Remove some cleanups from dwarf2read.c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84
85 typedef struct symbol *symbolp;
86 DEF_VEC_P (symbolp);
87
88 /* When == 1, print basic high level tracing messages.
89 When > 1, be more verbose.
90 This is in contrast to the low level DIE reading of dwarf_die_debug. */
91 static unsigned int dwarf_read_debug = 0;
92
93 /* When non-zero, dump DIEs after they are read in. */
94 static unsigned int dwarf_die_debug = 0;
95
96 /* When non-zero, dump line number entries as they are read in. */
97 static unsigned int dwarf_line_debug = 0;
98
99 /* When non-zero, cross-check physname against demangler. */
100 static int check_physname = 0;
101
102 /* When non-zero, do not reject deprecated .gdb_index sections. */
103 static int use_deprecated_index_sections = 0;
104
105 static const struct objfile_data *dwarf2_objfile_data_key;
106
107 /* The "aclass" indices for various kinds of computed DWARF symbols. */
108
109 static int dwarf2_locexpr_index;
110 static int dwarf2_loclist_index;
111 static int dwarf2_locexpr_block_index;
112 static int dwarf2_loclist_block_index;
113
114 /* A descriptor for dwarf sections.
115
116 S.ASECTION, SIZE are typically initialized when the objfile is first
117 scanned. BUFFER, READIN are filled in later when the section is read.
118 If the section contained compressed data then SIZE is updated to record
119 the uncompressed size of the section.
120
121 DWP file format V2 introduces a wrinkle that is easiest to handle by
122 creating the concept of virtual sections contained within a real section.
123 In DWP V2 the sections of the input DWO files are concatenated together
124 into one section, but section offsets are kept relative to the original
125 input section.
126 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
127 the real section this "virtual" section is contained in, and BUFFER,SIZE
128 describe the virtual section. */
129
130 struct dwarf2_section_info
131 {
132 union
133 {
134 /* If this is a real section, the bfd section. */
135 asection *section;
136 /* If this is a virtual section, pointer to the containing ("real")
137 section. */
138 struct dwarf2_section_info *containing_section;
139 } s;
140 /* Pointer to section data, only valid if readin. */
141 const gdb_byte *buffer;
142 /* The size of the section, real or virtual. */
143 bfd_size_type size;
144 /* If this is a virtual section, the offset in the real section.
145 Only valid if is_virtual. */
146 bfd_size_type virtual_offset;
147 /* True if we have tried to read this section. */
148 char readin;
149 /* True if this is a virtual section, False otherwise.
150 This specifies which of s.section and s.containing_section to use. */
151 char is_virtual;
152 };
153
154 typedef struct dwarf2_section_info dwarf2_section_info_def;
155 DEF_VEC_O (dwarf2_section_info_def);
156
157 /* All offsets in the index are of this type. It must be
158 architecture-independent. */
159 typedef uint32_t offset_type;
160
161 DEF_VEC_I (offset_type);
162
163 /* Ensure only legit values are used. */
164 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
165 do { \
166 gdb_assert ((unsigned int) (value) <= 1); \
167 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure only legit values are used. */
171 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
174 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
175 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
176 } while (0)
177
178 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
179 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
180 do { \
181 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
182 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
183 } while (0)
184
185 /* A description of the mapped index. The file format is described in
186 a comment by the code that writes the index. */
187 struct mapped_index
188 {
189 /* Index data format version. */
190 int version;
191
192 /* The total length of the buffer. */
193 off_t total_size;
194
195 /* A pointer to the address table data. */
196 const gdb_byte *address_table;
197
198 /* Size of the address table data in bytes. */
199 offset_type address_table_size;
200
201 /* The symbol table, implemented as a hash table. */
202 const offset_type *symbol_table;
203
204 /* Size in slots, each slot is 2 offset_types. */
205 offset_type symbol_table_slots;
206
207 /* A pointer to the constant pool. */
208 const char *constant_pool;
209 };
210
211 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
212 DEF_VEC_P (dwarf2_per_cu_ptr);
213
214 struct tu_stats
215 {
216 int nr_uniq_abbrev_tables;
217 int nr_symtabs;
218 int nr_symtab_sharers;
219 int nr_stmt_less_type_units;
220 int nr_all_type_units_reallocs;
221 };
222
223 /* Collection of data recorded per objfile.
224 This hangs off of dwarf2_objfile_data_key. */
225
226 struct dwarf2_per_objfile
227 {
228 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
229 dwarf2 section names, or is NULL if the standard ELF names are
230 used. */
231 dwarf2_per_objfile (struct objfile *objfile,
232 const dwarf2_debug_sections *names);
233
234 ~dwarf2_per_objfile ();
235
236 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
237
238 /* Free all cached compilation units. */
239 void free_cached_comp_units ();
240 private:
241 /* This function is mapped across the sections and remembers the
242 offset and size of each of the debugging sections we are
243 interested in. */
244 void locate_sections (bfd *abfd, asection *sectp,
245 const dwarf2_debug_sections &names);
246
247 public:
248 dwarf2_section_info info {};
249 dwarf2_section_info abbrev {};
250 dwarf2_section_info line {};
251 dwarf2_section_info loc {};
252 dwarf2_section_info loclists {};
253 dwarf2_section_info macinfo {};
254 dwarf2_section_info macro {};
255 dwarf2_section_info str {};
256 dwarf2_section_info line_str {};
257 dwarf2_section_info ranges {};
258 dwarf2_section_info rnglists {};
259 dwarf2_section_info addr {};
260 dwarf2_section_info frame {};
261 dwarf2_section_info eh_frame {};
262 dwarf2_section_info gdb_index {};
263
264 VEC (dwarf2_section_info_def) *types = NULL;
265
266 /* Back link. */
267 struct objfile *objfile = NULL;
268
269 /* Table of all the compilation units. This is used to locate
270 the target compilation unit of a particular reference. */
271 struct dwarf2_per_cu_data **all_comp_units = NULL;
272
273 /* The number of compilation units in ALL_COMP_UNITS. */
274 int n_comp_units = 0;
275
276 /* The number of .debug_types-related CUs. */
277 int n_type_units = 0;
278
279 /* The number of elements allocated in all_type_units.
280 If there are skeleton-less TUs, we add them to all_type_units lazily. */
281 int n_allocated_type_units = 0;
282
283 /* The .debug_types-related CUs (TUs).
284 This is stored in malloc space because we may realloc it. */
285 struct signatured_type **all_type_units = NULL;
286
287 /* Table of struct type_unit_group objects.
288 The hash key is the DW_AT_stmt_list value. */
289 htab_t type_unit_groups {};
290
291 /* A table mapping .debug_types signatures to its signatured_type entry.
292 This is NULL if the .debug_types section hasn't been read in yet. */
293 htab_t signatured_types {};
294
295 /* Type unit statistics, to see how well the scaling improvements
296 are doing. */
297 struct tu_stats tu_stats {};
298
299 /* A chain of compilation units that are currently read in, so that
300 they can be freed later. */
301 dwarf2_per_cu_data *read_in_chain = NULL;
302
303 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
304 This is NULL if the table hasn't been allocated yet. */
305 htab_t dwo_files {};
306
307 /* True if we've checked for whether there is a DWP file. */
308 bool dwp_checked = false;
309
310 /* The DWP file if there is one, or NULL. */
311 struct dwp_file *dwp_file = NULL;
312
313 /* The shared '.dwz' file, if one exists. This is used when the
314 original data was compressed using 'dwz -m'. */
315 struct dwz_file *dwz_file = NULL;
316
317 /* A flag indicating whether this objfile has a section loaded at a
318 VMA of 0. */
319 bool has_section_at_zero = false;
320
321 /* True if we are using the mapped index,
322 or we are faking it for OBJF_READNOW's sake. */
323 bool using_index = false;
324
325 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
326 mapped_index *index_table = NULL;
327
328 /* When using index_table, this keeps track of all quick_file_names entries.
329 TUs typically share line table entries with a CU, so we maintain a
330 separate table of all line table entries to support the sharing.
331 Note that while there can be way more TUs than CUs, we've already
332 sorted all the TUs into "type unit groups", grouped by their
333 DW_AT_stmt_list value. Therefore the only sharing done here is with a
334 CU and its associated TU group if there is one. */
335 htab_t quick_file_names_table {};
336
337 /* Set during partial symbol reading, to prevent queueing of full
338 symbols. */
339 bool reading_partial_symbols = false;
340
341 /* Table mapping type DIEs to their struct type *.
342 This is NULL if not allocated yet.
343 The mapping is done via (CU/TU + DIE offset) -> type. */
344 htab_t die_type_hash {};
345
346 /* The CUs we recently read. */
347 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
348
349 /* Table containing line_header indexed by offset and offset_in_dwz. */
350 htab_t line_header_hash {};
351
352 /* Table containing all filenames. This is an optional because the
353 table is lazily constructed on first access. */
354 gdb::optional<filename_seen_cache> filenames_cache;
355 };
356
357 static struct dwarf2_per_objfile *dwarf2_per_objfile;
358
359 /* Default names of the debugging sections. */
360
361 /* Note that if the debugging section has been compressed, it might
362 have a name like .zdebug_info. */
363
364 static const struct dwarf2_debug_sections dwarf2_elf_names =
365 {
366 { ".debug_info", ".zdebug_info" },
367 { ".debug_abbrev", ".zdebug_abbrev" },
368 { ".debug_line", ".zdebug_line" },
369 { ".debug_loc", ".zdebug_loc" },
370 { ".debug_loclists", ".zdebug_loclists" },
371 { ".debug_macinfo", ".zdebug_macinfo" },
372 { ".debug_macro", ".zdebug_macro" },
373 { ".debug_str", ".zdebug_str" },
374 { ".debug_line_str", ".zdebug_line_str" },
375 { ".debug_ranges", ".zdebug_ranges" },
376 { ".debug_rnglists", ".zdebug_rnglists" },
377 { ".debug_types", ".zdebug_types" },
378 { ".debug_addr", ".zdebug_addr" },
379 { ".debug_frame", ".zdebug_frame" },
380 { ".eh_frame", NULL },
381 { ".gdb_index", ".zgdb_index" },
382 23
383 };
384
385 /* List of DWO/DWP sections. */
386
387 static const struct dwop_section_names
388 {
389 struct dwarf2_section_names abbrev_dwo;
390 struct dwarf2_section_names info_dwo;
391 struct dwarf2_section_names line_dwo;
392 struct dwarf2_section_names loc_dwo;
393 struct dwarf2_section_names loclists_dwo;
394 struct dwarf2_section_names macinfo_dwo;
395 struct dwarf2_section_names macro_dwo;
396 struct dwarf2_section_names str_dwo;
397 struct dwarf2_section_names str_offsets_dwo;
398 struct dwarf2_section_names types_dwo;
399 struct dwarf2_section_names cu_index;
400 struct dwarf2_section_names tu_index;
401 }
402 dwop_section_names =
403 {
404 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
405 { ".debug_info.dwo", ".zdebug_info.dwo" },
406 { ".debug_line.dwo", ".zdebug_line.dwo" },
407 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
408 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
409 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
410 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
411 { ".debug_str.dwo", ".zdebug_str.dwo" },
412 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
413 { ".debug_types.dwo", ".zdebug_types.dwo" },
414 { ".debug_cu_index", ".zdebug_cu_index" },
415 { ".debug_tu_index", ".zdebug_tu_index" },
416 };
417
418 /* local data types */
419
420 /* The data in a compilation unit header, after target2host
421 translation, looks like this. */
422 struct comp_unit_head
423 {
424 unsigned int length;
425 short version;
426 unsigned char addr_size;
427 unsigned char signed_addr_p;
428 sect_offset abbrev_sect_off;
429
430 /* Size of file offsets; either 4 or 8. */
431 unsigned int offset_size;
432
433 /* Size of the length field; either 4 or 12. */
434 unsigned int initial_length_size;
435
436 enum dwarf_unit_type unit_type;
437
438 /* Offset to the first byte of this compilation unit header in the
439 .debug_info section, for resolving relative reference dies. */
440 sect_offset sect_off;
441
442 /* Offset to first die in this cu from the start of the cu.
443 This will be the first byte following the compilation unit header. */
444 cu_offset first_die_cu_offset;
445
446 /* 64-bit signature of this type unit - it is valid only for
447 UNIT_TYPE DW_UT_type. */
448 ULONGEST signature;
449
450 /* For types, offset in the type's DIE of the type defined by this TU. */
451 cu_offset type_cu_offset_in_tu;
452 };
453
454 /* Type used for delaying computation of method physnames.
455 See comments for compute_delayed_physnames. */
456 struct delayed_method_info
457 {
458 /* The type to which the method is attached, i.e., its parent class. */
459 struct type *type;
460
461 /* The index of the method in the type's function fieldlists. */
462 int fnfield_index;
463
464 /* The index of the method in the fieldlist. */
465 int index;
466
467 /* The name of the DIE. */
468 const char *name;
469
470 /* The DIE associated with this method. */
471 struct die_info *die;
472 };
473
474 typedef struct delayed_method_info delayed_method_info;
475 DEF_VEC_O (delayed_method_info);
476
477 /* Internal state when decoding a particular compilation unit. */
478 struct dwarf2_cu
479 {
480 /* The objfile containing this compilation unit. */
481 struct objfile *objfile;
482
483 /* The header of the compilation unit. */
484 struct comp_unit_head header;
485
486 /* Base address of this compilation unit. */
487 CORE_ADDR base_address;
488
489 /* Non-zero if base_address has been set. */
490 int base_known;
491
492 /* The language we are debugging. */
493 enum language language;
494 const struct language_defn *language_defn;
495
496 const char *producer;
497
498 /* The generic symbol table building routines have separate lists for
499 file scope symbols and all all other scopes (local scopes). So
500 we need to select the right one to pass to add_symbol_to_list().
501 We do it by keeping a pointer to the correct list in list_in_scope.
502
503 FIXME: The original dwarf code just treated the file scope as the
504 first local scope, and all other local scopes as nested local
505 scopes, and worked fine. Check to see if we really need to
506 distinguish these in buildsym.c. */
507 struct pending **list_in_scope;
508
509 /* The abbrev table for this CU.
510 Normally this points to the abbrev table in the objfile.
511 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
512 struct abbrev_table *abbrev_table;
513
514 /* Hash table holding all the loaded partial DIEs
515 with partial_die->offset.SECT_OFF as hash. */
516 htab_t partial_dies;
517
518 /* Storage for things with the same lifetime as this read-in compilation
519 unit, including partial DIEs. */
520 struct obstack comp_unit_obstack;
521
522 /* When multiple dwarf2_cu structures are living in memory, this field
523 chains them all together, so that they can be released efficiently.
524 We will probably also want a generation counter so that most-recently-used
525 compilation units are cached... */
526 struct dwarf2_per_cu_data *read_in_chain;
527
528 /* Backlink to our per_cu entry. */
529 struct dwarf2_per_cu_data *per_cu;
530
531 /* How many compilation units ago was this CU last referenced? */
532 int last_used;
533
534 /* A hash table of DIE cu_offset for following references with
535 die_info->offset.sect_off as hash. */
536 htab_t die_hash;
537
538 /* Full DIEs if read in. */
539 struct die_info *dies;
540
541 /* A set of pointers to dwarf2_per_cu_data objects for compilation
542 units referenced by this one. Only set during full symbol processing;
543 partial symbol tables do not have dependencies. */
544 htab_t dependencies;
545
546 /* Header data from the line table, during full symbol processing. */
547 struct line_header *line_header;
548 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
549 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
550 this is the DW_TAG_compile_unit die for this CU. We'll hold on
551 to the line header as long as this DIE is being processed. See
552 process_die_scope. */
553 die_info *line_header_die_owner;
554
555 /* A list of methods which need to have physnames computed
556 after all type information has been read. */
557 VEC (delayed_method_info) *method_list;
558
559 /* To be copied to symtab->call_site_htab. */
560 htab_t call_site_htab;
561
562 /* Non-NULL if this CU came from a DWO file.
563 There is an invariant here that is important to remember:
564 Except for attributes copied from the top level DIE in the "main"
565 (or "stub") file in preparation for reading the DWO file
566 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
567 Either there isn't a DWO file (in which case this is NULL and the point
568 is moot), or there is and either we're not going to read it (in which
569 case this is NULL) or there is and we are reading it (in which case this
570 is non-NULL). */
571 struct dwo_unit *dwo_unit;
572
573 /* The DW_AT_addr_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE. */
576 ULONGEST addr_base;
577
578 /* The DW_AT_ranges_base attribute if present, zero otherwise
579 (zero is a valid value though).
580 Note this value comes from the Fission stub CU/TU's DIE.
581 Also note that the value is zero in the non-DWO case so this value can
582 be used without needing to know whether DWO files are in use or not.
583 N.B. This does not apply to DW_AT_ranges appearing in
584 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
585 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
586 DW_AT_ranges_base *would* have to be applied, and we'd have to care
587 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
588 ULONGEST ranges_base;
589
590 /* Mark used when releasing cached dies. */
591 unsigned int mark : 1;
592
593 /* This CU references .debug_loc. See the symtab->locations_valid field.
594 This test is imperfect as there may exist optimized debug code not using
595 any location list and still facing inlining issues if handled as
596 unoptimized code. For a future better test see GCC PR other/32998. */
597 unsigned int has_loclist : 1;
598
599 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
600 if all the producer_is_* fields are valid. This information is cached
601 because profiling CU expansion showed excessive time spent in
602 producer_is_gxx_lt_4_6. */
603 unsigned int checked_producer : 1;
604 unsigned int producer_is_gxx_lt_4_6 : 1;
605 unsigned int producer_is_gcc_lt_4_3 : 1;
606 unsigned int producer_is_icc_lt_14 : 1;
607
608 /* When set, the file that we're processing is known to have
609 debugging info for C++ namespaces. GCC 3.3.x did not produce
610 this information, but later versions do. */
611
612 unsigned int processing_has_namespace_info : 1;
613 };
614
615 /* Persistent data held for a compilation unit, even when not
616 processing it. We put a pointer to this structure in the
617 read_symtab_private field of the psymtab. */
618
619 struct dwarf2_per_cu_data
620 {
621 /* The start offset and length of this compilation unit.
622 NOTE: Unlike comp_unit_head.length, this length includes
623 initial_length_size.
624 If the DIE refers to a DWO file, this is always of the original die,
625 not the DWO file. */
626 sect_offset sect_off;
627 unsigned int length;
628
629 /* DWARF standard version this data has been read from (such as 4 or 5). */
630 short dwarf_version;
631
632 /* Flag indicating this compilation unit will be read in before
633 any of the current compilation units are processed. */
634 unsigned int queued : 1;
635
636 /* This flag will be set when reading partial DIEs if we need to load
637 absolutely all DIEs for this compilation unit, instead of just the ones
638 we think are interesting. It gets set if we look for a DIE in the
639 hash table and don't find it. */
640 unsigned int load_all_dies : 1;
641
642 /* Non-zero if this CU is from .debug_types.
643 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
644 this is non-zero. */
645 unsigned int is_debug_types : 1;
646
647 /* Non-zero if this CU is from the .dwz file. */
648 unsigned int is_dwz : 1;
649
650 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
651 This flag is only valid if is_debug_types is true.
652 We can't read a CU directly from a DWO file: There are required
653 attributes in the stub. */
654 unsigned int reading_dwo_directly : 1;
655
656 /* Non-zero if the TU has been read.
657 This is used to assist the "Stay in DWO Optimization" for Fission:
658 When reading a DWO, it's faster to read TUs from the DWO instead of
659 fetching them from random other DWOs (due to comdat folding).
660 If the TU has already been read, the optimization is unnecessary
661 (and unwise - we don't want to change where gdb thinks the TU lives
662 "midflight").
663 This flag is only valid if is_debug_types is true. */
664 unsigned int tu_read : 1;
665
666 /* The section this CU/TU lives in.
667 If the DIE refers to a DWO file, this is always the original die,
668 not the DWO file. */
669 struct dwarf2_section_info *section;
670
671 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
672 of the CU cache it gets reset to NULL again. This is left as NULL for
673 dummy CUs (a CU header, but nothing else). */
674 struct dwarf2_cu *cu;
675
676 /* The corresponding objfile.
677 Normally we can get the objfile from dwarf2_per_objfile.
678 However we can enter this file with just a "per_cu" handle. */
679 struct objfile *objfile;
680
681 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
682 is active. Otherwise, the 'psymtab' field is active. */
683 union
684 {
685 /* The partial symbol table associated with this compilation unit,
686 or NULL for unread partial units. */
687 struct partial_symtab *psymtab;
688
689 /* Data needed by the "quick" functions. */
690 struct dwarf2_per_cu_quick_data *quick;
691 } v;
692
693 /* The CUs we import using DW_TAG_imported_unit. This is filled in
694 while reading psymtabs, used to compute the psymtab dependencies,
695 and then cleared. Then it is filled in again while reading full
696 symbols, and only deleted when the objfile is destroyed.
697
698 This is also used to work around a difference between the way gold
699 generates .gdb_index version <=7 and the way gdb does. Arguably this
700 is a gold bug. For symbols coming from TUs, gold records in the index
701 the CU that includes the TU instead of the TU itself. This breaks
702 dw2_lookup_symbol: It assumes that if the index says symbol X lives
703 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
704 will find X. Alas TUs live in their own symtab, so after expanding CU Y
705 we need to look in TU Z to find X. Fortunately, this is akin to
706 DW_TAG_imported_unit, so we just use the same mechanism: For
707 .gdb_index version <=7 this also records the TUs that the CU referred
708 to. Concurrently with this change gdb was modified to emit version 8
709 indices so we only pay a price for gold generated indices.
710 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
711 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
712 };
713
714 /* Entry in the signatured_types hash table. */
715
716 struct signatured_type
717 {
718 /* The "per_cu" object of this type.
719 This struct is used iff per_cu.is_debug_types.
720 N.B.: This is the first member so that it's easy to convert pointers
721 between them. */
722 struct dwarf2_per_cu_data per_cu;
723
724 /* The type's signature. */
725 ULONGEST signature;
726
727 /* Offset in the TU of the type's DIE, as read from the TU header.
728 If this TU is a DWO stub and the definition lives in a DWO file
729 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
730 cu_offset type_offset_in_tu;
731
732 /* Offset in the section of the type's DIE.
733 If the definition lives in a DWO file, this is the offset in the
734 .debug_types.dwo section.
735 The value is zero until the actual value is known.
736 Zero is otherwise not a valid section offset. */
737 sect_offset type_offset_in_section;
738
739 /* Type units are grouped by their DW_AT_stmt_list entry so that they
740 can share them. This points to the containing symtab. */
741 struct type_unit_group *type_unit_group;
742
743 /* The type.
744 The first time we encounter this type we fully read it in and install it
745 in the symbol tables. Subsequent times we only need the type. */
746 struct type *type;
747
748 /* Containing DWO unit.
749 This field is valid iff per_cu.reading_dwo_directly. */
750 struct dwo_unit *dwo_unit;
751 };
752
753 typedef struct signatured_type *sig_type_ptr;
754 DEF_VEC_P (sig_type_ptr);
755
756 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
757 This includes type_unit_group and quick_file_names. */
758
759 struct stmt_list_hash
760 {
761 /* The DWO unit this table is from or NULL if there is none. */
762 struct dwo_unit *dwo_unit;
763
764 /* Offset in .debug_line or .debug_line.dwo. */
765 sect_offset line_sect_off;
766 };
767
768 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
769 an object of this type. */
770
771 struct type_unit_group
772 {
773 /* dwarf2read.c's main "handle" on a TU symtab.
774 To simplify things we create an artificial CU that "includes" all the
775 type units using this stmt_list so that the rest of the code still has
776 a "per_cu" handle on the symtab.
777 This PER_CU is recognized by having no section. */
778 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
779 struct dwarf2_per_cu_data per_cu;
780
781 /* The TUs that share this DW_AT_stmt_list entry.
782 This is added to while parsing type units to build partial symtabs,
783 and is deleted afterwards and not used again. */
784 VEC (sig_type_ptr) *tus;
785
786 /* The compunit symtab.
787 Type units in a group needn't all be defined in the same source file,
788 so we create an essentially anonymous symtab as the compunit symtab. */
789 struct compunit_symtab *compunit_symtab;
790
791 /* The data used to construct the hash key. */
792 struct stmt_list_hash hash;
793
794 /* The number of symtabs from the line header.
795 The value here must match line_header.num_file_names. */
796 unsigned int num_symtabs;
797
798 /* The symbol tables for this TU (obtained from the files listed in
799 DW_AT_stmt_list).
800 WARNING: The order of entries here must match the order of entries
801 in the line header. After the first TU using this type_unit_group, the
802 line header for the subsequent TUs is recreated from this. This is done
803 because we need to use the same symtabs for each TU using the same
804 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
805 there's no guarantee the line header doesn't have duplicate entries. */
806 struct symtab **symtabs;
807 };
808
809 /* These sections are what may appear in a (real or virtual) DWO file. */
810
811 struct dwo_sections
812 {
813 struct dwarf2_section_info abbrev;
814 struct dwarf2_section_info line;
815 struct dwarf2_section_info loc;
816 struct dwarf2_section_info loclists;
817 struct dwarf2_section_info macinfo;
818 struct dwarf2_section_info macro;
819 struct dwarf2_section_info str;
820 struct dwarf2_section_info str_offsets;
821 /* In the case of a virtual DWO file, these two are unused. */
822 struct dwarf2_section_info info;
823 VEC (dwarf2_section_info_def) *types;
824 };
825
826 /* CUs/TUs in DWP/DWO files. */
827
828 struct dwo_unit
829 {
830 /* Backlink to the containing struct dwo_file. */
831 struct dwo_file *dwo_file;
832
833 /* The "id" that distinguishes this CU/TU.
834 .debug_info calls this "dwo_id", .debug_types calls this "signature".
835 Since signatures came first, we stick with it for consistency. */
836 ULONGEST signature;
837
838 /* The section this CU/TU lives in, in the DWO file. */
839 struct dwarf2_section_info *section;
840
841 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
842 sect_offset sect_off;
843 unsigned int length;
844
845 /* For types, offset in the type's DIE of the type defined by this TU. */
846 cu_offset type_offset_in_tu;
847 };
848
849 /* include/dwarf2.h defines the DWP section codes.
850 It defines a max value but it doesn't define a min value, which we
851 use for error checking, so provide one. */
852
853 enum dwp_v2_section_ids
854 {
855 DW_SECT_MIN = 1
856 };
857
858 /* Data for one DWO file.
859
860 This includes virtual DWO files (a virtual DWO file is a DWO file as it
861 appears in a DWP file). DWP files don't really have DWO files per se -
862 comdat folding of types "loses" the DWO file they came from, and from
863 a high level view DWP files appear to contain a mass of random types.
864 However, to maintain consistency with the non-DWP case we pretend DWP
865 files contain virtual DWO files, and we assign each TU with one virtual
866 DWO file (generally based on the line and abbrev section offsets -
867 a heuristic that seems to work in practice). */
868
869 struct dwo_file
870 {
871 /* The DW_AT_GNU_dwo_name attribute.
872 For virtual DWO files the name is constructed from the section offsets
873 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
874 from related CU+TUs. */
875 const char *dwo_name;
876
877 /* The DW_AT_comp_dir attribute. */
878 const char *comp_dir;
879
880 /* The bfd, when the file is open. Otherwise this is NULL.
881 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
882 bfd *dbfd;
883
884 /* The sections that make up this DWO file.
885 Remember that for virtual DWO files in DWP V2, these are virtual
886 sections (for lack of a better name). */
887 struct dwo_sections sections;
888
889 /* The CUs in the file.
890 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
891 an extension to handle LLVM's Link Time Optimization output (where
892 multiple source files may be compiled into a single object/dwo pair). */
893 htab_t cus;
894
895 /* Table of TUs in the file.
896 Each element is a struct dwo_unit. */
897 htab_t tus;
898 };
899
900 /* These sections are what may appear in a DWP file. */
901
902 struct dwp_sections
903 {
904 /* These are used by both DWP version 1 and 2. */
905 struct dwarf2_section_info str;
906 struct dwarf2_section_info cu_index;
907 struct dwarf2_section_info tu_index;
908
909 /* These are only used by DWP version 2 files.
910 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
911 sections are referenced by section number, and are not recorded here.
912 In DWP version 2 there is at most one copy of all these sections, each
913 section being (effectively) comprised of the concatenation of all of the
914 individual sections that exist in the version 1 format.
915 To keep the code simple we treat each of these concatenated pieces as a
916 section itself (a virtual section?). */
917 struct dwarf2_section_info abbrev;
918 struct dwarf2_section_info info;
919 struct dwarf2_section_info line;
920 struct dwarf2_section_info loc;
921 struct dwarf2_section_info macinfo;
922 struct dwarf2_section_info macro;
923 struct dwarf2_section_info str_offsets;
924 struct dwarf2_section_info types;
925 };
926
927 /* These sections are what may appear in a virtual DWO file in DWP version 1.
928 A virtual DWO file is a DWO file as it appears in a DWP file. */
929
930 struct virtual_v1_dwo_sections
931 {
932 struct dwarf2_section_info abbrev;
933 struct dwarf2_section_info line;
934 struct dwarf2_section_info loc;
935 struct dwarf2_section_info macinfo;
936 struct dwarf2_section_info macro;
937 struct dwarf2_section_info str_offsets;
938 /* Each DWP hash table entry records one CU or one TU.
939 That is recorded here, and copied to dwo_unit.section. */
940 struct dwarf2_section_info info_or_types;
941 };
942
943 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
944 In version 2, the sections of the DWO files are concatenated together
945 and stored in one section of that name. Thus each ELF section contains
946 several "virtual" sections. */
947
948 struct virtual_v2_dwo_sections
949 {
950 bfd_size_type abbrev_offset;
951 bfd_size_type abbrev_size;
952
953 bfd_size_type line_offset;
954 bfd_size_type line_size;
955
956 bfd_size_type loc_offset;
957 bfd_size_type loc_size;
958
959 bfd_size_type macinfo_offset;
960 bfd_size_type macinfo_size;
961
962 bfd_size_type macro_offset;
963 bfd_size_type macro_size;
964
965 bfd_size_type str_offsets_offset;
966 bfd_size_type str_offsets_size;
967
968 /* Each DWP hash table entry records one CU or one TU.
969 That is recorded here, and copied to dwo_unit.section. */
970 bfd_size_type info_or_types_offset;
971 bfd_size_type info_or_types_size;
972 };
973
974 /* Contents of DWP hash tables. */
975
976 struct dwp_hash_table
977 {
978 uint32_t version, nr_columns;
979 uint32_t nr_units, nr_slots;
980 const gdb_byte *hash_table, *unit_table;
981 union
982 {
983 struct
984 {
985 const gdb_byte *indices;
986 } v1;
987 struct
988 {
989 /* This is indexed by column number and gives the id of the section
990 in that column. */
991 #define MAX_NR_V2_DWO_SECTIONS \
992 (1 /* .debug_info or .debug_types */ \
993 + 1 /* .debug_abbrev */ \
994 + 1 /* .debug_line */ \
995 + 1 /* .debug_loc */ \
996 + 1 /* .debug_str_offsets */ \
997 + 1 /* .debug_macro or .debug_macinfo */)
998 int section_ids[MAX_NR_V2_DWO_SECTIONS];
999 const gdb_byte *offsets;
1000 const gdb_byte *sizes;
1001 } v2;
1002 } section_pool;
1003 };
1004
1005 /* Data for one DWP file. */
1006
1007 struct dwp_file
1008 {
1009 /* Name of the file. */
1010 const char *name;
1011
1012 /* File format version. */
1013 int version;
1014
1015 /* The bfd. */
1016 bfd *dbfd;
1017
1018 /* Section info for this file. */
1019 struct dwp_sections sections;
1020
1021 /* Table of CUs in the file. */
1022 const struct dwp_hash_table *cus;
1023
1024 /* Table of TUs in the file. */
1025 const struct dwp_hash_table *tus;
1026
1027 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1028 htab_t loaded_cus;
1029 htab_t loaded_tus;
1030
1031 /* Table to map ELF section numbers to their sections.
1032 This is only needed for the DWP V1 file format. */
1033 unsigned int num_sections;
1034 asection **elf_sections;
1035 };
1036
1037 /* This represents a '.dwz' file. */
1038
1039 struct dwz_file
1040 {
1041 /* A dwz file can only contain a few sections. */
1042 struct dwarf2_section_info abbrev;
1043 struct dwarf2_section_info info;
1044 struct dwarf2_section_info str;
1045 struct dwarf2_section_info line;
1046 struct dwarf2_section_info macro;
1047 struct dwarf2_section_info gdb_index;
1048
1049 /* The dwz's BFD. */
1050 bfd *dwz_bfd;
1051 };
1052
1053 /* Struct used to pass misc. parameters to read_die_and_children, et
1054 al. which are used for both .debug_info and .debug_types dies.
1055 All parameters here are unchanging for the life of the call. This
1056 struct exists to abstract away the constant parameters of die reading. */
1057
1058 struct die_reader_specs
1059 {
1060 /* The bfd of die_section. */
1061 bfd* abfd;
1062
1063 /* The CU of the DIE we are parsing. */
1064 struct dwarf2_cu *cu;
1065
1066 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1067 struct dwo_file *dwo_file;
1068
1069 /* The section the die comes from.
1070 This is either .debug_info or .debug_types, or the .dwo variants. */
1071 struct dwarf2_section_info *die_section;
1072
1073 /* die_section->buffer. */
1074 const gdb_byte *buffer;
1075
1076 /* The end of the buffer. */
1077 const gdb_byte *buffer_end;
1078
1079 /* The value of the DW_AT_comp_dir attribute. */
1080 const char *comp_dir;
1081 };
1082
1083 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1084 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1085 const gdb_byte *info_ptr,
1086 struct die_info *comp_unit_die,
1087 int has_children,
1088 void *data);
1089
1090 /* A 1-based directory index. This is a strong typedef to prevent
1091 accidentally using a directory index as a 0-based index into an
1092 array/vector. */
1093 enum class dir_index : unsigned int {};
1094
1095 /* Likewise, a 1-based file name index. */
1096 enum class file_name_index : unsigned int {};
1097
1098 struct file_entry
1099 {
1100 file_entry () = default;
1101
1102 file_entry (const char *name_, dir_index d_index_,
1103 unsigned int mod_time_, unsigned int length_)
1104 : name (name_),
1105 d_index (d_index_),
1106 mod_time (mod_time_),
1107 length (length_)
1108 {}
1109
1110 /* Return the include directory at D_INDEX stored in LH. Returns
1111 NULL if D_INDEX is out of bounds. */
1112 const char *include_dir (const line_header *lh) const;
1113
1114 /* The file name. Note this is an observing pointer. The memory is
1115 owned by debug_line_buffer. */
1116 const char *name {};
1117
1118 /* The directory index (1-based). */
1119 dir_index d_index {};
1120
1121 unsigned int mod_time {};
1122
1123 unsigned int length {};
1124
1125 /* True if referenced by the Line Number Program. */
1126 bool included_p {};
1127
1128 /* The associated symbol table, if any. */
1129 struct symtab *symtab {};
1130 };
1131
1132 /* The line number information for a compilation unit (found in the
1133 .debug_line section) begins with a "statement program header",
1134 which contains the following information. */
1135 struct line_header
1136 {
1137 line_header ()
1138 : offset_in_dwz {}
1139 {}
1140
1141 /* Add an entry to the include directory table. */
1142 void add_include_dir (const char *include_dir);
1143
1144 /* Add an entry to the file name table. */
1145 void add_file_name (const char *name, dir_index d_index,
1146 unsigned int mod_time, unsigned int length);
1147
1148 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1149 is out of bounds. */
1150 const char *include_dir_at (dir_index index) const
1151 {
1152 /* Convert directory index number (1-based) to vector index
1153 (0-based). */
1154 size_t vec_index = to_underlying (index) - 1;
1155
1156 if (vec_index >= include_dirs.size ())
1157 return NULL;
1158 return include_dirs[vec_index];
1159 }
1160
1161 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1162 is out of bounds. */
1163 file_entry *file_name_at (file_name_index index)
1164 {
1165 /* Convert file name index number (1-based) to vector index
1166 (0-based). */
1167 size_t vec_index = to_underlying (index) - 1;
1168
1169 if (vec_index >= file_names.size ())
1170 return NULL;
1171 return &file_names[vec_index];
1172 }
1173
1174 /* Const version of the above. */
1175 const file_entry *file_name_at (unsigned int index) const
1176 {
1177 if (index >= file_names.size ())
1178 return NULL;
1179 return &file_names[index];
1180 }
1181
1182 /* Offset of line number information in .debug_line section. */
1183 sect_offset sect_off {};
1184
1185 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1186 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1187
1188 unsigned int total_length {};
1189 unsigned short version {};
1190 unsigned int header_length {};
1191 unsigned char minimum_instruction_length {};
1192 unsigned char maximum_ops_per_instruction {};
1193 unsigned char default_is_stmt {};
1194 int line_base {};
1195 unsigned char line_range {};
1196 unsigned char opcode_base {};
1197
1198 /* standard_opcode_lengths[i] is the number of operands for the
1199 standard opcode whose value is i. This means that
1200 standard_opcode_lengths[0] is unused, and the last meaningful
1201 element is standard_opcode_lengths[opcode_base - 1]. */
1202 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1203
1204 /* The include_directories table. Note these are observing
1205 pointers. The memory is owned by debug_line_buffer. */
1206 std::vector<const char *> include_dirs;
1207
1208 /* The file_names table. */
1209 std::vector<file_entry> file_names;
1210
1211 /* The start and end of the statement program following this
1212 header. These point into dwarf2_per_objfile->line_buffer. */
1213 const gdb_byte *statement_program_start {}, *statement_program_end {};
1214 };
1215
1216 typedef std::unique_ptr<line_header> line_header_up;
1217
1218 const char *
1219 file_entry::include_dir (const line_header *lh) const
1220 {
1221 return lh->include_dir_at (d_index);
1222 }
1223
1224 /* When we construct a partial symbol table entry we only
1225 need this much information. */
1226 struct partial_die_info
1227 {
1228 /* Offset of this DIE. */
1229 sect_offset sect_off;
1230
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Assorted flags describing the data found in this DIE. */
1235 unsigned int has_children : 1;
1236 unsigned int is_external : 1;
1237 unsigned int is_declaration : 1;
1238 unsigned int has_type : 1;
1239 unsigned int has_specification : 1;
1240 unsigned int has_pc_info : 1;
1241 unsigned int may_be_inlined : 1;
1242
1243 /* This DIE has been marked DW_AT_main_subprogram. */
1244 unsigned int main_subprogram : 1;
1245
1246 /* Flag set if the SCOPE field of this structure has been
1247 computed. */
1248 unsigned int scope_set : 1;
1249
1250 /* Flag set if the DIE has a byte_size attribute. */
1251 unsigned int has_byte_size : 1;
1252
1253 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1254 unsigned int has_const_value : 1;
1255
1256 /* Flag set if any of the DIE's children are template arguments. */
1257 unsigned int has_template_arguments : 1;
1258
1259 /* Flag set if fixup_partial_die has been called on this die. */
1260 unsigned int fixup_called : 1;
1261
1262 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1263 unsigned int is_dwz : 1;
1264
1265 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1266 unsigned int spec_is_dwz : 1;
1267
1268 /* The name of this DIE. Normally the value of DW_AT_name, but
1269 sometimes a default name for unnamed DIEs. */
1270 const char *name;
1271
1272 /* The linkage name, if present. */
1273 const char *linkage_name;
1274
1275 /* The scope to prepend to our children. This is generally
1276 allocated on the comp_unit_obstack, so will disappear
1277 when this compilation unit leaves the cache. */
1278 const char *scope;
1279
1280 /* Some data associated with the partial DIE. The tag determines
1281 which field is live. */
1282 union
1283 {
1284 /* The location description associated with this DIE, if any. */
1285 struct dwarf_block *locdesc;
1286 /* The offset of an import, for DW_TAG_imported_unit. */
1287 sect_offset sect_off;
1288 } d;
1289
1290 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1291 CORE_ADDR lowpc;
1292 CORE_ADDR highpc;
1293
1294 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1295 DW_AT_sibling, if any. */
1296 /* NOTE: This member isn't strictly necessary, read_partial_die could
1297 return DW_AT_sibling values to its caller load_partial_dies. */
1298 const gdb_byte *sibling;
1299
1300 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1301 DW_AT_specification (or DW_AT_abstract_origin or
1302 DW_AT_extension). */
1303 sect_offset spec_offset;
1304
1305 /* Pointers to this DIE's parent, first child, and next sibling,
1306 if any. */
1307 struct partial_die_info *die_parent, *die_child, *die_sibling;
1308 };
1309
1310 /* This data structure holds the information of an abbrev. */
1311 struct abbrev_info
1312 {
1313 unsigned int number; /* number identifying abbrev */
1314 enum dwarf_tag tag; /* dwarf tag */
1315 unsigned short has_children; /* boolean */
1316 unsigned short num_attrs; /* number of attributes */
1317 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1318 struct abbrev_info *next; /* next in chain */
1319 };
1320
1321 struct attr_abbrev
1322 {
1323 ENUM_BITFIELD(dwarf_attribute) name : 16;
1324 ENUM_BITFIELD(dwarf_form) form : 16;
1325
1326 /* It is valid only if FORM is DW_FORM_implicit_const. */
1327 LONGEST implicit_const;
1328 };
1329
1330 /* Size of abbrev_table.abbrev_hash_table. */
1331 #define ABBREV_HASH_SIZE 121
1332
1333 /* Top level data structure to contain an abbreviation table. */
1334
1335 struct abbrev_table
1336 {
1337 /* Where the abbrev table came from.
1338 This is used as a sanity check when the table is used. */
1339 sect_offset sect_off;
1340
1341 /* Storage for the abbrev table. */
1342 struct obstack abbrev_obstack;
1343
1344 /* Hash table of abbrevs.
1345 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1346 It could be statically allocated, but the previous code didn't so we
1347 don't either. */
1348 struct abbrev_info **abbrevs;
1349 };
1350
1351 /* Attributes have a name and a value. */
1352 struct attribute
1353 {
1354 ENUM_BITFIELD(dwarf_attribute) name : 16;
1355 ENUM_BITFIELD(dwarf_form) form : 15;
1356
1357 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1358 field should be in u.str (existing only for DW_STRING) but it is kept
1359 here for better struct attribute alignment. */
1360 unsigned int string_is_canonical : 1;
1361
1362 union
1363 {
1364 const char *str;
1365 struct dwarf_block *blk;
1366 ULONGEST unsnd;
1367 LONGEST snd;
1368 CORE_ADDR addr;
1369 ULONGEST signature;
1370 }
1371 u;
1372 };
1373
1374 /* This data structure holds a complete die structure. */
1375 struct die_info
1376 {
1377 /* DWARF-2 tag for this DIE. */
1378 ENUM_BITFIELD(dwarf_tag) tag : 16;
1379
1380 /* Number of attributes */
1381 unsigned char num_attrs;
1382
1383 /* True if we're presently building the full type name for the
1384 type derived from this DIE. */
1385 unsigned char building_fullname : 1;
1386
1387 /* True if this die is in process. PR 16581. */
1388 unsigned char in_process : 1;
1389
1390 /* Abbrev number */
1391 unsigned int abbrev;
1392
1393 /* Offset in .debug_info or .debug_types section. */
1394 sect_offset sect_off;
1395
1396 /* The dies in a compilation unit form an n-ary tree. PARENT
1397 points to this die's parent; CHILD points to the first child of
1398 this node; and all the children of a given node are chained
1399 together via their SIBLING fields. */
1400 struct die_info *child; /* Its first child, if any. */
1401 struct die_info *sibling; /* Its next sibling, if any. */
1402 struct die_info *parent; /* Its parent, if any. */
1403
1404 /* An array of attributes, with NUM_ATTRS elements. There may be
1405 zero, but it's not common and zero-sized arrays are not
1406 sufficiently portable C. */
1407 struct attribute attrs[1];
1408 };
1409
1410 /* Get at parts of an attribute structure. */
1411
1412 #define DW_STRING(attr) ((attr)->u.str)
1413 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1414 #define DW_UNSND(attr) ((attr)->u.unsnd)
1415 #define DW_BLOCK(attr) ((attr)->u.blk)
1416 #define DW_SND(attr) ((attr)->u.snd)
1417 #define DW_ADDR(attr) ((attr)->u.addr)
1418 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1419
1420 /* Blocks are a bunch of untyped bytes. */
1421 struct dwarf_block
1422 {
1423 size_t size;
1424
1425 /* Valid only if SIZE is not zero. */
1426 const gdb_byte *data;
1427 };
1428
1429 #ifndef ATTR_ALLOC_CHUNK
1430 #define ATTR_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* Allocate fields for structs, unions and enums in this size. */
1434 #ifndef DW_FIELD_ALLOC_CHUNK
1435 #define DW_FIELD_ALLOC_CHUNK 4
1436 #endif
1437
1438 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1439 but this would require a corresponding change in unpack_field_as_long
1440 and friends. */
1441 static int bits_per_byte = 8;
1442
1443 struct nextfield
1444 {
1445 struct nextfield *next;
1446 int accessibility;
1447 int virtuality;
1448 struct field field;
1449 };
1450
1451 struct nextfnfield
1452 {
1453 struct nextfnfield *next;
1454 struct fn_field fnfield;
1455 };
1456
1457 struct fnfieldlist
1458 {
1459 const char *name;
1460 int length;
1461 struct nextfnfield *head;
1462 };
1463
1464 struct typedef_field_list
1465 {
1466 struct typedef_field field;
1467 struct typedef_field_list *next;
1468 };
1469
1470 /* The routines that read and process dies for a C struct or C++ class
1471 pass lists of data member fields and lists of member function fields
1472 in an instance of a field_info structure, as defined below. */
1473 struct field_info
1474 {
1475 /* List of data member and baseclasses fields. */
1476 struct nextfield *fields, *baseclasses;
1477
1478 /* Number of fields (including baseclasses). */
1479 int nfields;
1480
1481 /* Number of baseclasses. */
1482 int nbaseclasses;
1483
1484 /* Set if the accesibility of one of the fields is not public. */
1485 int non_public_fields;
1486
1487 /* Member function fieldlist array, contains name of possibly overloaded
1488 member function, number of overloaded member functions and a pointer
1489 to the head of the member function field chain. */
1490 struct fnfieldlist *fnfieldlists;
1491
1492 /* Number of entries in the fnfieldlists array. */
1493 int nfnfields;
1494
1495 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1496 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1497 struct typedef_field_list *typedef_field_list;
1498 unsigned typedef_field_list_count;
1499 };
1500
1501 /* One item on the queue of compilation units to read in full symbols
1502 for. */
1503 struct dwarf2_queue_item
1504 {
1505 struct dwarf2_per_cu_data *per_cu;
1506 enum language pretend_language;
1507 struct dwarf2_queue_item *next;
1508 };
1509
1510 /* The current queue. */
1511 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1512
1513 /* Loaded secondary compilation units are kept in memory until they
1514 have not been referenced for the processing of this many
1515 compilation units. Set this to zero to disable caching. Cache
1516 sizes of up to at least twenty will improve startup time for
1517 typical inter-CU-reference binaries, at an obvious memory cost. */
1518 static int dwarf_max_cache_age = 5;
1519 static void
1520 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1521 struct cmd_list_element *c, const char *value)
1522 {
1523 fprintf_filtered (file, _("The upper bound on the age of cached "
1524 "DWARF compilation units is %s.\n"),
1525 value);
1526 }
1527 \f
1528 /* local function prototypes */
1529
1530 static const char *get_section_name (const struct dwarf2_section_info *);
1531
1532 static const char *get_section_file_name (const struct dwarf2_section_info *);
1533
1534 static void dwarf2_find_base_address (struct die_info *die,
1535 struct dwarf2_cu *cu);
1536
1537 static struct partial_symtab *create_partial_symtab
1538 (struct dwarf2_per_cu_data *per_cu, const char *name);
1539
1540 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1541 const gdb_byte *info_ptr,
1542 struct die_info *type_unit_die,
1543 int has_children, void *data);
1544
1545 static void dwarf2_build_psymtabs_hard (struct objfile *);
1546
1547 static void scan_partial_symbols (struct partial_die_info *,
1548 CORE_ADDR *, CORE_ADDR *,
1549 int, struct dwarf2_cu *);
1550
1551 static void add_partial_symbol (struct partial_die_info *,
1552 struct dwarf2_cu *);
1553
1554 static void add_partial_namespace (struct partial_die_info *pdi,
1555 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1556 int set_addrmap, struct dwarf2_cu *cu);
1557
1558 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1559 CORE_ADDR *highpc, int set_addrmap,
1560 struct dwarf2_cu *cu);
1561
1562 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1563 struct dwarf2_cu *cu);
1564
1565 static void add_partial_subprogram (struct partial_die_info *pdi,
1566 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1567 int need_pc, struct dwarf2_cu *cu);
1568
1569 static void dwarf2_read_symtab (struct partial_symtab *,
1570 struct objfile *);
1571
1572 static void psymtab_to_symtab_1 (struct partial_symtab *);
1573
1574 static struct abbrev_info *abbrev_table_lookup_abbrev
1575 (const struct abbrev_table *, unsigned int);
1576
1577 static struct abbrev_table *abbrev_table_read_table
1578 (struct dwarf2_section_info *, sect_offset);
1579
1580 static void abbrev_table_free (struct abbrev_table *);
1581
1582 static void abbrev_table_free_cleanup (void *);
1583
1584 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1585 struct dwarf2_section_info *);
1586
1587 static void dwarf2_free_abbrev_table (void *);
1588
1589 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1590
1591 static struct partial_die_info *load_partial_dies
1592 (const struct die_reader_specs *, const gdb_byte *, int);
1593
1594 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1595 struct partial_die_info *,
1596 struct abbrev_info *,
1597 unsigned int,
1598 const gdb_byte *);
1599
1600 static struct partial_die_info *find_partial_die (sect_offset, int,
1601 struct dwarf2_cu *);
1602
1603 static void fixup_partial_die (struct partial_die_info *,
1604 struct dwarf2_cu *);
1605
1606 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1607 struct attribute *, struct attr_abbrev *,
1608 const gdb_byte *);
1609
1610 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1611
1612 static int read_1_signed_byte (bfd *, const gdb_byte *);
1613
1614 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1615
1616 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1617
1618 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1619
1620 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1621 unsigned int *);
1622
1623 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1624
1625 static LONGEST read_checked_initial_length_and_offset
1626 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1627 unsigned int *, unsigned int *);
1628
1629 static LONGEST read_offset (bfd *, const gdb_byte *,
1630 const struct comp_unit_head *,
1631 unsigned int *);
1632
1633 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1634
1635 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1636 sect_offset);
1637
1638 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1639
1640 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1641
1642 static const char *read_indirect_string (bfd *, const gdb_byte *,
1643 const struct comp_unit_head *,
1644 unsigned int *);
1645
1646 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1647 const struct comp_unit_head *,
1648 unsigned int *);
1649
1650 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1651
1652 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1653
1654 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1655 const gdb_byte *,
1656 unsigned int *);
1657
1658 static const char *read_str_index (const struct die_reader_specs *reader,
1659 ULONGEST str_index);
1660
1661 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1662
1663 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1664 struct dwarf2_cu *);
1665
1666 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1667 unsigned int);
1668
1669 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1670 struct dwarf2_cu *cu);
1671
1672 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1673 struct dwarf2_cu *cu);
1674
1675 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1676
1677 static struct die_info *die_specification (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1681 struct dwarf2_cu *cu);
1682
1683 static void dwarf_decode_lines (struct line_header *, const char *,
1684 struct dwarf2_cu *, struct partial_symtab *,
1685 CORE_ADDR, int decode_mapping);
1686
1687 static void dwarf2_start_subfile (const char *, const char *);
1688
1689 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1690 const char *, const char *,
1691 CORE_ADDR);
1692
1693 static struct symbol *new_symbol (struct die_info *, struct type *,
1694 struct dwarf2_cu *);
1695
1696 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1697 struct dwarf2_cu *, struct symbol *);
1698
1699 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1700 struct dwarf2_cu *);
1701
1702 static void dwarf2_const_value_attr (const struct attribute *attr,
1703 struct type *type,
1704 const char *name,
1705 struct obstack *obstack,
1706 struct dwarf2_cu *cu, LONGEST *value,
1707 const gdb_byte **bytes,
1708 struct dwarf2_locexpr_baton **baton);
1709
1710 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1711
1712 static int need_gnat_info (struct dwarf2_cu *);
1713
1714 static struct type *die_descriptive_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static void set_descriptive_type (struct type *, struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *die_containing_type (struct die_info *,
1721 struct dwarf2_cu *);
1722
1723 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1724 struct dwarf2_cu *);
1725
1726 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1727
1728 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1729
1730 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1731
1732 static char *typename_concat (struct obstack *obs, const char *prefix,
1733 const char *suffix, int physname,
1734 struct dwarf2_cu *cu);
1735
1736 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1739
1740 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1741
1742 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1745
1746 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1747 struct dwarf2_cu *, struct partial_symtab *);
1748
1749 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1750 values. Keep the items ordered with increasing constraints compliance. */
1751 enum pc_bounds_kind
1752 {
1753 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1754 PC_BOUNDS_NOT_PRESENT,
1755
1756 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1757 were present but they do not form a valid range of PC addresses. */
1758 PC_BOUNDS_INVALID,
1759
1760 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1761 PC_BOUNDS_RANGES,
1762
1763 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1764 PC_BOUNDS_HIGH_LOW,
1765 };
1766
1767 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1768 CORE_ADDR *, CORE_ADDR *,
1769 struct dwarf2_cu *,
1770 struct partial_symtab *);
1771
1772 static void get_scope_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1777 CORE_ADDR, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_field (struct field_info *, struct die_info *,
1780 struct dwarf2_cu *);
1781
1782 static void dwarf2_attach_fields_to_type (struct field_info *,
1783 struct type *, struct dwarf2_cu *);
1784
1785 static void dwarf2_add_member_fn (struct field_info *,
1786 struct die_info *, struct type *,
1787 struct dwarf2_cu *);
1788
1789 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1790 struct type *,
1791 struct dwarf2_cu *);
1792
1793 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1794
1795 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1796
1797 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1798
1799 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct using_direct **using_directives (enum language);
1802
1803 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1804
1805 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1806
1807 static struct type *read_module_type (struct die_info *die,
1808 struct dwarf2_cu *cu);
1809
1810 static const char *namespace_name (struct die_info *die,
1811 int *is_anonymous, struct dwarf2_cu *);
1812
1813 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1814
1815 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1816
1817 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1818 struct dwarf2_cu *);
1819
1820 static struct die_info *read_die_and_siblings_1
1821 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1822 struct die_info *);
1823
1824 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1825 const gdb_byte *info_ptr,
1826 const gdb_byte **new_info_ptr,
1827 struct die_info *parent);
1828
1829 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1830 struct die_info **, const gdb_byte *,
1831 int *, int);
1832
1833 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1834 struct die_info **, const gdb_byte *,
1835 int *);
1836
1837 static void process_die (struct die_info *, struct dwarf2_cu *);
1838
1839 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1840 struct obstack *);
1841
1842 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1843
1844 static const char *dwarf2_full_name (const char *name,
1845 struct die_info *die,
1846 struct dwarf2_cu *cu);
1847
1848 static const char *dwarf2_physname (const char *name, struct die_info *die,
1849 struct dwarf2_cu *cu);
1850
1851 static struct die_info *dwarf2_extension (struct die_info *die,
1852 struct dwarf2_cu **);
1853
1854 static const char *dwarf_tag_name (unsigned int);
1855
1856 static const char *dwarf_attr_name (unsigned int);
1857
1858 static const char *dwarf_form_name (unsigned int);
1859
1860 static const char *dwarf_bool_name (unsigned int);
1861
1862 static const char *dwarf_type_encoding_name (unsigned int);
1863
1864 static struct die_info *sibling_die (struct die_info *);
1865
1866 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1867
1868 static void dump_die_for_error (struct die_info *);
1869
1870 static void dump_die_1 (struct ui_file *, int level, int max_level,
1871 struct die_info *);
1872
1873 /*static*/ void dump_die (struct die_info *, int max_level);
1874
1875 static void store_in_ref_table (struct die_info *,
1876 struct dwarf2_cu *);
1877
1878 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1879
1880 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1881
1882 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1883 const struct attribute *,
1884 struct dwarf2_cu **);
1885
1886 static struct die_info *follow_die_ref (struct die_info *,
1887 const struct attribute *,
1888 struct dwarf2_cu **);
1889
1890 static struct die_info *follow_die_sig (struct die_info *,
1891 const struct attribute *,
1892 struct dwarf2_cu **);
1893
1894 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1895 struct dwarf2_cu *);
1896
1897 static struct type *get_DW_AT_signature_type (struct die_info *,
1898 const struct attribute *,
1899 struct dwarf2_cu *);
1900
1901 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1902
1903 static void read_signatured_type (struct signatured_type *);
1904
1905 static int attr_to_dynamic_prop (const struct attribute *attr,
1906 struct die_info *die, struct dwarf2_cu *cu,
1907 struct dynamic_prop *prop);
1908
1909 /* memory allocation interface */
1910
1911 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1912
1913 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1914
1915 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1916
1917 static int attr_form_is_block (const struct attribute *);
1918
1919 static int attr_form_is_section_offset (const struct attribute *);
1920
1921 static int attr_form_is_constant (const struct attribute *);
1922
1923 static int attr_form_is_ref (const struct attribute *);
1924
1925 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1926 struct dwarf2_loclist_baton *baton,
1927 const struct attribute *attr);
1928
1929 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1930 struct symbol *sym,
1931 struct dwarf2_cu *cu,
1932 int is_block);
1933
1934 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1935 const gdb_byte *info_ptr,
1936 struct abbrev_info *abbrev);
1937
1938 static void free_stack_comp_unit (void *);
1939
1940 static hashval_t partial_die_hash (const void *item);
1941
1942 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1943
1944 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1945 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1946
1947 static void init_one_comp_unit (struct dwarf2_cu *cu,
1948 struct dwarf2_per_cu_data *per_cu);
1949
1950 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1951 struct die_info *comp_unit_die,
1952 enum language pretend_language);
1953
1954 static void free_heap_comp_unit (void *);
1955
1956 static void free_cached_comp_units (void *);
1957
1958 static void age_cached_comp_units (void);
1959
1960 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1961
1962 static struct type *set_die_type (struct die_info *, struct type *,
1963 struct dwarf2_cu *);
1964
1965 static void create_all_comp_units (struct objfile *);
1966
1967 static int create_all_type_units (struct objfile *);
1968
1969 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1973 enum language);
1974
1975 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1976 enum language);
1977
1978 static void dwarf2_add_dependence (struct dwarf2_cu *,
1979 struct dwarf2_per_cu_data *);
1980
1981 static void dwarf2_mark (struct dwarf2_cu *);
1982
1983 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1984
1985 static struct type *get_die_type_at_offset (sect_offset,
1986 struct dwarf2_per_cu_data *);
1987
1988 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1989
1990 static void dwarf2_release_queue (void *dummy);
1991
1992 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1993 enum language pretend_language);
1994
1995 static void process_queue (void);
1996
1997 /* The return type of find_file_and_directory. Note, the enclosed
1998 string pointers are only valid while this object is valid. */
1999
2000 struct file_and_directory
2001 {
2002 /* The filename. This is never NULL. */
2003 const char *name;
2004
2005 /* The compilation directory. NULL if not known. If we needed to
2006 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2007 points directly to the DW_AT_comp_dir string attribute owned by
2008 the obstack that owns the DIE. */
2009 const char *comp_dir;
2010
2011 /* If we needed to build a new string for comp_dir, this is what
2012 owns the storage. */
2013 std::string comp_dir_storage;
2014 };
2015
2016 static file_and_directory find_file_and_directory (struct die_info *die,
2017 struct dwarf2_cu *cu);
2018
2019 static char *file_full_name (int file, struct line_header *lh,
2020 const char *comp_dir);
2021
2022 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2023 enum class rcuh_kind { COMPILE, TYPE };
2024
2025 static const gdb_byte *read_and_check_comp_unit_head
2026 (struct comp_unit_head *header,
2027 struct dwarf2_section_info *section,
2028 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2029 rcuh_kind section_kind);
2030
2031 static void init_cutu_and_read_dies
2032 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2033 int use_existing_cu, int keep,
2034 die_reader_func_ftype *die_reader_func, void *data);
2035
2036 static void init_cutu_and_read_dies_simple
2037 (struct dwarf2_per_cu_data *this_cu,
2038 die_reader_func_ftype *die_reader_func, void *data);
2039
2040 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2041
2042 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2043
2044 static struct dwo_unit *lookup_dwo_unit_in_dwp
2045 (struct dwp_file *dwp_file, const char *comp_dir,
2046 ULONGEST signature, int is_debug_types);
2047
2048 static struct dwp_file *get_dwp_file (void);
2049
2050 static struct dwo_unit *lookup_dwo_comp_unit
2051 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2052
2053 static struct dwo_unit *lookup_dwo_type_unit
2054 (struct signatured_type *, const char *, const char *);
2055
2056 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2057
2058 static void free_dwo_file_cleanup (void *);
2059
2060 static void process_cu_includes (void);
2061
2062 static void check_producer (struct dwarf2_cu *cu);
2063
2064 static void free_line_header_voidp (void *arg);
2065 \f
2066 /* Various complaints about symbol reading that don't abort the process. */
2067
2068 static void
2069 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2070 {
2071 complaint (&symfile_complaints,
2072 _("statement list doesn't fit in .debug_line section"));
2073 }
2074
2075 static void
2076 dwarf2_debug_line_missing_file_complaint (void)
2077 {
2078 complaint (&symfile_complaints,
2079 _(".debug_line section has line data without a file"));
2080 }
2081
2082 static void
2083 dwarf2_debug_line_missing_end_sequence_complaint (void)
2084 {
2085 complaint (&symfile_complaints,
2086 _(".debug_line section has line "
2087 "program sequence without an end"));
2088 }
2089
2090 static void
2091 dwarf2_complex_location_expr_complaint (void)
2092 {
2093 complaint (&symfile_complaints, _("location expression too complex"));
2094 }
2095
2096 static void
2097 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2098 int arg3)
2099 {
2100 complaint (&symfile_complaints,
2101 _("const value length mismatch for '%s', got %d, expected %d"),
2102 arg1, arg2, arg3);
2103 }
2104
2105 static void
2106 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2107 {
2108 complaint (&symfile_complaints,
2109 _("debug info runs off end of %s section"
2110 " [in module %s]"),
2111 get_section_name (section),
2112 get_section_file_name (section));
2113 }
2114
2115 static void
2116 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2117 {
2118 complaint (&symfile_complaints,
2119 _("macro debug info contains a "
2120 "malformed macro definition:\n`%s'"),
2121 arg1);
2122 }
2123
2124 static void
2125 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2126 {
2127 complaint (&symfile_complaints,
2128 _("invalid attribute class or form for '%s' in '%s'"),
2129 arg1, arg2);
2130 }
2131
2132 /* Hash function for line_header_hash. */
2133
2134 static hashval_t
2135 line_header_hash (const struct line_header *ofs)
2136 {
2137 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2138 }
2139
2140 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2141
2142 static hashval_t
2143 line_header_hash_voidp (const void *item)
2144 {
2145 const struct line_header *ofs = (const struct line_header *) item;
2146
2147 return line_header_hash (ofs);
2148 }
2149
2150 /* Equality function for line_header_hash. */
2151
2152 static int
2153 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2154 {
2155 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2156 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2157
2158 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2159 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2160 }
2161
2162 \f
2163 #if WORDS_BIGENDIAN
2164
2165 /* Convert VALUE between big- and little-endian. */
2166 static offset_type
2167 byte_swap (offset_type value)
2168 {
2169 offset_type result;
2170
2171 result = (value & 0xff) << 24;
2172 result |= (value & 0xff00) << 8;
2173 result |= (value & 0xff0000) >> 8;
2174 result |= (value & 0xff000000) >> 24;
2175 return result;
2176 }
2177
2178 #define MAYBE_SWAP(V) byte_swap (V)
2179
2180 #else
2181 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2182 #endif /* WORDS_BIGENDIAN */
2183
2184 /* Read the given attribute value as an address, taking the attribute's
2185 form into account. */
2186
2187 static CORE_ADDR
2188 attr_value_as_address (struct attribute *attr)
2189 {
2190 CORE_ADDR addr;
2191
2192 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2193 {
2194 /* Aside from a few clearly defined exceptions, attributes that
2195 contain an address must always be in DW_FORM_addr form.
2196 Unfortunately, some compilers happen to be violating this
2197 requirement by encoding addresses using other forms, such
2198 as DW_FORM_data4 for example. For those broken compilers,
2199 we try to do our best, without any guarantee of success,
2200 to interpret the address correctly. It would also be nice
2201 to generate a complaint, but that would require us to maintain
2202 a list of legitimate cases where a non-address form is allowed,
2203 as well as update callers to pass in at least the CU's DWARF
2204 version. This is more overhead than what we're willing to
2205 expand for a pretty rare case. */
2206 addr = DW_UNSND (attr);
2207 }
2208 else
2209 addr = DW_ADDR (attr);
2210
2211 return addr;
2212 }
2213
2214 /* The suffix for an index file. */
2215 #define INDEX_SUFFIX ".gdb-index"
2216
2217 /* See declaration. */
2218
2219 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2220 const dwarf2_debug_sections *names)
2221 : objfile (objfile_)
2222 {
2223 if (names == NULL)
2224 names = &dwarf2_elf_names;
2225
2226 bfd *obfd = objfile->obfd;
2227
2228 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2229 locate_sections (obfd, sec, *names);
2230 }
2231
2232 dwarf2_per_objfile::~dwarf2_per_objfile ()
2233 {
2234 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2235 free_cached_comp_units ();
2236
2237 if (quick_file_names_table)
2238 htab_delete (quick_file_names_table);
2239
2240 if (line_header_hash)
2241 htab_delete (line_header_hash);
2242
2243 /* Everything else should be on the objfile obstack. */
2244 }
2245
2246 /* See declaration. */
2247
2248 void
2249 dwarf2_per_objfile::free_cached_comp_units ()
2250 {
2251 dwarf2_per_cu_data *per_cu = read_in_chain;
2252 dwarf2_per_cu_data **last_chain = &read_in_chain;
2253 while (per_cu != NULL)
2254 {
2255 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2256
2257 free_heap_comp_unit (per_cu->cu);
2258 *last_chain = next_cu;
2259 per_cu = next_cu;
2260 }
2261 }
2262
2263 /* Try to locate the sections we need for DWARF 2 debugging
2264 information and return true if we have enough to do something.
2265 NAMES points to the dwarf2 section names, or is NULL if the standard
2266 ELF names are used. */
2267
2268 int
2269 dwarf2_has_info (struct objfile *objfile,
2270 const struct dwarf2_debug_sections *names)
2271 {
2272 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2273 objfile_data (objfile, dwarf2_objfile_data_key));
2274 if (!dwarf2_per_objfile)
2275 {
2276 /* Initialize per-objfile state. */
2277 struct dwarf2_per_objfile *data
2278 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2279
2280 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2281 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2282 }
2283 return (!dwarf2_per_objfile->info.is_virtual
2284 && dwarf2_per_objfile->info.s.section != NULL
2285 && !dwarf2_per_objfile->abbrev.is_virtual
2286 && dwarf2_per_objfile->abbrev.s.section != NULL);
2287 }
2288
2289 /* Return the containing section of virtual section SECTION. */
2290
2291 static struct dwarf2_section_info *
2292 get_containing_section (const struct dwarf2_section_info *section)
2293 {
2294 gdb_assert (section->is_virtual);
2295 return section->s.containing_section;
2296 }
2297
2298 /* Return the bfd owner of SECTION. */
2299
2300 static struct bfd *
2301 get_section_bfd_owner (const struct dwarf2_section_info *section)
2302 {
2303 if (section->is_virtual)
2304 {
2305 section = get_containing_section (section);
2306 gdb_assert (!section->is_virtual);
2307 }
2308 return section->s.section->owner;
2309 }
2310
2311 /* Return the bfd section of SECTION.
2312 Returns NULL if the section is not present. */
2313
2314 static asection *
2315 get_section_bfd_section (const struct dwarf2_section_info *section)
2316 {
2317 if (section->is_virtual)
2318 {
2319 section = get_containing_section (section);
2320 gdb_assert (!section->is_virtual);
2321 }
2322 return section->s.section;
2323 }
2324
2325 /* Return the name of SECTION. */
2326
2327 static const char *
2328 get_section_name (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_name (get_section_bfd_owner (section), sectp);
2334 }
2335
2336 /* Return the name of the file SECTION is in. */
2337
2338 static const char *
2339 get_section_file_name (const struct dwarf2_section_info *section)
2340 {
2341 bfd *abfd = get_section_bfd_owner (section);
2342
2343 return bfd_get_filename (abfd);
2344 }
2345
2346 /* Return the id of SECTION.
2347 Returns 0 if SECTION doesn't exist. */
2348
2349 static int
2350 get_section_id (const struct dwarf2_section_info *section)
2351 {
2352 asection *sectp = get_section_bfd_section (section);
2353
2354 if (sectp == NULL)
2355 return 0;
2356 return sectp->id;
2357 }
2358
2359 /* Return the flags of SECTION.
2360 SECTION (or containing section if this is a virtual section) must exist. */
2361
2362 static int
2363 get_section_flags (const struct dwarf2_section_info *section)
2364 {
2365 asection *sectp = get_section_bfd_section (section);
2366
2367 gdb_assert (sectp != NULL);
2368 return bfd_get_section_flags (sectp->owner, sectp);
2369 }
2370
2371 /* When loading sections, we look either for uncompressed section or for
2372 compressed section names. */
2373
2374 static int
2375 section_is_p (const char *section_name,
2376 const struct dwarf2_section_names *names)
2377 {
2378 if (names->normal != NULL
2379 && strcmp (section_name, names->normal) == 0)
2380 return 1;
2381 if (names->compressed != NULL
2382 && strcmp (section_name, names->compressed) == 0)
2383 return 1;
2384 return 0;
2385 }
2386
2387 /* See declaration. */
2388
2389 void
2390 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2391 const dwarf2_debug_sections &names)
2392 {
2393 flagword aflag = bfd_get_section_flags (abfd, sectp);
2394
2395 if ((aflag & SEC_HAS_CONTENTS) == 0)
2396 {
2397 }
2398 else if (section_is_p (sectp->name, &names.info))
2399 {
2400 this->info.s.section = sectp;
2401 this->info.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.abbrev))
2404 {
2405 this->abbrev.s.section = sectp;
2406 this->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.line))
2409 {
2410 this->line.s.section = sectp;
2411 this->line.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.loc))
2414 {
2415 this->loc.s.section = sectp;
2416 this->loc.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.loclists))
2419 {
2420 this->loclists.s.section = sectp;
2421 this->loclists.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.macinfo))
2424 {
2425 this->macinfo.s.section = sectp;
2426 this->macinfo.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.macro))
2429 {
2430 this->macro.s.section = sectp;
2431 this->macro.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.str))
2434 {
2435 this->str.s.section = sectp;
2436 this->str.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.line_str))
2439 {
2440 this->line_str.s.section = sectp;
2441 this->line_str.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.addr))
2444 {
2445 this->addr.s.section = sectp;
2446 this->addr.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.frame))
2449 {
2450 this->frame.s.section = sectp;
2451 this->frame.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &names.eh_frame))
2454 {
2455 this->eh_frame.s.section = sectp;
2456 this->eh_frame.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &names.ranges))
2459 {
2460 this->ranges.s.section = sectp;
2461 this->ranges.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &names.rnglists))
2464 {
2465 this->rnglists.s.section = sectp;
2466 this->rnglists.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &names.types))
2469 {
2470 struct dwarf2_section_info type_section;
2471
2472 memset (&type_section, 0, sizeof (type_section));
2473 type_section.s.section = sectp;
2474 type_section.size = bfd_get_section_size (sectp);
2475
2476 VEC_safe_push (dwarf2_section_info_def, this->types,
2477 &type_section);
2478 }
2479 else if (section_is_p (sectp->name, &names.gdb_index))
2480 {
2481 this->gdb_index.s.section = sectp;
2482 this->gdb_index.size = bfd_get_section_size (sectp);
2483 }
2484
2485 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2486 && bfd_section_vma (abfd, sectp) == 0)
2487 this->has_section_at_zero = true;
2488 }
2489
2490 /* A helper function that decides whether a section is empty,
2491 or not present. */
2492
2493 static int
2494 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2495 {
2496 if (section->is_virtual)
2497 return section->size == 0;
2498 return section->s.section == NULL || section->size == 0;
2499 }
2500
2501 /* Read the contents of the section INFO.
2502 OBJFILE is the main object file, but not necessarily the file where
2503 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2504 of the DWO file.
2505 If the section is compressed, uncompress it before returning. */
2506
2507 static void
2508 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2509 {
2510 asection *sectp;
2511 bfd *abfd;
2512 gdb_byte *buf, *retbuf;
2513
2514 if (info->readin)
2515 return;
2516 info->buffer = NULL;
2517 info->readin = 1;
2518
2519 if (dwarf2_section_empty_p (info))
2520 return;
2521
2522 sectp = get_section_bfd_section (info);
2523
2524 /* If this is a virtual section we need to read in the real one first. */
2525 if (info->is_virtual)
2526 {
2527 struct dwarf2_section_info *containing_section =
2528 get_containing_section (info);
2529
2530 gdb_assert (sectp != NULL);
2531 if ((sectp->flags & SEC_RELOC) != 0)
2532 {
2533 error (_("Dwarf Error: DWP format V2 with relocations is not"
2534 " supported in section %s [in module %s]"),
2535 get_section_name (info), get_section_file_name (info));
2536 }
2537 dwarf2_read_section (objfile, containing_section);
2538 /* Other code should have already caught virtual sections that don't
2539 fit. */
2540 gdb_assert (info->virtual_offset + info->size
2541 <= containing_section->size);
2542 /* If the real section is empty or there was a problem reading the
2543 section we shouldn't get here. */
2544 gdb_assert (containing_section->buffer != NULL);
2545 info->buffer = containing_section->buffer + info->virtual_offset;
2546 return;
2547 }
2548
2549 /* If the section has relocations, we must read it ourselves.
2550 Otherwise we attach it to the BFD. */
2551 if ((sectp->flags & SEC_RELOC) == 0)
2552 {
2553 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2554 return;
2555 }
2556
2557 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2558 info->buffer = buf;
2559
2560 /* When debugging .o files, we may need to apply relocations; see
2561 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2562 We never compress sections in .o files, so we only need to
2563 try this when the section is not compressed. */
2564 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2565 if (retbuf != NULL)
2566 {
2567 info->buffer = retbuf;
2568 return;
2569 }
2570
2571 abfd = get_section_bfd_owner (info);
2572 gdb_assert (abfd != NULL);
2573
2574 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2575 || bfd_bread (buf, info->size, abfd) != info->size)
2576 {
2577 error (_("Dwarf Error: Can't read DWARF data"
2578 " in section %s [in module %s]"),
2579 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2580 }
2581 }
2582
2583 /* A helper function that returns the size of a section in a safe way.
2584 If you are positive that the section has been read before using the
2585 size, then it is safe to refer to the dwarf2_section_info object's
2586 "size" field directly. In other cases, you must call this
2587 function, because for compressed sections the size field is not set
2588 correctly until the section has been read. */
2589
2590 static bfd_size_type
2591 dwarf2_section_size (struct objfile *objfile,
2592 struct dwarf2_section_info *info)
2593 {
2594 if (!info->readin)
2595 dwarf2_read_section (objfile, info);
2596 return info->size;
2597 }
2598
2599 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2600 SECTION_NAME. */
2601
2602 void
2603 dwarf2_get_section_info (struct objfile *objfile,
2604 enum dwarf2_section_enum sect,
2605 asection **sectp, const gdb_byte **bufp,
2606 bfd_size_type *sizep)
2607 {
2608 struct dwarf2_per_objfile *data
2609 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2610 dwarf2_objfile_data_key);
2611 struct dwarf2_section_info *info;
2612
2613 /* We may see an objfile without any DWARF, in which case we just
2614 return nothing. */
2615 if (data == NULL)
2616 {
2617 *sectp = NULL;
2618 *bufp = NULL;
2619 *sizep = 0;
2620 return;
2621 }
2622 switch (sect)
2623 {
2624 case DWARF2_DEBUG_FRAME:
2625 info = &data->frame;
2626 break;
2627 case DWARF2_EH_FRAME:
2628 info = &data->eh_frame;
2629 break;
2630 default:
2631 gdb_assert_not_reached ("unexpected section");
2632 }
2633
2634 dwarf2_read_section (objfile, info);
2635
2636 *sectp = get_section_bfd_section (info);
2637 *bufp = info->buffer;
2638 *sizep = info->size;
2639 }
2640
2641 /* A helper function to find the sections for a .dwz file. */
2642
2643 static void
2644 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2645 {
2646 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2647
2648 /* Note that we only support the standard ELF names, because .dwz
2649 is ELF-only (at the time of writing). */
2650 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2651 {
2652 dwz_file->abbrev.s.section = sectp;
2653 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2656 {
2657 dwz_file->info.s.section = sectp;
2658 dwz_file->info.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2661 {
2662 dwz_file->str.s.section = sectp;
2663 dwz_file->str.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2666 {
2667 dwz_file->line.s.section = sectp;
2668 dwz_file->line.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2671 {
2672 dwz_file->macro.s.section = sectp;
2673 dwz_file->macro.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2676 {
2677 dwz_file->gdb_index.s.section = sectp;
2678 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2679 }
2680 }
2681
2682 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2683 there is no .gnu_debugaltlink section in the file. Error if there
2684 is such a section but the file cannot be found. */
2685
2686 static struct dwz_file *
2687 dwarf2_get_dwz_file (void)
2688 {
2689 const char *filename;
2690 struct dwz_file *result;
2691 bfd_size_type buildid_len_arg;
2692 size_t buildid_len;
2693 bfd_byte *buildid;
2694
2695 if (dwarf2_per_objfile->dwz_file != NULL)
2696 return dwarf2_per_objfile->dwz_file;
2697
2698 bfd_set_error (bfd_error_no_error);
2699 gdb::unique_xmalloc_ptr<char> data
2700 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2701 &buildid_len_arg, &buildid));
2702 if (data == NULL)
2703 {
2704 if (bfd_get_error () == bfd_error_no_error)
2705 return NULL;
2706 error (_("could not read '.gnu_debugaltlink' section: %s"),
2707 bfd_errmsg (bfd_get_error ()));
2708 }
2709
2710 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2711
2712 buildid_len = (size_t) buildid_len_arg;
2713
2714 filename = data.get ();
2715
2716 std::string abs_storage;
2717 if (!IS_ABSOLUTE_PATH (filename))
2718 {
2719 gdb::unique_xmalloc_ptr<char> abs
2720 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2721
2722 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2723 filename = abs_storage.c_str ();
2724 }
2725
2726 /* First try the file name given in the section. If that doesn't
2727 work, try to use the build-id instead. */
2728 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2729 if (dwz_bfd != NULL)
2730 {
2731 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2732 dwz_bfd.release ();
2733 }
2734
2735 if (dwz_bfd == NULL)
2736 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2737
2738 if (dwz_bfd == NULL)
2739 error (_("could not find '.gnu_debugaltlink' file for %s"),
2740 objfile_name (dwarf2_per_objfile->objfile));
2741
2742 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2743 struct dwz_file);
2744 result->dwz_bfd = dwz_bfd.release ();
2745
2746 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2747
2748 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2749 dwarf2_per_objfile->dwz_file = result;
2750 return result;
2751 }
2752 \f
2753 /* DWARF quick_symbols_functions support. */
2754
2755 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2756 unique line tables, so we maintain a separate table of all .debug_line
2757 derived entries to support the sharing.
2758 All the quick functions need is the list of file names. We discard the
2759 line_header when we're done and don't need to record it here. */
2760 struct quick_file_names
2761 {
2762 /* The data used to construct the hash key. */
2763 struct stmt_list_hash hash;
2764
2765 /* The number of entries in file_names, real_names. */
2766 unsigned int num_file_names;
2767
2768 /* The file names from the line table, after being run through
2769 file_full_name. */
2770 const char **file_names;
2771
2772 /* The file names from the line table after being run through
2773 gdb_realpath. These are computed lazily. */
2774 const char **real_names;
2775 };
2776
2777 /* When using the index (and thus not using psymtabs), each CU has an
2778 object of this type. This is used to hold information needed by
2779 the various "quick" methods. */
2780 struct dwarf2_per_cu_quick_data
2781 {
2782 /* The file table. This can be NULL if there was no file table
2783 or it's currently not read in.
2784 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2785 struct quick_file_names *file_names;
2786
2787 /* The corresponding symbol table. This is NULL if symbols for this
2788 CU have not yet been read. */
2789 struct compunit_symtab *compunit_symtab;
2790
2791 /* A temporary mark bit used when iterating over all CUs in
2792 expand_symtabs_matching. */
2793 unsigned int mark : 1;
2794
2795 /* True if we've tried to read the file table and found there isn't one.
2796 There will be no point in trying to read it again next time. */
2797 unsigned int no_file_data : 1;
2798 };
2799
2800 /* Utility hash function for a stmt_list_hash. */
2801
2802 static hashval_t
2803 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2804 {
2805 hashval_t v = 0;
2806
2807 if (stmt_list_hash->dwo_unit != NULL)
2808 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2809 v += to_underlying (stmt_list_hash->line_sect_off);
2810 return v;
2811 }
2812
2813 /* Utility equality function for a stmt_list_hash. */
2814
2815 static int
2816 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2817 const struct stmt_list_hash *rhs)
2818 {
2819 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2820 return 0;
2821 if (lhs->dwo_unit != NULL
2822 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2823 return 0;
2824
2825 return lhs->line_sect_off == rhs->line_sect_off;
2826 }
2827
2828 /* Hash function for a quick_file_names. */
2829
2830 static hashval_t
2831 hash_file_name_entry (const void *e)
2832 {
2833 const struct quick_file_names *file_data
2834 = (const struct quick_file_names *) e;
2835
2836 return hash_stmt_list_entry (&file_data->hash);
2837 }
2838
2839 /* Equality function for a quick_file_names. */
2840
2841 static int
2842 eq_file_name_entry (const void *a, const void *b)
2843 {
2844 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2845 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2846
2847 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2848 }
2849
2850 /* Delete function for a quick_file_names. */
2851
2852 static void
2853 delete_file_name_entry (void *e)
2854 {
2855 struct quick_file_names *file_data = (struct quick_file_names *) e;
2856 int i;
2857
2858 for (i = 0; i < file_data->num_file_names; ++i)
2859 {
2860 xfree ((void*) file_data->file_names[i]);
2861 if (file_data->real_names)
2862 xfree ((void*) file_data->real_names[i]);
2863 }
2864
2865 /* The space for the struct itself lives on objfile_obstack,
2866 so we don't free it here. */
2867 }
2868
2869 /* Create a quick_file_names hash table. */
2870
2871 static htab_t
2872 create_quick_file_names_table (unsigned int nr_initial_entries)
2873 {
2874 return htab_create_alloc (nr_initial_entries,
2875 hash_file_name_entry, eq_file_name_entry,
2876 delete_file_name_entry, xcalloc, xfree);
2877 }
2878
2879 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2880 have to be created afterwards. You should call age_cached_comp_units after
2881 processing PER_CU->CU. dw2_setup must have been already called. */
2882
2883 static void
2884 load_cu (struct dwarf2_per_cu_data *per_cu)
2885 {
2886 if (per_cu->is_debug_types)
2887 load_full_type_unit (per_cu);
2888 else
2889 load_full_comp_unit (per_cu, language_minimal);
2890
2891 if (per_cu->cu == NULL)
2892 return; /* Dummy CU. */
2893
2894 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2895 }
2896
2897 /* Read in the symbols for PER_CU. */
2898
2899 static void
2900 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct cleanup *back_to;
2903
2904 /* Skip type_unit_groups, reading the type units they contain
2905 is handled elsewhere. */
2906 if (IS_TYPE_UNIT_GROUP (per_cu))
2907 return;
2908
2909 back_to = make_cleanup (dwarf2_release_queue, NULL);
2910
2911 if (dwarf2_per_objfile->using_index
2912 ? per_cu->v.quick->compunit_symtab == NULL
2913 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2914 {
2915 queue_comp_unit (per_cu, language_minimal);
2916 load_cu (per_cu);
2917
2918 /* If we just loaded a CU from a DWO, and we're working with an index
2919 that may badly handle TUs, load all the TUs in that DWO as well.
2920 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2921 if (!per_cu->is_debug_types
2922 && per_cu->cu != NULL
2923 && per_cu->cu->dwo_unit != NULL
2924 && dwarf2_per_objfile->index_table != NULL
2925 && dwarf2_per_objfile->index_table->version <= 7
2926 /* DWP files aren't supported yet. */
2927 && get_dwp_file () == NULL)
2928 queue_and_load_all_dwo_tus (per_cu);
2929 }
2930
2931 process_queue ();
2932
2933 /* Age the cache, releasing compilation units that have not
2934 been used recently. */
2935 age_cached_comp_units ();
2936
2937 do_cleanups (back_to);
2938 }
2939
2940 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2941 the objfile from which this CU came. Returns the resulting symbol
2942 table. */
2943
2944 static struct compunit_symtab *
2945 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2946 {
2947 gdb_assert (dwarf2_per_objfile->using_index);
2948 if (!per_cu->v.quick->compunit_symtab)
2949 {
2950 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2951 scoped_restore decrementer = increment_reading_symtab ();
2952 dw2_do_instantiate_symtab (per_cu);
2953 process_cu_includes ();
2954 do_cleanups (back_to);
2955 }
2956
2957 return per_cu->v.quick->compunit_symtab;
2958 }
2959
2960 /* Return the CU/TU given its index.
2961
2962 This is intended for loops like:
2963
2964 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2965 + dwarf2_per_objfile->n_type_units); ++i)
2966 {
2967 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2968
2969 ...;
2970 }
2971 */
2972
2973 static struct dwarf2_per_cu_data *
2974 dw2_get_cutu (int index)
2975 {
2976 if (index >= dwarf2_per_objfile->n_comp_units)
2977 {
2978 index -= dwarf2_per_objfile->n_comp_units;
2979 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2980 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2981 }
2982
2983 return dwarf2_per_objfile->all_comp_units[index];
2984 }
2985
2986 /* Return the CU given its index.
2987 This differs from dw2_get_cutu in that it's for when you know INDEX
2988 refers to a CU. */
2989
2990 static struct dwarf2_per_cu_data *
2991 dw2_get_cu (int index)
2992 {
2993 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2994
2995 return dwarf2_per_objfile->all_comp_units[index];
2996 }
2997
2998 /* A helper for create_cus_from_index that handles a given list of
2999 CUs. */
3000
3001 static void
3002 create_cus_from_index_list (struct objfile *objfile,
3003 const gdb_byte *cu_list, offset_type n_elements,
3004 struct dwarf2_section_info *section,
3005 int is_dwz,
3006 int base_offset)
3007 {
3008 offset_type i;
3009
3010 for (i = 0; i < n_elements; i += 2)
3011 {
3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3017 cu_list += 2 * 8;
3018
3019 dwarf2_per_cu_data *the_cu
3020 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3021 struct dwarf2_per_cu_data);
3022 the_cu->sect_off = sect_off;
3023 the_cu->length = length;
3024 the_cu->objfile = objfile;
3025 the_cu->section = section;
3026 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3027 struct dwarf2_per_cu_quick_data);
3028 the_cu->is_dwz = is_dwz;
3029 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3030 }
3031 }
3032
3033 /* Read the CU list from the mapped index, and use it to create all
3034 the CU objects for this objfile. */
3035
3036 static void
3037 create_cus_from_index (struct objfile *objfile,
3038 const gdb_byte *cu_list, offset_type cu_list_elements,
3039 const gdb_byte *dwz_list, offset_type dwz_elements)
3040 {
3041 struct dwz_file *dwz;
3042
3043 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3044 dwarf2_per_objfile->all_comp_units =
3045 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3046 dwarf2_per_objfile->n_comp_units);
3047
3048 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3049 &dwarf2_per_objfile->info, 0, 0);
3050
3051 if (dwz_elements == 0)
3052 return;
3053
3054 dwz = dwarf2_get_dwz_file ();
3055 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3056 cu_list_elements / 2);
3057 }
3058
3059 /* Create the signatured type hash table from the index. */
3060
3061 static void
3062 create_signatured_type_table_from_index (struct objfile *objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 offset_type i;
3068 htab_t sig_types_hash;
3069
3070 dwarf2_per_objfile->n_type_units
3071 = dwarf2_per_objfile->n_allocated_type_units
3072 = elements / 3;
3073 dwarf2_per_objfile->all_type_units =
3074 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3075
3076 sig_types_hash = allocate_signatured_type_table (objfile);
3077
3078 for (i = 0; i < elements; i += 3)
3079 {
3080 struct signatured_type *sig_type;
3081 ULONGEST signature;
3082 void **slot;
3083 cu_offset type_offset_in_tu;
3084
3085 gdb_static_assert (sizeof (ULONGEST) >= 8);
3086 sect_offset sect_off
3087 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3088 type_offset_in_tu
3089 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3090 BFD_ENDIAN_LITTLE);
3091 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3092 bytes += 3 * 8;
3093
3094 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3095 struct signatured_type);
3096 sig_type->signature = signature;
3097 sig_type->type_offset_in_tu = type_offset_in_tu;
3098 sig_type->per_cu.is_debug_types = 1;
3099 sig_type->per_cu.section = section;
3100 sig_type->per_cu.sect_off = sect_off;
3101 sig_type->per_cu.objfile = objfile;
3102 sig_type->per_cu.v.quick
3103 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3104 struct dwarf2_per_cu_quick_data);
3105
3106 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3107 *slot = sig_type;
3108
3109 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3110 }
3111
3112 dwarf2_per_objfile->signatured_types = sig_types_hash;
3113 }
3114
3115 /* Read the address map data from the mapped index, and use it to
3116 populate the objfile's psymtabs_addrmap. */
3117
3118 static void
3119 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3120 {
3121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3122 const gdb_byte *iter, *end;
3123 struct addrmap *mutable_map;
3124 CORE_ADDR baseaddr;
3125
3126 auto_obstack temp_obstack;
3127
3128 mutable_map = addrmap_create_mutable (&temp_obstack);
3129
3130 iter = index->address_table;
3131 end = iter + index->address_table_size;
3132
3133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3134
3135 while (iter < end)
3136 {
3137 ULONGEST hi, lo, cu_index;
3138 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3139 iter += 8;
3140 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3141 iter += 8;
3142 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3143 iter += 4;
3144
3145 if (lo > hi)
3146 {
3147 complaint (&symfile_complaints,
3148 _(".gdb_index address table has invalid range (%s - %s)"),
3149 hex_string (lo), hex_string (hi));
3150 continue;
3151 }
3152
3153 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3154 {
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid CU number %u"),
3157 (unsigned) cu_index);
3158 continue;
3159 }
3160
3161 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3162 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3163 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3164 }
3165
3166 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3167 &objfile->objfile_obstack);
3168 }
3169
3170 /* The hash function for strings in the mapped index. This is the same as
3171 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3172 implementation. This is necessary because the hash function is tied to the
3173 format of the mapped index file. The hash values do not have to match with
3174 SYMBOL_HASH_NEXT.
3175
3176 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3177
3178 static hashval_t
3179 mapped_index_string_hash (int index_version, const void *p)
3180 {
3181 const unsigned char *str = (const unsigned char *) p;
3182 hashval_t r = 0;
3183 unsigned char c;
3184
3185 while ((c = *str++) != 0)
3186 {
3187 if (index_version >= 5)
3188 c = tolower (c);
3189 r = r * 67 + c - 113;
3190 }
3191
3192 return r;
3193 }
3194
3195 /* Find a slot in the mapped index INDEX for the object named NAME.
3196 If NAME is found, set *VEC_OUT to point to the CU vector in the
3197 constant pool and return 1. If NAME cannot be found, return 0. */
3198
3199 static int
3200 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3201 offset_type **vec_out)
3202 {
3203 offset_type hash;
3204 offset_type slot, step;
3205 int (*cmp) (const char *, const char *);
3206
3207 gdb::unique_xmalloc_ptr<char> without_params;
3208 if (current_language->la_language == language_cplus
3209 || current_language->la_language == language_fortran
3210 || current_language->la_language == language_d)
3211 {
3212 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3213 not contain any. */
3214
3215 if (strchr (name, '(') != NULL)
3216 {
3217 without_params.reset (cp_remove_params (name));
3218
3219 if (without_params != NULL)
3220 name = without_params.get ();
3221 }
3222 }
3223
3224 /* Index version 4 did not support case insensitive searches. But the
3225 indices for case insensitive languages are built in lowercase, therefore
3226 simulate our NAME being searched is also lowercased. */
3227 hash = mapped_index_string_hash ((index->version == 4
3228 && case_sensitivity == case_sensitive_off
3229 ? 5 : index->version),
3230 name);
3231
3232 slot = hash & (index->symbol_table_slots - 1);
3233 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3234 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3235
3236 for (;;)
3237 {
3238 /* Convert a slot number to an offset into the table. */
3239 offset_type i = 2 * slot;
3240 const char *str;
3241 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3242 return 0;
3243
3244 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3245 if (!cmp (name, str))
3246 {
3247 *vec_out = (offset_type *) (index->constant_pool
3248 + MAYBE_SWAP (index->symbol_table[i + 1]));
3249 return 1;
3250 }
3251
3252 slot = (slot + step) & (index->symbol_table_slots - 1);
3253 }
3254 }
3255
3256 /* A helper function that reads the .gdb_index from SECTION and fills
3257 in MAP. FILENAME is the name of the file containing the section;
3258 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3259 ok to use deprecated sections.
3260
3261 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3262 out parameters that are filled in with information about the CU and
3263 TU lists in the section.
3264
3265 Returns 1 if all went well, 0 otherwise. */
3266
3267 static int
3268 read_index_from_section (struct objfile *objfile,
3269 const char *filename,
3270 int deprecated_ok,
3271 struct dwarf2_section_info *section,
3272 struct mapped_index *map,
3273 const gdb_byte **cu_list,
3274 offset_type *cu_list_elements,
3275 const gdb_byte **types_list,
3276 offset_type *types_list_elements)
3277 {
3278 const gdb_byte *addr;
3279 offset_type version;
3280 offset_type *metadata;
3281 int i;
3282
3283 if (dwarf2_section_empty_p (section))
3284 return 0;
3285
3286 /* Older elfutils strip versions could keep the section in the main
3287 executable while splitting it for the separate debug info file. */
3288 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3289 return 0;
3290
3291 dwarf2_read_section (objfile, section);
3292
3293 addr = section->buffer;
3294 /* Version check. */
3295 version = MAYBE_SWAP (*(offset_type *) addr);
3296 /* Versions earlier than 3 emitted every copy of a psymbol. This
3297 causes the index to behave very poorly for certain requests. Version 3
3298 contained incomplete addrmap. So, it seems better to just ignore such
3299 indices. */
3300 if (version < 4)
3301 {
3302 static int warning_printed = 0;
3303 if (!warning_printed)
3304 {
3305 warning (_("Skipping obsolete .gdb_index section in %s."),
3306 filename);
3307 warning_printed = 1;
3308 }
3309 return 0;
3310 }
3311 /* Index version 4 uses a different hash function than index version
3312 5 and later.
3313
3314 Versions earlier than 6 did not emit psymbols for inlined
3315 functions. Using these files will cause GDB not to be able to
3316 set breakpoints on inlined functions by name, so we ignore these
3317 indices unless the user has done
3318 "set use-deprecated-index-sections on". */
3319 if (version < 6 && !deprecated_ok)
3320 {
3321 static int warning_printed = 0;
3322 if (!warning_printed)
3323 {
3324 warning (_("\
3325 Skipping deprecated .gdb_index section in %s.\n\
3326 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3327 to use the section anyway."),
3328 filename);
3329 warning_printed = 1;
3330 }
3331 return 0;
3332 }
3333 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3334 of the TU (for symbols coming from TUs),
3335 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3336 Plus gold-generated indices can have duplicate entries for global symbols,
3337 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3338 These are just performance bugs, and we can't distinguish gdb-generated
3339 indices from gold-generated ones, so issue no warning here. */
3340
3341 /* Indexes with higher version than the one supported by GDB may be no
3342 longer backward compatible. */
3343 if (version > 8)
3344 return 0;
3345
3346 map->version = version;
3347 map->total_size = section->size;
3348
3349 metadata = (offset_type *) (addr + sizeof (offset_type));
3350
3351 i = 0;
3352 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3353 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3354 / 8);
3355 ++i;
3356
3357 *types_list = addr + MAYBE_SWAP (metadata[i]);
3358 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3359 - MAYBE_SWAP (metadata[i]))
3360 / 8);
3361 ++i;
3362
3363 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3364 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3365 - MAYBE_SWAP (metadata[i]));
3366 ++i;
3367
3368 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3369 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3370 - MAYBE_SWAP (metadata[i]))
3371 / (2 * sizeof (offset_type)));
3372 ++i;
3373
3374 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3375
3376 return 1;
3377 }
3378
3379
3380 /* Read the index file. If everything went ok, initialize the "quick"
3381 elements of all the CUs and return 1. Otherwise, return 0. */
3382
3383 static int
3384 dwarf2_read_index (struct objfile *objfile)
3385 {
3386 struct mapped_index local_map, *map;
3387 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3388 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3389 struct dwz_file *dwz;
3390
3391 if (!read_index_from_section (objfile, objfile_name (objfile),
3392 use_deprecated_index_sections,
3393 &dwarf2_per_objfile->gdb_index, &local_map,
3394 &cu_list, &cu_list_elements,
3395 &types_list, &types_list_elements))
3396 return 0;
3397
3398 /* Don't use the index if it's empty. */
3399 if (local_map.symbol_table_slots == 0)
3400 return 0;
3401
3402 /* If there is a .dwz file, read it so we can get its CU list as
3403 well. */
3404 dwz = dwarf2_get_dwz_file ();
3405 if (dwz != NULL)
3406 {
3407 struct mapped_index dwz_map;
3408 const gdb_byte *dwz_types_ignore;
3409 offset_type dwz_types_elements_ignore;
3410
3411 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3412 1,
3413 &dwz->gdb_index, &dwz_map,
3414 &dwz_list, &dwz_list_elements,
3415 &dwz_types_ignore,
3416 &dwz_types_elements_ignore))
3417 {
3418 warning (_("could not read '.gdb_index' section from %s; skipping"),
3419 bfd_get_filename (dwz->dwz_bfd));
3420 return 0;
3421 }
3422 }
3423
3424 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3425 dwz_list_elements);
3426
3427 if (types_list_elements)
3428 {
3429 struct dwarf2_section_info *section;
3430
3431 /* We can only handle a single .debug_types when we have an
3432 index. */
3433 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3434 return 0;
3435
3436 section = VEC_index (dwarf2_section_info_def,
3437 dwarf2_per_objfile->types, 0);
3438
3439 create_signatured_type_table_from_index (objfile, section, types_list,
3440 types_list_elements);
3441 }
3442
3443 create_addrmap_from_index (objfile, &local_map);
3444
3445 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3446 *map = local_map;
3447
3448 dwarf2_per_objfile->index_table = map;
3449 dwarf2_per_objfile->using_index = 1;
3450 dwarf2_per_objfile->quick_file_names_table =
3451 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3452
3453 return 1;
3454 }
3455
3456 /* A helper for the "quick" functions which sets the global
3457 dwarf2_per_objfile according to OBJFILE. */
3458
3459 static void
3460 dw2_setup (struct objfile *objfile)
3461 {
3462 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3463 objfile_data (objfile, dwarf2_objfile_data_key));
3464 gdb_assert (dwarf2_per_objfile);
3465 }
3466
3467 /* die_reader_func for dw2_get_file_names. */
3468
3469 static void
3470 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3471 const gdb_byte *info_ptr,
3472 struct die_info *comp_unit_die,
3473 int has_children,
3474 void *data)
3475 {
3476 struct dwarf2_cu *cu = reader->cu;
3477 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3478 struct objfile *objfile = dwarf2_per_objfile->objfile;
3479 struct dwarf2_per_cu_data *lh_cu;
3480 struct attribute *attr;
3481 int i;
3482 void **slot;
3483 struct quick_file_names *qfn;
3484
3485 gdb_assert (! this_cu->is_debug_types);
3486
3487 /* Our callers never want to match partial units -- instead they
3488 will match the enclosing full CU. */
3489 if (comp_unit_die->tag == DW_TAG_partial_unit)
3490 {
3491 this_cu->v.quick->no_file_data = 1;
3492 return;
3493 }
3494
3495 lh_cu = this_cu;
3496 slot = NULL;
3497
3498 line_header_up lh;
3499 sect_offset line_offset {};
3500
3501 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3502 if (attr)
3503 {
3504 struct quick_file_names find_entry;
3505
3506 line_offset = (sect_offset) DW_UNSND (attr);
3507
3508 /* We may have already read in this line header (TU line header sharing).
3509 If we have we're done. */
3510 find_entry.hash.dwo_unit = cu->dwo_unit;
3511 find_entry.hash.line_sect_off = line_offset;
3512 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3513 &find_entry, INSERT);
3514 if (*slot != NULL)
3515 {
3516 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3517 return;
3518 }
3519
3520 lh = dwarf_decode_line_header (line_offset, cu);
3521 }
3522 if (lh == NULL)
3523 {
3524 lh_cu->v.quick->no_file_data = 1;
3525 return;
3526 }
3527
3528 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3529 qfn->hash.dwo_unit = cu->dwo_unit;
3530 qfn->hash.line_sect_off = line_offset;
3531 gdb_assert (slot != NULL);
3532 *slot = qfn;
3533
3534 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3535
3536 qfn->num_file_names = lh->file_names.size ();
3537 qfn->file_names =
3538 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3539 for (i = 0; i < lh->file_names.size (); ++i)
3540 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3541 qfn->real_names = NULL;
3542
3543 lh_cu->v.quick->file_names = qfn;
3544 }
3545
3546 /* A helper for the "quick" functions which attempts to read the line
3547 table for THIS_CU. */
3548
3549 static struct quick_file_names *
3550 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3551 {
3552 /* This should never be called for TUs. */
3553 gdb_assert (! this_cu->is_debug_types);
3554 /* Nor type unit groups. */
3555 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3556
3557 if (this_cu->v.quick->file_names != NULL)
3558 return this_cu->v.quick->file_names;
3559 /* If we know there is no line data, no point in looking again. */
3560 if (this_cu->v.quick->no_file_data)
3561 return NULL;
3562
3563 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3564
3565 if (this_cu->v.quick->no_file_data)
3566 return NULL;
3567 return this_cu->v.quick->file_names;
3568 }
3569
3570 /* A helper for the "quick" functions which computes and caches the
3571 real path for a given file name from the line table. */
3572
3573 static const char *
3574 dw2_get_real_path (struct objfile *objfile,
3575 struct quick_file_names *qfn, int index)
3576 {
3577 if (qfn->real_names == NULL)
3578 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3579 qfn->num_file_names, const char *);
3580
3581 if (qfn->real_names[index] == NULL)
3582 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3583
3584 return qfn->real_names[index];
3585 }
3586
3587 static struct symtab *
3588 dw2_find_last_source_symtab (struct objfile *objfile)
3589 {
3590 struct compunit_symtab *cust;
3591 int index;
3592
3593 dw2_setup (objfile);
3594 index = dwarf2_per_objfile->n_comp_units - 1;
3595 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3596 if (cust == NULL)
3597 return NULL;
3598 return compunit_primary_filetab (cust);
3599 }
3600
3601 /* Traversal function for dw2_forget_cached_source_info. */
3602
3603 static int
3604 dw2_free_cached_file_names (void **slot, void *info)
3605 {
3606 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3607
3608 if (file_data->real_names)
3609 {
3610 int i;
3611
3612 for (i = 0; i < file_data->num_file_names; ++i)
3613 {
3614 xfree ((void*) file_data->real_names[i]);
3615 file_data->real_names[i] = NULL;
3616 }
3617 }
3618
3619 return 1;
3620 }
3621
3622 static void
3623 dw2_forget_cached_source_info (struct objfile *objfile)
3624 {
3625 dw2_setup (objfile);
3626
3627 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3628 dw2_free_cached_file_names, NULL);
3629 }
3630
3631 /* Helper function for dw2_map_symtabs_matching_filename that expands
3632 the symtabs and calls the iterator. */
3633
3634 static int
3635 dw2_map_expand_apply (struct objfile *objfile,
3636 struct dwarf2_per_cu_data *per_cu,
3637 const char *name, const char *real_path,
3638 gdb::function_view<bool (symtab *)> callback)
3639 {
3640 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3641
3642 /* Don't visit already-expanded CUs. */
3643 if (per_cu->v.quick->compunit_symtab)
3644 return 0;
3645
3646 /* This may expand more than one symtab, and we want to iterate over
3647 all of them. */
3648 dw2_instantiate_symtab (per_cu);
3649
3650 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3651 last_made, callback);
3652 }
3653
3654 /* Implementation of the map_symtabs_matching_filename method. */
3655
3656 static bool
3657 dw2_map_symtabs_matching_filename
3658 (struct objfile *objfile, const char *name, const char *real_path,
3659 gdb::function_view<bool (symtab *)> callback)
3660 {
3661 int i;
3662 const char *name_basename = lbasename (name);
3663
3664 dw2_setup (objfile);
3665
3666 /* The rule is CUs specify all the files, including those used by
3667 any TU, so there's no need to scan TUs here. */
3668
3669 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3670 {
3671 int j;
3672 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3673 struct quick_file_names *file_data;
3674
3675 /* We only need to look at symtabs not already expanded. */
3676 if (per_cu->v.quick->compunit_symtab)
3677 continue;
3678
3679 file_data = dw2_get_file_names (per_cu);
3680 if (file_data == NULL)
3681 continue;
3682
3683 for (j = 0; j < file_data->num_file_names; ++j)
3684 {
3685 const char *this_name = file_data->file_names[j];
3686 const char *this_real_name;
3687
3688 if (compare_filenames_for_search (this_name, name))
3689 {
3690 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3691 callback))
3692 return true;
3693 continue;
3694 }
3695
3696 /* Before we invoke realpath, which can get expensive when many
3697 files are involved, do a quick comparison of the basenames. */
3698 if (! basenames_may_differ
3699 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3700 continue;
3701
3702 this_real_name = dw2_get_real_path (objfile, file_data, j);
3703 if (compare_filenames_for_search (this_real_name, name))
3704 {
3705 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3706 callback))
3707 return true;
3708 continue;
3709 }
3710
3711 if (real_path != NULL)
3712 {
3713 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3714 gdb_assert (IS_ABSOLUTE_PATH (name));
3715 if (this_real_name != NULL
3716 && FILENAME_CMP (real_path, this_real_name) == 0)
3717 {
3718 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3719 callback))
3720 return true;
3721 continue;
3722 }
3723 }
3724 }
3725 }
3726
3727 return false;
3728 }
3729
3730 /* Struct used to manage iterating over all CUs looking for a symbol. */
3731
3732 struct dw2_symtab_iterator
3733 {
3734 /* The internalized form of .gdb_index. */
3735 struct mapped_index *index;
3736 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3737 int want_specific_block;
3738 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3739 Unused if !WANT_SPECIFIC_BLOCK. */
3740 int block_index;
3741 /* The kind of symbol we're looking for. */
3742 domain_enum domain;
3743 /* The list of CUs from the index entry of the symbol,
3744 or NULL if not found. */
3745 offset_type *vec;
3746 /* The next element in VEC to look at. */
3747 int next;
3748 /* The number of elements in VEC, or zero if there is no match. */
3749 int length;
3750 /* Have we seen a global version of the symbol?
3751 If so we can ignore all further global instances.
3752 This is to work around gold/15646, inefficient gold-generated
3753 indices. */
3754 int global_seen;
3755 };
3756
3757 /* Initialize the index symtab iterator ITER.
3758 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3759 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3760
3761 static void
3762 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3763 struct mapped_index *index,
3764 int want_specific_block,
3765 int block_index,
3766 domain_enum domain,
3767 const char *name)
3768 {
3769 iter->index = index;
3770 iter->want_specific_block = want_specific_block;
3771 iter->block_index = block_index;
3772 iter->domain = domain;
3773 iter->next = 0;
3774 iter->global_seen = 0;
3775
3776 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3777 iter->length = MAYBE_SWAP (*iter->vec);
3778 else
3779 {
3780 iter->vec = NULL;
3781 iter->length = 0;
3782 }
3783 }
3784
3785 /* Return the next matching CU or NULL if there are no more. */
3786
3787 static struct dwarf2_per_cu_data *
3788 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3789 {
3790 for ( ; iter->next < iter->length; ++iter->next)
3791 {
3792 offset_type cu_index_and_attrs =
3793 MAYBE_SWAP (iter->vec[iter->next + 1]);
3794 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3795 struct dwarf2_per_cu_data *per_cu;
3796 int want_static = iter->block_index != GLOBAL_BLOCK;
3797 /* This value is only valid for index versions >= 7. */
3798 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3799 gdb_index_symbol_kind symbol_kind =
3800 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3801 /* Only check the symbol attributes if they're present.
3802 Indices prior to version 7 don't record them,
3803 and indices >= 7 may elide them for certain symbols
3804 (gold does this). */
3805 int attrs_valid =
3806 (iter->index->version >= 7
3807 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3808
3809 /* Don't crash on bad data. */
3810 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3811 + dwarf2_per_objfile->n_type_units))
3812 {
3813 complaint (&symfile_complaints,
3814 _(".gdb_index entry has bad CU index"
3815 " [in module %s]"),
3816 objfile_name (dwarf2_per_objfile->objfile));
3817 continue;
3818 }
3819
3820 per_cu = dw2_get_cutu (cu_index);
3821
3822 /* Skip if already read in. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 /* Check static vs global. */
3827 if (attrs_valid)
3828 {
3829 if (iter->want_specific_block
3830 && want_static != is_static)
3831 continue;
3832 /* Work around gold/15646. */
3833 if (!is_static && iter->global_seen)
3834 continue;
3835 if (!is_static)
3836 iter->global_seen = 1;
3837 }
3838
3839 /* Only check the symbol's kind if it has one. */
3840 if (attrs_valid)
3841 {
3842 switch (iter->domain)
3843 {
3844 case VAR_DOMAIN:
3845 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3846 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3847 /* Some types are also in VAR_DOMAIN. */
3848 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3849 continue;
3850 break;
3851 case STRUCT_DOMAIN:
3852 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3853 continue;
3854 break;
3855 case LABEL_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3857 continue;
3858 break;
3859 default:
3860 break;
3861 }
3862 }
3863
3864 ++iter->next;
3865 return per_cu;
3866 }
3867
3868 return NULL;
3869 }
3870
3871 static struct compunit_symtab *
3872 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3873 const char *name, domain_enum domain)
3874 {
3875 struct compunit_symtab *stab_best = NULL;
3876 struct mapped_index *index;
3877
3878 dw2_setup (objfile);
3879
3880 index = dwarf2_per_objfile->index_table;
3881
3882 /* index is NULL if OBJF_READNOW. */
3883 if (index)
3884 {
3885 struct dw2_symtab_iterator iter;
3886 struct dwarf2_per_cu_data *per_cu;
3887
3888 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3889
3890 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3891 {
3892 struct symbol *sym, *with_opaque = NULL;
3893 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3894 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3895 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3896
3897 sym = block_find_symbol (block, name, domain,
3898 block_find_non_opaque_type_preferred,
3899 &with_opaque);
3900
3901 /* Some caution must be observed with overloaded functions
3902 and methods, since the index will not contain any overload
3903 information (but NAME might contain it). */
3904
3905 if (sym != NULL
3906 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3907 return stab;
3908 if (with_opaque != NULL
3909 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3910 stab_best = stab;
3911
3912 /* Keep looking through other CUs. */
3913 }
3914 }
3915
3916 return stab_best;
3917 }
3918
3919 static void
3920 dw2_print_stats (struct objfile *objfile)
3921 {
3922 int i, total, count;
3923
3924 dw2_setup (objfile);
3925 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3926 count = 0;
3927 for (i = 0; i < total; ++i)
3928 {
3929 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3930
3931 if (!per_cu->v.quick->compunit_symtab)
3932 ++count;
3933 }
3934 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3935 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3936 }
3937
3938 /* This dumps minimal information about the index.
3939 It is called via "mt print objfiles".
3940 One use is to verify .gdb_index has been loaded by the
3941 gdb.dwarf2/gdb-index.exp testcase. */
3942
3943 static void
3944 dw2_dump (struct objfile *objfile)
3945 {
3946 dw2_setup (objfile);
3947 gdb_assert (dwarf2_per_objfile->using_index);
3948 printf_filtered (".gdb_index:");
3949 if (dwarf2_per_objfile->index_table != NULL)
3950 {
3951 printf_filtered (" version %d\n",
3952 dwarf2_per_objfile->index_table->version);
3953 }
3954 else
3955 printf_filtered (" faked for \"readnow\"\n");
3956 printf_filtered ("\n");
3957 }
3958
3959 static void
3960 dw2_relocate (struct objfile *objfile,
3961 const struct section_offsets *new_offsets,
3962 const struct section_offsets *delta)
3963 {
3964 /* There's nothing to relocate here. */
3965 }
3966
3967 static void
3968 dw2_expand_symtabs_for_function (struct objfile *objfile,
3969 const char *func_name)
3970 {
3971 struct mapped_index *index;
3972
3973 dw2_setup (objfile);
3974
3975 index = dwarf2_per_objfile->index_table;
3976
3977 /* index is NULL if OBJF_READNOW. */
3978 if (index)
3979 {
3980 struct dw2_symtab_iterator iter;
3981 struct dwarf2_per_cu_data *per_cu;
3982
3983 /* Note: It doesn't matter what we pass for block_index here. */
3984 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3985 func_name);
3986
3987 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3988 dw2_instantiate_symtab (per_cu);
3989 }
3990 }
3991
3992 static void
3993 dw2_expand_all_symtabs (struct objfile *objfile)
3994 {
3995 int i;
3996
3997 dw2_setup (objfile);
3998
3999 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4000 + dwarf2_per_objfile->n_type_units); ++i)
4001 {
4002 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4003
4004 dw2_instantiate_symtab (per_cu);
4005 }
4006 }
4007
4008 static void
4009 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4010 const char *fullname)
4011 {
4012 int i;
4013
4014 dw2_setup (objfile);
4015
4016 /* We don't need to consider type units here.
4017 This is only called for examining code, e.g. expand_line_sal.
4018 There can be an order of magnitude (or more) more type units
4019 than comp units, and we avoid them if we can. */
4020
4021 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4022 {
4023 int j;
4024 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4025 struct quick_file_names *file_data;
4026
4027 /* We only need to look at symtabs not already expanded. */
4028 if (per_cu->v.quick->compunit_symtab)
4029 continue;
4030
4031 file_data = dw2_get_file_names (per_cu);
4032 if (file_data == NULL)
4033 continue;
4034
4035 for (j = 0; j < file_data->num_file_names; ++j)
4036 {
4037 const char *this_fullname = file_data->file_names[j];
4038
4039 if (filename_cmp (this_fullname, fullname) == 0)
4040 {
4041 dw2_instantiate_symtab (per_cu);
4042 break;
4043 }
4044 }
4045 }
4046 }
4047
4048 static void
4049 dw2_map_matching_symbols (struct objfile *objfile,
4050 const char * name, domain_enum domain,
4051 int global,
4052 int (*callback) (struct block *,
4053 struct symbol *, void *),
4054 void *data, symbol_compare_ftype *match,
4055 symbol_compare_ftype *ordered_compare)
4056 {
4057 /* Currently unimplemented; used for Ada. The function can be called if the
4058 current language is Ada for a non-Ada objfile using GNU index. As Ada
4059 does not look for non-Ada symbols this function should just return. */
4060 }
4061
4062 static void
4063 dw2_expand_symtabs_matching
4064 (struct objfile *objfile,
4065 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4066 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4067 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4068 enum search_domain kind)
4069 {
4070 int i;
4071 offset_type iter;
4072 struct mapped_index *index;
4073
4074 dw2_setup (objfile);
4075
4076 /* index_table is NULL if OBJF_READNOW. */
4077 if (!dwarf2_per_objfile->index_table)
4078 return;
4079 index = dwarf2_per_objfile->index_table;
4080
4081 if (file_matcher != NULL)
4082 {
4083 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4084 htab_eq_pointer,
4085 NULL, xcalloc, xfree));
4086 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4087 htab_eq_pointer,
4088 NULL, xcalloc, xfree));
4089
4090 /* The rule is CUs specify all the files, including those used by
4091 any TU, so there's no need to scan TUs here. */
4092
4093 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4094 {
4095 int j;
4096 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4097 struct quick_file_names *file_data;
4098 void **slot;
4099
4100 QUIT;
4101
4102 per_cu->v.quick->mark = 0;
4103
4104 /* We only need to look at symtabs not already expanded. */
4105 if (per_cu->v.quick->compunit_symtab)
4106 continue;
4107
4108 file_data = dw2_get_file_names (per_cu);
4109 if (file_data == NULL)
4110 continue;
4111
4112 if (htab_find (visited_not_found.get (), file_data) != NULL)
4113 continue;
4114 else if (htab_find (visited_found.get (), file_data) != NULL)
4115 {
4116 per_cu->v.quick->mark = 1;
4117 continue;
4118 }
4119
4120 for (j = 0; j < file_data->num_file_names; ++j)
4121 {
4122 const char *this_real_name;
4123
4124 if (file_matcher (file_data->file_names[j], false))
4125 {
4126 per_cu->v.quick->mark = 1;
4127 break;
4128 }
4129
4130 /* Before we invoke realpath, which can get expensive when many
4131 files are involved, do a quick comparison of the basenames. */
4132 if (!basenames_may_differ
4133 && !file_matcher (lbasename (file_data->file_names[j]),
4134 true))
4135 continue;
4136
4137 this_real_name = dw2_get_real_path (objfile, file_data, j);
4138 if (file_matcher (this_real_name, false))
4139 {
4140 per_cu->v.quick->mark = 1;
4141 break;
4142 }
4143 }
4144
4145 slot = htab_find_slot (per_cu->v.quick->mark
4146 ? visited_found.get ()
4147 : visited_not_found.get (),
4148 file_data, INSERT);
4149 *slot = file_data;
4150 }
4151 }
4152
4153 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4154 {
4155 offset_type idx = 2 * iter;
4156 const char *name;
4157 offset_type *vec, vec_len, vec_idx;
4158 int global_seen = 0;
4159
4160 QUIT;
4161
4162 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4163 continue;
4164
4165 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4166
4167 if (!symbol_matcher (name))
4168 continue;
4169
4170 /* The name was matched, now expand corresponding CUs that were
4171 marked. */
4172 vec = (offset_type *) (index->constant_pool
4173 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4174 vec_len = MAYBE_SWAP (vec[0]);
4175 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4176 {
4177 struct dwarf2_per_cu_data *per_cu;
4178 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4179 /* This value is only valid for index versions >= 7. */
4180 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4181 gdb_index_symbol_kind symbol_kind =
4182 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4183 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4184 /* Only check the symbol attributes if they're present.
4185 Indices prior to version 7 don't record them,
4186 and indices >= 7 may elide them for certain symbols
4187 (gold does this). */
4188 int attrs_valid =
4189 (index->version >= 7
4190 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4191
4192 /* Work around gold/15646. */
4193 if (attrs_valid)
4194 {
4195 if (!is_static && global_seen)
4196 continue;
4197 if (!is_static)
4198 global_seen = 1;
4199 }
4200
4201 /* Only check the symbol's kind if it has one. */
4202 if (attrs_valid)
4203 {
4204 switch (kind)
4205 {
4206 case VARIABLES_DOMAIN:
4207 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4208 continue;
4209 break;
4210 case FUNCTIONS_DOMAIN:
4211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4212 continue;
4213 break;
4214 case TYPES_DOMAIN:
4215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4216 continue;
4217 break;
4218 default:
4219 break;
4220 }
4221 }
4222
4223 /* Don't crash on bad data. */
4224 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4225 + dwarf2_per_objfile->n_type_units))
4226 {
4227 complaint (&symfile_complaints,
4228 _(".gdb_index entry has bad CU index"
4229 " [in module %s]"), objfile_name (objfile));
4230 continue;
4231 }
4232
4233 per_cu = dw2_get_cutu (cu_index);
4234 if (file_matcher == NULL || per_cu->v.quick->mark)
4235 {
4236 int symtab_was_null =
4237 (per_cu->v.quick->compunit_symtab == NULL);
4238
4239 dw2_instantiate_symtab (per_cu);
4240
4241 if (expansion_notify != NULL
4242 && symtab_was_null
4243 && per_cu->v.quick->compunit_symtab != NULL)
4244 {
4245 expansion_notify (per_cu->v.quick->compunit_symtab);
4246 }
4247 }
4248 }
4249 }
4250 }
4251
4252 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4253 symtab. */
4254
4255 static struct compunit_symtab *
4256 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4257 CORE_ADDR pc)
4258 {
4259 int i;
4260
4261 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4262 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4263 return cust;
4264
4265 if (cust->includes == NULL)
4266 return NULL;
4267
4268 for (i = 0; cust->includes[i]; ++i)
4269 {
4270 struct compunit_symtab *s = cust->includes[i];
4271
4272 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4273 if (s != NULL)
4274 return s;
4275 }
4276
4277 return NULL;
4278 }
4279
4280 static struct compunit_symtab *
4281 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4282 struct bound_minimal_symbol msymbol,
4283 CORE_ADDR pc,
4284 struct obj_section *section,
4285 int warn_if_readin)
4286 {
4287 struct dwarf2_per_cu_data *data;
4288 struct compunit_symtab *result;
4289
4290 dw2_setup (objfile);
4291
4292 if (!objfile->psymtabs_addrmap)
4293 return NULL;
4294
4295 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4296 pc);
4297 if (!data)
4298 return NULL;
4299
4300 if (warn_if_readin && data->v.quick->compunit_symtab)
4301 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4302 paddress (get_objfile_arch (objfile), pc));
4303
4304 result
4305 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4306 pc);
4307 gdb_assert (result != NULL);
4308 return result;
4309 }
4310
4311 static void
4312 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4313 void *data, int need_fullname)
4314 {
4315 dw2_setup (objfile);
4316
4317 if (!dwarf2_per_objfile->filenames_cache)
4318 {
4319 dwarf2_per_objfile->filenames_cache.emplace ();
4320
4321 htab_up visited (htab_create_alloc (10,
4322 htab_hash_pointer, htab_eq_pointer,
4323 NULL, xcalloc, xfree));
4324
4325 /* The rule is CUs specify all the files, including those used
4326 by any TU, so there's no need to scan TUs here. We can
4327 ignore file names coming from already-expanded CUs. */
4328
4329 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4330 {
4331 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4332
4333 if (per_cu->v.quick->compunit_symtab)
4334 {
4335 void **slot = htab_find_slot (visited.get (),
4336 per_cu->v.quick->file_names,
4337 INSERT);
4338
4339 *slot = per_cu->v.quick->file_names;
4340 }
4341 }
4342
4343 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4344 {
4345 int j;
4346 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4347 struct quick_file_names *file_data;
4348 void **slot;
4349
4350 /* We only need to look at symtabs not already expanded. */
4351 if (per_cu->v.quick->compunit_symtab)
4352 continue;
4353
4354 file_data = dw2_get_file_names (per_cu);
4355 if (file_data == NULL)
4356 continue;
4357
4358 slot = htab_find_slot (visited.get (), file_data, INSERT);
4359 if (*slot)
4360 {
4361 /* Already visited. */
4362 continue;
4363 }
4364 *slot = file_data;
4365
4366 for (int j = 0; j < file_data->num_file_names; ++j)
4367 {
4368 const char *filename = file_data->file_names[j];
4369 dwarf2_per_objfile->filenames_cache->seen (filename);
4370 }
4371 }
4372 }
4373
4374 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4375 {
4376 gdb::unique_xmalloc_ptr<char> this_real_name;
4377
4378 if (need_fullname)
4379 this_real_name = gdb_realpath (filename);
4380 (*fun) (filename, this_real_name.get (), data);
4381 });
4382 }
4383
4384 static int
4385 dw2_has_symbols (struct objfile *objfile)
4386 {
4387 return 1;
4388 }
4389
4390 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4391 {
4392 dw2_has_symbols,
4393 dw2_find_last_source_symtab,
4394 dw2_forget_cached_source_info,
4395 dw2_map_symtabs_matching_filename,
4396 dw2_lookup_symbol,
4397 dw2_print_stats,
4398 dw2_dump,
4399 dw2_relocate,
4400 dw2_expand_symtabs_for_function,
4401 dw2_expand_all_symtabs,
4402 dw2_expand_symtabs_with_fullname,
4403 dw2_map_matching_symbols,
4404 dw2_expand_symtabs_matching,
4405 dw2_find_pc_sect_compunit_symtab,
4406 dw2_map_symbol_filenames
4407 };
4408
4409 /* Initialize for reading DWARF for this objfile. Return 0 if this
4410 file will use psymtabs, or 1 if using the GNU index. */
4411
4412 int
4413 dwarf2_initialize_objfile (struct objfile *objfile)
4414 {
4415 /* If we're about to read full symbols, don't bother with the
4416 indices. In this case we also don't care if some other debug
4417 format is making psymtabs, because they are all about to be
4418 expanded anyway. */
4419 if ((objfile->flags & OBJF_READNOW))
4420 {
4421 int i;
4422
4423 dwarf2_per_objfile->using_index = 1;
4424 create_all_comp_units (objfile);
4425 create_all_type_units (objfile);
4426 dwarf2_per_objfile->quick_file_names_table =
4427 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4428
4429 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4430 + dwarf2_per_objfile->n_type_units); ++i)
4431 {
4432 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4433
4434 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4435 struct dwarf2_per_cu_quick_data);
4436 }
4437
4438 /* Return 1 so that gdb sees the "quick" functions. However,
4439 these functions will be no-ops because we will have expanded
4440 all symtabs. */
4441 return 1;
4442 }
4443
4444 if (dwarf2_read_index (objfile))
4445 return 1;
4446
4447 return 0;
4448 }
4449
4450 \f
4451
4452 /* Build a partial symbol table. */
4453
4454 void
4455 dwarf2_build_psymtabs (struct objfile *objfile)
4456 {
4457
4458 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4459 {
4460 init_psymbol_list (objfile, 1024);
4461 }
4462
4463 TRY
4464 {
4465 /* This isn't really ideal: all the data we allocate on the
4466 objfile's obstack is still uselessly kept around. However,
4467 freeing it seems unsafe. */
4468 psymtab_discarder psymtabs (objfile);
4469 dwarf2_build_psymtabs_hard (objfile);
4470 psymtabs.keep ();
4471 }
4472 CATCH (except, RETURN_MASK_ERROR)
4473 {
4474 exception_print (gdb_stderr, except);
4475 }
4476 END_CATCH
4477 }
4478
4479 /* Return the total length of the CU described by HEADER. */
4480
4481 static unsigned int
4482 get_cu_length (const struct comp_unit_head *header)
4483 {
4484 return header->initial_length_size + header->length;
4485 }
4486
4487 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4488
4489 static inline bool
4490 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4491 {
4492 sect_offset bottom = cu_header->sect_off;
4493 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4494
4495 return sect_off >= bottom && sect_off < top;
4496 }
4497
4498 /* Find the base address of the compilation unit for range lists and
4499 location lists. It will normally be specified by DW_AT_low_pc.
4500 In DWARF-3 draft 4, the base address could be overridden by
4501 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4502 compilation units with discontinuous ranges. */
4503
4504 static void
4505 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4506 {
4507 struct attribute *attr;
4508
4509 cu->base_known = 0;
4510 cu->base_address = 0;
4511
4512 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4513 if (attr)
4514 {
4515 cu->base_address = attr_value_as_address (attr);
4516 cu->base_known = 1;
4517 }
4518 else
4519 {
4520 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4521 if (attr)
4522 {
4523 cu->base_address = attr_value_as_address (attr);
4524 cu->base_known = 1;
4525 }
4526 }
4527 }
4528
4529 /* Read in the comp unit header information from the debug_info at info_ptr.
4530 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4531 NOTE: This leaves members offset, first_die_offset to be filled in
4532 by the caller. */
4533
4534 static const gdb_byte *
4535 read_comp_unit_head (struct comp_unit_head *cu_header,
4536 const gdb_byte *info_ptr,
4537 struct dwarf2_section_info *section,
4538 rcuh_kind section_kind)
4539 {
4540 int signed_addr;
4541 unsigned int bytes_read;
4542 const char *filename = get_section_file_name (section);
4543 bfd *abfd = get_section_bfd_owner (section);
4544
4545 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4546 cu_header->initial_length_size = bytes_read;
4547 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4548 info_ptr += bytes_read;
4549 cu_header->version = read_2_bytes (abfd, info_ptr);
4550 info_ptr += 2;
4551 if (cu_header->version < 5)
4552 switch (section_kind)
4553 {
4554 case rcuh_kind::COMPILE:
4555 cu_header->unit_type = DW_UT_compile;
4556 break;
4557 case rcuh_kind::TYPE:
4558 cu_header->unit_type = DW_UT_type;
4559 break;
4560 default:
4561 internal_error (__FILE__, __LINE__,
4562 _("read_comp_unit_head: invalid section_kind"));
4563 }
4564 else
4565 {
4566 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4567 (read_1_byte (abfd, info_ptr));
4568 info_ptr += 1;
4569 switch (cu_header->unit_type)
4570 {
4571 case DW_UT_compile:
4572 if (section_kind != rcuh_kind::COMPILE)
4573 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4574 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4575 filename);
4576 break;
4577 case DW_UT_type:
4578 section_kind = rcuh_kind::TYPE;
4579 break;
4580 default:
4581 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4582 "(is %d, should be %d or %d) [in module %s]"),
4583 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4584 }
4585
4586 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4587 info_ptr += 1;
4588 }
4589 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4590 cu_header,
4591 &bytes_read);
4592 info_ptr += bytes_read;
4593 if (cu_header->version < 5)
4594 {
4595 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4596 info_ptr += 1;
4597 }
4598 signed_addr = bfd_get_sign_extend_vma (abfd);
4599 if (signed_addr < 0)
4600 internal_error (__FILE__, __LINE__,
4601 _("read_comp_unit_head: dwarf from non elf file"));
4602 cu_header->signed_addr_p = signed_addr;
4603
4604 if (section_kind == rcuh_kind::TYPE)
4605 {
4606 LONGEST type_offset;
4607
4608 cu_header->signature = read_8_bytes (abfd, info_ptr);
4609 info_ptr += 8;
4610
4611 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4612 info_ptr += bytes_read;
4613 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4614 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4615 error (_("Dwarf Error: Too big type_offset in compilation unit "
4616 "header (is %s) [in module %s]"), plongest (type_offset),
4617 filename);
4618 }
4619
4620 return info_ptr;
4621 }
4622
4623 /* Helper function that returns the proper abbrev section for
4624 THIS_CU. */
4625
4626 static struct dwarf2_section_info *
4627 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4628 {
4629 struct dwarf2_section_info *abbrev;
4630
4631 if (this_cu->is_dwz)
4632 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4633 else
4634 abbrev = &dwarf2_per_objfile->abbrev;
4635
4636 return abbrev;
4637 }
4638
4639 /* Subroutine of read_and_check_comp_unit_head and
4640 read_and_check_type_unit_head to simplify them.
4641 Perform various error checking on the header. */
4642
4643 static void
4644 error_check_comp_unit_head (struct comp_unit_head *header,
4645 struct dwarf2_section_info *section,
4646 struct dwarf2_section_info *abbrev_section)
4647 {
4648 const char *filename = get_section_file_name (section);
4649
4650 if (header->version < 2 || header->version > 5)
4651 error (_("Dwarf Error: wrong version in compilation unit header "
4652 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4653 filename);
4654
4655 if (to_underlying (header->abbrev_sect_off)
4656 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4657 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4658 "(offset 0x%x + 6) [in module %s]"),
4659 to_underlying (header->abbrev_sect_off),
4660 to_underlying (header->sect_off),
4661 filename);
4662
4663 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4664 avoid potential 32-bit overflow. */
4665 if (((ULONGEST) header->sect_off + get_cu_length (header))
4666 > section->size)
4667 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4668 "(offset 0x%x + 0) [in module %s]"),
4669 header->length, to_underlying (header->sect_off),
4670 filename);
4671 }
4672
4673 /* Read in a CU/TU header and perform some basic error checking.
4674 The contents of the header are stored in HEADER.
4675 The result is a pointer to the start of the first DIE. */
4676
4677 static const gdb_byte *
4678 read_and_check_comp_unit_head (struct comp_unit_head *header,
4679 struct dwarf2_section_info *section,
4680 struct dwarf2_section_info *abbrev_section,
4681 const gdb_byte *info_ptr,
4682 rcuh_kind section_kind)
4683 {
4684 const gdb_byte *beg_of_comp_unit = info_ptr;
4685 bfd *abfd = get_section_bfd_owner (section);
4686
4687 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4688
4689 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4690
4691 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4692
4693 error_check_comp_unit_head (header, section, abbrev_section);
4694
4695 return info_ptr;
4696 }
4697
4698 /* Fetch the abbreviation table offset from a comp or type unit header. */
4699
4700 static sect_offset
4701 read_abbrev_offset (struct dwarf2_section_info *section,
4702 sect_offset sect_off)
4703 {
4704 bfd *abfd = get_section_bfd_owner (section);
4705 const gdb_byte *info_ptr;
4706 unsigned int initial_length_size, offset_size;
4707 uint16_t version;
4708
4709 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4710 info_ptr = section->buffer + to_underlying (sect_off);
4711 read_initial_length (abfd, info_ptr, &initial_length_size);
4712 offset_size = initial_length_size == 4 ? 4 : 8;
4713 info_ptr += initial_length_size;
4714
4715 version = read_2_bytes (abfd, info_ptr);
4716 info_ptr += 2;
4717 if (version >= 5)
4718 {
4719 /* Skip unit type and address size. */
4720 info_ptr += 2;
4721 }
4722
4723 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4724 }
4725
4726 /* Allocate a new partial symtab for file named NAME and mark this new
4727 partial symtab as being an include of PST. */
4728
4729 static void
4730 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4731 struct objfile *objfile)
4732 {
4733 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4734
4735 if (!IS_ABSOLUTE_PATH (subpst->filename))
4736 {
4737 /* It shares objfile->objfile_obstack. */
4738 subpst->dirname = pst->dirname;
4739 }
4740
4741 subpst->textlow = 0;
4742 subpst->texthigh = 0;
4743
4744 subpst->dependencies
4745 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4746 subpst->dependencies[0] = pst;
4747 subpst->number_of_dependencies = 1;
4748
4749 subpst->globals_offset = 0;
4750 subpst->n_global_syms = 0;
4751 subpst->statics_offset = 0;
4752 subpst->n_static_syms = 0;
4753 subpst->compunit_symtab = NULL;
4754 subpst->read_symtab = pst->read_symtab;
4755 subpst->readin = 0;
4756
4757 /* No private part is necessary for include psymtabs. This property
4758 can be used to differentiate between such include psymtabs and
4759 the regular ones. */
4760 subpst->read_symtab_private = NULL;
4761 }
4762
4763 /* Read the Line Number Program data and extract the list of files
4764 included by the source file represented by PST. Build an include
4765 partial symtab for each of these included files. */
4766
4767 static void
4768 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4769 struct die_info *die,
4770 struct partial_symtab *pst)
4771 {
4772 line_header_up lh;
4773 struct attribute *attr;
4774
4775 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4776 if (attr)
4777 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4778 if (lh == NULL)
4779 return; /* No linetable, so no includes. */
4780
4781 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4782 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4783 }
4784
4785 static hashval_t
4786 hash_signatured_type (const void *item)
4787 {
4788 const struct signatured_type *sig_type
4789 = (const struct signatured_type *) item;
4790
4791 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4792 return sig_type->signature;
4793 }
4794
4795 static int
4796 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4797 {
4798 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4799 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4800
4801 return lhs->signature == rhs->signature;
4802 }
4803
4804 /* Allocate a hash table for signatured types. */
4805
4806 static htab_t
4807 allocate_signatured_type_table (struct objfile *objfile)
4808 {
4809 return htab_create_alloc_ex (41,
4810 hash_signatured_type,
4811 eq_signatured_type,
4812 NULL,
4813 &objfile->objfile_obstack,
4814 hashtab_obstack_allocate,
4815 dummy_obstack_deallocate);
4816 }
4817
4818 /* A helper function to add a signatured type CU to a table. */
4819
4820 static int
4821 add_signatured_type_cu_to_table (void **slot, void *datum)
4822 {
4823 struct signatured_type *sigt = (struct signatured_type *) *slot;
4824 struct signatured_type ***datap = (struct signatured_type ***) datum;
4825
4826 **datap = sigt;
4827 ++*datap;
4828
4829 return 1;
4830 }
4831
4832 /* A helper for create_debug_types_hash_table. Read types from SECTION
4833 and fill them into TYPES_HTAB. It will process only type units,
4834 therefore DW_UT_type. */
4835
4836 static void
4837 create_debug_type_hash_table (struct dwo_file *dwo_file,
4838 dwarf2_section_info *section, htab_t &types_htab,
4839 rcuh_kind section_kind)
4840 {
4841 struct objfile *objfile = dwarf2_per_objfile->objfile;
4842 struct dwarf2_section_info *abbrev_section;
4843 bfd *abfd;
4844 const gdb_byte *info_ptr, *end_ptr;
4845
4846 abbrev_section = (dwo_file != NULL
4847 ? &dwo_file->sections.abbrev
4848 : &dwarf2_per_objfile->abbrev);
4849
4850 if (dwarf_read_debug)
4851 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4852 get_section_name (section),
4853 get_section_file_name (abbrev_section));
4854
4855 dwarf2_read_section (objfile, section);
4856 info_ptr = section->buffer;
4857
4858 if (info_ptr == NULL)
4859 return;
4860
4861 /* We can't set abfd until now because the section may be empty or
4862 not present, in which case the bfd is unknown. */
4863 abfd = get_section_bfd_owner (section);
4864
4865 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4866 because we don't need to read any dies: the signature is in the
4867 header. */
4868
4869 end_ptr = info_ptr + section->size;
4870 while (info_ptr < end_ptr)
4871 {
4872 struct signatured_type *sig_type;
4873 struct dwo_unit *dwo_tu;
4874 void **slot;
4875 const gdb_byte *ptr = info_ptr;
4876 struct comp_unit_head header;
4877 unsigned int length;
4878
4879 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4880
4881 /* Initialize it due to a false compiler warning. */
4882 header.signature = -1;
4883 header.type_cu_offset_in_tu = (cu_offset) -1;
4884
4885 /* We need to read the type's signature in order to build the hash
4886 table, but we don't need anything else just yet. */
4887
4888 ptr = read_and_check_comp_unit_head (&header, section,
4889 abbrev_section, ptr, section_kind);
4890
4891 length = get_cu_length (&header);
4892
4893 /* Skip dummy type units. */
4894 if (ptr >= info_ptr + length
4895 || peek_abbrev_code (abfd, ptr) == 0
4896 || header.unit_type != DW_UT_type)
4897 {
4898 info_ptr += length;
4899 continue;
4900 }
4901
4902 if (types_htab == NULL)
4903 {
4904 if (dwo_file)
4905 types_htab = allocate_dwo_unit_table (objfile);
4906 else
4907 types_htab = allocate_signatured_type_table (objfile);
4908 }
4909
4910 if (dwo_file)
4911 {
4912 sig_type = NULL;
4913 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4914 struct dwo_unit);
4915 dwo_tu->dwo_file = dwo_file;
4916 dwo_tu->signature = header.signature;
4917 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4918 dwo_tu->section = section;
4919 dwo_tu->sect_off = sect_off;
4920 dwo_tu->length = length;
4921 }
4922 else
4923 {
4924 /* N.B.: type_offset is not usable if this type uses a DWO file.
4925 The real type_offset is in the DWO file. */
4926 dwo_tu = NULL;
4927 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4928 struct signatured_type);
4929 sig_type->signature = header.signature;
4930 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4931 sig_type->per_cu.objfile = objfile;
4932 sig_type->per_cu.is_debug_types = 1;
4933 sig_type->per_cu.section = section;
4934 sig_type->per_cu.sect_off = sect_off;
4935 sig_type->per_cu.length = length;
4936 }
4937
4938 slot = htab_find_slot (types_htab,
4939 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4940 INSERT);
4941 gdb_assert (slot != NULL);
4942 if (*slot != NULL)
4943 {
4944 sect_offset dup_sect_off;
4945
4946 if (dwo_file)
4947 {
4948 const struct dwo_unit *dup_tu
4949 = (const struct dwo_unit *) *slot;
4950
4951 dup_sect_off = dup_tu->sect_off;
4952 }
4953 else
4954 {
4955 const struct signatured_type *dup_tu
4956 = (const struct signatured_type *) *slot;
4957
4958 dup_sect_off = dup_tu->per_cu.sect_off;
4959 }
4960
4961 complaint (&symfile_complaints,
4962 _("debug type entry at offset 0x%x is duplicate to"
4963 " the entry at offset 0x%x, signature %s"),
4964 to_underlying (sect_off), to_underlying (dup_sect_off),
4965 hex_string (header.signature));
4966 }
4967 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4968
4969 if (dwarf_read_debug > 1)
4970 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4971 to_underlying (sect_off),
4972 hex_string (header.signature));
4973
4974 info_ptr += length;
4975 }
4976 }
4977
4978 /* Create the hash table of all entries in the .debug_types
4979 (or .debug_types.dwo) section(s).
4980 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4981 otherwise it is NULL.
4982
4983 The result is a pointer to the hash table or NULL if there are no types.
4984
4985 Note: This function processes DWO files only, not DWP files. */
4986
4987 static void
4988 create_debug_types_hash_table (struct dwo_file *dwo_file,
4989 VEC (dwarf2_section_info_def) *types,
4990 htab_t &types_htab)
4991 {
4992 int ix;
4993 struct dwarf2_section_info *section;
4994
4995 if (VEC_empty (dwarf2_section_info_def, types))
4996 return;
4997
4998 for (ix = 0;
4999 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5000 ++ix)
5001 create_debug_type_hash_table (dwo_file, section, types_htab,
5002 rcuh_kind::TYPE);
5003 }
5004
5005 /* Create the hash table of all entries in the .debug_types section,
5006 and initialize all_type_units.
5007 The result is zero if there is an error (e.g. missing .debug_types section),
5008 otherwise non-zero. */
5009
5010 static int
5011 create_all_type_units (struct objfile *objfile)
5012 {
5013 htab_t types_htab = NULL;
5014 struct signatured_type **iter;
5015
5016 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5017 rcuh_kind::COMPILE);
5018 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5019 if (types_htab == NULL)
5020 {
5021 dwarf2_per_objfile->signatured_types = NULL;
5022 return 0;
5023 }
5024
5025 dwarf2_per_objfile->signatured_types = types_htab;
5026
5027 dwarf2_per_objfile->n_type_units
5028 = dwarf2_per_objfile->n_allocated_type_units
5029 = htab_elements (types_htab);
5030 dwarf2_per_objfile->all_type_units =
5031 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5032 iter = &dwarf2_per_objfile->all_type_units[0];
5033 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5034 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5035 == dwarf2_per_objfile->n_type_units);
5036
5037 return 1;
5038 }
5039
5040 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5041 If SLOT is non-NULL, it is the entry to use in the hash table.
5042 Otherwise we find one. */
5043
5044 static struct signatured_type *
5045 add_type_unit (ULONGEST sig, void **slot)
5046 {
5047 struct objfile *objfile = dwarf2_per_objfile->objfile;
5048 int n_type_units = dwarf2_per_objfile->n_type_units;
5049 struct signatured_type *sig_type;
5050
5051 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5052 ++n_type_units;
5053 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5054 {
5055 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5056 dwarf2_per_objfile->n_allocated_type_units = 1;
5057 dwarf2_per_objfile->n_allocated_type_units *= 2;
5058 dwarf2_per_objfile->all_type_units
5059 = XRESIZEVEC (struct signatured_type *,
5060 dwarf2_per_objfile->all_type_units,
5061 dwarf2_per_objfile->n_allocated_type_units);
5062 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5063 }
5064 dwarf2_per_objfile->n_type_units = n_type_units;
5065
5066 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5067 struct signatured_type);
5068 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5069 sig_type->signature = sig;
5070 sig_type->per_cu.is_debug_types = 1;
5071 if (dwarf2_per_objfile->using_index)
5072 {
5073 sig_type->per_cu.v.quick =
5074 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5075 struct dwarf2_per_cu_quick_data);
5076 }
5077
5078 if (slot == NULL)
5079 {
5080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5081 sig_type, INSERT);
5082 }
5083 gdb_assert (*slot == NULL);
5084 *slot = sig_type;
5085 /* The rest of sig_type must be filled in by the caller. */
5086 return sig_type;
5087 }
5088
5089 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5090 Fill in SIG_ENTRY with DWO_ENTRY. */
5091
5092 static void
5093 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5094 struct signatured_type *sig_entry,
5095 struct dwo_unit *dwo_entry)
5096 {
5097 /* Make sure we're not clobbering something we don't expect to. */
5098 gdb_assert (! sig_entry->per_cu.queued);
5099 gdb_assert (sig_entry->per_cu.cu == NULL);
5100 if (dwarf2_per_objfile->using_index)
5101 {
5102 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5103 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5104 }
5105 else
5106 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5107 gdb_assert (sig_entry->signature == dwo_entry->signature);
5108 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5109 gdb_assert (sig_entry->type_unit_group == NULL);
5110 gdb_assert (sig_entry->dwo_unit == NULL);
5111
5112 sig_entry->per_cu.section = dwo_entry->section;
5113 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5114 sig_entry->per_cu.length = dwo_entry->length;
5115 sig_entry->per_cu.reading_dwo_directly = 1;
5116 sig_entry->per_cu.objfile = objfile;
5117 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5118 sig_entry->dwo_unit = dwo_entry;
5119 }
5120
5121 /* Subroutine of lookup_signatured_type.
5122 If we haven't read the TU yet, create the signatured_type data structure
5123 for a TU to be read in directly from a DWO file, bypassing the stub.
5124 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5125 using .gdb_index, then when reading a CU we want to stay in the DWO file
5126 containing that CU. Otherwise we could end up reading several other DWO
5127 files (due to comdat folding) to process the transitive closure of all the
5128 mentioned TUs, and that can be slow. The current DWO file will have every
5129 type signature that it needs.
5130 We only do this for .gdb_index because in the psymtab case we already have
5131 to read all the DWOs to build the type unit groups. */
5132
5133 static struct signatured_type *
5134 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5135 {
5136 struct objfile *objfile = dwarf2_per_objfile->objfile;
5137 struct dwo_file *dwo_file;
5138 struct dwo_unit find_dwo_entry, *dwo_entry;
5139 struct signatured_type find_sig_entry, *sig_entry;
5140 void **slot;
5141
5142 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5143
5144 /* If TU skeletons have been removed then we may not have read in any
5145 TUs yet. */
5146 if (dwarf2_per_objfile->signatured_types == NULL)
5147 {
5148 dwarf2_per_objfile->signatured_types
5149 = allocate_signatured_type_table (objfile);
5150 }
5151
5152 /* We only ever need to read in one copy of a signatured type.
5153 Use the global signatured_types array to do our own comdat-folding
5154 of types. If this is the first time we're reading this TU, and
5155 the TU has an entry in .gdb_index, replace the recorded data from
5156 .gdb_index with this TU. */
5157
5158 find_sig_entry.signature = sig;
5159 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5160 &find_sig_entry, INSERT);
5161 sig_entry = (struct signatured_type *) *slot;
5162
5163 /* We can get here with the TU already read, *or* in the process of being
5164 read. Don't reassign the global entry to point to this DWO if that's
5165 the case. Also note that if the TU is already being read, it may not
5166 have come from a DWO, the program may be a mix of Fission-compiled
5167 code and non-Fission-compiled code. */
5168
5169 /* Have we already tried to read this TU?
5170 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5171 needn't exist in the global table yet). */
5172 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5173 return sig_entry;
5174
5175 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5176 dwo_unit of the TU itself. */
5177 dwo_file = cu->dwo_unit->dwo_file;
5178
5179 /* Ok, this is the first time we're reading this TU. */
5180 if (dwo_file->tus == NULL)
5181 return NULL;
5182 find_dwo_entry.signature = sig;
5183 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5184 if (dwo_entry == NULL)
5185 return NULL;
5186
5187 /* If the global table doesn't have an entry for this TU, add one. */
5188 if (sig_entry == NULL)
5189 sig_entry = add_type_unit (sig, slot);
5190
5191 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5192 sig_entry->per_cu.tu_read = 1;
5193 return sig_entry;
5194 }
5195
5196 /* Subroutine of lookup_signatured_type.
5197 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5198 then try the DWP file. If the TU stub (skeleton) has been removed then
5199 it won't be in .gdb_index. */
5200
5201 static struct signatured_type *
5202 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5203 {
5204 struct objfile *objfile = dwarf2_per_objfile->objfile;
5205 struct dwp_file *dwp_file = get_dwp_file ();
5206 struct dwo_unit *dwo_entry;
5207 struct signatured_type find_sig_entry, *sig_entry;
5208 void **slot;
5209
5210 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5211 gdb_assert (dwp_file != NULL);
5212
5213 /* If TU skeletons have been removed then we may not have read in any
5214 TUs yet. */
5215 if (dwarf2_per_objfile->signatured_types == NULL)
5216 {
5217 dwarf2_per_objfile->signatured_types
5218 = allocate_signatured_type_table (objfile);
5219 }
5220
5221 find_sig_entry.signature = sig;
5222 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5223 &find_sig_entry, INSERT);
5224 sig_entry = (struct signatured_type *) *slot;
5225
5226 /* Have we already tried to read this TU?
5227 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5228 needn't exist in the global table yet). */
5229 if (sig_entry != NULL)
5230 return sig_entry;
5231
5232 if (dwp_file->tus == NULL)
5233 return NULL;
5234 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5235 sig, 1 /* is_debug_types */);
5236 if (dwo_entry == NULL)
5237 return NULL;
5238
5239 sig_entry = add_type_unit (sig, slot);
5240 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5241
5242 return sig_entry;
5243 }
5244
5245 /* Lookup a signature based type for DW_FORM_ref_sig8.
5246 Returns NULL if signature SIG is not present in the table.
5247 It is up to the caller to complain about this. */
5248
5249 static struct signatured_type *
5250 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5251 {
5252 if (cu->dwo_unit
5253 && dwarf2_per_objfile->using_index)
5254 {
5255 /* We're in a DWO/DWP file, and we're using .gdb_index.
5256 These cases require special processing. */
5257 if (get_dwp_file () == NULL)
5258 return lookup_dwo_signatured_type (cu, sig);
5259 else
5260 return lookup_dwp_signatured_type (cu, sig);
5261 }
5262 else
5263 {
5264 struct signatured_type find_entry, *entry;
5265
5266 if (dwarf2_per_objfile->signatured_types == NULL)
5267 return NULL;
5268 find_entry.signature = sig;
5269 entry = ((struct signatured_type *)
5270 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5271 return entry;
5272 }
5273 }
5274 \f
5275 /* Low level DIE reading support. */
5276
5277 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5278
5279 static void
5280 init_cu_die_reader (struct die_reader_specs *reader,
5281 struct dwarf2_cu *cu,
5282 struct dwarf2_section_info *section,
5283 struct dwo_file *dwo_file)
5284 {
5285 gdb_assert (section->readin && section->buffer != NULL);
5286 reader->abfd = get_section_bfd_owner (section);
5287 reader->cu = cu;
5288 reader->dwo_file = dwo_file;
5289 reader->die_section = section;
5290 reader->buffer = section->buffer;
5291 reader->buffer_end = section->buffer + section->size;
5292 reader->comp_dir = NULL;
5293 }
5294
5295 /* Subroutine of init_cutu_and_read_dies to simplify it.
5296 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5297 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5298 already.
5299
5300 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5301 from it to the DIE in the DWO. If NULL we are skipping the stub.
5302 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5303 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5304 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5305 STUB_COMP_DIR may be non-NULL.
5306 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5307 are filled in with the info of the DIE from the DWO file.
5308 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5309 provided an abbrev table to use.
5310 The result is non-zero if a valid (non-dummy) DIE was found. */
5311
5312 static int
5313 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5314 struct dwo_unit *dwo_unit,
5315 int abbrev_table_provided,
5316 struct die_info *stub_comp_unit_die,
5317 const char *stub_comp_dir,
5318 struct die_reader_specs *result_reader,
5319 const gdb_byte **result_info_ptr,
5320 struct die_info **result_comp_unit_die,
5321 int *result_has_children)
5322 {
5323 struct objfile *objfile = dwarf2_per_objfile->objfile;
5324 struct dwarf2_cu *cu = this_cu->cu;
5325 struct dwarf2_section_info *section;
5326 bfd *abfd;
5327 const gdb_byte *begin_info_ptr, *info_ptr;
5328 ULONGEST signature; /* Or dwo_id. */
5329 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5330 int i,num_extra_attrs;
5331 struct dwarf2_section_info *dwo_abbrev_section;
5332 struct attribute *attr;
5333 struct die_info *comp_unit_die;
5334
5335 /* At most one of these may be provided. */
5336 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5337
5338 /* These attributes aren't processed until later:
5339 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5340 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5341 referenced later. However, these attributes are found in the stub
5342 which we won't have later. In order to not impose this complication
5343 on the rest of the code, we read them here and copy them to the
5344 DWO CU/TU die. */
5345
5346 stmt_list = NULL;
5347 low_pc = NULL;
5348 high_pc = NULL;
5349 ranges = NULL;
5350 comp_dir = NULL;
5351
5352 if (stub_comp_unit_die != NULL)
5353 {
5354 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5355 DWO file. */
5356 if (! this_cu->is_debug_types)
5357 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5358 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5359 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5360 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5361 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5362
5363 /* There should be a DW_AT_addr_base attribute here (if needed).
5364 We need the value before we can process DW_FORM_GNU_addr_index. */
5365 cu->addr_base = 0;
5366 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5367 if (attr)
5368 cu->addr_base = DW_UNSND (attr);
5369
5370 /* There should be a DW_AT_ranges_base attribute here (if needed).
5371 We need the value before we can process DW_AT_ranges. */
5372 cu->ranges_base = 0;
5373 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5374 if (attr)
5375 cu->ranges_base = DW_UNSND (attr);
5376 }
5377 else if (stub_comp_dir != NULL)
5378 {
5379 /* Reconstruct the comp_dir attribute to simplify the code below. */
5380 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5381 comp_dir->name = DW_AT_comp_dir;
5382 comp_dir->form = DW_FORM_string;
5383 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5384 DW_STRING (comp_dir) = stub_comp_dir;
5385 }
5386
5387 /* Set up for reading the DWO CU/TU. */
5388 cu->dwo_unit = dwo_unit;
5389 section = dwo_unit->section;
5390 dwarf2_read_section (objfile, section);
5391 abfd = get_section_bfd_owner (section);
5392 begin_info_ptr = info_ptr = (section->buffer
5393 + to_underlying (dwo_unit->sect_off));
5394 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5395 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5396
5397 if (this_cu->is_debug_types)
5398 {
5399 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5400
5401 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5402 dwo_abbrev_section,
5403 info_ptr, rcuh_kind::TYPE);
5404 /* This is not an assert because it can be caused by bad debug info. */
5405 if (sig_type->signature != cu->header.signature)
5406 {
5407 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5408 " TU at offset 0x%x [in module %s]"),
5409 hex_string (sig_type->signature),
5410 hex_string (cu->header.signature),
5411 to_underlying (dwo_unit->sect_off),
5412 bfd_get_filename (abfd));
5413 }
5414 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5415 /* For DWOs coming from DWP files, we don't know the CU length
5416 nor the type's offset in the TU until now. */
5417 dwo_unit->length = get_cu_length (&cu->header);
5418 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5419
5420 /* Establish the type offset that can be used to lookup the type.
5421 For DWO files, we don't know it until now. */
5422 sig_type->type_offset_in_section
5423 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5424 }
5425 else
5426 {
5427 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5428 dwo_abbrev_section,
5429 info_ptr, rcuh_kind::COMPILE);
5430 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5431 /* For DWOs coming from DWP files, we don't know the CU length
5432 until now. */
5433 dwo_unit->length = get_cu_length (&cu->header);
5434 }
5435
5436 /* Replace the CU's original abbrev table with the DWO's.
5437 Reminder: We can't read the abbrev table until we've read the header. */
5438 if (abbrev_table_provided)
5439 {
5440 /* Don't free the provided abbrev table, the caller of
5441 init_cutu_and_read_dies owns it. */
5442 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5443 /* Ensure the DWO abbrev table gets freed. */
5444 make_cleanup (dwarf2_free_abbrev_table, cu);
5445 }
5446 else
5447 {
5448 dwarf2_free_abbrev_table (cu);
5449 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5450 /* Leave any existing abbrev table cleanup as is. */
5451 }
5452
5453 /* Read in the die, but leave space to copy over the attributes
5454 from the stub. This has the benefit of simplifying the rest of
5455 the code - all the work to maintain the illusion of a single
5456 DW_TAG_{compile,type}_unit DIE is done here. */
5457 num_extra_attrs = ((stmt_list != NULL)
5458 + (low_pc != NULL)
5459 + (high_pc != NULL)
5460 + (ranges != NULL)
5461 + (comp_dir != NULL));
5462 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5463 result_has_children, num_extra_attrs);
5464
5465 /* Copy over the attributes from the stub to the DIE we just read in. */
5466 comp_unit_die = *result_comp_unit_die;
5467 i = comp_unit_die->num_attrs;
5468 if (stmt_list != NULL)
5469 comp_unit_die->attrs[i++] = *stmt_list;
5470 if (low_pc != NULL)
5471 comp_unit_die->attrs[i++] = *low_pc;
5472 if (high_pc != NULL)
5473 comp_unit_die->attrs[i++] = *high_pc;
5474 if (ranges != NULL)
5475 comp_unit_die->attrs[i++] = *ranges;
5476 if (comp_dir != NULL)
5477 comp_unit_die->attrs[i++] = *comp_dir;
5478 comp_unit_die->num_attrs += num_extra_attrs;
5479
5480 if (dwarf_die_debug)
5481 {
5482 fprintf_unfiltered (gdb_stdlog,
5483 "Read die from %s@0x%x of %s:\n",
5484 get_section_name (section),
5485 (unsigned) (begin_info_ptr - section->buffer),
5486 bfd_get_filename (abfd));
5487 dump_die (comp_unit_die, dwarf_die_debug);
5488 }
5489
5490 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5491 TUs by skipping the stub and going directly to the entry in the DWO file.
5492 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5493 to get it via circuitous means. Blech. */
5494 if (comp_dir != NULL)
5495 result_reader->comp_dir = DW_STRING (comp_dir);
5496
5497 /* Skip dummy compilation units. */
5498 if (info_ptr >= begin_info_ptr + dwo_unit->length
5499 || peek_abbrev_code (abfd, info_ptr) == 0)
5500 return 0;
5501
5502 *result_info_ptr = info_ptr;
5503 return 1;
5504 }
5505
5506 /* Subroutine of init_cutu_and_read_dies to simplify it.
5507 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5508 Returns NULL if the specified DWO unit cannot be found. */
5509
5510 static struct dwo_unit *
5511 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5512 struct die_info *comp_unit_die)
5513 {
5514 struct dwarf2_cu *cu = this_cu->cu;
5515 struct attribute *attr;
5516 ULONGEST signature;
5517 struct dwo_unit *dwo_unit;
5518 const char *comp_dir, *dwo_name;
5519
5520 gdb_assert (cu != NULL);
5521
5522 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5523 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5524 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5525
5526 if (this_cu->is_debug_types)
5527 {
5528 struct signatured_type *sig_type;
5529
5530 /* Since this_cu is the first member of struct signatured_type,
5531 we can go from a pointer to one to a pointer to the other. */
5532 sig_type = (struct signatured_type *) this_cu;
5533 signature = sig_type->signature;
5534 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5535 }
5536 else
5537 {
5538 struct attribute *attr;
5539
5540 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5541 if (! attr)
5542 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5543 " [in module %s]"),
5544 dwo_name, objfile_name (this_cu->objfile));
5545 signature = DW_UNSND (attr);
5546 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5547 signature);
5548 }
5549
5550 return dwo_unit;
5551 }
5552
5553 /* Subroutine of init_cutu_and_read_dies to simplify it.
5554 See it for a description of the parameters.
5555 Read a TU directly from a DWO file, bypassing the stub.
5556
5557 Note: This function could be a little bit simpler if we shared cleanups
5558 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5559 to do, so we keep this function self-contained. Or we could move this
5560 into our caller, but it's complex enough already. */
5561
5562 static void
5563 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5564 int use_existing_cu, int keep,
5565 die_reader_func_ftype *die_reader_func,
5566 void *data)
5567 {
5568 struct dwarf2_cu *cu;
5569 struct signatured_type *sig_type;
5570 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5571 struct die_reader_specs reader;
5572 const gdb_byte *info_ptr;
5573 struct die_info *comp_unit_die;
5574 int has_children;
5575
5576 /* Verify we can do the following downcast, and that we have the
5577 data we need. */
5578 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5579 sig_type = (struct signatured_type *) this_cu;
5580 gdb_assert (sig_type->dwo_unit != NULL);
5581
5582 cleanups = make_cleanup (null_cleanup, NULL);
5583
5584 if (use_existing_cu && this_cu->cu != NULL)
5585 {
5586 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5587 cu = this_cu->cu;
5588 /* There's no need to do the rereading_dwo_cu handling that
5589 init_cutu_and_read_dies does since we don't read the stub. */
5590 }
5591 else
5592 {
5593 /* If !use_existing_cu, this_cu->cu must be NULL. */
5594 gdb_assert (this_cu->cu == NULL);
5595 cu = XNEW (struct dwarf2_cu);
5596 init_one_comp_unit (cu, this_cu);
5597 /* If an error occurs while loading, release our storage. */
5598 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5599 }
5600
5601 /* A future optimization, if needed, would be to use an existing
5602 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5603 could share abbrev tables. */
5604
5605 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5606 0 /* abbrev_table_provided */,
5607 NULL /* stub_comp_unit_die */,
5608 sig_type->dwo_unit->dwo_file->comp_dir,
5609 &reader, &info_ptr,
5610 &comp_unit_die, &has_children) == 0)
5611 {
5612 /* Dummy die. */
5613 do_cleanups (cleanups);
5614 return;
5615 }
5616
5617 /* All the "real" work is done here. */
5618 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5619
5620 /* This duplicates the code in init_cutu_and_read_dies,
5621 but the alternative is making the latter more complex.
5622 This function is only for the special case of using DWO files directly:
5623 no point in overly complicating the general case just to handle this. */
5624 if (free_cu_cleanup != NULL)
5625 {
5626 if (keep)
5627 {
5628 /* We've successfully allocated this compilation unit. Let our
5629 caller clean it up when finished with it. */
5630 discard_cleanups (free_cu_cleanup);
5631
5632 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5633 So we have to manually free the abbrev table. */
5634 dwarf2_free_abbrev_table (cu);
5635
5636 /* Link this CU into read_in_chain. */
5637 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5638 dwarf2_per_objfile->read_in_chain = this_cu;
5639 }
5640 else
5641 do_cleanups (free_cu_cleanup);
5642 }
5643
5644 do_cleanups (cleanups);
5645 }
5646
5647 /* Initialize a CU (or TU) and read its DIEs.
5648 If the CU defers to a DWO file, read the DWO file as well.
5649
5650 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5651 Otherwise the table specified in the comp unit header is read in and used.
5652 This is an optimization for when we already have the abbrev table.
5653
5654 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5655 Otherwise, a new CU is allocated with xmalloc.
5656
5657 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5658 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5659
5660 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5661 linker) then DIE_READER_FUNC will not get called. */
5662
5663 static void
5664 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5665 struct abbrev_table *abbrev_table,
5666 int use_existing_cu, int keep,
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669 {
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
5671 struct dwarf2_section_info *section = this_cu->section;
5672 bfd *abfd = get_section_bfd_owner (section);
5673 struct dwarf2_cu *cu;
5674 const gdb_byte *begin_info_ptr, *info_ptr;
5675 struct die_reader_specs reader;
5676 struct die_info *comp_unit_die;
5677 int has_children;
5678 struct attribute *attr;
5679 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5680 struct signatured_type *sig_type = NULL;
5681 struct dwarf2_section_info *abbrev_section;
5682 /* Non-zero if CU currently points to a DWO file and we need to
5683 reread it. When this happens we need to reread the skeleton die
5684 before we can reread the DWO file (this only applies to CUs, not TUs). */
5685 int rereading_dwo_cu = 0;
5686
5687 if (dwarf_die_debug)
5688 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5689 this_cu->is_debug_types ? "type" : "comp",
5690 to_underlying (this_cu->sect_off));
5691
5692 if (use_existing_cu)
5693 gdb_assert (keep);
5694
5695 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5696 file (instead of going through the stub), short-circuit all of this. */
5697 if (this_cu->reading_dwo_directly)
5698 {
5699 /* Narrow down the scope of possibilities to have to understand. */
5700 gdb_assert (this_cu->is_debug_types);
5701 gdb_assert (abbrev_table == NULL);
5702 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5703 die_reader_func, data);
5704 return;
5705 }
5706
5707 cleanups = make_cleanup (null_cleanup, NULL);
5708
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5713
5714 abbrev_section = get_abbrev_section_for_cu (this_cu);
5715
5716 if (use_existing_cu && this_cu->cu != NULL)
5717 {
5718 cu = this_cu->cu;
5719 /* If this CU is from a DWO file we need to start over, we need to
5720 refetch the attributes from the skeleton CU.
5721 This could be optimized by retrieving those attributes from when we
5722 were here the first time: the previous comp_unit_die was stored in
5723 comp_unit_obstack. But there's no data yet that we need this
5724 optimization. */
5725 if (cu->dwo_unit != NULL)
5726 rereading_dwo_cu = 1;
5727 }
5728 else
5729 {
5730 /* If !use_existing_cu, this_cu->cu must be NULL. */
5731 gdb_assert (this_cu->cu == NULL);
5732 cu = XNEW (struct dwarf2_cu);
5733 init_one_comp_unit (cu, this_cu);
5734 /* If an error occurs while loading, release our storage. */
5735 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5736 }
5737
5738 /* Get the header. */
5739 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5740 {
5741 /* We already have the header, there's no need to read it in again. */
5742 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5743 }
5744 else
5745 {
5746 if (this_cu->is_debug_types)
5747 {
5748 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5749 abbrev_section, info_ptr,
5750 rcuh_kind::TYPE);
5751
5752 /* Since per_cu is the first member of struct signatured_type,
5753 we can go from a pointer to one to a pointer to the other. */
5754 sig_type = (struct signatured_type *) this_cu;
5755 gdb_assert (sig_type->signature == cu->header.signature);
5756 gdb_assert (sig_type->type_offset_in_tu
5757 == cu->header.type_cu_offset_in_tu);
5758 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5759
5760 /* LENGTH has not been set yet for type units if we're
5761 using .gdb_index. */
5762 this_cu->length = get_cu_length (&cu->header);
5763
5764 /* Establish the type offset that can be used to lookup the type. */
5765 sig_type->type_offset_in_section =
5766 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5767
5768 this_cu->dwarf_version = cu->header.version;
5769 }
5770 else
5771 {
5772 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5773 abbrev_section,
5774 info_ptr,
5775 rcuh_kind::COMPILE);
5776
5777 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5778 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5779 this_cu->dwarf_version = cu->header.version;
5780 }
5781 }
5782
5783 /* Skip dummy compilation units. */
5784 if (info_ptr >= begin_info_ptr + this_cu->length
5785 || peek_abbrev_code (abfd, info_ptr) == 0)
5786 {
5787 do_cleanups (cleanups);
5788 return;
5789 }
5790
5791 /* If we don't have them yet, read the abbrevs for this compilation unit.
5792 And if we need to read them now, make sure they're freed when we're
5793 done. Note that it's important that if the CU had an abbrev table
5794 on entry we don't free it when we're done: Somewhere up the call stack
5795 it may be in use. */
5796 if (abbrev_table != NULL)
5797 {
5798 gdb_assert (cu->abbrev_table == NULL);
5799 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5800 cu->abbrev_table = abbrev_table;
5801 }
5802 else if (cu->abbrev_table == NULL)
5803 {
5804 dwarf2_read_abbrevs (cu, abbrev_section);
5805 make_cleanup (dwarf2_free_abbrev_table, cu);
5806 }
5807 else if (rereading_dwo_cu)
5808 {
5809 dwarf2_free_abbrev_table (cu);
5810 dwarf2_read_abbrevs (cu, abbrev_section);
5811 }
5812
5813 /* Read the top level CU/TU die. */
5814 init_cu_die_reader (&reader, cu, section, NULL);
5815 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5816
5817 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5818 from the DWO file.
5819 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5820 DWO CU, that this test will fail (the attribute will not be present). */
5821 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5822 if (attr)
5823 {
5824 struct dwo_unit *dwo_unit;
5825 struct die_info *dwo_comp_unit_die;
5826
5827 if (has_children)
5828 {
5829 complaint (&symfile_complaints,
5830 _("compilation unit with DW_AT_GNU_dwo_name"
5831 " has children (offset 0x%x) [in module %s]"),
5832 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5833 }
5834 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5835 if (dwo_unit != NULL)
5836 {
5837 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5838 abbrev_table != NULL,
5839 comp_unit_die, NULL,
5840 &reader, &info_ptr,
5841 &dwo_comp_unit_die, &has_children) == 0)
5842 {
5843 /* Dummy die. */
5844 do_cleanups (cleanups);
5845 return;
5846 }
5847 comp_unit_die = dwo_comp_unit_die;
5848 }
5849 else
5850 {
5851 /* Yikes, we couldn't find the rest of the DIE, we only have
5852 the stub. A complaint has already been logged. There's
5853 not much more we can do except pass on the stub DIE to
5854 die_reader_func. We don't want to throw an error on bad
5855 debug info. */
5856 }
5857 }
5858
5859 /* All of the above is setup for this call. Yikes. */
5860 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5861
5862 /* Done, clean up. */
5863 if (free_cu_cleanup != NULL)
5864 {
5865 if (keep)
5866 {
5867 /* We've successfully allocated this compilation unit. Let our
5868 caller clean it up when finished with it. */
5869 discard_cleanups (free_cu_cleanup);
5870
5871 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5872 So we have to manually free the abbrev table. */
5873 dwarf2_free_abbrev_table (cu);
5874
5875 /* Link this CU into read_in_chain. */
5876 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5877 dwarf2_per_objfile->read_in_chain = this_cu;
5878 }
5879 else
5880 do_cleanups (free_cu_cleanup);
5881 }
5882
5883 do_cleanups (cleanups);
5884 }
5885
5886 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5887 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5888 to have already done the lookup to find the DWO file).
5889
5890 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5891 THIS_CU->is_debug_types, but nothing else.
5892
5893 We fill in THIS_CU->length.
5894
5895 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5896 linker) then DIE_READER_FUNC will not get called.
5897
5898 THIS_CU->cu is always freed when done.
5899 This is done in order to not leave THIS_CU->cu in a state where we have
5900 to care whether it refers to the "main" CU or the DWO CU. */
5901
5902 static void
5903 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5904 struct dwo_file *dwo_file,
5905 die_reader_func_ftype *die_reader_func,
5906 void *data)
5907 {
5908 struct objfile *objfile = dwarf2_per_objfile->objfile;
5909 struct dwarf2_section_info *section = this_cu->section;
5910 bfd *abfd = get_section_bfd_owner (section);
5911 struct dwarf2_section_info *abbrev_section;
5912 struct dwarf2_cu cu;
5913 const gdb_byte *begin_info_ptr, *info_ptr;
5914 struct die_reader_specs reader;
5915 struct cleanup *cleanups;
5916 struct die_info *comp_unit_die;
5917 int has_children;
5918
5919 if (dwarf_die_debug)
5920 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5921 this_cu->is_debug_types ? "type" : "comp",
5922 to_underlying (this_cu->sect_off));
5923
5924 gdb_assert (this_cu->cu == NULL);
5925
5926 abbrev_section = (dwo_file != NULL
5927 ? &dwo_file->sections.abbrev
5928 : get_abbrev_section_for_cu (this_cu));
5929
5930 /* This is cheap if the section is already read in. */
5931 dwarf2_read_section (objfile, section);
5932
5933 init_one_comp_unit (&cu, this_cu);
5934
5935 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5936
5937 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5938 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5939 abbrev_section, info_ptr,
5940 (this_cu->is_debug_types
5941 ? rcuh_kind::TYPE
5942 : rcuh_kind::COMPILE));
5943
5944 this_cu->length = get_cu_length (&cu.header);
5945
5946 /* Skip dummy compilation units. */
5947 if (info_ptr >= begin_info_ptr + this_cu->length
5948 || peek_abbrev_code (abfd, info_ptr) == 0)
5949 {
5950 do_cleanups (cleanups);
5951 return;
5952 }
5953
5954 dwarf2_read_abbrevs (&cu, abbrev_section);
5955 make_cleanup (dwarf2_free_abbrev_table, &cu);
5956
5957 init_cu_die_reader (&reader, &cu, section, dwo_file);
5958 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5959
5960 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5961
5962 do_cleanups (cleanups);
5963 }
5964
5965 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5966 does not lookup the specified DWO file.
5967 This cannot be used to read DWO files.
5968
5969 THIS_CU->cu is always freed when done.
5970 This is done in order to not leave THIS_CU->cu in a state where we have
5971 to care whether it refers to the "main" CU or the DWO CU.
5972 We can revisit this if the data shows there's a performance issue. */
5973
5974 static void
5975 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5976 die_reader_func_ftype *die_reader_func,
5977 void *data)
5978 {
5979 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5980 }
5981 \f
5982 /* Type Unit Groups.
5983
5984 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5985 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5986 so that all types coming from the same compilation (.o file) are grouped
5987 together. A future step could be to put the types in the same symtab as
5988 the CU the types ultimately came from. */
5989
5990 static hashval_t
5991 hash_type_unit_group (const void *item)
5992 {
5993 const struct type_unit_group *tu_group
5994 = (const struct type_unit_group *) item;
5995
5996 return hash_stmt_list_entry (&tu_group->hash);
5997 }
5998
5999 static int
6000 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6001 {
6002 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6003 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6004
6005 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6006 }
6007
6008 /* Allocate a hash table for type unit groups. */
6009
6010 static htab_t
6011 allocate_type_unit_groups_table (void)
6012 {
6013 return htab_create_alloc_ex (3,
6014 hash_type_unit_group,
6015 eq_type_unit_group,
6016 NULL,
6017 &dwarf2_per_objfile->objfile->objfile_obstack,
6018 hashtab_obstack_allocate,
6019 dummy_obstack_deallocate);
6020 }
6021
6022 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6023 partial symtabs. We combine several TUs per psymtab to not let the size
6024 of any one psymtab grow too big. */
6025 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6026 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6027
6028 /* Helper routine for get_type_unit_group.
6029 Create the type_unit_group object used to hold one or more TUs. */
6030
6031 static struct type_unit_group *
6032 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6033 {
6034 struct objfile *objfile = dwarf2_per_objfile->objfile;
6035 struct dwarf2_per_cu_data *per_cu;
6036 struct type_unit_group *tu_group;
6037
6038 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6039 struct type_unit_group);
6040 per_cu = &tu_group->per_cu;
6041 per_cu->objfile = objfile;
6042
6043 if (dwarf2_per_objfile->using_index)
6044 {
6045 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6046 struct dwarf2_per_cu_quick_data);
6047 }
6048 else
6049 {
6050 unsigned int line_offset = to_underlying (line_offset_struct);
6051 struct partial_symtab *pst;
6052 char *name;
6053
6054 /* Give the symtab a useful name for debug purposes. */
6055 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6056 name = xstrprintf ("<type_units_%d>",
6057 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6058 else
6059 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6060
6061 pst = create_partial_symtab (per_cu, name);
6062 pst->anonymous = 1;
6063
6064 xfree (name);
6065 }
6066
6067 tu_group->hash.dwo_unit = cu->dwo_unit;
6068 tu_group->hash.line_sect_off = line_offset_struct;
6069
6070 return tu_group;
6071 }
6072
6073 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6074 STMT_LIST is a DW_AT_stmt_list attribute. */
6075
6076 static struct type_unit_group *
6077 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6078 {
6079 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6080 struct type_unit_group *tu_group;
6081 void **slot;
6082 unsigned int line_offset;
6083 struct type_unit_group type_unit_group_for_lookup;
6084
6085 if (dwarf2_per_objfile->type_unit_groups == NULL)
6086 {
6087 dwarf2_per_objfile->type_unit_groups =
6088 allocate_type_unit_groups_table ();
6089 }
6090
6091 /* Do we need to create a new group, or can we use an existing one? */
6092
6093 if (stmt_list)
6094 {
6095 line_offset = DW_UNSND (stmt_list);
6096 ++tu_stats->nr_symtab_sharers;
6097 }
6098 else
6099 {
6100 /* Ugh, no stmt_list. Rare, but we have to handle it.
6101 We can do various things here like create one group per TU or
6102 spread them over multiple groups to split up the expansion work.
6103 To avoid worst case scenarios (too many groups or too large groups)
6104 we, umm, group them in bunches. */
6105 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6106 | (tu_stats->nr_stmt_less_type_units
6107 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6108 ++tu_stats->nr_stmt_less_type_units;
6109 }
6110
6111 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6112 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6113 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6114 &type_unit_group_for_lookup, INSERT);
6115 if (*slot != NULL)
6116 {
6117 tu_group = (struct type_unit_group *) *slot;
6118 gdb_assert (tu_group != NULL);
6119 }
6120 else
6121 {
6122 sect_offset line_offset_struct = (sect_offset) line_offset;
6123 tu_group = create_type_unit_group (cu, line_offset_struct);
6124 *slot = tu_group;
6125 ++tu_stats->nr_symtabs;
6126 }
6127
6128 return tu_group;
6129 }
6130 \f
6131 /* Partial symbol tables. */
6132
6133 /* Create a psymtab named NAME and assign it to PER_CU.
6134
6135 The caller must fill in the following details:
6136 dirname, textlow, texthigh. */
6137
6138 static struct partial_symtab *
6139 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6140 {
6141 struct objfile *objfile = per_cu->objfile;
6142 struct partial_symtab *pst;
6143
6144 pst = start_psymtab_common (objfile, name, 0,
6145 objfile->global_psymbols.next,
6146 objfile->static_psymbols.next);
6147
6148 pst->psymtabs_addrmap_supported = 1;
6149
6150 /* This is the glue that links PST into GDB's symbol API. */
6151 pst->read_symtab_private = per_cu;
6152 pst->read_symtab = dwarf2_read_symtab;
6153 per_cu->v.psymtab = pst;
6154
6155 return pst;
6156 }
6157
6158 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6159 type. */
6160
6161 struct process_psymtab_comp_unit_data
6162 {
6163 /* True if we are reading a DW_TAG_partial_unit. */
6164
6165 int want_partial_unit;
6166
6167 /* The "pretend" language that is used if the CU doesn't declare a
6168 language. */
6169
6170 enum language pretend_language;
6171 };
6172
6173 /* die_reader_func for process_psymtab_comp_unit. */
6174
6175 static void
6176 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6177 const gdb_byte *info_ptr,
6178 struct die_info *comp_unit_die,
6179 int has_children,
6180 void *data)
6181 {
6182 struct dwarf2_cu *cu = reader->cu;
6183 struct objfile *objfile = cu->objfile;
6184 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6185 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6186 CORE_ADDR baseaddr;
6187 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6188 struct partial_symtab *pst;
6189 enum pc_bounds_kind cu_bounds_kind;
6190 const char *filename;
6191 struct process_psymtab_comp_unit_data *info
6192 = (struct process_psymtab_comp_unit_data *) data;
6193
6194 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6195 return;
6196
6197 gdb_assert (! per_cu->is_debug_types);
6198
6199 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6200
6201 cu->list_in_scope = &file_symbols;
6202
6203 /* Allocate a new partial symbol table structure. */
6204 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6205 if (filename == NULL)
6206 filename = "";
6207
6208 pst = create_partial_symtab (per_cu, filename);
6209
6210 /* This must be done before calling dwarf2_build_include_psymtabs. */
6211 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6212
6213 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6214
6215 dwarf2_find_base_address (comp_unit_die, cu);
6216
6217 /* Possibly set the default values of LOWPC and HIGHPC from
6218 `DW_AT_ranges'. */
6219 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6220 &best_highpc, cu, pst);
6221 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6222 /* Store the contiguous range if it is not empty; it can be empty for
6223 CUs with no code. */
6224 addrmap_set_empty (objfile->psymtabs_addrmap,
6225 gdbarch_adjust_dwarf2_addr (gdbarch,
6226 best_lowpc + baseaddr),
6227 gdbarch_adjust_dwarf2_addr (gdbarch,
6228 best_highpc + baseaddr) - 1,
6229 pst);
6230
6231 /* Check if comp unit has_children.
6232 If so, read the rest of the partial symbols from this comp unit.
6233 If not, there's no more debug_info for this comp unit. */
6234 if (has_children)
6235 {
6236 struct partial_die_info *first_die;
6237 CORE_ADDR lowpc, highpc;
6238
6239 lowpc = ((CORE_ADDR) -1);
6240 highpc = ((CORE_ADDR) 0);
6241
6242 first_die = load_partial_dies (reader, info_ptr, 1);
6243
6244 scan_partial_symbols (first_die, &lowpc, &highpc,
6245 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6246
6247 /* If we didn't find a lowpc, set it to highpc to avoid
6248 complaints from `maint check'. */
6249 if (lowpc == ((CORE_ADDR) -1))
6250 lowpc = highpc;
6251
6252 /* If the compilation unit didn't have an explicit address range,
6253 then use the information extracted from its child dies. */
6254 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6255 {
6256 best_lowpc = lowpc;
6257 best_highpc = highpc;
6258 }
6259 }
6260 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6261 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6262
6263 end_psymtab_common (objfile, pst);
6264
6265 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6266 {
6267 int i;
6268 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6269 struct dwarf2_per_cu_data *iter;
6270
6271 /* Fill in 'dependencies' here; we fill in 'users' in a
6272 post-pass. */
6273 pst->number_of_dependencies = len;
6274 pst->dependencies =
6275 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6276 for (i = 0;
6277 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6278 i, iter);
6279 ++i)
6280 pst->dependencies[i] = iter->v.psymtab;
6281
6282 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6283 }
6284
6285 /* Get the list of files included in the current compilation unit,
6286 and build a psymtab for each of them. */
6287 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6288
6289 if (dwarf_read_debug)
6290 {
6291 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6292
6293 fprintf_unfiltered (gdb_stdlog,
6294 "Psymtab for %s unit @0x%x: %s - %s"
6295 ", %d global, %d static syms\n",
6296 per_cu->is_debug_types ? "type" : "comp",
6297 to_underlying (per_cu->sect_off),
6298 paddress (gdbarch, pst->textlow),
6299 paddress (gdbarch, pst->texthigh),
6300 pst->n_global_syms, pst->n_static_syms);
6301 }
6302 }
6303
6304 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6305 Process compilation unit THIS_CU for a psymtab. */
6306
6307 static void
6308 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6309 int want_partial_unit,
6310 enum language pretend_language)
6311 {
6312 /* If this compilation unit was already read in, free the
6313 cached copy in order to read it in again. This is
6314 necessary because we skipped some symbols when we first
6315 read in the compilation unit (see load_partial_dies).
6316 This problem could be avoided, but the benefit is unclear. */
6317 if (this_cu->cu != NULL)
6318 free_one_cached_comp_unit (this_cu);
6319
6320 if (this_cu->is_debug_types)
6321 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6322 NULL);
6323 else
6324 {
6325 process_psymtab_comp_unit_data info;
6326 info.want_partial_unit = want_partial_unit;
6327 info.pretend_language = pretend_language;
6328 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6329 process_psymtab_comp_unit_reader, &info);
6330 }
6331
6332 /* Age out any secondary CUs. */
6333 age_cached_comp_units ();
6334 }
6335
6336 /* Reader function for build_type_psymtabs. */
6337
6338 static void
6339 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6340 const gdb_byte *info_ptr,
6341 struct die_info *type_unit_die,
6342 int has_children,
6343 void *data)
6344 {
6345 struct objfile *objfile = dwarf2_per_objfile->objfile;
6346 struct dwarf2_cu *cu = reader->cu;
6347 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6348 struct signatured_type *sig_type;
6349 struct type_unit_group *tu_group;
6350 struct attribute *attr;
6351 struct partial_die_info *first_die;
6352 CORE_ADDR lowpc, highpc;
6353 struct partial_symtab *pst;
6354
6355 gdb_assert (data == NULL);
6356 gdb_assert (per_cu->is_debug_types);
6357 sig_type = (struct signatured_type *) per_cu;
6358
6359 if (! has_children)
6360 return;
6361
6362 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6363 tu_group = get_type_unit_group (cu, attr);
6364
6365 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6366
6367 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6368 cu->list_in_scope = &file_symbols;
6369 pst = create_partial_symtab (per_cu, "");
6370 pst->anonymous = 1;
6371
6372 first_die = load_partial_dies (reader, info_ptr, 1);
6373
6374 lowpc = (CORE_ADDR) -1;
6375 highpc = (CORE_ADDR) 0;
6376 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6377
6378 end_psymtab_common (objfile, pst);
6379 }
6380
6381 /* Struct used to sort TUs by their abbreviation table offset. */
6382
6383 struct tu_abbrev_offset
6384 {
6385 struct signatured_type *sig_type;
6386 sect_offset abbrev_offset;
6387 };
6388
6389 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6390
6391 static int
6392 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6393 {
6394 const struct tu_abbrev_offset * const *a
6395 = (const struct tu_abbrev_offset * const*) ap;
6396 const struct tu_abbrev_offset * const *b
6397 = (const struct tu_abbrev_offset * const*) bp;
6398 sect_offset aoff = (*a)->abbrev_offset;
6399 sect_offset boff = (*b)->abbrev_offset;
6400
6401 return (aoff > boff) - (aoff < boff);
6402 }
6403
6404 /* Efficiently read all the type units.
6405 This does the bulk of the work for build_type_psymtabs.
6406
6407 The efficiency is because we sort TUs by the abbrev table they use and
6408 only read each abbrev table once. In one program there are 200K TUs
6409 sharing 8K abbrev tables.
6410
6411 The main purpose of this function is to support building the
6412 dwarf2_per_objfile->type_unit_groups table.
6413 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6414 can collapse the search space by grouping them by stmt_list.
6415 The savings can be significant, in the same program from above the 200K TUs
6416 share 8K stmt_list tables.
6417
6418 FUNC is expected to call get_type_unit_group, which will create the
6419 struct type_unit_group if necessary and add it to
6420 dwarf2_per_objfile->type_unit_groups. */
6421
6422 static void
6423 build_type_psymtabs_1 (void)
6424 {
6425 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6426 struct cleanup *cleanups;
6427 struct abbrev_table *abbrev_table;
6428 sect_offset abbrev_offset;
6429 struct tu_abbrev_offset *sorted_by_abbrev;
6430 int i;
6431
6432 /* It's up to the caller to not call us multiple times. */
6433 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6434
6435 if (dwarf2_per_objfile->n_type_units == 0)
6436 return;
6437
6438 /* TUs typically share abbrev tables, and there can be way more TUs than
6439 abbrev tables. Sort by abbrev table to reduce the number of times we
6440 read each abbrev table in.
6441 Alternatives are to punt or to maintain a cache of abbrev tables.
6442 This is simpler and efficient enough for now.
6443
6444 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6445 symtab to use). Typically TUs with the same abbrev offset have the same
6446 stmt_list value too so in practice this should work well.
6447
6448 The basic algorithm here is:
6449
6450 sort TUs by abbrev table
6451 for each TU with same abbrev table:
6452 read abbrev table if first user
6453 read TU top level DIE
6454 [IWBN if DWO skeletons had DW_AT_stmt_list]
6455 call FUNC */
6456
6457 if (dwarf_read_debug)
6458 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6459
6460 /* Sort in a separate table to maintain the order of all_type_units
6461 for .gdb_index: TU indices directly index all_type_units. */
6462 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6463 dwarf2_per_objfile->n_type_units);
6464 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6465 {
6466 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6467
6468 sorted_by_abbrev[i].sig_type = sig_type;
6469 sorted_by_abbrev[i].abbrev_offset =
6470 read_abbrev_offset (sig_type->per_cu.section,
6471 sig_type->per_cu.sect_off);
6472 }
6473 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6474 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6475 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6476
6477 abbrev_offset = (sect_offset) ~(unsigned) 0;
6478 abbrev_table = NULL;
6479 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6480
6481 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6482 {
6483 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6484
6485 /* Switch to the next abbrev table if necessary. */
6486 if (abbrev_table == NULL
6487 || tu->abbrev_offset != abbrev_offset)
6488 {
6489 if (abbrev_table != NULL)
6490 {
6491 abbrev_table_free (abbrev_table);
6492 /* Reset to NULL in case abbrev_table_read_table throws
6493 an error: abbrev_table_free_cleanup will get called. */
6494 abbrev_table = NULL;
6495 }
6496 abbrev_offset = tu->abbrev_offset;
6497 abbrev_table =
6498 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6499 abbrev_offset);
6500 ++tu_stats->nr_uniq_abbrev_tables;
6501 }
6502
6503 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6504 build_type_psymtabs_reader, NULL);
6505 }
6506
6507 do_cleanups (cleanups);
6508 }
6509
6510 /* Print collected type unit statistics. */
6511
6512 static void
6513 print_tu_stats (void)
6514 {
6515 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6516
6517 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6518 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6519 dwarf2_per_objfile->n_type_units);
6520 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6521 tu_stats->nr_uniq_abbrev_tables);
6522 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6523 tu_stats->nr_symtabs);
6524 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6525 tu_stats->nr_symtab_sharers);
6526 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6527 tu_stats->nr_stmt_less_type_units);
6528 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6529 tu_stats->nr_all_type_units_reallocs);
6530 }
6531
6532 /* Traversal function for build_type_psymtabs. */
6533
6534 static int
6535 build_type_psymtab_dependencies (void **slot, void *info)
6536 {
6537 struct objfile *objfile = dwarf2_per_objfile->objfile;
6538 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6539 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6540 struct partial_symtab *pst = per_cu->v.psymtab;
6541 int len = VEC_length (sig_type_ptr, tu_group->tus);
6542 struct signatured_type *iter;
6543 int i;
6544
6545 gdb_assert (len > 0);
6546 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6547
6548 pst->number_of_dependencies = len;
6549 pst->dependencies =
6550 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6551 for (i = 0;
6552 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6553 ++i)
6554 {
6555 gdb_assert (iter->per_cu.is_debug_types);
6556 pst->dependencies[i] = iter->per_cu.v.psymtab;
6557 iter->type_unit_group = tu_group;
6558 }
6559
6560 VEC_free (sig_type_ptr, tu_group->tus);
6561
6562 return 1;
6563 }
6564
6565 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6566 Build partial symbol tables for the .debug_types comp-units. */
6567
6568 static void
6569 build_type_psymtabs (struct objfile *objfile)
6570 {
6571 if (! create_all_type_units (objfile))
6572 return;
6573
6574 build_type_psymtabs_1 ();
6575 }
6576
6577 /* Traversal function for process_skeletonless_type_unit.
6578 Read a TU in a DWO file and build partial symbols for it. */
6579
6580 static int
6581 process_skeletonless_type_unit (void **slot, void *info)
6582 {
6583 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6584 struct objfile *objfile = (struct objfile *) info;
6585 struct signatured_type find_entry, *entry;
6586
6587 /* If this TU doesn't exist in the global table, add it and read it in. */
6588
6589 if (dwarf2_per_objfile->signatured_types == NULL)
6590 {
6591 dwarf2_per_objfile->signatured_types
6592 = allocate_signatured_type_table (objfile);
6593 }
6594
6595 find_entry.signature = dwo_unit->signature;
6596 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6597 INSERT);
6598 /* If we've already seen this type there's nothing to do. What's happening
6599 is we're doing our own version of comdat-folding here. */
6600 if (*slot != NULL)
6601 return 1;
6602
6603 /* This does the job that create_all_type_units would have done for
6604 this TU. */
6605 entry = add_type_unit (dwo_unit->signature, slot);
6606 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6607 *slot = entry;
6608
6609 /* This does the job that build_type_psymtabs_1 would have done. */
6610 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6611 build_type_psymtabs_reader, NULL);
6612
6613 return 1;
6614 }
6615
6616 /* Traversal function for process_skeletonless_type_units. */
6617
6618 static int
6619 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6620 {
6621 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6622
6623 if (dwo_file->tus != NULL)
6624 {
6625 htab_traverse_noresize (dwo_file->tus,
6626 process_skeletonless_type_unit, info);
6627 }
6628
6629 return 1;
6630 }
6631
6632 /* Scan all TUs of DWO files, verifying we've processed them.
6633 This is needed in case a TU was emitted without its skeleton.
6634 Note: This can't be done until we know what all the DWO files are. */
6635
6636 static void
6637 process_skeletonless_type_units (struct objfile *objfile)
6638 {
6639 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6640 if (get_dwp_file () == NULL
6641 && dwarf2_per_objfile->dwo_files != NULL)
6642 {
6643 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6644 process_dwo_file_for_skeletonless_type_units,
6645 objfile);
6646 }
6647 }
6648
6649 /* Compute the 'user' field for each psymtab in OBJFILE. */
6650
6651 static void
6652 set_partial_user (struct objfile *objfile)
6653 {
6654 int i;
6655
6656 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6657 {
6658 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6659 struct partial_symtab *pst = per_cu->v.psymtab;
6660 int j;
6661
6662 if (pst == NULL)
6663 continue;
6664
6665 for (j = 0; j < pst->number_of_dependencies; ++j)
6666 {
6667 /* Set the 'user' field only if it is not already set. */
6668 if (pst->dependencies[j]->user == NULL)
6669 pst->dependencies[j]->user = pst;
6670 }
6671 }
6672 }
6673
6674 /* Build the partial symbol table by doing a quick pass through the
6675 .debug_info and .debug_abbrev sections. */
6676
6677 static void
6678 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6679 {
6680 struct cleanup *back_to;
6681 int i;
6682
6683 if (dwarf_read_debug)
6684 {
6685 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6686 objfile_name (objfile));
6687 }
6688
6689 dwarf2_per_objfile->reading_partial_symbols = 1;
6690
6691 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6692
6693 /* Any cached compilation units will be linked by the per-objfile
6694 read_in_chain. Make sure to free them when we're done. */
6695 back_to = make_cleanup (free_cached_comp_units, NULL);
6696
6697 build_type_psymtabs (objfile);
6698
6699 create_all_comp_units (objfile);
6700
6701 /* Create a temporary address map on a temporary obstack. We later
6702 copy this to the final obstack. */
6703 auto_obstack temp_obstack;
6704
6705 scoped_restore save_psymtabs_addrmap
6706 = make_scoped_restore (&objfile->psymtabs_addrmap,
6707 addrmap_create_mutable (&temp_obstack));
6708
6709 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6710 {
6711 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6712
6713 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6714 }
6715
6716 /* This has to wait until we read the CUs, we need the list of DWOs. */
6717 process_skeletonless_type_units (objfile);
6718
6719 /* Now that all TUs have been processed we can fill in the dependencies. */
6720 if (dwarf2_per_objfile->type_unit_groups != NULL)
6721 {
6722 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6723 build_type_psymtab_dependencies, NULL);
6724 }
6725
6726 if (dwarf_read_debug)
6727 print_tu_stats ();
6728
6729 set_partial_user (objfile);
6730
6731 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6732 &objfile->objfile_obstack);
6733 /* At this point we want to keep the address map. */
6734 save_psymtabs_addrmap.release ();
6735
6736 do_cleanups (back_to);
6737
6738 if (dwarf_read_debug)
6739 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6740 objfile_name (objfile));
6741 }
6742
6743 /* die_reader_func for load_partial_comp_unit. */
6744
6745 static void
6746 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6747 const gdb_byte *info_ptr,
6748 struct die_info *comp_unit_die,
6749 int has_children,
6750 void *data)
6751 {
6752 struct dwarf2_cu *cu = reader->cu;
6753
6754 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6755
6756 /* Check if comp unit has_children.
6757 If so, read the rest of the partial symbols from this comp unit.
6758 If not, there's no more debug_info for this comp unit. */
6759 if (has_children)
6760 load_partial_dies (reader, info_ptr, 0);
6761 }
6762
6763 /* Load the partial DIEs for a secondary CU into memory.
6764 This is also used when rereading a primary CU with load_all_dies. */
6765
6766 static void
6767 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6768 {
6769 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6770 load_partial_comp_unit_reader, NULL);
6771 }
6772
6773 static void
6774 read_comp_units_from_section (struct objfile *objfile,
6775 struct dwarf2_section_info *section,
6776 struct dwarf2_section_info *abbrev_section,
6777 unsigned int is_dwz,
6778 int *n_allocated,
6779 int *n_comp_units,
6780 struct dwarf2_per_cu_data ***all_comp_units)
6781 {
6782 const gdb_byte *info_ptr;
6783 bfd *abfd = get_section_bfd_owner (section);
6784
6785 if (dwarf_read_debug)
6786 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6787 get_section_name (section),
6788 get_section_file_name (section));
6789
6790 dwarf2_read_section (objfile, section);
6791
6792 info_ptr = section->buffer;
6793
6794 while (info_ptr < section->buffer + section->size)
6795 {
6796 struct dwarf2_per_cu_data *this_cu;
6797
6798 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6799
6800 comp_unit_head cu_header;
6801 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6802 info_ptr, rcuh_kind::COMPILE);
6803
6804 /* Save the compilation unit for later lookup. */
6805 if (cu_header.unit_type != DW_UT_type)
6806 {
6807 this_cu = XOBNEW (&objfile->objfile_obstack,
6808 struct dwarf2_per_cu_data);
6809 memset (this_cu, 0, sizeof (*this_cu));
6810 }
6811 else
6812 {
6813 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6814 struct signatured_type);
6815 memset (sig_type, 0, sizeof (*sig_type));
6816 sig_type->signature = cu_header.signature;
6817 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6818 this_cu = &sig_type->per_cu;
6819 }
6820 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
6821 this_cu->sect_off = sect_off;
6822 this_cu->length = cu_header.length + cu_header.initial_length_size;
6823 this_cu->is_dwz = is_dwz;
6824 this_cu->objfile = objfile;
6825 this_cu->section = section;
6826
6827 if (*n_comp_units == *n_allocated)
6828 {
6829 *n_allocated *= 2;
6830 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6831 *all_comp_units, *n_allocated);
6832 }
6833 (*all_comp_units)[*n_comp_units] = this_cu;
6834 ++*n_comp_units;
6835
6836 info_ptr = info_ptr + this_cu->length;
6837 }
6838 }
6839
6840 /* Create a list of all compilation units in OBJFILE.
6841 This is only done for -readnow and building partial symtabs. */
6842
6843 static void
6844 create_all_comp_units (struct objfile *objfile)
6845 {
6846 int n_allocated;
6847 int n_comp_units;
6848 struct dwarf2_per_cu_data **all_comp_units;
6849 struct dwz_file *dwz;
6850
6851 n_comp_units = 0;
6852 n_allocated = 10;
6853 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6854
6855 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6856 &dwarf2_per_objfile->abbrev, 0,
6857 &n_allocated, &n_comp_units, &all_comp_units);
6858
6859 dwz = dwarf2_get_dwz_file ();
6860 if (dwz != NULL)
6861 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
6862 &n_allocated, &n_comp_units,
6863 &all_comp_units);
6864
6865 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6866 struct dwarf2_per_cu_data *,
6867 n_comp_units);
6868 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6869 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6870 xfree (all_comp_units);
6871 dwarf2_per_objfile->n_comp_units = n_comp_units;
6872 }
6873
6874 /* Process all loaded DIEs for compilation unit CU, starting at
6875 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6876 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6877 DW_AT_ranges). See the comments of add_partial_subprogram on how
6878 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6879
6880 static void
6881 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6882 CORE_ADDR *highpc, int set_addrmap,
6883 struct dwarf2_cu *cu)
6884 {
6885 struct partial_die_info *pdi;
6886
6887 /* Now, march along the PDI's, descending into ones which have
6888 interesting children but skipping the children of the other ones,
6889 until we reach the end of the compilation unit. */
6890
6891 pdi = first_die;
6892
6893 while (pdi != NULL)
6894 {
6895 fixup_partial_die (pdi, cu);
6896
6897 /* Anonymous namespaces or modules have no name but have interesting
6898 children, so we need to look at them. Ditto for anonymous
6899 enums. */
6900
6901 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6902 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6903 || pdi->tag == DW_TAG_imported_unit)
6904 {
6905 switch (pdi->tag)
6906 {
6907 case DW_TAG_subprogram:
6908 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6909 break;
6910 case DW_TAG_constant:
6911 case DW_TAG_variable:
6912 case DW_TAG_typedef:
6913 case DW_TAG_union_type:
6914 if (!pdi->is_declaration)
6915 {
6916 add_partial_symbol (pdi, cu);
6917 }
6918 break;
6919 case DW_TAG_class_type:
6920 case DW_TAG_interface_type:
6921 case DW_TAG_structure_type:
6922 if (!pdi->is_declaration)
6923 {
6924 add_partial_symbol (pdi, cu);
6925 }
6926 if (cu->language == language_rust && pdi->has_children)
6927 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6928 set_addrmap, cu);
6929 break;
6930 case DW_TAG_enumeration_type:
6931 if (!pdi->is_declaration)
6932 add_partial_enumeration (pdi, cu);
6933 break;
6934 case DW_TAG_base_type:
6935 case DW_TAG_subrange_type:
6936 /* File scope base type definitions are added to the partial
6937 symbol table. */
6938 add_partial_symbol (pdi, cu);
6939 break;
6940 case DW_TAG_namespace:
6941 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6942 break;
6943 case DW_TAG_module:
6944 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6945 break;
6946 case DW_TAG_imported_unit:
6947 {
6948 struct dwarf2_per_cu_data *per_cu;
6949
6950 /* For now we don't handle imported units in type units. */
6951 if (cu->per_cu->is_debug_types)
6952 {
6953 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6954 " supported in type units [in module %s]"),
6955 objfile_name (cu->objfile));
6956 }
6957
6958 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6959 pdi->is_dwz,
6960 cu->objfile);
6961
6962 /* Go read the partial unit, if needed. */
6963 if (per_cu->v.psymtab == NULL)
6964 process_psymtab_comp_unit (per_cu, 1, cu->language);
6965
6966 VEC_safe_push (dwarf2_per_cu_ptr,
6967 cu->per_cu->imported_symtabs, per_cu);
6968 }
6969 break;
6970 case DW_TAG_imported_declaration:
6971 add_partial_symbol (pdi, cu);
6972 break;
6973 default:
6974 break;
6975 }
6976 }
6977
6978 /* If the die has a sibling, skip to the sibling. */
6979
6980 pdi = pdi->die_sibling;
6981 }
6982 }
6983
6984 /* Functions used to compute the fully scoped name of a partial DIE.
6985
6986 Normally, this is simple. For C++, the parent DIE's fully scoped
6987 name is concatenated with "::" and the partial DIE's name.
6988 Enumerators are an exception; they use the scope of their parent
6989 enumeration type, i.e. the name of the enumeration type is not
6990 prepended to the enumerator.
6991
6992 There are two complexities. One is DW_AT_specification; in this
6993 case "parent" means the parent of the target of the specification,
6994 instead of the direct parent of the DIE. The other is compilers
6995 which do not emit DW_TAG_namespace; in this case we try to guess
6996 the fully qualified name of structure types from their members'
6997 linkage names. This must be done using the DIE's children rather
6998 than the children of any DW_AT_specification target. We only need
6999 to do this for structures at the top level, i.e. if the target of
7000 any DW_AT_specification (if any; otherwise the DIE itself) does not
7001 have a parent. */
7002
7003 /* Compute the scope prefix associated with PDI's parent, in
7004 compilation unit CU. The result will be allocated on CU's
7005 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7006 field. NULL is returned if no prefix is necessary. */
7007 static const char *
7008 partial_die_parent_scope (struct partial_die_info *pdi,
7009 struct dwarf2_cu *cu)
7010 {
7011 const char *grandparent_scope;
7012 struct partial_die_info *parent, *real_pdi;
7013
7014 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7015 then this means the parent of the specification DIE. */
7016
7017 real_pdi = pdi;
7018 while (real_pdi->has_specification)
7019 real_pdi = find_partial_die (real_pdi->spec_offset,
7020 real_pdi->spec_is_dwz, cu);
7021
7022 parent = real_pdi->die_parent;
7023 if (parent == NULL)
7024 return NULL;
7025
7026 if (parent->scope_set)
7027 return parent->scope;
7028
7029 fixup_partial_die (parent, cu);
7030
7031 grandparent_scope = partial_die_parent_scope (parent, cu);
7032
7033 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7034 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7035 Work around this problem here. */
7036 if (cu->language == language_cplus
7037 && parent->tag == DW_TAG_namespace
7038 && strcmp (parent->name, "::") == 0
7039 && grandparent_scope == NULL)
7040 {
7041 parent->scope = NULL;
7042 parent->scope_set = 1;
7043 return NULL;
7044 }
7045
7046 if (pdi->tag == DW_TAG_enumerator)
7047 /* Enumerators should not get the name of the enumeration as a prefix. */
7048 parent->scope = grandparent_scope;
7049 else if (parent->tag == DW_TAG_namespace
7050 || parent->tag == DW_TAG_module
7051 || parent->tag == DW_TAG_structure_type
7052 || parent->tag == DW_TAG_class_type
7053 || parent->tag == DW_TAG_interface_type
7054 || parent->tag == DW_TAG_union_type
7055 || parent->tag == DW_TAG_enumeration_type)
7056 {
7057 if (grandparent_scope == NULL)
7058 parent->scope = parent->name;
7059 else
7060 parent->scope = typename_concat (&cu->comp_unit_obstack,
7061 grandparent_scope,
7062 parent->name, 0, cu);
7063 }
7064 else
7065 {
7066 /* FIXME drow/2004-04-01: What should we be doing with
7067 function-local names? For partial symbols, we should probably be
7068 ignoring them. */
7069 complaint (&symfile_complaints,
7070 _("unhandled containing DIE tag %d for DIE at %d"),
7071 parent->tag, to_underlying (pdi->sect_off));
7072 parent->scope = grandparent_scope;
7073 }
7074
7075 parent->scope_set = 1;
7076 return parent->scope;
7077 }
7078
7079 /* Return the fully scoped name associated with PDI, from compilation unit
7080 CU. The result will be allocated with malloc. */
7081
7082 static char *
7083 partial_die_full_name (struct partial_die_info *pdi,
7084 struct dwarf2_cu *cu)
7085 {
7086 const char *parent_scope;
7087
7088 /* If this is a template instantiation, we can not work out the
7089 template arguments from partial DIEs. So, unfortunately, we have
7090 to go through the full DIEs. At least any work we do building
7091 types here will be reused if full symbols are loaded later. */
7092 if (pdi->has_template_arguments)
7093 {
7094 fixup_partial_die (pdi, cu);
7095
7096 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7097 {
7098 struct die_info *die;
7099 struct attribute attr;
7100 struct dwarf2_cu *ref_cu = cu;
7101
7102 /* DW_FORM_ref_addr is using section offset. */
7103 attr.name = (enum dwarf_attribute) 0;
7104 attr.form = DW_FORM_ref_addr;
7105 attr.u.unsnd = to_underlying (pdi->sect_off);
7106 die = follow_die_ref (NULL, &attr, &ref_cu);
7107
7108 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7109 }
7110 }
7111
7112 parent_scope = partial_die_parent_scope (pdi, cu);
7113 if (parent_scope == NULL)
7114 return NULL;
7115 else
7116 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7117 }
7118
7119 static void
7120 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7121 {
7122 struct objfile *objfile = cu->objfile;
7123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7124 CORE_ADDR addr = 0;
7125 const char *actual_name = NULL;
7126 CORE_ADDR baseaddr;
7127 char *built_actual_name;
7128
7129 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7130
7131 built_actual_name = partial_die_full_name (pdi, cu);
7132 if (built_actual_name != NULL)
7133 actual_name = built_actual_name;
7134
7135 if (actual_name == NULL)
7136 actual_name = pdi->name;
7137
7138 switch (pdi->tag)
7139 {
7140 case DW_TAG_subprogram:
7141 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7142 if (pdi->is_external || cu->language == language_ada)
7143 {
7144 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7145 of the global scope. But in Ada, we want to be able to access
7146 nested procedures globally. So all Ada subprograms are stored
7147 in the global scope. */
7148 add_psymbol_to_list (actual_name, strlen (actual_name),
7149 built_actual_name != NULL,
7150 VAR_DOMAIN, LOC_BLOCK,
7151 &objfile->global_psymbols,
7152 addr, cu->language, objfile);
7153 }
7154 else
7155 {
7156 add_psymbol_to_list (actual_name, strlen (actual_name),
7157 built_actual_name != NULL,
7158 VAR_DOMAIN, LOC_BLOCK,
7159 &objfile->static_psymbols,
7160 addr, cu->language, objfile);
7161 }
7162
7163 if (pdi->main_subprogram && actual_name != NULL)
7164 set_objfile_main_name (objfile, actual_name, cu->language);
7165 break;
7166 case DW_TAG_constant:
7167 {
7168 struct psymbol_allocation_list *list;
7169
7170 if (pdi->is_external)
7171 list = &objfile->global_psymbols;
7172 else
7173 list = &objfile->static_psymbols;
7174 add_psymbol_to_list (actual_name, strlen (actual_name),
7175 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7176 list, 0, cu->language, objfile);
7177 }
7178 break;
7179 case DW_TAG_variable:
7180 if (pdi->d.locdesc)
7181 addr = decode_locdesc (pdi->d.locdesc, cu);
7182
7183 if (pdi->d.locdesc
7184 && addr == 0
7185 && !dwarf2_per_objfile->has_section_at_zero)
7186 {
7187 /* A global or static variable may also have been stripped
7188 out by the linker if unused, in which case its address
7189 will be nullified; do not add such variables into partial
7190 symbol table then. */
7191 }
7192 else if (pdi->is_external)
7193 {
7194 /* Global Variable.
7195 Don't enter into the minimal symbol tables as there is
7196 a minimal symbol table entry from the ELF symbols already.
7197 Enter into partial symbol table if it has a location
7198 descriptor or a type.
7199 If the location descriptor is missing, new_symbol will create
7200 a LOC_UNRESOLVED symbol, the address of the variable will then
7201 be determined from the minimal symbol table whenever the variable
7202 is referenced.
7203 The address for the partial symbol table entry is not
7204 used by GDB, but it comes in handy for debugging partial symbol
7205 table building. */
7206
7207 if (pdi->d.locdesc || pdi->has_type)
7208 add_psymbol_to_list (actual_name, strlen (actual_name),
7209 built_actual_name != NULL,
7210 VAR_DOMAIN, LOC_STATIC,
7211 &objfile->global_psymbols,
7212 addr + baseaddr,
7213 cu->language, objfile);
7214 }
7215 else
7216 {
7217 int has_loc = pdi->d.locdesc != NULL;
7218
7219 /* Static Variable. Skip symbols whose value we cannot know (those
7220 without location descriptors or constant values). */
7221 if (!has_loc && !pdi->has_const_value)
7222 {
7223 xfree (built_actual_name);
7224 return;
7225 }
7226
7227 add_psymbol_to_list (actual_name, strlen (actual_name),
7228 built_actual_name != NULL,
7229 VAR_DOMAIN, LOC_STATIC,
7230 &objfile->static_psymbols,
7231 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7232 cu->language, objfile);
7233 }
7234 break;
7235 case DW_TAG_typedef:
7236 case DW_TAG_base_type:
7237 case DW_TAG_subrange_type:
7238 add_psymbol_to_list (actual_name, strlen (actual_name),
7239 built_actual_name != NULL,
7240 VAR_DOMAIN, LOC_TYPEDEF,
7241 &objfile->static_psymbols,
7242 0, cu->language, objfile);
7243 break;
7244 case DW_TAG_imported_declaration:
7245 case DW_TAG_namespace:
7246 add_psymbol_to_list (actual_name, strlen (actual_name),
7247 built_actual_name != NULL,
7248 VAR_DOMAIN, LOC_TYPEDEF,
7249 &objfile->global_psymbols,
7250 0, cu->language, objfile);
7251 break;
7252 case DW_TAG_module:
7253 add_psymbol_to_list (actual_name, strlen (actual_name),
7254 built_actual_name != NULL,
7255 MODULE_DOMAIN, LOC_TYPEDEF,
7256 &objfile->global_psymbols,
7257 0, cu->language, objfile);
7258 break;
7259 case DW_TAG_class_type:
7260 case DW_TAG_interface_type:
7261 case DW_TAG_structure_type:
7262 case DW_TAG_union_type:
7263 case DW_TAG_enumeration_type:
7264 /* Skip external references. The DWARF standard says in the section
7265 about "Structure, Union, and Class Type Entries": "An incomplete
7266 structure, union or class type is represented by a structure,
7267 union or class entry that does not have a byte size attribute
7268 and that has a DW_AT_declaration attribute." */
7269 if (!pdi->has_byte_size && pdi->is_declaration)
7270 {
7271 xfree (built_actual_name);
7272 return;
7273 }
7274
7275 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7276 static vs. global. */
7277 add_psymbol_to_list (actual_name, strlen (actual_name),
7278 built_actual_name != NULL,
7279 STRUCT_DOMAIN, LOC_TYPEDEF,
7280 cu->language == language_cplus
7281 ? &objfile->global_psymbols
7282 : &objfile->static_psymbols,
7283 0, cu->language, objfile);
7284
7285 break;
7286 case DW_TAG_enumerator:
7287 add_psymbol_to_list (actual_name, strlen (actual_name),
7288 built_actual_name != NULL,
7289 VAR_DOMAIN, LOC_CONST,
7290 cu->language == language_cplus
7291 ? &objfile->global_psymbols
7292 : &objfile->static_psymbols,
7293 0, cu->language, objfile);
7294 break;
7295 default:
7296 break;
7297 }
7298
7299 xfree (built_actual_name);
7300 }
7301
7302 /* Read a partial die corresponding to a namespace; also, add a symbol
7303 corresponding to that namespace to the symbol table. NAMESPACE is
7304 the name of the enclosing namespace. */
7305
7306 static void
7307 add_partial_namespace (struct partial_die_info *pdi,
7308 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7309 int set_addrmap, struct dwarf2_cu *cu)
7310 {
7311 /* Add a symbol for the namespace. */
7312
7313 add_partial_symbol (pdi, cu);
7314
7315 /* Now scan partial symbols in that namespace. */
7316
7317 if (pdi->has_children)
7318 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7319 }
7320
7321 /* Read a partial die corresponding to a Fortran module. */
7322
7323 static void
7324 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7325 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7326 {
7327 /* Add a symbol for the namespace. */
7328
7329 add_partial_symbol (pdi, cu);
7330
7331 /* Now scan partial symbols in that module. */
7332
7333 if (pdi->has_children)
7334 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7335 }
7336
7337 /* Read a partial die corresponding to a subprogram and create a partial
7338 symbol for that subprogram. When the CU language allows it, this
7339 routine also defines a partial symbol for each nested subprogram
7340 that this subprogram contains. If SET_ADDRMAP is true, record the
7341 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7342 and highest PC values found in PDI.
7343
7344 PDI may also be a lexical block, in which case we simply search
7345 recursively for subprograms defined inside that lexical block.
7346 Again, this is only performed when the CU language allows this
7347 type of definitions. */
7348
7349 static void
7350 add_partial_subprogram (struct partial_die_info *pdi,
7351 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7352 int set_addrmap, struct dwarf2_cu *cu)
7353 {
7354 if (pdi->tag == DW_TAG_subprogram)
7355 {
7356 if (pdi->has_pc_info)
7357 {
7358 if (pdi->lowpc < *lowpc)
7359 *lowpc = pdi->lowpc;
7360 if (pdi->highpc > *highpc)
7361 *highpc = pdi->highpc;
7362 if (set_addrmap)
7363 {
7364 struct objfile *objfile = cu->objfile;
7365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7366 CORE_ADDR baseaddr;
7367 CORE_ADDR highpc;
7368 CORE_ADDR lowpc;
7369
7370 baseaddr = ANOFFSET (objfile->section_offsets,
7371 SECT_OFF_TEXT (objfile));
7372 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7373 pdi->lowpc + baseaddr);
7374 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7375 pdi->highpc + baseaddr);
7376 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7377 cu->per_cu->v.psymtab);
7378 }
7379 }
7380
7381 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7382 {
7383 if (!pdi->is_declaration)
7384 /* Ignore subprogram DIEs that do not have a name, they are
7385 illegal. Do not emit a complaint at this point, we will
7386 do so when we convert this psymtab into a symtab. */
7387 if (pdi->name)
7388 add_partial_symbol (pdi, cu);
7389 }
7390 }
7391
7392 if (! pdi->has_children)
7393 return;
7394
7395 if (cu->language == language_ada)
7396 {
7397 pdi = pdi->die_child;
7398 while (pdi != NULL)
7399 {
7400 fixup_partial_die (pdi, cu);
7401 if (pdi->tag == DW_TAG_subprogram
7402 || pdi->tag == DW_TAG_lexical_block)
7403 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7404 pdi = pdi->die_sibling;
7405 }
7406 }
7407 }
7408
7409 /* Read a partial die corresponding to an enumeration type. */
7410
7411 static void
7412 add_partial_enumeration (struct partial_die_info *enum_pdi,
7413 struct dwarf2_cu *cu)
7414 {
7415 struct partial_die_info *pdi;
7416
7417 if (enum_pdi->name != NULL)
7418 add_partial_symbol (enum_pdi, cu);
7419
7420 pdi = enum_pdi->die_child;
7421 while (pdi)
7422 {
7423 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7424 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7425 else
7426 add_partial_symbol (pdi, cu);
7427 pdi = pdi->die_sibling;
7428 }
7429 }
7430
7431 /* Return the initial uleb128 in the die at INFO_PTR. */
7432
7433 static unsigned int
7434 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7435 {
7436 unsigned int bytes_read;
7437
7438 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7439 }
7440
7441 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7442 Return the corresponding abbrev, or NULL if the number is zero (indicating
7443 an empty DIE). In either case *BYTES_READ will be set to the length of
7444 the initial number. */
7445
7446 static struct abbrev_info *
7447 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7448 struct dwarf2_cu *cu)
7449 {
7450 bfd *abfd = cu->objfile->obfd;
7451 unsigned int abbrev_number;
7452 struct abbrev_info *abbrev;
7453
7454 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7455
7456 if (abbrev_number == 0)
7457 return NULL;
7458
7459 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7460 if (!abbrev)
7461 {
7462 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7463 " at offset 0x%x [in module %s]"),
7464 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7465 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7466 }
7467
7468 return abbrev;
7469 }
7470
7471 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7472 Returns a pointer to the end of a series of DIEs, terminated by an empty
7473 DIE. Any children of the skipped DIEs will also be skipped. */
7474
7475 static const gdb_byte *
7476 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7477 {
7478 struct dwarf2_cu *cu = reader->cu;
7479 struct abbrev_info *abbrev;
7480 unsigned int bytes_read;
7481
7482 while (1)
7483 {
7484 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7485 if (abbrev == NULL)
7486 return info_ptr + bytes_read;
7487 else
7488 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7489 }
7490 }
7491
7492 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7493 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7494 abbrev corresponding to that skipped uleb128 should be passed in
7495 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7496 children. */
7497
7498 static const gdb_byte *
7499 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7500 struct abbrev_info *abbrev)
7501 {
7502 unsigned int bytes_read;
7503 struct attribute attr;
7504 bfd *abfd = reader->abfd;
7505 struct dwarf2_cu *cu = reader->cu;
7506 const gdb_byte *buffer = reader->buffer;
7507 const gdb_byte *buffer_end = reader->buffer_end;
7508 unsigned int form, i;
7509
7510 for (i = 0; i < abbrev->num_attrs; i++)
7511 {
7512 /* The only abbrev we care about is DW_AT_sibling. */
7513 if (abbrev->attrs[i].name == DW_AT_sibling)
7514 {
7515 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7516 if (attr.form == DW_FORM_ref_addr)
7517 complaint (&symfile_complaints,
7518 _("ignoring absolute DW_AT_sibling"));
7519 else
7520 {
7521 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7522 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7523
7524 if (sibling_ptr < info_ptr)
7525 complaint (&symfile_complaints,
7526 _("DW_AT_sibling points backwards"));
7527 else if (sibling_ptr > reader->buffer_end)
7528 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7529 else
7530 return sibling_ptr;
7531 }
7532 }
7533
7534 /* If it isn't DW_AT_sibling, skip this attribute. */
7535 form = abbrev->attrs[i].form;
7536 skip_attribute:
7537 switch (form)
7538 {
7539 case DW_FORM_ref_addr:
7540 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7541 and later it is offset sized. */
7542 if (cu->header.version == 2)
7543 info_ptr += cu->header.addr_size;
7544 else
7545 info_ptr += cu->header.offset_size;
7546 break;
7547 case DW_FORM_GNU_ref_alt:
7548 info_ptr += cu->header.offset_size;
7549 break;
7550 case DW_FORM_addr:
7551 info_ptr += cu->header.addr_size;
7552 break;
7553 case DW_FORM_data1:
7554 case DW_FORM_ref1:
7555 case DW_FORM_flag:
7556 info_ptr += 1;
7557 break;
7558 case DW_FORM_flag_present:
7559 case DW_FORM_implicit_const:
7560 break;
7561 case DW_FORM_data2:
7562 case DW_FORM_ref2:
7563 info_ptr += 2;
7564 break;
7565 case DW_FORM_data4:
7566 case DW_FORM_ref4:
7567 info_ptr += 4;
7568 break;
7569 case DW_FORM_data8:
7570 case DW_FORM_ref8:
7571 case DW_FORM_ref_sig8:
7572 info_ptr += 8;
7573 break;
7574 case DW_FORM_data16:
7575 info_ptr += 16;
7576 break;
7577 case DW_FORM_string:
7578 read_direct_string (abfd, info_ptr, &bytes_read);
7579 info_ptr += bytes_read;
7580 break;
7581 case DW_FORM_sec_offset:
7582 case DW_FORM_strp:
7583 case DW_FORM_GNU_strp_alt:
7584 info_ptr += cu->header.offset_size;
7585 break;
7586 case DW_FORM_exprloc:
7587 case DW_FORM_block:
7588 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7589 info_ptr += bytes_read;
7590 break;
7591 case DW_FORM_block1:
7592 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7593 break;
7594 case DW_FORM_block2:
7595 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7596 break;
7597 case DW_FORM_block4:
7598 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7599 break;
7600 case DW_FORM_sdata:
7601 case DW_FORM_udata:
7602 case DW_FORM_ref_udata:
7603 case DW_FORM_GNU_addr_index:
7604 case DW_FORM_GNU_str_index:
7605 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7606 break;
7607 case DW_FORM_indirect:
7608 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7609 info_ptr += bytes_read;
7610 /* We need to continue parsing from here, so just go back to
7611 the top. */
7612 goto skip_attribute;
7613
7614 default:
7615 error (_("Dwarf Error: Cannot handle %s "
7616 "in DWARF reader [in module %s]"),
7617 dwarf_form_name (form),
7618 bfd_get_filename (abfd));
7619 }
7620 }
7621
7622 if (abbrev->has_children)
7623 return skip_children (reader, info_ptr);
7624 else
7625 return info_ptr;
7626 }
7627
7628 /* Locate ORIG_PDI's sibling.
7629 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7630
7631 static const gdb_byte *
7632 locate_pdi_sibling (const struct die_reader_specs *reader,
7633 struct partial_die_info *orig_pdi,
7634 const gdb_byte *info_ptr)
7635 {
7636 /* Do we know the sibling already? */
7637
7638 if (orig_pdi->sibling)
7639 return orig_pdi->sibling;
7640
7641 /* Are there any children to deal with? */
7642
7643 if (!orig_pdi->has_children)
7644 return info_ptr;
7645
7646 /* Skip the children the long way. */
7647
7648 return skip_children (reader, info_ptr);
7649 }
7650
7651 /* Expand this partial symbol table into a full symbol table. SELF is
7652 not NULL. */
7653
7654 static void
7655 dwarf2_read_symtab (struct partial_symtab *self,
7656 struct objfile *objfile)
7657 {
7658 if (self->readin)
7659 {
7660 warning (_("bug: psymtab for %s is already read in."),
7661 self->filename);
7662 }
7663 else
7664 {
7665 if (info_verbose)
7666 {
7667 printf_filtered (_("Reading in symbols for %s..."),
7668 self->filename);
7669 gdb_flush (gdb_stdout);
7670 }
7671
7672 /* Restore our global data. */
7673 dwarf2_per_objfile
7674 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7675 dwarf2_objfile_data_key);
7676
7677 /* If this psymtab is constructed from a debug-only objfile, the
7678 has_section_at_zero flag will not necessarily be correct. We
7679 can get the correct value for this flag by looking at the data
7680 associated with the (presumably stripped) associated objfile. */
7681 if (objfile->separate_debug_objfile_backlink)
7682 {
7683 struct dwarf2_per_objfile *dpo_backlink
7684 = ((struct dwarf2_per_objfile *)
7685 objfile_data (objfile->separate_debug_objfile_backlink,
7686 dwarf2_objfile_data_key));
7687
7688 dwarf2_per_objfile->has_section_at_zero
7689 = dpo_backlink->has_section_at_zero;
7690 }
7691
7692 dwarf2_per_objfile->reading_partial_symbols = 0;
7693
7694 psymtab_to_symtab_1 (self);
7695
7696 /* Finish up the debug error message. */
7697 if (info_verbose)
7698 printf_filtered (_("done.\n"));
7699 }
7700
7701 process_cu_includes ();
7702 }
7703 \f
7704 /* Reading in full CUs. */
7705
7706 /* Add PER_CU to the queue. */
7707
7708 static void
7709 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7710 enum language pretend_language)
7711 {
7712 struct dwarf2_queue_item *item;
7713
7714 per_cu->queued = 1;
7715 item = XNEW (struct dwarf2_queue_item);
7716 item->per_cu = per_cu;
7717 item->pretend_language = pretend_language;
7718 item->next = NULL;
7719
7720 if (dwarf2_queue == NULL)
7721 dwarf2_queue = item;
7722 else
7723 dwarf2_queue_tail->next = item;
7724
7725 dwarf2_queue_tail = item;
7726 }
7727
7728 /* If PER_CU is not yet queued, add it to the queue.
7729 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7730 dependency.
7731 The result is non-zero if PER_CU was queued, otherwise the result is zero
7732 meaning either PER_CU is already queued or it is already loaded.
7733
7734 N.B. There is an invariant here that if a CU is queued then it is loaded.
7735 The caller is required to load PER_CU if we return non-zero. */
7736
7737 static int
7738 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7739 struct dwarf2_per_cu_data *per_cu,
7740 enum language pretend_language)
7741 {
7742 /* We may arrive here during partial symbol reading, if we need full
7743 DIEs to process an unusual case (e.g. template arguments). Do
7744 not queue PER_CU, just tell our caller to load its DIEs. */
7745 if (dwarf2_per_objfile->reading_partial_symbols)
7746 {
7747 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7748 return 1;
7749 return 0;
7750 }
7751
7752 /* Mark the dependence relation so that we don't flush PER_CU
7753 too early. */
7754 if (dependent_cu != NULL)
7755 dwarf2_add_dependence (dependent_cu, per_cu);
7756
7757 /* If it's already on the queue, we have nothing to do. */
7758 if (per_cu->queued)
7759 return 0;
7760
7761 /* If the compilation unit is already loaded, just mark it as
7762 used. */
7763 if (per_cu->cu != NULL)
7764 {
7765 per_cu->cu->last_used = 0;
7766 return 0;
7767 }
7768
7769 /* Add it to the queue. */
7770 queue_comp_unit (per_cu, pretend_language);
7771
7772 return 1;
7773 }
7774
7775 /* Process the queue. */
7776
7777 static void
7778 process_queue (void)
7779 {
7780 struct dwarf2_queue_item *item, *next_item;
7781
7782 if (dwarf_read_debug)
7783 {
7784 fprintf_unfiltered (gdb_stdlog,
7785 "Expanding one or more symtabs of objfile %s ...\n",
7786 objfile_name (dwarf2_per_objfile->objfile));
7787 }
7788
7789 /* The queue starts out with one item, but following a DIE reference
7790 may load a new CU, adding it to the end of the queue. */
7791 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7792 {
7793 if ((dwarf2_per_objfile->using_index
7794 ? !item->per_cu->v.quick->compunit_symtab
7795 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7796 /* Skip dummy CUs. */
7797 && item->per_cu->cu != NULL)
7798 {
7799 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7800 unsigned int debug_print_threshold;
7801 char buf[100];
7802
7803 if (per_cu->is_debug_types)
7804 {
7805 struct signatured_type *sig_type =
7806 (struct signatured_type *) per_cu;
7807
7808 sprintf (buf, "TU %s at offset 0x%x",
7809 hex_string (sig_type->signature),
7810 to_underlying (per_cu->sect_off));
7811 /* There can be 100s of TUs.
7812 Only print them in verbose mode. */
7813 debug_print_threshold = 2;
7814 }
7815 else
7816 {
7817 sprintf (buf, "CU at offset 0x%x",
7818 to_underlying (per_cu->sect_off));
7819 debug_print_threshold = 1;
7820 }
7821
7822 if (dwarf_read_debug >= debug_print_threshold)
7823 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7824
7825 if (per_cu->is_debug_types)
7826 process_full_type_unit (per_cu, item->pretend_language);
7827 else
7828 process_full_comp_unit (per_cu, item->pretend_language);
7829
7830 if (dwarf_read_debug >= debug_print_threshold)
7831 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7832 }
7833
7834 item->per_cu->queued = 0;
7835 next_item = item->next;
7836 xfree (item);
7837 }
7838
7839 dwarf2_queue_tail = NULL;
7840
7841 if (dwarf_read_debug)
7842 {
7843 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7844 objfile_name (dwarf2_per_objfile->objfile));
7845 }
7846 }
7847
7848 /* Free all allocated queue entries. This function only releases anything if
7849 an error was thrown; if the queue was processed then it would have been
7850 freed as we went along. */
7851
7852 static void
7853 dwarf2_release_queue (void *dummy)
7854 {
7855 struct dwarf2_queue_item *item, *last;
7856
7857 item = dwarf2_queue;
7858 while (item)
7859 {
7860 /* Anything still marked queued is likely to be in an
7861 inconsistent state, so discard it. */
7862 if (item->per_cu->queued)
7863 {
7864 if (item->per_cu->cu != NULL)
7865 free_one_cached_comp_unit (item->per_cu);
7866 item->per_cu->queued = 0;
7867 }
7868
7869 last = item;
7870 item = item->next;
7871 xfree (last);
7872 }
7873
7874 dwarf2_queue = dwarf2_queue_tail = NULL;
7875 }
7876
7877 /* Read in full symbols for PST, and anything it depends on. */
7878
7879 static void
7880 psymtab_to_symtab_1 (struct partial_symtab *pst)
7881 {
7882 struct dwarf2_per_cu_data *per_cu;
7883 int i;
7884
7885 if (pst->readin)
7886 return;
7887
7888 for (i = 0; i < pst->number_of_dependencies; i++)
7889 if (!pst->dependencies[i]->readin
7890 && pst->dependencies[i]->user == NULL)
7891 {
7892 /* Inform about additional files that need to be read in. */
7893 if (info_verbose)
7894 {
7895 /* FIXME: i18n: Need to make this a single string. */
7896 fputs_filtered (" ", gdb_stdout);
7897 wrap_here ("");
7898 fputs_filtered ("and ", gdb_stdout);
7899 wrap_here ("");
7900 printf_filtered ("%s...", pst->dependencies[i]->filename);
7901 wrap_here (""); /* Flush output. */
7902 gdb_flush (gdb_stdout);
7903 }
7904 psymtab_to_symtab_1 (pst->dependencies[i]);
7905 }
7906
7907 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7908
7909 if (per_cu == NULL)
7910 {
7911 /* It's an include file, no symbols to read for it.
7912 Everything is in the parent symtab. */
7913 pst->readin = 1;
7914 return;
7915 }
7916
7917 dw2_do_instantiate_symtab (per_cu);
7918 }
7919
7920 /* Trivial hash function for die_info: the hash value of a DIE
7921 is its offset in .debug_info for this objfile. */
7922
7923 static hashval_t
7924 die_hash (const void *item)
7925 {
7926 const struct die_info *die = (const struct die_info *) item;
7927
7928 return to_underlying (die->sect_off);
7929 }
7930
7931 /* Trivial comparison function for die_info structures: two DIEs
7932 are equal if they have the same offset. */
7933
7934 static int
7935 die_eq (const void *item_lhs, const void *item_rhs)
7936 {
7937 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7938 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7939
7940 return die_lhs->sect_off == die_rhs->sect_off;
7941 }
7942
7943 /* die_reader_func for load_full_comp_unit.
7944 This is identical to read_signatured_type_reader,
7945 but is kept separate for now. */
7946
7947 static void
7948 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7949 const gdb_byte *info_ptr,
7950 struct die_info *comp_unit_die,
7951 int has_children,
7952 void *data)
7953 {
7954 struct dwarf2_cu *cu = reader->cu;
7955 enum language *language_ptr = (enum language *) data;
7956
7957 gdb_assert (cu->die_hash == NULL);
7958 cu->die_hash =
7959 htab_create_alloc_ex (cu->header.length / 12,
7960 die_hash,
7961 die_eq,
7962 NULL,
7963 &cu->comp_unit_obstack,
7964 hashtab_obstack_allocate,
7965 dummy_obstack_deallocate);
7966
7967 if (has_children)
7968 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7969 &info_ptr, comp_unit_die);
7970 cu->dies = comp_unit_die;
7971 /* comp_unit_die is not stored in die_hash, no need. */
7972
7973 /* We try not to read any attributes in this function, because not
7974 all CUs needed for references have been loaded yet, and symbol
7975 table processing isn't initialized. But we have to set the CU language,
7976 or we won't be able to build types correctly.
7977 Similarly, if we do not read the producer, we can not apply
7978 producer-specific interpretation. */
7979 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7980 }
7981
7982 /* Load the DIEs associated with PER_CU into memory. */
7983
7984 static void
7985 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7986 enum language pretend_language)
7987 {
7988 gdb_assert (! this_cu->is_debug_types);
7989
7990 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7991 load_full_comp_unit_reader, &pretend_language);
7992 }
7993
7994 /* Add a DIE to the delayed physname list. */
7995
7996 static void
7997 add_to_method_list (struct type *type, int fnfield_index, int index,
7998 const char *name, struct die_info *die,
7999 struct dwarf2_cu *cu)
8000 {
8001 struct delayed_method_info mi;
8002 mi.type = type;
8003 mi.fnfield_index = fnfield_index;
8004 mi.index = index;
8005 mi.name = name;
8006 mi.die = die;
8007 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8008 }
8009
8010 /* A cleanup for freeing the delayed method list. */
8011
8012 static void
8013 free_delayed_list (void *ptr)
8014 {
8015 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8016 if (cu->method_list != NULL)
8017 {
8018 VEC_free (delayed_method_info, cu->method_list);
8019 cu->method_list = NULL;
8020 }
8021 }
8022
8023 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8024 "const" / "volatile". If so, decrements LEN by the length of the
8025 modifier and return true. Otherwise return false. */
8026
8027 template<size_t N>
8028 static bool
8029 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8030 {
8031 size_t mod_len = sizeof (mod) - 1;
8032 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8033 {
8034 len -= mod_len;
8035 return true;
8036 }
8037 return false;
8038 }
8039
8040 /* Compute the physnames of any methods on the CU's method list.
8041
8042 The computation of method physnames is delayed in order to avoid the
8043 (bad) condition that one of the method's formal parameters is of an as yet
8044 incomplete type. */
8045
8046 static void
8047 compute_delayed_physnames (struct dwarf2_cu *cu)
8048 {
8049 int i;
8050 struct delayed_method_info *mi;
8051
8052 /* Only C++ delays computing physnames. */
8053 if (VEC_empty (delayed_method_info, cu->method_list))
8054 return;
8055 gdb_assert (cu->language == language_cplus);
8056
8057 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8058 {
8059 const char *physname;
8060 struct fn_fieldlist *fn_flp
8061 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8062 physname = dwarf2_physname (mi->name, mi->die, cu);
8063 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8064 = physname ? physname : "";
8065
8066 /* Since there's no tag to indicate whether a method is a
8067 const/volatile overload, extract that information out of the
8068 demangled name. */
8069 if (physname != NULL)
8070 {
8071 size_t len = strlen (physname);
8072
8073 while (1)
8074 {
8075 if (physname[len] == ')') /* shortcut */
8076 break;
8077 else if (check_modifier (physname, len, " const"))
8078 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8079 else if (check_modifier (physname, len, " volatile"))
8080 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8081 else
8082 break;
8083 }
8084 }
8085 }
8086 }
8087
8088 /* Go objects should be embedded in a DW_TAG_module DIE,
8089 and it's not clear if/how imported objects will appear.
8090 To keep Go support simple until that's worked out,
8091 go back through what we've read and create something usable.
8092 We could do this while processing each DIE, and feels kinda cleaner,
8093 but that way is more invasive.
8094 This is to, for example, allow the user to type "p var" or "b main"
8095 without having to specify the package name, and allow lookups
8096 of module.object to work in contexts that use the expression
8097 parser. */
8098
8099 static void
8100 fixup_go_packaging (struct dwarf2_cu *cu)
8101 {
8102 char *package_name = NULL;
8103 struct pending *list;
8104 int i;
8105
8106 for (list = global_symbols; list != NULL; list = list->next)
8107 {
8108 for (i = 0; i < list->nsyms; ++i)
8109 {
8110 struct symbol *sym = list->symbol[i];
8111
8112 if (SYMBOL_LANGUAGE (sym) == language_go
8113 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8114 {
8115 char *this_package_name = go_symbol_package_name (sym);
8116
8117 if (this_package_name == NULL)
8118 continue;
8119 if (package_name == NULL)
8120 package_name = this_package_name;
8121 else
8122 {
8123 if (strcmp (package_name, this_package_name) != 0)
8124 complaint (&symfile_complaints,
8125 _("Symtab %s has objects from two different Go packages: %s and %s"),
8126 (symbol_symtab (sym) != NULL
8127 ? symtab_to_filename_for_display
8128 (symbol_symtab (sym))
8129 : objfile_name (cu->objfile)),
8130 this_package_name, package_name);
8131 xfree (this_package_name);
8132 }
8133 }
8134 }
8135 }
8136
8137 if (package_name != NULL)
8138 {
8139 struct objfile *objfile = cu->objfile;
8140 const char *saved_package_name
8141 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8142 package_name,
8143 strlen (package_name));
8144 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8145 saved_package_name);
8146 struct symbol *sym;
8147
8148 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8149
8150 sym = allocate_symbol (objfile);
8151 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8152 SYMBOL_SET_NAMES (sym, saved_package_name,
8153 strlen (saved_package_name), 0, objfile);
8154 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8155 e.g., "main" finds the "main" module and not C's main(). */
8156 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8157 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8158 SYMBOL_TYPE (sym) = type;
8159
8160 add_symbol_to_list (sym, &global_symbols);
8161
8162 xfree (package_name);
8163 }
8164 }
8165
8166 /* Return the symtab for PER_CU. This works properly regardless of
8167 whether we're using the index or psymtabs. */
8168
8169 static struct compunit_symtab *
8170 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8171 {
8172 return (dwarf2_per_objfile->using_index
8173 ? per_cu->v.quick->compunit_symtab
8174 : per_cu->v.psymtab->compunit_symtab);
8175 }
8176
8177 /* A helper function for computing the list of all symbol tables
8178 included by PER_CU. */
8179
8180 static void
8181 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8182 htab_t all_children, htab_t all_type_symtabs,
8183 struct dwarf2_per_cu_data *per_cu,
8184 struct compunit_symtab *immediate_parent)
8185 {
8186 void **slot;
8187 int ix;
8188 struct compunit_symtab *cust;
8189 struct dwarf2_per_cu_data *iter;
8190
8191 slot = htab_find_slot (all_children, per_cu, INSERT);
8192 if (*slot != NULL)
8193 {
8194 /* This inclusion and its children have been processed. */
8195 return;
8196 }
8197
8198 *slot = per_cu;
8199 /* Only add a CU if it has a symbol table. */
8200 cust = get_compunit_symtab (per_cu);
8201 if (cust != NULL)
8202 {
8203 /* If this is a type unit only add its symbol table if we haven't
8204 seen it yet (type unit per_cu's can share symtabs). */
8205 if (per_cu->is_debug_types)
8206 {
8207 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8208 if (*slot == NULL)
8209 {
8210 *slot = cust;
8211 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8212 if (cust->user == NULL)
8213 cust->user = immediate_parent;
8214 }
8215 }
8216 else
8217 {
8218 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8219 if (cust->user == NULL)
8220 cust->user = immediate_parent;
8221 }
8222 }
8223
8224 for (ix = 0;
8225 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8226 ++ix)
8227 {
8228 recursively_compute_inclusions (result, all_children,
8229 all_type_symtabs, iter, cust);
8230 }
8231 }
8232
8233 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8234 PER_CU. */
8235
8236 static void
8237 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8238 {
8239 gdb_assert (! per_cu->is_debug_types);
8240
8241 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8242 {
8243 int ix, len;
8244 struct dwarf2_per_cu_data *per_cu_iter;
8245 struct compunit_symtab *compunit_symtab_iter;
8246 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8247 htab_t all_children, all_type_symtabs;
8248 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8249
8250 /* If we don't have a symtab, we can just skip this case. */
8251 if (cust == NULL)
8252 return;
8253
8254 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8255 NULL, xcalloc, xfree);
8256 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8257 NULL, xcalloc, xfree);
8258
8259 for (ix = 0;
8260 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8261 ix, per_cu_iter);
8262 ++ix)
8263 {
8264 recursively_compute_inclusions (&result_symtabs, all_children,
8265 all_type_symtabs, per_cu_iter,
8266 cust);
8267 }
8268
8269 /* Now we have a transitive closure of all the included symtabs. */
8270 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8271 cust->includes
8272 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8273 struct compunit_symtab *, len + 1);
8274 for (ix = 0;
8275 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8276 compunit_symtab_iter);
8277 ++ix)
8278 cust->includes[ix] = compunit_symtab_iter;
8279 cust->includes[len] = NULL;
8280
8281 VEC_free (compunit_symtab_ptr, result_symtabs);
8282 htab_delete (all_children);
8283 htab_delete (all_type_symtabs);
8284 }
8285 }
8286
8287 /* Compute the 'includes' field for the symtabs of all the CUs we just
8288 read. */
8289
8290 static void
8291 process_cu_includes (void)
8292 {
8293 int ix;
8294 struct dwarf2_per_cu_data *iter;
8295
8296 for (ix = 0;
8297 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8298 ix, iter);
8299 ++ix)
8300 {
8301 if (! iter->is_debug_types)
8302 compute_compunit_symtab_includes (iter);
8303 }
8304
8305 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8306 }
8307
8308 /* Generate full symbol information for PER_CU, whose DIEs have
8309 already been loaded into memory. */
8310
8311 static void
8312 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8313 enum language pretend_language)
8314 {
8315 struct dwarf2_cu *cu = per_cu->cu;
8316 struct objfile *objfile = per_cu->objfile;
8317 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8318 CORE_ADDR lowpc, highpc;
8319 struct compunit_symtab *cust;
8320 struct cleanup *back_to, *delayed_list_cleanup;
8321 CORE_ADDR baseaddr;
8322 struct block *static_block;
8323 CORE_ADDR addr;
8324
8325 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8326
8327 buildsym_init ();
8328 back_to = make_cleanup (really_free_pendings, NULL);
8329 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8330
8331 cu->list_in_scope = &file_symbols;
8332
8333 cu->language = pretend_language;
8334 cu->language_defn = language_def (cu->language);
8335
8336 /* Do line number decoding in read_file_scope () */
8337 process_die (cu->dies, cu);
8338
8339 /* For now fudge the Go package. */
8340 if (cu->language == language_go)
8341 fixup_go_packaging (cu);
8342
8343 /* Now that we have processed all the DIEs in the CU, all the types
8344 should be complete, and it should now be safe to compute all of the
8345 physnames. */
8346 compute_delayed_physnames (cu);
8347 do_cleanups (delayed_list_cleanup);
8348
8349 /* Some compilers don't define a DW_AT_high_pc attribute for the
8350 compilation unit. If the DW_AT_high_pc is missing, synthesize
8351 it, by scanning the DIE's below the compilation unit. */
8352 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8353
8354 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8355 static_block = end_symtab_get_static_block (addr, 0, 1);
8356
8357 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8358 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8359 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8360 addrmap to help ensure it has an accurate map of pc values belonging to
8361 this comp unit. */
8362 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8363
8364 cust = end_symtab_from_static_block (static_block,
8365 SECT_OFF_TEXT (objfile), 0);
8366
8367 if (cust != NULL)
8368 {
8369 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8370
8371 /* Set symtab language to language from DW_AT_language. If the
8372 compilation is from a C file generated by language preprocessors, do
8373 not set the language if it was already deduced by start_subfile. */
8374 if (!(cu->language == language_c
8375 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8376 COMPUNIT_FILETABS (cust)->language = cu->language;
8377
8378 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8379 produce DW_AT_location with location lists but it can be possibly
8380 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8381 there were bugs in prologue debug info, fixed later in GCC-4.5
8382 by "unwind info for epilogues" patch (which is not directly related).
8383
8384 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8385 needed, it would be wrong due to missing DW_AT_producer there.
8386
8387 Still one can confuse GDB by using non-standard GCC compilation
8388 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8389 */
8390 if (cu->has_loclist && gcc_4_minor >= 5)
8391 cust->locations_valid = 1;
8392
8393 if (gcc_4_minor >= 5)
8394 cust->epilogue_unwind_valid = 1;
8395
8396 cust->call_site_htab = cu->call_site_htab;
8397 }
8398
8399 if (dwarf2_per_objfile->using_index)
8400 per_cu->v.quick->compunit_symtab = cust;
8401 else
8402 {
8403 struct partial_symtab *pst = per_cu->v.psymtab;
8404 pst->compunit_symtab = cust;
8405 pst->readin = 1;
8406 }
8407
8408 /* Push it for inclusion processing later. */
8409 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8410
8411 do_cleanups (back_to);
8412 }
8413
8414 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8415 already been loaded into memory. */
8416
8417 static void
8418 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8419 enum language pretend_language)
8420 {
8421 struct dwarf2_cu *cu = per_cu->cu;
8422 struct objfile *objfile = per_cu->objfile;
8423 struct compunit_symtab *cust;
8424 struct cleanup *back_to, *delayed_list_cleanup;
8425 struct signatured_type *sig_type;
8426
8427 gdb_assert (per_cu->is_debug_types);
8428 sig_type = (struct signatured_type *) per_cu;
8429
8430 buildsym_init ();
8431 back_to = make_cleanup (really_free_pendings, NULL);
8432 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8433
8434 cu->list_in_scope = &file_symbols;
8435
8436 cu->language = pretend_language;
8437 cu->language_defn = language_def (cu->language);
8438
8439 /* The symbol tables are set up in read_type_unit_scope. */
8440 process_die (cu->dies, cu);
8441
8442 /* For now fudge the Go package. */
8443 if (cu->language == language_go)
8444 fixup_go_packaging (cu);
8445
8446 /* Now that we have processed all the DIEs in the CU, all the types
8447 should be complete, and it should now be safe to compute all of the
8448 physnames. */
8449 compute_delayed_physnames (cu);
8450 do_cleanups (delayed_list_cleanup);
8451
8452 /* TUs share symbol tables.
8453 If this is the first TU to use this symtab, complete the construction
8454 of it with end_expandable_symtab. Otherwise, complete the addition of
8455 this TU's symbols to the existing symtab. */
8456 if (sig_type->type_unit_group->compunit_symtab == NULL)
8457 {
8458 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8459 sig_type->type_unit_group->compunit_symtab = cust;
8460
8461 if (cust != NULL)
8462 {
8463 /* Set symtab language to language from DW_AT_language. If the
8464 compilation is from a C file generated by language preprocessors,
8465 do not set the language if it was already deduced by
8466 start_subfile. */
8467 if (!(cu->language == language_c
8468 && COMPUNIT_FILETABS (cust)->language != language_c))
8469 COMPUNIT_FILETABS (cust)->language = cu->language;
8470 }
8471 }
8472 else
8473 {
8474 augment_type_symtab ();
8475 cust = sig_type->type_unit_group->compunit_symtab;
8476 }
8477
8478 if (dwarf2_per_objfile->using_index)
8479 per_cu->v.quick->compunit_symtab = cust;
8480 else
8481 {
8482 struct partial_symtab *pst = per_cu->v.psymtab;
8483 pst->compunit_symtab = cust;
8484 pst->readin = 1;
8485 }
8486
8487 do_cleanups (back_to);
8488 }
8489
8490 /* Process an imported unit DIE. */
8491
8492 static void
8493 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8494 {
8495 struct attribute *attr;
8496
8497 /* For now we don't handle imported units in type units. */
8498 if (cu->per_cu->is_debug_types)
8499 {
8500 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8501 " supported in type units [in module %s]"),
8502 objfile_name (cu->objfile));
8503 }
8504
8505 attr = dwarf2_attr (die, DW_AT_import, cu);
8506 if (attr != NULL)
8507 {
8508 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8509 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8510 dwarf2_per_cu_data *per_cu
8511 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8512
8513 /* If necessary, add it to the queue and load its DIEs. */
8514 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8515 load_full_comp_unit (per_cu, cu->language);
8516
8517 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8518 per_cu);
8519 }
8520 }
8521
8522 /* RAII object that represents a process_die scope: i.e.,
8523 starts/finishes processing a DIE. */
8524 class process_die_scope
8525 {
8526 public:
8527 process_die_scope (die_info *die, dwarf2_cu *cu)
8528 : m_die (die), m_cu (cu)
8529 {
8530 /* We should only be processing DIEs not already in process. */
8531 gdb_assert (!m_die->in_process);
8532 m_die->in_process = true;
8533 }
8534
8535 ~process_die_scope ()
8536 {
8537 m_die->in_process = false;
8538
8539 /* If we're done processing the DIE for the CU that owns the line
8540 header, we don't need the line header anymore. */
8541 if (m_cu->line_header_die_owner == m_die)
8542 {
8543 delete m_cu->line_header;
8544 m_cu->line_header = NULL;
8545 m_cu->line_header_die_owner = NULL;
8546 }
8547 }
8548
8549 private:
8550 die_info *m_die;
8551 dwarf2_cu *m_cu;
8552 };
8553
8554 /* Process a die and its children. */
8555
8556 static void
8557 process_die (struct die_info *die, struct dwarf2_cu *cu)
8558 {
8559 process_die_scope scope (die, cu);
8560
8561 switch (die->tag)
8562 {
8563 case DW_TAG_padding:
8564 break;
8565 case DW_TAG_compile_unit:
8566 case DW_TAG_partial_unit:
8567 read_file_scope (die, cu);
8568 break;
8569 case DW_TAG_type_unit:
8570 read_type_unit_scope (die, cu);
8571 break;
8572 case DW_TAG_subprogram:
8573 case DW_TAG_inlined_subroutine:
8574 read_func_scope (die, cu);
8575 break;
8576 case DW_TAG_lexical_block:
8577 case DW_TAG_try_block:
8578 case DW_TAG_catch_block:
8579 read_lexical_block_scope (die, cu);
8580 break;
8581 case DW_TAG_call_site:
8582 case DW_TAG_GNU_call_site:
8583 read_call_site_scope (die, cu);
8584 break;
8585 case DW_TAG_class_type:
8586 case DW_TAG_interface_type:
8587 case DW_TAG_structure_type:
8588 case DW_TAG_union_type:
8589 process_structure_scope (die, cu);
8590 break;
8591 case DW_TAG_enumeration_type:
8592 process_enumeration_scope (die, cu);
8593 break;
8594
8595 /* These dies have a type, but processing them does not create
8596 a symbol or recurse to process the children. Therefore we can
8597 read them on-demand through read_type_die. */
8598 case DW_TAG_subroutine_type:
8599 case DW_TAG_set_type:
8600 case DW_TAG_array_type:
8601 case DW_TAG_pointer_type:
8602 case DW_TAG_ptr_to_member_type:
8603 case DW_TAG_reference_type:
8604 case DW_TAG_rvalue_reference_type:
8605 case DW_TAG_string_type:
8606 break;
8607
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 case DW_TAG_typedef:
8611 /* Add a typedef symbol for the type definition, if it has a
8612 DW_AT_name. */
8613 new_symbol (die, read_type_die (die, cu), cu);
8614 break;
8615 case DW_TAG_common_block:
8616 read_common_block (die, cu);
8617 break;
8618 case DW_TAG_common_inclusion:
8619 break;
8620 case DW_TAG_namespace:
8621 cu->processing_has_namespace_info = 1;
8622 read_namespace (die, cu);
8623 break;
8624 case DW_TAG_module:
8625 cu->processing_has_namespace_info = 1;
8626 read_module (die, cu);
8627 break;
8628 case DW_TAG_imported_declaration:
8629 cu->processing_has_namespace_info = 1;
8630 if (read_namespace_alias (die, cu))
8631 break;
8632 /* The declaration is not a global namespace alias: fall through. */
8633 case DW_TAG_imported_module:
8634 cu->processing_has_namespace_info = 1;
8635 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8636 || cu->language != language_fortran))
8637 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8638 dwarf_tag_name (die->tag));
8639 read_import_statement (die, cu);
8640 break;
8641
8642 case DW_TAG_imported_unit:
8643 process_imported_unit_die (die, cu);
8644 break;
8645
8646 default:
8647 new_symbol (die, NULL, cu);
8648 break;
8649 }
8650 }
8651 \f
8652 /* DWARF name computation. */
8653
8654 /* A helper function for dwarf2_compute_name which determines whether DIE
8655 needs to have the name of the scope prepended to the name listed in the
8656 die. */
8657
8658 static int
8659 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8660 {
8661 struct attribute *attr;
8662
8663 switch (die->tag)
8664 {
8665 case DW_TAG_namespace:
8666 case DW_TAG_typedef:
8667 case DW_TAG_class_type:
8668 case DW_TAG_interface_type:
8669 case DW_TAG_structure_type:
8670 case DW_TAG_union_type:
8671 case DW_TAG_enumeration_type:
8672 case DW_TAG_enumerator:
8673 case DW_TAG_subprogram:
8674 case DW_TAG_inlined_subroutine:
8675 case DW_TAG_member:
8676 case DW_TAG_imported_declaration:
8677 return 1;
8678
8679 case DW_TAG_variable:
8680 case DW_TAG_constant:
8681 /* We only need to prefix "globally" visible variables. These include
8682 any variable marked with DW_AT_external or any variable that
8683 lives in a namespace. [Variables in anonymous namespaces
8684 require prefixing, but they are not DW_AT_external.] */
8685
8686 if (dwarf2_attr (die, DW_AT_specification, cu))
8687 {
8688 struct dwarf2_cu *spec_cu = cu;
8689
8690 return die_needs_namespace (die_specification (die, &spec_cu),
8691 spec_cu);
8692 }
8693
8694 attr = dwarf2_attr (die, DW_AT_external, cu);
8695 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8696 && die->parent->tag != DW_TAG_module)
8697 return 0;
8698 /* A variable in a lexical block of some kind does not need a
8699 namespace, even though in C++ such variables may be external
8700 and have a mangled name. */
8701 if (die->parent->tag == DW_TAG_lexical_block
8702 || die->parent->tag == DW_TAG_try_block
8703 || die->parent->tag == DW_TAG_catch_block
8704 || die->parent->tag == DW_TAG_subprogram)
8705 return 0;
8706 return 1;
8707
8708 default:
8709 return 0;
8710 }
8711 }
8712
8713 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
8714 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8715 defined for the given DIE. */
8716
8717 static struct attribute *
8718 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
8719 {
8720 struct attribute *attr;
8721
8722 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8723 if (attr == NULL)
8724 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8725
8726 return attr;
8727 }
8728
8729 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
8730 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
8731 defined for the given DIE. */
8732
8733 static const char *
8734 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
8735 {
8736 const char *linkage_name;
8737
8738 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8739 if (linkage_name == NULL)
8740 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8741
8742 return linkage_name;
8743 }
8744
8745 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8746 compute the physname for the object, which include a method's:
8747 - formal parameters (C++),
8748 - receiver type (Go),
8749
8750 The term "physname" is a bit confusing.
8751 For C++, for example, it is the demangled name.
8752 For Go, for example, it's the mangled name.
8753
8754 For Ada, return the DIE's linkage name rather than the fully qualified
8755 name. PHYSNAME is ignored..
8756
8757 The result is allocated on the objfile_obstack and canonicalized. */
8758
8759 static const char *
8760 dwarf2_compute_name (const char *name,
8761 struct die_info *die, struct dwarf2_cu *cu,
8762 int physname)
8763 {
8764 struct objfile *objfile = cu->objfile;
8765
8766 if (name == NULL)
8767 name = dwarf2_name (die, cu);
8768
8769 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8770 but otherwise compute it by typename_concat inside GDB.
8771 FIXME: Actually this is not really true, or at least not always true.
8772 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8773 Fortran names because there is no mangling standard. So new_symbol_full
8774 will set the demangled name to the result of dwarf2_full_name, and it is
8775 the demangled name that GDB uses if it exists. */
8776 if (cu->language == language_ada
8777 || (cu->language == language_fortran && physname))
8778 {
8779 /* For Ada unit, we prefer the linkage name over the name, as
8780 the former contains the exported name, which the user expects
8781 to be able to reference. Ideally, we want the user to be able
8782 to reference this entity using either natural or linkage name,
8783 but we haven't started looking at this enhancement yet. */
8784 const char *linkage_name = dw2_linkage_name (die, cu);
8785
8786 if (linkage_name != NULL)
8787 return linkage_name;
8788 }
8789
8790 /* These are the only languages we know how to qualify names in. */
8791 if (name != NULL
8792 && (cu->language == language_cplus
8793 || cu->language == language_fortran || cu->language == language_d
8794 || cu->language == language_rust))
8795 {
8796 if (die_needs_namespace (die, cu))
8797 {
8798 long length;
8799 const char *prefix;
8800 const char *canonical_name = NULL;
8801
8802 string_file buf;
8803
8804 prefix = determine_prefix (die, cu);
8805 if (*prefix != '\0')
8806 {
8807 char *prefixed_name = typename_concat (NULL, prefix, name,
8808 physname, cu);
8809
8810 buf.puts (prefixed_name);
8811 xfree (prefixed_name);
8812 }
8813 else
8814 buf.puts (name);
8815
8816 /* Template parameters may be specified in the DIE's DW_AT_name, or
8817 as children with DW_TAG_template_type_param or
8818 DW_TAG_value_type_param. If the latter, add them to the name
8819 here. If the name already has template parameters, then
8820 skip this step; some versions of GCC emit both, and
8821 it is more efficient to use the pre-computed name.
8822
8823 Something to keep in mind about this process: it is very
8824 unlikely, or in some cases downright impossible, to produce
8825 something that will match the mangled name of a function.
8826 If the definition of the function has the same debug info,
8827 we should be able to match up with it anyway. But fallbacks
8828 using the minimal symbol, for instance to find a method
8829 implemented in a stripped copy of libstdc++, will not work.
8830 If we do not have debug info for the definition, we will have to
8831 match them up some other way.
8832
8833 When we do name matching there is a related problem with function
8834 templates; two instantiated function templates are allowed to
8835 differ only by their return types, which we do not add here. */
8836
8837 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8838 {
8839 struct attribute *attr;
8840 struct die_info *child;
8841 int first = 1;
8842
8843 die->building_fullname = 1;
8844
8845 for (child = die->child; child != NULL; child = child->sibling)
8846 {
8847 struct type *type;
8848 LONGEST value;
8849 const gdb_byte *bytes;
8850 struct dwarf2_locexpr_baton *baton;
8851 struct value *v;
8852
8853 if (child->tag != DW_TAG_template_type_param
8854 && child->tag != DW_TAG_template_value_param)
8855 continue;
8856
8857 if (first)
8858 {
8859 buf.puts ("<");
8860 first = 0;
8861 }
8862 else
8863 buf.puts (", ");
8864
8865 attr = dwarf2_attr (child, DW_AT_type, cu);
8866 if (attr == NULL)
8867 {
8868 complaint (&symfile_complaints,
8869 _("template parameter missing DW_AT_type"));
8870 buf.puts ("UNKNOWN_TYPE");
8871 continue;
8872 }
8873 type = die_type (child, cu);
8874
8875 if (child->tag == DW_TAG_template_type_param)
8876 {
8877 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8878 continue;
8879 }
8880
8881 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8882 if (attr == NULL)
8883 {
8884 complaint (&symfile_complaints,
8885 _("template parameter missing "
8886 "DW_AT_const_value"));
8887 buf.puts ("UNKNOWN_VALUE");
8888 continue;
8889 }
8890
8891 dwarf2_const_value_attr (attr, type, name,
8892 &cu->comp_unit_obstack, cu,
8893 &value, &bytes, &baton);
8894
8895 if (TYPE_NOSIGN (type))
8896 /* GDB prints characters as NUMBER 'CHAR'. If that's
8897 changed, this can use value_print instead. */
8898 c_printchar (value, type, &buf);
8899 else
8900 {
8901 struct value_print_options opts;
8902
8903 if (baton != NULL)
8904 v = dwarf2_evaluate_loc_desc (type, NULL,
8905 baton->data,
8906 baton->size,
8907 baton->per_cu);
8908 else if (bytes != NULL)
8909 {
8910 v = allocate_value (type);
8911 memcpy (value_contents_writeable (v), bytes,
8912 TYPE_LENGTH (type));
8913 }
8914 else
8915 v = value_from_longest (type, value);
8916
8917 /* Specify decimal so that we do not depend on
8918 the radix. */
8919 get_formatted_print_options (&opts, 'd');
8920 opts.raw = 1;
8921 value_print (v, &buf, &opts);
8922 release_value (v);
8923 value_free (v);
8924 }
8925 }
8926
8927 die->building_fullname = 0;
8928
8929 if (!first)
8930 {
8931 /* Close the argument list, with a space if necessary
8932 (nested templates). */
8933 if (!buf.empty () && buf.string ().back () == '>')
8934 buf.puts (" >");
8935 else
8936 buf.puts (">");
8937 }
8938 }
8939
8940 /* For C++ methods, append formal parameter type
8941 information, if PHYSNAME. */
8942
8943 if (physname && die->tag == DW_TAG_subprogram
8944 && cu->language == language_cplus)
8945 {
8946 struct type *type = read_type_die (die, cu);
8947
8948 c_type_print_args (type, &buf, 1, cu->language,
8949 &type_print_raw_options);
8950
8951 if (cu->language == language_cplus)
8952 {
8953 /* Assume that an artificial first parameter is
8954 "this", but do not crash if it is not. RealView
8955 marks unnamed (and thus unused) parameters as
8956 artificial; there is no way to differentiate
8957 the two cases. */
8958 if (TYPE_NFIELDS (type) > 0
8959 && TYPE_FIELD_ARTIFICIAL (type, 0)
8960 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8961 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8962 0))))
8963 buf.puts (" const");
8964 }
8965 }
8966
8967 const std::string &intermediate_name = buf.string ();
8968
8969 if (cu->language == language_cplus)
8970 canonical_name
8971 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8972 &objfile->per_bfd->storage_obstack);
8973
8974 /* If we only computed INTERMEDIATE_NAME, or if
8975 INTERMEDIATE_NAME is already canonical, then we need to
8976 copy it to the appropriate obstack. */
8977 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8978 name = ((const char *)
8979 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8980 intermediate_name.c_str (),
8981 intermediate_name.length ()));
8982 else
8983 name = canonical_name;
8984 }
8985 }
8986
8987 return name;
8988 }
8989
8990 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8991 If scope qualifiers are appropriate they will be added. The result
8992 will be allocated on the storage_obstack, or NULL if the DIE does
8993 not have a name. NAME may either be from a previous call to
8994 dwarf2_name or NULL.
8995
8996 The output string will be canonicalized (if C++). */
8997
8998 static const char *
8999 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9000 {
9001 return dwarf2_compute_name (name, die, cu, 0);
9002 }
9003
9004 /* Construct a physname for the given DIE in CU. NAME may either be
9005 from a previous call to dwarf2_name or NULL. The result will be
9006 allocated on the objfile_objstack or NULL if the DIE does not have a
9007 name.
9008
9009 The output string will be canonicalized (if C++). */
9010
9011 static const char *
9012 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9013 {
9014 struct objfile *objfile = cu->objfile;
9015 const char *retval, *mangled = NULL, *canon = NULL;
9016 int need_copy = 1;
9017
9018 /* In this case dwarf2_compute_name is just a shortcut not building anything
9019 on its own. */
9020 if (!die_needs_namespace (die, cu))
9021 return dwarf2_compute_name (name, die, cu, 1);
9022
9023 mangled = dw2_linkage_name (die, cu);
9024
9025 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9026 See https://github.com/rust-lang/rust/issues/32925. */
9027 if (cu->language == language_rust && mangled != NULL
9028 && strchr (mangled, '{') != NULL)
9029 mangled = NULL;
9030
9031 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9032 has computed. */
9033 gdb::unique_xmalloc_ptr<char> demangled;
9034 if (mangled != NULL)
9035 {
9036 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9037 type. It is easier for GDB users to search for such functions as
9038 `name(params)' than `long name(params)'. In such case the minimal
9039 symbol names do not match the full symbol names but for template
9040 functions there is never a need to look up their definition from their
9041 declaration so the only disadvantage remains the minimal symbol
9042 variant `long name(params)' does not have the proper inferior type.
9043 */
9044
9045 if (cu->language == language_go)
9046 {
9047 /* This is a lie, but we already lie to the caller new_symbol_full.
9048 new_symbol_full assumes we return the mangled name.
9049 This just undoes that lie until things are cleaned up. */
9050 }
9051 else
9052 {
9053 demangled.reset (gdb_demangle (mangled,
9054 (DMGL_PARAMS | DMGL_ANSI
9055 | DMGL_RET_DROP)));
9056 }
9057 if (demangled)
9058 canon = demangled.get ();
9059 else
9060 {
9061 canon = mangled;
9062 need_copy = 0;
9063 }
9064 }
9065
9066 if (canon == NULL || check_physname)
9067 {
9068 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9069
9070 if (canon != NULL && strcmp (physname, canon) != 0)
9071 {
9072 /* It may not mean a bug in GDB. The compiler could also
9073 compute DW_AT_linkage_name incorrectly. But in such case
9074 GDB would need to be bug-to-bug compatible. */
9075
9076 complaint (&symfile_complaints,
9077 _("Computed physname <%s> does not match demangled <%s> "
9078 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9079 physname, canon, mangled, to_underlying (die->sect_off),
9080 objfile_name (objfile));
9081
9082 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9083 is available here - over computed PHYSNAME. It is safer
9084 against both buggy GDB and buggy compilers. */
9085
9086 retval = canon;
9087 }
9088 else
9089 {
9090 retval = physname;
9091 need_copy = 0;
9092 }
9093 }
9094 else
9095 retval = canon;
9096
9097 if (need_copy)
9098 retval = ((const char *)
9099 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9100 retval, strlen (retval)));
9101
9102 return retval;
9103 }
9104
9105 /* Inspect DIE in CU for a namespace alias. If one exists, record
9106 a new symbol for it.
9107
9108 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9109
9110 static int
9111 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9112 {
9113 struct attribute *attr;
9114
9115 /* If the die does not have a name, this is not a namespace
9116 alias. */
9117 attr = dwarf2_attr (die, DW_AT_name, cu);
9118 if (attr != NULL)
9119 {
9120 int num;
9121 struct die_info *d = die;
9122 struct dwarf2_cu *imported_cu = cu;
9123
9124 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9125 keep inspecting DIEs until we hit the underlying import. */
9126 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9127 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9128 {
9129 attr = dwarf2_attr (d, DW_AT_import, cu);
9130 if (attr == NULL)
9131 break;
9132
9133 d = follow_die_ref (d, attr, &imported_cu);
9134 if (d->tag != DW_TAG_imported_declaration)
9135 break;
9136 }
9137
9138 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9139 {
9140 complaint (&symfile_complaints,
9141 _("DIE at 0x%x has too many recursively imported "
9142 "declarations"), to_underlying (d->sect_off));
9143 return 0;
9144 }
9145
9146 if (attr != NULL)
9147 {
9148 struct type *type;
9149 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9150
9151 type = get_die_type_at_offset (sect_off, cu->per_cu);
9152 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9153 {
9154 /* This declaration is a global namespace alias. Add
9155 a symbol for it whose type is the aliased namespace. */
9156 new_symbol (die, type, cu);
9157 return 1;
9158 }
9159 }
9160 }
9161
9162 return 0;
9163 }
9164
9165 /* Return the using directives repository (global or local?) to use in the
9166 current context for LANGUAGE.
9167
9168 For Ada, imported declarations can materialize renamings, which *may* be
9169 global. However it is impossible (for now?) in DWARF to distinguish
9170 "external" imported declarations and "static" ones. As all imported
9171 declarations seem to be static in all other languages, make them all CU-wide
9172 global only in Ada. */
9173
9174 static struct using_direct **
9175 using_directives (enum language language)
9176 {
9177 if (language == language_ada && context_stack_depth == 0)
9178 return &global_using_directives;
9179 else
9180 return &local_using_directives;
9181 }
9182
9183 /* Read the import statement specified by the given die and record it. */
9184
9185 static void
9186 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9187 {
9188 struct objfile *objfile = cu->objfile;
9189 struct attribute *import_attr;
9190 struct die_info *imported_die, *child_die;
9191 struct dwarf2_cu *imported_cu;
9192 const char *imported_name;
9193 const char *imported_name_prefix;
9194 const char *canonical_name;
9195 const char *import_alias;
9196 const char *imported_declaration = NULL;
9197 const char *import_prefix;
9198 std::vector<const char *> excludes;
9199
9200 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9201 if (import_attr == NULL)
9202 {
9203 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9204 dwarf_tag_name (die->tag));
9205 return;
9206 }
9207
9208 imported_cu = cu;
9209 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9210 imported_name = dwarf2_name (imported_die, imported_cu);
9211 if (imported_name == NULL)
9212 {
9213 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9214
9215 The import in the following code:
9216 namespace A
9217 {
9218 typedef int B;
9219 }
9220
9221 int main ()
9222 {
9223 using A::B;
9224 B b;
9225 return b;
9226 }
9227
9228 ...
9229 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9230 <52> DW_AT_decl_file : 1
9231 <53> DW_AT_decl_line : 6
9232 <54> DW_AT_import : <0x75>
9233 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9234 <59> DW_AT_name : B
9235 <5b> DW_AT_decl_file : 1
9236 <5c> DW_AT_decl_line : 2
9237 <5d> DW_AT_type : <0x6e>
9238 ...
9239 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9240 <76> DW_AT_byte_size : 4
9241 <77> DW_AT_encoding : 5 (signed)
9242
9243 imports the wrong die ( 0x75 instead of 0x58 ).
9244 This case will be ignored until the gcc bug is fixed. */
9245 return;
9246 }
9247
9248 /* Figure out the local name after import. */
9249 import_alias = dwarf2_name (die, cu);
9250
9251 /* Figure out where the statement is being imported to. */
9252 import_prefix = determine_prefix (die, cu);
9253
9254 /* Figure out what the scope of the imported die is and prepend it
9255 to the name of the imported die. */
9256 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9257
9258 if (imported_die->tag != DW_TAG_namespace
9259 && imported_die->tag != DW_TAG_module)
9260 {
9261 imported_declaration = imported_name;
9262 canonical_name = imported_name_prefix;
9263 }
9264 else if (strlen (imported_name_prefix) > 0)
9265 canonical_name = obconcat (&objfile->objfile_obstack,
9266 imported_name_prefix,
9267 (cu->language == language_d ? "." : "::"),
9268 imported_name, (char *) NULL);
9269 else
9270 canonical_name = imported_name;
9271
9272 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9273 for (child_die = die->child; child_die && child_die->tag;
9274 child_die = sibling_die (child_die))
9275 {
9276 /* DWARF-4: A Fortran use statement with a “rename list” may be
9277 represented by an imported module entry with an import attribute
9278 referring to the module and owned entries corresponding to those
9279 entities that are renamed as part of being imported. */
9280
9281 if (child_die->tag != DW_TAG_imported_declaration)
9282 {
9283 complaint (&symfile_complaints,
9284 _("child DW_TAG_imported_declaration expected "
9285 "- DIE at 0x%x [in module %s]"),
9286 to_underlying (child_die->sect_off), objfile_name (objfile));
9287 continue;
9288 }
9289
9290 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9291 if (import_attr == NULL)
9292 {
9293 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9294 dwarf_tag_name (child_die->tag));
9295 continue;
9296 }
9297
9298 imported_cu = cu;
9299 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9300 &imported_cu);
9301 imported_name = dwarf2_name (imported_die, imported_cu);
9302 if (imported_name == NULL)
9303 {
9304 complaint (&symfile_complaints,
9305 _("child DW_TAG_imported_declaration has unknown "
9306 "imported name - DIE at 0x%x [in module %s]"),
9307 to_underlying (child_die->sect_off), objfile_name (objfile));
9308 continue;
9309 }
9310
9311 excludes.push_back (imported_name);
9312
9313 process_die (child_die, cu);
9314 }
9315
9316 add_using_directive (using_directives (cu->language),
9317 import_prefix,
9318 canonical_name,
9319 import_alias,
9320 imported_declaration,
9321 excludes,
9322 0,
9323 &objfile->objfile_obstack);
9324 }
9325
9326 /* ICC<14 does not output the required DW_AT_declaration on incomplete
9327 types, but gives them a size of zero. Starting with version 14,
9328 ICC is compatible with GCC. */
9329
9330 static int
9331 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
9332 {
9333 if (!cu->checked_producer)
9334 check_producer (cu);
9335
9336 return cu->producer_is_icc_lt_14;
9337 }
9338
9339 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9340 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9341 this, it was first present in GCC release 4.3.0. */
9342
9343 static int
9344 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9345 {
9346 if (!cu->checked_producer)
9347 check_producer (cu);
9348
9349 return cu->producer_is_gcc_lt_4_3;
9350 }
9351
9352 static file_and_directory
9353 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9354 {
9355 file_and_directory res;
9356
9357 /* Find the filename. Do not use dwarf2_name here, since the filename
9358 is not a source language identifier. */
9359 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9360 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9361
9362 if (res.comp_dir == NULL
9363 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9364 && IS_ABSOLUTE_PATH (res.name))
9365 {
9366 res.comp_dir_storage = ldirname (res.name);
9367 if (!res.comp_dir_storage.empty ())
9368 res.comp_dir = res.comp_dir_storage.c_str ();
9369 }
9370 if (res.comp_dir != NULL)
9371 {
9372 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9373 directory, get rid of it. */
9374 const char *cp = strchr (res.comp_dir, ':');
9375
9376 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9377 res.comp_dir = cp + 1;
9378 }
9379
9380 if (res.name == NULL)
9381 res.name = "<unknown>";
9382
9383 return res;
9384 }
9385
9386 /* Handle DW_AT_stmt_list for a compilation unit.
9387 DIE is the DW_TAG_compile_unit die for CU.
9388 COMP_DIR is the compilation directory. LOWPC is passed to
9389 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9390
9391 static void
9392 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9393 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9394 {
9395 struct objfile *objfile = dwarf2_per_objfile->objfile;
9396 struct attribute *attr;
9397 struct line_header line_header_local;
9398 hashval_t line_header_local_hash;
9399 unsigned u;
9400 void **slot;
9401 int decode_mapping;
9402
9403 gdb_assert (! cu->per_cu->is_debug_types);
9404
9405 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9406 if (attr == NULL)
9407 return;
9408
9409 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9410
9411 /* The line header hash table is only created if needed (it exists to
9412 prevent redundant reading of the line table for partial_units).
9413 If we're given a partial_unit, we'll need it. If we're given a
9414 compile_unit, then use the line header hash table if it's already
9415 created, but don't create one just yet. */
9416
9417 if (dwarf2_per_objfile->line_header_hash == NULL
9418 && die->tag == DW_TAG_partial_unit)
9419 {
9420 dwarf2_per_objfile->line_header_hash
9421 = htab_create_alloc_ex (127, line_header_hash_voidp,
9422 line_header_eq_voidp,
9423 free_line_header_voidp,
9424 &objfile->objfile_obstack,
9425 hashtab_obstack_allocate,
9426 dummy_obstack_deallocate);
9427 }
9428
9429 line_header_local.sect_off = line_offset;
9430 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9431 line_header_local_hash = line_header_hash (&line_header_local);
9432 if (dwarf2_per_objfile->line_header_hash != NULL)
9433 {
9434 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9435 &line_header_local,
9436 line_header_local_hash, NO_INSERT);
9437
9438 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9439 is not present in *SLOT (since if there is something in *SLOT then
9440 it will be for a partial_unit). */
9441 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9442 {
9443 gdb_assert (*slot != NULL);
9444 cu->line_header = (struct line_header *) *slot;
9445 return;
9446 }
9447 }
9448
9449 /* dwarf_decode_line_header does not yet provide sufficient information.
9450 We always have to call also dwarf_decode_lines for it. */
9451 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9452 if (lh == NULL)
9453 return;
9454
9455 cu->line_header = lh.release ();
9456 cu->line_header_die_owner = die;
9457
9458 if (dwarf2_per_objfile->line_header_hash == NULL)
9459 slot = NULL;
9460 else
9461 {
9462 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9463 &line_header_local,
9464 line_header_local_hash, INSERT);
9465 gdb_assert (slot != NULL);
9466 }
9467 if (slot != NULL && *slot == NULL)
9468 {
9469 /* This newly decoded line number information unit will be owned
9470 by line_header_hash hash table. */
9471 *slot = cu->line_header;
9472 cu->line_header_die_owner = NULL;
9473 }
9474 else
9475 {
9476 /* We cannot free any current entry in (*slot) as that struct line_header
9477 may be already used by multiple CUs. Create only temporary decoded
9478 line_header for this CU - it may happen at most once for each line
9479 number information unit. And if we're not using line_header_hash
9480 then this is what we want as well. */
9481 gdb_assert (die->tag != DW_TAG_partial_unit);
9482 }
9483 decode_mapping = (die->tag != DW_TAG_partial_unit);
9484 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9485 decode_mapping);
9486
9487 }
9488
9489 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9490
9491 static void
9492 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9493 {
9494 struct objfile *objfile = dwarf2_per_objfile->objfile;
9495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9496 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9497 CORE_ADDR highpc = ((CORE_ADDR) 0);
9498 struct attribute *attr;
9499 struct die_info *child_die;
9500 CORE_ADDR baseaddr;
9501
9502 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9503
9504 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9505
9506 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9507 from finish_block. */
9508 if (lowpc == ((CORE_ADDR) -1))
9509 lowpc = highpc;
9510 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9511
9512 file_and_directory fnd = find_file_and_directory (die, cu);
9513
9514 prepare_one_comp_unit (cu, die, cu->language);
9515
9516 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9517 standardised yet. As a workaround for the language detection we fall
9518 back to the DW_AT_producer string. */
9519 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9520 cu->language = language_opencl;
9521
9522 /* Similar hack for Go. */
9523 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9524 set_cu_language (DW_LANG_Go, cu);
9525
9526 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9527
9528 /* Decode line number information if present. We do this before
9529 processing child DIEs, so that the line header table is available
9530 for DW_AT_decl_file. */
9531 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9532
9533 /* Process all dies in compilation unit. */
9534 if (die->child != NULL)
9535 {
9536 child_die = die->child;
9537 while (child_die && child_die->tag)
9538 {
9539 process_die (child_die, cu);
9540 child_die = sibling_die (child_die);
9541 }
9542 }
9543
9544 /* Decode macro information, if present. Dwarf 2 macro information
9545 refers to information in the line number info statement program
9546 header, so we can only read it if we've read the header
9547 successfully. */
9548 attr = dwarf2_attr (die, DW_AT_macros, cu);
9549 if (attr == NULL)
9550 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9551 if (attr && cu->line_header)
9552 {
9553 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9554 complaint (&symfile_complaints,
9555 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9556
9557 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9558 }
9559 else
9560 {
9561 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9562 if (attr && cu->line_header)
9563 {
9564 unsigned int macro_offset = DW_UNSND (attr);
9565
9566 dwarf_decode_macros (cu, macro_offset, 0);
9567 }
9568 }
9569 }
9570
9571 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9572 Create the set of symtabs used by this TU, or if this TU is sharing
9573 symtabs with another TU and the symtabs have already been created
9574 then restore those symtabs in the line header.
9575 We don't need the pc/line-number mapping for type units. */
9576
9577 static void
9578 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9579 {
9580 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9581 struct type_unit_group *tu_group;
9582 int first_time;
9583 struct attribute *attr;
9584 unsigned int i;
9585 struct signatured_type *sig_type;
9586
9587 gdb_assert (per_cu->is_debug_types);
9588 sig_type = (struct signatured_type *) per_cu;
9589
9590 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9591
9592 /* If we're using .gdb_index (includes -readnow) then
9593 per_cu->type_unit_group may not have been set up yet. */
9594 if (sig_type->type_unit_group == NULL)
9595 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9596 tu_group = sig_type->type_unit_group;
9597
9598 /* If we've already processed this stmt_list there's no real need to
9599 do it again, we could fake it and just recreate the part we need
9600 (file name,index -> symtab mapping). If data shows this optimization
9601 is useful we can do it then. */
9602 first_time = tu_group->compunit_symtab == NULL;
9603
9604 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9605 debug info. */
9606 line_header_up lh;
9607 if (attr != NULL)
9608 {
9609 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9610 lh = dwarf_decode_line_header (line_offset, cu);
9611 }
9612 if (lh == NULL)
9613 {
9614 if (first_time)
9615 dwarf2_start_symtab (cu, "", NULL, 0);
9616 else
9617 {
9618 gdb_assert (tu_group->symtabs == NULL);
9619 restart_symtab (tu_group->compunit_symtab, "", 0);
9620 }
9621 return;
9622 }
9623
9624 cu->line_header = lh.release ();
9625 cu->line_header_die_owner = die;
9626
9627 if (first_time)
9628 {
9629 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9630
9631 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9632 still initializing it, and our caller (a few levels up)
9633 process_full_type_unit still needs to know if this is the first
9634 time. */
9635
9636 tu_group->num_symtabs = cu->line_header->file_names.size ();
9637 tu_group->symtabs = XNEWVEC (struct symtab *,
9638 cu->line_header->file_names.size ());
9639
9640 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9641 {
9642 file_entry &fe = cu->line_header->file_names[i];
9643
9644 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
9645
9646 if (current_subfile->symtab == NULL)
9647 {
9648 /* NOTE: start_subfile will recognize when it's been
9649 passed a file it has already seen. So we can't
9650 assume there's a simple mapping from
9651 cu->line_header->file_names to subfiles, plus
9652 cu->line_header->file_names may contain dups. */
9653 current_subfile->symtab
9654 = allocate_symtab (cust, current_subfile->name);
9655 }
9656
9657 fe.symtab = current_subfile->symtab;
9658 tu_group->symtabs[i] = fe.symtab;
9659 }
9660 }
9661 else
9662 {
9663 restart_symtab (tu_group->compunit_symtab, "", 0);
9664
9665 for (i = 0; i < cu->line_header->file_names.size (); ++i)
9666 {
9667 file_entry &fe = cu->line_header->file_names[i];
9668
9669 fe.symtab = tu_group->symtabs[i];
9670 }
9671 }
9672
9673 /* The main symtab is allocated last. Type units don't have DW_AT_name
9674 so they don't have a "real" (so to speak) symtab anyway.
9675 There is later code that will assign the main symtab to all symbols
9676 that don't have one. We need to handle the case of a symbol with a
9677 missing symtab (DW_AT_decl_file) anyway. */
9678 }
9679
9680 /* Process DW_TAG_type_unit.
9681 For TUs we want to skip the first top level sibling if it's not the
9682 actual type being defined by this TU. In this case the first top
9683 level sibling is there to provide context only. */
9684
9685 static void
9686 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9687 {
9688 struct die_info *child_die;
9689
9690 prepare_one_comp_unit (cu, die, language_minimal);
9691
9692 /* Initialize (or reinitialize) the machinery for building symtabs.
9693 We do this before processing child DIEs, so that the line header table
9694 is available for DW_AT_decl_file. */
9695 setup_type_unit_groups (die, cu);
9696
9697 if (die->child != NULL)
9698 {
9699 child_die = die->child;
9700 while (child_die && child_die->tag)
9701 {
9702 process_die (child_die, cu);
9703 child_die = sibling_die (child_die);
9704 }
9705 }
9706 }
9707 \f
9708 /* DWO/DWP files.
9709
9710 http://gcc.gnu.org/wiki/DebugFission
9711 http://gcc.gnu.org/wiki/DebugFissionDWP
9712
9713 To simplify handling of both DWO files ("object" files with the DWARF info)
9714 and DWP files (a file with the DWOs packaged up into one file), we treat
9715 DWP files as having a collection of virtual DWO files. */
9716
9717 static hashval_t
9718 hash_dwo_file (const void *item)
9719 {
9720 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9721 hashval_t hash;
9722
9723 hash = htab_hash_string (dwo_file->dwo_name);
9724 if (dwo_file->comp_dir != NULL)
9725 hash += htab_hash_string (dwo_file->comp_dir);
9726 return hash;
9727 }
9728
9729 static int
9730 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9731 {
9732 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9733 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9734
9735 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9736 return 0;
9737 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9738 return lhs->comp_dir == rhs->comp_dir;
9739 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9740 }
9741
9742 /* Allocate a hash table for DWO files. */
9743
9744 static htab_t
9745 allocate_dwo_file_hash_table (void)
9746 {
9747 struct objfile *objfile = dwarf2_per_objfile->objfile;
9748
9749 return htab_create_alloc_ex (41,
9750 hash_dwo_file,
9751 eq_dwo_file,
9752 NULL,
9753 &objfile->objfile_obstack,
9754 hashtab_obstack_allocate,
9755 dummy_obstack_deallocate);
9756 }
9757
9758 /* Lookup DWO file DWO_NAME. */
9759
9760 static void **
9761 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9762 {
9763 struct dwo_file find_entry;
9764 void **slot;
9765
9766 if (dwarf2_per_objfile->dwo_files == NULL)
9767 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9768
9769 memset (&find_entry, 0, sizeof (find_entry));
9770 find_entry.dwo_name = dwo_name;
9771 find_entry.comp_dir = comp_dir;
9772 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9773
9774 return slot;
9775 }
9776
9777 static hashval_t
9778 hash_dwo_unit (const void *item)
9779 {
9780 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9781
9782 /* This drops the top 32 bits of the id, but is ok for a hash. */
9783 return dwo_unit->signature;
9784 }
9785
9786 static int
9787 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9788 {
9789 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9790 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9791
9792 /* The signature is assumed to be unique within the DWO file.
9793 So while object file CU dwo_id's always have the value zero,
9794 that's OK, assuming each object file DWO file has only one CU,
9795 and that's the rule for now. */
9796 return lhs->signature == rhs->signature;
9797 }
9798
9799 /* Allocate a hash table for DWO CUs,TUs.
9800 There is one of these tables for each of CUs,TUs for each DWO file. */
9801
9802 static htab_t
9803 allocate_dwo_unit_table (struct objfile *objfile)
9804 {
9805 /* Start out with a pretty small number.
9806 Generally DWO files contain only one CU and maybe some TUs. */
9807 return htab_create_alloc_ex (3,
9808 hash_dwo_unit,
9809 eq_dwo_unit,
9810 NULL,
9811 &objfile->objfile_obstack,
9812 hashtab_obstack_allocate,
9813 dummy_obstack_deallocate);
9814 }
9815
9816 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9817
9818 struct create_dwo_cu_data
9819 {
9820 struct dwo_file *dwo_file;
9821 struct dwo_unit dwo_unit;
9822 };
9823
9824 /* die_reader_func for create_dwo_cu. */
9825
9826 static void
9827 create_dwo_cu_reader (const struct die_reader_specs *reader,
9828 const gdb_byte *info_ptr,
9829 struct die_info *comp_unit_die,
9830 int has_children,
9831 void *datap)
9832 {
9833 struct dwarf2_cu *cu = reader->cu;
9834 sect_offset sect_off = cu->per_cu->sect_off;
9835 struct dwarf2_section_info *section = cu->per_cu->section;
9836 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9837 struct dwo_file *dwo_file = data->dwo_file;
9838 struct dwo_unit *dwo_unit = &data->dwo_unit;
9839 struct attribute *attr;
9840
9841 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9842 if (attr == NULL)
9843 {
9844 complaint (&symfile_complaints,
9845 _("Dwarf Error: debug entry at offset 0x%x is missing"
9846 " its dwo_id [in module %s]"),
9847 to_underlying (sect_off), dwo_file->dwo_name);
9848 return;
9849 }
9850
9851 dwo_unit->dwo_file = dwo_file;
9852 dwo_unit->signature = DW_UNSND (attr);
9853 dwo_unit->section = section;
9854 dwo_unit->sect_off = sect_off;
9855 dwo_unit->length = cu->per_cu->length;
9856
9857 if (dwarf_read_debug)
9858 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9859 to_underlying (sect_off),
9860 hex_string (dwo_unit->signature));
9861 }
9862
9863 /* Create the dwo_units for the CUs in a DWO_FILE.
9864 Note: This function processes DWO files only, not DWP files. */
9865
9866 static void
9867 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9868 htab_t &cus_htab)
9869 {
9870 struct objfile *objfile = dwarf2_per_objfile->objfile;
9871 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9872 const gdb_byte *info_ptr, *end_ptr;
9873
9874 dwarf2_read_section (objfile, &section);
9875 info_ptr = section.buffer;
9876
9877 if (info_ptr == NULL)
9878 return;
9879
9880 if (dwarf_read_debug)
9881 {
9882 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9883 get_section_name (&section),
9884 get_section_file_name (&section));
9885 }
9886
9887 end_ptr = info_ptr + section.size;
9888 while (info_ptr < end_ptr)
9889 {
9890 struct dwarf2_per_cu_data per_cu;
9891 struct create_dwo_cu_data create_dwo_cu_data;
9892 struct dwo_unit *dwo_unit;
9893 void **slot;
9894 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9895
9896 memset (&create_dwo_cu_data.dwo_unit, 0,
9897 sizeof (create_dwo_cu_data.dwo_unit));
9898 memset (&per_cu, 0, sizeof (per_cu));
9899 per_cu.objfile = objfile;
9900 per_cu.is_debug_types = 0;
9901 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9902 per_cu.section = &section;
9903 create_dwo_cu_data.dwo_file = &dwo_file;
9904
9905 init_cutu_and_read_dies_no_follow (
9906 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9907 info_ptr += per_cu.length;
9908
9909 // If the unit could not be parsed, skip it.
9910 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9911 continue;
9912
9913 if (cus_htab == NULL)
9914 cus_htab = allocate_dwo_unit_table (objfile);
9915
9916 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9917 *dwo_unit = create_dwo_cu_data.dwo_unit;
9918 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9919 gdb_assert (slot != NULL);
9920 if (*slot != NULL)
9921 {
9922 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9923 sect_offset dup_sect_off = dup_cu->sect_off;
9924
9925 complaint (&symfile_complaints,
9926 _("debug cu entry at offset 0x%x is duplicate to"
9927 " the entry at offset 0x%x, signature %s"),
9928 to_underlying (sect_off), to_underlying (dup_sect_off),
9929 hex_string (dwo_unit->signature));
9930 }
9931 *slot = (void *)dwo_unit;
9932 }
9933 }
9934
9935 /* DWP file .debug_{cu,tu}_index section format:
9936 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9937
9938 DWP Version 1:
9939
9940 Both index sections have the same format, and serve to map a 64-bit
9941 signature to a set of section numbers. Each section begins with a header,
9942 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9943 indexes, and a pool of 32-bit section numbers. The index sections will be
9944 aligned at 8-byte boundaries in the file.
9945
9946 The index section header consists of:
9947
9948 V, 32 bit version number
9949 -, 32 bits unused
9950 N, 32 bit number of compilation units or type units in the index
9951 M, 32 bit number of slots in the hash table
9952
9953 Numbers are recorded using the byte order of the application binary.
9954
9955 The hash table begins at offset 16 in the section, and consists of an array
9956 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9957 order of the application binary). Unused slots in the hash table are 0.
9958 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9959
9960 The parallel table begins immediately after the hash table
9961 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9962 array of 32-bit indexes (using the byte order of the application binary),
9963 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9964 table contains a 32-bit index into the pool of section numbers. For unused
9965 hash table slots, the corresponding entry in the parallel table will be 0.
9966
9967 The pool of section numbers begins immediately following the hash table
9968 (at offset 16 + 12 * M from the beginning of the section). The pool of
9969 section numbers consists of an array of 32-bit words (using the byte order
9970 of the application binary). Each item in the array is indexed starting
9971 from 0. The hash table entry provides the index of the first section
9972 number in the set. Additional section numbers in the set follow, and the
9973 set is terminated by a 0 entry (section number 0 is not used in ELF).
9974
9975 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9976 section must be the first entry in the set, and the .debug_abbrev.dwo must
9977 be the second entry. Other members of the set may follow in any order.
9978
9979 ---
9980
9981 DWP Version 2:
9982
9983 DWP Version 2 combines all the .debug_info, etc. sections into one,
9984 and the entries in the index tables are now offsets into these sections.
9985 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9986 section.
9987
9988 Index Section Contents:
9989 Header
9990 Hash Table of Signatures dwp_hash_table.hash_table
9991 Parallel Table of Indices dwp_hash_table.unit_table
9992 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9993 Table of Section Sizes dwp_hash_table.v2.sizes
9994
9995 The index section header consists of:
9996
9997 V, 32 bit version number
9998 L, 32 bit number of columns in the table of section offsets
9999 N, 32 bit number of compilation units or type units in the index
10000 M, 32 bit number of slots in the hash table
10001
10002 Numbers are recorded using the byte order of the application binary.
10003
10004 The hash table has the same format as version 1.
10005 The parallel table of indices has the same format as version 1,
10006 except that the entries are origin-1 indices into the table of sections
10007 offsets and the table of section sizes.
10008
10009 The table of offsets begins immediately following the parallel table
10010 (at offset 16 + 12 * M from the beginning of the section). The table is
10011 a two-dimensional array of 32-bit words (using the byte order of the
10012 application binary), with L columns and N+1 rows, in row-major order.
10013 Each row in the array is indexed starting from 0. The first row provides
10014 a key to the remaining rows: each column in this row provides an identifier
10015 for a debug section, and the offsets in the same column of subsequent rows
10016 refer to that section. The section identifiers are:
10017
10018 DW_SECT_INFO 1 .debug_info.dwo
10019 DW_SECT_TYPES 2 .debug_types.dwo
10020 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10021 DW_SECT_LINE 4 .debug_line.dwo
10022 DW_SECT_LOC 5 .debug_loc.dwo
10023 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10024 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10025 DW_SECT_MACRO 8 .debug_macro.dwo
10026
10027 The offsets provided by the CU and TU index sections are the base offsets
10028 for the contributions made by each CU or TU to the corresponding section
10029 in the package file. Each CU and TU header contains an abbrev_offset
10030 field, used to find the abbreviations table for that CU or TU within the
10031 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10032 be interpreted as relative to the base offset given in the index section.
10033 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10034 should be interpreted as relative to the base offset for .debug_line.dwo,
10035 and offsets into other debug sections obtained from DWARF attributes should
10036 also be interpreted as relative to the corresponding base offset.
10037
10038 The table of sizes begins immediately following the table of offsets.
10039 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10040 with L columns and N rows, in row-major order. Each row in the array is
10041 indexed starting from 1 (row 0 is shared by the two tables).
10042
10043 ---
10044
10045 Hash table lookup is handled the same in version 1 and 2:
10046
10047 We assume that N and M will not exceed 2^32 - 1.
10048 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10049
10050 Given a 64-bit compilation unit signature or a type signature S, an entry
10051 in the hash table is located as follows:
10052
10053 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10054 the low-order k bits all set to 1.
10055
10056 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10057
10058 3) If the hash table entry at index H matches the signature, use that
10059 entry. If the hash table entry at index H is unused (all zeroes),
10060 terminate the search: the signature is not present in the table.
10061
10062 4) Let H = (H + H') modulo M. Repeat at Step 3.
10063
10064 Because M > N and H' and M are relatively prime, the search is guaranteed
10065 to stop at an unused slot or find the match. */
10066
10067 /* Create a hash table to map DWO IDs to their CU/TU entry in
10068 .debug_{info,types}.dwo in DWP_FILE.
10069 Returns NULL if there isn't one.
10070 Note: This function processes DWP files only, not DWO files. */
10071
10072 static struct dwp_hash_table *
10073 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10074 {
10075 struct objfile *objfile = dwarf2_per_objfile->objfile;
10076 bfd *dbfd = dwp_file->dbfd;
10077 const gdb_byte *index_ptr, *index_end;
10078 struct dwarf2_section_info *index;
10079 uint32_t version, nr_columns, nr_units, nr_slots;
10080 struct dwp_hash_table *htab;
10081
10082 if (is_debug_types)
10083 index = &dwp_file->sections.tu_index;
10084 else
10085 index = &dwp_file->sections.cu_index;
10086
10087 if (dwarf2_section_empty_p (index))
10088 return NULL;
10089 dwarf2_read_section (objfile, index);
10090
10091 index_ptr = index->buffer;
10092 index_end = index_ptr + index->size;
10093
10094 version = read_4_bytes (dbfd, index_ptr);
10095 index_ptr += 4;
10096 if (version == 2)
10097 nr_columns = read_4_bytes (dbfd, index_ptr);
10098 else
10099 nr_columns = 0;
10100 index_ptr += 4;
10101 nr_units = read_4_bytes (dbfd, index_ptr);
10102 index_ptr += 4;
10103 nr_slots = read_4_bytes (dbfd, index_ptr);
10104 index_ptr += 4;
10105
10106 if (version != 1 && version != 2)
10107 {
10108 error (_("Dwarf Error: unsupported DWP file version (%s)"
10109 " [in module %s]"),
10110 pulongest (version), dwp_file->name);
10111 }
10112 if (nr_slots != (nr_slots & -nr_slots))
10113 {
10114 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10115 " is not power of 2 [in module %s]"),
10116 pulongest (nr_slots), dwp_file->name);
10117 }
10118
10119 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10120 htab->version = version;
10121 htab->nr_columns = nr_columns;
10122 htab->nr_units = nr_units;
10123 htab->nr_slots = nr_slots;
10124 htab->hash_table = index_ptr;
10125 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10126
10127 /* Exit early if the table is empty. */
10128 if (nr_slots == 0 || nr_units == 0
10129 || (version == 2 && nr_columns == 0))
10130 {
10131 /* All must be zero. */
10132 if (nr_slots != 0 || nr_units != 0
10133 || (version == 2 && nr_columns != 0))
10134 {
10135 complaint (&symfile_complaints,
10136 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10137 " all zero [in modules %s]"),
10138 dwp_file->name);
10139 }
10140 return htab;
10141 }
10142
10143 if (version == 1)
10144 {
10145 htab->section_pool.v1.indices =
10146 htab->unit_table + sizeof (uint32_t) * nr_slots;
10147 /* It's harder to decide whether the section is too small in v1.
10148 V1 is deprecated anyway so we punt. */
10149 }
10150 else
10151 {
10152 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10153 int *ids = htab->section_pool.v2.section_ids;
10154 /* Reverse map for error checking. */
10155 int ids_seen[DW_SECT_MAX + 1];
10156 int i;
10157
10158 if (nr_columns < 2)
10159 {
10160 error (_("Dwarf Error: bad DWP hash table, too few columns"
10161 " in section table [in module %s]"),
10162 dwp_file->name);
10163 }
10164 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10165 {
10166 error (_("Dwarf Error: bad DWP hash table, too many columns"
10167 " in section table [in module %s]"),
10168 dwp_file->name);
10169 }
10170 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10171 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10172 for (i = 0; i < nr_columns; ++i)
10173 {
10174 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10175
10176 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10177 {
10178 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10179 " in section table [in module %s]"),
10180 id, dwp_file->name);
10181 }
10182 if (ids_seen[id] != -1)
10183 {
10184 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10185 " id %d in section table [in module %s]"),
10186 id, dwp_file->name);
10187 }
10188 ids_seen[id] = i;
10189 ids[i] = id;
10190 }
10191 /* Must have exactly one info or types section. */
10192 if (((ids_seen[DW_SECT_INFO] != -1)
10193 + (ids_seen[DW_SECT_TYPES] != -1))
10194 != 1)
10195 {
10196 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10197 " DWO info/types section [in module %s]"),
10198 dwp_file->name);
10199 }
10200 /* Must have an abbrev section. */
10201 if (ids_seen[DW_SECT_ABBREV] == -1)
10202 {
10203 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10204 " section [in module %s]"),
10205 dwp_file->name);
10206 }
10207 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10208 htab->section_pool.v2.sizes =
10209 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10210 * nr_units * nr_columns);
10211 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10212 * nr_units * nr_columns))
10213 > index_end)
10214 {
10215 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10216 " [in module %s]"),
10217 dwp_file->name);
10218 }
10219 }
10220
10221 return htab;
10222 }
10223
10224 /* Update SECTIONS with the data from SECTP.
10225
10226 This function is like the other "locate" section routines that are
10227 passed to bfd_map_over_sections, but in this context the sections to
10228 read comes from the DWP V1 hash table, not the full ELF section table.
10229
10230 The result is non-zero for success, or zero if an error was found. */
10231
10232 static int
10233 locate_v1_virtual_dwo_sections (asection *sectp,
10234 struct virtual_v1_dwo_sections *sections)
10235 {
10236 const struct dwop_section_names *names = &dwop_section_names;
10237
10238 if (section_is_p (sectp->name, &names->abbrev_dwo))
10239 {
10240 /* There can be only one. */
10241 if (sections->abbrev.s.section != NULL)
10242 return 0;
10243 sections->abbrev.s.section = sectp;
10244 sections->abbrev.size = bfd_get_section_size (sectp);
10245 }
10246 else if (section_is_p (sectp->name, &names->info_dwo)
10247 || section_is_p (sectp->name, &names->types_dwo))
10248 {
10249 /* There can be only one. */
10250 if (sections->info_or_types.s.section != NULL)
10251 return 0;
10252 sections->info_or_types.s.section = sectp;
10253 sections->info_or_types.size = bfd_get_section_size (sectp);
10254 }
10255 else if (section_is_p (sectp->name, &names->line_dwo))
10256 {
10257 /* There can be only one. */
10258 if (sections->line.s.section != NULL)
10259 return 0;
10260 sections->line.s.section = sectp;
10261 sections->line.size = bfd_get_section_size (sectp);
10262 }
10263 else if (section_is_p (sectp->name, &names->loc_dwo))
10264 {
10265 /* There can be only one. */
10266 if (sections->loc.s.section != NULL)
10267 return 0;
10268 sections->loc.s.section = sectp;
10269 sections->loc.size = bfd_get_section_size (sectp);
10270 }
10271 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10272 {
10273 /* There can be only one. */
10274 if (sections->macinfo.s.section != NULL)
10275 return 0;
10276 sections->macinfo.s.section = sectp;
10277 sections->macinfo.size = bfd_get_section_size (sectp);
10278 }
10279 else if (section_is_p (sectp->name, &names->macro_dwo))
10280 {
10281 /* There can be only one. */
10282 if (sections->macro.s.section != NULL)
10283 return 0;
10284 sections->macro.s.section = sectp;
10285 sections->macro.size = bfd_get_section_size (sectp);
10286 }
10287 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10288 {
10289 /* There can be only one. */
10290 if (sections->str_offsets.s.section != NULL)
10291 return 0;
10292 sections->str_offsets.s.section = sectp;
10293 sections->str_offsets.size = bfd_get_section_size (sectp);
10294 }
10295 else
10296 {
10297 /* No other kind of section is valid. */
10298 return 0;
10299 }
10300
10301 return 1;
10302 }
10303
10304 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10305 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10306 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10307 This is for DWP version 1 files. */
10308
10309 static struct dwo_unit *
10310 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10311 uint32_t unit_index,
10312 const char *comp_dir,
10313 ULONGEST signature, int is_debug_types)
10314 {
10315 struct objfile *objfile = dwarf2_per_objfile->objfile;
10316 const struct dwp_hash_table *dwp_htab =
10317 is_debug_types ? dwp_file->tus : dwp_file->cus;
10318 bfd *dbfd = dwp_file->dbfd;
10319 const char *kind = is_debug_types ? "TU" : "CU";
10320 struct dwo_file *dwo_file;
10321 struct dwo_unit *dwo_unit;
10322 struct virtual_v1_dwo_sections sections;
10323 void **dwo_file_slot;
10324 int i;
10325
10326 gdb_assert (dwp_file->version == 1);
10327
10328 if (dwarf_read_debug)
10329 {
10330 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10331 kind,
10332 pulongest (unit_index), hex_string (signature),
10333 dwp_file->name);
10334 }
10335
10336 /* Fetch the sections of this DWO unit.
10337 Put a limit on the number of sections we look for so that bad data
10338 doesn't cause us to loop forever. */
10339
10340 #define MAX_NR_V1_DWO_SECTIONS \
10341 (1 /* .debug_info or .debug_types */ \
10342 + 1 /* .debug_abbrev */ \
10343 + 1 /* .debug_line */ \
10344 + 1 /* .debug_loc */ \
10345 + 1 /* .debug_str_offsets */ \
10346 + 1 /* .debug_macro or .debug_macinfo */ \
10347 + 1 /* trailing zero */)
10348
10349 memset (&sections, 0, sizeof (sections));
10350
10351 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10352 {
10353 asection *sectp;
10354 uint32_t section_nr =
10355 read_4_bytes (dbfd,
10356 dwp_htab->section_pool.v1.indices
10357 + (unit_index + i) * sizeof (uint32_t));
10358
10359 if (section_nr == 0)
10360 break;
10361 if (section_nr >= dwp_file->num_sections)
10362 {
10363 error (_("Dwarf Error: bad DWP hash table, section number too large"
10364 " [in module %s]"),
10365 dwp_file->name);
10366 }
10367
10368 sectp = dwp_file->elf_sections[section_nr];
10369 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10370 {
10371 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10372 " [in module %s]"),
10373 dwp_file->name);
10374 }
10375 }
10376
10377 if (i < 2
10378 || dwarf2_section_empty_p (&sections.info_or_types)
10379 || dwarf2_section_empty_p (&sections.abbrev))
10380 {
10381 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10382 " [in module %s]"),
10383 dwp_file->name);
10384 }
10385 if (i == MAX_NR_V1_DWO_SECTIONS)
10386 {
10387 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10388 " [in module %s]"),
10389 dwp_file->name);
10390 }
10391
10392 /* It's easier for the rest of the code if we fake a struct dwo_file and
10393 have dwo_unit "live" in that. At least for now.
10394
10395 The DWP file can be made up of a random collection of CUs and TUs.
10396 However, for each CU + set of TUs that came from the same original DWO
10397 file, we can combine them back into a virtual DWO file to save space
10398 (fewer struct dwo_file objects to allocate). Remember that for really
10399 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10400
10401 std::string virtual_dwo_name =
10402 string_printf ("virtual-dwo/%d-%d-%d-%d",
10403 get_section_id (&sections.abbrev),
10404 get_section_id (&sections.line),
10405 get_section_id (&sections.loc),
10406 get_section_id (&sections.str_offsets));
10407 /* Can we use an existing virtual DWO file? */
10408 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10409 /* Create one if necessary. */
10410 if (*dwo_file_slot == NULL)
10411 {
10412 if (dwarf_read_debug)
10413 {
10414 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10415 virtual_dwo_name.c_str ());
10416 }
10417 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10418 dwo_file->dwo_name
10419 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10420 virtual_dwo_name.c_str (),
10421 virtual_dwo_name.size ());
10422 dwo_file->comp_dir = comp_dir;
10423 dwo_file->sections.abbrev = sections.abbrev;
10424 dwo_file->sections.line = sections.line;
10425 dwo_file->sections.loc = sections.loc;
10426 dwo_file->sections.macinfo = sections.macinfo;
10427 dwo_file->sections.macro = sections.macro;
10428 dwo_file->sections.str_offsets = sections.str_offsets;
10429 /* The "str" section is global to the entire DWP file. */
10430 dwo_file->sections.str = dwp_file->sections.str;
10431 /* The info or types section is assigned below to dwo_unit,
10432 there's no need to record it in dwo_file.
10433 Also, we can't simply record type sections in dwo_file because
10434 we record a pointer into the vector in dwo_unit. As we collect more
10435 types we'll grow the vector and eventually have to reallocate space
10436 for it, invalidating all copies of pointers into the previous
10437 contents. */
10438 *dwo_file_slot = dwo_file;
10439 }
10440 else
10441 {
10442 if (dwarf_read_debug)
10443 {
10444 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10445 virtual_dwo_name.c_str ());
10446 }
10447 dwo_file = (struct dwo_file *) *dwo_file_slot;
10448 }
10449
10450 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10451 dwo_unit->dwo_file = dwo_file;
10452 dwo_unit->signature = signature;
10453 dwo_unit->section =
10454 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10455 *dwo_unit->section = sections.info_or_types;
10456 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10457
10458 return dwo_unit;
10459 }
10460
10461 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10462 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10463 piece within that section used by a TU/CU, return a virtual section
10464 of just that piece. */
10465
10466 static struct dwarf2_section_info
10467 create_dwp_v2_section (struct dwarf2_section_info *section,
10468 bfd_size_type offset, bfd_size_type size)
10469 {
10470 struct dwarf2_section_info result;
10471 asection *sectp;
10472
10473 gdb_assert (section != NULL);
10474 gdb_assert (!section->is_virtual);
10475
10476 memset (&result, 0, sizeof (result));
10477 result.s.containing_section = section;
10478 result.is_virtual = 1;
10479
10480 if (size == 0)
10481 return result;
10482
10483 sectp = get_section_bfd_section (section);
10484
10485 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10486 bounds of the real section. This is a pretty-rare event, so just
10487 flag an error (easier) instead of a warning and trying to cope. */
10488 if (sectp == NULL
10489 || offset + size > bfd_get_section_size (sectp))
10490 {
10491 bfd *abfd = sectp->owner;
10492
10493 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10494 " in section %s [in module %s]"),
10495 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10496 objfile_name (dwarf2_per_objfile->objfile));
10497 }
10498
10499 result.virtual_offset = offset;
10500 result.size = size;
10501 return result;
10502 }
10503
10504 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10505 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10506 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10507 This is for DWP version 2 files. */
10508
10509 static struct dwo_unit *
10510 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10511 uint32_t unit_index,
10512 const char *comp_dir,
10513 ULONGEST signature, int is_debug_types)
10514 {
10515 struct objfile *objfile = dwarf2_per_objfile->objfile;
10516 const struct dwp_hash_table *dwp_htab =
10517 is_debug_types ? dwp_file->tus : dwp_file->cus;
10518 bfd *dbfd = dwp_file->dbfd;
10519 const char *kind = is_debug_types ? "TU" : "CU";
10520 struct dwo_file *dwo_file;
10521 struct dwo_unit *dwo_unit;
10522 struct virtual_v2_dwo_sections sections;
10523 void **dwo_file_slot;
10524 int i;
10525
10526 gdb_assert (dwp_file->version == 2);
10527
10528 if (dwarf_read_debug)
10529 {
10530 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10531 kind,
10532 pulongest (unit_index), hex_string (signature),
10533 dwp_file->name);
10534 }
10535
10536 /* Fetch the section offsets of this DWO unit. */
10537
10538 memset (&sections, 0, sizeof (sections));
10539
10540 for (i = 0; i < dwp_htab->nr_columns; ++i)
10541 {
10542 uint32_t offset = read_4_bytes (dbfd,
10543 dwp_htab->section_pool.v2.offsets
10544 + (((unit_index - 1) * dwp_htab->nr_columns
10545 + i)
10546 * sizeof (uint32_t)));
10547 uint32_t size = read_4_bytes (dbfd,
10548 dwp_htab->section_pool.v2.sizes
10549 + (((unit_index - 1) * dwp_htab->nr_columns
10550 + i)
10551 * sizeof (uint32_t)));
10552
10553 switch (dwp_htab->section_pool.v2.section_ids[i])
10554 {
10555 case DW_SECT_INFO:
10556 case DW_SECT_TYPES:
10557 sections.info_or_types_offset = offset;
10558 sections.info_or_types_size = size;
10559 break;
10560 case DW_SECT_ABBREV:
10561 sections.abbrev_offset = offset;
10562 sections.abbrev_size = size;
10563 break;
10564 case DW_SECT_LINE:
10565 sections.line_offset = offset;
10566 sections.line_size = size;
10567 break;
10568 case DW_SECT_LOC:
10569 sections.loc_offset = offset;
10570 sections.loc_size = size;
10571 break;
10572 case DW_SECT_STR_OFFSETS:
10573 sections.str_offsets_offset = offset;
10574 sections.str_offsets_size = size;
10575 break;
10576 case DW_SECT_MACINFO:
10577 sections.macinfo_offset = offset;
10578 sections.macinfo_size = size;
10579 break;
10580 case DW_SECT_MACRO:
10581 sections.macro_offset = offset;
10582 sections.macro_size = size;
10583 break;
10584 }
10585 }
10586
10587 /* It's easier for the rest of the code if we fake a struct dwo_file and
10588 have dwo_unit "live" in that. At least for now.
10589
10590 The DWP file can be made up of a random collection of CUs and TUs.
10591 However, for each CU + set of TUs that came from the same original DWO
10592 file, we can combine them back into a virtual DWO file to save space
10593 (fewer struct dwo_file objects to allocate). Remember that for really
10594 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10595
10596 std::string virtual_dwo_name =
10597 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
10598 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10599 (long) (sections.line_size ? sections.line_offset : 0),
10600 (long) (sections.loc_size ? sections.loc_offset : 0),
10601 (long) (sections.str_offsets_size
10602 ? sections.str_offsets_offset : 0));
10603 /* Can we use an existing virtual DWO file? */
10604 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
10605 /* Create one if necessary. */
10606 if (*dwo_file_slot == NULL)
10607 {
10608 if (dwarf_read_debug)
10609 {
10610 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10611 virtual_dwo_name.c_str ());
10612 }
10613 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10614 dwo_file->dwo_name
10615 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10616 virtual_dwo_name.c_str (),
10617 virtual_dwo_name.size ());
10618 dwo_file->comp_dir = comp_dir;
10619 dwo_file->sections.abbrev =
10620 create_dwp_v2_section (&dwp_file->sections.abbrev,
10621 sections.abbrev_offset, sections.abbrev_size);
10622 dwo_file->sections.line =
10623 create_dwp_v2_section (&dwp_file->sections.line,
10624 sections.line_offset, sections.line_size);
10625 dwo_file->sections.loc =
10626 create_dwp_v2_section (&dwp_file->sections.loc,
10627 sections.loc_offset, sections.loc_size);
10628 dwo_file->sections.macinfo =
10629 create_dwp_v2_section (&dwp_file->sections.macinfo,
10630 sections.macinfo_offset, sections.macinfo_size);
10631 dwo_file->sections.macro =
10632 create_dwp_v2_section (&dwp_file->sections.macro,
10633 sections.macro_offset, sections.macro_size);
10634 dwo_file->sections.str_offsets =
10635 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10636 sections.str_offsets_offset,
10637 sections.str_offsets_size);
10638 /* The "str" section is global to the entire DWP file. */
10639 dwo_file->sections.str = dwp_file->sections.str;
10640 /* The info or types section is assigned below to dwo_unit,
10641 there's no need to record it in dwo_file.
10642 Also, we can't simply record type sections in dwo_file because
10643 we record a pointer into the vector in dwo_unit. As we collect more
10644 types we'll grow the vector and eventually have to reallocate space
10645 for it, invalidating all copies of pointers into the previous
10646 contents. */
10647 *dwo_file_slot = dwo_file;
10648 }
10649 else
10650 {
10651 if (dwarf_read_debug)
10652 {
10653 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10654 virtual_dwo_name.c_str ());
10655 }
10656 dwo_file = (struct dwo_file *) *dwo_file_slot;
10657 }
10658
10659 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10660 dwo_unit->dwo_file = dwo_file;
10661 dwo_unit->signature = signature;
10662 dwo_unit->section =
10663 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10664 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10665 ? &dwp_file->sections.types
10666 : &dwp_file->sections.info,
10667 sections.info_or_types_offset,
10668 sections.info_or_types_size);
10669 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10670
10671 return dwo_unit;
10672 }
10673
10674 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10675 Returns NULL if the signature isn't found. */
10676
10677 static struct dwo_unit *
10678 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10679 ULONGEST signature, int is_debug_types)
10680 {
10681 const struct dwp_hash_table *dwp_htab =
10682 is_debug_types ? dwp_file->tus : dwp_file->cus;
10683 bfd *dbfd = dwp_file->dbfd;
10684 uint32_t mask = dwp_htab->nr_slots - 1;
10685 uint32_t hash = signature & mask;
10686 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10687 unsigned int i;
10688 void **slot;
10689 struct dwo_unit find_dwo_cu;
10690
10691 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10692 find_dwo_cu.signature = signature;
10693 slot = htab_find_slot (is_debug_types
10694 ? dwp_file->loaded_tus
10695 : dwp_file->loaded_cus,
10696 &find_dwo_cu, INSERT);
10697
10698 if (*slot != NULL)
10699 return (struct dwo_unit *) *slot;
10700
10701 /* Use a for loop so that we don't loop forever on bad debug info. */
10702 for (i = 0; i < dwp_htab->nr_slots; ++i)
10703 {
10704 ULONGEST signature_in_table;
10705
10706 signature_in_table =
10707 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10708 if (signature_in_table == signature)
10709 {
10710 uint32_t unit_index =
10711 read_4_bytes (dbfd,
10712 dwp_htab->unit_table + hash * sizeof (uint32_t));
10713
10714 if (dwp_file->version == 1)
10715 {
10716 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10717 comp_dir, signature,
10718 is_debug_types);
10719 }
10720 else
10721 {
10722 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10723 comp_dir, signature,
10724 is_debug_types);
10725 }
10726 return (struct dwo_unit *) *slot;
10727 }
10728 if (signature_in_table == 0)
10729 return NULL;
10730 hash = (hash + hash2) & mask;
10731 }
10732
10733 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10734 " [in module %s]"),
10735 dwp_file->name);
10736 }
10737
10738 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10739 Open the file specified by FILE_NAME and hand it off to BFD for
10740 preliminary analysis. Return a newly initialized bfd *, which
10741 includes a canonicalized copy of FILE_NAME.
10742 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10743 SEARCH_CWD is true if the current directory is to be searched.
10744 It will be searched before debug-file-directory.
10745 If successful, the file is added to the bfd include table of the
10746 objfile's bfd (see gdb_bfd_record_inclusion).
10747 If unable to find/open the file, return NULL.
10748 NOTE: This function is derived from symfile_bfd_open. */
10749
10750 static gdb_bfd_ref_ptr
10751 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10752 {
10753 int desc, flags;
10754 char *absolute_name;
10755 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10756 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10757 to debug_file_directory. */
10758 char *search_path;
10759 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10760
10761 if (search_cwd)
10762 {
10763 if (*debug_file_directory != '\0')
10764 search_path = concat (".", dirname_separator_string,
10765 debug_file_directory, (char *) NULL);
10766 else
10767 search_path = xstrdup (".");
10768 }
10769 else
10770 search_path = xstrdup (debug_file_directory);
10771
10772 flags = OPF_RETURN_REALPATH;
10773 if (is_dwp)
10774 flags |= OPF_SEARCH_IN_PATH;
10775 desc = openp (search_path, flags, file_name,
10776 O_RDONLY | O_BINARY, &absolute_name);
10777 xfree (search_path);
10778 if (desc < 0)
10779 return NULL;
10780
10781 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10782 xfree (absolute_name);
10783 if (sym_bfd == NULL)
10784 return NULL;
10785 bfd_set_cacheable (sym_bfd.get (), 1);
10786
10787 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10788 return NULL;
10789
10790 /* Success. Record the bfd as having been included by the objfile's bfd.
10791 This is important because things like demangled_names_hash lives in the
10792 objfile's per_bfd space and may have references to things like symbol
10793 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10794 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10795
10796 return sym_bfd;
10797 }
10798
10799 /* Try to open DWO file FILE_NAME.
10800 COMP_DIR is the DW_AT_comp_dir attribute.
10801 The result is the bfd handle of the file.
10802 If there is a problem finding or opening the file, return NULL.
10803 Upon success, the canonicalized path of the file is stored in the bfd,
10804 same as symfile_bfd_open. */
10805
10806 static gdb_bfd_ref_ptr
10807 open_dwo_file (const char *file_name, const char *comp_dir)
10808 {
10809 if (IS_ABSOLUTE_PATH (file_name))
10810 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10811
10812 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10813
10814 if (comp_dir != NULL)
10815 {
10816 char *path_to_try = concat (comp_dir, SLASH_STRING,
10817 file_name, (char *) NULL);
10818
10819 /* NOTE: If comp_dir is a relative path, this will also try the
10820 search path, which seems useful. */
10821 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10822 1 /*search_cwd*/));
10823 xfree (path_to_try);
10824 if (abfd != NULL)
10825 return abfd;
10826 }
10827
10828 /* That didn't work, try debug-file-directory, which, despite its name,
10829 is a list of paths. */
10830
10831 if (*debug_file_directory == '\0')
10832 return NULL;
10833
10834 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10835 }
10836
10837 /* This function is mapped across the sections and remembers the offset and
10838 size of each of the DWO debugging sections we are interested in. */
10839
10840 static void
10841 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10842 {
10843 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10844 const struct dwop_section_names *names = &dwop_section_names;
10845
10846 if (section_is_p (sectp->name, &names->abbrev_dwo))
10847 {
10848 dwo_sections->abbrev.s.section = sectp;
10849 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10850 }
10851 else if (section_is_p (sectp->name, &names->info_dwo))
10852 {
10853 dwo_sections->info.s.section = sectp;
10854 dwo_sections->info.size = bfd_get_section_size (sectp);
10855 }
10856 else if (section_is_p (sectp->name, &names->line_dwo))
10857 {
10858 dwo_sections->line.s.section = sectp;
10859 dwo_sections->line.size = bfd_get_section_size (sectp);
10860 }
10861 else if (section_is_p (sectp->name, &names->loc_dwo))
10862 {
10863 dwo_sections->loc.s.section = sectp;
10864 dwo_sections->loc.size = bfd_get_section_size (sectp);
10865 }
10866 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10867 {
10868 dwo_sections->macinfo.s.section = sectp;
10869 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10870 }
10871 else if (section_is_p (sectp->name, &names->macro_dwo))
10872 {
10873 dwo_sections->macro.s.section = sectp;
10874 dwo_sections->macro.size = bfd_get_section_size (sectp);
10875 }
10876 else if (section_is_p (sectp->name, &names->str_dwo))
10877 {
10878 dwo_sections->str.s.section = sectp;
10879 dwo_sections->str.size = bfd_get_section_size (sectp);
10880 }
10881 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10882 {
10883 dwo_sections->str_offsets.s.section = sectp;
10884 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->types_dwo))
10887 {
10888 struct dwarf2_section_info type_section;
10889
10890 memset (&type_section, 0, sizeof (type_section));
10891 type_section.s.section = sectp;
10892 type_section.size = bfd_get_section_size (sectp);
10893 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10894 &type_section);
10895 }
10896 }
10897
10898 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10899 by PER_CU. This is for the non-DWP case.
10900 The result is NULL if DWO_NAME can't be found. */
10901
10902 static struct dwo_file *
10903 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10904 const char *dwo_name, const char *comp_dir)
10905 {
10906 struct objfile *objfile = dwarf2_per_objfile->objfile;
10907 struct dwo_file *dwo_file;
10908 struct cleanup *cleanups;
10909
10910 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10911 if (dbfd == NULL)
10912 {
10913 if (dwarf_read_debug)
10914 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10915 return NULL;
10916 }
10917 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10918 dwo_file->dwo_name = dwo_name;
10919 dwo_file->comp_dir = comp_dir;
10920 dwo_file->dbfd = dbfd.release ();
10921
10922 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10923
10924 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10925 &dwo_file->sections);
10926
10927 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10928
10929 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10930 dwo_file->tus);
10931
10932 discard_cleanups (cleanups);
10933
10934 if (dwarf_read_debug)
10935 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10936
10937 return dwo_file;
10938 }
10939
10940 /* This function is mapped across the sections and remembers the offset and
10941 size of each of the DWP debugging sections common to version 1 and 2 that
10942 we are interested in. */
10943
10944 static void
10945 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10946 void *dwp_file_ptr)
10947 {
10948 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10949 const struct dwop_section_names *names = &dwop_section_names;
10950 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10951
10952 /* Record the ELF section number for later lookup: this is what the
10953 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10954 gdb_assert (elf_section_nr < dwp_file->num_sections);
10955 dwp_file->elf_sections[elf_section_nr] = sectp;
10956
10957 /* Look for specific sections that we need. */
10958 if (section_is_p (sectp->name, &names->str_dwo))
10959 {
10960 dwp_file->sections.str.s.section = sectp;
10961 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10962 }
10963 else if (section_is_p (sectp->name, &names->cu_index))
10964 {
10965 dwp_file->sections.cu_index.s.section = sectp;
10966 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10967 }
10968 else if (section_is_p (sectp->name, &names->tu_index))
10969 {
10970 dwp_file->sections.tu_index.s.section = sectp;
10971 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10972 }
10973 }
10974
10975 /* This function is mapped across the sections and remembers the offset and
10976 size of each of the DWP version 2 debugging sections that we are interested
10977 in. This is split into a separate function because we don't know if we
10978 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10979
10980 static void
10981 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10982 {
10983 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10984 const struct dwop_section_names *names = &dwop_section_names;
10985 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10986
10987 /* Record the ELF section number for later lookup: this is what the
10988 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10989 gdb_assert (elf_section_nr < dwp_file->num_sections);
10990 dwp_file->elf_sections[elf_section_nr] = sectp;
10991
10992 /* Look for specific sections that we need. */
10993 if (section_is_p (sectp->name, &names->abbrev_dwo))
10994 {
10995 dwp_file->sections.abbrev.s.section = sectp;
10996 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10997 }
10998 else if (section_is_p (sectp->name, &names->info_dwo))
10999 {
11000 dwp_file->sections.info.s.section = sectp;
11001 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11002 }
11003 else if (section_is_p (sectp->name, &names->line_dwo))
11004 {
11005 dwp_file->sections.line.s.section = sectp;
11006 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11007 }
11008 else if (section_is_p (sectp->name, &names->loc_dwo))
11009 {
11010 dwp_file->sections.loc.s.section = sectp;
11011 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11012 }
11013 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11014 {
11015 dwp_file->sections.macinfo.s.section = sectp;
11016 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11017 }
11018 else if (section_is_p (sectp->name, &names->macro_dwo))
11019 {
11020 dwp_file->sections.macro.s.section = sectp;
11021 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11022 }
11023 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11024 {
11025 dwp_file->sections.str_offsets.s.section = sectp;
11026 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11027 }
11028 else if (section_is_p (sectp->name, &names->types_dwo))
11029 {
11030 dwp_file->sections.types.s.section = sectp;
11031 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11032 }
11033 }
11034
11035 /* Hash function for dwp_file loaded CUs/TUs. */
11036
11037 static hashval_t
11038 hash_dwp_loaded_cutus (const void *item)
11039 {
11040 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11041
11042 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11043 return dwo_unit->signature;
11044 }
11045
11046 /* Equality function for dwp_file loaded CUs/TUs. */
11047
11048 static int
11049 eq_dwp_loaded_cutus (const void *a, const void *b)
11050 {
11051 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11052 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11053
11054 return dua->signature == dub->signature;
11055 }
11056
11057 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11058
11059 static htab_t
11060 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11061 {
11062 return htab_create_alloc_ex (3,
11063 hash_dwp_loaded_cutus,
11064 eq_dwp_loaded_cutus,
11065 NULL,
11066 &objfile->objfile_obstack,
11067 hashtab_obstack_allocate,
11068 dummy_obstack_deallocate);
11069 }
11070
11071 /* Try to open DWP file FILE_NAME.
11072 The result is the bfd handle of the file.
11073 If there is a problem finding or opening the file, return NULL.
11074 Upon success, the canonicalized path of the file is stored in the bfd,
11075 same as symfile_bfd_open. */
11076
11077 static gdb_bfd_ref_ptr
11078 open_dwp_file (const char *file_name)
11079 {
11080 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11081 1 /*search_cwd*/));
11082 if (abfd != NULL)
11083 return abfd;
11084
11085 /* Work around upstream bug 15652.
11086 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11087 [Whether that's a "bug" is debatable, but it is getting in our way.]
11088 We have no real idea where the dwp file is, because gdb's realpath-ing
11089 of the executable's path may have discarded the needed info.
11090 [IWBN if the dwp file name was recorded in the executable, akin to
11091 .gnu_debuglink, but that doesn't exist yet.]
11092 Strip the directory from FILE_NAME and search again. */
11093 if (*debug_file_directory != '\0')
11094 {
11095 /* Don't implicitly search the current directory here.
11096 If the user wants to search "." to handle this case,
11097 it must be added to debug-file-directory. */
11098 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11099 0 /*search_cwd*/);
11100 }
11101
11102 return NULL;
11103 }
11104
11105 /* Initialize the use of the DWP file for the current objfile.
11106 By convention the name of the DWP file is ${objfile}.dwp.
11107 The result is NULL if it can't be found. */
11108
11109 static struct dwp_file *
11110 open_and_init_dwp_file (void)
11111 {
11112 struct objfile *objfile = dwarf2_per_objfile->objfile;
11113 struct dwp_file *dwp_file;
11114
11115 /* Try to find first .dwp for the binary file before any symbolic links
11116 resolving. */
11117
11118 /* If the objfile is a debug file, find the name of the real binary
11119 file and get the name of dwp file from there. */
11120 std::string dwp_name;
11121 if (objfile->separate_debug_objfile_backlink != NULL)
11122 {
11123 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11124 const char *backlink_basename = lbasename (backlink->original_name);
11125
11126 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11127 }
11128 else
11129 dwp_name = objfile->original_name;
11130
11131 dwp_name += ".dwp";
11132
11133 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11134 if (dbfd == NULL
11135 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11136 {
11137 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11138 dwp_name = objfile_name (objfile);
11139 dwp_name += ".dwp";
11140 dbfd = open_dwp_file (dwp_name.c_str ());
11141 }
11142
11143 if (dbfd == NULL)
11144 {
11145 if (dwarf_read_debug)
11146 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11147 return NULL;
11148 }
11149 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11150 dwp_file->name = bfd_get_filename (dbfd.get ());
11151 dwp_file->dbfd = dbfd.release ();
11152
11153 /* +1: section 0 is unused */
11154 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11155 dwp_file->elf_sections =
11156 OBSTACK_CALLOC (&objfile->objfile_obstack,
11157 dwp_file->num_sections, asection *);
11158
11159 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11160 dwp_file);
11161
11162 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11163
11164 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11165
11166 /* The DWP file version is stored in the hash table. Oh well. */
11167 if (dwp_file->cus && dwp_file->tus
11168 && dwp_file->cus->version != dwp_file->tus->version)
11169 {
11170 /* Technically speaking, we should try to limp along, but this is
11171 pretty bizarre. We use pulongest here because that's the established
11172 portability solution (e.g, we cannot use %u for uint32_t). */
11173 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11174 " TU version %s [in DWP file %s]"),
11175 pulongest (dwp_file->cus->version),
11176 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11177 }
11178
11179 if (dwp_file->cus)
11180 dwp_file->version = dwp_file->cus->version;
11181 else if (dwp_file->tus)
11182 dwp_file->version = dwp_file->tus->version;
11183 else
11184 dwp_file->version = 2;
11185
11186 if (dwp_file->version == 2)
11187 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11188 dwp_file);
11189
11190 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11191 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11192
11193 if (dwarf_read_debug)
11194 {
11195 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11196 fprintf_unfiltered (gdb_stdlog,
11197 " %s CUs, %s TUs\n",
11198 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11199 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11200 }
11201
11202 return dwp_file;
11203 }
11204
11205 /* Wrapper around open_and_init_dwp_file, only open it once. */
11206
11207 static struct dwp_file *
11208 get_dwp_file (void)
11209 {
11210 if (! dwarf2_per_objfile->dwp_checked)
11211 {
11212 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11213 dwarf2_per_objfile->dwp_checked = 1;
11214 }
11215 return dwarf2_per_objfile->dwp_file;
11216 }
11217
11218 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11219 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11220 or in the DWP file for the objfile, referenced by THIS_UNIT.
11221 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11222 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11223
11224 This is called, for example, when wanting to read a variable with a
11225 complex location. Therefore we don't want to do file i/o for every call.
11226 Therefore we don't want to look for a DWO file on every call.
11227 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11228 then we check if we've already seen DWO_NAME, and only THEN do we check
11229 for a DWO file.
11230
11231 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11232 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11233
11234 static struct dwo_unit *
11235 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11236 const char *dwo_name, const char *comp_dir,
11237 ULONGEST signature, int is_debug_types)
11238 {
11239 struct objfile *objfile = dwarf2_per_objfile->objfile;
11240 const char *kind = is_debug_types ? "TU" : "CU";
11241 void **dwo_file_slot;
11242 struct dwo_file *dwo_file;
11243 struct dwp_file *dwp_file;
11244
11245 /* First see if there's a DWP file.
11246 If we have a DWP file but didn't find the DWO inside it, don't
11247 look for the original DWO file. It makes gdb behave differently
11248 depending on whether one is debugging in the build tree. */
11249
11250 dwp_file = get_dwp_file ();
11251 if (dwp_file != NULL)
11252 {
11253 const struct dwp_hash_table *dwp_htab =
11254 is_debug_types ? dwp_file->tus : dwp_file->cus;
11255
11256 if (dwp_htab != NULL)
11257 {
11258 struct dwo_unit *dwo_cutu =
11259 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11260 signature, is_debug_types);
11261
11262 if (dwo_cutu != NULL)
11263 {
11264 if (dwarf_read_debug)
11265 {
11266 fprintf_unfiltered (gdb_stdlog,
11267 "Virtual DWO %s %s found: @%s\n",
11268 kind, hex_string (signature),
11269 host_address_to_string (dwo_cutu));
11270 }
11271 return dwo_cutu;
11272 }
11273 }
11274 }
11275 else
11276 {
11277 /* No DWP file, look for the DWO file. */
11278
11279 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11280 if (*dwo_file_slot == NULL)
11281 {
11282 /* Read in the file and build a table of the CUs/TUs it contains. */
11283 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11284 }
11285 /* NOTE: This will be NULL if unable to open the file. */
11286 dwo_file = (struct dwo_file *) *dwo_file_slot;
11287
11288 if (dwo_file != NULL)
11289 {
11290 struct dwo_unit *dwo_cutu = NULL;
11291
11292 if (is_debug_types && dwo_file->tus)
11293 {
11294 struct dwo_unit find_dwo_cutu;
11295
11296 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11297 find_dwo_cutu.signature = signature;
11298 dwo_cutu
11299 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11300 }
11301 else if (!is_debug_types && dwo_file->cus)
11302 {
11303 struct dwo_unit find_dwo_cutu;
11304
11305 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11306 find_dwo_cutu.signature = signature;
11307 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11308 &find_dwo_cutu);
11309 }
11310
11311 if (dwo_cutu != NULL)
11312 {
11313 if (dwarf_read_debug)
11314 {
11315 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11316 kind, dwo_name, hex_string (signature),
11317 host_address_to_string (dwo_cutu));
11318 }
11319 return dwo_cutu;
11320 }
11321 }
11322 }
11323
11324 /* We didn't find it. This could mean a dwo_id mismatch, or
11325 someone deleted the DWO/DWP file, or the search path isn't set up
11326 correctly to find the file. */
11327
11328 if (dwarf_read_debug)
11329 {
11330 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11331 kind, dwo_name, hex_string (signature));
11332 }
11333
11334 /* This is a warning and not a complaint because it can be caused by
11335 pilot error (e.g., user accidentally deleting the DWO). */
11336 {
11337 /* Print the name of the DWP file if we looked there, helps the user
11338 better diagnose the problem. */
11339 std::string dwp_text;
11340
11341 if (dwp_file != NULL)
11342 dwp_text = string_printf (" [in DWP file %s]",
11343 lbasename (dwp_file->name));
11344
11345 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11346 " [in module %s]"),
11347 kind, dwo_name, hex_string (signature),
11348 dwp_text.c_str (),
11349 this_unit->is_debug_types ? "TU" : "CU",
11350 to_underlying (this_unit->sect_off), objfile_name (objfile));
11351 }
11352 return NULL;
11353 }
11354
11355 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11356 See lookup_dwo_cutu_unit for details. */
11357
11358 static struct dwo_unit *
11359 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11360 const char *dwo_name, const char *comp_dir,
11361 ULONGEST signature)
11362 {
11363 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11364 }
11365
11366 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11367 See lookup_dwo_cutu_unit for details. */
11368
11369 static struct dwo_unit *
11370 lookup_dwo_type_unit (struct signatured_type *this_tu,
11371 const char *dwo_name, const char *comp_dir)
11372 {
11373 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11374 }
11375
11376 /* Traversal function for queue_and_load_all_dwo_tus. */
11377
11378 static int
11379 queue_and_load_dwo_tu (void **slot, void *info)
11380 {
11381 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11382 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11383 ULONGEST signature = dwo_unit->signature;
11384 struct signatured_type *sig_type =
11385 lookup_dwo_signatured_type (per_cu->cu, signature);
11386
11387 if (sig_type != NULL)
11388 {
11389 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11390
11391 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11392 a real dependency of PER_CU on SIG_TYPE. That is detected later
11393 while processing PER_CU. */
11394 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11395 load_full_type_unit (sig_cu);
11396 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11397 }
11398
11399 return 1;
11400 }
11401
11402 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11403 The DWO may have the only definition of the type, though it may not be
11404 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11405 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11406
11407 static void
11408 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11409 {
11410 struct dwo_unit *dwo_unit;
11411 struct dwo_file *dwo_file;
11412
11413 gdb_assert (!per_cu->is_debug_types);
11414 gdb_assert (get_dwp_file () == NULL);
11415 gdb_assert (per_cu->cu != NULL);
11416
11417 dwo_unit = per_cu->cu->dwo_unit;
11418 gdb_assert (dwo_unit != NULL);
11419
11420 dwo_file = dwo_unit->dwo_file;
11421 if (dwo_file->tus != NULL)
11422 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11423 }
11424
11425 /* Free all resources associated with DWO_FILE.
11426 Close the DWO file and munmap the sections.
11427 All memory should be on the objfile obstack. */
11428
11429 static void
11430 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11431 {
11432
11433 /* Note: dbfd is NULL for virtual DWO files. */
11434 gdb_bfd_unref (dwo_file->dbfd);
11435
11436 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11437 }
11438
11439 /* Wrapper for free_dwo_file for use in cleanups. */
11440
11441 static void
11442 free_dwo_file_cleanup (void *arg)
11443 {
11444 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11445 struct objfile *objfile = dwarf2_per_objfile->objfile;
11446
11447 free_dwo_file (dwo_file, objfile);
11448 }
11449
11450 /* Traversal function for free_dwo_files. */
11451
11452 static int
11453 free_dwo_file_from_slot (void **slot, void *info)
11454 {
11455 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11456 struct objfile *objfile = (struct objfile *) info;
11457
11458 free_dwo_file (dwo_file, objfile);
11459
11460 return 1;
11461 }
11462
11463 /* Free all resources associated with DWO_FILES. */
11464
11465 static void
11466 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11467 {
11468 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11469 }
11470 \f
11471 /* Read in various DIEs. */
11472
11473 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11474 Inherit only the children of the DW_AT_abstract_origin DIE not being
11475 already referenced by DW_AT_abstract_origin from the children of the
11476 current DIE. */
11477
11478 static void
11479 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11480 {
11481 struct die_info *child_die;
11482 sect_offset *offsetp;
11483 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11484 struct die_info *origin_die;
11485 /* Iterator of the ORIGIN_DIE children. */
11486 struct die_info *origin_child_die;
11487 struct attribute *attr;
11488 struct dwarf2_cu *origin_cu;
11489 struct pending **origin_previous_list_in_scope;
11490
11491 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11492 if (!attr)
11493 return;
11494
11495 /* Note that following die references may follow to a die in a
11496 different cu. */
11497
11498 origin_cu = cu;
11499 origin_die = follow_die_ref (die, attr, &origin_cu);
11500
11501 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11502 symbols in. */
11503 origin_previous_list_in_scope = origin_cu->list_in_scope;
11504 origin_cu->list_in_scope = cu->list_in_scope;
11505
11506 if (die->tag != origin_die->tag
11507 && !(die->tag == DW_TAG_inlined_subroutine
11508 && origin_die->tag == DW_TAG_subprogram))
11509 complaint (&symfile_complaints,
11510 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11511 to_underlying (die->sect_off),
11512 to_underlying (origin_die->sect_off));
11513
11514 std::vector<sect_offset> offsets;
11515
11516 for (child_die = die->child;
11517 child_die && child_die->tag;
11518 child_die = sibling_die (child_die))
11519 {
11520 struct die_info *child_origin_die;
11521 struct dwarf2_cu *child_origin_cu;
11522
11523 /* We are trying to process concrete instance entries:
11524 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11525 it's not relevant to our analysis here. i.e. detecting DIEs that are
11526 present in the abstract instance but not referenced in the concrete
11527 one. */
11528 if (child_die->tag == DW_TAG_call_site
11529 || child_die->tag == DW_TAG_GNU_call_site)
11530 continue;
11531
11532 /* For each CHILD_DIE, find the corresponding child of
11533 ORIGIN_DIE. If there is more than one layer of
11534 DW_AT_abstract_origin, follow them all; there shouldn't be,
11535 but GCC versions at least through 4.4 generate this (GCC PR
11536 40573). */
11537 child_origin_die = child_die;
11538 child_origin_cu = cu;
11539 while (1)
11540 {
11541 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11542 child_origin_cu);
11543 if (attr == NULL)
11544 break;
11545 child_origin_die = follow_die_ref (child_origin_die, attr,
11546 &child_origin_cu);
11547 }
11548
11549 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11550 counterpart may exist. */
11551 if (child_origin_die != child_die)
11552 {
11553 if (child_die->tag != child_origin_die->tag
11554 && !(child_die->tag == DW_TAG_inlined_subroutine
11555 && child_origin_die->tag == DW_TAG_subprogram))
11556 complaint (&symfile_complaints,
11557 _("Child DIE 0x%x and its abstract origin 0x%x have "
11558 "different tags"),
11559 to_underlying (child_die->sect_off),
11560 to_underlying (child_origin_die->sect_off));
11561 if (child_origin_die->parent != origin_die)
11562 complaint (&symfile_complaints,
11563 _("Child DIE 0x%x and its abstract origin 0x%x have "
11564 "different parents"),
11565 to_underlying (child_die->sect_off),
11566 to_underlying (child_origin_die->sect_off));
11567 else
11568 offsets.push_back (child_origin_die->sect_off);
11569 }
11570 }
11571 std::sort (offsets.begin (), offsets.end ());
11572 sect_offset *offsets_end = offsets.data () + offsets.size ();
11573 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
11574 if (offsetp[-1] == *offsetp)
11575 complaint (&symfile_complaints,
11576 _("Multiple children of DIE 0x%x refer "
11577 "to DIE 0x%x as their abstract origin"),
11578 to_underlying (die->sect_off), to_underlying (*offsetp));
11579
11580 offsetp = offsets.data ();
11581 origin_child_die = origin_die->child;
11582 while (origin_child_die && origin_child_die->tag)
11583 {
11584 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11585 while (offsetp < offsets_end
11586 && *offsetp < origin_child_die->sect_off)
11587 offsetp++;
11588 if (offsetp >= offsets_end
11589 || *offsetp > origin_child_die->sect_off)
11590 {
11591 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11592 Check whether we're already processing ORIGIN_CHILD_DIE.
11593 This can happen with mutually referenced abstract_origins.
11594 PR 16581. */
11595 if (!origin_child_die->in_process)
11596 process_die (origin_child_die, origin_cu);
11597 }
11598 origin_child_die = sibling_die (origin_child_die);
11599 }
11600 origin_cu->list_in_scope = origin_previous_list_in_scope;
11601 }
11602
11603 static void
11604 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11605 {
11606 struct objfile *objfile = cu->objfile;
11607 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11608 struct context_stack *newobj;
11609 CORE_ADDR lowpc;
11610 CORE_ADDR highpc;
11611 struct die_info *child_die;
11612 struct attribute *attr, *call_line, *call_file;
11613 const char *name;
11614 CORE_ADDR baseaddr;
11615 struct block *block;
11616 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11617 VEC (symbolp) *template_args = NULL;
11618 struct template_symbol *templ_func = NULL;
11619
11620 if (inlined_func)
11621 {
11622 /* If we do not have call site information, we can't show the
11623 caller of this inlined function. That's too confusing, so
11624 only use the scope for local variables. */
11625 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11626 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11627 if (call_line == NULL || call_file == NULL)
11628 {
11629 read_lexical_block_scope (die, cu);
11630 return;
11631 }
11632 }
11633
11634 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11635
11636 name = dwarf2_name (die, cu);
11637
11638 /* Ignore functions with missing or empty names. These are actually
11639 illegal according to the DWARF standard. */
11640 if (name == NULL)
11641 {
11642 complaint (&symfile_complaints,
11643 _("missing name for subprogram DIE at %d"),
11644 to_underlying (die->sect_off));
11645 return;
11646 }
11647
11648 /* Ignore functions with missing or invalid low and high pc attributes. */
11649 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11650 <= PC_BOUNDS_INVALID)
11651 {
11652 attr = dwarf2_attr (die, DW_AT_external, cu);
11653 if (!attr || !DW_UNSND (attr))
11654 complaint (&symfile_complaints,
11655 _("cannot get low and high bounds "
11656 "for subprogram DIE at %d"),
11657 to_underlying (die->sect_off));
11658 return;
11659 }
11660
11661 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11662 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11663
11664 /* If we have any template arguments, then we must allocate a
11665 different sort of symbol. */
11666 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11667 {
11668 if (child_die->tag == DW_TAG_template_type_param
11669 || child_die->tag == DW_TAG_template_value_param)
11670 {
11671 templ_func = allocate_template_symbol (objfile);
11672 templ_func->base.is_cplus_template_function = 1;
11673 break;
11674 }
11675 }
11676
11677 newobj = push_context (0, lowpc);
11678 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11679 (struct symbol *) templ_func);
11680
11681 /* If there is a location expression for DW_AT_frame_base, record
11682 it. */
11683 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11684 if (attr)
11685 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11686
11687 /* If there is a location for the static link, record it. */
11688 newobj->static_link = NULL;
11689 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11690 if (attr)
11691 {
11692 newobj->static_link
11693 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11694 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11695 }
11696
11697 cu->list_in_scope = &local_symbols;
11698
11699 if (die->child != NULL)
11700 {
11701 child_die = die->child;
11702 while (child_die && child_die->tag)
11703 {
11704 if (child_die->tag == DW_TAG_template_type_param
11705 || child_die->tag == DW_TAG_template_value_param)
11706 {
11707 struct symbol *arg = new_symbol (child_die, NULL, cu);
11708
11709 if (arg != NULL)
11710 VEC_safe_push (symbolp, template_args, arg);
11711 }
11712 else
11713 process_die (child_die, cu);
11714 child_die = sibling_die (child_die);
11715 }
11716 }
11717
11718 inherit_abstract_dies (die, cu);
11719
11720 /* If we have a DW_AT_specification, we might need to import using
11721 directives from the context of the specification DIE. See the
11722 comment in determine_prefix. */
11723 if (cu->language == language_cplus
11724 && dwarf2_attr (die, DW_AT_specification, cu))
11725 {
11726 struct dwarf2_cu *spec_cu = cu;
11727 struct die_info *spec_die = die_specification (die, &spec_cu);
11728
11729 while (spec_die)
11730 {
11731 child_die = spec_die->child;
11732 while (child_die && child_die->tag)
11733 {
11734 if (child_die->tag == DW_TAG_imported_module)
11735 process_die (child_die, spec_cu);
11736 child_die = sibling_die (child_die);
11737 }
11738
11739 /* In some cases, GCC generates specification DIEs that
11740 themselves contain DW_AT_specification attributes. */
11741 spec_die = die_specification (spec_die, &spec_cu);
11742 }
11743 }
11744
11745 newobj = pop_context ();
11746 /* Make a block for the local symbols within. */
11747 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11748 newobj->static_link, lowpc, highpc);
11749
11750 /* For C++, set the block's scope. */
11751 if ((cu->language == language_cplus
11752 || cu->language == language_fortran
11753 || cu->language == language_d
11754 || cu->language == language_rust)
11755 && cu->processing_has_namespace_info)
11756 block_set_scope (block, determine_prefix (die, cu),
11757 &objfile->objfile_obstack);
11758
11759 /* If we have address ranges, record them. */
11760 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11761
11762 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11763
11764 /* Attach template arguments to function. */
11765 if (! VEC_empty (symbolp, template_args))
11766 {
11767 gdb_assert (templ_func != NULL);
11768
11769 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11770 templ_func->template_arguments
11771 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11772 templ_func->n_template_arguments);
11773 memcpy (templ_func->template_arguments,
11774 VEC_address (symbolp, template_args),
11775 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11776 VEC_free (symbolp, template_args);
11777 }
11778
11779 /* In C++, we can have functions nested inside functions (e.g., when
11780 a function declares a class that has methods). This means that
11781 when we finish processing a function scope, we may need to go
11782 back to building a containing block's symbol lists. */
11783 local_symbols = newobj->locals;
11784 local_using_directives = newobj->local_using_directives;
11785
11786 /* If we've finished processing a top-level function, subsequent
11787 symbols go in the file symbol list. */
11788 if (outermost_context_p ())
11789 cu->list_in_scope = &file_symbols;
11790 }
11791
11792 /* Process all the DIES contained within a lexical block scope. Start
11793 a new scope, process the dies, and then close the scope. */
11794
11795 static void
11796 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11797 {
11798 struct objfile *objfile = cu->objfile;
11799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11800 struct context_stack *newobj;
11801 CORE_ADDR lowpc, highpc;
11802 struct die_info *child_die;
11803 CORE_ADDR baseaddr;
11804
11805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11806
11807 /* Ignore blocks with missing or invalid low and high pc attributes. */
11808 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11809 as multiple lexical blocks? Handling children in a sane way would
11810 be nasty. Might be easier to properly extend generic blocks to
11811 describe ranges. */
11812 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11813 {
11814 case PC_BOUNDS_NOT_PRESENT:
11815 /* DW_TAG_lexical_block has no attributes, process its children as if
11816 there was no wrapping by that DW_TAG_lexical_block.
11817 GCC does no longer produces such DWARF since GCC r224161. */
11818 for (child_die = die->child;
11819 child_die != NULL && child_die->tag;
11820 child_die = sibling_die (child_die))
11821 process_die (child_die, cu);
11822 return;
11823 case PC_BOUNDS_INVALID:
11824 return;
11825 }
11826 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11827 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11828
11829 push_context (0, lowpc);
11830 if (die->child != NULL)
11831 {
11832 child_die = die->child;
11833 while (child_die && child_die->tag)
11834 {
11835 process_die (child_die, cu);
11836 child_die = sibling_die (child_die);
11837 }
11838 }
11839 inherit_abstract_dies (die, cu);
11840 newobj = pop_context ();
11841
11842 if (local_symbols != NULL || local_using_directives != NULL)
11843 {
11844 struct block *block
11845 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11846 newobj->start_addr, highpc);
11847
11848 /* Note that recording ranges after traversing children, as we
11849 do here, means that recording a parent's ranges entails
11850 walking across all its children's ranges as they appear in
11851 the address map, which is quadratic behavior.
11852
11853 It would be nicer to record the parent's ranges before
11854 traversing its children, simply overriding whatever you find
11855 there. But since we don't even decide whether to create a
11856 block until after we've traversed its children, that's hard
11857 to do. */
11858 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11859 }
11860 local_symbols = newobj->locals;
11861 local_using_directives = newobj->local_using_directives;
11862 }
11863
11864 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11865
11866 static void
11867 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11868 {
11869 struct objfile *objfile = cu->objfile;
11870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11871 CORE_ADDR pc, baseaddr;
11872 struct attribute *attr;
11873 struct call_site *call_site, call_site_local;
11874 void **slot;
11875 int nparams;
11876 struct die_info *child_die;
11877
11878 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11879
11880 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11881 if (attr == NULL)
11882 {
11883 /* This was a pre-DWARF-5 GNU extension alias
11884 for DW_AT_call_return_pc. */
11885 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11886 }
11887 if (!attr)
11888 {
11889 complaint (&symfile_complaints,
11890 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11891 "DIE 0x%x [in module %s]"),
11892 to_underlying (die->sect_off), objfile_name (objfile));
11893 return;
11894 }
11895 pc = attr_value_as_address (attr) + baseaddr;
11896 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11897
11898 if (cu->call_site_htab == NULL)
11899 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11900 NULL, &objfile->objfile_obstack,
11901 hashtab_obstack_allocate, NULL);
11902 call_site_local.pc = pc;
11903 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11904 if (*slot != NULL)
11905 {
11906 complaint (&symfile_complaints,
11907 _("Duplicate PC %s for DW_TAG_call_site "
11908 "DIE 0x%x [in module %s]"),
11909 paddress (gdbarch, pc), to_underlying (die->sect_off),
11910 objfile_name (objfile));
11911 return;
11912 }
11913
11914 /* Count parameters at the caller. */
11915
11916 nparams = 0;
11917 for (child_die = die->child; child_die && child_die->tag;
11918 child_die = sibling_die (child_die))
11919 {
11920 if (child_die->tag != DW_TAG_call_site_parameter
11921 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11922 {
11923 complaint (&symfile_complaints,
11924 _("Tag %d is not DW_TAG_call_site_parameter in "
11925 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11926 child_die->tag, to_underlying (child_die->sect_off),
11927 objfile_name (objfile));
11928 continue;
11929 }
11930
11931 nparams++;
11932 }
11933
11934 call_site
11935 = ((struct call_site *)
11936 obstack_alloc (&objfile->objfile_obstack,
11937 sizeof (*call_site)
11938 + (sizeof (*call_site->parameter) * (nparams - 1))));
11939 *slot = call_site;
11940 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11941 call_site->pc = pc;
11942
11943 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11944 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11945 {
11946 struct die_info *func_die;
11947
11948 /* Skip also over DW_TAG_inlined_subroutine. */
11949 for (func_die = die->parent;
11950 func_die && func_die->tag != DW_TAG_subprogram
11951 && func_die->tag != DW_TAG_subroutine_type;
11952 func_die = func_die->parent);
11953
11954 /* DW_AT_call_all_calls is a superset
11955 of DW_AT_call_all_tail_calls. */
11956 if (func_die
11957 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11958 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11959 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11960 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11961 {
11962 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11963 not complete. But keep CALL_SITE for look ups via call_site_htab,
11964 both the initial caller containing the real return address PC and
11965 the final callee containing the current PC of a chain of tail
11966 calls do not need to have the tail call list complete. But any
11967 function candidate for a virtual tail call frame searched via
11968 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11969 determined unambiguously. */
11970 }
11971 else
11972 {
11973 struct type *func_type = NULL;
11974
11975 if (func_die)
11976 func_type = get_die_type (func_die, cu);
11977 if (func_type != NULL)
11978 {
11979 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11980
11981 /* Enlist this call site to the function. */
11982 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11983 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11984 }
11985 else
11986 complaint (&symfile_complaints,
11987 _("Cannot find function owning DW_TAG_call_site "
11988 "DIE 0x%x [in module %s]"),
11989 to_underlying (die->sect_off), objfile_name (objfile));
11990 }
11991 }
11992
11993 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11994 if (attr == NULL)
11995 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11996 if (attr == NULL)
11997 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11998 if (attr == NULL)
11999 {
12000 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12001 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12002 }
12003 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12004 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12005 /* Keep NULL DWARF_BLOCK. */;
12006 else if (attr_form_is_block (attr))
12007 {
12008 struct dwarf2_locexpr_baton *dlbaton;
12009
12010 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12011 dlbaton->data = DW_BLOCK (attr)->data;
12012 dlbaton->size = DW_BLOCK (attr)->size;
12013 dlbaton->per_cu = cu->per_cu;
12014
12015 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12016 }
12017 else if (attr_form_is_ref (attr))
12018 {
12019 struct dwarf2_cu *target_cu = cu;
12020 struct die_info *target_die;
12021
12022 target_die = follow_die_ref (die, attr, &target_cu);
12023 gdb_assert (target_cu->objfile == objfile);
12024 if (die_is_declaration (target_die, target_cu))
12025 {
12026 const char *target_physname;
12027
12028 /* Prefer the mangled name; otherwise compute the demangled one. */
12029 target_physname = dw2_linkage_name (target_die, target_cu);
12030 if (target_physname == NULL)
12031 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12032 if (target_physname == NULL)
12033 complaint (&symfile_complaints,
12034 _("DW_AT_call_target target DIE has invalid "
12035 "physname, for referencing DIE 0x%x [in module %s]"),
12036 to_underlying (die->sect_off), objfile_name (objfile));
12037 else
12038 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12039 }
12040 else
12041 {
12042 CORE_ADDR lowpc;
12043
12044 /* DW_AT_entry_pc should be preferred. */
12045 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12046 <= PC_BOUNDS_INVALID)
12047 complaint (&symfile_complaints,
12048 _("DW_AT_call_target target DIE has invalid "
12049 "low pc, for referencing DIE 0x%x [in module %s]"),
12050 to_underlying (die->sect_off), objfile_name (objfile));
12051 else
12052 {
12053 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12054 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12055 }
12056 }
12057 }
12058 else
12059 complaint (&symfile_complaints,
12060 _("DW_TAG_call_site DW_AT_call_target is neither "
12061 "block nor reference, for DIE 0x%x [in module %s]"),
12062 to_underlying (die->sect_off), objfile_name (objfile));
12063
12064 call_site->per_cu = cu->per_cu;
12065
12066 for (child_die = die->child;
12067 child_die && child_die->tag;
12068 child_die = sibling_die (child_die))
12069 {
12070 struct call_site_parameter *parameter;
12071 struct attribute *loc, *origin;
12072
12073 if (child_die->tag != DW_TAG_call_site_parameter
12074 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12075 {
12076 /* Already printed the complaint above. */
12077 continue;
12078 }
12079
12080 gdb_assert (call_site->parameter_count < nparams);
12081 parameter = &call_site->parameter[call_site->parameter_count];
12082
12083 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12084 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12085 register is contained in DW_AT_call_value. */
12086
12087 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12088 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12089 if (origin == NULL)
12090 {
12091 /* This was a pre-DWARF-5 GNU extension alias
12092 for DW_AT_call_parameter. */
12093 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12094 }
12095 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12096 {
12097 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12098
12099 sect_offset sect_off
12100 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12101 if (!offset_in_cu_p (&cu->header, sect_off))
12102 {
12103 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12104 binding can be done only inside one CU. Such referenced DIE
12105 therefore cannot be even moved to DW_TAG_partial_unit. */
12106 complaint (&symfile_complaints,
12107 _("DW_AT_call_parameter offset is not in CU for "
12108 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12109 to_underlying (child_die->sect_off),
12110 objfile_name (objfile));
12111 continue;
12112 }
12113 parameter->u.param_cu_off
12114 = (cu_offset) (sect_off - cu->header.sect_off);
12115 }
12116 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12117 {
12118 complaint (&symfile_complaints,
12119 _("No DW_FORM_block* DW_AT_location for "
12120 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12121 to_underlying (child_die->sect_off), objfile_name (objfile));
12122 continue;
12123 }
12124 else
12125 {
12126 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12127 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12128 if (parameter->u.dwarf_reg != -1)
12129 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12130 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12131 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12132 &parameter->u.fb_offset))
12133 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12134 else
12135 {
12136 complaint (&symfile_complaints,
12137 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12138 "for DW_FORM_block* DW_AT_location is supported for "
12139 "DW_TAG_call_site child DIE 0x%x "
12140 "[in module %s]"),
12141 to_underlying (child_die->sect_off),
12142 objfile_name (objfile));
12143 continue;
12144 }
12145 }
12146
12147 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12148 if (attr == NULL)
12149 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12150 if (!attr_form_is_block (attr))
12151 {
12152 complaint (&symfile_complaints,
12153 _("No DW_FORM_block* DW_AT_call_value for "
12154 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12155 to_underlying (child_die->sect_off),
12156 objfile_name (objfile));
12157 continue;
12158 }
12159 parameter->value = DW_BLOCK (attr)->data;
12160 parameter->value_size = DW_BLOCK (attr)->size;
12161
12162 /* Parameters are not pre-cleared by memset above. */
12163 parameter->data_value = NULL;
12164 parameter->data_value_size = 0;
12165 call_site->parameter_count++;
12166
12167 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12168 if (attr == NULL)
12169 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12170 if (attr)
12171 {
12172 if (!attr_form_is_block (attr))
12173 complaint (&symfile_complaints,
12174 _("No DW_FORM_block* DW_AT_call_data_value for "
12175 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12176 to_underlying (child_die->sect_off),
12177 objfile_name (objfile));
12178 else
12179 {
12180 parameter->data_value = DW_BLOCK (attr)->data;
12181 parameter->data_value_size = DW_BLOCK (attr)->size;
12182 }
12183 }
12184 }
12185 }
12186
12187 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12188 reading .debug_rnglists.
12189 Callback's type should be:
12190 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12191 Return true if the attributes are present and valid, otherwise,
12192 return false. */
12193
12194 template <typename Callback>
12195 static bool
12196 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12197 Callback &&callback)
12198 {
12199 struct objfile *objfile = cu->objfile;
12200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12201 struct comp_unit_head *cu_header = &cu->header;
12202 bfd *obfd = objfile->obfd;
12203 unsigned int addr_size = cu_header->addr_size;
12204 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12205 /* Base address selection entry. */
12206 CORE_ADDR base;
12207 int found_base;
12208 unsigned int dummy;
12209 const gdb_byte *buffer;
12210 CORE_ADDR low = 0;
12211 CORE_ADDR high = 0;
12212 CORE_ADDR baseaddr;
12213 bool overflow = false;
12214
12215 found_base = cu->base_known;
12216 base = cu->base_address;
12217
12218 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12219 if (offset >= dwarf2_per_objfile->rnglists.size)
12220 {
12221 complaint (&symfile_complaints,
12222 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12223 offset);
12224 return false;
12225 }
12226 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12227
12228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12229
12230 while (1)
12231 {
12232 /* Initialize it due to a false compiler warning. */
12233 CORE_ADDR range_beginning = 0, range_end = 0;
12234 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12235 + dwarf2_per_objfile->rnglists.size);
12236 unsigned int bytes_read;
12237
12238 if (buffer == buf_end)
12239 {
12240 overflow = true;
12241 break;
12242 }
12243 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12244 switch (rlet)
12245 {
12246 case DW_RLE_end_of_list:
12247 break;
12248 case DW_RLE_base_address:
12249 if (buffer + cu->header.addr_size > buf_end)
12250 {
12251 overflow = true;
12252 break;
12253 }
12254 base = read_address (obfd, buffer, cu, &bytes_read);
12255 found_base = 1;
12256 buffer += bytes_read;
12257 break;
12258 case DW_RLE_start_length:
12259 if (buffer + cu->header.addr_size > buf_end)
12260 {
12261 overflow = true;
12262 break;
12263 }
12264 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12265 buffer += bytes_read;
12266 range_end = (range_beginning
12267 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12268 buffer += bytes_read;
12269 if (buffer > buf_end)
12270 {
12271 overflow = true;
12272 break;
12273 }
12274 break;
12275 case DW_RLE_offset_pair:
12276 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12277 buffer += bytes_read;
12278 if (buffer > buf_end)
12279 {
12280 overflow = true;
12281 break;
12282 }
12283 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12284 buffer += bytes_read;
12285 if (buffer > buf_end)
12286 {
12287 overflow = true;
12288 break;
12289 }
12290 break;
12291 case DW_RLE_start_end:
12292 if (buffer + 2 * cu->header.addr_size > buf_end)
12293 {
12294 overflow = true;
12295 break;
12296 }
12297 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12298 buffer += bytes_read;
12299 range_end = read_address (obfd, buffer, cu, &bytes_read);
12300 buffer += bytes_read;
12301 break;
12302 default:
12303 complaint (&symfile_complaints,
12304 _("Invalid .debug_rnglists data (no base address)"));
12305 return false;
12306 }
12307 if (rlet == DW_RLE_end_of_list || overflow)
12308 break;
12309 if (rlet == DW_RLE_base_address)
12310 continue;
12311
12312 if (!found_base)
12313 {
12314 /* We have no valid base address for the ranges
12315 data. */
12316 complaint (&symfile_complaints,
12317 _("Invalid .debug_rnglists data (no base address)"));
12318 return false;
12319 }
12320
12321 if (range_beginning > range_end)
12322 {
12323 /* Inverted range entries are invalid. */
12324 complaint (&symfile_complaints,
12325 _("Invalid .debug_rnglists data (inverted range)"));
12326 return false;
12327 }
12328
12329 /* Empty range entries have no effect. */
12330 if (range_beginning == range_end)
12331 continue;
12332
12333 range_beginning += base;
12334 range_end += base;
12335
12336 /* A not-uncommon case of bad debug info.
12337 Don't pollute the addrmap with bad data. */
12338 if (range_beginning + baseaddr == 0
12339 && !dwarf2_per_objfile->has_section_at_zero)
12340 {
12341 complaint (&symfile_complaints,
12342 _(".debug_rnglists entry has start address of zero"
12343 " [in module %s]"), objfile_name (objfile));
12344 continue;
12345 }
12346
12347 callback (range_beginning, range_end);
12348 }
12349
12350 if (overflow)
12351 {
12352 complaint (&symfile_complaints,
12353 _("Offset %d is not terminated "
12354 "for DW_AT_ranges attribute"),
12355 offset);
12356 return false;
12357 }
12358
12359 return true;
12360 }
12361
12362 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12363 Callback's type should be:
12364 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12365 Return 1 if the attributes are present and valid, otherwise, return 0. */
12366
12367 template <typename Callback>
12368 static int
12369 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12370 Callback &&callback)
12371 {
12372 struct objfile *objfile = cu->objfile;
12373 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12374 struct comp_unit_head *cu_header = &cu->header;
12375 bfd *obfd = objfile->obfd;
12376 unsigned int addr_size = cu_header->addr_size;
12377 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12378 /* Base address selection entry. */
12379 CORE_ADDR base;
12380 int found_base;
12381 unsigned int dummy;
12382 const gdb_byte *buffer;
12383 CORE_ADDR baseaddr;
12384
12385 if (cu_header->version >= 5)
12386 return dwarf2_rnglists_process (offset, cu, callback);
12387
12388 found_base = cu->base_known;
12389 base = cu->base_address;
12390
12391 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12392 if (offset >= dwarf2_per_objfile->ranges.size)
12393 {
12394 complaint (&symfile_complaints,
12395 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12396 offset);
12397 return 0;
12398 }
12399 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12400
12401 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12402
12403 while (1)
12404 {
12405 CORE_ADDR range_beginning, range_end;
12406
12407 range_beginning = read_address (obfd, buffer, cu, &dummy);
12408 buffer += addr_size;
12409 range_end = read_address (obfd, buffer, cu, &dummy);
12410 buffer += addr_size;
12411 offset += 2 * addr_size;
12412
12413 /* An end of list marker is a pair of zero addresses. */
12414 if (range_beginning == 0 && range_end == 0)
12415 /* Found the end of list entry. */
12416 break;
12417
12418 /* Each base address selection entry is a pair of 2 values.
12419 The first is the largest possible address, the second is
12420 the base address. Check for a base address here. */
12421 if ((range_beginning & mask) == mask)
12422 {
12423 /* If we found the largest possible address, then we already
12424 have the base address in range_end. */
12425 base = range_end;
12426 found_base = 1;
12427 continue;
12428 }
12429
12430 if (!found_base)
12431 {
12432 /* We have no valid base address for the ranges
12433 data. */
12434 complaint (&symfile_complaints,
12435 _("Invalid .debug_ranges data (no base address)"));
12436 return 0;
12437 }
12438
12439 if (range_beginning > range_end)
12440 {
12441 /* Inverted range entries are invalid. */
12442 complaint (&symfile_complaints,
12443 _("Invalid .debug_ranges data (inverted range)"));
12444 return 0;
12445 }
12446
12447 /* Empty range entries have no effect. */
12448 if (range_beginning == range_end)
12449 continue;
12450
12451 range_beginning += base;
12452 range_end += base;
12453
12454 /* A not-uncommon case of bad debug info.
12455 Don't pollute the addrmap with bad data. */
12456 if (range_beginning + baseaddr == 0
12457 && !dwarf2_per_objfile->has_section_at_zero)
12458 {
12459 complaint (&symfile_complaints,
12460 _(".debug_ranges entry has start address of zero"
12461 " [in module %s]"), objfile_name (objfile));
12462 continue;
12463 }
12464
12465 callback (range_beginning, range_end);
12466 }
12467
12468 return 1;
12469 }
12470
12471 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12472 Return 1 if the attributes are present and valid, otherwise, return 0.
12473 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12474
12475 static int
12476 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12477 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12478 struct partial_symtab *ranges_pst)
12479 {
12480 struct objfile *objfile = cu->objfile;
12481 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12482 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12483 SECT_OFF_TEXT (objfile));
12484 int low_set = 0;
12485 CORE_ADDR low = 0;
12486 CORE_ADDR high = 0;
12487 int retval;
12488
12489 retval = dwarf2_ranges_process (offset, cu,
12490 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12491 {
12492 if (ranges_pst != NULL)
12493 {
12494 CORE_ADDR lowpc;
12495 CORE_ADDR highpc;
12496
12497 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12498 range_beginning + baseaddr);
12499 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12500 range_end + baseaddr);
12501 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12502 ranges_pst);
12503 }
12504
12505 /* FIXME: This is recording everything as a low-high
12506 segment of consecutive addresses. We should have a
12507 data structure for discontiguous block ranges
12508 instead. */
12509 if (! low_set)
12510 {
12511 low = range_beginning;
12512 high = range_end;
12513 low_set = 1;
12514 }
12515 else
12516 {
12517 if (range_beginning < low)
12518 low = range_beginning;
12519 if (range_end > high)
12520 high = range_end;
12521 }
12522 });
12523 if (!retval)
12524 return 0;
12525
12526 if (! low_set)
12527 /* If the first entry is an end-of-list marker, the range
12528 describes an empty scope, i.e. no instructions. */
12529 return 0;
12530
12531 if (low_return)
12532 *low_return = low;
12533 if (high_return)
12534 *high_return = high;
12535 return 1;
12536 }
12537
12538 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12539 definition for the return value. *LOWPC and *HIGHPC are set iff
12540 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12541
12542 static enum pc_bounds_kind
12543 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12544 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12545 struct partial_symtab *pst)
12546 {
12547 struct attribute *attr;
12548 struct attribute *attr_high;
12549 CORE_ADDR low = 0;
12550 CORE_ADDR high = 0;
12551 enum pc_bounds_kind ret;
12552
12553 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12554 if (attr_high)
12555 {
12556 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12557 if (attr)
12558 {
12559 low = attr_value_as_address (attr);
12560 high = attr_value_as_address (attr_high);
12561 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12562 high += low;
12563 }
12564 else
12565 /* Found high w/o low attribute. */
12566 return PC_BOUNDS_INVALID;
12567
12568 /* Found consecutive range of addresses. */
12569 ret = PC_BOUNDS_HIGH_LOW;
12570 }
12571 else
12572 {
12573 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12574 if (attr != NULL)
12575 {
12576 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12577 We take advantage of the fact that DW_AT_ranges does not appear
12578 in DW_TAG_compile_unit of DWO files. */
12579 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12580 unsigned int ranges_offset = (DW_UNSND (attr)
12581 + (need_ranges_base
12582 ? cu->ranges_base
12583 : 0));
12584
12585 /* Value of the DW_AT_ranges attribute is the offset in the
12586 .debug_ranges section. */
12587 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12588 return PC_BOUNDS_INVALID;
12589 /* Found discontinuous range of addresses. */
12590 ret = PC_BOUNDS_RANGES;
12591 }
12592 else
12593 return PC_BOUNDS_NOT_PRESENT;
12594 }
12595
12596 /* read_partial_die has also the strict LOW < HIGH requirement. */
12597 if (high <= low)
12598 return PC_BOUNDS_INVALID;
12599
12600 /* When using the GNU linker, .gnu.linkonce. sections are used to
12601 eliminate duplicate copies of functions and vtables and such.
12602 The linker will arbitrarily choose one and discard the others.
12603 The AT_*_pc values for such functions refer to local labels in
12604 these sections. If the section from that file was discarded, the
12605 labels are not in the output, so the relocs get a value of 0.
12606 If this is a discarded function, mark the pc bounds as invalid,
12607 so that GDB will ignore it. */
12608 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12609 return PC_BOUNDS_INVALID;
12610
12611 *lowpc = low;
12612 if (highpc)
12613 *highpc = high;
12614 return ret;
12615 }
12616
12617 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12618 its low and high PC addresses. Do nothing if these addresses could not
12619 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12620 and HIGHPC to the high address if greater than HIGHPC. */
12621
12622 static void
12623 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12624 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12625 struct dwarf2_cu *cu)
12626 {
12627 CORE_ADDR low, high;
12628 struct die_info *child = die->child;
12629
12630 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12631 {
12632 *lowpc = std::min (*lowpc, low);
12633 *highpc = std::max (*highpc, high);
12634 }
12635
12636 /* If the language does not allow nested subprograms (either inside
12637 subprograms or lexical blocks), we're done. */
12638 if (cu->language != language_ada)
12639 return;
12640
12641 /* Check all the children of the given DIE. If it contains nested
12642 subprograms, then check their pc bounds. Likewise, we need to
12643 check lexical blocks as well, as they may also contain subprogram
12644 definitions. */
12645 while (child && child->tag)
12646 {
12647 if (child->tag == DW_TAG_subprogram
12648 || child->tag == DW_TAG_lexical_block)
12649 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12650 child = sibling_die (child);
12651 }
12652 }
12653
12654 /* Get the low and high pc's represented by the scope DIE, and store
12655 them in *LOWPC and *HIGHPC. If the correct values can't be
12656 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12657
12658 static void
12659 get_scope_pc_bounds (struct die_info *die,
12660 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12661 struct dwarf2_cu *cu)
12662 {
12663 CORE_ADDR best_low = (CORE_ADDR) -1;
12664 CORE_ADDR best_high = (CORE_ADDR) 0;
12665 CORE_ADDR current_low, current_high;
12666
12667 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12668 >= PC_BOUNDS_RANGES)
12669 {
12670 best_low = current_low;
12671 best_high = current_high;
12672 }
12673 else
12674 {
12675 struct die_info *child = die->child;
12676
12677 while (child && child->tag)
12678 {
12679 switch (child->tag) {
12680 case DW_TAG_subprogram:
12681 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12682 break;
12683 case DW_TAG_namespace:
12684 case DW_TAG_module:
12685 /* FIXME: carlton/2004-01-16: Should we do this for
12686 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12687 that current GCC's always emit the DIEs corresponding
12688 to definitions of methods of classes as children of a
12689 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12690 the DIEs giving the declarations, which could be
12691 anywhere). But I don't see any reason why the
12692 standards says that they have to be there. */
12693 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12694
12695 if (current_low != ((CORE_ADDR) -1))
12696 {
12697 best_low = std::min (best_low, current_low);
12698 best_high = std::max (best_high, current_high);
12699 }
12700 break;
12701 default:
12702 /* Ignore. */
12703 break;
12704 }
12705
12706 child = sibling_die (child);
12707 }
12708 }
12709
12710 *lowpc = best_low;
12711 *highpc = best_high;
12712 }
12713
12714 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12715 in DIE. */
12716
12717 static void
12718 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12719 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12720 {
12721 struct objfile *objfile = cu->objfile;
12722 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12723 struct attribute *attr;
12724 struct attribute *attr_high;
12725
12726 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12727 if (attr_high)
12728 {
12729 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12730 if (attr)
12731 {
12732 CORE_ADDR low = attr_value_as_address (attr);
12733 CORE_ADDR high = attr_value_as_address (attr_high);
12734
12735 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12736 high += low;
12737
12738 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12739 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12740 record_block_range (block, low, high - 1);
12741 }
12742 }
12743
12744 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12745 if (attr)
12746 {
12747 bfd *obfd = objfile->obfd;
12748 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12749 We take advantage of the fact that DW_AT_ranges does not appear
12750 in DW_TAG_compile_unit of DWO files. */
12751 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12752
12753 /* The value of the DW_AT_ranges attribute is the offset of the
12754 address range list in the .debug_ranges section. */
12755 unsigned long offset = (DW_UNSND (attr)
12756 + (need_ranges_base ? cu->ranges_base : 0));
12757 const gdb_byte *buffer;
12758
12759 /* For some target architectures, but not others, the
12760 read_address function sign-extends the addresses it returns.
12761 To recognize base address selection entries, we need a
12762 mask. */
12763 unsigned int addr_size = cu->header.addr_size;
12764 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12765
12766 /* The base address, to which the next pair is relative. Note
12767 that this 'base' is a DWARF concept: most entries in a range
12768 list are relative, to reduce the number of relocs against the
12769 debugging information. This is separate from this function's
12770 'baseaddr' argument, which GDB uses to relocate debugging
12771 information from a shared library based on the address at
12772 which the library was loaded. */
12773 CORE_ADDR base = cu->base_address;
12774 int base_known = cu->base_known;
12775
12776 dwarf2_ranges_process (offset, cu,
12777 [&] (CORE_ADDR start, CORE_ADDR end)
12778 {
12779 start += baseaddr;
12780 end += baseaddr;
12781 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12782 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12783 record_block_range (block, start, end - 1);
12784 });
12785 }
12786 }
12787
12788 /* Check whether the producer field indicates either of GCC < 4.6, or the
12789 Intel C/C++ compiler, and cache the result in CU. */
12790
12791 static void
12792 check_producer (struct dwarf2_cu *cu)
12793 {
12794 int major, minor;
12795
12796 if (cu->producer == NULL)
12797 {
12798 /* For unknown compilers expect their behavior is DWARF version
12799 compliant.
12800
12801 GCC started to support .debug_types sections by -gdwarf-4 since
12802 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12803 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12804 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12805 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12806 }
12807 else if (producer_is_gcc (cu->producer, &major, &minor))
12808 {
12809 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12810 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12811 }
12812 else if (producer_is_icc (cu->producer, &major, &minor))
12813 cu->producer_is_icc_lt_14 = major < 14;
12814 else
12815 {
12816 /* For other non-GCC compilers, expect their behavior is DWARF version
12817 compliant. */
12818 }
12819
12820 cu->checked_producer = 1;
12821 }
12822
12823 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12824 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12825 during 4.6.0 experimental. */
12826
12827 static int
12828 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12829 {
12830 if (!cu->checked_producer)
12831 check_producer (cu);
12832
12833 return cu->producer_is_gxx_lt_4_6;
12834 }
12835
12836 /* Return the default accessibility type if it is not overriden by
12837 DW_AT_accessibility. */
12838
12839 static enum dwarf_access_attribute
12840 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12841 {
12842 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12843 {
12844 /* The default DWARF 2 accessibility for members is public, the default
12845 accessibility for inheritance is private. */
12846
12847 if (die->tag != DW_TAG_inheritance)
12848 return DW_ACCESS_public;
12849 else
12850 return DW_ACCESS_private;
12851 }
12852 else
12853 {
12854 /* DWARF 3+ defines the default accessibility a different way. The same
12855 rules apply now for DW_TAG_inheritance as for the members and it only
12856 depends on the container kind. */
12857
12858 if (die->parent->tag == DW_TAG_class_type)
12859 return DW_ACCESS_private;
12860 else
12861 return DW_ACCESS_public;
12862 }
12863 }
12864
12865 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12866 offset. If the attribute was not found return 0, otherwise return
12867 1. If it was found but could not properly be handled, set *OFFSET
12868 to 0. */
12869
12870 static int
12871 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12872 LONGEST *offset)
12873 {
12874 struct attribute *attr;
12875
12876 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12877 if (attr != NULL)
12878 {
12879 *offset = 0;
12880
12881 /* Note that we do not check for a section offset first here.
12882 This is because DW_AT_data_member_location is new in DWARF 4,
12883 so if we see it, we can assume that a constant form is really
12884 a constant and not a section offset. */
12885 if (attr_form_is_constant (attr))
12886 *offset = dwarf2_get_attr_constant_value (attr, 0);
12887 else if (attr_form_is_section_offset (attr))
12888 dwarf2_complex_location_expr_complaint ();
12889 else if (attr_form_is_block (attr))
12890 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12891 else
12892 dwarf2_complex_location_expr_complaint ();
12893
12894 return 1;
12895 }
12896
12897 return 0;
12898 }
12899
12900 /* Add an aggregate field to the field list. */
12901
12902 static void
12903 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12904 struct dwarf2_cu *cu)
12905 {
12906 struct objfile *objfile = cu->objfile;
12907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12908 struct nextfield *new_field;
12909 struct attribute *attr;
12910 struct field *fp;
12911 const char *fieldname = "";
12912
12913 /* Allocate a new field list entry and link it in. */
12914 new_field = XNEW (struct nextfield);
12915 make_cleanup (xfree, new_field);
12916 memset (new_field, 0, sizeof (struct nextfield));
12917
12918 if (die->tag == DW_TAG_inheritance)
12919 {
12920 new_field->next = fip->baseclasses;
12921 fip->baseclasses = new_field;
12922 }
12923 else
12924 {
12925 new_field->next = fip->fields;
12926 fip->fields = new_field;
12927 }
12928 fip->nfields++;
12929
12930 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12931 if (attr)
12932 new_field->accessibility = DW_UNSND (attr);
12933 else
12934 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12935 if (new_field->accessibility != DW_ACCESS_public)
12936 fip->non_public_fields = 1;
12937
12938 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12939 if (attr)
12940 new_field->virtuality = DW_UNSND (attr);
12941 else
12942 new_field->virtuality = DW_VIRTUALITY_none;
12943
12944 fp = &new_field->field;
12945
12946 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12947 {
12948 LONGEST offset;
12949
12950 /* Data member other than a C++ static data member. */
12951
12952 /* Get type of field. */
12953 fp->type = die_type (die, cu);
12954
12955 SET_FIELD_BITPOS (*fp, 0);
12956
12957 /* Get bit size of field (zero if none). */
12958 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12959 if (attr)
12960 {
12961 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12962 }
12963 else
12964 {
12965 FIELD_BITSIZE (*fp) = 0;
12966 }
12967
12968 /* Get bit offset of field. */
12969 if (handle_data_member_location (die, cu, &offset))
12970 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12971 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12972 if (attr)
12973 {
12974 if (gdbarch_bits_big_endian (gdbarch))
12975 {
12976 /* For big endian bits, the DW_AT_bit_offset gives the
12977 additional bit offset from the MSB of the containing
12978 anonymous object to the MSB of the field. We don't
12979 have to do anything special since we don't need to
12980 know the size of the anonymous object. */
12981 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12982 }
12983 else
12984 {
12985 /* For little endian bits, compute the bit offset to the
12986 MSB of the anonymous object, subtract off the number of
12987 bits from the MSB of the field to the MSB of the
12988 object, and then subtract off the number of bits of
12989 the field itself. The result is the bit offset of
12990 the LSB of the field. */
12991 int anonymous_size;
12992 int bit_offset = DW_UNSND (attr);
12993
12994 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12995 if (attr)
12996 {
12997 /* The size of the anonymous object containing
12998 the bit field is explicit, so use the
12999 indicated size (in bytes). */
13000 anonymous_size = DW_UNSND (attr);
13001 }
13002 else
13003 {
13004 /* The size of the anonymous object containing
13005 the bit field must be inferred from the type
13006 attribute of the data member containing the
13007 bit field. */
13008 anonymous_size = TYPE_LENGTH (fp->type);
13009 }
13010 SET_FIELD_BITPOS (*fp,
13011 (FIELD_BITPOS (*fp)
13012 + anonymous_size * bits_per_byte
13013 - bit_offset - FIELD_BITSIZE (*fp)));
13014 }
13015 }
13016 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13017 if (attr != NULL)
13018 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13019 + dwarf2_get_attr_constant_value (attr, 0)));
13020
13021 /* Get name of field. */
13022 fieldname = dwarf2_name (die, cu);
13023 if (fieldname == NULL)
13024 fieldname = "";
13025
13026 /* The name is already allocated along with this objfile, so we don't
13027 need to duplicate it for the type. */
13028 fp->name = fieldname;
13029
13030 /* Change accessibility for artificial fields (e.g. virtual table
13031 pointer or virtual base class pointer) to private. */
13032 if (dwarf2_attr (die, DW_AT_artificial, cu))
13033 {
13034 FIELD_ARTIFICIAL (*fp) = 1;
13035 new_field->accessibility = DW_ACCESS_private;
13036 fip->non_public_fields = 1;
13037 }
13038 }
13039 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13040 {
13041 /* C++ static member. */
13042
13043 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13044 is a declaration, but all versions of G++ as of this writing
13045 (so through at least 3.2.1) incorrectly generate
13046 DW_TAG_variable tags. */
13047
13048 const char *physname;
13049
13050 /* Get name of field. */
13051 fieldname = dwarf2_name (die, cu);
13052 if (fieldname == NULL)
13053 return;
13054
13055 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13056 if (attr
13057 /* Only create a symbol if this is an external value.
13058 new_symbol checks this and puts the value in the global symbol
13059 table, which we want. If it is not external, new_symbol
13060 will try to put the value in cu->list_in_scope which is wrong. */
13061 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13062 {
13063 /* A static const member, not much different than an enum as far as
13064 we're concerned, except that we can support more types. */
13065 new_symbol (die, NULL, cu);
13066 }
13067
13068 /* Get physical name. */
13069 physname = dwarf2_physname (fieldname, die, cu);
13070
13071 /* The name is already allocated along with this objfile, so we don't
13072 need to duplicate it for the type. */
13073 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13074 FIELD_TYPE (*fp) = die_type (die, cu);
13075 FIELD_NAME (*fp) = fieldname;
13076 }
13077 else if (die->tag == DW_TAG_inheritance)
13078 {
13079 LONGEST offset;
13080
13081 /* C++ base class field. */
13082 if (handle_data_member_location (die, cu, &offset))
13083 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13084 FIELD_BITSIZE (*fp) = 0;
13085 FIELD_TYPE (*fp) = die_type (die, cu);
13086 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13087 fip->nbaseclasses++;
13088 }
13089 }
13090
13091 /* Add a typedef defined in the scope of the FIP's class. */
13092
13093 static void
13094 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13095 struct dwarf2_cu *cu)
13096 {
13097 struct typedef_field_list *new_field;
13098 struct typedef_field *fp;
13099
13100 /* Allocate a new field list entry and link it in. */
13101 new_field = XCNEW (struct typedef_field_list);
13102 make_cleanup (xfree, new_field);
13103
13104 gdb_assert (die->tag == DW_TAG_typedef);
13105
13106 fp = &new_field->field;
13107
13108 /* Get name of field. */
13109 fp->name = dwarf2_name (die, cu);
13110 if (fp->name == NULL)
13111 return;
13112
13113 fp->type = read_type_die (die, cu);
13114
13115 new_field->next = fip->typedef_field_list;
13116 fip->typedef_field_list = new_field;
13117 fip->typedef_field_list_count++;
13118 }
13119
13120 /* Create the vector of fields, and attach it to the type. */
13121
13122 static void
13123 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13124 struct dwarf2_cu *cu)
13125 {
13126 int nfields = fip->nfields;
13127
13128 /* Record the field count, allocate space for the array of fields,
13129 and create blank accessibility bitfields if necessary. */
13130 TYPE_NFIELDS (type) = nfields;
13131 TYPE_FIELDS (type) = (struct field *)
13132 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13133 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13134
13135 if (fip->non_public_fields && cu->language != language_ada)
13136 {
13137 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13138
13139 TYPE_FIELD_PRIVATE_BITS (type) =
13140 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13141 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13142
13143 TYPE_FIELD_PROTECTED_BITS (type) =
13144 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13145 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13146
13147 TYPE_FIELD_IGNORE_BITS (type) =
13148 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13149 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13150 }
13151
13152 /* If the type has baseclasses, allocate and clear a bit vector for
13153 TYPE_FIELD_VIRTUAL_BITS. */
13154 if (fip->nbaseclasses && cu->language != language_ada)
13155 {
13156 int num_bytes = B_BYTES (fip->nbaseclasses);
13157 unsigned char *pointer;
13158
13159 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13160 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13161 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13162 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13163 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13164 }
13165
13166 /* Copy the saved-up fields into the field vector. Start from the head of
13167 the list, adding to the tail of the field array, so that they end up in
13168 the same order in the array in which they were added to the list. */
13169 while (nfields-- > 0)
13170 {
13171 struct nextfield *fieldp;
13172
13173 if (fip->fields)
13174 {
13175 fieldp = fip->fields;
13176 fip->fields = fieldp->next;
13177 }
13178 else
13179 {
13180 fieldp = fip->baseclasses;
13181 fip->baseclasses = fieldp->next;
13182 }
13183
13184 TYPE_FIELD (type, nfields) = fieldp->field;
13185 switch (fieldp->accessibility)
13186 {
13187 case DW_ACCESS_private:
13188 if (cu->language != language_ada)
13189 SET_TYPE_FIELD_PRIVATE (type, nfields);
13190 break;
13191
13192 case DW_ACCESS_protected:
13193 if (cu->language != language_ada)
13194 SET_TYPE_FIELD_PROTECTED (type, nfields);
13195 break;
13196
13197 case DW_ACCESS_public:
13198 break;
13199
13200 default:
13201 /* Unknown accessibility. Complain and treat it as public. */
13202 {
13203 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13204 fieldp->accessibility);
13205 }
13206 break;
13207 }
13208 if (nfields < fip->nbaseclasses)
13209 {
13210 switch (fieldp->virtuality)
13211 {
13212 case DW_VIRTUALITY_virtual:
13213 case DW_VIRTUALITY_pure_virtual:
13214 if (cu->language == language_ada)
13215 error (_("unexpected virtuality in component of Ada type"));
13216 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13217 break;
13218 }
13219 }
13220 }
13221 }
13222
13223 /* Return true if this member function is a constructor, false
13224 otherwise. */
13225
13226 static int
13227 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13228 {
13229 const char *fieldname;
13230 const char *type_name;
13231 int len;
13232
13233 if (die->parent == NULL)
13234 return 0;
13235
13236 if (die->parent->tag != DW_TAG_structure_type
13237 && die->parent->tag != DW_TAG_union_type
13238 && die->parent->tag != DW_TAG_class_type)
13239 return 0;
13240
13241 fieldname = dwarf2_name (die, cu);
13242 type_name = dwarf2_name (die->parent, cu);
13243 if (fieldname == NULL || type_name == NULL)
13244 return 0;
13245
13246 len = strlen (fieldname);
13247 return (strncmp (fieldname, type_name, len) == 0
13248 && (type_name[len] == '\0' || type_name[len] == '<'));
13249 }
13250
13251 /* Add a member function to the proper fieldlist. */
13252
13253 static void
13254 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13255 struct type *type, struct dwarf2_cu *cu)
13256 {
13257 struct objfile *objfile = cu->objfile;
13258 struct attribute *attr;
13259 struct fnfieldlist *flp;
13260 int i;
13261 struct fn_field *fnp;
13262 const char *fieldname;
13263 struct nextfnfield *new_fnfield;
13264 struct type *this_type;
13265 enum dwarf_access_attribute accessibility;
13266
13267 if (cu->language == language_ada)
13268 error (_("unexpected member function in Ada type"));
13269
13270 /* Get name of member function. */
13271 fieldname = dwarf2_name (die, cu);
13272 if (fieldname == NULL)
13273 return;
13274
13275 /* Look up member function name in fieldlist. */
13276 for (i = 0; i < fip->nfnfields; i++)
13277 {
13278 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13279 break;
13280 }
13281
13282 /* Create new list element if necessary. */
13283 if (i < fip->nfnfields)
13284 flp = &fip->fnfieldlists[i];
13285 else
13286 {
13287 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13288 {
13289 fip->fnfieldlists = (struct fnfieldlist *)
13290 xrealloc (fip->fnfieldlists,
13291 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13292 * sizeof (struct fnfieldlist));
13293 if (fip->nfnfields == 0)
13294 make_cleanup (free_current_contents, &fip->fnfieldlists);
13295 }
13296 flp = &fip->fnfieldlists[fip->nfnfields];
13297 flp->name = fieldname;
13298 flp->length = 0;
13299 flp->head = NULL;
13300 i = fip->nfnfields++;
13301 }
13302
13303 /* Create a new member function field and chain it to the field list
13304 entry. */
13305 new_fnfield = XNEW (struct nextfnfield);
13306 make_cleanup (xfree, new_fnfield);
13307 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13308 new_fnfield->next = flp->head;
13309 flp->head = new_fnfield;
13310 flp->length++;
13311
13312 /* Fill in the member function field info. */
13313 fnp = &new_fnfield->fnfield;
13314
13315 /* Delay processing of the physname until later. */
13316 if (cu->language == language_cplus)
13317 {
13318 add_to_method_list (type, i, flp->length - 1, fieldname,
13319 die, cu);
13320 }
13321 else
13322 {
13323 const char *physname = dwarf2_physname (fieldname, die, cu);
13324 fnp->physname = physname ? physname : "";
13325 }
13326
13327 fnp->type = alloc_type (objfile);
13328 this_type = read_type_die (die, cu);
13329 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13330 {
13331 int nparams = TYPE_NFIELDS (this_type);
13332
13333 /* TYPE is the domain of this method, and THIS_TYPE is the type
13334 of the method itself (TYPE_CODE_METHOD). */
13335 smash_to_method_type (fnp->type, type,
13336 TYPE_TARGET_TYPE (this_type),
13337 TYPE_FIELDS (this_type),
13338 TYPE_NFIELDS (this_type),
13339 TYPE_VARARGS (this_type));
13340
13341 /* Handle static member functions.
13342 Dwarf2 has no clean way to discern C++ static and non-static
13343 member functions. G++ helps GDB by marking the first
13344 parameter for non-static member functions (which is the this
13345 pointer) as artificial. We obtain this information from
13346 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13347 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13348 fnp->voffset = VOFFSET_STATIC;
13349 }
13350 else
13351 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13352 dwarf2_full_name (fieldname, die, cu));
13353
13354 /* Get fcontext from DW_AT_containing_type if present. */
13355 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13356 fnp->fcontext = die_containing_type (die, cu);
13357
13358 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13359 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13360
13361 /* Get accessibility. */
13362 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13363 if (attr)
13364 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13365 else
13366 accessibility = dwarf2_default_access_attribute (die, cu);
13367 switch (accessibility)
13368 {
13369 case DW_ACCESS_private:
13370 fnp->is_private = 1;
13371 break;
13372 case DW_ACCESS_protected:
13373 fnp->is_protected = 1;
13374 break;
13375 }
13376
13377 /* Check for artificial methods. */
13378 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13379 if (attr && DW_UNSND (attr) != 0)
13380 fnp->is_artificial = 1;
13381
13382 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13383
13384 /* Get index in virtual function table if it is a virtual member
13385 function. For older versions of GCC, this is an offset in the
13386 appropriate virtual table, as specified by DW_AT_containing_type.
13387 For everyone else, it is an expression to be evaluated relative
13388 to the object address. */
13389
13390 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13391 if (attr)
13392 {
13393 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13394 {
13395 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13396 {
13397 /* Old-style GCC. */
13398 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13399 }
13400 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13401 || (DW_BLOCK (attr)->size > 1
13402 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13403 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13404 {
13405 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13406 if ((fnp->voffset % cu->header.addr_size) != 0)
13407 dwarf2_complex_location_expr_complaint ();
13408 else
13409 fnp->voffset /= cu->header.addr_size;
13410 fnp->voffset += 2;
13411 }
13412 else
13413 dwarf2_complex_location_expr_complaint ();
13414
13415 if (!fnp->fcontext)
13416 {
13417 /* If there is no `this' field and no DW_AT_containing_type,
13418 we cannot actually find a base class context for the
13419 vtable! */
13420 if (TYPE_NFIELDS (this_type) == 0
13421 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13422 {
13423 complaint (&symfile_complaints,
13424 _("cannot determine context for virtual member "
13425 "function \"%s\" (offset %d)"),
13426 fieldname, to_underlying (die->sect_off));
13427 }
13428 else
13429 {
13430 fnp->fcontext
13431 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13432 }
13433 }
13434 }
13435 else if (attr_form_is_section_offset (attr))
13436 {
13437 dwarf2_complex_location_expr_complaint ();
13438 }
13439 else
13440 {
13441 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13442 fieldname);
13443 }
13444 }
13445 else
13446 {
13447 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13448 if (attr && DW_UNSND (attr))
13449 {
13450 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13451 complaint (&symfile_complaints,
13452 _("Member function \"%s\" (offset %d) is virtual "
13453 "but the vtable offset is not specified"),
13454 fieldname, to_underlying (die->sect_off));
13455 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13456 TYPE_CPLUS_DYNAMIC (type) = 1;
13457 }
13458 }
13459 }
13460
13461 /* Create the vector of member function fields, and attach it to the type. */
13462
13463 static void
13464 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13465 struct dwarf2_cu *cu)
13466 {
13467 struct fnfieldlist *flp;
13468 int i;
13469
13470 if (cu->language == language_ada)
13471 error (_("unexpected member functions in Ada type"));
13472
13473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13474 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13475 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13476
13477 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13478 {
13479 struct nextfnfield *nfp = flp->head;
13480 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13481 int k;
13482
13483 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13484 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13485 fn_flp->fn_fields = (struct fn_field *)
13486 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13487 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13488 fn_flp->fn_fields[k] = nfp->fnfield;
13489 }
13490
13491 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13492 }
13493
13494 /* Returns non-zero if NAME is the name of a vtable member in CU's
13495 language, zero otherwise. */
13496 static int
13497 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13498 {
13499 static const char vptr[] = "_vptr";
13500 static const char vtable[] = "vtable";
13501
13502 /* Look for the C++ form of the vtable. */
13503 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13504 return 1;
13505
13506 return 0;
13507 }
13508
13509 /* GCC outputs unnamed structures that are really pointers to member
13510 functions, with the ABI-specified layout. If TYPE describes
13511 such a structure, smash it into a member function type.
13512
13513 GCC shouldn't do this; it should just output pointer to member DIEs.
13514 This is GCC PR debug/28767. */
13515
13516 static void
13517 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13518 {
13519 struct type *pfn_type, *self_type, *new_type;
13520
13521 /* Check for a structure with no name and two children. */
13522 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13523 return;
13524
13525 /* Check for __pfn and __delta members. */
13526 if (TYPE_FIELD_NAME (type, 0) == NULL
13527 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13528 || TYPE_FIELD_NAME (type, 1) == NULL
13529 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13530 return;
13531
13532 /* Find the type of the method. */
13533 pfn_type = TYPE_FIELD_TYPE (type, 0);
13534 if (pfn_type == NULL
13535 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13536 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13537 return;
13538
13539 /* Look for the "this" argument. */
13540 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13541 if (TYPE_NFIELDS (pfn_type) == 0
13542 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13543 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13544 return;
13545
13546 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13547 new_type = alloc_type (objfile);
13548 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13549 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13550 TYPE_VARARGS (pfn_type));
13551 smash_to_methodptr_type (type, new_type);
13552 }
13553
13554
13555 /* Called when we find the DIE that starts a structure or union scope
13556 (definition) to create a type for the structure or union. Fill in
13557 the type's name and general properties; the members will not be
13558 processed until process_structure_scope. A symbol table entry for
13559 the type will also not be done until process_structure_scope (assuming
13560 the type has a name).
13561
13562 NOTE: we need to call these functions regardless of whether or not the
13563 DIE has a DW_AT_name attribute, since it might be an anonymous
13564 structure or union. This gets the type entered into our set of
13565 user defined types. */
13566
13567 static struct type *
13568 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13569 {
13570 struct objfile *objfile = cu->objfile;
13571 struct type *type;
13572 struct attribute *attr;
13573 const char *name;
13574
13575 /* If the definition of this type lives in .debug_types, read that type.
13576 Don't follow DW_AT_specification though, that will take us back up
13577 the chain and we want to go down. */
13578 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13579 if (attr)
13580 {
13581 type = get_DW_AT_signature_type (die, attr, cu);
13582
13583 /* The type's CU may not be the same as CU.
13584 Ensure TYPE is recorded with CU in die_type_hash. */
13585 return set_die_type (die, type, cu);
13586 }
13587
13588 type = alloc_type (objfile);
13589 INIT_CPLUS_SPECIFIC (type);
13590
13591 name = dwarf2_name (die, cu);
13592 if (name != NULL)
13593 {
13594 if (cu->language == language_cplus
13595 || cu->language == language_d
13596 || cu->language == language_rust)
13597 {
13598 const char *full_name = dwarf2_full_name (name, die, cu);
13599
13600 /* dwarf2_full_name might have already finished building the DIE's
13601 type. If so, there is no need to continue. */
13602 if (get_die_type (die, cu) != NULL)
13603 return get_die_type (die, cu);
13604
13605 TYPE_TAG_NAME (type) = full_name;
13606 if (die->tag == DW_TAG_structure_type
13607 || die->tag == DW_TAG_class_type)
13608 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13609 }
13610 else
13611 {
13612 /* The name is already allocated along with this objfile, so
13613 we don't need to duplicate it for the type. */
13614 TYPE_TAG_NAME (type) = name;
13615 if (die->tag == DW_TAG_class_type)
13616 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13617 }
13618 }
13619
13620 if (die->tag == DW_TAG_structure_type)
13621 {
13622 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13623 }
13624 else if (die->tag == DW_TAG_union_type)
13625 {
13626 TYPE_CODE (type) = TYPE_CODE_UNION;
13627 }
13628 else
13629 {
13630 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13631 }
13632
13633 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13634 TYPE_DECLARED_CLASS (type) = 1;
13635
13636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13637 if (attr)
13638 {
13639 if (attr_form_is_constant (attr))
13640 TYPE_LENGTH (type) = DW_UNSND (attr);
13641 else
13642 {
13643 /* For the moment, dynamic type sizes are not supported
13644 by GDB's struct type. The actual size is determined
13645 on-demand when resolving the type of a given object,
13646 so set the type's length to zero for now. Otherwise,
13647 we record an expression as the length, and that expression
13648 could lead to a very large value, which could eventually
13649 lead to us trying to allocate that much memory when creating
13650 a value of that type. */
13651 TYPE_LENGTH (type) = 0;
13652 }
13653 }
13654 else
13655 {
13656 TYPE_LENGTH (type) = 0;
13657 }
13658
13659 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
13660 {
13661 /* ICC<14 does not output the required DW_AT_declaration on
13662 incomplete types, but gives them a size of zero. */
13663 TYPE_STUB (type) = 1;
13664 }
13665 else
13666 TYPE_STUB_SUPPORTED (type) = 1;
13667
13668 if (die_is_declaration (die, cu))
13669 TYPE_STUB (type) = 1;
13670 else if (attr == NULL && die->child == NULL
13671 && producer_is_realview (cu->producer))
13672 /* RealView does not output the required DW_AT_declaration
13673 on incomplete types. */
13674 TYPE_STUB (type) = 1;
13675
13676 /* We need to add the type field to the die immediately so we don't
13677 infinitely recurse when dealing with pointers to the structure
13678 type within the structure itself. */
13679 set_die_type (die, type, cu);
13680
13681 /* set_die_type should be already done. */
13682 set_descriptive_type (type, die, cu);
13683
13684 return type;
13685 }
13686
13687 /* Finish creating a structure or union type, including filling in
13688 its members and creating a symbol for it. */
13689
13690 static void
13691 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13692 {
13693 struct objfile *objfile = cu->objfile;
13694 struct die_info *child_die;
13695 struct type *type;
13696
13697 type = get_die_type (die, cu);
13698 if (type == NULL)
13699 type = read_structure_type (die, cu);
13700
13701 if (die->child != NULL && ! die_is_declaration (die, cu))
13702 {
13703 struct field_info fi;
13704 VEC (symbolp) *template_args = NULL;
13705 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13706
13707 memset (&fi, 0, sizeof (struct field_info));
13708
13709 child_die = die->child;
13710
13711 while (child_die && child_die->tag)
13712 {
13713 if (child_die->tag == DW_TAG_member
13714 || child_die->tag == DW_TAG_variable)
13715 {
13716 /* NOTE: carlton/2002-11-05: A C++ static data member
13717 should be a DW_TAG_member that is a declaration, but
13718 all versions of G++ as of this writing (so through at
13719 least 3.2.1) incorrectly generate DW_TAG_variable
13720 tags for them instead. */
13721 dwarf2_add_field (&fi, child_die, cu);
13722 }
13723 else if (child_die->tag == DW_TAG_subprogram)
13724 {
13725 /* Rust doesn't have member functions in the C++ sense.
13726 However, it does emit ordinary functions as children
13727 of a struct DIE. */
13728 if (cu->language == language_rust)
13729 read_func_scope (child_die, cu);
13730 else
13731 {
13732 /* C++ member function. */
13733 dwarf2_add_member_fn (&fi, child_die, type, cu);
13734 }
13735 }
13736 else if (child_die->tag == DW_TAG_inheritance)
13737 {
13738 /* C++ base class field. */
13739 dwarf2_add_field (&fi, child_die, cu);
13740 }
13741 else if (child_die->tag == DW_TAG_typedef)
13742 dwarf2_add_typedef (&fi, child_die, cu);
13743 else if (child_die->tag == DW_TAG_template_type_param
13744 || child_die->tag == DW_TAG_template_value_param)
13745 {
13746 struct symbol *arg = new_symbol (child_die, NULL, cu);
13747
13748 if (arg != NULL)
13749 VEC_safe_push (symbolp, template_args, arg);
13750 }
13751
13752 child_die = sibling_die (child_die);
13753 }
13754
13755 /* Attach template arguments to type. */
13756 if (! VEC_empty (symbolp, template_args))
13757 {
13758 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13759 TYPE_N_TEMPLATE_ARGUMENTS (type)
13760 = VEC_length (symbolp, template_args);
13761 TYPE_TEMPLATE_ARGUMENTS (type)
13762 = XOBNEWVEC (&objfile->objfile_obstack,
13763 struct symbol *,
13764 TYPE_N_TEMPLATE_ARGUMENTS (type));
13765 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13766 VEC_address (symbolp, template_args),
13767 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13768 * sizeof (struct symbol *)));
13769 VEC_free (symbolp, template_args);
13770 }
13771
13772 /* Attach fields and member functions to the type. */
13773 if (fi.nfields)
13774 dwarf2_attach_fields_to_type (&fi, type, cu);
13775 if (fi.nfnfields)
13776 {
13777 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13778
13779 /* Get the type which refers to the base class (possibly this
13780 class itself) which contains the vtable pointer for the current
13781 class from the DW_AT_containing_type attribute. This use of
13782 DW_AT_containing_type is a GNU extension. */
13783
13784 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13785 {
13786 struct type *t = die_containing_type (die, cu);
13787
13788 set_type_vptr_basetype (type, t);
13789 if (type == t)
13790 {
13791 int i;
13792
13793 /* Our own class provides vtbl ptr. */
13794 for (i = TYPE_NFIELDS (t) - 1;
13795 i >= TYPE_N_BASECLASSES (t);
13796 --i)
13797 {
13798 const char *fieldname = TYPE_FIELD_NAME (t, i);
13799
13800 if (is_vtable_name (fieldname, cu))
13801 {
13802 set_type_vptr_fieldno (type, i);
13803 break;
13804 }
13805 }
13806
13807 /* Complain if virtual function table field not found. */
13808 if (i < TYPE_N_BASECLASSES (t))
13809 complaint (&symfile_complaints,
13810 _("virtual function table pointer "
13811 "not found when defining class '%s'"),
13812 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13813 "");
13814 }
13815 else
13816 {
13817 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13818 }
13819 }
13820 else if (cu->producer
13821 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13822 {
13823 /* The IBM XLC compiler does not provide direct indication
13824 of the containing type, but the vtable pointer is
13825 always named __vfp. */
13826
13827 int i;
13828
13829 for (i = TYPE_NFIELDS (type) - 1;
13830 i >= TYPE_N_BASECLASSES (type);
13831 --i)
13832 {
13833 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13834 {
13835 set_type_vptr_fieldno (type, i);
13836 set_type_vptr_basetype (type, type);
13837 break;
13838 }
13839 }
13840 }
13841 }
13842
13843 /* Copy fi.typedef_field_list linked list elements content into the
13844 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13845 if (fi.typedef_field_list)
13846 {
13847 int i = fi.typedef_field_list_count;
13848
13849 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13850 TYPE_TYPEDEF_FIELD_ARRAY (type)
13851 = ((struct typedef_field *)
13852 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13853 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13854
13855 /* Reverse the list order to keep the debug info elements order. */
13856 while (--i >= 0)
13857 {
13858 struct typedef_field *dest, *src;
13859
13860 dest = &TYPE_TYPEDEF_FIELD (type, i);
13861 src = &fi.typedef_field_list->field;
13862 fi.typedef_field_list = fi.typedef_field_list->next;
13863 *dest = *src;
13864 }
13865 }
13866
13867 do_cleanups (back_to);
13868 }
13869
13870 quirk_gcc_member_function_pointer (type, objfile);
13871
13872 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13873 snapshots) has been known to create a die giving a declaration
13874 for a class that has, as a child, a die giving a definition for a
13875 nested class. So we have to process our children even if the
13876 current die is a declaration. Normally, of course, a declaration
13877 won't have any children at all. */
13878
13879 child_die = die->child;
13880
13881 while (child_die != NULL && child_die->tag)
13882 {
13883 if (child_die->tag == DW_TAG_member
13884 || child_die->tag == DW_TAG_variable
13885 || child_die->tag == DW_TAG_inheritance
13886 || child_die->tag == DW_TAG_template_value_param
13887 || child_die->tag == DW_TAG_template_type_param)
13888 {
13889 /* Do nothing. */
13890 }
13891 else
13892 process_die (child_die, cu);
13893
13894 child_die = sibling_die (child_die);
13895 }
13896
13897 /* Do not consider external references. According to the DWARF standard,
13898 these DIEs are identified by the fact that they have no byte_size
13899 attribute, and a declaration attribute. */
13900 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13901 || !die_is_declaration (die, cu))
13902 new_symbol (die, type, cu);
13903 }
13904
13905 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13906 update TYPE using some information only available in DIE's children. */
13907
13908 static void
13909 update_enumeration_type_from_children (struct die_info *die,
13910 struct type *type,
13911 struct dwarf2_cu *cu)
13912 {
13913 struct die_info *child_die;
13914 int unsigned_enum = 1;
13915 int flag_enum = 1;
13916 ULONGEST mask = 0;
13917
13918 auto_obstack obstack;
13919
13920 for (child_die = die->child;
13921 child_die != NULL && child_die->tag;
13922 child_die = sibling_die (child_die))
13923 {
13924 struct attribute *attr;
13925 LONGEST value;
13926 const gdb_byte *bytes;
13927 struct dwarf2_locexpr_baton *baton;
13928 const char *name;
13929
13930 if (child_die->tag != DW_TAG_enumerator)
13931 continue;
13932
13933 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13934 if (attr == NULL)
13935 continue;
13936
13937 name = dwarf2_name (child_die, cu);
13938 if (name == NULL)
13939 name = "<anonymous enumerator>";
13940
13941 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13942 &value, &bytes, &baton);
13943 if (value < 0)
13944 {
13945 unsigned_enum = 0;
13946 flag_enum = 0;
13947 }
13948 else if ((mask & value) != 0)
13949 flag_enum = 0;
13950 else
13951 mask |= value;
13952
13953 /* If we already know that the enum type is neither unsigned, nor
13954 a flag type, no need to look at the rest of the enumerates. */
13955 if (!unsigned_enum && !flag_enum)
13956 break;
13957 }
13958
13959 if (unsigned_enum)
13960 TYPE_UNSIGNED (type) = 1;
13961 if (flag_enum)
13962 TYPE_FLAG_ENUM (type) = 1;
13963 }
13964
13965 /* Given a DW_AT_enumeration_type die, set its type. We do not
13966 complete the type's fields yet, or create any symbols. */
13967
13968 static struct type *
13969 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13970 {
13971 struct objfile *objfile = cu->objfile;
13972 struct type *type;
13973 struct attribute *attr;
13974 const char *name;
13975
13976 /* If the definition of this type lives in .debug_types, read that type.
13977 Don't follow DW_AT_specification though, that will take us back up
13978 the chain and we want to go down. */
13979 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13980 if (attr)
13981 {
13982 type = get_DW_AT_signature_type (die, attr, cu);
13983
13984 /* The type's CU may not be the same as CU.
13985 Ensure TYPE is recorded with CU in die_type_hash. */
13986 return set_die_type (die, type, cu);
13987 }
13988
13989 type = alloc_type (objfile);
13990
13991 TYPE_CODE (type) = TYPE_CODE_ENUM;
13992 name = dwarf2_full_name (NULL, die, cu);
13993 if (name != NULL)
13994 TYPE_TAG_NAME (type) = name;
13995
13996 attr = dwarf2_attr (die, DW_AT_type, cu);
13997 if (attr != NULL)
13998 {
13999 struct type *underlying_type = die_type (die, cu);
14000
14001 TYPE_TARGET_TYPE (type) = underlying_type;
14002 }
14003
14004 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14005 if (attr)
14006 {
14007 TYPE_LENGTH (type) = DW_UNSND (attr);
14008 }
14009 else
14010 {
14011 TYPE_LENGTH (type) = 0;
14012 }
14013
14014 /* The enumeration DIE can be incomplete. In Ada, any type can be
14015 declared as private in the package spec, and then defined only
14016 inside the package body. Such types are known as Taft Amendment
14017 Types. When another package uses such a type, an incomplete DIE
14018 may be generated by the compiler. */
14019 if (die_is_declaration (die, cu))
14020 TYPE_STUB (type) = 1;
14021
14022 /* Finish the creation of this type by using the enum's children.
14023 We must call this even when the underlying type has been provided
14024 so that we can determine if we're looking at a "flag" enum. */
14025 update_enumeration_type_from_children (die, type, cu);
14026
14027 /* If this type has an underlying type that is not a stub, then we
14028 may use its attributes. We always use the "unsigned" attribute
14029 in this situation, because ordinarily we guess whether the type
14030 is unsigned -- but the guess can be wrong and the underlying type
14031 can tell us the reality. However, we defer to a local size
14032 attribute if one exists, because this lets the compiler override
14033 the underlying type if needed. */
14034 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14035 {
14036 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14037 if (TYPE_LENGTH (type) == 0)
14038 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14039 }
14040
14041 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14042
14043 return set_die_type (die, type, cu);
14044 }
14045
14046 /* Given a pointer to a die which begins an enumeration, process all
14047 the dies that define the members of the enumeration, and create the
14048 symbol for the enumeration type.
14049
14050 NOTE: We reverse the order of the element list. */
14051
14052 static void
14053 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14054 {
14055 struct type *this_type;
14056
14057 this_type = get_die_type (die, cu);
14058 if (this_type == NULL)
14059 this_type = read_enumeration_type (die, cu);
14060
14061 if (die->child != NULL)
14062 {
14063 struct die_info *child_die;
14064 struct symbol *sym;
14065 struct field *fields = NULL;
14066 int num_fields = 0;
14067 const char *name;
14068
14069 child_die = die->child;
14070 while (child_die && child_die->tag)
14071 {
14072 if (child_die->tag != DW_TAG_enumerator)
14073 {
14074 process_die (child_die, cu);
14075 }
14076 else
14077 {
14078 name = dwarf2_name (child_die, cu);
14079 if (name)
14080 {
14081 sym = new_symbol (child_die, this_type, cu);
14082
14083 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14084 {
14085 fields = (struct field *)
14086 xrealloc (fields,
14087 (num_fields + DW_FIELD_ALLOC_CHUNK)
14088 * sizeof (struct field));
14089 }
14090
14091 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14092 FIELD_TYPE (fields[num_fields]) = NULL;
14093 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14094 FIELD_BITSIZE (fields[num_fields]) = 0;
14095
14096 num_fields++;
14097 }
14098 }
14099
14100 child_die = sibling_die (child_die);
14101 }
14102
14103 if (num_fields)
14104 {
14105 TYPE_NFIELDS (this_type) = num_fields;
14106 TYPE_FIELDS (this_type) = (struct field *)
14107 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14108 memcpy (TYPE_FIELDS (this_type), fields,
14109 sizeof (struct field) * num_fields);
14110 xfree (fields);
14111 }
14112 }
14113
14114 /* If we are reading an enum from a .debug_types unit, and the enum
14115 is a declaration, and the enum is not the signatured type in the
14116 unit, then we do not want to add a symbol for it. Adding a
14117 symbol would in some cases obscure the true definition of the
14118 enum, giving users an incomplete type when the definition is
14119 actually available. Note that we do not want to do this for all
14120 enums which are just declarations, because C++0x allows forward
14121 enum declarations. */
14122 if (cu->per_cu->is_debug_types
14123 && die_is_declaration (die, cu))
14124 {
14125 struct signatured_type *sig_type;
14126
14127 sig_type = (struct signatured_type *) cu->per_cu;
14128 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14129 if (sig_type->type_offset_in_section != die->sect_off)
14130 return;
14131 }
14132
14133 new_symbol (die, this_type, cu);
14134 }
14135
14136 /* Extract all information from a DW_TAG_array_type DIE and put it in
14137 the DIE's type field. For now, this only handles one dimensional
14138 arrays. */
14139
14140 static struct type *
14141 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14142 {
14143 struct objfile *objfile = cu->objfile;
14144 struct die_info *child_die;
14145 struct type *type;
14146 struct type *element_type, *range_type, *index_type;
14147 struct attribute *attr;
14148 const char *name;
14149 unsigned int bit_stride = 0;
14150
14151 element_type = die_type (die, cu);
14152
14153 /* The die_type call above may have already set the type for this DIE. */
14154 type = get_die_type (die, cu);
14155 if (type)
14156 return type;
14157
14158 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14159 if (attr != NULL)
14160 bit_stride = DW_UNSND (attr) * 8;
14161
14162 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14163 if (attr != NULL)
14164 bit_stride = DW_UNSND (attr);
14165
14166 /* Irix 6.2 native cc creates array types without children for
14167 arrays with unspecified length. */
14168 if (die->child == NULL)
14169 {
14170 index_type = objfile_type (objfile)->builtin_int;
14171 range_type = create_static_range_type (NULL, index_type, 0, -1);
14172 type = create_array_type_with_stride (NULL, element_type, range_type,
14173 bit_stride);
14174 return set_die_type (die, type, cu);
14175 }
14176
14177 std::vector<struct type *> range_types;
14178 child_die = die->child;
14179 while (child_die && child_die->tag)
14180 {
14181 if (child_die->tag == DW_TAG_subrange_type)
14182 {
14183 struct type *child_type = read_type_die (child_die, cu);
14184
14185 if (child_type != NULL)
14186 {
14187 /* The range type was succesfully read. Save it for the
14188 array type creation. */
14189 range_types.push_back (child_type);
14190 }
14191 }
14192 child_die = sibling_die (child_die);
14193 }
14194
14195 /* Dwarf2 dimensions are output from left to right, create the
14196 necessary array types in backwards order. */
14197
14198 type = element_type;
14199
14200 if (read_array_order (die, cu) == DW_ORD_col_major)
14201 {
14202 int i = 0;
14203
14204 while (i < range_types.size ())
14205 type = create_array_type_with_stride (NULL, type, range_types[i++],
14206 bit_stride);
14207 }
14208 else
14209 {
14210 size_t ndim = range_types.size ();
14211 while (ndim-- > 0)
14212 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14213 bit_stride);
14214 }
14215
14216 /* Understand Dwarf2 support for vector types (like they occur on
14217 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14218 array type. This is not part of the Dwarf2/3 standard yet, but a
14219 custom vendor extension. The main difference between a regular
14220 array and the vector variant is that vectors are passed by value
14221 to functions. */
14222 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14223 if (attr)
14224 make_vector_type (type);
14225
14226 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14227 implementation may choose to implement triple vectors using this
14228 attribute. */
14229 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14230 if (attr)
14231 {
14232 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14233 TYPE_LENGTH (type) = DW_UNSND (attr);
14234 else
14235 complaint (&symfile_complaints,
14236 _("DW_AT_byte_size for array type smaller "
14237 "than the total size of elements"));
14238 }
14239
14240 name = dwarf2_name (die, cu);
14241 if (name)
14242 TYPE_NAME (type) = name;
14243
14244 /* Install the type in the die. */
14245 set_die_type (die, type, cu);
14246
14247 /* set_die_type should be already done. */
14248 set_descriptive_type (type, die, cu);
14249
14250 return type;
14251 }
14252
14253 static enum dwarf_array_dim_ordering
14254 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14255 {
14256 struct attribute *attr;
14257
14258 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14259
14260 if (attr)
14261 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14262
14263 /* GNU F77 is a special case, as at 08/2004 array type info is the
14264 opposite order to the dwarf2 specification, but data is still
14265 laid out as per normal fortran.
14266
14267 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14268 version checking. */
14269
14270 if (cu->language == language_fortran
14271 && cu->producer && strstr (cu->producer, "GNU F77"))
14272 {
14273 return DW_ORD_row_major;
14274 }
14275
14276 switch (cu->language_defn->la_array_ordering)
14277 {
14278 case array_column_major:
14279 return DW_ORD_col_major;
14280 case array_row_major:
14281 default:
14282 return DW_ORD_row_major;
14283 };
14284 }
14285
14286 /* Extract all information from a DW_TAG_set_type DIE and put it in
14287 the DIE's type field. */
14288
14289 static struct type *
14290 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14291 {
14292 struct type *domain_type, *set_type;
14293 struct attribute *attr;
14294
14295 domain_type = die_type (die, cu);
14296
14297 /* The die_type call above may have already set the type for this DIE. */
14298 set_type = get_die_type (die, cu);
14299 if (set_type)
14300 return set_type;
14301
14302 set_type = create_set_type (NULL, domain_type);
14303
14304 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14305 if (attr)
14306 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14307
14308 return set_die_type (die, set_type, cu);
14309 }
14310
14311 /* A helper for read_common_block that creates a locexpr baton.
14312 SYM is the symbol which we are marking as computed.
14313 COMMON_DIE is the DIE for the common block.
14314 COMMON_LOC is the location expression attribute for the common
14315 block itself.
14316 MEMBER_LOC is the location expression attribute for the particular
14317 member of the common block that we are processing.
14318 CU is the CU from which the above come. */
14319
14320 static void
14321 mark_common_block_symbol_computed (struct symbol *sym,
14322 struct die_info *common_die,
14323 struct attribute *common_loc,
14324 struct attribute *member_loc,
14325 struct dwarf2_cu *cu)
14326 {
14327 struct objfile *objfile = dwarf2_per_objfile->objfile;
14328 struct dwarf2_locexpr_baton *baton;
14329 gdb_byte *ptr;
14330 unsigned int cu_off;
14331 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14332 LONGEST offset = 0;
14333
14334 gdb_assert (common_loc && member_loc);
14335 gdb_assert (attr_form_is_block (common_loc));
14336 gdb_assert (attr_form_is_block (member_loc)
14337 || attr_form_is_constant (member_loc));
14338
14339 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14340 baton->per_cu = cu->per_cu;
14341 gdb_assert (baton->per_cu);
14342
14343 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14344
14345 if (attr_form_is_constant (member_loc))
14346 {
14347 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14348 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14349 }
14350 else
14351 baton->size += DW_BLOCK (member_loc)->size;
14352
14353 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14354 baton->data = ptr;
14355
14356 *ptr++ = DW_OP_call4;
14357 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14358 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14359 ptr += 4;
14360
14361 if (attr_form_is_constant (member_loc))
14362 {
14363 *ptr++ = DW_OP_addr;
14364 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14365 ptr += cu->header.addr_size;
14366 }
14367 else
14368 {
14369 /* We have to copy the data here, because DW_OP_call4 will only
14370 use a DW_AT_location attribute. */
14371 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14372 ptr += DW_BLOCK (member_loc)->size;
14373 }
14374
14375 *ptr++ = DW_OP_plus;
14376 gdb_assert (ptr - baton->data == baton->size);
14377
14378 SYMBOL_LOCATION_BATON (sym) = baton;
14379 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14380 }
14381
14382 /* Create appropriate locally-scoped variables for all the
14383 DW_TAG_common_block entries. Also create a struct common_block
14384 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14385 is used to sepate the common blocks name namespace from regular
14386 variable names. */
14387
14388 static void
14389 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14390 {
14391 struct attribute *attr;
14392
14393 attr = dwarf2_attr (die, DW_AT_location, cu);
14394 if (attr)
14395 {
14396 /* Support the .debug_loc offsets. */
14397 if (attr_form_is_block (attr))
14398 {
14399 /* Ok. */
14400 }
14401 else if (attr_form_is_section_offset (attr))
14402 {
14403 dwarf2_complex_location_expr_complaint ();
14404 attr = NULL;
14405 }
14406 else
14407 {
14408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14409 "common block member");
14410 attr = NULL;
14411 }
14412 }
14413
14414 if (die->child != NULL)
14415 {
14416 struct objfile *objfile = cu->objfile;
14417 struct die_info *child_die;
14418 size_t n_entries = 0, size;
14419 struct common_block *common_block;
14420 struct symbol *sym;
14421
14422 for (child_die = die->child;
14423 child_die && child_die->tag;
14424 child_die = sibling_die (child_die))
14425 ++n_entries;
14426
14427 size = (sizeof (struct common_block)
14428 + (n_entries - 1) * sizeof (struct symbol *));
14429 common_block
14430 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14431 size);
14432 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14433 common_block->n_entries = 0;
14434
14435 for (child_die = die->child;
14436 child_die && child_die->tag;
14437 child_die = sibling_die (child_die))
14438 {
14439 /* Create the symbol in the DW_TAG_common_block block in the current
14440 symbol scope. */
14441 sym = new_symbol (child_die, NULL, cu);
14442 if (sym != NULL)
14443 {
14444 struct attribute *member_loc;
14445
14446 common_block->contents[common_block->n_entries++] = sym;
14447
14448 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14449 cu);
14450 if (member_loc)
14451 {
14452 /* GDB has handled this for a long time, but it is
14453 not specified by DWARF. It seems to have been
14454 emitted by gfortran at least as recently as:
14455 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14456 complaint (&symfile_complaints,
14457 _("Variable in common block has "
14458 "DW_AT_data_member_location "
14459 "- DIE at 0x%x [in module %s]"),
14460 to_underlying (child_die->sect_off),
14461 objfile_name (cu->objfile));
14462
14463 if (attr_form_is_section_offset (member_loc))
14464 dwarf2_complex_location_expr_complaint ();
14465 else if (attr_form_is_constant (member_loc)
14466 || attr_form_is_block (member_loc))
14467 {
14468 if (attr)
14469 mark_common_block_symbol_computed (sym, die, attr,
14470 member_loc, cu);
14471 }
14472 else
14473 dwarf2_complex_location_expr_complaint ();
14474 }
14475 }
14476 }
14477
14478 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14479 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14480 }
14481 }
14482
14483 /* Create a type for a C++ namespace. */
14484
14485 static struct type *
14486 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14487 {
14488 struct objfile *objfile = cu->objfile;
14489 const char *previous_prefix, *name;
14490 int is_anonymous;
14491 struct type *type;
14492
14493 /* For extensions, reuse the type of the original namespace. */
14494 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14495 {
14496 struct die_info *ext_die;
14497 struct dwarf2_cu *ext_cu = cu;
14498
14499 ext_die = dwarf2_extension (die, &ext_cu);
14500 type = read_type_die (ext_die, ext_cu);
14501
14502 /* EXT_CU may not be the same as CU.
14503 Ensure TYPE is recorded with CU in die_type_hash. */
14504 return set_die_type (die, type, cu);
14505 }
14506
14507 name = namespace_name (die, &is_anonymous, cu);
14508
14509 /* Now build the name of the current namespace. */
14510
14511 previous_prefix = determine_prefix (die, cu);
14512 if (previous_prefix[0] != '\0')
14513 name = typename_concat (&objfile->objfile_obstack,
14514 previous_prefix, name, 0, cu);
14515
14516 /* Create the type. */
14517 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14518 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14519
14520 return set_die_type (die, type, cu);
14521 }
14522
14523 /* Read a namespace scope. */
14524
14525 static void
14526 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14527 {
14528 struct objfile *objfile = cu->objfile;
14529 int is_anonymous;
14530
14531 /* Add a symbol associated to this if we haven't seen the namespace
14532 before. Also, add a using directive if it's an anonymous
14533 namespace. */
14534
14535 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14536 {
14537 struct type *type;
14538
14539 type = read_type_die (die, cu);
14540 new_symbol (die, type, cu);
14541
14542 namespace_name (die, &is_anonymous, cu);
14543 if (is_anonymous)
14544 {
14545 const char *previous_prefix = determine_prefix (die, cu);
14546
14547 std::vector<const char *> excludes;
14548 add_using_directive (using_directives (cu->language),
14549 previous_prefix, TYPE_NAME (type), NULL,
14550 NULL, excludes, 0, &objfile->objfile_obstack);
14551 }
14552 }
14553
14554 if (die->child != NULL)
14555 {
14556 struct die_info *child_die = die->child;
14557
14558 while (child_die && child_die->tag)
14559 {
14560 process_die (child_die, cu);
14561 child_die = sibling_die (child_die);
14562 }
14563 }
14564 }
14565
14566 /* Read a Fortran module as type. This DIE can be only a declaration used for
14567 imported module. Still we need that type as local Fortran "use ... only"
14568 declaration imports depend on the created type in determine_prefix. */
14569
14570 static struct type *
14571 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14572 {
14573 struct objfile *objfile = cu->objfile;
14574 const char *module_name;
14575 struct type *type;
14576
14577 module_name = dwarf2_name (die, cu);
14578 if (!module_name)
14579 complaint (&symfile_complaints,
14580 _("DW_TAG_module has no name, offset 0x%x"),
14581 to_underlying (die->sect_off));
14582 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14583
14584 /* determine_prefix uses TYPE_TAG_NAME. */
14585 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14586
14587 return set_die_type (die, type, cu);
14588 }
14589
14590 /* Read a Fortran module. */
14591
14592 static void
14593 read_module (struct die_info *die, struct dwarf2_cu *cu)
14594 {
14595 struct die_info *child_die = die->child;
14596 struct type *type;
14597
14598 type = read_type_die (die, cu);
14599 new_symbol (die, type, cu);
14600
14601 while (child_die && child_die->tag)
14602 {
14603 process_die (child_die, cu);
14604 child_die = sibling_die (child_die);
14605 }
14606 }
14607
14608 /* Return the name of the namespace represented by DIE. Set
14609 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14610 namespace. */
14611
14612 static const char *
14613 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14614 {
14615 struct die_info *current_die;
14616 const char *name = NULL;
14617
14618 /* Loop through the extensions until we find a name. */
14619
14620 for (current_die = die;
14621 current_die != NULL;
14622 current_die = dwarf2_extension (die, &cu))
14623 {
14624 /* We don't use dwarf2_name here so that we can detect the absence
14625 of a name -> anonymous namespace. */
14626 name = dwarf2_string_attr (die, DW_AT_name, cu);
14627
14628 if (name != NULL)
14629 break;
14630 }
14631
14632 /* Is it an anonymous namespace? */
14633
14634 *is_anonymous = (name == NULL);
14635 if (*is_anonymous)
14636 name = CP_ANONYMOUS_NAMESPACE_STR;
14637
14638 return name;
14639 }
14640
14641 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14642 the user defined type vector. */
14643
14644 static struct type *
14645 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14646 {
14647 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14648 struct comp_unit_head *cu_header = &cu->header;
14649 struct type *type;
14650 struct attribute *attr_byte_size;
14651 struct attribute *attr_address_class;
14652 int byte_size, addr_class;
14653 struct type *target_type;
14654
14655 target_type = die_type (die, cu);
14656
14657 /* The die_type call above may have already set the type for this DIE. */
14658 type = get_die_type (die, cu);
14659 if (type)
14660 return type;
14661
14662 type = lookup_pointer_type (target_type);
14663
14664 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14665 if (attr_byte_size)
14666 byte_size = DW_UNSND (attr_byte_size);
14667 else
14668 byte_size = cu_header->addr_size;
14669
14670 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14671 if (attr_address_class)
14672 addr_class = DW_UNSND (attr_address_class);
14673 else
14674 addr_class = DW_ADDR_none;
14675
14676 /* If the pointer size or address class is different than the
14677 default, create a type variant marked as such and set the
14678 length accordingly. */
14679 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14680 {
14681 if (gdbarch_address_class_type_flags_p (gdbarch))
14682 {
14683 int type_flags;
14684
14685 type_flags = gdbarch_address_class_type_flags
14686 (gdbarch, byte_size, addr_class);
14687 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14688 == 0);
14689 type = make_type_with_address_space (type, type_flags);
14690 }
14691 else if (TYPE_LENGTH (type) != byte_size)
14692 {
14693 complaint (&symfile_complaints,
14694 _("invalid pointer size %d"), byte_size);
14695 }
14696 else
14697 {
14698 /* Should we also complain about unhandled address classes? */
14699 }
14700 }
14701
14702 TYPE_LENGTH (type) = byte_size;
14703 return set_die_type (die, type, cu);
14704 }
14705
14706 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14707 the user defined type vector. */
14708
14709 static struct type *
14710 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14711 {
14712 struct type *type;
14713 struct type *to_type;
14714 struct type *domain;
14715
14716 to_type = die_type (die, cu);
14717 domain = die_containing_type (die, cu);
14718
14719 /* The calls above may have already set the type for this DIE. */
14720 type = get_die_type (die, cu);
14721 if (type)
14722 return type;
14723
14724 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14725 type = lookup_methodptr_type (to_type);
14726 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14727 {
14728 struct type *new_type = alloc_type (cu->objfile);
14729
14730 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14731 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14732 TYPE_VARARGS (to_type));
14733 type = lookup_methodptr_type (new_type);
14734 }
14735 else
14736 type = lookup_memberptr_type (to_type, domain);
14737
14738 return set_die_type (die, type, cu);
14739 }
14740
14741 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14742 the user defined type vector. */
14743
14744 static struct type *
14745 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14746 enum type_code refcode)
14747 {
14748 struct comp_unit_head *cu_header = &cu->header;
14749 struct type *type, *target_type;
14750 struct attribute *attr;
14751
14752 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14753
14754 target_type = die_type (die, cu);
14755
14756 /* The die_type call above may have already set the type for this DIE. */
14757 type = get_die_type (die, cu);
14758 if (type)
14759 return type;
14760
14761 type = lookup_reference_type (target_type, refcode);
14762 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14763 if (attr)
14764 {
14765 TYPE_LENGTH (type) = DW_UNSND (attr);
14766 }
14767 else
14768 {
14769 TYPE_LENGTH (type) = cu_header->addr_size;
14770 }
14771 return set_die_type (die, type, cu);
14772 }
14773
14774 /* Add the given cv-qualifiers to the element type of the array. GCC
14775 outputs DWARF type qualifiers that apply to an array, not the
14776 element type. But GDB relies on the array element type to carry
14777 the cv-qualifiers. This mimics section 6.7.3 of the C99
14778 specification. */
14779
14780 static struct type *
14781 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14782 struct type *base_type, int cnst, int voltl)
14783 {
14784 struct type *el_type, *inner_array;
14785
14786 base_type = copy_type (base_type);
14787 inner_array = base_type;
14788
14789 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14790 {
14791 TYPE_TARGET_TYPE (inner_array) =
14792 copy_type (TYPE_TARGET_TYPE (inner_array));
14793 inner_array = TYPE_TARGET_TYPE (inner_array);
14794 }
14795
14796 el_type = TYPE_TARGET_TYPE (inner_array);
14797 cnst |= TYPE_CONST (el_type);
14798 voltl |= TYPE_VOLATILE (el_type);
14799 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14800
14801 return set_die_type (die, base_type, cu);
14802 }
14803
14804 static struct type *
14805 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14806 {
14807 struct type *base_type, *cv_type;
14808
14809 base_type = die_type (die, cu);
14810
14811 /* The die_type call above may have already set the type for this DIE. */
14812 cv_type = get_die_type (die, cu);
14813 if (cv_type)
14814 return cv_type;
14815
14816 /* In case the const qualifier is applied to an array type, the element type
14817 is so qualified, not the array type (section 6.7.3 of C99). */
14818 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14819 return add_array_cv_type (die, cu, base_type, 1, 0);
14820
14821 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14822 return set_die_type (die, cv_type, cu);
14823 }
14824
14825 static struct type *
14826 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14827 {
14828 struct type *base_type, *cv_type;
14829
14830 base_type = die_type (die, cu);
14831
14832 /* The die_type call above may have already set the type for this DIE. */
14833 cv_type = get_die_type (die, cu);
14834 if (cv_type)
14835 return cv_type;
14836
14837 /* In case the volatile qualifier is applied to an array type, the
14838 element type is so qualified, not the array type (section 6.7.3
14839 of C99). */
14840 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14841 return add_array_cv_type (die, cu, base_type, 0, 1);
14842
14843 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14844 return set_die_type (die, cv_type, cu);
14845 }
14846
14847 /* Handle DW_TAG_restrict_type. */
14848
14849 static struct type *
14850 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14851 {
14852 struct type *base_type, *cv_type;
14853
14854 base_type = die_type (die, cu);
14855
14856 /* The die_type call above may have already set the type for this DIE. */
14857 cv_type = get_die_type (die, cu);
14858 if (cv_type)
14859 return cv_type;
14860
14861 cv_type = make_restrict_type (base_type);
14862 return set_die_type (die, cv_type, cu);
14863 }
14864
14865 /* Handle DW_TAG_atomic_type. */
14866
14867 static struct type *
14868 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14869 {
14870 struct type *base_type, *cv_type;
14871
14872 base_type = die_type (die, cu);
14873
14874 /* The die_type call above may have already set the type for this DIE. */
14875 cv_type = get_die_type (die, cu);
14876 if (cv_type)
14877 return cv_type;
14878
14879 cv_type = make_atomic_type (base_type);
14880 return set_die_type (die, cv_type, cu);
14881 }
14882
14883 /* Extract all information from a DW_TAG_string_type DIE and add to
14884 the user defined type vector. It isn't really a user defined type,
14885 but it behaves like one, with other DIE's using an AT_user_def_type
14886 attribute to reference it. */
14887
14888 static struct type *
14889 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14890 {
14891 struct objfile *objfile = cu->objfile;
14892 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14893 struct type *type, *range_type, *index_type, *char_type;
14894 struct attribute *attr;
14895 unsigned int length;
14896
14897 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14898 if (attr)
14899 {
14900 length = DW_UNSND (attr);
14901 }
14902 else
14903 {
14904 /* Check for the DW_AT_byte_size attribute. */
14905 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14906 if (attr)
14907 {
14908 length = DW_UNSND (attr);
14909 }
14910 else
14911 {
14912 length = 1;
14913 }
14914 }
14915
14916 index_type = objfile_type (objfile)->builtin_int;
14917 range_type = create_static_range_type (NULL, index_type, 1, length);
14918 char_type = language_string_char_type (cu->language_defn, gdbarch);
14919 type = create_string_type (NULL, char_type, range_type);
14920
14921 return set_die_type (die, type, cu);
14922 }
14923
14924 /* Assuming that DIE corresponds to a function, returns nonzero
14925 if the function is prototyped. */
14926
14927 static int
14928 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14929 {
14930 struct attribute *attr;
14931
14932 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14933 if (attr && (DW_UNSND (attr) != 0))
14934 return 1;
14935
14936 /* The DWARF standard implies that the DW_AT_prototyped attribute
14937 is only meaninful for C, but the concept also extends to other
14938 languages that allow unprototyped functions (Eg: Objective C).
14939 For all other languages, assume that functions are always
14940 prototyped. */
14941 if (cu->language != language_c
14942 && cu->language != language_objc
14943 && cu->language != language_opencl)
14944 return 1;
14945
14946 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14947 prototyped and unprototyped functions; default to prototyped,
14948 since that is more common in modern code (and RealView warns
14949 about unprototyped functions). */
14950 if (producer_is_realview (cu->producer))
14951 return 1;
14952
14953 return 0;
14954 }
14955
14956 /* Handle DIES due to C code like:
14957
14958 struct foo
14959 {
14960 int (*funcp)(int a, long l);
14961 int b;
14962 };
14963
14964 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14965
14966 static struct type *
14967 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14968 {
14969 struct objfile *objfile = cu->objfile;
14970 struct type *type; /* Type that this function returns. */
14971 struct type *ftype; /* Function that returns above type. */
14972 struct attribute *attr;
14973
14974 type = die_type (die, cu);
14975
14976 /* The die_type call above may have already set the type for this DIE. */
14977 ftype = get_die_type (die, cu);
14978 if (ftype)
14979 return ftype;
14980
14981 ftype = lookup_function_type (type);
14982
14983 if (prototyped_function_p (die, cu))
14984 TYPE_PROTOTYPED (ftype) = 1;
14985
14986 /* Store the calling convention in the type if it's available in
14987 the subroutine die. Otherwise set the calling convention to
14988 the default value DW_CC_normal. */
14989 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14990 if (attr)
14991 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14992 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14993 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14994 else
14995 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14996
14997 /* Record whether the function returns normally to its caller or not
14998 if the DWARF producer set that information. */
14999 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15000 if (attr && (DW_UNSND (attr) != 0))
15001 TYPE_NO_RETURN (ftype) = 1;
15002
15003 /* We need to add the subroutine type to the die immediately so
15004 we don't infinitely recurse when dealing with parameters
15005 declared as the same subroutine type. */
15006 set_die_type (die, ftype, cu);
15007
15008 if (die->child != NULL)
15009 {
15010 struct type *void_type = objfile_type (objfile)->builtin_void;
15011 struct die_info *child_die;
15012 int nparams, iparams;
15013
15014 /* Count the number of parameters.
15015 FIXME: GDB currently ignores vararg functions, but knows about
15016 vararg member functions. */
15017 nparams = 0;
15018 child_die = die->child;
15019 while (child_die && child_die->tag)
15020 {
15021 if (child_die->tag == DW_TAG_formal_parameter)
15022 nparams++;
15023 else if (child_die->tag == DW_TAG_unspecified_parameters)
15024 TYPE_VARARGS (ftype) = 1;
15025 child_die = sibling_die (child_die);
15026 }
15027
15028 /* Allocate storage for parameters and fill them in. */
15029 TYPE_NFIELDS (ftype) = nparams;
15030 TYPE_FIELDS (ftype) = (struct field *)
15031 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15032
15033 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15034 even if we error out during the parameters reading below. */
15035 for (iparams = 0; iparams < nparams; iparams++)
15036 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15037
15038 iparams = 0;
15039 child_die = die->child;
15040 while (child_die && child_die->tag)
15041 {
15042 if (child_die->tag == DW_TAG_formal_parameter)
15043 {
15044 struct type *arg_type;
15045
15046 /* DWARF version 2 has no clean way to discern C++
15047 static and non-static member functions. G++ helps
15048 GDB by marking the first parameter for non-static
15049 member functions (which is the this pointer) as
15050 artificial. We pass this information to
15051 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15052
15053 DWARF version 3 added DW_AT_object_pointer, which GCC
15054 4.5 does not yet generate. */
15055 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15056 if (attr)
15057 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15058 else
15059 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15060 arg_type = die_type (child_die, cu);
15061
15062 /* RealView does not mark THIS as const, which the testsuite
15063 expects. GCC marks THIS as const in method definitions,
15064 but not in the class specifications (GCC PR 43053). */
15065 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15066 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15067 {
15068 int is_this = 0;
15069 struct dwarf2_cu *arg_cu = cu;
15070 const char *name = dwarf2_name (child_die, cu);
15071
15072 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15073 if (attr)
15074 {
15075 /* If the compiler emits this, use it. */
15076 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15077 is_this = 1;
15078 }
15079 else if (name && strcmp (name, "this") == 0)
15080 /* Function definitions will have the argument names. */
15081 is_this = 1;
15082 else if (name == NULL && iparams == 0)
15083 /* Declarations may not have the names, so like
15084 elsewhere in GDB, assume an artificial first
15085 argument is "this". */
15086 is_this = 1;
15087
15088 if (is_this)
15089 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15090 arg_type, 0);
15091 }
15092
15093 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15094 iparams++;
15095 }
15096 child_die = sibling_die (child_die);
15097 }
15098 }
15099
15100 return ftype;
15101 }
15102
15103 static struct type *
15104 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15105 {
15106 struct objfile *objfile = cu->objfile;
15107 const char *name = NULL;
15108 struct type *this_type, *target_type;
15109
15110 name = dwarf2_full_name (NULL, die, cu);
15111 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15112 TYPE_TARGET_STUB (this_type) = 1;
15113 set_die_type (die, this_type, cu);
15114 target_type = die_type (die, cu);
15115 if (target_type != this_type)
15116 TYPE_TARGET_TYPE (this_type) = target_type;
15117 else
15118 {
15119 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15120 spec and cause infinite loops in GDB. */
15121 complaint (&symfile_complaints,
15122 _("Self-referential DW_TAG_typedef "
15123 "- DIE at 0x%x [in module %s]"),
15124 to_underlying (die->sect_off), objfile_name (objfile));
15125 TYPE_TARGET_TYPE (this_type) = NULL;
15126 }
15127 return this_type;
15128 }
15129
15130 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15131 (which may be different from NAME) to the architecture back-end to allow
15132 it to guess the correct format if necessary. */
15133
15134 static struct type *
15135 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15136 const char *name_hint)
15137 {
15138 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15139 const struct floatformat **format;
15140 struct type *type;
15141
15142 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15143 if (format)
15144 type = init_float_type (objfile, bits, name, format);
15145 else
15146 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15147
15148 return type;
15149 }
15150
15151 /* Find a representation of a given base type and install
15152 it in the TYPE field of the die. */
15153
15154 static struct type *
15155 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15156 {
15157 struct objfile *objfile = cu->objfile;
15158 struct type *type;
15159 struct attribute *attr;
15160 int encoding = 0, bits = 0;
15161 const char *name;
15162
15163 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15164 if (attr)
15165 {
15166 encoding = DW_UNSND (attr);
15167 }
15168 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15169 if (attr)
15170 {
15171 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15172 }
15173 name = dwarf2_name (die, cu);
15174 if (!name)
15175 {
15176 complaint (&symfile_complaints,
15177 _("DW_AT_name missing from DW_TAG_base_type"));
15178 }
15179
15180 switch (encoding)
15181 {
15182 case DW_ATE_address:
15183 /* Turn DW_ATE_address into a void * pointer. */
15184 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
15185 type = init_pointer_type (objfile, bits, name, type);
15186 break;
15187 case DW_ATE_boolean:
15188 type = init_boolean_type (objfile, bits, 1, name);
15189 break;
15190 case DW_ATE_complex_float:
15191 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15192 type = init_complex_type (objfile, name, type);
15193 break;
15194 case DW_ATE_decimal_float:
15195 type = init_decfloat_type (objfile, bits, name);
15196 break;
15197 case DW_ATE_float:
15198 type = dwarf2_init_float_type (objfile, bits, name, name);
15199 break;
15200 case DW_ATE_signed:
15201 type = init_integer_type (objfile, bits, 0, name);
15202 break;
15203 case DW_ATE_unsigned:
15204 if (cu->language == language_fortran
15205 && name
15206 && startswith (name, "character("))
15207 type = init_character_type (objfile, bits, 1, name);
15208 else
15209 type = init_integer_type (objfile, bits, 1, name);
15210 break;
15211 case DW_ATE_signed_char:
15212 if (cu->language == language_ada || cu->language == language_m2
15213 || cu->language == language_pascal
15214 || cu->language == language_fortran)
15215 type = init_character_type (objfile, bits, 0, name);
15216 else
15217 type = init_integer_type (objfile, bits, 0, name);
15218 break;
15219 case DW_ATE_unsigned_char:
15220 if (cu->language == language_ada || cu->language == language_m2
15221 || cu->language == language_pascal
15222 || cu->language == language_fortran
15223 || cu->language == language_rust)
15224 type = init_character_type (objfile, bits, 1, name);
15225 else
15226 type = init_integer_type (objfile, bits, 1, name);
15227 break;
15228 case DW_ATE_UTF:
15229 {
15230 gdbarch *arch = get_objfile_arch (objfile);
15231
15232 if (bits == 16)
15233 type = builtin_type (arch)->builtin_char16;
15234 else if (bits == 32)
15235 type = builtin_type (arch)->builtin_char32;
15236 else
15237 {
15238 complaint (&symfile_complaints,
15239 _("unsupported DW_ATE_UTF bit size: '%d'"),
15240 bits);
15241 type = init_integer_type (objfile, bits, 1, name);
15242 }
15243 return set_die_type (die, type, cu);
15244 }
15245 break;
15246
15247 default:
15248 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15249 dwarf_type_encoding_name (encoding));
15250 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
15251 break;
15252 }
15253
15254 if (name && strcmp (name, "char") == 0)
15255 TYPE_NOSIGN (type) = 1;
15256
15257 return set_die_type (die, type, cu);
15258 }
15259
15260 /* Parse dwarf attribute if it's a block, reference or constant and put the
15261 resulting value of the attribute into struct bound_prop.
15262 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15263
15264 static int
15265 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15266 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15267 {
15268 struct dwarf2_property_baton *baton;
15269 struct obstack *obstack = &cu->objfile->objfile_obstack;
15270
15271 if (attr == NULL || prop == NULL)
15272 return 0;
15273
15274 if (attr_form_is_block (attr))
15275 {
15276 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15277 baton->referenced_type = NULL;
15278 baton->locexpr.per_cu = cu->per_cu;
15279 baton->locexpr.size = DW_BLOCK (attr)->size;
15280 baton->locexpr.data = DW_BLOCK (attr)->data;
15281 prop->data.baton = baton;
15282 prop->kind = PROP_LOCEXPR;
15283 gdb_assert (prop->data.baton != NULL);
15284 }
15285 else if (attr_form_is_ref (attr))
15286 {
15287 struct dwarf2_cu *target_cu = cu;
15288 struct die_info *target_die;
15289 struct attribute *target_attr;
15290
15291 target_die = follow_die_ref (die, attr, &target_cu);
15292 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15293 if (target_attr == NULL)
15294 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15295 target_cu);
15296 if (target_attr == NULL)
15297 return 0;
15298
15299 switch (target_attr->name)
15300 {
15301 case DW_AT_location:
15302 if (attr_form_is_section_offset (target_attr))
15303 {
15304 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15305 baton->referenced_type = die_type (target_die, target_cu);
15306 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15307 prop->data.baton = baton;
15308 prop->kind = PROP_LOCLIST;
15309 gdb_assert (prop->data.baton != NULL);
15310 }
15311 else if (attr_form_is_block (target_attr))
15312 {
15313 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15314 baton->referenced_type = die_type (target_die, target_cu);
15315 baton->locexpr.per_cu = cu->per_cu;
15316 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15317 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15318 prop->data.baton = baton;
15319 prop->kind = PROP_LOCEXPR;
15320 gdb_assert (prop->data.baton != NULL);
15321 }
15322 else
15323 {
15324 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15325 "dynamic property");
15326 return 0;
15327 }
15328 break;
15329 case DW_AT_data_member_location:
15330 {
15331 LONGEST offset;
15332
15333 if (!handle_data_member_location (target_die, target_cu,
15334 &offset))
15335 return 0;
15336
15337 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15338 baton->referenced_type = read_type_die (target_die->parent,
15339 target_cu);
15340 baton->offset_info.offset = offset;
15341 baton->offset_info.type = die_type (target_die, target_cu);
15342 prop->data.baton = baton;
15343 prop->kind = PROP_ADDR_OFFSET;
15344 break;
15345 }
15346 }
15347 }
15348 else if (attr_form_is_constant (attr))
15349 {
15350 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15351 prop->kind = PROP_CONST;
15352 }
15353 else
15354 {
15355 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15356 dwarf2_name (die, cu));
15357 return 0;
15358 }
15359
15360 return 1;
15361 }
15362
15363 /* Read the given DW_AT_subrange DIE. */
15364
15365 static struct type *
15366 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15367 {
15368 struct type *base_type, *orig_base_type;
15369 struct type *range_type;
15370 struct attribute *attr;
15371 struct dynamic_prop low, high;
15372 int low_default_is_valid;
15373 int high_bound_is_count = 0;
15374 const char *name;
15375 LONGEST negative_mask;
15376
15377 orig_base_type = die_type (die, cu);
15378 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15379 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15380 creating the range type, but we use the result of check_typedef
15381 when examining properties of the type. */
15382 base_type = check_typedef (orig_base_type);
15383
15384 /* The die_type call above may have already set the type for this DIE. */
15385 range_type = get_die_type (die, cu);
15386 if (range_type)
15387 return range_type;
15388
15389 low.kind = PROP_CONST;
15390 high.kind = PROP_CONST;
15391 high.data.const_val = 0;
15392
15393 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15394 omitting DW_AT_lower_bound. */
15395 switch (cu->language)
15396 {
15397 case language_c:
15398 case language_cplus:
15399 low.data.const_val = 0;
15400 low_default_is_valid = 1;
15401 break;
15402 case language_fortran:
15403 low.data.const_val = 1;
15404 low_default_is_valid = 1;
15405 break;
15406 case language_d:
15407 case language_objc:
15408 case language_rust:
15409 low.data.const_val = 0;
15410 low_default_is_valid = (cu->header.version >= 4);
15411 break;
15412 case language_ada:
15413 case language_m2:
15414 case language_pascal:
15415 low.data.const_val = 1;
15416 low_default_is_valid = (cu->header.version >= 4);
15417 break;
15418 default:
15419 low.data.const_val = 0;
15420 low_default_is_valid = 0;
15421 break;
15422 }
15423
15424 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15425 if (attr)
15426 attr_to_dynamic_prop (attr, die, cu, &low);
15427 else if (!low_default_is_valid)
15428 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15429 "- DIE at 0x%x [in module %s]"),
15430 to_underlying (die->sect_off), objfile_name (cu->objfile));
15431
15432 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15433 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15434 {
15435 attr = dwarf2_attr (die, DW_AT_count, cu);
15436 if (attr_to_dynamic_prop (attr, die, cu, &high))
15437 {
15438 /* If bounds are constant do the final calculation here. */
15439 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15440 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15441 else
15442 high_bound_is_count = 1;
15443 }
15444 }
15445
15446 /* Dwarf-2 specifications explicitly allows to create subrange types
15447 without specifying a base type.
15448 In that case, the base type must be set to the type of
15449 the lower bound, upper bound or count, in that order, if any of these
15450 three attributes references an object that has a type.
15451 If no base type is found, the Dwarf-2 specifications say that
15452 a signed integer type of size equal to the size of an address should
15453 be used.
15454 For the following C code: `extern char gdb_int [];'
15455 GCC produces an empty range DIE.
15456 FIXME: muller/2010-05-28: Possible references to object for low bound,
15457 high bound or count are not yet handled by this code. */
15458 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15459 {
15460 struct objfile *objfile = cu->objfile;
15461 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15462 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15463 struct type *int_type = objfile_type (objfile)->builtin_int;
15464
15465 /* Test "int", "long int", and "long long int" objfile types,
15466 and select the first one having a size above or equal to the
15467 architecture address size. */
15468 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15469 base_type = int_type;
15470 else
15471 {
15472 int_type = objfile_type (objfile)->builtin_long;
15473 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15474 base_type = int_type;
15475 else
15476 {
15477 int_type = objfile_type (objfile)->builtin_long_long;
15478 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15479 base_type = int_type;
15480 }
15481 }
15482 }
15483
15484 /* Normally, the DWARF producers are expected to use a signed
15485 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15486 But this is unfortunately not always the case, as witnessed
15487 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15488 is used instead. To work around that ambiguity, we treat
15489 the bounds as signed, and thus sign-extend their values, when
15490 the base type is signed. */
15491 negative_mask =
15492 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15493 if (low.kind == PROP_CONST
15494 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15495 low.data.const_val |= negative_mask;
15496 if (high.kind == PROP_CONST
15497 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15498 high.data.const_val |= negative_mask;
15499
15500 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15501
15502 if (high_bound_is_count)
15503 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15504
15505 /* Ada expects an empty array on no boundary attributes. */
15506 if (attr == NULL && cu->language != language_ada)
15507 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15508
15509 name = dwarf2_name (die, cu);
15510 if (name)
15511 TYPE_NAME (range_type) = name;
15512
15513 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15514 if (attr)
15515 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15516
15517 set_die_type (die, range_type, cu);
15518
15519 /* set_die_type should be already done. */
15520 set_descriptive_type (range_type, die, cu);
15521
15522 return range_type;
15523 }
15524
15525 static struct type *
15526 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15527 {
15528 struct type *type;
15529
15530 /* For now, we only support the C meaning of an unspecified type: void. */
15531
15532 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15533 TYPE_NAME (type) = dwarf2_name (die, cu);
15534
15535 return set_die_type (die, type, cu);
15536 }
15537
15538 /* Read a single die and all its descendents. Set the die's sibling
15539 field to NULL; set other fields in the die correctly, and set all
15540 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15541 location of the info_ptr after reading all of those dies. PARENT
15542 is the parent of the die in question. */
15543
15544 static struct die_info *
15545 read_die_and_children (const struct die_reader_specs *reader,
15546 const gdb_byte *info_ptr,
15547 const gdb_byte **new_info_ptr,
15548 struct die_info *parent)
15549 {
15550 struct die_info *die;
15551 const gdb_byte *cur_ptr;
15552 int has_children;
15553
15554 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15555 if (die == NULL)
15556 {
15557 *new_info_ptr = cur_ptr;
15558 return NULL;
15559 }
15560 store_in_ref_table (die, reader->cu);
15561
15562 if (has_children)
15563 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15564 else
15565 {
15566 die->child = NULL;
15567 *new_info_ptr = cur_ptr;
15568 }
15569
15570 die->sibling = NULL;
15571 die->parent = parent;
15572 return die;
15573 }
15574
15575 /* Read a die, all of its descendents, and all of its siblings; set
15576 all of the fields of all of the dies correctly. Arguments are as
15577 in read_die_and_children. */
15578
15579 static struct die_info *
15580 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15581 const gdb_byte *info_ptr,
15582 const gdb_byte **new_info_ptr,
15583 struct die_info *parent)
15584 {
15585 struct die_info *first_die, *last_sibling;
15586 const gdb_byte *cur_ptr;
15587
15588 cur_ptr = info_ptr;
15589 first_die = last_sibling = NULL;
15590
15591 while (1)
15592 {
15593 struct die_info *die
15594 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15595
15596 if (die == NULL)
15597 {
15598 *new_info_ptr = cur_ptr;
15599 return first_die;
15600 }
15601
15602 if (!first_die)
15603 first_die = die;
15604 else
15605 last_sibling->sibling = die;
15606
15607 last_sibling = die;
15608 }
15609 }
15610
15611 /* Read a die, all of its descendents, and all of its siblings; set
15612 all of the fields of all of the dies correctly. Arguments are as
15613 in read_die_and_children.
15614 This the main entry point for reading a DIE and all its children. */
15615
15616 static struct die_info *
15617 read_die_and_siblings (const struct die_reader_specs *reader,
15618 const gdb_byte *info_ptr,
15619 const gdb_byte **new_info_ptr,
15620 struct die_info *parent)
15621 {
15622 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15623 new_info_ptr, parent);
15624
15625 if (dwarf_die_debug)
15626 {
15627 fprintf_unfiltered (gdb_stdlog,
15628 "Read die from %s@0x%x of %s:\n",
15629 get_section_name (reader->die_section),
15630 (unsigned) (info_ptr - reader->die_section->buffer),
15631 bfd_get_filename (reader->abfd));
15632 dump_die (die, dwarf_die_debug);
15633 }
15634
15635 return die;
15636 }
15637
15638 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15639 attributes.
15640 The caller is responsible for filling in the extra attributes
15641 and updating (*DIEP)->num_attrs.
15642 Set DIEP to point to a newly allocated die with its information,
15643 except for its child, sibling, and parent fields.
15644 Set HAS_CHILDREN to tell whether the die has children or not. */
15645
15646 static const gdb_byte *
15647 read_full_die_1 (const struct die_reader_specs *reader,
15648 struct die_info **diep, const gdb_byte *info_ptr,
15649 int *has_children, int num_extra_attrs)
15650 {
15651 unsigned int abbrev_number, bytes_read, i;
15652 struct abbrev_info *abbrev;
15653 struct die_info *die;
15654 struct dwarf2_cu *cu = reader->cu;
15655 bfd *abfd = reader->abfd;
15656
15657 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15658 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15659 info_ptr += bytes_read;
15660 if (!abbrev_number)
15661 {
15662 *diep = NULL;
15663 *has_children = 0;
15664 return info_ptr;
15665 }
15666
15667 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15668 if (!abbrev)
15669 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15670 abbrev_number,
15671 bfd_get_filename (abfd));
15672
15673 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15674 die->sect_off = sect_off;
15675 die->tag = abbrev->tag;
15676 die->abbrev = abbrev_number;
15677
15678 /* Make the result usable.
15679 The caller needs to update num_attrs after adding the extra
15680 attributes. */
15681 die->num_attrs = abbrev->num_attrs;
15682
15683 for (i = 0; i < abbrev->num_attrs; ++i)
15684 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15685 info_ptr);
15686
15687 *diep = die;
15688 *has_children = abbrev->has_children;
15689 return info_ptr;
15690 }
15691
15692 /* Read a die and all its attributes.
15693 Set DIEP to point to a newly allocated die with its information,
15694 except for its child, sibling, and parent fields.
15695 Set HAS_CHILDREN to tell whether the die has children or not. */
15696
15697 static const gdb_byte *
15698 read_full_die (const struct die_reader_specs *reader,
15699 struct die_info **diep, const gdb_byte *info_ptr,
15700 int *has_children)
15701 {
15702 const gdb_byte *result;
15703
15704 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15705
15706 if (dwarf_die_debug)
15707 {
15708 fprintf_unfiltered (gdb_stdlog,
15709 "Read die from %s@0x%x of %s:\n",
15710 get_section_name (reader->die_section),
15711 (unsigned) (info_ptr - reader->die_section->buffer),
15712 bfd_get_filename (reader->abfd));
15713 dump_die (*diep, dwarf_die_debug);
15714 }
15715
15716 return result;
15717 }
15718 \f
15719 /* Abbreviation tables.
15720
15721 In DWARF version 2, the description of the debugging information is
15722 stored in a separate .debug_abbrev section. Before we read any
15723 dies from a section we read in all abbreviations and install them
15724 in a hash table. */
15725
15726 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15727
15728 static struct abbrev_info *
15729 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15730 {
15731 struct abbrev_info *abbrev;
15732
15733 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15734 memset (abbrev, 0, sizeof (struct abbrev_info));
15735
15736 return abbrev;
15737 }
15738
15739 /* Add an abbreviation to the table. */
15740
15741 static void
15742 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15743 unsigned int abbrev_number,
15744 struct abbrev_info *abbrev)
15745 {
15746 unsigned int hash_number;
15747
15748 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15749 abbrev->next = abbrev_table->abbrevs[hash_number];
15750 abbrev_table->abbrevs[hash_number] = abbrev;
15751 }
15752
15753 /* Look up an abbrev in the table.
15754 Returns NULL if the abbrev is not found. */
15755
15756 static struct abbrev_info *
15757 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15758 unsigned int abbrev_number)
15759 {
15760 unsigned int hash_number;
15761 struct abbrev_info *abbrev;
15762
15763 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15764 abbrev = abbrev_table->abbrevs[hash_number];
15765
15766 while (abbrev)
15767 {
15768 if (abbrev->number == abbrev_number)
15769 return abbrev;
15770 abbrev = abbrev->next;
15771 }
15772 return NULL;
15773 }
15774
15775 /* Read in an abbrev table. */
15776
15777 static struct abbrev_table *
15778 abbrev_table_read_table (struct dwarf2_section_info *section,
15779 sect_offset sect_off)
15780 {
15781 struct objfile *objfile = dwarf2_per_objfile->objfile;
15782 bfd *abfd = get_section_bfd_owner (section);
15783 struct abbrev_table *abbrev_table;
15784 const gdb_byte *abbrev_ptr;
15785 struct abbrev_info *cur_abbrev;
15786 unsigned int abbrev_number, bytes_read, abbrev_name;
15787 unsigned int abbrev_form;
15788 struct attr_abbrev *cur_attrs;
15789 unsigned int allocated_attrs;
15790
15791 abbrev_table = XNEW (struct abbrev_table);
15792 abbrev_table->sect_off = sect_off;
15793 obstack_init (&abbrev_table->abbrev_obstack);
15794 abbrev_table->abbrevs =
15795 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15796 ABBREV_HASH_SIZE);
15797 memset (abbrev_table->abbrevs, 0,
15798 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15799
15800 dwarf2_read_section (objfile, section);
15801 abbrev_ptr = section->buffer + to_underlying (sect_off);
15802 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15803 abbrev_ptr += bytes_read;
15804
15805 allocated_attrs = ATTR_ALLOC_CHUNK;
15806 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15807
15808 /* Loop until we reach an abbrev number of 0. */
15809 while (abbrev_number)
15810 {
15811 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15812
15813 /* read in abbrev header */
15814 cur_abbrev->number = abbrev_number;
15815 cur_abbrev->tag
15816 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15817 abbrev_ptr += bytes_read;
15818 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15819 abbrev_ptr += 1;
15820
15821 /* now read in declarations */
15822 for (;;)
15823 {
15824 LONGEST implicit_const;
15825
15826 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15827 abbrev_ptr += bytes_read;
15828 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15829 abbrev_ptr += bytes_read;
15830 if (abbrev_form == DW_FORM_implicit_const)
15831 {
15832 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15833 &bytes_read);
15834 abbrev_ptr += bytes_read;
15835 }
15836 else
15837 {
15838 /* Initialize it due to a false compiler warning. */
15839 implicit_const = -1;
15840 }
15841
15842 if (abbrev_name == 0)
15843 break;
15844
15845 if (cur_abbrev->num_attrs == allocated_attrs)
15846 {
15847 allocated_attrs += ATTR_ALLOC_CHUNK;
15848 cur_attrs
15849 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15850 }
15851
15852 cur_attrs[cur_abbrev->num_attrs].name
15853 = (enum dwarf_attribute) abbrev_name;
15854 cur_attrs[cur_abbrev->num_attrs].form
15855 = (enum dwarf_form) abbrev_form;
15856 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15857 ++cur_abbrev->num_attrs;
15858 }
15859
15860 cur_abbrev->attrs =
15861 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15862 cur_abbrev->num_attrs);
15863 memcpy (cur_abbrev->attrs, cur_attrs,
15864 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15865
15866 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15867
15868 /* Get next abbreviation.
15869 Under Irix6 the abbreviations for a compilation unit are not
15870 always properly terminated with an abbrev number of 0.
15871 Exit loop if we encounter an abbreviation which we have
15872 already read (which means we are about to read the abbreviations
15873 for the next compile unit) or if the end of the abbreviation
15874 table is reached. */
15875 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15876 break;
15877 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15878 abbrev_ptr += bytes_read;
15879 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15880 break;
15881 }
15882
15883 xfree (cur_attrs);
15884 return abbrev_table;
15885 }
15886
15887 /* Free the resources held by ABBREV_TABLE. */
15888
15889 static void
15890 abbrev_table_free (struct abbrev_table *abbrev_table)
15891 {
15892 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15893 xfree (abbrev_table);
15894 }
15895
15896 /* Same as abbrev_table_free but as a cleanup.
15897 We pass in a pointer to the pointer to the table so that we can
15898 set the pointer to NULL when we're done. It also simplifies
15899 build_type_psymtabs_1. */
15900
15901 static void
15902 abbrev_table_free_cleanup (void *table_ptr)
15903 {
15904 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15905
15906 if (*abbrev_table_ptr != NULL)
15907 abbrev_table_free (*abbrev_table_ptr);
15908 *abbrev_table_ptr = NULL;
15909 }
15910
15911 /* Read the abbrev table for CU from ABBREV_SECTION. */
15912
15913 static void
15914 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15915 struct dwarf2_section_info *abbrev_section)
15916 {
15917 cu->abbrev_table =
15918 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15919 }
15920
15921 /* Release the memory used by the abbrev table for a compilation unit. */
15922
15923 static void
15924 dwarf2_free_abbrev_table (void *ptr_to_cu)
15925 {
15926 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15927
15928 if (cu->abbrev_table != NULL)
15929 abbrev_table_free (cu->abbrev_table);
15930 /* Set this to NULL so that we SEGV if we try to read it later,
15931 and also because free_comp_unit verifies this is NULL. */
15932 cu->abbrev_table = NULL;
15933 }
15934 \f
15935 /* Returns nonzero if TAG represents a type that we might generate a partial
15936 symbol for. */
15937
15938 static int
15939 is_type_tag_for_partial (int tag)
15940 {
15941 switch (tag)
15942 {
15943 #if 0
15944 /* Some types that would be reasonable to generate partial symbols for,
15945 that we don't at present. */
15946 case DW_TAG_array_type:
15947 case DW_TAG_file_type:
15948 case DW_TAG_ptr_to_member_type:
15949 case DW_TAG_set_type:
15950 case DW_TAG_string_type:
15951 case DW_TAG_subroutine_type:
15952 #endif
15953 case DW_TAG_base_type:
15954 case DW_TAG_class_type:
15955 case DW_TAG_interface_type:
15956 case DW_TAG_enumeration_type:
15957 case DW_TAG_structure_type:
15958 case DW_TAG_subrange_type:
15959 case DW_TAG_typedef:
15960 case DW_TAG_union_type:
15961 return 1;
15962 default:
15963 return 0;
15964 }
15965 }
15966
15967 /* Load all DIEs that are interesting for partial symbols into memory. */
15968
15969 static struct partial_die_info *
15970 load_partial_dies (const struct die_reader_specs *reader,
15971 const gdb_byte *info_ptr, int building_psymtab)
15972 {
15973 struct dwarf2_cu *cu = reader->cu;
15974 struct objfile *objfile = cu->objfile;
15975 struct partial_die_info *part_die;
15976 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15977 struct abbrev_info *abbrev;
15978 unsigned int bytes_read;
15979 unsigned int load_all = 0;
15980 int nesting_level = 1;
15981
15982 parent_die = NULL;
15983 last_die = NULL;
15984
15985 gdb_assert (cu->per_cu != NULL);
15986 if (cu->per_cu->load_all_dies)
15987 load_all = 1;
15988
15989 cu->partial_dies
15990 = htab_create_alloc_ex (cu->header.length / 12,
15991 partial_die_hash,
15992 partial_die_eq,
15993 NULL,
15994 &cu->comp_unit_obstack,
15995 hashtab_obstack_allocate,
15996 dummy_obstack_deallocate);
15997
15998 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15999
16000 while (1)
16001 {
16002 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16003
16004 /* A NULL abbrev means the end of a series of children. */
16005 if (abbrev == NULL)
16006 {
16007 if (--nesting_level == 0)
16008 {
16009 /* PART_DIE was probably the last thing allocated on the
16010 comp_unit_obstack, so we could call obstack_free
16011 here. We don't do that because the waste is small,
16012 and will be cleaned up when we're done with this
16013 compilation unit. This way, we're also more robust
16014 against other users of the comp_unit_obstack. */
16015 return first_die;
16016 }
16017 info_ptr += bytes_read;
16018 last_die = parent_die;
16019 parent_die = parent_die->die_parent;
16020 continue;
16021 }
16022
16023 /* Check for template arguments. We never save these; if
16024 they're seen, we just mark the parent, and go on our way. */
16025 if (parent_die != NULL
16026 && cu->language == language_cplus
16027 && (abbrev->tag == DW_TAG_template_type_param
16028 || abbrev->tag == DW_TAG_template_value_param))
16029 {
16030 parent_die->has_template_arguments = 1;
16031
16032 if (!load_all)
16033 {
16034 /* We don't need a partial DIE for the template argument. */
16035 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16036 continue;
16037 }
16038 }
16039
16040 /* We only recurse into c++ subprograms looking for template arguments.
16041 Skip their other children. */
16042 if (!load_all
16043 && cu->language == language_cplus
16044 && parent_die != NULL
16045 && parent_die->tag == DW_TAG_subprogram)
16046 {
16047 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16048 continue;
16049 }
16050
16051 /* Check whether this DIE is interesting enough to save. Normally
16052 we would not be interested in members here, but there may be
16053 later variables referencing them via DW_AT_specification (for
16054 static members). */
16055 if (!load_all
16056 && !is_type_tag_for_partial (abbrev->tag)
16057 && abbrev->tag != DW_TAG_constant
16058 && abbrev->tag != DW_TAG_enumerator
16059 && abbrev->tag != DW_TAG_subprogram
16060 && abbrev->tag != DW_TAG_lexical_block
16061 && abbrev->tag != DW_TAG_variable
16062 && abbrev->tag != DW_TAG_namespace
16063 && abbrev->tag != DW_TAG_module
16064 && abbrev->tag != DW_TAG_member
16065 && abbrev->tag != DW_TAG_imported_unit
16066 && abbrev->tag != DW_TAG_imported_declaration)
16067 {
16068 /* Otherwise we skip to the next sibling, if any. */
16069 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16070 continue;
16071 }
16072
16073 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16074 info_ptr);
16075
16076 /* This two-pass algorithm for processing partial symbols has a
16077 high cost in cache pressure. Thus, handle some simple cases
16078 here which cover the majority of C partial symbols. DIEs
16079 which neither have specification tags in them, nor could have
16080 specification tags elsewhere pointing at them, can simply be
16081 processed and discarded.
16082
16083 This segment is also optional; scan_partial_symbols and
16084 add_partial_symbol will handle these DIEs if we chain
16085 them in normally. When compilers which do not emit large
16086 quantities of duplicate debug information are more common,
16087 this code can probably be removed. */
16088
16089 /* Any complete simple types at the top level (pretty much all
16090 of them, for a language without namespaces), can be processed
16091 directly. */
16092 if (parent_die == NULL
16093 && part_die->has_specification == 0
16094 && part_die->is_declaration == 0
16095 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16096 || part_die->tag == DW_TAG_base_type
16097 || part_die->tag == DW_TAG_subrange_type))
16098 {
16099 if (building_psymtab && part_die->name != NULL)
16100 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16101 VAR_DOMAIN, LOC_TYPEDEF,
16102 &objfile->static_psymbols,
16103 0, cu->language, objfile);
16104 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16105 continue;
16106 }
16107
16108 /* The exception for DW_TAG_typedef with has_children above is
16109 a workaround of GCC PR debug/47510. In the case of this complaint
16110 type_name_no_tag_or_error will error on such types later.
16111
16112 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16113 it could not find the child DIEs referenced later, this is checked
16114 above. In correct DWARF DW_TAG_typedef should have no children. */
16115
16116 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16117 complaint (&symfile_complaints,
16118 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16119 "- DIE at 0x%x [in module %s]"),
16120 to_underlying (part_die->sect_off), objfile_name (objfile));
16121
16122 /* If we're at the second level, and we're an enumerator, and
16123 our parent has no specification (meaning possibly lives in a
16124 namespace elsewhere), then we can add the partial symbol now
16125 instead of queueing it. */
16126 if (part_die->tag == DW_TAG_enumerator
16127 && parent_die != NULL
16128 && parent_die->die_parent == NULL
16129 && parent_die->tag == DW_TAG_enumeration_type
16130 && parent_die->has_specification == 0)
16131 {
16132 if (part_die->name == NULL)
16133 complaint (&symfile_complaints,
16134 _("malformed enumerator DIE ignored"));
16135 else if (building_psymtab)
16136 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16137 VAR_DOMAIN, LOC_CONST,
16138 cu->language == language_cplus
16139 ? &objfile->global_psymbols
16140 : &objfile->static_psymbols,
16141 0, cu->language, objfile);
16142
16143 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16144 continue;
16145 }
16146
16147 /* We'll save this DIE so link it in. */
16148 part_die->die_parent = parent_die;
16149 part_die->die_sibling = NULL;
16150 part_die->die_child = NULL;
16151
16152 if (last_die && last_die == parent_die)
16153 last_die->die_child = part_die;
16154 else if (last_die)
16155 last_die->die_sibling = part_die;
16156
16157 last_die = part_die;
16158
16159 if (first_die == NULL)
16160 first_die = part_die;
16161
16162 /* Maybe add the DIE to the hash table. Not all DIEs that we
16163 find interesting need to be in the hash table, because we
16164 also have the parent/sibling/child chains; only those that we
16165 might refer to by offset later during partial symbol reading.
16166
16167 For now this means things that might have be the target of a
16168 DW_AT_specification, DW_AT_abstract_origin, or
16169 DW_AT_extension. DW_AT_extension will refer only to
16170 namespaces; DW_AT_abstract_origin refers to functions (and
16171 many things under the function DIE, but we do not recurse
16172 into function DIEs during partial symbol reading) and
16173 possibly variables as well; DW_AT_specification refers to
16174 declarations. Declarations ought to have the DW_AT_declaration
16175 flag. It happens that GCC forgets to put it in sometimes, but
16176 only for functions, not for types.
16177
16178 Adding more things than necessary to the hash table is harmless
16179 except for the performance cost. Adding too few will result in
16180 wasted time in find_partial_die, when we reread the compilation
16181 unit with load_all_dies set. */
16182
16183 if (load_all
16184 || abbrev->tag == DW_TAG_constant
16185 || abbrev->tag == DW_TAG_subprogram
16186 || abbrev->tag == DW_TAG_variable
16187 || abbrev->tag == DW_TAG_namespace
16188 || part_die->is_declaration)
16189 {
16190 void **slot;
16191
16192 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16193 to_underlying (part_die->sect_off),
16194 INSERT);
16195 *slot = part_die;
16196 }
16197
16198 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16199
16200 /* For some DIEs we want to follow their children (if any). For C
16201 we have no reason to follow the children of structures; for other
16202 languages we have to, so that we can get at method physnames
16203 to infer fully qualified class names, for DW_AT_specification,
16204 and for C++ template arguments. For C++, we also look one level
16205 inside functions to find template arguments (if the name of the
16206 function does not already contain the template arguments).
16207
16208 For Ada, we need to scan the children of subprograms and lexical
16209 blocks as well because Ada allows the definition of nested
16210 entities that could be interesting for the debugger, such as
16211 nested subprograms for instance. */
16212 if (last_die->has_children
16213 && (load_all
16214 || last_die->tag == DW_TAG_namespace
16215 || last_die->tag == DW_TAG_module
16216 || last_die->tag == DW_TAG_enumeration_type
16217 || (cu->language == language_cplus
16218 && last_die->tag == DW_TAG_subprogram
16219 && (last_die->name == NULL
16220 || strchr (last_die->name, '<') == NULL))
16221 || (cu->language != language_c
16222 && (last_die->tag == DW_TAG_class_type
16223 || last_die->tag == DW_TAG_interface_type
16224 || last_die->tag == DW_TAG_structure_type
16225 || last_die->tag == DW_TAG_union_type))
16226 || (cu->language == language_ada
16227 && (last_die->tag == DW_TAG_subprogram
16228 || last_die->tag == DW_TAG_lexical_block))))
16229 {
16230 nesting_level++;
16231 parent_die = last_die;
16232 continue;
16233 }
16234
16235 /* Otherwise we skip to the next sibling, if any. */
16236 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16237
16238 /* Back to the top, do it again. */
16239 }
16240 }
16241
16242 /* Read a minimal amount of information into the minimal die structure. */
16243
16244 static const gdb_byte *
16245 read_partial_die (const struct die_reader_specs *reader,
16246 struct partial_die_info *part_die,
16247 struct abbrev_info *abbrev, unsigned int abbrev_len,
16248 const gdb_byte *info_ptr)
16249 {
16250 struct dwarf2_cu *cu = reader->cu;
16251 struct objfile *objfile = cu->objfile;
16252 const gdb_byte *buffer = reader->buffer;
16253 unsigned int i;
16254 struct attribute attr;
16255 int has_low_pc_attr = 0;
16256 int has_high_pc_attr = 0;
16257 int high_pc_relative = 0;
16258
16259 memset (part_die, 0, sizeof (struct partial_die_info));
16260
16261 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16262
16263 info_ptr += abbrev_len;
16264
16265 if (abbrev == NULL)
16266 return info_ptr;
16267
16268 part_die->tag = abbrev->tag;
16269 part_die->has_children = abbrev->has_children;
16270
16271 for (i = 0; i < abbrev->num_attrs; ++i)
16272 {
16273 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16274
16275 /* Store the data if it is of an attribute we want to keep in a
16276 partial symbol table. */
16277 switch (attr.name)
16278 {
16279 case DW_AT_name:
16280 switch (part_die->tag)
16281 {
16282 case DW_TAG_compile_unit:
16283 case DW_TAG_partial_unit:
16284 case DW_TAG_type_unit:
16285 /* Compilation units have a DW_AT_name that is a filename, not
16286 a source language identifier. */
16287 case DW_TAG_enumeration_type:
16288 case DW_TAG_enumerator:
16289 /* These tags always have simple identifiers already; no need
16290 to canonicalize them. */
16291 part_die->name = DW_STRING (&attr);
16292 break;
16293 default:
16294 part_die->name
16295 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16296 &objfile->per_bfd->storage_obstack);
16297 break;
16298 }
16299 break;
16300 case DW_AT_linkage_name:
16301 case DW_AT_MIPS_linkage_name:
16302 /* Note that both forms of linkage name might appear. We
16303 assume they will be the same, and we only store the last
16304 one we see. */
16305 if (cu->language == language_ada)
16306 part_die->name = DW_STRING (&attr);
16307 part_die->linkage_name = DW_STRING (&attr);
16308 break;
16309 case DW_AT_low_pc:
16310 has_low_pc_attr = 1;
16311 part_die->lowpc = attr_value_as_address (&attr);
16312 break;
16313 case DW_AT_high_pc:
16314 has_high_pc_attr = 1;
16315 part_die->highpc = attr_value_as_address (&attr);
16316 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16317 high_pc_relative = 1;
16318 break;
16319 case DW_AT_location:
16320 /* Support the .debug_loc offsets. */
16321 if (attr_form_is_block (&attr))
16322 {
16323 part_die->d.locdesc = DW_BLOCK (&attr);
16324 }
16325 else if (attr_form_is_section_offset (&attr))
16326 {
16327 dwarf2_complex_location_expr_complaint ();
16328 }
16329 else
16330 {
16331 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16332 "partial symbol information");
16333 }
16334 break;
16335 case DW_AT_external:
16336 part_die->is_external = DW_UNSND (&attr);
16337 break;
16338 case DW_AT_declaration:
16339 part_die->is_declaration = DW_UNSND (&attr);
16340 break;
16341 case DW_AT_type:
16342 part_die->has_type = 1;
16343 break;
16344 case DW_AT_abstract_origin:
16345 case DW_AT_specification:
16346 case DW_AT_extension:
16347 part_die->has_specification = 1;
16348 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16349 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16350 || cu->per_cu->is_dwz);
16351 break;
16352 case DW_AT_sibling:
16353 /* Ignore absolute siblings, they might point outside of
16354 the current compile unit. */
16355 if (attr.form == DW_FORM_ref_addr)
16356 complaint (&symfile_complaints,
16357 _("ignoring absolute DW_AT_sibling"));
16358 else
16359 {
16360 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16361 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16362
16363 if (sibling_ptr < info_ptr)
16364 complaint (&symfile_complaints,
16365 _("DW_AT_sibling points backwards"));
16366 else if (sibling_ptr > reader->buffer_end)
16367 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16368 else
16369 part_die->sibling = sibling_ptr;
16370 }
16371 break;
16372 case DW_AT_byte_size:
16373 part_die->has_byte_size = 1;
16374 break;
16375 case DW_AT_const_value:
16376 part_die->has_const_value = 1;
16377 break;
16378 case DW_AT_calling_convention:
16379 /* DWARF doesn't provide a way to identify a program's source-level
16380 entry point. DW_AT_calling_convention attributes are only meant
16381 to describe functions' calling conventions.
16382
16383 However, because it's a necessary piece of information in
16384 Fortran, and before DWARF 4 DW_CC_program was the only
16385 piece of debugging information whose definition refers to
16386 a 'main program' at all, several compilers marked Fortran
16387 main programs with DW_CC_program --- even when those
16388 functions use the standard calling conventions.
16389
16390 Although DWARF now specifies a way to provide this
16391 information, we support this practice for backward
16392 compatibility. */
16393 if (DW_UNSND (&attr) == DW_CC_program
16394 && cu->language == language_fortran)
16395 part_die->main_subprogram = 1;
16396 break;
16397 case DW_AT_inline:
16398 if (DW_UNSND (&attr) == DW_INL_inlined
16399 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16400 part_die->may_be_inlined = 1;
16401 break;
16402
16403 case DW_AT_import:
16404 if (part_die->tag == DW_TAG_imported_unit)
16405 {
16406 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16407 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16408 || cu->per_cu->is_dwz);
16409 }
16410 break;
16411
16412 case DW_AT_main_subprogram:
16413 part_die->main_subprogram = DW_UNSND (&attr);
16414 break;
16415
16416 default:
16417 break;
16418 }
16419 }
16420
16421 if (high_pc_relative)
16422 part_die->highpc += part_die->lowpc;
16423
16424 if (has_low_pc_attr && has_high_pc_attr)
16425 {
16426 /* When using the GNU linker, .gnu.linkonce. sections are used to
16427 eliminate duplicate copies of functions and vtables and such.
16428 The linker will arbitrarily choose one and discard the others.
16429 The AT_*_pc values for such functions refer to local labels in
16430 these sections. If the section from that file was discarded, the
16431 labels are not in the output, so the relocs get a value of 0.
16432 If this is a discarded function, mark the pc bounds as invalid,
16433 so that GDB will ignore it. */
16434 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16435 {
16436 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16437
16438 complaint (&symfile_complaints,
16439 _("DW_AT_low_pc %s is zero "
16440 "for DIE at 0x%x [in module %s]"),
16441 paddress (gdbarch, part_die->lowpc),
16442 to_underlying (part_die->sect_off), objfile_name (objfile));
16443 }
16444 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16445 else if (part_die->lowpc >= part_die->highpc)
16446 {
16447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16448
16449 complaint (&symfile_complaints,
16450 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16451 "for DIE at 0x%x [in module %s]"),
16452 paddress (gdbarch, part_die->lowpc),
16453 paddress (gdbarch, part_die->highpc),
16454 to_underlying (part_die->sect_off),
16455 objfile_name (objfile));
16456 }
16457 else
16458 part_die->has_pc_info = 1;
16459 }
16460
16461 return info_ptr;
16462 }
16463
16464 /* Find a cached partial DIE at OFFSET in CU. */
16465
16466 static struct partial_die_info *
16467 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16468 {
16469 struct partial_die_info *lookup_die = NULL;
16470 struct partial_die_info part_die;
16471
16472 part_die.sect_off = sect_off;
16473 lookup_die = ((struct partial_die_info *)
16474 htab_find_with_hash (cu->partial_dies, &part_die,
16475 to_underlying (sect_off)));
16476
16477 return lookup_die;
16478 }
16479
16480 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16481 except in the case of .debug_types DIEs which do not reference
16482 outside their CU (they do however referencing other types via
16483 DW_FORM_ref_sig8). */
16484
16485 static struct partial_die_info *
16486 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16487 {
16488 struct objfile *objfile = cu->objfile;
16489 struct dwarf2_per_cu_data *per_cu = NULL;
16490 struct partial_die_info *pd = NULL;
16491
16492 if (offset_in_dwz == cu->per_cu->is_dwz
16493 && offset_in_cu_p (&cu->header, sect_off))
16494 {
16495 pd = find_partial_die_in_comp_unit (sect_off, cu);
16496 if (pd != NULL)
16497 return pd;
16498 /* We missed recording what we needed.
16499 Load all dies and try again. */
16500 per_cu = cu->per_cu;
16501 }
16502 else
16503 {
16504 /* TUs don't reference other CUs/TUs (except via type signatures). */
16505 if (cu->per_cu->is_debug_types)
16506 {
16507 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16508 " external reference to offset 0x%x [in module %s].\n"),
16509 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16510 bfd_get_filename (objfile->obfd));
16511 }
16512 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16513 objfile);
16514
16515 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16516 load_partial_comp_unit (per_cu);
16517
16518 per_cu->cu->last_used = 0;
16519 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16520 }
16521
16522 /* If we didn't find it, and not all dies have been loaded,
16523 load them all and try again. */
16524
16525 if (pd == NULL && per_cu->load_all_dies == 0)
16526 {
16527 per_cu->load_all_dies = 1;
16528
16529 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16530 THIS_CU->cu may already be in use. So we can't just free it and
16531 replace its DIEs with the ones we read in. Instead, we leave those
16532 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16533 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16534 set. */
16535 load_partial_comp_unit (per_cu);
16536
16537 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16538 }
16539
16540 if (pd == NULL)
16541 internal_error (__FILE__, __LINE__,
16542 _("could not find partial DIE 0x%x "
16543 "in cache [from module %s]\n"),
16544 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16545 return pd;
16546 }
16547
16548 /* See if we can figure out if the class lives in a namespace. We do
16549 this by looking for a member function; its demangled name will
16550 contain namespace info, if there is any. */
16551
16552 static void
16553 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16554 struct dwarf2_cu *cu)
16555 {
16556 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16557 what template types look like, because the demangler
16558 frequently doesn't give the same name as the debug info. We
16559 could fix this by only using the demangled name to get the
16560 prefix (but see comment in read_structure_type). */
16561
16562 struct partial_die_info *real_pdi;
16563 struct partial_die_info *child_pdi;
16564
16565 /* If this DIE (this DIE's specification, if any) has a parent, then
16566 we should not do this. We'll prepend the parent's fully qualified
16567 name when we create the partial symbol. */
16568
16569 real_pdi = struct_pdi;
16570 while (real_pdi->has_specification)
16571 real_pdi = find_partial_die (real_pdi->spec_offset,
16572 real_pdi->spec_is_dwz, cu);
16573
16574 if (real_pdi->die_parent != NULL)
16575 return;
16576
16577 for (child_pdi = struct_pdi->die_child;
16578 child_pdi != NULL;
16579 child_pdi = child_pdi->die_sibling)
16580 {
16581 if (child_pdi->tag == DW_TAG_subprogram
16582 && child_pdi->linkage_name != NULL)
16583 {
16584 char *actual_class_name
16585 = language_class_name_from_physname (cu->language_defn,
16586 child_pdi->linkage_name);
16587 if (actual_class_name != NULL)
16588 {
16589 struct_pdi->name
16590 = ((const char *)
16591 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16592 actual_class_name,
16593 strlen (actual_class_name)));
16594 xfree (actual_class_name);
16595 }
16596 break;
16597 }
16598 }
16599 }
16600
16601 /* Adjust PART_DIE before generating a symbol for it. This function
16602 may set the is_external flag or change the DIE's name. */
16603
16604 static void
16605 fixup_partial_die (struct partial_die_info *part_die,
16606 struct dwarf2_cu *cu)
16607 {
16608 /* Once we've fixed up a die, there's no point in doing so again.
16609 This also avoids a memory leak if we were to call
16610 guess_partial_die_structure_name multiple times. */
16611 if (part_die->fixup_called)
16612 return;
16613
16614 /* If we found a reference attribute and the DIE has no name, try
16615 to find a name in the referred to DIE. */
16616
16617 if (part_die->name == NULL && part_die->has_specification)
16618 {
16619 struct partial_die_info *spec_die;
16620
16621 spec_die = find_partial_die (part_die->spec_offset,
16622 part_die->spec_is_dwz, cu);
16623
16624 fixup_partial_die (spec_die, cu);
16625
16626 if (spec_die->name)
16627 {
16628 part_die->name = spec_die->name;
16629
16630 /* Copy DW_AT_external attribute if it is set. */
16631 if (spec_die->is_external)
16632 part_die->is_external = spec_die->is_external;
16633 }
16634 }
16635
16636 /* Set default names for some unnamed DIEs. */
16637
16638 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16639 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16640
16641 /* If there is no parent die to provide a namespace, and there are
16642 children, see if we can determine the namespace from their linkage
16643 name. */
16644 if (cu->language == language_cplus
16645 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16646 && part_die->die_parent == NULL
16647 && part_die->has_children
16648 && (part_die->tag == DW_TAG_class_type
16649 || part_die->tag == DW_TAG_structure_type
16650 || part_die->tag == DW_TAG_union_type))
16651 guess_partial_die_structure_name (part_die, cu);
16652
16653 /* GCC might emit a nameless struct or union that has a linkage
16654 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16655 if (part_die->name == NULL
16656 && (part_die->tag == DW_TAG_class_type
16657 || part_die->tag == DW_TAG_interface_type
16658 || part_die->tag == DW_TAG_structure_type
16659 || part_die->tag == DW_TAG_union_type)
16660 && part_die->linkage_name != NULL)
16661 {
16662 char *demangled;
16663
16664 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16665 if (demangled)
16666 {
16667 const char *base;
16668
16669 /* Strip any leading namespaces/classes, keep only the base name.
16670 DW_AT_name for named DIEs does not contain the prefixes. */
16671 base = strrchr (demangled, ':');
16672 if (base && base > demangled && base[-1] == ':')
16673 base++;
16674 else
16675 base = demangled;
16676
16677 part_die->name
16678 = ((const char *)
16679 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16680 base, strlen (base)));
16681 xfree (demangled);
16682 }
16683 }
16684
16685 part_die->fixup_called = 1;
16686 }
16687
16688 /* Read an attribute value described by an attribute form. */
16689
16690 static const gdb_byte *
16691 read_attribute_value (const struct die_reader_specs *reader,
16692 struct attribute *attr, unsigned form,
16693 LONGEST implicit_const, const gdb_byte *info_ptr)
16694 {
16695 struct dwarf2_cu *cu = reader->cu;
16696 struct objfile *objfile = cu->objfile;
16697 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16698 bfd *abfd = reader->abfd;
16699 struct comp_unit_head *cu_header = &cu->header;
16700 unsigned int bytes_read;
16701 struct dwarf_block *blk;
16702
16703 attr->form = (enum dwarf_form) form;
16704 switch (form)
16705 {
16706 case DW_FORM_ref_addr:
16707 if (cu->header.version == 2)
16708 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16709 else
16710 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16711 &cu->header, &bytes_read);
16712 info_ptr += bytes_read;
16713 break;
16714 case DW_FORM_GNU_ref_alt:
16715 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16716 info_ptr += bytes_read;
16717 break;
16718 case DW_FORM_addr:
16719 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16720 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16721 info_ptr += bytes_read;
16722 break;
16723 case DW_FORM_block2:
16724 blk = dwarf_alloc_block (cu);
16725 blk->size = read_2_bytes (abfd, info_ptr);
16726 info_ptr += 2;
16727 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16728 info_ptr += blk->size;
16729 DW_BLOCK (attr) = blk;
16730 break;
16731 case DW_FORM_block4:
16732 blk = dwarf_alloc_block (cu);
16733 blk->size = read_4_bytes (abfd, info_ptr);
16734 info_ptr += 4;
16735 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16736 info_ptr += blk->size;
16737 DW_BLOCK (attr) = blk;
16738 break;
16739 case DW_FORM_data2:
16740 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16741 info_ptr += 2;
16742 break;
16743 case DW_FORM_data4:
16744 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16745 info_ptr += 4;
16746 break;
16747 case DW_FORM_data8:
16748 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16749 info_ptr += 8;
16750 break;
16751 case DW_FORM_data16:
16752 blk = dwarf_alloc_block (cu);
16753 blk->size = 16;
16754 blk->data = read_n_bytes (abfd, info_ptr, 16);
16755 info_ptr += 16;
16756 DW_BLOCK (attr) = blk;
16757 break;
16758 case DW_FORM_sec_offset:
16759 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16760 info_ptr += bytes_read;
16761 break;
16762 case DW_FORM_string:
16763 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16764 DW_STRING_IS_CANONICAL (attr) = 0;
16765 info_ptr += bytes_read;
16766 break;
16767 case DW_FORM_strp:
16768 if (!cu->per_cu->is_dwz)
16769 {
16770 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16771 &bytes_read);
16772 DW_STRING_IS_CANONICAL (attr) = 0;
16773 info_ptr += bytes_read;
16774 break;
16775 }
16776 /* FALLTHROUGH */
16777 case DW_FORM_line_strp:
16778 if (!cu->per_cu->is_dwz)
16779 {
16780 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16781 cu_header, &bytes_read);
16782 DW_STRING_IS_CANONICAL (attr) = 0;
16783 info_ptr += bytes_read;
16784 break;
16785 }
16786 /* FALLTHROUGH */
16787 case DW_FORM_GNU_strp_alt:
16788 {
16789 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16790 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16791 &bytes_read);
16792
16793 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16794 DW_STRING_IS_CANONICAL (attr) = 0;
16795 info_ptr += bytes_read;
16796 }
16797 break;
16798 case DW_FORM_exprloc:
16799 case DW_FORM_block:
16800 blk = dwarf_alloc_block (cu);
16801 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16802 info_ptr += bytes_read;
16803 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16804 info_ptr += blk->size;
16805 DW_BLOCK (attr) = blk;
16806 break;
16807 case DW_FORM_block1:
16808 blk = dwarf_alloc_block (cu);
16809 blk->size = read_1_byte (abfd, info_ptr);
16810 info_ptr += 1;
16811 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16812 info_ptr += blk->size;
16813 DW_BLOCK (attr) = blk;
16814 break;
16815 case DW_FORM_data1:
16816 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16817 info_ptr += 1;
16818 break;
16819 case DW_FORM_flag:
16820 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16821 info_ptr += 1;
16822 break;
16823 case DW_FORM_flag_present:
16824 DW_UNSND (attr) = 1;
16825 break;
16826 case DW_FORM_sdata:
16827 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16828 info_ptr += bytes_read;
16829 break;
16830 case DW_FORM_udata:
16831 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16832 info_ptr += bytes_read;
16833 break;
16834 case DW_FORM_ref1:
16835 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16836 + read_1_byte (abfd, info_ptr));
16837 info_ptr += 1;
16838 break;
16839 case DW_FORM_ref2:
16840 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16841 + read_2_bytes (abfd, info_ptr));
16842 info_ptr += 2;
16843 break;
16844 case DW_FORM_ref4:
16845 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16846 + read_4_bytes (abfd, info_ptr));
16847 info_ptr += 4;
16848 break;
16849 case DW_FORM_ref8:
16850 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16851 + read_8_bytes (abfd, info_ptr));
16852 info_ptr += 8;
16853 break;
16854 case DW_FORM_ref_sig8:
16855 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16856 info_ptr += 8;
16857 break;
16858 case DW_FORM_ref_udata:
16859 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16860 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16861 info_ptr += bytes_read;
16862 break;
16863 case DW_FORM_indirect:
16864 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16865 info_ptr += bytes_read;
16866 if (form == DW_FORM_implicit_const)
16867 {
16868 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16869 info_ptr += bytes_read;
16870 }
16871 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16872 info_ptr);
16873 break;
16874 case DW_FORM_implicit_const:
16875 DW_SND (attr) = implicit_const;
16876 break;
16877 case DW_FORM_GNU_addr_index:
16878 if (reader->dwo_file == NULL)
16879 {
16880 /* For now flag a hard error.
16881 Later we can turn this into a complaint. */
16882 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16883 dwarf_form_name (form),
16884 bfd_get_filename (abfd));
16885 }
16886 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16887 info_ptr += bytes_read;
16888 break;
16889 case DW_FORM_GNU_str_index:
16890 if (reader->dwo_file == NULL)
16891 {
16892 /* For now flag a hard error.
16893 Later we can turn this into a complaint if warranted. */
16894 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16895 dwarf_form_name (form),
16896 bfd_get_filename (abfd));
16897 }
16898 {
16899 ULONGEST str_index =
16900 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16901
16902 DW_STRING (attr) = read_str_index (reader, str_index);
16903 DW_STRING_IS_CANONICAL (attr) = 0;
16904 info_ptr += bytes_read;
16905 }
16906 break;
16907 default:
16908 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16909 dwarf_form_name (form),
16910 bfd_get_filename (abfd));
16911 }
16912
16913 /* Super hack. */
16914 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16915 attr->form = DW_FORM_GNU_ref_alt;
16916
16917 /* We have seen instances where the compiler tried to emit a byte
16918 size attribute of -1 which ended up being encoded as an unsigned
16919 0xffffffff. Although 0xffffffff is technically a valid size value,
16920 an object of this size seems pretty unlikely so we can relatively
16921 safely treat these cases as if the size attribute was invalid and
16922 treat them as zero by default. */
16923 if (attr->name == DW_AT_byte_size
16924 && form == DW_FORM_data4
16925 && DW_UNSND (attr) >= 0xffffffff)
16926 {
16927 complaint
16928 (&symfile_complaints,
16929 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16930 hex_string (DW_UNSND (attr)));
16931 DW_UNSND (attr) = 0;
16932 }
16933
16934 return info_ptr;
16935 }
16936
16937 /* Read an attribute described by an abbreviated attribute. */
16938
16939 static const gdb_byte *
16940 read_attribute (const struct die_reader_specs *reader,
16941 struct attribute *attr, struct attr_abbrev *abbrev,
16942 const gdb_byte *info_ptr)
16943 {
16944 attr->name = abbrev->name;
16945 return read_attribute_value (reader, attr, abbrev->form,
16946 abbrev->implicit_const, info_ptr);
16947 }
16948
16949 /* Read dwarf information from a buffer. */
16950
16951 static unsigned int
16952 read_1_byte (bfd *abfd, const gdb_byte *buf)
16953 {
16954 return bfd_get_8 (abfd, buf);
16955 }
16956
16957 static int
16958 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16959 {
16960 return bfd_get_signed_8 (abfd, buf);
16961 }
16962
16963 static unsigned int
16964 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16965 {
16966 return bfd_get_16 (abfd, buf);
16967 }
16968
16969 static int
16970 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16971 {
16972 return bfd_get_signed_16 (abfd, buf);
16973 }
16974
16975 static unsigned int
16976 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16977 {
16978 return bfd_get_32 (abfd, buf);
16979 }
16980
16981 static int
16982 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16983 {
16984 return bfd_get_signed_32 (abfd, buf);
16985 }
16986
16987 static ULONGEST
16988 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16989 {
16990 return bfd_get_64 (abfd, buf);
16991 }
16992
16993 static CORE_ADDR
16994 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16995 unsigned int *bytes_read)
16996 {
16997 struct comp_unit_head *cu_header = &cu->header;
16998 CORE_ADDR retval = 0;
16999
17000 if (cu_header->signed_addr_p)
17001 {
17002 switch (cu_header->addr_size)
17003 {
17004 case 2:
17005 retval = bfd_get_signed_16 (abfd, buf);
17006 break;
17007 case 4:
17008 retval = bfd_get_signed_32 (abfd, buf);
17009 break;
17010 case 8:
17011 retval = bfd_get_signed_64 (abfd, buf);
17012 break;
17013 default:
17014 internal_error (__FILE__, __LINE__,
17015 _("read_address: bad switch, signed [in module %s]"),
17016 bfd_get_filename (abfd));
17017 }
17018 }
17019 else
17020 {
17021 switch (cu_header->addr_size)
17022 {
17023 case 2:
17024 retval = bfd_get_16 (abfd, buf);
17025 break;
17026 case 4:
17027 retval = bfd_get_32 (abfd, buf);
17028 break;
17029 case 8:
17030 retval = bfd_get_64 (abfd, buf);
17031 break;
17032 default:
17033 internal_error (__FILE__, __LINE__,
17034 _("read_address: bad switch, "
17035 "unsigned [in module %s]"),
17036 bfd_get_filename (abfd));
17037 }
17038 }
17039
17040 *bytes_read = cu_header->addr_size;
17041 return retval;
17042 }
17043
17044 /* Read the initial length from a section. The (draft) DWARF 3
17045 specification allows the initial length to take up either 4 bytes
17046 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17047 bytes describe the length and all offsets will be 8 bytes in length
17048 instead of 4.
17049
17050 An older, non-standard 64-bit format is also handled by this
17051 function. The older format in question stores the initial length
17052 as an 8-byte quantity without an escape value. Lengths greater
17053 than 2^32 aren't very common which means that the initial 4 bytes
17054 is almost always zero. Since a length value of zero doesn't make
17055 sense for the 32-bit format, this initial zero can be considered to
17056 be an escape value which indicates the presence of the older 64-bit
17057 format. As written, the code can't detect (old format) lengths
17058 greater than 4GB. If it becomes necessary to handle lengths
17059 somewhat larger than 4GB, we could allow other small values (such
17060 as the non-sensical values of 1, 2, and 3) to also be used as
17061 escape values indicating the presence of the old format.
17062
17063 The value returned via bytes_read should be used to increment the
17064 relevant pointer after calling read_initial_length().
17065
17066 [ Note: read_initial_length() and read_offset() are based on the
17067 document entitled "DWARF Debugging Information Format", revision
17068 3, draft 8, dated November 19, 2001. This document was obtained
17069 from:
17070
17071 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17072
17073 This document is only a draft and is subject to change. (So beware.)
17074
17075 Details regarding the older, non-standard 64-bit format were
17076 determined empirically by examining 64-bit ELF files produced by
17077 the SGI toolchain on an IRIX 6.5 machine.
17078
17079 - Kevin, July 16, 2002
17080 ] */
17081
17082 static LONGEST
17083 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17084 {
17085 LONGEST length = bfd_get_32 (abfd, buf);
17086
17087 if (length == 0xffffffff)
17088 {
17089 length = bfd_get_64 (abfd, buf + 4);
17090 *bytes_read = 12;
17091 }
17092 else if (length == 0)
17093 {
17094 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17095 length = bfd_get_64 (abfd, buf);
17096 *bytes_read = 8;
17097 }
17098 else
17099 {
17100 *bytes_read = 4;
17101 }
17102
17103 return length;
17104 }
17105
17106 /* Cover function for read_initial_length.
17107 Returns the length of the object at BUF, and stores the size of the
17108 initial length in *BYTES_READ and stores the size that offsets will be in
17109 *OFFSET_SIZE.
17110 If the initial length size is not equivalent to that specified in
17111 CU_HEADER then issue a complaint.
17112 This is useful when reading non-comp-unit headers. */
17113
17114 static LONGEST
17115 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17116 const struct comp_unit_head *cu_header,
17117 unsigned int *bytes_read,
17118 unsigned int *offset_size)
17119 {
17120 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17121
17122 gdb_assert (cu_header->initial_length_size == 4
17123 || cu_header->initial_length_size == 8
17124 || cu_header->initial_length_size == 12);
17125
17126 if (cu_header->initial_length_size != *bytes_read)
17127 complaint (&symfile_complaints,
17128 _("intermixed 32-bit and 64-bit DWARF sections"));
17129
17130 *offset_size = (*bytes_read == 4) ? 4 : 8;
17131 return length;
17132 }
17133
17134 /* Read an offset from the data stream. The size of the offset is
17135 given by cu_header->offset_size. */
17136
17137 static LONGEST
17138 read_offset (bfd *abfd, const gdb_byte *buf,
17139 const struct comp_unit_head *cu_header,
17140 unsigned int *bytes_read)
17141 {
17142 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17143
17144 *bytes_read = cu_header->offset_size;
17145 return offset;
17146 }
17147
17148 /* Read an offset from the data stream. */
17149
17150 static LONGEST
17151 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17152 {
17153 LONGEST retval = 0;
17154
17155 switch (offset_size)
17156 {
17157 case 4:
17158 retval = bfd_get_32 (abfd, buf);
17159 break;
17160 case 8:
17161 retval = bfd_get_64 (abfd, buf);
17162 break;
17163 default:
17164 internal_error (__FILE__, __LINE__,
17165 _("read_offset_1: bad switch [in module %s]"),
17166 bfd_get_filename (abfd));
17167 }
17168
17169 return retval;
17170 }
17171
17172 static const gdb_byte *
17173 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17174 {
17175 /* If the size of a host char is 8 bits, we can return a pointer
17176 to the buffer, otherwise we have to copy the data to a buffer
17177 allocated on the temporary obstack. */
17178 gdb_assert (HOST_CHAR_BIT == 8);
17179 return buf;
17180 }
17181
17182 static const char *
17183 read_direct_string (bfd *abfd, const gdb_byte *buf,
17184 unsigned int *bytes_read_ptr)
17185 {
17186 /* If the size of a host char is 8 bits, we can return a pointer
17187 to the string, otherwise we have to copy the string to a buffer
17188 allocated on the temporary obstack. */
17189 gdb_assert (HOST_CHAR_BIT == 8);
17190 if (*buf == '\0')
17191 {
17192 *bytes_read_ptr = 1;
17193 return NULL;
17194 }
17195 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17196 return (const char *) buf;
17197 }
17198
17199 /* Return pointer to string at section SECT offset STR_OFFSET with error
17200 reporting strings FORM_NAME and SECT_NAME. */
17201
17202 static const char *
17203 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17204 struct dwarf2_section_info *sect,
17205 const char *form_name,
17206 const char *sect_name)
17207 {
17208 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17209 if (sect->buffer == NULL)
17210 error (_("%s used without %s section [in module %s]"),
17211 form_name, sect_name, bfd_get_filename (abfd));
17212 if (str_offset >= sect->size)
17213 error (_("%s pointing outside of %s section [in module %s]"),
17214 form_name, sect_name, bfd_get_filename (abfd));
17215 gdb_assert (HOST_CHAR_BIT == 8);
17216 if (sect->buffer[str_offset] == '\0')
17217 return NULL;
17218 return (const char *) (sect->buffer + str_offset);
17219 }
17220
17221 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17222
17223 static const char *
17224 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17225 {
17226 return read_indirect_string_at_offset_from (abfd, str_offset,
17227 &dwarf2_per_objfile->str,
17228 "DW_FORM_strp", ".debug_str");
17229 }
17230
17231 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17232
17233 static const char *
17234 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17235 {
17236 return read_indirect_string_at_offset_from (abfd, str_offset,
17237 &dwarf2_per_objfile->line_str,
17238 "DW_FORM_line_strp",
17239 ".debug_line_str");
17240 }
17241
17242 /* Read a string at offset STR_OFFSET in the .debug_str section from
17243 the .dwz file DWZ. Throw an error if the offset is too large. If
17244 the string consists of a single NUL byte, return NULL; otherwise
17245 return a pointer to the string. */
17246
17247 static const char *
17248 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17249 {
17250 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17251
17252 if (dwz->str.buffer == NULL)
17253 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17254 "section [in module %s]"),
17255 bfd_get_filename (dwz->dwz_bfd));
17256 if (str_offset >= dwz->str.size)
17257 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17258 ".debug_str section [in module %s]"),
17259 bfd_get_filename (dwz->dwz_bfd));
17260 gdb_assert (HOST_CHAR_BIT == 8);
17261 if (dwz->str.buffer[str_offset] == '\0')
17262 return NULL;
17263 return (const char *) (dwz->str.buffer + str_offset);
17264 }
17265
17266 /* Return pointer to string at .debug_str offset as read from BUF.
17267 BUF is assumed to be in a compilation unit described by CU_HEADER.
17268 Return *BYTES_READ_PTR count of bytes read from BUF. */
17269
17270 static const char *
17271 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17272 const struct comp_unit_head *cu_header,
17273 unsigned int *bytes_read_ptr)
17274 {
17275 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17276
17277 return read_indirect_string_at_offset (abfd, str_offset);
17278 }
17279
17280 /* Return pointer to string at .debug_line_str offset as read from BUF.
17281 BUF is assumed to be in a compilation unit described by CU_HEADER.
17282 Return *BYTES_READ_PTR count of bytes read from BUF. */
17283
17284 static const char *
17285 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17286 const struct comp_unit_head *cu_header,
17287 unsigned int *bytes_read_ptr)
17288 {
17289 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17290
17291 return read_indirect_line_string_at_offset (abfd, str_offset);
17292 }
17293
17294 ULONGEST
17295 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17296 unsigned int *bytes_read_ptr)
17297 {
17298 ULONGEST result;
17299 unsigned int num_read;
17300 int shift;
17301 unsigned char byte;
17302
17303 result = 0;
17304 shift = 0;
17305 num_read = 0;
17306 while (1)
17307 {
17308 byte = bfd_get_8 (abfd, buf);
17309 buf++;
17310 num_read++;
17311 result |= ((ULONGEST) (byte & 127) << shift);
17312 if ((byte & 128) == 0)
17313 {
17314 break;
17315 }
17316 shift += 7;
17317 }
17318 *bytes_read_ptr = num_read;
17319 return result;
17320 }
17321
17322 static LONGEST
17323 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17324 unsigned int *bytes_read_ptr)
17325 {
17326 LONGEST result;
17327 int shift, num_read;
17328 unsigned char byte;
17329
17330 result = 0;
17331 shift = 0;
17332 num_read = 0;
17333 while (1)
17334 {
17335 byte = bfd_get_8 (abfd, buf);
17336 buf++;
17337 num_read++;
17338 result |= ((LONGEST) (byte & 127) << shift);
17339 shift += 7;
17340 if ((byte & 128) == 0)
17341 {
17342 break;
17343 }
17344 }
17345 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17346 result |= -(((LONGEST) 1) << shift);
17347 *bytes_read_ptr = num_read;
17348 return result;
17349 }
17350
17351 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17352 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17353 ADDR_SIZE is the size of addresses from the CU header. */
17354
17355 static CORE_ADDR
17356 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17357 {
17358 struct objfile *objfile = dwarf2_per_objfile->objfile;
17359 bfd *abfd = objfile->obfd;
17360 const gdb_byte *info_ptr;
17361
17362 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17363 if (dwarf2_per_objfile->addr.buffer == NULL)
17364 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17365 objfile_name (objfile));
17366 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17367 error (_("DW_FORM_addr_index pointing outside of "
17368 ".debug_addr section [in module %s]"),
17369 objfile_name (objfile));
17370 info_ptr = (dwarf2_per_objfile->addr.buffer
17371 + addr_base + addr_index * addr_size);
17372 if (addr_size == 4)
17373 return bfd_get_32 (abfd, info_ptr);
17374 else
17375 return bfd_get_64 (abfd, info_ptr);
17376 }
17377
17378 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17379
17380 static CORE_ADDR
17381 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17382 {
17383 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17384 }
17385
17386 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17387
17388 static CORE_ADDR
17389 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17390 unsigned int *bytes_read)
17391 {
17392 bfd *abfd = cu->objfile->obfd;
17393 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17394
17395 return read_addr_index (cu, addr_index);
17396 }
17397
17398 /* Data structure to pass results from dwarf2_read_addr_index_reader
17399 back to dwarf2_read_addr_index. */
17400
17401 struct dwarf2_read_addr_index_data
17402 {
17403 ULONGEST addr_base;
17404 int addr_size;
17405 };
17406
17407 /* die_reader_func for dwarf2_read_addr_index. */
17408
17409 static void
17410 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17411 const gdb_byte *info_ptr,
17412 struct die_info *comp_unit_die,
17413 int has_children,
17414 void *data)
17415 {
17416 struct dwarf2_cu *cu = reader->cu;
17417 struct dwarf2_read_addr_index_data *aidata =
17418 (struct dwarf2_read_addr_index_data *) data;
17419
17420 aidata->addr_base = cu->addr_base;
17421 aidata->addr_size = cu->header.addr_size;
17422 }
17423
17424 /* Given an index in .debug_addr, fetch the value.
17425 NOTE: This can be called during dwarf expression evaluation,
17426 long after the debug information has been read, and thus per_cu->cu
17427 may no longer exist. */
17428
17429 CORE_ADDR
17430 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17431 unsigned int addr_index)
17432 {
17433 struct objfile *objfile = per_cu->objfile;
17434 struct dwarf2_cu *cu = per_cu->cu;
17435 ULONGEST addr_base;
17436 int addr_size;
17437
17438 /* This is intended to be called from outside this file. */
17439 dw2_setup (objfile);
17440
17441 /* We need addr_base and addr_size.
17442 If we don't have PER_CU->cu, we have to get it.
17443 Nasty, but the alternative is storing the needed info in PER_CU,
17444 which at this point doesn't seem justified: it's not clear how frequently
17445 it would get used and it would increase the size of every PER_CU.
17446 Entry points like dwarf2_per_cu_addr_size do a similar thing
17447 so we're not in uncharted territory here.
17448 Alas we need to be a bit more complicated as addr_base is contained
17449 in the DIE.
17450
17451 We don't need to read the entire CU(/TU).
17452 We just need the header and top level die.
17453
17454 IWBN to use the aging mechanism to let us lazily later discard the CU.
17455 For now we skip this optimization. */
17456
17457 if (cu != NULL)
17458 {
17459 addr_base = cu->addr_base;
17460 addr_size = cu->header.addr_size;
17461 }
17462 else
17463 {
17464 struct dwarf2_read_addr_index_data aidata;
17465
17466 /* Note: We can't use init_cutu_and_read_dies_simple here,
17467 we need addr_base. */
17468 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17469 dwarf2_read_addr_index_reader, &aidata);
17470 addr_base = aidata.addr_base;
17471 addr_size = aidata.addr_size;
17472 }
17473
17474 return read_addr_index_1 (addr_index, addr_base, addr_size);
17475 }
17476
17477 /* Given a DW_FORM_GNU_str_index, fetch the string.
17478 This is only used by the Fission support. */
17479
17480 static const char *
17481 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17482 {
17483 struct objfile *objfile = dwarf2_per_objfile->objfile;
17484 const char *objf_name = objfile_name (objfile);
17485 bfd *abfd = objfile->obfd;
17486 struct dwarf2_cu *cu = reader->cu;
17487 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17488 struct dwarf2_section_info *str_offsets_section =
17489 &reader->dwo_file->sections.str_offsets;
17490 const gdb_byte *info_ptr;
17491 ULONGEST str_offset;
17492 static const char form_name[] = "DW_FORM_GNU_str_index";
17493
17494 dwarf2_read_section (objfile, str_section);
17495 dwarf2_read_section (objfile, str_offsets_section);
17496 if (str_section->buffer == NULL)
17497 error (_("%s used without .debug_str.dwo section"
17498 " in CU at offset 0x%x [in module %s]"),
17499 form_name, to_underlying (cu->header.sect_off), objf_name);
17500 if (str_offsets_section->buffer == NULL)
17501 error (_("%s used without .debug_str_offsets.dwo section"
17502 " in CU at offset 0x%x [in module %s]"),
17503 form_name, to_underlying (cu->header.sect_off), objf_name);
17504 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17505 error (_("%s pointing outside of .debug_str_offsets.dwo"
17506 " section in CU at offset 0x%x [in module %s]"),
17507 form_name, to_underlying (cu->header.sect_off), objf_name);
17508 info_ptr = (str_offsets_section->buffer
17509 + str_index * cu->header.offset_size);
17510 if (cu->header.offset_size == 4)
17511 str_offset = bfd_get_32 (abfd, info_ptr);
17512 else
17513 str_offset = bfd_get_64 (abfd, info_ptr);
17514 if (str_offset >= str_section->size)
17515 error (_("Offset from %s pointing outside of"
17516 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17517 form_name, to_underlying (cu->header.sect_off), objf_name);
17518 return (const char *) (str_section->buffer + str_offset);
17519 }
17520
17521 /* Return the length of an LEB128 number in BUF. */
17522
17523 static int
17524 leb128_size (const gdb_byte *buf)
17525 {
17526 const gdb_byte *begin = buf;
17527 gdb_byte byte;
17528
17529 while (1)
17530 {
17531 byte = *buf++;
17532 if ((byte & 128) == 0)
17533 return buf - begin;
17534 }
17535 }
17536
17537 static void
17538 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17539 {
17540 switch (lang)
17541 {
17542 case DW_LANG_C89:
17543 case DW_LANG_C99:
17544 case DW_LANG_C11:
17545 case DW_LANG_C:
17546 case DW_LANG_UPC:
17547 cu->language = language_c;
17548 break;
17549 case DW_LANG_Java:
17550 case DW_LANG_C_plus_plus:
17551 case DW_LANG_C_plus_plus_11:
17552 case DW_LANG_C_plus_plus_14:
17553 cu->language = language_cplus;
17554 break;
17555 case DW_LANG_D:
17556 cu->language = language_d;
17557 break;
17558 case DW_LANG_Fortran77:
17559 case DW_LANG_Fortran90:
17560 case DW_LANG_Fortran95:
17561 case DW_LANG_Fortran03:
17562 case DW_LANG_Fortran08:
17563 cu->language = language_fortran;
17564 break;
17565 case DW_LANG_Go:
17566 cu->language = language_go;
17567 break;
17568 case DW_LANG_Mips_Assembler:
17569 cu->language = language_asm;
17570 break;
17571 case DW_LANG_Ada83:
17572 case DW_LANG_Ada95:
17573 cu->language = language_ada;
17574 break;
17575 case DW_LANG_Modula2:
17576 cu->language = language_m2;
17577 break;
17578 case DW_LANG_Pascal83:
17579 cu->language = language_pascal;
17580 break;
17581 case DW_LANG_ObjC:
17582 cu->language = language_objc;
17583 break;
17584 case DW_LANG_Rust:
17585 case DW_LANG_Rust_old:
17586 cu->language = language_rust;
17587 break;
17588 case DW_LANG_Cobol74:
17589 case DW_LANG_Cobol85:
17590 default:
17591 cu->language = language_minimal;
17592 break;
17593 }
17594 cu->language_defn = language_def (cu->language);
17595 }
17596
17597 /* Return the named attribute or NULL if not there. */
17598
17599 static struct attribute *
17600 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17601 {
17602 for (;;)
17603 {
17604 unsigned int i;
17605 struct attribute *spec = NULL;
17606
17607 for (i = 0; i < die->num_attrs; ++i)
17608 {
17609 if (die->attrs[i].name == name)
17610 return &die->attrs[i];
17611 if (die->attrs[i].name == DW_AT_specification
17612 || die->attrs[i].name == DW_AT_abstract_origin)
17613 spec = &die->attrs[i];
17614 }
17615
17616 if (!spec)
17617 break;
17618
17619 die = follow_die_ref (die, spec, &cu);
17620 }
17621
17622 return NULL;
17623 }
17624
17625 /* Return the named attribute or NULL if not there,
17626 but do not follow DW_AT_specification, etc.
17627 This is for use in contexts where we're reading .debug_types dies.
17628 Following DW_AT_specification, DW_AT_abstract_origin will take us
17629 back up the chain, and we want to go down. */
17630
17631 static struct attribute *
17632 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17633 {
17634 unsigned int i;
17635
17636 for (i = 0; i < die->num_attrs; ++i)
17637 if (die->attrs[i].name == name)
17638 return &die->attrs[i];
17639
17640 return NULL;
17641 }
17642
17643 /* Return the string associated with a string-typed attribute, or NULL if it
17644 is either not found or is of an incorrect type. */
17645
17646 static const char *
17647 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17648 {
17649 struct attribute *attr;
17650 const char *str = NULL;
17651
17652 attr = dwarf2_attr (die, name, cu);
17653
17654 if (attr != NULL)
17655 {
17656 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17657 || attr->form == DW_FORM_string
17658 || attr->form == DW_FORM_GNU_str_index
17659 || attr->form == DW_FORM_GNU_strp_alt)
17660 str = DW_STRING (attr);
17661 else
17662 complaint (&symfile_complaints,
17663 _("string type expected for attribute %s for "
17664 "DIE at 0x%x in module %s"),
17665 dwarf_attr_name (name), to_underlying (die->sect_off),
17666 objfile_name (cu->objfile));
17667 }
17668
17669 return str;
17670 }
17671
17672 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17673 and holds a non-zero value. This function should only be used for
17674 DW_FORM_flag or DW_FORM_flag_present attributes. */
17675
17676 static int
17677 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17678 {
17679 struct attribute *attr = dwarf2_attr (die, name, cu);
17680
17681 return (attr && DW_UNSND (attr));
17682 }
17683
17684 static int
17685 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17686 {
17687 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17688 which value is non-zero. However, we have to be careful with
17689 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17690 (via dwarf2_flag_true_p) follows this attribute. So we may
17691 end up accidently finding a declaration attribute that belongs
17692 to a different DIE referenced by the specification attribute,
17693 even though the given DIE does not have a declaration attribute. */
17694 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17695 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17696 }
17697
17698 /* Return the die giving the specification for DIE, if there is
17699 one. *SPEC_CU is the CU containing DIE on input, and the CU
17700 containing the return value on output. If there is no
17701 specification, but there is an abstract origin, that is
17702 returned. */
17703
17704 static struct die_info *
17705 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17706 {
17707 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17708 *spec_cu);
17709
17710 if (spec_attr == NULL)
17711 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17712
17713 if (spec_attr == NULL)
17714 return NULL;
17715 else
17716 return follow_die_ref (die, spec_attr, spec_cu);
17717 }
17718
17719 /* Stub for free_line_header to match void * callback types. */
17720
17721 static void
17722 free_line_header_voidp (void *arg)
17723 {
17724 struct line_header *lh = (struct line_header *) arg;
17725
17726 delete lh;
17727 }
17728
17729 void
17730 line_header::add_include_dir (const char *include_dir)
17731 {
17732 if (dwarf_line_debug >= 2)
17733 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17734 include_dirs.size () + 1, include_dir);
17735
17736 include_dirs.push_back (include_dir);
17737 }
17738
17739 void
17740 line_header::add_file_name (const char *name,
17741 dir_index d_index,
17742 unsigned int mod_time,
17743 unsigned int length)
17744 {
17745 if (dwarf_line_debug >= 2)
17746 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17747 (unsigned) file_names.size () + 1, name);
17748
17749 file_names.emplace_back (name, d_index, mod_time, length);
17750 }
17751
17752 /* A convenience function to find the proper .debug_line section for a CU. */
17753
17754 static struct dwarf2_section_info *
17755 get_debug_line_section (struct dwarf2_cu *cu)
17756 {
17757 struct dwarf2_section_info *section;
17758
17759 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17760 DWO file. */
17761 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17762 section = &cu->dwo_unit->dwo_file->sections.line;
17763 else if (cu->per_cu->is_dwz)
17764 {
17765 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17766
17767 section = &dwz->line;
17768 }
17769 else
17770 section = &dwarf2_per_objfile->line;
17771
17772 return section;
17773 }
17774
17775 /* Read directory or file name entry format, starting with byte of
17776 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17777 entries count and the entries themselves in the described entry
17778 format. */
17779
17780 static void
17781 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17782 struct line_header *lh,
17783 const struct comp_unit_head *cu_header,
17784 void (*callback) (struct line_header *lh,
17785 const char *name,
17786 dir_index d_index,
17787 unsigned int mod_time,
17788 unsigned int length))
17789 {
17790 gdb_byte format_count, formati;
17791 ULONGEST data_count, datai;
17792 const gdb_byte *buf = *bufp;
17793 const gdb_byte *format_header_data;
17794 int i;
17795 unsigned int bytes_read;
17796
17797 format_count = read_1_byte (abfd, buf);
17798 buf += 1;
17799 format_header_data = buf;
17800 for (formati = 0; formati < format_count; formati++)
17801 {
17802 read_unsigned_leb128 (abfd, buf, &bytes_read);
17803 buf += bytes_read;
17804 read_unsigned_leb128 (abfd, buf, &bytes_read);
17805 buf += bytes_read;
17806 }
17807
17808 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17809 buf += bytes_read;
17810 for (datai = 0; datai < data_count; datai++)
17811 {
17812 const gdb_byte *format = format_header_data;
17813 struct file_entry fe;
17814
17815 for (formati = 0; formati < format_count; formati++)
17816 {
17817 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17818 format += bytes_read;
17819
17820 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17821 format += bytes_read;
17822
17823 gdb::optional<const char *> string;
17824 gdb::optional<unsigned int> uint;
17825
17826 switch (form)
17827 {
17828 case DW_FORM_string:
17829 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17830 buf += bytes_read;
17831 break;
17832
17833 case DW_FORM_line_strp:
17834 string.emplace (read_indirect_line_string (abfd, buf,
17835 cu_header,
17836 &bytes_read));
17837 buf += bytes_read;
17838 break;
17839
17840 case DW_FORM_data1:
17841 uint.emplace (read_1_byte (abfd, buf));
17842 buf += 1;
17843 break;
17844
17845 case DW_FORM_data2:
17846 uint.emplace (read_2_bytes (abfd, buf));
17847 buf += 2;
17848 break;
17849
17850 case DW_FORM_data4:
17851 uint.emplace (read_4_bytes (abfd, buf));
17852 buf += 4;
17853 break;
17854
17855 case DW_FORM_data8:
17856 uint.emplace (read_8_bytes (abfd, buf));
17857 buf += 8;
17858 break;
17859
17860 case DW_FORM_udata:
17861 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17862 buf += bytes_read;
17863 break;
17864
17865 case DW_FORM_block:
17866 /* It is valid only for DW_LNCT_timestamp which is ignored by
17867 current GDB. */
17868 break;
17869 }
17870
17871 switch (content_type)
17872 {
17873 case DW_LNCT_path:
17874 if (string.has_value ())
17875 fe.name = *string;
17876 break;
17877 case DW_LNCT_directory_index:
17878 if (uint.has_value ())
17879 fe.d_index = (dir_index) *uint;
17880 break;
17881 case DW_LNCT_timestamp:
17882 if (uint.has_value ())
17883 fe.mod_time = *uint;
17884 break;
17885 case DW_LNCT_size:
17886 if (uint.has_value ())
17887 fe.length = *uint;
17888 break;
17889 case DW_LNCT_MD5:
17890 break;
17891 default:
17892 complaint (&symfile_complaints,
17893 _("Unknown format content type %s"),
17894 pulongest (content_type));
17895 }
17896 }
17897
17898 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17899 }
17900
17901 *bufp = buf;
17902 }
17903
17904 /* Read the statement program header starting at OFFSET in
17905 .debug_line, or .debug_line.dwo. Return a pointer
17906 to a struct line_header, allocated using xmalloc.
17907 Returns NULL if there is a problem reading the header, e.g., if it
17908 has a version we don't understand.
17909
17910 NOTE: the strings in the include directory and file name tables of
17911 the returned object point into the dwarf line section buffer,
17912 and must not be freed. */
17913
17914 static line_header_up
17915 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17916 {
17917 const gdb_byte *line_ptr;
17918 unsigned int bytes_read, offset_size;
17919 int i;
17920 const char *cur_dir, *cur_file;
17921 struct dwarf2_section_info *section;
17922 bfd *abfd;
17923
17924 section = get_debug_line_section (cu);
17925 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17926 if (section->buffer == NULL)
17927 {
17928 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17929 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17930 else
17931 complaint (&symfile_complaints, _("missing .debug_line section"));
17932 return 0;
17933 }
17934
17935 /* We can't do this until we know the section is non-empty.
17936 Only then do we know we have such a section. */
17937 abfd = get_section_bfd_owner (section);
17938
17939 /* Make sure that at least there's room for the total_length field.
17940 That could be 12 bytes long, but we're just going to fudge that. */
17941 if (to_underlying (sect_off) + 4 >= section->size)
17942 {
17943 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17944 return 0;
17945 }
17946
17947 line_header_up lh (new line_header ());
17948
17949 lh->sect_off = sect_off;
17950 lh->offset_in_dwz = cu->per_cu->is_dwz;
17951
17952 line_ptr = section->buffer + to_underlying (sect_off);
17953
17954 /* Read in the header. */
17955 lh->total_length =
17956 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17957 &bytes_read, &offset_size);
17958 line_ptr += bytes_read;
17959 if (line_ptr + lh->total_length > (section->buffer + section->size))
17960 {
17961 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17962 return 0;
17963 }
17964 lh->statement_program_end = line_ptr + lh->total_length;
17965 lh->version = read_2_bytes (abfd, line_ptr);
17966 line_ptr += 2;
17967 if (lh->version > 5)
17968 {
17969 /* This is a version we don't understand. The format could have
17970 changed in ways we don't handle properly so just punt. */
17971 complaint (&symfile_complaints,
17972 _("unsupported version in .debug_line section"));
17973 return NULL;
17974 }
17975 if (lh->version >= 5)
17976 {
17977 gdb_byte segment_selector_size;
17978
17979 /* Skip address size. */
17980 read_1_byte (abfd, line_ptr);
17981 line_ptr += 1;
17982
17983 segment_selector_size = read_1_byte (abfd, line_ptr);
17984 line_ptr += 1;
17985 if (segment_selector_size != 0)
17986 {
17987 complaint (&symfile_complaints,
17988 _("unsupported segment selector size %u "
17989 "in .debug_line section"),
17990 segment_selector_size);
17991 return NULL;
17992 }
17993 }
17994 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17995 line_ptr += offset_size;
17996 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17997 line_ptr += 1;
17998 if (lh->version >= 4)
17999 {
18000 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18001 line_ptr += 1;
18002 }
18003 else
18004 lh->maximum_ops_per_instruction = 1;
18005
18006 if (lh->maximum_ops_per_instruction == 0)
18007 {
18008 lh->maximum_ops_per_instruction = 1;
18009 complaint (&symfile_complaints,
18010 _("invalid maximum_ops_per_instruction "
18011 "in `.debug_line' section"));
18012 }
18013
18014 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18015 line_ptr += 1;
18016 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18017 line_ptr += 1;
18018 lh->line_range = read_1_byte (abfd, line_ptr);
18019 line_ptr += 1;
18020 lh->opcode_base = read_1_byte (abfd, line_ptr);
18021 line_ptr += 1;
18022 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18023
18024 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18025 for (i = 1; i < lh->opcode_base; ++i)
18026 {
18027 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18028 line_ptr += 1;
18029 }
18030
18031 if (lh->version >= 5)
18032 {
18033 /* Read directory table. */
18034 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18035 [] (struct line_header *lh, const char *name,
18036 dir_index d_index, unsigned int mod_time,
18037 unsigned int length)
18038 {
18039 lh->add_include_dir (name);
18040 });
18041
18042 /* Read file name table. */
18043 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18044 [] (struct line_header *lh, const char *name,
18045 dir_index d_index, unsigned int mod_time,
18046 unsigned int length)
18047 {
18048 lh->add_file_name (name, d_index, mod_time, length);
18049 });
18050 }
18051 else
18052 {
18053 /* Read directory table. */
18054 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18055 {
18056 line_ptr += bytes_read;
18057 lh->add_include_dir (cur_dir);
18058 }
18059 line_ptr += bytes_read;
18060
18061 /* Read file name table. */
18062 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18063 {
18064 unsigned int mod_time, length;
18065 dir_index d_index;
18066
18067 line_ptr += bytes_read;
18068 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18069 line_ptr += bytes_read;
18070 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18071 line_ptr += bytes_read;
18072 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18073 line_ptr += bytes_read;
18074
18075 lh->add_file_name (cur_file, d_index, mod_time, length);
18076 }
18077 line_ptr += bytes_read;
18078 }
18079 lh->statement_program_start = line_ptr;
18080
18081 if (line_ptr > (section->buffer + section->size))
18082 complaint (&symfile_complaints,
18083 _("line number info header doesn't "
18084 "fit in `.debug_line' section"));
18085
18086 return lh;
18087 }
18088
18089 /* Subroutine of dwarf_decode_lines to simplify it.
18090 Return the file name of the psymtab for included file FILE_INDEX
18091 in line header LH of PST.
18092 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18093 If space for the result is malloc'd, it will be freed by a cleanup.
18094 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18095
18096 The function creates dangling cleanup registration. */
18097
18098 static const char *
18099 psymtab_include_file_name (const struct line_header *lh, int file_index,
18100 const struct partial_symtab *pst,
18101 const char *comp_dir)
18102 {
18103 const file_entry &fe = lh->file_names[file_index];
18104 const char *include_name = fe.name;
18105 const char *include_name_to_compare = include_name;
18106 const char *pst_filename;
18107 char *copied_name = NULL;
18108 int file_is_pst;
18109
18110 const char *dir_name = fe.include_dir (lh);
18111
18112 if (!IS_ABSOLUTE_PATH (include_name)
18113 && (dir_name != NULL || comp_dir != NULL))
18114 {
18115 /* Avoid creating a duplicate psymtab for PST.
18116 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18117 Before we do the comparison, however, we need to account
18118 for DIR_NAME and COMP_DIR.
18119 First prepend dir_name (if non-NULL). If we still don't
18120 have an absolute path prepend comp_dir (if non-NULL).
18121 However, the directory we record in the include-file's
18122 psymtab does not contain COMP_DIR (to match the
18123 corresponding symtab(s)).
18124
18125 Example:
18126
18127 bash$ cd /tmp
18128 bash$ gcc -g ./hello.c
18129 include_name = "hello.c"
18130 dir_name = "."
18131 DW_AT_comp_dir = comp_dir = "/tmp"
18132 DW_AT_name = "./hello.c"
18133
18134 */
18135
18136 if (dir_name != NULL)
18137 {
18138 char *tem = concat (dir_name, SLASH_STRING,
18139 include_name, (char *)NULL);
18140
18141 make_cleanup (xfree, tem);
18142 include_name = tem;
18143 include_name_to_compare = include_name;
18144 }
18145 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18146 {
18147 char *tem = concat (comp_dir, SLASH_STRING,
18148 include_name, (char *)NULL);
18149
18150 make_cleanup (xfree, tem);
18151 include_name_to_compare = tem;
18152 }
18153 }
18154
18155 pst_filename = pst->filename;
18156 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18157 {
18158 copied_name = concat (pst->dirname, SLASH_STRING,
18159 pst_filename, (char *)NULL);
18160 pst_filename = copied_name;
18161 }
18162
18163 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18164
18165 if (copied_name != NULL)
18166 xfree (copied_name);
18167
18168 if (file_is_pst)
18169 return NULL;
18170 return include_name;
18171 }
18172
18173 /* State machine to track the state of the line number program. */
18174
18175 class lnp_state_machine
18176 {
18177 public:
18178 /* Initialize a machine state for the start of a line number
18179 program. */
18180 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18181
18182 file_entry *current_file ()
18183 {
18184 /* lh->file_names is 0-based, but the file name numbers in the
18185 statement program are 1-based. */
18186 return m_line_header->file_name_at (m_file);
18187 }
18188
18189 /* Record the line in the state machine. END_SEQUENCE is true if
18190 we're processing the end of a sequence. */
18191 void record_line (bool end_sequence);
18192
18193 /* Check address and if invalid nop-out the rest of the lines in this
18194 sequence. */
18195 void check_line_address (struct dwarf2_cu *cu,
18196 const gdb_byte *line_ptr,
18197 CORE_ADDR lowpc, CORE_ADDR address);
18198
18199 void handle_set_discriminator (unsigned int discriminator)
18200 {
18201 m_discriminator = discriminator;
18202 m_line_has_non_zero_discriminator |= discriminator != 0;
18203 }
18204
18205 /* Handle DW_LNE_set_address. */
18206 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18207 {
18208 m_op_index = 0;
18209 address += baseaddr;
18210 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18211 }
18212
18213 /* Handle DW_LNS_advance_pc. */
18214 void handle_advance_pc (CORE_ADDR adjust);
18215
18216 /* Handle a special opcode. */
18217 void handle_special_opcode (unsigned char op_code);
18218
18219 /* Handle DW_LNS_advance_line. */
18220 void handle_advance_line (int line_delta)
18221 {
18222 advance_line (line_delta);
18223 }
18224
18225 /* Handle DW_LNS_set_file. */
18226 void handle_set_file (file_name_index file);
18227
18228 /* Handle DW_LNS_negate_stmt. */
18229 void handle_negate_stmt ()
18230 {
18231 m_is_stmt = !m_is_stmt;
18232 }
18233
18234 /* Handle DW_LNS_const_add_pc. */
18235 void handle_const_add_pc ();
18236
18237 /* Handle DW_LNS_fixed_advance_pc. */
18238 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18239 {
18240 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18241 m_op_index = 0;
18242 }
18243
18244 /* Handle DW_LNS_copy. */
18245 void handle_copy ()
18246 {
18247 record_line (false);
18248 m_discriminator = 0;
18249 }
18250
18251 /* Handle DW_LNE_end_sequence. */
18252 void handle_end_sequence ()
18253 {
18254 m_record_line_callback = ::record_line;
18255 }
18256
18257 private:
18258 /* Advance the line by LINE_DELTA. */
18259 void advance_line (int line_delta)
18260 {
18261 m_line += line_delta;
18262
18263 if (line_delta != 0)
18264 m_line_has_non_zero_discriminator = m_discriminator != 0;
18265 }
18266
18267 gdbarch *m_gdbarch;
18268
18269 /* True if we're recording lines.
18270 Otherwise we're building partial symtabs and are just interested in
18271 finding include files mentioned by the line number program. */
18272 bool m_record_lines_p;
18273
18274 /* The line number header. */
18275 line_header *m_line_header;
18276
18277 /* These are part of the standard DWARF line number state machine,
18278 and initialized according to the DWARF spec. */
18279
18280 unsigned char m_op_index = 0;
18281 /* The line table index (1-based) of the current file. */
18282 file_name_index m_file = (file_name_index) 1;
18283 unsigned int m_line = 1;
18284
18285 /* These are initialized in the constructor. */
18286
18287 CORE_ADDR m_address;
18288 bool m_is_stmt;
18289 unsigned int m_discriminator;
18290
18291 /* Additional bits of state we need to track. */
18292
18293 /* The last file that we called dwarf2_start_subfile for.
18294 This is only used for TLLs. */
18295 unsigned int m_last_file = 0;
18296 /* The last file a line number was recorded for. */
18297 struct subfile *m_last_subfile = NULL;
18298
18299 /* The function to call to record a line. */
18300 record_line_ftype *m_record_line_callback = NULL;
18301
18302 /* The last line number that was recorded, used to coalesce
18303 consecutive entries for the same line. This can happen, for
18304 example, when discriminators are present. PR 17276. */
18305 unsigned int m_last_line = 0;
18306 bool m_line_has_non_zero_discriminator = false;
18307 };
18308
18309 void
18310 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18311 {
18312 CORE_ADDR addr_adj = (((m_op_index + adjust)
18313 / m_line_header->maximum_ops_per_instruction)
18314 * m_line_header->minimum_instruction_length);
18315 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18316 m_op_index = ((m_op_index + adjust)
18317 % m_line_header->maximum_ops_per_instruction);
18318 }
18319
18320 void
18321 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18322 {
18323 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18324 CORE_ADDR addr_adj = (((m_op_index
18325 + (adj_opcode / m_line_header->line_range))
18326 / m_line_header->maximum_ops_per_instruction)
18327 * m_line_header->minimum_instruction_length);
18328 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18329 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18330 % m_line_header->maximum_ops_per_instruction);
18331
18332 int line_delta = (m_line_header->line_base
18333 + (adj_opcode % m_line_header->line_range));
18334 advance_line (line_delta);
18335 record_line (false);
18336 m_discriminator = 0;
18337 }
18338
18339 void
18340 lnp_state_machine::handle_set_file (file_name_index file)
18341 {
18342 m_file = file;
18343
18344 const file_entry *fe = current_file ();
18345 if (fe == NULL)
18346 dwarf2_debug_line_missing_file_complaint ();
18347 else if (m_record_lines_p)
18348 {
18349 const char *dir = fe->include_dir (m_line_header);
18350
18351 m_last_subfile = current_subfile;
18352 m_line_has_non_zero_discriminator = m_discriminator != 0;
18353 dwarf2_start_subfile (fe->name, dir);
18354 }
18355 }
18356
18357 void
18358 lnp_state_machine::handle_const_add_pc ()
18359 {
18360 CORE_ADDR adjust
18361 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18362
18363 CORE_ADDR addr_adj
18364 = (((m_op_index + adjust)
18365 / m_line_header->maximum_ops_per_instruction)
18366 * m_line_header->minimum_instruction_length);
18367
18368 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18369 m_op_index = ((m_op_index + adjust)
18370 % m_line_header->maximum_ops_per_instruction);
18371 }
18372
18373 /* Ignore this record_line request. */
18374
18375 static void
18376 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18377 {
18378 return;
18379 }
18380
18381 /* Return non-zero if we should add LINE to the line number table.
18382 LINE is the line to add, LAST_LINE is the last line that was added,
18383 LAST_SUBFILE is the subfile for LAST_LINE.
18384 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18385 had a non-zero discriminator.
18386
18387 We have to be careful in the presence of discriminators.
18388 E.g., for this line:
18389
18390 for (i = 0; i < 100000; i++);
18391
18392 clang can emit four line number entries for that one line,
18393 each with a different discriminator.
18394 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18395
18396 However, we want gdb to coalesce all four entries into one.
18397 Otherwise the user could stepi into the middle of the line and
18398 gdb would get confused about whether the pc really was in the
18399 middle of the line.
18400
18401 Things are further complicated by the fact that two consecutive
18402 line number entries for the same line is a heuristic used by gcc
18403 to denote the end of the prologue. So we can't just discard duplicate
18404 entries, we have to be selective about it. The heuristic we use is
18405 that we only collapse consecutive entries for the same line if at least
18406 one of those entries has a non-zero discriminator. PR 17276.
18407
18408 Note: Addresses in the line number state machine can never go backwards
18409 within one sequence, thus this coalescing is ok. */
18410
18411 static int
18412 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18413 int line_has_non_zero_discriminator,
18414 struct subfile *last_subfile)
18415 {
18416 if (current_subfile != last_subfile)
18417 return 1;
18418 if (line != last_line)
18419 return 1;
18420 /* Same line for the same file that we've seen already.
18421 As a last check, for pr 17276, only record the line if the line
18422 has never had a non-zero discriminator. */
18423 if (!line_has_non_zero_discriminator)
18424 return 1;
18425 return 0;
18426 }
18427
18428 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18429 in the line table of subfile SUBFILE. */
18430
18431 static void
18432 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18433 unsigned int line, CORE_ADDR address,
18434 record_line_ftype p_record_line)
18435 {
18436 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18437
18438 if (dwarf_line_debug)
18439 {
18440 fprintf_unfiltered (gdb_stdlog,
18441 "Recording line %u, file %s, address %s\n",
18442 line, lbasename (subfile->name),
18443 paddress (gdbarch, address));
18444 }
18445
18446 (*p_record_line) (subfile, line, addr);
18447 }
18448
18449 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18450 Mark the end of a set of line number records.
18451 The arguments are the same as for dwarf_record_line_1.
18452 If SUBFILE is NULL the request is ignored. */
18453
18454 static void
18455 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18456 CORE_ADDR address, record_line_ftype p_record_line)
18457 {
18458 if (subfile == NULL)
18459 return;
18460
18461 if (dwarf_line_debug)
18462 {
18463 fprintf_unfiltered (gdb_stdlog,
18464 "Finishing current line, file %s, address %s\n",
18465 lbasename (subfile->name),
18466 paddress (gdbarch, address));
18467 }
18468
18469 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18470 }
18471
18472 void
18473 lnp_state_machine::record_line (bool end_sequence)
18474 {
18475 if (dwarf_line_debug)
18476 {
18477 fprintf_unfiltered (gdb_stdlog,
18478 "Processing actual line %u: file %u,"
18479 " address %s, is_stmt %u, discrim %u\n",
18480 m_line, to_underlying (m_file),
18481 paddress (m_gdbarch, m_address),
18482 m_is_stmt, m_discriminator);
18483 }
18484
18485 file_entry *fe = current_file ();
18486
18487 if (fe == NULL)
18488 dwarf2_debug_line_missing_file_complaint ();
18489 /* For now we ignore lines not starting on an instruction boundary.
18490 But not when processing end_sequence for compatibility with the
18491 previous version of the code. */
18492 else if (m_op_index == 0 || end_sequence)
18493 {
18494 fe->included_p = 1;
18495 if (m_record_lines_p && m_is_stmt)
18496 {
18497 if (m_last_subfile != current_subfile || end_sequence)
18498 {
18499 dwarf_finish_line (m_gdbarch, m_last_subfile,
18500 m_address, m_record_line_callback);
18501 }
18502
18503 if (!end_sequence)
18504 {
18505 if (dwarf_record_line_p (m_line, m_last_line,
18506 m_line_has_non_zero_discriminator,
18507 m_last_subfile))
18508 {
18509 dwarf_record_line_1 (m_gdbarch, current_subfile,
18510 m_line, m_address,
18511 m_record_line_callback);
18512 }
18513 m_last_subfile = current_subfile;
18514 m_last_line = m_line;
18515 }
18516 }
18517 }
18518 }
18519
18520 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18521 bool record_lines_p)
18522 {
18523 m_gdbarch = arch;
18524 m_record_lines_p = record_lines_p;
18525 m_line_header = lh;
18526
18527 m_record_line_callback = ::record_line;
18528
18529 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18530 was a line entry for it so that the backend has a chance to adjust it
18531 and also record it in case it needs it. This is currently used by MIPS
18532 code, cf. `mips_adjust_dwarf2_line'. */
18533 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18534 m_is_stmt = lh->default_is_stmt;
18535 m_discriminator = 0;
18536 }
18537
18538 void
18539 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18540 const gdb_byte *line_ptr,
18541 CORE_ADDR lowpc, CORE_ADDR address)
18542 {
18543 /* If address < lowpc then it's not a usable value, it's outside the
18544 pc range of the CU. However, we restrict the test to only address
18545 values of zero to preserve GDB's previous behaviour which is to
18546 handle the specific case of a function being GC'd by the linker. */
18547
18548 if (address == 0 && address < lowpc)
18549 {
18550 /* This line table is for a function which has been
18551 GCd by the linker. Ignore it. PR gdb/12528 */
18552
18553 struct objfile *objfile = cu->objfile;
18554 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18555
18556 complaint (&symfile_complaints,
18557 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18558 line_offset, objfile_name (objfile));
18559 m_record_line_callback = noop_record_line;
18560 /* Note: record_line_callback is left as noop_record_line until
18561 we see DW_LNE_end_sequence. */
18562 }
18563 }
18564
18565 /* Subroutine of dwarf_decode_lines to simplify it.
18566 Process the line number information in LH.
18567 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18568 program in order to set included_p for every referenced header. */
18569
18570 static void
18571 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18572 const int decode_for_pst_p, CORE_ADDR lowpc)
18573 {
18574 const gdb_byte *line_ptr, *extended_end;
18575 const gdb_byte *line_end;
18576 unsigned int bytes_read, extended_len;
18577 unsigned char op_code, extended_op;
18578 CORE_ADDR baseaddr;
18579 struct objfile *objfile = cu->objfile;
18580 bfd *abfd = objfile->obfd;
18581 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18582 /* True if we're recording line info (as opposed to building partial
18583 symtabs and just interested in finding include files mentioned by
18584 the line number program). */
18585 bool record_lines_p = !decode_for_pst_p;
18586
18587 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18588
18589 line_ptr = lh->statement_program_start;
18590 line_end = lh->statement_program_end;
18591
18592 /* Read the statement sequences until there's nothing left. */
18593 while (line_ptr < line_end)
18594 {
18595 /* The DWARF line number program state machine. Reset the state
18596 machine at the start of each sequence. */
18597 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18598 bool end_sequence = false;
18599
18600 if (record_lines_p)
18601 {
18602 /* Start a subfile for the current file of the state
18603 machine. */
18604 const file_entry *fe = state_machine.current_file ();
18605
18606 if (fe != NULL)
18607 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18608 }
18609
18610 /* Decode the table. */
18611 while (line_ptr < line_end && !end_sequence)
18612 {
18613 op_code = read_1_byte (abfd, line_ptr);
18614 line_ptr += 1;
18615
18616 if (op_code >= lh->opcode_base)
18617 {
18618 /* Special opcode. */
18619 state_machine.handle_special_opcode (op_code);
18620 }
18621 else switch (op_code)
18622 {
18623 case DW_LNS_extended_op:
18624 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18625 &bytes_read);
18626 line_ptr += bytes_read;
18627 extended_end = line_ptr + extended_len;
18628 extended_op = read_1_byte (abfd, line_ptr);
18629 line_ptr += 1;
18630 switch (extended_op)
18631 {
18632 case DW_LNE_end_sequence:
18633 state_machine.handle_end_sequence ();
18634 end_sequence = true;
18635 break;
18636 case DW_LNE_set_address:
18637 {
18638 CORE_ADDR address
18639 = read_address (abfd, line_ptr, cu, &bytes_read);
18640 line_ptr += bytes_read;
18641
18642 state_machine.check_line_address (cu, line_ptr,
18643 lowpc, address);
18644 state_machine.handle_set_address (baseaddr, address);
18645 }
18646 break;
18647 case DW_LNE_define_file:
18648 {
18649 const char *cur_file;
18650 unsigned int mod_time, length;
18651 dir_index dindex;
18652
18653 cur_file = read_direct_string (abfd, line_ptr,
18654 &bytes_read);
18655 line_ptr += bytes_read;
18656 dindex = (dir_index)
18657 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18658 line_ptr += bytes_read;
18659 mod_time =
18660 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18661 line_ptr += bytes_read;
18662 length =
18663 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18664 line_ptr += bytes_read;
18665 lh->add_file_name (cur_file, dindex, mod_time, length);
18666 }
18667 break;
18668 case DW_LNE_set_discriminator:
18669 {
18670 /* The discriminator is not interesting to the
18671 debugger; just ignore it. We still need to
18672 check its value though:
18673 if there are consecutive entries for the same
18674 (non-prologue) line we want to coalesce them.
18675 PR 17276. */
18676 unsigned int discr
18677 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18678 line_ptr += bytes_read;
18679
18680 state_machine.handle_set_discriminator (discr);
18681 }
18682 break;
18683 default:
18684 complaint (&symfile_complaints,
18685 _("mangled .debug_line section"));
18686 return;
18687 }
18688 /* Make sure that we parsed the extended op correctly. If e.g.
18689 we expected a different address size than the producer used,
18690 we may have read the wrong number of bytes. */
18691 if (line_ptr != extended_end)
18692 {
18693 complaint (&symfile_complaints,
18694 _("mangled .debug_line section"));
18695 return;
18696 }
18697 break;
18698 case DW_LNS_copy:
18699 state_machine.handle_copy ();
18700 break;
18701 case DW_LNS_advance_pc:
18702 {
18703 CORE_ADDR adjust
18704 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18705 line_ptr += bytes_read;
18706
18707 state_machine.handle_advance_pc (adjust);
18708 }
18709 break;
18710 case DW_LNS_advance_line:
18711 {
18712 int line_delta
18713 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18714 line_ptr += bytes_read;
18715
18716 state_machine.handle_advance_line (line_delta);
18717 }
18718 break;
18719 case DW_LNS_set_file:
18720 {
18721 file_name_index file
18722 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18723 &bytes_read);
18724 line_ptr += bytes_read;
18725
18726 state_machine.handle_set_file (file);
18727 }
18728 break;
18729 case DW_LNS_set_column:
18730 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18731 line_ptr += bytes_read;
18732 break;
18733 case DW_LNS_negate_stmt:
18734 state_machine.handle_negate_stmt ();
18735 break;
18736 case DW_LNS_set_basic_block:
18737 break;
18738 /* Add to the address register of the state machine the
18739 address increment value corresponding to special opcode
18740 255. I.e., this value is scaled by the minimum
18741 instruction length since special opcode 255 would have
18742 scaled the increment. */
18743 case DW_LNS_const_add_pc:
18744 state_machine.handle_const_add_pc ();
18745 break;
18746 case DW_LNS_fixed_advance_pc:
18747 {
18748 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18749 line_ptr += 2;
18750
18751 state_machine.handle_fixed_advance_pc (addr_adj);
18752 }
18753 break;
18754 default:
18755 {
18756 /* Unknown standard opcode, ignore it. */
18757 int i;
18758
18759 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18760 {
18761 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18762 line_ptr += bytes_read;
18763 }
18764 }
18765 }
18766 }
18767
18768 if (!end_sequence)
18769 dwarf2_debug_line_missing_end_sequence_complaint ();
18770
18771 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18772 in which case we still finish recording the last line). */
18773 state_machine.record_line (true);
18774 }
18775 }
18776
18777 /* Decode the Line Number Program (LNP) for the given line_header
18778 structure and CU. The actual information extracted and the type
18779 of structures created from the LNP depends on the value of PST.
18780
18781 1. If PST is NULL, then this procedure uses the data from the program
18782 to create all necessary symbol tables, and their linetables.
18783
18784 2. If PST is not NULL, this procedure reads the program to determine
18785 the list of files included by the unit represented by PST, and
18786 builds all the associated partial symbol tables.
18787
18788 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18789 It is used for relative paths in the line table.
18790 NOTE: When processing partial symtabs (pst != NULL),
18791 comp_dir == pst->dirname.
18792
18793 NOTE: It is important that psymtabs have the same file name (via strcmp)
18794 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18795 symtab we don't use it in the name of the psymtabs we create.
18796 E.g. expand_line_sal requires this when finding psymtabs to expand.
18797 A good testcase for this is mb-inline.exp.
18798
18799 LOWPC is the lowest address in CU (or 0 if not known).
18800
18801 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18802 for its PC<->lines mapping information. Otherwise only the filename
18803 table is read in. */
18804
18805 static void
18806 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18807 struct dwarf2_cu *cu, struct partial_symtab *pst,
18808 CORE_ADDR lowpc, int decode_mapping)
18809 {
18810 struct objfile *objfile = cu->objfile;
18811 const int decode_for_pst_p = (pst != NULL);
18812
18813 if (decode_mapping)
18814 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18815
18816 if (decode_for_pst_p)
18817 {
18818 int file_index;
18819
18820 /* Now that we're done scanning the Line Header Program, we can
18821 create the psymtab of each included file. */
18822 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18823 if (lh->file_names[file_index].included_p == 1)
18824 {
18825 const char *include_name =
18826 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18827 if (include_name != NULL)
18828 dwarf2_create_include_psymtab (include_name, pst, objfile);
18829 }
18830 }
18831 else
18832 {
18833 /* Make sure a symtab is created for every file, even files
18834 which contain only variables (i.e. no code with associated
18835 line numbers). */
18836 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18837 int i;
18838
18839 for (i = 0; i < lh->file_names.size (); i++)
18840 {
18841 file_entry &fe = lh->file_names[i];
18842
18843 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18844
18845 if (current_subfile->symtab == NULL)
18846 {
18847 current_subfile->symtab
18848 = allocate_symtab (cust, current_subfile->name);
18849 }
18850 fe.symtab = current_subfile->symtab;
18851 }
18852 }
18853 }
18854
18855 /* Start a subfile for DWARF. FILENAME is the name of the file and
18856 DIRNAME the name of the source directory which contains FILENAME
18857 or NULL if not known.
18858 This routine tries to keep line numbers from identical absolute and
18859 relative file names in a common subfile.
18860
18861 Using the `list' example from the GDB testsuite, which resides in
18862 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18863 of /srcdir/list0.c yields the following debugging information for list0.c:
18864
18865 DW_AT_name: /srcdir/list0.c
18866 DW_AT_comp_dir: /compdir
18867 files.files[0].name: list0.h
18868 files.files[0].dir: /srcdir
18869 files.files[1].name: list0.c
18870 files.files[1].dir: /srcdir
18871
18872 The line number information for list0.c has to end up in a single
18873 subfile, so that `break /srcdir/list0.c:1' works as expected.
18874 start_subfile will ensure that this happens provided that we pass the
18875 concatenation of files.files[1].dir and files.files[1].name as the
18876 subfile's name. */
18877
18878 static void
18879 dwarf2_start_subfile (const char *filename, const char *dirname)
18880 {
18881 char *copy = NULL;
18882
18883 /* In order not to lose the line information directory,
18884 we concatenate it to the filename when it makes sense.
18885 Note that the Dwarf3 standard says (speaking of filenames in line
18886 information): ``The directory index is ignored for file names
18887 that represent full path names''. Thus ignoring dirname in the
18888 `else' branch below isn't an issue. */
18889
18890 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18891 {
18892 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18893 filename = copy;
18894 }
18895
18896 start_subfile (filename);
18897
18898 if (copy != NULL)
18899 xfree (copy);
18900 }
18901
18902 /* Start a symtab for DWARF.
18903 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18904
18905 static struct compunit_symtab *
18906 dwarf2_start_symtab (struct dwarf2_cu *cu,
18907 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18908 {
18909 struct compunit_symtab *cust
18910 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18911
18912 record_debugformat ("DWARF 2");
18913 record_producer (cu->producer);
18914
18915 /* We assume that we're processing GCC output. */
18916 processing_gcc_compilation = 2;
18917
18918 cu->processing_has_namespace_info = 0;
18919
18920 return cust;
18921 }
18922
18923 static void
18924 var_decode_location (struct attribute *attr, struct symbol *sym,
18925 struct dwarf2_cu *cu)
18926 {
18927 struct objfile *objfile = cu->objfile;
18928 struct comp_unit_head *cu_header = &cu->header;
18929
18930 /* NOTE drow/2003-01-30: There used to be a comment and some special
18931 code here to turn a symbol with DW_AT_external and a
18932 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18933 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18934 with some versions of binutils) where shared libraries could have
18935 relocations against symbols in their debug information - the
18936 minimal symbol would have the right address, but the debug info
18937 would not. It's no longer necessary, because we will explicitly
18938 apply relocations when we read in the debug information now. */
18939
18940 /* A DW_AT_location attribute with no contents indicates that a
18941 variable has been optimized away. */
18942 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18943 {
18944 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18945 return;
18946 }
18947
18948 /* Handle one degenerate form of location expression specially, to
18949 preserve GDB's previous behavior when section offsets are
18950 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18951 then mark this symbol as LOC_STATIC. */
18952
18953 if (attr_form_is_block (attr)
18954 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18955 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18956 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18957 && (DW_BLOCK (attr)->size
18958 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18959 {
18960 unsigned int dummy;
18961
18962 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18963 SYMBOL_VALUE_ADDRESS (sym) =
18964 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18965 else
18966 SYMBOL_VALUE_ADDRESS (sym) =
18967 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18968 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18969 fixup_symbol_section (sym, objfile);
18970 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18971 SYMBOL_SECTION (sym));
18972 return;
18973 }
18974
18975 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18976 expression evaluator, and use LOC_COMPUTED only when necessary
18977 (i.e. when the value of a register or memory location is
18978 referenced, or a thread-local block, etc.). Then again, it might
18979 not be worthwhile. I'm assuming that it isn't unless performance
18980 or memory numbers show me otherwise. */
18981
18982 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18983
18984 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18985 cu->has_loclist = 1;
18986 }
18987
18988 /* Given a pointer to a DWARF information entry, figure out if we need
18989 to make a symbol table entry for it, and if so, create a new entry
18990 and return a pointer to it.
18991 If TYPE is NULL, determine symbol type from the die, otherwise
18992 used the passed type.
18993 If SPACE is not NULL, use it to hold the new symbol. If it is
18994 NULL, allocate a new symbol on the objfile's obstack. */
18995
18996 static struct symbol *
18997 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18998 struct symbol *space)
18999 {
19000 struct objfile *objfile = cu->objfile;
19001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19002 struct symbol *sym = NULL;
19003 const char *name;
19004 struct attribute *attr = NULL;
19005 struct attribute *attr2 = NULL;
19006 CORE_ADDR baseaddr;
19007 struct pending **list_to_add = NULL;
19008
19009 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19010
19011 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19012
19013 name = dwarf2_name (die, cu);
19014 if (name)
19015 {
19016 const char *linkagename;
19017 int suppress_add = 0;
19018
19019 if (space)
19020 sym = space;
19021 else
19022 sym = allocate_symbol (objfile);
19023 OBJSTAT (objfile, n_syms++);
19024
19025 /* Cache this symbol's name and the name's demangled form (if any). */
19026 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19027 linkagename = dwarf2_physname (name, die, cu);
19028 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19029
19030 /* Fortran does not have mangling standard and the mangling does differ
19031 between gfortran, iFort etc. */
19032 if (cu->language == language_fortran
19033 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19034 symbol_set_demangled_name (&(sym->ginfo),
19035 dwarf2_full_name (name, die, cu),
19036 NULL);
19037
19038 /* Default assumptions.
19039 Use the passed type or decode it from the die. */
19040 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19041 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19042 if (type != NULL)
19043 SYMBOL_TYPE (sym) = type;
19044 else
19045 SYMBOL_TYPE (sym) = die_type (die, cu);
19046 attr = dwarf2_attr (die,
19047 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19048 cu);
19049 if (attr)
19050 {
19051 SYMBOL_LINE (sym) = DW_UNSND (attr);
19052 }
19053
19054 attr = dwarf2_attr (die,
19055 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19056 cu);
19057 if (attr)
19058 {
19059 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19060 struct file_entry *fe;
19061
19062 if (cu->line_header != NULL)
19063 fe = cu->line_header->file_name_at (file_index);
19064 else
19065 fe = NULL;
19066
19067 if (fe == NULL)
19068 complaint (&symfile_complaints,
19069 _("file index out of range"));
19070 else
19071 symbol_set_symtab (sym, fe->symtab);
19072 }
19073
19074 switch (die->tag)
19075 {
19076 case DW_TAG_label:
19077 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19078 if (attr)
19079 {
19080 CORE_ADDR addr;
19081
19082 addr = attr_value_as_address (attr);
19083 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19084 SYMBOL_VALUE_ADDRESS (sym) = addr;
19085 }
19086 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19087 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19088 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19089 add_symbol_to_list (sym, cu->list_in_scope);
19090 break;
19091 case DW_TAG_subprogram:
19092 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19093 finish_block. */
19094 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19095 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19096 if ((attr2 && (DW_UNSND (attr2) != 0))
19097 || cu->language == language_ada)
19098 {
19099 /* Subprograms marked external are stored as a global symbol.
19100 Ada subprograms, whether marked external or not, are always
19101 stored as a global symbol, because we want to be able to
19102 access them globally. For instance, we want to be able
19103 to break on a nested subprogram without having to
19104 specify the context. */
19105 list_to_add = &global_symbols;
19106 }
19107 else
19108 {
19109 list_to_add = cu->list_in_scope;
19110 }
19111 break;
19112 case DW_TAG_inlined_subroutine:
19113 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19114 finish_block. */
19115 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19116 SYMBOL_INLINED (sym) = 1;
19117 list_to_add = cu->list_in_scope;
19118 break;
19119 case DW_TAG_template_value_param:
19120 suppress_add = 1;
19121 /* Fall through. */
19122 case DW_TAG_constant:
19123 case DW_TAG_variable:
19124 case DW_TAG_member:
19125 /* Compilation with minimal debug info may result in
19126 variables with missing type entries. Change the
19127 misleading `void' type to something sensible. */
19128 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19129 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
19130
19131 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19132 /* In the case of DW_TAG_member, we should only be called for
19133 static const members. */
19134 if (die->tag == DW_TAG_member)
19135 {
19136 /* dwarf2_add_field uses die_is_declaration,
19137 so we do the same. */
19138 gdb_assert (die_is_declaration (die, cu));
19139 gdb_assert (attr);
19140 }
19141 if (attr)
19142 {
19143 dwarf2_const_value (attr, sym, cu);
19144 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19145 if (!suppress_add)
19146 {
19147 if (attr2 && (DW_UNSND (attr2) != 0))
19148 list_to_add = &global_symbols;
19149 else
19150 list_to_add = cu->list_in_scope;
19151 }
19152 break;
19153 }
19154 attr = dwarf2_attr (die, DW_AT_location, cu);
19155 if (attr)
19156 {
19157 var_decode_location (attr, sym, cu);
19158 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19159
19160 /* Fortran explicitly imports any global symbols to the local
19161 scope by DW_TAG_common_block. */
19162 if (cu->language == language_fortran && die->parent
19163 && die->parent->tag == DW_TAG_common_block)
19164 attr2 = NULL;
19165
19166 if (SYMBOL_CLASS (sym) == LOC_STATIC
19167 && SYMBOL_VALUE_ADDRESS (sym) == 0
19168 && !dwarf2_per_objfile->has_section_at_zero)
19169 {
19170 /* When a static variable is eliminated by the linker,
19171 the corresponding debug information is not stripped
19172 out, but the variable address is set to null;
19173 do not add such variables into symbol table. */
19174 }
19175 else if (attr2 && (DW_UNSND (attr2) != 0))
19176 {
19177 /* Workaround gfortran PR debug/40040 - it uses
19178 DW_AT_location for variables in -fPIC libraries which may
19179 get overriden by other libraries/executable and get
19180 a different address. Resolve it by the minimal symbol
19181 which may come from inferior's executable using copy
19182 relocation. Make this workaround only for gfortran as for
19183 other compilers GDB cannot guess the minimal symbol
19184 Fortran mangling kind. */
19185 if (cu->language == language_fortran && die->parent
19186 && die->parent->tag == DW_TAG_module
19187 && cu->producer
19188 && startswith (cu->producer, "GNU Fortran"))
19189 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19190
19191 /* A variable with DW_AT_external is never static,
19192 but it may be block-scoped. */
19193 list_to_add = (cu->list_in_scope == &file_symbols
19194 ? &global_symbols : cu->list_in_scope);
19195 }
19196 else
19197 list_to_add = cu->list_in_scope;
19198 }
19199 else
19200 {
19201 /* We do not know the address of this symbol.
19202 If it is an external symbol and we have type information
19203 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19204 The address of the variable will then be determined from
19205 the minimal symbol table whenever the variable is
19206 referenced. */
19207 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19208
19209 /* Fortran explicitly imports any global symbols to the local
19210 scope by DW_TAG_common_block. */
19211 if (cu->language == language_fortran && die->parent
19212 && die->parent->tag == DW_TAG_common_block)
19213 {
19214 /* SYMBOL_CLASS doesn't matter here because
19215 read_common_block is going to reset it. */
19216 if (!suppress_add)
19217 list_to_add = cu->list_in_scope;
19218 }
19219 else if (attr2 && (DW_UNSND (attr2) != 0)
19220 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19221 {
19222 /* A variable with DW_AT_external is never static, but it
19223 may be block-scoped. */
19224 list_to_add = (cu->list_in_scope == &file_symbols
19225 ? &global_symbols : cu->list_in_scope);
19226
19227 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19228 }
19229 else if (!die_is_declaration (die, cu))
19230 {
19231 /* Use the default LOC_OPTIMIZED_OUT class. */
19232 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19233 if (!suppress_add)
19234 list_to_add = cu->list_in_scope;
19235 }
19236 }
19237 break;
19238 case DW_TAG_formal_parameter:
19239 /* If we are inside a function, mark this as an argument. If
19240 not, we might be looking at an argument to an inlined function
19241 when we do not have enough information to show inlined frames;
19242 pretend it's a local variable in that case so that the user can
19243 still see it. */
19244 if (context_stack_depth > 0
19245 && context_stack[context_stack_depth - 1].name != NULL)
19246 SYMBOL_IS_ARGUMENT (sym) = 1;
19247 attr = dwarf2_attr (die, DW_AT_location, cu);
19248 if (attr)
19249 {
19250 var_decode_location (attr, sym, cu);
19251 }
19252 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19253 if (attr)
19254 {
19255 dwarf2_const_value (attr, sym, cu);
19256 }
19257
19258 list_to_add = cu->list_in_scope;
19259 break;
19260 case DW_TAG_unspecified_parameters:
19261 /* From varargs functions; gdb doesn't seem to have any
19262 interest in this information, so just ignore it for now.
19263 (FIXME?) */
19264 break;
19265 case DW_TAG_template_type_param:
19266 suppress_add = 1;
19267 /* Fall through. */
19268 case DW_TAG_class_type:
19269 case DW_TAG_interface_type:
19270 case DW_TAG_structure_type:
19271 case DW_TAG_union_type:
19272 case DW_TAG_set_type:
19273 case DW_TAG_enumeration_type:
19274 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19275 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19276
19277 {
19278 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19279 really ever be static objects: otherwise, if you try
19280 to, say, break of a class's method and you're in a file
19281 which doesn't mention that class, it won't work unless
19282 the check for all static symbols in lookup_symbol_aux
19283 saves you. See the OtherFileClass tests in
19284 gdb.c++/namespace.exp. */
19285
19286 if (!suppress_add)
19287 {
19288 list_to_add = (cu->list_in_scope == &file_symbols
19289 && cu->language == language_cplus
19290 ? &global_symbols : cu->list_in_scope);
19291
19292 /* The semantics of C++ state that "struct foo {
19293 ... }" also defines a typedef for "foo". */
19294 if (cu->language == language_cplus
19295 || cu->language == language_ada
19296 || cu->language == language_d
19297 || cu->language == language_rust)
19298 {
19299 /* The symbol's name is already allocated along
19300 with this objfile, so we don't need to
19301 duplicate it for the type. */
19302 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19303 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19304 }
19305 }
19306 }
19307 break;
19308 case DW_TAG_typedef:
19309 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19310 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19311 list_to_add = cu->list_in_scope;
19312 break;
19313 case DW_TAG_base_type:
19314 case DW_TAG_subrange_type:
19315 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19316 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19317 list_to_add = cu->list_in_scope;
19318 break;
19319 case DW_TAG_enumerator:
19320 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19321 if (attr)
19322 {
19323 dwarf2_const_value (attr, sym, cu);
19324 }
19325 {
19326 /* NOTE: carlton/2003-11-10: See comment above in the
19327 DW_TAG_class_type, etc. block. */
19328
19329 list_to_add = (cu->list_in_scope == &file_symbols
19330 && cu->language == language_cplus
19331 ? &global_symbols : cu->list_in_scope);
19332 }
19333 break;
19334 case DW_TAG_imported_declaration:
19335 case DW_TAG_namespace:
19336 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19337 list_to_add = &global_symbols;
19338 break;
19339 case DW_TAG_module:
19340 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19341 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19342 list_to_add = &global_symbols;
19343 break;
19344 case DW_TAG_common_block:
19345 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19346 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19347 add_symbol_to_list (sym, cu->list_in_scope);
19348 break;
19349 default:
19350 /* Not a tag we recognize. Hopefully we aren't processing
19351 trash data, but since we must specifically ignore things
19352 we don't recognize, there is nothing else we should do at
19353 this point. */
19354 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19355 dwarf_tag_name (die->tag));
19356 break;
19357 }
19358
19359 if (suppress_add)
19360 {
19361 sym->hash_next = objfile->template_symbols;
19362 objfile->template_symbols = sym;
19363 list_to_add = NULL;
19364 }
19365
19366 if (list_to_add != NULL)
19367 add_symbol_to_list (sym, list_to_add);
19368
19369 /* For the benefit of old versions of GCC, check for anonymous
19370 namespaces based on the demangled name. */
19371 if (!cu->processing_has_namespace_info
19372 && cu->language == language_cplus)
19373 cp_scan_for_anonymous_namespaces (sym, objfile);
19374 }
19375 return (sym);
19376 }
19377
19378 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19379
19380 static struct symbol *
19381 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19382 {
19383 return new_symbol_full (die, type, cu, NULL);
19384 }
19385
19386 /* Given an attr with a DW_FORM_dataN value in host byte order,
19387 zero-extend it as appropriate for the symbol's type. The DWARF
19388 standard (v4) is not entirely clear about the meaning of using
19389 DW_FORM_dataN for a constant with a signed type, where the type is
19390 wider than the data. The conclusion of a discussion on the DWARF
19391 list was that this is unspecified. We choose to always zero-extend
19392 because that is the interpretation long in use by GCC. */
19393
19394 static gdb_byte *
19395 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19396 struct dwarf2_cu *cu, LONGEST *value, int bits)
19397 {
19398 struct objfile *objfile = cu->objfile;
19399 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19400 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19401 LONGEST l = DW_UNSND (attr);
19402
19403 if (bits < sizeof (*value) * 8)
19404 {
19405 l &= ((LONGEST) 1 << bits) - 1;
19406 *value = l;
19407 }
19408 else if (bits == sizeof (*value) * 8)
19409 *value = l;
19410 else
19411 {
19412 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19413 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19414 return bytes;
19415 }
19416
19417 return NULL;
19418 }
19419
19420 /* Read a constant value from an attribute. Either set *VALUE, or if
19421 the value does not fit in *VALUE, set *BYTES - either already
19422 allocated on the objfile obstack, or newly allocated on OBSTACK,
19423 or, set *BATON, if we translated the constant to a location
19424 expression. */
19425
19426 static void
19427 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19428 const char *name, struct obstack *obstack,
19429 struct dwarf2_cu *cu,
19430 LONGEST *value, const gdb_byte **bytes,
19431 struct dwarf2_locexpr_baton **baton)
19432 {
19433 struct objfile *objfile = cu->objfile;
19434 struct comp_unit_head *cu_header = &cu->header;
19435 struct dwarf_block *blk;
19436 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19437 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19438
19439 *value = 0;
19440 *bytes = NULL;
19441 *baton = NULL;
19442
19443 switch (attr->form)
19444 {
19445 case DW_FORM_addr:
19446 case DW_FORM_GNU_addr_index:
19447 {
19448 gdb_byte *data;
19449
19450 if (TYPE_LENGTH (type) != cu_header->addr_size)
19451 dwarf2_const_value_length_mismatch_complaint (name,
19452 cu_header->addr_size,
19453 TYPE_LENGTH (type));
19454 /* Symbols of this form are reasonably rare, so we just
19455 piggyback on the existing location code rather than writing
19456 a new implementation of symbol_computed_ops. */
19457 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19458 (*baton)->per_cu = cu->per_cu;
19459 gdb_assert ((*baton)->per_cu);
19460
19461 (*baton)->size = 2 + cu_header->addr_size;
19462 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19463 (*baton)->data = data;
19464
19465 data[0] = DW_OP_addr;
19466 store_unsigned_integer (&data[1], cu_header->addr_size,
19467 byte_order, DW_ADDR (attr));
19468 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19469 }
19470 break;
19471 case DW_FORM_string:
19472 case DW_FORM_strp:
19473 case DW_FORM_GNU_str_index:
19474 case DW_FORM_GNU_strp_alt:
19475 /* DW_STRING is already allocated on the objfile obstack, point
19476 directly to it. */
19477 *bytes = (const gdb_byte *) DW_STRING (attr);
19478 break;
19479 case DW_FORM_block1:
19480 case DW_FORM_block2:
19481 case DW_FORM_block4:
19482 case DW_FORM_block:
19483 case DW_FORM_exprloc:
19484 case DW_FORM_data16:
19485 blk = DW_BLOCK (attr);
19486 if (TYPE_LENGTH (type) != blk->size)
19487 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19488 TYPE_LENGTH (type));
19489 *bytes = blk->data;
19490 break;
19491
19492 /* The DW_AT_const_value attributes are supposed to carry the
19493 symbol's value "represented as it would be on the target
19494 architecture." By the time we get here, it's already been
19495 converted to host endianness, so we just need to sign- or
19496 zero-extend it as appropriate. */
19497 case DW_FORM_data1:
19498 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19499 break;
19500 case DW_FORM_data2:
19501 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19502 break;
19503 case DW_FORM_data4:
19504 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19505 break;
19506 case DW_FORM_data8:
19507 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19508 break;
19509
19510 case DW_FORM_sdata:
19511 case DW_FORM_implicit_const:
19512 *value = DW_SND (attr);
19513 break;
19514
19515 case DW_FORM_udata:
19516 *value = DW_UNSND (attr);
19517 break;
19518
19519 default:
19520 complaint (&symfile_complaints,
19521 _("unsupported const value attribute form: '%s'"),
19522 dwarf_form_name (attr->form));
19523 *value = 0;
19524 break;
19525 }
19526 }
19527
19528
19529 /* Copy constant value from an attribute to a symbol. */
19530
19531 static void
19532 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19533 struct dwarf2_cu *cu)
19534 {
19535 struct objfile *objfile = cu->objfile;
19536 LONGEST value;
19537 const gdb_byte *bytes;
19538 struct dwarf2_locexpr_baton *baton;
19539
19540 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19541 SYMBOL_PRINT_NAME (sym),
19542 &objfile->objfile_obstack, cu,
19543 &value, &bytes, &baton);
19544
19545 if (baton != NULL)
19546 {
19547 SYMBOL_LOCATION_BATON (sym) = baton;
19548 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19549 }
19550 else if (bytes != NULL)
19551 {
19552 SYMBOL_VALUE_BYTES (sym) = bytes;
19553 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19554 }
19555 else
19556 {
19557 SYMBOL_VALUE (sym) = value;
19558 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19559 }
19560 }
19561
19562 /* Return the type of the die in question using its DW_AT_type attribute. */
19563
19564 static struct type *
19565 die_type (struct die_info *die, struct dwarf2_cu *cu)
19566 {
19567 struct attribute *type_attr;
19568
19569 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19570 if (!type_attr)
19571 {
19572 /* A missing DW_AT_type represents a void type. */
19573 return objfile_type (cu->objfile)->builtin_void;
19574 }
19575
19576 return lookup_die_type (die, type_attr, cu);
19577 }
19578
19579 /* True iff CU's producer generates GNAT Ada auxiliary information
19580 that allows to find parallel types through that information instead
19581 of having to do expensive parallel lookups by type name. */
19582
19583 static int
19584 need_gnat_info (struct dwarf2_cu *cu)
19585 {
19586 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19587 of GNAT produces this auxiliary information, without any indication
19588 that it is produced. Part of enhancing the FSF version of GNAT
19589 to produce that information will be to put in place an indicator
19590 that we can use in order to determine whether the descriptive type
19591 info is available or not. One suggestion that has been made is
19592 to use a new attribute, attached to the CU die. For now, assume
19593 that the descriptive type info is not available. */
19594 return 0;
19595 }
19596
19597 /* Return the auxiliary type of the die in question using its
19598 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19599 attribute is not present. */
19600
19601 static struct type *
19602 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19603 {
19604 struct attribute *type_attr;
19605
19606 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19607 if (!type_attr)
19608 return NULL;
19609
19610 return lookup_die_type (die, type_attr, cu);
19611 }
19612
19613 /* If DIE has a descriptive_type attribute, then set the TYPE's
19614 descriptive type accordingly. */
19615
19616 static void
19617 set_descriptive_type (struct type *type, struct die_info *die,
19618 struct dwarf2_cu *cu)
19619 {
19620 struct type *descriptive_type = die_descriptive_type (die, cu);
19621
19622 if (descriptive_type)
19623 {
19624 ALLOCATE_GNAT_AUX_TYPE (type);
19625 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19626 }
19627 }
19628
19629 /* Return the containing type of the die in question using its
19630 DW_AT_containing_type attribute. */
19631
19632 static struct type *
19633 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19634 {
19635 struct attribute *type_attr;
19636
19637 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19638 if (!type_attr)
19639 error (_("Dwarf Error: Problem turning containing type into gdb type "
19640 "[in module %s]"), objfile_name (cu->objfile));
19641
19642 return lookup_die_type (die, type_attr, cu);
19643 }
19644
19645 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19646
19647 static struct type *
19648 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19649 {
19650 struct objfile *objfile = dwarf2_per_objfile->objfile;
19651 char *message, *saved;
19652
19653 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19654 objfile_name (objfile),
19655 to_underlying (cu->header.sect_off),
19656 to_underlying (die->sect_off));
19657 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19658 message, strlen (message));
19659 xfree (message);
19660
19661 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19662 }
19663
19664 /* Look up the type of DIE in CU using its type attribute ATTR.
19665 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19666 DW_AT_containing_type.
19667 If there is no type substitute an error marker. */
19668
19669 static struct type *
19670 lookup_die_type (struct die_info *die, const struct attribute *attr,
19671 struct dwarf2_cu *cu)
19672 {
19673 struct objfile *objfile = cu->objfile;
19674 struct type *this_type;
19675
19676 gdb_assert (attr->name == DW_AT_type
19677 || attr->name == DW_AT_GNAT_descriptive_type
19678 || attr->name == DW_AT_containing_type);
19679
19680 /* First see if we have it cached. */
19681
19682 if (attr->form == DW_FORM_GNU_ref_alt)
19683 {
19684 struct dwarf2_per_cu_data *per_cu;
19685 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19686
19687 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19688 this_type = get_die_type_at_offset (sect_off, per_cu);
19689 }
19690 else if (attr_form_is_ref (attr))
19691 {
19692 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19693
19694 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19695 }
19696 else if (attr->form == DW_FORM_ref_sig8)
19697 {
19698 ULONGEST signature = DW_SIGNATURE (attr);
19699
19700 return get_signatured_type (die, signature, cu);
19701 }
19702 else
19703 {
19704 complaint (&symfile_complaints,
19705 _("Dwarf Error: Bad type attribute %s in DIE"
19706 " at 0x%x [in module %s]"),
19707 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19708 objfile_name (objfile));
19709 return build_error_marker_type (cu, die);
19710 }
19711
19712 /* If not cached we need to read it in. */
19713
19714 if (this_type == NULL)
19715 {
19716 struct die_info *type_die = NULL;
19717 struct dwarf2_cu *type_cu = cu;
19718
19719 if (attr_form_is_ref (attr))
19720 type_die = follow_die_ref (die, attr, &type_cu);
19721 if (type_die == NULL)
19722 return build_error_marker_type (cu, die);
19723 /* If we find the type now, it's probably because the type came
19724 from an inter-CU reference and the type's CU got expanded before
19725 ours. */
19726 this_type = read_type_die (type_die, type_cu);
19727 }
19728
19729 /* If we still don't have a type use an error marker. */
19730
19731 if (this_type == NULL)
19732 return build_error_marker_type (cu, die);
19733
19734 return this_type;
19735 }
19736
19737 /* Return the type in DIE, CU.
19738 Returns NULL for invalid types.
19739
19740 This first does a lookup in die_type_hash,
19741 and only reads the die in if necessary.
19742
19743 NOTE: This can be called when reading in partial or full symbols. */
19744
19745 static struct type *
19746 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19747 {
19748 struct type *this_type;
19749
19750 this_type = get_die_type (die, cu);
19751 if (this_type)
19752 return this_type;
19753
19754 return read_type_die_1 (die, cu);
19755 }
19756
19757 /* Read the type in DIE, CU.
19758 Returns NULL for invalid types. */
19759
19760 static struct type *
19761 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19762 {
19763 struct type *this_type = NULL;
19764
19765 switch (die->tag)
19766 {
19767 case DW_TAG_class_type:
19768 case DW_TAG_interface_type:
19769 case DW_TAG_structure_type:
19770 case DW_TAG_union_type:
19771 this_type = read_structure_type (die, cu);
19772 break;
19773 case DW_TAG_enumeration_type:
19774 this_type = read_enumeration_type (die, cu);
19775 break;
19776 case DW_TAG_subprogram:
19777 case DW_TAG_subroutine_type:
19778 case DW_TAG_inlined_subroutine:
19779 this_type = read_subroutine_type (die, cu);
19780 break;
19781 case DW_TAG_array_type:
19782 this_type = read_array_type (die, cu);
19783 break;
19784 case DW_TAG_set_type:
19785 this_type = read_set_type (die, cu);
19786 break;
19787 case DW_TAG_pointer_type:
19788 this_type = read_tag_pointer_type (die, cu);
19789 break;
19790 case DW_TAG_ptr_to_member_type:
19791 this_type = read_tag_ptr_to_member_type (die, cu);
19792 break;
19793 case DW_TAG_reference_type:
19794 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19795 break;
19796 case DW_TAG_rvalue_reference_type:
19797 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19798 break;
19799 case DW_TAG_const_type:
19800 this_type = read_tag_const_type (die, cu);
19801 break;
19802 case DW_TAG_volatile_type:
19803 this_type = read_tag_volatile_type (die, cu);
19804 break;
19805 case DW_TAG_restrict_type:
19806 this_type = read_tag_restrict_type (die, cu);
19807 break;
19808 case DW_TAG_string_type:
19809 this_type = read_tag_string_type (die, cu);
19810 break;
19811 case DW_TAG_typedef:
19812 this_type = read_typedef (die, cu);
19813 break;
19814 case DW_TAG_subrange_type:
19815 this_type = read_subrange_type (die, cu);
19816 break;
19817 case DW_TAG_base_type:
19818 this_type = read_base_type (die, cu);
19819 break;
19820 case DW_TAG_unspecified_type:
19821 this_type = read_unspecified_type (die, cu);
19822 break;
19823 case DW_TAG_namespace:
19824 this_type = read_namespace_type (die, cu);
19825 break;
19826 case DW_TAG_module:
19827 this_type = read_module_type (die, cu);
19828 break;
19829 case DW_TAG_atomic_type:
19830 this_type = read_tag_atomic_type (die, cu);
19831 break;
19832 default:
19833 complaint (&symfile_complaints,
19834 _("unexpected tag in read_type_die: '%s'"),
19835 dwarf_tag_name (die->tag));
19836 break;
19837 }
19838
19839 return this_type;
19840 }
19841
19842 /* See if we can figure out if the class lives in a namespace. We do
19843 this by looking for a member function; its demangled name will
19844 contain namespace info, if there is any.
19845 Return the computed name or NULL.
19846 Space for the result is allocated on the objfile's obstack.
19847 This is the full-die version of guess_partial_die_structure_name.
19848 In this case we know DIE has no useful parent. */
19849
19850 static char *
19851 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19852 {
19853 struct die_info *spec_die;
19854 struct dwarf2_cu *spec_cu;
19855 struct die_info *child;
19856
19857 spec_cu = cu;
19858 spec_die = die_specification (die, &spec_cu);
19859 if (spec_die != NULL)
19860 {
19861 die = spec_die;
19862 cu = spec_cu;
19863 }
19864
19865 for (child = die->child;
19866 child != NULL;
19867 child = child->sibling)
19868 {
19869 if (child->tag == DW_TAG_subprogram)
19870 {
19871 const char *linkage_name = dw2_linkage_name (child, cu);
19872
19873 if (linkage_name != NULL)
19874 {
19875 char *actual_name
19876 = language_class_name_from_physname (cu->language_defn,
19877 linkage_name);
19878 char *name = NULL;
19879
19880 if (actual_name != NULL)
19881 {
19882 const char *die_name = dwarf2_name (die, cu);
19883
19884 if (die_name != NULL
19885 && strcmp (die_name, actual_name) != 0)
19886 {
19887 /* Strip off the class name from the full name.
19888 We want the prefix. */
19889 int die_name_len = strlen (die_name);
19890 int actual_name_len = strlen (actual_name);
19891
19892 /* Test for '::' as a sanity check. */
19893 if (actual_name_len > die_name_len + 2
19894 && actual_name[actual_name_len
19895 - die_name_len - 1] == ':')
19896 name = (char *) obstack_copy0 (
19897 &cu->objfile->per_bfd->storage_obstack,
19898 actual_name, actual_name_len - die_name_len - 2);
19899 }
19900 }
19901 xfree (actual_name);
19902 return name;
19903 }
19904 }
19905 }
19906
19907 return NULL;
19908 }
19909
19910 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19911 prefix part in such case. See
19912 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19913
19914 static const char *
19915 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19916 {
19917 struct attribute *attr;
19918 const char *base;
19919
19920 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19921 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19922 return NULL;
19923
19924 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19925 return NULL;
19926
19927 attr = dw2_linkage_name_attr (die, cu);
19928 if (attr == NULL || DW_STRING (attr) == NULL)
19929 return NULL;
19930
19931 /* dwarf2_name had to be already called. */
19932 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19933
19934 /* Strip the base name, keep any leading namespaces/classes. */
19935 base = strrchr (DW_STRING (attr), ':');
19936 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19937 return "";
19938
19939 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19940 DW_STRING (attr),
19941 &base[-1] - DW_STRING (attr));
19942 }
19943
19944 /* Return the name of the namespace/class that DIE is defined within,
19945 or "" if we can't tell. The caller should not xfree the result.
19946
19947 For example, if we're within the method foo() in the following
19948 code:
19949
19950 namespace N {
19951 class C {
19952 void foo () {
19953 }
19954 };
19955 }
19956
19957 then determine_prefix on foo's die will return "N::C". */
19958
19959 static const char *
19960 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19961 {
19962 struct die_info *parent, *spec_die;
19963 struct dwarf2_cu *spec_cu;
19964 struct type *parent_type;
19965 const char *retval;
19966
19967 if (cu->language != language_cplus
19968 && cu->language != language_fortran && cu->language != language_d
19969 && cu->language != language_rust)
19970 return "";
19971
19972 retval = anonymous_struct_prefix (die, cu);
19973 if (retval)
19974 return retval;
19975
19976 /* We have to be careful in the presence of DW_AT_specification.
19977 For example, with GCC 3.4, given the code
19978
19979 namespace N {
19980 void foo() {
19981 // Definition of N::foo.
19982 }
19983 }
19984
19985 then we'll have a tree of DIEs like this:
19986
19987 1: DW_TAG_compile_unit
19988 2: DW_TAG_namespace // N
19989 3: DW_TAG_subprogram // declaration of N::foo
19990 4: DW_TAG_subprogram // definition of N::foo
19991 DW_AT_specification // refers to die #3
19992
19993 Thus, when processing die #4, we have to pretend that we're in
19994 the context of its DW_AT_specification, namely the contex of die
19995 #3. */
19996 spec_cu = cu;
19997 spec_die = die_specification (die, &spec_cu);
19998 if (spec_die == NULL)
19999 parent = die->parent;
20000 else
20001 {
20002 parent = spec_die->parent;
20003 cu = spec_cu;
20004 }
20005
20006 if (parent == NULL)
20007 return "";
20008 else if (parent->building_fullname)
20009 {
20010 const char *name;
20011 const char *parent_name;
20012
20013 /* It has been seen on RealView 2.2 built binaries,
20014 DW_TAG_template_type_param types actually _defined_ as
20015 children of the parent class:
20016
20017 enum E {};
20018 template class <class Enum> Class{};
20019 Class<enum E> class_e;
20020
20021 1: DW_TAG_class_type (Class)
20022 2: DW_TAG_enumeration_type (E)
20023 3: DW_TAG_enumerator (enum1:0)
20024 3: DW_TAG_enumerator (enum2:1)
20025 ...
20026 2: DW_TAG_template_type_param
20027 DW_AT_type DW_FORM_ref_udata (E)
20028
20029 Besides being broken debug info, it can put GDB into an
20030 infinite loop. Consider:
20031
20032 When we're building the full name for Class<E>, we'll start
20033 at Class, and go look over its template type parameters,
20034 finding E. We'll then try to build the full name of E, and
20035 reach here. We're now trying to build the full name of E,
20036 and look over the parent DIE for containing scope. In the
20037 broken case, if we followed the parent DIE of E, we'd again
20038 find Class, and once again go look at its template type
20039 arguments, etc., etc. Simply don't consider such parent die
20040 as source-level parent of this die (it can't be, the language
20041 doesn't allow it), and break the loop here. */
20042 name = dwarf2_name (die, cu);
20043 parent_name = dwarf2_name (parent, cu);
20044 complaint (&symfile_complaints,
20045 _("template param type '%s' defined within parent '%s'"),
20046 name ? name : "<unknown>",
20047 parent_name ? parent_name : "<unknown>");
20048 return "";
20049 }
20050 else
20051 switch (parent->tag)
20052 {
20053 case DW_TAG_namespace:
20054 parent_type = read_type_die (parent, cu);
20055 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20056 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20057 Work around this problem here. */
20058 if (cu->language == language_cplus
20059 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20060 return "";
20061 /* We give a name to even anonymous namespaces. */
20062 return TYPE_TAG_NAME (parent_type);
20063 case DW_TAG_class_type:
20064 case DW_TAG_interface_type:
20065 case DW_TAG_structure_type:
20066 case DW_TAG_union_type:
20067 case DW_TAG_module:
20068 parent_type = read_type_die (parent, cu);
20069 if (TYPE_TAG_NAME (parent_type) != NULL)
20070 return TYPE_TAG_NAME (parent_type);
20071 else
20072 /* An anonymous structure is only allowed non-static data
20073 members; no typedefs, no member functions, et cetera.
20074 So it does not need a prefix. */
20075 return "";
20076 case DW_TAG_compile_unit:
20077 case DW_TAG_partial_unit:
20078 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20079 if (cu->language == language_cplus
20080 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20081 && die->child != NULL
20082 && (die->tag == DW_TAG_class_type
20083 || die->tag == DW_TAG_structure_type
20084 || die->tag == DW_TAG_union_type))
20085 {
20086 char *name = guess_full_die_structure_name (die, cu);
20087 if (name != NULL)
20088 return name;
20089 }
20090 return "";
20091 case DW_TAG_enumeration_type:
20092 parent_type = read_type_die (parent, cu);
20093 if (TYPE_DECLARED_CLASS (parent_type))
20094 {
20095 if (TYPE_TAG_NAME (parent_type) != NULL)
20096 return TYPE_TAG_NAME (parent_type);
20097 return "";
20098 }
20099 /* Fall through. */
20100 default:
20101 return determine_prefix (parent, cu);
20102 }
20103 }
20104
20105 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20106 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20107 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20108 an obconcat, otherwise allocate storage for the result. The CU argument is
20109 used to determine the language and hence, the appropriate separator. */
20110
20111 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20112
20113 static char *
20114 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20115 int physname, struct dwarf2_cu *cu)
20116 {
20117 const char *lead = "";
20118 const char *sep;
20119
20120 if (suffix == NULL || suffix[0] == '\0'
20121 || prefix == NULL || prefix[0] == '\0')
20122 sep = "";
20123 else if (cu->language == language_d)
20124 {
20125 /* For D, the 'main' function could be defined in any module, but it
20126 should never be prefixed. */
20127 if (strcmp (suffix, "D main") == 0)
20128 {
20129 prefix = "";
20130 sep = "";
20131 }
20132 else
20133 sep = ".";
20134 }
20135 else if (cu->language == language_fortran && physname)
20136 {
20137 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20138 DW_AT_MIPS_linkage_name is preferred and used instead. */
20139
20140 lead = "__";
20141 sep = "_MOD_";
20142 }
20143 else
20144 sep = "::";
20145
20146 if (prefix == NULL)
20147 prefix = "";
20148 if (suffix == NULL)
20149 suffix = "";
20150
20151 if (obs == NULL)
20152 {
20153 char *retval
20154 = ((char *)
20155 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20156
20157 strcpy (retval, lead);
20158 strcat (retval, prefix);
20159 strcat (retval, sep);
20160 strcat (retval, suffix);
20161 return retval;
20162 }
20163 else
20164 {
20165 /* We have an obstack. */
20166 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20167 }
20168 }
20169
20170 /* Return sibling of die, NULL if no sibling. */
20171
20172 static struct die_info *
20173 sibling_die (struct die_info *die)
20174 {
20175 return die->sibling;
20176 }
20177
20178 /* Get name of a die, return NULL if not found. */
20179
20180 static const char *
20181 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20182 struct obstack *obstack)
20183 {
20184 if (name && cu->language == language_cplus)
20185 {
20186 std::string canon_name = cp_canonicalize_string (name);
20187
20188 if (!canon_name.empty ())
20189 {
20190 if (canon_name != name)
20191 name = (const char *) obstack_copy0 (obstack,
20192 canon_name.c_str (),
20193 canon_name.length ());
20194 }
20195 }
20196
20197 return name;
20198 }
20199
20200 /* Get name of a die, return NULL if not found.
20201 Anonymous namespaces are converted to their magic string. */
20202
20203 static const char *
20204 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20205 {
20206 struct attribute *attr;
20207
20208 attr = dwarf2_attr (die, DW_AT_name, cu);
20209 if ((!attr || !DW_STRING (attr))
20210 && die->tag != DW_TAG_namespace
20211 && die->tag != DW_TAG_class_type
20212 && die->tag != DW_TAG_interface_type
20213 && die->tag != DW_TAG_structure_type
20214 && die->tag != DW_TAG_union_type)
20215 return NULL;
20216
20217 switch (die->tag)
20218 {
20219 case DW_TAG_compile_unit:
20220 case DW_TAG_partial_unit:
20221 /* Compilation units have a DW_AT_name that is a filename, not
20222 a source language identifier. */
20223 case DW_TAG_enumeration_type:
20224 case DW_TAG_enumerator:
20225 /* These tags always have simple identifiers already; no need
20226 to canonicalize them. */
20227 return DW_STRING (attr);
20228
20229 case DW_TAG_namespace:
20230 if (attr != NULL && DW_STRING (attr) != NULL)
20231 return DW_STRING (attr);
20232 return CP_ANONYMOUS_NAMESPACE_STR;
20233
20234 case DW_TAG_class_type:
20235 case DW_TAG_interface_type:
20236 case DW_TAG_structure_type:
20237 case DW_TAG_union_type:
20238 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20239 structures or unions. These were of the form "._%d" in GCC 4.1,
20240 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20241 and GCC 4.4. We work around this problem by ignoring these. */
20242 if (attr && DW_STRING (attr)
20243 && (startswith (DW_STRING (attr), "._")
20244 || startswith (DW_STRING (attr), "<anonymous")))
20245 return NULL;
20246
20247 /* GCC might emit a nameless typedef that has a linkage name. See
20248 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20249 if (!attr || DW_STRING (attr) == NULL)
20250 {
20251 char *demangled = NULL;
20252
20253 attr = dw2_linkage_name_attr (die, cu);
20254 if (attr == NULL || DW_STRING (attr) == NULL)
20255 return NULL;
20256
20257 /* Avoid demangling DW_STRING (attr) the second time on a second
20258 call for the same DIE. */
20259 if (!DW_STRING_IS_CANONICAL (attr))
20260 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20261
20262 if (demangled)
20263 {
20264 const char *base;
20265
20266 /* FIXME: we already did this for the partial symbol... */
20267 DW_STRING (attr)
20268 = ((const char *)
20269 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20270 demangled, strlen (demangled)));
20271 DW_STRING_IS_CANONICAL (attr) = 1;
20272 xfree (demangled);
20273
20274 /* Strip any leading namespaces/classes, keep only the base name.
20275 DW_AT_name for named DIEs does not contain the prefixes. */
20276 base = strrchr (DW_STRING (attr), ':');
20277 if (base && base > DW_STRING (attr) && base[-1] == ':')
20278 return &base[1];
20279 else
20280 return DW_STRING (attr);
20281 }
20282 }
20283 break;
20284
20285 default:
20286 break;
20287 }
20288
20289 if (!DW_STRING_IS_CANONICAL (attr))
20290 {
20291 DW_STRING (attr)
20292 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20293 &cu->objfile->per_bfd->storage_obstack);
20294 DW_STRING_IS_CANONICAL (attr) = 1;
20295 }
20296 return DW_STRING (attr);
20297 }
20298
20299 /* Return the die that this die in an extension of, or NULL if there
20300 is none. *EXT_CU is the CU containing DIE on input, and the CU
20301 containing the return value on output. */
20302
20303 static struct die_info *
20304 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20305 {
20306 struct attribute *attr;
20307
20308 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20309 if (attr == NULL)
20310 return NULL;
20311
20312 return follow_die_ref (die, attr, ext_cu);
20313 }
20314
20315 /* Convert a DIE tag into its string name. */
20316
20317 static const char *
20318 dwarf_tag_name (unsigned tag)
20319 {
20320 const char *name = get_DW_TAG_name (tag);
20321
20322 if (name == NULL)
20323 return "DW_TAG_<unknown>";
20324
20325 return name;
20326 }
20327
20328 /* Convert a DWARF attribute code into its string name. */
20329
20330 static const char *
20331 dwarf_attr_name (unsigned attr)
20332 {
20333 const char *name;
20334
20335 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20336 if (attr == DW_AT_MIPS_fde)
20337 return "DW_AT_MIPS_fde";
20338 #else
20339 if (attr == DW_AT_HP_block_index)
20340 return "DW_AT_HP_block_index";
20341 #endif
20342
20343 name = get_DW_AT_name (attr);
20344
20345 if (name == NULL)
20346 return "DW_AT_<unknown>";
20347
20348 return name;
20349 }
20350
20351 /* Convert a DWARF value form code into its string name. */
20352
20353 static const char *
20354 dwarf_form_name (unsigned form)
20355 {
20356 const char *name = get_DW_FORM_name (form);
20357
20358 if (name == NULL)
20359 return "DW_FORM_<unknown>";
20360
20361 return name;
20362 }
20363
20364 static const char *
20365 dwarf_bool_name (unsigned mybool)
20366 {
20367 if (mybool)
20368 return "TRUE";
20369 else
20370 return "FALSE";
20371 }
20372
20373 /* Convert a DWARF type code into its string name. */
20374
20375 static const char *
20376 dwarf_type_encoding_name (unsigned enc)
20377 {
20378 const char *name = get_DW_ATE_name (enc);
20379
20380 if (name == NULL)
20381 return "DW_ATE_<unknown>";
20382
20383 return name;
20384 }
20385
20386 static void
20387 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20388 {
20389 unsigned int i;
20390
20391 print_spaces (indent, f);
20392 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20393 dwarf_tag_name (die->tag), die->abbrev,
20394 to_underlying (die->sect_off));
20395
20396 if (die->parent != NULL)
20397 {
20398 print_spaces (indent, f);
20399 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20400 to_underlying (die->parent->sect_off));
20401 }
20402
20403 print_spaces (indent, f);
20404 fprintf_unfiltered (f, " has children: %s\n",
20405 dwarf_bool_name (die->child != NULL));
20406
20407 print_spaces (indent, f);
20408 fprintf_unfiltered (f, " attributes:\n");
20409
20410 for (i = 0; i < die->num_attrs; ++i)
20411 {
20412 print_spaces (indent, f);
20413 fprintf_unfiltered (f, " %s (%s) ",
20414 dwarf_attr_name (die->attrs[i].name),
20415 dwarf_form_name (die->attrs[i].form));
20416
20417 switch (die->attrs[i].form)
20418 {
20419 case DW_FORM_addr:
20420 case DW_FORM_GNU_addr_index:
20421 fprintf_unfiltered (f, "address: ");
20422 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20423 break;
20424 case DW_FORM_block2:
20425 case DW_FORM_block4:
20426 case DW_FORM_block:
20427 case DW_FORM_block1:
20428 fprintf_unfiltered (f, "block: size %s",
20429 pulongest (DW_BLOCK (&die->attrs[i])->size));
20430 break;
20431 case DW_FORM_exprloc:
20432 fprintf_unfiltered (f, "expression: size %s",
20433 pulongest (DW_BLOCK (&die->attrs[i])->size));
20434 break;
20435 case DW_FORM_data16:
20436 fprintf_unfiltered (f, "constant of 16 bytes");
20437 break;
20438 case DW_FORM_ref_addr:
20439 fprintf_unfiltered (f, "ref address: ");
20440 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20441 break;
20442 case DW_FORM_GNU_ref_alt:
20443 fprintf_unfiltered (f, "alt ref address: ");
20444 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20445 break;
20446 case DW_FORM_ref1:
20447 case DW_FORM_ref2:
20448 case DW_FORM_ref4:
20449 case DW_FORM_ref8:
20450 case DW_FORM_ref_udata:
20451 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20452 (long) (DW_UNSND (&die->attrs[i])));
20453 break;
20454 case DW_FORM_data1:
20455 case DW_FORM_data2:
20456 case DW_FORM_data4:
20457 case DW_FORM_data8:
20458 case DW_FORM_udata:
20459 case DW_FORM_sdata:
20460 fprintf_unfiltered (f, "constant: %s",
20461 pulongest (DW_UNSND (&die->attrs[i])));
20462 break;
20463 case DW_FORM_sec_offset:
20464 fprintf_unfiltered (f, "section offset: %s",
20465 pulongest (DW_UNSND (&die->attrs[i])));
20466 break;
20467 case DW_FORM_ref_sig8:
20468 fprintf_unfiltered (f, "signature: %s",
20469 hex_string (DW_SIGNATURE (&die->attrs[i])));
20470 break;
20471 case DW_FORM_string:
20472 case DW_FORM_strp:
20473 case DW_FORM_line_strp:
20474 case DW_FORM_GNU_str_index:
20475 case DW_FORM_GNU_strp_alt:
20476 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20477 DW_STRING (&die->attrs[i])
20478 ? DW_STRING (&die->attrs[i]) : "",
20479 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20480 break;
20481 case DW_FORM_flag:
20482 if (DW_UNSND (&die->attrs[i]))
20483 fprintf_unfiltered (f, "flag: TRUE");
20484 else
20485 fprintf_unfiltered (f, "flag: FALSE");
20486 break;
20487 case DW_FORM_flag_present:
20488 fprintf_unfiltered (f, "flag: TRUE");
20489 break;
20490 case DW_FORM_indirect:
20491 /* The reader will have reduced the indirect form to
20492 the "base form" so this form should not occur. */
20493 fprintf_unfiltered (f,
20494 "unexpected attribute form: DW_FORM_indirect");
20495 break;
20496 case DW_FORM_implicit_const:
20497 fprintf_unfiltered (f, "constant: %s",
20498 plongest (DW_SND (&die->attrs[i])));
20499 break;
20500 default:
20501 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20502 die->attrs[i].form);
20503 break;
20504 }
20505 fprintf_unfiltered (f, "\n");
20506 }
20507 }
20508
20509 static void
20510 dump_die_for_error (struct die_info *die)
20511 {
20512 dump_die_shallow (gdb_stderr, 0, die);
20513 }
20514
20515 static void
20516 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20517 {
20518 int indent = level * 4;
20519
20520 gdb_assert (die != NULL);
20521
20522 if (level >= max_level)
20523 return;
20524
20525 dump_die_shallow (f, indent, die);
20526
20527 if (die->child != NULL)
20528 {
20529 print_spaces (indent, f);
20530 fprintf_unfiltered (f, " Children:");
20531 if (level + 1 < max_level)
20532 {
20533 fprintf_unfiltered (f, "\n");
20534 dump_die_1 (f, level + 1, max_level, die->child);
20535 }
20536 else
20537 {
20538 fprintf_unfiltered (f,
20539 " [not printed, max nesting level reached]\n");
20540 }
20541 }
20542
20543 if (die->sibling != NULL && level > 0)
20544 {
20545 dump_die_1 (f, level, max_level, die->sibling);
20546 }
20547 }
20548
20549 /* This is called from the pdie macro in gdbinit.in.
20550 It's not static so gcc will keep a copy callable from gdb. */
20551
20552 void
20553 dump_die (struct die_info *die, int max_level)
20554 {
20555 dump_die_1 (gdb_stdlog, 0, max_level, die);
20556 }
20557
20558 static void
20559 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20560 {
20561 void **slot;
20562
20563 slot = htab_find_slot_with_hash (cu->die_hash, die,
20564 to_underlying (die->sect_off),
20565 INSERT);
20566
20567 *slot = die;
20568 }
20569
20570 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20571 required kind. */
20572
20573 static sect_offset
20574 dwarf2_get_ref_die_offset (const struct attribute *attr)
20575 {
20576 if (attr_form_is_ref (attr))
20577 return (sect_offset) DW_UNSND (attr);
20578
20579 complaint (&symfile_complaints,
20580 _("unsupported die ref attribute form: '%s'"),
20581 dwarf_form_name (attr->form));
20582 return {};
20583 }
20584
20585 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20586 * the value held by the attribute is not constant. */
20587
20588 static LONGEST
20589 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20590 {
20591 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
20592 return DW_SND (attr);
20593 else if (attr->form == DW_FORM_udata
20594 || attr->form == DW_FORM_data1
20595 || attr->form == DW_FORM_data2
20596 || attr->form == DW_FORM_data4
20597 || attr->form == DW_FORM_data8)
20598 return DW_UNSND (attr);
20599 else
20600 {
20601 /* For DW_FORM_data16 see attr_form_is_constant. */
20602 complaint (&symfile_complaints,
20603 _("Attribute value is not a constant (%s)"),
20604 dwarf_form_name (attr->form));
20605 return default_value;
20606 }
20607 }
20608
20609 /* Follow reference or signature attribute ATTR of SRC_DIE.
20610 On entry *REF_CU is the CU of SRC_DIE.
20611 On exit *REF_CU is the CU of the result. */
20612
20613 static struct die_info *
20614 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20615 struct dwarf2_cu **ref_cu)
20616 {
20617 struct die_info *die;
20618
20619 if (attr_form_is_ref (attr))
20620 die = follow_die_ref (src_die, attr, ref_cu);
20621 else if (attr->form == DW_FORM_ref_sig8)
20622 die = follow_die_sig (src_die, attr, ref_cu);
20623 else
20624 {
20625 dump_die_for_error (src_die);
20626 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20627 objfile_name ((*ref_cu)->objfile));
20628 }
20629
20630 return die;
20631 }
20632
20633 /* Follow reference OFFSET.
20634 On entry *REF_CU is the CU of the source die referencing OFFSET.
20635 On exit *REF_CU is the CU of the result.
20636 Returns NULL if OFFSET is invalid. */
20637
20638 static struct die_info *
20639 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20640 struct dwarf2_cu **ref_cu)
20641 {
20642 struct die_info temp_die;
20643 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20644
20645 gdb_assert (cu->per_cu != NULL);
20646
20647 target_cu = cu;
20648
20649 if (cu->per_cu->is_debug_types)
20650 {
20651 /* .debug_types CUs cannot reference anything outside their CU.
20652 If they need to, they have to reference a signatured type via
20653 DW_FORM_ref_sig8. */
20654 if (!offset_in_cu_p (&cu->header, sect_off))
20655 return NULL;
20656 }
20657 else if (offset_in_dwz != cu->per_cu->is_dwz
20658 || !offset_in_cu_p (&cu->header, sect_off))
20659 {
20660 struct dwarf2_per_cu_data *per_cu;
20661
20662 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20663 cu->objfile);
20664
20665 /* If necessary, add it to the queue and load its DIEs. */
20666 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20667 load_full_comp_unit (per_cu, cu->language);
20668
20669 target_cu = per_cu->cu;
20670 }
20671 else if (cu->dies == NULL)
20672 {
20673 /* We're loading full DIEs during partial symbol reading. */
20674 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20675 load_full_comp_unit (cu->per_cu, language_minimal);
20676 }
20677
20678 *ref_cu = target_cu;
20679 temp_die.sect_off = sect_off;
20680 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20681 &temp_die,
20682 to_underlying (sect_off));
20683 }
20684
20685 /* Follow reference attribute ATTR of SRC_DIE.
20686 On entry *REF_CU is the CU of SRC_DIE.
20687 On exit *REF_CU is the CU of the result. */
20688
20689 static struct die_info *
20690 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20691 struct dwarf2_cu **ref_cu)
20692 {
20693 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20694 struct dwarf2_cu *cu = *ref_cu;
20695 struct die_info *die;
20696
20697 die = follow_die_offset (sect_off,
20698 (attr->form == DW_FORM_GNU_ref_alt
20699 || cu->per_cu->is_dwz),
20700 ref_cu);
20701 if (!die)
20702 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20703 "at 0x%x [in module %s]"),
20704 to_underlying (sect_off), to_underlying (src_die->sect_off),
20705 objfile_name (cu->objfile));
20706
20707 return die;
20708 }
20709
20710 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20711 Returned value is intended for DW_OP_call*. Returned
20712 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20713
20714 struct dwarf2_locexpr_baton
20715 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20716 struct dwarf2_per_cu_data *per_cu,
20717 CORE_ADDR (*get_frame_pc) (void *baton),
20718 void *baton)
20719 {
20720 struct dwarf2_cu *cu;
20721 struct die_info *die;
20722 struct attribute *attr;
20723 struct dwarf2_locexpr_baton retval;
20724
20725 dw2_setup (per_cu->objfile);
20726
20727 if (per_cu->cu == NULL)
20728 load_cu (per_cu);
20729 cu = per_cu->cu;
20730 if (cu == NULL)
20731 {
20732 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20733 Instead just throw an error, not much else we can do. */
20734 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20735 to_underlying (sect_off), objfile_name (per_cu->objfile));
20736 }
20737
20738 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20739 if (!die)
20740 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20741 to_underlying (sect_off), objfile_name (per_cu->objfile));
20742
20743 attr = dwarf2_attr (die, DW_AT_location, cu);
20744 if (!attr)
20745 {
20746 /* DWARF: "If there is no such attribute, then there is no effect.".
20747 DATA is ignored if SIZE is 0. */
20748
20749 retval.data = NULL;
20750 retval.size = 0;
20751 }
20752 else if (attr_form_is_section_offset (attr))
20753 {
20754 struct dwarf2_loclist_baton loclist_baton;
20755 CORE_ADDR pc = (*get_frame_pc) (baton);
20756 size_t size;
20757
20758 fill_in_loclist_baton (cu, &loclist_baton, attr);
20759
20760 retval.data = dwarf2_find_location_expression (&loclist_baton,
20761 &size, pc);
20762 retval.size = size;
20763 }
20764 else
20765 {
20766 if (!attr_form_is_block (attr))
20767 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20768 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20769 to_underlying (sect_off), objfile_name (per_cu->objfile));
20770
20771 retval.data = DW_BLOCK (attr)->data;
20772 retval.size = DW_BLOCK (attr)->size;
20773 }
20774 retval.per_cu = cu->per_cu;
20775
20776 age_cached_comp_units ();
20777
20778 return retval;
20779 }
20780
20781 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20782 offset. */
20783
20784 struct dwarf2_locexpr_baton
20785 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20786 struct dwarf2_per_cu_data *per_cu,
20787 CORE_ADDR (*get_frame_pc) (void *baton),
20788 void *baton)
20789 {
20790 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20791
20792 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20793 }
20794
20795 /* Write a constant of a given type as target-ordered bytes into
20796 OBSTACK. */
20797
20798 static const gdb_byte *
20799 write_constant_as_bytes (struct obstack *obstack,
20800 enum bfd_endian byte_order,
20801 struct type *type,
20802 ULONGEST value,
20803 LONGEST *len)
20804 {
20805 gdb_byte *result;
20806
20807 *len = TYPE_LENGTH (type);
20808 result = (gdb_byte *) obstack_alloc (obstack, *len);
20809 store_unsigned_integer (result, *len, byte_order, value);
20810
20811 return result;
20812 }
20813
20814 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20815 pointer to the constant bytes and set LEN to the length of the
20816 data. If memory is needed, allocate it on OBSTACK. If the DIE
20817 does not have a DW_AT_const_value, return NULL. */
20818
20819 const gdb_byte *
20820 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20821 struct dwarf2_per_cu_data *per_cu,
20822 struct obstack *obstack,
20823 LONGEST *len)
20824 {
20825 struct dwarf2_cu *cu;
20826 struct die_info *die;
20827 struct attribute *attr;
20828 const gdb_byte *result = NULL;
20829 struct type *type;
20830 LONGEST value;
20831 enum bfd_endian byte_order;
20832
20833 dw2_setup (per_cu->objfile);
20834
20835 if (per_cu->cu == NULL)
20836 load_cu (per_cu);
20837 cu = per_cu->cu;
20838 if (cu == NULL)
20839 {
20840 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20841 Instead just throw an error, not much else we can do. */
20842 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20843 to_underlying (sect_off), objfile_name (per_cu->objfile));
20844 }
20845
20846 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20847 if (!die)
20848 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20849 to_underlying (sect_off), objfile_name (per_cu->objfile));
20850
20851
20852 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20853 if (attr == NULL)
20854 return NULL;
20855
20856 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20857 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20858
20859 switch (attr->form)
20860 {
20861 case DW_FORM_addr:
20862 case DW_FORM_GNU_addr_index:
20863 {
20864 gdb_byte *tem;
20865
20866 *len = cu->header.addr_size;
20867 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20868 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20869 result = tem;
20870 }
20871 break;
20872 case DW_FORM_string:
20873 case DW_FORM_strp:
20874 case DW_FORM_GNU_str_index:
20875 case DW_FORM_GNU_strp_alt:
20876 /* DW_STRING is already allocated on the objfile obstack, point
20877 directly to it. */
20878 result = (const gdb_byte *) DW_STRING (attr);
20879 *len = strlen (DW_STRING (attr));
20880 break;
20881 case DW_FORM_block1:
20882 case DW_FORM_block2:
20883 case DW_FORM_block4:
20884 case DW_FORM_block:
20885 case DW_FORM_exprloc:
20886 case DW_FORM_data16:
20887 result = DW_BLOCK (attr)->data;
20888 *len = DW_BLOCK (attr)->size;
20889 break;
20890
20891 /* The DW_AT_const_value attributes are supposed to carry the
20892 symbol's value "represented as it would be on the target
20893 architecture." By the time we get here, it's already been
20894 converted to host endianness, so we just need to sign- or
20895 zero-extend it as appropriate. */
20896 case DW_FORM_data1:
20897 type = die_type (die, cu);
20898 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20899 if (result == NULL)
20900 result = write_constant_as_bytes (obstack, byte_order,
20901 type, value, len);
20902 break;
20903 case DW_FORM_data2:
20904 type = die_type (die, cu);
20905 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20906 if (result == NULL)
20907 result = write_constant_as_bytes (obstack, byte_order,
20908 type, value, len);
20909 break;
20910 case DW_FORM_data4:
20911 type = die_type (die, cu);
20912 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20913 if (result == NULL)
20914 result = write_constant_as_bytes (obstack, byte_order,
20915 type, value, len);
20916 break;
20917 case DW_FORM_data8:
20918 type = die_type (die, cu);
20919 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20920 if (result == NULL)
20921 result = write_constant_as_bytes (obstack, byte_order,
20922 type, value, len);
20923 break;
20924
20925 case DW_FORM_sdata:
20926 case DW_FORM_implicit_const:
20927 type = die_type (die, cu);
20928 result = write_constant_as_bytes (obstack, byte_order,
20929 type, DW_SND (attr), len);
20930 break;
20931
20932 case DW_FORM_udata:
20933 type = die_type (die, cu);
20934 result = write_constant_as_bytes (obstack, byte_order,
20935 type, DW_UNSND (attr), len);
20936 break;
20937
20938 default:
20939 complaint (&symfile_complaints,
20940 _("unsupported const value attribute form: '%s'"),
20941 dwarf_form_name (attr->form));
20942 break;
20943 }
20944
20945 return result;
20946 }
20947
20948 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20949 valid type for this die is found. */
20950
20951 struct type *
20952 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20953 struct dwarf2_per_cu_data *per_cu)
20954 {
20955 struct dwarf2_cu *cu;
20956 struct die_info *die;
20957
20958 dw2_setup (per_cu->objfile);
20959
20960 if (per_cu->cu == NULL)
20961 load_cu (per_cu);
20962 cu = per_cu->cu;
20963 if (!cu)
20964 return NULL;
20965
20966 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20967 if (!die)
20968 return NULL;
20969
20970 return die_type (die, cu);
20971 }
20972
20973 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20974 PER_CU. */
20975
20976 struct type *
20977 dwarf2_get_die_type (cu_offset die_offset,
20978 struct dwarf2_per_cu_data *per_cu)
20979 {
20980 dw2_setup (per_cu->objfile);
20981
20982 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20983 return get_die_type_at_offset (die_offset_sect, per_cu);
20984 }
20985
20986 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20987 On entry *REF_CU is the CU of SRC_DIE.
20988 On exit *REF_CU is the CU of the result.
20989 Returns NULL if the referenced DIE isn't found. */
20990
20991 static struct die_info *
20992 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20993 struct dwarf2_cu **ref_cu)
20994 {
20995 struct die_info temp_die;
20996 struct dwarf2_cu *sig_cu;
20997 struct die_info *die;
20998
20999 /* While it might be nice to assert sig_type->type == NULL here,
21000 we can get here for DW_AT_imported_declaration where we need
21001 the DIE not the type. */
21002
21003 /* If necessary, add it to the queue and load its DIEs. */
21004
21005 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21006 read_signatured_type (sig_type);
21007
21008 sig_cu = sig_type->per_cu.cu;
21009 gdb_assert (sig_cu != NULL);
21010 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21011 temp_die.sect_off = sig_type->type_offset_in_section;
21012 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21013 to_underlying (temp_die.sect_off));
21014 if (die)
21015 {
21016 /* For .gdb_index version 7 keep track of included TUs.
21017 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21018 if (dwarf2_per_objfile->index_table != NULL
21019 && dwarf2_per_objfile->index_table->version <= 7)
21020 {
21021 VEC_safe_push (dwarf2_per_cu_ptr,
21022 (*ref_cu)->per_cu->imported_symtabs,
21023 sig_cu->per_cu);
21024 }
21025
21026 *ref_cu = sig_cu;
21027 return die;
21028 }
21029
21030 return NULL;
21031 }
21032
21033 /* Follow signatured type referenced by ATTR in SRC_DIE.
21034 On entry *REF_CU is the CU of SRC_DIE.
21035 On exit *REF_CU is the CU of the result.
21036 The result is the DIE of the type.
21037 If the referenced type cannot be found an error is thrown. */
21038
21039 static struct die_info *
21040 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21041 struct dwarf2_cu **ref_cu)
21042 {
21043 ULONGEST signature = DW_SIGNATURE (attr);
21044 struct signatured_type *sig_type;
21045 struct die_info *die;
21046
21047 gdb_assert (attr->form == DW_FORM_ref_sig8);
21048
21049 sig_type = lookup_signatured_type (*ref_cu, signature);
21050 /* sig_type will be NULL if the signatured type is missing from
21051 the debug info. */
21052 if (sig_type == NULL)
21053 {
21054 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21055 " from DIE at 0x%x [in module %s]"),
21056 hex_string (signature), to_underlying (src_die->sect_off),
21057 objfile_name ((*ref_cu)->objfile));
21058 }
21059
21060 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21061 if (die == NULL)
21062 {
21063 dump_die_for_error (src_die);
21064 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21065 " from DIE at 0x%x [in module %s]"),
21066 hex_string (signature), to_underlying (src_die->sect_off),
21067 objfile_name ((*ref_cu)->objfile));
21068 }
21069
21070 return die;
21071 }
21072
21073 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21074 reading in and processing the type unit if necessary. */
21075
21076 static struct type *
21077 get_signatured_type (struct die_info *die, ULONGEST signature,
21078 struct dwarf2_cu *cu)
21079 {
21080 struct signatured_type *sig_type;
21081 struct dwarf2_cu *type_cu;
21082 struct die_info *type_die;
21083 struct type *type;
21084
21085 sig_type = lookup_signatured_type (cu, signature);
21086 /* sig_type will be NULL if the signatured type is missing from
21087 the debug info. */
21088 if (sig_type == NULL)
21089 {
21090 complaint (&symfile_complaints,
21091 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21092 " from DIE at 0x%x [in module %s]"),
21093 hex_string (signature), to_underlying (die->sect_off),
21094 objfile_name (dwarf2_per_objfile->objfile));
21095 return build_error_marker_type (cu, die);
21096 }
21097
21098 /* If we already know the type we're done. */
21099 if (sig_type->type != NULL)
21100 return sig_type->type;
21101
21102 type_cu = cu;
21103 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21104 if (type_die != NULL)
21105 {
21106 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21107 is created. This is important, for example, because for c++ classes
21108 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21109 type = read_type_die (type_die, type_cu);
21110 if (type == NULL)
21111 {
21112 complaint (&symfile_complaints,
21113 _("Dwarf Error: Cannot build signatured type %s"
21114 " referenced from DIE at 0x%x [in module %s]"),
21115 hex_string (signature), to_underlying (die->sect_off),
21116 objfile_name (dwarf2_per_objfile->objfile));
21117 type = build_error_marker_type (cu, die);
21118 }
21119 }
21120 else
21121 {
21122 complaint (&symfile_complaints,
21123 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21124 " from DIE at 0x%x [in module %s]"),
21125 hex_string (signature), to_underlying (die->sect_off),
21126 objfile_name (dwarf2_per_objfile->objfile));
21127 type = build_error_marker_type (cu, die);
21128 }
21129 sig_type->type = type;
21130
21131 return type;
21132 }
21133
21134 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21135 reading in and processing the type unit if necessary. */
21136
21137 static struct type *
21138 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21139 struct dwarf2_cu *cu) /* ARI: editCase function */
21140 {
21141 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21142 if (attr_form_is_ref (attr))
21143 {
21144 struct dwarf2_cu *type_cu = cu;
21145 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21146
21147 return read_type_die (type_die, type_cu);
21148 }
21149 else if (attr->form == DW_FORM_ref_sig8)
21150 {
21151 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21152 }
21153 else
21154 {
21155 complaint (&symfile_complaints,
21156 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21157 " at 0x%x [in module %s]"),
21158 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21159 objfile_name (dwarf2_per_objfile->objfile));
21160 return build_error_marker_type (cu, die);
21161 }
21162 }
21163
21164 /* Load the DIEs associated with type unit PER_CU into memory. */
21165
21166 static void
21167 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21168 {
21169 struct signatured_type *sig_type;
21170
21171 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21172 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21173
21174 /* We have the per_cu, but we need the signatured_type.
21175 Fortunately this is an easy translation. */
21176 gdb_assert (per_cu->is_debug_types);
21177 sig_type = (struct signatured_type *) per_cu;
21178
21179 gdb_assert (per_cu->cu == NULL);
21180
21181 read_signatured_type (sig_type);
21182
21183 gdb_assert (per_cu->cu != NULL);
21184 }
21185
21186 /* die_reader_func for read_signatured_type.
21187 This is identical to load_full_comp_unit_reader,
21188 but is kept separate for now. */
21189
21190 static void
21191 read_signatured_type_reader (const struct die_reader_specs *reader,
21192 const gdb_byte *info_ptr,
21193 struct die_info *comp_unit_die,
21194 int has_children,
21195 void *data)
21196 {
21197 struct dwarf2_cu *cu = reader->cu;
21198
21199 gdb_assert (cu->die_hash == NULL);
21200 cu->die_hash =
21201 htab_create_alloc_ex (cu->header.length / 12,
21202 die_hash,
21203 die_eq,
21204 NULL,
21205 &cu->comp_unit_obstack,
21206 hashtab_obstack_allocate,
21207 dummy_obstack_deallocate);
21208
21209 if (has_children)
21210 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21211 &info_ptr, comp_unit_die);
21212 cu->dies = comp_unit_die;
21213 /* comp_unit_die is not stored in die_hash, no need. */
21214
21215 /* We try not to read any attributes in this function, because not
21216 all CUs needed for references have been loaded yet, and symbol
21217 table processing isn't initialized. But we have to set the CU language,
21218 or we won't be able to build types correctly.
21219 Similarly, if we do not read the producer, we can not apply
21220 producer-specific interpretation. */
21221 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21222 }
21223
21224 /* Read in a signatured type and build its CU and DIEs.
21225 If the type is a stub for the real type in a DWO file,
21226 read in the real type from the DWO file as well. */
21227
21228 static void
21229 read_signatured_type (struct signatured_type *sig_type)
21230 {
21231 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21232
21233 gdb_assert (per_cu->is_debug_types);
21234 gdb_assert (per_cu->cu == NULL);
21235
21236 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21237 read_signatured_type_reader, NULL);
21238 sig_type->per_cu.tu_read = 1;
21239 }
21240
21241 /* Decode simple location descriptions.
21242 Given a pointer to a dwarf block that defines a location, compute
21243 the location and return the value.
21244
21245 NOTE drow/2003-11-18: This function is called in two situations
21246 now: for the address of static or global variables (partial symbols
21247 only) and for offsets into structures which are expected to be
21248 (more or less) constant. The partial symbol case should go away,
21249 and only the constant case should remain. That will let this
21250 function complain more accurately. A few special modes are allowed
21251 without complaint for global variables (for instance, global
21252 register values and thread-local values).
21253
21254 A location description containing no operations indicates that the
21255 object is optimized out. The return value is 0 for that case.
21256 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21257 callers will only want a very basic result and this can become a
21258 complaint.
21259
21260 Note that stack[0] is unused except as a default error return. */
21261
21262 static CORE_ADDR
21263 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21264 {
21265 struct objfile *objfile = cu->objfile;
21266 size_t i;
21267 size_t size = blk->size;
21268 const gdb_byte *data = blk->data;
21269 CORE_ADDR stack[64];
21270 int stacki;
21271 unsigned int bytes_read, unsnd;
21272 gdb_byte op;
21273
21274 i = 0;
21275 stacki = 0;
21276 stack[stacki] = 0;
21277 stack[++stacki] = 0;
21278
21279 while (i < size)
21280 {
21281 op = data[i++];
21282 switch (op)
21283 {
21284 case DW_OP_lit0:
21285 case DW_OP_lit1:
21286 case DW_OP_lit2:
21287 case DW_OP_lit3:
21288 case DW_OP_lit4:
21289 case DW_OP_lit5:
21290 case DW_OP_lit6:
21291 case DW_OP_lit7:
21292 case DW_OP_lit8:
21293 case DW_OP_lit9:
21294 case DW_OP_lit10:
21295 case DW_OP_lit11:
21296 case DW_OP_lit12:
21297 case DW_OP_lit13:
21298 case DW_OP_lit14:
21299 case DW_OP_lit15:
21300 case DW_OP_lit16:
21301 case DW_OP_lit17:
21302 case DW_OP_lit18:
21303 case DW_OP_lit19:
21304 case DW_OP_lit20:
21305 case DW_OP_lit21:
21306 case DW_OP_lit22:
21307 case DW_OP_lit23:
21308 case DW_OP_lit24:
21309 case DW_OP_lit25:
21310 case DW_OP_lit26:
21311 case DW_OP_lit27:
21312 case DW_OP_lit28:
21313 case DW_OP_lit29:
21314 case DW_OP_lit30:
21315 case DW_OP_lit31:
21316 stack[++stacki] = op - DW_OP_lit0;
21317 break;
21318
21319 case DW_OP_reg0:
21320 case DW_OP_reg1:
21321 case DW_OP_reg2:
21322 case DW_OP_reg3:
21323 case DW_OP_reg4:
21324 case DW_OP_reg5:
21325 case DW_OP_reg6:
21326 case DW_OP_reg7:
21327 case DW_OP_reg8:
21328 case DW_OP_reg9:
21329 case DW_OP_reg10:
21330 case DW_OP_reg11:
21331 case DW_OP_reg12:
21332 case DW_OP_reg13:
21333 case DW_OP_reg14:
21334 case DW_OP_reg15:
21335 case DW_OP_reg16:
21336 case DW_OP_reg17:
21337 case DW_OP_reg18:
21338 case DW_OP_reg19:
21339 case DW_OP_reg20:
21340 case DW_OP_reg21:
21341 case DW_OP_reg22:
21342 case DW_OP_reg23:
21343 case DW_OP_reg24:
21344 case DW_OP_reg25:
21345 case DW_OP_reg26:
21346 case DW_OP_reg27:
21347 case DW_OP_reg28:
21348 case DW_OP_reg29:
21349 case DW_OP_reg30:
21350 case DW_OP_reg31:
21351 stack[++stacki] = op - DW_OP_reg0;
21352 if (i < size)
21353 dwarf2_complex_location_expr_complaint ();
21354 break;
21355
21356 case DW_OP_regx:
21357 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21358 i += bytes_read;
21359 stack[++stacki] = unsnd;
21360 if (i < size)
21361 dwarf2_complex_location_expr_complaint ();
21362 break;
21363
21364 case DW_OP_addr:
21365 stack[++stacki] = read_address (objfile->obfd, &data[i],
21366 cu, &bytes_read);
21367 i += bytes_read;
21368 break;
21369
21370 case DW_OP_const1u:
21371 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21372 i += 1;
21373 break;
21374
21375 case DW_OP_const1s:
21376 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21377 i += 1;
21378 break;
21379
21380 case DW_OP_const2u:
21381 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21382 i += 2;
21383 break;
21384
21385 case DW_OP_const2s:
21386 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21387 i += 2;
21388 break;
21389
21390 case DW_OP_const4u:
21391 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21392 i += 4;
21393 break;
21394
21395 case DW_OP_const4s:
21396 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21397 i += 4;
21398 break;
21399
21400 case DW_OP_const8u:
21401 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21402 i += 8;
21403 break;
21404
21405 case DW_OP_constu:
21406 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21407 &bytes_read);
21408 i += bytes_read;
21409 break;
21410
21411 case DW_OP_consts:
21412 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21413 i += bytes_read;
21414 break;
21415
21416 case DW_OP_dup:
21417 stack[stacki + 1] = stack[stacki];
21418 stacki++;
21419 break;
21420
21421 case DW_OP_plus:
21422 stack[stacki - 1] += stack[stacki];
21423 stacki--;
21424 break;
21425
21426 case DW_OP_plus_uconst:
21427 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21428 &bytes_read);
21429 i += bytes_read;
21430 break;
21431
21432 case DW_OP_minus:
21433 stack[stacki - 1] -= stack[stacki];
21434 stacki--;
21435 break;
21436
21437 case DW_OP_deref:
21438 /* If we're not the last op, then we definitely can't encode
21439 this using GDB's address_class enum. This is valid for partial
21440 global symbols, although the variable's address will be bogus
21441 in the psymtab. */
21442 if (i < size)
21443 dwarf2_complex_location_expr_complaint ();
21444 break;
21445
21446 case DW_OP_GNU_push_tls_address:
21447 case DW_OP_form_tls_address:
21448 /* The top of the stack has the offset from the beginning
21449 of the thread control block at which the variable is located. */
21450 /* Nothing should follow this operator, so the top of stack would
21451 be returned. */
21452 /* This is valid for partial global symbols, but the variable's
21453 address will be bogus in the psymtab. Make it always at least
21454 non-zero to not look as a variable garbage collected by linker
21455 which have DW_OP_addr 0. */
21456 if (i < size)
21457 dwarf2_complex_location_expr_complaint ();
21458 stack[stacki]++;
21459 break;
21460
21461 case DW_OP_GNU_uninit:
21462 break;
21463
21464 case DW_OP_GNU_addr_index:
21465 case DW_OP_GNU_const_index:
21466 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21467 &bytes_read);
21468 i += bytes_read;
21469 break;
21470
21471 default:
21472 {
21473 const char *name = get_DW_OP_name (op);
21474
21475 if (name)
21476 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21477 name);
21478 else
21479 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21480 op);
21481 }
21482
21483 return (stack[stacki]);
21484 }
21485
21486 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21487 outside of the allocated space. Also enforce minimum>0. */
21488 if (stacki >= ARRAY_SIZE (stack) - 1)
21489 {
21490 complaint (&symfile_complaints,
21491 _("location description stack overflow"));
21492 return 0;
21493 }
21494
21495 if (stacki <= 0)
21496 {
21497 complaint (&symfile_complaints,
21498 _("location description stack underflow"));
21499 return 0;
21500 }
21501 }
21502 return (stack[stacki]);
21503 }
21504
21505 /* memory allocation interface */
21506
21507 static struct dwarf_block *
21508 dwarf_alloc_block (struct dwarf2_cu *cu)
21509 {
21510 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21511 }
21512
21513 static struct die_info *
21514 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21515 {
21516 struct die_info *die;
21517 size_t size = sizeof (struct die_info);
21518
21519 if (num_attrs > 1)
21520 size += (num_attrs - 1) * sizeof (struct attribute);
21521
21522 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21523 memset (die, 0, sizeof (struct die_info));
21524 return (die);
21525 }
21526
21527 \f
21528 /* Macro support. */
21529
21530 /* Return file name relative to the compilation directory of file number I in
21531 *LH's file name table. The result is allocated using xmalloc; the caller is
21532 responsible for freeing it. */
21533
21534 static char *
21535 file_file_name (int file, struct line_header *lh)
21536 {
21537 /* Is the file number a valid index into the line header's file name
21538 table? Remember that file numbers start with one, not zero. */
21539 if (1 <= file && file <= lh->file_names.size ())
21540 {
21541 const file_entry &fe = lh->file_names[file - 1];
21542
21543 if (!IS_ABSOLUTE_PATH (fe.name))
21544 {
21545 const char *dir = fe.include_dir (lh);
21546 if (dir != NULL)
21547 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21548 }
21549 return xstrdup (fe.name);
21550 }
21551 else
21552 {
21553 /* The compiler produced a bogus file number. We can at least
21554 record the macro definitions made in the file, even if we
21555 won't be able to find the file by name. */
21556 char fake_name[80];
21557
21558 xsnprintf (fake_name, sizeof (fake_name),
21559 "<bad macro file number %d>", file);
21560
21561 complaint (&symfile_complaints,
21562 _("bad file number in macro information (%d)"),
21563 file);
21564
21565 return xstrdup (fake_name);
21566 }
21567 }
21568
21569 /* Return the full name of file number I in *LH's file name table.
21570 Use COMP_DIR as the name of the current directory of the
21571 compilation. The result is allocated using xmalloc; the caller is
21572 responsible for freeing it. */
21573 static char *
21574 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21575 {
21576 /* Is the file number a valid index into the line header's file name
21577 table? Remember that file numbers start with one, not zero. */
21578 if (1 <= file && file <= lh->file_names.size ())
21579 {
21580 char *relative = file_file_name (file, lh);
21581
21582 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21583 return relative;
21584 return reconcat (relative, comp_dir, SLASH_STRING,
21585 relative, (char *) NULL);
21586 }
21587 else
21588 return file_file_name (file, lh);
21589 }
21590
21591
21592 static struct macro_source_file *
21593 macro_start_file (int file, int line,
21594 struct macro_source_file *current_file,
21595 struct line_header *lh)
21596 {
21597 /* File name relative to the compilation directory of this source file. */
21598 char *file_name = file_file_name (file, lh);
21599
21600 if (! current_file)
21601 {
21602 /* Note: We don't create a macro table for this compilation unit
21603 at all until we actually get a filename. */
21604 struct macro_table *macro_table = get_macro_table ();
21605
21606 /* If we have no current file, then this must be the start_file
21607 directive for the compilation unit's main source file. */
21608 current_file = macro_set_main (macro_table, file_name);
21609 macro_define_special (macro_table);
21610 }
21611 else
21612 current_file = macro_include (current_file, line, file_name);
21613
21614 xfree (file_name);
21615
21616 return current_file;
21617 }
21618
21619 static const char *
21620 consume_improper_spaces (const char *p, const char *body)
21621 {
21622 if (*p == ' ')
21623 {
21624 complaint (&symfile_complaints,
21625 _("macro definition contains spaces "
21626 "in formal argument list:\n`%s'"),
21627 body);
21628
21629 while (*p == ' ')
21630 p++;
21631 }
21632
21633 return p;
21634 }
21635
21636
21637 static void
21638 parse_macro_definition (struct macro_source_file *file, int line,
21639 const char *body)
21640 {
21641 const char *p;
21642
21643 /* The body string takes one of two forms. For object-like macro
21644 definitions, it should be:
21645
21646 <macro name> " " <definition>
21647
21648 For function-like macro definitions, it should be:
21649
21650 <macro name> "() " <definition>
21651 or
21652 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21653
21654 Spaces may appear only where explicitly indicated, and in the
21655 <definition>.
21656
21657 The Dwarf 2 spec says that an object-like macro's name is always
21658 followed by a space, but versions of GCC around March 2002 omit
21659 the space when the macro's definition is the empty string.
21660
21661 The Dwarf 2 spec says that there should be no spaces between the
21662 formal arguments in a function-like macro's formal argument list,
21663 but versions of GCC around March 2002 include spaces after the
21664 commas. */
21665
21666
21667 /* Find the extent of the macro name. The macro name is terminated
21668 by either a space or null character (for an object-like macro) or
21669 an opening paren (for a function-like macro). */
21670 for (p = body; *p; p++)
21671 if (*p == ' ' || *p == '(')
21672 break;
21673
21674 if (*p == ' ' || *p == '\0')
21675 {
21676 /* It's an object-like macro. */
21677 int name_len = p - body;
21678 char *name = savestring (body, name_len);
21679 const char *replacement;
21680
21681 if (*p == ' ')
21682 replacement = body + name_len + 1;
21683 else
21684 {
21685 dwarf2_macro_malformed_definition_complaint (body);
21686 replacement = body + name_len;
21687 }
21688
21689 macro_define_object (file, line, name, replacement);
21690
21691 xfree (name);
21692 }
21693 else if (*p == '(')
21694 {
21695 /* It's a function-like macro. */
21696 char *name = savestring (body, p - body);
21697 int argc = 0;
21698 int argv_size = 1;
21699 char **argv = XNEWVEC (char *, argv_size);
21700
21701 p++;
21702
21703 p = consume_improper_spaces (p, body);
21704
21705 /* Parse the formal argument list. */
21706 while (*p && *p != ')')
21707 {
21708 /* Find the extent of the current argument name. */
21709 const char *arg_start = p;
21710
21711 while (*p && *p != ',' && *p != ')' && *p != ' ')
21712 p++;
21713
21714 if (! *p || p == arg_start)
21715 dwarf2_macro_malformed_definition_complaint (body);
21716 else
21717 {
21718 /* Make sure argv has room for the new argument. */
21719 if (argc >= argv_size)
21720 {
21721 argv_size *= 2;
21722 argv = XRESIZEVEC (char *, argv, argv_size);
21723 }
21724
21725 argv[argc++] = savestring (arg_start, p - arg_start);
21726 }
21727
21728 p = consume_improper_spaces (p, body);
21729
21730 /* Consume the comma, if present. */
21731 if (*p == ',')
21732 {
21733 p++;
21734
21735 p = consume_improper_spaces (p, body);
21736 }
21737 }
21738
21739 if (*p == ')')
21740 {
21741 p++;
21742
21743 if (*p == ' ')
21744 /* Perfectly formed definition, no complaints. */
21745 macro_define_function (file, line, name,
21746 argc, (const char **) argv,
21747 p + 1);
21748 else if (*p == '\0')
21749 {
21750 /* Complain, but do define it. */
21751 dwarf2_macro_malformed_definition_complaint (body);
21752 macro_define_function (file, line, name,
21753 argc, (const char **) argv,
21754 p);
21755 }
21756 else
21757 /* Just complain. */
21758 dwarf2_macro_malformed_definition_complaint (body);
21759 }
21760 else
21761 /* Just complain. */
21762 dwarf2_macro_malformed_definition_complaint (body);
21763
21764 xfree (name);
21765 {
21766 int i;
21767
21768 for (i = 0; i < argc; i++)
21769 xfree (argv[i]);
21770 }
21771 xfree (argv);
21772 }
21773 else
21774 dwarf2_macro_malformed_definition_complaint (body);
21775 }
21776
21777 /* Skip some bytes from BYTES according to the form given in FORM.
21778 Returns the new pointer. */
21779
21780 static const gdb_byte *
21781 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21782 enum dwarf_form form,
21783 unsigned int offset_size,
21784 struct dwarf2_section_info *section)
21785 {
21786 unsigned int bytes_read;
21787
21788 switch (form)
21789 {
21790 case DW_FORM_data1:
21791 case DW_FORM_flag:
21792 ++bytes;
21793 break;
21794
21795 case DW_FORM_data2:
21796 bytes += 2;
21797 break;
21798
21799 case DW_FORM_data4:
21800 bytes += 4;
21801 break;
21802
21803 case DW_FORM_data8:
21804 bytes += 8;
21805 break;
21806
21807 case DW_FORM_data16:
21808 bytes += 16;
21809 break;
21810
21811 case DW_FORM_string:
21812 read_direct_string (abfd, bytes, &bytes_read);
21813 bytes += bytes_read;
21814 break;
21815
21816 case DW_FORM_sec_offset:
21817 case DW_FORM_strp:
21818 case DW_FORM_GNU_strp_alt:
21819 bytes += offset_size;
21820 break;
21821
21822 case DW_FORM_block:
21823 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21824 bytes += bytes_read;
21825 break;
21826
21827 case DW_FORM_block1:
21828 bytes += 1 + read_1_byte (abfd, bytes);
21829 break;
21830 case DW_FORM_block2:
21831 bytes += 2 + read_2_bytes (abfd, bytes);
21832 break;
21833 case DW_FORM_block4:
21834 bytes += 4 + read_4_bytes (abfd, bytes);
21835 break;
21836
21837 case DW_FORM_sdata:
21838 case DW_FORM_udata:
21839 case DW_FORM_GNU_addr_index:
21840 case DW_FORM_GNU_str_index:
21841 bytes = gdb_skip_leb128 (bytes, buffer_end);
21842 if (bytes == NULL)
21843 {
21844 dwarf2_section_buffer_overflow_complaint (section);
21845 return NULL;
21846 }
21847 break;
21848
21849 case DW_FORM_implicit_const:
21850 break;
21851
21852 default:
21853 {
21854 complain:
21855 complaint (&symfile_complaints,
21856 _("invalid form 0x%x in `%s'"),
21857 form, get_section_name (section));
21858 return NULL;
21859 }
21860 }
21861
21862 return bytes;
21863 }
21864
21865 /* A helper for dwarf_decode_macros that handles skipping an unknown
21866 opcode. Returns an updated pointer to the macro data buffer; or,
21867 on error, issues a complaint and returns NULL. */
21868
21869 static const gdb_byte *
21870 skip_unknown_opcode (unsigned int opcode,
21871 const gdb_byte **opcode_definitions,
21872 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21873 bfd *abfd,
21874 unsigned int offset_size,
21875 struct dwarf2_section_info *section)
21876 {
21877 unsigned int bytes_read, i;
21878 unsigned long arg;
21879 const gdb_byte *defn;
21880
21881 if (opcode_definitions[opcode] == NULL)
21882 {
21883 complaint (&symfile_complaints,
21884 _("unrecognized DW_MACFINO opcode 0x%x"),
21885 opcode);
21886 return NULL;
21887 }
21888
21889 defn = opcode_definitions[opcode];
21890 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21891 defn += bytes_read;
21892
21893 for (i = 0; i < arg; ++i)
21894 {
21895 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21896 (enum dwarf_form) defn[i], offset_size,
21897 section);
21898 if (mac_ptr == NULL)
21899 {
21900 /* skip_form_bytes already issued the complaint. */
21901 return NULL;
21902 }
21903 }
21904
21905 return mac_ptr;
21906 }
21907
21908 /* A helper function which parses the header of a macro section.
21909 If the macro section is the extended (for now called "GNU") type,
21910 then this updates *OFFSET_SIZE. Returns a pointer to just after
21911 the header, or issues a complaint and returns NULL on error. */
21912
21913 static const gdb_byte *
21914 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21915 bfd *abfd,
21916 const gdb_byte *mac_ptr,
21917 unsigned int *offset_size,
21918 int section_is_gnu)
21919 {
21920 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21921
21922 if (section_is_gnu)
21923 {
21924 unsigned int version, flags;
21925
21926 version = read_2_bytes (abfd, mac_ptr);
21927 if (version != 4 && version != 5)
21928 {
21929 complaint (&symfile_complaints,
21930 _("unrecognized version `%d' in .debug_macro section"),
21931 version);
21932 return NULL;
21933 }
21934 mac_ptr += 2;
21935
21936 flags = read_1_byte (abfd, mac_ptr);
21937 ++mac_ptr;
21938 *offset_size = (flags & 1) ? 8 : 4;
21939
21940 if ((flags & 2) != 0)
21941 /* We don't need the line table offset. */
21942 mac_ptr += *offset_size;
21943
21944 /* Vendor opcode descriptions. */
21945 if ((flags & 4) != 0)
21946 {
21947 unsigned int i, count;
21948
21949 count = read_1_byte (abfd, mac_ptr);
21950 ++mac_ptr;
21951 for (i = 0; i < count; ++i)
21952 {
21953 unsigned int opcode, bytes_read;
21954 unsigned long arg;
21955
21956 opcode = read_1_byte (abfd, mac_ptr);
21957 ++mac_ptr;
21958 opcode_definitions[opcode] = mac_ptr;
21959 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21960 mac_ptr += bytes_read;
21961 mac_ptr += arg;
21962 }
21963 }
21964 }
21965
21966 return mac_ptr;
21967 }
21968
21969 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21970 including DW_MACRO_import. */
21971
21972 static void
21973 dwarf_decode_macro_bytes (bfd *abfd,
21974 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21975 struct macro_source_file *current_file,
21976 struct line_header *lh,
21977 struct dwarf2_section_info *section,
21978 int section_is_gnu, int section_is_dwz,
21979 unsigned int offset_size,
21980 htab_t include_hash)
21981 {
21982 struct objfile *objfile = dwarf2_per_objfile->objfile;
21983 enum dwarf_macro_record_type macinfo_type;
21984 int at_commandline;
21985 const gdb_byte *opcode_definitions[256];
21986
21987 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21988 &offset_size, section_is_gnu);
21989 if (mac_ptr == NULL)
21990 {
21991 /* We already issued a complaint. */
21992 return;
21993 }
21994
21995 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21996 GDB is still reading the definitions from command line. First
21997 DW_MACINFO_start_file will need to be ignored as it was already executed
21998 to create CURRENT_FILE for the main source holding also the command line
21999 definitions. On first met DW_MACINFO_start_file this flag is reset to
22000 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22001
22002 at_commandline = 1;
22003
22004 do
22005 {
22006 /* Do we at least have room for a macinfo type byte? */
22007 if (mac_ptr >= mac_end)
22008 {
22009 dwarf2_section_buffer_overflow_complaint (section);
22010 break;
22011 }
22012
22013 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22014 mac_ptr++;
22015
22016 /* Note that we rely on the fact that the corresponding GNU and
22017 DWARF constants are the same. */
22018 switch (macinfo_type)
22019 {
22020 /* A zero macinfo type indicates the end of the macro
22021 information. */
22022 case 0:
22023 break;
22024
22025 case DW_MACRO_define:
22026 case DW_MACRO_undef:
22027 case DW_MACRO_define_strp:
22028 case DW_MACRO_undef_strp:
22029 case DW_MACRO_define_sup:
22030 case DW_MACRO_undef_sup:
22031 {
22032 unsigned int bytes_read;
22033 int line;
22034 const char *body;
22035 int is_define;
22036
22037 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22038 mac_ptr += bytes_read;
22039
22040 if (macinfo_type == DW_MACRO_define
22041 || macinfo_type == DW_MACRO_undef)
22042 {
22043 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22044 mac_ptr += bytes_read;
22045 }
22046 else
22047 {
22048 LONGEST str_offset;
22049
22050 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22051 mac_ptr += offset_size;
22052
22053 if (macinfo_type == DW_MACRO_define_sup
22054 || macinfo_type == DW_MACRO_undef_sup
22055 || section_is_dwz)
22056 {
22057 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22058
22059 body = read_indirect_string_from_dwz (dwz, str_offset);
22060 }
22061 else
22062 body = read_indirect_string_at_offset (abfd, str_offset);
22063 }
22064
22065 is_define = (macinfo_type == DW_MACRO_define
22066 || macinfo_type == DW_MACRO_define_strp
22067 || macinfo_type == DW_MACRO_define_sup);
22068 if (! current_file)
22069 {
22070 /* DWARF violation as no main source is present. */
22071 complaint (&symfile_complaints,
22072 _("debug info with no main source gives macro %s "
22073 "on line %d: %s"),
22074 is_define ? _("definition") : _("undefinition"),
22075 line, body);
22076 break;
22077 }
22078 if ((line == 0 && !at_commandline)
22079 || (line != 0 && at_commandline))
22080 complaint (&symfile_complaints,
22081 _("debug info gives %s macro %s with %s line %d: %s"),
22082 at_commandline ? _("command-line") : _("in-file"),
22083 is_define ? _("definition") : _("undefinition"),
22084 line == 0 ? _("zero") : _("non-zero"), line, body);
22085
22086 if (is_define)
22087 parse_macro_definition (current_file, line, body);
22088 else
22089 {
22090 gdb_assert (macinfo_type == DW_MACRO_undef
22091 || macinfo_type == DW_MACRO_undef_strp
22092 || macinfo_type == DW_MACRO_undef_sup);
22093 macro_undef (current_file, line, body);
22094 }
22095 }
22096 break;
22097
22098 case DW_MACRO_start_file:
22099 {
22100 unsigned int bytes_read;
22101 int line, file;
22102
22103 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22104 mac_ptr += bytes_read;
22105 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22106 mac_ptr += bytes_read;
22107
22108 if ((line == 0 && !at_commandline)
22109 || (line != 0 && at_commandline))
22110 complaint (&symfile_complaints,
22111 _("debug info gives source %d included "
22112 "from %s at %s line %d"),
22113 file, at_commandline ? _("command-line") : _("file"),
22114 line == 0 ? _("zero") : _("non-zero"), line);
22115
22116 if (at_commandline)
22117 {
22118 /* This DW_MACRO_start_file was executed in the
22119 pass one. */
22120 at_commandline = 0;
22121 }
22122 else
22123 current_file = macro_start_file (file, line, current_file, lh);
22124 }
22125 break;
22126
22127 case DW_MACRO_end_file:
22128 if (! current_file)
22129 complaint (&symfile_complaints,
22130 _("macro debug info has an unmatched "
22131 "`close_file' directive"));
22132 else
22133 {
22134 current_file = current_file->included_by;
22135 if (! current_file)
22136 {
22137 enum dwarf_macro_record_type next_type;
22138
22139 /* GCC circa March 2002 doesn't produce the zero
22140 type byte marking the end of the compilation
22141 unit. Complain if it's not there, but exit no
22142 matter what. */
22143
22144 /* Do we at least have room for a macinfo type byte? */
22145 if (mac_ptr >= mac_end)
22146 {
22147 dwarf2_section_buffer_overflow_complaint (section);
22148 return;
22149 }
22150
22151 /* We don't increment mac_ptr here, so this is just
22152 a look-ahead. */
22153 next_type
22154 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22155 mac_ptr);
22156 if (next_type != 0)
22157 complaint (&symfile_complaints,
22158 _("no terminating 0-type entry for "
22159 "macros in `.debug_macinfo' section"));
22160
22161 return;
22162 }
22163 }
22164 break;
22165
22166 case DW_MACRO_import:
22167 case DW_MACRO_import_sup:
22168 {
22169 LONGEST offset;
22170 void **slot;
22171 bfd *include_bfd = abfd;
22172 struct dwarf2_section_info *include_section = section;
22173 const gdb_byte *include_mac_end = mac_end;
22174 int is_dwz = section_is_dwz;
22175 const gdb_byte *new_mac_ptr;
22176
22177 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22178 mac_ptr += offset_size;
22179
22180 if (macinfo_type == DW_MACRO_import_sup)
22181 {
22182 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22183
22184 dwarf2_read_section (objfile, &dwz->macro);
22185
22186 include_section = &dwz->macro;
22187 include_bfd = get_section_bfd_owner (include_section);
22188 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22189 is_dwz = 1;
22190 }
22191
22192 new_mac_ptr = include_section->buffer + offset;
22193 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22194
22195 if (*slot != NULL)
22196 {
22197 /* This has actually happened; see
22198 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22199 complaint (&symfile_complaints,
22200 _("recursive DW_MACRO_import in "
22201 ".debug_macro section"));
22202 }
22203 else
22204 {
22205 *slot = (void *) new_mac_ptr;
22206
22207 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22208 include_mac_end, current_file, lh,
22209 section, section_is_gnu, is_dwz,
22210 offset_size, include_hash);
22211
22212 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22213 }
22214 }
22215 break;
22216
22217 case DW_MACINFO_vendor_ext:
22218 if (!section_is_gnu)
22219 {
22220 unsigned int bytes_read;
22221
22222 /* This reads the constant, but since we don't recognize
22223 any vendor extensions, we ignore it. */
22224 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22225 mac_ptr += bytes_read;
22226 read_direct_string (abfd, mac_ptr, &bytes_read);
22227 mac_ptr += bytes_read;
22228
22229 /* We don't recognize any vendor extensions. */
22230 break;
22231 }
22232 /* FALLTHROUGH */
22233
22234 default:
22235 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22236 mac_ptr, mac_end, abfd, offset_size,
22237 section);
22238 if (mac_ptr == NULL)
22239 return;
22240 break;
22241 }
22242 } while (macinfo_type != 0);
22243 }
22244
22245 static void
22246 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22247 int section_is_gnu)
22248 {
22249 struct objfile *objfile = dwarf2_per_objfile->objfile;
22250 struct line_header *lh = cu->line_header;
22251 bfd *abfd;
22252 const gdb_byte *mac_ptr, *mac_end;
22253 struct macro_source_file *current_file = 0;
22254 enum dwarf_macro_record_type macinfo_type;
22255 unsigned int offset_size = cu->header.offset_size;
22256 const gdb_byte *opcode_definitions[256];
22257 void **slot;
22258 struct dwarf2_section_info *section;
22259 const char *section_name;
22260
22261 if (cu->dwo_unit != NULL)
22262 {
22263 if (section_is_gnu)
22264 {
22265 section = &cu->dwo_unit->dwo_file->sections.macro;
22266 section_name = ".debug_macro.dwo";
22267 }
22268 else
22269 {
22270 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22271 section_name = ".debug_macinfo.dwo";
22272 }
22273 }
22274 else
22275 {
22276 if (section_is_gnu)
22277 {
22278 section = &dwarf2_per_objfile->macro;
22279 section_name = ".debug_macro";
22280 }
22281 else
22282 {
22283 section = &dwarf2_per_objfile->macinfo;
22284 section_name = ".debug_macinfo";
22285 }
22286 }
22287
22288 dwarf2_read_section (objfile, section);
22289 if (section->buffer == NULL)
22290 {
22291 complaint (&symfile_complaints, _("missing %s section"), section_name);
22292 return;
22293 }
22294 abfd = get_section_bfd_owner (section);
22295
22296 /* First pass: Find the name of the base filename.
22297 This filename is needed in order to process all macros whose definition
22298 (or undefinition) comes from the command line. These macros are defined
22299 before the first DW_MACINFO_start_file entry, and yet still need to be
22300 associated to the base file.
22301
22302 To determine the base file name, we scan the macro definitions until we
22303 reach the first DW_MACINFO_start_file entry. We then initialize
22304 CURRENT_FILE accordingly so that any macro definition found before the
22305 first DW_MACINFO_start_file can still be associated to the base file. */
22306
22307 mac_ptr = section->buffer + offset;
22308 mac_end = section->buffer + section->size;
22309
22310 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22311 &offset_size, section_is_gnu);
22312 if (mac_ptr == NULL)
22313 {
22314 /* We already issued a complaint. */
22315 return;
22316 }
22317
22318 do
22319 {
22320 /* Do we at least have room for a macinfo type byte? */
22321 if (mac_ptr >= mac_end)
22322 {
22323 /* Complaint is printed during the second pass as GDB will probably
22324 stop the first pass earlier upon finding
22325 DW_MACINFO_start_file. */
22326 break;
22327 }
22328
22329 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22330 mac_ptr++;
22331
22332 /* Note that we rely on the fact that the corresponding GNU and
22333 DWARF constants are the same. */
22334 switch (macinfo_type)
22335 {
22336 /* A zero macinfo type indicates the end of the macro
22337 information. */
22338 case 0:
22339 break;
22340
22341 case DW_MACRO_define:
22342 case DW_MACRO_undef:
22343 /* Only skip the data by MAC_PTR. */
22344 {
22345 unsigned int bytes_read;
22346
22347 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22348 mac_ptr += bytes_read;
22349 read_direct_string (abfd, mac_ptr, &bytes_read);
22350 mac_ptr += bytes_read;
22351 }
22352 break;
22353
22354 case DW_MACRO_start_file:
22355 {
22356 unsigned int bytes_read;
22357 int line, file;
22358
22359 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22360 mac_ptr += bytes_read;
22361 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22362 mac_ptr += bytes_read;
22363
22364 current_file = macro_start_file (file, line, current_file, lh);
22365 }
22366 break;
22367
22368 case DW_MACRO_end_file:
22369 /* No data to skip by MAC_PTR. */
22370 break;
22371
22372 case DW_MACRO_define_strp:
22373 case DW_MACRO_undef_strp:
22374 case DW_MACRO_define_sup:
22375 case DW_MACRO_undef_sup:
22376 {
22377 unsigned int bytes_read;
22378
22379 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22380 mac_ptr += bytes_read;
22381 mac_ptr += offset_size;
22382 }
22383 break;
22384
22385 case DW_MACRO_import:
22386 case DW_MACRO_import_sup:
22387 /* Note that, according to the spec, a transparent include
22388 chain cannot call DW_MACRO_start_file. So, we can just
22389 skip this opcode. */
22390 mac_ptr += offset_size;
22391 break;
22392
22393 case DW_MACINFO_vendor_ext:
22394 /* Only skip the data by MAC_PTR. */
22395 if (!section_is_gnu)
22396 {
22397 unsigned int bytes_read;
22398
22399 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22400 mac_ptr += bytes_read;
22401 read_direct_string (abfd, mac_ptr, &bytes_read);
22402 mac_ptr += bytes_read;
22403 }
22404 /* FALLTHROUGH */
22405
22406 default:
22407 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22408 mac_ptr, mac_end, abfd, offset_size,
22409 section);
22410 if (mac_ptr == NULL)
22411 return;
22412 break;
22413 }
22414 } while (macinfo_type != 0 && current_file == NULL);
22415
22416 /* Second pass: Process all entries.
22417
22418 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22419 command-line macro definitions/undefinitions. This flag is unset when we
22420 reach the first DW_MACINFO_start_file entry. */
22421
22422 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22423 htab_eq_pointer,
22424 NULL, xcalloc, xfree));
22425 mac_ptr = section->buffer + offset;
22426 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22427 *slot = (void *) mac_ptr;
22428 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22429 current_file, lh, section,
22430 section_is_gnu, 0, offset_size,
22431 include_hash.get ());
22432 }
22433
22434 /* Check if the attribute's form is a DW_FORM_block*
22435 if so return true else false. */
22436
22437 static int
22438 attr_form_is_block (const struct attribute *attr)
22439 {
22440 return (attr == NULL ? 0 :
22441 attr->form == DW_FORM_block1
22442 || attr->form == DW_FORM_block2
22443 || attr->form == DW_FORM_block4
22444 || attr->form == DW_FORM_block
22445 || attr->form == DW_FORM_exprloc);
22446 }
22447
22448 /* Return non-zero if ATTR's value is a section offset --- classes
22449 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22450 You may use DW_UNSND (attr) to retrieve such offsets.
22451
22452 Section 7.5.4, "Attribute Encodings", explains that no attribute
22453 may have a value that belongs to more than one of these classes; it
22454 would be ambiguous if we did, because we use the same forms for all
22455 of them. */
22456
22457 static int
22458 attr_form_is_section_offset (const struct attribute *attr)
22459 {
22460 return (attr->form == DW_FORM_data4
22461 || attr->form == DW_FORM_data8
22462 || attr->form == DW_FORM_sec_offset);
22463 }
22464
22465 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22466 zero otherwise. When this function returns true, you can apply
22467 dwarf2_get_attr_constant_value to it.
22468
22469 However, note that for some attributes you must check
22470 attr_form_is_section_offset before using this test. DW_FORM_data4
22471 and DW_FORM_data8 are members of both the constant class, and of
22472 the classes that contain offsets into other debug sections
22473 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22474 that, if an attribute's can be either a constant or one of the
22475 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22476 taken as section offsets, not constants.
22477
22478 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22479 cannot handle that. */
22480
22481 static int
22482 attr_form_is_constant (const struct attribute *attr)
22483 {
22484 switch (attr->form)
22485 {
22486 case DW_FORM_sdata:
22487 case DW_FORM_udata:
22488 case DW_FORM_data1:
22489 case DW_FORM_data2:
22490 case DW_FORM_data4:
22491 case DW_FORM_data8:
22492 case DW_FORM_implicit_const:
22493 return 1;
22494 default:
22495 return 0;
22496 }
22497 }
22498
22499
22500 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22501 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22502
22503 static int
22504 attr_form_is_ref (const struct attribute *attr)
22505 {
22506 switch (attr->form)
22507 {
22508 case DW_FORM_ref_addr:
22509 case DW_FORM_ref1:
22510 case DW_FORM_ref2:
22511 case DW_FORM_ref4:
22512 case DW_FORM_ref8:
22513 case DW_FORM_ref_udata:
22514 case DW_FORM_GNU_ref_alt:
22515 return 1;
22516 default:
22517 return 0;
22518 }
22519 }
22520
22521 /* Return the .debug_loc section to use for CU.
22522 For DWO files use .debug_loc.dwo. */
22523
22524 static struct dwarf2_section_info *
22525 cu_debug_loc_section (struct dwarf2_cu *cu)
22526 {
22527 if (cu->dwo_unit)
22528 {
22529 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22530
22531 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22532 }
22533 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22534 : &dwarf2_per_objfile->loc);
22535 }
22536
22537 /* A helper function that fills in a dwarf2_loclist_baton. */
22538
22539 static void
22540 fill_in_loclist_baton (struct dwarf2_cu *cu,
22541 struct dwarf2_loclist_baton *baton,
22542 const struct attribute *attr)
22543 {
22544 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22545
22546 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22547
22548 baton->per_cu = cu->per_cu;
22549 gdb_assert (baton->per_cu);
22550 /* We don't know how long the location list is, but make sure we
22551 don't run off the edge of the section. */
22552 baton->size = section->size - DW_UNSND (attr);
22553 baton->data = section->buffer + DW_UNSND (attr);
22554 baton->base_address = cu->base_address;
22555 baton->from_dwo = cu->dwo_unit != NULL;
22556 }
22557
22558 static void
22559 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22560 struct dwarf2_cu *cu, int is_block)
22561 {
22562 struct objfile *objfile = dwarf2_per_objfile->objfile;
22563 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22564
22565 if (attr_form_is_section_offset (attr)
22566 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22567 the section. If so, fall through to the complaint in the
22568 other branch. */
22569 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22570 {
22571 struct dwarf2_loclist_baton *baton;
22572
22573 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22574
22575 fill_in_loclist_baton (cu, baton, attr);
22576
22577 if (cu->base_known == 0)
22578 complaint (&symfile_complaints,
22579 _("Location list used without "
22580 "specifying the CU base address."));
22581
22582 SYMBOL_ACLASS_INDEX (sym) = (is_block
22583 ? dwarf2_loclist_block_index
22584 : dwarf2_loclist_index);
22585 SYMBOL_LOCATION_BATON (sym) = baton;
22586 }
22587 else
22588 {
22589 struct dwarf2_locexpr_baton *baton;
22590
22591 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22592 baton->per_cu = cu->per_cu;
22593 gdb_assert (baton->per_cu);
22594
22595 if (attr_form_is_block (attr))
22596 {
22597 /* Note that we're just copying the block's data pointer
22598 here, not the actual data. We're still pointing into the
22599 info_buffer for SYM's objfile; right now we never release
22600 that buffer, but when we do clean up properly this may
22601 need to change. */
22602 baton->size = DW_BLOCK (attr)->size;
22603 baton->data = DW_BLOCK (attr)->data;
22604 }
22605 else
22606 {
22607 dwarf2_invalid_attrib_class_complaint ("location description",
22608 SYMBOL_NATURAL_NAME (sym));
22609 baton->size = 0;
22610 }
22611
22612 SYMBOL_ACLASS_INDEX (sym) = (is_block
22613 ? dwarf2_locexpr_block_index
22614 : dwarf2_locexpr_index);
22615 SYMBOL_LOCATION_BATON (sym) = baton;
22616 }
22617 }
22618
22619 /* Return the OBJFILE associated with the compilation unit CU. If CU
22620 came from a separate debuginfo file, then the master objfile is
22621 returned. */
22622
22623 struct objfile *
22624 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22625 {
22626 struct objfile *objfile = per_cu->objfile;
22627
22628 /* Return the master objfile, so that we can report and look up the
22629 correct file containing this variable. */
22630 if (objfile->separate_debug_objfile_backlink)
22631 objfile = objfile->separate_debug_objfile_backlink;
22632
22633 return objfile;
22634 }
22635
22636 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22637 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22638 CU_HEADERP first. */
22639
22640 static const struct comp_unit_head *
22641 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22642 struct dwarf2_per_cu_data *per_cu)
22643 {
22644 const gdb_byte *info_ptr;
22645
22646 if (per_cu->cu)
22647 return &per_cu->cu->header;
22648
22649 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22650
22651 memset (cu_headerp, 0, sizeof (*cu_headerp));
22652 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22653 rcuh_kind::COMPILE);
22654
22655 return cu_headerp;
22656 }
22657
22658 /* Return the address size given in the compilation unit header for CU. */
22659
22660 int
22661 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22662 {
22663 struct comp_unit_head cu_header_local;
22664 const struct comp_unit_head *cu_headerp;
22665
22666 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22667
22668 return cu_headerp->addr_size;
22669 }
22670
22671 /* Return the offset size given in the compilation unit header for CU. */
22672
22673 int
22674 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22675 {
22676 struct comp_unit_head cu_header_local;
22677 const struct comp_unit_head *cu_headerp;
22678
22679 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22680
22681 return cu_headerp->offset_size;
22682 }
22683
22684 /* See its dwarf2loc.h declaration. */
22685
22686 int
22687 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22688 {
22689 struct comp_unit_head cu_header_local;
22690 const struct comp_unit_head *cu_headerp;
22691
22692 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22693
22694 if (cu_headerp->version == 2)
22695 return cu_headerp->addr_size;
22696 else
22697 return cu_headerp->offset_size;
22698 }
22699
22700 /* Return the text offset of the CU. The returned offset comes from
22701 this CU's objfile. If this objfile came from a separate debuginfo
22702 file, then the offset may be different from the corresponding
22703 offset in the parent objfile. */
22704
22705 CORE_ADDR
22706 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22707 {
22708 struct objfile *objfile = per_cu->objfile;
22709
22710 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22711 }
22712
22713 /* Return DWARF version number of PER_CU. */
22714
22715 short
22716 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22717 {
22718 return per_cu->dwarf_version;
22719 }
22720
22721 /* Locate the .debug_info compilation unit from CU's objfile which contains
22722 the DIE at OFFSET. Raises an error on failure. */
22723
22724 static struct dwarf2_per_cu_data *
22725 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22726 unsigned int offset_in_dwz,
22727 struct objfile *objfile)
22728 {
22729 struct dwarf2_per_cu_data *this_cu;
22730 int low, high;
22731 const sect_offset *cu_off;
22732
22733 low = 0;
22734 high = dwarf2_per_objfile->n_comp_units - 1;
22735 while (high > low)
22736 {
22737 struct dwarf2_per_cu_data *mid_cu;
22738 int mid = low + (high - low) / 2;
22739
22740 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22741 cu_off = &mid_cu->sect_off;
22742 if (mid_cu->is_dwz > offset_in_dwz
22743 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22744 high = mid;
22745 else
22746 low = mid + 1;
22747 }
22748 gdb_assert (low == high);
22749 this_cu = dwarf2_per_objfile->all_comp_units[low];
22750 cu_off = &this_cu->sect_off;
22751 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22752 {
22753 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22754 error (_("Dwarf Error: could not find partial DIE containing "
22755 "offset 0x%x [in module %s]"),
22756 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22757
22758 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22759 <= sect_off);
22760 return dwarf2_per_objfile->all_comp_units[low-1];
22761 }
22762 else
22763 {
22764 this_cu = dwarf2_per_objfile->all_comp_units[low];
22765 if (low == dwarf2_per_objfile->n_comp_units - 1
22766 && sect_off >= this_cu->sect_off + this_cu->length)
22767 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22768 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22769 return this_cu;
22770 }
22771 }
22772
22773 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22774
22775 static void
22776 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22777 {
22778 memset (cu, 0, sizeof (*cu));
22779 per_cu->cu = cu;
22780 cu->per_cu = per_cu;
22781 cu->objfile = per_cu->objfile;
22782 obstack_init (&cu->comp_unit_obstack);
22783 }
22784
22785 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22786
22787 static void
22788 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22789 enum language pretend_language)
22790 {
22791 struct attribute *attr;
22792
22793 /* Set the language we're debugging. */
22794 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22795 if (attr)
22796 set_cu_language (DW_UNSND (attr), cu);
22797 else
22798 {
22799 cu->language = pretend_language;
22800 cu->language_defn = language_def (cu->language);
22801 }
22802
22803 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22804 }
22805
22806 /* Release one cached compilation unit, CU. We unlink it from the tree
22807 of compilation units, but we don't remove it from the read_in_chain;
22808 the caller is responsible for that.
22809 NOTE: DATA is a void * because this function is also used as a
22810 cleanup routine. */
22811
22812 static void
22813 free_heap_comp_unit (void *data)
22814 {
22815 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22816
22817 gdb_assert (cu->per_cu != NULL);
22818 cu->per_cu->cu = NULL;
22819 cu->per_cu = NULL;
22820
22821 obstack_free (&cu->comp_unit_obstack, NULL);
22822
22823 xfree (cu);
22824 }
22825
22826 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22827 when we're finished with it. We can't free the pointer itself, but be
22828 sure to unlink it from the cache. Also release any associated storage. */
22829
22830 static void
22831 free_stack_comp_unit (void *data)
22832 {
22833 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22834
22835 gdb_assert (cu->per_cu != NULL);
22836 cu->per_cu->cu = NULL;
22837 cu->per_cu = NULL;
22838
22839 obstack_free (&cu->comp_unit_obstack, NULL);
22840 cu->partial_dies = NULL;
22841 }
22842
22843 /* Free all cached compilation units. */
22844
22845 static void
22846 free_cached_comp_units (void *data)
22847 {
22848 dwarf2_per_objfile->free_cached_comp_units ();
22849 }
22850
22851 /* Increase the age counter on each cached compilation unit, and free
22852 any that are too old. */
22853
22854 static void
22855 age_cached_comp_units (void)
22856 {
22857 struct dwarf2_per_cu_data *per_cu, **last_chain;
22858
22859 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22860 per_cu = dwarf2_per_objfile->read_in_chain;
22861 while (per_cu != NULL)
22862 {
22863 per_cu->cu->last_used ++;
22864 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22865 dwarf2_mark (per_cu->cu);
22866 per_cu = per_cu->cu->read_in_chain;
22867 }
22868
22869 per_cu = dwarf2_per_objfile->read_in_chain;
22870 last_chain = &dwarf2_per_objfile->read_in_chain;
22871 while (per_cu != NULL)
22872 {
22873 struct dwarf2_per_cu_data *next_cu;
22874
22875 next_cu = per_cu->cu->read_in_chain;
22876
22877 if (!per_cu->cu->mark)
22878 {
22879 free_heap_comp_unit (per_cu->cu);
22880 *last_chain = next_cu;
22881 }
22882 else
22883 last_chain = &per_cu->cu->read_in_chain;
22884
22885 per_cu = next_cu;
22886 }
22887 }
22888
22889 /* Remove a single compilation unit from the cache. */
22890
22891 static void
22892 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22893 {
22894 struct dwarf2_per_cu_data *per_cu, **last_chain;
22895
22896 per_cu = dwarf2_per_objfile->read_in_chain;
22897 last_chain = &dwarf2_per_objfile->read_in_chain;
22898 while (per_cu != NULL)
22899 {
22900 struct dwarf2_per_cu_data *next_cu;
22901
22902 next_cu = per_cu->cu->read_in_chain;
22903
22904 if (per_cu == target_per_cu)
22905 {
22906 free_heap_comp_unit (per_cu->cu);
22907 per_cu->cu = NULL;
22908 *last_chain = next_cu;
22909 break;
22910 }
22911 else
22912 last_chain = &per_cu->cu->read_in_chain;
22913
22914 per_cu = next_cu;
22915 }
22916 }
22917
22918 /* Release all extra memory associated with OBJFILE. */
22919
22920 void
22921 dwarf2_free_objfile (struct objfile *objfile)
22922 {
22923 dwarf2_per_objfile
22924 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22925 dwarf2_objfile_data_key);
22926
22927 if (dwarf2_per_objfile == NULL)
22928 return;
22929
22930 dwarf2_per_objfile->~dwarf2_per_objfile ();
22931 }
22932
22933 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22934 We store these in a hash table separate from the DIEs, and preserve them
22935 when the DIEs are flushed out of cache.
22936
22937 The CU "per_cu" pointer is needed because offset alone is not enough to
22938 uniquely identify the type. A file may have multiple .debug_types sections,
22939 or the type may come from a DWO file. Furthermore, while it's more logical
22940 to use per_cu->section+offset, with Fission the section with the data is in
22941 the DWO file but we don't know that section at the point we need it.
22942 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22943 because we can enter the lookup routine, get_die_type_at_offset, from
22944 outside this file, and thus won't necessarily have PER_CU->cu.
22945 Fortunately, PER_CU is stable for the life of the objfile. */
22946
22947 struct dwarf2_per_cu_offset_and_type
22948 {
22949 const struct dwarf2_per_cu_data *per_cu;
22950 sect_offset sect_off;
22951 struct type *type;
22952 };
22953
22954 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22955
22956 static hashval_t
22957 per_cu_offset_and_type_hash (const void *item)
22958 {
22959 const struct dwarf2_per_cu_offset_and_type *ofs
22960 = (const struct dwarf2_per_cu_offset_and_type *) item;
22961
22962 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22963 }
22964
22965 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22966
22967 static int
22968 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22969 {
22970 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22971 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22972 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22973 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22974
22975 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22976 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22977 }
22978
22979 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22980 table if necessary. For convenience, return TYPE.
22981
22982 The DIEs reading must have careful ordering to:
22983 * Not cause infite loops trying to read in DIEs as a prerequisite for
22984 reading current DIE.
22985 * Not trying to dereference contents of still incompletely read in types
22986 while reading in other DIEs.
22987 * Enable referencing still incompletely read in types just by a pointer to
22988 the type without accessing its fields.
22989
22990 Therefore caller should follow these rules:
22991 * Try to fetch any prerequisite types we may need to build this DIE type
22992 before building the type and calling set_die_type.
22993 * After building type call set_die_type for current DIE as soon as
22994 possible before fetching more types to complete the current type.
22995 * Make the type as complete as possible before fetching more types. */
22996
22997 static struct type *
22998 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22999 {
23000 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23001 struct objfile *objfile = cu->objfile;
23002 struct attribute *attr;
23003 struct dynamic_prop prop;
23004
23005 /* For Ada types, make sure that the gnat-specific data is always
23006 initialized (if not already set). There are a few types where
23007 we should not be doing so, because the type-specific area is
23008 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23009 where the type-specific area is used to store the floatformat).
23010 But this is not a problem, because the gnat-specific information
23011 is actually not needed for these types. */
23012 if (need_gnat_info (cu)
23013 && TYPE_CODE (type) != TYPE_CODE_FUNC
23014 && TYPE_CODE (type) != TYPE_CODE_FLT
23015 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23016 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23017 && TYPE_CODE (type) != TYPE_CODE_METHOD
23018 && !HAVE_GNAT_AUX_INFO (type))
23019 INIT_GNAT_SPECIFIC (type);
23020
23021 /* Read DW_AT_allocated and set in type. */
23022 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23023 if (attr_form_is_block (attr))
23024 {
23025 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23026 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23027 }
23028 else if (attr != NULL)
23029 {
23030 complaint (&symfile_complaints,
23031 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23032 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23033 to_underlying (die->sect_off));
23034 }
23035
23036 /* Read DW_AT_associated and set in type. */
23037 attr = dwarf2_attr (die, DW_AT_associated, cu);
23038 if (attr_form_is_block (attr))
23039 {
23040 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23041 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23042 }
23043 else if (attr != NULL)
23044 {
23045 complaint (&symfile_complaints,
23046 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23047 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23048 to_underlying (die->sect_off));
23049 }
23050
23051 /* Read DW_AT_data_location and set in type. */
23052 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23053 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23054 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23055
23056 if (dwarf2_per_objfile->die_type_hash == NULL)
23057 {
23058 dwarf2_per_objfile->die_type_hash =
23059 htab_create_alloc_ex (127,
23060 per_cu_offset_and_type_hash,
23061 per_cu_offset_and_type_eq,
23062 NULL,
23063 &objfile->objfile_obstack,
23064 hashtab_obstack_allocate,
23065 dummy_obstack_deallocate);
23066 }
23067
23068 ofs.per_cu = cu->per_cu;
23069 ofs.sect_off = die->sect_off;
23070 ofs.type = type;
23071 slot = (struct dwarf2_per_cu_offset_and_type **)
23072 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23073 if (*slot)
23074 complaint (&symfile_complaints,
23075 _("A problem internal to GDB: DIE 0x%x has type already set"),
23076 to_underlying (die->sect_off));
23077 *slot = XOBNEW (&objfile->objfile_obstack,
23078 struct dwarf2_per_cu_offset_and_type);
23079 **slot = ofs;
23080 return type;
23081 }
23082
23083 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23084 or return NULL if the die does not have a saved type. */
23085
23086 static struct type *
23087 get_die_type_at_offset (sect_offset sect_off,
23088 struct dwarf2_per_cu_data *per_cu)
23089 {
23090 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23091
23092 if (dwarf2_per_objfile->die_type_hash == NULL)
23093 return NULL;
23094
23095 ofs.per_cu = per_cu;
23096 ofs.sect_off = sect_off;
23097 slot = ((struct dwarf2_per_cu_offset_and_type *)
23098 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23099 if (slot)
23100 return slot->type;
23101 else
23102 return NULL;
23103 }
23104
23105 /* Look up the type for DIE in CU in die_type_hash,
23106 or return NULL if DIE does not have a saved type. */
23107
23108 static struct type *
23109 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23110 {
23111 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23112 }
23113
23114 /* Add a dependence relationship from CU to REF_PER_CU. */
23115
23116 static void
23117 dwarf2_add_dependence (struct dwarf2_cu *cu,
23118 struct dwarf2_per_cu_data *ref_per_cu)
23119 {
23120 void **slot;
23121
23122 if (cu->dependencies == NULL)
23123 cu->dependencies
23124 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23125 NULL, &cu->comp_unit_obstack,
23126 hashtab_obstack_allocate,
23127 dummy_obstack_deallocate);
23128
23129 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23130 if (*slot == NULL)
23131 *slot = ref_per_cu;
23132 }
23133
23134 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23135 Set the mark field in every compilation unit in the
23136 cache that we must keep because we are keeping CU. */
23137
23138 static int
23139 dwarf2_mark_helper (void **slot, void *data)
23140 {
23141 struct dwarf2_per_cu_data *per_cu;
23142
23143 per_cu = (struct dwarf2_per_cu_data *) *slot;
23144
23145 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23146 reading of the chain. As such dependencies remain valid it is not much
23147 useful to track and undo them during QUIT cleanups. */
23148 if (per_cu->cu == NULL)
23149 return 1;
23150
23151 if (per_cu->cu->mark)
23152 return 1;
23153 per_cu->cu->mark = 1;
23154
23155 if (per_cu->cu->dependencies != NULL)
23156 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23157
23158 return 1;
23159 }
23160
23161 /* Set the mark field in CU and in every other compilation unit in the
23162 cache that we must keep because we are keeping CU. */
23163
23164 static void
23165 dwarf2_mark (struct dwarf2_cu *cu)
23166 {
23167 if (cu->mark)
23168 return;
23169 cu->mark = 1;
23170 if (cu->dependencies != NULL)
23171 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23172 }
23173
23174 static void
23175 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23176 {
23177 while (per_cu)
23178 {
23179 per_cu->cu->mark = 0;
23180 per_cu = per_cu->cu->read_in_chain;
23181 }
23182 }
23183
23184 /* Trivial hash function for partial_die_info: the hash value of a DIE
23185 is its offset in .debug_info for this objfile. */
23186
23187 static hashval_t
23188 partial_die_hash (const void *item)
23189 {
23190 const struct partial_die_info *part_die
23191 = (const struct partial_die_info *) item;
23192
23193 return to_underlying (part_die->sect_off);
23194 }
23195
23196 /* Trivial comparison function for partial_die_info structures: two DIEs
23197 are equal if they have the same offset. */
23198
23199 static int
23200 partial_die_eq (const void *item_lhs, const void *item_rhs)
23201 {
23202 const struct partial_die_info *part_die_lhs
23203 = (const struct partial_die_info *) item_lhs;
23204 const struct partial_die_info *part_die_rhs
23205 = (const struct partial_die_info *) item_rhs;
23206
23207 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23208 }
23209
23210 static struct cmd_list_element *set_dwarf_cmdlist;
23211 static struct cmd_list_element *show_dwarf_cmdlist;
23212
23213 static void
23214 set_dwarf_cmd (char *args, int from_tty)
23215 {
23216 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23217 gdb_stdout);
23218 }
23219
23220 static void
23221 show_dwarf_cmd (char *args, int from_tty)
23222 {
23223 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23224 }
23225
23226 /* Free data associated with OBJFILE, if necessary. */
23227
23228 static void
23229 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23230 {
23231 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23232 int ix;
23233
23234 /* Make sure we don't accidentally use dwarf2_per_objfile while
23235 cleaning up. */
23236 dwarf2_per_objfile = NULL;
23237
23238 for (ix = 0; ix < data->n_comp_units; ++ix)
23239 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23240
23241 for (ix = 0; ix < data->n_type_units; ++ix)
23242 VEC_free (dwarf2_per_cu_ptr,
23243 data->all_type_units[ix]->per_cu.imported_symtabs);
23244 xfree (data->all_type_units);
23245
23246 VEC_free (dwarf2_section_info_def, data->types);
23247
23248 if (data->dwo_files)
23249 free_dwo_files (data->dwo_files, objfile);
23250 if (data->dwp_file)
23251 gdb_bfd_unref (data->dwp_file->dbfd);
23252
23253 if (data->dwz_file && data->dwz_file->dwz_bfd)
23254 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23255 }
23256
23257 \f
23258 /* The "save gdb-index" command. */
23259
23260 /* In-memory buffer to prepare data to be written later to a file. */
23261 class data_buf
23262 {
23263 public:
23264 /* Copy DATA to the end of the buffer. */
23265 template<typename T>
23266 void append_data (const T &data)
23267 {
23268 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23269 reinterpret_cast<const gdb_byte *> (&data + 1),
23270 grow (sizeof (data)));
23271 }
23272
23273 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23274 terminating zero is appended too. */
23275 void append_cstr0 (const char *cstr)
23276 {
23277 const size_t size = strlen (cstr) + 1;
23278 std::copy (cstr, cstr + size, grow (size));
23279 }
23280
23281 /* Accept a host-format integer in VAL and append it to the buffer
23282 as a target-format integer which is LEN bytes long. */
23283 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23284 {
23285 ::store_unsigned_integer (grow (len), len, byte_order, val);
23286 }
23287
23288 /* Return the size of the buffer. */
23289 size_t size () const
23290 {
23291 return m_vec.size ();
23292 }
23293
23294 /* Write the buffer to FILE. */
23295 void file_write (FILE *file) const
23296 {
23297 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23298 error (_("couldn't write data to file"));
23299 }
23300
23301 private:
23302 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23303 the start of the new block. */
23304 gdb_byte *grow (size_t size)
23305 {
23306 m_vec.resize (m_vec.size () + size);
23307 return &*m_vec.end () - size;
23308 }
23309
23310 gdb::byte_vector m_vec;
23311 };
23312
23313 /* An entry in the symbol table. */
23314 struct symtab_index_entry
23315 {
23316 /* The name of the symbol. */
23317 const char *name;
23318 /* The offset of the name in the constant pool. */
23319 offset_type index_offset;
23320 /* A sorted vector of the indices of all the CUs that hold an object
23321 of this name. */
23322 std::vector<offset_type> cu_indices;
23323 };
23324
23325 /* The symbol table. This is a power-of-2-sized hash table. */
23326 struct mapped_symtab
23327 {
23328 mapped_symtab ()
23329 {
23330 data.resize (1024);
23331 }
23332
23333 offset_type n_elements = 0;
23334 std::vector<symtab_index_entry> data;
23335 };
23336
23337 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23338 the slot.
23339
23340 Function is used only during write_hash_table so no index format backward
23341 compatibility is needed. */
23342
23343 static symtab_index_entry &
23344 find_slot (struct mapped_symtab *symtab, const char *name)
23345 {
23346 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23347
23348 index = hash & (symtab->data.size () - 1);
23349 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23350
23351 for (;;)
23352 {
23353 if (symtab->data[index].name == NULL
23354 || strcmp (name, symtab->data[index].name) == 0)
23355 return symtab->data[index];
23356 index = (index + step) & (symtab->data.size () - 1);
23357 }
23358 }
23359
23360 /* Expand SYMTAB's hash table. */
23361
23362 static void
23363 hash_expand (struct mapped_symtab *symtab)
23364 {
23365 auto old_entries = std::move (symtab->data);
23366
23367 symtab->data.clear ();
23368 symtab->data.resize (old_entries.size () * 2);
23369
23370 for (auto &it : old_entries)
23371 if (it.name != NULL)
23372 {
23373 auto &ref = find_slot (symtab, it.name);
23374 ref = std::move (it);
23375 }
23376 }
23377
23378 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23379 CU_INDEX is the index of the CU in which the symbol appears.
23380 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23381
23382 static void
23383 add_index_entry (struct mapped_symtab *symtab, const char *name,
23384 int is_static, gdb_index_symbol_kind kind,
23385 offset_type cu_index)
23386 {
23387 offset_type cu_index_and_attrs;
23388
23389 ++symtab->n_elements;
23390 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23391 hash_expand (symtab);
23392
23393 symtab_index_entry &slot = find_slot (symtab, name);
23394 if (slot.name == NULL)
23395 {
23396 slot.name = name;
23397 /* index_offset is set later. */
23398 }
23399
23400 cu_index_and_attrs = 0;
23401 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23402 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23403 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23404
23405 /* We don't want to record an index value twice as we want to avoid the
23406 duplication.
23407 We process all global symbols and then all static symbols
23408 (which would allow us to avoid the duplication by only having to check
23409 the last entry pushed), but a symbol could have multiple kinds in one CU.
23410 To keep things simple we don't worry about the duplication here and
23411 sort and uniqufy the list after we've processed all symbols. */
23412 slot.cu_indices.push_back (cu_index_and_attrs);
23413 }
23414
23415 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23416
23417 static void
23418 uniquify_cu_indices (struct mapped_symtab *symtab)
23419 {
23420 for (auto &entry : symtab->data)
23421 {
23422 if (entry.name != NULL && !entry.cu_indices.empty ())
23423 {
23424 auto &cu_indices = entry.cu_indices;
23425 std::sort (cu_indices.begin (), cu_indices.end ());
23426 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23427 cu_indices.erase (from, cu_indices.end ());
23428 }
23429 }
23430 }
23431
23432 /* A form of 'const char *' suitable for container keys. Only the
23433 pointer is stored. The strings themselves are compared, not the
23434 pointers. */
23435 class c_str_view
23436 {
23437 public:
23438 c_str_view (const char *cstr)
23439 : m_cstr (cstr)
23440 {}
23441
23442 bool operator== (const c_str_view &other) const
23443 {
23444 return strcmp (m_cstr, other.m_cstr) == 0;
23445 }
23446
23447 private:
23448 friend class c_str_view_hasher;
23449 const char *const m_cstr;
23450 };
23451
23452 /* A std::unordered_map::hasher for c_str_view that uses the right
23453 hash function for strings in a mapped index. */
23454 class c_str_view_hasher
23455 {
23456 public:
23457 size_t operator () (const c_str_view &x) const
23458 {
23459 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23460 }
23461 };
23462
23463 /* A std::unordered_map::hasher for std::vector<>. */
23464 template<typename T>
23465 class vector_hasher
23466 {
23467 public:
23468 size_t operator () (const std::vector<T> &key) const
23469 {
23470 return iterative_hash (key.data (),
23471 sizeof (key.front ()) * key.size (), 0);
23472 }
23473 };
23474
23475 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23476 constant pool entries going into the data buffer CPOOL. */
23477
23478 static void
23479 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23480 {
23481 {
23482 /* Elements are sorted vectors of the indices of all the CUs that
23483 hold an object of this name. */
23484 std::unordered_map<std::vector<offset_type>, offset_type,
23485 vector_hasher<offset_type>>
23486 symbol_hash_table;
23487
23488 /* We add all the index vectors to the constant pool first, to
23489 ensure alignment is ok. */
23490 for (symtab_index_entry &entry : symtab->data)
23491 {
23492 if (entry.name == NULL)
23493 continue;
23494 gdb_assert (entry.index_offset == 0);
23495
23496 /* Finding before inserting is faster than always trying to
23497 insert, because inserting always allocates a node, does the
23498 lookup, and then destroys the new node if another node
23499 already had the same key. C++17 try_emplace will avoid
23500 this. */
23501 const auto found
23502 = symbol_hash_table.find (entry.cu_indices);
23503 if (found != symbol_hash_table.end ())
23504 {
23505 entry.index_offset = found->second;
23506 continue;
23507 }
23508
23509 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23510 entry.index_offset = cpool.size ();
23511 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23512 for (const auto index : entry.cu_indices)
23513 cpool.append_data (MAYBE_SWAP (index));
23514 }
23515 }
23516
23517 /* Now write out the hash table. */
23518 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23519 for (const auto &entry : symtab->data)
23520 {
23521 offset_type str_off, vec_off;
23522
23523 if (entry.name != NULL)
23524 {
23525 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23526 if (insertpair.second)
23527 cpool.append_cstr0 (entry.name);
23528 str_off = insertpair.first->second;
23529 vec_off = entry.index_offset;
23530 }
23531 else
23532 {
23533 /* While 0 is a valid constant pool index, it is not valid
23534 to have 0 for both offsets. */
23535 str_off = 0;
23536 vec_off = 0;
23537 }
23538
23539 output.append_data (MAYBE_SWAP (str_off));
23540 output.append_data (MAYBE_SWAP (vec_off));
23541 }
23542 }
23543
23544 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23545
23546 /* Helper struct for building the address table. */
23547 struct addrmap_index_data
23548 {
23549 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23550 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23551 {}
23552
23553 struct objfile *objfile;
23554 data_buf &addr_vec;
23555 psym_index_map &cu_index_htab;
23556
23557 /* Non-zero if the previous_* fields are valid.
23558 We can't write an entry until we see the next entry (since it is only then
23559 that we know the end of the entry). */
23560 int previous_valid;
23561 /* Index of the CU in the table of all CUs in the index file. */
23562 unsigned int previous_cu_index;
23563 /* Start address of the CU. */
23564 CORE_ADDR previous_cu_start;
23565 };
23566
23567 /* Write an address entry to ADDR_VEC. */
23568
23569 static void
23570 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23571 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23572 {
23573 CORE_ADDR baseaddr;
23574
23575 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23576
23577 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23578 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23579 addr_vec.append_data (MAYBE_SWAP (cu_index));
23580 }
23581
23582 /* Worker function for traversing an addrmap to build the address table. */
23583
23584 static int
23585 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23586 {
23587 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23588 struct partial_symtab *pst = (struct partial_symtab *) obj;
23589
23590 if (data->previous_valid)
23591 add_address_entry (data->objfile, data->addr_vec,
23592 data->previous_cu_start, start_addr,
23593 data->previous_cu_index);
23594
23595 data->previous_cu_start = start_addr;
23596 if (pst != NULL)
23597 {
23598 const auto it = data->cu_index_htab.find (pst);
23599 gdb_assert (it != data->cu_index_htab.cend ());
23600 data->previous_cu_index = it->second;
23601 data->previous_valid = 1;
23602 }
23603 else
23604 data->previous_valid = 0;
23605
23606 return 0;
23607 }
23608
23609 /* Write OBJFILE's address map to ADDR_VEC.
23610 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23611 in the index file. */
23612
23613 static void
23614 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23615 psym_index_map &cu_index_htab)
23616 {
23617 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23618
23619 /* When writing the address table, we have to cope with the fact that
23620 the addrmap iterator only provides the start of a region; we have to
23621 wait until the next invocation to get the start of the next region. */
23622
23623 addrmap_index_data.objfile = objfile;
23624 addrmap_index_data.previous_valid = 0;
23625
23626 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23627 &addrmap_index_data);
23628
23629 /* It's highly unlikely the last entry (end address = 0xff...ff)
23630 is valid, but we should still handle it.
23631 The end address is recorded as the start of the next region, but that
23632 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23633 anyway. */
23634 if (addrmap_index_data.previous_valid)
23635 add_address_entry (objfile, addr_vec,
23636 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23637 addrmap_index_data.previous_cu_index);
23638 }
23639
23640 /* Return the symbol kind of PSYM. */
23641
23642 static gdb_index_symbol_kind
23643 symbol_kind (struct partial_symbol *psym)
23644 {
23645 domain_enum domain = PSYMBOL_DOMAIN (psym);
23646 enum address_class aclass = PSYMBOL_CLASS (psym);
23647
23648 switch (domain)
23649 {
23650 case VAR_DOMAIN:
23651 switch (aclass)
23652 {
23653 case LOC_BLOCK:
23654 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23655 case LOC_TYPEDEF:
23656 return GDB_INDEX_SYMBOL_KIND_TYPE;
23657 case LOC_COMPUTED:
23658 case LOC_CONST_BYTES:
23659 case LOC_OPTIMIZED_OUT:
23660 case LOC_STATIC:
23661 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23662 case LOC_CONST:
23663 /* Note: It's currently impossible to recognize psyms as enum values
23664 short of reading the type info. For now punt. */
23665 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23666 default:
23667 /* There are other LOC_FOO values that one might want to classify
23668 as variables, but dwarf2read.c doesn't currently use them. */
23669 return GDB_INDEX_SYMBOL_KIND_OTHER;
23670 }
23671 case STRUCT_DOMAIN:
23672 return GDB_INDEX_SYMBOL_KIND_TYPE;
23673 default:
23674 return GDB_INDEX_SYMBOL_KIND_OTHER;
23675 }
23676 }
23677
23678 /* Add a list of partial symbols to SYMTAB. */
23679
23680 static void
23681 write_psymbols (struct mapped_symtab *symtab,
23682 std::unordered_set<partial_symbol *> &psyms_seen,
23683 struct partial_symbol **psymp,
23684 int count,
23685 offset_type cu_index,
23686 int is_static)
23687 {
23688 for (; count-- > 0; ++psymp)
23689 {
23690 struct partial_symbol *psym = *psymp;
23691
23692 if (SYMBOL_LANGUAGE (psym) == language_ada)
23693 error (_("Ada is not currently supported by the index"));
23694
23695 /* Only add a given psymbol once. */
23696 if (psyms_seen.insert (psym).second)
23697 {
23698 gdb_index_symbol_kind kind = symbol_kind (psym);
23699
23700 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23701 is_static, kind, cu_index);
23702 }
23703 }
23704 }
23705
23706 /* A helper struct used when iterating over debug_types. */
23707 struct signatured_type_index_data
23708 {
23709 signatured_type_index_data (data_buf &types_list_,
23710 std::unordered_set<partial_symbol *> &psyms_seen_)
23711 : types_list (types_list_), psyms_seen (psyms_seen_)
23712 {}
23713
23714 struct objfile *objfile;
23715 struct mapped_symtab *symtab;
23716 data_buf &types_list;
23717 std::unordered_set<partial_symbol *> &psyms_seen;
23718 int cu_index;
23719 };
23720
23721 /* A helper function that writes a single signatured_type to an
23722 obstack. */
23723
23724 static int
23725 write_one_signatured_type (void **slot, void *d)
23726 {
23727 struct signatured_type_index_data *info
23728 = (struct signatured_type_index_data *) d;
23729 struct signatured_type *entry = (struct signatured_type *) *slot;
23730 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23731
23732 write_psymbols (info->symtab,
23733 info->psyms_seen,
23734 info->objfile->global_psymbols.list
23735 + psymtab->globals_offset,
23736 psymtab->n_global_syms, info->cu_index,
23737 0);
23738 write_psymbols (info->symtab,
23739 info->psyms_seen,
23740 info->objfile->static_psymbols.list
23741 + psymtab->statics_offset,
23742 psymtab->n_static_syms, info->cu_index,
23743 1);
23744
23745 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23746 to_underlying (entry->per_cu.sect_off));
23747 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23748 to_underlying (entry->type_offset_in_tu));
23749 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23750
23751 ++info->cu_index;
23752
23753 return 1;
23754 }
23755
23756 /* Recurse into all "included" dependencies and count their symbols as
23757 if they appeared in this psymtab. */
23758
23759 static void
23760 recursively_count_psymbols (struct partial_symtab *psymtab,
23761 size_t &psyms_seen)
23762 {
23763 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23764 if (psymtab->dependencies[i]->user != NULL)
23765 recursively_count_psymbols (psymtab->dependencies[i],
23766 psyms_seen);
23767
23768 psyms_seen += psymtab->n_global_syms;
23769 psyms_seen += psymtab->n_static_syms;
23770 }
23771
23772 /* Recurse into all "included" dependencies and write their symbols as
23773 if they appeared in this psymtab. */
23774
23775 static void
23776 recursively_write_psymbols (struct objfile *objfile,
23777 struct partial_symtab *psymtab,
23778 struct mapped_symtab *symtab,
23779 std::unordered_set<partial_symbol *> &psyms_seen,
23780 offset_type cu_index)
23781 {
23782 int i;
23783
23784 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23785 if (psymtab->dependencies[i]->user != NULL)
23786 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23787 symtab, psyms_seen, cu_index);
23788
23789 write_psymbols (symtab,
23790 psyms_seen,
23791 objfile->global_psymbols.list + psymtab->globals_offset,
23792 psymtab->n_global_syms, cu_index,
23793 0);
23794 write_psymbols (symtab,
23795 psyms_seen,
23796 objfile->static_psymbols.list + psymtab->statics_offset,
23797 psymtab->n_static_syms, cu_index,
23798 1);
23799 }
23800
23801 /* Create an index file for OBJFILE in the directory DIR. */
23802
23803 static void
23804 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23805 {
23806 if (dwarf2_per_objfile->using_index)
23807 error (_("Cannot use an index to create the index"));
23808
23809 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23810 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23811
23812 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23813 return;
23814
23815 struct stat st;
23816 if (stat (objfile_name (objfile), &st) < 0)
23817 perror_with_name (objfile_name (objfile));
23818
23819 std::string filename (std::string (dir) + SLASH_STRING
23820 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23821
23822 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23823 if (!out_file)
23824 error (_("Can't open `%s' for writing"), filename.c_str ());
23825
23826 /* Order matters here; we want FILE to be closed before FILENAME is
23827 unlinked, because on MS-Windows one cannot delete a file that is
23828 still open. (Don't call anything here that might throw until
23829 file_closer is created.) */
23830 gdb::unlinker unlink_file (filename.c_str ());
23831 gdb_file_up close_out_file (out_file);
23832
23833 mapped_symtab symtab;
23834 data_buf cu_list;
23835
23836 /* While we're scanning CU's create a table that maps a psymtab pointer
23837 (which is what addrmap records) to its index (which is what is recorded
23838 in the index file). This will later be needed to write the address
23839 table. */
23840 psym_index_map cu_index_htab;
23841 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23842
23843 /* The CU list is already sorted, so we don't need to do additional
23844 work here. Also, the debug_types entries do not appear in
23845 all_comp_units, but only in their own hash table. */
23846
23847 /* The psyms_seen set is potentially going to be largish (~40k
23848 elements when indexing a -g3 build of GDB itself). Estimate the
23849 number of elements in order to avoid too many rehashes, which
23850 require rebuilding buckets and thus many trips to
23851 malloc/free. */
23852 size_t psyms_count = 0;
23853 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23854 {
23855 struct dwarf2_per_cu_data *per_cu
23856 = dwarf2_per_objfile->all_comp_units[i];
23857 struct partial_symtab *psymtab = per_cu->v.psymtab;
23858
23859 if (psymtab != NULL && psymtab->user == NULL)
23860 recursively_count_psymbols (psymtab, psyms_count);
23861 }
23862 /* Generating an index for gdb itself shows a ratio of
23863 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23864 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23865 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23866 {
23867 struct dwarf2_per_cu_data *per_cu
23868 = dwarf2_per_objfile->all_comp_units[i];
23869 struct partial_symtab *psymtab = per_cu->v.psymtab;
23870
23871 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23872 It may be referenced from a local scope but in such case it does not
23873 need to be present in .gdb_index. */
23874 if (psymtab == NULL)
23875 continue;
23876
23877 if (psymtab->user == NULL)
23878 recursively_write_psymbols (objfile, psymtab, &symtab,
23879 psyms_seen, i);
23880
23881 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23882 gdb_assert (insertpair.second);
23883
23884 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23885 to_underlying (per_cu->sect_off));
23886 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23887 }
23888
23889 /* Dump the address map. */
23890 data_buf addr_vec;
23891 write_address_map (objfile, addr_vec, cu_index_htab);
23892
23893 /* Write out the .debug_type entries, if any. */
23894 data_buf types_cu_list;
23895 if (dwarf2_per_objfile->signatured_types)
23896 {
23897 signatured_type_index_data sig_data (types_cu_list,
23898 psyms_seen);
23899
23900 sig_data.objfile = objfile;
23901 sig_data.symtab = &symtab;
23902 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23903 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23904 write_one_signatured_type, &sig_data);
23905 }
23906
23907 /* Now that we've processed all symbols we can shrink their cu_indices
23908 lists. */
23909 uniquify_cu_indices (&symtab);
23910
23911 data_buf symtab_vec, constant_pool;
23912 write_hash_table (&symtab, symtab_vec, constant_pool);
23913
23914 data_buf contents;
23915 const offset_type size_of_contents = 6 * sizeof (offset_type);
23916 offset_type total_len = size_of_contents;
23917
23918 /* The version number. */
23919 contents.append_data (MAYBE_SWAP (8));
23920
23921 /* The offset of the CU list from the start of the file. */
23922 contents.append_data (MAYBE_SWAP (total_len));
23923 total_len += cu_list.size ();
23924
23925 /* The offset of the types CU list from the start of the file. */
23926 contents.append_data (MAYBE_SWAP (total_len));
23927 total_len += types_cu_list.size ();
23928
23929 /* The offset of the address table from the start of the file. */
23930 contents.append_data (MAYBE_SWAP (total_len));
23931 total_len += addr_vec.size ();
23932
23933 /* The offset of the symbol table from the start of the file. */
23934 contents.append_data (MAYBE_SWAP (total_len));
23935 total_len += symtab_vec.size ();
23936
23937 /* The offset of the constant pool from the start of the file. */
23938 contents.append_data (MAYBE_SWAP (total_len));
23939 total_len += constant_pool.size ();
23940
23941 gdb_assert (contents.size () == size_of_contents);
23942
23943 contents.file_write (out_file);
23944 cu_list.file_write (out_file);
23945 types_cu_list.file_write (out_file);
23946 addr_vec.file_write (out_file);
23947 symtab_vec.file_write (out_file);
23948 constant_pool.file_write (out_file);
23949
23950 /* We want to keep the file. */
23951 unlink_file.keep ();
23952 }
23953
23954 /* Implementation of the `save gdb-index' command.
23955
23956 Note that the file format used by this command is documented in the
23957 GDB manual. Any changes here must be documented there. */
23958
23959 static void
23960 save_gdb_index_command (const char *arg, int from_tty)
23961 {
23962 struct objfile *objfile;
23963
23964 if (!arg || !*arg)
23965 error (_("usage: save gdb-index DIRECTORY"));
23966
23967 ALL_OBJFILES (objfile)
23968 {
23969 struct stat st;
23970
23971 /* If the objfile does not correspond to an actual file, skip it. */
23972 if (stat (objfile_name (objfile), &st) < 0)
23973 continue;
23974
23975 dwarf2_per_objfile
23976 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23977 dwarf2_objfile_data_key);
23978 if (dwarf2_per_objfile)
23979 {
23980
23981 TRY
23982 {
23983 write_psymtabs_to_index (objfile, arg);
23984 }
23985 CATCH (except, RETURN_MASK_ERROR)
23986 {
23987 exception_fprintf (gdb_stderr, except,
23988 _("Error while writing index for `%s': "),
23989 objfile_name (objfile));
23990 }
23991 END_CATCH
23992 }
23993 }
23994 }
23995
23996 \f
23997
23998 int dwarf_always_disassemble;
23999
24000 static void
24001 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24002 struct cmd_list_element *c, const char *value)
24003 {
24004 fprintf_filtered (file,
24005 _("Whether to always disassemble "
24006 "DWARF expressions is %s.\n"),
24007 value);
24008 }
24009
24010 static void
24011 show_check_physname (struct ui_file *file, int from_tty,
24012 struct cmd_list_element *c, const char *value)
24013 {
24014 fprintf_filtered (file,
24015 _("Whether to check \"physname\" is %s.\n"),
24016 value);
24017 }
24018
24019 void
24020 _initialize_dwarf2_read (void)
24021 {
24022 struct cmd_list_element *c;
24023
24024 dwarf2_objfile_data_key
24025 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24026
24027 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24028 Set DWARF specific variables.\n\
24029 Configure DWARF variables such as the cache size"),
24030 &set_dwarf_cmdlist, "maintenance set dwarf ",
24031 0/*allow-unknown*/, &maintenance_set_cmdlist);
24032
24033 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24034 Show DWARF specific variables\n\
24035 Show DWARF variables such as the cache size"),
24036 &show_dwarf_cmdlist, "maintenance show dwarf ",
24037 0/*allow-unknown*/, &maintenance_show_cmdlist);
24038
24039 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24040 &dwarf_max_cache_age, _("\
24041 Set the upper bound on the age of cached DWARF compilation units."), _("\
24042 Show the upper bound on the age of cached DWARF compilation units."), _("\
24043 A higher limit means that cached compilation units will be stored\n\
24044 in memory longer, and more total memory will be used. Zero disables\n\
24045 caching, which can slow down startup."),
24046 NULL,
24047 show_dwarf_max_cache_age,
24048 &set_dwarf_cmdlist,
24049 &show_dwarf_cmdlist);
24050
24051 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24052 &dwarf_always_disassemble, _("\
24053 Set whether `info address' always disassembles DWARF expressions."), _("\
24054 Show whether `info address' always disassembles DWARF expressions."), _("\
24055 When enabled, DWARF expressions are always printed in an assembly-like\n\
24056 syntax. When disabled, expressions will be printed in a more\n\
24057 conversational style, when possible."),
24058 NULL,
24059 show_dwarf_always_disassemble,
24060 &set_dwarf_cmdlist,
24061 &show_dwarf_cmdlist);
24062
24063 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24064 Set debugging of the DWARF reader."), _("\
24065 Show debugging of the DWARF reader."), _("\
24066 When enabled (non-zero), debugging messages are printed during DWARF\n\
24067 reading and symtab expansion. A value of 1 (one) provides basic\n\
24068 information. A value greater than 1 provides more verbose information."),
24069 NULL,
24070 NULL,
24071 &setdebuglist, &showdebuglist);
24072
24073 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24074 Set debugging of the DWARF DIE reader."), _("\
24075 Show debugging of the DWARF DIE reader."), _("\
24076 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24077 The value is the maximum depth to print."),
24078 NULL,
24079 NULL,
24080 &setdebuglist, &showdebuglist);
24081
24082 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24083 Set debugging of the dwarf line reader."), _("\
24084 Show debugging of the dwarf line reader."), _("\
24085 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24086 A value of 1 (one) provides basic information.\n\
24087 A value greater than 1 provides more verbose information."),
24088 NULL,
24089 NULL,
24090 &setdebuglist, &showdebuglist);
24091
24092 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24093 Set cross-checking of \"physname\" code against demangler."), _("\
24094 Show cross-checking of \"physname\" code against demangler."), _("\
24095 When enabled, GDB's internal \"physname\" code is checked against\n\
24096 the demangler."),
24097 NULL, show_check_physname,
24098 &setdebuglist, &showdebuglist);
24099
24100 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24101 no_class, &use_deprecated_index_sections, _("\
24102 Set whether to use deprecated gdb_index sections."), _("\
24103 Show whether to use deprecated gdb_index sections."), _("\
24104 When enabled, deprecated .gdb_index sections are used anyway.\n\
24105 Normally they are ignored either because of a missing feature or\n\
24106 performance issue.\n\
24107 Warning: This option must be enabled before gdb reads the file."),
24108 NULL,
24109 NULL,
24110 &setlist, &showlist);
24111
24112 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24113 _("\
24114 Save a gdb-index file.\n\
24115 Usage: save gdb-index DIRECTORY"),
24116 &save_cmdlist);
24117 set_cmd_completer (c, filename_completer);
24118
24119 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24120 &dwarf2_locexpr_funcs);
24121 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24122 &dwarf2_loclist_funcs);
24123
24124 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24125 &dwarf2_block_frame_base_locexpr_funcs);
24126 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24127 &dwarf2_block_frame_base_loclist_funcs);
24128 }
This page took 0.658932 seconds and 4 git commands to generate.