gdb: Fix build failure with GCC 7
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include <fcntl.h>
79 #include <sys/types.h>
80 #include <algorithm>
81 #include <unordered_set>
82 #include <unordered_map>
83
84 typedef struct symbol *symbolp;
85 DEF_VEC_P (symbolp);
86
87 /* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90 static unsigned int dwarf_read_debug = 0;
91
92 /* When non-zero, dump DIEs after they are read in. */
93 static unsigned int dwarf_die_debug = 0;
94
95 /* When non-zero, dump line number entries as they are read in. */
96 static unsigned int dwarf_line_debug = 0;
97
98 /* When non-zero, cross-check physname against demangler. */
99 static int check_physname = 0;
100
101 /* When non-zero, do not reject deprecated .gdb_index sections. */
102 static int use_deprecated_index_sections = 0;
103
104 static const struct objfile_data *dwarf2_objfile_data_key;
105
106 /* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108 static int dwarf2_locexpr_index;
109 static int dwarf2_loclist_index;
110 static int dwarf2_locexpr_block_index;
111 static int dwarf2_loclist_block_index;
112
113 /* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
129 struct dwarf2_section_info
130 {
131 union
132 {
133 /* If this is a real section, the bfd section. */
134 asection *section;
135 /* If this is a virtual section, pointer to the containing ("real")
136 section. */
137 struct dwarf2_section_info *containing_section;
138 } s;
139 /* Pointer to section data, only valid if readin. */
140 const gdb_byte *buffer;
141 /* The size of the section, real or virtual. */
142 bfd_size_type size;
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
146 /* True if we have tried to read this section. */
147 char readin;
148 /* True if this is a virtual section, False otherwise.
149 This specifies which of s.section and s.containing_section to use. */
150 char is_virtual;
151 };
152
153 typedef struct dwarf2_section_info dwarf2_section_info_def;
154 DEF_VEC_O (dwarf2_section_info_def);
155
156 /* All offsets in the index are of this type. It must be
157 architecture-independent. */
158 typedef uint32_t offset_type;
159
160 DEF_VEC_I (offset_type);
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure only legit values are used. */
170 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
178 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
184 /* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186 struct mapped_index
187 {
188 /* Index data format version. */
189 int version;
190
191 /* The total length of the buffer. */
192 off_t total_size;
193
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
196
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
199
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
202
203 /* Size in slots, each slot is 2 offset_types. */
204 offset_type symbol_table_slots;
205
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208 };
209
210 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211 DEF_VEC_P (dwarf2_per_cu_ptr);
212
213 struct tu_stats
214 {
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220 };
221
222 /* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
225 struct dwarf2_per_objfile
226 {
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
232
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241 private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248 public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
266
267 /* Back link. */
268 struct objfile *objfile = NULL;
269
270 /* Table of all the compilation units. This is used to locate
271 the target compilation unit of a particular reference. */
272 struct dwarf2_per_cu_data **all_comp_units = NULL;
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
275 int n_comp_units = 0;
276
277 /* The number of .debug_types-related CUs. */
278 int n_type_units = 0;
279
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
282 int n_allocated_type_units = 0;
283
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
286 struct signatured_type **all_type_units = NULL;
287
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
290 htab_t type_unit_groups {};
291
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
294 htab_t signatured_types {};
295
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
298 struct tu_stats tu_stats {};
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
302 dwarf2_per_cu_data *read_in_chain = NULL;
303
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
306 htab_t dwo_files {};
307
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
310
311 /* The DWP file if there is one, or NULL. */
312 struct dwp_file *dwp_file = NULL;
313
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
316 struct dwz_file *dwz_file = NULL;
317
318 /* A flag indicating whether this objfile has a section loaded at a
319 VMA of 0. */
320 bool has_section_at_zero = false;
321
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
324 bool using_index = false;
325
326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
327 mapped_index *index_table = NULL;
328
329 /* When using index_table, this keeps track of all quick_file_names entries.
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
336 htab_t quick_file_names_table {};
337
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
340 bool reading_partial_symbols = false;
341
342 /* Table mapping type DIEs to their struct type *.
343 This is NULL if not allocated yet.
344 The mapping is done via (CU/TU + DIE offset) -> type. */
345 htab_t die_type_hash {};
346
347 /* The CUs we recently read. */
348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
351 htab_t line_header_hash {};
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
356 };
357
358 static struct dwarf2_per_objfile *dwarf2_per_objfile;
359
360 /* Default names of the debugging sections. */
361
362 /* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
365 static const struct dwarf2_debug_sections dwarf2_elf_names =
366 {
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
371 { ".debug_loclists", ".zdebug_loclists" },
372 { ".debug_macinfo", ".zdebug_macinfo" },
373 { ".debug_macro", ".zdebug_macro" },
374 { ".debug_str", ".zdebug_str" },
375 { ".debug_line_str", ".zdebug_line_str" },
376 { ".debug_ranges", ".zdebug_ranges" },
377 { ".debug_rnglists", ".zdebug_rnglists" },
378 { ".debug_types", ".zdebug_types" },
379 { ".debug_addr", ".zdebug_addr" },
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
382 { ".gdb_index", ".zgdb_index" },
383 23
384 };
385
386 /* List of DWO/DWP sections. */
387
388 static const struct dwop_section_names
389 {
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
394 struct dwarf2_section_names loclists_dwo;
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
402 }
403 dwop_section_names =
404 {
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
417 };
418
419 /* local data types */
420
421 /* The data in a compilation unit header, after target2host
422 translation, looks like this. */
423 struct comp_unit_head
424 {
425 unsigned int length;
426 short version;
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
429 sect_offset abbrev_sect_off;
430
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
433
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
436
437 enum dwarf_unit_type unit_type;
438
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
441 sect_offset sect_off;
442
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
445 cu_offset first_die_cu_offset;
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
452 cu_offset type_cu_offset_in_tu;
453 };
454
455 /* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457 struct delayed_method_info
458 {
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473 };
474
475 typedef struct delayed_method_info delayed_method_info;
476 DEF_VEC_O (delayed_method_info);
477
478 /* Internal state when decoding a particular compilation unit. */
479 struct dwarf2_cu
480 {
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
484 /* The header of the compilation unit. */
485 struct comp_unit_head header;
486
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
497 const char *producer;
498
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
514
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
529 /* Backlink to our per_cu entry. */
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
537 htab_t die_hash;
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
549
550 /* A list of methods which need to have physnames computed
551 after all type information has been read. */
552 VEC (delayed_method_info) *method_list;
553
554 /* To be copied to symtab->call_site_htab. */
555 htab_t call_site_htab;
556
557 /* Non-NULL if this CU came from a DWO file.
558 There is an invariant here that is important to remember:
559 Except for attributes copied from the top level DIE in the "main"
560 (or "stub") file in preparation for reading the DWO file
561 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
562 Either there isn't a DWO file (in which case this is NULL and the point
563 is moot), or there is and either we're not going to read it (in which
564 case this is NULL) or there is and we are reading it (in which case this
565 is non-NULL). */
566 struct dwo_unit *dwo_unit;
567
568 /* The DW_AT_addr_base attribute if present, zero otherwise
569 (zero is a valid value though).
570 Note this value comes from the Fission stub CU/TU's DIE. */
571 ULONGEST addr_base;
572
573 /* The DW_AT_ranges_base attribute if present, zero otherwise
574 (zero is a valid value though).
575 Note this value comes from the Fission stub CU/TU's DIE.
576 Also note that the value is zero in the non-DWO case so this value can
577 be used without needing to know whether DWO files are in use or not.
578 N.B. This does not apply to DW_AT_ranges appearing in
579 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
580 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
581 DW_AT_ranges_base *would* have to be applied, and we'd have to care
582 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
583 ULONGEST ranges_base;
584
585 /* Mark used when releasing cached dies. */
586 unsigned int mark : 1;
587
588 /* This CU references .debug_loc. See the symtab->locations_valid field.
589 This test is imperfect as there may exist optimized debug code not using
590 any location list and still facing inlining issues if handled as
591 unoptimized code. For a future better test see GCC PR other/32998. */
592 unsigned int has_loclist : 1;
593
594 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
595 if all the producer_is_* fields are valid. This information is cached
596 because profiling CU expansion showed excessive time spent in
597 producer_is_gxx_lt_4_6. */
598 unsigned int checked_producer : 1;
599 unsigned int producer_is_gxx_lt_4_6 : 1;
600 unsigned int producer_is_gcc_lt_4_3 : 1;
601 unsigned int producer_is_icc : 1;
602
603 /* When set, the file that we're processing is known to have
604 debugging info for C++ namespaces. GCC 3.3.x did not produce
605 this information, but later versions do. */
606
607 unsigned int processing_has_namespace_info : 1;
608 };
609
610 /* Persistent data held for a compilation unit, even when not
611 processing it. We put a pointer to this structure in the
612 read_symtab_private field of the psymtab. */
613
614 struct dwarf2_per_cu_data
615 {
616 /* The start offset and length of this compilation unit.
617 NOTE: Unlike comp_unit_head.length, this length includes
618 initial_length_size.
619 If the DIE refers to a DWO file, this is always of the original die,
620 not the DWO file. */
621 sect_offset sect_off;
622 unsigned int length;
623
624 /* DWARF standard version this data has been read from (such as 4 or 5). */
625 short dwarf_version;
626
627 /* Flag indicating this compilation unit will be read in before
628 any of the current compilation units are processed. */
629 unsigned int queued : 1;
630
631 /* This flag will be set when reading partial DIEs if we need to load
632 absolutely all DIEs for this compilation unit, instead of just the ones
633 we think are interesting. It gets set if we look for a DIE in the
634 hash table and don't find it. */
635 unsigned int load_all_dies : 1;
636
637 /* Non-zero if this CU is from .debug_types.
638 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
639 this is non-zero. */
640 unsigned int is_debug_types : 1;
641
642 /* Non-zero if this CU is from the .dwz file. */
643 unsigned int is_dwz : 1;
644
645 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
646 This flag is only valid if is_debug_types is true.
647 We can't read a CU directly from a DWO file: There are required
648 attributes in the stub. */
649 unsigned int reading_dwo_directly : 1;
650
651 /* Non-zero if the TU has been read.
652 This is used to assist the "Stay in DWO Optimization" for Fission:
653 When reading a DWO, it's faster to read TUs from the DWO instead of
654 fetching them from random other DWOs (due to comdat folding).
655 If the TU has already been read, the optimization is unnecessary
656 (and unwise - we don't want to change where gdb thinks the TU lives
657 "midflight").
658 This flag is only valid if is_debug_types is true. */
659 unsigned int tu_read : 1;
660
661 /* The section this CU/TU lives in.
662 If the DIE refers to a DWO file, this is always the original die,
663 not the DWO file. */
664 struct dwarf2_section_info *section;
665
666 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
667 of the CU cache it gets reset to NULL again. This is left as NULL for
668 dummy CUs (a CU header, but nothing else). */
669 struct dwarf2_cu *cu;
670
671 /* The corresponding objfile.
672 Normally we can get the objfile from dwarf2_per_objfile.
673 However we can enter this file with just a "per_cu" handle. */
674 struct objfile *objfile;
675
676 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
677 is active. Otherwise, the 'psymtab' field is active. */
678 union
679 {
680 /* The partial symbol table associated with this compilation unit,
681 or NULL for unread partial units. */
682 struct partial_symtab *psymtab;
683
684 /* Data needed by the "quick" functions. */
685 struct dwarf2_per_cu_quick_data *quick;
686 } v;
687
688 /* The CUs we import using DW_TAG_imported_unit. This is filled in
689 while reading psymtabs, used to compute the psymtab dependencies,
690 and then cleared. Then it is filled in again while reading full
691 symbols, and only deleted when the objfile is destroyed.
692
693 This is also used to work around a difference between the way gold
694 generates .gdb_index version <=7 and the way gdb does. Arguably this
695 is a gold bug. For symbols coming from TUs, gold records in the index
696 the CU that includes the TU instead of the TU itself. This breaks
697 dw2_lookup_symbol: It assumes that if the index says symbol X lives
698 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
699 will find X. Alas TUs live in their own symtab, so after expanding CU Y
700 we need to look in TU Z to find X. Fortunately, this is akin to
701 DW_TAG_imported_unit, so we just use the same mechanism: For
702 .gdb_index version <=7 this also records the TUs that the CU referred
703 to. Concurrently with this change gdb was modified to emit version 8
704 indices so we only pay a price for gold generated indices.
705 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
706 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
707 };
708
709 /* Entry in the signatured_types hash table. */
710
711 struct signatured_type
712 {
713 /* The "per_cu" object of this type.
714 This struct is used iff per_cu.is_debug_types.
715 N.B.: This is the first member so that it's easy to convert pointers
716 between them. */
717 struct dwarf2_per_cu_data per_cu;
718
719 /* The type's signature. */
720 ULONGEST signature;
721
722 /* Offset in the TU of the type's DIE, as read from the TU header.
723 If this TU is a DWO stub and the definition lives in a DWO file
724 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
725 cu_offset type_offset_in_tu;
726
727 /* Offset in the section of the type's DIE.
728 If the definition lives in a DWO file, this is the offset in the
729 .debug_types.dwo section.
730 The value is zero until the actual value is known.
731 Zero is otherwise not a valid section offset. */
732 sect_offset type_offset_in_section;
733
734 /* Type units are grouped by their DW_AT_stmt_list entry so that they
735 can share them. This points to the containing symtab. */
736 struct type_unit_group *type_unit_group;
737
738 /* The type.
739 The first time we encounter this type we fully read it in and install it
740 in the symbol tables. Subsequent times we only need the type. */
741 struct type *type;
742
743 /* Containing DWO unit.
744 This field is valid iff per_cu.reading_dwo_directly. */
745 struct dwo_unit *dwo_unit;
746 };
747
748 typedef struct signatured_type *sig_type_ptr;
749 DEF_VEC_P (sig_type_ptr);
750
751 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
752 This includes type_unit_group and quick_file_names. */
753
754 struct stmt_list_hash
755 {
756 /* The DWO unit this table is from or NULL if there is none. */
757 struct dwo_unit *dwo_unit;
758
759 /* Offset in .debug_line or .debug_line.dwo. */
760 sect_offset line_sect_off;
761 };
762
763 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
764 an object of this type. */
765
766 struct type_unit_group
767 {
768 /* dwarf2read.c's main "handle" on a TU symtab.
769 To simplify things we create an artificial CU that "includes" all the
770 type units using this stmt_list so that the rest of the code still has
771 a "per_cu" handle on the symtab.
772 This PER_CU is recognized by having no section. */
773 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
774 struct dwarf2_per_cu_data per_cu;
775
776 /* The TUs that share this DW_AT_stmt_list entry.
777 This is added to while parsing type units to build partial symtabs,
778 and is deleted afterwards and not used again. */
779 VEC (sig_type_ptr) *tus;
780
781 /* The compunit symtab.
782 Type units in a group needn't all be defined in the same source file,
783 so we create an essentially anonymous symtab as the compunit symtab. */
784 struct compunit_symtab *compunit_symtab;
785
786 /* The data used to construct the hash key. */
787 struct stmt_list_hash hash;
788
789 /* The number of symtabs from the line header.
790 The value here must match line_header.num_file_names. */
791 unsigned int num_symtabs;
792
793 /* The symbol tables for this TU (obtained from the files listed in
794 DW_AT_stmt_list).
795 WARNING: The order of entries here must match the order of entries
796 in the line header. After the first TU using this type_unit_group, the
797 line header for the subsequent TUs is recreated from this. This is done
798 because we need to use the same symtabs for each TU using the same
799 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
800 there's no guarantee the line header doesn't have duplicate entries. */
801 struct symtab **symtabs;
802 };
803
804 /* These sections are what may appear in a (real or virtual) DWO file. */
805
806 struct dwo_sections
807 {
808 struct dwarf2_section_info abbrev;
809 struct dwarf2_section_info line;
810 struct dwarf2_section_info loc;
811 struct dwarf2_section_info loclists;
812 struct dwarf2_section_info macinfo;
813 struct dwarf2_section_info macro;
814 struct dwarf2_section_info str;
815 struct dwarf2_section_info str_offsets;
816 /* In the case of a virtual DWO file, these two are unused. */
817 struct dwarf2_section_info info;
818 VEC (dwarf2_section_info_def) *types;
819 };
820
821 /* CUs/TUs in DWP/DWO files. */
822
823 struct dwo_unit
824 {
825 /* Backlink to the containing struct dwo_file. */
826 struct dwo_file *dwo_file;
827
828 /* The "id" that distinguishes this CU/TU.
829 .debug_info calls this "dwo_id", .debug_types calls this "signature".
830 Since signatures came first, we stick with it for consistency. */
831 ULONGEST signature;
832
833 /* The section this CU/TU lives in, in the DWO file. */
834 struct dwarf2_section_info *section;
835
836 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
837 sect_offset sect_off;
838 unsigned int length;
839
840 /* For types, offset in the type's DIE of the type defined by this TU. */
841 cu_offset type_offset_in_tu;
842 };
843
844 /* include/dwarf2.h defines the DWP section codes.
845 It defines a max value but it doesn't define a min value, which we
846 use for error checking, so provide one. */
847
848 enum dwp_v2_section_ids
849 {
850 DW_SECT_MIN = 1
851 };
852
853 /* Data for one DWO file.
854
855 This includes virtual DWO files (a virtual DWO file is a DWO file as it
856 appears in a DWP file). DWP files don't really have DWO files per se -
857 comdat folding of types "loses" the DWO file they came from, and from
858 a high level view DWP files appear to contain a mass of random types.
859 However, to maintain consistency with the non-DWP case we pretend DWP
860 files contain virtual DWO files, and we assign each TU with one virtual
861 DWO file (generally based on the line and abbrev section offsets -
862 a heuristic that seems to work in practice). */
863
864 struct dwo_file
865 {
866 /* The DW_AT_GNU_dwo_name attribute.
867 For virtual DWO files the name is constructed from the section offsets
868 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
869 from related CU+TUs. */
870 const char *dwo_name;
871
872 /* The DW_AT_comp_dir attribute. */
873 const char *comp_dir;
874
875 /* The bfd, when the file is open. Otherwise this is NULL.
876 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
877 bfd *dbfd;
878
879 /* The sections that make up this DWO file.
880 Remember that for virtual DWO files in DWP V2, these are virtual
881 sections (for lack of a better name). */
882 struct dwo_sections sections;
883
884 /* The CUs in the file.
885 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
886 an extension to handle LLVM's Link Time Optimization output (where
887 multiple source files may be compiled into a single object/dwo pair). */
888 htab_t cus;
889
890 /* Table of TUs in the file.
891 Each element is a struct dwo_unit. */
892 htab_t tus;
893 };
894
895 /* These sections are what may appear in a DWP file. */
896
897 struct dwp_sections
898 {
899 /* These are used by both DWP version 1 and 2. */
900 struct dwarf2_section_info str;
901 struct dwarf2_section_info cu_index;
902 struct dwarf2_section_info tu_index;
903
904 /* These are only used by DWP version 2 files.
905 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
906 sections are referenced by section number, and are not recorded here.
907 In DWP version 2 there is at most one copy of all these sections, each
908 section being (effectively) comprised of the concatenation of all of the
909 individual sections that exist in the version 1 format.
910 To keep the code simple we treat each of these concatenated pieces as a
911 section itself (a virtual section?). */
912 struct dwarf2_section_info abbrev;
913 struct dwarf2_section_info info;
914 struct dwarf2_section_info line;
915 struct dwarf2_section_info loc;
916 struct dwarf2_section_info macinfo;
917 struct dwarf2_section_info macro;
918 struct dwarf2_section_info str_offsets;
919 struct dwarf2_section_info types;
920 };
921
922 /* These sections are what may appear in a virtual DWO file in DWP version 1.
923 A virtual DWO file is a DWO file as it appears in a DWP file. */
924
925 struct virtual_v1_dwo_sections
926 {
927 struct dwarf2_section_info abbrev;
928 struct dwarf2_section_info line;
929 struct dwarf2_section_info loc;
930 struct dwarf2_section_info macinfo;
931 struct dwarf2_section_info macro;
932 struct dwarf2_section_info str_offsets;
933 /* Each DWP hash table entry records one CU or one TU.
934 That is recorded here, and copied to dwo_unit.section. */
935 struct dwarf2_section_info info_or_types;
936 };
937
938 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
939 In version 2, the sections of the DWO files are concatenated together
940 and stored in one section of that name. Thus each ELF section contains
941 several "virtual" sections. */
942
943 struct virtual_v2_dwo_sections
944 {
945 bfd_size_type abbrev_offset;
946 bfd_size_type abbrev_size;
947
948 bfd_size_type line_offset;
949 bfd_size_type line_size;
950
951 bfd_size_type loc_offset;
952 bfd_size_type loc_size;
953
954 bfd_size_type macinfo_offset;
955 bfd_size_type macinfo_size;
956
957 bfd_size_type macro_offset;
958 bfd_size_type macro_size;
959
960 bfd_size_type str_offsets_offset;
961 bfd_size_type str_offsets_size;
962
963 /* Each DWP hash table entry records one CU or one TU.
964 That is recorded here, and copied to dwo_unit.section. */
965 bfd_size_type info_or_types_offset;
966 bfd_size_type info_or_types_size;
967 };
968
969 /* Contents of DWP hash tables. */
970
971 struct dwp_hash_table
972 {
973 uint32_t version, nr_columns;
974 uint32_t nr_units, nr_slots;
975 const gdb_byte *hash_table, *unit_table;
976 union
977 {
978 struct
979 {
980 const gdb_byte *indices;
981 } v1;
982 struct
983 {
984 /* This is indexed by column number and gives the id of the section
985 in that column. */
986 #define MAX_NR_V2_DWO_SECTIONS \
987 (1 /* .debug_info or .debug_types */ \
988 + 1 /* .debug_abbrev */ \
989 + 1 /* .debug_line */ \
990 + 1 /* .debug_loc */ \
991 + 1 /* .debug_str_offsets */ \
992 + 1 /* .debug_macro or .debug_macinfo */)
993 int section_ids[MAX_NR_V2_DWO_SECTIONS];
994 const gdb_byte *offsets;
995 const gdb_byte *sizes;
996 } v2;
997 } section_pool;
998 };
999
1000 /* Data for one DWP file. */
1001
1002 struct dwp_file
1003 {
1004 /* Name of the file. */
1005 const char *name;
1006
1007 /* File format version. */
1008 int version;
1009
1010 /* The bfd. */
1011 bfd *dbfd;
1012
1013 /* Section info for this file. */
1014 struct dwp_sections sections;
1015
1016 /* Table of CUs in the file. */
1017 const struct dwp_hash_table *cus;
1018
1019 /* Table of TUs in the file. */
1020 const struct dwp_hash_table *tus;
1021
1022 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1023 htab_t loaded_cus;
1024 htab_t loaded_tus;
1025
1026 /* Table to map ELF section numbers to their sections.
1027 This is only needed for the DWP V1 file format. */
1028 unsigned int num_sections;
1029 asection **elf_sections;
1030 };
1031
1032 /* This represents a '.dwz' file. */
1033
1034 struct dwz_file
1035 {
1036 /* A dwz file can only contain a few sections. */
1037 struct dwarf2_section_info abbrev;
1038 struct dwarf2_section_info info;
1039 struct dwarf2_section_info str;
1040 struct dwarf2_section_info line;
1041 struct dwarf2_section_info macro;
1042 struct dwarf2_section_info gdb_index;
1043
1044 /* The dwz's BFD. */
1045 bfd *dwz_bfd;
1046 };
1047
1048 /* Struct used to pass misc. parameters to read_die_and_children, et
1049 al. which are used for both .debug_info and .debug_types dies.
1050 All parameters here are unchanging for the life of the call. This
1051 struct exists to abstract away the constant parameters of die reading. */
1052
1053 struct die_reader_specs
1054 {
1055 /* The bfd of die_section. */
1056 bfd* abfd;
1057
1058 /* The CU of the DIE we are parsing. */
1059 struct dwarf2_cu *cu;
1060
1061 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1062 struct dwo_file *dwo_file;
1063
1064 /* The section the die comes from.
1065 This is either .debug_info or .debug_types, or the .dwo variants. */
1066 struct dwarf2_section_info *die_section;
1067
1068 /* die_section->buffer. */
1069 const gdb_byte *buffer;
1070
1071 /* The end of the buffer. */
1072 const gdb_byte *buffer_end;
1073
1074 /* The value of the DW_AT_comp_dir attribute. */
1075 const char *comp_dir;
1076 };
1077
1078 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1079 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1080 const gdb_byte *info_ptr,
1081 struct die_info *comp_unit_die,
1082 int has_children,
1083 void *data);
1084
1085 /* A 1-based directory index. This is a strong typedef to prevent
1086 accidentally using a directory index as a 0-based index into an
1087 array/vector. */
1088 enum class dir_index : unsigned int {};
1089
1090 /* Likewise, a 1-based file name index. */
1091 enum class file_name_index : unsigned int {};
1092
1093 struct file_entry
1094 {
1095 file_entry () = default;
1096
1097 file_entry (const char *name_, dir_index d_index_,
1098 unsigned int mod_time_, unsigned int length_)
1099 : name (name_),
1100 d_index (d_index_),
1101 mod_time (mod_time_),
1102 length (length_)
1103 {}
1104
1105 /* Return the include directory at D_INDEX stored in LH. Returns
1106 NULL if D_INDEX is out of bounds. */
1107 const char *include_dir (const line_header *lh) const;
1108
1109 /* The file name. Note this is an observing pointer. The memory is
1110 owned by debug_line_buffer. */
1111 const char *name {};
1112
1113 /* The directory index (1-based). */
1114 dir_index d_index {};
1115
1116 unsigned int mod_time {};
1117
1118 unsigned int length {};
1119
1120 /* True if referenced by the Line Number Program. */
1121 bool included_p {};
1122
1123 /* The associated symbol table, if any. */
1124 struct symtab *symtab {};
1125 };
1126
1127 /* The line number information for a compilation unit (found in the
1128 .debug_line section) begins with a "statement program header",
1129 which contains the following information. */
1130 struct line_header
1131 {
1132 line_header ()
1133 : offset_in_dwz {}
1134 {}
1135
1136 /* Add an entry to the include directory table. */
1137 void add_include_dir (const char *include_dir);
1138
1139 /* Add an entry to the file name table. */
1140 void add_file_name (const char *name, dir_index d_index,
1141 unsigned int mod_time, unsigned int length);
1142
1143 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1144 is out of bounds. */
1145 const char *include_dir_at (dir_index index) const
1146 {
1147 /* Convert directory index number (1-based) to vector index
1148 (0-based). */
1149 size_t vec_index = to_underlying (index) - 1;
1150
1151 if (vec_index >= include_dirs.size ())
1152 return NULL;
1153 return include_dirs[vec_index];
1154 }
1155
1156 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1157 is out of bounds. */
1158 file_entry *file_name_at (file_name_index index)
1159 {
1160 /* Convert file name index number (1-based) to vector index
1161 (0-based). */
1162 size_t vec_index = to_underlying (index) - 1;
1163
1164 if (vec_index >= file_names.size ())
1165 return NULL;
1166 return &file_names[vec_index];
1167 }
1168
1169 /* Const version of the above. */
1170 const file_entry *file_name_at (unsigned int index) const
1171 {
1172 if (index >= file_names.size ())
1173 return NULL;
1174 return &file_names[index];
1175 }
1176
1177 /* Offset of line number information in .debug_line section. */
1178 sect_offset sect_off {};
1179
1180 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1181 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1182
1183 unsigned int total_length {};
1184 unsigned short version {};
1185 unsigned int header_length {};
1186 unsigned char minimum_instruction_length {};
1187 unsigned char maximum_ops_per_instruction {};
1188 unsigned char default_is_stmt {};
1189 int line_base {};
1190 unsigned char line_range {};
1191 unsigned char opcode_base {};
1192
1193 /* standard_opcode_lengths[i] is the number of operands for the
1194 standard opcode whose value is i. This means that
1195 standard_opcode_lengths[0] is unused, and the last meaningful
1196 element is standard_opcode_lengths[opcode_base - 1]. */
1197 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1198
1199 /* The include_directories table. Note these are observing
1200 pointers. The memory is owned by debug_line_buffer. */
1201 std::vector<const char *> include_dirs;
1202
1203 /* The file_names table. */
1204 std::vector<file_entry> file_names;
1205
1206 /* The start and end of the statement program following this
1207 header. These point into dwarf2_per_objfile->line_buffer. */
1208 const gdb_byte *statement_program_start {}, *statement_program_end {};
1209 };
1210
1211 typedef std::unique_ptr<line_header> line_header_up;
1212
1213 const char *
1214 file_entry::include_dir (const line_header *lh) const
1215 {
1216 return lh->include_dir_at (d_index);
1217 }
1218
1219 /* When we construct a partial symbol table entry we only
1220 need this much information. */
1221 struct partial_die_info
1222 {
1223 /* Offset of this DIE. */
1224 sect_offset sect_off;
1225
1226 /* DWARF-2 tag for this DIE. */
1227 ENUM_BITFIELD(dwarf_tag) tag : 16;
1228
1229 /* Assorted flags describing the data found in this DIE. */
1230 unsigned int has_children : 1;
1231 unsigned int is_external : 1;
1232 unsigned int is_declaration : 1;
1233 unsigned int has_type : 1;
1234 unsigned int has_specification : 1;
1235 unsigned int has_pc_info : 1;
1236 unsigned int may_be_inlined : 1;
1237
1238 /* This DIE has been marked DW_AT_main_subprogram. */
1239 unsigned int main_subprogram : 1;
1240
1241 /* Flag set if the SCOPE field of this structure has been
1242 computed. */
1243 unsigned int scope_set : 1;
1244
1245 /* Flag set if the DIE has a byte_size attribute. */
1246 unsigned int has_byte_size : 1;
1247
1248 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1249 unsigned int has_const_value : 1;
1250
1251 /* Flag set if any of the DIE's children are template arguments. */
1252 unsigned int has_template_arguments : 1;
1253
1254 /* Flag set if fixup_partial_die has been called on this die. */
1255 unsigned int fixup_called : 1;
1256
1257 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1258 unsigned int is_dwz : 1;
1259
1260 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1261 unsigned int spec_is_dwz : 1;
1262
1263 /* The name of this DIE. Normally the value of DW_AT_name, but
1264 sometimes a default name for unnamed DIEs. */
1265 const char *name;
1266
1267 /* The linkage name, if present. */
1268 const char *linkage_name;
1269
1270 /* The scope to prepend to our children. This is generally
1271 allocated on the comp_unit_obstack, so will disappear
1272 when this compilation unit leaves the cache. */
1273 const char *scope;
1274
1275 /* Some data associated with the partial DIE. The tag determines
1276 which field is live. */
1277 union
1278 {
1279 /* The location description associated with this DIE, if any. */
1280 struct dwarf_block *locdesc;
1281 /* The offset of an import, for DW_TAG_imported_unit. */
1282 sect_offset sect_off;
1283 } d;
1284
1285 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1286 CORE_ADDR lowpc;
1287 CORE_ADDR highpc;
1288
1289 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1290 DW_AT_sibling, if any. */
1291 /* NOTE: This member isn't strictly necessary, read_partial_die could
1292 return DW_AT_sibling values to its caller load_partial_dies. */
1293 const gdb_byte *sibling;
1294
1295 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1296 DW_AT_specification (or DW_AT_abstract_origin or
1297 DW_AT_extension). */
1298 sect_offset spec_offset;
1299
1300 /* Pointers to this DIE's parent, first child, and next sibling,
1301 if any. */
1302 struct partial_die_info *die_parent, *die_child, *die_sibling;
1303 };
1304
1305 /* This data structure holds the information of an abbrev. */
1306 struct abbrev_info
1307 {
1308 unsigned int number; /* number identifying abbrev */
1309 enum dwarf_tag tag; /* dwarf tag */
1310 unsigned short has_children; /* boolean */
1311 unsigned short num_attrs; /* number of attributes */
1312 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1313 struct abbrev_info *next; /* next in chain */
1314 };
1315
1316 struct attr_abbrev
1317 {
1318 ENUM_BITFIELD(dwarf_attribute) name : 16;
1319 ENUM_BITFIELD(dwarf_form) form : 16;
1320
1321 /* It is valid only if FORM is DW_FORM_implicit_const. */
1322 LONGEST implicit_const;
1323 };
1324
1325 /* Size of abbrev_table.abbrev_hash_table. */
1326 #define ABBREV_HASH_SIZE 121
1327
1328 /* Top level data structure to contain an abbreviation table. */
1329
1330 struct abbrev_table
1331 {
1332 /* Where the abbrev table came from.
1333 This is used as a sanity check when the table is used. */
1334 sect_offset sect_off;
1335
1336 /* Storage for the abbrev table. */
1337 struct obstack abbrev_obstack;
1338
1339 /* Hash table of abbrevs.
1340 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1341 It could be statically allocated, but the previous code didn't so we
1342 don't either. */
1343 struct abbrev_info **abbrevs;
1344 };
1345
1346 /* Attributes have a name and a value. */
1347 struct attribute
1348 {
1349 ENUM_BITFIELD(dwarf_attribute) name : 16;
1350 ENUM_BITFIELD(dwarf_form) form : 15;
1351
1352 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1353 field should be in u.str (existing only for DW_STRING) but it is kept
1354 here for better struct attribute alignment. */
1355 unsigned int string_is_canonical : 1;
1356
1357 union
1358 {
1359 const char *str;
1360 struct dwarf_block *blk;
1361 ULONGEST unsnd;
1362 LONGEST snd;
1363 CORE_ADDR addr;
1364 ULONGEST signature;
1365 }
1366 u;
1367 };
1368
1369 /* This data structure holds a complete die structure. */
1370 struct die_info
1371 {
1372 /* DWARF-2 tag for this DIE. */
1373 ENUM_BITFIELD(dwarf_tag) tag : 16;
1374
1375 /* Number of attributes */
1376 unsigned char num_attrs;
1377
1378 /* True if we're presently building the full type name for the
1379 type derived from this DIE. */
1380 unsigned char building_fullname : 1;
1381
1382 /* True if this die is in process. PR 16581. */
1383 unsigned char in_process : 1;
1384
1385 /* Abbrev number */
1386 unsigned int abbrev;
1387
1388 /* Offset in .debug_info or .debug_types section. */
1389 sect_offset sect_off;
1390
1391 /* The dies in a compilation unit form an n-ary tree. PARENT
1392 points to this die's parent; CHILD points to the first child of
1393 this node; and all the children of a given node are chained
1394 together via their SIBLING fields. */
1395 struct die_info *child; /* Its first child, if any. */
1396 struct die_info *sibling; /* Its next sibling, if any. */
1397 struct die_info *parent; /* Its parent, if any. */
1398
1399 /* An array of attributes, with NUM_ATTRS elements. There may be
1400 zero, but it's not common and zero-sized arrays are not
1401 sufficiently portable C. */
1402 struct attribute attrs[1];
1403 };
1404
1405 /* Get at parts of an attribute structure. */
1406
1407 #define DW_STRING(attr) ((attr)->u.str)
1408 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1409 #define DW_UNSND(attr) ((attr)->u.unsnd)
1410 #define DW_BLOCK(attr) ((attr)->u.blk)
1411 #define DW_SND(attr) ((attr)->u.snd)
1412 #define DW_ADDR(attr) ((attr)->u.addr)
1413 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1414
1415 /* Blocks are a bunch of untyped bytes. */
1416 struct dwarf_block
1417 {
1418 size_t size;
1419
1420 /* Valid only if SIZE is not zero. */
1421 const gdb_byte *data;
1422 };
1423
1424 #ifndef ATTR_ALLOC_CHUNK
1425 #define ATTR_ALLOC_CHUNK 4
1426 #endif
1427
1428 /* Allocate fields for structs, unions and enums in this size. */
1429 #ifndef DW_FIELD_ALLOC_CHUNK
1430 #define DW_FIELD_ALLOC_CHUNK 4
1431 #endif
1432
1433 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1434 but this would require a corresponding change in unpack_field_as_long
1435 and friends. */
1436 static int bits_per_byte = 8;
1437
1438 struct nextfield
1439 {
1440 struct nextfield *next;
1441 int accessibility;
1442 int virtuality;
1443 struct field field;
1444 };
1445
1446 struct nextfnfield
1447 {
1448 struct nextfnfield *next;
1449 struct fn_field fnfield;
1450 };
1451
1452 struct fnfieldlist
1453 {
1454 const char *name;
1455 int length;
1456 struct nextfnfield *head;
1457 };
1458
1459 struct typedef_field_list
1460 {
1461 struct typedef_field field;
1462 struct typedef_field_list *next;
1463 };
1464
1465 /* The routines that read and process dies for a C struct or C++ class
1466 pass lists of data member fields and lists of member function fields
1467 in an instance of a field_info structure, as defined below. */
1468 struct field_info
1469 {
1470 /* List of data member and baseclasses fields. */
1471 struct nextfield *fields, *baseclasses;
1472
1473 /* Number of fields (including baseclasses). */
1474 int nfields;
1475
1476 /* Number of baseclasses. */
1477 int nbaseclasses;
1478
1479 /* Set if the accesibility of one of the fields is not public. */
1480 int non_public_fields;
1481
1482 /* Member function fields array, entries are allocated in the order they
1483 are encountered in the object file. */
1484 struct nextfnfield *fnfields;
1485
1486 /* Member function fieldlist array, contains name of possibly overloaded
1487 member function, number of overloaded member functions and a pointer
1488 to the head of the member function field chain. */
1489 struct fnfieldlist *fnfieldlists;
1490
1491 /* Number of entries in the fnfieldlists array. */
1492 int nfnfields;
1493
1494 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1495 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1496 struct typedef_field_list *typedef_field_list;
1497 unsigned typedef_field_list_count;
1498 };
1499
1500 /* One item on the queue of compilation units to read in full symbols
1501 for. */
1502 struct dwarf2_queue_item
1503 {
1504 struct dwarf2_per_cu_data *per_cu;
1505 enum language pretend_language;
1506 struct dwarf2_queue_item *next;
1507 };
1508
1509 /* The current queue. */
1510 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1511
1512 /* Loaded secondary compilation units are kept in memory until they
1513 have not been referenced for the processing of this many
1514 compilation units. Set this to zero to disable caching. Cache
1515 sizes of up to at least twenty will improve startup time for
1516 typical inter-CU-reference binaries, at an obvious memory cost. */
1517 static int dwarf_max_cache_age = 5;
1518 static void
1519 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1520 struct cmd_list_element *c, const char *value)
1521 {
1522 fprintf_filtered (file, _("The upper bound on the age of cached "
1523 "DWARF compilation units is %s.\n"),
1524 value);
1525 }
1526 \f
1527 /* local function prototypes */
1528
1529 static const char *get_section_name (const struct dwarf2_section_info *);
1530
1531 static const char *get_section_file_name (const struct dwarf2_section_info *);
1532
1533 static void dwarf2_find_base_address (struct die_info *die,
1534 struct dwarf2_cu *cu);
1535
1536 static struct partial_symtab *create_partial_symtab
1537 (struct dwarf2_per_cu_data *per_cu, const char *name);
1538
1539 static void dwarf2_build_psymtabs_hard (struct objfile *);
1540
1541 static void scan_partial_symbols (struct partial_die_info *,
1542 CORE_ADDR *, CORE_ADDR *,
1543 int, struct dwarf2_cu *);
1544
1545 static void add_partial_symbol (struct partial_die_info *,
1546 struct dwarf2_cu *);
1547
1548 static void add_partial_namespace (struct partial_die_info *pdi,
1549 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1550 int set_addrmap, struct dwarf2_cu *cu);
1551
1552 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1553 CORE_ADDR *highpc, int set_addrmap,
1554 struct dwarf2_cu *cu);
1555
1556 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1557 struct dwarf2_cu *cu);
1558
1559 static void add_partial_subprogram (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1561 int need_pc, struct dwarf2_cu *cu);
1562
1563 static void dwarf2_read_symtab (struct partial_symtab *,
1564 struct objfile *);
1565
1566 static void psymtab_to_symtab_1 (struct partial_symtab *);
1567
1568 static struct abbrev_info *abbrev_table_lookup_abbrev
1569 (const struct abbrev_table *, unsigned int);
1570
1571 static struct abbrev_table *abbrev_table_read_table
1572 (struct dwarf2_section_info *, sect_offset);
1573
1574 static void abbrev_table_free (struct abbrev_table *);
1575
1576 static void abbrev_table_free_cleanup (void *);
1577
1578 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1579 struct dwarf2_section_info *);
1580
1581 static void dwarf2_free_abbrev_table (void *);
1582
1583 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1584
1585 static struct partial_die_info *load_partial_dies
1586 (const struct die_reader_specs *, const gdb_byte *, int);
1587
1588 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1589 struct partial_die_info *,
1590 struct abbrev_info *,
1591 unsigned int,
1592 const gdb_byte *);
1593
1594 static struct partial_die_info *find_partial_die (sect_offset, int,
1595 struct dwarf2_cu *);
1596
1597 static void fixup_partial_die (struct partial_die_info *,
1598 struct dwarf2_cu *);
1599
1600 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1601 struct attribute *, struct attr_abbrev *,
1602 const gdb_byte *);
1603
1604 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1605
1606 static int read_1_signed_byte (bfd *, const gdb_byte *);
1607
1608 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1609
1610 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1611
1612 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1613
1614 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1615 unsigned int *);
1616
1617 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1618
1619 static LONGEST read_checked_initial_length_and_offset
1620 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1621 unsigned int *, unsigned int *);
1622
1623 static LONGEST read_offset (bfd *, const gdb_byte *,
1624 const struct comp_unit_head *,
1625 unsigned int *);
1626
1627 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1628
1629 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1630 sect_offset);
1631
1632 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1633
1634 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1635
1636 static const char *read_indirect_string (bfd *, const gdb_byte *,
1637 const struct comp_unit_head *,
1638 unsigned int *);
1639
1640 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1641 const struct comp_unit_head *,
1642 unsigned int *);
1643
1644 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1645
1646 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1647
1648 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1649 const gdb_byte *,
1650 unsigned int *);
1651
1652 static const char *read_str_index (const struct die_reader_specs *reader,
1653 ULONGEST str_index);
1654
1655 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1656
1657 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1658 struct dwarf2_cu *);
1659
1660 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1661 unsigned int);
1662
1663 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1664 struct dwarf2_cu *cu);
1665
1666 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1667 struct dwarf2_cu *cu);
1668
1669 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1670
1671 static struct die_info *die_specification (struct die_info *die,
1672 struct dwarf2_cu **);
1673
1674 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1675 struct dwarf2_cu *cu);
1676
1677 static void dwarf_decode_lines (struct line_header *, const char *,
1678 struct dwarf2_cu *, struct partial_symtab *,
1679 CORE_ADDR, int decode_mapping);
1680
1681 static void dwarf2_start_subfile (const char *, const char *);
1682
1683 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1684 const char *, const char *,
1685 CORE_ADDR);
1686
1687 static struct symbol *new_symbol (struct die_info *, struct type *,
1688 struct dwarf2_cu *);
1689
1690 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1691 struct dwarf2_cu *, struct symbol *);
1692
1693 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1694 struct dwarf2_cu *);
1695
1696 static void dwarf2_const_value_attr (const struct attribute *attr,
1697 struct type *type,
1698 const char *name,
1699 struct obstack *obstack,
1700 struct dwarf2_cu *cu, LONGEST *value,
1701 const gdb_byte **bytes,
1702 struct dwarf2_locexpr_baton **baton);
1703
1704 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1705
1706 static int need_gnat_info (struct dwarf2_cu *);
1707
1708 static struct type *die_descriptive_type (struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void set_descriptive_type (struct type *, struct die_info *,
1712 struct dwarf2_cu *);
1713
1714 static struct type *die_containing_type (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1718 struct dwarf2_cu *);
1719
1720 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1721
1722 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1725
1726 static char *typename_concat (struct obstack *obs, const char *prefix,
1727 const char *suffix, int physname,
1728 struct dwarf2_cu *cu);
1729
1730 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1731
1732 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1733
1734 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1735
1736 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1739
1740 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1741 struct dwarf2_cu *, struct partial_symtab *);
1742
1743 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1744 values. Keep the items ordered with increasing constraints compliance. */
1745 enum pc_bounds_kind
1746 {
1747 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1748 PC_BOUNDS_NOT_PRESENT,
1749
1750 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1751 were present but they do not form a valid range of PC addresses. */
1752 PC_BOUNDS_INVALID,
1753
1754 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1755 PC_BOUNDS_RANGES,
1756
1757 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1758 PC_BOUNDS_HIGH_LOW,
1759 };
1760
1761 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1762 CORE_ADDR *, CORE_ADDR *,
1763 struct dwarf2_cu *,
1764 struct partial_symtab *);
1765
1766 static void get_scope_pc_bounds (struct die_info *,
1767 CORE_ADDR *, CORE_ADDR *,
1768 struct dwarf2_cu *);
1769
1770 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1771 CORE_ADDR, struct dwarf2_cu *);
1772
1773 static void dwarf2_add_field (struct field_info *, struct die_info *,
1774 struct dwarf2_cu *);
1775
1776 static void dwarf2_attach_fields_to_type (struct field_info *,
1777 struct type *, struct dwarf2_cu *);
1778
1779 static void dwarf2_add_member_fn (struct field_info *,
1780 struct die_info *, struct type *,
1781 struct dwarf2_cu *);
1782
1783 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1784 struct type *,
1785 struct dwarf2_cu *);
1786
1787 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1788
1789 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1790
1791 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1792
1793 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1794
1795 static struct using_direct **using_directives (enum language);
1796
1797 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1798
1799 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1800
1801 static struct type *read_module_type (struct die_info *die,
1802 struct dwarf2_cu *cu);
1803
1804 static const char *namespace_name (struct die_info *die,
1805 int *is_anonymous, struct dwarf2_cu *);
1806
1807 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1808
1809 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1810
1811 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1812 struct dwarf2_cu *);
1813
1814 static struct die_info *read_die_and_siblings_1
1815 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1816 struct die_info *);
1817
1818 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1819 const gdb_byte *info_ptr,
1820 const gdb_byte **new_info_ptr,
1821 struct die_info *parent);
1822
1823 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1824 struct die_info **, const gdb_byte *,
1825 int *, int);
1826
1827 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1828 struct die_info **, const gdb_byte *,
1829 int *);
1830
1831 static void process_die (struct die_info *, struct dwarf2_cu *);
1832
1833 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1834 struct obstack *);
1835
1836 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1837
1838 static const char *dwarf2_full_name (const char *name,
1839 struct die_info *die,
1840 struct dwarf2_cu *cu);
1841
1842 static const char *dwarf2_physname (const char *name, struct die_info *die,
1843 struct dwarf2_cu *cu);
1844
1845 static struct die_info *dwarf2_extension (struct die_info *die,
1846 struct dwarf2_cu **);
1847
1848 static const char *dwarf_tag_name (unsigned int);
1849
1850 static const char *dwarf_attr_name (unsigned int);
1851
1852 static const char *dwarf_form_name (unsigned int);
1853
1854 static const char *dwarf_bool_name (unsigned int);
1855
1856 static const char *dwarf_type_encoding_name (unsigned int);
1857
1858 static struct die_info *sibling_die (struct die_info *);
1859
1860 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1861
1862 static void dump_die_for_error (struct die_info *);
1863
1864 static void dump_die_1 (struct ui_file *, int level, int max_level,
1865 struct die_info *);
1866
1867 /*static*/ void dump_die (struct die_info *, int max_level);
1868
1869 static void store_in_ref_table (struct die_info *,
1870 struct dwarf2_cu *);
1871
1872 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1873
1874 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1875
1876 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1877 const struct attribute *,
1878 struct dwarf2_cu **);
1879
1880 static struct die_info *follow_die_ref (struct die_info *,
1881 const struct attribute *,
1882 struct dwarf2_cu **);
1883
1884 static struct die_info *follow_die_sig (struct die_info *,
1885 const struct attribute *,
1886 struct dwarf2_cu **);
1887
1888 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1889 struct dwarf2_cu *);
1890
1891 static struct type *get_DW_AT_signature_type (struct die_info *,
1892 const struct attribute *,
1893 struct dwarf2_cu *);
1894
1895 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1896
1897 static void read_signatured_type (struct signatured_type *);
1898
1899 static int attr_to_dynamic_prop (const struct attribute *attr,
1900 struct die_info *die, struct dwarf2_cu *cu,
1901 struct dynamic_prop *prop);
1902
1903 /* memory allocation interface */
1904
1905 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1906
1907 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1908
1909 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1910
1911 static int attr_form_is_block (const struct attribute *);
1912
1913 static int attr_form_is_section_offset (const struct attribute *);
1914
1915 static int attr_form_is_constant (const struct attribute *);
1916
1917 static int attr_form_is_ref (const struct attribute *);
1918
1919 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1920 struct dwarf2_loclist_baton *baton,
1921 const struct attribute *attr);
1922
1923 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1924 struct symbol *sym,
1925 struct dwarf2_cu *cu,
1926 int is_block);
1927
1928 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1929 const gdb_byte *info_ptr,
1930 struct abbrev_info *abbrev);
1931
1932 static void free_stack_comp_unit (void *);
1933
1934 static hashval_t partial_die_hash (const void *item);
1935
1936 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1937
1938 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1939 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
1940
1941 static void init_one_comp_unit (struct dwarf2_cu *cu,
1942 struct dwarf2_per_cu_data *per_cu);
1943
1944 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1945 struct die_info *comp_unit_die,
1946 enum language pretend_language);
1947
1948 static void free_heap_comp_unit (void *);
1949
1950 static void free_cached_comp_units (void *);
1951
1952 static void age_cached_comp_units (void);
1953
1954 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1955
1956 static struct type *set_die_type (struct die_info *, struct type *,
1957 struct dwarf2_cu *);
1958
1959 static void create_all_comp_units (struct objfile *);
1960
1961 static int create_all_type_units (struct objfile *);
1962
1963 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1964 enum language);
1965
1966 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1967 enum language);
1968
1969 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1970 enum language);
1971
1972 static void dwarf2_add_dependence (struct dwarf2_cu *,
1973 struct dwarf2_per_cu_data *);
1974
1975 static void dwarf2_mark (struct dwarf2_cu *);
1976
1977 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1978
1979 static struct type *get_die_type_at_offset (sect_offset,
1980 struct dwarf2_per_cu_data *);
1981
1982 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1983
1984 static void dwarf2_release_queue (void *dummy);
1985
1986 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1987 enum language pretend_language);
1988
1989 static void process_queue (void);
1990
1991 /* The return type of find_file_and_directory. Note, the enclosed
1992 string pointers are only valid while this object is valid. */
1993
1994 struct file_and_directory
1995 {
1996 /* The filename. This is never NULL. */
1997 const char *name;
1998
1999 /* The compilation directory. NULL if not known. If we needed to
2000 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2001 points directly to the DW_AT_comp_dir string attribute owned by
2002 the obstack that owns the DIE. */
2003 const char *comp_dir;
2004
2005 /* If we needed to build a new string for comp_dir, this is what
2006 owns the storage. */
2007 std::string comp_dir_storage;
2008 };
2009
2010 static file_and_directory find_file_and_directory (struct die_info *die,
2011 struct dwarf2_cu *cu);
2012
2013 static char *file_full_name (int file, struct line_header *lh,
2014 const char *comp_dir);
2015
2016 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2017 enum class rcuh_kind { COMPILE, TYPE };
2018
2019 static const gdb_byte *read_and_check_comp_unit_head
2020 (struct comp_unit_head *header,
2021 struct dwarf2_section_info *section,
2022 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2023 rcuh_kind section_kind);
2024
2025 static void init_cutu_and_read_dies
2026 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2027 int use_existing_cu, int keep,
2028 die_reader_func_ftype *die_reader_func, void *data);
2029
2030 static void init_cutu_and_read_dies_simple
2031 (struct dwarf2_per_cu_data *this_cu,
2032 die_reader_func_ftype *die_reader_func, void *data);
2033
2034 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2035
2036 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2037
2038 static struct dwo_unit *lookup_dwo_unit_in_dwp
2039 (struct dwp_file *dwp_file, const char *comp_dir,
2040 ULONGEST signature, int is_debug_types);
2041
2042 static struct dwp_file *get_dwp_file (void);
2043
2044 static struct dwo_unit *lookup_dwo_comp_unit
2045 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2046
2047 static struct dwo_unit *lookup_dwo_type_unit
2048 (struct signatured_type *, const char *, const char *);
2049
2050 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2051
2052 static void free_dwo_file_cleanup (void *);
2053
2054 static void process_cu_includes (void);
2055
2056 static void check_producer (struct dwarf2_cu *cu);
2057
2058 static void free_line_header_voidp (void *arg);
2059 \f
2060 /* Various complaints about symbol reading that don't abort the process. */
2061
2062 static void
2063 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2064 {
2065 complaint (&symfile_complaints,
2066 _("statement list doesn't fit in .debug_line section"));
2067 }
2068
2069 static void
2070 dwarf2_debug_line_missing_file_complaint (void)
2071 {
2072 complaint (&symfile_complaints,
2073 _(".debug_line section has line data without a file"));
2074 }
2075
2076 static void
2077 dwarf2_debug_line_missing_end_sequence_complaint (void)
2078 {
2079 complaint (&symfile_complaints,
2080 _(".debug_line section has line "
2081 "program sequence without an end"));
2082 }
2083
2084 static void
2085 dwarf2_complex_location_expr_complaint (void)
2086 {
2087 complaint (&symfile_complaints, _("location expression too complex"));
2088 }
2089
2090 static void
2091 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2092 int arg3)
2093 {
2094 complaint (&symfile_complaints,
2095 _("const value length mismatch for '%s', got %d, expected %d"),
2096 arg1, arg2, arg3);
2097 }
2098
2099 static void
2100 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2101 {
2102 complaint (&symfile_complaints,
2103 _("debug info runs off end of %s section"
2104 " [in module %s]"),
2105 get_section_name (section),
2106 get_section_file_name (section));
2107 }
2108
2109 static void
2110 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2111 {
2112 complaint (&symfile_complaints,
2113 _("macro debug info contains a "
2114 "malformed macro definition:\n`%s'"),
2115 arg1);
2116 }
2117
2118 static void
2119 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2120 {
2121 complaint (&symfile_complaints,
2122 _("invalid attribute class or form for '%s' in '%s'"),
2123 arg1, arg2);
2124 }
2125
2126 /* Hash function for line_header_hash. */
2127
2128 static hashval_t
2129 line_header_hash (const struct line_header *ofs)
2130 {
2131 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2132 }
2133
2134 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2135
2136 static hashval_t
2137 line_header_hash_voidp (const void *item)
2138 {
2139 const struct line_header *ofs = (const struct line_header *) item;
2140
2141 return line_header_hash (ofs);
2142 }
2143
2144 /* Equality function for line_header_hash. */
2145
2146 static int
2147 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2148 {
2149 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2150 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2151
2152 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2153 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2154 }
2155
2156 \f
2157 #if WORDS_BIGENDIAN
2158
2159 /* Convert VALUE between big- and little-endian. */
2160 static offset_type
2161 byte_swap (offset_type value)
2162 {
2163 offset_type result;
2164
2165 result = (value & 0xff) << 24;
2166 result |= (value & 0xff00) << 8;
2167 result |= (value & 0xff0000) >> 8;
2168 result |= (value & 0xff000000) >> 24;
2169 return result;
2170 }
2171
2172 #define MAYBE_SWAP(V) byte_swap (V)
2173
2174 #else
2175 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
2176 #endif /* WORDS_BIGENDIAN */
2177
2178 /* Read the given attribute value as an address, taking the attribute's
2179 form into account. */
2180
2181 static CORE_ADDR
2182 attr_value_as_address (struct attribute *attr)
2183 {
2184 CORE_ADDR addr;
2185
2186 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2187 {
2188 /* Aside from a few clearly defined exceptions, attributes that
2189 contain an address must always be in DW_FORM_addr form.
2190 Unfortunately, some compilers happen to be violating this
2191 requirement by encoding addresses using other forms, such
2192 as DW_FORM_data4 for example. For those broken compilers,
2193 we try to do our best, without any guarantee of success,
2194 to interpret the address correctly. It would also be nice
2195 to generate a complaint, but that would require us to maintain
2196 a list of legitimate cases where a non-address form is allowed,
2197 as well as update callers to pass in at least the CU's DWARF
2198 version. This is more overhead than what we're willing to
2199 expand for a pretty rare case. */
2200 addr = DW_UNSND (attr);
2201 }
2202 else
2203 addr = DW_ADDR (attr);
2204
2205 return addr;
2206 }
2207
2208 /* The suffix for an index file. */
2209 #define INDEX_SUFFIX ".gdb-index"
2210
2211 /* See declaration. */
2212
2213 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2214 const dwarf2_debug_sections *names)
2215 : objfile (objfile_)
2216 {
2217 if (names == NULL)
2218 names = &dwarf2_elf_names;
2219
2220 bfd *obfd = objfile->obfd;
2221
2222 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2223 locate_sections (obfd, sec, *names);
2224 }
2225
2226 dwarf2_per_objfile::~dwarf2_per_objfile ()
2227 {
2228 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2229 free_cached_comp_units ();
2230
2231 if (quick_file_names_table)
2232 htab_delete (quick_file_names_table);
2233
2234 if (line_header_hash)
2235 htab_delete (line_header_hash);
2236
2237 /* Everything else should be on the objfile obstack. */
2238 }
2239
2240 /* See declaration. */
2241
2242 void
2243 dwarf2_per_objfile::free_cached_comp_units ()
2244 {
2245 dwarf2_per_cu_data *per_cu = read_in_chain;
2246 dwarf2_per_cu_data **last_chain = &read_in_chain;
2247 while (per_cu != NULL)
2248 {
2249 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2250
2251 free_heap_comp_unit (per_cu->cu);
2252 *last_chain = next_cu;
2253 per_cu = next_cu;
2254 }
2255 }
2256
2257 /* Try to locate the sections we need for DWARF 2 debugging
2258 information and return true if we have enough to do something.
2259 NAMES points to the dwarf2 section names, or is NULL if the standard
2260 ELF names are used. */
2261
2262 int
2263 dwarf2_has_info (struct objfile *objfile,
2264 const struct dwarf2_debug_sections *names)
2265 {
2266 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2267 objfile_data (objfile, dwarf2_objfile_data_key));
2268 if (!dwarf2_per_objfile)
2269 {
2270 /* Initialize per-objfile state. */
2271 struct dwarf2_per_objfile *data
2272 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2273
2274 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2275 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2276 }
2277 return (!dwarf2_per_objfile->info.is_virtual
2278 && dwarf2_per_objfile->info.s.section != NULL
2279 && !dwarf2_per_objfile->abbrev.is_virtual
2280 && dwarf2_per_objfile->abbrev.s.section != NULL);
2281 }
2282
2283 /* Return the containing section of virtual section SECTION. */
2284
2285 static struct dwarf2_section_info *
2286 get_containing_section (const struct dwarf2_section_info *section)
2287 {
2288 gdb_assert (section->is_virtual);
2289 return section->s.containing_section;
2290 }
2291
2292 /* Return the bfd owner of SECTION. */
2293
2294 static struct bfd *
2295 get_section_bfd_owner (const struct dwarf2_section_info *section)
2296 {
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
2302 return section->s.section->owner;
2303 }
2304
2305 /* Return the bfd section of SECTION.
2306 Returns NULL if the section is not present. */
2307
2308 static asection *
2309 get_section_bfd_section (const struct dwarf2_section_info *section)
2310 {
2311 if (section->is_virtual)
2312 {
2313 section = get_containing_section (section);
2314 gdb_assert (!section->is_virtual);
2315 }
2316 return section->s.section;
2317 }
2318
2319 /* Return the name of SECTION. */
2320
2321 static const char *
2322 get_section_name (const struct dwarf2_section_info *section)
2323 {
2324 asection *sectp = get_section_bfd_section (section);
2325
2326 gdb_assert (sectp != NULL);
2327 return bfd_section_name (get_section_bfd_owner (section), sectp);
2328 }
2329
2330 /* Return the name of the file SECTION is in. */
2331
2332 static const char *
2333 get_section_file_name (const struct dwarf2_section_info *section)
2334 {
2335 bfd *abfd = get_section_bfd_owner (section);
2336
2337 return bfd_get_filename (abfd);
2338 }
2339
2340 /* Return the id of SECTION.
2341 Returns 0 if SECTION doesn't exist. */
2342
2343 static int
2344 get_section_id (const struct dwarf2_section_info *section)
2345 {
2346 asection *sectp = get_section_bfd_section (section);
2347
2348 if (sectp == NULL)
2349 return 0;
2350 return sectp->id;
2351 }
2352
2353 /* Return the flags of SECTION.
2354 SECTION (or containing section if this is a virtual section) must exist. */
2355
2356 static int
2357 get_section_flags (const struct dwarf2_section_info *section)
2358 {
2359 asection *sectp = get_section_bfd_section (section);
2360
2361 gdb_assert (sectp != NULL);
2362 return bfd_get_section_flags (sectp->owner, sectp);
2363 }
2364
2365 /* When loading sections, we look either for uncompressed section or for
2366 compressed section names. */
2367
2368 static int
2369 section_is_p (const char *section_name,
2370 const struct dwarf2_section_names *names)
2371 {
2372 if (names->normal != NULL
2373 && strcmp (section_name, names->normal) == 0)
2374 return 1;
2375 if (names->compressed != NULL
2376 && strcmp (section_name, names->compressed) == 0)
2377 return 1;
2378 return 0;
2379 }
2380
2381 /* See declaration. */
2382
2383 void
2384 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2385 const dwarf2_debug_sections &names)
2386 {
2387 flagword aflag = bfd_get_section_flags (abfd, sectp);
2388
2389 if ((aflag & SEC_HAS_CONTENTS) == 0)
2390 {
2391 }
2392 else if (section_is_p (sectp->name, &names.info))
2393 {
2394 this->info.s.section = sectp;
2395 this->info.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.abbrev))
2398 {
2399 this->abbrev.s.section = sectp;
2400 this->abbrev.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.line))
2403 {
2404 this->line.s.section = sectp;
2405 this->line.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.loc))
2408 {
2409 this->loc.s.section = sectp;
2410 this->loc.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.loclists))
2413 {
2414 this->loclists.s.section = sectp;
2415 this->loclists.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.macinfo))
2418 {
2419 this->macinfo.s.section = sectp;
2420 this->macinfo.size = bfd_get_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &names.macro))
2423 {
2424 this->macro.s.section = sectp;
2425 this->macro.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.str))
2428 {
2429 this->str.s.section = sectp;
2430 this->str.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.line_str))
2433 {
2434 this->line_str.s.section = sectp;
2435 this->line_str.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.addr))
2438 {
2439 this->addr.s.section = sectp;
2440 this->addr.size = bfd_get_section_size (sectp);
2441 }
2442 else if (section_is_p (sectp->name, &names.frame))
2443 {
2444 this->frame.s.section = sectp;
2445 this->frame.size = bfd_get_section_size (sectp);
2446 }
2447 else if (section_is_p (sectp->name, &names.eh_frame))
2448 {
2449 this->eh_frame.s.section = sectp;
2450 this->eh_frame.size = bfd_get_section_size (sectp);
2451 }
2452 else if (section_is_p (sectp->name, &names.ranges))
2453 {
2454 this->ranges.s.section = sectp;
2455 this->ranges.size = bfd_get_section_size (sectp);
2456 }
2457 else if (section_is_p (sectp->name, &names.rnglists))
2458 {
2459 this->rnglists.s.section = sectp;
2460 this->rnglists.size = bfd_get_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.types))
2463 {
2464 struct dwarf2_section_info type_section;
2465
2466 memset (&type_section, 0, sizeof (type_section));
2467 type_section.s.section = sectp;
2468 type_section.size = bfd_get_section_size (sectp);
2469
2470 VEC_safe_push (dwarf2_section_info_def, this->types,
2471 &type_section);
2472 }
2473 else if (section_is_p (sectp->name, &names.gdb_index))
2474 {
2475 this->gdb_index.s.section = sectp;
2476 this->gdb_index.size = bfd_get_section_size (sectp);
2477 }
2478
2479 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2480 && bfd_section_vma (abfd, sectp) == 0)
2481 this->has_section_at_zero = true;
2482 }
2483
2484 /* A helper function that decides whether a section is empty,
2485 or not present. */
2486
2487 static int
2488 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2489 {
2490 if (section->is_virtual)
2491 return section->size == 0;
2492 return section->s.section == NULL || section->size == 0;
2493 }
2494
2495 /* Read the contents of the section INFO.
2496 OBJFILE is the main object file, but not necessarily the file where
2497 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2498 of the DWO file.
2499 If the section is compressed, uncompress it before returning. */
2500
2501 static void
2502 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2503 {
2504 asection *sectp;
2505 bfd *abfd;
2506 gdb_byte *buf, *retbuf;
2507
2508 if (info->readin)
2509 return;
2510 info->buffer = NULL;
2511 info->readin = 1;
2512
2513 if (dwarf2_section_empty_p (info))
2514 return;
2515
2516 sectp = get_section_bfd_section (info);
2517
2518 /* If this is a virtual section we need to read in the real one first. */
2519 if (info->is_virtual)
2520 {
2521 struct dwarf2_section_info *containing_section =
2522 get_containing_section (info);
2523
2524 gdb_assert (sectp != NULL);
2525 if ((sectp->flags & SEC_RELOC) != 0)
2526 {
2527 error (_("Dwarf Error: DWP format V2 with relocations is not"
2528 " supported in section %s [in module %s]"),
2529 get_section_name (info), get_section_file_name (info));
2530 }
2531 dwarf2_read_section (objfile, containing_section);
2532 /* Other code should have already caught virtual sections that don't
2533 fit. */
2534 gdb_assert (info->virtual_offset + info->size
2535 <= containing_section->size);
2536 /* If the real section is empty or there was a problem reading the
2537 section we shouldn't get here. */
2538 gdb_assert (containing_section->buffer != NULL);
2539 info->buffer = containing_section->buffer + info->virtual_offset;
2540 return;
2541 }
2542
2543 /* If the section has relocations, we must read it ourselves.
2544 Otherwise we attach it to the BFD. */
2545 if ((sectp->flags & SEC_RELOC) == 0)
2546 {
2547 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2548 return;
2549 }
2550
2551 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2552 info->buffer = buf;
2553
2554 /* When debugging .o files, we may need to apply relocations; see
2555 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2556 We never compress sections in .o files, so we only need to
2557 try this when the section is not compressed. */
2558 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2559 if (retbuf != NULL)
2560 {
2561 info->buffer = retbuf;
2562 return;
2563 }
2564
2565 abfd = get_section_bfd_owner (info);
2566 gdb_assert (abfd != NULL);
2567
2568 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2569 || bfd_bread (buf, info->size, abfd) != info->size)
2570 {
2571 error (_("Dwarf Error: Can't read DWARF data"
2572 " in section %s [in module %s]"),
2573 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2574 }
2575 }
2576
2577 /* A helper function that returns the size of a section in a safe way.
2578 If you are positive that the section has been read before using the
2579 size, then it is safe to refer to the dwarf2_section_info object's
2580 "size" field directly. In other cases, you must call this
2581 function, because for compressed sections the size field is not set
2582 correctly until the section has been read. */
2583
2584 static bfd_size_type
2585 dwarf2_section_size (struct objfile *objfile,
2586 struct dwarf2_section_info *info)
2587 {
2588 if (!info->readin)
2589 dwarf2_read_section (objfile, info);
2590 return info->size;
2591 }
2592
2593 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2594 SECTION_NAME. */
2595
2596 void
2597 dwarf2_get_section_info (struct objfile *objfile,
2598 enum dwarf2_section_enum sect,
2599 asection **sectp, const gdb_byte **bufp,
2600 bfd_size_type *sizep)
2601 {
2602 struct dwarf2_per_objfile *data
2603 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2604 dwarf2_objfile_data_key);
2605 struct dwarf2_section_info *info;
2606
2607 /* We may see an objfile without any DWARF, in which case we just
2608 return nothing. */
2609 if (data == NULL)
2610 {
2611 *sectp = NULL;
2612 *bufp = NULL;
2613 *sizep = 0;
2614 return;
2615 }
2616 switch (sect)
2617 {
2618 case DWARF2_DEBUG_FRAME:
2619 info = &data->frame;
2620 break;
2621 case DWARF2_EH_FRAME:
2622 info = &data->eh_frame;
2623 break;
2624 default:
2625 gdb_assert_not_reached ("unexpected section");
2626 }
2627
2628 dwarf2_read_section (objfile, info);
2629
2630 *sectp = get_section_bfd_section (info);
2631 *bufp = info->buffer;
2632 *sizep = info->size;
2633 }
2634
2635 /* A helper function to find the sections for a .dwz file. */
2636
2637 static void
2638 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2639 {
2640 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2641
2642 /* Note that we only support the standard ELF names, because .dwz
2643 is ELF-only (at the time of writing). */
2644 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2645 {
2646 dwz_file->abbrev.s.section = sectp;
2647 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2650 {
2651 dwz_file->info.s.section = sectp;
2652 dwz_file->info.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2655 {
2656 dwz_file->str.s.section = sectp;
2657 dwz_file->str.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2660 {
2661 dwz_file->line.s.section = sectp;
2662 dwz_file->line.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2665 {
2666 dwz_file->macro.s.section = sectp;
2667 dwz_file->macro.size = bfd_get_section_size (sectp);
2668 }
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2670 {
2671 dwz_file->gdb_index.s.section = sectp;
2672 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2673 }
2674 }
2675
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2679
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (void)
2682 {
2683 char *data;
2684 struct cleanup *cleanup;
2685 const char *filename;
2686 struct dwz_file *result;
2687 bfd_size_type buildid_len_arg;
2688 size_t buildid_len;
2689 bfd_byte *buildid;
2690
2691 if (dwarf2_per_objfile->dwz_file != NULL)
2692 return dwarf2_per_objfile->dwz_file;
2693
2694 bfd_set_error (bfd_error_no_error);
2695 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2696 &buildid_len_arg, &buildid);
2697 if (data == NULL)
2698 {
2699 if (bfd_get_error () == bfd_error_no_error)
2700 return NULL;
2701 error (_("could not read '.gnu_debugaltlink' section: %s"),
2702 bfd_errmsg (bfd_get_error ()));
2703 }
2704 cleanup = make_cleanup (xfree, data);
2705 make_cleanup (xfree, buildid);
2706
2707 buildid_len = (size_t) buildid_len_arg;
2708
2709 filename = (const char *) data;
2710
2711 std::string abs_storage;
2712 if (!IS_ABSOLUTE_PATH (filename))
2713 {
2714 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2715
2716 make_cleanup (xfree, abs);
2717 abs_storage = ldirname (abs) + SLASH_STRING + filename;
2718 filename = abs_storage.c_str ();
2719 }
2720
2721 /* First try the file name given in the section. If that doesn't
2722 work, try to use the build-id instead. */
2723 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2724 if (dwz_bfd != NULL)
2725 {
2726 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2727 dwz_bfd.release ();
2728 }
2729
2730 if (dwz_bfd == NULL)
2731 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2732
2733 if (dwz_bfd == NULL)
2734 error (_("could not find '.gnu_debugaltlink' file for %s"),
2735 objfile_name (dwarf2_per_objfile->objfile));
2736
2737 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2738 struct dwz_file);
2739 result->dwz_bfd = dwz_bfd.release ();
2740
2741 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2742
2743 do_cleanups (cleanup);
2744
2745 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2746 dwarf2_per_objfile->dwz_file = result;
2747 return result;
2748 }
2749 \f
2750 /* DWARF quick_symbols_functions support. */
2751
2752 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2753 unique line tables, so we maintain a separate table of all .debug_line
2754 derived entries to support the sharing.
2755 All the quick functions need is the list of file names. We discard the
2756 line_header when we're done and don't need to record it here. */
2757 struct quick_file_names
2758 {
2759 /* The data used to construct the hash key. */
2760 struct stmt_list_hash hash;
2761
2762 /* The number of entries in file_names, real_names. */
2763 unsigned int num_file_names;
2764
2765 /* The file names from the line table, after being run through
2766 file_full_name. */
2767 const char **file_names;
2768
2769 /* The file names from the line table after being run through
2770 gdb_realpath. These are computed lazily. */
2771 const char **real_names;
2772 };
2773
2774 /* When using the index (and thus not using psymtabs), each CU has an
2775 object of this type. This is used to hold information needed by
2776 the various "quick" methods. */
2777 struct dwarf2_per_cu_quick_data
2778 {
2779 /* The file table. This can be NULL if there was no file table
2780 or it's currently not read in.
2781 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2782 struct quick_file_names *file_names;
2783
2784 /* The corresponding symbol table. This is NULL if symbols for this
2785 CU have not yet been read. */
2786 struct compunit_symtab *compunit_symtab;
2787
2788 /* A temporary mark bit used when iterating over all CUs in
2789 expand_symtabs_matching. */
2790 unsigned int mark : 1;
2791
2792 /* True if we've tried to read the file table and found there isn't one.
2793 There will be no point in trying to read it again next time. */
2794 unsigned int no_file_data : 1;
2795 };
2796
2797 /* Utility hash function for a stmt_list_hash. */
2798
2799 static hashval_t
2800 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2801 {
2802 hashval_t v = 0;
2803
2804 if (stmt_list_hash->dwo_unit != NULL)
2805 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2806 v += to_underlying (stmt_list_hash->line_sect_off);
2807 return v;
2808 }
2809
2810 /* Utility equality function for a stmt_list_hash. */
2811
2812 static int
2813 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2814 const struct stmt_list_hash *rhs)
2815 {
2816 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2817 return 0;
2818 if (lhs->dwo_unit != NULL
2819 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2820 return 0;
2821
2822 return lhs->line_sect_off == rhs->line_sect_off;
2823 }
2824
2825 /* Hash function for a quick_file_names. */
2826
2827 static hashval_t
2828 hash_file_name_entry (const void *e)
2829 {
2830 const struct quick_file_names *file_data
2831 = (const struct quick_file_names *) e;
2832
2833 return hash_stmt_list_entry (&file_data->hash);
2834 }
2835
2836 /* Equality function for a quick_file_names. */
2837
2838 static int
2839 eq_file_name_entry (const void *a, const void *b)
2840 {
2841 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2842 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2843
2844 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2845 }
2846
2847 /* Delete function for a quick_file_names. */
2848
2849 static void
2850 delete_file_name_entry (void *e)
2851 {
2852 struct quick_file_names *file_data = (struct quick_file_names *) e;
2853 int i;
2854
2855 for (i = 0; i < file_data->num_file_names; ++i)
2856 {
2857 xfree ((void*) file_data->file_names[i]);
2858 if (file_data->real_names)
2859 xfree ((void*) file_data->real_names[i]);
2860 }
2861
2862 /* The space for the struct itself lives on objfile_obstack,
2863 so we don't free it here. */
2864 }
2865
2866 /* Create a quick_file_names hash table. */
2867
2868 static htab_t
2869 create_quick_file_names_table (unsigned int nr_initial_entries)
2870 {
2871 return htab_create_alloc (nr_initial_entries,
2872 hash_file_name_entry, eq_file_name_entry,
2873 delete_file_name_entry, xcalloc, xfree);
2874 }
2875
2876 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2877 have to be created afterwards. You should call age_cached_comp_units after
2878 processing PER_CU->CU. dw2_setup must have been already called. */
2879
2880 static void
2881 load_cu (struct dwarf2_per_cu_data *per_cu)
2882 {
2883 if (per_cu->is_debug_types)
2884 load_full_type_unit (per_cu);
2885 else
2886 load_full_comp_unit (per_cu, language_minimal);
2887
2888 if (per_cu->cu == NULL)
2889 return; /* Dummy CU. */
2890
2891 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2892 }
2893
2894 /* Read in the symbols for PER_CU. */
2895
2896 static void
2897 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2898 {
2899 struct cleanup *back_to;
2900
2901 /* Skip type_unit_groups, reading the type units they contain
2902 is handled elsewhere. */
2903 if (IS_TYPE_UNIT_GROUP (per_cu))
2904 return;
2905
2906 back_to = make_cleanup (dwarf2_release_queue, NULL);
2907
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu);
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file () == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2926 }
2927
2928 process_queue ();
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units ();
2933
2934 do_cleanups (back_to);
2935 }
2936
2937 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2938 the objfile from which this CU came. Returns the resulting symbol
2939 table. */
2940
2941 static struct compunit_symtab *
2942 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2943 {
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2946 {
2947 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu);
2950 process_cu_includes ();
2951 do_cleanups (back_to);
2952 }
2953
2954 return per_cu->v.quick->compunit_symtab;
2955 }
2956
2957 /* Return the CU/TU given its index.
2958
2959 This is intended for loops like:
2960
2961 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2962 + dwarf2_per_objfile->n_type_units); ++i)
2963 {
2964 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2965
2966 ...;
2967 }
2968 */
2969
2970 static struct dwarf2_per_cu_data *
2971 dw2_get_cutu (int index)
2972 {
2973 if (index >= dwarf2_per_objfile->n_comp_units)
2974 {
2975 index -= dwarf2_per_objfile->n_comp_units;
2976 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2977 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2978 }
2979
2980 return dwarf2_per_objfile->all_comp_units[index];
2981 }
2982
2983 /* Return the CU given its index.
2984 This differs from dw2_get_cutu in that it's for when you know INDEX
2985 refers to a CU. */
2986
2987 static struct dwarf2_per_cu_data *
2988 dw2_get_cu (int index)
2989 {
2990 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2991
2992 return dwarf2_per_objfile->all_comp_units[index];
2993 }
2994
2995 /* A helper for create_cus_from_index that handles a given list of
2996 CUs. */
2997
2998 static void
2999 create_cus_from_index_list (struct objfile *objfile,
3000 const gdb_byte *cu_list, offset_type n_elements,
3001 struct dwarf2_section_info *section,
3002 int is_dwz,
3003 int base_offset)
3004 {
3005 offset_type i;
3006
3007 for (i = 0; i < n_elements; i += 2)
3008 {
3009 gdb_static_assert (sizeof (ULONGEST) >= 8);
3010
3011 sect_offset sect_off
3012 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3013 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3014 cu_list += 2 * 8;
3015
3016 dwarf2_per_cu_data *the_cu
3017 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3018 struct dwarf2_per_cu_data);
3019 the_cu->sect_off = sect_off;
3020 the_cu->length = length;
3021 the_cu->objfile = objfile;
3022 the_cu->section = section;
3023 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3024 struct dwarf2_per_cu_quick_data);
3025 the_cu->is_dwz = is_dwz;
3026 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3027 }
3028 }
3029
3030 /* Read the CU list from the mapped index, and use it to create all
3031 the CU objects for this objfile. */
3032
3033 static void
3034 create_cus_from_index (struct objfile *objfile,
3035 const gdb_byte *cu_list, offset_type cu_list_elements,
3036 const gdb_byte *dwz_list, offset_type dwz_elements)
3037 {
3038 struct dwz_file *dwz;
3039
3040 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3041 dwarf2_per_objfile->all_comp_units =
3042 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3043 dwarf2_per_objfile->n_comp_units);
3044
3045 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3046 &dwarf2_per_objfile->info, 0, 0);
3047
3048 if (dwz_elements == 0)
3049 return;
3050
3051 dwz = dwarf2_get_dwz_file ();
3052 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3053 cu_list_elements / 2);
3054 }
3055
3056 /* Create the signatured type hash table from the index. */
3057
3058 static void
3059 create_signatured_type_table_from_index (struct objfile *objfile,
3060 struct dwarf2_section_info *section,
3061 const gdb_byte *bytes,
3062 offset_type elements)
3063 {
3064 offset_type i;
3065 htab_t sig_types_hash;
3066
3067 dwarf2_per_objfile->n_type_units
3068 = dwarf2_per_objfile->n_allocated_type_units
3069 = elements / 3;
3070 dwarf2_per_objfile->all_type_units =
3071 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3072
3073 sig_types_hash = allocate_signatured_type_table (objfile);
3074
3075 for (i = 0; i < elements; i += 3)
3076 {
3077 struct signatured_type *sig_type;
3078 ULONGEST signature;
3079 void **slot;
3080 cu_offset type_offset_in_tu;
3081
3082 gdb_static_assert (sizeof (ULONGEST) >= 8);
3083 sect_offset sect_off
3084 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3085 type_offset_in_tu
3086 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3087 BFD_ENDIAN_LITTLE);
3088 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3089 bytes += 3 * 8;
3090
3091 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3092 struct signatured_type);
3093 sig_type->signature = signature;
3094 sig_type->type_offset_in_tu = type_offset_in_tu;
3095 sig_type->per_cu.is_debug_types = 1;
3096 sig_type->per_cu.section = section;
3097 sig_type->per_cu.sect_off = sect_off;
3098 sig_type->per_cu.objfile = objfile;
3099 sig_type->per_cu.v.quick
3100 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3101 struct dwarf2_per_cu_quick_data);
3102
3103 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3104 *slot = sig_type;
3105
3106 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3107 }
3108
3109 dwarf2_per_objfile->signatured_types = sig_types_hash;
3110 }
3111
3112 /* Read the address map data from the mapped index, and use it to
3113 populate the objfile's psymtabs_addrmap. */
3114
3115 static void
3116 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3117 {
3118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3119 const gdb_byte *iter, *end;
3120 struct addrmap *mutable_map;
3121 CORE_ADDR baseaddr;
3122
3123 auto_obstack temp_obstack;
3124
3125 mutable_map = addrmap_create_mutable (&temp_obstack);
3126
3127 iter = index->address_table;
3128 end = iter + index->address_table_size;
3129
3130 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3131
3132 while (iter < end)
3133 {
3134 ULONGEST hi, lo, cu_index;
3135 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3136 iter += 8;
3137 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3138 iter += 8;
3139 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3140 iter += 4;
3141
3142 if (lo > hi)
3143 {
3144 complaint (&symfile_complaints,
3145 _(".gdb_index address table has invalid range (%s - %s)"),
3146 hex_string (lo), hex_string (hi));
3147 continue;
3148 }
3149
3150 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3151 {
3152 complaint (&symfile_complaints,
3153 _(".gdb_index address table has invalid CU number %u"),
3154 (unsigned) cu_index);
3155 continue;
3156 }
3157
3158 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3159 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3160 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3161 }
3162
3163 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3164 &objfile->objfile_obstack);
3165 }
3166
3167 /* The hash function for strings in the mapped index. This is the same as
3168 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3169 implementation. This is necessary because the hash function is tied to the
3170 format of the mapped index file. The hash values do not have to match with
3171 SYMBOL_HASH_NEXT.
3172
3173 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3174
3175 static hashval_t
3176 mapped_index_string_hash (int index_version, const void *p)
3177 {
3178 const unsigned char *str = (const unsigned char *) p;
3179 hashval_t r = 0;
3180 unsigned char c;
3181
3182 while ((c = *str++) != 0)
3183 {
3184 if (index_version >= 5)
3185 c = tolower (c);
3186 r = r * 67 + c - 113;
3187 }
3188
3189 return r;
3190 }
3191
3192 /* Find a slot in the mapped index INDEX for the object named NAME.
3193 If NAME is found, set *VEC_OUT to point to the CU vector in the
3194 constant pool and return 1. If NAME cannot be found, return 0. */
3195
3196 static int
3197 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3198 offset_type **vec_out)
3199 {
3200 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3201 offset_type hash;
3202 offset_type slot, step;
3203 int (*cmp) (const char *, const char *);
3204
3205 if (current_language->la_language == language_cplus
3206 || current_language->la_language == language_fortran
3207 || current_language->la_language == language_d)
3208 {
3209 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3210 not contain any. */
3211
3212 if (strchr (name, '(') != NULL)
3213 {
3214 char *without_params = cp_remove_params (name);
3215
3216 if (without_params != NULL)
3217 {
3218 make_cleanup (xfree, without_params);
3219 name = without_params;
3220 }
3221 }
3222 }
3223
3224 /* Index version 4 did not support case insensitive searches. But the
3225 indices for case insensitive languages are built in lowercase, therefore
3226 simulate our NAME being searched is also lowercased. */
3227 hash = mapped_index_string_hash ((index->version == 4
3228 && case_sensitivity == case_sensitive_off
3229 ? 5 : index->version),
3230 name);
3231
3232 slot = hash & (index->symbol_table_slots - 1);
3233 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3234 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3235
3236 for (;;)
3237 {
3238 /* Convert a slot number to an offset into the table. */
3239 offset_type i = 2 * slot;
3240 const char *str;
3241 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3242 {
3243 do_cleanups (back_to);
3244 return 0;
3245 }
3246
3247 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3248 if (!cmp (name, str))
3249 {
3250 *vec_out = (offset_type *) (index->constant_pool
3251 + MAYBE_SWAP (index->symbol_table[i + 1]));
3252 do_cleanups (back_to);
3253 return 1;
3254 }
3255
3256 slot = (slot + step) & (index->symbol_table_slots - 1);
3257 }
3258 }
3259
3260 /* A helper function that reads the .gdb_index from SECTION and fills
3261 in MAP. FILENAME is the name of the file containing the section;
3262 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3263 ok to use deprecated sections.
3264
3265 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3266 out parameters that are filled in with information about the CU and
3267 TU lists in the section.
3268
3269 Returns 1 if all went well, 0 otherwise. */
3270
3271 static int
3272 read_index_from_section (struct objfile *objfile,
3273 const char *filename,
3274 int deprecated_ok,
3275 struct dwarf2_section_info *section,
3276 struct mapped_index *map,
3277 const gdb_byte **cu_list,
3278 offset_type *cu_list_elements,
3279 const gdb_byte **types_list,
3280 offset_type *types_list_elements)
3281 {
3282 const gdb_byte *addr;
3283 offset_type version;
3284 offset_type *metadata;
3285 int i;
3286
3287 if (dwarf2_section_empty_p (section))
3288 return 0;
3289
3290 /* Older elfutils strip versions could keep the section in the main
3291 executable while splitting it for the separate debug info file. */
3292 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3293 return 0;
3294
3295 dwarf2_read_section (objfile, section);
3296
3297 addr = section->buffer;
3298 /* Version check. */
3299 version = MAYBE_SWAP (*(offset_type *) addr);
3300 /* Versions earlier than 3 emitted every copy of a psymbol. This
3301 causes the index to behave very poorly for certain requests. Version 3
3302 contained incomplete addrmap. So, it seems better to just ignore such
3303 indices. */
3304 if (version < 4)
3305 {
3306 static int warning_printed = 0;
3307 if (!warning_printed)
3308 {
3309 warning (_("Skipping obsolete .gdb_index section in %s."),
3310 filename);
3311 warning_printed = 1;
3312 }
3313 return 0;
3314 }
3315 /* Index version 4 uses a different hash function than index version
3316 5 and later.
3317
3318 Versions earlier than 6 did not emit psymbols for inlined
3319 functions. Using these files will cause GDB not to be able to
3320 set breakpoints on inlined functions by name, so we ignore these
3321 indices unless the user has done
3322 "set use-deprecated-index-sections on". */
3323 if (version < 6 && !deprecated_ok)
3324 {
3325 static int warning_printed = 0;
3326 if (!warning_printed)
3327 {
3328 warning (_("\
3329 Skipping deprecated .gdb_index section in %s.\n\
3330 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3331 to use the section anyway."),
3332 filename);
3333 warning_printed = 1;
3334 }
3335 return 0;
3336 }
3337 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3338 of the TU (for symbols coming from TUs),
3339 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3340 Plus gold-generated indices can have duplicate entries for global symbols,
3341 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3342 These are just performance bugs, and we can't distinguish gdb-generated
3343 indices from gold-generated ones, so issue no warning here. */
3344
3345 /* Indexes with higher version than the one supported by GDB may be no
3346 longer backward compatible. */
3347 if (version > 8)
3348 return 0;
3349
3350 map->version = version;
3351 map->total_size = section->size;
3352
3353 metadata = (offset_type *) (addr + sizeof (offset_type));
3354
3355 i = 0;
3356 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3357 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3358 / 8);
3359 ++i;
3360
3361 *types_list = addr + MAYBE_SWAP (metadata[i]);
3362 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3363 - MAYBE_SWAP (metadata[i]))
3364 / 8);
3365 ++i;
3366
3367 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3368 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3369 - MAYBE_SWAP (metadata[i]));
3370 ++i;
3371
3372 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3373 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / (2 * sizeof (offset_type)));
3376 ++i;
3377
3378 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3379
3380 return 1;
3381 }
3382
3383
3384 /* Read the index file. If everything went ok, initialize the "quick"
3385 elements of all the CUs and return 1. Otherwise, return 0. */
3386
3387 static int
3388 dwarf2_read_index (struct objfile *objfile)
3389 {
3390 struct mapped_index local_map, *map;
3391 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3392 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3393 struct dwz_file *dwz;
3394
3395 if (!read_index_from_section (objfile, objfile_name (objfile),
3396 use_deprecated_index_sections,
3397 &dwarf2_per_objfile->gdb_index, &local_map,
3398 &cu_list, &cu_list_elements,
3399 &types_list, &types_list_elements))
3400 return 0;
3401
3402 /* Don't use the index if it's empty. */
3403 if (local_map.symbol_table_slots == 0)
3404 return 0;
3405
3406 /* If there is a .dwz file, read it so we can get its CU list as
3407 well. */
3408 dwz = dwarf2_get_dwz_file ();
3409 if (dwz != NULL)
3410 {
3411 struct mapped_index dwz_map;
3412 const gdb_byte *dwz_types_ignore;
3413 offset_type dwz_types_elements_ignore;
3414
3415 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3416 1,
3417 &dwz->gdb_index, &dwz_map,
3418 &dwz_list, &dwz_list_elements,
3419 &dwz_types_ignore,
3420 &dwz_types_elements_ignore))
3421 {
3422 warning (_("could not read '.gdb_index' section from %s; skipping"),
3423 bfd_get_filename (dwz->dwz_bfd));
3424 return 0;
3425 }
3426 }
3427
3428 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3429 dwz_list_elements);
3430
3431 if (types_list_elements)
3432 {
3433 struct dwarf2_section_info *section;
3434
3435 /* We can only handle a single .debug_types when we have an
3436 index. */
3437 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3438 return 0;
3439
3440 section = VEC_index (dwarf2_section_info_def,
3441 dwarf2_per_objfile->types, 0);
3442
3443 create_signatured_type_table_from_index (objfile, section, types_list,
3444 types_list_elements);
3445 }
3446
3447 create_addrmap_from_index (objfile, &local_map);
3448
3449 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3450 *map = local_map;
3451
3452 dwarf2_per_objfile->index_table = map;
3453 dwarf2_per_objfile->using_index = 1;
3454 dwarf2_per_objfile->quick_file_names_table =
3455 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3456
3457 return 1;
3458 }
3459
3460 /* A helper for the "quick" functions which sets the global
3461 dwarf2_per_objfile according to OBJFILE. */
3462
3463 static void
3464 dw2_setup (struct objfile *objfile)
3465 {
3466 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3467 objfile_data (objfile, dwarf2_objfile_data_key));
3468 gdb_assert (dwarf2_per_objfile);
3469 }
3470
3471 /* die_reader_func for dw2_get_file_names. */
3472
3473 static void
3474 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3475 const gdb_byte *info_ptr,
3476 struct die_info *comp_unit_die,
3477 int has_children,
3478 void *data)
3479 {
3480 struct dwarf2_cu *cu = reader->cu;
3481 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3482 struct objfile *objfile = dwarf2_per_objfile->objfile;
3483 struct dwarf2_per_cu_data *lh_cu;
3484 struct attribute *attr;
3485 int i;
3486 void **slot;
3487 struct quick_file_names *qfn;
3488
3489 gdb_assert (! this_cu->is_debug_types);
3490
3491 /* Our callers never want to match partial units -- instead they
3492 will match the enclosing full CU. */
3493 if (comp_unit_die->tag == DW_TAG_partial_unit)
3494 {
3495 this_cu->v.quick->no_file_data = 1;
3496 return;
3497 }
3498
3499 lh_cu = this_cu;
3500 slot = NULL;
3501
3502 line_header_up lh;
3503 sect_offset line_offset {};
3504
3505 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3506 if (attr)
3507 {
3508 struct quick_file_names find_entry;
3509
3510 line_offset = (sect_offset) DW_UNSND (attr);
3511
3512 /* We may have already read in this line header (TU line header sharing).
3513 If we have we're done. */
3514 find_entry.hash.dwo_unit = cu->dwo_unit;
3515 find_entry.hash.line_sect_off = line_offset;
3516 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3517 &find_entry, INSERT);
3518 if (*slot != NULL)
3519 {
3520 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3521 return;
3522 }
3523
3524 lh = dwarf_decode_line_header (line_offset, cu);
3525 }
3526 if (lh == NULL)
3527 {
3528 lh_cu->v.quick->no_file_data = 1;
3529 return;
3530 }
3531
3532 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3533 qfn->hash.dwo_unit = cu->dwo_unit;
3534 qfn->hash.line_sect_off = line_offset;
3535 gdb_assert (slot != NULL);
3536 *slot = qfn;
3537
3538 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3539
3540 qfn->num_file_names = lh->file_names.size ();
3541 qfn->file_names =
3542 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3543 for (i = 0; i < lh->file_names.size (); ++i)
3544 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3545 qfn->real_names = NULL;
3546
3547 lh_cu->v.quick->file_names = qfn;
3548 }
3549
3550 /* A helper for the "quick" functions which attempts to read the line
3551 table for THIS_CU. */
3552
3553 static struct quick_file_names *
3554 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3555 {
3556 /* This should never be called for TUs. */
3557 gdb_assert (! this_cu->is_debug_types);
3558 /* Nor type unit groups. */
3559 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3560
3561 if (this_cu->v.quick->file_names != NULL)
3562 return this_cu->v.quick->file_names;
3563 /* If we know there is no line data, no point in looking again. */
3564 if (this_cu->v.quick->no_file_data)
3565 return NULL;
3566
3567 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3568
3569 if (this_cu->v.quick->no_file_data)
3570 return NULL;
3571 return this_cu->v.quick->file_names;
3572 }
3573
3574 /* A helper for the "quick" functions which computes and caches the
3575 real path for a given file name from the line table. */
3576
3577 static const char *
3578 dw2_get_real_path (struct objfile *objfile,
3579 struct quick_file_names *qfn, int index)
3580 {
3581 if (qfn->real_names == NULL)
3582 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3583 qfn->num_file_names, const char *);
3584
3585 if (qfn->real_names[index] == NULL)
3586 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3587
3588 return qfn->real_names[index];
3589 }
3590
3591 static struct symtab *
3592 dw2_find_last_source_symtab (struct objfile *objfile)
3593 {
3594 struct compunit_symtab *cust;
3595 int index;
3596
3597 dw2_setup (objfile);
3598 index = dwarf2_per_objfile->n_comp_units - 1;
3599 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3600 if (cust == NULL)
3601 return NULL;
3602 return compunit_primary_filetab (cust);
3603 }
3604
3605 /* Traversal function for dw2_forget_cached_source_info. */
3606
3607 static int
3608 dw2_free_cached_file_names (void **slot, void *info)
3609 {
3610 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3611
3612 if (file_data->real_names)
3613 {
3614 int i;
3615
3616 for (i = 0; i < file_data->num_file_names; ++i)
3617 {
3618 xfree ((void*) file_data->real_names[i]);
3619 file_data->real_names[i] = NULL;
3620 }
3621 }
3622
3623 return 1;
3624 }
3625
3626 static void
3627 dw2_forget_cached_source_info (struct objfile *objfile)
3628 {
3629 dw2_setup (objfile);
3630
3631 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3632 dw2_free_cached_file_names, NULL);
3633 }
3634
3635 /* Helper function for dw2_map_symtabs_matching_filename that expands
3636 the symtabs and calls the iterator. */
3637
3638 static int
3639 dw2_map_expand_apply (struct objfile *objfile,
3640 struct dwarf2_per_cu_data *per_cu,
3641 const char *name, const char *real_path,
3642 gdb::function_view<bool (symtab *)> callback)
3643 {
3644 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3645
3646 /* Don't visit already-expanded CUs. */
3647 if (per_cu->v.quick->compunit_symtab)
3648 return 0;
3649
3650 /* This may expand more than one symtab, and we want to iterate over
3651 all of them. */
3652 dw2_instantiate_symtab (per_cu);
3653
3654 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3655 last_made, callback);
3656 }
3657
3658 /* Implementation of the map_symtabs_matching_filename method. */
3659
3660 static bool
3661 dw2_map_symtabs_matching_filename
3662 (struct objfile *objfile, const char *name, const char *real_path,
3663 gdb::function_view<bool (symtab *)> callback)
3664 {
3665 int i;
3666 const char *name_basename = lbasename (name);
3667
3668 dw2_setup (objfile);
3669
3670 /* The rule is CUs specify all the files, including those used by
3671 any TU, so there's no need to scan TUs here. */
3672
3673 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3674 {
3675 int j;
3676 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3677 struct quick_file_names *file_data;
3678
3679 /* We only need to look at symtabs not already expanded. */
3680 if (per_cu->v.quick->compunit_symtab)
3681 continue;
3682
3683 file_data = dw2_get_file_names (per_cu);
3684 if (file_data == NULL)
3685 continue;
3686
3687 for (j = 0; j < file_data->num_file_names; ++j)
3688 {
3689 const char *this_name = file_data->file_names[j];
3690 const char *this_real_name;
3691
3692 if (compare_filenames_for_search (this_name, name))
3693 {
3694 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3695 callback))
3696 return true;
3697 continue;
3698 }
3699
3700 /* Before we invoke realpath, which can get expensive when many
3701 files are involved, do a quick comparison of the basenames. */
3702 if (! basenames_may_differ
3703 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3704 continue;
3705
3706 this_real_name = dw2_get_real_path (objfile, file_data, j);
3707 if (compare_filenames_for_search (this_real_name, name))
3708 {
3709 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3710 callback))
3711 return true;
3712 continue;
3713 }
3714
3715 if (real_path != NULL)
3716 {
3717 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3718 gdb_assert (IS_ABSOLUTE_PATH (name));
3719 if (this_real_name != NULL
3720 && FILENAME_CMP (real_path, this_real_name) == 0)
3721 {
3722 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3723 callback))
3724 return true;
3725 continue;
3726 }
3727 }
3728 }
3729 }
3730
3731 return false;
3732 }
3733
3734 /* Struct used to manage iterating over all CUs looking for a symbol. */
3735
3736 struct dw2_symtab_iterator
3737 {
3738 /* The internalized form of .gdb_index. */
3739 struct mapped_index *index;
3740 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3741 int want_specific_block;
3742 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3743 Unused if !WANT_SPECIFIC_BLOCK. */
3744 int block_index;
3745 /* The kind of symbol we're looking for. */
3746 domain_enum domain;
3747 /* The list of CUs from the index entry of the symbol,
3748 or NULL if not found. */
3749 offset_type *vec;
3750 /* The next element in VEC to look at. */
3751 int next;
3752 /* The number of elements in VEC, or zero if there is no match. */
3753 int length;
3754 /* Have we seen a global version of the symbol?
3755 If so we can ignore all further global instances.
3756 This is to work around gold/15646, inefficient gold-generated
3757 indices. */
3758 int global_seen;
3759 };
3760
3761 /* Initialize the index symtab iterator ITER.
3762 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3763 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3764
3765 static void
3766 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3767 struct mapped_index *index,
3768 int want_specific_block,
3769 int block_index,
3770 domain_enum domain,
3771 const char *name)
3772 {
3773 iter->index = index;
3774 iter->want_specific_block = want_specific_block;
3775 iter->block_index = block_index;
3776 iter->domain = domain;
3777 iter->next = 0;
3778 iter->global_seen = 0;
3779
3780 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3781 iter->length = MAYBE_SWAP (*iter->vec);
3782 else
3783 {
3784 iter->vec = NULL;
3785 iter->length = 0;
3786 }
3787 }
3788
3789 /* Return the next matching CU or NULL if there are no more. */
3790
3791 static struct dwarf2_per_cu_data *
3792 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3793 {
3794 for ( ; iter->next < iter->length; ++iter->next)
3795 {
3796 offset_type cu_index_and_attrs =
3797 MAYBE_SWAP (iter->vec[iter->next + 1]);
3798 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3799 struct dwarf2_per_cu_data *per_cu;
3800 int want_static = iter->block_index != GLOBAL_BLOCK;
3801 /* This value is only valid for index versions >= 7. */
3802 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3803 gdb_index_symbol_kind symbol_kind =
3804 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3805 /* Only check the symbol attributes if they're present.
3806 Indices prior to version 7 don't record them,
3807 and indices >= 7 may elide them for certain symbols
3808 (gold does this). */
3809 int attrs_valid =
3810 (iter->index->version >= 7
3811 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3812
3813 /* Don't crash on bad data. */
3814 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3815 + dwarf2_per_objfile->n_type_units))
3816 {
3817 complaint (&symfile_complaints,
3818 _(".gdb_index entry has bad CU index"
3819 " [in module %s]"),
3820 objfile_name (dwarf2_per_objfile->objfile));
3821 continue;
3822 }
3823
3824 per_cu = dw2_get_cutu (cu_index);
3825
3826 /* Skip if already read in. */
3827 if (per_cu->v.quick->compunit_symtab)
3828 continue;
3829
3830 /* Check static vs global. */
3831 if (attrs_valid)
3832 {
3833 if (iter->want_specific_block
3834 && want_static != is_static)
3835 continue;
3836 /* Work around gold/15646. */
3837 if (!is_static && iter->global_seen)
3838 continue;
3839 if (!is_static)
3840 iter->global_seen = 1;
3841 }
3842
3843 /* Only check the symbol's kind if it has one. */
3844 if (attrs_valid)
3845 {
3846 switch (iter->domain)
3847 {
3848 case VAR_DOMAIN:
3849 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3850 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3851 /* Some types are also in VAR_DOMAIN. */
3852 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3853 continue;
3854 break;
3855 case STRUCT_DOMAIN:
3856 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3857 continue;
3858 break;
3859 case LABEL_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3861 continue;
3862 break;
3863 default:
3864 break;
3865 }
3866 }
3867
3868 ++iter->next;
3869 return per_cu;
3870 }
3871
3872 return NULL;
3873 }
3874
3875 static struct compunit_symtab *
3876 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3877 const char *name, domain_enum domain)
3878 {
3879 struct compunit_symtab *stab_best = NULL;
3880 struct mapped_index *index;
3881
3882 dw2_setup (objfile);
3883
3884 index = dwarf2_per_objfile->index_table;
3885
3886 /* index is NULL if OBJF_READNOW. */
3887 if (index)
3888 {
3889 struct dw2_symtab_iterator iter;
3890 struct dwarf2_per_cu_data *per_cu;
3891
3892 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3893
3894 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3895 {
3896 struct symbol *sym, *with_opaque = NULL;
3897 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3898 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3899 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3900
3901 sym = block_find_symbol (block, name, domain,
3902 block_find_non_opaque_type_preferred,
3903 &with_opaque);
3904
3905 /* Some caution must be observed with overloaded functions
3906 and methods, since the index will not contain any overload
3907 information (but NAME might contain it). */
3908
3909 if (sym != NULL
3910 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
3911 return stab;
3912 if (with_opaque != NULL
3913 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
3914 stab_best = stab;
3915
3916 /* Keep looking through other CUs. */
3917 }
3918 }
3919
3920 return stab_best;
3921 }
3922
3923 static void
3924 dw2_print_stats (struct objfile *objfile)
3925 {
3926 int i, total, count;
3927
3928 dw2_setup (objfile);
3929 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3930 count = 0;
3931 for (i = 0; i < total; ++i)
3932 {
3933 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3934
3935 if (!per_cu->v.quick->compunit_symtab)
3936 ++count;
3937 }
3938 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3939 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3940 }
3941
3942 /* This dumps minimal information about the index.
3943 It is called via "mt print objfiles".
3944 One use is to verify .gdb_index has been loaded by the
3945 gdb.dwarf2/gdb-index.exp testcase. */
3946
3947 static void
3948 dw2_dump (struct objfile *objfile)
3949 {
3950 dw2_setup (objfile);
3951 gdb_assert (dwarf2_per_objfile->using_index);
3952 printf_filtered (".gdb_index:");
3953 if (dwarf2_per_objfile->index_table != NULL)
3954 {
3955 printf_filtered (" version %d\n",
3956 dwarf2_per_objfile->index_table->version);
3957 }
3958 else
3959 printf_filtered (" faked for \"readnow\"\n");
3960 printf_filtered ("\n");
3961 }
3962
3963 static void
3964 dw2_relocate (struct objfile *objfile,
3965 const struct section_offsets *new_offsets,
3966 const struct section_offsets *delta)
3967 {
3968 /* There's nothing to relocate here. */
3969 }
3970
3971 static void
3972 dw2_expand_symtabs_for_function (struct objfile *objfile,
3973 const char *func_name)
3974 {
3975 struct mapped_index *index;
3976
3977 dw2_setup (objfile);
3978
3979 index = dwarf2_per_objfile->index_table;
3980
3981 /* index is NULL if OBJF_READNOW. */
3982 if (index)
3983 {
3984 struct dw2_symtab_iterator iter;
3985 struct dwarf2_per_cu_data *per_cu;
3986
3987 /* Note: It doesn't matter what we pass for block_index here. */
3988 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3989 func_name);
3990
3991 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3992 dw2_instantiate_symtab (per_cu);
3993 }
3994 }
3995
3996 static void
3997 dw2_expand_all_symtabs (struct objfile *objfile)
3998 {
3999 int i;
4000
4001 dw2_setup (objfile);
4002
4003 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4004 + dwarf2_per_objfile->n_type_units); ++i)
4005 {
4006 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4007
4008 dw2_instantiate_symtab (per_cu);
4009 }
4010 }
4011
4012 static void
4013 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4014 const char *fullname)
4015 {
4016 int i;
4017
4018 dw2_setup (objfile);
4019
4020 /* We don't need to consider type units here.
4021 This is only called for examining code, e.g. expand_line_sal.
4022 There can be an order of magnitude (or more) more type units
4023 than comp units, and we avoid them if we can. */
4024
4025 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4026 {
4027 int j;
4028 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4029 struct quick_file_names *file_data;
4030
4031 /* We only need to look at symtabs not already expanded. */
4032 if (per_cu->v.quick->compunit_symtab)
4033 continue;
4034
4035 file_data = dw2_get_file_names (per_cu);
4036 if (file_data == NULL)
4037 continue;
4038
4039 for (j = 0; j < file_data->num_file_names; ++j)
4040 {
4041 const char *this_fullname = file_data->file_names[j];
4042
4043 if (filename_cmp (this_fullname, fullname) == 0)
4044 {
4045 dw2_instantiate_symtab (per_cu);
4046 break;
4047 }
4048 }
4049 }
4050 }
4051
4052 static void
4053 dw2_map_matching_symbols (struct objfile *objfile,
4054 const char * name, domain_enum domain,
4055 int global,
4056 int (*callback) (struct block *,
4057 struct symbol *, void *),
4058 void *data, symbol_compare_ftype *match,
4059 symbol_compare_ftype *ordered_compare)
4060 {
4061 /* Currently unimplemented; used for Ada. The function can be called if the
4062 current language is Ada for a non-Ada objfile using GNU index. As Ada
4063 does not look for non-Ada symbols this function should just return. */
4064 }
4065
4066 static void
4067 dw2_expand_symtabs_matching
4068 (struct objfile *objfile,
4069 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4070 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4071 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4072 enum search_domain kind)
4073 {
4074 int i;
4075 offset_type iter;
4076 struct mapped_index *index;
4077
4078 dw2_setup (objfile);
4079
4080 /* index_table is NULL if OBJF_READNOW. */
4081 if (!dwarf2_per_objfile->index_table)
4082 return;
4083 index = dwarf2_per_objfile->index_table;
4084
4085 if (file_matcher != NULL)
4086 {
4087 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4088 htab_eq_pointer,
4089 NULL, xcalloc, xfree));
4090 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4091 htab_eq_pointer,
4092 NULL, xcalloc, xfree));
4093
4094 /* The rule is CUs specify all the files, including those used by
4095 any TU, so there's no need to scan TUs here. */
4096
4097 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4098 {
4099 int j;
4100 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4101 struct quick_file_names *file_data;
4102 void **slot;
4103
4104 QUIT;
4105
4106 per_cu->v.quick->mark = 0;
4107
4108 /* We only need to look at symtabs not already expanded. */
4109 if (per_cu->v.quick->compunit_symtab)
4110 continue;
4111
4112 file_data = dw2_get_file_names (per_cu);
4113 if (file_data == NULL)
4114 continue;
4115
4116 if (htab_find (visited_not_found.get (), file_data) != NULL)
4117 continue;
4118 else if (htab_find (visited_found.get (), file_data) != NULL)
4119 {
4120 per_cu->v.quick->mark = 1;
4121 continue;
4122 }
4123
4124 for (j = 0; j < file_data->num_file_names; ++j)
4125 {
4126 const char *this_real_name;
4127
4128 if (file_matcher (file_data->file_names[j], false))
4129 {
4130 per_cu->v.quick->mark = 1;
4131 break;
4132 }
4133
4134 /* Before we invoke realpath, which can get expensive when many
4135 files are involved, do a quick comparison of the basenames. */
4136 if (!basenames_may_differ
4137 && !file_matcher (lbasename (file_data->file_names[j]),
4138 true))
4139 continue;
4140
4141 this_real_name = dw2_get_real_path (objfile, file_data, j);
4142 if (file_matcher (this_real_name, false))
4143 {
4144 per_cu->v.quick->mark = 1;
4145 break;
4146 }
4147 }
4148
4149 slot = htab_find_slot (per_cu->v.quick->mark
4150 ? visited_found.get ()
4151 : visited_not_found.get (),
4152 file_data, INSERT);
4153 *slot = file_data;
4154 }
4155 }
4156
4157 for (iter = 0; iter < index->symbol_table_slots; ++iter)
4158 {
4159 offset_type idx = 2 * iter;
4160 const char *name;
4161 offset_type *vec, vec_len, vec_idx;
4162 int global_seen = 0;
4163
4164 QUIT;
4165
4166 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
4167 continue;
4168
4169 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
4170
4171 if (!symbol_matcher (name))
4172 continue;
4173
4174 /* The name was matched, now expand corresponding CUs that were
4175 marked. */
4176 vec = (offset_type *) (index->constant_pool
4177 + MAYBE_SWAP (index->symbol_table[idx + 1]));
4178 vec_len = MAYBE_SWAP (vec[0]);
4179 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4180 {
4181 struct dwarf2_per_cu_data *per_cu;
4182 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4183 /* This value is only valid for index versions >= 7. */
4184 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4185 gdb_index_symbol_kind symbol_kind =
4186 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4187 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4188 /* Only check the symbol attributes if they're present.
4189 Indices prior to version 7 don't record them,
4190 and indices >= 7 may elide them for certain symbols
4191 (gold does this). */
4192 int attrs_valid =
4193 (index->version >= 7
4194 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4195
4196 /* Work around gold/15646. */
4197 if (attrs_valid)
4198 {
4199 if (!is_static && global_seen)
4200 continue;
4201 if (!is_static)
4202 global_seen = 1;
4203 }
4204
4205 /* Only check the symbol's kind if it has one. */
4206 if (attrs_valid)
4207 {
4208 switch (kind)
4209 {
4210 case VARIABLES_DOMAIN:
4211 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4212 continue;
4213 break;
4214 case FUNCTIONS_DOMAIN:
4215 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4216 continue;
4217 break;
4218 case TYPES_DOMAIN:
4219 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4220 continue;
4221 break;
4222 default:
4223 break;
4224 }
4225 }
4226
4227 /* Don't crash on bad data. */
4228 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4229 + dwarf2_per_objfile->n_type_units))
4230 {
4231 complaint (&symfile_complaints,
4232 _(".gdb_index entry has bad CU index"
4233 " [in module %s]"), objfile_name (objfile));
4234 continue;
4235 }
4236
4237 per_cu = dw2_get_cutu (cu_index);
4238 if (file_matcher == NULL || per_cu->v.quick->mark)
4239 {
4240 int symtab_was_null =
4241 (per_cu->v.quick->compunit_symtab == NULL);
4242
4243 dw2_instantiate_symtab (per_cu);
4244
4245 if (expansion_notify != NULL
4246 && symtab_was_null
4247 && per_cu->v.quick->compunit_symtab != NULL)
4248 {
4249 expansion_notify (per_cu->v.quick->compunit_symtab);
4250 }
4251 }
4252 }
4253 }
4254 }
4255
4256 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4257 symtab. */
4258
4259 static struct compunit_symtab *
4260 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4261 CORE_ADDR pc)
4262 {
4263 int i;
4264
4265 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4266 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4267 return cust;
4268
4269 if (cust->includes == NULL)
4270 return NULL;
4271
4272 for (i = 0; cust->includes[i]; ++i)
4273 {
4274 struct compunit_symtab *s = cust->includes[i];
4275
4276 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4277 if (s != NULL)
4278 return s;
4279 }
4280
4281 return NULL;
4282 }
4283
4284 static struct compunit_symtab *
4285 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4286 struct bound_minimal_symbol msymbol,
4287 CORE_ADDR pc,
4288 struct obj_section *section,
4289 int warn_if_readin)
4290 {
4291 struct dwarf2_per_cu_data *data;
4292 struct compunit_symtab *result;
4293
4294 dw2_setup (objfile);
4295
4296 if (!objfile->psymtabs_addrmap)
4297 return NULL;
4298
4299 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4300 pc);
4301 if (!data)
4302 return NULL;
4303
4304 if (warn_if_readin && data->v.quick->compunit_symtab)
4305 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4306 paddress (get_objfile_arch (objfile), pc));
4307
4308 result
4309 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4310 pc);
4311 gdb_assert (result != NULL);
4312 return result;
4313 }
4314
4315 static void
4316 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4317 void *data, int need_fullname)
4318 {
4319 dw2_setup (objfile);
4320
4321 if (!dwarf2_per_objfile->filenames_cache)
4322 {
4323 dwarf2_per_objfile->filenames_cache.emplace ();
4324
4325 htab_up visited (htab_create_alloc (10,
4326 htab_hash_pointer, htab_eq_pointer,
4327 NULL, xcalloc, xfree));
4328
4329 /* The rule is CUs specify all the files, including those used
4330 by any TU, so there's no need to scan TUs here. We can
4331 ignore file names coming from already-expanded CUs. */
4332
4333 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4334 {
4335 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4336
4337 if (per_cu->v.quick->compunit_symtab)
4338 {
4339 void **slot = htab_find_slot (visited.get (),
4340 per_cu->v.quick->file_names,
4341 INSERT);
4342
4343 *slot = per_cu->v.quick->file_names;
4344 }
4345 }
4346
4347 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4348 {
4349 int j;
4350 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4351 struct quick_file_names *file_data;
4352 void **slot;
4353
4354 /* We only need to look at symtabs not already expanded. */
4355 if (per_cu->v.quick->compunit_symtab)
4356 continue;
4357
4358 file_data = dw2_get_file_names (per_cu);
4359 if (file_data == NULL)
4360 continue;
4361
4362 slot = htab_find_slot (visited.get (), file_data, INSERT);
4363 if (*slot)
4364 {
4365 /* Already visited. */
4366 continue;
4367 }
4368 *slot = file_data;
4369
4370 for (int j = 0; j < file_data->num_file_names; ++j)
4371 {
4372 const char *filename = file_data->file_names[j];
4373 dwarf2_per_objfile->filenames_cache->seen (filename);
4374 }
4375 }
4376 }
4377
4378 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4379 {
4380 const char *this_real_name;
4381
4382 if (need_fullname)
4383 this_real_name = gdb_realpath (filename);
4384 else
4385 this_real_name = NULL;
4386 (*fun) (filename, this_real_name, data);
4387 });
4388 }
4389
4390 static int
4391 dw2_has_symbols (struct objfile *objfile)
4392 {
4393 return 1;
4394 }
4395
4396 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4397 {
4398 dw2_has_symbols,
4399 dw2_find_last_source_symtab,
4400 dw2_forget_cached_source_info,
4401 dw2_map_symtabs_matching_filename,
4402 dw2_lookup_symbol,
4403 dw2_print_stats,
4404 dw2_dump,
4405 dw2_relocate,
4406 dw2_expand_symtabs_for_function,
4407 dw2_expand_all_symtabs,
4408 dw2_expand_symtabs_with_fullname,
4409 dw2_map_matching_symbols,
4410 dw2_expand_symtabs_matching,
4411 dw2_find_pc_sect_compunit_symtab,
4412 dw2_map_symbol_filenames
4413 };
4414
4415 /* Initialize for reading DWARF for this objfile. Return 0 if this
4416 file will use psymtabs, or 1 if using the GNU index. */
4417
4418 int
4419 dwarf2_initialize_objfile (struct objfile *objfile)
4420 {
4421 /* If we're about to read full symbols, don't bother with the
4422 indices. In this case we also don't care if some other debug
4423 format is making psymtabs, because they are all about to be
4424 expanded anyway. */
4425 if ((objfile->flags & OBJF_READNOW))
4426 {
4427 int i;
4428
4429 dwarf2_per_objfile->using_index = 1;
4430 create_all_comp_units (objfile);
4431 create_all_type_units (objfile);
4432 dwarf2_per_objfile->quick_file_names_table =
4433 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4434
4435 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4436 + dwarf2_per_objfile->n_type_units); ++i)
4437 {
4438 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4439
4440 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4441 struct dwarf2_per_cu_quick_data);
4442 }
4443
4444 /* Return 1 so that gdb sees the "quick" functions. However,
4445 these functions will be no-ops because we will have expanded
4446 all symtabs. */
4447 return 1;
4448 }
4449
4450 if (dwarf2_read_index (objfile))
4451 return 1;
4452
4453 return 0;
4454 }
4455
4456 \f
4457
4458 /* Build a partial symbol table. */
4459
4460 void
4461 dwarf2_build_psymtabs (struct objfile *objfile)
4462 {
4463
4464 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4465 {
4466 init_psymbol_list (objfile, 1024);
4467 }
4468
4469 TRY
4470 {
4471 /* This isn't really ideal: all the data we allocate on the
4472 objfile's obstack is still uselessly kept around. However,
4473 freeing it seems unsafe. */
4474 psymtab_discarder psymtabs (objfile);
4475 dwarf2_build_psymtabs_hard (objfile);
4476 psymtabs.keep ();
4477 }
4478 CATCH (except, RETURN_MASK_ERROR)
4479 {
4480 exception_print (gdb_stderr, except);
4481 }
4482 END_CATCH
4483 }
4484
4485 /* Return the total length of the CU described by HEADER. */
4486
4487 static unsigned int
4488 get_cu_length (const struct comp_unit_head *header)
4489 {
4490 return header->initial_length_size + header->length;
4491 }
4492
4493 /* Return TRUE if SECT_OFF is within CU_HEADER. */
4494
4495 static inline bool
4496 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
4497 {
4498 sect_offset bottom = cu_header->sect_off;
4499 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
4500
4501 return sect_off >= bottom && sect_off < top;
4502 }
4503
4504 /* Find the base address of the compilation unit for range lists and
4505 location lists. It will normally be specified by DW_AT_low_pc.
4506 In DWARF-3 draft 4, the base address could be overridden by
4507 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4508 compilation units with discontinuous ranges. */
4509
4510 static void
4511 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4512 {
4513 struct attribute *attr;
4514
4515 cu->base_known = 0;
4516 cu->base_address = 0;
4517
4518 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4519 if (attr)
4520 {
4521 cu->base_address = attr_value_as_address (attr);
4522 cu->base_known = 1;
4523 }
4524 else
4525 {
4526 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4527 if (attr)
4528 {
4529 cu->base_address = attr_value_as_address (attr);
4530 cu->base_known = 1;
4531 }
4532 }
4533 }
4534
4535 /* Read in the comp unit header information from the debug_info at info_ptr.
4536 Use rcuh_kind::COMPILE as the default type if not known by the caller.
4537 NOTE: This leaves members offset, first_die_offset to be filled in
4538 by the caller. */
4539
4540 static const gdb_byte *
4541 read_comp_unit_head (struct comp_unit_head *cu_header,
4542 const gdb_byte *info_ptr,
4543 struct dwarf2_section_info *section,
4544 rcuh_kind section_kind)
4545 {
4546 int signed_addr;
4547 unsigned int bytes_read;
4548 const char *filename = get_section_file_name (section);
4549 bfd *abfd = get_section_bfd_owner (section);
4550
4551 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4552 cu_header->initial_length_size = bytes_read;
4553 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4554 info_ptr += bytes_read;
4555 cu_header->version = read_2_bytes (abfd, info_ptr);
4556 info_ptr += 2;
4557 if (cu_header->version < 5)
4558 switch (section_kind)
4559 {
4560 case rcuh_kind::COMPILE:
4561 cu_header->unit_type = DW_UT_compile;
4562 break;
4563 case rcuh_kind::TYPE:
4564 cu_header->unit_type = DW_UT_type;
4565 break;
4566 default:
4567 internal_error (__FILE__, __LINE__,
4568 _("read_comp_unit_head: invalid section_kind"));
4569 }
4570 else
4571 {
4572 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4573 (read_1_byte (abfd, info_ptr));
4574 info_ptr += 1;
4575 switch (cu_header->unit_type)
4576 {
4577 case DW_UT_compile:
4578 if (section_kind != rcuh_kind::COMPILE)
4579 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4580 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4581 filename);
4582 break;
4583 case DW_UT_type:
4584 section_kind = rcuh_kind::TYPE;
4585 break;
4586 default:
4587 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4588 "(is %d, should be %d or %d) [in module %s]"),
4589 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4590 }
4591
4592 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4593 info_ptr += 1;
4594 }
4595 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4596 cu_header,
4597 &bytes_read);
4598 info_ptr += bytes_read;
4599 if (cu_header->version < 5)
4600 {
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
4604 signed_addr = bfd_get_sign_extend_vma (abfd);
4605 if (signed_addr < 0)
4606 internal_error (__FILE__, __LINE__,
4607 _("read_comp_unit_head: dwarf from non elf file"));
4608 cu_header->signed_addr_p = signed_addr;
4609
4610 if (section_kind == rcuh_kind::TYPE)
4611 {
4612 LONGEST type_offset;
4613
4614 cu_header->signature = read_8_bytes (abfd, info_ptr);
4615 info_ptr += 8;
4616
4617 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4618 info_ptr += bytes_read;
4619 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4620 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
4621 error (_("Dwarf Error: Too big type_offset in compilation unit "
4622 "header (is %s) [in module %s]"), plongest (type_offset),
4623 filename);
4624 }
4625
4626 return info_ptr;
4627 }
4628
4629 /* Helper function that returns the proper abbrev section for
4630 THIS_CU. */
4631
4632 static struct dwarf2_section_info *
4633 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4634 {
4635 struct dwarf2_section_info *abbrev;
4636
4637 if (this_cu->is_dwz)
4638 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4639 else
4640 abbrev = &dwarf2_per_objfile->abbrev;
4641
4642 return abbrev;
4643 }
4644
4645 /* Subroutine of read_and_check_comp_unit_head and
4646 read_and_check_type_unit_head to simplify them.
4647 Perform various error checking on the header. */
4648
4649 static void
4650 error_check_comp_unit_head (struct comp_unit_head *header,
4651 struct dwarf2_section_info *section,
4652 struct dwarf2_section_info *abbrev_section)
4653 {
4654 const char *filename = get_section_file_name (section);
4655
4656 if (header->version < 2 || header->version > 5)
4657 error (_("Dwarf Error: wrong version in compilation unit header "
4658 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
4659 filename);
4660
4661 if (to_underlying (header->abbrev_sect_off)
4662 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4663 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4664 "(offset 0x%x + 6) [in module %s]"),
4665 to_underlying (header->abbrev_sect_off),
4666 to_underlying (header->sect_off),
4667 filename);
4668
4669 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
4670 avoid potential 32-bit overflow. */
4671 if (((ULONGEST) header->sect_off + get_cu_length (header))
4672 > section->size)
4673 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4674 "(offset 0x%x + 0) [in module %s]"),
4675 header->length, to_underlying (header->sect_off),
4676 filename);
4677 }
4678
4679 /* Read in a CU/TU header and perform some basic error checking.
4680 The contents of the header are stored in HEADER.
4681 The result is a pointer to the start of the first DIE. */
4682
4683 static const gdb_byte *
4684 read_and_check_comp_unit_head (struct comp_unit_head *header,
4685 struct dwarf2_section_info *section,
4686 struct dwarf2_section_info *abbrev_section,
4687 const gdb_byte *info_ptr,
4688 rcuh_kind section_kind)
4689 {
4690 const gdb_byte *beg_of_comp_unit = info_ptr;
4691 bfd *abfd = get_section_bfd_owner (section);
4692
4693 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
4694
4695 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
4696
4697 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
4698
4699 error_check_comp_unit_head (header, section, abbrev_section);
4700
4701 return info_ptr;
4702 }
4703
4704 /* Fetch the abbreviation table offset from a comp or type unit header. */
4705
4706 static sect_offset
4707 read_abbrev_offset (struct dwarf2_section_info *section,
4708 sect_offset sect_off)
4709 {
4710 bfd *abfd = get_section_bfd_owner (section);
4711 const gdb_byte *info_ptr;
4712 unsigned int initial_length_size, offset_size;
4713 uint16_t version;
4714
4715 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4716 info_ptr = section->buffer + to_underlying (sect_off);
4717 read_initial_length (abfd, info_ptr, &initial_length_size);
4718 offset_size = initial_length_size == 4 ? 4 : 8;
4719 info_ptr += initial_length_size;
4720
4721 version = read_2_bytes (abfd, info_ptr);
4722 info_ptr += 2;
4723 if (version >= 5)
4724 {
4725 /* Skip unit type and address size. */
4726 info_ptr += 2;
4727 }
4728
4729 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
4730 }
4731
4732 /* Allocate a new partial symtab for file named NAME and mark this new
4733 partial symtab as being an include of PST. */
4734
4735 static void
4736 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4737 struct objfile *objfile)
4738 {
4739 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4740
4741 if (!IS_ABSOLUTE_PATH (subpst->filename))
4742 {
4743 /* It shares objfile->objfile_obstack. */
4744 subpst->dirname = pst->dirname;
4745 }
4746
4747 subpst->textlow = 0;
4748 subpst->texthigh = 0;
4749
4750 subpst->dependencies
4751 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4752 subpst->dependencies[0] = pst;
4753 subpst->number_of_dependencies = 1;
4754
4755 subpst->globals_offset = 0;
4756 subpst->n_global_syms = 0;
4757 subpst->statics_offset = 0;
4758 subpst->n_static_syms = 0;
4759 subpst->compunit_symtab = NULL;
4760 subpst->read_symtab = pst->read_symtab;
4761 subpst->readin = 0;
4762
4763 /* No private part is necessary for include psymtabs. This property
4764 can be used to differentiate between such include psymtabs and
4765 the regular ones. */
4766 subpst->read_symtab_private = NULL;
4767 }
4768
4769 /* Read the Line Number Program data and extract the list of files
4770 included by the source file represented by PST. Build an include
4771 partial symtab for each of these included files. */
4772
4773 static void
4774 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4775 struct die_info *die,
4776 struct partial_symtab *pst)
4777 {
4778 line_header_up lh;
4779 struct attribute *attr;
4780
4781 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4782 if (attr)
4783 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
4784 if (lh == NULL)
4785 return; /* No linetable, so no includes. */
4786
4787 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4788 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
4789 }
4790
4791 static hashval_t
4792 hash_signatured_type (const void *item)
4793 {
4794 const struct signatured_type *sig_type
4795 = (const struct signatured_type *) item;
4796
4797 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4798 return sig_type->signature;
4799 }
4800
4801 static int
4802 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4803 {
4804 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4805 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4806
4807 return lhs->signature == rhs->signature;
4808 }
4809
4810 /* Allocate a hash table for signatured types. */
4811
4812 static htab_t
4813 allocate_signatured_type_table (struct objfile *objfile)
4814 {
4815 return htab_create_alloc_ex (41,
4816 hash_signatured_type,
4817 eq_signatured_type,
4818 NULL,
4819 &objfile->objfile_obstack,
4820 hashtab_obstack_allocate,
4821 dummy_obstack_deallocate);
4822 }
4823
4824 /* A helper function to add a signatured type CU to a table. */
4825
4826 static int
4827 add_signatured_type_cu_to_table (void **slot, void *datum)
4828 {
4829 struct signatured_type *sigt = (struct signatured_type *) *slot;
4830 struct signatured_type ***datap = (struct signatured_type ***) datum;
4831
4832 **datap = sigt;
4833 ++*datap;
4834
4835 return 1;
4836 }
4837
4838 /* A helper for create_debug_types_hash_table. Read types from SECTION
4839 and fill them into TYPES_HTAB. It will process only type units,
4840 therefore DW_UT_type. */
4841
4842 static void
4843 create_debug_type_hash_table (struct dwo_file *dwo_file,
4844 dwarf2_section_info *section, htab_t &types_htab,
4845 rcuh_kind section_kind)
4846 {
4847 struct objfile *objfile = dwarf2_per_objfile->objfile;
4848 struct dwarf2_section_info *abbrev_section;
4849 bfd *abfd;
4850 const gdb_byte *info_ptr, *end_ptr;
4851
4852 abbrev_section = (dwo_file != NULL
4853 ? &dwo_file->sections.abbrev
4854 : &dwarf2_per_objfile->abbrev);
4855
4856 if (dwarf_read_debug)
4857 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4858 get_section_name (section),
4859 get_section_file_name (abbrev_section));
4860
4861 dwarf2_read_section (objfile, section);
4862 info_ptr = section->buffer;
4863
4864 if (info_ptr == NULL)
4865 return;
4866
4867 /* We can't set abfd until now because the section may be empty or
4868 not present, in which case the bfd is unknown. */
4869 abfd = get_section_bfd_owner (section);
4870
4871 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4872 because we don't need to read any dies: the signature is in the
4873 header. */
4874
4875 end_ptr = info_ptr + section->size;
4876 while (info_ptr < end_ptr)
4877 {
4878 struct signatured_type *sig_type;
4879 struct dwo_unit *dwo_tu;
4880 void **slot;
4881 const gdb_byte *ptr = info_ptr;
4882 struct comp_unit_head header;
4883 unsigned int length;
4884
4885 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
4886
4887 /* Initialize it due to a false compiler warning. */
4888 header.signature = -1;
4889 header.type_cu_offset_in_tu = (cu_offset) -1;
4890
4891 /* We need to read the type's signature in order to build the hash
4892 table, but we don't need anything else just yet. */
4893
4894 ptr = read_and_check_comp_unit_head (&header, section,
4895 abbrev_section, ptr, section_kind);
4896
4897 length = get_cu_length (&header);
4898
4899 /* Skip dummy type units. */
4900 if (ptr >= info_ptr + length
4901 || peek_abbrev_code (abfd, ptr) == 0
4902 || header.unit_type != DW_UT_type)
4903 {
4904 info_ptr += length;
4905 continue;
4906 }
4907
4908 if (types_htab == NULL)
4909 {
4910 if (dwo_file)
4911 types_htab = allocate_dwo_unit_table (objfile);
4912 else
4913 types_htab = allocate_signatured_type_table (objfile);
4914 }
4915
4916 if (dwo_file)
4917 {
4918 sig_type = NULL;
4919 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4920 struct dwo_unit);
4921 dwo_tu->dwo_file = dwo_file;
4922 dwo_tu->signature = header.signature;
4923 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
4924 dwo_tu->section = section;
4925 dwo_tu->sect_off = sect_off;
4926 dwo_tu->length = length;
4927 }
4928 else
4929 {
4930 /* N.B.: type_offset is not usable if this type uses a DWO file.
4931 The real type_offset is in the DWO file. */
4932 dwo_tu = NULL;
4933 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4934 struct signatured_type);
4935 sig_type->signature = header.signature;
4936 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
4937 sig_type->per_cu.objfile = objfile;
4938 sig_type->per_cu.is_debug_types = 1;
4939 sig_type->per_cu.section = section;
4940 sig_type->per_cu.sect_off = sect_off;
4941 sig_type->per_cu.length = length;
4942 }
4943
4944 slot = htab_find_slot (types_htab,
4945 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4946 INSERT);
4947 gdb_assert (slot != NULL);
4948 if (*slot != NULL)
4949 {
4950 sect_offset dup_sect_off;
4951
4952 if (dwo_file)
4953 {
4954 const struct dwo_unit *dup_tu
4955 = (const struct dwo_unit *) *slot;
4956
4957 dup_sect_off = dup_tu->sect_off;
4958 }
4959 else
4960 {
4961 const struct signatured_type *dup_tu
4962 = (const struct signatured_type *) *slot;
4963
4964 dup_sect_off = dup_tu->per_cu.sect_off;
4965 }
4966
4967 complaint (&symfile_complaints,
4968 _("debug type entry at offset 0x%x is duplicate to"
4969 " the entry at offset 0x%x, signature %s"),
4970 to_underlying (sect_off), to_underlying (dup_sect_off),
4971 hex_string (header.signature));
4972 }
4973 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4974
4975 if (dwarf_read_debug > 1)
4976 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4977 to_underlying (sect_off),
4978 hex_string (header.signature));
4979
4980 info_ptr += length;
4981 }
4982 }
4983
4984 /* Create the hash table of all entries in the .debug_types
4985 (or .debug_types.dwo) section(s).
4986 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4987 otherwise it is NULL.
4988
4989 The result is a pointer to the hash table or NULL if there are no types.
4990
4991 Note: This function processes DWO files only, not DWP files. */
4992
4993 static void
4994 create_debug_types_hash_table (struct dwo_file *dwo_file,
4995 VEC (dwarf2_section_info_def) *types,
4996 htab_t &types_htab)
4997 {
4998 int ix;
4999 struct dwarf2_section_info *section;
5000
5001 if (VEC_empty (dwarf2_section_info_def, types))
5002 return;
5003
5004 for (ix = 0;
5005 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5006 ++ix)
5007 create_debug_type_hash_table (dwo_file, section, types_htab,
5008 rcuh_kind::TYPE);
5009 }
5010
5011 /* Create the hash table of all entries in the .debug_types section,
5012 and initialize all_type_units.
5013 The result is zero if there is an error (e.g. missing .debug_types section),
5014 otherwise non-zero. */
5015
5016 static int
5017 create_all_type_units (struct objfile *objfile)
5018 {
5019 htab_t types_htab = NULL;
5020 struct signatured_type **iter;
5021
5022 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5023 rcuh_kind::COMPILE);
5024 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5025 if (types_htab == NULL)
5026 {
5027 dwarf2_per_objfile->signatured_types = NULL;
5028 return 0;
5029 }
5030
5031 dwarf2_per_objfile->signatured_types = types_htab;
5032
5033 dwarf2_per_objfile->n_type_units
5034 = dwarf2_per_objfile->n_allocated_type_units
5035 = htab_elements (types_htab);
5036 dwarf2_per_objfile->all_type_units =
5037 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5038 iter = &dwarf2_per_objfile->all_type_units[0];
5039 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5040 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5041 == dwarf2_per_objfile->n_type_units);
5042
5043 return 1;
5044 }
5045
5046 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5047 If SLOT is non-NULL, it is the entry to use in the hash table.
5048 Otherwise we find one. */
5049
5050 static struct signatured_type *
5051 add_type_unit (ULONGEST sig, void **slot)
5052 {
5053 struct objfile *objfile = dwarf2_per_objfile->objfile;
5054 int n_type_units = dwarf2_per_objfile->n_type_units;
5055 struct signatured_type *sig_type;
5056
5057 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5058 ++n_type_units;
5059 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5060 {
5061 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5062 dwarf2_per_objfile->n_allocated_type_units = 1;
5063 dwarf2_per_objfile->n_allocated_type_units *= 2;
5064 dwarf2_per_objfile->all_type_units
5065 = XRESIZEVEC (struct signatured_type *,
5066 dwarf2_per_objfile->all_type_units,
5067 dwarf2_per_objfile->n_allocated_type_units);
5068 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5069 }
5070 dwarf2_per_objfile->n_type_units = n_type_units;
5071
5072 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5073 struct signatured_type);
5074 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5075 sig_type->signature = sig;
5076 sig_type->per_cu.is_debug_types = 1;
5077 if (dwarf2_per_objfile->using_index)
5078 {
5079 sig_type->per_cu.v.quick =
5080 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5081 struct dwarf2_per_cu_quick_data);
5082 }
5083
5084 if (slot == NULL)
5085 {
5086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5087 sig_type, INSERT);
5088 }
5089 gdb_assert (*slot == NULL);
5090 *slot = sig_type;
5091 /* The rest of sig_type must be filled in by the caller. */
5092 return sig_type;
5093 }
5094
5095 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5096 Fill in SIG_ENTRY with DWO_ENTRY. */
5097
5098 static void
5099 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5100 struct signatured_type *sig_entry,
5101 struct dwo_unit *dwo_entry)
5102 {
5103 /* Make sure we're not clobbering something we don't expect to. */
5104 gdb_assert (! sig_entry->per_cu.queued);
5105 gdb_assert (sig_entry->per_cu.cu == NULL);
5106 if (dwarf2_per_objfile->using_index)
5107 {
5108 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5109 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5110 }
5111 else
5112 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5113 gdb_assert (sig_entry->signature == dwo_entry->signature);
5114 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5115 gdb_assert (sig_entry->type_unit_group == NULL);
5116 gdb_assert (sig_entry->dwo_unit == NULL);
5117
5118 sig_entry->per_cu.section = dwo_entry->section;
5119 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5120 sig_entry->per_cu.length = dwo_entry->length;
5121 sig_entry->per_cu.reading_dwo_directly = 1;
5122 sig_entry->per_cu.objfile = objfile;
5123 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5124 sig_entry->dwo_unit = dwo_entry;
5125 }
5126
5127 /* Subroutine of lookup_signatured_type.
5128 If we haven't read the TU yet, create the signatured_type data structure
5129 for a TU to be read in directly from a DWO file, bypassing the stub.
5130 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5131 using .gdb_index, then when reading a CU we want to stay in the DWO file
5132 containing that CU. Otherwise we could end up reading several other DWO
5133 files (due to comdat folding) to process the transitive closure of all the
5134 mentioned TUs, and that can be slow. The current DWO file will have every
5135 type signature that it needs.
5136 We only do this for .gdb_index because in the psymtab case we already have
5137 to read all the DWOs to build the type unit groups. */
5138
5139 static struct signatured_type *
5140 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5141 {
5142 struct objfile *objfile = dwarf2_per_objfile->objfile;
5143 struct dwo_file *dwo_file;
5144 struct dwo_unit find_dwo_entry, *dwo_entry;
5145 struct signatured_type find_sig_entry, *sig_entry;
5146 void **slot;
5147
5148 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5149
5150 /* If TU skeletons have been removed then we may not have read in any
5151 TUs yet. */
5152 if (dwarf2_per_objfile->signatured_types == NULL)
5153 {
5154 dwarf2_per_objfile->signatured_types
5155 = allocate_signatured_type_table (objfile);
5156 }
5157
5158 /* We only ever need to read in one copy of a signatured type.
5159 Use the global signatured_types array to do our own comdat-folding
5160 of types. If this is the first time we're reading this TU, and
5161 the TU has an entry in .gdb_index, replace the recorded data from
5162 .gdb_index with this TU. */
5163
5164 find_sig_entry.signature = sig;
5165 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5166 &find_sig_entry, INSERT);
5167 sig_entry = (struct signatured_type *) *slot;
5168
5169 /* We can get here with the TU already read, *or* in the process of being
5170 read. Don't reassign the global entry to point to this DWO if that's
5171 the case. Also note that if the TU is already being read, it may not
5172 have come from a DWO, the program may be a mix of Fission-compiled
5173 code and non-Fission-compiled code. */
5174
5175 /* Have we already tried to read this TU?
5176 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5177 needn't exist in the global table yet). */
5178 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
5179 return sig_entry;
5180
5181 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5182 dwo_unit of the TU itself. */
5183 dwo_file = cu->dwo_unit->dwo_file;
5184
5185 /* Ok, this is the first time we're reading this TU. */
5186 if (dwo_file->tus == NULL)
5187 return NULL;
5188 find_dwo_entry.signature = sig;
5189 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
5190 if (dwo_entry == NULL)
5191 return NULL;
5192
5193 /* If the global table doesn't have an entry for this TU, add one. */
5194 if (sig_entry == NULL)
5195 sig_entry = add_type_unit (sig, slot);
5196
5197 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5198 sig_entry->per_cu.tu_read = 1;
5199 return sig_entry;
5200 }
5201
5202 /* Subroutine of lookup_signatured_type.
5203 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
5204 then try the DWP file. If the TU stub (skeleton) has been removed then
5205 it won't be in .gdb_index. */
5206
5207 static struct signatured_type *
5208 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5209 {
5210 struct objfile *objfile = dwarf2_per_objfile->objfile;
5211 struct dwp_file *dwp_file = get_dwp_file ();
5212 struct dwo_unit *dwo_entry;
5213 struct signatured_type find_sig_entry, *sig_entry;
5214 void **slot;
5215
5216 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5217 gdb_assert (dwp_file != NULL);
5218
5219 /* If TU skeletons have been removed then we may not have read in any
5220 TUs yet. */
5221 if (dwarf2_per_objfile->signatured_types == NULL)
5222 {
5223 dwarf2_per_objfile->signatured_types
5224 = allocate_signatured_type_table (objfile);
5225 }
5226
5227 find_sig_entry.signature = sig;
5228 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5229 &find_sig_entry, INSERT);
5230 sig_entry = (struct signatured_type *) *slot;
5231
5232 /* Have we already tried to read this TU?
5233 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5234 needn't exist in the global table yet). */
5235 if (sig_entry != NULL)
5236 return sig_entry;
5237
5238 if (dwp_file->tus == NULL)
5239 return NULL;
5240 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5241 sig, 1 /* is_debug_types */);
5242 if (dwo_entry == NULL)
5243 return NULL;
5244
5245 sig_entry = add_type_unit (sig, slot);
5246 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5247
5248 return sig_entry;
5249 }
5250
5251 /* Lookup a signature based type for DW_FORM_ref_sig8.
5252 Returns NULL if signature SIG is not present in the table.
5253 It is up to the caller to complain about this. */
5254
5255 static struct signatured_type *
5256 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5257 {
5258 if (cu->dwo_unit
5259 && dwarf2_per_objfile->using_index)
5260 {
5261 /* We're in a DWO/DWP file, and we're using .gdb_index.
5262 These cases require special processing. */
5263 if (get_dwp_file () == NULL)
5264 return lookup_dwo_signatured_type (cu, sig);
5265 else
5266 return lookup_dwp_signatured_type (cu, sig);
5267 }
5268 else
5269 {
5270 struct signatured_type find_entry, *entry;
5271
5272 if (dwarf2_per_objfile->signatured_types == NULL)
5273 return NULL;
5274 find_entry.signature = sig;
5275 entry = ((struct signatured_type *)
5276 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5277 return entry;
5278 }
5279 }
5280 \f
5281 /* Low level DIE reading support. */
5282
5283 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5284
5285 static void
5286 init_cu_die_reader (struct die_reader_specs *reader,
5287 struct dwarf2_cu *cu,
5288 struct dwarf2_section_info *section,
5289 struct dwo_file *dwo_file)
5290 {
5291 gdb_assert (section->readin && section->buffer != NULL);
5292 reader->abfd = get_section_bfd_owner (section);
5293 reader->cu = cu;
5294 reader->dwo_file = dwo_file;
5295 reader->die_section = section;
5296 reader->buffer = section->buffer;
5297 reader->buffer_end = section->buffer + section->size;
5298 reader->comp_dir = NULL;
5299 }
5300
5301 /* Subroutine of init_cutu_and_read_dies to simplify it.
5302 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5303 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5304 already.
5305
5306 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5307 from it to the DIE in the DWO. If NULL we are skipping the stub.
5308 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5309 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5310 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5311 STUB_COMP_DIR may be non-NULL.
5312 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5313 are filled in with the info of the DIE from the DWO file.
5314 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5315 provided an abbrev table to use.
5316 The result is non-zero if a valid (non-dummy) DIE was found. */
5317
5318 static int
5319 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5320 struct dwo_unit *dwo_unit,
5321 int abbrev_table_provided,
5322 struct die_info *stub_comp_unit_die,
5323 const char *stub_comp_dir,
5324 struct die_reader_specs *result_reader,
5325 const gdb_byte **result_info_ptr,
5326 struct die_info **result_comp_unit_die,
5327 int *result_has_children)
5328 {
5329 struct objfile *objfile = dwarf2_per_objfile->objfile;
5330 struct dwarf2_cu *cu = this_cu->cu;
5331 struct dwarf2_section_info *section;
5332 bfd *abfd;
5333 const gdb_byte *begin_info_ptr, *info_ptr;
5334 ULONGEST signature; /* Or dwo_id. */
5335 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5336 int i,num_extra_attrs;
5337 struct dwarf2_section_info *dwo_abbrev_section;
5338 struct attribute *attr;
5339 struct die_info *comp_unit_die;
5340
5341 /* At most one of these may be provided. */
5342 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5343
5344 /* These attributes aren't processed until later:
5345 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5346 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5347 referenced later. However, these attributes are found in the stub
5348 which we won't have later. In order to not impose this complication
5349 on the rest of the code, we read them here and copy them to the
5350 DWO CU/TU die. */
5351
5352 stmt_list = NULL;
5353 low_pc = NULL;
5354 high_pc = NULL;
5355 ranges = NULL;
5356 comp_dir = NULL;
5357
5358 if (stub_comp_unit_die != NULL)
5359 {
5360 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5361 DWO file. */
5362 if (! this_cu->is_debug_types)
5363 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5364 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5365 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5366 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5367 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5368
5369 /* There should be a DW_AT_addr_base attribute here (if needed).
5370 We need the value before we can process DW_FORM_GNU_addr_index. */
5371 cu->addr_base = 0;
5372 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5373 if (attr)
5374 cu->addr_base = DW_UNSND (attr);
5375
5376 /* There should be a DW_AT_ranges_base attribute here (if needed).
5377 We need the value before we can process DW_AT_ranges. */
5378 cu->ranges_base = 0;
5379 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5380 if (attr)
5381 cu->ranges_base = DW_UNSND (attr);
5382 }
5383 else if (stub_comp_dir != NULL)
5384 {
5385 /* Reconstruct the comp_dir attribute to simplify the code below. */
5386 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5387 comp_dir->name = DW_AT_comp_dir;
5388 comp_dir->form = DW_FORM_string;
5389 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5390 DW_STRING (comp_dir) = stub_comp_dir;
5391 }
5392
5393 /* Set up for reading the DWO CU/TU. */
5394 cu->dwo_unit = dwo_unit;
5395 section = dwo_unit->section;
5396 dwarf2_read_section (objfile, section);
5397 abfd = get_section_bfd_owner (section);
5398 begin_info_ptr = info_ptr = (section->buffer
5399 + to_underlying (dwo_unit->sect_off));
5400 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5401 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5402
5403 if (this_cu->is_debug_types)
5404 {
5405 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5406
5407 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5408 dwo_abbrev_section,
5409 info_ptr, rcuh_kind::TYPE);
5410 /* This is not an assert because it can be caused by bad debug info. */
5411 if (sig_type->signature != cu->header.signature)
5412 {
5413 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5414 " TU at offset 0x%x [in module %s]"),
5415 hex_string (sig_type->signature),
5416 hex_string (cu->header.signature),
5417 to_underlying (dwo_unit->sect_off),
5418 bfd_get_filename (abfd));
5419 }
5420 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5421 /* For DWOs coming from DWP files, we don't know the CU length
5422 nor the type's offset in the TU until now. */
5423 dwo_unit->length = get_cu_length (&cu->header);
5424 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
5425
5426 /* Establish the type offset that can be used to lookup the type.
5427 For DWO files, we don't know it until now. */
5428 sig_type->type_offset_in_section
5429 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
5430 }
5431 else
5432 {
5433 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5434 dwo_abbrev_section,
5435 info_ptr, rcuh_kind::COMPILE);
5436 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
5437 /* For DWOs coming from DWP files, we don't know the CU length
5438 until now. */
5439 dwo_unit->length = get_cu_length (&cu->header);
5440 }
5441
5442 /* Replace the CU's original abbrev table with the DWO's.
5443 Reminder: We can't read the abbrev table until we've read the header. */
5444 if (abbrev_table_provided)
5445 {
5446 /* Don't free the provided abbrev table, the caller of
5447 init_cutu_and_read_dies owns it. */
5448 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5449 /* Ensure the DWO abbrev table gets freed. */
5450 make_cleanup (dwarf2_free_abbrev_table, cu);
5451 }
5452 else
5453 {
5454 dwarf2_free_abbrev_table (cu);
5455 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5456 /* Leave any existing abbrev table cleanup as is. */
5457 }
5458
5459 /* Read in the die, but leave space to copy over the attributes
5460 from the stub. This has the benefit of simplifying the rest of
5461 the code - all the work to maintain the illusion of a single
5462 DW_TAG_{compile,type}_unit DIE is done here. */
5463 num_extra_attrs = ((stmt_list != NULL)
5464 + (low_pc != NULL)
5465 + (high_pc != NULL)
5466 + (ranges != NULL)
5467 + (comp_dir != NULL));
5468 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5469 result_has_children, num_extra_attrs);
5470
5471 /* Copy over the attributes from the stub to the DIE we just read in. */
5472 comp_unit_die = *result_comp_unit_die;
5473 i = comp_unit_die->num_attrs;
5474 if (stmt_list != NULL)
5475 comp_unit_die->attrs[i++] = *stmt_list;
5476 if (low_pc != NULL)
5477 comp_unit_die->attrs[i++] = *low_pc;
5478 if (high_pc != NULL)
5479 comp_unit_die->attrs[i++] = *high_pc;
5480 if (ranges != NULL)
5481 comp_unit_die->attrs[i++] = *ranges;
5482 if (comp_dir != NULL)
5483 comp_unit_die->attrs[i++] = *comp_dir;
5484 comp_unit_die->num_attrs += num_extra_attrs;
5485
5486 if (dwarf_die_debug)
5487 {
5488 fprintf_unfiltered (gdb_stdlog,
5489 "Read die from %s@0x%x of %s:\n",
5490 get_section_name (section),
5491 (unsigned) (begin_info_ptr - section->buffer),
5492 bfd_get_filename (abfd));
5493 dump_die (comp_unit_die, dwarf_die_debug);
5494 }
5495
5496 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5497 TUs by skipping the stub and going directly to the entry in the DWO file.
5498 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5499 to get it via circuitous means. Blech. */
5500 if (comp_dir != NULL)
5501 result_reader->comp_dir = DW_STRING (comp_dir);
5502
5503 /* Skip dummy compilation units. */
5504 if (info_ptr >= begin_info_ptr + dwo_unit->length
5505 || peek_abbrev_code (abfd, info_ptr) == 0)
5506 return 0;
5507
5508 *result_info_ptr = info_ptr;
5509 return 1;
5510 }
5511
5512 /* Subroutine of init_cutu_and_read_dies to simplify it.
5513 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5514 Returns NULL if the specified DWO unit cannot be found. */
5515
5516 static struct dwo_unit *
5517 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5518 struct die_info *comp_unit_die)
5519 {
5520 struct dwarf2_cu *cu = this_cu->cu;
5521 struct attribute *attr;
5522 ULONGEST signature;
5523 struct dwo_unit *dwo_unit;
5524 const char *comp_dir, *dwo_name;
5525
5526 gdb_assert (cu != NULL);
5527
5528 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5529 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5530 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5531
5532 if (this_cu->is_debug_types)
5533 {
5534 struct signatured_type *sig_type;
5535
5536 /* Since this_cu is the first member of struct signatured_type,
5537 we can go from a pointer to one to a pointer to the other. */
5538 sig_type = (struct signatured_type *) this_cu;
5539 signature = sig_type->signature;
5540 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5541 }
5542 else
5543 {
5544 struct attribute *attr;
5545
5546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5547 if (! attr)
5548 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5549 " [in module %s]"),
5550 dwo_name, objfile_name (this_cu->objfile));
5551 signature = DW_UNSND (attr);
5552 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5553 signature);
5554 }
5555
5556 return dwo_unit;
5557 }
5558
5559 /* Subroutine of init_cutu_and_read_dies to simplify it.
5560 See it for a description of the parameters.
5561 Read a TU directly from a DWO file, bypassing the stub.
5562
5563 Note: This function could be a little bit simpler if we shared cleanups
5564 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5565 to do, so we keep this function self-contained. Or we could move this
5566 into our caller, but it's complex enough already. */
5567
5568 static void
5569 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5570 int use_existing_cu, int keep,
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573 {
5574 struct dwarf2_cu *cu;
5575 struct signatured_type *sig_type;
5576 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5577 struct die_reader_specs reader;
5578 const gdb_byte *info_ptr;
5579 struct die_info *comp_unit_die;
5580 int has_children;
5581
5582 /* Verify we can do the following downcast, and that we have the
5583 data we need. */
5584 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5585 sig_type = (struct signatured_type *) this_cu;
5586 gdb_assert (sig_type->dwo_unit != NULL);
5587
5588 cleanups = make_cleanup (null_cleanup, NULL);
5589
5590 if (use_existing_cu && this_cu->cu != NULL)
5591 {
5592 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5593 cu = this_cu->cu;
5594 /* There's no need to do the rereading_dwo_cu handling that
5595 init_cutu_and_read_dies does since we don't read the stub. */
5596 }
5597 else
5598 {
5599 /* If !use_existing_cu, this_cu->cu must be NULL. */
5600 gdb_assert (this_cu->cu == NULL);
5601 cu = XNEW (struct dwarf2_cu);
5602 init_one_comp_unit (cu, this_cu);
5603 /* If an error occurs while loading, release our storage. */
5604 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5605 }
5606
5607 /* A future optimization, if needed, would be to use an existing
5608 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5609 could share abbrev tables. */
5610
5611 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5612 0 /* abbrev_table_provided */,
5613 NULL /* stub_comp_unit_die */,
5614 sig_type->dwo_unit->dwo_file->comp_dir,
5615 &reader, &info_ptr,
5616 &comp_unit_die, &has_children) == 0)
5617 {
5618 /* Dummy die. */
5619 do_cleanups (cleanups);
5620 return;
5621 }
5622
5623 /* All the "real" work is done here. */
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
5626 /* This duplicates the code in init_cutu_and_read_dies,
5627 but the alternative is making the latter more complex.
5628 This function is only for the special case of using DWO files directly:
5629 no point in overly complicating the general case just to handle this. */
5630 if (free_cu_cleanup != NULL)
5631 {
5632 if (keep)
5633 {
5634 /* We've successfully allocated this compilation unit. Let our
5635 caller clean it up when finished with it. */
5636 discard_cleanups (free_cu_cleanup);
5637
5638 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5639 So we have to manually free the abbrev table. */
5640 dwarf2_free_abbrev_table (cu);
5641
5642 /* Link this CU into read_in_chain. */
5643 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5644 dwarf2_per_objfile->read_in_chain = this_cu;
5645 }
5646 else
5647 do_cleanups (free_cu_cleanup);
5648 }
5649
5650 do_cleanups (cleanups);
5651 }
5652
5653 /* Initialize a CU (or TU) and read its DIEs.
5654 If the CU defers to a DWO file, read the DWO file as well.
5655
5656 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5657 Otherwise the table specified in the comp unit header is read in and used.
5658 This is an optimization for when we already have the abbrev table.
5659
5660 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5661 Otherwise, a new CU is allocated with xmalloc.
5662
5663 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5664 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5665
5666 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5667 linker) then DIE_READER_FUNC will not get called. */
5668
5669 static void
5670 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5671 struct abbrev_table *abbrev_table,
5672 int use_existing_cu, int keep,
5673 die_reader_func_ftype *die_reader_func,
5674 void *data)
5675 {
5676 struct objfile *objfile = dwarf2_per_objfile->objfile;
5677 struct dwarf2_section_info *section = this_cu->section;
5678 bfd *abfd = get_section_bfd_owner (section);
5679 struct dwarf2_cu *cu;
5680 const gdb_byte *begin_info_ptr, *info_ptr;
5681 struct die_reader_specs reader;
5682 struct die_info *comp_unit_die;
5683 int has_children;
5684 struct attribute *attr;
5685 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5686 struct signatured_type *sig_type = NULL;
5687 struct dwarf2_section_info *abbrev_section;
5688 /* Non-zero if CU currently points to a DWO file and we need to
5689 reread it. When this happens we need to reread the skeleton die
5690 before we can reread the DWO file (this only applies to CUs, not TUs). */
5691 int rereading_dwo_cu = 0;
5692
5693 if (dwarf_die_debug)
5694 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5695 this_cu->is_debug_types ? "type" : "comp",
5696 to_underlying (this_cu->sect_off));
5697
5698 if (use_existing_cu)
5699 gdb_assert (keep);
5700
5701 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5702 file (instead of going through the stub), short-circuit all of this. */
5703 if (this_cu->reading_dwo_directly)
5704 {
5705 /* Narrow down the scope of possibilities to have to understand. */
5706 gdb_assert (this_cu->is_debug_types);
5707 gdb_assert (abbrev_table == NULL);
5708 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5709 die_reader_func, data);
5710 return;
5711 }
5712
5713 cleanups = make_cleanup (null_cleanup, NULL);
5714
5715 /* This is cheap if the section is already read in. */
5716 dwarf2_read_section (objfile, section);
5717
5718 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5719
5720 abbrev_section = get_abbrev_section_for_cu (this_cu);
5721
5722 if (use_existing_cu && this_cu->cu != NULL)
5723 {
5724 cu = this_cu->cu;
5725 /* If this CU is from a DWO file we need to start over, we need to
5726 refetch the attributes from the skeleton CU.
5727 This could be optimized by retrieving those attributes from when we
5728 were here the first time: the previous comp_unit_die was stored in
5729 comp_unit_obstack. But there's no data yet that we need this
5730 optimization. */
5731 if (cu->dwo_unit != NULL)
5732 rereading_dwo_cu = 1;
5733 }
5734 else
5735 {
5736 /* If !use_existing_cu, this_cu->cu must be NULL. */
5737 gdb_assert (this_cu->cu == NULL);
5738 cu = XNEW (struct dwarf2_cu);
5739 init_one_comp_unit (cu, this_cu);
5740 /* If an error occurs while loading, release our storage. */
5741 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5742 }
5743
5744 /* Get the header. */
5745 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
5746 {
5747 /* We already have the header, there's no need to read it in again. */
5748 info_ptr += to_underlying (cu->header.first_die_cu_offset);
5749 }
5750 else
5751 {
5752 if (this_cu->is_debug_types)
5753 {
5754 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5755 abbrev_section, info_ptr,
5756 rcuh_kind::TYPE);
5757
5758 /* Since per_cu is the first member of struct signatured_type,
5759 we can go from a pointer to one to a pointer to the other. */
5760 sig_type = (struct signatured_type *) this_cu;
5761 gdb_assert (sig_type->signature == cu->header.signature);
5762 gdb_assert (sig_type->type_offset_in_tu
5763 == cu->header.type_cu_offset_in_tu);
5764 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5765
5766 /* LENGTH has not been set yet for type units if we're
5767 using .gdb_index. */
5768 this_cu->length = get_cu_length (&cu->header);
5769
5770 /* Establish the type offset that can be used to lookup the type. */
5771 sig_type->type_offset_in_section =
5772 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
5773
5774 this_cu->dwarf_version = cu->header.version;
5775 }
5776 else
5777 {
5778 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5779 abbrev_section,
5780 info_ptr,
5781 rcuh_kind::COMPILE);
5782
5783 gdb_assert (this_cu->sect_off == cu->header.sect_off);
5784 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5785 this_cu->dwarf_version = cu->header.version;
5786 }
5787 }
5788
5789 /* Skip dummy compilation units. */
5790 if (info_ptr >= begin_info_ptr + this_cu->length
5791 || peek_abbrev_code (abfd, info_ptr) == 0)
5792 {
5793 do_cleanups (cleanups);
5794 return;
5795 }
5796
5797 /* If we don't have them yet, read the abbrevs for this compilation unit.
5798 And if we need to read them now, make sure they're freed when we're
5799 done. Note that it's important that if the CU had an abbrev table
5800 on entry we don't free it when we're done: Somewhere up the call stack
5801 it may be in use. */
5802 if (abbrev_table != NULL)
5803 {
5804 gdb_assert (cu->abbrev_table == NULL);
5805 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
5806 cu->abbrev_table = abbrev_table;
5807 }
5808 else if (cu->abbrev_table == NULL)
5809 {
5810 dwarf2_read_abbrevs (cu, abbrev_section);
5811 make_cleanup (dwarf2_free_abbrev_table, cu);
5812 }
5813 else if (rereading_dwo_cu)
5814 {
5815 dwarf2_free_abbrev_table (cu);
5816 dwarf2_read_abbrevs (cu, abbrev_section);
5817 }
5818
5819 /* Read the top level CU/TU die. */
5820 init_cu_die_reader (&reader, cu, section, NULL);
5821 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5822
5823 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5824 from the DWO file.
5825 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5826 DWO CU, that this test will fail (the attribute will not be present). */
5827 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5828 if (attr)
5829 {
5830 struct dwo_unit *dwo_unit;
5831 struct die_info *dwo_comp_unit_die;
5832
5833 if (has_children)
5834 {
5835 complaint (&symfile_complaints,
5836 _("compilation unit with DW_AT_GNU_dwo_name"
5837 " has children (offset 0x%x) [in module %s]"),
5838 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
5839 }
5840 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5841 if (dwo_unit != NULL)
5842 {
5843 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5844 abbrev_table != NULL,
5845 comp_unit_die, NULL,
5846 &reader, &info_ptr,
5847 &dwo_comp_unit_die, &has_children) == 0)
5848 {
5849 /* Dummy die. */
5850 do_cleanups (cleanups);
5851 return;
5852 }
5853 comp_unit_die = dwo_comp_unit_die;
5854 }
5855 else
5856 {
5857 /* Yikes, we couldn't find the rest of the DIE, we only have
5858 the stub. A complaint has already been logged. There's
5859 not much more we can do except pass on the stub DIE to
5860 die_reader_func. We don't want to throw an error on bad
5861 debug info. */
5862 }
5863 }
5864
5865 /* All of the above is setup for this call. Yikes. */
5866 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5867
5868 /* Done, clean up. */
5869 if (free_cu_cleanup != NULL)
5870 {
5871 if (keep)
5872 {
5873 /* We've successfully allocated this compilation unit. Let our
5874 caller clean it up when finished with it. */
5875 discard_cleanups (free_cu_cleanup);
5876
5877 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5878 So we have to manually free the abbrev table. */
5879 dwarf2_free_abbrev_table (cu);
5880
5881 /* Link this CU into read_in_chain. */
5882 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5883 dwarf2_per_objfile->read_in_chain = this_cu;
5884 }
5885 else
5886 do_cleanups (free_cu_cleanup);
5887 }
5888
5889 do_cleanups (cleanups);
5890 }
5891
5892 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5893 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5894 to have already done the lookup to find the DWO file).
5895
5896 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5897 THIS_CU->is_debug_types, but nothing else.
5898
5899 We fill in THIS_CU->length.
5900
5901 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5902 linker) then DIE_READER_FUNC will not get called.
5903
5904 THIS_CU->cu is always freed when done.
5905 This is done in order to not leave THIS_CU->cu in a state where we have
5906 to care whether it refers to the "main" CU or the DWO CU. */
5907
5908 static void
5909 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5910 struct dwo_file *dwo_file,
5911 die_reader_func_ftype *die_reader_func,
5912 void *data)
5913 {
5914 struct objfile *objfile = dwarf2_per_objfile->objfile;
5915 struct dwarf2_section_info *section = this_cu->section;
5916 bfd *abfd = get_section_bfd_owner (section);
5917 struct dwarf2_section_info *abbrev_section;
5918 struct dwarf2_cu cu;
5919 const gdb_byte *begin_info_ptr, *info_ptr;
5920 struct die_reader_specs reader;
5921 struct cleanup *cleanups;
5922 struct die_info *comp_unit_die;
5923 int has_children;
5924
5925 if (dwarf_die_debug)
5926 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5927 this_cu->is_debug_types ? "type" : "comp",
5928 to_underlying (this_cu->sect_off));
5929
5930 gdb_assert (this_cu->cu == NULL);
5931
5932 abbrev_section = (dwo_file != NULL
5933 ? &dwo_file->sections.abbrev
5934 : get_abbrev_section_for_cu (this_cu));
5935
5936 /* This is cheap if the section is already read in. */
5937 dwarf2_read_section (objfile, section);
5938
5939 init_one_comp_unit (&cu, this_cu);
5940
5941 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5942
5943 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
5944 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5945 abbrev_section, info_ptr,
5946 (this_cu->is_debug_types
5947 ? rcuh_kind::TYPE
5948 : rcuh_kind::COMPILE));
5949
5950 this_cu->length = get_cu_length (&cu.header);
5951
5952 /* Skip dummy compilation units. */
5953 if (info_ptr >= begin_info_ptr + this_cu->length
5954 || peek_abbrev_code (abfd, info_ptr) == 0)
5955 {
5956 do_cleanups (cleanups);
5957 return;
5958 }
5959
5960 dwarf2_read_abbrevs (&cu, abbrev_section);
5961 make_cleanup (dwarf2_free_abbrev_table, &cu);
5962
5963 init_cu_die_reader (&reader, &cu, section, dwo_file);
5964 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5965
5966 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5967
5968 do_cleanups (cleanups);
5969 }
5970
5971 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5972 does not lookup the specified DWO file.
5973 This cannot be used to read DWO files.
5974
5975 THIS_CU->cu is always freed when done.
5976 This is done in order to not leave THIS_CU->cu in a state where we have
5977 to care whether it refers to the "main" CU or the DWO CU.
5978 We can revisit this if the data shows there's a performance issue. */
5979
5980 static void
5981 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5982 die_reader_func_ftype *die_reader_func,
5983 void *data)
5984 {
5985 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5986 }
5987 \f
5988 /* Type Unit Groups.
5989
5990 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5991 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5992 so that all types coming from the same compilation (.o file) are grouped
5993 together. A future step could be to put the types in the same symtab as
5994 the CU the types ultimately came from. */
5995
5996 static hashval_t
5997 hash_type_unit_group (const void *item)
5998 {
5999 const struct type_unit_group *tu_group
6000 = (const struct type_unit_group *) item;
6001
6002 return hash_stmt_list_entry (&tu_group->hash);
6003 }
6004
6005 static int
6006 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6007 {
6008 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6009 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6010
6011 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6012 }
6013
6014 /* Allocate a hash table for type unit groups. */
6015
6016 static htab_t
6017 allocate_type_unit_groups_table (void)
6018 {
6019 return htab_create_alloc_ex (3,
6020 hash_type_unit_group,
6021 eq_type_unit_group,
6022 NULL,
6023 &dwarf2_per_objfile->objfile->objfile_obstack,
6024 hashtab_obstack_allocate,
6025 dummy_obstack_deallocate);
6026 }
6027
6028 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6029 partial symtabs. We combine several TUs per psymtab to not let the size
6030 of any one psymtab grow too big. */
6031 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6032 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6033
6034 /* Helper routine for get_type_unit_group.
6035 Create the type_unit_group object used to hold one or more TUs. */
6036
6037 static struct type_unit_group *
6038 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6039 {
6040 struct objfile *objfile = dwarf2_per_objfile->objfile;
6041 struct dwarf2_per_cu_data *per_cu;
6042 struct type_unit_group *tu_group;
6043
6044 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6045 struct type_unit_group);
6046 per_cu = &tu_group->per_cu;
6047 per_cu->objfile = objfile;
6048
6049 if (dwarf2_per_objfile->using_index)
6050 {
6051 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6052 struct dwarf2_per_cu_quick_data);
6053 }
6054 else
6055 {
6056 unsigned int line_offset = to_underlying (line_offset_struct);
6057 struct partial_symtab *pst;
6058 char *name;
6059
6060 /* Give the symtab a useful name for debug purposes. */
6061 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6062 name = xstrprintf ("<type_units_%d>",
6063 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6064 else
6065 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6066
6067 pst = create_partial_symtab (per_cu, name);
6068 pst->anonymous = 1;
6069
6070 xfree (name);
6071 }
6072
6073 tu_group->hash.dwo_unit = cu->dwo_unit;
6074 tu_group->hash.line_sect_off = line_offset_struct;
6075
6076 return tu_group;
6077 }
6078
6079 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6080 STMT_LIST is a DW_AT_stmt_list attribute. */
6081
6082 static struct type_unit_group *
6083 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6084 {
6085 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6086 struct type_unit_group *tu_group;
6087 void **slot;
6088 unsigned int line_offset;
6089 struct type_unit_group type_unit_group_for_lookup;
6090
6091 if (dwarf2_per_objfile->type_unit_groups == NULL)
6092 {
6093 dwarf2_per_objfile->type_unit_groups =
6094 allocate_type_unit_groups_table ();
6095 }
6096
6097 /* Do we need to create a new group, or can we use an existing one? */
6098
6099 if (stmt_list)
6100 {
6101 line_offset = DW_UNSND (stmt_list);
6102 ++tu_stats->nr_symtab_sharers;
6103 }
6104 else
6105 {
6106 /* Ugh, no stmt_list. Rare, but we have to handle it.
6107 We can do various things here like create one group per TU or
6108 spread them over multiple groups to split up the expansion work.
6109 To avoid worst case scenarios (too many groups or too large groups)
6110 we, umm, group them in bunches. */
6111 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6112 | (tu_stats->nr_stmt_less_type_units
6113 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6114 ++tu_stats->nr_stmt_less_type_units;
6115 }
6116
6117 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6118 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6119 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6120 &type_unit_group_for_lookup, INSERT);
6121 if (*slot != NULL)
6122 {
6123 tu_group = (struct type_unit_group *) *slot;
6124 gdb_assert (tu_group != NULL);
6125 }
6126 else
6127 {
6128 sect_offset line_offset_struct = (sect_offset) line_offset;
6129 tu_group = create_type_unit_group (cu, line_offset_struct);
6130 *slot = tu_group;
6131 ++tu_stats->nr_symtabs;
6132 }
6133
6134 return tu_group;
6135 }
6136 \f
6137 /* Partial symbol tables. */
6138
6139 /* Create a psymtab named NAME and assign it to PER_CU.
6140
6141 The caller must fill in the following details:
6142 dirname, textlow, texthigh. */
6143
6144 static struct partial_symtab *
6145 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6146 {
6147 struct objfile *objfile = per_cu->objfile;
6148 struct partial_symtab *pst;
6149
6150 pst = start_psymtab_common (objfile, name, 0,
6151 objfile->global_psymbols.next,
6152 objfile->static_psymbols.next);
6153
6154 pst->psymtabs_addrmap_supported = 1;
6155
6156 /* This is the glue that links PST into GDB's symbol API. */
6157 pst->read_symtab_private = per_cu;
6158 pst->read_symtab = dwarf2_read_symtab;
6159 per_cu->v.psymtab = pst;
6160
6161 return pst;
6162 }
6163
6164 /* The DATA object passed to process_psymtab_comp_unit_reader has this
6165 type. */
6166
6167 struct process_psymtab_comp_unit_data
6168 {
6169 /* True if we are reading a DW_TAG_partial_unit. */
6170
6171 int want_partial_unit;
6172
6173 /* The "pretend" language that is used if the CU doesn't declare a
6174 language. */
6175
6176 enum language pretend_language;
6177 };
6178
6179 /* die_reader_func for process_psymtab_comp_unit. */
6180
6181 static void
6182 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6183 const gdb_byte *info_ptr,
6184 struct die_info *comp_unit_die,
6185 int has_children,
6186 void *data)
6187 {
6188 struct dwarf2_cu *cu = reader->cu;
6189 struct objfile *objfile = cu->objfile;
6190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6191 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6192 CORE_ADDR baseaddr;
6193 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6194 struct partial_symtab *pst;
6195 enum pc_bounds_kind cu_bounds_kind;
6196 const char *filename;
6197 struct process_psymtab_comp_unit_data *info
6198 = (struct process_psymtab_comp_unit_data *) data;
6199
6200 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6201 return;
6202
6203 gdb_assert (! per_cu->is_debug_types);
6204
6205 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6206
6207 cu->list_in_scope = &file_symbols;
6208
6209 /* Allocate a new partial symbol table structure. */
6210 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6211 if (filename == NULL)
6212 filename = "";
6213
6214 pst = create_partial_symtab (per_cu, filename);
6215
6216 /* This must be done before calling dwarf2_build_include_psymtabs. */
6217 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6218
6219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6220
6221 dwarf2_find_base_address (comp_unit_die, cu);
6222
6223 /* Possibly set the default values of LOWPC and HIGHPC from
6224 `DW_AT_ranges'. */
6225 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6226 &best_highpc, cu, pst);
6227 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6228 /* Store the contiguous range if it is not empty; it can be empty for
6229 CUs with no code. */
6230 addrmap_set_empty (objfile->psymtabs_addrmap,
6231 gdbarch_adjust_dwarf2_addr (gdbarch,
6232 best_lowpc + baseaddr),
6233 gdbarch_adjust_dwarf2_addr (gdbarch,
6234 best_highpc + baseaddr) - 1,
6235 pst);
6236
6237 /* Check if comp unit has_children.
6238 If so, read the rest of the partial symbols from this comp unit.
6239 If not, there's no more debug_info for this comp unit. */
6240 if (has_children)
6241 {
6242 struct partial_die_info *first_die;
6243 CORE_ADDR lowpc, highpc;
6244
6245 lowpc = ((CORE_ADDR) -1);
6246 highpc = ((CORE_ADDR) 0);
6247
6248 first_die = load_partial_dies (reader, info_ptr, 1);
6249
6250 scan_partial_symbols (first_die, &lowpc, &highpc,
6251 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6252
6253 /* If we didn't find a lowpc, set it to highpc to avoid
6254 complaints from `maint check'. */
6255 if (lowpc == ((CORE_ADDR) -1))
6256 lowpc = highpc;
6257
6258 /* If the compilation unit didn't have an explicit address range,
6259 then use the information extracted from its child dies. */
6260 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6261 {
6262 best_lowpc = lowpc;
6263 best_highpc = highpc;
6264 }
6265 }
6266 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6267 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6268
6269 end_psymtab_common (objfile, pst);
6270
6271 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6272 {
6273 int i;
6274 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6275 struct dwarf2_per_cu_data *iter;
6276
6277 /* Fill in 'dependencies' here; we fill in 'users' in a
6278 post-pass. */
6279 pst->number_of_dependencies = len;
6280 pst->dependencies =
6281 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6282 for (i = 0;
6283 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6284 i, iter);
6285 ++i)
6286 pst->dependencies[i] = iter->v.psymtab;
6287
6288 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6289 }
6290
6291 /* Get the list of files included in the current compilation unit,
6292 and build a psymtab for each of them. */
6293 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6294
6295 if (dwarf_read_debug)
6296 {
6297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6298
6299 fprintf_unfiltered (gdb_stdlog,
6300 "Psymtab for %s unit @0x%x: %s - %s"
6301 ", %d global, %d static syms\n",
6302 per_cu->is_debug_types ? "type" : "comp",
6303 to_underlying (per_cu->sect_off),
6304 paddress (gdbarch, pst->textlow),
6305 paddress (gdbarch, pst->texthigh),
6306 pst->n_global_syms, pst->n_static_syms);
6307 }
6308 }
6309
6310 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6311 Process compilation unit THIS_CU for a psymtab. */
6312
6313 static void
6314 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6315 int want_partial_unit,
6316 enum language pretend_language)
6317 {
6318 struct process_psymtab_comp_unit_data info;
6319
6320 /* If this compilation unit was already read in, free the
6321 cached copy in order to read it in again. This is
6322 necessary because we skipped some symbols when we first
6323 read in the compilation unit (see load_partial_dies).
6324 This problem could be avoided, but the benefit is unclear. */
6325 if (this_cu->cu != NULL)
6326 free_one_cached_comp_unit (this_cu);
6327
6328 gdb_assert (! this_cu->is_debug_types);
6329 info.want_partial_unit = want_partial_unit;
6330 info.pretend_language = pretend_language;
6331 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6332 process_psymtab_comp_unit_reader,
6333 &info);
6334
6335 /* Age out any secondary CUs. */
6336 age_cached_comp_units ();
6337 }
6338
6339 /* Reader function for build_type_psymtabs. */
6340
6341 static void
6342 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6343 const gdb_byte *info_ptr,
6344 struct die_info *type_unit_die,
6345 int has_children,
6346 void *data)
6347 {
6348 struct objfile *objfile = dwarf2_per_objfile->objfile;
6349 struct dwarf2_cu *cu = reader->cu;
6350 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6351 struct signatured_type *sig_type;
6352 struct type_unit_group *tu_group;
6353 struct attribute *attr;
6354 struct partial_die_info *first_die;
6355 CORE_ADDR lowpc, highpc;
6356 struct partial_symtab *pst;
6357
6358 gdb_assert (data == NULL);
6359 gdb_assert (per_cu->is_debug_types);
6360 sig_type = (struct signatured_type *) per_cu;
6361
6362 if (! has_children)
6363 return;
6364
6365 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6366 tu_group = get_type_unit_group (cu, attr);
6367
6368 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6369
6370 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6371 cu->list_in_scope = &file_symbols;
6372 pst = create_partial_symtab (per_cu, "");
6373 pst->anonymous = 1;
6374
6375 first_die = load_partial_dies (reader, info_ptr, 1);
6376
6377 lowpc = (CORE_ADDR) -1;
6378 highpc = (CORE_ADDR) 0;
6379 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6380
6381 end_psymtab_common (objfile, pst);
6382 }
6383
6384 /* Struct used to sort TUs by their abbreviation table offset. */
6385
6386 struct tu_abbrev_offset
6387 {
6388 struct signatured_type *sig_type;
6389 sect_offset abbrev_offset;
6390 };
6391
6392 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6393
6394 static int
6395 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6396 {
6397 const struct tu_abbrev_offset * const *a
6398 = (const struct tu_abbrev_offset * const*) ap;
6399 const struct tu_abbrev_offset * const *b
6400 = (const struct tu_abbrev_offset * const*) bp;
6401 sect_offset aoff = (*a)->abbrev_offset;
6402 sect_offset boff = (*b)->abbrev_offset;
6403
6404 return (aoff > boff) - (aoff < boff);
6405 }
6406
6407 /* Efficiently read all the type units.
6408 This does the bulk of the work for build_type_psymtabs.
6409
6410 The efficiency is because we sort TUs by the abbrev table they use and
6411 only read each abbrev table once. In one program there are 200K TUs
6412 sharing 8K abbrev tables.
6413
6414 The main purpose of this function is to support building the
6415 dwarf2_per_objfile->type_unit_groups table.
6416 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6417 can collapse the search space by grouping them by stmt_list.
6418 The savings can be significant, in the same program from above the 200K TUs
6419 share 8K stmt_list tables.
6420
6421 FUNC is expected to call get_type_unit_group, which will create the
6422 struct type_unit_group if necessary and add it to
6423 dwarf2_per_objfile->type_unit_groups. */
6424
6425 static void
6426 build_type_psymtabs_1 (void)
6427 {
6428 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6429 struct cleanup *cleanups;
6430 struct abbrev_table *abbrev_table;
6431 sect_offset abbrev_offset;
6432 struct tu_abbrev_offset *sorted_by_abbrev;
6433 int i;
6434
6435 /* It's up to the caller to not call us multiple times. */
6436 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6437
6438 if (dwarf2_per_objfile->n_type_units == 0)
6439 return;
6440
6441 /* TUs typically share abbrev tables, and there can be way more TUs than
6442 abbrev tables. Sort by abbrev table to reduce the number of times we
6443 read each abbrev table in.
6444 Alternatives are to punt or to maintain a cache of abbrev tables.
6445 This is simpler and efficient enough for now.
6446
6447 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6448 symtab to use). Typically TUs with the same abbrev offset have the same
6449 stmt_list value too so in practice this should work well.
6450
6451 The basic algorithm here is:
6452
6453 sort TUs by abbrev table
6454 for each TU with same abbrev table:
6455 read abbrev table if first user
6456 read TU top level DIE
6457 [IWBN if DWO skeletons had DW_AT_stmt_list]
6458 call FUNC */
6459
6460 if (dwarf_read_debug)
6461 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6462
6463 /* Sort in a separate table to maintain the order of all_type_units
6464 for .gdb_index: TU indices directly index all_type_units. */
6465 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6466 dwarf2_per_objfile->n_type_units);
6467 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6468 {
6469 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6470
6471 sorted_by_abbrev[i].sig_type = sig_type;
6472 sorted_by_abbrev[i].abbrev_offset =
6473 read_abbrev_offset (sig_type->per_cu.section,
6474 sig_type->per_cu.sect_off);
6475 }
6476 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6477 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6478 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6479
6480 abbrev_offset = (sect_offset) ~(unsigned) 0;
6481 abbrev_table = NULL;
6482 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6483
6484 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6485 {
6486 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6487
6488 /* Switch to the next abbrev table if necessary. */
6489 if (abbrev_table == NULL
6490 || tu->abbrev_offset != abbrev_offset)
6491 {
6492 if (abbrev_table != NULL)
6493 {
6494 abbrev_table_free (abbrev_table);
6495 /* Reset to NULL in case abbrev_table_read_table throws
6496 an error: abbrev_table_free_cleanup will get called. */
6497 abbrev_table = NULL;
6498 }
6499 abbrev_offset = tu->abbrev_offset;
6500 abbrev_table =
6501 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6502 abbrev_offset);
6503 ++tu_stats->nr_uniq_abbrev_tables;
6504 }
6505
6506 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6507 build_type_psymtabs_reader, NULL);
6508 }
6509
6510 do_cleanups (cleanups);
6511 }
6512
6513 /* Print collected type unit statistics. */
6514
6515 static void
6516 print_tu_stats (void)
6517 {
6518 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6519
6520 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6521 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6522 dwarf2_per_objfile->n_type_units);
6523 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6524 tu_stats->nr_uniq_abbrev_tables);
6525 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6526 tu_stats->nr_symtabs);
6527 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6528 tu_stats->nr_symtab_sharers);
6529 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6530 tu_stats->nr_stmt_less_type_units);
6531 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6532 tu_stats->nr_all_type_units_reallocs);
6533 }
6534
6535 /* Traversal function for build_type_psymtabs. */
6536
6537 static int
6538 build_type_psymtab_dependencies (void **slot, void *info)
6539 {
6540 struct objfile *objfile = dwarf2_per_objfile->objfile;
6541 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6542 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6543 struct partial_symtab *pst = per_cu->v.psymtab;
6544 int len = VEC_length (sig_type_ptr, tu_group->tus);
6545 struct signatured_type *iter;
6546 int i;
6547
6548 gdb_assert (len > 0);
6549 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6550
6551 pst->number_of_dependencies = len;
6552 pst->dependencies =
6553 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6554 for (i = 0;
6555 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6556 ++i)
6557 {
6558 gdb_assert (iter->per_cu.is_debug_types);
6559 pst->dependencies[i] = iter->per_cu.v.psymtab;
6560 iter->type_unit_group = tu_group;
6561 }
6562
6563 VEC_free (sig_type_ptr, tu_group->tus);
6564
6565 return 1;
6566 }
6567
6568 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6569 Build partial symbol tables for the .debug_types comp-units. */
6570
6571 static void
6572 build_type_psymtabs (struct objfile *objfile)
6573 {
6574 if (! create_all_type_units (objfile))
6575 return;
6576
6577 build_type_psymtabs_1 ();
6578 }
6579
6580 /* Traversal function for process_skeletonless_type_unit.
6581 Read a TU in a DWO file and build partial symbols for it. */
6582
6583 static int
6584 process_skeletonless_type_unit (void **slot, void *info)
6585 {
6586 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6587 struct objfile *objfile = (struct objfile *) info;
6588 struct signatured_type find_entry, *entry;
6589
6590 /* If this TU doesn't exist in the global table, add it and read it in. */
6591
6592 if (dwarf2_per_objfile->signatured_types == NULL)
6593 {
6594 dwarf2_per_objfile->signatured_types
6595 = allocate_signatured_type_table (objfile);
6596 }
6597
6598 find_entry.signature = dwo_unit->signature;
6599 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6600 INSERT);
6601 /* If we've already seen this type there's nothing to do. What's happening
6602 is we're doing our own version of comdat-folding here. */
6603 if (*slot != NULL)
6604 return 1;
6605
6606 /* This does the job that create_all_type_units would have done for
6607 this TU. */
6608 entry = add_type_unit (dwo_unit->signature, slot);
6609 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6610 *slot = entry;
6611
6612 /* This does the job that build_type_psymtabs_1 would have done. */
6613 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6614 build_type_psymtabs_reader, NULL);
6615
6616 return 1;
6617 }
6618
6619 /* Traversal function for process_skeletonless_type_units. */
6620
6621 static int
6622 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6623 {
6624 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6625
6626 if (dwo_file->tus != NULL)
6627 {
6628 htab_traverse_noresize (dwo_file->tus,
6629 process_skeletonless_type_unit, info);
6630 }
6631
6632 return 1;
6633 }
6634
6635 /* Scan all TUs of DWO files, verifying we've processed them.
6636 This is needed in case a TU was emitted without its skeleton.
6637 Note: This can't be done until we know what all the DWO files are. */
6638
6639 static void
6640 process_skeletonless_type_units (struct objfile *objfile)
6641 {
6642 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6643 if (get_dwp_file () == NULL
6644 && dwarf2_per_objfile->dwo_files != NULL)
6645 {
6646 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6647 process_dwo_file_for_skeletonless_type_units,
6648 objfile);
6649 }
6650 }
6651
6652 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6653
6654 static void
6655 psymtabs_addrmap_cleanup (void *o)
6656 {
6657 struct objfile *objfile = (struct objfile *) o;
6658
6659 objfile->psymtabs_addrmap = NULL;
6660 }
6661
6662 /* Compute the 'user' field for each psymtab in OBJFILE. */
6663
6664 static void
6665 set_partial_user (struct objfile *objfile)
6666 {
6667 int i;
6668
6669 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6670 {
6671 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6672 struct partial_symtab *pst = per_cu->v.psymtab;
6673 int j;
6674
6675 if (pst == NULL)
6676 continue;
6677
6678 for (j = 0; j < pst->number_of_dependencies; ++j)
6679 {
6680 /* Set the 'user' field only if it is not already set. */
6681 if (pst->dependencies[j]->user == NULL)
6682 pst->dependencies[j]->user = pst;
6683 }
6684 }
6685 }
6686
6687 /* Build the partial symbol table by doing a quick pass through the
6688 .debug_info and .debug_abbrev sections. */
6689
6690 static void
6691 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6692 {
6693 struct cleanup *back_to, *addrmap_cleanup;
6694 int i;
6695
6696 if (dwarf_read_debug)
6697 {
6698 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6699 objfile_name (objfile));
6700 }
6701
6702 dwarf2_per_objfile->reading_partial_symbols = 1;
6703
6704 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6705
6706 /* Any cached compilation units will be linked by the per-objfile
6707 read_in_chain. Make sure to free them when we're done. */
6708 back_to = make_cleanup (free_cached_comp_units, NULL);
6709
6710 build_type_psymtabs (objfile);
6711
6712 create_all_comp_units (objfile);
6713
6714 /* Create a temporary address map on a temporary obstack. We later
6715 copy this to the final obstack. */
6716 auto_obstack temp_obstack;
6717 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6718 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6719
6720 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6721 {
6722 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6723
6724 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6725 }
6726
6727 /* This has to wait until we read the CUs, we need the list of DWOs. */
6728 process_skeletonless_type_units (objfile);
6729
6730 /* Now that all TUs have been processed we can fill in the dependencies. */
6731 if (dwarf2_per_objfile->type_unit_groups != NULL)
6732 {
6733 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6734 build_type_psymtab_dependencies, NULL);
6735 }
6736
6737 if (dwarf_read_debug)
6738 print_tu_stats ();
6739
6740 set_partial_user (objfile);
6741
6742 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6743 &objfile->objfile_obstack);
6744 discard_cleanups (addrmap_cleanup);
6745
6746 do_cleanups (back_to);
6747
6748 if (dwarf_read_debug)
6749 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6750 objfile_name (objfile));
6751 }
6752
6753 /* die_reader_func for load_partial_comp_unit. */
6754
6755 static void
6756 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6757 const gdb_byte *info_ptr,
6758 struct die_info *comp_unit_die,
6759 int has_children,
6760 void *data)
6761 {
6762 struct dwarf2_cu *cu = reader->cu;
6763
6764 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6765
6766 /* Check if comp unit has_children.
6767 If so, read the rest of the partial symbols from this comp unit.
6768 If not, there's no more debug_info for this comp unit. */
6769 if (has_children)
6770 load_partial_dies (reader, info_ptr, 0);
6771 }
6772
6773 /* Load the partial DIEs for a secondary CU into memory.
6774 This is also used when rereading a primary CU with load_all_dies. */
6775
6776 static void
6777 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6778 {
6779 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6780 load_partial_comp_unit_reader, NULL);
6781 }
6782
6783 static void
6784 read_comp_units_from_section (struct objfile *objfile,
6785 struct dwarf2_section_info *section,
6786 unsigned int is_dwz,
6787 int *n_allocated,
6788 int *n_comp_units,
6789 struct dwarf2_per_cu_data ***all_comp_units)
6790 {
6791 const gdb_byte *info_ptr;
6792 bfd *abfd = get_section_bfd_owner (section);
6793
6794 if (dwarf_read_debug)
6795 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6796 get_section_name (section),
6797 get_section_file_name (section));
6798
6799 dwarf2_read_section (objfile, section);
6800
6801 info_ptr = section->buffer;
6802
6803 while (info_ptr < section->buffer + section->size)
6804 {
6805 unsigned int length, initial_length_size;
6806 struct dwarf2_per_cu_data *this_cu;
6807
6808 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
6809
6810 /* Read just enough information to find out where the next
6811 compilation unit is. */
6812 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6813
6814 /* Save the compilation unit for later lookup. */
6815 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6816 memset (this_cu, 0, sizeof (*this_cu));
6817 this_cu->sect_off = sect_off;
6818 this_cu->length = length + initial_length_size;
6819 this_cu->is_dwz = is_dwz;
6820 this_cu->objfile = objfile;
6821 this_cu->section = section;
6822
6823 if (*n_comp_units == *n_allocated)
6824 {
6825 *n_allocated *= 2;
6826 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6827 *all_comp_units, *n_allocated);
6828 }
6829 (*all_comp_units)[*n_comp_units] = this_cu;
6830 ++*n_comp_units;
6831
6832 info_ptr = info_ptr + this_cu->length;
6833 }
6834 }
6835
6836 /* Create a list of all compilation units in OBJFILE.
6837 This is only done for -readnow and building partial symtabs. */
6838
6839 static void
6840 create_all_comp_units (struct objfile *objfile)
6841 {
6842 int n_allocated;
6843 int n_comp_units;
6844 struct dwarf2_per_cu_data **all_comp_units;
6845 struct dwz_file *dwz;
6846
6847 n_comp_units = 0;
6848 n_allocated = 10;
6849 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6850
6851 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6852 &n_allocated, &n_comp_units, &all_comp_units);
6853
6854 dwz = dwarf2_get_dwz_file ();
6855 if (dwz != NULL)
6856 read_comp_units_from_section (objfile, &dwz->info, 1,
6857 &n_allocated, &n_comp_units,
6858 &all_comp_units);
6859
6860 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6861 struct dwarf2_per_cu_data *,
6862 n_comp_units);
6863 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6864 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6865 xfree (all_comp_units);
6866 dwarf2_per_objfile->n_comp_units = n_comp_units;
6867 }
6868
6869 /* Process all loaded DIEs for compilation unit CU, starting at
6870 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6871 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6872 DW_AT_ranges). See the comments of add_partial_subprogram on how
6873 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6874
6875 static void
6876 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6877 CORE_ADDR *highpc, int set_addrmap,
6878 struct dwarf2_cu *cu)
6879 {
6880 struct partial_die_info *pdi;
6881
6882 /* Now, march along the PDI's, descending into ones which have
6883 interesting children but skipping the children of the other ones,
6884 until we reach the end of the compilation unit. */
6885
6886 pdi = first_die;
6887
6888 while (pdi != NULL)
6889 {
6890 fixup_partial_die (pdi, cu);
6891
6892 /* Anonymous namespaces or modules have no name but have interesting
6893 children, so we need to look at them. Ditto for anonymous
6894 enums. */
6895
6896 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6897 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6898 || pdi->tag == DW_TAG_imported_unit)
6899 {
6900 switch (pdi->tag)
6901 {
6902 case DW_TAG_subprogram:
6903 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6904 break;
6905 case DW_TAG_constant:
6906 case DW_TAG_variable:
6907 case DW_TAG_typedef:
6908 case DW_TAG_union_type:
6909 if (!pdi->is_declaration)
6910 {
6911 add_partial_symbol (pdi, cu);
6912 }
6913 break;
6914 case DW_TAG_class_type:
6915 case DW_TAG_interface_type:
6916 case DW_TAG_structure_type:
6917 if (!pdi->is_declaration)
6918 {
6919 add_partial_symbol (pdi, cu);
6920 }
6921 if (cu->language == language_rust && pdi->has_children)
6922 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6923 set_addrmap, cu);
6924 break;
6925 case DW_TAG_enumeration_type:
6926 if (!pdi->is_declaration)
6927 add_partial_enumeration (pdi, cu);
6928 break;
6929 case DW_TAG_base_type:
6930 case DW_TAG_subrange_type:
6931 /* File scope base type definitions are added to the partial
6932 symbol table. */
6933 add_partial_symbol (pdi, cu);
6934 break;
6935 case DW_TAG_namespace:
6936 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6937 break;
6938 case DW_TAG_module:
6939 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6940 break;
6941 case DW_TAG_imported_unit:
6942 {
6943 struct dwarf2_per_cu_data *per_cu;
6944
6945 /* For now we don't handle imported units in type units. */
6946 if (cu->per_cu->is_debug_types)
6947 {
6948 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6949 " supported in type units [in module %s]"),
6950 objfile_name (cu->objfile));
6951 }
6952
6953 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
6954 pdi->is_dwz,
6955 cu->objfile);
6956
6957 /* Go read the partial unit, if needed. */
6958 if (per_cu->v.psymtab == NULL)
6959 process_psymtab_comp_unit (per_cu, 1, cu->language);
6960
6961 VEC_safe_push (dwarf2_per_cu_ptr,
6962 cu->per_cu->imported_symtabs, per_cu);
6963 }
6964 break;
6965 case DW_TAG_imported_declaration:
6966 add_partial_symbol (pdi, cu);
6967 break;
6968 default:
6969 break;
6970 }
6971 }
6972
6973 /* If the die has a sibling, skip to the sibling. */
6974
6975 pdi = pdi->die_sibling;
6976 }
6977 }
6978
6979 /* Functions used to compute the fully scoped name of a partial DIE.
6980
6981 Normally, this is simple. For C++, the parent DIE's fully scoped
6982 name is concatenated with "::" and the partial DIE's name.
6983 Enumerators are an exception; they use the scope of their parent
6984 enumeration type, i.e. the name of the enumeration type is not
6985 prepended to the enumerator.
6986
6987 There are two complexities. One is DW_AT_specification; in this
6988 case "parent" means the parent of the target of the specification,
6989 instead of the direct parent of the DIE. The other is compilers
6990 which do not emit DW_TAG_namespace; in this case we try to guess
6991 the fully qualified name of structure types from their members'
6992 linkage names. This must be done using the DIE's children rather
6993 than the children of any DW_AT_specification target. We only need
6994 to do this for structures at the top level, i.e. if the target of
6995 any DW_AT_specification (if any; otherwise the DIE itself) does not
6996 have a parent. */
6997
6998 /* Compute the scope prefix associated with PDI's parent, in
6999 compilation unit CU. The result will be allocated on CU's
7000 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7001 field. NULL is returned if no prefix is necessary. */
7002 static const char *
7003 partial_die_parent_scope (struct partial_die_info *pdi,
7004 struct dwarf2_cu *cu)
7005 {
7006 const char *grandparent_scope;
7007 struct partial_die_info *parent, *real_pdi;
7008
7009 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7010 then this means the parent of the specification DIE. */
7011
7012 real_pdi = pdi;
7013 while (real_pdi->has_specification)
7014 real_pdi = find_partial_die (real_pdi->spec_offset,
7015 real_pdi->spec_is_dwz, cu);
7016
7017 parent = real_pdi->die_parent;
7018 if (parent == NULL)
7019 return NULL;
7020
7021 if (parent->scope_set)
7022 return parent->scope;
7023
7024 fixup_partial_die (parent, cu);
7025
7026 grandparent_scope = partial_die_parent_scope (parent, cu);
7027
7028 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7029 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7030 Work around this problem here. */
7031 if (cu->language == language_cplus
7032 && parent->tag == DW_TAG_namespace
7033 && strcmp (parent->name, "::") == 0
7034 && grandparent_scope == NULL)
7035 {
7036 parent->scope = NULL;
7037 parent->scope_set = 1;
7038 return NULL;
7039 }
7040
7041 if (pdi->tag == DW_TAG_enumerator)
7042 /* Enumerators should not get the name of the enumeration as a prefix. */
7043 parent->scope = grandparent_scope;
7044 else if (parent->tag == DW_TAG_namespace
7045 || parent->tag == DW_TAG_module
7046 || parent->tag == DW_TAG_structure_type
7047 || parent->tag == DW_TAG_class_type
7048 || parent->tag == DW_TAG_interface_type
7049 || parent->tag == DW_TAG_union_type
7050 || parent->tag == DW_TAG_enumeration_type)
7051 {
7052 if (grandparent_scope == NULL)
7053 parent->scope = parent->name;
7054 else
7055 parent->scope = typename_concat (&cu->comp_unit_obstack,
7056 grandparent_scope,
7057 parent->name, 0, cu);
7058 }
7059 else
7060 {
7061 /* FIXME drow/2004-04-01: What should we be doing with
7062 function-local names? For partial symbols, we should probably be
7063 ignoring them. */
7064 complaint (&symfile_complaints,
7065 _("unhandled containing DIE tag %d for DIE at %d"),
7066 parent->tag, to_underlying (pdi->sect_off));
7067 parent->scope = grandparent_scope;
7068 }
7069
7070 parent->scope_set = 1;
7071 return parent->scope;
7072 }
7073
7074 /* Return the fully scoped name associated with PDI, from compilation unit
7075 CU. The result will be allocated with malloc. */
7076
7077 static char *
7078 partial_die_full_name (struct partial_die_info *pdi,
7079 struct dwarf2_cu *cu)
7080 {
7081 const char *parent_scope;
7082
7083 /* If this is a template instantiation, we can not work out the
7084 template arguments from partial DIEs. So, unfortunately, we have
7085 to go through the full DIEs. At least any work we do building
7086 types here will be reused if full symbols are loaded later. */
7087 if (pdi->has_template_arguments)
7088 {
7089 fixup_partial_die (pdi, cu);
7090
7091 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7092 {
7093 struct die_info *die;
7094 struct attribute attr;
7095 struct dwarf2_cu *ref_cu = cu;
7096
7097 /* DW_FORM_ref_addr is using section offset. */
7098 attr.name = (enum dwarf_attribute) 0;
7099 attr.form = DW_FORM_ref_addr;
7100 attr.u.unsnd = to_underlying (pdi->sect_off);
7101 die = follow_die_ref (NULL, &attr, &ref_cu);
7102
7103 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7104 }
7105 }
7106
7107 parent_scope = partial_die_parent_scope (pdi, cu);
7108 if (parent_scope == NULL)
7109 return NULL;
7110 else
7111 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7112 }
7113
7114 static void
7115 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7116 {
7117 struct objfile *objfile = cu->objfile;
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR addr = 0;
7120 const char *actual_name = NULL;
7121 CORE_ADDR baseaddr;
7122 char *built_actual_name;
7123
7124 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7125
7126 built_actual_name = partial_die_full_name (pdi, cu);
7127 if (built_actual_name != NULL)
7128 actual_name = built_actual_name;
7129
7130 if (actual_name == NULL)
7131 actual_name = pdi->name;
7132
7133 switch (pdi->tag)
7134 {
7135 case DW_TAG_subprogram:
7136 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
7137 if (pdi->is_external || cu->language == language_ada)
7138 {
7139 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7140 of the global scope. But in Ada, we want to be able to access
7141 nested procedures globally. So all Ada subprograms are stored
7142 in the global scope. */
7143 add_psymbol_to_list (actual_name, strlen (actual_name),
7144 built_actual_name != NULL,
7145 VAR_DOMAIN, LOC_BLOCK,
7146 &objfile->global_psymbols,
7147 addr, cu->language, objfile);
7148 }
7149 else
7150 {
7151 add_psymbol_to_list (actual_name, strlen (actual_name),
7152 built_actual_name != NULL,
7153 VAR_DOMAIN, LOC_BLOCK,
7154 &objfile->static_psymbols,
7155 addr, cu->language, objfile);
7156 }
7157
7158 if (pdi->main_subprogram && actual_name != NULL)
7159 set_objfile_main_name (objfile, actual_name, cu->language);
7160 break;
7161 case DW_TAG_constant:
7162 {
7163 struct psymbol_allocation_list *list;
7164
7165 if (pdi->is_external)
7166 list = &objfile->global_psymbols;
7167 else
7168 list = &objfile->static_psymbols;
7169 add_psymbol_to_list (actual_name, strlen (actual_name),
7170 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
7171 list, 0, cu->language, objfile);
7172 }
7173 break;
7174 case DW_TAG_variable:
7175 if (pdi->d.locdesc)
7176 addr = decode_locdesc (pdi->d.locdesc, cu);
7177
7178 if (pdi->d.locdesc
7179 && addr == 0
7180 && !dwarf2_per_objfile->has_section_at_zero)
7181 {
7182 /* A global or static variable may also have been stripped
7183 out by the linker if unused, in which case its address
7184 will be nullified; do not add such variables into partial
7185 symbol table then. */
7186 }
7187 else if (pdi->is_external)
7188 {
7189 /* Global Variable.
7190 Don't enter into the minimal symbol tables as there is
7191 a minimal symbol table entry from the ELF symbols already.
7192 Enter into partial symbol table if it has a location
7193 descriptor or a type.
7194 If the location descriptor is missing, new_symbol will create
7195 a LOC_UNRESOLVED symbol, the address of the variable will then
7196 be determined from the minimal symbol table whenever the variable
7197 is referenced.
7198 The address for the partial symbol table entry is not
7199 used by GDB, but it comes in handy for debugging partial symbol
7200 table building. */
7201
7202 if (pdi->d.locdesc || pdi->has_type)
7203 add_psymbol_to_list (actual_name, strlen (actual_name),
7204 built_actual_name != NULL,
7205 VAR_DOMAIN, LOC_STATIC,
7206 &objfile->global_psymbols,
7207 addr + baseaddr,
7208 cu->language, objfile);
7209 }
7210 else
7211 {
7212 int has_loc = pdi->d.locdesc != NULL;
7213
7214 /* Static Variable. Skip symbols whose value we cannot know (those
7215 without location descriptors or constant values). */
7216 if (!has_loc && !pdi->has_const_value)
7217 {
7218 xfree (built_actual_name);
7219 return;
7220 }
7221
7222 add_psymbol_to_list (actual_name, strlen (actual_name),
7223 built_actual_name != NULL,
7224 VAR_DOMAIN, LOC_STATIC,
7225 &objfile->static_psymbols,
7226 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7227 cu->language, objfile);
7228 }
7229 break;
7230 case DW_TAG_typedef:
7231 case DW_TAG_base_type:
7232 case DW_TAG_subrange_type:
7233 add_psymbol_to_list (actual_name, strlen (actual_name),
7234 built_actual_name != NULL,
7235 VAR_DOMAIN, LOC_TYPEDEF,
7236 &objfile->static_psymbols,
7237 0, cu->language, objfile);
7238 break;
7239 case DW_TAG_imported_declaration:
7240 case DW_TAG_namespace:
7241 add_psymbol_to_list (actual_name, strlen (actual_name),
7242 built_actual_name != NULL,
7243 VAR_DOMAIN, LOC_TYPEDEF,
7244 &objfile->global_psymbols,
7245 0, cu->language, objfile);
7246 break;
7247 case DW_TAG_module:
7248 add_psymbol_to_list (actual_name, strlen (actual_name),
7249 built_actual_name != NULL,
7250 MODULE_DOMAIN, LOC_TYPEDEF,
7251 &objfile->global_psymbols,
7252 0, cu->language, objfile);
7253 break;
7254 case DW_TAG_class_type:
7255 case DW_TAG_interface_type:
7256 case DW_TAG_structure_type:
7257 case DW_TAG_union_type:
7258 case DW_TAG_enumeration_type:
7259 /* Skip external references. The DWARF standard says in the section
7260 about "Structure, Union, and Class Type Entries": "An incomplete
7261 structure, union or class type is represented by a structure,
7262 union or class entry that does not have a byte size attribute
7263 and that has a DW_AT_declaration attribute." */
7264 if (!pdi->has_byte_size && pdi->is_declaration)
7265 {
7266 xfree (built_actual_name);
7267 return;
7268 }
7269
7270 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7271 static vs. global. */
7272 add_psymbol_to_list (actual_name, strlen (actual_name),
7273 built_actual_name != NULL,
7274 STRUCT_DOMAIN, LOC_TYPEDEF,
7275 cu->language == language_cplus
7276 ? &objfile->global_psymbols
7277 : &objfile->static_psymbols,
7278 0, cu->language, objfile);
7279
7280 break;
7281 case DW_TAG_enumerator:
7282 add_psymbol_to_list (actual_name, strlen (actual_name),
7283 built_actual_name != NULL,
7284 VAR_DOMAIN, LOC_CONST,
7285 cu->language == language_cplus
7286 ? &objfile->global_psymbols
7287 : &objfile->static_psymbols,
7288 0, cu->language, objfile);
7289 break;
7290 default:
7291 break;
7292 }
7293
7294 xfree (built_actual_name);
7295 }
7296
7297 /* Read a partial die corresponding to a namespace; also, add a symbol
7298 corresponding to that namespace to the symbol table. NAMESPACE is
7299 the name of the enclosing namespace. */
7300
7301 static void
7302 add_partial_namespace (struct partial_die_info *pdi,
7303 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7304 int set_addrmap, struct dwarf2_cu *cu)
7305 {
7306 /* Add a symbol for the namespace. */
7307
7308 add_partial_symbol (pdi, cu);
7309
7310 /* Now scan partial symbols in that namespace. */
7311
7312 if (pdi->has_children)
7313 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7314 }
7315
7316 /* Read a partial die corresponding to a Fortran module. */
7317
7318 static void
7319 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7320 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7321 {
7322 /* Add a symbol for the namespace. */
7323
7324 add_partial_symbol (pdi, cu);
7325
7326 /* Now scan partial symbols in that module. */
7327
7328 if (pdi->has_children)
7329 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7330 }
7331
7332 /* Read a partial die corresponding to a subprogram and create a partial
7333 symbol for that subprogram. When the CU language allows it, this
7334 routine also defines a partial symbol for each nested subprogram
7335 that this subprogram contains. If SET_ADDRMAP is true, record the
7336 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7337 and highest PC values found in PDI.
7338
7339 PDI may also be a lexical block, in which case we simply search
7340 recursively for subprograms defined inside that lexical block.
7341 Again, this is only performed when the CU language allows this
7342 type of definitions. */
7343
7344 static void
7345 add_partial_subprogram (struct partial_die_info *pdi,
7346 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7347 int set_addrmap, struct dwarf2_cu *cu)
7348 {
7349 if (pdi->tag == DW_TAG_subprogram)
7350 {
7351 if (pdi->has_pc_info)
7352 {
7353 if (pdi->lowpc < *lowpc)
7354 *lowpc = pdi->lowpc;
7355 if (pdi->highpc > *highpc)
7356 *highpc = pdi->highpc;
7357 if (set_addrmap)
7358 {
7359 struct objfile *objfile = cu->objfile;
7360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7361 CORE_ADDR baseaddr;
7362 CORE_ADDR highpc;
7363 CORE_ADDR lowpc;
7364
7365 baseaddr = ANOFFSET (objfile->section_offsets,
7366 SECT_OFF_TEXT (objfile));
7367 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7368 pdi->lowpc + baseaddr);
7369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7370 pdi->highpc + baseaddr);
7371 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7372 cu->per_cu->v.psymtab);
7373 }
7374 }
7375
7376 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7377 {
7378 if (!pdi->is_declaration)
7379 /* Ignore subprogram DIEs that do not have a name, they are
7380 illegal. Do not emit a complaint at this point, we will
7381 do so when we convert this psymtab into a symtab. */
7382 if (pdi->name)
7383 add_partial_symbol (pdi, cu);
7384 }
7385 }
7386
7387 if (! pdi->has_children)
7388 return;
7389
7390 if (cu->language == language_ada)
7391 {
7392 pdi = pdi->die_child;
7393 while (pdi != NULL)
7394 {
7395 fixup_partial_die (pdi, cu);
7396 if (pdi->tag == DW_TAG_subprogram
7397 || pdi->tag == DW_TAG_lexical_block)
7398 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7399 pdi = pdi->die_sibling;
7400 }
7401 }
7402 }
7403
7404 /* Read a partial die corresponding to an enumeration type. */
7405
7406 static void
7407 add_partial_enumeration (struct partial_die_info *enum_pdi,
7408 struct dwarf2_cu *cu)
7409 {
7410 struct partial_die_info *pdi;
7411
7412 if (enum_pdi->name != NULL)
7413 add_partial_symbol (enum_pdi, cu);
7414
7415 pdi = enum_pdi->die_child;
7416 while (pdi)
7417 {
7418 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7419 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7420 else
7421 add_partial_symbol (pdi, cu);
7422 pdi = pdi->die_sibling;
7423 }
7424 }
7425
7426 /* Return the initial uleb128 in the die at INFO_PTR. */
7427
7428 static unsigned int
7429 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7430 {
7431 unsigned int bytes_read;
7432
7433 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7434 }
7435
7436 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7437 Return the corresponding abbrev, or NULL if the number is zero (indicating
7438 an empty DIE). In either case *BYTES_READ will be set to the length of
7439 the initial number. */
7440
7441 static struct abbrev_info *
7442 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7443 struct dwarf2_cu *cu)
7444 {
7445 bfd *abfd = cu->objfile->obfd;
7446 unsigned int abbrev_number;
7447 struct abbrev_info *abbrev;
7448
7449 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7450
7451 if (abbrev_number == 0)
7452 return NULL;
7453
7454 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7455 if (!abbrev)
7456 {
7457 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7458 " at offset 0x%x [in module %s]"),
7459 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7460 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
7461 }
7462
7463 return abbrev;
7464 }
7465
7466 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7467 Returns a pointer to the end of a series of DIEs, terminated by an empty
7468 DIE. Any children of the skipped DIEs will also be skipped. */
7469
7470 static const gdb_byte *
7471 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7472 {
7473 struct dwarf2_cu *cu = reader->cu;
7474 struct abbrev_info *abbrev;
7475 unsigned int bytes_read;
7476
7477 while (1)
7478 {
7479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7480 if (abbrev == NULL)
7481 return info_ptr + bytes_read;
7482 else
7483 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7484 }
7485 }
7486
7487 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7488 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7489 abbrev corresponding to that skipped uleb128 should be passed in
7490 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7491 children. */
7492
7493 static const gdb_byte *
7494 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7495 struct abbrev_info *abbrev)
7496 {
7497 unsigned int bytes_read;
7498 struct attribute attr;
7499 bfd *abfd = reader->abfd;
7500 struct dwarf2_cu *cu = reader->cu;
7501 const gdb_byte *buffer = reader->buffer;
7502 const gdb_byte *buffer_end = reader->buffer_end;
7503 unsigned int form, i;
7504
7505 for (i = 0; i < abbrev->num_attrs; i++)
7506 {
7507 /* The only abbrev we care about is DW_AT_sibling. */
7508 if (abbrev->attrs[i].name == DW_AT_sibling)
7509 {
7510 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7511 if (attr.form == DW_FORM_ref_addr)
7512 complaint (&symfile_complaints,
7513 _("ignoring absolute DW_AT_sibling"));
7514 else
7515 {
7516 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7517 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
7518
7519 if (sibling_ptr < info_ptr)
7520 complaint (&symfile_complaints,
7521 _("DW_AT_sibling points backwards"));
7522 else if (sibling_ptr > reader->buffer_end)
7523 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7524 else
7525 return sibling_ptr;
7526 }
7527 }
7528
7529 /* If it isn't DW_AT_sibling, skip this attribute. */
7530 form = abbrev->attrs[i].form;
7531 skip_attribute:
7532 switch (form)
7533 {
7534 case DW_FORM_ref_addr:
7535 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7536 and later it is offset sized. */
7537 if (cu->header.version == 2)
7538 info_ptr += cu->header.addr_size;
7539 else
7540 info_ptr += cu->header.offset_size;
7541 break;
7542 case DW_FORM_GNU_ref_alt:
7543 info_ptr += cu->header.offset_size;
7544 break;
7545 case DW_FORM_addr:
7546 info_ptr += cu->header.addr_size;
7547 break;
7548 case DW_FORM_data1:
7549 case DW_FORM_ref1:
7550 case DW_FORM_flag:
7551 info_ptr += 1;
7552 break;
7553 case DW_FORM_flag_present:
7554 case DW_FORM_implicit_const:
7555 break;
7556 case DW_FORM_data2:
7557 case DW_FORM_ref2:
7558 info_ptr += 2;
7559 break;
7560 case DW_FORM_data4:
7561 case DW_FORM_ref4:
7562 info_ptr += 4;
7563 break;
7564 case DW_FORM_data8:
7565 case DW_FORM_ref8:
7566 case DW_FORM_ref_sig8:
7567 info_ptr += 8;
7568 break;
7569 case DW_FORM_data16:
7570 info_ptr += 16;
7571 break;
7572 case DW_FORM_string:
7573 read_direct_string (abfd, info_ptr, &bytes_read);
7574 info_ptr += bytes_read;
7575 break;
7576 case DW_FORM_sec_offset:
7577 case DW_FORM_strp:
7578 case DW_FORM_GNU_strp_alt:
7579 info_ptr += cu->header.offset_size;
7580 break;
7581 case DW_FORM_exprloc:
7582 case DW_FORM_block:
7583 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7584 info_ptr += bytes_read;
7585 break;
7586 case DW_FORM_block1:
7587 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7588 break;
7589 case DW_FORM_block2:
7590 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7591 break;
7592 case DW_FORM_block4:
7593 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7594 break;
7595 case DW_FORM_sdata:
7596 case DW_FORM_udata:
7597 case DW_FORM_ref_udata:
7598 case DW_FORM_GNU_addr_index:
7599 case DW_FORM_GNU_str_index:
7600 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7601 break;
7602 case DW_FORM_indirect:
7603 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7604 info_ptr += bytes_read;
7605 /* We need to continue parsing from here, so just go back to
7606 the top. */
7607 goto skip_attribute;
7608
7609 default:
7610 error (_("Dwarf Error: Cannot handle %s "
7611 "in DWARF reader [in module %s]"),
7612 dwarf_form_name (form),
7613 bfd_get_filename (abfd));
7614 }
7615 }
7616
7617 if (abbrev->has_children)
7618 return skip_children (reader, info_ptr);
7619 else
7620 return info_ptr;
7621 }
7622
7623 /* Locate ORIG_PDI's sibling.
7624 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7625
7626 static const gdb_byte *
7627 locate_pdi_sibling (const struct die_reader_specs *reader,
7628 struct partial_die_info *orig_pdi,
7629 const gdb_byte *info_ptr)
7630 {
7631 /* Do we know the sibling already? */
7632
7633 if (orig_pdi->sibling)
7634 return orig_pdi->sibling;
7635
7636 /* Are there any children to deal with? */
7637
7638 if (!orig_pdi->has_children)
7639 return info_ptr;
7640
7641 /* Skip the children the long way. */
7642
7643 return skip_children (reader, info_ptr);
7644 }
7645
7646 /* Expand this partial symbol table into a full symbol table. SELF is
7647 not NULL. */
7648
7649 static void
7650 dwarf2_read_symtab (struct partial_symtab *self,
7651 struct objfile *objfile)
7652 {
7653 if (self->readin)
7654 {
7655 warning (_("bug: psymtab for %s is already read in."),
7656 self->filename);
7657 }
7658 else
7659 {
7660 if (info_verbose)
7661 {
7662 printf_filtered (_("Reading in symbols for %s..."),
7663 self->filename);
7664 gdb_flush (gdb_stdout);
7665 }
7666
7667 /* Restore our global data. */
7668 dwarf2_per_objfile
7669 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7670 dwarf2_objfile_data_key);
7671
7672 /* If this psymtab is constructed from a debug-only objfile, the
7673 has_section_at_zero flag will not necessarily be correct. We
7674 can get the correct value for this flag by looking at the data
7675 associated with the (presumably stripped) associated objfile. */
7676 if (objfile->separate_debug_objfile_backlink)
7677 {
7678 struct dwarf2_per_objfile *dpo_backlink
7679 = ((struct dwarf2_per_objfile *)
7680 objfile_data (objfile->separate_debug_objfile_backlink,
7681 dwarf2_objfile_data_key));
7682
7683 dwarf2_per_objfile->has_section_at_zero
7684 = dpo_backlink->has_section_at_zero;
7685 }
7686
7687 dwarf2_per_objfile->reading_partial_symbols = 0;
7688
7689 psymtab_to_symtab_1 (self);
7690
7691 /* Finish up the debug error message. */
7692 if (info_verbose)
7693 printf_filtered (_("done.\n"));
7694 }
7695
7696 process_cu_includes ();
7697 }
7698 \f
7699 /* Reading in full CUs. */
7700
7701 /* Add PER_CU to the queue. */
7702
7703 static void
7704 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7705 enum language pretend_language)
7706 {
7707 struct dwarf2_queue_item *item;
7708
7709 per_cu->queued = 1;
7710 item = XNEW (struct dwarf2_queue_item);
7711 item->per_cu = per_cu;
7712 item->pretend_language = pretend_language;
7713 item->next = NULL;
7714
7715 if (dwarf2_queue == NULL)
7716 dwarf2_queue = item;
7717 else
7718 dwarf2_queue_tail->next = item;
7719
7720 dwarf2_queue_tail = item;
7721 }
7722
7723 /* If PER_CU is not yet queued, add it to the queue.
7724 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7725 dependency.
7726 The result is non-zero if PER_CU was queued, otherwise the result is zero
7727 meaning either PER_CU is already queued or it is already loaded.
7728
7729 N.B. There is an invariant here that if a CU is queued then it is loaded.
7730 The caller is required to load PER_CU if we return non-zero. */
7731
7732 static int
7733 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7734 struct dwarf2_per_cu_data *per_cu,
7735 enum language pretend_language)
7736 {
7737 /* We may arrive here during partial symbol reading, if we need full
7738 DIEs to process an unusual case (e.g. template arguments). Do
7739 not queue PER_CU, just tell our caller to load its DIEs. */
7740 if (dwarf2_per_objfile->reading_partial_symbols)
7741 {
7742 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7743 return 1;
7744 return 0;
7745 }
7746
7747 /* Mark the dependence relation so that we don't flush PER_CU
7748 too early. */
7749 if (dependent_cu != NULL)
7750 dwarf2_add_dependence (dependent_cu, per_cu);
7751
7752 /* If it's already on the queue, we have nothing to do. */
7753 if (per_cu->queued)
7754 return 0;
7755
7756 /* If the compilation unit is already loaded, just mark it as
7757 used. */
7758 if (per_cu->cu != NULL)
7759 {
7760 per_cu->cu->last_used = 0;
7761 return 0;
7762 }
7763
7764 /* Add it to the queue. */
7765 queue_comp_unit (per_cu, pretend_language);
7766
7767 return 1;
7768 }
7769
7770 /* Process the queue. */
7771
7772 static void
7773 process_queue (void)
7774 {
7775 struct dwarf2_queue_item *item, *next_item;
7776
7777 if (dwarf_read_debug)
7778 {
7779 fprintf_unfiltered (gdb_stdlog,
7780 "Expanding one or more symtabs of objfile %s ...\n",
7781 objfile_name (dwarf2_per_objfile->objfile));
7782 }
7783
7784 /* The queue starts out with one item, but following a DIE reference
7785 may load a new CU, adding it to the end of the queue. */
7786 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7787 {
7788 if ((dwarf2_per_objfile->using_index
7789 ? !item->per_cu->v.quick->compunit_symtab
7790 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7791 /* Skip dummy CUs. */
7792 && item->per_cu->cu != NULL)
7793 {
7794 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7795 unsigned int debug_print_threshold;
7796 char buf[100];
7797
7798 if (per_cu->is_debug_types)
7799 {
7800 struct signatured_type *sig_type =
7801 (struct signatured_type *) per_cu;
7802
7803 sprintf (buf, "TU %s at offset 0x%x",
7804 hex_string (sig_type->signature),
7805 to_underlying (per_cu->sect_off));
7806 /* There can be 100s of TUs.
7807 Only print them in verbose mode. */
7808 debug_print_threshold = 2;
7809 }
7810 else
7811 {
7812 sprintf (buf, "CU at offset 0x%x",
7813 to_underlying (per_cu->sect_off));
7814 debug_print_threshold = 1;
7815 }
7816
7817 if (dwarf_read_debug >= debug_print_threshold)
7818 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7819
7820 if (per_cu->is_debug_types)
7821 process_full_type_unit (per_cu, item->pretend_language);
7822 else
7823 process_full_comp_unit (per_cu, item->pretend_language);
7824
7825 if (dwarf_read_debug >= debug_print_threshold)
7826 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7827 }
7828
7829 item->per_cu->queued = 0;
7830 next_item = item->next;
7831 xfree (item);
7832 }
7833
7834 dwarf2_queue_tail = NULL;
7835
7836 if (dwarf_read_debug)
7837 {
7838 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7839 objfile_name (dwarf2_per_objfile->objfile));
7840 }
7841 }
7842
7843 /* Free all allocated queue entries. This function only releases anything if
7844 an error was thrown; if the queue was processed then it would have been
7845 freed as we went along. */
7846
7847 static void
7848 dwarf2_release_queue (void *dummy)
7849 {
7850 struct dwarf2_queue_item *item, *last;
7851
7852 item = dwarf2_queue;
7853 while (item)
7854 {
7855 /* Anything still marked queued is likely to be in an
7856 inconsistent state, so discard it. */
7857 if (item->per_cu->queued)
7858 {
7859 if (item->per_cu->cu != NULL)
7860 free_one_cached_comp_unit (item->per_cu);
7861 item->per_cu->queued = 0;
7862 }
7863
7864 last = item;
7865 item = item->next;
7866 xfree (last);
7867 }
7868
7869 dwarf2_queue = dwarf2_queue_tail = NULL;
7870 }
7871
7872 /* Read in full symbols for PST, and anything it depends on. */
7873
7874 static void
7875 psymtab_to_symtab_1 (struct partial_symtab *pst)
7876 {
7877 struct dwarf2_per_cu_data *per_cu;
7878 int i;
7879
7880 if (pst->readin)
7881 return;
7882
7883 for (i = 0; i < pst->number_of_dependencies; i++)
7884 if (!pst->dependencies[i]->readin
7885 && pst->dependencies[i]->user == NULL)
7886 {
7887 /* Inform about additional files that need to be read in. */
7888 if (info_verbose)
7889 {
7890 /* FIXME: i18n: Need to make this a single string. */
7891 fputs_filtered (" ", gdb_stdout);
7892 wrap_here ("");
7893 fputs_filtered ("and ", gdb_stdout);
7894 wrap_here ("");
7895 printf_filtered ("%s...", pst->dependencies[i]->filename);
7896 wrap_here (""); /* Flush output. */
7897 gdb_flush (gdb_stdout);
7898 }
7899 psymtab_to_symtab_1 (pst->dependencies[i]);
7900 }
7901
7902 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7903
7904 if (per_cu == NULL)
7905 {
7906 /* It's an include file, no symbols to read for it.
7907 Everything is in the parent symtab. */
7908 pst->readin = 1;
7909 return;
7910 }
7911
7912 dw2_do_instantiate_symtab (per_cu);
7913 }
7914
7915 /* Trivial hash function for die_info: the hash value of a DIE
7916 is its offset in .debug_info for this objfile. */
7917
7918 static hashval_t
7919 die_hash (const void *item)
7920 {
7921 const struct die_info *die = (const struct die_info *) item;
7922
7923 return to_underlying (die->sect_off);
7924 }
7925
7926 /* Trivial comparison function for die_info structures: two DIEs
7927 are equal if they have the same offset. */
7928
7929 static int
7930 die_eq (const void *item_lhs, const void *item_rhs)
7931 {
7932 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7933 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7934
7935 return die_lhs->sect_off == die_rhs->sect_off;
7936 }
7937
7938 /* die_reader_func for load_full_comp_unit.
7939 This is identical to read_signatured_type_reader,
7940 but is kept separate for now. */
7941
7942 static void
7943 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7944 const gdb_byte *info_ptr,
7945 struct die_info *comp_unit_die,
7946 int has_children,
7947 void *data)
7948 {
7949 struct dwarf2_cu *cu = reader->cu;
7950 enum language *language_ptr = (enum language *) data;
7951
7952 gdb_assert (cu->die_hash == NULL);
7953 cu->die_hash =
7954 htab_create_alloc_ex (cu->header.length / 12,
7955 die_hash,
7956 die_eq,
7957 NULL,
7958 &cu->comp_unit_obstack,
7959 hashtab_obstack_allocate,
7960 dummy_obstack_deallocate);
7961
7962 if (has_children)
7963 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7964 &info_ptr, comp_unit_die);
7965 cu->dies = comp_unit_die;
7966 /* comp_unit_die is not stored in die_hash, no need. */
7967
7968 /* We try not to read any attributes in this function, because not
7969 all CUs needed for references have been loaded yet, and symbol
7970 table processing isn't initialized. But we have to set the CU language,
7971 or we won't be able to build types correctly.
7972 Similarly, if we do not read the producer, we can not apply
7973 producer-specific interpretation. */
7974 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7975 }
7976
7977 /* Load the DIEs associated with PER_CU into memory. */
7978
7979 static void
7980 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7981 enum language pretend_language)
7982 {
7983 gdb_assert (! this_cu->is_debug_types);
7984
7985 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7986 load_full_comp_unit_reader, &pretend_language);
7987 }
7988
7989 /* Add a DIE to the delayed physname list. */
7990
7991 static void
7992 add_to_method_list (struct type *type, int fnfield_index, int index,
7993 const char *name, struct die_info *die,
7994 struct dwarf2_cu *cu)
7995 {
7996 struct delayed_method_info mi;
7997 mi.type = type;
7998 mi.fnfield_index = fnfield_index;
7999 mi.index = index;
8000 mi.name = name;
8001 mi.die = die;
8002 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8003 }
8004
8005 /* A cleanup for freeing the delayed method list. */
8006
8007 static void
8008 free_delayed_list (void *ptr)
8009 {
8010 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8011 if (cu->method_list != NULL)
8012 {
8013 VEC_free (delayed_method_info, cu->method_list);
8014 cu->method_list = NULL;
8015 }
8016 }
8017
8018 /* Compute the physnames of any methods on the CU's method list.
8019
8020 The computation of method physnames is delayed in order to avoid the
8021 (bad) condition that one of the method's formal parameters is of an as yet
8022 incomplete type. */
8023
8024 static void
8025 compute_delayed_physnames (struct dwarf2_cu *cu)
8026 {
8027 int i;
8028 struct delayed_method_info *mi;
8029 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8030 {
8031 const char *physname;
8032 struct fn_fieldlist *fn_flp
8033 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8034 physname = dwarf2_physname (mi->name, mi->die, cu);
8035 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8036 = physname ? physname : "";
8037 }
8038 }
8039
8040 /* Go objects should be embedded in a DW_TAG_module DIE,
8041 and it's not clear if/how imported objects will appear.
8042 To keep Go support simple until that's worked out,
8043 go back through what we've read and create something usable.
8044 We could do this while processing each DIE, and feels kinda cleaner,
8045 but that way is more invasive.
8046 This is to, for example, allow the user to type "p var" or "b main"
8047 without having to specify the package name, and allow lookups
8048 of module.object to work in contexts that use the expression
8049 parser. */
8050
8051 static void
8052 fixup_go_packaging (struct dwarf2_cu *cu)
8053 {
8054 char *package_name = NULL;
8055 struct pending *list;
8056 int i;
8057
8058 for (list = global_symbols; list != NULL; list = list->next)
8059 {
8060 for (i = 0; i < list->nsyms; ++i)
8061 {
8062 struct symbol *sym = list->symbol[i];
8063
8064 if (SYMBOL_LANGUAGE (sym) == language_go
8065 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8066 {
8067 char *this_package_name = go_symbol_package_name (sym);
8068
8069 if (this_package_name == NULL)
8070 continue;
8071 if (package_name == NULL)
8072 package_name = this_package_name;
8073 else
8074 {
8075 if (strcmp (package_name, this_package_name) != 0)
8076 complaint (&symfile_complaints,
8077 _("Symtab %s has objects from two different Go packages: %s and %s"),
8078 (symbol_symtab (sym) != NULL
8079 ? symtab_to_filename_for_display
8080 (symbol_symtab (sym))
8081 : objfile_name (cu->objfile)),
8082 this_package_name, package_name);
8083 xfree (this_package_name);
8084 }
8085 }
8086 }
8087 }
8088
8089 if (package_name != NULL)
8090 {
8091 struct objfile *objfile = cu->objfile;
8092 const char *saved_package_name
8093 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8094 package_name,
8095 strlen (package_name));
8096 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8097 saved_package_name);
8098 struct symbol *sym;
8099
8100 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8101
8102 sym = allocate_symbol (objfile);
8103 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
8104 SYMBOL_SET_NAMES (sym, saved_package_name,
8105 strlen (saved_package_name), 0, objfile);
8106 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8107 e.g., "main" finds the "main" module and not C's main(). */
8108 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8109 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8110 SYMBOL_TYPE (sym) = type;
8111
8112 add_symbol_to_list (sym, &global_symbols);
8113
8114 xfree (package_name);
8115 }
8116 }
8117
8118 /* Return the symtab for PER_CU. This works properly regardless of
8119 whether we're using the index or psymtabs. */
8120
8121 static struct compunit_symtab *
8122 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
8123 {
8124 return (dwarf2_per_objfile->using_index
8125 ? per_cu->v.quick->compunit_symtab
8126 : per_cu->v.psymtab->compunit_symtab);
8127 }
8128
8129 /* A helper function for computing the list of all symbol tables
8130 included by PER_CU. */
8131
8132 static void
8133 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
8134 htab_t all_children, htab_t all_type_symtabs,
8135 struct dwarf2_per_cu_data *per_cu,
8136 struct compunit_symtab *immediate_parent)
8137 {
8138 void **slot;
8139 int ix;
8140 struct compunit_symtab *cust;
8141 struct dwarf2_per_cu_data *iter;
8142
8143 slot = htab_find_slot (all_children, per_cu, INSERT);
8144 if (*slot != NULL)
8145 {
8146 /* This inclusion and its children have been processed. */
8147 return;
8148 }
8149
8150 *slot = per_cu;
8151 /* Only add a CU if it has a symbol table. */
8152 cust = get_compunit_symtab (per_cu);
8153 if (cust != NULL)
8154 {
8155 /* If this is a type unit only add its symbol table if we haven't
8156 seen it yet (type unit per_cu's can share symtabs). */
8157 if (per_cu->is_debug_types)
8158 {
8159 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
8160 if (*slot == NULL)
8161 {
8162 *slot = cust;
8163 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8164 if (cust->user == NULL)
8165 cust->user = immediate_parent;
8166 }
8167 }
8168 else
8169 {
8170 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8171 if (cust->user == NULL)
8172 cust->user = immediate_parent;
8173 }
8174 }
8175
8176 for (ix = 0;
8177 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
8178 ++ix)
8179 {
8180 recursively_compute_inclusions (result, all_children,
8181 all_type_symtabs, iter, cust);
8182 }
8183 }
8184
8185 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
8186 PER_CU. */
8187
8188 static void
8189 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
8190 {
8191 gdb_assert (! per_cu->is_debug_types);
8192
8193 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
8194 {
8195 int ix, len;
8196 struct dwarf2_per_cu_data *per_cu_iter;
8197 struct compunit_symtab *compunit_symtab_iter;
8198 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
8199 htab_t all_children, all_type_symtabs;
8200 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
8201
8202 /* If we don't have a symtab, we can just skip this case. */
8203 if (cust == NULL)
8204 return;
8205
8206 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8207 NULL, xcalloc, xfree);
8208 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8209 NULL, xcalloc, xfree);
8210
8211 for (ix = 0;
8212 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
8213 ix, per_cu_iter);
8214 ++ix)
8215 {
8216 recursively_compute_inclusions (&result_symtabs, all_children,
8217 all_type_symtabs, per_cu_iter,
8218 cust);
8219 }
8220
8221 /* Now we have a transitive closure of all the included symtabs. */
8222 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8223 cust->includes
8224 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8225 struct compunit_symtab *, len + 1);
8226 for (ix = 0;
8227 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8228 compunit_symtab_iter);
8229 ++ix)
8230 cust->includes[ix] = compunit_symtab_iter;
8231 cust->includes[len] = NULL;
8232
8233 VEC_free (compunit_symtab_ptr, result_symtabs);
8234 htab_delete (all_children);
8235 htab_delete (all_type_symtabs);
8236 }
8237 }
8238
8239 /* Compute the 'includes' field for the symtabs of all the CUs we just
8240 read. */
8241
8242 static void
8243 process_cu_includes (void)
8244 {
8245 int ix;
8246 struct dwarf2_per_cu_data *iter;
8247
8248 for (ix = 0;
8249 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8250 ix, iter);
8251 ++ix)
8252 {
8253 if (! iter->is_debug_types)
8254 compute_compunit_symtab_includes (iter);
8255 }
8256
8257 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8258 }
8259
8260 /* Generate full symbol information for PER_CU, whose DIEs have
8261 already been loaded into memory. */
8262
8263 static void
8264 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8265 enum language pretend_language)
8266 {
8267 struct dwarf2_cu *cu = per_cu->cu;
8268 struct objfile *objfile = per_cu->objfile;
8269 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8270 CORE_ADDR lowpc, highpc;
8271 struct compunit_symtab *cust;
8272 struct cleanup *back_to, *delayed_list_cleanup;
8273 CORE_ADDR baseaddr;
8274 struct block *static_block;
8275 CORE_ADDR addr;
8276
8277 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8278
8279 buildsym_init ();
8280 back_to = make_cleanup (really_free_pendings, NULL);
8281 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8282
8283 cu->list_in_scope = &file_symbols;
8284
8285 cu->language = pretend_language;
8286 cu->language_defn = language_def (cu->language);
8287
8288 /* Do line number decoding in read_file_scope () */
8289 process_die (cu->dies, cu);
8290
8291 /* For now fudge the Go package. */
8292 if (cu->language == language_go)
8293 fixup_go_packaging (cu);
8294
8295 /* Now that we have processed all the DIEs in the CU, all the types
8296 should be complete, and it should now be safe to compute all of the
8297 physnames. */
8298 compute_delayed_physnames (cu);
8299 do_cleanups (delayed_list_cleanup);
8300
8301 /* Some compilers don't define a DW_AT_high_pc attribute for the
8302 compilation unit. If the DW_AT_high_pc is missing, synthesize
8303 it, by scanning the DIE's below the compilation unit. */
8304 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8305
8306 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8307 static_block = end_symtab_get_static_block (addr, 0, 1);
8308
8309 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8310 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8311 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8312 addrmap to help ensure it has an accurate map of pc values belonging to
8313 this comp unit. */
8314 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8315
8316 cust = end_symtab_from_static_block (static_block,
8317 SECT_OFF_TEXT (objfile), 0);
8318
8319 if (cust != NULL)
8320 {
8321 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8322
8323 /* Set symtab language to language from DW_AT_language. If the
8324 compilation is from a C file generated by language preprocessors, do
8325 not set the language if it was already deduced by start_subfile. */
8326 if (!(cu->language == language_c
8327 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8328 COMPUNIT_FILETABS (cust)->language = cu->language;
8329
8330 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8331 produce DW_AT_location with location lists but it can be possibly
8332 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8333 there were bugs in prologue debug info, fixed later in GCC-4.5
8334 by "unwind info for epilogues" patch (which is not directly related).
8335
8336 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8337 needed, it would be wrong due to missing DW_AT_producer there.
8338
8339 Still one can confuse GDB by using non-standard GCC compilation
8340 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8341 */
8342 if (cu->has_loclist && gcc_4_minor >= 5)
8343 cust->locations_valid = 1;
8344
8345 if (gcc_4_minor >= 5)
8346 cust->epilogue_unwind_valid = 1;
8347
8348 cust->call_site_htab = cu->call_site_htab;
8349 }
8350
8351 if (dwarf2_per_objfile->using_index)
8352 per_cu->v.quick->compunit_symtab = cust;
8353 else
8354 {
8355 struct partial_symtab *pst = per_cu->v.psymtab;
8356 pst->compunit_symtab = cust;
8357 pst->readin = 1;
8358 }
8359
8360 /* Push it for inclusion processing later. */
8361 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8362
8363 do_cleanups (back_to);
8364 }
8365
8366 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8367 already been loaded into memory. */
8368
8369 static void
8370 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8371 enum language pretend_language)
8372 {
8373 struct dwarf2_cu *cu = per_cu->cu;
8374 struct objfile *objfile = per_cu->objfile;
8375 struct compunit_symtab *cust;
8376 struct cleanup *back_to, *delayed_list_cleanup;
8377 struct signatured_type *sig_type;
8378
8379 gdb_assert (per_cu->is_debug_types);
8380 sig_type = (struct signatured_type *) per_cu;
8381
8382 buildsym_init ();
8383 back_to = make_cleanup (really_free_pendings, NULL);
8384 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8385
8386 cu->list_in_scope = &file_symbols;
8387
8388 cu->language = pretend_language;
8389 cu->language_defn = language_def (cu->language);
8390
8391 /* The symbol tables are set up in read_type_unit_scope. */
8392 process_die (cu->dies, cu);
8393
8394 /* For now fudge the Go package. */
8395 if (cu->language == language_go)
8396 fixup_go_packaging (cu);
8397
8398 /* Now that we have processed all the DIEs in the CU, all the types
8399 should be complete, and it should now be safe to compute all of the
8400 physnames. */
8401 compute_delayed_physnames (cu);
8402 do_cleanups (delayed_list_cleanup);
8403
8404 /* TUs share symbol tables.
8405 If this is the first TU to use this symtab, complete the construction
8406 of it with end_expandable_symtab. Otherwise, complete the addition of
8407 this TU's symbols to the existing symtab. */
8408 if (sig_type->type_unit_group->compunit_symtab == NULL)
8409 {
8410 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8411 sig_type->type_unit_group->compunit_symtab = cust;
8412
8413 if (cust != NULL)
8414 {
8415 /* Set symtab language to language from DW_AT_language. If the
8416 compilation is from a C file generated by language preprocessors,
8417 do not set the language if it was already deduced by
8418 start_subfile. */
8419 if (!(cu->language == language_c
8420 && COMPUNIT_FILETABS (cust)->language != language_c))
8421 COMPUNIT_FILETABS (cust)->language = cu->language;
8422 }
8423 }
8424 else
8425 {
8426 augment_type_symtab ();
8427 cust = sig_type->type_unit_group->compunit_symtab;
8428 }
8429
8430 if (dwarf2_per_objfile->using_index)
8431 per_cu->v.quick->compunit_symtab = cust;
8432 else
8433 {
8434 struct partial_symtab *pst = per_cu->v.psymtab;
8435 pst->compunit_symtab = cust;
8436 pst->readin = 1;
8437 }
8438
8439 do_cleanups (back_to);
8440 }
8441
8442 /* Process an imported unit DIE. */
8443
8444 static void
8445 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8446 {
8447 struct attribute *attr;
8448
8449 /* For now we don't handle imported units in type units. */
8450 if (cu->per_cu->is_debug_types)
8451 {
8452 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8453 " supported in type units [in module %s]"),
8454 objfile_name (cu->objfile));
8455 }
8456
8457 attr = dwarf2_attr (die, DW_AT_import, cu);
8458 if (attr != NULL)
8459 {
8460 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8461 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8462 dwarf2_per_cu_data *per_cu
8463 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
8464
8465 /* If necessary, add it to the queue and load its DIEs. */
8466 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8467 load_full_comp_unit (per_cu, cu->language);
8468
8469 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8470 per_cu);
8471 }
8472 }
8473
8474 /* Reset the in_process bit of a die. */
8475
8476 static void
8477 reset_die_in_process (void *arg)
8478 {
8479 struct die_info *die = (struct die_info *) arg;
8480
8481 die->in_process = 0;
8482 }
8483
8484 /* Process a die and its children. */
8485
8486 static void
8487 process_die (struct die_info *die, struct dwarf2_cu *cu)
8488 {
8489 struct cleanup *in_process;
8490
8491 /* We should only be processing those not already in process. */
8492 gdb_assert (!die->in_process);
8493
8494 die->in_process = 1;
8495 in_process = make_cleanup (reset_die_in_process,die);
8496
8497 switch (die->tag)
8498 {
8499 case DW_TAG_padding:
8500 break;
8501 case DW_TAG_compile_unit:
8502 case DW_TAG_partial_unit:
8503 read_file_scope (die, cu);
8504 break;
8505 case DW_TAG_type_unit:
8506 read_type_unit_scope (die, cu);
8507 break;
8508 case DW_TAG_subprogram:
8509 case DW_TAG_inlined_subroutine:
8510 read_func_scope (die, cu);
8511 break;
8512 case DW_TAG_lexical_block:
8513 case DW_TAG_try_block:
8514 case DW_TAG_catch_block:
8515 read_lexical_block_scope (die, cu);
8516 break;
8517 case DW_TAG_call_site:
8518 case DW_TAG_GNU_call_site:
8519 read_call_site_scope (die, cu);
8520 break;
8521 case DW_TAG_class_type:
8522 case DW_TAG_interface_type:
8523 case DW_TAG_structure_type:
8524 case DW_TAG_union_type:
8525 process_structure_scope (die, cu);
8526 break;
8527 case DW_TAG_enumeration_type:
8528 process_enumeration_scope (die, cu);
8529 break;
8530
8531 /* These dies have a type, but processing them does not create
8532 a symbol or recurse to process the children. Therefore we can
8533 read them on-demand through read_type_die. */
8534 case DW_TAG_subroutine_type:
8535 case DW_TAG_set_type:
8536 case DW_TAG_array_type:
8537 case DW_TAG_pointer_type:
8538 case DW_TAG_ptr_to_member_type:
8539 case DW_TAG_reference_type:
8540 case DW_TAG_rvalue_reference_type:
8541 case DW_TAG_string_type:
8542 break;
8543
8544 case DW_TAG_base_type:
8545 case DW_TAG_subrange_type:
8546 case DW_TAG_typedef:
8547 /* Add a typedef symbol for the type definition, if it has a
8548 DW_AT_name. */
8549 new_symbol (die, read_type_die (die, cu), cu);
8550 break;
8551 case DW_TAG_common_block:
8552 read_common_block (die, cu);
8553 break;
8554 case DW_TAG_common_inclusion:
8555 break;
8556 case DW_TAG_namespace:
8557 cu->processing_has_namespace_info = 1;
8558 read_namespace (die, cu);
8559 break;
8560 case DW_TAG_module:
8561 cu->processing_has_namespace_info = 1;
8562 read_module (die, cu);
8563 break;
8564 case DW_TAG_imported_declaration:
8565 cu->processing_has_namespace_info = 1;
8566 if (read_namespace_alias (die, cu))
8567 break;
8568 /* The declaration is not a global namespace alias: fall through. */
8569 case DW_TAG_imported_module:
8570 cu->processing_has_namespace_info = 1;
8571 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8572 || cu->language != language_fortran))
8573 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8574 dwarf_tag_name (die->tag));
8575 read_import_statement (die, cu);
8576 break;
8577
8578 case DW_TAG_imported_unit:
8579 process_imported_unit_die (die, cu);
8580 break;
8581
8582 default:
8583 new_symbol (die, NULL, cu);
8584 break;
8585 }
8586
8587 do_cleanups (in_process);
8588 }
8589 \f
8590 /* DWARF name computation. */
8591
8592 /* A helper function for dwarf2_compute_name which determines whether DIE
8593 needs to have the name of the scope prepended to the name listed in the
8594 die. */
8595
8596 static int
8597 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8598 {
8599 struct attribute *attr;
8600
8601 switch (die->tag)
8602 {
8603 case DW_TAG_namespace:
8604 case DW_TAG_typedef:
8605 case DW_TAG_class_type:
8606 case DW_TAG_interface_type:
8607 case DW_TAG_structure_type:
8608 case DW_TAG_union_type:
8609 case DW_TAG_enumeration_type:
8610 case DW_TAG_enumerator:
8611 case DW_TAG_subprogram:
8612 case DW_TAG_inlined_subroutine:
8613 case DW_TAG_member:
8614 case DW_TAG_imported_declaration:
8615 return 1;
8616
8617 case DW_TAG_variable:
8618 case DW_TAG_constant:
8619 /* We only need to prefix "globally" visible variables. These include
8620 any variable marked with DW_AT_external or any variable that
8621 lives in a namespace. [Variables in anonymous namespaces
8622 require prefixing, but they are not DW_AT_external.] */
8623
8624 if (dwarf2_attr (die, DW_AT_specification, cu))
8625 {
8626 struct dwarf2_cu *spec_cu = cu;
8627
8628 return die_needs_namespace (die_specification (die, &spec_cu),
8629 spec_cu);
8630 }
8631
8632 attr = dwarf2_attr (die, DW_AT_external, cu);
8633 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8634 && die->parent->tag != DW_TAG_module)
8635 return 0;
8636 /* A variable in a lexical block of some kind does not need a
8637 namespace, even though in C++ such variables may be external
8638 and have a mangled name. */
8639 if (die->parent->tag == DW_TAG_lexical_block
8640 || die->parent->tag == DW_TAG_try_block
8641 || die->parent->tag == DW_TAG_catch_block
8642 || die->parent->tag == DW_TAG_subprogram)
8643 return 0;
8644 return 1;
8645
8646 default:
8647 return 0;
8648 }
8649 }
8650
8651 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8652 compute the physname for the object, which include a method's:
8653 - formal parameters (C++),
8654 - receiver type (Go),
8655
8656 The term "physname" is a bit confusing.
8657 For C++, for example, it is the demangled name.
8658 For Go, for example, it's the mangled name.
8659
8660 For Ada, return the DIE's linkage name rather than the fully qualified
8661 name. PHYSNAME is ignored..
8662
8663 The result is allocated on the objfile_obstack and canonicalized. */
8664
8665 static const char *
8666 dwarf2_compute_name (const char *name,
8667 struct die_info *die, struct dwarf2_cu *cu,
8668 int physname)
8669 {
8670 struct objfile *objfile = cu->objfile;
8671
8672 if (name == NULL)
8673 name = dwarf2_name (die, cu);
8674
8675 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8676 but otherwise compute it by typename_concat inside GDB.
8677 FIXME: Actually this is not really true, or at least not always true.
8678 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8679 Fortran names because there is no mangling standard. So new_symbol_full
8680 will set the demangled name to the result of dwarf2_full_name, and it is
8681 the demangled name that GDB uses if it exists. */
8682 if (cu->language == language_ada
8683 || (cu->language == language_fortran && physname))
8684 {
8685 /* For Ada unit, we prefer the linkage name over the name, as
8686 the former contains the exported name, which the user expects
8687 to be able to reference. Ideally, we want the user to be able
8688 to reference this entity using either natural or linkage name,
8689 but we haven't started looking at this enhancement yet. */
8690 const char *linkage_name;
8691
8692 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8693 if (linkage_name == NULL)
8694 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8695 if (linkage_name != NULL)
8696 return linkage_name;
8697 }
8698
8699 /* These are the only languages we know how to qualify names in. */
8700 if (name != NULL
8701 && (cu->language == language_cplus
8702 || cu->language == language_fortran || cu->language == language_d
8703 || cu->language == language_rust))
8704 {
8705 if (die_needs_namespace (die, cu))
8706 {
8707 long length;
8708 const char *prefix;
8709 const char *canonical_name = NULL;
8710
8711 string_file buf;
8712
8713 prefix = determine_prefix (die, cu);
8714 if (*prefix != '\0')
8715 {
8716 char *prefixed_name = typename_concat (NULL, prefix, name,
8717 physname, cu);
8718
8719 buf.puts (prefixed_name);
8720 xfree (prefixed_name);
8721 }
8722 else
8723 buf.puts (name);
8724
8725 /* Template parameters may be specified in the DIE's DW_AT_name, or
8726 as children with DW_TAG_template_type_param or
8727 DW_TAG_value_type_param. If the latter, add them to the name
8728 here. If the name already has template parameters, then
8729 skip this step; some versions of GCC emit both, and
8730 it is more efficient to use the pre-computed name.
8731
8732 Something to keep in mind about this process: it is very
8733 unlikely, or in some cases downright impossible, to produce
8734 something that will match the mangled name of a function.
8735 If the definition of the function has the same debug info,
8736 we should be able to match up with it anyway. But fallbacks
8737 using the minimal symbol, for instance to find a method
8738 implemented in a stripped copy of libstdc++, will not work.
8739 If we do not have debug info for the definition, we will have to
8740 match them up some other way.
8741
8742 When we do name matching there is a related problem with function
8743 templates; two instantiated function templates are allowed to
8744 differ only by their return types, which we do not add here. */
8745
8746 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8747 {
8748 struct attribute *attr;
8749 struct die_info *child;
8750 int first = 1;
8751
8752 die->building_fullname = 1;
8753
8754 for (child = die->child; child != NULL; child = child->sibling)
8755 {
8756 struct type *type;
8757 LONGEST value;
8758 const gdb_byte *bytes;
8759 struct dwarf2_locexpr_baton *baton;
8760 struct value *v;
8761
8762 if (child->tag != DW_TAG_template_type_param
8763 && child->tag != DW_TAG_template_value_param)
8764 continue;
8765
8766 if (first)
8767 {
8768 buf.puts ("<");
8769 first = 0;
8770 }
8771 else
8772 buf.puts (", ");
8773
8774 attr = dwarf2_attr (child, DW_AT_type, cu);
8775 if (attr == NULL)
8776 {
8777 complaint (&symfile_complaints,
8778 _("template parameter missing DW_AT_type"));
8779 buf.puts ("UNKNOWN_TYPE");
8780 continue;
8781 }
8782 type = die_type (child, cu);
8783
8784 if (child->tag == DW_TAG_template_type_param)
8785 {
8786 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
8787 continue;
8788 }
8789
8790 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8791 if (attr == NULL)
8792 {
8793 complaint (&symfile_complaints,
8794 _("template parameter missing "
8795 "DW_AT_const_value"));
8796 buf.puts ("UNKNOWN_VALUE");
8797 continue;
8798 }
8799
8800 dwarf2_const_value_attr (attr, type, name,
8801 &cu->comp_unit_obstack, cu,
8802 &value, &bytes, &baton);
8803
8804 if (TYPE_NOSIGN (type))
8805 /* GDB prints characters as NUMBER 'CHAR'. If that's
8806 changed, this can use value_print instead. */
8807 c_printchar (value, type, &buf);
8808 else
8809 {
8810 struct value_print_options opts;
8811
8812 if (baton != NULL)
8813 v = dwarf2_evaluate_loc_desc (type, NULL,
8814 baton->data,
8815 baton->size,
8816 baton->per_cu);
8817 else if (bytes != NULL)
8818 {
8819 v = allocate_value (type);
8820 memcpy (value_contents_writeable (v), bytes,
8821 TYPE_LENGTH (type));
8822 }
8823 else
8824 v = value_from_longest (type, value);
8825
8826 /* Specify decimal so that we do not depend on
8827 the radix. */
8828 get_formatted_print_options (&opts, 'd');
8829 opts.raw = 1;
8830 value_print (v, &buf, &opts);
8831 release_value (v);
8832 value_free (v);
8833 }
8834 }
8835
8836 die->building_fullname = 0;
8837
8838 if (!first)
8839 {
8840 /* Close the argument list, with a space if necessary
8841 (nested templates). */
8842 if (!buf.empty () && buf.string ().back () == '>')
8843 buf.puts (" >");
8844 else
8845 buf.puts (">");
8846 }
8847 }
8848
8849 /* For C++ methods, append formal parameter type
8850 information, if PHYSNAME. */
8851
8852 if (physname && die->tag == DW_TAG_subprogram
8853 && cu->language == language_cplus)
8854 {
8855 struct type *type = read_type_die (die, cu);
8856
8857 c_type_print_args (type, &buf, 1, cu->language,
8858 &type_print_raw_options);
8859
8860 if (cu->language == language_cplus)
8861 {
8862 /* Assume that an artificial first parameter is
8863 "this", but do not crash if it is not. RealView
8864 marks unnamed (and thus unused) parameters as
8865 artificial; there is no way to differentiate
8866 the two cases. */
8867 if (TYPE_NFIELDS (type) > 0
8868 && TYPE_FIELD_ARTIFICIAL (type, 0)
8869 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8870 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8871 0))))
8872 buf.puts (" const");
8873 }
8874 }
8875
8876 const std::string &intermediate_name = buf.string ();
8877
8878 if (cu->language == language_cplus)
8879 canonical_name
8880 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8881 &objfile->per_bfd->storage_obstack);
8882
8883 /* If we only computed INTERMEDIATE_NAME, or if
8884 INTERMEDIATE_NAME is already canonical, then we need to
8885 copy it to the appropriate obstack. */
8886 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8887 name = ((const char *)
8888 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8889 intermediate_name.c_str (),
8890 intermediate_name.length ()));
8891 else
8892 name = canonical_name;
8893 }
8894 }
8895
8896 return name;
8897 }
8898
8899 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8900 If scope qualifiers are appropriate they will be added. The result
8901 will be allocated on the storage_obstack, or NULL if the DIE does
8902 not have a name. NAME may either be from a previous call to
8903 dwarf2_name or NULL.
8904
8905 The output string will be canonicalized (if C++). */
8906
8907 static const char *
8908 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8909 {
8910 return dwarf2_compute_name (name, die, cu, 0);
8911 }
8912
8913 /* Construct a physname for the given DIE in CU. NAME may either be
8914 from a previous call to dwarf2_name or NULL. The result will be
8915 allocated on the objfile_objstack or NULL if the DIE does not have a
8916 name.
8917
8918 The output string will be canonicalized (if C++). */
8919
8920 static const char *
8921 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8922 {
8923 struct objfile *objfile = cu->objfile;
8924 const char *retval, *mangled = NULL, *canon = NULL;
8925 struct cleanup *back_to;
8926 int need_copy = 1;
8927
8928 /* In this case dwarf2_compute_name is just a shortcut not building anything
8929 on its own. */
8930 if (!die_needs_namespace (die, cu))
8931 return dwarf2_compute_name (name, die, cu, 1);
8932
8933 back_to = make_cleanup (null_cleanup, NULL);
8934
8935 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8936 if (mangled == NULL)
8937 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8938
8939 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8940 See https://github.com/rust-lang/rust/issues/32925. */
8941 if (cu->language == language_rust && mangled != NULL
8942 && strchr (mangled, '{') != NULL)
8943 mangled = NULL;
8944
8945 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8946 has computed. */
8947 if (mangled != NULL)
8948 {
8949 char *demangled;
8950
8951 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8952 type. It is easier for GDB users to search for such functions as
8953 `name(params)' than `long name(params)'. In such case the minimal
8954 symbol names do not match the full symbol names but for template
8955 functions there is never a need to look up their definition from their
8956 declaration so the only disadvantage remains the minimal symbol
8957 variant `long name(params)' does not have the proper inferior type.
8958 */
8959
8960 if (cu->language == language_go)
8961 {
8962 /* This is a lie, but we already lie to the caller new_symbol_full.
8963 new_symbol_full assumes we return the mangled name.
8964 This just undoes that lie until things are cleaned up. */
8965 demangled = NULL;
8966 }
8967 else
8968 {
8969 demangled = gdb_demangle (mangled,
8970 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8971 }
8972 if (demangled)
8973 {
8974 make_cleanup (xfree, demangled);
8975 canon = demangled;
8976 }
8977 else
8978 {
8979 canon = mangled;
8980 need_copy = 0;
8981 }
8982 }
8983
8984 if (canon == NULL || check_physname)
8985 {
8986 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8987
8988 if (canon != NULL && strcmp (physname, canon) != 0)
8989 {
8990 /* It may not mean a bug in GDB. The compiler could also
8991 compute DW_AT_linkage_name incorrectly. But in such case
8992 GDB would need to be bug-to-bug compatible. */
8993
8994 complaint (&symfile_complaints,
8995 _("Computed physname <%s> does not match demangled <%s> "
8996 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8997 physname, canon, mangled, to_underlying (die->sect_off),
8998 objfile_name (objfile));
8999
9000 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9001 is available here - over computed PHYSNAME. It is safer
9002 against both buggy GDB and buggy compilers. */
9003
9004 retval = canon;
9005 }
9006 else
9007 {
9008 retval = physname;
9009 need_copy = 0;
9010 }
9011 }
9012 else
9013 retval = canon;
9014
9015 if (need_copy)
9016 retval = ((const char *)
9017 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9018 retval, strlen (retval)));
9019
9020 do_cleanups (back_to);
9021 return retval;
9022 }
9023
9024 /* Inspect DIE in CU for a namespace alias. If one exists, record
9025 a new symbol for it.
9026
9027 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9028
9029 static int
9030 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9031 {
9032 struct attribute *attr;
9033
9034 /* If the die does not have a name, this is not a namespace
9035 alias. */
9036 attr = dwarf2_attr (die, DW_AT_name, cu);
9037 if (attr != NULL)
9038 {
9039 int num;
9040 struct die_info *d = die;
9041 struct dwarf2_cu *imported_cu = cu;
9042
9043 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9044 keep inspecting DIEs until we hit the underlying import. */
9045 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9046 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9047 {
9048 attr = dwarf2_attr (d, DW_AT_import, cu);
9049 if (attr == NULL)
9050 break;
9051
9052 d = follow_die_ref (d, attr, &imported_cu);
9053 if (d->tag != DW_TAG_imported_declaration)
9054 break;
9055 }
9056
9057 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9058 {
9059 complaint (&symfile_complaints,
9060 _("DIE at 0x%x has too many recursively imported "
9061 "declarations"), to_underlying (d->sect_off));
9062 return 0;
9063 }
9064
9065 if (attr != NULL)
9066 {
9067 struct type *type;
9068 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9069
9070 type = get_die_type_at_offset (sect_off, cu->per_cu);
9071 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9072 {
9073 /* This declaration is a global namespace alias. Add
9074 a symbol for it whose type is the aliased namespace. */
9075 new_symbol (die, type, cu);
9076 return 1;
9077 }
9078 }
9079 }
9080
9081 return 0;
9082 }
9083
9084 /* Return the using directives repository (global or local?) to use in the
9085 current context for LANGUAGE.
9086
9087 For Ada, imported declarations can materialize renamings, which *may* be
9088 global. However it is impossible (for now?) in DWARF to distinguish
9089 "external" imported declarations and "static" ones. As all imported
9090 declarations seem to be static in all other languages, make them all CU-wide
9091 global only in Ada. */
9092
9093 static struct using_direct **
9094 using_directives (enum language language)
9095 {
9096 if (language == language_ada && context_stack_depth == 0)
9097 return &global_using_directives;
9098 else
9099 return &local_using_directives;
9100 }
9101
9102 /* Read the import statement specified by the given die and record it. */
9103
9104 static void
9105 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9106 {
9107 struct objfile *objfile = cu->objfile;
9108 struct attribute *import_attr;
9109 struct die_info *imported_die, *child_die;
9110 struct dwarf2_cu *imported_cu;
9111 const char *imported_name;
9112 const char *imported_name_prefix;
9113 const char *canonical_name;
9114 const char *import_alias;
9115 const char *imported_declaration = NULL;
9116 const char *import_prefix;
9117 VEC (const_char_ptr) *excludes = NULL;
9118 struct cleanup *cleanups;
9119
9120 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9121 if (import_attr == NULL)
9122 {
9123 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9124 dwarf_tag_name (die->tag));
9125 return;
9126 }
9127
9128 imported_cu = cu;
9129 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9130 imported_name = dwarf2_name (imported_die, imported_cu);
9131 if (imported_name == NULL)
9132 {
9133 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9134
9135 The import in the following code:
9136 namespace A
9137 {
9138 typedef int B;
9139 }
9140
9141 int main ()
9142 {
9143 using A::B;
9144 B b;
9145 return b;
9146 }
9147
9148 ...
9149 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9150 <52> DW_AT_decl_file : 1
9151 <53> DW_AT_decl_line : 6
9152 <54> DW_AT_import : <0x75>
9153 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9154 <59> DW_AT_name : B
9155 <5b> DW_AT_decl_file : 1
9156 <5c> DW_AT_decl_line : 2
9157 <5d> DW_AT_type : <0x6e>
9158 ...
9159 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9160 <76> DW_AT_byte_size : 4
9161 <77> DW_AT_encoding : 5 (signed)
9162
9163 imports the wrong die ( 0x75 instead of 0x58 ).
9164 This case will be ignored until the gcc bug is fixed. */
9165 return;
9166 }
9167
9168 /* Figure out the local name after import. */
9169 import_alias = dwarf2_name (die, cu);
9170
9171 /* Figure out where the statement is being imported to. */
9172 import_prefix = determine_prefix (die, cu);
9173
9174 /* Figure out what the scope of the imported die is and prepend it
9175 to the name of the imported die. */
9176 imported_name_prefix = determine_prefix (imported_die, imported_cu);
9177
9178 if (imported_die->tag != DW_TAG_namespace
9179 && imported_die->tag != DW_TAG_module)
9180 {
9181 imported_declaration = imported_name;
9182 canonical_name = imported_name_prefix;
9183 }
9184 else if (strlen (imported_name_prefix) > 0)
9185 canonical_name = obconcat (&objfile->objfile_obstack,
9186 imported_name_prefix,
9187 (cu->language == language_d ? "." : "::"),
9188 imported_name, (char *) NULL);
9189 else
9190 canonical_name = imported_name;
9191
9192 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9193
9194 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9195 for (child_die = die->child; child_die && child_die->tag;
9196 child_die = sibling_die (child_die))
9197 {
9198 /* DWARF-4: A Fortran use statement with a “rename list” may be
9199 represented by an imported module entry with an import attribute
9200 referring to the module and owned entries corresponding to those
9201 entities that are renamed as part of being imported. */
9202
9203 if (child_die->tag != DW_TAG_imported_declaration)
9204 {
9205 complaint (&symfile_complaints,
9206 _("child DW_TAG_imported_declaration expected "
9207 "- DIE at 0x%x [in module %s]"),
9208 to_underlying (child_die->sect_off), objfile_name (objfile));
9209 continue;
9210 }
9211
9212 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9213 if (import_attr == NULL)
9214 {
9215 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9216 dwarf_tag_name (child_die->tag));
9217 continue;
9218 }
9219
9220 imported_cu = cu;
9221 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9222 &imported_cu);
9223 imported_name = dwarf2_name (imported_die, imported_cu);
9224 if (imported_name == NULL)
9225 {
9226 complaint (&symfile_complaints,
9227 _("child DW_TAG_imported_declaration has unknown "
9228 "imported name - DIE at 0x%x [in module %s]"),
9229 to_underlying (child_die->sect_off), objfile_name (objfile));
9230 continue;
9231 }
9232
9233 VEC_safe_push (const_char_ptr, excludes, imported_name);
9234
9235 process_die (child_die, cu);
9236 }
9237
9238 add_using_directive (using_directives (cu->language),
9239 import_prefix,
9240 canonical_name,
9241 import_alias,
9242 imported_declaration,
9243 excludes,
9244 0,
9245 &objfile->objfile_obstack);
9246
9247 do_cleanups (cleanups);
9248 }
9249
9250 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9251 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9252 this, it was first present in GCC release 4.3.0. */
9253
9254 static int
9255 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9256 {
9257 if (!cu->checked_producer)
9258 check_producer (cu);
9259
9260 return cu->producer_is_gcc_lt_4_3;
9261 }
9262
9263 static file_and_directory
9264 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9265 {
9266 file_and_directory res;
9267
9268 /* Find the filename. Do not use dwarf2_name here, since the filename
9269 is not a source language identifier. */
9270 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9271 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9272
9273 if (res.comp_dir == NULL
9274 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9275 && IS_ABSOLUTE_PATH (res.name))
9276 {
9277 res.comp_dir_storage = ldirname (res.name);
9278 if (!res.comp_dir_storage.empty ())
9279 res.comp_dir = res.comp_dir_storage.c_str ();
9280 }
9281 if (res.comp_dir != NULL)
9282 {
9283 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9284 directory, get rid of it. */
9285 const char *cp = strchr (res.comp_dir, ':');
9286
9287 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9288 res.comp_dir = cp + 1;
9289 }
9290
9291 if (res.name == NULL)
9292 res.name = "<unknown>";
9293
9294 return res;
9295 }
9296
9297 /* Handle DW_AT_stmt_list for a compilation unit.
9298 DIE is the DW_TAG_compile_unit die for CU.
9299 COMP_DIR is the compilation directory. LOWPC is passed to
9300 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9301
9302 static void
9303 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9304 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9305 {
9306 struct objfile *objfile = dwarf2_per_objfile->objfile;
9307 struct attribute *attr;
9308 struct line_header line_header_local;
9309 hashval_t line_header_local_hash;
9310 unsigned u;
9311 void **slot;
9312 int decode_mapping;
9313
9314 gdb_assert (! cu->per_cu->is_debug_types);
9315
9316 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9317 if (attr == NULL)
9318 return;
9319
9320 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9321
9322 /* The line header hash table is only created if needed (it exists to
9323 prevent redundant reading of the line table for partial_units).
9324 If we're given a partial_unit, we'll need it. If we're given a
9325 compile_unit, then use the line header hash table if it's already
9326 created, but don't create one just yet. */
9327
9328 if (dwarf2_per_objfile->line_header_hash == NULL
9329 && die->tag == DW_TAG_partial_unit)
9330 {
9331 dwarf2_per_objfile->line_header_hash
9332 = htab_create_alloc_ex (127, line_header_hash_voidp,
9333 line_header_eq_voidp,
9334 free_line_header_voidp,
9335 &objfile->objfile_obstack,
9336 hashtab_obstack_allocate,
9337 dummy_obstack_deallocate);
9338 }
9339
9340 line_header_local.sect_off = line_offset;
9341 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9342 line_header_local_hash = line_header_hash (&line_header_local);
9343 if (dwarf2_per_objfile->line_header_hash != NULL)
9344 {
9345 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9346 &line_header_local,
9347 line_header_local_hash, NO_INSERT);
9348
9349 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9350 is not present in *SLOT (since if there is something in *SLOT then
9351 it will be for a partial_unit). */
9352 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9353 {
9354 gdb_assert (*slot != NULL);
9355 cu->line_header = (struct line_header *) *slot;
9356 return;
9357 }
9358 }
9359
9360 /* dwarf_decode_line_header does not yet provide sufficient information.
9361 We always have to call also dwarf_decode_lines for it. */
9362 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9363 if (lh == NULL)
9364 return;
9365 cu->line_header = lh.get ();
9366
9367 if (dwarf2_per_objfile->line_header_hash == NULL)
9368 slot = NULL;
9369 else
9370 {
9371 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9372 &line_header_local,
9373 line_header_local_hash, INSERT);
9374 gdb_assert (slot != NULL);
9375 }
9376 if (slot != NULL && *slot == NULL)
9377 {
9378 /* This newly decoded line number information unit will be owned
9379 by line_header_hash hash table. */
9380 *slot = cu->line_header;
9381 }
9382 else
9383 {
9384 /* We cannot free any current entry in (*slot) as that struct line_header
9385 may be already used by multiple CUs. Create only temporary decoded
9386 line_header for this CU - it may happen at most once for each line
9387 number information unit. And if we're not using line_header_hash
9388 then this is what we want as well. */
9389 gdb_assert (die->tag != DW_TAG_partial_unit);
9390 }
9391 decode_mapping = (die->tag != DW_TAG_partial_unit);
9392 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9393 decode_mapping);
9394
9395 lh.release ();
9396 }
9397
9398 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9399
9400 static void
9401 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9402 {
9403 struct objfile *objfile = dwarf2_per_objfile->objfile;
9404 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9405 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9406 CORE_ADDR highpc = ((CORE_ADDR) 0);
9407 struct attribute *attr;
9408 struct die_info *child_die;
9409 CORE_ADDR baseaddr;
9410
9411 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9412
9413 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9414
9415 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9416 from finish_block. */
9417 if (lowpc == ((CORE_ADDR) -1))
9418 lowpc = highpc;
9419 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9420
9421 file_and_directory fnd = find_file_and_directory (die, cu);
9422
9423 prepare_one_comp_unit (cu, die, cu->language);
9424
9425 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9426 standardised yet. As a workaround for the language detection we fall
9427 back to the DW_AT_producer string. */
9428 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9429 cu->language = language_opencl;
9430
9431 /* Similar hack for Go. */
9432 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9433 set_cu_language (DW_LANG_Go, cu);
9434
9435 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
9436
9437 /* Decode line number information if present. We do this before
9438 processing child DIEs, so that the line header table is available
9439 for DW_AT_decl_file. */
9440 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
9441
9442 /* Process all dies in compilation unit. */
9443 if (die->child != NULL)
9444 {
9445 child_die = die->child;
9446 while (child_die && child_die->tag)
9447 {
9448 process_die (child_die, cu);
9449 child_die = sibling_die (child_die);
9450 }
9451 }
9452
9453 /* Decode macro information, if present. Dwarf 2 macro information
9454 refers to information in the line number info statement program
9455 header, so we can only read it if we've read the header
9456 successfully. */
9457 attr = dwarf2_attr (die, DW_AT_macros, cu);
9458 if (attr == NULL)
9459 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9460 if (attr && cu->line_header)
9461 {
9462 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9463 complaint (&symfile_complaints,
9464 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
9465
9466 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9467 }
9468 else
9469 {
9470 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9471 if (attr && cu->line_header)
9472 {
9473 unsigned int macro_offset = DW_UNSND (attr);
9474
9475 dwarf_decode_macros (cu, macro_offset, 0);
9476 }
9477 }
9478 }
9479
9480 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9481 Create the set of symtabs used by this TU, or if this TU is sharing
9482 symtabs with another TU and the symtabs have already been created
9483 then restore those symtabs in the line header.
9484 We don't need the pc/line-number mapping for type units. */
9485
9486 static void
9487 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9488 {
9489 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9490 struct type_unit_group *tu_group;
9491 int first_time;
9492 struct attribute *attr;
9493 unsigned int i;
9494 struct signatured_type *sig_type;
9495
9496 gdb_assert (per_cu->is_debug_types);
9497 sig_type = (struct signatured_type *) per_cu;
9498
9499 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9500
9501 /* If we're using .gdb_index (includes -readnow) then
9502 per_cu->type_unit_group may not have been set up yet. */
9503 if (sig_type->type_unit_group == NULL)
9504 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9505 tu_group = sig_type->type_unit_group;
9506
9507 /* If we've already processed this stmt_list there's no real need to
9508 do it again, we could fake it and just recreate the part we need
9509 (file name,index -> symtab mapping). If data shows this optimization
9510 is useful we can do it then. */
9511 first_time = tu_group->compunit_symtab == NULL;
9512
9513 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9514 debug info. */
9515 line_header_up lh;
9516 if (attr != NULL)
9517 {
9518 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
9519 lh = dwarf_decode_line_header (line_offset, cu);
9520 }
9521 if (lh == NULL)
9522 {
9523 if (first_time)
9524 dwarf2_start_symtab (cu, "", NULL, 0);
9525 else
9526 {
9527 gdb_assert (tu_group->symtabs == NULL);
9528 restart_symtab (tu_group->compunit_symtab, "", 0);
9529 }
9530 return;
9531 }
9532
9533 cu->line_header = lh.get ();
9534
9535 if (first_time)
9536 {
9537 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9538
9539 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9540 still initializing it, and our caller (a few levels up)
9541 process_full_type_unit still needs to know if this is the first
9542 time. */
9543
9544 tu_group->num_symtabs = lh->file_names.size ();
9545 tu_group->symtabs = XNEWVEC (struct symtab *, lh->file_names.size ());
9546
9547 for (i = 0; i < lh->file_names.size (); ++i)
9548 {
9549 file_entry &fe = lh->file_names[i];
9550
9551 dwarf2_start_subfile (fe.name, fe.include_dir (lh.get ()));
9552
9553 if (current_subfile->symtab == NULL)
9554 {
9555 /* NOTE: start_subfile will recognize when it's been passed
9556 a file it has already seen. So we can't assume there's a
9557 simple mapping from lh->file_names to subfiles, plus
9558 lh->file_names may contain dups. */
9559 current_subfile->symtab
9560 = allocate_symtab (cust, current_subfile->name);
9561 }
9562
9563 fe.symtab = current_subfile->symtab;
9564 tu_group->symtabs[i] = fe.symtab;
9565 }
9566 }
9567 else
9568 {
9569 restart_symtab (tu_group->compunit_symtab, "", 0);
9570
9571 for (i = 0; i < lh->file_names.size (); ++i)
9572 {
9573 struct file_entry *fe = &lh->file_names[i];
9574
9575 fe->symtab = tu_group->symtabs[i];
9576 }
9577 }
9578
9579 lh.release ();
9580
9581 /* The main symtab is allocated last. Type units don't have DW_AT_name
9582 so they don't have a "real" (so to speak) symtab anyway.
9583 There is later code that will assign the main symtab to all symbols
9584 that don't have one. We need to handle the case of a symbol with a
9585 missing symtab (DW_AT_decl_file) anyway. */
9586 }
9587
9588 /* Process DW_TAG_type_unit.
9589 For TUs we want to skip the first top level sibling if it's not the
9590 actual type being defined by this TU. In this case the first top
9591 level sibling is there to provide context only. */
9592
9593 static void
9594 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9595 {
9596 struct die_info *child_die;
9597
9598 prepare_one_comp_unit (cu, die, language_minimal);
9599
9600 /* Initialize (or reinitialize) the machinery for building symtabs.
9601 We do this before processing child DIEs, so that the line header table
9602 is available for DW_AT_decl_file. */
9603 setup_type_unit_groups (die, cu);
9604
9605 if (die->child != NULL)
9606 {
9607 child_die = die->child;
9608 while (child_die && child_die->tag)
9609 {
9610 process_die (child_die, cu);
9611 child_die = sibling_die (child_die);
9612 }
9613 }
9614 }
9615 \f
9616 /* DWO/DWP files.
9617
9618 http://gcc.gnu.org/wiki/DebugFission
9619 http://gcc.gnu.org/wiki/DebugFissionDWP
9620
9621 To simplify handling of both DWO files ("object" files with the DWARF info)
9622 and DWP files (a file with the DWOs packaged up into one file), we treat
9623 DWP files as having a collection of virtual DWO files. */
9624
9625 static hashval_t
9626 hash_dwo_file (const void *item)
9627 {
9628 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9629 hashval_t hash;
9630
9631 hash = htab_hash_string (dwo_file->dwo_name);
9632 if (dwo_file->comp_dir != NULL)
9633 hash += htab_hash_string (dwo_file->comp_dir);
9634 return hash;
9635 }
9636
9637 static int
9638 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9639 {
9640 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9641 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9642
9643 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9644 return 0;
9645 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9646 return lhs->comp_dir == rhs->comp_dir;
9647 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9648 }
9649
9650 /* Allocate a hash table for DWO files. */
9651
9652 static htab_t
9653 allocate_dwo_file_hash_table (void)
9654 {
9655 struct objfile *objfile = dwarf2_per_objfile->objfile;
9656
9657 return htab_create_alloc_ex (41,
9658 hash_dwo_file,
9659 eq_dwo_file,
9660 NULL,
9661 &objfile->objfile_obstack,
9662 hashtab_obstack_allocate,
9663 dummy_obstack_deallocate);
9664 }
9665
9666 /* Lookup DWO file DWO_NAME. */
9667
9668 static void **
9669 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9670 {
9671 struct dwo_file find_entry;
9672 void **slot;
9673
9674 if (dwarf2_per_objfile->dwo_files == NULL)
9675 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9676
9677 memset (&find_entry, 0, sizeof (find_entry));
9678 find_entry.dwo_name = dwo_name;
9679 find_entry.comp_dir = comp_dir;
9680 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9681
9682 return slot;
9683 }
9684
9685 static hashval_t
9686 hash_dwo_unit (const void *item)
9687 {
9688 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9689
9690 /* This drops the top 32 bits of the id, but is ok for a hash. */
9691 return dwo_unit->signature;
9692 }
9693
9694 static int
9695 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9696 {
9697 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9698 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9699
9700 /* The signature is assumed to be unique within the DWO file.
9701 So while object file CU dwo_id's always have the value zero,
9702 that's OK, assuming each object file DWO file has only one CU,
9703 and that's the rule for now. */
9704 return lhs->signature == rhs->signature;
9705 }
9706
9707 /* Allocate a hash table for DWO CUs,TUs.
9708 There is one of these tables for each of CUs,TUs for each DWO file. */
9709
9710 static htab_t
9711 allocate_dwo_unit_table (struct objfile *objfile)
9712 {
9713 /* Start out with a pretty small number.
9714 Generally DWO files contain only one CU and maybe some TUs. */
9715 return htab_create_alloc_ex (3,
9716 hash_dwo_unit,
9717 eq_dwo_unit,
9718 NULL,
9719 &objfile->objfile_obstack,
9720 hashtab_obstack_allocate,
9721 dummy_obstack_deallocate);
9722 }
9723
9724 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9725
9726 struct create_dwo_cu_data
9727 {
9728 struct dwo_file *dwo_file;
9729 struct dwo_unit dwo_unit;
9730 };
9731
9732 /* die_reader_func for create_dwo_cu. */
9733
9734 static void
9735 create_dwo_cu_reader (const struct die_reader_specs *reader,
9736 const gdb_byte *info_ptr,
9737 struct die_info *comp_unit_die,
9738 int has_children,
9739 void *datap)
9740 {
9741 struct dwarf2_cu *cu = reader->cu;
9742 sect_offset sect_off = cu->per_cu->sect_off;
9743 struct dwarf2_section_info *section = cu->per_cu->section;
9744 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9745 struct dwo_file *dwo_file = data->dwo_file;
9746 struct dwo_unit *dwo_unit = &data->dwo_unit;
9747 struct attribute *attr;
9748
9749 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9750 if (attr == NULL)
9751 {
9752 complaint (&symfile_complaints,
9753 _("Dwarf Error: debug entry at offset 0x%x is missing"
9754 " its dwo_id [in module %s]"),
9755 to_underlying (sect_off), dwo_file->dwo_name);
9756 return;
9757 }
9758
9759 dwo_unit->dwo_file = dwo_file;
9760 dwo_unit->signature = DW_UNSND (attr);
9761 dwo_unit->section = section;
9762 dwo_unit->sect_off = sect_off;
9763 dwo_unit->length = cu->per_cu->length;
9764
9765 if (dwarf_read_debug)
9766 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9767 to_underlying (sect_off),
9768 hex_string (dwo_unit->signature));
9769 }
9770
9771 /* Create the dwo_units for the CUs in a DWO_FILE.
9772 Note: This function processes DWO files only, not DWP files. */
9773
9774 static void
9775 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9776 htab_t &cus_htab)
9777 {
9778 struct objfile *objfile = dwarf2_per_objfile->objfile;
9779 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
9780 const gdb_byte *info_ptr, *end_ptr;
9781
9782 dwarf2_read_section (objfile, &section);
9783 info_ptr = section.buffer;
9784
9785 if (info_ptr == NULL)
9786 return;
9787
9788 if (dwarf_read_debug)
9789 {
9790 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9791 get_section_name (&section),
9792 get_section_file_name (&section));
9793 }
9794
9795 end_ptr = info_ptr + section.size;
9796 while (info_ptr < end_ptr)
9797 {
9798 struct dwarf2_per_cu_data per_cu;
9799 struct create_dwo_cu_data create_dwo_cu_data;
9800 struct dwo_unit *dwo_unit;
9801 void **slot;
9802 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
9803
9804 memset (&create_dwo_cu_data.dwo_unit, 0,
9805 sizeof (create_dwo_cu_data.dwo_unit));
9806 memset (&per_cu, 0, sizeof (per_cu));
9807 per_cu.objfile = objfile;
9808 per_cu.is_debug_types = 0;
9809 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9810 per_cu.section = &section;
9811 create_dwo_cu_data.dwo_file = &dwo_file;
9812
9813 init_cutu_and_read_dies_no_follow (
9814 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9815 info_ptr += per_cu.length;
9816
9817 // If the unit could not be parsed, skip it.
9818 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9819 continue;
9820
9821 if (cus_htab == NULL)
9822 cus_htab = allocate_dwo_unit_table (objfile);
9823
9824 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9825 *dwo_unit = create_dwo_cu_data.dwo_unit;
9826 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9827 gdb_assert (slot != NULL);
9828 if (*slot != NULL)
9829 {
9830 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9831 sect_offset dup_sect_off = dup_cu->sect_off;
9832
9833 complaint (&symfile_complaints,
9834 _("debug cu entry at offset 0x%x is duplicate to"
9835 " the entry at offset 0x%x, signature %s"),
9836 to_underlying (sect_off), to_underlying (dup_sect_off),
9837 hex_string (dwo_unit->signature));
9838 }
9839 *slot = (void *)dwo_unit;
9840 }
9841 }
9842
9843 /* DWP file .debug_{cu,tu}_index section format:
9844 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9845
9846 DWP Version 1:
9847
9848 Both index sections have the same format, and serve to map a 64-bit
9849 signature to a set of section numbers. Each section begins with a header,
9850 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9851 indexes, and a pool of 32-bit section numbers. The index sections will be
9852 aligned at 8-byte boundaries in the file.
9853
9854 The index section header consists of:
9855
9856 V, 32 bit version number
9857 -, 32 bits unused
9858 N, 32 bit number of compilation units or type units in the index
9859 M, 32 bit number of slots in the hash table
9860
9861 Numbers are recorded using the byte order of the application binary.
9862
9863 The hash table begins at offset 16 in the section, and consists of an array
9864 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9865 order of the application binary). Unused slots in the hash table are 0.
9866 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9867
9868 The parallel table begins immediately after the hash table
9869 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9870 array of 32-bit indexes (using the byte order of the application binary),
9871 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9872 table contains a 32-bit index into the pool of section numbers. For unused
9873 hash table slots, the corresponding entry in the parallel table will be 0.
9874
9875 The pool of section numbers begins immediately following the hash table
9876 (at offset 16 + 12 * M from the beginning of the section). The pool of
9877 section numbers consists of an array of 32-bit words (using the byte order
9878 of the application binary). Each item in the array is indexed starting
9879 from 0. The hash table entry provides the index of the first section
9880 number in the set. Additional section numbers in the set follow, and the
9881 set is terminated by a 0 entry (section number 0 is not used in ELF).
9882
9883 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9884 section must be the first entry in the set, and the .debug_abbrev.dwo must
9885 be the second entry. Other members of the set may follow in any order.
9886
9887 ---
9888
9889 DWP Version 2:
9890
9891 DWP Version 2 combines all the .debug_info, etc. sections into one,
9892 and the entries in the index tables are now offsets into these sections.
9893 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9894 section.
9895
9896 Index Section Contents:
9897 Header
9898 Hash Table of Signatures dwp_hash_table.hash_table
9899 Parallel Table of Indices dwp_hash_table.unit_table
9900 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9901 Table of Section Sizes dwp_hash_table.v2.sizes
9902
9903 The index section header consists of:
9904
9905 V, 32 bit version number
9906 L, 32 bit number of columns in the table of section offsets
9907 N, 32 bit number of compilation units or type units in the index
9908 M, 32 bit number of slots in the hash table
9909
9910 Numbers are recorded using the byte order of the application binary.
9911
9912 The hash table has the same format as version 1.
9913 The parallel table of indices has the same format as version 1,
9914 except that the entries are origin-1 indices into the table of sections
9915 offsets and the table of section sizes.
9916
9917 The table of offsets begins immediately following the parallel table
9918 (at offset 16 + 12 * M from the beginning of the section). The table is
9919 a two-dimensional array of 32-bit words (using the byte order of the
9920 application binary), with L columns and N+1 rows, in row-major order.
9921 Each row in the array is indexed starting from 0. The first row provides
9922 a key to the remaining rows: each column in this row provides an identifier
9923 for a debug section, and the offsets in the same column of subsequent rows
9924 refer to that section. The section identifiers are:
9925
9926 DW_SECT_INFO 1 .debug_info.dwo
9927 DW_SECT_TYPES 2 .debug_types.dwo
9928 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9929 DW_SECT_LINE 4 .debug_line.dwo
9930 DW_SECT_LOC 5 .debug_loc.dwo
9931 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9932 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9933 DW_SECT_MACRO 8 .debug_macro.dwo
9934
9935 The offsets provided by the CU and TU index sections are the base offsets
9936 for the contributions made by each CU or TU to the corresponding section
9937 in the package file. Each CU and TU header contains an abbrev_offset
9938 field, used to find the abbreviations table for that CU or TU within the
9939 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9940 be interpreted as relative to the base offset given in the index section.
9941 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9942 should be interpreted as relative to the base offset for .debug_line.dwo,
9943 and offsets into other debug sections obtained from DWARF attributes should
9944 also be interpreted as relative to the corresponding base offset.
9945
9946 The table of sizes begins immediately following the table of offsets.
9947 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9948 with L columns and N rows, in row-major order. Each row in the array is
9949 indexed starting from 1 (row 0 is shared by the two tables).
9950
9951 ---
9952
9953 Hash table lookup is handled the same in version 1 and 2:
9954
9955 We assume that N and M will not exceed 2^32 - 1.
9956 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9957
9958 Given a 64-bit compilation unit signature or a type signature S, an entry
9959 in the hash table is located as follows:
9960
9961 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9962 the low-order k bits all set to 1.
9963
9964 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9965
9966 3) If the hash table entry at index H matches the signature, use that
9967 entry. If the hash table entry at index H is unused (all zeroes),
9968 terminate the search: the signature is not present in the table.
9969
9970 4) Let H = (H + H') modulo M. Repeat at Step 3.
9971
9972 Because M > N and H' and M are relatively prime, the search is guaranteed
9973 to stop at an unused slot or find the match. */
9974
9975 /* Create a hash table to map DWO IDs to their CU/TU entry in
9976 .debug_{info,types}.dwo in DWP_FILE.
9977 Returns NULL if there isn't one.
9978 Note: This function processes DWP files only, not DWO files. */
9979
9980 static struct dwp_hash_table *
9981 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9982 {
9983 struct objfile *objfile = dwarf2_per_objfile->objfile;
9984 bfd *dbfd = dwp_file->dbfd;
9985 const gdb_byte *index_ptr, *index_end;
9986 struct dwarf2_section_info *index;
9987 uint32_t version, nr_columns, nr_units, nr_slots;
9988 struct dwp_hash_table *htab;
9989
9990 if (is_debug_types)
9991 index = &dwp_file->sections.tu_index;
9992 else
9993 index = &dwp_file->sections.cu_index;
9994
9995 if (dwarf2_section_empty_p (index))
9996 return NULL;
9997 dwarf2_read_section (objfile, index);
9998
9999 index_ptr = index->buffer;
10000 index_end = index_ptr + index->size;
10001
10002 version = read_4_bytes (dbfd, index_ptr);
10003 index_ptr += 4;
10004 if (version == 2)
10005 nr_columns = read_4_bytes (dbfd, index_ptr);
10006 else
10007 nr_columns = 0;
10008 index_ptr += 4;
10009 nr_units = read_4_bytes (dbfd, index_ptr);
10010 index_ptr += 4;
10011 nr_slots = read_4_bytes (dbfd, index_ptr);
10012 index_ptr += 4;
10013
10014 if (version != 1 && version != 2)
10015 {
10016 error (_("Dwarf Error: unsupported DWP file version (%s)"
10017 " [in module %s]"),
10018 pulongest (version), dwp_file->name);
10019 }
10020 if (nr_slots != (nr_slots & -nr_slots))
10021 {
10022 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10023 " is not power of 2 [in module %s]"),
10024 pulongest (nr_slots), dwp_file->name);
10025 }
10026
10027 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10028 htab->version = version;
10029 htab->nr_columns = nr_columns;
10030 htab->nr_units = nr_units;
10031 htab->nr_slots = nr_slots;
10032 htab->hash_table = index_ptr;
10033 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10034
10035 /* Exit early if the table is empty. */
10036 if (nr_slots == 0 || nr_units == 0
10037 || (version == 2 && nr_columns == 0))
10038 {
10039 /* All must be zero. */
10040 if (nr_slots != 0 || nr_units != 0
10041 || (version == 2 && nr_columns != 0))
10042 {
10043 complaint (&symfile_complaints,
10044 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10045 " all zero [in modules %s]"),
10046 dwp_file->name);
10047 }
10048 return htab;
10049 }
10050
10051 if (version == 1)
10052 {
10053 htab->section_pool.v1.indices =
10054 htab->unit_table + sizeof (uint32_t) * nr_slots;
10055 /* It's harder to decide whether the section is too small in v1.
10056 V1 is deprecated anyway so we punt. */
10057 }
10058 else
10059 {
10060 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10061 int *ids = htab->section_pool.v2.section_ids;
10062 /* Reverse map for error checking. */
10063 int ids_seen[DW_SECT_MAX + 1];
10064 int i;
10065
10066 if (nr_columns < 2)
10067 {
10068 error (_("Dwarf Error: bad DWP hash table, too few columns"
10069 " in section table [in module %s]"),
10070 dwp_file->name);
10071 }
10072 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, too many columns"
10075 " in section table [in module %s]"),
10076 dwp_file->name);
10077 }
10078 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10079 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10080 for (i = 0; i < nr_columns; ++i)
10081 {
10082 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10083
10084 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10085 {
10086 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10087 " in section table [in module %s]"),
10088 id, dwp_file->name);
10089 }
10090 if (ids_seen[id] != -1)
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10093 " id %d in section table [in module %s]"),
10094 id, dwp_file->name);
10095 }
10096 ids_seen[id] = i;
10097 ids[i] = id;
10098 }
10099 /* Must have exactly one info or types section. */
10100 if (((ids_seen[DW_SECT_INFO] != -1)
10101 + (ids_seen[DW_SECT_TYPES] != -1))
10102 != 1)
10103 {
10104 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10105 " DWO info/types section [in module %s]"),
10106 dwp_file->name);
10107 }
10108 /* Must have an abbrev section. */
10109 if (ids_seen[DW_SECT_ABBREV] == -1)
10110 {
10111 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10112 " section [in module %s]"),
10113 dwp_file->name);
10114 }
10115 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10116 htab->section_pool.v2.sizes =
10117 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10118 * nr_units * nr_columns);
10119 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10120 * nr_units * nr_columns))
10121 > index_end)
10122 {
10123 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10124 " [in module %s]"),
10125 dwp_file->name);
10126 }
10127 }
10128
10129 return htab;
10130 }
10131
10132 /* Update SECTIONS with the data from SECTP.
10133
10134 This function is like the other "locate" section routines that are
10135 passed to bfd_map_over_sections, but in this context the sections to
10136 read comes from the DWP V1 hash table, not the full ELF section table.
10137
10138 The result is non-zero for success, or zero if an error was found. */
10139
10140 static int
10141 locate_v1_virtual_dwo_sections (asection *sectp,
10142 struct virtual_v1_dwo_sections *sections)
10143 {
10144 const struct dwop_section_names *names = &dwop_section_names;
10145
10146 if (section_is_p (sectp->name, &names->abbrev_dwo))
10147 {
10148 /* There can be only one. */
10149 if (sections->abbrev.s.section != NULL)
10150 return 0;
10151 sections->abbrev.s.section = sectp;
10152 sections->abbrev.size = bfd_get_section_size (sectp);
10153 }
10154 else if (section_is_p (sectp->name, &names->info_dwo)
10155 || section_is_p (sectp->name, &names->types_dwo))
10156 {
10157 /* There can be only one. */
10158 if (sections->info_or_types.s.section != NULL)
10159 return 0;
10160 sections->info_or_types.s.section = sectp;
10161 sections->info_or_types.size = bfd_get_section_size (sectp);
10162 }
10163 else if (section_is_p (sectp->name, &names->line_dwo))
10164 {
10165 /* There can be only one. */
10166 if (sections->line.s.section != NULL)
10167 return 0;
10168 sections->line.s.section = sectp;
10169 sections->line.size = bfd_get_section_size (sectp);
10170 }
10171 else if (section_is_p (sectp->name, &names->loc_dwo))
10172 {
10173 /* There can be only one. */
10174 if (sections->loc.s.section != NULL)
10175 return 0;
10176 sections->loc.s.section = sectp;
10177 sections->loc.size = bfd_get_section_size (sectp);
10178 }
10179 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10180 {
10181 /* There can be only one. */
10182 if (sections->macinfo.s.section != NULL)
10183 return 0;
10184 sections->macinfo.s.section = sectp;
10185 sections->macinfo.size = bfd_get_section_size (sectp);
10186 }
10187 else if (section_is_p (sectp->name, &names->macro_dwo))
10188 {
10189 /* There can be only one. */
10190 if (sections->macro.s.section != NULL)
10191 return 0;
10192 sections->macro.s.section = sectp;
10193 sections->macro.size = bfd_get_section_size (sectp);
10194 }
10195 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10196 {
10197 /* There can be only one. */
10198 if (sections->str_offsets.s.section != NULL)
10199 return 0;
10200 sections->str_offsets.s.section = sectp;
10201 sections->str_offsets.size = bfd_get_section_size (sectp);
10202 }
10203 else
10204 {
10205 /* No other kind of section is valid. */
10206 return 0;
10207 }
10208
10209 return 1;
10210 }
10211
10212 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10213 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10214 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10215 This is for DWP version 1 files. */
10216
10217 static struct dwo_unit *
10218 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10219 uint32_t unit_index,
10220 const char *comp_dir,
10221 ULONGEST signature, int is_debug_types)
10222 {
10223 struct objfile *objfile = dwarf2_per_objfile->objfile;
10224 const struct dwp_hash_table *dwp_htab =
10225 is_debug_types ? dwp_file->tus : dwp_file->cus;
10226 bfd *dbfd = dwp_file->dbfd;
10227 const char *kind = is_debug_types ? "TU" : "CU";
10228 struct dwo_file *dwo_file;
10229 struct dwo_unit *dwo_unit;
10230 struct virtual_v1_dwo_sections sections;
10231 void **dwo_file_slot;
10232 char *virtual_dwo_name;
10233 struct cleanup *cleanups;
10234 int i;
10235
10236 gdb_assert (dwp_file->version == 1);
10237
10238 if (dwarf_read_debug)
10239 {
10240 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10241 kind,
10242 pulongest (unit_index), hex_string (signature),
10243 dwp_file->name);
10244 }
10245
10246 /* Fetch the sections of this DWO unit.
10247 Put a limit on the number of sections we look for so that bad data
10248 doesn't cause us to loop forever. */
10249
10250 #define MAX_NR_V1_DWO_SECTIONS \
10251 (1 /* .debug_info or .debug_types */ \
10252 + 1 /* .debug_abbrev */ \
10253 + 1 /* .debug_line */ \
10254 + 1 /* .debug_loc */ \
10255 + 1 /* .debug_str_offsets */ \
10256 + 1 /* .debug_macro or .debug_macinfo */ \
10257 + 1 /* trailing zero */)
10258
10259 memset (&sections, 0, sizeof (sections));
10260 cleanups = make_cleanup (null_cleanup, 0);
10261
10262 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10263 {
10264 asection *sectp;
10265 uint32_t section_nr =
10266 read_4_bytes (dbfd,
10267 dwp_htab->section_pool.v1.indices
10268 + (unit_index + i) * sizeof (uint32_t));
10269
10270 if (section_nr == 0)
10271 break;
10272 if (section_nr >= dwp_file->num_sections)
10273 {
10274 error (_("Dwarf Error: bad DWP hash table, section number too large"
10275 " [in module %s]"),
10276 dwp_file->name);
10277 }
10278
10279 sectp = dwp_file->elf_sections[section_nr];
10280 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10281 {
10282 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10283 " [in module %s]"),
10284 dwp_file->name);
10285 }
10286 }
10287
10288 if (i < 2
10289 || dwarf2_section_empty_p (&sections.info_or_types)
10290 || dwarf2_section_empty_p (&sections.abbrev))
10291 {
10292 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10293 " [in module %s]"),
10294 dwp_file->name);
10295 }
10296 if (i == MAX_NR_V1_DWO_SECTIONS)
10297 {
10298 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10299 " [in module %s]"),
10300 dwp_file->name);
10301 }
10302
10303 /* It's easier for the rest of the code if we fake a struct dwo_file and
10304 have dwo_unit "live" in that. At least for now.
10305
10306 The DWP file can be made up of a random collection of CUs and TUs.
10307 However, for each CU + set of TUs that came from the same original DWO
10308 file, we can combine them back into a virtual DWO file to save space
10309 (fewer struct dwo_file objects to allocate). Remember that for really
10310 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10311
10312 virtual_dwo_name =
10313 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10314 get_section_id (&sections.abbrev),
10315 get_section_id (&sections.line),
10316 get_section_id (&sections.loc),
10317 get_section_id (&sections.str_offsets));
10318 make_cleanup (xfree, virtual_dwo_name);
10319 /* Can we use an existing virtual DWO file? */
10320 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10321 /* Create one if necessary. */
10322 if (*dwo_file_slot == NULL)
10323 {
10324 if (dwarf_read_debug)
10325 {
10326 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10327 virtual_dwo_name);
10328 }
10329 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10330 dwo_file->dwo_name
10331 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10332 virtual_dwo_name,
10333 strlen (virtual_dwo_name));
10334 dwo_file->comp_dir = comp_dir;
10335 dwo_file->sections.abbrev = sections.abbrev;
10336 dwo_file->sections.line = sections.line;
10337 dwo_file->sections.loc = sections.loc;
10338 dwo_file->sections.macinfo = sections.macinfo;
10339 dwo_file->sections.macro = sections.macro;
10340 dwo_file->sections.str_offsets = sections.str_offsets;
10341 /* The "str" section is global to the entire DWP file. */
10342 dwo_file->sections.str = dwp_file->sections.str;
10343 /* The info or types section is assigned below to dwo_unit,
10344 there's no need to record it in dwo_file.
10345 Also, we can't simply record type sections in dwo_file because
10346 we record a pointer into the vector in dwo_unit. As we collect more
10347 types we'll grow the vector and eventually have to reallocate space
10348 for it, invalidating all copies of pointers into the previous
10349 contents. */
10350 *dwo_file_slot = dwo_file;
10351 }
10352 else
10353 {
10354 if (dwarf_read_debug)
10355 {
10356 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10357 virtual_dwo_name);
10358 }
10359 dwo_file = (struct dwo_file *) *dwo_file_slot;
10360 }
10361 do_cleanups (cleanups);
10362
10363 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10364 dwo_unit->dwo_file = dwo_file;
10365 dwo_unit->signature = signature;
10366 dwo_unit->section =
10367 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10368 *dwo_unit->section = sections.info_or_types;
10369 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10370
10371 return dwo_unit;
10372 }
10373
10374 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10375 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10376 piece within that section used by a TU/CU, return a virtual section
10377 of just that piece. */
10378
10379 static struct dwarf2_section_info
10380 create_dwp_v2_section (struct dwarf2_section_info *section,
10381 bfd_size_type offset, bfd_size_type size)
10382 {
10383 struct dwarf2_section_info result;
10384 asection *sectp;
10385
10386 gdb_assert (section != NULL);
10387 gdb_assert (!section->is_virtual);
10388
10389 memset (&result, 0, sizeof (result));
10390 result.s.containing_section = section;
10391 result.is_virtual = 1;
10392
10393 if (size == 0)
10394 return result;
10395
10396 sectp = get_section_bfd_section (section);
10397
10398 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10399 bounds of the real section. This is a pretty-rare event, so just
10400 flag an error (easier) instead of a warning and trying to cope. */
10401 if (sectp == NULL
10402 || offset + size > bfd_get_section_size (sectp))
10403 {
10404 bfd *abfd = sectp->owner;
10405
10406 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10407 " in section %s [in module %s]"),
10408 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10409 objfile_name (dwarf2_per_objfile->objfile));
10410 }
10411
10412 result.virtual_offset = offset;
10413 result.size = size;
10414 return result;
10415 }
10416
10417 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10418 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10419 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10420 This is for DWP version 2 files. */
10421
10422 static struct dwo_unit *
10423 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10424 uint32_t unit_index,
10425 const char *comp_dir,
10426 ULONGEST signature, int is_debug_types)
10427 {
10428 struct objfile *objfile = dwarf2_per_objfile->objfile;
10429 const struct dwp_hash_table *dwp_htab =
10430 is_debug_types ? dwp_file->tus : dwp_file->cus;
10431 bfd *dbfd = dwp_file->dbfd;
10432 const char *kind = is_debug_types ? "TU" : "CU";
10433 struct dwo_file *dwo_file;
10434 struct dwo_unit *dwo_unit;
10435 struct virtual_v2_dwo_sections sections;
10436 void **dwo_file_slot;
10437 char *virtual_dwo_name;
10438 struct cleanup *cleanups;
10439 int i;
10440
10441 gdb_assert (dwp_file->version == 2);
10442
10443 if (dwarf_read_debug)
10444 {
10445 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10446 kind,
10447 pulongest (unit_index), hex_string (signature),
10448 dwp_file->name);
10449 }
10450
10451 /* Fetch the section offsets of this DWO unit. */
10452
10453 memset (&sections, 0, sizeof (sections));
10454 cleanups = make_cleanup (null_cleanup, 0);
10455
10456 for (i = 0; i < dwp_htab->nr_columns; ++i)
10457 {
10458 uint32_t offset = read_4_bytes (dbfd,
10459 dwp_htab->section_pool.v2.offsets
10460 + (((unit_index - 1) * dwp_htab->nr_columns
10461 + i)
10462 * sizeof (uint32_t)));
10463 uint32_t size = read_4_bytes (dbfd,
10464 dwp_htab->section_pool.v2.sizes
10465 + (((unit_index - 1) * dwp_htab->nr_columns
10466 + i)
10467 * sizeof (uint32_t)));
10468
10469 switch (dwp_htab->section_pool.v2.section_ids[i])
10470 {
10471 case DW_SECT_INFO:
10472 case DW_SECT_TYPES:
10473 sections.info_or_types_offset = offset;
10474 sections.info_or_types_size = size;
10475 break;
10476 case DW_SECT_ABBREV:
10477 sections.abbrev_offset = offset;
10478 sections.abbrev_size = size;
10479 break;
10480 case DW_SECT_LINE:
10481 sections.line_offset = offset;
10482 sections.line_size = size;
10483 break;
10484 case DW_SECT_LOC:
10485 sections.loc_offset = offset;
10486 sections.loc_size = size;
10487 break;
10488 case DW_SECT_STR_OFFSETS:
10489 sections.str_offsets_offset = offset;
10490 sections.str_offsets_size = size;
10491 break;
10492 case DW_SECT_MACINFO:
10493 sections.macinfo_offset = offset;
10494 sections.macinfo_size = size;
10495 break;
10496 case DW_SECT_MACRO:
10497 sections.macro_offset = offset;
10498 sections.macro_size = size;
10499 break;
10500 }
10501 }
10502
10503 /* It's easier for the rest of the code if we fake a struct dwo_file and
10504 have dwo_unit "live" in that. At least for now.
10505
10506 The DWP file can be made up of a random collection of CUs and TUs.
10507 However, for each CU + set of TUs that came from the same original DWO
10508 file, we can combine them back into a virtual DWO file to save space
10509 (fewer struct dwo_file objects to allocate). Remember that for really
10510 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10511
10512 virtual_dwo_name =
10513 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10514 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10515 (long) (sections.line_size ? sections.line_offset : 0),
10516 (long) (sections.loc_size ? sections.loc_offset : 0),
10517 (long) (sections.str_offsets_size
10518 ? sections.str_offsets_offset : 0));
10519 make_cleanup (xfree, virtual_dwo_name);
10520 /* Can we use an existing virtual DWO file? */
10521 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10522 /* Create one if necessary. */
10523 if (*dwo_file_slot == NULL)
10524 {
10525 if (dwarf_read_debug)
10526 {
10527 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10528 virtual_dwo_name);
10529 }
10530 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10531 dwo_file->dwo_name
10532 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10533 virtual_dwo_name,
10534 strlen (virtual_dwo_name));
10535 dwo_file->comp_dir = comp_dir;
10536 dwo_file->sections.abbrev =
10537 create_dwp_v2_section (&dwp_file->sections.abbrev,
10538 sections.abbrev_offset, sections.abbrev_size);
10539 dwo_file->sections.line =
10540 create_dwp_v2_section (&dwp_file->sections.line,
10541 sections.line_offset, sections.line_size);
10542 dwo_file->sections.loc =
10543 create_dwp_v2_section (&dwp_file->sections.loc,
10544 sections.loc_offset, sections.loc_size);
10545 dwo_file->sections.macinfo =
10546 create_dwp_v2_section (&dwp_file->sections.macinfo,
10547 sections.macinfo_offset, sections.macinfo_size);
10548 dwo_file->sections.macro =
10549 create_dwp_v2_section (&dwp_file->sections.macro,
10550 sections.macro_offset, sections.macro_size);
10551 dwo_file->sections.str_offsets =
10552 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10553 sections.str_offsets_offset,
10554 sections.str_offsets_size);
10555 /* The "str" section is global to the entire DWP file. */
10556 dwo_file->sections.str = dwp_file->sections.str;
10557 /* The info or types section is assigned below to dwo_unit,
10558 there's no need to record it in dwo_file.
10559 Also, we can't simply record type sections in dwo_file because
10560 we record a pointer into the vector in dwo_unit. As we collect more
10561 types we'll grow the vector and eventually have to reallocate space
10562 for it, invalidating all copies of pointers into the previous
10563 contents. */
10564 *dwo_file_slot = dwo_file;
10565 }
10566 else
10567 {
10568 if (dwarf_read_debug)
10569 {
10570 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10571 virtual_dwo_name);
10572 }
10573 dwo_file = (struct dwo_file *) *dwo_file_slot;
10574 }
10575 do_cleanups (cleanups);
10576
10577 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10578 dwo_unit->dwo_file = dwo_file;
10579 dwo_unit->signature = signature;
10580 dwo_unit->section =
10581 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10582 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10583 ? &dwp_file->sections.types
10584 : &dwp_file->sections.info,
10585 sections.info_or_types_offset,
10586 sections.info_or_types_size);
10587 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10588
10589 return dwo_unit;
10590 }
10591
10592 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10593 Returns NULL if the signature isn't found. */
10594
10595 static struct dwo_unit *
10596 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10597 ULONGEST signature, int is_debug_types)
10598 {
10599 const struct dwp_hash_table *dwp_htab =
10600 is_debug_types ? dwp_file->tus : dwp_file->cus;
10601 bfd *dbfd = dwp_file->dbfd;
10602 uint32_t mask = dwp_htab->nr_slots - 1;
10603 uint32_t hash = signature & mask;
10604 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10605 unsigned int i;
10606 void **slot;
10607 struct dwo_unit find_dwo_cu;
10608
10609 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10610 find_dwo_cu.signature = signature;
10611 slot = htab_find_slot (is_debug_types
10612 ? dwp_file->loaded_tus
10613 : dwp_file->loaded_cus,
10614 &find_dwo_cu, INSERT);
10615
10616 if (*slot != NULL)
10617 return (struct dwo_unit *) *slot;
10618
10619 /* Use a for loop so that we don't loop forever on bad debug info. */
10620 for (i = 0; i < dwp_htab->nr_slots; ++i)
10621 {
10622 ULONGEST signature_in_table;
10623
10624 signature_in_table =
10625 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10626 if (signature_in_table == signature)
10627 {
10628 uint32_t unit_index =
10629 read_4_bytes (dbfd,
10630 dwp_htab->unit_table + hash * sizeof (uint32_t));
10631
10632 if (dwp_file->version == 1)
10633 {
10634 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10635 comp_dir, signature,
10636 is_debug_types);
10637 }
10638 else
10639 {
10640 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10641 comp_dir, signature,
10642 is_debug_types);
10643 }
10644 return (struct dwo_unit *) *slot;
10645 }
10646 if (signature_in_table == 0)
10647 return NULL;
10648 hash = (hash + hash2) & mask;
10649 }
10650
10651 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10652 " [in module %s]"),
10653 dwp_file->name);
10654 }
10655
10656 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10657 Open the file specified by FILE_NAME and hand it off to BFD for
10658 preliminary analysis. Return a newly initialized bfd *, which
10659 includes a canonicalized copy of FILE_NAME.
10660 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10661 SEARCH_CWD is true if the current directory is to be searched.
10662 It will be searched before debug-file-directory.
10663 If successful, the file is added to the bfd include table of the
10664 objfile's bfd (see gdb_bfd_record_inclusion).
10665 If unable to find/open the file, return NULL.
10666 NOTE: This function is derived from symfile_bfd_open. */
10667
10668 static gdb_bfd_ref_ptr
10669 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10670 {
10671 int desc, flags;
10672 char *absolute_name;
10673 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10674 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10675 to debug_file_directory. */
10676 char *search_path;
10677 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10678
10679 if (search_cwd)
10680 {
10681 if (*debug_file_directory != '\0')
10682 search_path = concat (".", dirname_separator_string,
10683 debug_file_directory, (char *) NULL);
10684 else
10685 search_path = xstrdup (".");
10686 }
10687 else
10688 search_path = xstrdup (debug_file_directory);
10689
10690 flags = OPF_RETURN_REALPATH;
10691 if (is_dwp)
10692 flags |= OPF_SEARCH_IN_PATH;
10693 desc = openp (search_path, flags, file_name,
10694 O_RDONLY | O_BINARY, &absolute_name);
10695 xfree (search_path);
10696 if (desc < 0)
10697 return NULL;
10698
10699 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10700 xfree (absolute_name);
10701 if (sym_bfd == NULL)
10702 return NULL;
10703 bfd_set_cacheable (sym_bfd.get (), 1);
10704
10705 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10706 return NULL;
10707
10708 /* Success. Record the bfd as having been included by the objfile's bfd.
10709 This is important because things like demangled_names_hash lives in the
10710 objfile's per_bfd space and may have references to things like symbol
10711 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10712 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10713
10714 return sym_bfd;
10715 }
10716
10717 /* Try to open DWO file FILE_NAME.
10718 COMP_DIR is the DW_AT_comp_dir attribute.
10719 The result is the bfd handle of the file.
10720 If there is a problem finding or opening the file, return NULL.
10721 Upon success, the canonicalized path of the file is stored in the bfd,
10722 same as symfile_bfd_open. */
10723
10724 static gdb_bfd_ref_ptr
10725 open_dwo_file (const char *file_name, const char *comp_dir)
10726 {
10727 if (IS_ABSOLUTE_PATH (file_name))
10728 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10729
10730 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10731
10732 if (comp_dir != NULL)
10733 {
10734 char *path_to_try = concat (comp_dir, SLASH_STRING,
10735 file_name, (char *) NULL);
10736
10737 /* NOTE: If comp_dir is a relative path, this will also try the
10738 search path, which seems useful. */
10739 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10740 1 /*search_cwd*/));
10741 xfree (path_to_try);
10742 if (abfd != NULL)
10743 return abfd;
10744 }
10745
10746 /* That didn't work, try debug-file-directory, which, despite its name,
10747 is a list of paths. */
10748
10749 if (*debug_file_directory == '\0')
10750 return NULL;
10751
10752 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10753 }
10754
10755 /* This function is mapped across the sections and remembers the offset and
10756 size of each of the DWO debugging sections we are interested in. */
10757
10758 static void
10759 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10760 {
10761 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10762 const struct dwop_section_names *names = &dwop_section_names;
10763
10764 if (section_is_p (sectp->name, &names->abbrev_dwo))
10765 {
10766 dwo_sections->abbrev.s.section = sectp;
10767 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10768 }
10769 else if (section_is_p (sectp->name, &names->info_dwo))
10770 {
10771 dwo_sections->info.s.section = sectp;
10772 dwo_sections->info.size = bfd_get_section_size (sectp);
10773 }
10774 else if (section_is_p (sectp->name, &names->line_dwo))
10775 {
10776 dwo_sections->line.s.section = sectp;
10777 dwo_sections->line.size = bfd_get_section_size (sectp);
10778 }
10779 else if (section_is_p (sectp->name, &names->loc_dwo))
10780 {
10781 dwo_sections->loc.s.section = sectp;
10782 dwo_sections->loc.size = bfd_get_section_size (sectp);
10783 }
10784 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10785 {
10786 dwo_sections->macinfo.s.section = sectp;
10787 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10788 }
10789 else if (section_is_p (sectp->name, &names->macro_dwo))
10790 {
10791 dwo_sections->macro.s.section = sectp;
10792 dwo_sections->macro.size = bfd_get_section_size (sectp);
10793 }
10794 else if (section_is_p (sectp->name, &names->str_dwo))
10795 {
10796 dwo_sections->str.s.section = sectp;
10797 dwo_sections->str.size = bfd_get_section_size (sectp);
10798 }
10799 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10800 {
10801 dwo_sections->str_offsets.s.section = sectp;
10802 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10803 }
10804 else if (section_is_p (sectp->name, &names->types_dwo))
10805 {
10806 struct dwarf2_section_info type_section;
10807
10808 memset (&type_section, 0, sizeof (type_section));
10809 type_section.s.section = sectp;
10810 type_section.size = bfd_get_section_size (sectp);
10811 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10812 &type_section);
10813 }
10814 }
10815
10816 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10817 by PER_CU. This is for the non-DWP case.
10818 The result is NULL if DWO_NAME can't be found. */
10819
10820 static struct dwo_file *
10821 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10822 const char *dwo_name, const char *comp_dir)
10823 {
10824 struct objfile *objfile = dwarf2_per_objfile->objfile;
10825 struct dwo_file *dwo_file;
10826 struct cleanup *cleanups;
10827
10828 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10829 if (dbfd == NULL)
10830 {
10831 if (dwarf_read_debug)
10832 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10833 return NULL;
10834 }
10835 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10836 dwo_file->dwo_name = dwo_name;
10837 dwo_file->comp_dir = comp_dir;
10838 dwo_file->dbfd = dbfd.release ();
10839
10840 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10841
10842 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10843 &dwo_file->sections);
10844
10845 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
10846
10847 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10848 dwo_file->tus);
10849
10850 discard_cleanups (cleanups);
10851
10852 if (dwarf_read_debug)
10853 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10854
10855 return dwo_file;
10856 }
10857
10858 /* This function is mapped across the sections and remembers the offset and
10859 size of each of the DWP debugging sections common to version 1 and 2 that
10860 we are interested in. */
10861
10862 static void
10863 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10864 void *dwp_file_ptr)
10865 {
10866 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10867 const struct dwop_section_names *names = &dwop_section_names;
10868 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10869
10870 /* Record the ELF section number for later lookup: this is what the
10871 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10872 gdb_assert (elf_section_nr < dwp_file->num_sections);
10873 dwp_file->elf_sections[elf_section_nr] = sectp;
10874
10875 /* Look for specific sections that we need. */
10876 if (section_is_p (sectp->name, &names->str_dwo))
10877 {
10878 dwp_file->sections.str.s.section = sectp;
10879 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10880 }
10881 else if (section_is_p (sectp->name, &names->cu_index))
10882 {
10883 dwp_file->sections.cu_index.s.section = sectp;
10884 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10885 }
10886 else if (section_is_p (sectp->name, &names->tu_index))
10887 {
10888 dwp_file->sections.tu_index.s.section = sectp;
10889 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10890 }
10891 }
10892
10893 /* This function is mapped across the sections and remembers the offset and
10894 size of each of the DWP version 2 debugging sections that we are interested
10895 in. This is split into a separate function because we don't know if we
10896 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10897
10898 static void
10899 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10900 {
10901 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10902 const struct dwop_section_names *names = &dwop_section_names;
10903 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10904
10905 /* Record the ELF section number for later lookup: this is what the
10906 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10907 gdb_assert (elf_section_nr < dwp_file->num_sections);
10908 dwp_file->elf_sections[elf_section_nr] = sectp;
10909
10910 /* Look for specific sections that we need. */
10911 if (section_is_p (sectp->name, &names->abbrev_dwo))
10912 {
10913 dwp_file->sections.abbrev.s.section = sectp;
10914 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10915 }
10916 else if (section_is_p (sectp->name, &names->info_dwo))
10917 {
10918 dwp_file->sections.info.s.section = sectp;
10919 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10920 }
10921 else if (section_is_p (sectp->name, &names->line_dwo))
10922 {
10923 dwp_file->sections.line.s.section = sectp;
10924 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10925 }
10926 else if (section_is_p (sectp->name, &names->loc_dwo))
10927 {
10928 dwp_file->sections.loc.s.section = sectp;
10929 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10930 }
10931 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10932 {
10933 dwp_file->sections.macinfo.s.section = sectp;
10934 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10935 }
10936 else if (section_is_p (sectp->name, &names->macro_dwo))
10937 {
10938 dwp_file->sections.macro.s.section = sectp;
10939 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10940 }
10941 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10942 {
10943 dwp_file->sections.str_offsets.s.section = sectp;
10944 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10945 }
10946 else if (section_is_p (sectp->name, &names->types_dwo))
10947 {
10948 dwp_file->sections.types.s.section = sectp;
10949 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10950 }
10951 }
10952
10953 /* Hash function for dwp_file loaded CUs/TUs. */
10954
10955 static hashval_t
10956 hash_dwp_loaded_cutus (const void *item)
10957 {
10958 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10959
10960 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10961 return dwo_unit->signature;
10962 }
10963
10964 /* Equality function for dwp_file loaded CUs/TUs. */
10965
10966 static int
10967 eq_dwp_loaded_cutus (const void *a, const void *b)
10968 {
10969 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10970 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10971
10972 return dua->signature == dub->signature;
10973 }
10974
10975 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10976
10977 static htab_t
10978 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10979 {
10980 return htab_create_alloc_ex (3,
10981 hash_dwp_loaded_cutus,
10982 eq_dwp_loaded_cutus,
10983 NULL,
10984 &objfile->objfile_obstack,
10985 hashtab_obstack_allocate,
10986 dummy_obstack_deallocate);
10987 }
10988
10989 /* Try to open DWP file FILE_NAME.
10990 The result is the bfd handle of the file.
10991 If there is a problem finding or opening the file, return NULL.
10992 Upon success, the canonicalized path of the file is stored in the bfd,
10993 same as symfile_bfd_open. */
10994
10995 static gdb_bfd_ref_ptr
10996 open_dwp_file (const char *file_name)
10997 {
10998 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10999 1 /*search_cwd*/));
11000 if (abfd != NULL)
11001 return abfd;
11002
11003 /* Work around upstream bug 15652.
11004 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11005 [Whether that's a "bug" is debatable, but it is getting in our way.]
11006 We have no real idea where the dwp file is, because gdb's realpath-ing
11007 of the executable's path may have discarded the needed info.
11008 [IWBN if the dwp file name was recorded in the executable, akin to
11009 .gnu_debuglink, but that doesn't exist yet.]
11010 Strip the directory from FILE_NAME and search again. */
11011 if (*debug_file_directory != '\0')
11012 {
11013 /* Don't implicitly search the current directory here.
11014 If the user wants to search "." to handle this case,
11015 it must be added to debug-file-directory. */
11016 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11017 0 /*search_cwd*/);
11018 }
11019
11020 return NULL;
11021 }
11022
11023 /* Initialize the use of the DWP file for the current objfile.
11024 By convention the name of the DWP file is ${objfile}.dwp.
11025 The result is NULL if it can't be found. */
11026
11027 static struct dwp_file *
11028 open_and_init_dwp_file (void)
11029 {
11030 struct objfile *objfile = dwarf2_per_objfile->objfile;
11031 struct dwp_file *dwp_file;
11032
11033 /* Try to find first .dwp for the binary file before any symbolic links
11034 resolving. */
11035
11036 /* If the objfile is a debug file, find the name of the real binary
11037 file and get the name of dwp file from there. */
11038 std::string dwp_name;
11039 if (objfile->separate_debug_objfile_backlink != NULL)
11040 {
11041 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11042 const char *backlink_basename = lbasename (backlink->original_name);
11043
11044 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11045 }
11046 else
11047 dwp_name = objfile->original_name;
11048
11049 dwp_name += ".dwp";
11050
11051 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
11052 if (dbfd == NULL
11053 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11054 {
11055 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
11056 dwp_name = objfile_name (objfile);
11057 dwp_name += ".dwp";
11058 dbfd = open_dwp_file (dwp_name.c_str ());
11059 }
11060
11061 if (dbfd == NULL)
11062 {
11063 if (dwarf_read_debug)
11064 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
11065 return NULL;
11066 }
11067 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
11068 dwp_file->name = bfd_get_filename (dbfd.get ());
11069 dwp_file->dbfd = dbfd.release ();
11070
11071 /* +1: section 0 is unused */
11072 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
11073 dwp_file->elf_sections =
11074 OBSTACK_CALLOC (&objfile->objfile_obstack,
11075 dwp_file->num_sections, asection *);
11076
11077 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11078 dwp_file);
11079
11080 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11081
11082 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11083
11084 /* The DWP file version is stored in the hash table. Oh well. */
11085 if (dwp_file->cus->version != dwp_file->tus->version)
11086 {
11087 /* Technically speaking, we should try to limp along, but this is
11088 pretty bizarre. We use pulongest here because that's the established
11089 portability solution (e.g, we cannot use %u for uint32_t). */
11090 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11091 " TU version %s [in DWP file %s]"),
11092 pulongest (dwp_file->cus->version),
11093 pulongest (dwp_file->tus->version), dwp_name.c_str ());
11094 }
11095 dwp_file->version = dwp_file->cus->version;
11096
11097 if (dwp_file->version == 2)
11098 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11099 dwp_file);
11100
11101 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11102 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
11103
11104 if (dwarf_read_debug)
11105 {
11106 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11107 fprintf_unfiltered (gdb_stdlog,
11108 " %s CUs, %s TUs\n",
11109 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11110 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
11111 }
11112
11113 return dwp_file;
11114 }
11115
11116 /* Wrapper around open_and_init_dwp_file, only open it once. */
11117
11118 static struct dwp_file *
11119 get_dwp_file (void)
11120 {
11121 if (! dwarf2_per_objfile->dwp_checked)
11122 {
11123 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11124 dwarf2_per_objfile->dwp_checked = 1;
11125 }
11126 return dwarf2_per_objfile->dwp_file;
11127 }
11128
11129 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11130 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11131 or in the DWP file for the objfile, referenced by THIS_UNIT.
11132 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
11133 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11134
11135 This is called, for example, when wanting to read a variable with a
11136 complex location. Therefore we don't want to do file i/o for every call.
11137 Therefore we don't want to look for a DWO file on every call.
11138 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11139 then we check if we've already seen DWO_NAME, and only THEN do we check
11140 for a DWO file.
11141
11142 The result is a pointer to the dwo_unit object or NULL if we didn't find it
11143 (dwo_id mismatch or couldn't find the DWO/DWP file). */
11144
11145 static struct dwo_unit *
11146 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11147 const char *dwo_name, const char *comp_dir,
11148 ULONGEST signature, int is_debug_types)
11149 {
11150 struct objfile *objfile = dwarf2_per_objfile->objfile;
11151 const char *kind = is_debug_types ? "TU" : "CU";
11152 void **dwo_file_slot;
11153 struct dwo_file *dwo_file;
11154 struct dwp_file *dwp_file;
11155
11156 /* First see if there's a DWP file.
11157 If we have a DWP file but didn't find the DWO inside it, don't
11158 look for the original DWO file. It makes gdb behave differently
11159 depending on whether one is debugging in the build tree. */
11160
11161 dwp_file = get_dwp_file ();
11162 if (dwp_file != NULL)
11163 {
11164 const struct dwp_hash_table *dwp_htab =
11165 is_debug_types ? dwp_file->tus : dwp_file->cus;
11166
11167 if (dwp_htab != NULL)
11168 {
11169 struct dwo_unit *dwo_cutu =
11170 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11171 signature, is_debug_types);
11172
11173 if (dwo_cutu != NULL)
11174 {
11175 if (dwarf_read_debug)
11176 {
11177 fprintf_unfiltered (gdb_stdlog,
11178 "Virtual DWO %s %s found: @%s\n",
11179 kind, hex_string (signature),
11180 host_address_to_string (dwo_cutu));
11181 }
11182 return dwo_cutu;
11183 }
11184 }
11185 }
11186 else
11187 {
11188 /* No DWP file, look for the DWO file. */
11189
11190 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11191 if (*dwo_file_slot == NULL)
11192 {
11193 /* Read in the file and build a table of the CUs/TUs it contains. */
11194 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
11195 }
11196 /* NOTE: This will be NULL if unable to open the file. */
11197 dwo_file = (struct dwo_file *) *dwo_file_slot;
11198
11199 if (dwo_file != NULL)
11200 {
11201 struct dwo_unit *dwo_cutu = NULL;
11202
11203 if (is_debug_types && dwo_file->tus)
11204 {
11205 struct dwo_unit find_dwo_cutu;
11206
11207 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11208 find_dwo_cutu.signature = signature;
11209 dwo_cutu
11210 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11211 }
11212 else if (!is_debug_types && dwo_file->cus)
11213 {
11214 struct dwo_unit find_dwo_cutu;
11215
11216 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11217 find_dwo_cutu.signature = signature;
11218 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11219 &find_dwo_cutu);
11220 }
11221
11222 if (dwo_cutu != NULL)
11223 {
11224 if (dwarf_read_debug)
11225 {
11226 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11227 kind, dwo_name, hex_string (signature),
11228 host_address_to_string (dwo_cutu));
11229 }
11230 return dwo_cutu;
11231 }
11232 }
11233 }
11234
11235 /* We didn't find it. This could mean a dwo_id mismatch, or
11236 someone deleted the DWO/DWP file, or the search path isn't set up
11237 correctly to find the file. */
11238
11239 if (dwarf_read_debug)
11240 {
11241 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11242 kind, dwo_name, hex_string (signature));
11243 }
11244
11245 /* This is a warning and not a complaint because it can be caused by
11246 pilot error (e.g., user accidentally deleting the DWO). */
11247 {
11248 /* Print the name of the DWP file if we looked there, helps the user
11249 better diagnose the problem. */
11250 char *dwp_text = NULL;
11251 struct cleanup *cleanups;
11252
11253 if (dwp_file != NULL)
11254 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11255 cleanups = make_cleanup (xfree, dwp_text);
11256
11257 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11258 " [in module %s]"),
11259 kind, dwo_name, hex_string (signature),
11260 dwp_text != NULL ? dwp_text : "",
11261 this_unit->is_debug_types ? "TU" : "CU",
11262 to_underlying (this_unit->sect_off), objfile_name (objfile));
11263
11264 do_cleanups (cleanups);
11265 }
11266 return NULL;
11267 }
11268
11269 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11270 See lookup_dwo_cutu_unit for details. */
11271
11272 static struct dwo_unit *
11273 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11274 const char *dwo_name, const char *comp_dir,
11275 ULONGEST signature)
11276 {
11277 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11278 }
11279
11280 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11281 See lookup_dwo_cutu_unit for details. */
11282
11283 static struct dwo_unit *
11284 lookup_dwo_type_unit (struct signatured_type *this_tu,
11285 const char *dwo_name, const char *comp_dir)
11286 {
11287 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11288 }
11289
11290 /* Traversal function for queue_and_load_all_dwo_tus. */
11291
11292 static int
11293 queue_and_load_dwo_tu (void **slot, void *info)
11294 {
11295 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11296 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11297 ULONGEST signature = dwo_unit->signature;
11298 struct signatured_type *sig_type =
11299 lookup_dwo_signatured_type (per_cu->cu, signature);
11300
11301 if (sig_type != NULL)
11302 {
11303 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11304
11305 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11306 a real dependency of PER_CU on SIG_TYPE. That is detected later
11307 while processing PER_CU. */
11308 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11309 load_full_type_unit (sig_cu);
11310 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11311 }
11312
11313 return 1;
11314 }
11315
11316 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11317 The DWO may have the only definition of the type, though it may not be
11318 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11319 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11320
11321 static void
11322 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11323 {
11324 struct dwo_unit *dwo_unit;
11325 struct dwo_file *dwo_file;
11326
11327 gdb_assert (!per_cu->is_debug_types);
11328 gdb_assert (get_dwp_file () == NULL);
11329 gdb_assert (per_cu->cu != NULL);
11330
11331 dwo_unit = per_cu->cu->dwo_unit;
11332 gdb_assert (dwo_unit != NULL);
11333
11334 dwo_file = dwo_unit->dwo_file;
11335 if (dwo_file->tus != NULL)
11336 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11337 }
11338
11339 /* Free all resources associated with DWO_FILE.
11340 Close the DWO file and munmap the sections.
11341 All memory should be on the objfile obstack. */
11342
11343 static void
11344 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11345 {
11346
11347 /* Note: dbfd is NULL for virtual DWO files. */
11348 gdb_bfd_unref (dwo_file->dbfd);
11349
11350 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11351 }
11352
11353 /* Wrapper for free_dwo_file for use in cleanups. */
11354
11355 static void
11356 free_dwo_file_cleanup (void *arg)
11357 {
11358 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11359 struct objfile *objfile = dwarf2_per_objfile->objfile;
11360
11361 free_dwo_file (dwo_file, objfile);
11362 }
11363
11364 /* Traversal function for free_dwo_files. */
11365
11366 static int
11367 free_dwo_file_from_slot (void **slot, void *info)
11368 {
11369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11370 struct objfile *objfile = (struct objfile *) info;
11371
11372 free_dwo_file (dwo_file, objfile);
11373
11374 return 1;
11375 }
11376
11377 /* Free all resources associated with DWO_FILES. */
11378
11379 static void
11380 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11381 {
11382 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11383 }
11384 \f
11385 /* Read in various DIEs. */
11386
11387 /* qsort helper for inherit_abstract_dies. */
11388
11389 static int
11390 unsigned_int_compar (const void *ap, const void *bp)
11391 {
11392 unsigned int a = *(unsigned int *) ap;
11393 unsigned int b = *(unsigned int *) bp;
11394
11395 return (a > b) - (b > a);
11396 }
11397
11398 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11399 Inherit only the children of the DW_AT_abstract_origin DIE not being
11400 already referenced by DW_AT_abstract_origin from the children of the
11401 current DIE. */
11402
11403 static void
11404 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11405 {
11406 struct die_info *child_die;
11407 unsigned die_children_count;
11408 /* CU offsets which were referenced by children of the current DIE. */
11409 sect_offset *offsets;
11410 sect_offset *offsets_end, *offsetp;
11411 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11412 struct die_info *origin_die;
11413 /* Iterator of the ORIGIN_DIE children. */
11414 struct die_info *origin_child_die;
11415 struct cleanup *cleanups;
11416 struct attribute *attr;
11417 struct dwarf2_cu *origin_cu;
11418 struct pending **origin_previous_list_in_scope;
11419
11420 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11421 if (!attr)
11422 return;
11423
11424 /* Note that following die references may follow to a die in a
11425 different cu. */
11426
11427 origin_cu = cu;
11428 origin_die = follow_die_ref (die, attr, &origin_cu);
11429
11430 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11431 symbols in. */
11432 origin_previous_list_in_scope = origin_cu->list_in_scope;
11433 origin_cu->list_in_scope = cu->list_in_scope;
11434
11435 if (die->tag != origin_die->tag
11436 && !(die->tag == DW_TAG_inlined_subroutine
11437 && origin_die->tag == DW_TAG_subprogram))
11438 complaint (&symfile_complaints,
11439 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11440 to_underlying (die->sect_off),
11441 to_underlying (origin_die->sect_off));
11442
11443 child_die = die->child;
11444 die_children_count = 0;
11445 while (child_die && child_die->tag)
11446 {
11447 child_die = sibling_die (child_die);
11448 die_children_count++;
11449 }
11450 offsets = XNEWVEC (sect_offset, die_children_count);
11451 cleanups = make_cleanup (xfree, offsets);
11452
11453 offsets_end = offsets;
11454 for (child_die = die->child;
11455 child_die && child_die->tag;
11456 child_die = sibling_die (child_die))
11457 {
11458 struct die_info *child_origin_die;
11459 struct dwarf2_cu *child_origin_cu;
11460
11461 /* We are trying to process concrete instance entries:
11462 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11463 it's not relevant to our analysis here. i.e. detecting DIEs that are
11464 present in the abstract instance but not referenced in the concrete
11465 one. */
11466 if (child_die->tag == DW_TAG_call_site
11467 || child_die->tag == DW_TAG_GNU_call_site)
11468 continue;
11469
11470 /* For each CHILD_DIE, find the corresponding child of
11471 ORIGIN_DIE. If there is more than one layer of
11472 DW_AT_abstract_origin, follow them all; there shouldn't be,
11473 but GCC versions at least through 4.4 generate this (GCC PR
11474 40573). */
11475 child_origin_die = child_die;
11476 child_origin_cu = cu;
11477 while (1)
11478 {
11479 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11480 child_origin_cu);
11481 if (attr == NULL)
11482 break;
11483 child_origin_die = follow_die_ref (child_origin_die, attr,
11484 &child_origin_cu);
11485 }
11486
11487 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11488 counterpart may exist. */
11489 if (child_origin_die != child_die)
11490 {
11491 if (child_die->tag != child_origin_die->tag
11492 && !(child_die->tag == DW_TAG_inlined_subroutine
11493 && child_origin_die->tag == DW_TAG_subprogram))
11494 complaint (&symfile_complaints,
11495 _("Child DIE 0x%x and its abstract origin 0x%x have "
11496 "different tags"),
11497 to_underlying (child_die->sect_off),
11498 to_underlying (child_origin_die->sect_off));
11499 if (child_origin_die->parent != origin_die)
11500 complaint (&symfile_complaints,
11501 _("Child DIE 0x%x and its abstract origin 0x%x have "
11502 "different parents"),
11503 to_underlying (child_die->sect_off),
11504 to_underlying (child_origin_die->sect_off));
11505 else
11506 *offsets_end++ = child_origin_die->sect_off;
11507 }
11508 }
11509 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11510 unsigned_int_compar);
11511 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11512 if (offsetp[-1] == *offsetp)
11513 complaint (&symfile_complaints,
11514 _("Multiple children of DIE 0x%x refer "
11515 "to DIE 0x%x as their abstract origin"),
11516 to_underlying (die->sect_off), to_underlying (*offsetp));
11517
11518 offsetp = offsets;
11519 origin_child_die = origin_die->child;
11520 while (origin_child_die && origin_child_die->tag)
11521 {
11522 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11523 while (offsetp < offsets_end
11524 && *offsetp < origin_child_die->sect_off)
11525 offsetp++;
11526 if (offsetp >= offsets_end
11527 || *offsetp > origin_child_die->sect_off)
11528 {
11529 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11530 Check whether we're already processing ORIGIN_CHILD_DIE.
11531 This can happen with mutually referenced abstract_origins.
11532 PR 16581. */
11533 if (!origin_child_die->in_process)
11534 process_die (origin_child_die, origin_cu);
11535 }
11536 origin_child_die = sibling_die (origin_child_die);
11537 }
11538 origin_cu->list_in_scope = origin_previous_list_in_scope;
11539
11540 do_cleanups (cleanups);
11541 }
11542
11543 static void
11544 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11545 {
11546 struct objfile *objfile = cu->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 struct context_stack *newobj;
11549 CORE_ADDR lowpc;
11550 CORE_ADDR highpc;
11551 struct die_info *child_die;
11552 struct attribute *attr, *call_line, *call_file;
11553 const char *name;
11554 CORE_ADDR baseaddr;
11555 struct block *block;
11556 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11557 VEC (symbolp) *template_args = NULL;
11558 struct template_symbol *templ_func = NULL;
11559
11560 if (inlined_func)
11561 {
11562 /* If we do not have call site information, we can't show the
11563 caller of this inlined function. That's too confusing, so
11564 only use the scope for local variables. */
11565 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11566 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11567 if (call_line == NULL || call_file == NULL)
11568 {
11569 read_lexical_block_scope (die, cu);
11570 return;
11571 }
11572 }
11573
11574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11575
11576 name = dwarf2_name (die, cu);
11577
11578 /* Ignore functions with missing or empty names. These are actually
11579 illegal according to the DWARF standard. */
11580 if (name == NULL)
11581 {
11582 complaint (&symfile_complaints,
11583 _("missing name for subprogram DIE at %d"),
11584 to_underlying (die->sect_off));
11585 return;
11586 }
11587
11588 /* Ignore functions with missing or invalid low and high pc attributes. */
11589 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11590 <= PC_BOUNDS_INVALID)
11591 {
11592 attr = dwarf2_attr (die, DW_AT_external, cu);
11593 if (!attr || !DW_UNSND (attr))
11594 complaint (&symfile_complaints,
11595 _("cannot get low and high bounds "
11596 "for subprogram DIE at %d"),
11597 to_underlying (die->sect_off));
11598 return;
11599 }
11600
11601 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11602 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11603
11604 /* If we have any template arguments, then we must allocate a
11605 different sort of symbol. */
11606 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11607 {
11608 if (child_die->tag == DW_TAG_template_type_param
11609 || child_die->tag == DW_TAG_template_value_param)
11610 {
11611 templ_func = allocate_template_symbol (objfile);
11612 templ_func->base.is_cplus_template_function = 1;
11613 break;
11614 }
11615 }
11616
11617 newobj = push_context (0, lowpc);
11618 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11619 (struct symbol *) templ_func);
11620
11621 /* If there is a location expression for DW_AT_frame_base, record
11622 it. */
11623 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11624 if (attr)
11625 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11626
11627 /* If there is a location for the static link, record it. */
11628 newobj->static_link = NULL;
11629 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11630 if (attr)
11631 {
11632 newobj->static_link
11633 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11634 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11635 }
11636
11637 cu->list_in_scope = &local_symbols;
11638
11639 if (die->child != NULL)
11640 {
11641 child_die = die->child;
11642 while (child_die && child_die->tag)
11643 {
11644 if (child_die->tag == DW_TAG_template_type_param
11645 || child_die->tag == DW_TAG_template_value_param)
11646 {
11647 struct symbol *arg = new_symbol (child_die, NULL, cu);
11648
11649 if (arg != NULL)
11650 VEC_safe_push (symbolp, template_args, arg);
11651 }
11652 else
11653 process_die (child_die, cu);
11654 child_die = sibling_die (child_die);
11655 }
11656 }
11657
11658 inherit_abstract_dies (die, cu);
11659
11660 /* If we have a DW_AT_specification, we might need to import using
11661 directives from the context of the specification DIE. See the
11662 comment in determine_prefix. */
11663 if (cu->language == language_cplus
11664 && dwarf2_attr (die, DW_AT_specification, cu))
11665 {
11666 struct dwarf2_cu *spec_cu = cu;
11667 struct die_info *spec_die = die_specification (die, &spec_cu);
11668
11669 while (spec_die)
11670 {
11671 child_die = spec_die->child;
11672 while (child_die && child_die->tag)
11673 {
11674 if (child_die->tag == DW_TAG_imported_module)
11675 process_die (child_die, spec_cu);
11676 child_die = sibling_die (child_die);
11677 }
11678
11679 /* In some cases, GCC generates specification DIEs that
11680 themselves contain DW_AT_specification attributes. */
11681 spec_die = die_specification (spec_die, &spec_cu);
11682 }
11683 }
11684
11685 newobj = pop_context ();
11686 /* Make a block for the local symbols within. */
11687 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11688 newobj->static_link, lowpc, highpc);
11689
11690 /* For C++, set the block's scope. */
11691 if ((cu->language == language_cplus
11692 || cu->language == language_fortran
11693 || cu->language == language_d
11694 || cu->language == language_rust)
11695 && cu->processing_has_namespace_info)
11696 block_set_scope (block, determine_prefix (die, cu),
11697 &objfile->objfile_obstack);
11698
11699 /* If we have address ranges, record them. */
11700 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11701
11702 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11703
11704 /* Attach template arguments to function. */
11705 if (! VEC_empty (symbolp, template_args))
11706 {
11707 gdb_assert (templ_func != NULL);
11708
11709 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11710 templ_func->template_arguments
11711 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11712 templ_func->n_template_arguments);
11713 memcpy (templ_func->template_arguments,
11714 VEC_address (symbolp, template_args),
11715 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11716 VEC_free (symbolp, template_args);
11717 }
11718
11719 /* In C++, we can have functions nested inside functions (e.g., when
11720 a function declares a class that has methods). This means that
11721 when we finish processing a function scope, we may need to go
11722 back to building a containing block's symbol lists. */
11723 local_symbols = newobj->locals;
11724 local_using_directives = newobj->local_using_directives;
11725
11726 /* If we've finished processing a top-level function, subsequent
11727 symbols go in the file symbol list. */
11728 if (outermost_context_p ())
11729 cu->list_in_scope = &file_symbols;
11730 }
11731
11732 /* Process all the DIES contained within a lexical block scope. Start
11733 a new scope, process the dies, and then close the scope. */
11734
11735 static void
11736 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11737 {
11738 struct objfile *objfile = cu->objfile;
11739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11740 struct context_stack *newobj;
11741 CORE_ADDR lowpc, highpc;
11742 struct die_info *child_die;
11743 CORE_ADDR baseaddr;
11744
11745 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11746
11747 /* Ignore blocks with missing or invalid low and high pc attributes. */
11748 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11749 as multiple lexical blocks? Handling children in a sane way would
11750 be nasty. Might be easier to properly extend generic blocks to
11751 describe ranges. */
11752 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11753 {
11754 case PC_BOUNDS_NOT_PRESENT:
11755 /* DW_TAG_lexical_block has no attributes, process its children as if
11756 there was no wrapping by that DW_TAG_lexical_block.
11757 GCC does no longer produces such DWARF since GCC r224161. */
11758 for (child_die = die->child;
11759 child_die != NULL && child_die->tag;
11760 child_die = sibling_die (child_die))
11761 process_die (child_die, cu);
11762 return;
11763 case PC_BOUNDS_INVALID:
11764 return;
11765 }
11766 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11767 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11768
11769 push_context (0, lowpc);
11770 if (die->child != NULL)
11771 {
11772 child_die = die->child;
11773 while (child_die && child_die->tag)
11774 {
11775 process_die (child_die, cu);
11776 child_die = sibling_die (child_die);
11777 }
11778 }
11779 inherit_abstract_dies (die, cu);
11780 newobj = pop_context ();
11781
11782 if (local_symbols != NULL || local_using_directives != NULL)
11783 {
11784 struct block *block
11785 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11786 newobj->start_addr, highpc);
11787
11788 /* Note that recording ranges after traversing children, as we
11789 do here, means that recording a parent's ranges entails
11790 walking across all its children's ranges as they appear in
11791 the address map, which is quadratic behavior.
11792
11793 It would be nicer to record the parent's ranges before
11794 traversing its children, simply overriding whatever you find
11795 there. But since we don't even decide whether to create a
11796 block until after we've traversed its children, that's hard
11797 to do. */
11798 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11799 }
11800 local_symbols = newobj->locals;
11801 local_using_directives = newobj->local_using_directives;
11802 }
11803
11804 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
11805
11806 static void
11807 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11808 {
11809 struct objfile *objfile = cu->objfile;
11810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11811 CORE_ADDR pc, baseaddr;
11812 struct attribute *attr;
11813 struct call_site *call_site, call_site_local;
11814 void **slot;
11815 int nparams;
11816 struct die_info *child_die;
11817
11818 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11819
11820 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11821 if (attr == NULL)
11822 {
11823 /* This was a pre-DWARF-5 GNU extension alias
11824 for DW_AT_call_return_pc. */
11825 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11826 }
11827 if (!attr)
11828 {
11829 complaint (&symfile_complaints,
11830 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
11831 "DIE 0x%x [in module %s]"),
11832 to_underlying (die->sect_off), objfile_name (objfile));
11833 return;
11834 }
11835 pc = attr_value_as_address (attr) + baseaddr;
11836 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11837
11838 if (cu->call_site_htab == NULL)
11839 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11840 NULL, &objfile->objfile_obstack,
11841 hashtab_obstack_allocate, NULL);
11842 call_site_local.pc = pc;
11843 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11844 if (*slot != NULL)
11845 {
11846 complaint (&symfile_complaints,
11847 _("Duplicate PC %s for DW_TAG_call_site "
11848 "DIE 0x%x [in module %s]"),
11849 paddress (gdbarch, pc), to_underlying (die->sect_off),
11850 objfile_name (objfile));
11851 return;
11852 }
11853
11854 /* Count parameters at the caller. */
11855
11856 nparams = 0;
11857 for (child_die = die->child; child_die && child_die->tag;
11858 child_die = sibling_die (child_die))
11859 {
11860 if (child_die->tag != DW_TAG_call_site_parameter
11861 && child_die->tag != DW_TAG_GNU_call_site_parameter)
11862 {
11863 complaint (&symfile_complaints,
11864 _("Tag %d is not DW_TAG_call_site_parameter in "
11865 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
11866 child_die->tag, to_underlying (child_die->sect_off),
11867 objfile_name (objfile));
11868 continue;
11869 }
11870
11871 nparams++;
11872 }
11873
11874 call_site
11875 = ((struct call_site *)
11876 obstack_alloc (&objfile->objfile_obstack,
11877 sizeof (*call_site)
11878 + (sizeof (*call_site->parameter) * (nparams - 1))));
11879 *slot = call_site;
11880 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11881 call_site->pc = pc;
11882
11883 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11884 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11885 {
11886 struct die_info *func_die;
11887
11888 /* Skip also over DW_TAG_inlined_subroutine. */
11889 for (func_die = die->parent;
11890 func_die && func_die->tag != DW_TAG_subprogram
11891 && func_die->tag != DW_TAG_subroutine_type;
11892 func_die = func_die->parent);
11893
11894 /* DW_AT_call_all_calls is a superset
11895 of DW_AT_call_all_tail_calls. */
11896 if (func_die
11897 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
11898 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11899 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
11900 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11901 {
11902 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11903 not complete. But keep CALL_SITE for look ups via call_site_htab,
11904 both the initial caller containing the real return address PC and
11905 the final callee containing the current PC of a chain of tail
11906 calls do not need to have the tail call list complete. But any
11907 function candidate for a virtual tail call frame searched via
11908 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11909 determined unambiguously. */
11910 }
11911 else
11912 {
11913 struct type *func_type = NULL;
11914
11915 if (func_die)
11916 func_type = get_die_type (func_die, cu);
11917 if (func_type != NULL)
11918 {
11919 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11920
11921 /* Enlist this call site to the function. */
11922 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11923 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11924 }
11925 else
11926 complaint (&symfile_complaints,
11927 _("Cannot find function owning DW_TAG_call_site "
11928 "DIE 0x%x [in module %s]"),
11929 to_underlying (die->sect_off), objfile_name (objfile));
11930 }
11931 }
11932
11933 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11934 if (attr == NULL)
11935 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11936 if (attr == NULL)
11937 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
11938 if (attr == NULL)
11939 {
11940 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11941 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11942 }
11943 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11944 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11945 /* Keep NULL DWARF_BLOCK. */;
11946 else if (attr_form_is_block (attr))
11947 {
11948 struct dwarf2_locexpr_baton *dlbaton;
11949
11950 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11951 dlbaton->data = DW_BLOCK (attr)->data;
11952 dlbaton->size = DW_BLOCK (attr)->size;
11953 dlbaton->per_cu = cu->per_cu;
11954
11955 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11956 }
11957 else if (attr_form_is_ref (attr))
11958 {
11959 struct dwarf2_cu *target_cu = cu;
11960 struct die_info *target_die;
11961
11962 target_die = follow_die_ref (die, attr, &target_cu);
11963 gdb_assert (target_cu->objfile == objfile);
11964 if (die_is_declaration (target_die, target_cu))
11965 {
11966 const char *target_physname;
11967
11968 /* Prefer the mangled name; otherwise compute the demangled one. */
11969 target_physname = dwarf2_string_attr (target_die,
11970 DW_AT_linkage_name,
11971 target_cu);
11972 if (target_physname == NULL)
11973 target_physname = dwarf2_string_attr (target_die,
11974 DW_AT_MIPS_linkage_name,
11975 target_cu);
11976 if (target_physname == NULL)
11977 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11978 if (target_physname == NULL)
11979 complaint (&symfile_complaints,
11980 _("DW_AT_call_target target DIE has invalid "
11981 "physname, for referencing DIE 0x%x [in module %s]"),
11982 to_underlying (die->sect_off), objfile_name (objfile));
11983 else
11984 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11985 }
11986 else
11987 {
11988 CORE_ADDR lowpc;
11989
11990 /* DW_AT_entry_pc should be preferred. */
11991 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11992 <= PC_BOUNDS_INVALID)
11993 complaint (&symfile_complaints,
11994 _("DW_AT_call_target target DIE has invalid "
11995 "low pc, for referencing DIE 0x%x [in module %s]"),
11996 to_underlying (die->sect_off), objfile_name (objfile));
11997 else
11998 {
11999 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12000 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12001 }
12002 }
12003 }
12004 else
12005 complaint (&symfile_complaints,
12006 _("DW_TAG_call_site DW_AT_call_target is neither "
12007 "block nor reference, for DIE 0x%x [in module %s]"),
12008 to_underlying (die->sect_off), objfile_name (objfile));
12009
12010 call_site->per_cu = cu->per_cu;
12011
12012 for (child_die = die->child;
12013 child_die && child_die->tag;
12014 child_die = sibling_die (child_die))
12015 {
12016 struct call_site_parameter *parameter;
12017 struct attribute *loc, *origin;
12018
12019 if (child_die->tag != DW_TAG_call_site_parameter
12020 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12021 {
12022 /* Already printed the complaint above. */
12023 continue;
12024 }
12025
12026 gdb_assert (call_site->parameter_count < nparams);
12027 parameter = &call_site->parameter[call_site->parameter_count];
12028
12029 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12030 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12031 register is contained in DW_AT_call_value. */
12032
12033 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12034 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12035 if (origin == NULL)
12036 {
12037 /* This was a pre-DWARF-5 GNU extension alias
12038 for DW_AT_call_parameter. */
12039 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12040 }
12041 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12042 {
12043 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12044
12045 sect_offset sect_off
12046 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12047 if (!offset_in_cu_p (&cu->header, sect_off))
12048 {
12049 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12050 binding can be done only inside one CU. Such referenced DIE
12051 therefore cannot be even moved to DW_TAG_partial_unit. */
12052 complaint (&symfile_complaints,
12053 _("DW_AT_call_parameter offset is not in CU for "
12054 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12055 to_underlying (child_die->sect_off),
12056 objfile_name (objfile));
12057 continue;
12058 }
12059 parameter->u.param_cu_off
12060 = (cu_offset) (sect_off - cu->header.sect_off);
12061 }
12062 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12063 {
12064 complaint (&symfile_complaints,
12065 _("No DW_FORM_block* DW_AT_location for "
12066 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12067 to_underlying (child_die->sect_off), objfile_name (objfile));
12068 continue;
12069 }
12070 else
12071 {
12072 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12073 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12074 if (parameter->u.dwarf_reg != -1)
12075 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12076 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12077 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12078 &parameter->u.fb_offset))
12079 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12080 else
12081 {
12082 complaint (&symfile_complaints,
12083 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12084 "for DW_FORM_block* DW_AT_location is supported for "
12085 "DW_TAG_call_site child DIE 0x%x "
12086 "[in module %s]"),
12087 to_underlying (child_die->sect_off),
12088 objfile_name (objfile));
12089 continue;
12090 }
12091 }
12092
12093 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12094 if (attr == NULL)
12095 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
12096 if (!attr_form_is_block (attr))
12097 {
12098 complaint (&symfile_complaints,
12099 _("No DW_FORM_block* DW_AT_call_value for "
12100 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12101 to_underlying (child_die->sect_off),
12102 objfile_name (objfile));
12103 continue;
12104 }
12105 parameter->value = DW_BLOCK (attr)->data;
12106 parameter->value_size = DW_BLOCK (attr)->size;
12107
12108 /* Parameters are not pre-cleared by memset above. */
12109 parameter->data_value = NULL;
12110 parameter->data_value_size = 0;
12111 call_site->parameter_count++;
12112
12113 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12114 if (attr == NULL)
12115 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
12116 if (attr)
12117 {
12118 if (!attr_form_is_block (attr))
12119 complaint (&symfile_complaints,
12120 _("No DW_FORM_block* DW_AT_call_data_value for "
12121 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12122 to_underlying (child_die->sect_off),
12123 objfile_name (objfile));
12124 else
12125 {
12126 parameter->data_value = DW_BLOCK (attr)->data;
12127 parameter->data_value_size = DW_BLOCK (attr)->size;
12128 }
12129 }
12130 }
12131 }
12132
12133 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12134 reading .debug_rnglists.
12135 Callback's type should be:
12136 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12137 Return true if the attributes are present and valid, otherwise,
12138 return false. */
12139
12140 template <typename Callback>
12141 static bool
12142 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12143 Callback &&callback)
12144 {
12145 struct objfile *objfile = cu->objfile;
12146 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12147 struct comp_unit_head *cu_header = &cu->header;
12148 bfd *obfd = objfile->obfd;
12149 unsigned int addr_size = cu_header->addr_size;
12150 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12151 /* Base address selection entry. */
12152 CORE_ADDR base;
12153 int found_base;
12154 unsigned int dummy;
12155 const gdb_byte *buffer;
12156 CORE_ADDR low = 0;
12157 CORE_ADDR high = 0;
12158 CORE_ADDR baseaddr;
12159 bool overflow = false;
12160
12161 found_base = cu->base_known;
12162 base = cu->base_address;
12163
12164 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12165 if (offset >= dwarf2_per_objfile->rnglists.size)
12166 {
12167 complaint (&symfile_complaints,
12168 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12169 offset);
12170 return false;
12171 }
12172 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12173
12174 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12175
12176 while (1)
12177 {
12178 /* Initialize it due to a false compiler warning. */
12179 CORE_ADDR range_beginning = 0, range_end = 0;
12180 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12181 + dwarf2_per_objfile->rnglists.size);
12182 unsigned int bytes_read;
12183
12184 if (buffer == buf_end)
12185 {
12186 overflow = true;
12187 break;
12188 }
12189 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12190 switch (rlet)
12191 {
12192 case DW_RLE_end_of_list:
12193 break;
12194 case DW_RLE_base_address:
12195 if (buffer + cu->header.addr_size > buf_end)
12196 {
12197 overflow = true;
12198 break;
12199 }
12200 base = read_address (obfd, buffer, cu, &bytes_read);
12201 found_base = 1;
12202 buffer += bytes_read;
12203 break;
12204 case DW_RLE_start_length:
12205 if (buffer + cu->header.addr_size > buf_end)
12206 {
12207 overflow = true;
12208 break;
12209 }
12210 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12211 buffer += bytes_read;
12212 range_end = (range_beginning
12213 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12214 buffer += bytes_read;
12215 if (buffer > buf_end)
12216 {
12217 overflow = true;
12218 break;
12219 }
12220 break;
12221 case DW_RLE_offset_pair:
12222 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12223 buffer += bytes_read;
12224 if (buffer > buf_end)
12225 {
12226 overflow = true;
12227 break;
12228 }
12229 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12230 buffer += bytes_read;
12231 if (buffer > buf_end)
12232 {
12233 overflow = true;
12234 break;
12235 }
12236 break;
12237 case DW_RLE_start_end:
12238 if (buffer + 2 * cu->header.addr_size > buf_end)
12239 {
12240 overflow = true;
12241 break;
12242 }
12243 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12244 buffer += bytes_read;
12245 range_end = read_address (obfd, buffer, cu, &bytes_read);
12246 buffer += bytes_read;
12247 break;
12248 default:
12249 complaint (&symfile_complaints,
12250 _("Invalid .debug_rnglists data (no base address)"));
12251 return false;
12252 }
12253 if (rlet == DW_RLE_end_of_list || overflow)
12254 break;
12255 if (rlet == DW_RLE_base_address)
12256 continue;
12257
12258 if (!found_base)
12259 {
12260 /* We have no valid base address for the ranges
12261 data. */
12262 complaint (&symfile_complaints,
12263 _("Invalid .debug_rnglists data (no base address)"));
12264 return false;
12265 }
12266
12267 if (range_beginning > range_end)
12268 {
12269 /* Inverted range entries are invalid. */
12270 complaint (&symfile_complaints,
12271 _("Invalid .debug_rnglists data (inverted range)"));
12272 return false;
12273 }
12274
12275 /* Empty range entries have no effect. */
12276 if (range_beginning == range_end)
12277 continue;
12278
12279 range_beginning += base;
12280 range_end += base;
12281
12282 /* A not-uncommon case of bad debug info.
12283 Don't pollute the addrmap with bad data. */
12284 if (range_beginning + baseaddr == 0
12285 && !dwarf2_per_objfile->has_section_at_zero)
12286 {
12287 complaint (&symfile_complaints,
12288 _(".debug_rnglists entry has start address of zero"
12289 " [in module %s]"), objfile_name (objfile));
12290 continue;
12291 }
12292
12293 callback (range_beginning, range_end);
12294 }
12295
12296 if (overflow)
12297 {
12298 complaint (&symfile_complaints,
12299 _("Offset %d is not terminated "
12300 "for DW_AT_ranges attribute"),
12301 offset);
12302 return false;
12303 }
12304
12305 return true;
12306 }
12307
12308 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12309 Callback's type should be:
12310 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12311 Return 1 if the attributes are present and valid, otherwise, return 0. */
12312
12313 template <typename Callback>
12314 static int
12315 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
12316 Callback &&callback)
12317 {
12318 struct objfile *objfile = cu->objfile;
12319 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12320 struct comp_unit_head *cu_header = &cu->header;
12321 bfd *obfd = objfile->obfd;
12322 unsigned int addr_size = cu_header->addr_size;
12323 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12324 /* Base address selection entry. */
12325 CORE_ADDR base;
12326 int found_base;
12327 unsigned int dummy;
12328 const gdb_byte *buffer;
12329 CORE_ADDR baseaddr;
12330
12331 if (cu_header->version >= 5)
12332 return dwarf2_rnglists_process (offset, cu, callback);
12333
12334 found_base = cu->base_known;
12335 base = cu->base_address;
12336
12337 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12338 if (offset >= dwarf2_per_objfile->ranges.size)
12339 {
12340 complaint (&symfile_complaints,
12341 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12342 offset);
12343 return 0;
12344 }
12345 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12346
12347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12348
12349 while (1)
12350 {
12351 CORE_ADDR range_beginning, range_end;
12352
12353 range_beginning = read_address (obfd, buffer, cu, &dummy);
12354 buffer += addr_size;
12355 range_end = read_address (obfd, buffer, cu, &dummy);
12356 buffer += addr_size;
12357 offset += 2 * addr_size;
12358
12359 /* An end of list marker is a pair of zero addresses. */
12360 if (range_beginning == 0 && range_end == 0)
12361 /* Found the end of list entry. */
12362 break;
12363
12364 /* Each base address selection entry is a pair of 2 values.
12365 The first is the largest possible address, the second is
12366 the base address. Check for a base address here. */
12367 if ((range_beginning & mask) == mask)
12368 {
12369 /* If we found the largest possible address, then we already
12370 have the base address in range_end. */
12371 base = range_end;
12372 found_base = 1;
12373 continue;
12374 }
12375
12376 if (!found_base)
12377 {
12378 /* We have no valid base address for the ranges
12379 data. */
12380 complaint (&symfile_complaints,
12381 _("Invalid .debug_ranges data (no base address)"));
12382 return 0;
12383 }
12384
12385 if (range_beginning > range_end)
12386 {
12387 /* Inverted range entries are invalid. */
12388 complaint (&symfile_complaints,
12389 _("Invalid .debug_ranges data (inverted range)"));
12390 return 0;
12391 }
12392
12393 /* Empty range entries have no effect. */
12394 if (range_beginning == range_end)
12395 continue;
12396
12397 range_beginning += base;
12398 range_end += base;
12399
12400 /* A not-uncommon case of bad debug info.
12401 Don't pollute the addrmap with bad data. */
12402 if (range_beginning + baseaddr == 0
12403 && !dwarf2_per_objfile->has_section_at_zero)
12404 {
12405 complaint (&symfile_complaints,
12406 _(".debug_ranges entry has start address of zero"
12407 " [in module %s]"), objfile_name (objfile));
12408 continue;
12409 }
12410
12411 callback (range_beginning, range_end);
12412 }
12413
12414 return 1;
12415 }
12416
12417 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12418 Return 1 if the attributes are present and valid, otherwise, return 0.
12419 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12420
12421 static int
12422 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12423 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12424 struct partial_symtab *ranges_pst)
12425 {
12426 struct objfile *objfile = cu->objfile;
12427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12428 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12429 SECT_OFF_TEXT (objfile));
12430 int low_set = 0;
12431 CORE_ADDR low = 0;
12432 CORE_ADDR high = 0;
12433 int retval;
12434
12435 retval = dwarf2_ranges_process (offset, cu,
12436 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12437 {
12438 if (ranges_pst != NULL)
12439 {
12440 CORE_ADDR lowpc;
12441 CORE_ADDR highpc;
12442
12443 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12444 range_beginning + baseaddr);
12445 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12446 range_end + baseaddr);
12447 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12448 ranges_pst);
12449 }
12450
12451 /* FIXME: This is recording everything as a low-high
12452 segment of consecutive addresses. We should have a
12453 data structure for discontiguous block ranges
12454 instead. */
12455 if (! low_set)
12456 {
12457 low = range_beginning;
12458 high = range_end;
12459 low_set = 1;
12460 }
12461 else
12462 {
12463 if (range_beginning < low)
12464 low = range_beginning;
12465 if (range_end > high)
12466 high = range_end;
12467 }
12468 });
12469 if (!retval)
12470 return 0;
12471
12472 if (! low_set)
12473 /* If the first entry is an end-of-list marker, the range
12474 describes an empty scope, i.e. no instructions. */
12475 return 0;
12476
12477 if (low_return)
12478 *low_return = low;
12479 if (high_return)
12480 *high_return = high;
12481 return 1;
12482 }
12483
12484 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12485 definition for the return value. *LOWPC and *HIGHPC are set iff
12486 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12487
12488 static enum pc_bounds_kind
12489 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12490 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12491 struct partial_symtab *pst)
12492 {
12493 struct attribute *attr;
12494 struct attribute *attr_high;
12495 CORE_ADDR low = 0;
12496 CORE_ADDR high = 0;
12497 enum pc_bounds_kind ret;
12498
12499 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12500 if (attr_high)
12501 {
12502 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12503 if (attr)
12504 {
12505 low = attr_value_as_address (attr);
12506 high = attr_value_as_address (attr_high);
12507 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12508 high += low;
12509 }
12510 else
12511 /* Found high w/o low attribute. */
12512 return PC_BOUNDS_INVALID;
12513
12514 /* Found consecutive range of addresses. */
12515 ret = PC_BOUNDS_HIGH_LOW;
12516 }
12517 else
12518 {
12519 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12520 if (attr != NULL)
12521 {
12522 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12523 We take advantage of the fact that DW_AT_ranges does not appear
12524 in DW_TAG_compile_unit of DWO files. */
12525 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12526 unsigned int ranges_offset = (DW_UNSND (attr)
12527 + (need_ranges_base
12528 ? cu->ranges_base
12529 : 0));
12530
12531 /* Value of the DW_AT_ranges attribute is the offset in the
12532 .debug_ranges section. */
12533 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12534 return PC_BOUNDS_INVALID;
12535 /* Found discontinuous range of addresses. */
12536 ret = PC_BOUNDS_RANGES;
12537 }
12538 else
12539 return PC_BOUNDS_NOT_PRESENT;
12540 }
12541
12542 /* read_partial_die has also the strict LOW < HIGH requirement. */
12543 if (high <= low)
12544 return PC_BOUNDS_INVALID;
12545
12546 /* When using the GNU linker, .gnu.linkonce. sections are used to
12547 eliminate duplicate copies of functions and vtables and such.
12548 The linker will arbitrarily choose one and discard the others.
12549 The AT_*_pc values for such functions refer to local labels in
12550 these sections. If the section from that file was discarded, the
12551 labels are not in the output, so the relocs get a value of 0.
12552 If this is a discarded function, mark the pc bounds as invalid,
12553 so that GDB will ignore it. */
12554 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12555 return PC_BOUNDS_INVALID;
12556
12557 *lowpc = low;
12558 if (highpc)
12559 *highpc = high;
12560 return ret;
12561 }
12562
12563 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12564 its low and high PC addresses. Do nothing if these addresses could not
12565 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12566 and HIGHPC to the high address if greater than HIGHPC. */
12567
12568 static void
12569 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12570 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12571 struct dwarf2_cu *cu)
12572 {
12573 CORE_ADDR low, high;
12574 struct die_info *child = die->child;
12575
12576 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12577 {
12578 *lowpc = std::min (*lowpc, low);
12579 *highpc = std::max (*highpc, high);
12580 }
12581
12582 /* If the language does not allow nested subprograms (either inside
12583 subprograms or lexical blocks), we're done. */
12584 if (cu->language != language_ada)
12585 return;
12586
12587 /* Check all the children of the given DIE. If it contains nested
12588 subprograms, then check their pc bounds. Likewise, we need to
12589 check lexical blocks as well, as they may also contain subprogram
12590 definitions. */
12591 while (child && child->tag)
12592 {
12593 if (child->tag == DW_TAG_subprogram
12594 || child->tag == DW_TAG_lexical_block)
12595 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12596 child = sibling_die (child);
12597 }
12598 }
12599
12600 /* Get the low and high pc's represented by the scope DIE, and store
12601 them in *LOWPC and *HIGHPC. If the correct values can't be
12602 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12603
12604 static void
12605 get_scope_pc_bounds (struct die_info *die,
12606 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12607 struct dwarf2_cu *cu)
12608 {
12609 CORE_ADDR best_low = (CORE_ADDR) -1;
12610 CORE_ADDR best_high = (CORE_ADDR) 0;
12611 CORE_ADDR current_low, current_high;
12612
12613 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12614 >= PC_BOUNDS_RANGES)
12615 {
12616 best_low = current_low;
12617 best_high = current_high;
12618 }
12619 else
12620 {
12621 struct die_info *child = die->child;
12622
12623 while (child && child->tag)
12624 {
12625 switch (child->tag) {
12626 case DW_TAG_subprogram:
12627 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12628 break;
12629 case DW_TAG_namespace:
12630 case DW_TAG_module:
12631 /* FIXME: carlton/2004-01-16: Should we do this for
12632 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12633 that current GCC's always emit the DIEs corresponding
12634 to definitions of methods of classes as children of a
12635 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12636 the DIEs giving the declarations, which could be
12637 anywhere). But I don't see any reason why the
12638 standards says that they have to be there. */
12639 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12640
12641 if (current_low != ((CORE_ADDR) -1))
12642 {
12643 best_low = std::min (best_low, current_low);
12644 best_high = std::max (best_high, current_high);
12645 }
12646 break;
12647 default:
12648 /* Ignore. */
12649 break;
12650 }
12651
12652 child = sibling_die (child);
12653 }
12654 }
12655
12656 *lowpc = best_low;
12657 *highpc = best_high;
12658 }
12659
12660 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12661 in DIE. */
12662
12663 static void
12664 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12665 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12666 {
12667 struct objfile *objfile = cu->objfile;
12668 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12669 struct attribute *attr;
12670 struct attribute *attr_high;
12671
12672 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12673 if (attr_high)
12674 {
12675 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12676 if (attr)
12677 {
12678 CORE_ADDR low = attr_value_as_address (attr);
12679 CORE_ADDR high = attr_value_as_address (attr_high);
12680
12681 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12682 high += low;
12683
12684 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12685 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12686 record_block_range (block, low, high - 1);
12687 }
12688 }
12689
12690 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12691 if (attr)
12692 {
12693 bfd *obfd = objfile->obfd;
12694 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12695 We take advantage of the fact that DW_AT_ranges does not appear
12696 in DW_TAG_compile_unit of DWO files. */
12697 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12698
12699 /* The value of the DW_AT_ranges attribute is the offset of the
12700 address range list in the .debug_ranges section. */
12701 unsigned long offset = (DW_UNSND (attr)
12702 + (need_ranges_base ? cu->ranges_base : 0));
12703 const gdb_byte *buffer;
12704
12705 /* For some target architectures, but not others, the
12706 read_address function sign-extends the addresses it returns.
12707 To recognize base address selection entries, we need a
12708 mask. */
12709 unsigned int addr_size = cu->header.addr_size;
12710 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12711
12712 /* The base address, to which the next pair is relative. Note
12713 that this 'base' is a DWARF concept: most entries in a range
12714 list are relative, to reduce the number of relocs against the
12715 debugging information. This is separate from this function's
12716 'baseaddr' argument, which GDB uses to relocate debugging
12717 information from a shared library based on the address at
12718 which the library was loaded. */
12719 CORE_ADDR base = cu->base_address;
12720 int base_known = cu->base_known;
12721
12722 dwarf2_ranges_process (offset, cu,
12723 [&] (CORE_ADDR start, CORE_ADDR end)
12724 {
12725 start += baseaddr;
12726 end += baseaddr;
12727 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12728 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12729 record_block_range (block, start, end - 1);
12730 });
12731 }
12732 }
12733
12734 /* Check whether the producer field indicates either of GCC < 4.6, or the
12735 Intel C/C++ compiler, and cache the result in CU. */
12736
12737 static void
12738 check_producer (struct dwarf2_cu *cu)
12739 {
12740 int major, minor;
12741
12742 if (cu->producer == NULL)
12743 {
12744 /* For unknown compilers expect their behavior is DWARF version
12745 compliant.
12746
12747 GCC started to support .debug_types sections by -gdwarf-4 since
12748 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12749 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12750 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12751 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12752 }
12753 else if (producer_is_gcc (cu->producer, &major, &minor))
12754 {
12755 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12756 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12757 }
12758 else if (startswith (cu->producer, "Intel(R) C"))
12759 cu->producer_is_icc = 1;
12760 else
12761 {
12762 /* For other non-GCC compilers, expect their behavior is DWARF version
12763 compliant. */
12764 }
12765
12766 cu->checked_producer = 1;
12767 }
12768
12769 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12770 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12771 during 4.6.0 experimental. */
12772
12773 static int
12774 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12775 {
12776 if (!cu->checked_producer)
12777 check_producer (cu);
12778
12779 return cu->producer_is_gxx_lt_4_6;
12780 }
12781
12782 /* Return the default accessibility type if it is not overriden by
12783 DW_AT_accessibility. */
12784
12785 static enum dwarf_access_attribute
12786 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12787 {
12788 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12789 {
12790 /* The default DWARF 2 accessibility for members is public, the default
12791 accessibility for inheritance is private. */
12792
12793 if (die->tag != DW_TAG_inheritance)
12794 return DW_ACCESS_public;
12795 else
12796 return DW_ACCESS_private;
12797 }
12798 else
12799 {
12800 /* DWARF 3+ defines the default accessibility a different way. The same
12801 rules apply now for DW_TAG_inheritance as for the members and it only
12802 depends on the container kind. */
12803
12804 if (die->parent->tag == DW_TAG_class_type)
12805 return DW_ACCESS_private;
12806 else
12807 return DW_ACCESS_public;
12808 }
12809 }
12810
12811 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12812 offset. If the attribute was not found return 0, otherwise return
12813 1. If it was found but could not properly be handled, set *OFFSET
12814 to 0. */
12815
12816 static int
12817 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12818 LONGEST *offset)
12819 {
12820 struct attribute *attr;
12821
12822 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12823 if (attr != NULL)
12824 {
12825 *offset = 0;
12826
12827 /* Note that we do not check for a section offset first here.
12828 This is because DW_AT_data_member_location is new in DWARF 4,
12829 so if we see it, we can assume that a constant form is really
12830 a constant and not a section offset. */
12831 if (attr_form_is_constant (attr))
12832 *offset = dwarf2_get_attr_constant_value (attr, 0);
12833 else if (attr_form_is_section_offset (attr))
12834 dwarf2_complex_location_expr_complaint ();
12835 else if (attr_form_is_block (attr))
12836 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12837 else
12838 dwarf2_complex_location_expr_complaint ();
12839
12840 return 1;
12841 }
12842
12843 return 0;
12844 }
12845
12846 /* Add an aggregate field to the field list. */
12847
12848 static void
12849 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12850 struct dwarf2_cu *cu)
12851 {
12852 struct objfile *objfile = cu->objfile;
12853 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12854 struct nextfield *new_field;
12855 struct attribute *attr;
12856 struct field *fp;
12857 const char *fieldname = "";
12858
12859 /* Allocate a new field list entry and link it in. */
12860 new_field = XNEW (struct nextfield);
12861 make_cleanup (xfree, new_field);
12862 memset (new_field, 0, sizeof (struct nextfield));
12863
12864 if (die->tag == DW_TAG_inheritance)
12865 {
12866 new_field->next = fip->baseclasses;
12867 fip->baseclasses = new_field;
12868 }
12869 else
12870 {
12871 new_field->next = fip->fields;
12872 fip->fields = new_field;
12873 }
12874 fip->nfields++;
12875
12876 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12877 if (attr)
12878 new_field->accessibility = DW_UNSND (attr);
12879 else
12880 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12881 if (new_field->accessibility != DW_ACCESS_public)
12882 fip->non_public_fields = 1;
12883
12884 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12885 if (attr)
12886 new_field->virtuality = DW_UNSND (attr);
12887 else
12888 new_field->virtuality = DW_VIRTUALITY_none;
12889
12890 fp = &new_field->field;
12891
12892 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12893 {
12894 LONGEST offset;
12895
12896 /* Data member other than a C++ static data member. */
12897
12898 /* Get type of field. */
12899 fp->type = die_type (die, cu);
12900
12901 SET_FIELD_BITPOS (*fp, 0);
12902
12903 /* Get bit size of field (zero if none). */
12904 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12905 if (attr)
12906 {
12907 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12908 }
12909 else
12910 {
12911 FIELD_BITSIZE (*fp) = 0;
12912 }
12913
12914 /* Get bit offset of field. */
12915 if (handle_data_member_location (die, cu, &offset))
12916 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12917 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12918 if (attr)
12919 {
12920 if (gdbarch_bits_big_endian (gdbarch))
12921 {
12922 /* For big endian bits, the DW_AT_bit_offset gives the
12923 additional bit offset from the MSB of the containing
12924 anonymous object to the MSB of the field. We don't
12925 have to do anything special since we don't need to
12926 know the size of the anonymous object. */
12927 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12928 }
12929 else
12930 {
12931 /* For little endian bits, compute the bit offset to the
12932 MSB of the anonymous object, subtract off the number of
12933 bits from the MSB of the field to the MSB of the
12934 object, and then subtract off the number of bits of
12935 the field itself. The result is the bit offset of
12936 the LSB of the field. */
12937 int anonymous_size;
12938 int bit_offset = DW_UNSND (attr);
12939
12940 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12941 if (attr)
12942 {
12943 /* The size of the anonymous object containing
12944 the bit field is explicit, so use the
12945 indicated size (in bytes). */
12946 anonymous_size = DW_UNSND (attr);
12947 }
12948 else
12949 {
12950 /* The size of the anonymous object containing
12951 the bit field must be inferred from the type
12952 attribute of the data member containing the
12953 bit field. */
12954 anonymous_size = TYPE_LENGTH (fp->type);
12955 }
12956 SET_FIELD_BITPOS (*fp,
12957 (FIELD_BITPOS (*fp)
12958 + anonymous_size * bits_per_byte
12959 - bit_offset - FIELD_BITSIZE (*fp)));
12960 }
12961 }
12962 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12963 if (attr != NULL)
12964 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12965 + dwarf2_get_attr_constant_value (attr, 0)));
12966
12967 /* Get name of field. */
12968 fieldname = dwarf2_name (die, cu);
12969 if (fieldname == NULL)
12970 fieldname = "";
12971
12972 /* The name is already allocated along with this objfile, so we don't
12973 need to duplicate it for the type. */
12974 fp->name = fieldname;
12975
12976 /* Change accessibility for artificial fields (e.g. virtual table
12977 pointer or virtual base class pointer) to private. */
12978 if (dwarf2_attr (die, DW_AT_artificial, cu))
12979 {
12980 FIELD_ARTIFICIAL (*fp) = 1;
12981 new_field->accessibility = DW_ACCESS_private;
12982 fip->non_public_fields = 1;
12983 }
12984 }
12985 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12986 {
12987 /* C++ static member. */
12988
12989 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12990 is a declaration, but all versions of G++ as of this writing
12991 (so through at least 3.2.1) incorrectly generate
12992 DW_TAG_variable tags. */
12993
12994 const char *physname;
12995
12996 /* Get name of field. */
12997 fieldname = dwarf2_name (die, cu);
12998 if (fieldname == NULL)
12999 return;
13000
13001 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13002 if (attr
13003 /* Only create a symbol if this is an external value.
13004 new_symbol checks this and puts the value in the global symbol
13005 table, which we want. If it is not external, new_symbol
13006 will try to put the value in cu->list_in_scope which is wrong. */
13007 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13008 {
13009 /* A static const member, not much different than an enum as far as
13010 we're concerned, except that we can support more types. */
13011 new_symbol (die, NULL, cu);
13012 }
13013
13014 /* Get physical name. */
13015 physname = dwarf2_physname (fieldname, die, cu);
13016
13017 /* The name is already allocated along with this objfile, so we don't
13018 need to duplicate it for the type. */
13019 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13020 FIELD_TYPE (*fp) = die_type (die, cu);
13021 FIELD_NAME (*fp) = fieldname;
13022 }
13023 else if (die->tag == DW_TAG_inheritance)
13024 {
13025 LONGEST offset;
13026
13027 /* C++ base class field. */
13028 if (handle_data_member_location (die, cu, &offset))
13029 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13030 FIELD_BITSIZE (*fp) = 0;
13031 FIELD_TYPE (*fp) = die_type (die, cu);
13032 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13033 fip->nbaseclasses++;
13034 }
13035 }
13036
13037 /* Add a typedef defined in the scope of the FIP's class. */
13038
13039 static void
13040 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13041 struct dwarf2_cu *cu)
13042 {
13043 struct typedef_field_list *new_field;
13044 struct typedef_field *fp;
13045
13046 /* Allocate a new field list entry and link it in. */
13047 new_field = XCNEW (struct typedef_field_list);
13048 make_cleanup (xfree, new_field);
13049
13050 gdb_assert (die->tag == DW_TAG_typedef);
13051
13052 fp = &new_field->field;
13053
13054 /* Get name of field. */
13055 fp->name = dwarf2_name (die, cu);
13056 if (fp->name == NULL)
13057 return;
13058
13059 fp->type = read_type_die (die, cu);
13060
13061 new_field->next = fip->typedef_field_list;
13062 fip->typedef_field_list = new_field;
13063 fip->typedef_field_list_count++;
13064 }
13065
13066 /* Create the vector of fields, and attach it to the type. */
13067
13068 static void
13069 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
13070 struct dwarf2_cu *cu)
13071 {
13072 int nfields = fip->nfields;
13073
13074 /* Record the field count, allocate space for the array of fields,
13075 and create blank accessibility bitfields if necessary. */
13076 TYPE_NFIELDS (type) = nfields;
13077 TYPE_FIELDS (type) = (struct field *)
13078 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13079 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13080
13081 if (fip->non_public_fields && cu->language != language_ada)
13082 {
13083 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13084
13085 TYPE_FIELD_PRIVATE_BITS (type) =
13086 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13087 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13088
13089 TYPE_FIELD_PROTECTED_BITS (type) =
13090 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13091 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13092
13093 TYPE_FIELD_IGNORE_BITS (type) =
13094 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13095 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
13096 }
13097
13098 /* If the type has baseclasses, allocate and clear a bit vector for
13099 TYPE_FIELD_VIRTUAL_BITS. */
13100 if (fip->nbaseclasses && cu->language != language_ada)
13101 {
13102 int num_bytes = B_BYTES (fip->nbaseclasses);
13103 unsigned char *pointer;
13104
13105 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13106 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
13107 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
13108 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13109 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13110 }
13111
13112 /* Copy the saved-up fields into the field vector. Start from the head of
13113 the list, adding to the tail of the field array, so that they end up in
13114 the same order in the array in which they were added to the list. */
13115 while (nfields-- > 0)
13116 {
13117 struct nextfield *fieldp;
13118
13119 if (fip->fields)
13120 {
13121 fieldp = fip->fields;
13122 fip->fields = fieldp->next;
13123 }
13124 else
13125 {
13126 fieldp = fip->baseclasses;
13127 fip->baseclasses = fieldp->next;
13128 }
13129
13130 TYPE_FIELD (type, nfields) = fieldp->field;
13131 switch (fieldp->accessibility)
13132 {
13133 case DW_ACCESS_private:
13134 if (cu->language != language_ada)
13135 SET_TYPE_FIELD_PRIVATE (type, nfields);
13136 break;
13137
13138 case DW_ACCESS_protected:
13139 if (cu->language != language_ada)
13140 SET_TYPE_FIELD_PROTECTED (type, nfields);
13141 break;
13142
13143 case DW_ACCESS_public:
13144 break;
13145
13146 default:
13147 /* Unknown accessibility. Complain and treat it as public. */
13148 {
13149 complaint (&symfile_complaints, _("unsupported accessibility %d"),
13150 fieldp->accessibility);
13151 }
13152 break;
13153 }
13154 if (nfields < fip->nbaseclasses)
13155 {
13156 switch (fieldp->virtuality)
13157 {
13158 case DW_VIRTUALITY_virtual:
13159 case DW_VIRTUALITY_pure_virtual:
13160 if (cu->language == language_ada)
13161 error (_("unexpected virtuality in component of Ada type"));
13162 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13163 break;
13164 }
13165 }
13166 }
13167 }
13168
13169 /* Return true if this member function is a constructor, false
13170 otherwise. */
13171
13172 static int
13173 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13174 {
13175 const char *fieldname;
13176 const char *type_name;
13177 int len;
13178
13179 if (die->parent == NULL)
13180 return 0;
13181
13182 if (die->parent->tag != DW_TAG_structure_type
13183 && die->parent->tag != DW_TAG_union_type
13184 && die->parent->tag != DW_TAG_class_type)
13185 return 0;
13186
13187 fieldname = dwarf2_name (die, cu);
13188 type_name = dwarf2_name (die->parent, cu);
13189 if (fieldname == NULL || type_name == NULL)
13190 return 0;
13191
13192 len = strlen (fieldname);
13193 return (strncmp (fieldname, type_name, len) == 0
13194 && (type_name[len] == '\0' || type_name[len] == '<'));
13195 }
13196
13197 /* Add a member function to the proper fieldlist. */
13198
13199 static void
13200 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
13201 struct type *type, struct dwarf2_cu *cu)
13202 {
13203 struct objfile *objfile = cu->objfile;
13204 struct attribute *attr;
13205 struct fnfieldlist *flp;
13206 int i;
13207 struct fn_field *fnp;
13208 const char *fieldname;
13209 struct nextfnfield *new_fnfield;
13210 struct type *this_type;
13211 enum dwarf_access_attribute accessibility;
13212
13213 if (cu->language == language_ada)
13214 error (_("unexpected member function in Ada type"));
13215
13216 /* Get name of member function. */
13217 fieldname = dwarf2_name (die, cu);
13218 if (fieldname == NULL)
13219 return;
13220
13221 /* Look up member function name in fieldlist. */
13222 for (i = 0; i < fip->nfnfields; i++)
13223 {
13224 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
13225 break;
13226 }
13227
13228 /* Create new list element if necessary. */
13229 if (i < fip->nfnfields)
13230 flp = &fip->fnfieldlists[i];
13231 else
13232 {
13233 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13234 {
13235 fip->fnfieldlists = (struct fnfieldlist *)
13236 xrealloc (fip->fnfieldlists,
13237 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
13238 * sizeof (struct fnfieldlist));
13239 if (fip->nfnfields == 0)
13240 make_cleanup (free_current_contents, &fip->fnfieldlists);
13241 }
13242 flp = &fip->fnfieldlists[fip->nfnfields];
13243 flp->name = fieldname;
13244 flp->length = 0;
13245 flp->head = NULL;
13246 i = fip->nfnfields++;
13247 }
13248
13249 /* Create a new member function field and chain it to the field list
13250 entry. */
13251 new_fnfield = XNEW (struct nextfnfield);
13252 make_cleanup (xfree, new_fnfield);
13253 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13254 new_fnfield->next = flp->head;
13255 flp->head = new_fnfield;
13256 flp->length++;
13257
13258 /* Fill in the member function field info. */
13259 fnp = &new_fnfield->fnfield;
13260
13261 /* Delay processing of the physname until later. */
13262 if (cu->language == language_cplus)
13263 {
13264 add_to_method_list (type, i, flp->length - 1, fieldname,
13265 die, cu);
13266 }
13267 else
13268 {
13269 const char *physname = dwarf2_physname (fieldname, die, cu);
13270 fnp->physname = physname ? physname : "";
13271 }
13272
13273 fnp->type = alloc_type (objfile);
13274 this_type = read_type_die (die, cu);
13275 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
13276 {
13277 int nparams = TYPE_NFIELDS (this_type);
13278
13279 /* TYPE is the domain of this method, and THIS_TYPE is the type
13280 of the method itself (TYPE_CODE_METHOD). */
13281 smash_to_method_type (fnp->type, type,
13282 TYPE_TARGET_TYPE (this_type),
13283 TYPE_FIELDS (this_type),
13284 TYPE_NFIELDS (this_type),
13285 TYPE_VARARGS (this_type));
13286
13287 /* Handle static member functions.
13288 Dwarf2 has no clean way to discern C++ static and non-static
13289 member functions. G++ helps GDB by marking the first
13290 parameter for non-static member functions (which is the this
13291 pointer) as artificial. We obtain this information from
13292 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
13293 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
13294 fnp->voffset = VOFFSET_STATIC;
13295 }
13296 else
13297 complaint (&symfile_complaints, _("member function type missing for '%s'"),
13298 dwarf2_full_name (fieldname, die, cu));
13299
13300 /* Get fcontext from DW_AT_containing_type if present. */
13301 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13302 fnp->fcontext = die_containing_type (die, cu);
13303
13304 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13305 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
13306
13307 /* Get accessibility. */
13308 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13309 if (attr)
13310 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
13311 else
13312 accessibility = dwarf2_default_access_attribute (die, cu);
13313 switch (accessibility)
13314 {
13315 case DW_ACCESS_private:
13316 fnp->is_private = 1;
13317 break;
13318 case DW_ACCESS_protected:
13319 fnp->is_protected = 1;
13320 break;
13321 }
13322
13323 /* Check for artificial methods. */
13324 attr = dwarf2_attr (die, DW_AT_artificial, cu);
13325 if (attr && DW_UNSND (attr) != 0)
13326 fnp->is_artificial = 1;
13327
13328 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13329
13330 /* Get index in virtual function table if it is a virtual member
13331 function. For older versions of GCC, this is an offset in the
13332 appropriate virtual table, as specified by DW_AT_containing_type.
13333 For everyone else, it is an expression to be evaluated relative
13334 to the object address. */
13335
13336 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
13337 if (attr)
13338 {
13339 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
13340 {
13341 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13342 {
13343 /* Old-style GCC. */
13344 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13345 }
13346 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13347 || (DW_BLOCK (attr)->size > 1
13348 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13349 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13350 {
13351 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13352 if ((fnp->voffset % cu->header.addr_size) != 0)
13353 dwarf2_complex_location_expr_complaint ();
13354 else
13355 fnp->voffset /= cu->header.addr_size;
13356 fnp->voffset += 2;
13357 }
13358 else
13359 dwarf2_complex_location_expr_complaint ();
13360
13361 if (!fnp->fcontext)
13362 {
13363 /* If there is no `this' field and no DW_AT_containing_type,
13364 we cannot actually find a base class context for the
13365 vtable! */
13366 if (TYPE_NFIELDS (this_type) == 0
13367 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13368 {
13369 complaint (&symfile_complaints,
13370 _("cannot determine context for virtual member "
13371 "function \"%s\" (offset %d)"),
13372 fieldname, to_underlying (die->sect_off));
13373 }
13374 else
13375 {
13376 fnp->fcontext
13377 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13378 }
13379 }
13380 }
13381 else if (attr_form_is_section_offset (attr))
13382 {
13383 dwarf2_complex_location_expr_complaint ();
13384 }
13385 else
13386 {
13387 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13388 fieldname);
13389 }
13390 }
13391 else
13392 {
13393 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13394 if (attr && DW_UNSND (attr))
13395 {
13396 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13397 complaint (&symfile_complaints,
13398 _("Member function \"%s\" (offset %d) is virtual "
13399 "but the vtable offset is not specified"),
13400 fieldname, to_underlying (die->sect_off));
13401 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13402 TYPE_CPLUS_DYNAMIC (type) = 1;
13403 }
13404 }
13405 }
13406
13407 /* Create the vector of member function fields, and attach it to the type. */
13408
13409 static void
13410 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13411 struct dwarf2_cu *cu)
13412 {
13413 struct fnfieldlist *flp;
13414 int i;
13415
13416 if (cu->language == language_ada)
13417 error (_("unexpected member functions in Ada type"));
13418
13419 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13420 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13421 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13422
13423 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13424 {
13425 struct nextfnfield *nfp = flp->head;
13426 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13427 int k;
13428
13429 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13430 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13431 fn_flp->fn_fields = (struct fn_field *)
13432 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13433 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13434 fn_flp->fn_fields[k] = nfp->fnfield;
13435 }
13436
13437 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13438 }
13439
13440 /* Returns non-zero if NAME is the name of a vtable member in CU's
13441 language, zero otherwise. */
13442 static int
13443 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13444 {
13445 static const char vptr[] = "_vptr";
13446 static const char vtable[] = "vtable";
13447
13448 /* Look for the C++ form of the vtable. */
13449 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13450 return 1;
13451
13452 return 0;
13453 }
13454
13455 /* GCC outputs unnamed structures that are really pointers to member
13456 functions, with the ABI-specified layout. If TYPE describes
13457 such a structure, smash it into a member function type.
13458
13459 GCC shouldn't do this; it should just output pointer to member DIEs.
13460 This is GCC PR debug/28767. */
13461
13462 static void
13463 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13464 {
13465 struct type *pfn_type, *self_type, *new_type;
13466
13467 /* Check for a structure with no name and two children. */
13468 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13469 return;
13470
13471 /* Check for __pfn and __delta members. */
13472 if (TYPE_FIELD_NAME (type, 0) == NULL
13473 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13474 || TYPE_FIELD_NAME (type, 1) == NULL
13475 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13476 return;
13477
13478 /* Find the type of the method. */
13479 pfn_type = TYPE_FIELD_TYPE (type, 0);
13480 if (pfn_type == NULL
13481 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13482 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13483 return;
13484
13485 /* Look for the "this" argument. */
13486 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13487 if (TYPE_NFIELDS (pfn_type) == 0
13488 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13489 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13490 return;
13491
13492 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13493 new_type = alloc_type (objfile);
13494 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13495 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13496 TYPE_VARARGS (pfn_type));
13497 smash_to_methodptr_type (type, new_type);
13498 }
13499
13500 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13501 (icc). */
13502
13503 static int
13504 producer_is_icc (struct dwarf2_cu *cu)
13505 {
13506 if (!cu->checked_producer)
13507 check_producer (cu);
13508
13509 return cu->producer_is_icc;
13510 }
13511
13512 /* Called when we find the DIE that starts a structure or union scope
13513 (definition) to create a type for the structure or union. Fill in
13514 the type's name and general properties; the members will not be
13515 processed until process_structure_scope. A symbol table entry for
13516 the type will also not be done until process_structure_scope (assuming
13517 the type has a name).
13518
13519 NOTE: we need to call these functions regardless of whether or not the
13520 DIE has a DW_AT_name attribute, since it might be an anonymous
13521 structure or union. This gets the type entered into our set of
13522 user defined types. */
13523
13524 static struct type *
13525 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13526 {
13527 struct objfile *objfile = cu->objfile;
13528 struct type *type;
13529 struct attribute *attr;
13530 const char *name;
13531
13532 /* If the definition of this type lives in .debug_types, read that type.
13533 Don't follow DW_AT_specification though, that will take us back up
13534 the chain and we want to go down. */
13535 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13536 if (attr)
13537 {
13538 type = get_DW_AT_signature_type (die, attr, cu);
13539
13540 /* The type's CU may not be the same as CU.
13541 Ensure TYPE is recorded with CU in die_type_hash. */
13542 return set_die_type (die, type, cu);
13543 }
13544
13545 type = alloc_type (objfile);
13546 INIT_CPLUS_SPECIFIC (type);
13547
13548 name = dwarf2_name (die, cu);
13549 if (name != NULL)
13550 {
13551 if (cu->language == language_cplus
13552 || cu->language == language_d
13553 || cu->language == language_rust)
13554 {
13555 const char *full_name = dwarf2_full_name (name, die, cu);
13556
13557 /* dwarf2_full_name might have already finished building the DIE's
13558 type. If so, there is no need to continue. */
13559 if (get_die_type (die, cu) != NULL)
13560 return get_die_type (die, cu);
13561
13562 TYPE_TAG_NAME (type) = full_name;
13563 if (die->tag == DW_TAG_structure_type
13564 || die->tag == DW_TAG_class_type)
13565 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13566 }
13567 else
13568 {
13569 /* The name is already allocated along with this objfile, so
13570 we don't need to duplicate it for the type. */
13571 TYPE_TAG_NAME (type) = name;
13572 if (die->tag == DW_TAG_class_type)
13573 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13574 }
13575 }
13576
13577 if (die->tag == DW_TAG_structure_type)
13578 {
13579 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13580 }
13581 else if (die->tag == DW_TAG_union_type)
13582 {
13583 TYPE_CODE (type) = TYPE_CODE_UNION;
13584 }
13585 else
13586 {
13587 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13588 }
13589
13590 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13591 TYPE_DECLARED_CLASS (type) = 1;
13592
13593 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13594 if (attr)
13595 {
13596 if (attr_form_is_constant (attr))
13597 TYPE_LENGTH (type) = DW_UNSND (attr);
13598 else
13599 {
13600 /* For the moment, dynamic type sizes are not supported
13601 by GDB's struct type. The actual size is determined
13602 on-demand when resolving the type of a given object,
13603 so set the type's length to zero for now. Otherwise,
13604 we record an expression as the length, and that expression
13605 could lead to a very large value, which could eventually
13606 lead to us trying to allocate that much memory when creating
13607 a value of that type. */
13608 TYPE_LENGTH (type) = 0;
13609 }
13610 }
13611 else
13612 {
13613 TYPE_LENGTH (type) = 0;
13614 }
13615
13616 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13617 {
13618 /* ICC does not output the required DW_AT_declaration
13619 on incomplete types, but gives them a size of zero. */
13620 TYPE_STUB (type) = 1;
13621 }
13622 else
13623 TYPE_STUB_SUPPORTED (type) = 1;
13624
13625 if (die_is_declaration (die, cu))
13626 TYPE_STUB (type) = 1;
13627 else if (attr == NULL && die->child == NULL
13628 && producer_is_realview (cu->producer))
13629 /* RealView does not output the required DW_AT_declaration
13630 on incomplete types. */
13631 TYPE_STUB (type) = 1;
13632
13633 /* We need to add the type field to the die immediately so we don't
13634 infinitely recurse when dealing with pointers to the structure
13635 type within the structure itself. */
13636 set_die_type (die, type, cu);
13637
13638 /* set_die_type should be already done. */
13639 set_descriptive_type (type, die, cu);
13640
13641 return type;
13642 }
13643
13644 /* Finish creating a structure or union type, including filling in
13645 its members and creating a symbol for it. */
13646
13647 static void
13648 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13649 {
13650 struct objfile *objfile = cu->objfile;
13651 struct die_info *child_die;
13652 struct type *type;
13653
13654 type = get_die_type (die, cu);
13655 if (type == NULL)
13656 type = read_structure_type (die, cu);
13657
13658 if (die->child != NULL && ! die_is_declaration (die, cu))
13659 {
13660 struct field_info fi;
13661 VEC (symbolp) *template_args = NULL;
13662 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13663
13664 memset (&fi, 0, sizeof (struct field_info));
13665
13666 child_die = die->child;
13667
13668 while (child_die && child_die->tag)
13669 {
13670 if (child_die->tag == DW_TAG_member
13671 || child_die->tag == DW_TAG_variable)
13672 {
13673 /* NOTE: carlton/2002-11-05: A C++ static data member
13674 should be a DW_TAG_member that is a declaration, but
13675 all versions of G++ as of this writing (so through at
13676 least 3.2.1) incorrectly generate DW_TAG_variable
13677 tags for them instead. */
13678 dwarf2_add_field (&fi, child_die, cu);
13679 }
13680 else if (child_die->tag == DW_TAG_subprogram)
13681 {
13682 /* Rust doesn't have member functions in the C++ sense.
13683 However, it does emit ordinary functions as children
13684 of a struct DIE. */
13685 if (cu->language == language_rust)
13686 read_func_scope (child_die, cu);
13687 else
13688 {
13689 /* C++ member function. */
13690 dwarf2_add_member_fn (&fi, child_die, type, cu);
13691 }
13692 }
13693 else if (child_die->tag == DW_TAG_inheritance)
13694 {
13695 /* C++ base class field. */
13696 dwarf2_add_field (&fi, child_die, cu);
13697 }
13698 else if (child_die->tag == DW_TAG_typedef)
13699 dwarf2_add_typedef (&fi, child_die, cu);
13700 else if (child_die->tag == DW_TAG_template_type_param
13701 || child_die->tag == DW_TAG_template_value_param)
13702 {
13703 struct symbol *arg = new_symbol (child_die, NULL, cu);
13704
13705 if (arg != NULL)
13706 VEC_safe_push (symbolp, template_args, arg);
13707 }
13708
13709 child_die = sibling_die (child_die);
13710 }
13711
13712 /* Attach template arguments to type. */
13713 if (! VEC_empty (symbolp, template_args))
13714 {
13715 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13716 TYPE_N_TEMPLATE_ARGUMENTS (type)
13717 = VEC_length (symbolp, template_args);
13718 TYPE_TEMPLATE_ARGUMENTS (type)
13719 = XOBNEWVEC (&objfile->objfile_obstack,
13720 struct symbol *,
13721 TYPE_N_TEMPLATE_ARGUMENTS (type));
13722 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13723 VEC_address (symbolp, template_args),
13724 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13725 * sizeof (struct symbol *)));
13726 VEC_free (symbolp, template_args);
13727 }
13728
13729 /* Attach fields and member functions to the type. */
13730 if (fi.nfields)
13731 dwarf2_attach_fields_to_type (&fi, type, cu);
13732 if (fi.nfnfields)
13733 {
13734 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13735
13736 /* Get the type which refers to the base class (possibly this
13737 class itself) which contains the vtable pointer for the current
13738 class from the DW_AT_containing_type attribute. This use of
13739 DW_AT_containing_type is a GNU extension. */
13740
13741 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13742 {
13743 struct type *t = die_containing_type (die, cu);
13744
13745 set_type_vptr_basetype (type, t);
13746 if (type == t)
13747 {
13748 int i;
13749
13750 /* Our own class provides vtbl ptr. */
13751 for (i = TYPE_NFIELDS (t) - 1;
13752 i >= TYPE_N_BASECLASSES (t);
13753 --i)
13754 {
13755 const char *fieldname = TYPE_FIELD_NAME (t, i);
13756
13757 if (is_vtable_name (fieldname, cu))
13758 {
13759 set_type_vptr_fieldno (type, i);
13760 break;
13761 }
13762 }
13763
13764 /* Complain if virtual function table field not found. */
13765 if (i < TYPE_N_BASECLASSES (t))
13766 complaint (&symfile_complaints,
13767 _("virtual function table pointer "
13768 "not found when defining class '%s'"),
13769 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13770 "");
13771 }
13772 else
13773 {
13774 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13775 }
13776 }
13777 else if (cu->producer
13778 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13779 {
13780 /* The IBM XLC compiler does not provide direct indication
13781 of the containing type, but the vtable pointer is
13782 always named __vfp. */
13783
13784 int i;
13785
13786 for (i = TYPE_NFIELDS (type) - 1;
13787 i >= TYPE_N_BASECLASSES (type);
13788 --i)
13789 {
13790 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13791 {
13792 set_type_vptr_fieldno (type, i);
13793 set_type_vptr_basetype (type, type);
13794 break;
13795 }
13796 }
13797 }
13798 }
13799
13800 /* Copy fi.typedef_field_list linked list elements content into the
13801 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13802 if (fi.typedef_field_list)
13803 {
13804 int i = fi.typedef_field_list_count;
13805
13806 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13807 TYPE_TYPEDEF_FIELD_ARRAY (type)
13808 = ((struct typedef_field *)
13809 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13810 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13811
13812 /* Reverse the list order to keep the debug info elements order. */
13813 while (--i >= 0)
13814 {
13815 struct typedef_field *dest, *src;
13816
13817 dest = &TYPE_TYPEDEF_FIELD (type, i);
13818 src = &fi.typedef_field_list->field;
13819 fi.typedef_field_list = fi.typedef_field_list->next;
13820 *dest = *src;
13821 }
13822 }
13823
13824 do_cleanups (back_to);
13825 }
13826
13827 quirk_gcc_member_function_pointer (type, objfile);
13828
13829 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13830 snapshots) has been known to create a die giving a declaration
13831 for a class that has, as a child, a die giving a definition for a
13832 nested class. So we have to process our children even if the
13833 current die is a declaration. Normally, of course, a declaration
13834 won't have any children at all. */
13835
13836 child_die = die->child;
13837
13838 while (child_die != NULL && child_die->tag)
13839 {
13840 if (child_die->tag == DW_TAG_member
13841 || child_die->tag == DW_TAG_variable
13842 || child_die->tag == DW_TAG_inheritance
13843 || child_die->tag == DW_TAG_template_value_param
13844 || child_die->tag == DW_TAG_template_type_param)
13845 {
13846 /* Do nothing. */
13847 }
13848 else
13849 process_die (child_die, cu);
13850
13851 child_die = sibling_die (child_die);
13852 }
13853
13854 /* Do not consider external references. According to the DWARF standard,
13855 these DIEs are identified by the fact that they have no byte_size
13856 attribute, and a declaration attribute. */
13857 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13858 || !die_is_declaration (die, cu))
13859 new_symbol (die, type, cu);
13860 }
13861
13862 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13863 update TYPE using some information only available in DIE's children. */
13864
13865 static void
13866 update_enumeration_type_from_children (struct die_info *die,
13867 struct type *type,
13868 struct dwarf2_cu *cu)
13869 {
13870 struct die_info *child_die;
13871 int unsigned_enum = 1;
13872 int flag_enum = 1;
13873 ULONGEST mask = 0;
13874
13875 auto_obstack obstack;
13876
13877 for (child_die = die->child;
13878 child_die != NULL && child_die->tag;
13879 child_die = sibling_die (child_die))
13880 {
13881 struct attribute *attr;
13882 LONGEST value;
13883 const gdb_byte *bytes;
13884 struct dwarf2_locexpr_baton *baton;
13885 const char *name;
13886
13887 if (child_die->tag != DW_TAG_enumerator)
13888 continue;
13889
13890 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13891 if (attr == NULL)
13892 continue;
13893
13894 name = dwarf2_name (child_die, cu);
13895 if (name == NULL)
13896 name = "<anonymous enumerator>";
13897
13898 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13899 &value, &bytes, &baton);
13900 if (value < 0)
13901 {
13902 unsigned_enum = 0;
13903 flag_enum = 0;
13904 }
13905 else if ((mask & value) != 0)
13906 flag_enum = 0;
13907 else
13908 mask |= value;
13909
13910 /* If we already know that the enum type is neither unsigned, nor
13911 a flag type, no need to look at the rest of the enumerates. */
13912 if (!unsigned_enum && !flag_enum)
13913 break;
13914 }
13915
13916 if (unsigned_enum)
13917 TYPE_UNSIGNED (type) = 1;
13918 if (flag_enum)
13919 TYPE_FLAG_ENUM (type) = 1;
13920 }
13921
13922 /* Given a DW_AT_enumeration_type die, set its type. We do not
13923 complete the type's fields yet, or create any symbols. */
13924
13925 static struct type *
13926 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13927 {
13928 struct objfile *objfile = cu->objfile;
13929 struct type *type;
13930 struct attribute *attr;
13931 const char *name;
13932
13933 /* If the definition of this type lives in .debug_types, read that type.
13934 Don't follow DW_AT_specification though, that will take us back up
13935 the chain and we want to go down. */
13936 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13937 if (attr)
13938 {
13939 type = get_DW_AT_signature_type (die, attr, cu);
13940
13941 /* The type's CU may not be the same as CU.
13942 Ensure TYPE is recorded with CU in die_type_hash. */
13943 return set_die_type (die, type, cu);
13944 }
13945
13946 type = alloc_type (objfile);
13947
13948 TYPE_CODE (type) = TYPE_CODE_ENUM;
13949 name = dwarf2_full_name (NULL, die, cu);
13950 if (name != NULL)
13951 TYPE_TAG_NAME (type) = name;
13952
13953 attr = dwarf2_attr (die, DW_AT_type, cu);
13954 if (attr != NULL)
13955 {
13956 struct type *underlying_type = die_type (die, cu);
13957
13958 TYPE_TARGET_TYPE (type) = underlying_type;
13959 }
13960
13961 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13962 if (attr)
13963 {
13964 TYPE_LENGTH (type) = DW_UNSND (attr);
13965 }
13966 else
13967 {
13968 TYPE_LENGTH (type) = 0;
13969 }
13970
13971 /* The enumeration DIE can be incomplete. In Ada, any type can be
13972 declared as private in the package spec, and then defined only
13973 inside the package body. Such types are known as Taft Amendment
13974 Types. When another package uses such a type, an incomplete DIE
13975 may be generated by the compiler. */
13976 if (die_is_declaration (die, cu))
13977 TYPE_STUB (type) = 1;
13978
13979 /* Finish the creation of this type by using the enum's children.
13980 We must call this even when the underlying type has been provided
13981 so that we can determine if we're looking at a "flag" enum. */
13982 update_enumeration_type_from_children (die, type, cu);
13983
13984 /* If this type has an underlying type that is not a stub, then we
13985 may use its attributes. We always use the "unsigned" attribute
13986 in this situation, because ordinarily we guess whether the type
13987 is unsigned -- but the guess can be wrong and the underlying type
13988 can tell us the reality. However, we defer to a local size
13989 attribute if one exists, because this lets the compiler override
13990 the underlying type if needed. */
13991 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13992 {
13993 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13994 if (TYPE_LENGTH (type) == 0)
13995 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13996 }
13997
13998 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13999
14000 return set_die_type (die, type, cu);
14001 }
14002
14003 /* Given a pointer to a die which begins an enumeration, process all
14004 the dies that define the members of the enumeration, and create the
14005 symbol for the enumeration type.
14006
14007 NOTE: We reverse the order of the element list. */
14008
14009 static void
14010 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14011 {
14012 struct type *this_type;
14013
14014 this_type = get_die_type (die, cu);
14015 if (this_type == NULL)
14016 this_type = read_enumeration_type (die, cu);
14017
14018 if (die->child != NULL)
14019 {
14020 struct die_info *child_die;
14021 struct symbol *sym;
14022 struct field *fields = NULL;
14023 int num_fields = 0;
14024 const char *name;
14025
14026 child_die = die->child;
14027 while (child_die && child_die->tag)
14028 {
14029 if (child_die->tag != DW_TAG_enumerator)
14030 {
14031 process_die (child_die, cu);
14032 }
14033 else
14034 {
14035 name = dwarf2_name (child_die, cu);
14036 if (name)
14037 {
14038 sym = new_symbol (child_die, this_type, cu);
14039
14040 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14041 {
14042 fields = (struct field *)
14043 xrealloc (fields,
14044 (num_fields + DW_FIELD_ALLOC_CHUNK)
14045 * sizeof (struct field));
14046 }
14047
14048 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
14049 FIELD_TYPE (fields[num_fields]) = NULL;
14050 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
14051 FIELD_BITSIZE (fields[num_fields]) = 0;
14052
14053 num_fields++;
14054 }
14055 }
14056
14057 child_die = sibling_die (child_die);
14058 }
14059
14060 if (num_fields)
14061 {
14062 TYPE_NFIELDS (this_type) = num_fields;
14063 TYPE_FIELDS (this_type) = (struct field *)
14064 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14065 memcpy (TYPE_FIELDS (this_type), fields,
14066 sizeof (struct field) * num_fields);
14067 xfree (fields);
14068 }
14069 }
14070
14071 /* If we are reading an enum from a .debug_types unit, and the enum
14072 is a declaration, and the enum is not the signatured type in the
14073 unit, then we do not want to add a symbol for it. Adding a
14074 symbol would in some cases obscure the true definition of the
14075 enum, giving users an incomplete type when the definition is
14076 actually available. Note that we do not want to do this for all
14077 enums which are just declarations, because C++0x allows forward
14078 enum declarations. */
14079 if (cu->per_cu->is_debug_types
14080 && die_is_declaration (die, cu))
14081 {
14082 struct signatured_type *sig_type;
14083
14084 sig_type = (struct signatured_type *) cu->per_cu;
14085 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14086 if (sig_type->type_offset_in_section != die->sect_off)
14087 return;
14088 }
14089
14090 new_symbol (die, this_type, cu);
14091 }
14092
14093 /* Extract all information from a DW_TAG_array_type DIE and put it in
14094 the DIE's type field. For now, this only handles one dimensional
14095 arrays. */
14096
14097 static struct type *
14098 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
14099 {
14100 struct objfile *objfile = cu->objfile;
14101 struct die_info *child_die;
14102 struct type *type;
14103 struct type *element_type, *range_type, *index_type;
14104 struct type **range_types = NULL;
14105 struct attribute *attr;
14106 int ndim = 0;
14107 struct cleanup *back_to;
14108 const char *name;
14109 unsigned int bit_stride = 0;
14110
14111 element_type = die_type (die, cu);
14112
14113 /* The die_type call above may have already set the type for this DIE. */
14114 type = get_die_type (die, cu);
14115 if (type)
14116 return type;
14117
14118 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14119 if (attr != NULL)
14120 bit_stride = DW_UNSND (attr) * 8;
14121
14122 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14123 if (attr != NULL)
14124 bit_stride = DW_UNSND (attr);
14125
14126 /* Irix 6.2 native cc creates array types without children for
14127 arrays with unspecified length. */
14128 if (die->child == NULL)
14129 {
14130 index_type = objfile_type (objfile)->builtin_int;
14131 range_type = create_static_range_type (NULL, index_type, 0, -1);
14132 type = create_array_type_with_stride (NULL, element_type, range_type,
14133 bit_stride);
14134 return set_die_type (die, type, cu);
14135 }
14136
14137 back_to = make_cleanup (null_cleanup, NULL);
14138 child_die = die->child;
14139 while (child_die && child_die->tag)
14140 {
14141 if (child_die->tag == DW_TAG_subrange_type)
14142 {
14143 struct type *child_type = read_type_die (child_die, cu);
14144
14145 if (child_type != NULL)
14146 {
14147 /* The range type was succesfully read. Save it for the
14148 array type creation. */
14149 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14150 {
14151 range_types = (struct type **)
14152 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14153 * sizeof (struct type *));
14154 if (ndim == 0)
14155 make_cleanup (free_current_contents, &range_types);
14156 }
14157 range_types[ndim++] = child_type;
14158 }
14159 }
14160 child_die = sibling_die (child_die);
14161 }
14162
14163 /* Dwarf2 dimensions are output from left to right, create the
14164 necessary array types in backwards order. */
14165
14166 type = element_type;
14167
14168 if (read_array_order (die, cu) == DW_ORD_col_major)
14169 {
14170 int i = 0;
14171
14172 while (i < ndim)
14173 type = create_array_type_with_stride (NULL, type, range_types[i++],
14174 bit_stride);
14175 }
14176 else
14177 {
14178 while (ndim-- > 0)
14179 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14180 bit_stride);
14181 }
14182
14183 /* Understand Dwarf2 support for vector types (like they occur on
14184 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14185 array type. This is not part of the Dwarf2/3 standard yet, but a
14186 custom vendor extension. The main difference between a regular
14187 array and the vector variant is that vectors are passed by value
14188 to functions. */
14189 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
14190 if (attr)
14191 make_vector_type (type);
14192
14193 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14194 implementation may choose to implement triple vectors using this
14195 attribute. */
14196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14197 if (attr)
14198 {
14199 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14200 TYPE_LENGTH (type) = DW_UNSND (attr);
14201 else
14202 complaint (&symfile_complaints,
14203 _("DW_AT_byte_size for array type smaller "
14204 "than the total size of elements"));
14205 }
14206
14207 name = dwarf2_name (die, cu);
14208 if (name)
14209 TYPE_NAME (type) = name;
14210
14211 /* Install the type in the die. */
14212 set_die_type (die, type, cu);
14213
14214 /* set_die_type should be already done. */
14215 set_descriptive_type (type, die, cu);
14216
14217 do_cleanups (back_to);
14218
14219 return type;
14220 }
14221
14222 static enum dwarf_array_dim_ordering
14223 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
14224 {
14225 struct attribute *attr;
14226
14227 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14228
14229 if (attr)
14230 return (enum dwarf_array_dim_ordering) DW_SND (attr);
14231
14232 /* GNU F77 is a special case, as at 08/2004 array type info is the
14233 opposite order to the dwarf2 specification, but data is still
14234 laid out as per normal fortran.
14235
14236 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14237 version checking. */
14238
14239 if (cu->language == language_fortran
14240 && cu->producer && strstr (cu->producer, "GNU F77"))
14241 {
14242 return DW_ORD_row_major;
14243 }
14244
14245 switch (cu->language_defn->la_array_ordering)
14246 {
14247 case array_column_major:
14248 return DW_ORD_col_major;
14249 case array_row_major:
14250 default:
14251 return DW_ORD_row_major;
14252 };
14253 }
14254
14255 /* Extract all information from a DW_TAG_set_type DIE and put it in
14256 the DIE's type field. */
14257
14258 static struct type *
14259 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14260 {
14261 struct type *domain_type, *set_type;
14262 struct attribute *attr;
14263
14264 domain_type = die_type (die, cu);
14265
14266 /* The die_type call above may have already set the type for this DIE. */
14267 set_type = get_die_type (die, cu);
14268 if (set_type)
14269 return set_type;
14270
14271 set_type = create_set_type (NULL, domain_type);
14272
14273 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14274 if (attr)
14275 TYPE_LENGTH (set_type) = DW_UNSND (attr);
14276
14277 return set_die_type (die, set_type, cu);
14278 }
14279
14280 /* A helper for read_common_block that creates a locexpr baton.
14281 SYM is the symbol which we are marking as computed.
14282 COMMON_DIE is the DIE for the common block.
14283 COMMON_LOC is the location expression attribute for the common
14284 block itself.
14285 MEMBER_LOC is the location expression attribute for the particular
14286 member of the common block that we are processing.
14287 CU is the CU from which the above come. */
14288
14289 static void
14290 mark_common_block_symbol_computed (struct symbol *sym,
14291 struct die_info *common_die,
14292 struct attribute *common_loc,
14293 struct attribute *member_loc,
14294 struct dwarf2_cu *cu)
14295 {
14296 struct objfile *objfile = dwarf2_per_objfile->objfile;
14297 struct dwarf2_locexpr_baton *baton;
14298 gdb_byte *ptr;
14299 unsigned int cu_off;
14300 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14301 LONGEST offset = 0;
14302
14303 gdb_assert (common_loc && member_loc);
14304 gdb_assert (attr_form_is_block (common_loc));
14305 gdb_assert (attr_form_is_block (member_loc)
14306 || attr_form_is_constant (member_loc));
14307
14308 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14309 baton->per_cu = cu->per_cu;
14310 gdb_assert (baton->per_cu);
14311
14312 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14313
14314 if (attr_form_is_constant (member_loc))
14315 {
14316 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14317 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14318 }
14319 else
14320 baton->size += DW_BLOCK (member_loc)->size;
14321
14322 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
14323 baton->data = ptr;
14324
14325 *ptr++ = DW_OP_call4;
14326 cu_off = common_die->sect_off - cu->per_cu->sect_off;
14327 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14328 ptr += 4;
14329
14330 if (attr_form_is_constant (member_loc))
14331 {
14332 *ptr++ = DW_OP_addr;
14333 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14334 ptr += cu->header.addr_size;
14335 }
14336 else
14337 {
14338 /* We have to copy the data here, because DW_OP_call4 will only
14339 use a DW_AT_location attribute. */
14340 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14341 ptr += DW_BLOCK (member_loc)->size;
14342 }
14343
14344 *ptr++ = DW_OP_plus;
14345 gdb_assert (ptr - baton->data == baton->size);
14346
14347 SYMBOL_LOCATION_BATON (sym) = baton;
14348 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
14349 }
14350
14351 /* Create appropriate locally-scoped variables for all the
14352 DW_TAG_common_block entries. Also create a struct common_block
14353 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14354 is used to sepate the common blocks name namespace from regular
14355 variable names. */
14356
14357 static void
14358 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
14359 {
14360 struct attribute *attr;
14361
14362 attr = dwarf2_attr (die, DW_AT_location, cu);
14363 if (attr)
14364 {
14365 /* Support the .debug_loc offsets. */
14366 if (attr_form_is_block (attr))
14367 {
14368 /* Ok. */
14369 }
14370 else if (attr_form_is_section_offset (attr))
14371 {
14372 dwarf2_complex_location_expr_complaint ();
14373 attr = NULL;
14374 }
14375 else
14376 {
14377 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14378 "common block member");
14379 attr = NULL;
14380 }
14381 }
14382
14383 if (die->child != NULL)
14384 {
14385 struct objfile *objfile = cu->objfile;
14386 struct die_info *child_die;
14387 size_t n_entries = 0, size;
14388 struct common_block *common_block;
14389 struct symbol *sym;
14390
14391 for (child_die = die->child;
14392 child_die && child_die->tag;
14393 child_die = sibling_die (child_die))
14394 ++n_entries;
14395
14396 size = (sizeof (struct common_block)
14397 + (n_entries - 1) * sizeof (struct symbol *));
14398 common_block
14399 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14400 size);
14401 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14402 common_block->n_entries = 0;
14403
14404 for (child_die = die->child;
14405 child_die && child_die->tag;
14406 child_die = sibling_die (child_die))
14407 {
14408 /* Create the symbol in the DW_TAG_common_block block in the current
14409 symbol scope. */
14410 sym = new_symbol (child_die, NULL, cu);
14411 if (sym != NULL)
14412 {
14413 struct attribute *member_loc;
14414
14415 common_block->contents[common_block->n_entries++] = sym;
14416
14417 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14418 cu);
14419 if (member_loc)
14420 {
14421 /* GDB has handled this for a long time, but it is
14422 not specified by DWARF. It seems to have been
14423 emitted by gfortran at least as recently as:
14424 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14425 complaint (&symfile_complaints,
14426 _("Variable in common block has "
14427 "DW_AT_data_member_location "
14428 "- DIE at 0x%x [in module %s]"),
14429 to_underlying (child_die->sect_off),
14430 objfile_name (cu->objfile));
14431
14432 if (attr_form_is_section_offset (member_loc))
14433 dwarf2_complex_location_expr_complaint ();
14434 else if (attr_form_is_constant (member_loc)
14435 || attr_form_is_block (member_loc))
14436 {
14437 if (attr)
14438 mark_common_block_symbol_computed (sym, die, attr,
14439 member_loc, cu);
14440 }
14441 else
14442 dwarf2_complex_location_expr_complaint ();
14443 }
14444 }
14445 }
14446
14447 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14448 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14449 }
14450 }
14451
14452 /* Create a type for a C++ namespace. */
14453
14454 static struct type *
14455 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14456 {
14457 struct objfile *objfile = cu->objfile;
14458 const char *previous_prefix, *name;
14459 int is_anonymous;
14460 struct type *type;
14461
14462 /* For extensions, reuse the type of the original namespace. */
14463 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14464 {
14465 struct die_info *ext_die;
14466 struct dwarf2_cu *ext_cu = cu;
14467
14468 ext_die = dwarf2_extension (die, &ext_cu);
14469 type = read_type_die (ext_die, ext_cu);
14470
14471 /* EXT_CU may not be the same as CU.
14472 Ensure TYPE is recorded with CU in die_type_hash. */
14473 return set_die_type (die, type, cu);
14474 }
14475
14476 name = namespace_name (die, &is_anonymous, cu);
14477
14478 /* Now build the name of the current namespace. */
14479
14480 previous_prefix = determine_prefix (die, cu);
14481 if (previous_prefix[0] != '\0')
14482 name = typename_concat (&objfile->objfile_obstack,
14483 previous_prefix, name, 0, cu);
14484
14485 /* Create the type. */
14486 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14487 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14488
14489 return set_die_type (die, type, cu);
14490 }
14491
14492 /* Read a namespace scope. */
14493
14494 static void
14495 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14496 {
14497 struct objfile *objfile = cu->objfile;
14498 int is_anonymous;
14499
14500 /* Add a symbol associated to this if we haven't seen the namespace
14501 before. Also, add a using directive if it's an anonymous
14502 namespace. */
14503
14504 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14505 {
14506 struct type *type;
14507
14508 type = read_type_die (die, cu);
14509 new_symbol (die, type, cu);
14510
14511 namespace_name (die, &is_anonymous, cu);
14512 if (is_anonymous)
14513 {
14514 const char *previous_prefix = determine_prefix (die, cu);
14515
14516 add_using_directive (using_directives (cu->language),
14517 previous_prefix, TYPE_NAME (type), NULL,
14518 NULL, NULL, 0, &objfile->objfile_obstack);
14519 }
14520 }
14521
14522 if (die->child != NULL)
14523 {
14524 struct die_info *child_die = die->child;
14525
14526 while (child_die && child_die->tag)
14527 {
14528 process_die (child_die, cu);
14529 child_die = sibling_die (child_die);
14530 }
14531 }
14532 }
14533
14534 /* Read a Fortran module as type. This DIE can be only a declaration used for
14535 imported module. Still we need that type as local Fortran "use ... only"
14536 declaration imports depend on the created type in determine_prefix. */
14537
14538 static struct type *
14539 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14540 {
14541 struct objfile *objfile = cu->objfile;
14542 const char *module_name;
14543 struct type *type;
14544
14545 module_name = dwarf2_name (die, cu);
14546 if (!module_name)
14547 complaint (&symfile_complaints,
14548 _("DW_TAG_module has no name, offset 0x%x"),
14549 to_underlying (die->sect_off));
14550 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14551
14552 /* determine_prefix uses TYPE_TAG_NAME. */
14553 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14554
14555 return set_die_type (die, type, cu);
14556 }
14557
14558 /* Read a Fortran module. */
14559
14560 static void
14561 read_module (struct die_info *die, struct dwarf2_cu *cu)
14562 {
14563 struct die_info *child_die = die->child;
14564 struct type *type;
14565
14566 type = read_type_die (die, cu);
14567 new_symbol (die, type, cu);
14568
14569 while (child_die && child_die->tag)
14570 {
14571 process_die (child_die, cu);
14572 child_die = sibling_die (child_die);
14573 }
14574 }
14575
14576 /* Return the name of the namespace represented by DIE. Set
14577 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14578 namespace. */
14579
14580 static const char *
14581 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14582 {
14583 struct die_info *current_die;
14584 const char *name = NULL;
14585
14586 /* Loop through the extensions until we find a name. */
14587
14588 for (current_die = die;
14589 current_die != NULL;
14590 current_die = dwarf2_extension (die, &cu))
14591 {
14592 /* We don't use dwarf2_name here so that we can detect the absence
14593 of a name -> anonymous namespace. */
14594 name = dwarf2_string_attr (die, DW_AT_name, cu);
14595
14596 if (name != NULL)
14597 break;
14598 }
14599
14600 /* Is it an anonymous namespace? */
14601
14602 *is_anonymous = (name == NULL);
14603 if (*is_anonymous)
14604 name = CP_ANONYMOUS_NAMESPACE_STR;
14605
14606 return name;
14607 }
14608
14609 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14610 the user defined type vector. */
14611
14612 static struct type *
14613 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14614 {
14615 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14616 struct comp_unit_head *cu_header = &cu->header;
14617 struct type *type;
14618 struct attribute *attr_byte_size;
14619 struct attribute *attr_address_class;
14620 int byte_size, addr_class;
14621 struct type *target_type;
14622
14623 target_type = die_type (die, cu);
14624
14625 /* The die_type call above may have already set the type for this DIE. */
14626 type = get_die_type (die, cu);
14627 if (type)
14628 return type;
14629
14630 type = lookup_pointer_type (target_type);
14631
14632 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14633 if (attr_byte_size)
14634 byte_size = DW_UNSND (attr_byte_size);
14635 else
14636 byte_size = cu_header->addr_size;
14637
14638 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14639 if (attr_address_class)
14640 addr_class = DW_UNSND (attr_address_class);
14641 else
14642 addr_class = DW_ADDR_none;
14643
14644 /* If the pointer size or address class is different than the
14645 default, create a type variant marked as such and set the
14646 length accordingly. */
14647 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14648 {
14649 if (gdbarch_address_class_type_flags_p (gdbarch))
14650 {
14651 int type_flags;
14652
14653 type_flags = gdbarch_address_class_type_flags
14654 (gdbarch, byte_size, addr_class);
14655 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14656 == 0);
14657 type = make_type_with_address_space (type, type_flags);
14658 }
14659 else if (TYPE_LENGTH (type) != byte_size)
14660 {
14661 complaint (&symfile_complaints,
14662 _("invalid pointer size %d"), byte_size);
14663 }
14664 else
14665 {
14666 /* Should we also complain about unhandled address classes? */
14667 }
14668 }
14669
14670 TYPE_LENGTH (type) = byte_size;
14671 return set_die_type (die, type, cu);
14672 }
14673
14674 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14675 the user defined type vector. */
14676
14677 static struct type *
14678 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14679 {
14680 struct type *type;
14681 struct type *to_type;
14682 struct type *domain;
14683
14684 to_type = die_type (die, cu);
14685 domain = die_containing_type (die, cu);
14686
14687 /* The calls above may have already set the type for this DIE. */
14688 type = get_die_type (die, cu);
14689 if (type)
14690 return type;
14691
14692 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14693 type = lookup_methodptr_type (to_type);
14694 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14695 {
14696 struct type *new_type = alloc_type (cu->objfile);
14697
14698 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14699 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14700 TYPE_VARARGS (to_type));
14701 type = lookup_methodptr_type (new_type);
14702 }
14703 else
14704 type = lookup_memberptr_type (to_type, domain);
14705
14706 return set_die_type (die, type, cu);
14707 }
14708
14709 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
14710 the user defined type vector. */
14711
14712 static struct type *
14713 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14714 enum type_code refcode)
14715 {
14716 struct comp_unit_head *cu_header = &cu->header;
14717 struct type *type, *target_type;
14718 struct attribute *attr;
14719
14720 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14721
14722 target_type = die_type (die, cu);
14723
14724 /* The die_type call above may have already set the type for this DIE. */
14725 type = get_die_type (die, cu);
14726 if (type)
14727 return type;
14728
14729 type = lookup_reference_type (target_type, refcode);
14730 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14731 if (attr)
14732 {
14733 TYPE_LENGTH (type) = DW_UNSND (attr);
14734 }
14735 else
14736 {
14737 TYPE_LENGTH (type) = cu_header->addr_size;
14738 }
14739 return set_die_type (die, type, cu);
14740 }
14741
14742 /* Add the given cv-qualifiers to the element type of the array. GCC
14743 outputs DWARF type qualifiers that apply to an array, not the
14744 element type. But GDB relies on the array element type to carry
14745 the cv-qualifiers. This mimics section 6.7.3 of the C99
14746 specification. */
14747
14748 static struct type *
14749 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14750 struct type *base_type, int cnst, int voltl)
14751 {
14752 struct type *el_type, *inner_array;
14753
14754 base_type = copy_type (base_type);
14755 inner_array = base_type;
14756
14757 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14758 {
14759 TYPE_TARGET_TYPE (inner_array) =
14760 copy_type (TYPE_TARGET_TYPE (inner_array));
14761 inner_array = TYPE_TARGET_TYPE (inner_array);
14762 }
14763
14764 el_type = TYPE_TARGET_TYPE (inner_array);
14765 cnst |= TYPE_CONST (el_type);
14766 voltl |= TYPE_VOLATILE (el_type);
14767 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14768
14769 return set_die_type (die, base_type, cu);
14770 }
14771
14772 static struct type *
14773 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14774 {
14775 struct type *base_type, *cv_type;
14776
14777 base_type = die_type (die, cu);
14778
14779 /* The die_type call above may have already set the type for this DIE. */
14780 cv_type = get_die_type (die, cu);
14781 if (cv_type)
14782 return cv_type;
14783
14784 /* In case the const qualifier is applied to an array type, the element type
14785 is so qualified, not the array type (section 6.7.3 of C99). */
14786 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14787 return add_array_cv_type (die, cu, base_type, 1, 0);
14788
14789 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14790 return set_die_type (die, cv_type, cu);
14791 }
14792
14793 static struct type *
14794 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14795 {
14796 struct type *base_type, *cv_type;
14797
14798 base_type = die_type (die, cu);
14799
14800 /* The die_type call above may have already set the type for this DIE. */
14801 cv_type = get_die_type (die, cu);
14802 if (cv_type)
14803 return cv_type;
14804
14805 /* In case the volatile qualifier is applied to an array type, the
14806 element type is so qualified, not the array type (section 6.7.3
14807 of C99). */
14808 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14809 return add_array_cv_type (die, cu, base_type, 0, 1);
14810
14811 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14812 return set_die_type (die, cv_type, cu);
14813 }
14814
14815 /* Handle DW_TAG_restrict_type. */
14816
14817 static struct type *
14818 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14819 {
14820 struct type *base_type, *cv_type;
14821
14822 base_type = die_type (die, cu);
14823
14824 /* The die_type call above may have already set the type for this DIE. */
14825 cv_type = get_die_type (die, cu);
14826 if (cv_type)
14827 return cv_type;
14828
14829 cv_type = make_restrict_type (base_type);
14830 return set_die_type (die, cv_type, cu);
14831 }
14832
14833 /* Handle DW_TAG_atomic_type. */
14834
14835 static struct type *
14836 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14837 {
14838 struct type *base_type, *cv_type;
14839
14840 base_type = die_type (die, cu);
14841
14842 /* The die_type call above may have already set the type for this DIE. */
14843 cv_type = get_die_type (die, cu);
14844 if (cv_type)
14845 return cv_type;
14846
14847 cv_type = make_atomic_type (base_type);
14848 return set_die_type (die, cv_type, cu);
14849 }
14850
14851 /* Extract all information from a DW_TAG_string_type DIE and add to
14852 the user defined type vector. It isn't really a user defined type,
14853 but it behaves like one, with other DIE's using an AT_user_def_type
14854 attribute to reference it. */
14855
14856 static struct type *
14857 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14858 {
14859 struct objfile *objfile = cu->objfile;
14860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14861 struct type *type, *range_type, *index_type, *char_type;
14862 struct attribute *attr;
14863 unsigned int length;
14864
14865 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14866 if (attr)
14867 {
14868 length = DW_UNSND (attr);
14869 }
14870 else
14871 {
14872 /* Check for the DW_AT_byte_size attribute. */
14873 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14874 if (attr)
14875 {
14876 length = DW_UNSND (attr);
14877 }
14878 else
14879 {
14880 length = 1;
14881 }
14882 }
14883
14884 index_type = objfile_type (objfile)->builtin_int;
14885 range_type = create_static_range_type (NULL, index_type, 1, length);
14886 char_type = language_string_char_type (cu->language_defn, gdbarch);
14887 type = create_string_type (NULL, char_type, range_type);
14888
14889 return set_die_type (die, type, cu);
14890 }
14891
14892 /* Assuming that DIE corresponds to a function, returns nonzero
14893 if the function is prototyped. */
14894
14895 static int
14896 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14897 {
14898 struct attribute *attr;
14899
14900 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14901 if (attr && (DW_UNSND (attr) != 0))
14902 return 1;
14903
14904 /* The DWARF standard implies that the DW_AT_prototyped attribute
14905 is only meaninful for C, but the concept also extends to other
14906 languages that allow unprototyped functions (Eg: Objective C).
14907 For all other languages, assume that functions are always
14908 prototyped. */
14909 if (cu->language != language_c
14910 && cu->language != language_objc
14911 && cu->language != language_opencl)
14912 return 1;
14913
14914 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14915 prototyped and unprototyped functions; default to prototyped,
14916 since that is more common in modern code (and RealView warns
14917 about unprototyped functions). */
14918 if (producer_is_realview (cu->producer))
14919 return 1;
14920
14921 return 0;
14922 }
14923
14924 /* Handle DIES due to C code like:
14925
14926 struct foo
14927 {
14928 int (*funcp)(int a, long l);
14929 int b;
14930 };
14931
14932 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14933
14934 static struct type *
14935 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14936 {
14937 struct objfile *objfile = cu->objfile;
14938 struct type *type; /* Type that this function returns. */
14939 struct type *ftype; /* Function that returns above type. */
14940 struct attribute *attr;
14941
14942 type = die_type (die, cu);
14943
14944 /* The die_type call above may have already set the type for this DIE. */
14945 ftype = get_die_type (die, cu);
14946 if (ftype)
14947 return ftype;
14948
14949 ftype = lookup_function_type (type);
14950
14951 if (prototyped_function_p (die, cu))
14952 TYPE_PROTOTYPED (ftype) = 1;
14953
14954 /* Store the calling convention in the type if it's available in
14955 the subroutine die. Otherwise set the calling convention to
14956 the default value DW_CC_normal. */
14957 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14958 if (attr)
14959 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14960 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14961 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14962 else
14963 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14964
14965 /* Record whether the function returns normally to its caller or not
14966 if the DWARF producer set that information. */
14967 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14968 if (attr && (DW_UNSND (attr) != 0))
14969 TYPE_NO_RETURN (ftype) = 1;
14970
14971 /* We need to add the subroutine type to the die immediately so
14972 we don't infinitely recurse when dealing with parameters
14973 declared as the same subroutine type. */
14974 set_die_type (die, ftype, cu);
14975
14976 if (die->child != NULL)
14977 {
14978 struct type *void_type = objfile_type (objfile)->builtin_void;
14979 struct die_info *child_die;
14980 int nparams, iparams;
14981
14982 /* Count the number of parameters.
14983 FIXME: GDB currently ignores vararg functions, but knows about
14984 vararg member functions. */
14985 nparams = 0;
14986 child_die = die->child;
14987 while (child_die && child_die->tag)
14988 {
14989 if (child_die->tag == DW_TAG_formal_parameter)
14990 nparams++;
14991 else if (child_die->tag == DW_TAG_unspecified_parameters)
14992 TYPE_VARARGS (ftype) = 1;
14993 child_die = sibling_die (child_die);
14994 }
14995
14996 /* Allocate storage for parameters and fill them in. */
14997 TYPE_NFIELDS (ftype) = nparams;
14998 TYPE_FIELDS (ftype) = (struct field *)
14999 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15000
15001 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15002 even if we error out during the parameters reading below. */
15003 for (iparams = 0; iparams < nparams; iparams++)
15004 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15005
15006 iparams = 0;
15007 child_die = die->child;
15008 while (child_die && child_die->tag)
15009 {
15010 if (child_die->tag == DW_TAG_formal_parameter)
15011 {
15012 struct type *arg_type;
15013
15014 /* DWARF version 2 has no clean way to discern C++
15015 static and non-static member functions. G++ helps
15016 GDB by marking the first parameter for non-static
15017 member functions (which is the this pointer) as
15018 artificial. We pass this information to
15019 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15020
15021 DWARF version 3 added DW_AT_object_pointer, which GCC
15022 4.5 does not yet generate. */
15023 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15024 if (attr)
15025 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15026 else
15027 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
15028 arg_type = die_type (child_die, cu);
15029
15030 /* RealView does not mark THIS as const, which the testsuite
15031 expects. GCC marks THIS as const in method definitions,
15032 but not in the class specifications (GCC PR 43053). */
15033 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15034 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15035 {
15036 int is_this = 0;
15037 struct dwarf2_cu *arg_cu = cu;
15038 const char *name = dwarf2_name (child_die, cu);
15039
15040 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15041 if (attr)
15042 {
15043 /* If the compiler emits this, use it. */
15044 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15045 is_this = 1;
15046 }
15047 else if (name && strcmp (name, "this") == 0)
15048 /* Function definitions will have the argument names. */
15049 is_this = 1;
15050 else if (name == NULL && iparams == 0)
15051 /* Declarations may not have the names, so like
15052 elsewhere in GDB, assume an artificial first
15053 argument is "this". */
15054 is_this = 1;
15055
15056 if (is_this)
15057 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15058 arg_type, 0);
15059 }
15060
15061 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
15062 iparams++;
15063 }
15064 child_die = sibling_die (child_die);
15065 }
15066 }
15067
15068 return ftype;
15069 }
15070
15071 static struct type *
15072 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
15073 {
15074 struct objfile *objfile = cu->objfile;
15075 const char *name = NULL;
15076 struct type *this_type, *target_type;
15077
15078 name = dwarf2_full_name (NULL, die, cu);
15079 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15080 TYPE_TARGET_STUB (this_type) = 1;
15081 set_die_type (die, this_type, cu);
15082 target_type = die_type (die, cu);
15083 if (target_type != this_type)
15084 TYPE_TARGET_TYPE (this_type) = target_type;
15085 else
15086 {
15087 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15088 spec and cause infinite loops in GDB. */
15089 complaint (&symfile_complaints,
15090 _("Self-referential DW_TAG_typedef "
15091 "- DIE at 0x%x [in module %s]"),
15092 to_underlying (die->sect_off), objfile_name (objfile));
15093 TYPE_TARGET_TYPE (this_type) = NULL;
15094 }
15095 return this_type;
15096 }
15097
15098 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15099 (which may be different from NAME) to the architecture back-end to allow
15100 it to guess the correct format if necessary. */
15101
15102 static struct type *
15103 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15104 const char *name_hint)
15105 {
15106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15107 const struct floatformat **format;
15108 struct type *type;
15109
15110 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15111 if (format)
15112 type = init_float_type (objfile, bits, name, format);
15113 else
15114 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15115
15116 return type;
15117 }
15118
15119 /* Find a representation of a given base type and install
15120 it in the TYPE field of the die. */
15121
15122 static struct type *
15123 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
15124 {
15125 struct objfile *objfile = cu->objfile;
15126 struct type *type;
15127 struct attribute *attr;
15128 int encoding = 0, bits = 0;
15129 const char *name;
15130
15131 attr = dwarf2_attr (die, DW_AT_encoding, cu);
15132 if (attr)
15133 {
15134 encoding = DW_UNSND (attr);
15135 }
15136 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15137 if (attr)
15138 {
15139 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
15140 }
15141 name = dwarf2_name (die, cu);
15142 if (!name)
15143 {
15144 complaint (&symfile_complaints,
15145 _("DW_AT_name missing from DW_TAG_base_type"));
15146 }
15147
15148 switch (encoding)
15149 {
15150 case DW_ATE_address:
15151 /* Turn DW_ATE_address into a void * pointer. */
15152 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15153 type = init_pointer_type (objfile, bits, name, type);
15154 break;
15155 case DW_ATE_boolean:
15156 type = init_boolean_type (objfile, bits, 1, name);
15157 break;
15158 case DW_ATE_complex_float:
15159 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
15160 type = init_complex_type (objfile, name, type);
15161 break;
15162 case DW_ATE_decimal_float:
15163 type = init_decfloat_type (objfile, bits, name);
15164 break;
15165 case DW_ATE_float:
15166 type = dwarf2_init_float_type (objfile, bits, name, name);
15167 break;
15168 case DW_ATE_signed:
15169 type = init_integer_type (objfile, bits, 0, name);
15170 break;
15171 case DW_ATE_unsigned:
15172 if (cu->language == language_fortran
15173 && name
15174 && startswith (name, "character("))
15175 type = init_character_type (objfile, bits, 1, name);
15176 else
15177 type = init_integer_type (objfile, bits, 1, name);
15178 break;
15179 case DW_ATE_signed_char:
15180 if (cu->language == language_ada || cu->language == language_m2
15181 || cu->language == language_pascal
15182 || cu->language == language_fortran)
15183 type = init_character_type (objfile, bits, 0, name);
15184 else
15185 type = init_integer_type (objfile, bits, 0, name);
15186 break;
15187 case DW_ATE_unsigned_char:
15188 if (cu->language == language_ada || cu->language == language_m2
15189 || cu->language == language_pascal
15190 || cu->language == language_fortran
15191 || cu->language == language_rust)
15192 type = init_character_type (objfile, bits, 1, name);
15193 else
15194 type = init_integer_type (objfile, bits, 1, name);
15195 break;
15196 case DW_ATE_UTF:
15197 {
15198 gdbarch *arch = get_objfile_arch (objfile);
15199
15200 if (bits == 16)
15201 type = builtin_type (arch)->builtin_char16;
15202 else if (bits == 32)
15203 type = builtin_type (arch)->builtin_char32;
15204 else
15205 {
15206 complaint (&symfile_complaints,
15207 _("unsupported DW_ATE_UTF bit size: '%d'"),
15208 bits);
15209 type = init_integer_type (objfile, bits, 1, name);
15210 }
15211 return set_die_type (die, type, cu);
15212 }
15213 break;
15214
15215 default:
15216 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15217 dwarf_type_encoding_name (encoding));
15218 type = init_type (objfile, TYPE_CODE_ERROR,
15219 bits / TARGET_CHAR_BIT, name);
15220 break;
15221 }
15222
15223 if (name && strcmp (name, "char") == 0)
15224 TYPE_NOSIGN (type) = 1;
15225
15226 return set_die_type (die, type, cu);
15227 }
15228
15229 /* Parse dwarf attribute if it's a block, reference or constant and put the
15230 resulting value of the attribute into struct bound_prop.
15231 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15232
15233 static int
15234 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15235 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15236 {
15237 struct dwarf2_property_baton *baton;
15238 struct obstack *obstack = &cu->objfile->objfile_obstack;
15239
15240 if (attr == NULL || prop == NULL)
15241 return 0;
15242
15243 if (attr_form_is_block (attr))
15244 {
15245 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15246 baton->referenced_type = NULL;
15247 baton->locexpr.per_cu = cu->per_cu;
15248 baton->locexpr.size = DW_BLOCK (attr)->size;
15249 baton->locexpr.data = DW_BLOCK (attr)->data;
15250 prop->data.baton = baton;
15251 prop->kind = PROP_LOCEXPR;
15252 gdb_assert (prop->data.baton != NULL);
15253 }
15254 else if (attr_form_is_ref (attr))
15255 {
15256 struct dwarf2_cu *target_cu = cu;
15257 struct die_info *target_die;
15258 struct attribute *target_attr;
15259
15260 target_die = follow_die_ref (die, attr, &target_cu);
15261 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
15262 if (target_attr == NULL)
15263 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15264 target_cu);
15265 if (target_attr == NULL)
15266 return 0;
15267
15268 switch (target_attr->name)
15269 {
15270 case DW_AT_location:
15271 if (attr_form_is_section_offset (target_attr))
15272 {
15273 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15274 baton->referenced_type = die_type (target_die, target_cu);
15275 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15276 prop->data.baton = baton;
15277 prop->kind = PROP_LOCLIST;
15278 gdb_assert (prop->data.baton != NULL);
15279 }
15280 else if (attr_form_is_block (target_attr))
15281 {
15282 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15283 baton->referenced_type = die_type (target_die, target_cu);
15284 baton->locexpr.per_cu = cu->per_cu;
15285 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15286 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15287 prop->data.baton = baton;
15288 prop->kind = PROP_LOCEXPR;
15289 gdb_assert (prop->data.baton != NULL);
15290 }
15291 else
15292 {
15293 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15294 "dynamic property");
15295 return 0;
15296 }
15297 break;
15298 case DW_AT_data_member_location:
15299 {
15300 LONGEST offset;
15301
15302 if (!handle_data_member_location (target_die, target_cu,
15303 &offset))
15304 return 0;
15305
15306 baton = XOBNEW (obstack, struct dwarf2_property_baton);
15307 baton->referenced_type = read_type_die (target_die->parent,
15308 target_cu);
15309 baton->offset_info.offset = offset;
15310 baton->offset_info.type = die_type (target_die, target_cu);
15311 prop->data.baton = baton;
15312 prop->kind = PROP_ADDR_OFFSET;
15313 break;
15314 }
15315 }
15316 }
15317 else if (attr_form_is_constant (attr))
15318 {
15319 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15320 prop->kind = PROP_CONST;
15321 }
15322 else
15323 {
15324 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15325 dwarf2_name (die, cu));
15326 return 0;
15327 }
15328
15329 return 1;
15330 }
15331
15332 /* Read the given DW_AT_subrange DIE. */
15333
15334 static struct type *
15335 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15336 {
15337 struct type *base_type, *orig_base_type;
15338 struct type *range_type;
15339 struct attribute *attr;
15340 struct dynamic_prop low, high;
15341 int low_default_is_valid;
15342 int high_bound_is_count = 0;
15343 const char *name;
15344 LONGEST negative_mask;
15345
15346 orig_base_type = die_type (die, cu);
15347 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15348 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15349 creating the range type, but we use the result of check_typedef
15350 when examining properties of the type. */
15351 base_type = check_typedef (orig_base_type);
15352
15353 /* The die_type call above may have already set the type for this DIE. */
15354 range_type = get_die_type (die, cu);
15355 if (range_type)
15356 return range_type;
15357
15358 low.kind = PROP_CONST;
15359 high.kind = PROP_CONST;
15360 high.data.const_val = 0;
15361
15362 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15363 omitting DW_AT_lower_bound. */
15364 switch (cu->language)
15365 {
15366 case language_c:
15367 case language_cplus:
15368 low.data.const_val = 0;
15369 low_default_is_valid = 1;
15370 break;
15371 case language_fortran:
15372 low.data.const_val = 1;
15373 low_default_is_valid = 1;
15374 break;
15375 case language_d:
15376 case language_objc:
15377 case language_rust:
15378 low.data.const_val = 0;
15379 low_default_is_valid = (cu->header.version >= 4);
15380 break;
15381 case language_ada:
15382 case language_m2:
15383 case language_pascal:
15384 low.data.const_val = 1;
15385 low_default_is_valid = (cu->header.version >= 4);
15386 break;
15387 default:
15388 low.data.const_val = 0;
15389 low_default_is_valid = 0;
15390 break;
15391 }
15392
15393 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15394 if (attr)
15395 attr_to_dynamic_prop (attr, die, cu, &low);
15396 else if (!low_default_is_valid)
15397 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15398 "- DIE at 0x%x [in module %s]"),
15399 to_underlying (die->sect_off), objfile_name (cu->objfile));
15400
15401 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15402 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15403 {
15404 attr = dwarf2_attr (die, DW_AT_count, cu);
15405 if (attr_to_dynamic_prop (attr, die, cu, &high))
15406 {
15407 /* If bounds are constant do the final calculation here. */
15408 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15409 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15410 else
15411 high_bound_is_count = 1;
15412 }
15413 }
15414
15415 /* Dwarf-2 specifications explicitly allows to create subrange types
15416 without specifying a base type.
15417 In that case, the base type must be set to the type of
15418 the lower bound, upper bound or count, in that order, if any of these
15419 three attributes references an object that has a type.
15420 If no base type is found, the Dwarf-2 specifications say that
15421 a signed integer type of size equal to the size of an address should
15422 be used.
15423 For the following C code: `extern char gdb_int [];'
15424 GCC produces an empty range DIE.
15425 FIXME: muller/2010-05-28: Possible references to object for low bound,
15426 high bound or count are not yet handled by this code. */
15427 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15428 {
15429 struct objfile *objfile = cu->objfile;
15430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15431 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15432 struct type *int_type = objfile_type (objfile)->builtin_int;
15433
15434 /* Test "int", "long int", and "long long int" objfile types,
15435 and select the first one having a size above or equal to the
15436 architecture address size. */
15437 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15438 base_type = int_type;
15439 else
15440 {
15441 int_type = objfile_type (objfile)->builtin_long;
15442 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15443 base_type = int_type;
15444 else
15445 {
15446 int_type = objfile_type (objfile)->builtin_long_long;
15447 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15448 base_type = int_type;
15449 }
15450 }
15451 }
15452
15453 /* Normally, the DWARF producers are expected to use a signed
15454 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15455 But this is unfortunately not always the case, as witnessed
15456 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15457 is used instead. To work around that ambiguity, we treat
15458 the bounds as signed, and thus sign-extend their values, when
15459 the base type is signed. */
15460 negative_mask =
15461 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15462 if (low.kind == PROP_CONST
15463 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15464 low.data.const_val |= negative_mask;
15465 if (high.kind == PROP_CONST
15466 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15467 high.data.const_val |= negative_mask;
15468
15469 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15470
15471 if (high_bound_is_count)
15472 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15473
15474 /* Ada expects an empty array on no boundary attributes. */
15475 if (attr == NULL && cu->language != language_ada)
15476 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15477
15478 name = dwarf2_name (die, cu);
15479 if (name)
15480 TYPE_NAME (range_type) = name;
15481
15482 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15483 if (attr)
15484 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15485
15486 set_die_type (die, range_type, cu);
15487
15488 /* set_die_type should be already done. */
15489 set_descriptive_type (range_type, die, cu);
15490
15491 return range_type;
15492 }
15493
15494 static struct type *
15495 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15496 {
15497 struct type *type;
15498
15499 /* For now, we only support the C meaning of an unspecified type: void. */
15500
15501 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15502 TYPE_NAME (type) = dwarf2_name (die, cu);
15503
15504 return set_die_type (die, type, cu);
15505 }
15506
15507 /* Read a single die and all its descendents. Set the die's sibling
15508 field to NULL; set other fields in the die correctly, and set all
15509 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15510 location of the info_ptr after reading all of those dies. PARENT
15511 is the parent of the die in question. */
15512
15513 static struct die_info *
15514 read_die_and_children (const struct die_reader_specs *reader,
15515 const gdb_byte *info_ptr,
15516 const gdb_byte **new_info_ptr,
15517 struct die_info *parent)
15518 {
15519 struct die_info *die;
15520 const gdb_byte *cur_ptr;
15521 int has_children;
15522
15523 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15524 if (die == NULL)
15525 {
15526 *new_info_ptr = cur_ptr;
15527 return NULL;
15528 }
15529 store_in_ref_table (die, reader->cu);
15530
15531 if (has_children)
15532 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15533 else
15534 {
15535 die->child = NULL;
15536 *new_info_ptr = cur_ptr;
15537 }
15538
15539 die->sibling = NULL;
15540 die->parent = parent;
15541 return die;
15542 }
15543
15544 /* Read a die, all of its descendents, and all of its siblings; set
15545 all of the fields of all of the dies correctly. Arguments are as
15546 in read_die_and_children. */
15547
15548 static struct die_info *
15549 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15550 const gdb_byte *info_ptr,
15551 const gdb_byte **new_info_ptr,
15552 struct die_info *parent)
15553 {
15554 struct die_info *first_die, *last_sibling;
15555 const gdb_byte *cur_ptr;
15556
15557 cur_ptr = info_ptr;
15558 first_die = last_sibling = NULL;
15559
15560 while (1)
15561 {
15562 struct die_info *die
15563 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15564
15565 if (die == NULL)
15566 {
15567 *new_info_ptr = cur_ptr;
15568 return first_die;
15569 }
15570
15571 if (!first_die)
15572 first_die = die;
15573 else
15574 last_sibling->sibling = die;
15575
15576 last_sibling = die;
15577 }
15578 }
15579
15580 /* Read a die, all of its descendents, and all of its siblings; set
15581 all of the fields of all of the dies correctly. Arguments are as
15582 in read_die_and_children.
15583 This the main entry point for reading a DIE and all its children. */
15584
15585 static struct die_info *
15586 read_die_and_siblings (const struct die_reader_specs *reader,
15587 const gdb_byte *info_ptr,
15588 const gdb_byte **new_info_ptr,
15589 struct die_info *parent)
15590 {
15591 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15592 new_info_ptr, parent);
15593
15594 if (dwarf_die_debug)
15595 {
15596 fprintf_unfiltered (gdb_stdlog,
15597 "Read die from %s@0x%x of %s:\n",
15598 get_section_name (reader->die_section),
15599 (unsigned) (info_ptr - reader->die_section->buffer),
15600 bfd_get_filename (reader->abfd));
15601 dump_die (die, dwarf_die_debug);
15602 }
15603
15604 return die;
15605 }
15606
15607 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15608 attributes.
15609 The caller is responsible for filling in the extra attributes
15610 and updating (*DIEP)->num_attrs.
15611 Set DIEP to point to a newly allocated die with its information,
15612 except for its child, sibling, and parent fields.
15613 Set HAS_CHILDREN to tell whether the die has children or not. */
15614
15615 static const gdb_byte *
15616 read_full_die_1 (const struct die_reader_specs *reader,
15617 struct die_info **diep, const gdb_byte *info_ptr,
15618 int *has_children, int num_extra_attrs)
15619 {
15620 unsigned int abbrev_number, bytes_read, i;
15621 struct abbrev_info *abbrev;
15622 struct die_info *die;
15623 struct dwarf2_cu *cu = reader->cu;
15624 bfd *abfd = reader->abfd;
15625
15626 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
15627 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15628 info_ptr += bytes_read;
15629 if (!abbrev_number)
15630 {
15631 *diep = NULL;
15632 *has_children = 0;
15633 return info_ptr;
15634 }
15635
15636 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15637 if (!abbrev)
15638 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15639 abbrev_number,
15640 bfd_get_filename (abfd));
15641
15642 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15643 die->sect_off = sect_off;
15644 die->tag = abbrev->tag;
15645 die->abbrev = abbrev_number;
15646
15647 /* Make the result usable.
15648 The caller needs to update num_attrs after adding the extra
15649 attributes. */
15650 die->num_attrs = abbrev->num_attrs;
15651
15652 for (i = 0; i < abbrev->num_attrs; ++i)
15653 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15654 info_ptr);
15655
15656 *diep = die;
15657 *has_children = abbrev->has_children;
15658 return info_ptr;
15659 }
15660
15661 /* Read a die and all its attributes.
15662 Set DIEP to point to a newly allocated die with its information,
15663 except for its child, sibling, and parent fields.
15664 Set HAS_CHILDREN to tell whether the die has children or not. */
15665
15666 static const gdb_byte *
15667 read_full_die (const struct die_reader_specs *reader,
15668 struct die_info **diep, const gdb_byte *info_ptr,
15669 int *has_children)
15670 {
15671 const gdb_byte *result;
15672
15673 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15674
15675 if (dwarf_die_debug)
15676 {
15677 fprintf_unfiltered (gdb_stdlog,
15678 "Read die from %s@0x%x of %s:\n",
15679 get_section_name (reader->die_section),
15680 (unsigned) (info_ptr - reader->die_section->buffer),
15681 bfd_get_filename (reader->abfd));
15682 dump_die (*diep, dwarf_die_debug);
15683 }
15684
15685 return result;
15686 }
15687 \f
15688 /* Abbreviation tables.
15689
15690 In DWARF version 2, the description of the debugging information is
15691 stored in a separate .debug_abbrev section. Before we read any
15692 dies from a section we read in all abbreviations and install them
15693 in a hash table. */
15694
15695 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15696
15697 static struct abbrev_info *
15698 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15699 {
15700 struct abbrev_info *abbrev;
15701
15702 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15703 memset (abbrev, 0, sizeof (struct abbrev_info));
15704
15705 return abbrev;
15706 }
15707
15708 /* Add an abbreviation to the table. */
15709
15710 static void
15711 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15712 unsigned int abbrev_number,
15713 struct abbrev_info *abbrev)
15714 {
15715 unsigned int hash_number;
15716
15717 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15718 abbrev->next = abbrev_table->abbrevs[hash_number];
15719 abbrev_table->abbrevs[hash_number] = abbrev;
15720 }
15721
15722 /* Look up an abbrev in the table.
15723 Returns NULL if the abbrev is not found. */
15724
15725 static struct abbrev_info *
15726 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15727 unsigned int abbrev_number)
15728 {
15729 unsigned int hash_number;
15730 struct abbrev_info *abbrev;
15731
15732 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15733 abbrev = abbrev_table->abbrevs[hash_number];
15734
15735 while (abbrev)
15736 {
15737 if (abbrev->number == abbrev_number)
15738 return abbrev;
15739 abbrev = abbrev->next;
15740 }
15741 return NULL;
15742 }
15743
15744 /* Read in an abbrev table. */
15745
15746 static struct abbrev_table *
15747 abbrev_table_read_table (struct dwarf2_section_info *section,
15748 sect_offset sect_off)
15749 {
15750 struct objfile *objfile = dwarf2_per_objfile->objfile;
15751 bfd *abfd = get_section_bfd_owner (section);
15752 struct abbrev_table *abbrev_table;
15753 const gdb_byte *abbrev_ptr;
15754 struct abbrev_info *cur_abbrev;
15755 unsigned int abbrev_number, bytes_read, abbrev_name;
15756 unsigned int abbrev_form;
15757 struct attr_abbrev *cur_attrs;
15758 unsigned int allocated_attrs;
15759
15760 abbrev_table = XNEW (struct abbrev_table);
15761 abbrev_table->sect_off = sect_off;
15762 obstack_init (&abbrev_table->abbrev_obstack);
15763 abbrev_table->abbrevs =
15764 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15765 ABBREV_HASH_SIZE);
15766 memset (abbrev_table->abbrevs, 0,
15767 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15768
15769 dwarf2_read_section (objfile, section);
15770 abbrev_ptr = section->buffer + to_underlying (sect_off);
15771 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15772 abbrev_ptr += bytes_read;
15773
15774 allocated_attrs = ATTR_ALLOC_CHUNK;
15775 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15776
15777 /* Loop until we reach an abbrev number of 0. */
15778 while (abbrev_number)
15779 {
15780 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15781
15782 /* read in abbrev header */
15783 cur_abbrev->number = abbrev_number;
15784 cur_abbrev->tag
15785 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15786 abbrev_ptr += bytes_read;
15787 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15788 abbrev_ptr += 1;
15789
15790 /* now read in declarations */
15791 for (;;)
15792 {
15793 LONGEST implicit_const;
15794
15795 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15796 abbrev_ptr += bytes_read;
15797 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15798 abbrev_ptr += bytes_read;
15799 if (abbrev_form == DW_FORM_implicit_const)
15800 {
15801 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15802 &bytes_read);
15803 abbrev_ptr += bytes_read;
15804 }
15805 else
15806 {
15807 /* Initialize it due to a false compiler warning. */
15808 implicit_const = -1;
15809 }
15810
15811 if (abbrev_name == 0)
15812 break;
15813
15814 if (cur_abbrev->num_attrs == allocated_attrs)
15815 {
15816 allocated_attrs += ATTR_ALLOC_CHUNK;
15817 cur_attrs
15818 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15819 }
15820
15821 cur_attrs[cur_abbrev->num_attrs].name
15822 = (enum dwarf_attribute) abbrev_name;
15823 cur_attrs[cur_abbrev->num_attrs].form
15824 = (enum dwarf_form) abbrev_form;
15825 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
15826 ++cur_abbrev->num_attrs;
15827 }
15828
15829 cur_abbrev->attrs =
15830 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15831 cur_abbrev->num_attrs);
15832 memcpy (cur_abbrev->attrs, cur_attrs,
15833 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15834
15835 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15836
15837 /* Get next abbreviation.
15838 Under Irix6 the abbreviations for a compilation unit are not
15839 always properly terminated with an abbrev number of 0.
15840 Exit loop if we encounter an abbreviation which we have
15841 already read (which means we are about to read the abbreviations
15842 for the next compile unit) or if the end of the abbreviation
15843 table is reached. */
15844 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15845 break;
15846 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15847 abbrev_ptr += bytes_read;
15848 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15849 break;
15850 }
15851
15852 xfree (cur_attrs);
15853 return abbrev_table;
15854 }
15855
15856 /* Free the resources held by ABBREV_TABLE. */
15857
15858 static void
15859 abbrev_table_free (struct abbrev_table *abbrev_table)
15860 {
15861 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15862 xfree (abbrev_table);
15863 }
15864
15865 /* Same as abbrev_table_free but as a cleanup.
15866 We pass in a pointer to the pointer to the table so that we can
15867 set the pointer to NULL when we're done. It also simplifies
15868 build_type_psymtabs_1. */
15869
15870 static void
15871 abbrev_table_free_cleanup (void *table_ptr)
15872 {
15873 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15874
15875 if (*abbrev_table_ptr != NULL)
15876 abbrev_table_free (*abbrev_table_ptr);
15877 *abbrev_table_ptr = NULL;
15878 }
15879
15880 /* Read the abbrev table for CU from ABBREV_SECTION. */
15881
15882 static void
15883 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15884 struct dwarf2_section_info *abbrev_section)
15885 {
15886 cu->abbrev_table =
15887 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
15888 }
15889
15890 /* Release the memory used by the abbrev table for a compilation unit. */
15891
15892 static void
15893 dwarf2_free_abbrev_table (void *ptr_to_cu)
15894 {
15895 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15896
15897 if (cu->abbrev_table != NULL)
15898 abbrev_table_free (cu->abbrev_table);
15899 /* Set this to NULL so that we SEGV if we try to read it later,
15900 and also because free_comp_unit verifies this is NULL. */
15901 cu->abbrev_table = NULL;
15902 }
15903 \f
15904 /* Returns nonzero if TAG represents a type that we might generate a partial
15905 symbol for. */
15906
15907 static int
15908 is_type_tag_for_partial (int tag)
15909 {
15910 switch (tag)
15911 {
15912 #if 0
15913 /* Some types that would be reasonable to generate partial symbols for,
15914 that we don't at present. */
15915 case DW_TAG_array_type:
15916 case DW_TAG_file_type:
15917 case DW_TAG_ptr_to_member_type:
15918 case DW_TAG_set_type:
15919 case DW_TAG_string_type:
15920 case DW_TAG_subroutine_type:
15921 #endif
15922 case DW_TAG_base_type:
15923 case DW_TAG_class_type:
15924 case DW_TAG_interface_type:
15925 case DW_TAG_enumeration_type:
15926 case DW_TAG_structure_type:
15927 case DW_TAG_subrange_type:
15928 case DW_TAG_typedef:
15929 case DW_TAG_union_type:
15930 return 1;
15931 default:
15932 return 0;
15933 }
15934 }
15935
15936 /* Load all DIEs that are interesting for partial symbols into memory. */
15937
15938 static struct partial_die_info *
15939 load_partial_dies (const struct die_reader_specs *reader,
15940 const gdb_byte *info_ptr, int building_psymtab)
15941 {
15942 struct dwarf2_cu *cu = reader->cu;
15943 struct objfile *objfile = cu->objfile;
15944 struct partial_die_info *part_die;
15945 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15946 struct abbrev_info *abbrev;
15947 unsigned int bytes_read;
15948 unsigned int load_all = 0;
15949 int nesting_level = 1;
15950
15951 parent_die = NULL;
15952 last_die = NULL;
15953
15954 gdb_assert (cu->per_cu != NULL);
15955 if (cu->per_cu->load_all_dies)
15956 load_all = 1;
15957
15958 cu->partial_dies
15959 = htab_create_alloc_ex (cu->header.length / 12,
15960 partial_die_hash,
15961 partial_die_eq,
15962 NULL,
15963 &cu->comp_unit_obstack,
15964 hashtab_obstack_allocate,
15965 dummy_obstack_deallocate);
15966
15967 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15968
15969 while (1)
15970 {
15971 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15972
15973 /* A NULL abbrev means the end of a series of children. */
15974 if (abbrev == NULL)
15975 {
15976 if (--nesting_level == 0)
15977 {
15978 /* PART_DIE was probably the last thing allocated on the
15979 comp_unit_obstack, so we could call obstack_free
15980 here. We don't do that because the waste is small,
15981 and will be cleaned up when we're done with this
15982 compilation unit. This way, we're also more robust
15983 against other users of the comp_unit_obstack. */
15984 return first_die;
15985 }
15986 info_ptr += bytes_read;
15987 last_die = parent_die;
15988 parent_die = parent_die->die_parent;
15989 continue;
15990 }
15991
15992 /* Check for template arguments. We never save these; if
15993 they're seen, we just mark the parent, and go on our way. */
15994 if (parent_die != NULL
15995 && cu->language == language_cplus
15996 && (abbrev->tag == DW_TAG_template_type_param
15997 || abbrev->tag == DW_TAG_template_value_param))
15998 {
15999 parent_die->has_template_arguments = 1;
16000
16001 if (!load_all)
16002 {
16003 /* We don't need a partial DIE for the template argument. */
16004 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16005 continue;
16006 }
16007 }
16008
16009 /* We only recurse into c++ subprograms looking for template arguments.
16010 Skip their other children. */
16011 if (!load_all
16012 && cu->language == language_cplus
16013 && parent_die != NULL
16014 && parent_die->tag == DW_TAG_subprogram)
16015 {
16016 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16017 continue;
16018 }
16019
16020 /* Check whether this DIE is interesting enough to save. Normally
16021 we would not be interested in members here, but there may be
16022 later variables referencing them via DW_AT_specification (for
16023 static members). */
16024 if (!load_all
16025 && !is_type_tag_for_partial (abbrev->tag)
16026 && abbrev->tag != DW_TAG_constant
16027 && abbrev->tag != DW_TAG_enumerator
16028 && abbrev->tag != DW_TAG_subprogram
16029 && abbrev->tag != DW_TAG_lexical_block
16030 && abbrev->tag != DW_TAG_variable
16031 && abbrev->tag != DW_TAG_namespace
16032 && abbrev->tag != DW_TAG_module
16033 && abbrev->tag != DW_TAG_member
16034 && abbrev->tag != DW_TAG_imported_unit
16035 && abbrev->tag != DW_TAG_imported_declaration)
16036 {
16037 /* Otherwise we skip to the next sibling, if any. */
16038 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16039 continue;
16040 }
16041
16042 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16043 info_ptr);
16044
16045 /* This two-pass algorithm for processing partial symbols has a
16046 high cost in cache pressure. Thus, handle some simple cases
16047 here which cover the majority of C partial symbols. DIEs
16048 which neither have specification tags in them, nor could have
16049 specification tags elsewhere pointing at them, can simply be
16050 processed and discarded.
16051
16052 This segment is also optional; scan_partial_symbols and
16053 add_partial_symbol will handle these DIEs if we chain
16054 them in normally. When compilers which do not emit large
16055 quantities of duplicate debug information are more common,
16056 this code can probably be removed. */
16057
16058 /* Any complete simple types at the top level (pretty much all
16059 of them, for a language without namespaces), can be processed
16060 directly. */
16061 if (parent_die == NULL
16062 && part_die->has_specification == 0
16063 && part_die->is_declaration == 0
16064 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
16065 || part_die->tag == DW_TAG_base_type
16066 || part_die->tag == DW_TAG_subrange_type))
16067 {
16068 if (building_psymtab && part_die->name != NULL)
16069 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16070 VAR_DOMAIN, LOC_TYPEDEF,
16071 &objfile->static_psymbols,
16072 0, cu->language, objfile);
16073 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16074 continue;
16075 }
16076
16077 /* The exception for DW_TAG_typedef with has_children above is
16078 a workaround of GCC PR debug/47510. In the case of this complaint
16079 type_name_no_tag_or_error will error on such types later.
16080
16081 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16082 it could not find the child DIEs referenced later, this is checked
16083 above. In correct DWARF DW_TAG_typedef should have no children. */
16084
16085 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16086 complaint (&symfile_complaints,
16087 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16088 "- DIE at 0x%x [in module %s]"),
16089 to_underlying (part_die->sect_off), objfile_name (objfile));
16090
16091 /* If we're at the second level, and we're an enumerator, and
16092 our parent has no specification (meaning possibly lives in a
16093 namespace elsewhere), then we can add the partial symbol now
16094 instead of queueing it. */
16095 if (part_die->tag == DW_TAG_enumerator
16096 && parent_die != NULL
16097 && parent_die->die_parent == NULL
16098 && parent_die->tag == DW_TAG_enumeration_type
16099 && parent_die->has_specification == 0)
16100 {
16101 if (part_die->name == NULL)
16102 complaint (&symfile_complaints,
16103 _("malformed enumerator DIE ignored"));
16104 else if (building_psymtab)
16105 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
16106 VAR_DOMAIN, LOC_CONST,
16107 cu->language == language_cplus
16108 ? &objfile->global_psymbols
16109 : &objfile->static_psymbols,
16110 0, cu->language, objfile);
16111
16112 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
16113 continue;
16114 }
16115
16116 /* We'll save this DIE so link it in. */
16117 part_die->die_parent = parent_die;
16118 part_die->die_sibling = NULL;
16119 part_die->die_child = NULL;
16120
16121 if (last_die && last_die == parent_die)
16122 last_die->die_child = part_die;
16123 else if (last_die)
16124 last_die->die_sibling = part_die;
16125
16126 last_die = part_die;
16127
16128 if (first_die == NULL)
16129 first_die = part_die;
16130
16131 /* Maybe add the DIE to the hash table. Not all DIEs that we
16132 find interesting need to be in the hash table, because we
16133 also have the parent/sibling/child chains; only those that we
16134 might refer to by offset later during partial symbol reading.
16135
16136 For now this means things that might have be the target of a
16137 DW_AT_specification, DW_AT_abstract_origin, or
16138 DW_AT_extension. DW_AT_extension will refer only to
16139 namespaces; DW_AT_abstract_origin refers to functions (and
16140 many things under the function DIE, but we do not recurse
16141 into function DIEs during partial symbol reading) and
16142 possibly variables as well; DW_AT_specification refers to
16143 declarations. Declarations ought to have the DW_AT_declaration
16144 flag. It happens that GCC forgets to put it in sometimes, but
16145 only for functions, not for types.
16146
16147 Adding more things than necessary to the hash table is harmless
16148 except for the performance cost. Adding too few will result in
16149 wasted time in find_partial_die, when we reread the compilation
16150 unit with load_all_dies set. */
16151
16152 if (load_all
16153 || abbrev->tag == DW_TAG_constant
16154 || abbrev->tag == DW_TAG_subprogram
16155 || abbrev->tag == DW_TAG_variable
16156 || abbrev->tag == DW_TAG_namespace
16157 || part_die->is_declaration)
16158 {
16159 void **slot;
16160
16161 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
16162 to_underlying (part_die->sect_off),
16163 INSERT);
16164 *slot = part_die;
16165 }
16166
16167 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16168
16169 /* For some DIEs we want to follow their children (if any). For C
16170 we have no reason to follow the children of structures; for other
16171 languages we have to, so that we can get at method physnames
16172 to infer fully qualified class names, for DW_AT_specification,
16173 and for C++ template arguments. For C++, we also look one level
16174 inside functions to find template arguments (if the name of the
16175 function does not already contain the template arguments).
16176
16177 For Ada, we need to scan the children of subprograms and lexical
16178 blocks as well because Ada allows the definition of nested
16179 entities that could be interesting for the debugger, such as
16180 nested subprograms for instance. */
16181 if (last_die->has_children
16182 && (load_all
16183 || last_die->tag == DW_TAG_namespace
16184 || last_die->tag == DW_TAG_module
16185 || last_die->tag == DW_TAG_enumeration_type
16186 || (cu->language == language_cplus
16187 && last_die->tag == DW_TAG_subprogram
16188 && (last_die->name == NULL
16189 || strchr (last_die->name, '<') == NULL))
16190 || (cu->language != language_c
16191 && (last_die->tag == DW_TAG_class_type
16192 || last_die->tag == DW_TAG_interface_type
16193 || last_die->tag == DW_TAG_structure_type
16194 || last_die->tag == DW_TAG_union_type))
16195 || (cu->language == language_ada
16196 && (last_die->tag == DW_TAG_subprogram
16197 || last_die->tag == DW_TAG_lexical_block))))
16198 {
16199 nesting_level++;
16200 parent_die = last_die;
16201 continue;
16202 }
16203
16204 /* Otherwise we skip to the next sibling, if any. */
16205 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
16206
16207 /* Back to the top, do it again. */
16208 }
16209 }
16210
16211 /* Read a minimal amount of information into the minimal die structure. */
16212
16213 static const gdb_byte *
16214 read_partial_die (const struct die_reader_specs *reader,
16215 struct partial_die_info *part_die,
16216 struct abbrev_info *abbrev, unsigned int abbrev_len,
16217 const gdb_byte *info_ptr)
16218 {
16219 struct dwarf2_cu *cu = reader->cu;
16220 struct objfile *objfile = cu->objfile;
16221 const gdb_byte *buffer = reader->buffer;
16222 unsigned int i;
16223 struct attribute attr;
16224 int has_low_pc_attr = 0;
16225 int has_high_pc_attr = 0;
16226 int high_pc_relative = 0;
16227
16228 memset (part_die, 0, sizeof (struct partial_die_info));
16229
16230 part_die->sect_off = (sect_offset) (info_ptr - buffer);
16231
16232 info_ptr += abbrev_len;
16233
16234 if (abbrev == NULL)
16235 return info_ptr;
16236
16237 part_die->tag = abbrev->tag;
16238 part_die->has_children = abbrev->has_children;
16239
16240 for (i = 0; i < abbrev->num_attrs; ++i)
16241 {
16242 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
16243
16244 /* Store the data if it is of an attribute we want to keep in a
16245 partial symbol table. */
16246 switch (attr.name)
16247 {
16248 case DW_AT_name:
16249 switch (part_die->tag)
16250 {
16251 case DW_TAG_compile_unit:
16252 case DW_TAG_partial_unit:
16253 case DW_TAG_type_unit:
16254 /* Compilation units have a DW_AT_name that is a filename, not
16255 a source language identifier. */
16256 case DW_TAG_enumeration_type:
16257 case DW_TAG_enumerator:
16258 /* These tags always have simple identifiers already; no need
16259 to canonicalize them. */
16260 part_die->name = DW_STRING (&attr);
16261 break;
16262 default:
16263 part_die->name
16264 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
16265 &objfile->per_bfd->storage_obstack);
16266 break;
16267 }
16268 break;
16269 case DW_AT_linkage_name:
16270 case DW_AT_MIPS_linkage_name:
16271 /* Note that both forms of linkage name might appear. We
16272 assume they will be the same, and we only store the last
16273 one we see. */
16274 if (cu->language == language_ada)
16275 part_die->name = DW_STRING (&attr);
16276 part_die->linkage_name = DW_STRING (&attr);
16277 break;
16278 case DW_AT_low_pc:
16279 has_low_pc_attr = 1;
16280 part_die->lowpc = attr_value_as_address (&attr);
16281 break;
16282 case DW_AT_high_pc:
16283 has_high_pc_attr = 1;
16284 part_die->highpc = attr_value_as_address (&attr);
16285 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16286 high_pc_relative = 1;
16287 break;
16288 case DW_AT_location:
16289 /* Support the .debug_loc offsets. */
16290 if (attr_form_is_block (&attr))
16291 {
16292 part_die->d.locdesc = DW_BLOCK (&attr);
16293 }
16294 else if (attr_form_is_section_offset (&attr))
16295 {
16296 dwarf2_complex_location_expr_complaint ();
16297 }
16298 else
16299 {
16300 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16301 "partial symbol information");
16302 }
16303 break;
16304 case DW_AT_external:
16305 part_die->is_external = DW_UNSND (&attr);
16306 break;
16307 case DW_AT_declaration:
16308 part_die->is_declaration = DW_UNSND (&attr);
16309 break;
16310 case DW_AT_type:
16311 part_die->has_type = 1;
16312 break;
16313 case DW_AT_abstract_origin:
16314 case DW_AT_specification:
16315 case DW_AT_extension:
16316 part_die->has_specification = 1;
16317 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
16318 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16319 || cu->per_cu->is_dwz);
16320 break;
16321 case DW_AT_sibling:
16322 /* Ignore absolute siblings, they might point outside of
16323 the current compile unit. */
16324 if (attr.form == DW_FORM_ref_addr)
16325 complaint (&symfile_complaints,
16326 _("ignoring absolute DW_AT_sibling"));
16327 else
16328 {
16329 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16330 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
16331
16332 if (sibling_ptr < info_ptr)
16333 complaint (&symfile_complaints,
16334 _("DW_AT_sibling points backwards"));
16335 else if (sibling_ptr > reader->buffer_end)
16336 dwarf2_section_buffer_overflow_complaint (reader->die_section);
16337 else
16338 part_die->sibling = sibling_ptr;
16339 }
16340 break;
16341 case DW_AT_byte_size:
16342 part_die->has_byte_size = 1;
16343 break;
16344 case DW_AT_const_value:
16345 part_die->has_const_value = 1;
16346 break;
16347 case DW_AT_calling_convention:
16348 /* DWARF doesn't provide a way to identify a program's source-level
16349 entry point. DW_AT_calling_convention attributes are only meant
16350 to describe functions' calling conventions.
16351
16352 However, because it's a necessary piece of information in
16353 Fortran, and before DWARF 4 DW_CC_program was the only
16354 piece of debugging information whose definition refers to
16355 a 'main program' at all, several compilers marked Fortran
16356 main programs with DW_CC_program --- even when those
16357 functions use the standard calling conventions.
16358
16359 Although DWARF now specifies a way to provide this
16360 information, we support this practice for backward
16361 compatibility. */
16362 if (DW_UNSND (&attr) == DW_CC_program
16363 && cu->language == language_fortran)
16364 part_die->main_subprogram = 1;
16365 break;
16366 case DW_AT_inline:
16367 if (DW_UNSND (&attr) == DW_INL_inlined
16368 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16369 part_die->may_be_inlined = 1;
16370 break;
16371
16372 case DW_AT_import:
16373 if (part_die->tag == DW_TAG_imported_unit)
16374 {
16375 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
16376 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16377 || cu->per_cu->is_dwz);
16378 }
16379 break;
16380
16381 case DW_AT_main_subprogram:
16382 part_die->main_subprogram = DW_UNSND (&attr);
16383 break;
16384
16385 default:
16386 break;
16387 }
16388 }
16389
16390 if (high_pc_relative)
16391 part_die->highpc += part_die->lowpc;
16392
16393 if (has_low_pc_attr && has_high_pc_attr)
16394 {
16395 /* When using the GNU linker, .gnu.linkonce. sections are used to
16396 eliminate duplicate copies of functions and vtables and such.
16397 The linker will arbitrarily choose one and discard the others.
16398 The AT_*_pc values for such functions refer to local labels in
16399 these sections. If the section from that file was discarded, the
16400 labels are not in the output, so the relocs get a value of 0.
16401 If this is a discarded function, mark the pc bounds as invalid,
16402 so that GDB will ignore it. */
16403 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16404 {
16405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16406
16407 complaint (&symfile_complaints,
16408 _("DW_AT_low_pc %s is zero "
16409 "for DIE at 0x%x [in module %s]"),
16410 paddress (gdbarch, part_die->lowpc),
16411 to_underlying (part_die->sect_off), objfile_name (objfile));
16412 }
16413 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16414 else if (part_die->lowpc >= part_die->highpc)
16415 {
16416 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16417
16418 complaint (&symfile_complaints,
16419 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16420 "for DIE at 0x%x [in module %s]"),
16421 paddress (gdbarch, part_die->lowpc),
16422 paddress (gdbarch, part_die->highpc),
16423 to_underlying (part_die->sect_off),
16424 objfile_name (objfile));
16425 }
16426 else
16427 part_die->has_pc_info = 1;
16428 }
16429
16430 return info_ptr;
16431 }
16432
16433 /* Find a cached partial DIE at OFFSET in CU. */
16434
16435 static struct partial_die_info *
16436 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
16437 {
16438 struct partial_die_info *lookup_die = NULL;
16439 struct partial_die_info part_die;
16440
16441 part_die.sect_off = sect_off;
16442 lookup_die = ((struct partial_die_info *)
16443 htab_find_with_hash (cu->partial_dies, &part_die,
16444 to_underlying (sect_off)));
16445
16446 return lookup_die;
16447 }
16448
16449 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16450 except in the case of .debug_types DIEs which do not reference
16451 outside their CU (they do however referencing other types via
16452 DW_FORM_ref_sig8). */
16453
16454 static struct partial_die_info *
16455 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
16456 {
16457 struct objfile *objfile = cu->objfile;
16458 struct dwarf2_per_cu_data *per_cu = NULL;
16459 struct partial_die_info *pd = NULL;
16460
16461 if (offset_in_dwz == cu->per_cu->is_dwz
16462 && offset_in_cu_p (&cu->header, sect_off))
16463 {
16464 pd = find_partial_die_in_comp_unit (sect_off, cu);
16465 if (pd != NULL)
16466 return pd;
16467 /* We missed recording what we needed.
16468 Load all dies and try again. */
16469 per_cu = cu->per_cu;
16470 }
16471 else
16472 {
16473 /* TUs don't reference other CUs/TUs (except via type signatures). */
16474 if (cu->per_cu->is_debug_types)
16475 {
16476 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16477 " external reference to offset 0x%x [in module %s].\n"),
16478 to_underlying (cu->header.sect_off), to_underlying (sect_off),
16479 bfd_get_filename (objfile->obfd));
16480 }
16481 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
16482 objfile);
16483
16484 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16485 load_partial_comp_unit (per_cu);
16486
16487 per_cu->cu->last_used = 0;
16488 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16489 }
16490
16491 /* If we didn't find it, and not all dies have been loaded,
16492 load them all and try again. */
16493
16494 if (pd == NULL && per_cu->load_all_dies == 0)
16495 {
16496 per_cu->load_all_dies = 1;
16497
16498 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16499 THIS_CU->cu may already be in use. So we can't just free it and
16500 replace its DIEs with the ones we read in. Instead, we leave those
16501 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16502 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16503 set. */
16504 load_partial_comp_unit (per_cu);
16505
16506 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
16507 }
16508
16509 if (pd == NULL)
16510 internal_error (__FILE__, __LINE__,
16511 _("could not find partial DIE 0x%x "
16512 "in cache [from module %s]\n"),
16513 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
16514 return pd;
16515 }
16516
16517 /* See if we can figure out if the class lives in a namespace. We do
16518 this by looking for a member function; its demangled name will
16519 contain namespace info, if there is any. */
16520
16521 static void
16522 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16523 struct dwarf2_cu *cu)
16524 {
16525 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16526 what template types look like, because the demangler
16527 frequently doesn't give the same name as the debug info. We
16528 could fix this by only using the demangled name to get the
16529 prefix (but see comment in read_structure_type). */
16530
16531 struct partial_die_info *real_pdi;
16532 struct partial_die_info *child_pdi;
16533
16534 /* If this DIE (this DIE's specification, if any) has a parent, then
16535 we should not do this. We'll prepend the parent's fully qualified
16536 name when we create the partial symbol. */
16537
16538 real_pdi = struct_pdi;
16539 while (real_pdi->has_specification)
16540 real_pdi = find_partial_die (real_pdi->spec_offset,
16541 real_pdi->spec_is_dwz, cu);
16542
16543 if (real_pdi->die_parent != NULL)
16544 return;
16545
16546 for (child_pdi = struct_pdi->die_child;
16547 child_pdi != NULL;
16548 child_pdi = child_pdi->die_sibling)
16549 {
16550 if (child_pdi->tag == DW_TAG_subprogram
16551 && child_pdi->linkage_name != NULL)
16552 {
16553 char *actual_class_name
16554 = language_class_name_from_physname (cu->language_defn,
16555 child_pdi->linkage_name);
16556 if (actual_class_name != NULL)
16557 {
16558 struct_pdi->name
16559 = ((const char *)
16560 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16561 actual_class_name,
16562 strlen (actual_class_name)));
16563 xfree (actual_class_name);
16564 }
16565 break;
16566 }
16567 }
16568 }
16569
16570 /* Adjust PART_DIE before generating a symbol for it. This function
16571 may set the is_external flag or change the DIE's name. */
16572
16573 static void
16574 fixup_partial_die (struct partial_die_info *part_die,
16575 struct dwarf2_cu *cu)
16576 {
16577 /* Once we've fixed up a die, there's no point in doing so again.
16578 This also avoids a memory leak if we were to call
16579 guess_partial_die_structure_name multiple times. */
16580 if (part_die->fixup_called)
16581 return;
16582
16583 /* If we found a reference attribute and the DIE has no name, try
16584 to find a name in the referred to DIE. */
16585
16586 if (part_die->name == NULL && part_die->has_specification)
16587 {
16588 struct partial_die_info *spec_die;
16589
16590 spec_die = find_partial_die (part_die->spec_offset,
16591 part_die->spec_is_dwz, cu);
16592
16593 fixup_partial_die (spec_die, cu);
16594
16595 if (spec_die->name)
16596 {
16597 part_die->name = spec_die->name;
16598
16599 /* Copy DW_AT_external attribute if it is set. */
16600 if (spec_die->is_external)
16601 part_die->is_external = spec_die->is_external;
16602 }
16603 }
16604
16605 /* Set default names for some unnamed DIEs. */
16606
16607 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16608 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16609
16610 /* If there is no parent die to provide a namespace, and there are
16611 children, see if we can determine the namespace from their linkage
16612 name. */
16613 if (cu->language == language_cplus
16614 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16615 && part_die->die_parent == NULL
16616 && part_die->has_children
16617 && (part_die->tag == DW_TAG_class_type
16618 || part_die->tag == DW_TAG_structure_type
16619 || part_die->tag == DW_TAG_union_type))
16620 guess_partial_die_structure_name (part_die, cu);
16621
16622 /* GCC might emit a nameless struct or union that has a linkage
16623 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16624 if (part_die->name == NULL
16625 && (part_die->tag == DW_TAG_class_type
16626 || part_die->tag == DW_TAG_interface_type
16627 || part_die->tag == DW_TAG_structure_type
16628 || part_die->tag == DW_TAG_union_type)
16629 && part_die->linkage_name != NULL)
16630 {
16631 char *demangled;
16632
16633 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16634 if (demangled)
16635 {
16636 const char *base;
16637
16638 /* Strip any leading namespaces/classes, keep only the base name.
16639 DW_AT_name for named DIEs does not contain the prefixes. */
16640 base = strrchr (demangled, ':');
16641 if (base && base > demangled && base[-1] == ':')
16642 base++;
16643 else
16644 base = demangled;
16645
16646 part_die->name
16647 = ((const char *)
16648 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16649 base, strlen (base)));
16650 xfree (demangled);
16651 }
16652 }
16653
16654 part_die->fixup_called = 1;
16655 }
16656
16657 /* Read an attribute value described by an attribute form. */
16658
16659 static const gdb_byte *
16660 read_attribute_value (const struct die_reader_specs *reader,
16661 struct attribute *attr, unsigned form,
16662 LONGEST implicit_const, const gdb_byte *info_ptr)
16663 {
16664 struct dwarf2_cu *cu = reader->cu;
16665 struct objfile *objfile = cu->objfile;
16666 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16667 bfd *abfd = reader->abfd;
16668 struct comp_unit_head *cu_header = &cu->header;
16669 unsigned int bytes_read;
16670 struct dwarf_block *blk;
16671
16672 attr->form = (enum dwarf_form) form;
16673 switch (form)
16674 {
16675 case DW_FORM_ref_addr:
16676 if (cu->header.version == 2)
16677 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16678 else
16679 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16680 &cu->header, &bytes_read);
16681 info_ptr += bytes_read;
16682 break;
16683 case DW_FORM_GNU_ref_alt:
16684 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16685 info_ptr += bytes_read;
16686 break;
16687 case DW_FORM_addr:
16688 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16689 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16690 info_ptr += bytes_read;
16691 break;
16692 case DW_FORM_block2:
16693 blk = dwarf_alloc_block (cu);
16694 blk->size = read_2_bytes (abfd, info_ptr);
16695 info_ptr += 2;
16696 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16697 info_ptr += blk->size;
16698 DW_BLOCK (attr) = blk;
16699 break;
16700 case DW_FORM_block4:
16701 blk = dwarf_alloc_block (cu);
16702 blk->size = read_4_bytes (abfd, info_ptr);
16703 info_ptr += 4;
16704 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16705 info_ptr += blk->size;
16706 DW_BLOCK (attr) = blk;
16707 break;
16708 case DW_FORM_data2:
16709 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16710 info_ptr += 2;
16711 break;
16712 case DW_FORM_data4:
16713 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16714 info_ptr += 4;
16715 break;
16716 case DW_FORM_data8:
16717 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16718 info_ptr += 8;
16719 break;
16720 case DW_FORM_data16:
16721 blk = dwarf_alloc_block (cu);
16722 blk->size = 16;
16723 blk->data = read_n_bytes (abfd, info_ptr, 16);
16724 info_ptr += 16;
16725 DW_BLOCK (attr) = blk;
16726 break;
16727 case DW_FORM_sec_offset:
16728 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16729 info_ptr += bytes_read;
16730 break;
16731 case DW_FORM_string:
16732 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16733 DW_STRING_IS_CANONICAL (attr) = 0;
16734 info_ptr += bytes_read;
16735 break;
16736 case DW_FORM_strp:
16737 if (!cu->per_cu->is_dwz)
16738 {
16739 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16740 &bytes_read);
16741 DW_STRING_IS_CANONICAL (attr) = 0;
16742 info_ptr += bytes_read;
16743 break;
16744 }
16745 /* FALLTHROUGH */
16746 case DW_FORM_line_strp:
16747 if (!cu->per_cu->is_dwz)
16748 {
16749 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16750 cu_header, &bytes_read);
16751 DW_STRING_IS_CANONICAL (attr) = 0;
16752 info_ptr += bytes_read;
16753 break;
16754 }
16755 /* FALLTHROUGH */
16756 case DW_FORM_GNU_strp_alt:
16757 {
16758 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16759 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16760 &bytes_read);
16761
16762 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16763 DW_STRING_IS_CANONICAL (attr) = 0;
16764 info_ptr += bytes_read;
16765 }
16766 break;
16767 case DW_FORM_exprloc:
16768 case DW_FORM_block:
16769 blk = dwarf_alloc_block (cu);
16770 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16771 info_ptr += bytes_read;
16772 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16773 info_ptr += blk->size;
16774 DW_BLOCK (attr) = blk;
16775 break;
16776 case DW_FORM_block1:
16777 blk = dwarf_alloc_block (cu);
16778 blk->size = read_1_byte (abfd, info_ptr);
16779 info_ptr += 1;
16780 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16781 info_ptr += blk->size;
16782 DW_BLOCK (attr) = blk;
16783 break;
16784 case DW_FORM_data1:
16785 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16786 info_ptr += 1;
16787 break;
16788 case DW_FORM_flag:
16789 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16790 info_ptr += 1;
16791 break;
16792 case DW_FORM_flag_present:
16793 DW_UNSND (attr) = 1;
16794 break;
16795 case DW_FORM_sdata:
16796 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16797 info_ptr += bytes_read;
16798 break;
16799 case DW_FORM_udata:
16800 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16801 info_ptr += bytes_read;
16802 break;
16803 case DW_FORM_ref1:
16804 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16805 + read_1_byte (abfd, info_ptr));
16806 info_ptr += 1;
16807 break;
16808 case DW_FORM_ref2:
16809 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16810 + read_2_bytes (abfd, info_ptr));
16811 info_ptr += 2;
16812 break;
16813 case DW_FORM_ref4:
16814 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16815 + read_4_bytes (abfd, info_ptr));
16816 info_ptr += 4;
16817 break;
16818 case DW_FORM_ref8:
16819 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16820 + read_8_bytes (abfd, info_ptr));
16821 info_ptr += 8;
16822 break;
16823 case DW_FORM_ref_sig8:
16824 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16825 info_ptr += 8;
16826 break;
16827 case DW_FORM_ref_udata:
16828 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
16829 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16830 info_ptr += bytes_read;
16831 break;
16832 case DW_FORM_indirect:
16833 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16834 info_ptr += bytes_read;
16835 if (form == DW_FORM_implicit_const)
16836 {
16837 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16838 info_ptr += bytes_read;
16839 }
16840 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16841 info_ptr);
16842 break;
16843 case DW_FORM_implicit_const:
16844 DW_SND (attr) = implicit_const;
16845 break;
16846 case DW_FORM_GNU_addr_index:
16847 if (reader->dwo_file == NULL)
16848 {
16849 /* For now flag a hard error.
16850 Later we can turn this into a complaint. */
16851 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16852 dwarf_form_name (form),
16853 bfd_get_filename (abfd));
16854 }
16855 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16856 info_ptr += bytes_read;
16857 break;
16858 case DW_FORM_GNU_str_index:
16859 if (reader->dwo_file == NULL)
16860 {
16861 /* For now flag a hard error.
16862 Later we can turn this into a complaint if warranted. */
16863 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16864 dwarf_form_name (form),
16865 bfd_get_filename (abfd));
16866 }
16867 {
16868 ULONGEST str_index =
16869 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16870
16871 DW_STRING (attr) = read_str_index (reader, str_index);
16872 DW_STRING_IS_CANONICAL (attr) = 0;
16873 info_ptr += bytes_read;
16874 }
16875 break;
16876 default:
16877 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16878 dwarf_form_name (form),
16879 bfd_get_filename (abfd));
16880 }
16881
16882 /* Super hack. */
16883 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16884 attr->form = DW_FORM_GNU_ref_alt;
16885
16886 /* We have seen instances where the compiler tried to emit a byte
16887 size attribute of -1 which ended up being encoded as an unsigned
16888 0xffffffff. Although 0xffffffff is technically a valid size value,
16889 an object of this size seems pretty unlikely so we can relatively
16890 safely treat these cases as if the size attribute was invalid and
16891 treat them as zero by default. */
16892 if (attr->name == DW_AT_byte_size
16893 && form == DW_FORM_data4
16894 && DW_UNSND (attr) >= 0xffffffff)
16895 {
16896 complaint
16897 (&symfile_complaints,
16898 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16899 hex_string (DW_UNSND (attr)));
16900 DW_UNSND (attr) = 0;
16901 }
16902
16903 return info_ptr;
16904 }
16905
16906 /* Read an attribute described by an abbreviated attribute. */
16907
16908 static const gdb_byte *
16909 read_attribute (const struct die_reader_specs *reader,
16910 struct attribute *attr, struct attr_abbrev *abbrev,
16911 const gdb_byte *info_ptr)
16912 {
16913 attr->name = abbrev->name;
16914 return read_attribute_value (reader, attr, abbrev->form,
16915 abbrev->implicit_const, info_ptr);
16916 }
16917
16918 /* Read dwarf information from a buffer. */
16919
16920 static unsigned int
16921 read_1_byte (bfd *abfd, const gdb_byte *buf)
16922 {
16923 return bfd_get_8 (abfd, buf);
16924 }
16925
16926 static int
16927 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16928 {
16929 return bfd_get_signed_8 (abfd, buf);
16930 }
16931
16932 static unsigned int
16933 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16934 {
16935 return bfd_get_16 (abfd, buf);
16936 }
16937
16938 static int
16939 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16940 {
16941 return bfd_get_signed_16 (abfd, buf);
16942 }
16943
16944 static unsigned int
16945 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16946 {
16947 return bfd_get_32 (abfd, buf);
16948 }
16949
16950 static int
16951 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16952 {
16953 return bfd_get_signed_32 (abfd, buf);
16954 }
16955
16956 static ULONGEST
16957 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16958 {
16959 return bfd_get_64 (abfd, buf);
16960 }
16961
16962 static CORE_ADDR
16963 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16964 unsigned int *bytes_read)
16965 {
16966 struct comp_unit_head *cu_header = &cu->header;
16967 CORE_ADDR retval = 0;
16968
16969 if (cu_header->signed_addr_p)
16970 {
16971 switch (cu_header->addr_size)
16972 {
16973 case 2:
16974 retval = bfd_get_signed_16 (abfd, buf);
16975 break;
16976 case 4:
16977 retval = bfd_get_signed_32 (abfd, buf);
16978 break;
16979 case 8:
16980 retval = bfd_get_signed_64 (abfd, buf);
16981 break;
16982 default:
16983 internal_error (__FILE__, __LINE__,
16984 _("read_address: bad switch, signed [in module %s]"),
16985 bfd_get_filename (abfd));
16986 }
16987 }
16988 else
16989 {
16990 switch (cu_header->addr_size)
16991 {
16992 case 2:
16993 retval = bfd_get_16 (abfd, buf);
16994 break;
16995 case 4:
16996 retval = bfd_get_32 (abfd, buf);
16997 break;
16998 case 8:
16999 retval = bfd_get_64 (abfd, buf);
17000 break;
17001 default:
17002 internal_error (__FILE__, __LINE__,
17003 _("read_address: bad switch, "
17004 "unsigned [in module %s]"),
17005 bfd_get_filename (abfd));
17006 }
17007 }
17008
17009 *bytes_read = cu_header->addr_size;
17010 return retval;
17011 }
17012
17013 /* Read the initial length from a section. The (draft) DWARF 3
17014 specification allows the initial length to take up either 4 bytes
17015 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17016 bytes describe the length and all offsets will be 8 bytes in length
17017 instead of 4.
17018
17019 An older, non-standard 64-bit format is also handled by this
17020 function. The older format in question stores the initial length
17021 as an 8-byte quantity without an escape value. Lengths greater
17022 than 2^32 aren't very common which means that the initial 4 bytes
17023 is almost always zero. Since a length value of zero doesn't make
17024 sense for the 32-bit format, this initial zero can be considered to
17025 be an escape value which indicates the presence of the older 64-bit
17026 format. As written, the code can't detect (old format) lengths
17027 greater than 4GB. If it becomes necessary to handle lengths
17028 somewhat larger than 4GB, we could allow other small values (such
17029 as the non-sensical values of 1, 2, and 3) to also be used as
17030 escape values indicating the presence of the old format.
17031
17032 The value returned via bytes_read should be used to increment the
17033 relevant pointer after calling read_initial_length().
17034
17035 [ Note: read_initial_length() and read_offset() are based on the
17036 document entitled "DWARF Debugging Information Format", revision
17037 3, draft 8, dated November 19, 2001. This document was obtained
17038 from:
17039
17040 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
17041
17042 This document is only a draft and is subject to change. (So beware.)
17043
17044 Details regarding the older, non-standard 64-bit format were
17045 determined empirically by examining 64-bit ELF files produced by
17046 the SGI toolchain on an IRIX 6.5 machine.
17047
17048 - Kevin, July 16, 2002
17049 ] */
17050
17051 static LONGEST
17052 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
17053 {
17054 LONGEST length = bfd_get_32 (abfd, buf);
17055
17056 if (length == 0xffffffff)
17057 {
17058 length = bfd_get_64 (abfd, buf + 4);
17059 *bytes_read = 12;
17060 }
17061 else if (length == 0)
17062 {
17063 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
17064 length = bfd_get_64 (abfd, buf);
17065 *bytes_read = 8;
17066 }
17067 else
17068 {
17069 *bytes_read = 4;
17070 }
17071
17072 return length;
17073 }
17074
17075 /* Cover function for read_initial_length.
17076 Returns the length of the object at BUF, and stores the size of the
17077 initial length in *BYTES_READ and stores the size that offsets will be in
17078 *OFFSET_SIZE.
17079 If the initial length size is not equivalent to that specified in
17080 CU_HEADER then issue a complaint.
17081 This is useful when reading non-comp-unit headers. */
17082
17083 static LONGEST
17084 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
17085 const struct comp_unit_head *cu_header,
17086 unsigned int *bytes_read,
17087 unsigned int *offset_size)
17088 {
17089 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17090
17091 gdb_assert (cu_header->initial_length_size == 4
17092 || cu_header->initial_length_size == 8
17093 || cu_header->initial_length_size == 12);
17094
17095 if (cu_header->initial_length_size != *bytes_read)
17096 complaint (&symfile_complaints,
17097 _("intermixed 32-bit and 64-bit DWARF sections"));
17098
17099 *offset_size = (*bytes_read == 4) ? 4 : 8;
17100 return length;
17101 }
17102
17103 /* Read an offset from the data stream. The size of the offset is
17104 given by cu_header->offset_size. */
17105
17106 static LONGEST
17107 read_offset (bfd *abfd, const gdb_byte *buf,
17108 const struct comp_unit_head *cu_header,
17109 unsigned int *bytes_read)
17110 {
17111 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
17112
17113 *bytes_read = cu_header->offset_size;
17114 return offset;
17115 }
17116
17117 /* Read an offset from the data stream. */
17118
17119 static LONGEST
17120 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
17121 {
17122 LONGEST retval = 0;
17123
17124 switch (offset_size)
17125 {
17126 case 4:
17127 retval = bfd_get_32 (abfd, buf);
17128 break;
17129 case 8:
17130 retval = bfd_get_64 (abfd, buf);
17131 break;
17132 default:
17133 internal_error (__FILE__, __LINE__,
17134 _("read_offset_1: bad switch [in module %s]"),
17135 bfd_get_filename (abfd));
17136 }
17137
17138 return retval;
17139 }
17140
17141 static const gdb_byte *
17142 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
17143 {
17144 /* If the size of a host char is 8 bits, we can return a pointer
17145 to the buffer, otherwise we have to copy the data to a buffer
17146 allocated on the temporary obstack. */
17147 gdb_assert (HOST_CHAR_BIT == 8);
17148 return buf;
17149 }
17150
17151 static const char *
17152 read_direct_string (bfd *abfd, const gdb_byte *buf,
17153 unsigned int *bytes_read_ptr)
17154 {
17155 /* If the size of a host char is 8 bits, we can return a pointer
17156 to the string, otherwise we have to copy the string to a buffer
17157 allocated on the temporary obstack. */
17158 gdb_assert (HOST_CHAR_BIT == 8);
17159 if (*buf == '\0')
17160 {
17161 *bytes_read_ptr = 1;
17162 return NULL;
17163 }
17164 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17165 return (const char *) buf;
17166 }
17167
17168 /* Return pointer to string at section SECT offset STR_OFFSET with error
17169 reporting strings FORM_NAME and SECT_NAME. */
17170
17171 static const char *
17172 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17173 struct dwarf2_section_info *sect,
17174 const char *form_name,
17175 const char *sect_name)
17176 {
17177 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17178 if (sect->buffer == NULL)
17179 error (_("%s used without %s section [in module %s]"),
17180 form_name, sect_name, bfd_get_filename (abfd));
17181 if (str_offset >= sect->size)
17182 error (_("%s pointing outside of %s section [in module %s]"),
17183 form_name, sect_name, bfd_get_filename (abfd));
17184 gdb_assert (HOST_CHAR_BIT == 8);
17185 if (sect->buffer[str_offset] == '\0')
17186 return NULL;
17187 return (const char *) (sect->buffer + str_offset);
17188 }
17189
17190 /* Return pointer to string at .debug_str offset STR_OFFSET. */
17191
17192 static const char *
17193 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17194 {
17195 return read_indirect_string_at_offset_from (abfd, str_offset,
17196 &dwarf2_per_objfile->str,
17197 "DW_FORM_strp", ".debug_str");
17198 }
17199
17200 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17201
17202 static const char *
17203 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17204 {
17205 return read_indirect_string_at_offset_from (abfd, str_offset,
17206 &dwarf2_per_objfile->line_str,
17207 "DW_FORM_line_strp",
17208 ".debug_line_str");
17209 }
17210
17211 /* Read a string at offset STR_OFFSET in the .debug_str section from
17212 the .dwz file DWZ. Throw an error if the offset is too large. If
17213 the string consists of a single NUL byte, return NULL; otherwise
17214 return a pointer to the string. */
17215
17216 static const char *
17217 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17218 {
17219 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17220
17221 if (dwz->str.buffer == NULL)
17222 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17223 "section [in module %s]"),
17224 bfd_get_filename (dwz->dwz_bfd));
17225 if (str_offset >= dwz->str.size)
17226 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17227 ".debug_str section [in module %s]"),
17228 bfd_get_filename (dwz->dwz_bfd));
17229 gdb_assert (HOST_CHAR_BIT == 8);
17230 if (dwz->str.buffer[str_offset] == '\0')
17231 return NULL;
17232 return (const char *) (dwz->str.buffer + str_offset);
17233 }
17234
17235 /* Return pointer to string at .debug_str offset as read from BUF.
17236 BUF is assumed to be in a compilation unit described by CU_HEADER.
17237 Return *BYTES_READ_PTR count of bytes read from BUF. */
17238
17239 static const char *
17240 read_indirect_string (bfd *abfd, const gdb_byte *buf,
17241 const struct comp_unit_head *cu_header,
17242 unsigned int *bytes_read_ptr)
17243 {
17244 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17245
17246 return read_indirect_string_at_offset (abfd, str_offset);
17247 }
17248
17249 /* Return pointer to string at .debug_line_str offset as read from BUF.
17250 BUF is assumed to be in a compilation unit described by CU_HEADER.
17251 Return *BYTES_READ_PTR count of bytes read from BUF. */
17252
17253 static const char *
17254 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17255 const struct comp_unit_head *cu_header,
17256 unsigned int *bytes_read_ptr)
17257 {
17258 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17259
17260 return read_indirect_line_string_at_offset (abfd, str_offset);
17261 }
17262
17263 ULONGEST
17264 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
17265 unsigned int *bytes_read_ptr)
17266 {
17267 ULONGEST result;
17268 unsigned int num_read;
17269 int shift;
17270 unsigned char byte;
17271
17272 result = 0;
17273 shift = 0;
17274 num_read = 0;
17275 while (1)
17276 {
17277 byte = bfd_get_8 (abfd, buf);
17278 buf++;
17279 num_read++;
17280 result |= ((ULONGEST) (byte & 127) << shift);
17281 if ((byte & 128) == 0)
17282 {
17283 break;
17284 }
17285 shift += 7;
17286 }
17287 *bytes_read_ptr = num_read;
17288 return result;
17289 }
17290
17291 static LONGEST
17292 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17293 unsigned int *bytes_read_ptr)
17294 {
17295 LONGEST result;
17296 int shift, num_read;
17297 unsigned char byte;
17298
17299 result = 0;
17300 shift = 0;
17301 num_read = 0;
17302 while (1)
17303 {
17304 byte = bfd_get_8 (abfd, buf);
17305 buf++;
17306 num_read++;
17307 result |= ((LONGEST) (byte & 127) << shift);
17308 shift += 7;
17309 if ((byte & 128) == 0)
17310 {
17311 break;
17312 }
17313 }
17314 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
17315 result |= -(((LONGEST) 1) << shift);
17316 *bytes_read_ptr = num_read;
17317 return result;
17318 }
17319
17320 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
17321 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17322 ADDR_SIZE is the size of addresses from the CU header. */
17323
17324 static CORE_ADDR
17325 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17326 {
17327 struct objfile *objfile = dwarf2_per_objfile->objfile;
17328 bfd *abfd = objfile->obfd;
17329 const gdb_byte *info_ptr;
17330
17331 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17332 if (dwarf2_per_objfile->addr.buffer == NULL)
17333 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
17334 objfile_name (objfile));
17335 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17336 error (_("DW_FORM_addr_index pointing outside of "
17337 ".debug_addr section [in module %s]"),
17338 objfile_name (objfile));
17339 info_ptr = (dwarf2_per_objfile->addr.buffer
17340 + addr_base + addr_index * addr_size);
17341 if (addr_size == 4)
17342 return bfd_get_32 (abfd, info_ptr);
17343 else
17344 return bfd_get_64 (abfd, info_ptr);
17345 }
17346
17347 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17348
17349 static CORE_ADDR
17350 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17351 {
17352 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17353 }
17354
17355 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17356
17357 static CORE_ADDR
17358 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
17359 unsigned int *bytes_read)
17360 {
17361 bfd *abfd = cu->objfile->obfd;
17362 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17363
17364 return read_addr_index (cu, addr_index);
17365 }
17366
17367 /* Data structure to pass results from dwarf2_read_addr_index_reader
17368 back to dwarf2_read_addr_index. */
17369
17370 struct dwarf2_read_addr_index_data
17371 {
17372 ULONGEST addr_base;
17373 int addr_size;
17374 };
17375
17376 /* die_reader_func for dwarf2_read_addr_index. */
17377
17378 static void
17379 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
17380 const gdb_byte *info_ptr,
17381 struct die_info *comp_unit_die,
17382 int has_children,
17383 void *data)
17384 {
17385 struct dwarf2_cu *cu = reader->cu;
17386 struct dwarf2_read_addr_index_data *aidata =
17387 (struct dwarf2_read_addr_index_data *) data;
17388
17389 aidata->addr_base = cu->addr_base;
17390 aidata->addr_size = cu->header.addr_size;
17391 }
17392
17393 /* Given an index in .debug_addr, fetch the value.
17394 NOTE: This can be called during dwarf expression evaluation,
17395 long after the debug information has been read, and thus per_cu->cu
17396 may no longer exist. */
17397
17398 CORE_ADDR
17399 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17400 unsigned int addr_index)
17401 {
17402 struct objfile *objfile = per_cu->objfile;
17403 struct dwarf2_cu *cu = per_cu->cu;
17404 ULONGEST addr_base;
17405 int addr_size;
17406
17407 /* This is intended to be called from outside this file. */
17408 dw2_setup (objfile);
17409
17410 /* We need addr_base and addr_size.
17411 If we don't have PER_CU->cu, we have to get it.
17412 Nasty, but the alternative is storing the needed info in PER_CU,
17413 which at this point doesn't seem justified: it's not clear how frequently
17414 it would get used and it would increase the size of every PER_CU.
17415 Entry points like dwarf2_per_cu_addr_size do a similar thing
17416 so we're not in uncharted territory here.
17417 Alas we need to be a bit more complicated as addr_base is contained
17418 in the DIE.
17419
17420 We don't need to read the entire CU(/TU).
17421 We just need the header and top level die.
17422
17423 IWBN to use the aging mechanism to let us lazily later discard the CU.
17424 For now we skip this optimization. */
17425
17426 if (cu != NULL)
17427 {
17428 addr_base = cu->addr_base;
17429 addr_size = cu->header.addr_size;
17430 }
17431 else
17432 {
17433 struct dwarf2_read_addr_index_data aidata;
17434
17435 /* Note: We can't use init_cutu_and_read_dies_simple here,
17436 we need addr_base. */
17437 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17438 dwarf2_read_addr_index_reader, &aidata);
17439 addr_base = aidata.addr_base;
17440 addr_size = aidata.addr_size;
17441 }
17442
17443 return read_addr_index_1 (addr_index, addr_base, addr_size);
17444 }
17445
17446 /* Given a DW_FORM_GNU_str_index, fetch the string.
17447 This is only used by the Fission support. */
17448
17449 static const char *
17450 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
17451 {
17452 struct objfile *objfile = dwarf2_per_objfile->objfile;
17453 const char *objf_name = objfile_name (objfile);
17454 bfd *abfd = objfile->obfd;
17455 struct dwarf2_cu *cu = reader->cu;
17456 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17457 struct dwarf2_section_info *str_offsets_section =
17458 &reader->dwo_file->sections.str_offsets;
17459 const gdb_byte *info_ptr;
17460 ULONGEST str_offset;
17461 static const char form_name[] = "DW_FORM_GNU_str_index";
17462
17463 dwarf2_read_section (objfile, str_section);
17464 dwarf2_read_section (objfile, str_offsets_section);
17465 if (str_section->buffer == NULL)
17466 error (_("%s used without .debug_str.dwo section"
17467 " in CU at offset 0x%x [in module %s]"),
17468 form_name, to_underlying (cu->header.sect_off), objf_name);
17469 if (str_offsets_section->buffer == NULL)
17470 error (_("%s used without .debug_str_offsets.dwo section"
17471 " in CU at offset 0x%x [in module %s]"),
17472 form_name, to_underlying (cu->header.sect_off), objf_name);
17473 if (str_index * cu->header.offset_size >= str_offsets_section->size)
17474 error (_("%s pointing outside of .debug_str_offsets.dwo"
17475 " section in CU at offset 0x%x [in module %s]"),
17476 form_name, to_underlying (cu->header.sect_off), objf_name);
17477 info_ptr = (str_offsets_section->buffer
17478 + str_index * cu->header.offset_size);
17479 if (cu->header.offset_size == 4)
17480 str_offset = bfd_get_32 (abfd, info_ptr);
17481 else
17482 str_offset = bfd_get_64 (abfd, info_ptr);
17483 if (str_offset >= str_section->size)
17484 error (_("Offset from %s pointing outside of"
17485 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17486 form_name, to_underlying (cu->header.sect_off), objf_name);
17487 return (const char *) (str_section->buffer + str_offset);
17488 }
17489
17490 /* Return the length of an LEB128 number in BUF. */
17491
17492 static int
17493 leb128_size (const gdb_byte *buf)
17494 {
17495 const gdb_byte *begin = buf;
17496 gdb_byte byte;
17497
17498 while (1)
17499 {
17500 byte = *buf++;
17501 if ((byte & 128) == 0)
17502 return buf - begin;
17503 }
17504 }
17505
17506 static void
17507 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17508 {
17509 switch (lang)
17510 {
17511 case DW_LANG_C89:
17512 case DW_LANG_C99:
17513 case DW_LANG_C11:
17514 case DW_LANG_C:
17515 case DW_LANG_UPC:
17516 cu->language = language_c;
17517 break;
17518 case DW_LANG_Java:
17519 case DW_LANG_C_plus_plus:
17520 case DW_LANG_C_plus_plus_11:
17521 case DW_LANG_C_plus_plus_14:
17522 cu->language = language_cplus;
17523 break;
17524 case DW_LANG_D:
17525 cu->language = language_d;
17526 break;
17527 case DW_LANG_Fortran77:
17528 case DW_LANG_Fortran90:
17529 case DW_LANG_Fortran95:
17530 case DW_LANG_Fortran03:
17531 case DW_LANG_Fortran08:
17532 cu->language = language_fortran;
17533 break;
17534 case DW_LANG_Go:
17535 cu->language = language_go;
17536 break;
17537 case DW_LANG_Mips_Assembler:
17538 cu->language = language_asm;
17539 break;
17540 case DW_LANG_Ada83:
17541 case DW_LANG_Ada95:
17542 cu->language = language_ada;
17543 break;
17544 case DW_LANG_Modula2:
17545 cu->language = language_m2;
17546 break;
17547 case DW_LANG_Pascal83:
17548 cu->language = language_pascal;
17549 break;
17550 case DW_LANG_ObjC:
17551 cu->language = language_objc;
17552 break;
17553 case DW_LANG_Rust:
17554 case DW_LANG_Rust_old:
17555 cu->language = language_rust;
17556 break;
17557 case DW_LANG_Cobol74:
17558 case DW_LANG_Cobol85:
17559 default:
17560 cu->language = language_minimal;
17561 break;
17562 }
17563 cu->language_defn = language_def (cu->language);
17564 }
17565
17566 /* Return the named attribute or NULL if not there. */
17567
17568 static struct attribute *
17569 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17570 {
17571 for (;;)
17572 {
17573 unsigned int i;
17574 struct attribute *spec = NULL;
17575
17576 for (i = 0; i < die->num_attrs; ++i)
17577 {
17578 if (die->attrs[i].name == name)
17579 return &die->attrs[i];
17580 if (die->attrs[i].name == DW_AT_specification
17581 || die->attrs[i].name == DW_AT_abstract_origin)
17582 spec = &die->attrs[i];
17583 }
17584
17585 if (!spec)
17586 break;
17587
17588 die = follow_die_ref (die, spec, &cu);
17589 }
17590
17591 return NULL;
17592 }
17593
17594 /* Return the named attribute or NULL if not there,
17595 but do not follow DW_AT_specification, etc.
17596 This is for use in contexts where we're reading .debug_types dies.
17597 Following DW_AT_specification, DW_AT_abstract_origin will take us
17598 back up the chain, and we want to go down. */
17599
17600 static struct attribute *
17601 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17602 {
17603 unsigned int i;
17604
17605 for (i = 0; i < die->num_attrs; ++i)
17606 if (die->attrs[i].name == name)
17607 return &die->attrs[i];
17608
17609 return NULL;
17610 }
17611
17612 /* Return the string associated with a string-typed attribute, or NULL if it
17613 is either not found or is of an incorrect type. */
17614
17615 static const char *
17616 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17617 {
17618 struct attribute *attr;
17619 const char *str = NULL;
17620
17621 attr = dwarf2_attr (die, name, cu);
17622
17623 if (attr != NULL)
17624 {
17625 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
17626 || attr->form == DW_FORM_string
17627 || attr->form == DW_FORM_GNU_str_index
17628 || attr->form == DW_FORM_GNU_strp_alt)
17629 str = DW_STRING (attr);
17630 else
17631 complaint (&symfile_complaints,
17632 _("string type expected for attribute %s for "
17633 "DIE at 0x%x in module %s"),
17634 dwarf_attr_name (name), to_underlying (die->sect_off),
17635 objfile_name (cu->objfile));
17636 }
17637
17638 return str;
17639 }
17640
17641 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17642 and holds a non-zero value. This function should only be used for
17643 DW_FORM_flag or DW_FORM_flag_present attributes. */
17644
17645 static int
17646 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17647 {
17648 struct attribute *attr = dwarf2_attr (die, name, cu);
17649
17650 return (attr && DW_UNSND (attr));
17651 }
17652
17653 static int
17654 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17655 {
17656 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17657 which value is non-zero. However, we have to be careful with
17658 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17659 (via dwarf2_flag_true_p) follows this attribute. So we may
17660 end up accidently finding a declaration attribute that belongs
17661 to a different DIE referenced by the specification attribute,
17662 even though the given DIE does not have a declaration attribute. */
17663 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17664 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17665 }
17666
17667 /* Return the die giving the specification for DIE, if there is
17668 one. *SPEC_CU is the CU containing DIE on input, and the CU
17669 containing the return value on output. If there is no
17670 specification, but there is an abstract origin, that is
17671 returned. */
17672
17673 static struct die_info *
17674 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17675 {
17676 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17677 *spec_cu);
17678
17679 if (spec_attr == NULL)
17680 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17681
17682 if (spec_attr == NULL)
17683 return NULL;
17684 else
17685 return follow_die_ref (die, spec_attr, spec_cu);
17686 }
17687
17688 /* Stub for free_line_header to match void * callback types. */
17689
17690 static void
17691 free_line_header_voidp (void *arg)
17692 {
17693 struct line_header *lh = (struct line_header *) arg;
17694
17695 delete lh;
17696 }
17697
17698 void
17699 line_header::add_include_dir (const char *include_dir)
17700 {
17701 if (dwarf_line_debug >= 2)
17702 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17703 include_dirs.size () + 1, include_dir);
17704
17705 include_dirs.push_back (include_dir);
17706 }
17707
17708 void
17709 line_header::add_file_name (const char *name,
17710 dir_index d_index,
17711 unsigned int mod_time,
17712 unsigned int length)
17713 {
17714 if (dwarf_line_debug >= 2)
17715 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17716 (unsigned) file_names.size () + 1, name);
17717
17718 file_names.emplace_back (name, d_index, mod_time, length);
17719 }
17720
17721 /* A convenience function to find the proper .debug_line section for a CU. */
17722
17723 static struct dwarf2_section_info *
17724 get_debug_line_section (struct dwarf2_cu *cu)
17725 {
17726 struct dwarf2_section_info *section;
17727
17728 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17729 DWO file. */
17730 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17731 section = &cu->dwo_unit->dwo_file->sections.line;
17732 else if (cu->per_cu->is_dwz)
17733 {
17734 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17735
17736 section = &dwz->line;
17737 }
17738 else
17739 section = &dwarf2_per_objfile->line;
17740
17741 return section;
17742 }
17743
17744 /* Read directory or file name entry format, starting with byte of
17745 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17746 entries count and the entries themselves in the described entry
17747 format. */
17748
17749 static void
17750 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17751 struct line_header *lh,
17752 const struct comp_unit_head *cu_header,
17753 void (*callback) (struct line_header *lh,
17754 const char *name,
17755 dir_index d_index,
17756 unsigned int mod_time,
17757 unsigned int length))
17758 {
17759 gdb_byte format_count, formati;
17760 ULONGEST data_count, datai;
17761 const gdb_byte *buf = *bufp;
17762 const gdb_byte *format_header_data;
17763 int i;
17764 unsigned int bytes_read;
17765
17766 format_count = read_1_byte (abfd, buf);
17767 buf += 1;
17768 format_header_data = buf;
17769 for (formati = 0; formati < format_count; formati++)
17770 {
17771 read_unsigned_leb128 (abfd, buf, &bytes_read);
17772 buf += bytes_read;
17773 read_unsigned_leb128 (abfd, buf, &bytes_read);
17774 buf += bytes_read;
17775 }
17776
17777 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17778 buf += bytes_read;
17779 for (datai = 0; datai < data_count; datai++)
17780 {
17781 const gdb_byte *format = format_header_data;
17782 struct file_entry fe;
17783
17784 for (formati = 0; formati < format_count; formati++)
17785 {
17786 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
17787 format += bytes_read;
17788
17789 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
17790 format += bytes_read;
17791
17792 gdb::optional<const char *> string;
17793 gdb::optional<unsigned int> uint;
17794
17795 switch (form)
17796 {
17797 case DW_FORM_string:
17798 string.emplace (read_direct_string (abfd, buf, &bytes_read));
17799 buf += bytes_read;
17800 break;
17801
17802 case DW_FORM_line_strp:
17803 string.emplace (read_indirect_line_string (abfd, buf,
17804 cu_header,
17805 &bytes_read));
17806 buf += bytes_read;
17807 break;
17808
17809 case DW_FORM_data1:
17810 uint.emplace (read_1_byte (abfd, buf));
17811 buf += 1;
17812 break;
17813
17814 case DW_FORM_data2:
17815 uint.emplace (read_2_bytes (abfd, buf));
17816 buf += 2;
17817 break;
17818
17819 case DW_FORM_data4:
17820 uint.emplace (read_4_bytes (abfd, buf));
17821 buf += 4;
17822 break;
17823
17824 case DW_FORM_data8:
17825 uint.emplace (read_8_bytes (abfd, buf));
17826 buf += 8;
17827 break;
17828
17829 case DW_FORM_udata:
17830 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
17831 buf += bytes_read;
17832 break;
17833
17834 case DW_FORM_block:
17835 /* It is valid only for DW_LNCT_timestamp which is ignored by
17836 current GDB. */
17837 break;
17838 }
17839
17840 switch (content_type)
17841 {
17842 case DW_LNCT_path:
17843 if (string.has_value ())
17844 fe.name = *string;
17845 break;
17846 case DW_LNCT_directory_index:
17847 if (uint.has_value ())
17848 fe.d_index = (dir_index) *uint;
17849 break;
17850 case DW_LNCT_timestamp:
17851 if (uint.has_value ())
17852 fe.mod_time = *uint;
17853 break;
17854 case DW_LNCT_size:
17855 if (uint.has_value ())
17856 fe.length = *uint;
17857 break;
17858 case DW_LNCT_MD5:
17859 break;
17860 default:
17861 complaint (&symfile_complaints,
17862 _("Unknown format content type %s"),
17863 pulongest (content_type));
17864 }
17865 }
17866
17867 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
17868 }
17869
17870 *bufp = buf;
17871 }
17872
17873 /* Read the statement program header starting at OFFSET in
17874 .debug_line, or .debug_line.dwo. Return a pointer
17875 to a struct line_header, allocated using xmalloc.
17876 Returns NULL if there is a problem reading the header, e.g., if it
17877 has a version we don't understand.
17878
17879 NOTE: the strings in the include directory and file name tables of
17880 the returned object point into the dwarf line section buffer,
17881 and must not be freed. */
17882
17883 static line_header_up
17884 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
17885 {
17886 const gdb_byte *line_ptr;
17887 unsigned int bytes_read, offset_size;
17888 int i;
17889 const char *cur_dir, *cur_file;
17890 struct dwarf2_section_info *section;
17891 bfd *abfd;
17892
17893 section = get_debug_line_section (cu);
17894 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17895 if (section->buffer == NULL)
17896 {
17897 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17898 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17899 else
17900 complaint (&symfile_complaints, _("missing .debug_line section"));
17901 return 0;
17902 }
17903
17904 /* We can't do this until we know the section is non-empty.
17905 Only then do we know we have such a section. */
17906 abfd = get_section_bfd_owner (section);
17907
17908 /* Make sure that at least there's room for the total_length field.
17909 That could be 12 bytes long, but we're just going to fudge that. */
17910 if (to_underlying (sect_off) + 4 >= section->size)
17911 {
17912 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17913 return 0;
17914 }
17915
17916 line_header_up lh (new line_header ());
17917
17918 lh->sect_off = sect_off;
17919 lh->offset_in_dwz = cu->per_cu->is_dwz;
17920
17921 line_ptr = section->buffer + to_underlying (sect_off);
17922
17923 /* Read in the header. */
17924 lh->total_length =
17925 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17926 &bytes_read, &offset_size);
17927 line_ptr += bytes_read;
17928 if (line_ptr + lh->total_length > (section->buffer + section->size))
17929 {
17930 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17931 return 0;
17932 }
17933 lh->statement_program_end = line_ptr + lh->total_length;
17934 lh->version = read_2_bytes (abfd, line_ptr);
17935 line_ptr += 2;
17936 if (lh->version > 5)
17937 {
17938 /* This is a version we don't understand. The format could have
17939 changed in ways we don't handle properly so just punt. */
17940 complaint (&symfile_complaints,
17941 _("unsupported version in .debug_line section"));
17942 return NULL;
17943 }
17944 if (lh->version >= 5)
17945 {
17946 gdb_byte segment_selector_size;
17947
17948 /* Skip address size. */
17949 read_1_byte (abfd, line_ptr);
17950 line_ptr += 1;
17951
17952 segment_selector_size = read_1_byte (abfd, line_ptr);
17953 line_ptr += 1;
17954 if (segment_selector_size != 0)
17955 {
17956 complaint (&symfile_complaints,
17957 _("unsupported segment selector size %u "
17958 "in .debug_line section"),
17959 segment_selector_size);
17960 return NULL;
17961 }
17962 }
17963 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17964 line_ptr += offset_size;
17965 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17966 line_ptr += 1;
17967 if (lh->version >= 4)
17968 {
17969 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17970 line_ptr += 1;
17971 }
17972 else
17973 lh->maximum_ops_per_instruction = 1;
17974
17975 if (lh->maximum_ops_per_instruction == 0)
17976 {
17977 lh->maximum_ops_per_instruction = 1;
17978 complaint (&symfile_complaints,
17979 _("invalid maximum_ops_per_instruction "
17980 "in `.debug_line' section"));
17981 }
17982
17983 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17984 line_ptr += 1;
17985 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17986 line_ptr += 1;
17987 lh->line_range = read_1_byte (abfd, line_ptr);
17988 line_ptr += 1;
17989 lh->opcode_base = read_1_byte (abfd, line_ptr);
17990 line_ptr += 1;
17991 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
17992
17993 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17994 for (i = 1; i < lh->opcode_base; ++i)
17995 {
17996 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17997 line_ptr += 1;
17998 }
17999
18000 if (lh->version >= 5)
18001 {
18002 /* Read directory table. */
18003 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18004 [] (struct line_header *lh, const char *name,
18005 dir_index d_index, unsigned int mod_time,
18006 unsigned int length)
18007 {
18008 lh->add_include_dir (name);
18009 });
18010
18011 /* Read file name table. */
18012 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18013 [] (struct line_header *lh, const char *name,
18014 dir_index d_index, unsigned int mod_time,
18015 unsigned int length)
18016 {
18017 lh->add_file_name (name, d_index, mod_time, length);
18018 });
18019 }
18020 else
18021 {
18022 /* Read directory table. */
18023 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18024 {
18025 line_ptr += bytes_read;
18026 lh->add_include_dir (cur_dir);
18027 }
18028 line_ptr += bytes_read;
18029
18030 /* Read file name table. */
18031 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18032 {
18033 unsigned int mod_time, length;
18034 dir_index d_index;
18035
18036 line_ptr += bytes_read;
18037 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18038 line_ptr += bytes_read;
18039 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18040 line_ptr += bytes_read;
18041 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18042 line_ptr += bytes_read;
18043
18044 lh->add_file_name (cur_file, d_index, mod_time, length);
18045 }
18046 line_ptr += bytes_read;
18047 }
18048 lh->statement_program_start = line_ptr;
18049
18050 if (line_ptr > (section->buffer + section->size))
18051 complaint (&symfile_complaints,
18052 _("line number info header doesn't "
18053 "fit in `.debug_line' section"));
18054
18055 return lh;
18056 }
18057
18058 /* Subroutine of dwarf_decode_lines to simplify it.
18059 Return the file name of the psymtab for included file FILE_INDEX
18060 in line header LH of PST.
18061 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18062 If space for the result is malloc'd, it will be freed by a cleanup.
18063 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18064
18065 The function creates dangling cleanup registration. */
18066
18067 static const char *
18068 psymtab_include_file_name (const struct line_header *lh, int file_index,
18069 const struct partial_symtab *pst,
18070 const char *comp_dir)
18071 {
18072 const file_entry &fe = lh->file_names[file_index];
18073 const char *include_name = fe.name;
18074 const char *include_name_to_compare = include_name;
18075 const char *pst_filename;
18076 char *copied_name = NULL;
18077 int file_is_pst;
18078
18079 const char *dir_name = fe.include_dir (lh);
18080
18081 if (!IS_ABSOLUTE_PATH (include_name)
18082 && (dir_name != NULL || comp_dir != NULL))
18083 {
18084 /* Avoid creating a duplicate psymtab for PST.
18085 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18086 Before we do the comparison, however, we need to account
18087 for DIR_NAME and COMP_DIR.
18088 First prepend dir_name (if non-NULL). If we still don't
18089 have an absolute path prepend comp_dir (if non-NULL).
18090 However, the directory we record in the include-file's
18091 psymtab does not contain COMP_DIR (to match the
18092 corresponding symtab(s)).
18093
18094 Example:
18095
18096 bash$ cd /tmp
18097 bash$ gcc -g ./hello.c
18098 include_name = "hello.c"
18099 dir_name = "."
18100 DW_AT_comp_dir = comp_dir = "/tmp"
18101 DW_AT_name = "./hello.c"
18102
18103 */
18104
18105 if (dir_name != NULL)
18106 {
18107 char *tem = concat (dir_name, SLASH_STRING,
18108 include_name, (char *)NULL);
18109
18110 make_cleanup (xfree, tem);
18111 include_name = tem;
18112 include_name_to_compare = include_name;
18113 }
18114 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18115 {
18116 char *tem = concat (comp_dir, SLASH_STRING,
18117 include_name, (char *)NULL);
18118
18119 make_cleanup (xfree, tem);
18120 include_name_to_compare = tem;
18121 }
18122 }
18123
18124 pst_filename = pst->filename;
18125 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18126 {
18127 copied_name = concat (pst->dirname, SLASH_STRING,
18128 pst_filename, (char *)NULL);
18129 pst_filename = copied_name;
18130 }
18131
18132 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
18133
18134 if (copied_name != NULL)
18135 xfree (copied_name);
18136
18137 if (file_is_pst)
18138 return NULL;
18139 return include_name;
18140 }
18141
18142 /* State machine to track the state of the line number program. */
18143
18144 class lnp_state_machine
18145 {
18146 public:
18147 /* Initialize a machine state for the start of a line number
18148 program. */
18149 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18150
18151 file_entry *current_file ()
18152 {
18153 /* lh->file_names is 0-based, but the file name numbers in the
18154 statement program are 1-based. */
18155 return m_line_header->file_name_at (m_file);
18156 }
18157
18158 /* Record the line in the state machine. END_SEQUENCE is true if
18159 we're processing the end of a sequence. */
18160 void record_line (bool end_sequence);
18161
18162 /* Check address and if invalid nop-out the rest of the lines in this
18163 sequence. */
18164 void check_line_address (struct dwarf2_cu *cu,
18165 const gdb_byte *line_ptr,
18166 CORE_ADDR lowpc, CORE_ADDR address);
18167
18168 void handle_set_discriminator (unsigned int discriminator)
18169 {
18170 m_discriminator = discriminator;
18171 m_line_has_non_zero_discriminator |= discriminator != 0;
18172 }
18173
18174 /* Handle DW_LNE_set_address. */
18175 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18176 {
18177 m_op_index = 0;
18178 address += baseaddr;
18179 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18180 }
18181
18182 /* Handle DW_LNS_advance_pc. */
18183 void handle_advance_pc (CORE_ADDR adjust);
18184
18185 /* Handle a special opcode. */
18186 void handle_special_opcode (unsigned char op_code);
18187
18188 /* Handle DW_LNS_advance_line. */
18189 void handle_advance_line (int line_delta)
18190 {
18191 advance_line (line_delta);
18192 }
18193
18194 /* Handle DW_LNS_set_file. */
18195 void handle_set_file (file_name_index file);
18196
18197 /* Handle DW_LNS_negate_stmt. */
18198 void handle_negate_stmt ()
18199 {
18200 m_is_stmt = !m_is_stmt;
18201 }
18202
18203 /* Handle DW_LNS_const_add_pc. */
18204 void handle_const_add_pc ();
18205
18206 /* Handle DW_LNS_fixed_advance_pc. */
18207 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18208 {
18209 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18210 m_op_index = 0;
18211 }
18212
18213 /* Handle DW_LNS_copy. */
18214 void handle_copy ()
18215 {
18216 record_line (false);
18217 m_discriminator = 0;
18218 }
18219
18220 /* Handle DW_LNE_end_sequence. */
18221 void handle_end_sequence ()
18222 {
18223 m_record_line_callback = ::record_line;
18224 }
18225
18226 private:
18227 /* Advance the line by LINE_DELTA. */
18228 void advance_line (int line_delta)
18229 {
18230 m_line += line_delta;
18231
18232 if (line_delta != 0)
18233 m_line_has_non_zero_discriminator = m_discriminator != 0;
18234 }
18235
18236 gdbarch *m_gdbarch;
18237
18238 /* True if we're recording lines.
18239 Otherwise we're building partial symtabs and are just interested in
18240 finding include files mentioned by the line number program. */
18241 bool m_record_lines_p;
18242
18243 /* The line number header. */
18244 line_header *m_line_header;
18245
18246 /* These are part of the standard DWARF line number state machine,
18247 and initialized according to the DWARF spec. */
18248
18249 unsigned char m_op_index = 0;
18250 /* The line table index (1-based) of the current file. */
18251 file_name_index m_file = (file_name_index) 1;
18252 unsigned int m_line = 1;
18253
18254 /* These are initialized in the constructor. */
18255
18256 CORE_ADDR m_address;
18257 bool m_is_stmt;
18258 unsigned int m_discriminator;
18259
18260 /* Additional bits of state we need to track. */
18261
18262 /* The last file that we called dwarf2_start_subfile for.
18263 This is only used for TLLs. */
18264 unsigned int m_last_file = 0;
18265 /* The last file a line number was recorded for. */
18266 struct subfile *m_last_subfile = NULL;
18267
18268 /* The function to call to record a line. */
18269 record_line_ftype *m_record_line_callback = NULL;
18270
18271 /* The last line number that was recorded, used to coalesce
18272 consecutive entries for the same line. This can happen, for
18273 example, when discriminators are present. PR 17276. */
18274 unsigned int m_last_line = 0;
18275 bool m_line_has_non_zero_discriminator = false;
18276 };
18277
18278 void
18279 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18280 {
18281 CORE_ADDR addr_adj = (((m_op_index + adjust)
18282 / m_line_header->maximum_ops_per_instruction)
18283 * m_line_header->minimum_instruction_length);
18284 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18285 m_op_index = ((m_op_index + adjust)
18286 % m_line_header->maximum_ops_per_instruction);
18287 }
18288
18289 void
18290 lnp_state_machine::handle_special_opcode (unsigned char op_code)
18291 {
18292 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18293 CORE_ADDR addr_adj = (((m_op_index
18294 + (adj_opcode / m_line_header->line_range))
18295 / m_line_header->maximum_ops_per_instruction)
18296 * m_line_header->minimum_instruction_length);
18297 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18298 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18299 % m_line_header->maximum_ops_per_instruction);
18300
18301 int line_delta = (m_line_header->line_base
18302 + (adj_opcode % m_line_header->line_range));
18303 advance_line (line_delta);
18304 record_line (false);
18305 m_discriminator = 0;
18306 }
18307
18308 void
18309 lnp_state_machine::handle_set_file (file_name_index file)
18310 {
18311 m_file = file;
18312
18313 const file_entry *fe = current_file ();
18314 if (fe == NULL)
18315 dwarf2_debug_line_missing_file_complaint ();
18316 else if (m_record_lines_p)
18317 {
18318 const char *dir = fe->include_dir (m_line_header);
18319
18320 m_last_subfile = current_subfile;
18321 m_line_has_non_zero_discriminator = m_discriminator != 0;
18322 dwarf2_start_subfile (fe->name, dir);
18323 }
18324 }
18325
18326 void
18327 lnp_state_machine::handle_const_add_pc ()
18328 {
18329 CORE_ADDR adjust
18330 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18331
18332 CORE_ADDR addr_adj
18333 = (((m_op_index + adjust)
18334 / m_line_header->maximum_ops_per_instruction)
18335 * m_line_header->minimum_instruction_length);
18336
18337 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18338 m_op_index = ((m_op_index + adjust)
18339 % m_line_header->maximum_ops_per_instruction);
18340 }
18341
18342 /* Ignore this record_line request. */
18343
18344 static void
18345 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18346 {
18347 return;
18348 }
18349
18350 /* Return non-zero if we should add LINE to the line number table.
18351 LINE is the line to add, LAST_LINE is the last line that was added,
18352 LAST_SUBFILE is the subfile for LAST_LINE.
18353 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18354 had a non-zero discriminator.
18355
18356 We have to be careful in the presence of discriminators.
18357 E.g., for this line:
18358
18359 for (i = 0; i < 100000; i++);
18360
18361 clang can emit four line number entries for that one line,
18362 each with a different discriminator.
18363 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18364
18365 However, we want gdb to coalesce all four entries into one.
18366 Otherwise the user could stepi into the middle of the line and
18367 gdb would get confused about whether the pc really was in the
18368 middle of the line.
18369
18370 Things are further complicated by the fact that two consecutive
18371 line number entries for the same line is a heuristic used by gcc
18372 to denote the end of the prologue. So we can't just discard duplicate
18373 entries, we have to be selective about it. The heuristic we use is
18374 that we only collapse consecutive entries for the same line if at least
18375 one of those entries has a non-zero discriminator. PR 17276.
18376
18377 Note: Addresses in the line number state machine can never go backwards
18378 within one sequence, thus this coalescing is ok. */
18379
18380 static int
18381 dwarf_record_line_p (unsigned int line, unsigned int last_line,
18382 int line_has_non_zero_discriminator,
18383 struct subfile *last_subfile)
18384 {
18385 if (current_subfile != last_subfile)
18386 return 1;
18387 if (line != last_line)
18388 return 1;
18389 /* Same line for the same file that we've seen already.
18390 As a last check, for pr 17276, only record the line if the line
18391 has never had a non-zero discriminator. */
18392 if (!line_has_non_zero_discriminator)
18393 return 1;
18394 return 0;
18395 }
18396
18397 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18398 in the line table of subfile SUBFILE. */
18399
18400 static void
18401 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18402 unsigned int line, CORE_ADDR address,
18403 record_line_ftype p_record_line)
18404 {
18405 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18406
18407 if (dwarf_line_debug)
18408 {
18409 fprintf_unfiltered (gdb_stdlog,
18410 "Recording line %u, file %s, address %s\n",
18411 line, lbasename (subfile->name),
18412 paddress (gdbarch, address));
18413 }
18414
18415 (*p_record_line) (subfile, line, addr);
18416 }
18417
18418 /* Subroutine of dwarf_decode_lines_1 to simplify it.
18419 Mark the end of a set of line number records.
18420 The arguments are the same as for dwarf_record_line_1.
18421 If SUBFILE is NULL the request is ignored. */
18422
18423 static void
18424 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18425 CORE_ADDR address, record_line_ftype p_record_line)
18426 {
18427 if (subfile == NULL)
18428 return;
18429
18430 if (dwarf_line_debug)
18431 {
18432 fprintf_unfiltered (gdb_stdlog,
18433 "Finishing current line, file %s, address %s\n",
18434 lbasename (subfile->name),
18435 paddress (gdbarch, address));
18436 }
18437
18438 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18439 }
18440
18441 void
18442 lnp_state_machine::record_line (bool end_sequence)
18443 {
18444 if (dwarf_line_debug)
18445 {
18446 fprintf_unfiltered (gdb_stdlog,
18447 "Processing actual line %u: file %u,"
18448 " address %s, is_stmt %u, discrim %u\n",
18449 m_line, to_underlying (m_file),
18450 paddress (m_gdbarch, m_address),
18451 m_is_stmt, m_discriminator);
18452 }
18453
18454 file_entry *fe = current_file ();
18455
18456 if (fe == NULL)
18457 dwarf2_debug_line_missing_file_complaint ();
18458 /* For now we ignore lines not starting on an instruction boundary.
18459 But not when processing end_sequence for compatibility with the
18460 previous version of the code. */
18461 else if (m_op_index == 0 || end_sequence)
18462 {
18463 fe->included_p = 1;
18464 if (m_record_lines_p && m_is_stmt)
18465 {
18466 if (m_last_subfile != current_subfile || end_sequence)
18467 {
18468 dwarf_finish_line (m_gdbarch, m_last_subfile,
18469 m_address, m_record_line_callback);
18470 }
18471
18472 if (!end_sequence)
18473 {
18474 if (dwarf_record_line_p (m_line, m_last_line,
18475 m_line_has_non_zero_discriminator,
18476 m_last_subfile))
18477 {
18478 dwarf_record_line_1 (m_gdbarch, current_subfile,
18479 m_line, m_address,
18480 m_record_line_callback);
18481 }
18482 m_last_subfile = current_subfile;
18483 m_last_line = m_line;
18484 }
18485 }
18486 }
18487 }
18488
18489 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18490 bool record_lines_p)
18491 {
18492 m_gdbarch = arch;
18493 m_record_lines_p = record_lines_p;
18494 m_line_header = lh;
18495
18496 m_record_line_callback = ::record_line;
18497
18498 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18499 was a line entry for it so that the backend has a chance to adjust it
18500 and also record it in case it needs it. This is currently used by MIPS
18501 code, cf. `mips_adjust_dwarf2_line'. */
18502 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18503 m_is_stmt = lh->default_is_stmt;
18504 m_discriminator = 0;
18505 }
18506
18507 void
18508 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18509 const gdb_byte *line_ptr,
18510 CORE_ADDR lowpc, CORE_ADDR address)
18511 {
18512 /* If address < lowpc then it's not a usable value, it's outside the
18513 pc range of the CU. However, we restrict the test to only address
18514 values of zero to preserve GDB's previous behaviour which is to
18515 handle the specific case of a function being GC'd by the linker. */
18516
18517 if (address == 0 && address < lowpc)
18518 {
18519 /* This line table is for a function which has been
18520 GCd by the linker. Ignore it. PR gdb/12528 */
18521
18522 struct objfile *objfile = cu->objfile;
18523 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18524
18525 complaint (&symfile_complaints,
18526 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18527 line_offset, objfile_name (objfile));
18528 m_record_line_callback = noop_record_line;
18529 /* Note: record_line_callback is left as noop_record_line until
18530 we see DW_LNE_end_sequence. */
18531 }
18532 }
18533
18534 /* Subroutine of dwarf_decode_lines to simplify it.
18535 Process the line number information in LH.
18536 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18537 program in order to set included_p for every referenced header. */
18538
18539 static void
18540 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18541 const int decode_for_pst_p, CORE_ADDR lowpc)
18542 {
18543 const gdb_byte *line_ptr, *extended_end;
18544 const gdb_byte *line_end;
18545 unsigned int bytes_read, extended_len;
18546 unsigned char op_code, extended_op;
18547 CORE_ADDR baseaddr;
18548 struct objfile *objfile = cu->objfile;
18549 bfd *abfd = objfile->obfd;
18550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18551 /* True if we're recording line info (as opposed to building partial
18552 symtabs and just interested in finding include files mentioned by
18553 the line number program). */
18554 bool record_lines_p = !decode_for_pst_p;
18555
18556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18557
18558 line_ptr = lh->statement_program_start;
18559 line_end = lh->statement_program_end;
18560
18561 /* Read the statement sequences until there's nothing left. */
18562 while (line_ptr < line_end)
18563 {
18564 /* The DWARF line number program state machine. Reset the state
18565 machine at the start of each sequence. */
18566 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18567 bool end_sequence = false;
18568
18569 if (record_lines_p)
18570 {
18571 /* Start a subfile for the current file of the state
18572 machine. */
18573 const file_entry *fe = state_machine.current_file ();
18574
18575 if (fe != NULL)
18576 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
18577 }
18578
18579 /* Decode the table. */
18580 while (line_ptr < line_end && !end_sequence)
18581 {
18582 op_code = read_1_byte (abfd, line_ptr);
18583 line_ptr += 1;
18584
18585 if (op_code >= lh->opcode_base)
18586 {
18587 /* Special opcode. */
18588 state_machine.handle_special_opcode (op_code);
18589 }
18590 else switch (op_code)
18591 {
18592 case DW_LNS_extended_op:
18593 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18594 &bytes_read);
18595 line_ptr += bytes_read;
18596 extended_end = line_ptr + extended_len;
18597 extended_op = read_1_byte (abfd, line_ptr);
18598 line_ptr += 1;
18599 switch (extended_op)
18600 {
18601 case DW_LNE_end_sequence:
18602 state_machine.handle_end_sequence ();
18603 end_sequence = true;
18604 break;
18605 case DW_LNE_set_address:
18606 {
18607 CORE_ADDR address
18608 = read_address (abfd, line_ptr, cu, &bytes_read);
18609 line_ptr += bytes_read;
18610
18611 state_machine.check_line_address (cu, line_ptr,
18612 lowpc, address);
18613 state_machine.handle_set_address (baseaddr, address);
18614 }
18615 break;
18616 case DW_LNE_define_file:
18617 {
18618 const char *cur_file;
18619 unsigned int mod_time, length;
18620 dir_index dindex;
18621
18622 cur_file = read_direct_string (abfd, line_ptr,
18623 &bytes_read);
18624 line_ptr += bytes_read;
18625 dindex = (dir_index)
18626 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18627 line_ptr += bytes_read;
18628 mod_time =
18629 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18630 line_ptr += bytes_read;
18631 length =
18632 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18633 line_ptr += bytes_read;
18634 lh->add_file_name (cur_file, dindex, mod_time, length);
18635 }
18636 break;
18637 case DW_LNE_set_discriminator:
18638 {
18639 /* The discriminator is not interesting to the
18640 debugger; just ignore it. We still need to
18641 check its value though:
18642 if there are consecutive entries for the same
18643 (non-prologue) line we want to coalesce them.
18644 PR 17276. */
18645 unsigned int discr
18646 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18647 line_ptr += bytes_read;
18648
18649 state_machine.handle_set_discriminator (discr);
18650 }
18651 break;
18652 default:
18653 complaint (&symfile_complaints,
18654 _("mangled .debug_line section"));
18655 return;
18656 }
18657 /* Make sure that we parsed the extended op correctly. If e.g.
18658 we expected a different address size than the producer used,
18659 we may have read the wrong number of bytes. */
18660 if (line_ptr != extended_end)
18661 {
18662 complaint (&symfile_complaints,
18663 _("mangled .debug_line section"));
18664 return;
18665 }
18666 break;
18667 case DW_LNS_copy:
18668 state_machine.handle_copy ();
18669 break;
18670 case DW_LNS_advance_pc:
18671 {
18672 CORE_ADDR adjust
18673 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18674 line_ptr += bytes_read;
18675
18676 state_machine.handle_advance_pc (adjust);
18677 }
18678 break;
18679 case DW_LNS_advance_line:
18680 {
18681 int line_delta
18682 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18683 line_ptr += bytes_read;
18684
18685 state_machine.handle_advance_line (line_delta);
18686 }
18687 break;
18688 case DW_LNS_set_file:
18689 {
18690 file_name_index file
18691 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18692 &bytes_read);
18693 line_ptr += bytes_read;
18694
18695 state_machine.handle_set_file (file);
18696 }
18697 break;
18698 case DW_LNS_set_column:
18699 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18700 line_ptr += bytes_read;
18701 break;
18702 case DW_LNS_negate_stmt:
18703 state_machine.handle_negate_stmt ();
18704 break;
18705 case DW_LNS_set_basic_block:
18706 break;
18707 /* Add to the address register of the state machine the
18708 address increment value corresponding to special opcode
18709 255. I.e., this value is scaled by the minimum
18710 instruction length since special opcode 255 would have
18711 scaled the increment. */
18712 case DW_LNS_const_add_pc:
18713 state_machine.handle_const_add_pc ();
18714 break;
18715 case DW_LNS_fixed_advance_pc:
18716 {
18717 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
18718 line_ptr += 2;
18719
18720 state_machine.handle_fixed_advance_pc (addr_adj);
18721 }
18722 break;
18723 default:
18724 {
18725 /* Unknown standard opcode, ignore it. */
18726 int i;
18727
18728 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18729 {
18730 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18731 line_ptr += bytes_read;
18732 }
18733 }
18734 }
18735 }
18736
18737 if (!end_sequence)
18738 dwarf2_debug_line_missing_end_sequence_complaint ();
18739
18740 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18741 in which case we still finish recording the last line). */
18742 state_machine.record_line (true);
18743 }
18744 }
18745
18746 /* Decode the Line Number Program (LNP) for the given line_header
18747 structure and CU. The actual information extracted and the type
18748 of structures created from the LNP depends on the value of PST.
18749
18750 1. If PST is NULL, then this procedure uses the data from the program
18751 to create all necessary symbol tables, and their linetables.
18752
18753 2. If PST is not NULL, this procedure reads the program to determine
18754 the list of files included by the unit represented by PST, and
18755 builds all the associated partial symbol tables.
18756
18757 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18758 It is used for relative paths in the line table.
18759 NOTE: When processing partial symtabs (pst != NULL),
18760 comp_dir == pst->dirname.
18761
18762 NOTE: It is important that psymtabs have the same file name (via strcmp)
18763 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18764 symtab we don't use it in the name of the psymtabs we create.
18765 E.g. expand_line_sal requires this when finding psymtabs to expand.
18766 A good testcase for this is mb-inline.exp.
18767
18768 LOWPC is the lowest address in CU (or 0 if not known).
18769
18770 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18771 for its PC<->lines mapping information. Otherwise only the filename
18772 table is read in. */
18773
18774 static void
18775 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18776 struct dwarf2_cu *cu, struct partial_symtab *pst,
18777 CORE_ADDR lowpc, int decode_mapping)
18778 {
18779 struct objfile *objfile = cu->objfile;
18780 const int decode_for_pst_p = (pst != NULL);
18781
18782 if (decode_mapping)
18783 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18784
18785 if (decode_for_pst_p)
18786 {
18787 int file_index;
18788
18789 /* Now that we're done scanning the Line Header Program, we can
18790 create the psymtab of each included file. */
18791 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
18792 if (lh->file_names[file_index].included_p == 1)
18793 {
18794 const char *include_name =
18795 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18796 if (include_name != NULL)
18797 dwarf2_create_include_psymtab (include_name, pst, objfile);
18798 }
18799 }
18800 else
18801 {
18802 /* Make sure a symtab is created for every file, even files
18803 which contain only variables (i.e. no code with associated
18804 line numbers). */
18805 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18806 int i;
18807
18808 for (i = 0; i < lh->file_names.size (); i++)
18809 {
18810 file_entry &fe = lh->file_names[i];
18811
18812 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
18813
18814 if (current_subfile->symtab == NULL)
18815 {
18816 current_subfile->symtab
18817 = allocate_symtab (cust, current_subfile->name);
18818 }
18819 fe.symtab = current_subfile->symtab;
18820 }
18821 }
18822 }
18823
18824 /* Start a subfile for DWARF. FILENAME is the name of the file and
18825 DIRNAME the name of the source directory which contains FILENAME
18826 or NULL if not known.
18827 This routine tries to keep line numbers from identical absolute and
18828 relative file names in a common subfile.
18829
18830 Using the `list' example from the GDB testsuite, which resides in
18831 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18832 of /srcdir/list0.c yields the following debugging information for list0.c:
18833
18834 DW_AT_name: /srcdir/list0.c
18835 DW_AT_comp_dir: /compdir
18836 files.files[0].name: list0.h
18837 files.files[0].dir: /srcdir
18838 files.files[1].name: list0.c
18839 files.files[1].dir: /srcdir
18840
18841 The line number information for list0.c has to end up in a single
18842 subfile, so that `break /srcdir/list0.c:1' works as expected.
18843 start_subfile will ensure that this happens provided that we pass the
18844 concatenation of files.files[1].dir and files.files[1].name as the
18845 subfile's name. */
18846
18847 static void
18848 dwarf2_start_subfile (const char *filename, const char *dirname)
18849 {
18850 char *copy = NULL;
18851
18852 /* In order not to lose the line information directory,
18853 we concatenate it to the filename when it makes sense.
18854 Note that the Dwarf3 standard says (speaking of filenames in line
18855 information): ``The directory index is ignored for file names
18856 that represent full path names''. Thus ignoring dirname in the
18857 `else' branch below isn't an issue. */
18858
18859 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18860 {
18861 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18862 filename = copy;
18863 }
18864
18865 start_subfile (filename);
18866
18867 if (copy != NULL)
18868 xfree (copy);
18869 }
18870
18871 /* Start a symtab for DWARF.
18872 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18873
18874 static struct compunit_symtab *
18875 dwarf2_start_symtab (struct dwarf2_cu *cu,
18876 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18877 {
18878 struct compunit_symtab *cust
18879 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18880
18881 record_debugformat ("DWARF 2");
18882 record_producer (cu->producer);
18883
18884 /* We assume that we're processing GCC output. */
18885 processing_gcc_compilation = 2;
18886
18887 cu->processing_has_namespace_info = 0;
18888
18889 return cust;
18890 }
18891
18892 static void
18893 var_decode_location (struct attribute *attr, struct symbol *sym,
18894 struct dwarf2_cu *cu)
18895 {
18896 struct objfile *objfile = cu->objfile;
18897 struct comp_unit_head *cu_header = &cu->header;
18898
18899 /* NOTE drow/2003-01-30: There used to be a comment and some special
18900 code here to turn a symbol with DW_AT_external and a
18901 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18902 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18903 with some versions of binutils) where shared libraries could have
18904 relocations against symbols in their debug information - the
18905 minimal symbol would have the right address, but the debug info
18906 would not. It's no longer necessary, because we will explicitly
18907 apply relocations when we read in the debug information now. */
18908
18909 /* A DW_AT_location attribute with no contents indicates that a
18910 variable has been optimized away. */
18911 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18912 {
18913 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18914 return;
18915 }
18916
18917 /* Handle one degenerate form of location expression specially, to
18918 preserve GDB's previous behavior when section offsets are
18919 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18920 then mark this symbol as LOC_STATIC. */
18921
18922 if (attr_form_is_block (attr)
18923 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18924 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18925 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18926 && (DW_BLOCK (attr)->size
18927 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18928 {
18929 unsigned int dummy;
18930
18931 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18932 SYMBOL_VALUE_ADDRESS (sym) =
18933 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18934 else
18935 SYMBOL_VALUE_ADDRESS (sym) =
18936 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18937 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18938 fixup_symbol_section (sym, objfile);
18939 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18940 SYMBOL_SECTION (sym));
18941 return;
18942 }
18943
18944 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18945 expression evaluator, and use LOC_COMPUTED only when necessary
18946 (i.e. when the value of a register or memory location is
18947 referenced, or a thread-local block, etc.). Then again, it might
18948 not be worthwhile. I'm assuming that it isn't unless performance
18949 or memory numbers show me otherwise. */
18950
18951 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18952
18953 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18954 cu->has_loclist = 1;
18955 }
18956
18957 /* Given a pointer to a DWARF information entry, figure out if we need
18958 to make a symbol table entry for it, and if so, create a new entry
18959 and return a pointer to it.
18960 If TYPE is NULL, determine symbol type from the die, otherwise
18961 used the passed type.
18962 If SPACE is not NULL, use it to hold the new symbol. If it is
18963 NULL, allocate a new symbol on the objfile's obstack. */
18964
18965 static struct symbol *
18966 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18967 struct symbol *space)
18968 {
18969 struct objfile *objfile = cu->objfile;
18970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18971 struct symbol *sym = NULL;
18972 const char *name;
18973 struct attribute *attr = NULL;
18974 struct attribute *attr2 = NULL;
18975 CORE_ADDR baseaddr;
18976 struct pending **list_to_add = NULL;
18977
18978 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18979
18980 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18981
18982 name = dwarf2_name (die, cu);
18983 if (name)
18984 {
18985 const char *linkagename;
18986 int suppress_add = 0;
18987
18988 if (space)
18989 sym = space;
18990 else
18991 sym = allocate_symbol (objfile);
18992 OBJSTAT (objfile, n_syms++);
18993
18994 /* Cache this symbol's name and the name's demangled form (if any). */
18995 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18996 linkagename = dwarf2_physname (name, die, cu);
18997 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18998
18999 /* Fortran does not have mangling standard and the mangling does differ
19000 between gfortran, iFort etc. */
19001 if (cu->language == language_fortran
19002 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19003 symbol_set_demangled_name (&(sym->ginfo),
19004 dwarf2_full_name (name, die, cu),
19005 NULL);
19006
19007 /* Default assumptions.
19008 Use the passed type or decode it from the die. */
19009 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19010 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19011 if (type != NULL)
19012 SYMBOL_TYPE (sym) = type;
19013 else
19014 SYMBOL_TYPE (sym) = die_type (die, cu);
19015 attr = dwarf2_attr (die,
19016 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19017 cu);
19018 if (attr)
19019 {
19020 SYMBOL_LINE (sym) = DW_UNSND (attr);
19021 }
19022
19023 attr = dwarf2_attr (die,
19024 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19025 cu);
19026 if (attr)
19027 {
19028 file_name_index file_index = (file_name_index) DW_UNSND (attr);
19029 struct file_entry *fe;
19030
19031 if (cu->line_header != NULL)
19032 fe = cu->line_header->file_name_at (file_index);
19033 else
19034 fe = NULL;
19035
19036 if (fe == NULL)
19037 complaint (&symfile_complaints,
19038 _("file index out of range"));
19039 else
19040 symbol_set_symtab (sym, fe->symtab);
19041 }
19042
19043 switch (die->tag)
19044 {
19045 case DW_TAG_label:
19046 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
19047 if (attr)
19048 {
19049 CORE_ADDR addr;
19050
19051 addr = attr_value_as_address (attr);
19052 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19053 SYMBOL_VALUE_ADDRESS (sym) = addr;
19054 }
19055 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19056 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
19057 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
19058 add_symbol_to_list (sym, cu->list_in_scope);
19059 break;
19060 case DW_TAG_subprogram:
19061 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19062 finish_block. */
19063 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19064 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19065 if ((attr2 && (DW_UNSND (attr2) != 0))
19066 || cu->language == language_ada)
19067 {
19068 /* Subprograms marked external are stored as a global symbol.
19069 Ada subprograms, whether marked external or not, are always
19070 stored as a global symbol, because we want to be able to
19071 access them globally. For instance, we want to be able
19072 to break on a nested subprogram without having to
19073 specify the context. */
19074 list_to_add = &global_symbols;
19075 }
19076 else
19077 {
19078 list_to_add = cu->list_in_scope;
19079 }
19080 break;
19081 case DW_TAG_inlined_subroutine:
19082 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19083 finish_block. */
19084 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
19085 SYMBOL_INLINED (sym) = 1;
19086 list_to_add = cu->list_in_scope;
19087 break;
19088 case DW_TAG_template_value_param:
19089 suppress_add = 1;
19090 /* Fall through. */
19091 case DW_TAG_constant:
19092 case DW_TAG_variable:
19093 case DW_TAG_member:
19094 /* Compilation with minimal debug info may result in
19095 variables with missing type entries. Change the
19096 misleading `void' type to something sensible. */
19097 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
19098 SYMBOL_TYPE (sym)
19099 = objfile_type (objfile)->nodebug_data_symbol;
19100
19101 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19102 /* In the case of DW_TAG_member, we should only be called for
19103 static const members. */
19104 if (die->tag == DW_TAG_member)
19105 {
19106 /* dwarf2_add_field uses die_is_declaration,
19107 so we do the same. */
19108 gdb_assert (die_is_declaration (die, cu));
19109 gdb_assert (attr);
19110 }
19111 if (attr)
19112 {
19113 dwarf2_const_value (attr, sym, cu);
19114 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19115 if (!suppress_add)
19116 {
19117 if (attr2 && (DW_UNSND (attr2) != 0))
19118 list_to_add = &global_symbols;
19119 else
19120 list_to_add = cu->list_in_scope;
19121 }
19122 break;
19123 }
19124 attr = dwarf2_attr (die, DW_AT_location, cu);
19125 if (attr)
19126 {
19127 var_decode_location (attr, sym, cu);
19128 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19129
19130 /* Fortran explicitly imports any global symbols to the local
19131 scope by DW_TAG_common_block. */
19132 if (cu->language == language_fortran && die->parent
19133 && die->parent->tag == DW_TAG_common_block)
19134 attr2 = NULL;
19135
19136 if (SYMBOL_CLASS (sym) == LOC_STATIC
19137 && SYMBOL_VALUE_ADDRESS (sym) == 0
19138 && !dwarf2_per_objfile->has_section_at_zero)
19139 {
19140 /* When a static variable is eliminated by the linker,
19141 the corresponding debug information is not stripped
19142 out, but the variable address is set to null;
19143 do not add such variables into symbol table. */
19144 }
19145 else if (attr2 && (DW_UNSND (attr2) != 0))
19146 {
19147 /* Workaround gfortran PR debug/40040 - it uses
19148 DW_AT_location for variables in -fPIC libraries which may
19149 get overriden by other libraries/executable and get
19150 a different address. Resolve it by the minimal symbol
19151 which may come from inferior's executable using copy
19152 relocation. Make this workaround only for gfortran as for
19153 other compilers GDB cannot guess the minimal symbol
19154 Fortran mangling kind. */
19155 if (cu->language == language_fortran && die->parent
19156 && die->parent->tag == DW_TAG_module
19157 && cu->producer
19158 && startswith (cu->producer, "GNU Fortran"))
19159 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19160
19161 /* A variable with DW_AT_external is never static,
19162 but it may be block-scoped. */
19163 list_to_add = (cu->list_in_scope == &file_symbols
19164 ? &global_symbols : cu->list_in_scope);
19165 }
19166 else
19167 list_to_add = cu->list_in_scope;
19168 }
19169 else
19170 {
19171 /* We do not know the address of this symbol.
19172 If it is an external symbol and we have type information
19173 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19174 The address of the variable will then be determined from
19175 the minimal symbol table whenever the variable is
19176 referenced. */
19177 attr2 = dwarf2_attr (die, DW_AT_external, cu);
19178
19179 /* Fortran explicitly imports any global symbols to the local
19180 scope by DW_TAG_common_block. */
19181 if (cu->language == language_fortran && die->parent
19182 && die->parent->tag == DW_TAG_common_block)
19183 {
19184 /* SYMBOL_CLASS doesn't matter here because
19185 read_common_block is going to reset it. */
19186 if (!suppress_add)
19187 list_to_add = cu->list_in_scope;
19188 }
19189 else if (attr2 && (DW_UNSND (attr2) != 0)
19190 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
19191 {
19192 /* A variable with DW_AT_external is never static, but it
19193 may be block-scoped. */
19194 list_to_add = (cu->list_in_scope == &file_symbols
19195 ? &global_symbols : cu->list_in_scope);
19196
19197 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
19198 }
19199 else if (!die_is_declaration (die, cu))
19200 {
19201 /* Use the default LOC_OPTIMIZED_OUT class. */
19202 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
19203 if (!suppress_add)
19204 list_to_add = cu->list_in_scope;
19205 }
19206 }
19207 break;
19208 case DW_TAG_formal_parameter:
19209 /* If we are inside a function, mark this as an argument. If
19210 not, we might be looking at an argument to an inlined function
19211 when we do not have enough information to show inlined frames;
19212 pretend it's a local variable in that case so that the user can
19213 still see it. */
19214 if (context_stack_depth > 0
19215 && context_stack[context_stack_depth - 1].name != NULL)
19216 SYMBOL_IS_ARGUMENT (sym) = 1;
19217 attr = dwarf2_attr (die, DW_AT_location, cu);
19218 if (attr)
19219 {
19220 var_decode_location (attr, sym, cu);
19221 }
19222 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19223 if (attr)
19224 {
19225 dwarf2_const_value (attr, sym, cu);
19226 }
19227
19228 list_to_add = cu->list_in_scope;
19229 break;
19230 case DW_TAG_unspecified_parameters:
19231 /* From varargs functions; gdb doesn't seem to have any
19232 interest in this information, so just ignore it for now.
19233 (FIXME?) */
19234 break;
19235 case DW_TAG_template_type_param:
19236 suppress_add = 1;
19237 /* Fall through. */
19238 case DW_TAG_class_type:
19239 case DW_TAG_interface_type:
19240 case DW_TAG_structure_type:
19241 case DW_TAG_union_type:
19242 case DW_TAG_set_type:
19243 case DW_TAG_enumeration_type:
19244 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19245 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
19246
19247 {
19248 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
19249 really ever be static objects: otherwise, if you try
19250 to, say, break of a class's method and you're in a file
19251 which doesn't mention that class, it won't work unless
19252 the check for all static symbols in lookup_symbol_aux
19253 saves you. See the OtherFileClass tests in
19254 gdb.c++/namespace.exp. */
19255
19256 if (!suppress_add)
19257 {
19258 list_to_add = (cu->list_in_scope == &file_symbols
19259 && cu->language == language_cplus
19260 ? &global_symbols : cu->list_in_scope);
19261
19262 /* The semantics of C++ state that "struct foo {
19263 ... }" also defines a typedef for "foo". */
19264 if (cu->language == language_cplus
19265 || cu->language == language_ada
19266 || cu->language == language_d
19267 || cu->language == language_rust)
19268 {
19269 /* The symbol's name is already allocated along
19270 with this objfile, so we don't need to
19271 duplicate it for the type. */
19272 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19273 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19274 }
19275 }
19276 }
19277 break;
19278 case DW_TAG_typedef:
19279 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19280 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19281 list_to_add = cu->list_in_scope;
19282 break;
19283 case DW_TAG_base_type:
19284 case DW_TAG_subrange_type:
19285 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19286 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19287 list_to_add = cu->list_in_scope;
19288 break;
19289 case DW_TAG_enumerator:
19290 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19291 if (attr)
19292 {
19293 dwarf2_const_value (attr, sym, cu);
19294 }
19295 {
19296 /* NOTE: carlton/2003-11-10: See comment above in the
19297 DW_TAG_class_type, etc. block. */
19298
19299 list_to_add = (cu->list_in_scope == &file_symbols
19300 && cu->language == language_cplus
19301 ? &global_symbols : cu->list_in_scope);
19302 }
19303 break;
19304 case DW_TAG_imported_declaration:
19305 case DW_TAG_namespace:
19306 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19307 list_to_add = &global_symbols;
19308 break;
19309 case DW_TAG_module:
19310 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19311 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19312 list_to_add = &global_symbols;
19313 break;
19314 case DW_TAG_common_block:
19315 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
19316 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19317 add_symbol_to_list (sym, cu->list_in_scope);
19318 break;
19319 default:
19320 /* Not a tag we recognize. Hopefully we aren't processing
19321 trash data, but since we must specifically ignore things
19322 we don't recognize, there is nothing else we should do at
19323 this point. */
19324 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
19325 dwarf_tag_name (die->tag));
19326 break;
19327 }
19328
19329 if (suppress_add)
19330 {
19331 sym->hash_next = objfile->template_symbols;
19332 objfile->template_symbols = sym;
19333 list_to_add = NULL;
19334 }
19335
19336 if (list_to_add != NULL)
19337 add_symbol_to_list (sym, list_to_add);
19338
19339 /* For the benefit of old versions of GCC, check for anonymous
19340 namespaces based on the demangled name. */
19341 if (!cu->processing_has_namespace_info
19342 && cu->language == language_cplus)
19343 cp_scan_for_anonymous_namespaces (sym, objfile);
19344 }
19345 return (sym);
19346 }
19347
19348 /* A wrapper for new_symbol_full that always allocates a new symbol. */
19349
19350 static struct symbol *
19351 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19352 {
19353 return new_symbol_full (die, type, cu, NULL);
19354 }
19355
19356 /* Given an attr with a DW_FORM_dataN value in host byte order,
19357 zero-extend it as appropriate for the symbol's type. The DWARF
19358 standard (v4) is not entirely clear about the meaning of using
19359 DW_FORM_dataN for a constant with a signed type, where the type is
19360 wider than the data. The conclusion of a discussion on the DWARF
19361 list was that this is unspecified. We choose to always zero-extend
19362 because that is the interpretation long in use by GCC. */
19363
19364 static gdb_byte *
19365 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
19366 struct dwarf2_cu *cu, LONGEST *value, int bits)
19367 {
19368 struct objfile *objfile = cu->objfile;
19369 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19370 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
19371 LONGEST l = DW_UNSND (attr);
19372
19373 if (bits < sizeof (*value) * 8)
19374 {
19375 l &= ((LONGEST) 1 << bits) - 1;
19376 *value = l;
19377 }
19378 else if (bits == sizeof (*value) * 8)
19379 *value = l;
19380 else
19381 {
19382 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
19383 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19384 return bytes;
19385 }
19386
19387 return NULL;
19388 }
19389
19390 /* Read a constant value from an attribute. Either set *VALUE, or if
19391 the value does not fit in *VALUE, set *BYTES - either already
19392 allocated on the objfile obstack, or newly allocated on OBSTACK,
19393 or, set *BATON, if we translated the constant to a location
19394 expression. */
19395
19396 static void
19397 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
19398 const char *name, struct obstack *obstack,
19399 struct dwarf2_cu *cu,
19400 LONGEST *value, const gdb_byte **bytes,
19401 struct dwarf2_locexpr_baton **baton)
19402 {
19403 struct objfile *objfile = cu->objfile;
19404 struct comp_unit_head *cu_header = &cu->header;
19405 struct dwarf_block *blk;
19406 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19407 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19408
19409 *value = 0;
19410 *bytes = NULL;
19411 *baton = NULL;
19412
19413 switch (attr->form)
19414 {
19415 case DW_FORM_addr:
19416 case DW_FORM_GNU_addr_index:
19417 {
19418 gdb_byte *data;
19419
19420 if (TYPE_LENGTH (type) != cu_header->addr_size)
19421 dwarf2_const_value_length_mismatch_complaint (name,
19422 cu_header->addr_size,
19423 TYPE_LENGTH (type));
19424 /* Symbols of this form are reasonably rare, so we just
19425 piggyback on the existing location code rather than writing
19426 a new implementation of symbol_computed_ops. */
19427 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
19428 (*baton)->per_cu = cu->per_cu;
19429 gdb_assert ((*baton)->per_cu);
19430
19431 (*baton)->size = 2 + cu_header->addr_size;
19432 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
19433 (*baton)->data = data;
19434
19435 data[0] = DW_OP_addr;
19436 store_unsigned_integer (&data[1], cu_header->addr_size,
19437 byte_order, DW_ADDR (attr));
19438 data[cu_header->addr_size + 1] = DW_OP_stack_value;
19439 }
19440 break;
19441 case DW_FORM_string:
19442 case DW_FORM_strp:
19443 case DW_FORM_GNU_str_index:
19444 case DW_FORM_GNU_strp_alt:
19445 /* DW_STRING is already allocated on the objfile obstack, point
19446 directly to it. */
19447 *bytes = (const gdb_byte *) DW_STRING (attr);
19448 break;
19449 case DW_FORM_block1:
19450 case DW_FORM_block2:
19451 case DW_FORM_block4:
19452 case DW_FORM_block:
19453 case DW_FORM_exprloc:
19454 case DW_FORM_data16:
19455 blk = DW_BLOCK (attr);
19456 if (TYPE_LENGTH (type) != blk->size)
19457 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19458 TYPE_LENGTH (type));
19459 *bytes = blk->data;
19460 break;
19461
19462 /* The DW_AT_const_value attributes are supposed to carry the
19463 symbol's value "represented as it would be on the target
19464 architecture." By the time we get here, it's already been
19465 converted to host endianness, so we just need to sign- or
19466 zero-extend it as appropriate. */
19467 case DW_FORM_data1:
19468 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
19469 break;
19470 case DW_FORM_data2:
19471 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
19472 break;
19473 case DW_FORM_data4:
19474 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
19475 break;
19476 case DW_FORM_data8:
19477 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
19478 break;
19479
19480 case DW_FORM_sdata:
19481 *value = DW_SND (attr);
19482 break;
19483
19484 case DW_FORM_udata:
19485 *value = DW_UNSND (attr);
19486 break;
19487
19488 default:
19489 complaint (&symfile_complaints,
19490 _("unsupported const value attribute form: '%s'"),
19491 dwarf_form_name (attr->form));
19492 *value = 0;
19493 break;
19494 }
19495 }
19496
19497
19498 /* Copy constant value from an attribute to a symbol. */
19499
19500 static void
19501 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
19502 struct dwarf2_cu *cu)
19503 {
19504 struct objfile *objfile = cu->objfile;
19505 LONGEST value;
19506 const gdb_byte *bytes;
19507 struct dwarf2_locexpr_baton *baton;
19508
19509 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19510 SYMBOL_PRINT_NAME (sym),
19511 &objfile->objfile_obstack, cu,
19512 &value, &bytes, &baton);
19513
19514 if (baton != NULL)
19515 {
19516 SYMBOL_LOCATION_BATON (sym) = baton;
19517 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
19518 }
19519 else if (bytes != NULL)
19520 {
19521 SYMBOL_VALUE_BYTES (sym) = bytes;
19522 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
19523 }
19524 else
19525 {
19526 SYMBOL_VALUE (sym) = value;
19527 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
19528 }
19529 }
19530
19531 /* Return the type of the die in question using its DW_AT_type attribute. */
19532
19533 static struct type *
19534 die_type (struct die_info *die, struct dwarf2_cu *cu)
19535 {
19536 struct attribute *type_attr;
19537
19538 type_attr = dwarf2_attr (die, DW_AT_type, cu);
19539 if (!type_attr)
19540 {
19541 /* A missing DW_AT_type represents a void type. */
19542 return objfile_type (cu->objfile)->builtin_void;
19543 }
19544
19545 return lookup_die_type (die, type_attr, cu);
19546 }
19547
19548 /* True iff CU's producer generates GNAT Ada auxiliary information
19549 that allows to find parallel types through that information instead
19550 of having to do expensive parallel lookups by type name. */
19551
19552 static int
19553 need_gnat_info (struct dwarf2_cu *cu)
19554 {
19555 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19556 of GNAT produces this auxiliary information, without any indication
19557 that it is produced. Part of enhancing the FSF version of GNAT
19558 to produce that information will be to put in place an indicator
19559 that we can use in order to determine whether the descriptive type
19560 info is available or not. One suggestion that has been made is
19561 to use a new attribute, attached to the CU die. For now, assume
19562 that the descriptive type info is not available. */
19563 return 0;
19564 }
19565
19566 /* Return the auxiliary type of the die in question using its
19567 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19568 attribute is not present. */
19569
19570 static struct type *
19571 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19572 {
19573 struct attribute *type_attr;
19574
19575 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19576 if (!type_attr)
19577 return NULL;
19578
19579 return lookup_die_type (die, type_attr, cu);
19580 }
19581
19582 /* If DIE has a descriptive_type attribute, then set the TYPE's
19583 descriptive type accordingly. */
19584
19585 static void
19586 set_descriptive_type (struct type *type, struct die_info *die,
19587 struct dwarf2_cu *cu)
19588 {
19589 struct type *descriptive_type = die_descriptive_type (die, cu);
19590
19591 if (descriptive_type)
19592 {
19593 ALLOCATE_GNAT_AUX_TYPE (type);
19594 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19595 }
19596 }
19597
19598 /* Return the containing type of the die in question using its
19599 DW_AT_containing_type attribute. */
19600
19601 static struct type *
19602 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
19603 {
19604 struct attribute *type_attr;
19605
19606 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
19607 if (!type_attr)
19608 error (_("Dwarf Error: Problem turning containing type into gdb type "
19609 "[in module %s]"), objfile_name (cu->objfile));
19610
19611 return lookup_die_type (die, type_attr, cu);
19612 }
19613
19614 /* Return an error marker type to use for the ill formed type in DIE/CU. */
19615
19616 static struct type *
19617 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19618 {
19619 struct objfile *objfile = dwarf2_per_objfile->objfile;
19620 char *message, *saved;
19621
19622 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
19623 objfile_name (objfile),
19624 to_underlying (cu->header.sect_off),
19625 to_underlying (die->sect_off));
19626 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19627 message, strlen (message));
19628 xfree (message);
19629
19630 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19631 }
19632
19633 /* Look up the type of DIE in CU using its type attribute ATTR.
19634 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19635 DW_AT_containing_type.
19636 If there is no type substitute an error marker. */
19637
19638 static struct type *
19639 lookup_die_type (struct die_info *die, const struct attribute *attr,
19640 struct dwarf2_cu *cu)
19641 {
19642 struct objfile *objfile = cu->objfile;
19643 struct type *this_type;
19644
19645 gdb_assert (attr->name == DW_AT_type
19646 || attr->name == DW_AT_GNAT_descriptive_type
19647 || attr->name == DW_AT_containing_type);
19648
19649 /* First see if we have it cached. */
19650
19651 if (attr->form == DW_FORM_GNU_ref_alt)
19652 {
19653 struct dwarf2_per_cu_data *per_cu;
19654 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19655
19656 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19657 this_type = get_die_type_at_offset (sect_off, per_cu);
19658 }
19659 else if (attr_form_is_ref (attr))
19660 {
19661 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
19662
19663 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
19664 }
19665 else if (attr->form == DW_FORM_ref_sig8)
19666 {
19667 ULONGEST signature = DW_SIGNATURE (attr);
19668
19669 return get_signatured_type (die, signature, cu);
19670 }
19671 else
19672 {
19673 complaint (&symfile_complaints,
19674 _("Dwarf Error: Bad type attribute %s in DIE"
19675 " at 0x%x [in module %s]"),
19676 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
19677 objfile_name (objfile));
19678 return build_error_marker_type (cu, die);
19679 }
19680
19681 /* If not cached we need to read it in. */
19682
19683 if (this_type == NULL)
19684 {
19685 struct die_info *type_die = NULL;
19686 struct dwarf2_cu *type_cu = cu;
19687
19688 if (attr_form_is_ref (attr))
19689 type_die = follow_die_ref (die, attr, &type_cu);
19690 if (type_die == NULL)
19691 return build_error_marker_type (cu, die);
19692 /* If we find the type now, it's probably because the type came
19693 from an inter-CU reference and the type's CU got expanded before
19694 ours. */
19695 this_type = read_type_die (type_die, type_cu);
19696 }
19697
19698 /* If we still don't have a type use an error marker. */
19699
19700 if (this_type == NULL)
19701 return build_error_marker_type (cu, die);
19702
19703 return this_type;
19704 }
19705
19706 /* Return the type in DIE, CU.
19707 Returns NULL for invalid types.
19708
19709 This first does a lookup in die_type_hash,
19710 and only reads the die in if necessary.
19711
19712 NOTE: This can be called when reading in partial or full symbols. */
19713
19714 static struct type *
19715 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19716 {
19717 struct type *this_type;
19718
19719 this_type = get_die_type (die, cu);
19720 if (this_type)
19721 return this_type;
19722
19723 return read_type_die_1 (die, cu);
19724 }
19725
19726 /* Read the type in DIE, CU.
19727 Returns NULL for invalid types. */
19728
19729 static struct type *
19730 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19731 {
19732 struct type *this_type = NULL;
19733
19734 switch (die->tag)
19735 {
19736 case DW_TAG_class_type:
19737 case DW_TAG_interface_type:
19738 case DW_TAG_structure_type:
19739 case DW_TAG_union_type:
19740 this_type = read_structure_type (die, cu);
19741 break;
19742 case DW_TAG_enumeration_type:
19743 this_type = read_enumeration_type (die, cu);
19744 break;
19745 case DW_TAG_subprogram:
19746 case DW_TAG_subroutine_type:
19747 case DW_TAG_inlined_subroutine:
19748 this_type = read_subroutine_type (die, cu);
19749 break;
19750 case DW_TAG_array_type:
19751 this_type = read_array_type (die, cu);
19752 break;
19753 case DW_TAG_set_type:
19754 this_type = read_set_type (die, cu);
19755 break;
19756 case DW_TAG_pointer_type:
19757 this_type = read_tag_pointer_type (die, cu);
19758 break;
19759 case DW_TAG_ptr_to_member_type:
19760 this_type = read_tag_ptr_to_member_type (die, cu);
19761 break;
19762 case DW_TAG_reference_type:
19763 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19764 break;
19765 case DW_TAG_rvalue_reference_type:
19766 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
19767 break;
19768 case DW_TAG_const_type:
19769 this_type = read_tag_const_type (die, cu);
19770 break;
19771 case DW_TAG_volatile_type:
19772 this_type = read_tag_volatile_type (die, cu);
19773 break;
19774 case DW_TAG_restrict_type:
19775 this_type = read_tag_restrict_type (die, cu);
19776 break;
19777 case DW_TAG_string_type:
19778 this_type = read_tag_string_type (die, cu);
19779 break;
19780 case DW_TAG_typedef:
19781 this_type = read_typedef (die, cu);
19782 break;
19783 case DW_TAG_subrange_type:
19784 this_type = read_subrange_type (die, cu);
19785 break;
19786 case DW_TAG_base_type:
19787 this_type = read_base_type (die, cu);
19788 break;
19789 case DW_TAG_unspecified_type:
19790 this_type = read_unspecified_type (die, cu);
19791 break;
19792 case DW_TAG_namespace:
19793 this_type = read_namespace_type (die, cu);
19794 break;
19795 case DW_TAG_module:
19796 this_type = read_module_type (die, cu);
19797 break;
19798 case DW_TAG_atomic_type:
19799 this_type = read_tag_atomic_type (die, cu);
19800 break;
19801 default:
19802 complaint (&symfile_complaints,
19803 _("unexpected tag in read_type_die: '%s'"),
19804 dwarf_tag_name (die->tag));
19805 break;
19806 }
19807
19808 return this_type;
19809 }
19810
19811 /* See if we can figure out if the class lives in a namespace. We do
19812 this by looking for a member function; its demangled name will
19813 contain namespace info, if there is any.
19814 Return the computed name or NULL.
19815 Space for the result is allocated on the objfile's obstack.
19816 This is the full-die version of guess_partial_die_structure_name.
19817 In this case we know DIE has no useful parent. */
19818
19819 static char *
19820 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19821 {
19822 struct die_info *spec_die;
19823 struct dwarf2_cu *spec_cu;
19824 struct die_info *child;
19825
19826 spec_cu = cu;
19827 spec_die = die_specification (die, &spec_cu);
19828 if (spec_die != NULL)
19829 {
19830 die = spec_die;
19831 cu = spec_cu;
19832 }
19833
19834 for (child = die->child;
19835 child != NULL;
19836 child = child->sibling)
19837 {
19838 if (child->tag == DW_TAG_subprogram)
19839 {
19840 const char *linkage_name;
19841
19842 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19843 if (linkage_name == NULL)
19844 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19845 cu);
19846 if (linkage_name != NULL)
19847 {
19848 char *actual_name
19849 = language_class_name_from_physname (cu->language_defn,
19850 linkage_name);
19851 char *name = NULL;
19852
19853 if (actual_name != NULL)
19854 {
19855 const char *die_name = dwarf2_name (die, cu);
19856
19857 if (die_name != NULL
19858 && strcmp (die_name, actual_name) != 0)
19859 {
19860 /* Strip off the class name from the full name.
19861 We want the prefix. */
19862 int die_name_len = strlen (die_name);
19863 int actual_name_len = strlen (actual_name);
19864
19865 /* Test for '::' as a sanity check. */
19866 if (actual_name_len > die_name_len + 2
19867 && actual_name[actual_name_len
19868 - die_name_len - 1] == ':')
19869 name = (char *) obstack_copy0 (
19870 &cu->objfile->per_bfd->storage_obstack,
19871 actual_name, actual_name_len - die_name_len - 2);
19872 }
19873 }
19874 xfree (actual_name);
19875 return name;
19876 }
19877 }
19878 }
19879
19880 return NULL;
19881 }
19882
19883 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19884 prefix part in such case. See
19885 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19886
19887 static const char *
19888 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19889 {
19890 struct attribute *attr;
19891 const char *base;
19892
19893 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19894 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19895 return NULL;
19896
19897 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19898 return NULL;
19899
19900 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19901 if (attr == NULL)
19902 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19903 if (attr == NULL || DW_STRING (attr) == NULL)
19904 return NULL;
19905
19906 /* dwarf2_name had to be already called. */
19907 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19908
19909 /* Strip the base name, keep any leading namespaces/classes. */
19910 base = strrchr (DW_STRING (attr), ':');
19911 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19912 return "";
19913
19914 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19915 DW_STRING (attr),
19916 &base[-1] - DW_STRING (attr));
19917 }
19918
19919 /* Return the name of the namespace/class that DIE is defined within,
19920 or "" if we can't tell. The caller should not xfree the result.
19921
19922 For example, if we're within the method foo() in the following
19923 code:
19924
19925 namespace N {
19926 class C {
19927 void foo () {
19928 }
19929 };
19930 }
19931
19932 then determine_prefix on foo's die will return "N::C". */
19933
19934 static const char *
19935 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19936 {
19937 struct die_info *parent, *spec_die;
19938 struct dwarf2_cu *spec_cu;
19939 struct type *parent_type;
19940 const char *retval;
19941
19942 if (cu->language != language_cplus
19943 && cu->language != language_fortran && cu->language != language_d
19944 && cu->language != language_rust)
19945 return "";
19946
19947 retval = anonymous_struct_prefix (die, cu);
19948 if (retval)
19949 return retval;
19950
19951 /* We have to be careful in the presence of DW_AT_specification.
19952 For example, with GCC 3.4, given the code
19953
19954 namespace N {
19955 void foo() {
19956 // Definition of N::foo.
19957 }
19958 }
19959
19960 then we'll have a tree of DIEs like this:
19961
19962 1: DW_TAG_compile_unit
19963 2: DW_TAG_namespace // N
19964 3: DW_TAG_subprogram // declaration of N::foo
19965 4: DW_TAG_subprogram // definition of N::foo
19966 DW_AT_specification // refers to die #3
19967
19968 Thus, when processing die #4, we have to pretend that we're in
19969 the context of its DW_AT_specification, namely the contex of die
19970 #3. */
19971 spec_cu = cu;
19972 spec_die = die_specification (die, &spec_cu);
19973 if (spec_die == NULL)
19974 parent = die->parent;
19975 else
19976 {
19977 parent = spec_die->parent;
19978 cu = spec_cu;
19979 }
19980
19981 if (parent == NULL)
19982 return "";
19983 else if (parent->building_fullname)
19984 {
19985 const char *name;
19986 const char *parent_name;
19987
19988 /* It has been seen on RealView 2.2 built binaries,
19989 DW_TAG_template_type_param types actually _defined_ as
19990 children of the parent class:
19991
19992 enum E {};
19993 template class <class Enum> Class{};
19994 Class<enum E> class_e;
19995
19996 1: DW_TAG_class_type (Class)
19997 2: DW_TAG_enumeration_type (E)
19998 3: DW_TAG_enumerator (enum1:0)
19999 3: DW_TAG_enumerator (enum2:1)
20000 ...
20001 2: DW_TAG_template_type_param
20002 DW_AT_type DW_FORM_ref_udata (E)
20003
20004 Besides being broken debug info, it can put GDB into an
20005 infinite loop. Consider:
20006
20007 When we're building the full name for Class<E>, we'll start
20008 at Class, and go look over its template type parameters,
20009 finding E. We'll then try to build the full name of E, and
20010 reach here. We're now trying to build the full name of E,
20011 and look over the parent DIE for containing scope. In the
20012 broken case, if we followed the parent DIE of E, we'd again
20013 find Class, and once again go look at its template type
20014 arguments, etc., etc. Simply don't consider such parent die
20015 as source-level parent of this die (it can't be, the language
20016 doesn't allow it), and break the loop here. */
20017 name = dwarf2_name (die, cu);
20018 parent_name = dwarf2_name (parent, cu);
20019 complaint (&symfile_complaints,
20020 _("template param type '%s' defined within parent '%s'"),
20021 name ? name : "<unknown>",
20022 parent_name ? parent_name : "<unknown>");
20023 return "";
20024 }
20025 else
20026 switch (parent->tag)
20027 {
20028 case DW_TAG_namespace:
20029 parent_type = read_type_die (parent, cu);
20030 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20031 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20032 Work around this problem here. */
20033 if (cu->language == language_cplus
20034 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20035 return "";
20036 /* We give a name to even anonymous namespaces. */
20037 return TYPE_TAG_NAME (parent_type);
20038 case DW_TAG_class_type:
20039 case DW_TAG_interface_type:
20040 case DW_TAG_structure_type:
20041 case DW_TAG_union_type:
20042 case DW_TAG_module:
20043 parent_type = read_type_die (parent, cu);
20044 if (TYPE_TAG_NAME (parent_type) != NULL)
20045 return TYPE_TAG_NAME (parent_type);
20046 else
20047 /* An anonymous structure is only allowed non-static data
20048 members; no typedefs, no member functions, et cetera.
20049 So it does not need a prefix. */
20050 return "";
20051 case DW_TAG_compile_unit:
20052 case DW_TAG_partial_unit:
20053 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20054 if (cu->language == language_cplus
20055 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
20056 && die->child != NULL
20057 && (die->tag == DW_TAG_class_type
20058 || die->tag == DW_TAG_structure_type
20059 || die->tag == DW_TAG_union_type))
20060 {
20061 char *name = guess_full_die_structure_name (die, cu);
20062 if (name != NULL)
20063 return name;
20064 }
20065 return "";
20066 case DW_TAG_enumeration_type:
20067 parent_type = read_type_die (parent, cu);
20068 if (TYPE_DECLARED_CLASS (parent_type))
20069 {
20070 if (TYPE_TAG_NAME (parent_type) != NULL)
20071 return TYPE_TAG_NAME (parent_type);
20072 return "";
20073 }
20074 /* Fall through. */
20075 default:
20076 return determine_prefix (parent, cu);
20077 }
20078 }
20079
20080 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20081 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20082 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20083 an obconcat, otherwise allocate storage for the result. The CU argument is
20084 used to determine the language and hence, the appropriate separator. */
20085
20086 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
20087
20088 static char *
20089 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20090 int physname, struct dwarf2_cu *cu)
20091 {
20092 const char *lead = "";
20093 const char *sep;
20094
20095 if (suffix == NULL || suffix[0] == '\0'
20096 || prefix == NULL || prefix[0] == '\0')
20097 sep = "";
20098 else if (cu->language == language_d)
20099 {
20100 /* For D, the 'main' function could be defined in any module, but it
20101 should never be prefixed. */
20102 if (strcmp (suffix, "D main") == 0)
20103 {
20104 prefix = "";
20105 sep = "";
20106 }
20107 else
20108 sep = ".";
20109 }
20110 else if (cu->language == language_fortran && physname)
20111 {
20112 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20113 DW_AT_MIPS_linkage_name is preferred and used instead. */
20114
20115 lead = "__";
20116 sep = "_MOD_";
20117 }
20118 else
20119 sep = "::";
20120
20121 if (prefix == NULL)
20122 prefix = "";
20123 if (suffix == NULL)
20124 suffix = "";
20125
20126 if (obs == NULL)
20127 {
20128 char *retval
20129 = ((char *)
20130 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
20131
20132 strcpy (retval, lead);
20133 strcat (retval, prefix);
20134 strcat (retval, sep);
20135 strcat (retval, suffix);
20136 return retval;
20137 }
20138 else
20139 {
20140 /* We have an obstack. */
20141 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
20142 }
20143 }
20144
20145 /* Return sibling of die, NULL if no sibling. */
20146
20147 static struct die_info *
20148 sibling_die (struct die_info *die)
20149 {
20150 return die->sibling;
20151 }
20152
20153 /* Get name of a die, return NULL if not found. */
20154
20155 static const char *
20156 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
20157 struct obstack *obstack)
20158 {
20159 if (name && cu->language == language_cplus)
20160 {
20161 std::string canon_name = cp_canonicalize_string (name);
20162
20163 if (!canon_name.empty ())
20164 {
20165 if (canon_name != name)
20166 name = (const char *) obstack_copy0 (obstack,
20167 canon_name.c_str (),
20168 canon_name.length ());
20169 }
20170 }
20171
20172 return name;
20173 }
20174
20175 /* Get name of a die, return NULL if not found.
20176 Anonymous namespaces are converted to their magic string. */
20177
20178 static const char *
20179 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
20180 {
20181 struct attribute *attr;
20182
20183 attr = dwarf2_attr (die, DW_AT_name, cu);
20184 if ((!attr || !DW_STRING (attr))
20185 && die->tag != DW_TAG_namespace
20186 && die->tag != DW_TAG_class_type
20187 && die->tag != DW_TAG_interface_type
20188 && die->tag != DW_TAG_structure_type
20189 && die->tag != DW_TAG_union_type)
20190 return NULL;
20191
20192 switch (die->tag)
20193 {
20194 case DW_TAG_compile_unit:
20195 case DW_TAG_partial_unit:
20196 /* Compilation units have a DW_AT_name that is a filename, not
20197 a source language identifier. */
20198 case DW_TAG_enumeration_type:
20199 case DW_TAG_enumerator:
20200 /* These tags always have simple identifiers already; no need
20201 to canonicalize them. */
20202 return DW_STRING (attr);
20203
20204 case DW_TAG_namespace:
20205 if (attr != NULL && DW_STRING (attr) != NULL)
20206 return DW_STRING (attr);
20207 return CP_ANONYMOUS_NAMESPACE_STR;
20208
20209 case DW_TAG_class_type:
20210 case DW_TAG_interface_type:
20211 case DW_TAG_structure_type:
20212 case DW_TAG_union_type:
20213 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20214 structures or unions. These were of the form "._%d" in GCC 4.1,
20215 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20216 and GCC 4.4. We work around this problem by ignoring these. */
20217 if (attr && DW_STRING (attr)
20218 && (startswith (DW_STRING (attr), "._")
20219 || startswith (DW_STRING (attr), "<anonymous")))
20220 return NULL;
20221
20222 /* GCC might emit a nameless typedef that has a linkage name. See
20223 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20224 if (!attr || DW_STRING (attr) == NULL)
20225 {
20226 char *demangled = NULL;
20227
20228 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20229 if (attr == NULL)
20230 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20231
20232 if (attr == NULL || DW_STRING (attr) == NULL)
20233 return NULL;
20234
20235 /* Avoid demangling DW_STRING (attr) the second time on a second
20236 call for the same DIE. */
20237 if (!DW_STRING_IS_CANONICAL (attr))
20238 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
20239
20240 if (demangled)
20241 {
20242 const char *base;
20243
20244 /* FIXME: we already did this for the partial symbol... */
20245 DW_STRING (attr)
20246 = ((const char *)
20247 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20248 demangled, strlen (demangled)));
20249 DW_STRING_IS_CANONICAL (attr) = 1;
20250 xfree (demangled);
20251
20252 /* Strip any leading namespaces/classes, keep only the base name.
20253 DW_AT_name for named DIEs does not contain the prefixes. */
20254 base = strrchr (DW_STRING (attr), ':');
20255 if (base && base > DW_STRING (attr) && base[-1] == ':')
20256 return &base[1];
20257 else
20258 return DW_STRING (attr);
20259 }
20260 }
20261 break;
20262
20263 default:
20264 break;
20265 }
20266
20267 if (!DW_STRING_IS_CANONICAL (attr))
20268 {
20269 DW_STRING (attr)
20270 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
20271 &cu->objfile->per_bfd->storage_obstack);
20272 DW_STRING_IS_CANONICAL (attr) = 1;
20273 }
20274 return DW_STRING (attr);
20275 }
20276
20277 /* Return the die that this die in an extension of, or NULL if there
20278 is none. *EXT_CU is the CU containing DIE on input, and the CU
20279 containing the return value on output. */
20280
20281 static struct die_info *
20282 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
20283 {
20284 struct attribute *attr;
20285
20286 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
20287 if (attr == NULL)
20288 return NULL;
20289
20290 return follow_die_ref (die, attr, ext_cu);
20291 }
20292
20293 /* Convert a DIE tag into its string name. */
20294
20295 static const char *
20296 dwarf_tag_name (unsigned tag)
20297 {
20298 const char *name = get_DW_TAG_name (tag);
20299
20300 if (name == NULL)
20301 return "DW_TAG_<unknown>";
20302
20303 return name;
20304 }
20305
20306 /* Convert a DWARF attribute code into its string name. */
20307
20308 static const char *
20309 dwarf_attr_name (unsigned attr)
20310 {
20311 const char *name;
20312
20313 #ifdef MIPS /* collides with DW_AT_HP_block_index */
20314 if (attr == DW_AT_MIPS_fde)
20315 return "DW_AT_MIPS_fde";
20316 #else
20317 if (attr == DW_AT_HP_block_index)
20318 return "DW_AT_HP_block_index";
20319 #endif
20320
20321 name = get_DW_AT_name (attr);
20322
20323 if (name == NULL)
20324 return "DW_AT_<unknown>";
20325
20326 return name;
20327 }
20328
20329 /* Convert a DWARF value form code into its string name. */
20330
20331 static const char *
20332 dwarf_form_name (unsigned form)
20333 {
20334 const char *name = get_DW_FORM_name (form);
20335
20336 if (name == NULL)
20337 return "DW_FORM_<unknown>";
20338
20339 return name;
20340 }
20341
20342 static const char *
20343 dwarf_bool_name (unsigned mybool)
20344 {
20345 if (mybool)
20346 return "TRUE";
20347 else
20348 return "FALSE";
20349 }
20350
20351 /* Convert a DWARF type code into its string name. */
20352
20353 static const char *
20354 dwarf_type_encoding_name (unsigned enc)
20355 {
20356 const char *name = get_DW_ATE_name (enc);
20357
20358 if (name == NULL)
20359 return "DW_ATE_<unknown>";
20360
20361 return name;
20362 }
20363
20364 static void
20365 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
20366 {
20367 unsigned int i;
20368
20369 print_spaces (indent, f);
20370 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
20371 dwarf_tag_name (die->tag), die->abbrev,
20372 to_underlying (die->sect_off));
20373
20374 if (die->parent != NULL)
20375 {
20376 print_spaces (indent, f);
20377 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
20378 to_underlying (die->parent->sect_off));
20379 }
20380
20381 print_spaces (indent, f);
20382 fprintf_unfiltered (f, " has children: %s\n",
20383 dwarf_bool_name (die->child != NULL));
20384
20385 print_spaces (indent, f);
20386 fprintf_unfiltered (f, " attributes:\n");
20387
20388 for (i = 0; i < die->num_attrs; ++i)
20389 {
20390 print_spaces (indent, f);
20391 fprintf_unfiltered (f, " %s (%s) ",
20392 dwarf_attr_name (die->attrs[i].name),
20393 dwarf_form_name (die->attrs[i].form));
20394
20395 switch (die->attrs[i].form)
20396 {
20397 case DW_FORM_addr:
20398 case DW_FORM_GNU_addr_index:
20399 fprintf_unfiltered (f, "address: ");
20400 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
20401 break;
20402 case DW_FORM_block2:
20403 case DW_FORM_block4:
20404 case DW_FORM_block:
20405 case DW_FORM_block1:
20406 fprintf_unfiltered (f, "block: size %s",
20407 pulongest (DW_BLOCK (&die->attrs[i])->size));
20408 break;
20409 case DW_FORM_exprloc:
20410 fprintf_unfiltered (f, "expression: size %s",
20411 pulongest (DW_BLOCK (&die->attrs[i])->size));
20412 break;
20413 case DW_FORM_data16:
20414 fprintf_unfiltered (f, "constant of 16 bytes");
20415 break;
20416 case DW_FORM_ref_addr:
20417 fprintf_unfiltered (f, "ref address: ");
20418 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20419 break;
20420 case DW_FORM_GNU_ref_alt:
20421 fprintf_unfiltered (f, "alt ref address: ");
20422 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20423 break;
20424 case DW_FORM_ref1:
20425 case DW_FORM_ref2:
20426 case DW_FORM_ref4:
20427 case DW_FORM_ref8:
20428 case DW_FORM_ref_udata:
20429 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
20430 (long) (DW_UNSND (&die->attrs[i])));
20431 break;
20432 case DW_FORM_data1:
20433 case DW_FORM_data2:
20434 case DW_FORM_data4:
20435 case DW_FORM_data8:
20436 case DW_FORM_udata:
20437 case DW_FORM_sdata:
20438 fprintf_unfiltered (f, "constant: %s",
20439 pulongest (DW_UNSND (&die->attrs[i])));
20440 break;
20441 case DW_FORM_sec_offset:
20442 fprintf_unfiltered (f, "section offset: %s",
20443 pulongest (DW_UNSND (&die->attrs[i])));
20444 break;
20445 case DW_FORM_ref_sig8:
20446 fprintf_unfiltered (f, "signature: %s",
20447 hex_string (DW_SIGNATURE (&die->attrs[i])));
20448 break;
20449 case DW_FORM_string:
20450 case DW_FORM_strp:
20451 case DW_FORM_line_strp:
20452 case DW_FORM_GNU_str_index:
20453 case DW_FORM_GNU_strp_alt:
20454 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
20455 DW_STRING (&die->attrs[i])
20456 ? DW_STRING (&die->attrs[i]) : "",
20457 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
20458 break;
20459 case DW_FORM_flag:
20460 if (DW_UNSND (&die->attrs[i]))
20461 fprintf_unfiltered (f, "flag: TRUE");
20462 else
20463 fprintf_unfiltered (f, "flag: FALSE");
20464 break;
20465 case DW_FORM_flag_present:
20466 fprintf_unfiltered (f, "flag: TRUE");
20467 break;
20468 case DW_FORM_indirect:
20469 /* The reader will have reduced the indirect form to
20470 the "base form" so this form should not occur. */
20471 fprintf_unfiltered (f,
20472 "unexpected attribute form: DW_FORM_indirect");
20473 break;
20474 default:
20475 fprintf_unfiltered (f, "unsupported attribute form: %d.",
20476 die->attrs[i].form);
20477 break;
20478 }
20479 fprintf_unfiltered (f, "\n");
20480 }
20481 }
20482
20483 static void
20484 dump_die_for_error (struct die_info *die)
20485 {
20486 dump_die_shallow (gdb_stderr, 0, die);
20487 }
20488
20489 static void
20490 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20491 {
20492 int indent = level * 4;
20493
20494 gdb_assert (die != NULL);
20495
20496 if (level >= max_level)
20497 return;
20498
20499 dump_die_shallow (f, indent, die);
20500
20501 if (die->child != NULL)
20502 {
20503 print_spaces (indent, f);
20504 fprintf_unfiltered (f, " Children:");
20505 if (level + 1 < max_level)
20506 {
20507 fprintf_unfiltered (f, "\n");
20508 dump_die_1 (f, level + 1, max_level, die->child);
20509 }
20510 else
20511 {
20512 fprintf_unfiltered (f,
20513 " [not printed, max nesting level reached]\n");
20514 }
20515 }
20516
20517 if (die->sibling != NULL && level > 0)
20518 {
20519 dump_die_1 (f, level, max_level, die->sibling);
20520 }
20521 }
20522
20523 /* This is called from the pdie macro in gdbinit.in.
20524 It's not static so gcc will keep a copy callable from gdb. */
20525
20526 void
20527 dump_die (struct die_info *die, int max_level)
20528 {
20529 dump_die_1 (gdb_stdlog, 0, max_level, die);
20530 }
20531
20532 static void
20533 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
20534 {
20535 void **slot;
20536
20537 slot = htab_find_slot_with_hash (cu->die_hash, die,
20538 to_underlying (die->sect_off),
20539 INSERT);
20540
20541 *slot = die;
20542 }
20543
20544 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20545 required kind. */
20546
20547 static sect_offset
20548 dwarf2_get_ref_die_offset (const struct attribute *attr)
20549 {
20550 if (attr_form_is_ref (attr))
20551 return (sect_offset) DW_UNSND (attr);
20552
20553 complaint (&symfile_complaints,
20554 _("unsupported die ref attribute form: '%s'"),
20555 dwarf_form_name (attr->form));
20556 return {};
20557 }
20558
20559 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20560 * the value held by the attribute is not constant. */
20561
20562 static LONGEST
20563 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
20564 {
20565 if (attr->form == DW_FORM_sdata)
20566 return DW_SND (attr);
20567 else if (attr->form == DW_FORM_udata
20568 || attr->form == DW_FORM_data1
20569 || attr->form == DW_FORM_data2
20570 || attr->form == DW_FORM_data4
20571 || attr->form == DW_FORM_data8)
20572 return DW_UNSND (attr);
20573 else
20574 {
20575 /* For DW_FORM_data16 see attr_form_is_constant. */
20576 complaint (&symfile_complaints,
20577 _("Attribute value is not a constant (%s)"),
20578 dwarf_form_name (attr->form));
20579 return default_value;
20580 }
20581 }
20582
20583 /* Follow reference or signature attribute ATTR of SRC_DIE.
20584 On entry *REF_CU is the CU of SRC_DIE.
20585 On exit *REF_CU is the CU of the result. */
20586
20587 static struct die_info *
20588 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
20589 struct dwarf2_cu **ref_cu)
20590 {
20591 struct die_info *die;
20592
20593 if (attr_form_is_ref (attr))
20594 die = follow_die_ref (src_die, attr, ref_cu);
20595 else if (attr->form == DW_FORM_ref_sig8)
20596 die = follow_die_sig (src_die, attr, ref_cu);
20597 else
20598 {
20599 dump_die_for_error (src_die);
20600 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
20601 objfile_name ((*ref_cu)->objfile));
20602 }
20603
20604 return die;
20605 }
20606
20607 /* Follow reference OFFSET.
20608 On entry *REF_CU is the CU of the source die referencing OFFSET.
20609 On exit *REF_CU is the CU of the result.
20610 Returns NULL if OFFSET is invalid. */
20611
20612 static struct die_info *
20613 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
20614 struct dwarf2_cu **ref_cu)
20615 {
20616 struct die_info temp_die;
20617 struct dwarf2_cu *target_cu, *cu = *ref_cu;
20618
20619 gdb_assert (cu->per_cu != NULL);
20620
20621 target_cu = cu;
20622
20623 if (cu->per_cu->is_debug_types)
20624 {
20625 /* .debug_types CUs cannot reference anything outside their CU.
20626 If they need to, they have to reference a signatured type via
20627 DW_FORM_ref_sig8. */
20628 if (!offset_in_cu_p (&cu->header, sect_off))
20629 return NULL;
20630 }
20631 else if (offset_in_dwz != cu->per_cu->is_dwz
20632 || !offset_in_cu_p (&cu->header, sect_off))
20633 {
20634 struct dwarf2_per_cu_data *per_cu;
20635
20636 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
20637 cu->objfile);
20638
20639 /* If necessary, add it to the queue and load its DIEs. */
20640 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20641 load_full_comp_unit (per_cu, cu->language);
20642
20643 target_cu = per_cu->cu;
20644 }
20645 else if (cu->dies == NULL)
20646 {
20647 /* We're loading full DIEs during partial symbol reading. */
20648 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20649 load_full_comp_unit (cu->per_cu, language_minimal);
20650 }
20651
20652 *ref_cu = target_cu;
20653 temp_die.sect_off = sect_off;
20654 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20655 &temp_die,
20656 to_underlying (sect_off));
20657 }
20658
20659 /* Follow reference attribute ATTR of SRC_DIE.
20660 On entry *REF_CU is the CU of SRC_DIE.
20661 On exit *REF_CU is the CU of the result. */
20662
20663 static struct die_info *
20664 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20665 struct dwarf2_cu **ref_cu)
20666 {
20667 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20668 struct dwarf2_cu *cu = *ref_cu;
20669 struct die_info *die;
20670
20671 die = follow_die_offset (sect_off,
20672 (attr->form == DW_FORM_GNU_ref_alt
20673 || cu->per_cu->is_dwz),
20674 ref_cu);
20675 if (!die)
20676 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20677 "at 0x%x [in module %s]"),
20678 to_underlying (sect_off), to_underlying (src_die->sect_off),
20679 objfile_name (cu->objfile));
20680
20681 return die;
20682 }
20683
20684 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
20685 Returned value is intended for DW_OP_call*. Returned
20686 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20687
20688 struct dwarf2_locexpr_baton
20689 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
20690 struct dwarf2_per_cu_data *per_cu,
20691 CORE_ADDR (*get_frame_pc) (void *baton),
20692 void *baton)
20693 {
20694 struct dwarf2_cu *cu;
20695 struct die_info *die;
20696 struct attribute *attr;
20697 struct dwarf2_locexpr_baton retval;
20698
20699 dw2_setup (per_cu->objfile);
20700
20701 if (per_cu->cu == NULL)
20702 load_cu (per_cu);
20703 cu = per_cu->cu;
20704 if (cu == NULL)
20705 {
20706 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20707 Instead just throw an error, not much else we can do. */
20708 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20709 to_underlying (sect_off), objfile_name (per_cu->objfile));
20710 }
20711
20712 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20713 if (!die)
20714 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20715 to_underlying (sect_off), objfile_name (per_cu->objfile));
20716
20717 attr = dwarf2_attr (die, DW_AT_location, cu);
20718 if (!attr)
20719 {
20720 /* DWARF: "If there is no such attribute, then there is no effect.".
20721 DATA is ignored if SIZE is 0. */
20722
20723 retval.data = NULL;
20724 retval.size = 0;
20725 }
20726 else if (attr_form_is_section_offset (attr))
20727 {
20728 struct dwarf2_loclist_baton loclist_baton;
20729 CORE_ADDR pc = (*get_frame_pc) (baton);
20730 size_t size;
20731
20732 fill_in_loclist_baton (cu, &loclist_baton, attr);
20733
20734 retval.data = dwarf2_find_location_expression (&loclist_baton,
20735 &size, pc);
20736 retval.size = size;
20737 }
20738 else
20739 {
20740 if (!attr_form_is_block (attr))
20741 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20742 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20743 to_underlying (sect_off), objfile_name (per_cu->objfile));
20744
20745 retval.data = DW_BLOCK (attr)->data;
20746 retval.size = DW_BLOCK (attr)->size;
20747 }
20748 retval.per_cu = cu->per_cu;
20749
20750 age_cached_comp_units ();
20751
20752 return retval;
20753 }
20754
20755 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20756 offset. */
20757
20758 struct dwarf2_locexpr_baton
20759 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20760 struct dwarf2_per_cu_data *per_cu,
20761 CORE_ADDR (*get_frame_pc) (void *baton),
20762 void *baton)
20763 {
20764 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
20765
20766 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
20767 }
20768
20769 /* Write a constant of a given type as target-ordered bytes into
20770 OBSTACK. */
20771
20772 static const gdb_byte *
20773 write_constant_as_bytes (struct obstack *obstack,
20774 enum bfd_endian byte_order,
20775 struct type *type,
20776 ULONGEST value,
20777 LONGEST *len)
20778 {
20779 gdb_byte *result;
20780
20781 *len = TYPE_LENGTH (type);
20782 result = (gdb_byte *) obstack_alloc (obstack, *len);
20783 store_unsigned_integer (result, *len, byte_order, value);
20784
20785 return result;
20786 }
20787
20788 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20789 pointer to the constant bytes and set LEN to the length of the
20790 data. If memory is needed, allocate it on OBSTACK. If the DIE
20791 does not have a DW_AT_const_value, return NULL. */
20792
20793 const gdb_byte *
20794 dwarf2_fetch_constant_bytes (sect_offset sect_off,
20795 struct dwarf2_per_cu_data *per_cu,
20796 struct obstack *obstack,
20797 LONGEST *len)
20798 {
20799 struct dwarf2_cu *cu;
20800 struct die_info *die;
20801 struct attribute *attr;
20802 const gdb_byte *result = NULL;
20803 struct type *type;
20804 LONGEST value;
20805 enum bfd_endian byte_order;
20806
20807 dw2_setup (per_cu->objfile);
20808
20809 if (per_cu->cu == NULL)
20810 load_cu (per_cu);
20811 cu = per_cu->cu;
20812 if (cu == NULL)
20813 {
20814 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20815 Instead just throw an error, not much else we can do. */
20816 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20817 to_underlying (sect_off), objfile_name (per_cu->objfile));
20818 }
20819
20820 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20821 if (!die)
20822 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20823 to_underlying (sect_off), objfile_name (per_cu->objfile));
20824
20825
20826 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20827 if (attr == NULL)
20828 return NULL;
20829
20830 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20831 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20832
20833 switch (attr->form)
20834 {
20835 case DW_FORM_addr:
20836 case DW_FORM_GNU_addr_index:
20837 {
20838 gdb_byte *tem;
20839
20840 *len = cu->header.addr_size;
20841 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20842 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20843 result = tem;
20844 }
20845 break;
20846 case DW_FORM_string:
20847 case DW_FORM_strp:
20848 case DW_FORM_GNU_str_index:
20849 case DW_FORM_GNU_strp_alt:
20850 /* DW_STRING is already allocated on the objfile obstack, point
20851 directly to it. */
20852 result = (const gdb_byte *) DW_STRING (attr);
20853 *len = strlen (DW_STRING (attr));
20854 break;
20855 case DW_FORM_block1:
20856 case DW_FORM_block2:
20857 case DW_FORM_block4:
20858 case DW_FORM_block:
20859 case DW_FORM_exprloc:
20860 case DW_FORM_data16:
20861 result = DW_BLOCK (attr)->data;
20862 *len = DW_BLOCK (attr)->size;
20863 break;
20864
20865 /* The DW_AT_const_value attributes are supposed to carry the
20866 symbol's value "represented as it would be on the target
20867 architecture." By the time we get here, it's already been
20868 converted to host endianness, so we just need to sign- or
20869 zero-extend it as appropriate. */
20870 case DW_FORM_data1:
20871 type = die_type (die, cu);
20872 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20873 if (result == NULL)
20874 result = write_constant_as_bytes (obstack, byte_order,
20875 type, value, len);
20876 break;
20877 case DW_FORM_data2:
20878 type = die_type (die, cu);
20879 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20880 if (result == NULL)
20881 result = write_constant_as_bytes (obstack, byte_order,
20882 type, value, len);
20883 break;
20884 case DW_FORM_data4:
20885 type = die_type (die, cu);
20886 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20887 if (result == NULL)
20888 result = write_constant_as_bytes (obstack, byte_order,
20889 type, value, len);
20890 break;
20891 case DW_FORM_data8:
20892 type = die_type (die, cu);
20893 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20894 if (result == NULL)
20895 result = write_constant_as_bytes (obstack, byte_order,
20896 type, value, len);
20897 break;
20898
20899 case DW_FORM_sdata:
20900 type = die_type (die, cu);
20901 result = write_constant_as_bytes (obstack, byte_order,
20902 type, DW_SND (attr), len);
20903 break;
20904
20905 case DW_FORM_udata:
20906 type = die_type (die, cu);
20907 result = write_constant_as_bytes (obstack, byte_order,
20908 type, DW_UNSND (attr), len);
20909 break;
20910
20911 default:
20912 complaint (&symfile_complaints,
20913 _("unsupported const value attribute form: '%s'"),
20914 dwarf_form_name (attr->form));
20915 break;
20916 }
20917
20918 return result;
20919 }
20920
20921 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20922 valid type for this die is found. */
20923
20924 struct type *
20925 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
20926 struct dwarf2_per_cu_data *per_cu)
20927 {
20928 struct dwarf2_cu *cu;
20929 struct die_info *die;
20930
20931 dw2_setup (per_cu->objfile);
20932
20933 if (per_cu->cu == NULL)
20934 load_cu (per_cu);
20935 cu = per_cu->cu;
20936 if (!cu)
20937 return NULL;
20938
20939 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
20940 if (!die)
20941 return NULL;
20942
20943 return die_type (die, cu);
20944 }
20945
20946 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20947 PER_CU. */
20948
20949 struct type *
20950 dwarf2_get_die_type (cu_offset die_offset,
20951 struct dwarf2_per_cu_data *per_cu)
20952 {
20953 dw2_setup (per_cu->objfile);
20954
20955 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
20956 return get_die_type_at_offset (die_offset_sect, per_cu);
20957 }
20958
20959 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20960 On entry *REF_CU is the CU of SRC_DIE.
20961 On exit *REF_CU is the CU of the result.
20962 Returns NULL if the referenced DIE isn't found. */
20963
20964 static struct die_info *
20965 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20966 struct dwarf2_cu **ref_cu)
20967 {
20968 struct die_info temp_die;
20969 struct dwarf2_cu *sig_cu;
20970 struct die_info *die;
20971
20972 /* While it might be nice to assert sig_type->type == NULL here,
20973 we can get here for DW_AT_imported_declaration where we need
20974 the DIE not the type. */
20975
20976 /* If necessary, add it to the queue and load its DIEs. */
20977
20978 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20979 read_signatured_type (sig_type);
20980
20981 sig_cu = sig_type->per_cu.cu;
20982 gdb_assert (sig_cu != NULL);
20983 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
20984 temp_die.sect_off = sig_type->type_offset_in_section;
20985 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20986 to_underlying (temp_die.sect_off));
20987 if (die)
20988 {
20989 /* For .gdb_index version 7 keep track of included TUs.
20990 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20991 if (dwarf2_per_objfile->index_table != NULL
20992 && dwarf2_per_objfile->index_table->version <= 7)
20993 {
20994 VEC_safe_push (dwarf2_per_cu_ptr,
20995 (*ref_cu)->per_cu->imported_symtabs,
20996 sig_cu->per_cu);
20997 }
20998
20999 *ref_cu = sig_cu;
21000 return die;
21001 }
21002
21003 return NULL;
21004 }
21005
21006 /* Follow signatured type referenced by ATTR in SRC_DIE.
21007 On entry *REF_CU is the CU of SRC_DIE.
21008 On exit *REF_CU is the CU of the result.
21009 The result is the DIE of the type.
21010 If the referenced type cannot be found an error is thrown. */
21011
21012 static struct die_info *
21013 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21014 struct dwarf2_cu **ref_cu)
21015 {
21016 ULONGEST signature = DW_SIGNATURE (attr);
21017 struct signatured_type *sig_type;
21018 struct die_info *die;
21019
21020 gdb_assert (attr->form == DW_FORM_ref_sig8);
21021
21022 sig_type = lookup_signatured_type (*ref_cu, signature);
21023 /* sig_type will be NULL if the signatured type is missing from
21024 the debug info. */
21025 if (sig_type == NULL)
21026 {
21027 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21028 " from DIE at 0x%x [in module %s]"),
21029 hex_string (signature), to_underlying (src_die->sect_off),
21030 objfile_name ((*ref_cu)->objfile));
21031 }
21032
21033 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21034 if (die == NULL)
21035 {
21036 dump_die_for_error (src_die);
21037 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21038 " from DIE at 0x%x [in module %s]"),
21039 hex_string (signature), to_underlying (src_die->sect_off),
21040 objfile_name ((*ref_cu)->objfile));
21041 }
21042
21043 return die;
21044 }
21045
21046 /* Get the type specified by SIGNATURE referenced in DIE/CU,
21047 reading in and processing the type unit if necessary. */
21048
21049 static struct type *
21050 get_signatured_type (struct die_info *die, ULONGEST signature,
21051 struct dwarf2_cu *cu)
21052 {
21053 struct signatured_type *sig_type;
21054 struct dwarf2_cu *type_cu;
21055 struct die_info *type_die;
21056 struct type *type;
21057
21058 sig_type = lookup_signatured_type (cu, signature);
21059 /* sig_type will be NULL if the signatured type is missing from
21060 the debug info. */
21061 if (sig_type == NULL)
21062 {
21063 complaint (&symfile_complaints,
21064 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21065 " from DIE at 0x%x [in module %s]"),
21066 hex_string (signature), to_underlying (die->sect_off),
21067 objfile_name (dwarf2_per_objfile->objfile));
21068 return build_error_marker_type (cu, die);
21069 }
21070
21071 /* If we already know the type we're done. */
21072 if (sig_type->type != NULL)
21073 return sig_type->type;
21074
21075 type_cu = cu;
21076 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21077 if (type_die != NULL)
21078 {
21079 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21080 is created. This is important, for example, because for c++ classes
21081 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21082 type = read_type_die (type_die, type_cu);
21083 if (type == NULL)
21084 {
21085 complaint (&symfile_complaints,
21086 _("Dwarf Error: Cannot build signatured type %s"
21087 " referenced from DIE at 0x%x [in module %s]"),
21088 hex_string (signature), to_underlying (die->sect_off),
21089 objfile_name (dwarf2_per_objfile->objfile));
21090 type = build_error_marker_type (cu, die);
21091 }
21092 }
21093 else
21094 {
21095 complaint (&symfile_complaints,
21096 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21097 " from DIE at 0x%x [in module %s]"),
21098 hex_string (signature), to_underlying (die->sect_off),
21099 objfile_name (dwarf2_per_objfile->objfile));
21100 type = build_error_marker_type (cu, die);
21101 }
21102 sig_type->type = type;
21103
21104 return type;
21105 }
21106
21107 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21108 reading in and processing the type unit if necessary. */
21109
21110 static struct type *
21111 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
21112 struct dwarf2_cu *cu) /* ARI: editCase function */
21113 {
21114 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
21115 if (attr_form_is_ref (attr))
21116 {
21117 struct dwarf2_cu *type_cu = cu;
21118 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21119
21120 return read_type_die (type_die, type_cu);
21121 }
21122 else if (attr->form == DW_FORM_ref_sig8)
21123 {
21124 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21125 }
21126 else
21127 {
21128 complaint (&symfile_complaints,
21129 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21130 " at 0x%x [in module %s]"),
21131 dwarf_form_name (attr->form), to_underlying (die->sect_off),
21132 objfile_name (dwarf2_per_objfile->objfile));
21133 return build_error_marker_type (cu, die);
21134 }
21135 }
21136
21137 /* Load the DIEs associated with type unit PER_CU into memory. */
21138
21139 static void
21140 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
21141 {
21142 struct signatured_type *sig_type;
21143
21144 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21145 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21146
21147 /* We have the per_cu, but we need the signatured_type.
21148 Fortunately this is an easy translation. */
21149 gdb_assert (per_cu->is_debug_types);
21150 sig_type = (struct signatured_type *) per_cu;
21151
21152 gdb_assert (per_cu->cu == NULL);
21153
21154 read_signatured_type (sig_type);
21155
21156 gdb_assert (per_cu->cu != NULL);
21157 }
21158
21159 /* die_reader_func for read_signatured_type.
21160 This is identical to load_full_comp_unit_reader,
21161 but is kept separate for now. */
21162
21163 static void
21164 read_signatured_type_reader (const struct die_reader_specs *reader,
21165 const gdb_byte *info_ptr,
21166 struct die_info *comp_unit_die,
21167 int has_children,
21168 void *data)
21169 {
21170 struct dwarf2_cu *cu = reader->cu;
21171
21172 gdb_assert (cu->die_hash == NULL);
21173 cu->die_hash =
21174 htab_create_alloc_ex (cu->header.length / 12,
21175 die_hash,
21176 die_eq,
21177 NULL,
21178 &cu->comp_unit_obstack,
21179 hashtab_obstack_allocate,
21180 dummy_obstack_deallocate);
21181
21182 if (has_children)
21183 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21184 &info_ptr, comp_unit_die);
21185 cu->dies = comp_unit_die;
21186 /* comp_unit_die is not stored in die_hash, no need. */
21187
21188 /* We try not to read any attributes in this function, because not
21189 all CUs needed for references have been loaded yet, and symbol
21190 table processing isn't initialized. But we have to set the CU language,
21191 or we won't be able to build types correctly.
21192 Similarly, if we do not read the producer, we can not apply
21193 producer-specific interpretation. */
21194 prepare_one_comp_unit (cu, cu->dies, language_minimal);
21195 }
21196
21197 /* Read in a signatured type and build its CU and DIEs.
21198 If the type is a stub for the real type in a DWO file,
21199 read in the real type from the DWO file as well. */
21200
21201 static void
21202 read_signatured_type (struct signatured_type *sig_type)
21203 {
21204 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
21205
21206 gdb_assert (per_cu->is_debug_types);
21207 gdb_assert (per_cu->cu == NULL);
21208
21209 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21210 read_signatured_type_reader, NULL);
21211 sig_type->per_cu.tu_read = 1;
21212 }
21213
21214 /* Decode simple location descriptions.
21215 Given a pointer to a dwarf block that defines a location, compute
21216 the location and return the value.
21217
21218 NOTE drow/2003-11-18: This function is called in two situations
21219 now: for the address of static or global variables (partial symbols
21220 only) and for offsets into structures which are expected to be
21221 (more or less) constant. The partial symbol case should go away,
21222 and only the constant case should remain. That will let this
21223 function complain more accurately. A few special modes are allowed
21224 without complaint for global variables (for instance, global
21225 register values and thread-local values).
21226
21227 A location description containing no operations indicates that the
21228 object is optimized out. The return value is 0 for that case.
21229 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21230 callers will only want a very basic result and this can become a
21231 complaint.
21232
21233 Note that stack[0] is unused except as a default error return. */
21234
21235 static CORE_ADDR
21236 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
21237 {
21238 struct objfile *objfile = cu->objfile;
21239 size_t i;
21240 size_t size = blk->size;
21241 const gdb_byte *data = blk->data;
21242 CORE_ADDR stack[64];
21243 int stacki;
21244 unsigned int bytes_read, unsnd;
21245 gdb_byte op;
21246
21247 i = 0;
21248 stacki = 0;
21249 stack[stacki] = 0;
21250 stack[++stacki] = 0;
21251
21252 while (i < size)
21253 {
21254 op = data[i++];
21255 switch (op)
21256 {
21257 case DW_OP_lit0:
21258 case DW_OP_lit1:
21259 case DW_OP_lit2:
21260 case DW_OP_lit3:
21261 case DW_OP_lit4:
21262 case DW_OP_lit5:
21263 case DW_OP_lit6:
21264 case DW_OP_lit7:
21265 case DW_OP_lit8:
21266 case DW_OP_lit9:
21267 case DW_OP_lit10:
21268 case DW_OP_lit11:
21269 case DW_OP_lit12:
21270 case DW_OP_lit13:
21271 case DW_OP_lit14:
21272 case DW_OP_lit15:
21273 case DW_OP_lit16:
21274 case DW_OP_lit17:
21275 case DW_OP_lit18:
21276 case DW_OP_lit19:
21277 case DW_OP_lit20:
21278 case DW_OP_lit21:
21279 case DW_OP_lit22:
21280 case DW_OP_lit23:
21281 case DW_OP_lit24:
21282 case DW_OP_lit25:
21283 case DW_OP_lit26:
21284 case DW_OP_lit27:
21285 case DW_OP_lit28:
21286 case DW_OP_lit29:
21287 case DW_OP_lit30:
21288 case DW_OP_lit31:
21289 stack[++stacki] = op - DW_OP_lit0;
21290 break;
21291
21292 case DW_OP_reg0:
21293 case DW_OP_reg1:
21294 case DW_OP_reg2:
21295 case DW_OP_reg3:
21296 case DW_OP_reg4:
21297 case DW_OP_reg5:
21298 case DW_OP_reg6:
21299 case DW_OP_reg7:
21300 case DW_OP_reg8:
21301 case DW_OP_reg9:
21302 case DW_OP_reg10:
21303 case DW_OP_reg11:
21304 case DW_OP_reg12:
21305 case DW_OP_reg13:
21306 case DW_OP_reg14:
21307 case DW_OP_reg15:
21308 case DW_OP_reg16:
21309 case DW_OP_reg17:
21310 case DW_OP_reg18:
21311 case DW_OP_reg19:
21312 case DW_OP_reg20:
21313 case DW_OP_reg21:
21314 case DW_OP_reg22:
21315 case DW_OP_reg23:
21316 case DW_OP_reg24:
21317 case DW_OP_reg25:
21318 case DW_OP_reg26:
21319 case DW_OP_reg27:
21320 case DW_OP_reg28:
21321 case DW_OP_reg29:
21322 case DW_OP_reg30:
21323 case DW_OP_reg31:
21324 stack[++stacki] = op - DW_OP_reg0;
21325 if (i < size)
21326 dwarf2_complex_location_expr_complaint ();
21327 break;
21328
21329 case DW_OP_regx:
21330 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21331 i += bytes_read;
21332 stack[++stacki] = unsnd;
21333 if (i < size)
21334 dwarf2_complex_location_expr_complaint ();
21335 break;
21336
21337 case DW_OP_addr:
21338 stack[++stacki] = read_address (objfile->obfd, &data[i],
21339 cu, &bytes_read);
21340 i += bytes_read;
21341 break;
21342
21343 case DW_OP_const1u:
21344 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21345 i += 1;
21346 break;
21347
21348 case DW_OP_const1s:
21349 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21350 i += 1;
21351 break;
21352
21353 case DW_OP_const2u:
21354 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21355 i += 2;
21356 break;
21357
21358 case DW_OP_const2s:
21359 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21360 i += 2;
21361 break;
21362
21363 case DW_OP_const4u:
21364 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21365 i += 4;
21366 break;
21367
21368 case DW_OP_const4s:
21369 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21370 i += 4;
21371 break;
21372
21373 case DW_OP_const8u:
21374 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21375 i += 8;
21376 break;
21377
21378 case DW_OP_constu:
21379 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21380 &bytes_read);
21381 i += bytes_read;
21382 break;
21383
21384 case DW_OP_consts:
21385 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21386 i += bytes_read;
21387 break;
21388
21389 case DW_OP_dup:
21390 stack[stacki + 1] = stack[stacki];
21391 stacki++;
21392 break;
21393
21394 case DW_OP_plus:
21395 stack[stacki - 1] += stack[stacki];
21396 stacki--;
21397 break;
21398
21399 case DW_OP_plus_uconst:
21400 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21401 &bytes_read);
21402 i += bytes_read;
21403 break;
21404
21405 case DW_OP_minus:
21406 stack[stacki - 1] -= stack[stacki];
21407 stacki--;
21408 break;
21409
21410 case DW_OP_deref:
21411 /* If we're not the last op, then we definitely can't encode
21412 this using GDB's address_class enum. This is valid for partial
21413 global symbols, although the variable's address will be bogus
21414 in the psymtab. */
21415 if (i < size)
21416 dwarf2_complex_location_expr_complaint ();
21417 break;
21418
21419 case DW_OP_GNU_push_tls_address:
21420 case DW_OP_form_tls_address:
21421 /* The top of the stack has the offset from the beginning
21422 of the thread control block at which the variable is located. */
21423 /* Nothing should follow this operator, so the top of stack would
21424 be returned. */
21425 /* This is valid for partial global symbols, but the variable's
21426 address will be bogus in the psymtab. Make it always at least
21427 non-zero to not look as a variable garbage collected by linker
21428 which have DW_OP_addr 0. */
21429 if (i < size)
21430 dwarf2_complex_location_expr_complaint ();
21431 stack[stacki]++;
21432 break;
21433
21434 case DW_OP_GNU_uninit:
21435 break;
21436
21437 case DW_OP_GNU_addr_index:
21438 case DW_OP_GNU_const_index:
21439 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21440 &bytes_read);
21441 i += bytes_read;
21442 break;
21443
21444 default:
21445 {
21446 const char *name = get_DW_OP_name (op);
21447
21448 if (name)
21449 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21450 name);
21451 else
21452 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21453 op);
21454 }
21455
21456 return (stack[stacki]);
21457 }
21458
21459 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21460 outside of the allocated space. Also enforce minimum>0. */
21461 if (stacki >= ARRAY_SIZE (stack) - 1)
21462 {
21463 complaint (&symfile_complaints,
21464 _("location description stack overflow"));
21465 return 0;
21466 }
21467
21468 if (stacki <= 0)
21469 {
21470 complaint (&symfile_complaints,
21471 _("location description stack underflow"));
21472 return 0;
21473 }
21474 }
21475 return (stack[stacki]);
21476 }
21477
21478 /* memory allocation interface */
21479
21480 static struct dwarf_block *
21481 dwarf_alloc_block (struct dwarf2_cu *cu)
21482 {
21483 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
21484 }
21485
21486 static struct die_info *
21487 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
21488 {
21489 struct die_info *die;
21490 size_t size = sizeof (struct die_info);
21491
21492 if (num_attrs > 1)
21493 size += (num_attrs - 1) * sizeof (struct attribute);
21494
21495 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
21496 memset (die, 0, sizeof (struct die_info));
21497 return (die);
21498 }
21499
21500 \f
21501 /* Macro support. */
21502
21503 /* Return file name relative to the compilation directory of file number I in
21504 *LH's file name table. The result is allocated using xmalloc; the caller is
21505 responsible for freeing it. */
21506
21507 static char *
21508 file_file_name (int file, struct line_header *lh)
21509 {
21510 /* Is the file number a valid index into the line header's file name
21511 table? Remember that file numbers start with one, not zero. */
21512 if (1 <= file && file <= lh->file_names.size ())
21513 {
21514 const file_entry &fe = lh->file_names[file - 1];
21515
21516 if (!IS_ABSOLUTE_PATH (fe.name))
21517 {
21518 const char *dir = fe.include_dir (lh);
21519 if (dir != NULL)
21520 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21521 }
21522 return xstrdup (fe.name);
21523 }
21524 else
21525 {
21526 /* The compiler produced a bogus file number. We can at least
21527 record the macro definitions made in the file, even if we
21528 won't be able to find the file by name. */
21529 char fake_name[80];
21530
21531 xsnprintf (fake_name, sizeof (fake_name),
21532 "<bad macro file number %d>", file);
21533
21534 complaint (&symfile_complaints,
21535 _("bad file number in macro information (%d)"),
21536 file);
21537
21538 return xstrdup (fake_name);
21539 }
21540 }
21541
21542 /* Return the full name of file number I in *LH's file name table.
21543 Use COMP_DIR as the name of the current directory of the
21544 compilation. The result is allocated using xmalloc; the caller is
21545 responsible for freeing it. */
21546 static char *
21547 file_full_name (int file, struct line_header *lh, const char *comp_dir)
21548 {
21549 /* Is the file number a valid index into the line header's file name
21550 table? Remember that file numbers start with one, not zero. */
21551 if (1 <= file && file <= lh->file_names.size ())
21552 {
21553 char *relative = file_file_name (file, lh);
21554
21555 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21556 return relative;
21557 return reconcat (relative, comp_dir, SLASH_STRING,
21558 relative, (char *) NULL);
21559 }
21560 else
21561 return file_file_name (file, lh);
21562 }
21563
21564
21565 static struct macro_source_file *
21566 macro_start_file (int file, int line,
21567 struct macro_source_file *current_file,
21568 struct line_header *lh)
21569 {
21570 /* File name relative to the compilation directory of this source file. */
21571 char *file_name = file_file_name (file, lh);
21572
21573 if (! current_file)
21574 {
21575 /* Note: We don't create a macro table for this compilation unit
21576 at all until we actually get a filename. */
21577 struct macro_table *macro_table = get_macro_table ();
21578
21579 /* If we have no current file, then this must be the start_file
21580 directive for the compilation unit's main source file. */
21581 current_file = macro_set_main (macro_table, file_name);
21582 macro_define_special (macro_table);
21583 }
21584 else
21585 current_file = macro_include (current_file, line, file_name);
21586
21587 xfree (file_name);
21588
21589 return current_file;
21590 }
21591
21592
21593 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21594 followed by a null byte. */
21595 static char *
21596 copy_string (const char *buf, int len)
21597 {
21598 char *s = (char *) xmalloc (len + 1);
21599
21600 memcpy (s, buf, len);
21601 s[len] = '\0';
21602 return s;
21603 }
21604
21605
21606 static const char *
21607 consume_improper_spaces (const char *p, const char *body)
21608 {
21609 if (*p == ' ')
21610 {
21611 complaint (&symfile_complaints,
21612 _("macro definition contains spaces "
21613 "in formal argument list:\n`%s'"),
21614 body);
21615
21616 while (*p == ' ')
21617 p++;
21618 }
21619
21620 return p;
21621 }
21622
21623
21624 static void
21625 parse_macro_definition (struct macro_source_file *file, int line,
21626 const char *body)
21627 {
21628 const char *p;
21629
21630 /* The body string takes one of two forms. For object-like macro
21631 definitions, it should be:
21632
21633 <macro name> " " <definition>
21634
21635 For function-like macro definitions, it should be:
21636
21637 <macro name> "() " <definition>
21638 or
21639 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21640
21641 Spaces may appear only where explicitly indicated, and in the
21642 <definition>.
21643
21644 The Dwarf 2 spec says that an object-like macro's name is always
21645 followed by a space, but versions of GCC around March 2002 omit
21646 the space when the macro's definition is the empty string.
21647
21648 The Dwarf 2 spec says that there should be no spaces between the
21649 formal arguments in a function-like macro's formal argument list,
21650 but versions of GCC around March 2002 include spaces after the
21651 commas. */
21652
21653
21654 /* Find the extent of the macro name. The macro name is terminated
21655 by either a space or null character (for an object-like macro) or
21656 an opening paren (for a function-like macro). */
21657 for (p = body; *p; p++)
21658 if (*p == ' ' || *p == '(')
21659 break;
21660
21661 if (*p == ' ' || *p == '\0')
21662 {
21663 /* It's an object-like macro. */
21664 int name_len = p - body;
21665 char *name = copy_string (body, name_len);
21666 const char *replacement;
21667
21668 if (*p == ' ')
21669 replacement = body + name_len + 1;
21670 else
21671 {
21672 dwarf2_macro_malformed_definition_complaint (body);
21673 replacement = body + name_len;
21674 }
21675
21676 macro_define_object (file, line, name, replacement);
21677
21678 xfree (name);
21679 }
21680 else if (*p == '(')
21681 {
21682 /* It's a function-like macro. */
21683 char *name = copy_string (body, p - body);
21684 int argc = 0;
21685 int argv_size = 1;
21686 char **argv = XNEWVEC (char *, argv_size);
21687
21688 p++;
21689
21690 p = consume_improper_spaces (p, body);
21691
21692 /* Parse the formal argument list. */
21693 while (*p && *p != ')')
21694 {
21695 /* Find the extent of the current argument name. */
21696 const char *arg_start = p;
21697
21698 while (*p && *p != ',' && *p != ')' && *p != ' ')
21699 p++;
21700
21701 if (! *p || p == arg_start)
21702 dwarf2_macro_malformed_definition_complaint (body);
21703 else
21704 {
21705 /* Make sure argv has room for the new argument. */
21706 if (argc >= argv_size)
21707 {
21708 argv_size *= 2;
21709 argv = XRESIZEVEC (char *, argv, argv_size);
21710 }
21711
21712 argv[argc++] = copy_string (arg_start, p - arg_start);
21713 }
21714
21715 p = consume_improper_spaces (p, body);
21716
21717 /* Consume the comma, if present. */
21718 if (*p == ',')
21719 {
21720 p++;
21721
21722 p = consume_improper_spaces (p, body);
21723 }
21724 }
21725
21726 if (*p == ')')
21727 {
21728 p++;
21729
21730 if (*p == ' ')
21731 /* Perfectly formed definition, no complaints. */
21732 macro_define_function (file, line, name,
21733 argc, (const char **) argv,
21734 p + 1);
21735 else if (*p == '\0')
21736 {
21737 /* Complain, but do define it. */
21738 dwarf2_macro_malformed_definition_complaint (body);
21739 macro_define_function (file, line, name,
21740 argc, (const char **) argv,
21741 p);
21742 }
21743 else
21744 /* Just complain. */
21745 dwarf2_macro_malformed_definition_complaint (body);
21746 }
21747 else
21748 /* Just complain. */
21749 dwarf2_macro_malformed_definition_complaint (body);
21750
21751 xfree (name);
21752 {
21753 int i;
21754
21755 for (i = 0; i < argc; i++)
21756 xfree (argv[i]);
21757 }
21758 xfree (argv);
21759 }
21760 else
21761 dwarf2_macro_malformed_definition_complaint (body);
21762 }
21763
21764 /* Skip some bytes from BYTES according to the form given in FORM.
21765 Returns the new pointer. */
21766
21767 static const gdb_byte *
21768 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21769 enum dwarf_form form,
21770 unsigned int offset_size,
21771 struct dwarf2_section_info *section)
21772 {
21773 unsigned int bytes_read;
21774
21775 switch (form)
21776 {
21777 case DW_FORM_data1:
21778 case DW_FORM_flag:
21779 ++bytes;
21780 break;
21781
21782 case DW_FORM_data2:
21783 bytes += 2;
21784 break;
21785
21786 case DW_FORM_data4:
21787 bytes += 4;
21788 break;
21789
21790 case DW_FORM_data8:
21791 bytes += 8;
21792 break;
21793
21794 case DW_FORM_data16:
21795 bytes += 16;
21796 break;
21797
21798 case DW_FORM_string:
21799 read_direct_string (abfd, bytes, &bytes_read);
21800 bytes += bytes_read;
21801 break;
21802
21803 case DW_FORM_sec_offset:
21804 case DW_FORM_strp:
21805 case DW_FORM_GNU_strp_alt:
21806 bytes += offset_size;
21807 break;
21808
21809 case DW_FORM_block:
21810 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21811 bytes += bytes_read;
21812 break;
21813
21814 case DW_FORM_block1:
21815 bytes += 1 + read_1_byte (abfd, bytes);
21816 break;
21817 case DW_FORM_block2:
21818 bytes += 2 + read_2_bytes (abfd, bytes);
21819 break;
21820 case DW_FORM_block4:
21821 bytes += 4 + read_4_bytes (abfd, bytes);
21822 break;
21823
21824 case DW_FORM_sdata:
21825 case DW_FORM_udata:
21826 case DW_FORM_GNU_addr_index:
21827 case DW_FORM_GNU_str_index:
21828 bytes = gdb_skip_leb128 (bytes, buffer_end);
21829 if (bytes == NULL)
21830 {
21831 dwarf2_section_buffer_overflow_complaint (section);
21832 return NULL;
21833 }
21834 break;
21835
21836 default:
21837 {
21838 complain:
21839 complaint (&symfile_complaints,
21840 _("invalid form 0x%x in `%s'"),
21841 form, get_section_name (section));
21842 return NULL;
21843 }
21844 }
21845
21846 return bytes;
21847 }
21848
21849 /* A helper for dwarf_decode_macros that handles skipping an unknown
21850 opcode. Returns an updated pointer to the macro data buffer; or,
21851 on error, issues a complaint and returns NULL. */
21852
21853 static const gdb_byte *
21854 skip_unknown_opcode (unsigned int opcode,
21855 const gdb_byte **opcode_definitions,
21856 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21857 bfd *abfd,
21858 unsigned int offset_size,
21859 struct dwarf2_section_info *section)
21860 {
21861 unsigned int bytes_read, i;
21862 unsigned long arg;
21863 const gdb_byte *defn;
21864
21865 if (opcode_definitions[opcode] == NULL)
21866 {
21867 complaint (&symfile_complaints,
21868 _("unrecognized DW_MACFINO opcode 0x%x"),
21869 opcode);
21870 return NULL;
21871 }
21872
21873 defn = opcode_definitions[opcode];
21874 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21875 defn += bytes_read;
21876
21877 for (i = 0; i < arg; ++i)
21878 {
21879 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21880 (enum dwarf_form) defn[i], offset_size,
21881 section);
21882 if (mac_ptr == NULL)
21883 {
21884 /* skip_form_bytes already issued the complaint. */
21885 return NULL;
21886 }
21887 }
21888
21889 return mac_ptr;
21890 }
21891
21892 /* A helper function which parses the header of a macro section.
21893 If the macro section is the extended (for now called "GNU") type,
21894 then this updates *OFFSET_SIZE. Returns a pointer to just after
21895 the header, or issues a complaint and returns NULL on error. */
21896
21897 static const gdb_byte *
21898 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21899 bfd *abfd,
21900 const gdb_byte *mac_ptr,
21901 unsigned int *offset_size,
21902 int section_is_gnu)
21903 {
21904 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21905
21906 if (section_is_gnu)
21907 {
21908 unsigned int version, flags;
21909
21910 version = read_2_bytes (abfd, mac_ptr);
21911 if (version != 4 && version != 5)
21912 {
21913 complaint (&symfile_complaints,
21914 _("unrecognized version `%d' in .debug_macro section"),
21915 version);
21916 return NULL;
21917 }
21918 mac_ptr += 2;
21919
21920 flags = read_1_byte (abfd, mac_ptr);
21921 ++mac_ptr;
21922 *offset_size = (flags & 1) ? 8 : 4;
21923
21924 if ((flags & 2) != 0)
21925 /* We don't need the line table offset. */
21926 mac_ptr += *offset_size;
21927
21928 /* Vendor opcode descriptions. */
21929 if ((flags & 4) != 0)
21930 {
21931 unsigned int i, count;
21932
21933 count = read_1_byte (abfd, mac_ptr);
21934 ++mac_ptr;
21935 for (i = 0; i < count; ++i)
21936 {
21937 unsigned int opcode, bytes_read;
21938 unsigned long arg;
21939
21940 opcode = read_1_byte (abfd, mac_ptr);
21941 ++mac_ptr;
21942 opcode_definitions[opcode] = mac_ptr;
21943 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21944 mac_ptr += bytes_read;
21945 mac_ptr += arg;
21946 }
21947 }
21948 }
21949
21950 return mac_ptr;
21951 }
21952
21953 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21954 including DW_MACRO_import. */
21955
21956 static void
21957 dwarf_decode_macro_bytes (bfd *abfd,
21958 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21959 struct macro_source_file *current_file,
21960 struct line_header *lh,
21961 struct dwarf2_section_info *section,
21962 int section_is_gnu, int section_is_dwz,
21963 unsigned int offset_size,
21964 htab_t include_hash)
21965 {
21966 struct objfile *objfile = dwarf2_per_objfile->objfile;
21967 enum dwarf_macro_record_type macinfo_type;
21968 int at_commandline;
21969 const gdb_byte *opcode_definitions[256];
21970
21971 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21972 &offset_size, section_is_gnu);
21973 if (mac_ptr == NULL)
21974 {
21975 /* We already issued a complaint. */
21976 return;
21977 }
21978
21979 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21980 GDB is still reading the definitions from command line. First
21981 DW_MACINFO_start_file will need to be ignored as it was already executed
21982 to create CURRENT_FILE for the main source holding also the command line
21983 definitions. On first met DW_MACINFO_start_file this flag is reset to
21984 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21985
21986 at_commandline = 1;
21987
21988 do
21989 {
21990 /* Do we at least have room for a macinfo type byte? */
21991 if (mac_ptr >= mac_end)
21992 {
21993 dwarf2_section_buffer_overflow_complaint (section);
21994 break;
21995 }
21996
21997 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21998 mac_ptr++;
21999
22000 /* Note that we rely on the fact that the corresponding GNU and
22001 DWARF constants are the same. */
22002 switch (macinfo_type)
22003 {
22004 /* A zero macinfo type indicates the end of the macro
22005 information. */
22006 case 0:
22007 break;
22008
22009 case DW_MACRO_define:
22010 case DW_MACRO_undef:
22011 case DW_MACRO_define_strp:
22012 case DW_MACRO_undef_strp:
22013 case DW_MACRO_define_sup:
22014 case DW_MACRO_undef_sup:
22015 {
22016 unsigned int bytes_read;
22017 int line;
22018 const char *body;
22019 int is_define;
22020
22021 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22022 mac_ptr += bytes_read;
22023
22024 if (macinfo_type == DW_MACRO_define
22025 || macinfo_type == DW_MACRO_undef)
22026 {
22027 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22028 mac_ptr += bytes_read;
22029 }
22030 else
22031 {
22032 LONGEST str_offset;
22033
22034 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22035 mac_ptr += offset_size;
22036
22037 if (macinfo_type == DW_MACRO_define_sup
22038 || macinfo_type == DW_MACRO_undef_sup
22039 || section_is_dwz)
22040 {
22041 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22042
22043 body = read_indirect_string_from_dwz (dwz, str_offset);
22044 }
22045 else
22046 body = read_indirect_string_at_offset (abfd, str_offset);
22047 }
22048
22049 is_define = (macinfo_type == DW_MACRO_define
22050 || macinfo_type == DW_MACRO_define_strp
22051 || macinfo_type == DW_MACRO_define_sup);
22052 if (! current_file)
22053 {
22054 /* DWARF violation as no main source is present. */
22055 complaint (&symfile_complaints,
22056 _("debug info with no main source gives macro %s "
22057 "on line %d: %s"),
22058 is_define ? _("definition") : _("undefinition"),
22059 line, body);
22060 break;
22061 }
22062 if ((line == 0 && !at_commandline)
22063 || (line != 0 && at_commandline))
22064 complaint (&symfile_complaints,
22065 _("debug info gives %s macro %s with %s line %d: %s"),
22066 at_commandline ? _("command-line") : _("in-file"),
22067 is_define ? _("definition") : _("undefinition"),
22068 line == 0 ? _("zero") : _("non-zero"), line, body);
22069
22070 if (is_define)
22071 parse_macro_definition (current_file, line, body);
22072 else
22073 {
22074 gdb_assert (macinfo_type == DW_MACRO_undef
22075 || macinfo_type == DW_MACRO_undef_strp
22076 || macinfo_type == DW_MACRO_undef_sup);
22077 macro_undef (current_file, line, body);
22078 }
22079 }
22080 break;
22081
22082 case DW_MACRO_start_file:
22083 {
22084 unsigned int bytes_read;
22085 int line, file;
22086
22087 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22088 mac_ptr += bytes_read;
22089 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22090 mac_ptr += bytes_read;
22091
22092 if ((line == 0 && !at_commandline)
22093 || (line != 0 && at_commandline))
22094 complaint (&symfile_complaints,
22095 _("debug info gives source %d included "
22096 "from %s at %s line %d"),
22097 file, at_commandline ? _("command-line") : _("file"),
22098 line == 0 ? _("zero") : _("non-zero"), line);
22099
22100 if (at_commandline)
22101 {
22102 /* This DW_MACRO_start_file was executed in the
22103 pass one. */
22104 at_commandline = 0;
22105 }
22106 else
22107 current_file = macro_start_file (file, line, current_file, lh);
22108 }
22109 break;
22110
22111 case DW_MACRO_end_file:
22112 if (! current_file)
22113 complaint (&symfile_complaints,
22114 _("macro debug info has an unmatched "
22115 "`close_file' directive"));
22116 else
22117 {
22118 current_file = current_file->included_by;
22119 if (! current_file)
22120 {
22121 enum dwarf_macro_record_type next_type;
22122
22123 /* GCC circa March 2002 doesn't produce the zero
22124 type byte marking the end of the compilation
22125 unit. Complain if it's not there, but exit no
22126 matter what. */
22127
22128 /* Do we at least have room for a macinfo type byte? */
22129 if (mac_ptr >= mac_end)
22130 {
22131 dwarf2_section_buffer_overflow_complaint (section);
22132 return;
22133 }
22134
22135 /* We don't increment mac_ptr here, so this is just
22136 a look-ahead. */
22137 next_type
22138 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22139 mac_ptr);
22140 if (next_type != 0)
22141 complaint (&symfile_complaints,
22142 _("no terminating 0-type entry for "
22143 "macros in `.debug_macinfo' section"));
22144
22145 return;
22146 }
22147 }
22148 break;
22149
22150 case DW_MACRO_import:
22151 case DW_MACRO_import_sup:
22152 {
22153 LONGEST offset;
22154 void **slot;
22155 bfd *include_bfd = abfd;
22156 struct dwarf2_section_info *include_section = section;
22157 const gdb_byte *include_mac_end = mac_end;
22158 int is_dwz = section_is_dwz;
22159 const gdb_byte *new_mac_ptr;
22160
22161 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22162 mac_ptr += offset_size;
22163
22164 if (macinfo_type == DW_MACRO_import_sup)
22165 {
22166 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22167
22168 dwarf2_read_section (objfile, &dwz->macro);
22169
22170 include_section = &dwz->macro;
22171 include_bfd = get_section_bfd_owner (include_section);
22172 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22173 is_dwz = 1;
22174 }
22175
22176 new_mac_ptr = include_section->buffer + offset;
22177 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22178
22179 if (*slot != NULL)
22180 {
22181 /* This has actually happened; see
22182 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22183 complaint (&symfile_complaints,
22184 _("recursive DW_MACRO_import in "
22185 ".debug_macro section"));
22186 }
22187 else
22188 {
22189 *slot = (void *) new_mac_ptr;
22190
22191 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
22192 include_mac_end, current_file, lh,
22193 section, section_is_gnu, is_dwz,
22194 offset_size, include_hash);
22195
22196 htab_remove_elt (include_hash, (void *) new_mac_ptr);
22197 }
22198 }
22199 break;
22200
22201 case DW_MACINFO_vendor_ext:
22202 if (!section_is_gnu)
22203 {
22204 unsigned int bytes_read;
22205
22206 /* This reads the constant, but since we don't recognize
22207 any vendor extensions, we ignore it. */
22208 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22209 mac_ptr += bytes_read;
22210 read_direct_string (abfd, mac_ptr, &bytes_read);
22211 mac_ptr += bytes_read;
22212
22213 /* We don't recognize any vendor extensions. */
22214 break;
22215 }
22216 /* FALLTHROUGH */
22217
22218 default:
22219 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22220 mac_ptr, mac_end, abfd, offset_size,
22221 section);
22222 if (mac_ptr == NULL)
22223 return;
22224 break;
22225 }
22226 } while (macinfo_type != 0);
22227 }
22228
22229 static void
22230 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22231 int section_is_gnu)
22232 {
22233 struct objfile *objfile = dwarf2_per_objfile->objfile;
22234 struct line_header *lh = cu->line_header;
22235 bfd *abfd;
22236 const gdb_byte *mac_ptr, *mac_end;
22237 struct macro_source_file *current_file = 0;
22238 enum dwarf_macro_record_type macinfo_type;
22239 unsigned int offset_size = cu->header.offset_size;
22240 const gdb_byte *opcode_definitions[256];
22241 struct cleanup *cleanup;
22242 void **slot;
22243 struct dwarf2_section_info *section;
22244 const char *section_name;
22245
22246 if (cu->dwo_unit != NULL)
22247 {
22248 if (section_is_gnu)
22249 {
22250 section = &cu->dwo_unit->dwo_file->sections.macro;
22251 section_name = ".debug_macro.dwo";
22252 }
22253 else
22254 {
22255 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22256 section_name = ".debug_macinfo.dwo";
22257 }
22258 }
22259 else
22260 {
22261 if (section_is_gnu)
22262 {
22263 section = &dwarf2_per_objfile->macro;
22264 section_name = ".debug_macro";
22265 }
22266 else
22267 {
22268 section = &dwarf2_per_objfile->macinfo;
22269 section_name = ".debug_macinfo";
22270 }
22271 }
22272
22273 dwarf2_read_section (objfile, section);
22274 if (section->buffer == NULL)
22275 {
22276 complaint (&symfile_complaints, _("missing %s section"), section_name);
22277 return;
22278 }
22279 abfd = get_section_bfd_owner (section);
22280
22281 /* First pass: Find the name of the base filename.
22282 This filename is needed in order to process all macros whose definition
22283 (or undefinition) comes from the command line. These macros are defined
22284 before the first DW_MACINFO_start_file entry, and yet still need to be
22285 associated to the base file.
22286
22287 To determine the base file name, we scan the macro definitions until we
22288 reach the first DW_MACINFO_start_file entry. We then initialize
22289 CURRENT_FILE accordingly so that any macro definition found before the
22290 first DW_MACINFO_start_file can still be associated to the base file. */
22291
22292 mac_ptr = section->buffer + offset;
22293 mac_end = section->buffer + section->size;
22294
22295 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22296 &offset_size, section_is_gnu);
22297 if (mac_ptr == NULL)
22298 {
22299 /* We already issued a complaint. */
22300 return;
22301 }
22302
22303 do
22304 {
22305 /* Do we at least have room for a macinfo type byte? */
22306 if (mac_ptr >= mac_end)
22307 {
22308 /* Complaint is printed during the second pass as GDB will probably
22309 stop the first pass earlier upon finding
22310 DW_MACINFO_start_file. */
22311 break;
22312 }
22313
22314 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22315 mac_ptr++;
22316
22317 /* Note that we rely on the fact that the corresponding GNU and
22318 DWARF constants are the same. */
22319 switch (macinfo_type)
22320 {
22321 /* A zero macinfo type indicates the end of the macro
22322 information. */
22323 case 0:
22324 break;
22325
22326 case DW_MACRO_define:
22327 case DW_MACRO_undef:
22328 /* Only skip the data by MAC_PTR. */
22329 {
22330 unsigned int bytes_read;
22331
22332 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22333 mac_ptr += bytes_read;
22334 read_direct_string (abfd, mac_ptr, &bytes_read);
22335 mac_ptr += bytes_read;
22336 }
22337 break;
22338
22339 case DW_MACRO_start_file:
22340 {
22341 unsigned int bytes_read;
22342 int line, file;
22343
22344 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22345 mac_ptr += bytes_read;
22346 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22347 mac_ptr += bytes_read;
22348
22349 current_file = macro_start_file (file, line, current_file, lh);
22350 }
22351 break;
22352
22353 case DW_MACRO_end_file:
22354 /* No data to skip by MAC_PTR. */
22355 break;
22356
22357 case DW_MACRO_define_strp:
22358 case DW_MACRO_undef_strp:
22359 case DW_MACRO_define_sup:
22360 case DW_MACRO_undef_sup:
22361 {
22362 unsigned int bytes_read;
22363
22364 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22365 mac_ptr += bytes_read;
22366 mac_ptr += offset_size;
22367 }
22368 break;
22369
22370 case DW_MACRO_import:
22371 case DW_MACRO_import_sup:
22372 /* Note that, according to the spec, a transparent include
22373 chain cannot call DW_MACRO_start_file. So, we can just
22374 skip this opcode. */
22375 mac_ptr += offset_size;
22376 break;
22377
22378 case DW_MACINFO_vendor_ext:
22379 /* Only skip the data by MAC_PTR. */
22380 if (!section_is_gnu)
22381 {
22382 unsigned int bytes_read;
22383
22384 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22385 mac_ptr += bytes_read;
22386 read_direct_string (abfd, mac_ptr, &bytes_read);
22387 mac_ptr += bytes_read;
22388 }
22389 /* FALLTHROUGH */
22390
22391 default:
22392 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
22393 mac_ptr, mac_end, abfd, offset_size,
22394 section);
22395 if (mac_ptr == NULL)
22396 return;
22397 break;
22398 }
22399 } while (macinfo_type != 0 && current_file == NULL);
22400
22401 /* Second pass: Process all entries.
22402
22403 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22404 command-line macro definitions/undefinitions. This flag is unset when we
22405 reach the first DW_MACINFO_start_file entry. */
22406
22407 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22408 htab_eq_pointer,
22409 NULL, xcalloc, xfree));
22410 mac_ptr = section->buffer + offset;
22411 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
22412 *slot = (void *) mac_ptr;
22413 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
22414 current_file, lh, section,
22415 section_is_gnu, 0, offset_size,
22416 include_hash.get ());
22417 }
22418
22419 /* Check if the attribute's form is a DW_FORM_block*
22420 if so return true else false. */
22421
22422 static int
22423 attr_form_is_block (const struct attribute *attr)
22424 {
22425 return (attr == NULL ? 0 :
22426 attr->form == DW_FORM_block1
22427 || attr->form == DW_FORM_block2
22428 || attr->form == DW_FORM_block4
22429 || attr->form == DW_FORM_block
22430 || attr->form == DW_FORM_exprloc);
22431 }
22432
22433 /* Return non-zero if ATTR's value is a section offset --- classes
22434 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22435 You may use DW_UNSND (attr) to retrieve such offsets.
22436
22437 Section 7.5.4, "Attribute Encodings", explains that no attribute
22438 may have a value that belongs to more than one of these classes; it
22439 would be ambiguous if we did, because we use the same forms for all
22440 of them. */
22441
22442 static int
22443 attr_form_is_section_offset (const struct attribute *attr)
22444 {
22445 return (attr->form == DW_FORM_data4
22446 || attr->form == DW_FORM_data8
22447 || attr->form == DW_FORM_sec_offset);
22448 }
22449
22450 /* Return non-zero if ATTR's value falls in the 'constant' class, or
22451 zero otherwise. When this function returns true, you can apply
22452 dwarf2_get_attr_constant_value to it.
22453
22454 However, note that for some attributes you must check
22455 attr_form_is_section_offset before using this test. DW_FORM_data4
22456 and DW_FORM_data8 are members of both the constant class, and of
22457 the classes that contain offsets into other debug sections
22458 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22459 that, if an attribute's can be either a constant or one of the
22460 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
22461 taken as section offsets, not constants.
22462
22463 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22464 cannot handle that. */
22465
22466 static int
22467 attr_form_is_constant (const struct attribute *attr)
22468 {
22469 switch (attr->form)
22470 {
22471 case DW_FORM_sdata:
22472 case DW_FORM_udata:
22473 case DW_FORM_data1:
22474 case DW_FORM_data2:
22475 case DW_FORM_data4:
22476 case DW_FORM_data8:
22477 return 1;
22478 default:
22479 return 0;
22480 }
22481 }
22482
22483
22484 /* DW_ADDR is always stored already as sect_offset; despite for the forms
22485 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22486
22487 static int
22488 attr_form_is_ref (const struct attribute *attr)
22489 {
22490 switch (attr->form)
22491 {
22492 case DW_FORM_ref_addr:
22493 case DW_FORM_ref1:
22494 case DW_FORM_ref2:
22495 case DW_FORM_ref4:
22496 case DW_FORM_ref8:
22497 case DW_FORM_ref_udata:
22498 case DW_FORM_GNU_ref_alt:
22499 return 1;
22500 default:
22501 return 0;
22502 }
22503 }
22504
22505 /* Return the .debug_loc section to use for CU.
22506 For DWO files use .debug_loc.dwo. */
22507
22508 static struct dwarf2_section_info *
22509 cu_debug_loc_section (struct dwarf2_cu *cu)
22510 {
22511 if (cu->dwo_unit)
22512 {
22513 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22514
22515 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22516 }
22517 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22518 : &dwarf2_per_objfile->loc);
22519 }
22520
22521 /* A helper function that fills in a dwarf2_loclist_baton. */
22522
22523 static void
22524 fill_in_loclist_baton (struct dwarf2_cu *cu,
22525 struct dwarf2_loclist_baton *baton,
22526 const struct attribute *attr)
22527 {
22528 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22529
22530 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
22531
22532 baton->per_cu = cu->per_cu;
22533 gdb_assert (baton->per_cu);
22534 /* We don't know how long the location list is, but make sure we
22535 don't run off the edge of the section. */
22536 baton->size = section->size - DW_UNSND (attr);
22537 baton->data = section->buffer + DW_UNSND (attr);
22538 baton->base_address = cu->base_address;
22539 baton->from_dwo = cu->dwo_unit != NULL;
22540 }
22541
22542 static void
22543 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22544 struct dwarf2_cu *cu, int is_block)
22545 {
22546 struct objfile *objfile = dwarf2_per_objfile->objfile;
22547 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22548
22549 if (attr_form_is_section_offset (attr)
22550 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22551 the section. If so, fall through to the complaint in the
22552 other branch. */
22553 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
22554 {
22555 struct dwarf2_loclist_baton *baton;
22556
22557 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22558
22559 fill_in_loclist_baton (cu, baton, attr);
22560
22561 if (cu->base_known == 0)
22562 complaint (&symfile_complaints,
22563 _("Location list used without "
22564 "specifying the CU base address."));
22565
22566 SYMBOL_ACLASS_INDEX (sym) = (is_block
22567 ? dwarf2_loclist_block_index
22568 : dwarf2_loclist_index);
22569 SYMBOL_LOCATION_BATON (sym) = baton;
22570 }
22571 else
22572 {
22573 struct dwarf2_locexpr_baton *baton;
22574
22575 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22576 baton->per_cu = cu->per_cu;
22577 gdb_assert (baton->per_cu);
22578
22579 if (attr_form_is_block (attr))
22580 {
22581 /* Note that we're just copying the block's data pointer
22582 here, not the actual data. We're still pointing into the
22583 info_buffer for SYM's objfile; right now we never release
22584 that buffer, but when we do clean up properly this may
22585 need to change. */
22586 baton->size = DW_BLOCK (attr)->size;
22587 baton->data = DW_BLOCK (attr)->data;
22588 }
22589 else
22590 {
22591 dwarf2_invalid_attrib_class_complaint ("location description",
22592 SYMBOL_NATURAL_NAME (sym));
22593 baton->size = 0;
22594 }
22595
22596 SYMBOL_ACLASS_INDEX (sym) = (is_block
22597 ? dwarf2_locexpr_block_index
22598 : dwarf2_locexpr_index);
22599 SYMBOL_LOCATION_BATON (sym) = baton;
22600 }
22601 }
22602
22603 /* Return the OBJFILE associated with the compilation unit CU. If CU
22604 came from a separate debuginfo file, then the master objfile is
22605 returned. */
22606
22607 struct objfile *
22608 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22609 {
22610 struct objfile *objfile = per_cu->objfile;
22611
22612 /* Return the master objfile, so that we can report and look up the
22613 correct file containing this variable. */
22614 if (objfile->separate_debug_objfile_backlink)
22615 objfile = objfile->separate_debug_objfile_backlink;
22616
22617 return objfile;
22618 }
22619
22620 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22621 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22622 CU_HEADERP first. */
22623
22624 static const struct comp_unit_head *
22625 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22626 struct dwarf2_per_cu_data *per_cu)
22627 {
22628 const gdb_byte *info_ptr;
22629
22630 if (per_cu->cu)
22631 return &per_cu->cu->header;
22632
22633 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22634
22635 memset (cu_headerp, 0, sizeof (*cu_headerp));
22636 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22637 rcuh_kind::COMPILE);
22638
22639 return cu_headerp;
22640 }
22641
22642 /* Return the address size given in the compilation unit header for CU. */
22643
22644 int
22645 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22646 {
22647 struct comp_unit_head cu_header_local;
22648 const struct comp_unit_head *cu_headerp;
22649
22650 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22651
22652 return cu_headerp->addr_size;
22653 }
22654
22655 /* Return the offset size given in the compilation unit header for CU. */
22656
22657 int
22658 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22659 {
22660 struct comp_unit_head cu_header_local;
22661 const struct comp_unit_head *cu_headerp;
22662
22663 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22664
22665 return cu_headerp->offset_size;
22666 }
22667
22668 /* See its dwarf2loc.h declaration. */
22669
22670 int
22671 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22672 {
22673 struct comp_unit_head cu_header_local;
22674 const struct comp_unit_head *cu_headerp;
22675
22676 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22677
22678 if (cu_headerp->version == 2)
22679 return cu_headerp->addr_size;
22680 else
22681 return cu_headerp->offset_size;
22682 }
22683
22684 /* Return the text offset of the CU. The returned offset comes from
22685 this CU's objfile. If this objfile came from a separate debuginfo
22686 file, then the offset may be different from the corresponding
22687 offset in the parent objfile. */
22688
22689 CORE_ADDR
22690 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22691 {
22692 struct objfile *objfile = per_cu->objfile;
22693
22694 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22695 }
22696
22697 /* Return DWARF version number of PER_CU. */
22698
22699 short
22700 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22701 {
22702 return per_cu->dwarf_version;
22703 }
22704
22705 /* Locate the .debug_info compilation unit from CU's objfile which contains
22706 the DIE at OFFSET. Raises an error on failure. */
22707
22708 static struct dwarf2_per_cu_data *
22709 dwarf2_find_containing_comp_unit (sect_offset sect_off,
22710 unsigned int offset_in_dwz,
22711 struct objfile *objfile)
22712 {
22713 struct dwarf2_per_cu_data *this_cu;
22714 int low, high;
22715 const sect_offset *cu_off;
22716
22717 low = 0;
22718 high = dwarf2_per_objfile->n_comp_units - 1;
22719 while (high > low)
22720 {
22721 struct dwarf2_per_cu_data *mid_cu;
22722 int mid = low + (high - low) / 2;
22723
22724 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22725 cu_off = &mid_cu->sect_off;
22726 if (mid_cu->is_dwz > offset_in_dwz
22727 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
22728 high = mid;
22729 else
22730 low = mid + 1;
22731 }
22732 gdb_assert (low == high);
22733 this_cu = dwarf2_per_objfile->all_comp_units[low];
22734 cu_off = &this_cu->sect_off;
22735 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
22736 {
22737 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22738 error (_("Dwarf Error: could not find partial DIE containing "
22739 "offset 0x%x [in module %s]"),
22740 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
22741
22742 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22743 <= sect_off);
22744 return dwarf2_per_objfile->all_comp_units[low-1];
22745 }
22746 else
22747 {
22748 this_cu = dwarf2_per_objfile->all_comp_units[low];
22749 if (low == dwarf2_per_objfile->n_comp_units - 1
22750 && sect_off >= this_cu->sect_off + this_cu->length)
22751 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22752 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
22753 return this_cu;
22754 }
22755 }
22756
22757 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22758
22759 static void
22760 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22761 {
22762 memset (cu, 0, sizeof (*cu));
22763 per_cu->cu = cu;
22764 cu->per_cu = per_cu;
22765 cu->objfile = per_cu->objfile;
22766 obstack_init (&cu->comp_unit_obstack);
22767 }
22768
22769 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22770
22771 static void
22772 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22773 enum language pretend_language)
22774 {
22775 struct attribute *attr;
22776
22777 /* Set the language we're debugging. */
22778 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22779 if (attr)
22780 set_cu_language (DW_UNSND (attr), cu);
22781 else
22782 {
22783 cu->language = pretend_language;
22784 cu->language_defn = language_def (cu->language);
22785 }
22786
22787 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22788 }
22789
22790 /* Release one cached compilation unit, CU. We unlink it from the tree
22791 of compilation units, but we don't remove it from the read_in_chain;
22792 the caller is responsible for that.
22793 NOTE: DATA is a void * because this function is also used as a
22794 cleanup routine. */
22795
22796 static void
22797 free_heap_comp_unit (void *data)
22798 {
22799 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22800
22801 gdb_assert (cu->per_cu != NULL);
22802 cu->per_cu->cu = NULL;
22803 cu->per_cu = NULL;
22804
22805 obstack_free (&cu->comp_unit_obstack, NULL);
22806
22807 xfree (cu);
22808 }
22809
22810 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22811 when we're finished with it. We can't free the pointer itself, but be
22812 sure to unlink it from the cache. Also release any associated storage. */
22813
22814 static void
22815 free_stack_comp_unit (void *data)
22816 {
22817 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22818
22819 gdb_assert (cu->per_cu != NULL);
22820 cu->per_cu->cu = NULL;
22821 cu->per_cu = NULL;
22822
22823 obstack_free (&cu->comp_unit_obstack, NULL);
22824 cu->partial_dies = NULL;
22825 }
22826
22827 /* Free all cached compilation units. */
22828
22829 static void
22830 free_cached_comp_units (void *data)
22831 {
22832 dwarf2_per_objfile->free_cached_comp_units ();
22833 }
22834
22835 /* Increase the age counter on each cached compilation unit, and free
22836 any that are too old. */
22837
22838 static void
22839 age_cached_comp_units (void)
22840 {
22841 struct dwarf2_per_cu_data *per_cu, **last_chain;
22842
22843 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22844 per_cu = dwarf2_per_objfile->read_in_chain;
22845 while (per_cu != NULL)
22846 {
22847 per_cu->cu->last_used ++;
22848 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22849 dwarf2_mark (per_cu->cu);
22850 per_cu = per_cu->cu->read_in_chain;
22851 }
22852
22853 per_cu = dwarf2_per_objfile->read_in_chain;
22854 last_chain = &dwarf2_per_objfile->read_in_chain;
22855 while (per_cu != NULL)
22856 {
22857 struct dwarf2_per_cu_data *next_cu;
22858
22859 next_cu = per_cu->cu->read_in_chain;
22860
22861 if (!per_cu->cu->mark)
22862 {
22863 free_heap_comp_unit (per_cu->cu);
22864 *last_chain = next_cu;
22865 }
22866 else
22867 last_chain = &per_cu->cu->read_in_chain;
22868
22869 per_cu = next_cu;
22870 }
22871 }
22872
22873 /* Remove a single compilation unit from the cache. */
22874
22875 static void
22876 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22877 {
22878 struct dwarf2_per_cu_data *per_cu, **last_chain;
22879
22880 per_cu = dwarf2_per_objfile->read_in_chain;
22881 last_chain = &dwarf2_per_objfile->read_in_chain;
22882 while (per_cu != NULL)
22883 {
22884 struct dwarf2_per_cu_data *next_cu;
22885
22886 next_cu = per_cu->cu->read_in_chain;
22887
22888 if (per_cu == target_per_cu)
22889 {
22890 free_heap_comp_unit (per_cu->cu);
22891 per_cu->cu = NULL;
22892 *last_chain = next_cu;
22893 break;
22894 }
22895 else
22896 last_chain = &per_cu->cu->read_in_chain;
22897
22898 per_cu = next_cu;
22899 }
22900 }
22901
22902 /* Release all extra memory associated with OBJFILE. */
22903
22904 void
22905 dwarf2_free_objfile (struct objfile *objfile)
22906 {
22907 dwarf2_per_objfile
22908 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22909 dwarf2_objfile_data_key);
22910
22911 if (dwarf2_per_objfile == NULL)
22912 return;
22913
22914 dwarf2_per_objfile->~dwarf2_per_objfile ();
22915 }
22916
22917 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22918 We store these in a hash table separate from the DIEs, and preserve them
22919 when the DIEs are flushed out of cache.
22920
22921 The CU "per_cu" pointer is needed because offset alone is not enough to
22922 uniquely identify the type. A file may have multiple .debug_types sections,
22923 or the type may come from a DWO file. Furthermore, while it's more logical
22924 to use per_cu->section+offset, with Fission the section with the data is in
22925 the DWO file but we don't know that section at the point we need it.
22926 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22927 because we can enter the lookup routine, get_die_type_at_offset, from
22928 outside this file, and thus won't necessarily have PER_CU->cu.
22929 Fortunately, PER_CU is stable for the life of the objfile. */
22930
22931 struct dwarf2_per_cu_offset_and_type
22932 {
22933 const struct dwarf2_per_cu_data *per_cu;
22934 sect_offset sect_off;
22935 struct type *type;
22936 };
22937
22938 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22939
22940 static hashval_t
22941 per_cu_offset_and_type_hash (const void *item)
22942 {
22943 const struct dwarf2_per_cu_offset_and_type *ofs
22944 = (const struct dwarf2_per_cu_offset_and_type *) item;
22945
22946 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
22947 }
22948
22949 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22950
22951 static int
22952 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22953 {
22954 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22955 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22956 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22957 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22958
22959 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22960 && ofs_lhs->sect_off == ofs_rhs->sect_off);
22961 }
22962
22963 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22964 table if necessary. For convenience, return TYPE.
22965
22966 The DIEs reading must have careful ordering to:
22967 * Not cause infite loops trying to read in DIEs as a prerequisite for
22968 reading current DIE.
22969 * Not trying to dereference contents of still incompletely read in types
22970 while reading in other DIEs.
22971 * Enable referencing still incompletely read in types just by a pointer to
22972 the type without accessing its fields.
22973
22974 Therefore caller should follow these rules:
22975 * Try to fetch any prerequisite types we may need to build this DIE type
22976 before building the type and calling set_die_type.
22977 * After building type call set_die_type for current DIE as soon as
22978 possible before fetching more types to complete the current type.
22979 * Make the type as complete as possible before fetching more types. */
22980
22981 static struct type *
22982 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22983 {
22984 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22985 struct objfile *objfile = cu->objfile;
22986 struct attribute *attr;
22987 struct dynamic_prop prop;
22988
22989 /* For Ada types, make sure that the gnat-specific data is always
22990 initialized (if not already set). There are a few types where
22991 we should not be doing so, because the type-specific area is
22992 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22993 where the type-specific area is used to store the floatformat).
22994 But this is not a problem, because the gnat-specific information
22995 is actually not needed for these types. */
22996 if (need_gnat_info (cu)
22997 && TYPE_CODE (type) != TYPE_CODE_FUNC
22998 && TYPE_CODE (type) != TYPE_CODE_FLT
22999 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23000 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23001 && TYPE_CODE (type) != TYPE_CODE_METHOD
23002 && !HAVE_GNAT_AUX_INFO (type))
23003 INIT_GNAT_SPECIFIC (type);
23004
23005 /* Read DW_AT_allocated and set in type. */
23006 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23007 if (attr_form_is_block (attr))
23008 {
23009 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23010 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23011 }
23012 else if (attr != NULL)
23013 {
23014 complaint (&symfile_complaints,
23015 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23016 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23017 to_underlying (die->sect_off));
23018 }
23019
23020 /* Read DW_AT_associated and set in type. */
23021 attr = dwarf2_attr (die, DW_AT_associated, cu);
23022 if (attr_form_is_block (attr))
23023 {
23024 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23025 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23026 }
23027 else if (attr != NULL)
23028 {
23029 complaint (&symfile_complaints,
23030 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23031 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23032 to_underlying (die->sect_off));
23033 }
23034
23035 /* Read DW_AT_data_location and set in type. */
23036 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23037 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23038 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23039
23040 if (dwarf2_per_objfile->die_type_hash == NULL)
23041 {
23042 dwarf2_per_objfile->die_type_hash =
23043 htab_create_alloc_ex (127,
23044 per_cu_offset_and_type_hash,
23045 per_cu_offset_and_type_eq,
23046 NULL,
23047 &objfile->objfile_obstack,
23048 hashtab_obstack_allocate,
23049 dummy_obstack_deallocate);
23050 }
23051
23052 ofs.per_cu = cu->per_cu;
23053 ofs.sect_off = die->sect_off;
23054 ofs.type = type;
23055 slot = (struct dwarf2_per_cu_offset_and_type **)
23056 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
23057 if (*slot)
23058 complaint (&symfile_complaints,
23059 _("A problem internal to GDB: DIE 0x%x has type already set"),
23060 to_underlying (die->sect_off));
23061 *slot = XOBNEW (&objfile->objfile_obstack,
23062 struct dwarf2_per_cu_offset_and_type);
23063 **slot = ofs;
23064 return type;
23065 }
23066
23067 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23068 or return NULL if the die does not have a saved type. */
23069
23070 static struct type *
23071 get_die_type_at_offset (sect_offset sect_off,
23072 struct dwarf2_per_cu_data *per_cu)
23073 {
23074 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23075
23076 if (dwarf2_per_objfile->die_type_hash == NULL)
23077 return NULL;
23078
23079 ofs.per_cu = per_cu;
23080 ofs.sect_off = sect_off;
23081 slot = ((struct dwarf2_per_cu_offset_and_type *)
23082 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
23083 if (slot)
23084 return slot->type;
23085 else
23086 return NULL;
23087 }
23088
23089 /* Look up the type for DIE in CU in die_type_hash,
23090 or return NULL if DIE does not have a saved type. */
23091
23092 static struct type *
23093 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23094 {
23095 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23096 }
23097
23098 /* Add a dependence relationship from CU to REF_PER_CU. */
23099
23100 static void
23101 dwarf2_add_dependence (struct dwarf2_cu *cu,
23102 struct dwarf2_per_cu_data *ref_per_cu)
23103 {
23104 void **slot;
23105
23106 if (cu->dependencies == NULL)
23107 cu->dependencies
23108 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23109 NULL, &cu->comp_unit_obstack,
23110 hashtab_obstack_allocate,
23111 dummy_obstack_deallocate);
23112
23113 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23114 if (*slot == NULL)
23115 *slot = ref_per_cu;
23116 }
23117
23118 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23119 Set the mark field in every compilation unit in the
23120 cache that we must keep because we are keeping CU. */
23121
23122 static int
23123 dwarf2_mark_helper (void **slot, void *data)
23124 {
23125 struct dwarf2_per_cu_data *per_cu;
23126
23127 per_cu = (struct dwarf2_per_cu_data *) *slot;
23128
23129 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23130 reading of the chain. As such dependencies remain valid it is not much
23131 useful to track and undo them during QUIT cleanups. */
23132 if (per_cu->cu == NULL)
23133 return 1;
23134
23135 if (per_cu->cu->mark)
23136 return 1;
23137 per_cu->cu->mark = 1;
23138
23139 if (per_cu->cu->dependencies != NULL)
23140 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23141
23142 return 1;
23143 }
23144
23145 /* Set the mark field in CU and in every other compilation unit in the
23146 cache that we must keep because we are keeping CU. */
23147
23148 static void
23149 dwarf2_mark (struct dwarf2_cu *cu)
23150 {
23151 if (cu->mark)
23152 return;
23153 cu->mark = 1;
23154 if (cu->dependencies != NULL)
23155 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23156 }
23157
23158 static void
23159 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23160 {
23161 while (per_cu)
23162 {
23163 per_cu->cu->mark = 0;
23164 per_cu = per_cu->cu->read_in_chain;
23165 }
23166 }
23167
23168 /* Trivial hash function for partial_die_info: the hash value of a DIE
23169 is its offset in .debug_info for this objfile. */
23170
23171 static hashval_t
23172 partial_die_hash (const void *item)
23173 {
23174 const struct partial_die_info *part_die
23175 = (const struct partial_die_info *) item;
23176
23177 return to_underlying (part_die->sect_off);
23178 }
23179
23180 /* Trivial comparison function for partial_die_info structures: two DIEs
23181 are equal if they have the same offset. */
23182
23183 static int
23184 partial_die_eq (const void *item_lhs, const void *item_rhs)
23185 {
23186 const struct partial_die_info *part_die_lhs
23187 = (const struct partial_die_info *) item_lhs;
23188 const struct partial_die_info *part_die_rhs
23189 = (const struct partial_die_info *) item_rhs;
23190
23191 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23192 }
23193
23194 static struct cmd_list_element *set_dwarf_cmdlist;
23195 static struct cmd_list_element *show_dwarf_cmdlist;
23196
23197 static void
23198 set_dwarf_cmd (char *args, int from_tty)
23199 {
23200 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
23201 gdb_stdout);
23202 }
23203
23204 static void
23205 show_dwarf_cmd (char *args, int from_tty)
23206 {
23207 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
23208 }
23209
23210 /* Free data associated with OBJFILE, if necessary. */
23211
23212 static void
23213 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
23214 {
23215 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
23216 int ix;
23217
23218 /* Make sure we don't accidentally use dwarf2_per_objfile while
23219 cleaning up. */
23220 dwarf2_per_objfile = NULL;
23221
23222 for (ix = 0; ix < data->n_comp_units; ++ix)
23223 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
23224
23225 for (ix = 0; ix < data->n_type_units; ++ix)
23226 VEC_free (dwarf2_per_cu_ptr,
23227 data->all_type_units[ix]->per_cu.imported_symtabs);
23228 xfree (data->all_type_units);
23229
23230 VEC_free (dwarf2_section_info_def, data->types);
23231
23232 if (data->dwo_files)
23233 free_dwo_files (data->dwo_files, objfile);
23234 if (data->dwp_file)
23235 gdb_bfd_unref (data->dwp_file->dbfd);
23236
23237 if (data->dwz_file && data->dwz_file->dwz_bfd)
23238 gdb_bfd_unref (data->dwz_file->dwz_bfd);
23239 }
23240
23241 \f
23242 /* The "save gdb-index" command. */
23243
23244 /* In-memory buffer to prepare data to be written later to a file. */
23245 class data_buf
23246 {
23247 public:
23248 /* Copy DATA to the end of the buffer. */
23249 template<typename T>
23250 void append_data (const T &data)
23251 {
23252 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23253 reinterpret_cast<const gdb_byte *> (&data + 1),
23254 grow (sizeof (data)));
23255 }
23256
23257 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23258 terminating zero is appended too. */
23259 void append_cstr0 (const char *cstr)
23260 {
23261 const size_t size = strlen (cstr) + 1;
23262 std::copy (cstr, cstr + size, grow (size));
23263 }
23264
23265 /* Accept a host-format integer in VAL and append it to the buffer
23266 as a target-format integer which is LEN bytes long. */
23267 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23268 {
23269 ::store_unsigned_integer (grow (len), len, byte_order, val);
23270 }
23271
23272 /* Return the size of the buffer. */
23273 size_t size () const
23274 {
23275 return m_vec.size ();
23276 }
23277
23278 /* Write the buffer to FILE. */
23279 void file_write (FILE *file) const
23280 {
23281 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23282 error (_("couldn't write data to file"));
23283 }
23284
23285 private:
23286 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23287 the start of the new block. */
23288 gdb_byte *grow (size_t size)
23289 {
23290 m_vec.resize (m_vec.size () + size);
23291 return &*m_vec.end () - size;
23292 }
23293
23294 gdb::byte_vector m_vec;
23295 };
23296
23297 /* An entry in the symbol table. */
23298 struct symtab_index_entry
23299 {
23300 /* The name of the symbol. */
23301 const char *name;
23302 /* The offset of the name in the constant pool. */
23303 offset_type index_offset;
23304 /* A sorted vector of the indices of all the CUs that hold an object
23305 of this name. */
23306 std::vector<offset_type> cu_indices;
23307 };
23308
23309 /* The symbol table. This is a power-of-2-sized hash table. */
23310 struct mapped_symtab
23311 {
23312 mapped_symtab ()
23313 {
23314 data.resize (1024);
23315 }
23316
23317 offset_type n_elements = 0;
23318 std::vector<symtab_index_entry> data;
23319 };
23320
23321 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
23322 the slot.
23323
23324 Function is used only during write_hash_table so no index format backward
23325 compatibility is needed. */
23326
23327 static symtab_index_entry &
23328 find_slot (struct mapped_symtab *symtab, const char *name)
23329 {
23330 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
23331
23332 index = hash & (symtab->data.size () - 1);
23333 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
23334
23335 for (;;)
23336 {
23337 if (symtab->data[index].name == NULL
23338 || strcmp (name, symtab->data[index].name) == 0)
23339 return symtab->data[index];
23340 index = (index + step) & (symtab->data.size () - 1);
23341 }
23342 }
23343
23344 /* Expand SYMTAB's hash table. */
23345
23346 static void
23347 hash_expand (struct mapped_symtab *symtab)
23348 {
23349 auto old_entries = std::move (symtab->data);
23350
23351 symtab->data.clear ();
23352 symtab->data.resize (old_entries.size () * 2);
23353
23354 for (auto &it : old_entries)
23355 if (it.name != NULL)
23356 {
23357 auto &ref = find_slot (symtab, it.name);
23358 ref = std::move (it);
23359 }
23360 }
23361
23362 /* Add an entry to SYMTAB. NAME is the name of the symbol.
23363 CU_INDEX is the index of the CU in which the symbol appears.
23364 IS_STATIC is one if the symbol is static, otherwise zero (global). */
23365
23366 static void
23367 add_index_entry (struct mapped_symtab *symtab, const char *name,
23368 int is_static, gdb_index_symbol_kind kind,
23369 offset_type cu_index)
23370 {
23371 offset_type cu_index_and_attrs;
23372
23373 ++symtab->n_elements;
23374 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
23375 hash_expand (symtab);
23376
23377 symtab_index_entry &slot = find_slot (symtab, name);
23378 if (slot.name == NULL)
23379 {
23380 slot.name = name;
23381 /* index_offset is set later. */
23382 }
23383
23384 cu_index_and_attrs = 0;
23385 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23386 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23387 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23388
23389 /* We don't want to record an index value twice as we want to avoid the
23390 duplication.
23391 We process all global symbols and then all static symbols
23392 (which would allow us to avoid the duplication by only having to check
23393 the last entry pushed), but a symbol could have multiple kinds in one CU.
23394 To keep things simple we don't worry about the duplication here and
23395 sort and uniqufy the list after we've processed all symbols. */
23396 slot.cu_indices.push_back (cu_index_and_attrs);
23397 }
23398
23399 /* Sort and remove duplicates of all symbols' cu_indices lists. */
23400
23401 static void
23402 uniquify_cu_indices (struct mapped_symtab *symtab)
23403 {
23404 for (auto &entry : symtab->data)
23405 {
23406 if (entry.name != NULL && !entry.cu_indices.empty ())
23407 {
23408 auto &cu_indices = entry.cu_indices;
23409 std::sort (cu_indices.begin (), cu_indices.end ());
23410 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23411 cu_indices.erase (from, cu_indices.end ());
23412 }
23413 }
23414 }
23415
23416 /* A form of 'const char *' suitable for container keys. Only the
23417 pointer is stored. The strings themselves are compared, not the
23418 pointers. */
23419 class c_str_view
23420 {
23421 public:
23422 c_str_view (const char *cstr)
23423 : m_cstr (cstr)
23424 {}
23425
23426 bool operator== (const c_str_view &other) const
23427 {
23428 return strcmp (m_cstr, other.m_cstr) == 0;
23429 }
23430
23431 private:
23432 friend class c_str_view_hasher;
23433 const char *const m_cstr;
23434 };
23435
23436 /* A std::unordered_map::hasher for c_str_view that uses the right
23437 hash function for strings in a mapped index. */
23438 class c_str_view_hasher
23439 {
23440 public:
23441 size_t operator () (const c_str_view &x) const
23442 {
23443 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23444 }
23445 };
23446
23447 /* A std::unordered_map::hasher for std::vector<>. */
23448 template<typename T>
23449 class vector_hasher
23450 {
23451 public:
23452 size_t operator () (const std::vector<T> &key) const
23453 {
23454 return iterative_hash (key.data (),
23455 sizeof (key.front ()) * key.size (), 0);
23456 }
23457 };
23458
23459 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23460 constant pool entries going into the data buffer CPOOL. */
23461
23462 static void
23463 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23464 {
23465 {
23466 /* Elements are sorted vectors of the indices of all the CUs that
23467 hold an object of this name. */
23468 std::unordered_map<std::vector<offset_type>, offset_type,
23469 vector_hasher<offset_type>>
23470 symbol_hash_table;
23471
23472 /* We add all the index vectors to the constant pool first, to
23473 ensure alignment is ok. */
23474 for (symtab_index_entry &entry : symtab->data)
23475 {
23476 if (entry.name == NULL)
23477 continue;
23478 gdb_assert (entry.index_offset == 0);
23479
23480 /* Finding before inserting is faster than always trying to
23481 insert, because inserting always allocates a node, does the
23482 lookup, and then destroys the new node if another node
23483 already had the same key. C++17 try_emplace will avoid
23484 this. */
23485 const auto found
23486 = symbol_hash_table.find (entry.cu_indices);
23487 if (found != symbol_hash_table.end ())
23488 {
23489 entry.index_offset = found->second;
23490 continue;
23491 }
23492
23493 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23494 entry.index_offset = cpool.size ();
23495 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23496 for (const auto index : entry.cu_indices)
23497 cpool.append_data (MAYBE_SWAP (index));
23498 }
23499 }
23500
23501 /* Now write out the hash table. */
23502 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
23503 for (const auto &entry : symtab->data)
23504 {
23505 offset_type str_off, vec_off;
23506
23507 if (entry.name != NULL)
23508 {
23509 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
23510 if (insertpair.second)
23511 cpool.append_cstr0 (entry.name);
23512 str_off = insertpair.first->second;
23513 vec_off = entry.index_offset;
23514 }
23515 else
23516 {
23517 /* While 0 is a valid constant pool index, it is not valid
23518 to have 0 for both offsets. */
23519 str_off = 0;
23520 vec_off = 0;
23521 }
23522
23523 output.append_data (MAYBE_SWAP (str_off));
23524 output.append_data (MAYBE_SWAP (vec_off));
23525 }
23526 }
23527
23528 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
23529
23530 /* Helper struct for building the address table. */
23531 struct addrmap_index_data
23532 {
23533 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23534 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23535 {}
23536
23537 struct objfile *objfile;
23538 data_buf &addr_vec;
23539 psym_index_map &cu_index_htab;
23540
23541 /* Non-zero if the previous_* fields are valid.
23542 We can't write an entry until we see the next entry (since it is only then
23543 that we know the end of the entry). */
23544 int previous_valid;
23545 /* Index of the CU in the table of all CUs in the index file. */
23546 unsigned int previous_cu_index;
23547 /* Start address of the CU. */
23548 CORE_ADDR previous_cu_start;
23549 };
23550
23551 /* Write an address entry to ADDR_VEC. */
23552
23553 static void
23554 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
23555 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23556 {
23557 CORE_ADDR baseaddr;
23558
23559 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23560
23561 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23562 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
23563 addr_vec.append_data (MAYBE_SWAP (cu_index));
23564 }
23565
23566 /* Worker function for traversing an addrmap to build the address table. */
23567
23568 static int
23569 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23570 {
23571 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23572 struct partial_symtab *pst = (struct partial_symtab *) obj;
23573
23574 if (data->previous_valid)
23575 add_address_entry (data->objfile, data->addr_vec,
23576 data->previous_cu_start, start_addr,
23577 data->previous_cu_index);
23578
23579 data->previous_cu_start = start_addr;
23580 if (pst != NULL)
23581 {
23582 const auto it = data->cu_index_htab.find (pst);
23583 gdb_assert (it != data->cu_index_htab.cend ());
23584 data->previous_cu_index = it->second;
23585 data->previous_valid = 1;
23586 }
23587 else
23588 data->previous_valid = 0;
23589
23590 return 0;
23591 }
23592
23593 /* Write OBJFILE's address map to ADDR_VEC.
23594 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23595 in the index file. */
23596
23597 static void
23598 write_address_map (struct objfile *objfile, data_buf &addr_vec,
23599 psym_index_map &cu_index_htab)
23600 {
23601 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
23602
23603 /* When writing the address table, we have to cope with the fact that
23604 the addrmap iterator only provides the start of a region; we have to
23605 wait until the next invocation to get the start of the next region. */
23606
23607 addrmap_index_data.objfile = objfile;
23608 addrmap_index_data.previous_valid = 0;
23609
23610 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23611 &addrmap_index_data);
23612
23613 /* It's highly unlikely the last entry (end address = 0xff...ff)
23614 is valid, but we should still handle it.
23615 The end address is recorded as the start of the next region, but that
23616 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23617 anyway. */
23618 if (addrmap_index_data.previous_valid)
23619 add_address_entry (objfile, addr_vec,
23620 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23621 addrmap_index_data.previous_cu_index);
23622 }
23623
23624 /* Return the symbol kind of PSYM. */
23625
23626 static gdb_index_symbol_kind
23627 symbol_kind (struct partial_symbol *psym)
23628 {
23629 domain_enum domain = PSYMBOL_DOMAIN (psym);
23630 enum address_class aclass = PSYMBOL_CLASS (psym);
23631
23632 switch (domain)
23633 {
23634 case VAR_DOMAIN:
23635 switch (aclass)
23636 {
23637 case LOC_BLOCK:
23638 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23639 case LOC_TYPEDEF:
23640 return GDB_INDEX_SYMBOL_KIND_TYPE;
23641 case LOC_COMPUTED:
23642 case LOC_CONST_BYTES:
23643 case LOC_OPTIMIZED_OUT:
23644 case LOC_STATIC:
23645 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23646 case LOC_CONST:
23647 /* Note: It's currently impossible to recognize psyms as enum values
23648 short of reading the type info. For now punt. */
23649 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23650 default:
23651 /* There are other LOC_FOO values that one might want to classify
23652 as variables, but dwarf2read.c doesn't currently use them. */
23653 return GDB_INDEX_SYMBOL_KIND_OTHER;
23654 }
23655 case STRUCT_DOMAIN:
23656 return GDB_INDEX_SYMBOL_KIND_TYPE;
23657 default:
23658 return GDB_INDEX_SYMBOL_KIND_OTHER;
23659 }
23660 }
23661
23662 /* Add a list of partial symbols to SYMTAB. */
23663
23664 static void
23665 write_psymbols (struct mapped_symtab *symtab,
23666 std::unordered_set<partial_symbol *> &psyms_seen,
23667 struct partial_symbol **psymp,
23668 int count,
23669 offset_type cu_index,
23670 int is_static)
23671 {
23672 for (; count-- > 0; ++psymp)
23673 {
23674 struct partial_symbol *psym = *psymp;
23675
23676 if (SYMBOL_LANGUAGE (psym) == language_ada)
23677 error (_("Ada is not currently supported by the index"));
23678
23679 /* Only add a given psymbol once. */
23680 if (psyms_seen.insert (psym).second)
23681 {
23682 gdb_index_symbol_kind kind = symbol_kind (psym);
23683
23684 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23685 is_static, kind, cu_index);
23686 }
23687 }
23688 }
23689
23690 /* A helper struct used when iterating over debug_types. */
23691 struct signatured_type_index_data
23692 {
23693 signatured_type_index_data (data_buf &types_list_,
23694 std::unordered_set<partial_symbol *> &psyms_seen_)
23695 : types_list (types_list_), psyms_seen (psyms_seen_)
23696 {}
23697
23698 struct objfile *objfile;
23699 struct mapped_symtab *symtab;
23700 data_buf &types_list;
23701 std::unordered_set<partial_symbol *> &psyms_seen;
23702 int cu_index;
23703 };
23704
23705 /* A helper function that writes a single signatured_type to an
23706 obstack. */
23707
23708 static int
23709 write_one_signatured_type (void **slot, void *d)
23710 {
23711 struct signatured_type_index_data *info
23712 = (struct signatured_type_index_data *) d;
23713 struct signatured_type *entry = (struct signatured_type *) *slot;
23714 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23715
23716 write_psymbols (info->symtab,
23717 info->psyms_seen,
23718 info->objfile->global_psymbols.list
23719 + psymtab->globals_offset,
23720 psymtab->n_global_syms, info->cu_index,
23721 0);
23722 write_psymbols (info->symtab,
23723 info->psyms_seen,
23724 info->objfile->static_psymbols.list
23725 + psymtab->statics_offset,
23726 psymtab->n_static_syms, info->cu_index,
23727 1);
23728
23729 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23730 to_underlying (entry->per_cu.sect_off));
23731 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23732 to_underlying (entry->type_offset_in_tu));
23733 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
23734
23735 ++info->cu_index;
23736
23737 return 1;
23738 }
23739
23740 /* Recurse into all "included" dependencies and count their symbols as
23741 if they appeared in this psymtab. */
23742
23743 static void
23744 recursively_count_psymbols (struct partial_symtab *psymtab,
23745 size_t &psyms_seen)
23746 {
23747 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23748 if (psymtab->dependencies[i]->user != NULL)
23749 recursively_count_psymbols (psymtab->dependencies[i],
23750 psyms_seen);
23751
23752 psyms_seen += psymtab->n_global_syms;
23753 psyms_seen += psymtab->n_static_syms;
23754 }
23755
23756 /* Recurse into all "included" dependencies and write their symbols as
23757 if they appeared in this psymtab. */
23758
23759 static void
23760 recursively_write_psymbols (struct objfile *objfile,
23761 struct partial_symtab *psymtab,
23762 struct mapped_symtab *symtab,
23763 std::unordered_set<partial_symbol *> &psyms_seen,
23764 offset_type cu_index)
23765 {
23766 int i;
23767
23768 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23769 if (psymtab->dependencies[i]->user != NULL)
23770 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23771 symtab, psyms_seen, cu_index);
23772
23773 write_psymbols (symtab,
23774 psyms_seen,
23775 objfile->global_psymbols.list + psymtab->globals_offset,
23776 psymtab->n_global_syms, cu_index,
23777 0);
23778 write_psymbols (symtab,
23779 psyms_seen,
23780 objfile->static_psymbols.list + psymtab->statics_offset,
23781 psymtab->n_static_syms, cu_index,
23782 1);
23783 }
23784
23785 /* Create an index file for OBJFILE in the directory DIR. */
23786
23787 static void
23788 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23789 {
23790 if (dwarf2_per_objfile->using_index)
23791 error (_("Cannot use an index to create the index"));
23792
23793 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23794 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23795
23796 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23797 return;
23798
23799 struct stat st;
23800 if (stat (objfile_name (objfile), &st) < 0)
23801 perror_with_name (objfile_name (objfile));
23802
23803 std::string filename (std::string (dir) + SLASH_STRING
23804 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
23805
23806 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
23807 if (!out_file)
23808 error (_("Can't open `%s' for writing"), filename.c_str ());
23809
23810 /* Order matters here; we want FILE to be closed before FILENAME is
23811 unlinked, because on MS-Windows one cannot delete a file that is
23812 still open. (Don't call anything here that might throw until
23813 file_closer is created.) */
23814 gdb::unlinker unlink_file (filename.c_str ());
23815 gdb_file_up close_out_file (out_file);
23816
23817 mapped_symtab symtab;
23818 data_buf cu_list;
23819
23820 /* While we're scanning CU's create a table that maps a psymtab pointer
23821 (which is what addrmap records) to its index (which is what is recorded
23822 in the index file). This will later be needed to write the address
23823 table. */
23824 psym_index_map cu_index_htab;
23825 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
23826
23827 /* The CU list is already sorted, so we don't need to do additional
23828 work here. Also, the debug_types entries do not appear in
23829 all_comp_units, but only in their own hash table. */
23830
23831 /* The psyms_seen set is potentially going to be largish (~40k
23832 elements when indexing a -g3 build of GDB itself). Estimate the
23833 number of elements in order to avoid too many rehashes, which
23834 require rebuilding buckets and thus many trips to
23835 malloc/free. */
23836 size_t psyms_count = 0;
23837 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23838 {
23839 struct dwarf2_per_cu_data *per_cu
23840 = dwarf2_per_objfile->all_comp_units[i];
23841 struct partial_symtab *psymtab = per_cu->v.psymtab;
23842
23843 if (psymtab != NULL && psymtab->user == NULL)
23844 recursively_count_psymbols (psymtab, psyms_count);
23845 }
23846 /* Generating an index for gdb itself shows a ratio of
23847 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23848 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
23849 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23850 {
23851 struct dwarf2_per_cu_data *per_cu
23852 = dwarf2_per_objfile->all_comp_units[i];
23853 struct partial_symtab *psymtab = per_cu->v.psymtab;
23854
23855 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23856 It may be referenced from a local scope but in such case it does not
23857 need to be present in .gdb_index. */
23858 if (psymtab == NULL)
23859 continue;
23860
23861 if (psymtab->user == NULL)
23862 recursively_write_psymbols (objfile, psymtab, &symtab,
23863 psyms_seen, i);
23864
23865 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23866 gdb_assert (insertpair.second);
23867
23868 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23869 to_underlying (per_cu->sect_off));
23870 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
23871 }
23872
23873 /* Dump the address map. */
23874 data_buf addr_vec;
23875 write_address_map (objfile, addr_vec, cu_index_htab);
23876
23877 /* Write out the .debug_type entries, if any. */
23878 data_buf types_cu_list;
23879 if (dwarf2_per_objfile->signatured_types)
23880 {
23881 signatured_type_index_data sig_data (types_cu_list,
23882 psyms_seen);
23883
23884 sig_data.objfile = objfile;
23885 sig_data.symtab = &symtab;
23886 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23887 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23888 write_one_signatured_type, &sig_data);
23889 }
23890
23891 /* Now that we've processed all symbols we can shrink their cu_indices
23892 lists. */
23893 uniquify_cu_indices (&symtab);
23894
23895 data_buf symtab_vec, constant_pool;
23896 write_hash_table (&symtab, symtab_vec, constant_pool);
23897
23898 data_buf contents;
23899 const offset_type size_of_contents = 6 * sizeof (offset_type);
23900 offset_type total_len = size_of_contents;
23901
23902 /* The version number. */
23903 contents.append_data (MAYBE_SWAP (8));
23904
23905 /* The offset of the CU list from the start of the file. */
23906 contents.append_data (MAYBE_SWAP (total_len));
23907 total_len += cu_list.size ();
23908
23909 /* The offset of the types CU list from the start of the file. */
23910 contents.append_data (MAYBE_SWAP (total_len));
23911 total_len += types_cu_list.size ();
23912
23913 /* The offset of the address table from the start of the file. */
23914 contents.append_data (MAYBE_SWAP (total_len));
23915 total_len += addr_vec.size ();
23916
23917 /* The offset of the symbol table from the start of the file. */
23918 contents.append_data (MAYBE_SWAP (total_len));
23919 total_len += symtab_vec.size ();
23920
23921 /* The offset of the constant pool from the start of the file. */
23922 contents.append_data (MAYBE_SWAP (total_len));
23923 total_len += constant_pool.size ();
23924
23925 gdb_assert (contents.size () == size_of_contents);
23926
23927 contents.file_write (out_file);
23928 cu_list.file_write (out_file);
23929 types_cu_list.file_write (out_file);
23930 addr_vec.file_write (out_file);
23931 symtab_vec.file_write (out_file);
23932 constant_pool.file_write (out_file);
23933
23934 /* We want to keep the file. */
23935 unlink_file.keep ();
23936 }
23937
23938 /* Implementation of the `save gdb-index' command.
23939
23940 Note that the file format used by this command is documented in the
23941 GDB manual. Any changes here must be documented there. */
23942
23943 static void
23944 save_gdb_index_command (char *arg, int from_tty)
23945 {
23946 struct objfile *objfile;
23947
23948 if (!arg || !*arg)
23949 error (_("usage: save gdb-index DIRECTORY"));
23950
23951 ALL_OBJFILES (objfile)
23952 {
23953 struct stat st;
23954
23955 /* If the objfile does not correspond to an actual file, skip it. */
23956 if (stat (objfile_name (objfile), &st) < 0)
23957 continue;
23958
23959 dwarf2_per_objfile
23960 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23961 dwarf2_objfile_data_key);
23962 if (dwarf2_per_objfile)
23963 {
23964
23965 TRY
23966 {
23967 write_psymtabs_to_index (objfile, arg);
23968 }
23969 CATCH (except, RETURN_MASK_ERROR)
23970 {
23971 exception_fprintf (gdb_stderr, except,
23972 _("Error while writing index for `%s': "),
23973 objfile_name (objfile));
23974 }
23975 END_CATCH
23976 }
23977 }
23978 }
23979
23980 \f
23981
23982 int dwarf_always_disassemble;
23983
23984 static void
23985 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23986 struct cmd_list_element *c, const char *value)
23987 {
23988 fprintf_filtered (file,
23989 _("Whether to always disassemble "
23990 "DWARF expressions is %s.\n"),
23991 value);
23992 }
23993
23994 static void
23995 show_check_physname (struct ui_file *file, int from_tty,
23996 struct cmd_list_element *c, const char *value)
23997 {
23998 fprintf_filtered (file,
23999 _("Whether to check \"physname\" is %s.\n"),
24000 value);
24001 }
24002
24003 void _initialize_dwarf2_read (void);
24004
24005 void
24006 _initialize_dwarf2_read (void)
24007 {
24008 struct cmd_list_element *c;
24009
24010 dwarf2_objfile_data_key
24011 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24012
24013 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24014 Set DWARF specific variables.\n\
24015 Configure DWARF variables such as the cache size"),
24016 &set_dwarf_cmdlist, "maintenance set dwarf ",
24017 0/*allow-unknown*/, &maintenance_set_cmdlist);
24018
24019 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24020 Show DWARF specific variables\n\
24021 Show DWARF variables such as the cache size"),
24022 &show_dwarf_cmdlist, "maintenance show dwarf ",
24023 0/*allow-unknown*/, &maintenance_show_cmdlist);
24024
24025 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24026 &dwarf_max_cache_age, _("\
24027 Set the upper bound on the age of cached DWARF compilation units."), _("\
24028 Show the upper bound on the age of cached DWARF compilation units."), _("\
24029 A higher limit means that cached compilation units will be stored\n\
24030 in memory longer, and more total memory will be used. Zero disables\n\
24031 caching, which can slow down startup."),
24032 NULL,
24033 show_dwarf_max_cache_age,
24034 &set_dwarf_cmdlist,
24035 &show_dwarf_cmdlist);
24036
24037 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24038 &dwarf_always_disassemble, _("\
24039 Set whether `info address' always disassembles DWARF expressions."), _("\
24040 Show whether `info address' always disassembles DWARF expressions."), _("\
24041 When enabled, DWARF expressions are always printed in an assembly-like\n\
24042 syntax. When disabled, expressions will be printed in a more\n\
24043 conversational style, when possible."),
24044 NULL,
24045 show_dwarf_always_disassemble,
24046 &set_dwarf_cmdlist,
24047 &show_dwarf_cmdlist);
24048
24049 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24050 Set debugging of the DWARF reader."), _("\
24051 Show debugging of the DWARF reader."), _("\
24052 When enabled (non-zero), debugging messages are printed during DWARF\n\
24053 reading and symtab expansion. A value of 1 (one) provides basic\n\
24054 information. A value greater than 1 provides more verbose information."),
24055 NULL,
24056 NULL,
24057 &setdebuglist, &showdebuglist);
24058
24059 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24060 Set debugging of the DWARF DIE reader."), _("\
24061 Show debugging of the DWARF DIE reader."), _("\
24062 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24063 The value is the maximum depth to print."),
24064 NULL,
24065 NULL,
24066 &setdebuglist, &showdebuglist);
24067
24068 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24069 Set debugging of the dwarf line reader."), _("\
24070 Show debugging of the dwarf line reader."), _("\
24071 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24072 A value of 1 (one) provides basic information.\n\
24073 A value greater than 1 provides more verbose information."),
24074 NULL,
24075 NULL,
24076 &setdebuglist, &showdebuglist);
24077
24078 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24079 Set cross-checking of \"physname\" code against demangler."), _("\
24080 Show cross-checking of \"physname\" code against demangler."), _("\
24081 When enabled, GDB's internal \"physname\" code is checked against\n\
24082 the demangler."),
24083 NULL, show_check_physname,
24084 &setdebuglist, &showdebuglist);
24085
24086 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24087 no_class, &use_deprecated_index_sections, _("\
24088 Set whether to use deprecated gdb_index sections."), _("\
24089 Show whether to use deprecated gdb_index sections."), _("\
24090 When enabled, deprecated .gdb_index sections are used anyway.\n\
24091 Normally they are ignored either because of a missing feature or\n\
24092 performance issue.\n\
24093 Warning: This option must be enabled before gdb reads the file."),
24094 NULL,
24095 NULL,
24096 &setlist, &showlist);
24097
24098 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
24099 _("\
24100 Save a gdb-index file.\n\
24101 Usage: save gdb-index DIRECTORY"),
24102 &save_cmdlist);
24103 set_cmd_completer (c, filename_completer);
24104
24105 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24106 &dwarf2_locexpr_funcs);
24107 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24108 &dwarf2_loclist_funcs);
24109
24110 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24111 &dwarf2_block_frame_base_locexpr_funcs);
24112 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24113 &dwarf2_block_frame_base_loclist_funcs);
24114 }
This page took 1.130471 seconds and 4 git commands to generate.