfile;
21716
21717 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21718 }
21719
21720 /* Locate the .debug_info compilation unit from CU's objfile which contains
21721 the DIE at OFFSET. Raises an error on failure. */
21722
21723 static struct dwarf2_per_cu_data *
21724 dwarf2_find_containing_comp_unit (sect_offset offset,
21725 unsigned int offset_in_dwz,
21726 struct objfile *objfile)
21727 {
21728 struct dwarf2_per_cu_data *this_cu;
21729 int low, high;
21730 const sect_offset *cu_off;
21731
21732 low = 0;
21733 high = dwarf2_per_objfile->n_comp_units - 1;
21734 while (high > low)
21735 {
21736 struct dwarf2_per_cu_data *mid_cu;
21737 int mid = low + (high - low) / 2;
21738
21739 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21740 cu_off = &mid_cu->offset;
21741 if (mid_cu->is_dwz > offset_in_dwz
21742 || (mid_cu->is_dwz == offset_in_dwz
21743 && cu_off->sect_off >= offset.sect_off))
21744 high = mid;
21745 else
21746 low = mid + 1;
21747 }
21748 gdb_assert (low == high);
21749 this_cu = dwarf2_per_objfile->all_comp_units[low];
21750 cu_off = &this_cu->offset;
21751 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21752 {
21753 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21754 error (_("Dwarf Error: could not find partial DIE containing "
21755 "offset 0x%lx [in module %s]"),
21756 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21757
21758 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21759 <= offset.sect_off);
21760 return dwarf2_per_objfile->all_comp_units[low-1];
21761 }
21762 else
21763 {
21764 this_cu = dwarf2_per_objfile->all_comp_units[low];
21765 if (low == dwarf2_per_objfile->n_comp_units - 1
21766 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21767 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21768 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21769 return this_cu;
21770 }
21771 }
21772
21773 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21774
21775 static void
21776 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21777 {
21778 memset (cu, 0, sizeof (*cu));
21779 per_cu->cu = cu;
21780 cu->per_cu = per_cu;
21781 cu->objfile = per_cu->objfile;
21782 obstack_init (&cu->comp_unit_obstack);
21783 }
21784
21785 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21786
21787 static void
21788 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21789 enum language pretend_language)
21790 {
21791 struct attribute *attr;
21792
21793 /* Set the language we're debugging. */
21794 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21795 if (attr)
21796 set_cu_language (DW_UNSND (attr), cu);
21797 else
21798 {
21799 cu->language = pretend_language;
21800 cu->language_defn = language_def (cu->language);
21801 }
21802
21803 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21804 if (attr)
21805 cu->producer = DW_STRING (attr);
21806 }
21807
21808 /* Release one cached compilation unit, CU. We unlink it from the tree
21809 of compilation units, but we don't remove it from the read_in_chain;
21810 the caller is responsible for that.
21811 NOTE: DATA is a void * because this function is also used as a
21812 cleanup routine. */
21813
21814 static void
21815 free_heap_comp_unit (void *data)
21816 {
21817 struct dwarf2_cu *cu = data;
21818
21819 gdb_assert (cu->per_cu != NULL);
21820 cu->per_cu->cu = NULL;
21821 cu->per_cu = NULL;
21822
21823 obstack_free (&cu->comp_unit_obstack, NULL);
21824
21825 xfree (cu);
21826 }
21827
21828 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21829 when we're finished with it. We can't free the pointer itself, but be
21830 sure to unlink it from the cache. Also release any associated storage. */
21831
21832 static void
21833 free_stack_comp_unit (void *data)
21834 {
21835 struct dwarf2_cu *cu = data;
21836
21837 gdb_assert (cu->per_cu != NULL);
21838 cu->per_cu->cu = NULL;
21839 cu->per_cu = NULL;
21840
21841 obstack_free (&cu->comp_unit_obstack, NULL);
21842 cu->partial_dies = NULL;
21843 }
21844
21845 /* Free all cached compilation units. */
21846
21847 static void
21848 free_cached_comp_units (void *data)
21849 {
21850 struct dwarf2_per_cu_data *per_cu, **last_chain;
21851
21852 per_cu = dwarf2_per_objfile->read_in_chain;
21853 last_chain = &dwarf2_per_objfile->read_in_chain;
21854 while (per_cu != NULL)
21855 {
21856 struct dwarf2_per_cu_data *next_cu;
21857
21858 next_cu = per_cu->cu->read_in_chain;
21859
21860 free_heap_comp_unit (per_cu->cu);
21861 *last_chain = next_cu;
21862
21863 per_cu = next_cu;
21864 }
21865 }
21866
21867 /* Increase the age counter on each cached compilation unit, and free
21868 any that are too old. */
21869
21870 static void
21871 age_cached_comp_units (void)
21872 {
21873 struct dwarf2_per_cu_data *per_cu, **last_chain;
21874
21875 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21876 per_cu = dwarf2_per_objfile->read_in_chain;
21877 while (per_cu != NULL)
21878 {
21879 per_cu->cu->last_used ++;
21880 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21881 dwarf2_mark (per_cu->cu);
21882 per_cu = per_cu->cu->read_in_chain;
21883 }
21884
21885 per_cu = dwarf2_per_objfile->read_in_chain;
21886 last_chain = &dwarf2_per_objfile->read_in_chain;
21887 while (per_cu != NULL)
21888 {
21889 struct dwarf2_per_cu_data *next_cu;
21890
21891 next_cu = per_cu->cu->read_in_chain;
21892
21893 if (!per_cu->cu->mark)
21894 {
21895 free_heap_comp_unit (per_cu->cu);
21896 *last_chain = next_cu;
21897 }
21898 else
21899 last_chain = &per_cu->cu->read_in_chain;
21900
21901 per_cu = next_cu;
21902 }
21903 }
21904
21905 /* Remove a single compilation unit from the cache. */
21906
21907 static void
21908 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21909 {
21910 struct dwarf2_per_cu_data *per_cu, **last_chain;
21911
21912 per_cu = dwarf2_per_objfile->read_in_chain;
21913 last_chain = &dwarf2_per_objfile->read_in_chain;
21914 while (per_cu != NULL)
21915 {
21916 struct dwarf2_per_cu_data *next_cu;
21917
21918 next_cu = per_cu->cu->read_in_chain;
21919
21920 if (per_cu == target_per_cu)
21921 {
21922 free_heap_comp_unit (per_cu->cu);
21923 per_cu->cu = NULL;
21924 *last_chain = next_cu;
21925 break;
21926 }
21927 else
21928 last_chain = &per_cu->cu->read_in_chain;
21929
21930 per_cu = next_cu;
21931 }
21932 }
21933
21934 /* Release all extra memory associated with OBJFILE. */
21935
21936 void
21937 dwarf2_free_objfile (struct objfile *objfile)
21938 {
21939 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21940
21941 if (dwarf2_per_objfile == NULL)
21942 return;
21943
21944 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21945 free_cached_comp_units (NULL);
21946
21947 if (dwarf2_per_objfile->quick_file_names_table)
21948 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21949
21950 if (dwarf2_per_objfile->line_header_hash)
21951 htab_delete (dwarf2_per_objfile->line_header_hash);
21952
21953 /* Everything else should be on the objfile obstack. */
21954 }
21955
21956 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21957 We store these in a hash table separate from the DIEs, and preserve them
21958 when the DIEs are flushed out of cache.
21959
21960 The CU "per_cu" pointer is needed because offset alone is not enough to
21961 uniquely identify the type. A file may have multiple .debug_types sections,
21962 or the type may come from a DWO file. Furthermore, while it's more logical
21963 to use per_cu->section+offset, with Fission the section with the data is in
21964 the DWO file but we don't know that section at the point we need it.
21965 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21966 because we can enter the lookup routine, get_die_type_at_offset, from
21967 outside this file, and thus won't necessarily have PER_CU->cu.
21968 Fortunately, PER_CU is stable for the life of the objfile. */
21969
21970 struct dwarf2_per_cu_offset_and_type
21971 {
21972 const struct dwarf2_per_cu_data *per_cu;
21973 sect_offset offset;
21974 struct type *type;
21975 };
21976
21977 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21978
21979 static hashval_t
21980 per_cu_offset_and_type_hash (const void *item)
21981 {
21982 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21983
21984 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21985 }
21986
21987 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21988
21989 static int
21990 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21991 {
21992 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21993 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21994
21995 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21996 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21997 }
21998
21999 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22000 table if necessary. For convenience, return TYPE.
22001
22002 The DIEs reading must have careful ordering to:
22003 * Not cause infite loops trying to read in DIEs as a prerequisite for
22004 reading current DIE.
22005 * Not trying to dereference contents of still incompletely read in types
22006 while reading in other DIEs.
22007 * Enable referencing still incompletely read in types just by a pointer to
22008 the type without accessing its fields.
22009
22010 Therefore caller should follow these rules:
22011 * Try to fetch any prerequisite types we may need to build this DIE type
22012 before building the type and calling set_die_type.
22013 * After building type call set_die_type for current DIE as soon as
22014 possible before fetching more types to complete the current type.
22015 * Make the type as complete as possible before fetching more types. */
22016
22017 static struct type *
22018 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22019 {
22020 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22021 struct objfile *objfile = cu->objfile;
22022 struct attribute *attr;
22023 struct dynamic_prop prop;
22024
22025 /* For Ada types, make sure that the gnat-specific data is always
22026 initialized (if not already set). There are a few types where
22027 we should not be doing so, because the type-specific area is
22028 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22029 where the type-specific area is used to store the floatformat).
22030 But this is not a problem, because the gnat-specific information
22031 is actually not needed for these types. */
22032 if (need_gnat_info (cu)
22033 && TYPE_CODE (type) != TYPE_CODE_FUNC
22034 && TYPE_CODE (type) != TYPE_CODE_FLT
22035 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22036 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22037 && TYPE_CODE (type) != TYPE_CODE_METHOD
22038 && !HAVE_GNAT_AUX_INFO (type))
22039 INIT_GNAT_SPECIFIC (type);
22040
22041 /* Read DW_AT_data_location and set in type. */
22042 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22043 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22044 {
22045 TYPE_DATA_LOCATION (type)
22046 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
22047 *TYPE_DATA_LOCATION (type) = prop;
22048 }
22049
22050 if (dwarf2_per_objfile->die_type_hash == NULL)
22051 {
22052 dwarf2_per_objfile->die_type_hash =
22053 htab_create_alloc_ex (127,
22054 per_cu_offset_and_type_hash,
22055 per_cu_offset_and_type_eq,
22056 NULL,
22057 &objfile->objfile_obstack,
22058 hashtab_obstack_allocate,
22059 dummy_obstack_deallocate);
22060 }
22061
22062 ofs.per_cu = cu->per_cu;
22063 ofs.offset = die->offset;
22064 ofs.type = type;
22065 slot = (struct dwarf2_per_cu_offset_and_type **)
22066 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22067 if (*slot)
22068 complaint (&symfile_complaints,
22069 _("A problem internal to GDB: DIE 0x%x has type already set"),
22070 die->offset.sect_off);
22071 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22072 **slot = ofs;
22073 return type;
22074 }
22075
22076 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22077 or return NULL if the die does not have a saved type. */
22078
22079 static struct type *
22080 get_die_type_at_offset (sect_offset offset,
22081 struct dwarf2_per_cu_data *per_cu)
22082 {
22083 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22084
22085 if (dwarf2_per_objfile->die_type_hash == NULL)
22086 return NULL;
22087
22088 ofs.per_cu = per_cu;
22089 ofs.offset = offset;
22090 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22091 if (slot)
22092 return slot->type;
22093 else
22094 return NULL;
22095 }
22096
22097 /* Look up the type for DIE in CU in die_type_hash,
22098 or return NULL if DIE does not have a saved type. */
22099
22100 static struct type *
22101 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22102 {
22103 return get_die_type_at_offset (die->offset, cu->per_cu);
22104 }
22105
22106 /* Add a dependence relationship from CU to REF_PER_CU. */
22107
22108 static void
22109 dwarf2_add_dependence (struct dwarf2_cu *cu,
22110 struct dwarf2_per_cu_data *ref_per_cu)
22111 {
22112 void **slot;
22113
22114 if (cu->dependencies == NULL)
22115 cu->dependencies
22116 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22117 NULL, &cu->comp_unit_obstack,
22118 hashtab_obstack_allocate,
22119 dummy_obstack_deallocate);
22120
22121 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22122 if (*slot == NULL)
22123 *slot = ref_per_cu;
22124 }
22125
22126 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22127 Set the mark field in every compilation unit in the
22128 cache that we must keep because we are keeping CU. */
22129
22130 static int
22131 dwarf2_mark_helper (void **slot, void *data)
22132 {
22133 struct dwarf2_per_cu_data *per_cu;
22134
22135 per_cu = (struct dwarf2_per_cu_data *) *slot;
22136
22137 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22138 reading of the chain. As such dependencies remain valid it is not much
22139 useful to track and undo them during QUIT cleanups. */
22140 if (per_cu->cu == NULL)
22141 return 1;
22142
22143 if (per_cu->cu->mark)
22144 return 1;
22145 per_cu->cu->mark = 1;
22146
22147 if (per_cu->cu->dependencies != NULL)
22148 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22149
22150 return 1;
22151 }
22152
22153 /* Set the mark field in CU and in every other compilation unit in the
22154 cache that we must keep because we are keeping CU. */
22155
22156 static void
22157 dwarf2_mark (struct dwarf2_cu *cu)
22158 {
22159 if (cu->mark)
22160 return;
22161 cu->mark = 1;
22162 if (cu->dependencies != NULL)
22163 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22164 }
22165
22166 static void
22167 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22168 {
22169 while (per_cu)
22170 {
22171 per_cu->cu->mark = 0;
22172 per_cu = per_cu->cu->read_in_chain;
22173 }
22174 }
22175
22176 /* Trivial hash function for partial_die_info: the hash value of a DIE
22177 is its offset in .debug_info for this objfile. */
22178
22179 static hashval_t
22180 partial_die_hash (const void *item)
22181 {
22182 const struct partial_die_info *part_die = item;
22183
22184 return part_die->offset.sect_off;
22185 }
22186
22187 /* Trivial comparison function for partial_die_info structures: two DIEs
22188 are equal if they have the same offset. */
22189
22190 static int
22191 partial_die_eq (const void *item_lhs, const void *item_rhs)
22192 {
22193 const struct partial_die_info *part_die_lhs = item_lhs;
22194 const struct partial_die_info *part_die_rhs = item_rhs;
22195
22196 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22197 }
22198
22199 static struct cmd_list_element *set_dwarf2_cmdlist;
22200 static struct cmd_list_element *show_dwarf2_cmdlist;
22201
22202 static void
22203 set_dwarf2_cmd (char *args, int from_tty)
22204 {
22205 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22206 gdb_stdout);
22207 }
22208
22209 static void
22210 show_dwarf2_cmd (char *args, int from_tty)
22211 {
22212 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22213 }
22214
22215 /* Free data associated with OBJFILE, if necessary. */
22216
22217 static void
22218 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22219 {
22220 struct dwarf2_per_objfile *data = d;
22221 int ix;
22222
22223 /* Make sure we don't accidentally use dwarf2_per_objfile while
22224 cleaning up. */
22225 dwarf2_per_objfile = NULL;
22226
22227 for (ix = 0; ix < data->n_comp_units; ++ix)
22228 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22229
22230 for (ix = 0; ix < data->n_type_units; ++ix)
22231 VEC_free (dwarf2_per_cu_ptr,
22232 data->all_type_units[ix]->per_cu.imported_symtabs);
22233 xfree (data->all_type_units);
22234
22235 VEC_free (dwarf2_section_info_def, data->types);
22236
22237 if (data->dwo_files)
22238 free_dwo_files (data->dwo_files, objfile);
22239 if (data->dwp_file)
22240 gdb_bfd_unref (data->dwp_file->dbfd);
22241
22242 if (data->dwz_file && data->dwz_file->dwz_bfd)
22243 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22244 }
22245
22246 \f
22247 /* The "save gdb-index" command. */
22248
22249 /* The contents of the hash table we create when building the string
22250 table. */
22251 struct strtab_entry
22252 {
22253 offset_type offset;
22254 const char *str;
22255 };
22256
22257 /* Hash function for a strtab_entry.
22258
22259 Function is used only during write_hash_table so no index format backward
22260 compatibility is needed. */
22261
22262 static hashval_t
22263 hash_strtab_entry (const void *e)
22264 {
22265 const struct strtab_entry *entry = e;
22266 return mapped_index_string_hash (INT_MAX, entry->str);
22267 }
22268
22269 /* Equality function for a strtab_entry. */
22270
22271 static int
22272 eq_strtab_entry (const void *a, const void *b)
22273 {
22274 const struct strtab_entry *ea = a;
22275 const struct strtab_entry *eb = b;
22276 return !strcmp (ea->str, eb->str);
22277 }
22278
22279 /* Create a strtab_entry hash table. */
22280
22281 static htab_t
22282 create_strtab (void)
22283 {
22284 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22285 xfree, xcalloc, xfree);
22286 }
22287
22288 /* Add a string to the constant pool. Return the string's offset in
22289 host order. */
22290
22291 static offset_type
22292 add_string (htab_t table, struct obstack *cpool, const char *str)
22293 {
22294 void **slot;
22295 struct strtab_entry entry;
22296 struct strtab_entry *result;
22297
22298 entry.str = str;
22299 slot = htab_find_slot (table, &entry, INSERT);
22300 if (*slot)
22301 result = *slot;
22302 else
22303 {
22304 result = XNEW (struct strtab_entry);
22305 result->offset = obstack_object_size (cpool);
22306 result->str = str;
22307 obstack_grow_str0 (cpool, str);
22308 *slot = result;
22309 }
22310 return result->offset;
22311 }
22312
22313 /* An entry in the symbol table. */
22314 struct symtab_index_entry
22315 {
22316 /* The name of the symbol. */
22317 const char *name;
22318 /* The offset of the name in the constant pool. */
22319 offset_type index_offset;
22320 /* A sorted vector of the indices of all the CUs that hold an object
22321 of this name. */
22322 VEC (offset_type) *cu_indices;
22323 };
22324
22325 /* The symbol table. This is a power-of-2-sized hash table. */
22326 struct mapped_symtab
22327 {
22328 offset_type n_elements;
22329 offset_type size;
22330 struct symtab_index_entry **data;
22331 };
22332
22333 /* Hash function for a symtab_index_entry. */
22334
22335 static hashval_t
22336 hash_symtab_entry (const void *e)
22337 {
22338 const struct symtab_index_entry *entry = e;
22339 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22340 sizeof (offset_type) * VEC_length (offset_type,
22341 entry->cu_indices),
22342 0);
22343 }
22344
22345 /* Equality function for a symtab_index_entry. */
22346
22347 static int
22348 eq_symtab_entry (const void *a, const void *b)
22349 {
22350 const struct symtab_index_entry *ea = a;
22351 const struct symtab_index_entry *eb = b;
22352 int len = VEC_length (offset_type, ea->cu_indices);
22353 if (len != VEC_length (offset_type, eb->cu_indices))
22354 return 0;
22355 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22356 VEC_address (offset_type, eb->cu_indices),
22357 sizeof (offset_type) * len);
22358 }
22359
22360 /* Destroy a symtab_index_entry. */
22361
22362 static void
22363 delete_symtab_entry (void *p)
22364 {
22365 struct symtab_index_entry *entry = p;
22366 VEC_free (offset_type, entry->cu_indices);
22367 xfree (entry);
22368 }
22369
22370 /* Create a hash table holding symtab_index_entry objects. */
22371
22372 static htab_t
22373 create_symbol_hash_table (void)
22374 {
22375 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22376 delete_symtab_entry, xcalloc, xfree);
22377 }
22378
22379 /* Create a new mapped symtab object. */
22380
22381 static struct mapped_symtab *
22382 create_mapped_symtab (void)
22383 {
22384 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22385 symtab->n_elements = 0;
22386 symtab->size = 1024;
22387 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22388 return symtab;
22389 }
22390
22391 /* Destroy a mapped_symtab. */
22392
22393 static void
22394 cleanup_mapped_symtab (void *p)
22395 {
22396 struct mapped_symtab *symtab = p;
22397 /* The contents of the array are freed when the other hash table is
22398 destroyed. */
22399 xfree (symtab->data);
22400 xfree (symtab);
22401 }
22402
22403 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22404 the slot.
22405
22406 Function is used only during write_hash_table so no index format backward
22407 compatibility is needed. */
22408
22409 static struct symtab_index_entry **
22410 find_slot (struct mapped_symtab *symtab, const char *name)
22411 {
22412 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22413
22414 index = hash & (symtab->size - 1);
22415 step = ((hash * 17) & (symtab->size - 1)) | 1;
22416
22417 for (;;)
22418 {
22419 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22420 return &symtab->data[index];
22421 index = (index + step) & (symtab->size - 1);
22422 }
22423 }
22424
22425 /* Expand SYMTAB's hash table. */
22426
22427 static void
22428 hash_expand (struct mapped_symtab *symtab)
22429 {
22430 offset_type old_size = symtab->size;
22431 offset_type i;
22432 struct symtab_index_entry **old_entries = symtab->data;
22433
22434 symtab->size *= 2;
22435 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22436
22437 for (i = 0; i < old_size; ++i)
22438 {
22439 if (old_entries[i])
22440 {
22441 struct symtab_index_entry **slot = find_slot (symtab,
22442 old_entries[i]->name);
22443 *slot = old_entries[i];
22444 }
22445 }
22446
22447 xfree (old_entries);
22448 }
22449
22450 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22451 CU_INDEX is the index of the CU in which the symbol appears.
22452 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22453
22454 static void
22455 add_index_entry (struct mapped_symtab *symtab, const char *name,
22456 int is_static, gdb_index_symbol_kind kind,
22457 offset_type cu_index)
22458 {
22459 struct symtab_index_entry **slot;
22460 offset_type cu_index_and_attrs;
22461
22462 ++symtab->n_elements;
22463 if (4 * symtab->n_elements / 3 >= symtab->size)
22464 hash_expand (symtab);
22465
22466 slot = find_slot (symtab, name);
22467 if (!*slot)
22468 {
22469 *slot = XNEW (struct symtab_index_entry);
22470 (*slot)->name = name;
22471 /* index_offset is set later. */
22472 (*slot)->cu_indices = NULL;
22473 }
22474
22475 cu_index_and_attrs = 0;
22476 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22477 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22478 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22479
22480 /* We don't want to record an index value twice as we want to avoid the
22481 duplication.
22482 We process all global symbols and then all static symbols
22483 (which would allow us to avoid the duplication by only having to check
22484 the last entry pushed), but a symbol could have multiple kinds in one CU.
22485 To keep things simple we don't worry about the duplication here and
22486 sort and uniqufy the list after we've processed all symbols. */
22487 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22488 }
22489
22490 /* qsort helper routine for uniquify_cu_indices. */
22491
22492 static int
22493 offset_type_compare (const void *ap, const void *bp)
22494 {
22495 offset_type a = *(offset_type *) ap;
22496 offset_type b = *(offset_type *) bp;
22497
22498 return (a > b) - (b > a);
22499 }
22500
22501 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22502
22503 static void
22504 uniquify_cu_indices (struct mapped_symtab *symtab)
22505 {
22506 int i;
22507
22508 for (i = 0; i < symtab->size; ++i)
22509 {
22510 struct symtab_index_entry *entry = symtab->data[i];
22511
22512 if (entry
22513 && entry->cu_indices != NULL)
22514 {
22515 unsigned int next_to_insert, next_to_check;
22516 offset_type last_value;
22517
22518 qsort (VEC_address (offset_type, entry->cu_indices),
22519 VEC_length (offset_type, entry->cu_indices),
22520 sizeof (offset_type), offset_type_compare);
22521
22522 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22523 next_to_insert = 1;
22524 for (next_to_check = 1;
22525 next_to_check < VEC_length (offset_type, entry->cu_indices);
22526 ++next_to_check)
22527 {
22528 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22529 != last_value)
22530 {
22531 last_value = VEC_index (offset_type, entry->cu_indices,
22532 next_to_check);
22533 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22534 last_value);
22535 ++next_to_insert;
22536 }
22537 }
22538 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22539 }
22540 }
22541 }
22542
22543 /* Add a vector of indices to the constant pool. */
22544
22545 static offset_type
22546 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22547 struct symtab_index_entry *entry)
22548 {
22549 void **slot;
22550
22551 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22552 if (!*slot)
22553 {
22554 offset_type len = VEC_length (offset_type, entry->cu_indices);
22555 offset_type val = MAYBE_SWAP (len);
22556 offset_type iter;
22557 int i;
22558
22559 *slot = entry;
22560 entry->index_offset = obstack_object_size (cpool);
22561
22562 obstack_grow (cpool, &val, sizeof (val));
22563 for (i = 0;
22564 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22565 ++i)
22566 {
22567 val = MAYBE_SWAP (iter);
22568 obstack_grow (cpool, &val, sizeof (val));
22569 }
22570 }
22571 else
22572 {
22573 struct symtab_index_entry *old_entry = *slot;
22574 entry->index_offset = old_entry->index_offset;
22575 entry = old_entry;
22576 }
22577 return entry->index_offset;
22578 }
22579
22580 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22581 constant pool entries going into the obstack CPOOL. */
22582
22583 static void
22584 write_hash_table (struct mapped_symtab *symtab,
22585 struct obstack *output, struct obstack *cpool)
22586 {
22587 offset_type i;
22588 htab_t symbol_hash_table;
22589 htab_t str_table;
22590
22591 symbol_hash_table = create_symbol_hash_table ();
22592 str_table = create_strtab ();
22593
22594 /* We add all the index vectors to the constant pool first, to
22595 ensure alignment is ok. */
22596 for (i = 0; i < symtab->size; ++i)
22597 {
22598 if (symtab->data[i])
22599 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22600 }
22601
22602 /* Now write out the hash table. */
22603 for (i = 0; i < symtab->size; ++i)
22604 {
22605 offset_type str_off, vec_off;
22606
22607 if (symtab->data[i])
22608 {
22609 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22610 vec_off = symtab->data[i]->index_offset;
22611 }
22612 else
22613 {
22614 /* While 0 is a valid constant pool index, it is not valid
22615 to have 0 for both offsets. */
22616 str_off = 0;
22617 vec_off = 0;
22618 }
22619
22620 str_off = MAYBE_SWAP (str_off);
22621 vec_off = MAYBE_SWAP (vec_off);
22622
22623 obstack_grow (output, &str_off, sizeof (str_off));
22624 obstack_grow (output, &vec_off, sizeof (vec_off));
22625 }
22626
22627 htab_delete (str_table);
22628 htab_delete (symbol_hash_table);
22629 }
22630
22631 /* Struct to map psymtab to CU index in the index file. */
22632 struct psymtab_cu_index_map
22633 {
22634 struct partial_symtab *psymtab;
22635 unsigned int cu_index;
22636 };
22637
22638 static hashval_t
22639 hash_psymtab_cu_index (const void *item)
22640 {
22641 const struct psymtab_cu_index_map *map = item;
22642
22643 return htab_hash_pointer (map->psymtab);
22644 }
22645
22646 static int
22647 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22648 {
22649 const struct psymtab_cu_index_map *lhs = item_lhs;
22650 const struct psymtab_cu_index_map *rhs = item_rhs;
22651
22652 return lhs->psymtab == rhs->psymtab;
22653 }
22654
22655 /* Helper struct for building the address table. */
22656 struct addrmap_index_data
22657 {
22658 struct objfile *objfile;
22659 struct obstack *addr_obstack;
22660 htab_t cu_index_htab;
22661
22662 /* Non-zero if the previous_* fields are valid.
22663 We can't write an entry until we see the next entry (since it is only then
22664 that we know the end of the entry). */
22665 int previous_valid;
22666 /* Index of the CU in the table of all CUs in the index file. */
22667 unsigned int previous_cu_index;
22668 /* Start address of the CU. */
22669 CORE_ADDR previous_cu_start;
22670 };
22671
22672 /* Write an address entry to OBSTACK. */
22673
22674 static void
22675 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22676 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22677 {
22678 offset_type cu_index_to_write;
22679 gdb_byte addr[8];
22680 CORE_ADDR baseaddr;
22681
22682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22683
22684 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22685 obstack_grow (obstack, addr, 8);
22686 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22687 obstack_grow (obstack, addr, 8);
22688 cu_index_to_write = MAYBE_SWAP (cu_index);
22689 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22690 }
22691
22692 /* Worker function for traversing an addrmap to build the address table. */
22693
22694 static int
22695 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22696 {
22697 struct addrmap_index_data *data = datap;
22698 struct partial_symtab *pst = obj;
22699
22700 if (data->previous_valid)
22701 add_address_entry (data->objfile, data->addr_obstack,
22702 data->previous_cu_start, start_addr,
22703 data->previous_cu_index);
22704
22705 data->previous_cu_start = start_addr;
22706 if (pst != NULL)
22707 {
22708 struct psymtab_cu_index_map find_map, *map;
22709 find_map.psymtab = pst;
22710 map = htab_find (data->cu_index_htab, &find_map);
22711 gdb_assert (map != NULL);
22712 data->previous_cu_index = map->cu_index;
22713 data->previous_valid = 1;
22714 }
22715 else
22716 data->previous_valid = 0;
22717
22718 return 0;
22719 }
22720
22721 /* Write OBJFILE's address map to OBSTACK.
22722 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22723 in the index file. */
22724
22725 static void
22726 write_address_map (struct objfile *objfile, struct obstack *obstack,
22727 htab_t cu_index_htab)
22728 {
22729 struct addrmap_index_data addrmap_index_data;
22730
22731 /* When writing the address table, we have to cope with the fact that
22732 the addrmap iterator only provides the start of a region; we have to
22733 wait until the next invocation to get the start of the next region. */
22734
22735 addrmap_index_data.objfile = objfile;
22736 addrmap_index_data.addr_obstack = obstack;
22737 addrmap_index_data.cu_index_htab = cu_index_htab;
22738 addrmap_index_data.previous_valid = 0;
22739
22740 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22741 &addrmap_index_data);
22742
22743 /* It's highly unlikely the last entry (end address = 0xff...ff)
22744 is valid, but we should still handle it.
22745 The end address is recorded as the start of the next region, but that
22746 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22747 anyway. */
22748 if (addrmap_index_data.previous_valid)
22749 add_address_entry (objfile, obstack,
22750 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22751 addrmap_index_data.previous_cu_index);
22752 }
22753
22754 /* Return the symbol kind of PSYM. */
22755
22756 static gdb_index_symbol_kind
22757 symbol_kind (struct partial_symbol *psym)
22758 {
22759 domain_enum domain = PSYMBOL_DOMAIN (psym);
22760 enum address_class aclass = PSYMBOL_CLASS (psym);
22761
22762 switch (domain)
22763 {
22764 case VAR_DOMAIN:
22765 switch (aclass)
22766 {
22767 case LOC_BLOCK:
22768 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22769 case LOC_TYPEDEF:
22770 return GDB_INDEX_SYMBOL_KIND_TYPE;
22771 case LOC_COMPUTED:
22772 case LOC_CONST_BYTES:
22773 case LOC_OPTIMIZED_OUT:
22774 case LOC_STATIC:
22775 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22776 case LOC_CONST:
22777 /* Note: It's currently impossible to recognize psyms as enum values
22778 short of reading the type info. For now punt. */
22779 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22780 default:
22781 /* There are other LOC_FOO values that one might want to classify
22782 as variables, but dwarf2read.c doesn't currently use them. */
22783 return GDB_INDEX_SYMBOL_KIND_OTHER;
22784 }
22785 case STRUCT_DOMAIN:
22786 return GDB_INDEX_SYMBOL_KIND_TYPE;
22787 default:
22788 return GDB_INDEX_SYMBOL_KIND_OTHER;
22789 }
22790 }
22791
22792 /* Add a list of partial symbols to SYMTAB. */
22793
22794 static void
22795 write_psymbols (struct mapped_symtab *symtab,
22796 htab_t psyms_seen,
22797 struct partial_symbol **psymp,
22798 int count,
22799 offset_type cu_index,
22800 int is_static)
22801 {
22802 for (; count-- > 0; ++psymp)
22803 {
22804 struct partial_symbol *psym = *psymp;
22805 void **slot;
22806
22807 if (SYMBOL_LANGUAGE (psym) == language_ada)
22808 error (_("Ada is not currently supported by the index"));
22809
22810 /* Only add a given psymbol once. */
22811 slot = htab_find_slot (psyms_seen, psym, INSERT);
22812 if (!*slot)
22813 {
22814 gdb_index_symbol_kind kind = symbol_kind (psym);
22815
22816 *slot = psym;
22817 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22818 is_static, kind, cu_index);
22819 }
22820 }
22821 }
22822
22823 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22824 exception if there is an error. */
22825
22826 static void
22827 write_obstack (FILE *file, struct obstack *obstack)
22828 {
22829 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22830 file)
22831 != obstack_object_size (obstack))
22832 error (_("couldn't data write to file"));
22833 }
22834
22835 /* Unlink a file if the argument is not NULL. */
22836
22837 static void
22838 unlink_if_set (void *p)
22839 {
22840 char **filename = p;
22841 if (*filename)
22842 unlink (*filename);
22843 }
22844
22845 /* A helper struct used when iterating over debug_types. */
22846 struct signatured_type_index_data
22847 {
22848 struct objfile *objfile;
22849 struct mapped_symtab *symtab;
22850 struct obstack *types_list;
22851 htab_t psyms_seen;
22852 int cu_index;
22853 };
22854
22855 /* A helper function that writes a single signatured_type to an
22856 obstack. */
22857
22858 static int
22859 write_one_signatured_type (void **slot, void *d)
22860 {
22861 struct signatured_type_index_data *info = d;
22862 struct signatured_type *entry = (struct signatured_type *) *slot;
22863 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22864 gdb_byte val[8];
22865
22866 write_psymbols (info->symtab,
22867 info->psyms_seen,
22868 info->objfile->global_psymbols.list
22869 + psymtab->globals_offset,
22870 psymtab->n_global_syms, info->cu_index,
22871 0);
22872 write_psymbols (info->symtab,
22873 info->psyms_seen,
22874 info->objfile->static_psymbols.list
22875 + psymtab->statics_offset,
22876 psymtab->n_static_syms, info->cu_index,
22877 1);
22878
22879 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22880 entry->per_cu.offset.sect_off);
22881 obstack_grow (info->types_list, val, 8);
22882 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22883 entry->type_offset_in_tu.cu_off);
22884 obstack_grow (info->types_list, val, 8);
22885 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22886 obstack_grow (info->types_list, val, 8);
22887
22888 ++info->cu_index;
22889
22890 return 1;
22891 }
22892
22893 /* Recurse into all "included" dependencies and write their symbols as
22894 if they appeared in this psymtab. */
22895
22896 static void
22897 recursively_write_psymbols (struct objfile *objfile,
22898 struct partial_symtab *psymtab,
22899 struct mapped_symtab *symtab,
22900 htab_t psyms_seen,
22901 offset_type cu_index)
22902 {
22903 int i;
22904
22905 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22906 if (psymtab->dependencies[i]->user != NULL)
22907 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22908 symtab, psyms_seen, cu_index);
22909
22910 write_psymbols (symtab,
22911 psyms_seen,
22912 objfile->global_psymbols.list + psymtab->globals_offset,
22913 psymtab->n_global_syms, cu_index,
22914 0);
22915 write_psymbols (symtab,
22916 psyms_seen,
22917 objfile->static_psymbols.list + psymtab->statics_offset,
22918 psymtab->n_static_syms, cu_index,
22919 1);
22920 }
22921
22922 /* Create an index file for OBJFILE in the directory DIR. */
22923
22924 static void
22925 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22926 {
22927 struct cleanup *cleanup;
22928 char *filename, *cleanup_filename;
22929 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22930 struct obstack cu_list, types_cu_list;
22931 int i;
22932 FILE *out_file;
22933 struct mapped_symtab *symtab;
22934 offset_type val, size_of_contents, total_len;
22935 struct stat st;
22936 htab_t psyms_seen;
22937 htab_t cu_index_htab;
22938 struct psymtab_cu_index_map *psymtab_cu_index_map;
22939
22940 if (dwarf2_per_objfile->using_index)
22941 error (_("Cannot use an index to create the index"));
22942
22943 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22944 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22945
22946 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22947 return;
22948
22949 if (stat (objfile_name (objfile), &st) < 0)
22950 perror_with_name (objfile_name (objfile));
22951
22952 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22953 INDEX_SUFFIX, (char *) NULL);
22954 cleanup = make_cleanup (xfree, filename);
22955
22956 out_file = gdb_fopen_cloexec (filename, "wb");
22957 if (!out_file)
22958 error (_("Can't open `%s' for writing"), filename);
22959
22960 cleanup_filename = filename;
22961 make_cleanup (unlink_if_set, &cleanup_filename);
22962
22963 symtab = create_mapped_symtab ();
22964 make_cleanup (cleanup_mapped_symtab, symtab);
22965
22966 obstack_init (&addr_obstack);
22967 make_cleanup_obstack_free (&addr_obstack);
22968
22969 obstack_init (&cu_list);
22970 make_cleanup_obstack_free (&cu_list);
22971
22972 obstack_init (&types_cu_list);
22973 make_cleanup_obstack_free (&types_cu_list);
22974
22975 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22976 NULL, xcalloc, xfree);
22977 make_cleanup_htab_delete (psyms_seen);
22978
22979 /* While we're scanning CU's create a table that maps a psymtab pointer
22980 (which is what addrmap records) to its index (which is what is recorded
22981 in the index file). This will later be needed to write the address
22982 table. */
22983 cu_index_htab = htab_create_alloc (100,
22984 hash_psymtab_cu_index,
22985 eq_psymtab_cu_index,
22986 NULL, xcalloc, xfree);
22987 make_cleanup_htab_delete (cu_index_htab);
22988 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22989 xmalloc (sizeof (struct psymtab_cu_index_map)
22990 * dwarf2_per_objfile->n_comp_units);
22991 make_cleanup (xfree, psymtab_cu_index_map);
22992
22993 /* The CU list is already sorted, so we don't need to do additional
22994 work here. Also, the debug_types entries do not appear in
22995 all_comp_units, but only in their own hash table. */
22996 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22997 {
22998 struct dwarf2_per_cu_data *per_cu
22999 = dwarf2_per_objfile->all_comp_units[i];
23000 struct partial_symtab *psymtab = per_cu->v.psymtab;
23001 gdb_byte val[8];
23002 struct psymtab_cu_index_map *map;
23003 void **slot;
23004
23005 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23006 It may be referenced from a local scope but in such case it does not
23007 need to be present in .gdb_index. */
23008 if (psymtab == NULL)
23009 continue;
23010
23011 if (psymtab->user == NULL)
23012 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23013
23014 map = &psymtab_cu_index_map[i];
23015 map->psymtab = psymtab;
23016 map->cu_index = i;
23017 slot = htab_find_slot (cu_index_htab, map, INSERT);
23018 gdb_assert (slot != NULL);
23019 gdb_assert (*slot == NULL);
23020 *slot = map;
23021
23022 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23023 per_cu->offset.sect_off);
23024 obstack_grow (&cu_list, val, 8);
23025 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23026 obstack_grow (&cu_list, val, 8);
23027 }
23028
23029 /* Dump the address map. */
23030 write_address_map (objfile, &addr_obstack, cu_index_htab);
23031
23032 /* Write out the .debug_type entries, if any. */
23033 if (dwarf2_per_objfile->signatured_types)
23034 {
23035 struct signatured_type_index_data sig_data;
23036
23037 sig_data.objfile = objfile;
23038 sig_data.symtab = symtab;
23039 sig_data.types_list = &types_cu_list;
23040 sig_data.psyms_seen = psyms_seen;
23041 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23042 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23043 write_one_signatured_type, &sig_data);
23044 }
23045
23046 /* Now that we've processed all symbols we can shrink their cu_indices
23047 lists. */
23048 uniquify_cu_indices (symtab);
23049
23050 obstack_init (&constant_pool);
23051 make_cleanup_obstack_free (&constant_pool);
23052 obstack_init (&symtab_obstack);
23053 make_cleanup_obstack_free (&symtab_obstack);
23054 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23055
23056 obstack_init (&contents);
23057 make_cleanup_obstack_free (&contents);
23058 size_of_contents = 6 * sizeof (offset_type);
23059 total_len = size_of_contents;
23060
23061 /* The version number. */
23062 val = MAYBE_SWAP (8);
23063 obstack_grow (&contents, &val, sizeof (val));
23064
23065 /* The offset of the CU list from the start of the file. */
23066 val = MAYBE_SWAP (total_len);
23067 obstack_grow (&contents, &val, sizeof (val));
23068 total_len += obstack_object_size (&cu_list);
23069
23070 /* The offset of the types CU list from the start of the file. */
23071 val = MAYBE_SWAP (total_len);
23072 obstack_grow (&contents, &val, sizeof (val));
23073 total_len += obstack_object_size (&types_cu_list);
23074
23075 /* The offset of the address table from the start of the file. */
23076 val = MAYBE_SWAP (total_len);
23077 obstack_grow (&contents, &val, sizeof (val));
23078 total_len += obstack_object_size (&addr_obstack);
23079
23080 /* The offset of the symbol table from the start of the file. */
23081 val = MAYBE_SWAP (total_len);
23082 obstack_grow (&contents, &val, sizeof (val));
23083 total_len += obstack_object_size (&symtab_obstack);
23084
23085 /* The offset of the constant pool from the start of the file. */
23086 val = MAYBE_SWAP (total_len);
23087 obstack_grow (&contents, &val, sizeof (val));
23088 total_len += obstack_object_size (&constant_pool);
23089
23090 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23091
23092 write_obstack (out_file, &contents);
23093 write_obstack (out_file, &cu_list);
23094 write_obstack (out_file, &types_cu_list);
23095 write_obstack (out_file, &addr_obstack);
23096 write_obstack (out_file, &symtab_obstack);
23097 write_obstack (out_file, &constant_pool);
23098
23099 fclose (out_file);
23100
23101 /* We want to keep the file, so we set cleanup_filename to NULL
23102 here. See unlink_if_set. */
23103 cleanup_filename = NULL;
23104
23105 do_cleanups (cleanup);
23106 }
23107
23108 /* Implementation of the `save gdb-index' command.
23109
23110 Note that the file format used by this command is documented in the
23111 GDB manual. Any changes here must be documented there. */
23112
23113 static void
23114 save_gdb_index_command (char *arg, int from_tty)
23115 {
23116 struct objfile *objfile;
23117
23118 if (!arg || !*arg)
23119 error (_("usage: save gdb-index DIRECTORY"));
23120
23121 ALL_OBJFILES (objfile)
23122 {
23123 struct stat st;
23124
23125 /* If the objfile does not correspond to an actual file, skip it. */
23126 if (stat (objfile_name (objfile), &st) < 0)
23127 continue;
23128
23129 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23130 if (dwarf2_per_objfile)
23131 {
23132 volatile struct gdb_exception except;
23133
23134 TRY_CATCH (except, RETURN_MASK_ERROR)
23135 {
23136 write_psymtabs_to_index (objfile, arg);
23137 }
23138 if (except.reason < 0)
23139 exception_fprintf (gdb_stderr, except,
23140 _("Error while writing index for `%s': "),
23141 objfile_name (objfile));
23142 }
23143 }
23144 }
23145
23146 \f
23147
23148 int dwarf2_always_disassemble;
23149
23150 static void
23151 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23152 struct cmd_list_element *c, const char *value)
23153 {
23154 fprintf_filtered (file,
23155 _("Whether to always disassemble "
23156 "DWARF expressions is %s.\n"),
23157 value);
23158 }
23159
23160 static void
23161 show_check_physname (struct ui_file *file, int from_tty,
23162 struct cmd_list_element *c, const char *value)
23163 {
23164 fprintf_filtered (file,
23165 _("Whether to check \"physname\" is %s.\n"),
23166 value);
23167 }
23168
23169 void _initialize_dwarf2_read (void);
23170
23171 void
23172 _initialize_dwarf2_read (void)
23173 {
23174 struct cmd_list_element *c;
23175
23176 dwarf2_objfile_data_key
23177 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23178
23179 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23180 Set DWARF 2 specific variables.\n\
23181 Configure DWARF 2 variables such as the cache size"),
23182 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23183 0/*allow-unknown*/, &maintenance_set_cmdlist);
23184
23185 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23186 Show DWARF 2 specific variables\n\
23187 Show DWARF 2 variables such as the cache size"),
23188 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23189 0/*allow-unknown*/, &maintenance_show_cmdlist);
23190
23191 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23192 &dwarf2_max_cache_age, _("\
23193 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23194 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23195 A higher limit means that cached compilation units will be stored\n\
23196 in memory longer, and more total memory will be used. Zero disables\n\
23197 caching, which can slow down startup."),
23198 NULL,
23199 show_dwarf2_max_cache_age,
23200 &set_dwarf2_cmdlist,
23201 &show_dwarf2_cmdlist);
23202
23203 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23204 &dwarf2_always_disassemble, _("\
23205 Set whether `info address' always disassembles DWARF expressions."), _("\
23206 Show whether `info address' always disassembles DWARF expressions."), _("\
23207 When enabled, DWARF expressions are always printed in an assembly-like\n\
23208 syntax. When disabled, expressions will be printed in a more\n\
23209 conversational style, when possible."),
23210 NULL,
23211 show_dwarf2_always_disassemble,
23212 &set_dwarf2_cmdlist,
23213 &show_dwarf2_cmdlist);
23214
23215 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23216 Set debugging of the dwarf2 reader."), _("\
23217 Show debugging of the dwarf2 reader."), _("\
23218 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23219 reading and symtab expansion. A value of 1 (one) provides basic\n\
23220 information. A value greater than 1 provides more verbose information."),
23221 NULL,
23222 NULL,
23223 &setdebuglist, &showdebuglist);
23224
23225 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23226 Set debugging of the dwarf2 DIE reader."), _("\
23227 Show debugging of the dwarf2 DIE reader."), _("\
23228 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23229 The value is the maximum depth to print."),
23230 NULL,
23231 NULL,
23232 &setdebuglist, &showdebuglist);
23233
23234 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23235 Set cross-checking of \"physname\" code against demangler."), _("\
23236 Show cross-checking of \"physname\" code against demangler."), _("\
23237 When enabled, GDB's internal \"physname\" code is checked against\n\
23238 the demangler."),
23239 NULL, show_check_physname,
23240 &setdebuglist, &showdebuglist);
23241
23242 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23243 no_class, &use_deprecated_index_sections, _("\
23244 Set whether to use deprecated gdb_index sections."), _("\
23245 Show whether to use deprecated gdb_index sections."), _("\
23246 When enabled, deprecated .gdb_index sections are used anyway.\n\
23247 Normally they are ignored either because of a missing feature or\n\
23248 performance issue.\n\
23249 Warning: This option must be enabled before gdb reads the file."),
23250 NULL,
23251 NULL,
23252 &setlist, &showlist);
23253
23254 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23255 _("\
23256 Save a gdb-index file.\n\
23257 Usage: save gdb-index DIRECTORY"),
23258 &save_cmdlist);
23259 set_cmd_completer (c, filename_completer);
23260
23261 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23262 &dwarf2_locexpr_funcs);
23263 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23264 &dwarf2_loclist_funcs);
23265
23266 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23267 &dwarf2_block_frame_base_locexpr_funcs);
23268 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23269 &dwarf2_block_frame_base_loclist_funcs);
23270 }
This page took 0.736511 seconds and 4 git commands to generate.