Fix PR12616 - gdb does not implement DW_AT_data_bit_offset
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75 #include <algorithm>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
1130 /* The name of this DIE. Normally the value of DW_AT_name, but
1131 sometimes a default name for unnamed DIEs. */
1132 const char *name;
1133
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
1140 const char *scope;
1141
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
1155
1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1157 DW_AT_sibling, if any. */
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
1160 const gdb_byte *sibling;
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
1165 sect_offset spec_offset;
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
1170 };
1171
1172 /* This data structure holds the information of an abbrev. */
1173 struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183 struct attr_abbrev
1184 {
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
1187 };
1188
1189 /* Size of abbrev_table.abbrev_hash_table. */
1190 #define ABBREV_HASH_SIZE 121
1191
1192 /* Top level data structure to contain an abbreviation table. */
1193
1194 struct abbrev_table
1195 {
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208 };
1209
1210 /* Attributes have a name and a value. */
1211 struct attribute
1212 {
1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
1221 union
1222 {
1223 const char *str;
1224 struct dwarf_block *blk;
1225 ULONGEST unsnd;
1226 LONGEST snd;
1227 CORE_ADDR addr;
1228 ULONGEST signature;
1229 }
1230 u;
1231 };
1232
1233 /* This data structure holds a complete die structure. */
1234 struct die_info
1235 {
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
1245
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
1252 /* Offset in .debug_info or .debug_types section. */
1253 sect_offset offset;
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
1258 together via their SIBLING fields. */
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
1262
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
1267 };
1268
1269 /* Get at parts of an attribute structure. */
1270
1271 #define DW_STRING(attr) ((attr)->u.str)
1272 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1273 #define DW_UNSND(attr) ((attr)->u.unsnd)
1274 #define DW_BLOCK(attr) ((attr)->u.blk)
1275 #define DW_SND(attr) ((attr)->u.snd)
1276 #define DW_ADDR(attr) ((attr)->u.addr)
1277 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1278
1279 /* Blocks are a bunch of untyped bytes. */
1280 struct dwarf_block
1281 {
1282 size_t size;
1283
1284 /* Valid only if SIZE is not zero. */
1285 const gdb_byte *data;
1286 };
1287
1288 #ifndef ATTR_ALLOC_CHUNK
1289 #define ATTR_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* Allocate fields for structs, unions and enums in this size. */
1293 #ifndef DW_FIELD_ALLOC_CHUNK
1294 #define DW_FIELD_ALLOC_CHUNK 4
1295 #endif
1296
1297 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300 static int bits_per_byte = 8;
1301
1302 struct nextfield
1303 {
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308 };
1309
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 };
1315
1316 struct fnfieldlist
1317 {
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321 };
1322
1323 struct typedef_field_list
1324 {
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327 };
1328
1329 /* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332 struct field_info
1333 {
1334 /* List of data member and baseclasses fields. */
1335 struct nextfield *fields, *baseclasses;
1336
1337 /* Number of fields (including baseclasses). */
1338 int nfields;
1339
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
1342
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
1345
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
1348 struct nextfnfield *fnfields;
1349
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
1353 struct fnfieldlist *fnfieldlists;
1354
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1360 struct typedef_field_list *typedef_field_list;
1361 unsigned typedef_field_list_count;
1362 };
1363
1364 /* One item on the queue of compilation units to read in full symbols
1365 for. */
1366 struct dwarf2_queue_item
1367 {
1368 struct dwarf2_per_cu_data *per_cu;
1369 enum language pretend_language;
1370 struct dwarf2_queue_item *next;
1371 };
1372
1373 /* The current queue. */
1374 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
1376 /* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
1381 static int dwarf_max_cache_age = 5;
1382 static void
1383 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
1385 {
1386 fprintf_filtered (file, _("The upper bound on the age of cached "
1387 "DWARF compilation units is %s.\n"),
1388 value);
1389 }
1390 \f
1391 /* local function prototypes */
1392
1393 static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395 static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
1397 static void dwarf2_locate_sections (bfd *, asection *, void *);
1398
1399 static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
1402 static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
1405 static void dwarf2_build_psymtabs_hard (struct objfile *);
1406
1407 static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
1409 int, struct dwarf2_cu *);
1410
1411 static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
1413
1414 static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1416 int set_addrmap, struct dwarf2_cu *cu);
1417
1418 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1419 CORE_ADDR *highpc, int set_addrmap,
1420 struct dwarf2_cu *cu);
1421
1422 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1427 int need_pc, struct dwarf2_cu *cu);
1428
1429 static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
1431
1432 static void psymtab_to_symtab_1 (struct partial_symtab *);
1433
1434 static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437 static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440 static void abbrev_table_free (struct abbrev_table *);
1441
1442 static void abbrev_table_free_cleanup (void *);
1443
1444 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
1446
1447 static void dwarf2_free_abbrev_table (void *);
1448
1449 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1450
1451 static struct partial_die_info *load_partial_dies
1452 (const struct die_reader_specs *, const gdb_byte *, int);
1453
1454 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
1459
1460 static struct partial_die_info *find_partial_die (sect_offset, int,
1461 struct dwarf2_cu *);
1462
1463 static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
1466 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
1469
1470 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1471
1472 static int read_1_signed_byte (bfd *, const gdb_byte *);
1473
1474 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1475
1476 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1477
1478 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1479
1480 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1481 unsigned int *);
1482
1483 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1484
1485 static LONGEST read_checked_initial_length_and_offset
1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1487 unsigned int *, unsigned int *);
1488
1489 static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
1491 unsigned int *);
1492
1493 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1494
1495 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
1498 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1499
1500 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
1505
1506 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1507
1508 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1509
1510 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
1514 unsigned int *);
1515
1516 static const char *read_str_index (const struct die_reader_specs *reader,
1517 ULONGEST str_index);
1518
1519 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1520
1521 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1525 unsigned int);
1526
1527 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
1530 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
1533 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1534
1535 static struct die_info *die_specification (struct die_info *die,
1536 struct dwarf2_cu **);
1537
1538 static void free_line_header (struct line_header *lh);
1539
1540 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
1542
1543 static void dwarf_decode_lines (struct line_header *, const char *,
1544 struct dwarf2_cu *, struct partial_symtab *,
1545 CORE_ADDR, int decode_mapping);
1546
1547 static void dwarf2_start_subfile (const char *, const char *);
1548
1549 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
1552
1553 static struct symbol *new_symbol (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
1559 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1560 struct dwarf2_cu *);
1561
1562 static void dwarf2_const_value_attr (const struct attribute *attr,
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
1566 struct dwarf2_cu *cu, LONGEST *value,
1567 const gdb_byte **bytes,
1568 struct dwarf2_locexpr_baton **baton);
1569
1570 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1571
1572 static int need_gnat_info (struct dwarf2_cu *);
1573
1574 static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
1576
1577 static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1587
1588 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
1590 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1591
1592 static char *typename_concat (struct obstack *obs, const char *prefix,
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
1595
1596 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1597
1598 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
1600 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1601
1602 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1603
1604 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
1606 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
1609 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1610 values. Keep the items ordered with increasing constraints compliance. */
1611 enum pc_bounds_kind
1612 {
1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1614 PC_BOUNDS_NOT_PRESENT,
1615
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625 };
1626
1627 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
1631
1632 static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
1636 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
1639 static void dwarf2_add_field (struct field_info *, struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static void dwarf2_attach_fields_to_type (struct field_info *,
1643 struct type *, struct dwarf2_cu *);
1644
1645 static void dwarf2_add_member_fn (struct field_info *,
1646 struct die_info *, struct type *,
1647 struct dwarf2_cu *);
1648
1649 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1650 struct type *,
1651 struct dwarf2_cu *);
1652
1653 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1654
1655 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1658
1659 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
1661 static struct using_direct **using_directives (enum language);
1662
1663 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
1665 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
1670 static const char *namespace_name (struct die_info *die,
1671 int *is_anonymous, struct dwarf2_cu *);
1672
1673 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1674
1675 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1676
1677 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1678 struct dwarf2_cu *);
1679
1680 static struct die_info *read_die_and_siblings_1
1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1682 struct die_info *);
1683
1684 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
1687 struct die_info *parent);
1688
1689 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
1692
1693 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
1696
1697 static void process_die (struct die_info *, struct dwarf2_cu *);
1698
1699 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
1701
1702 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1703
1704 static const char *dwarf2_full_name (const char *name,
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
1708 static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
1711 static struct die_info *dwarf2_extension (struct die_info *die,
1712 struct dwarf2_cu **);
1713
1714 static const char *dwarf_tag_name (unsigned int);
1715
1716 static const char *dwarf_attr_name (unsigned int);
1717
1718 static const char *dwarf_form_name (unsigned int);
1719
1720 static char *dwarf_bool_name (unsigned int);
1721
1722 static const char *dwarf_type_encoding_name (unsigned int);
1723
1724 static struct die_info *sibling_die (struct die_info *);
1725
1726 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728 static void dump_die_for_error (struct die_info *);
1729
1730 static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
1732
1733 /*static*/ void dump_die (struct die_info *, int max_level);
1734
1735 static void store_in_ref_table (struct die_info *,
1736 struct dwarf2_cu *);
1737
1738 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1739
1740 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1741
1742 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1743 const struct attribute *,
1744 struct dwarf2_cu **);
1745
1746 static struct die_info *follow_die_ref (struct die_info *,
1747 const struct attribute *,
1748 struct dwarf2_cu **);
1749
1750 static struct die_info *follow_die_sig (struct die_info *,
1751 const struct attribute *,
1752 struct dwarf2_cu **);
1753
1754 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757 static struct type *get_DW_AT_signature_type (struct die_info *,
1758 const struct attribute *,
1759 struct dwarf2_cu *);
1760
1761 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1762
1763 static void read_signatured_type (struct signatured_type *);
1764
1765 static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
1769 /* memory allocation interface */
1770
1771 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1772
1773 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1774
1775 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1776
1777 static int attr_form_is_block (const struct attribute *);
1778
1779 static int attr_form_is_section_offset (const struct attribute *);
1780
1781 static int attr_form_is_constant (const struct attribute *);
1782
1783 static int attr_form_is_ref (const struct attribute *);
1784
1785 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
1787 const struct attribute *attr);
1788
1789 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1790 struct symbol *sym,
1791 struct dwarf2_cu *cu,
1792 int is_block);
1793
1794 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
1797
1798 static void free_stack_comp_unit (void *);
1799
1800 static hashval_t partial_die_hash (const void *item);
1801
1802 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
1804 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1806
1807 static void init_one_comp_unit (struct dwarf2_cu *cu,
1808 struct dwarf2_per_cu_data *per_cu);
1809
1810 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
1813
1814 static void free_heap_comp_unit (void *);
1815
1816 static void free_cached_comp_units (void *);
1817
1818 static void age_cached_comp_units (void);
1819
1820 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1821
1822 static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1824
1825 static void create_all_comp_units (struct objfile *);
1826
1827 static int create_all_type_units (struct objfile *);
1828
1829 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
1831
1832 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
1834
1835 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
1841 static void dwarf2_mark (struct dwarf2_cu *);
1842
1843 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
1845 static struct type *get_die_type_at_offset (sect_offset,
1846 struct dwarf2_per_cu_data *);
1847
1848 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1849
1850 static void dwarf2_release_queue (void *dummy);
1851
1852 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
1855 static void process_queue (void);
1856
1857 static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
1859 const char **name, const char **comp_dir);
1860
1861 static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
1864 static const gdb_byte *read_and_check_comp_unit_head
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1868 int is_debug_types_section);
1869
1870 static void init_cutu_and_read_dies
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
1875 static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
1878
1879 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1880
1881 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
1883 static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
1886
1887 static struct dwp_file *get_dwp_file (void);
1888
1889 static struct dwo_unit *lookup_dwo_comp_unit
1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1891
1892 static struct dwo_unit *lookup_dwo_type_unit
1893 (struct signatured_type *, const char *, const char *);
1894
1895 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
1897 static void free_dwo_file_cleanup (void *);
1898
1899 static void process_cu_includes (void);
1900
1901 static void check_producer (struct dwarf2_cu *cu);
1902
1903 static void free_line_header_voidp (void *arg);
1904 \f
1905 /* Various complaints about symbol reading that don't abort the process. */
1906
1907 static void
1908 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909 {
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912 }
1913
1914 static void
1915 dwarf2_debug_line_missing_file_complaint (void)
1916 {
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919 }
1920
1921 static void
1922 dwarf2_debug_line_missing_end_sequence_complaint (void)
1923 {
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927 }
1928
1929 static void
1930 dwarf2_complex_location_expr_complaint (void)
1931 {
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933 }
1934
1935 static void
1936 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938 {
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942 }
1943
1944 static void
1945 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946 {
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
1950 get_section_name (section),
1951 get_section_file_name (section));
1952 }
1953
1954 static void
1955 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956 {
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961 }
1962
1963 static void
1964 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965 {
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969 }
1970
1971 /* Hash function for line_header_hash. */
1972
1973 static hashval_t
1974 line_header_hash (const struct line_header *ofs)
1975 {
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977 }
1978
1979 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981 static hashval_t
1982 line_header_hash_voidp (const void *item)
1983 {
1984 const struct line_header *ofs = (const struct line_header *) item;
1985
1986 return line_header_hash (ofs);
1987 }
1988
1989 /* Equality function for line_header_hash. */
1990
1991 static int
1992 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993 {
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999 }
2000
2001 \f
2002 #if WORDS_BIGENDIAN
2003
2004 /* Convert VALUE between big- and little-endian. */
2005 static offset_type
2006 byte_swap (offset_type value)
2007 {
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015 }
2016
2017 #define MAYBE_SWAP(V) byte_swap (V)
2018
2019 #else
2020 #define MAYBE_SWAP(V) (V)
2021 #endif /* WORDS_BIGENDIAN */
2022
2023 /* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026 static CORE_ADDR
2027 attr_value_as_address (struct attribute *attr)
2028 {
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051 }
2052
2053 /* The suffix for an index file. */
2054 #define INDEX_SUFFIX ".gdb-index"
2055
2056 /* Try to locate the sections we need for DWARF 2 debugging
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
2060
2061 int
2062 dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
2064 {
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2072
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
2076
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
2081 return (!dwarf2_per_objfile->info.is_virtual
2082 && dwarf2_per_objfile->info.s.section != NULL
2083 && !dwarf2_per_objfile->abbrev.is_virtual
2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
2085 }
2086
2087 /* Return the containing section of virtual section SECTION. */
2088
2089 static struct dwarf2_section_info *
2090 get_containing_section (const struct dwarf2_section_info *section)
2091 {
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
2094 }
2095
2096 /* Return the bfd owner of SECTION. */
2097
2098 static struct bfd *
2099 get_section_bfd_owner (const struct dwarf2_section_info *section)
2100 {
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
2106 return section->s.section->owner;
2107 }
2108
2109 /* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112 static asection *
2113 get_section_bfd_section (const struct dwarf2_section_info *section)
2114 {
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
2120 return section->s.section;
2121 }
2122
2123 /* Return the name of SECTION. */
2124
2125 static const char *
2126 get_section_name (const struct dwarf2_section_info *section)
2127 {
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132 }
2133
2134 /* Return the name of the file SECTION is in. */
2135
2136 static const char *
2137 get_section_file_name (const struct dwarf2_section_info *section)
2138 {
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142 }
2143
2144 /* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147 static int
2148 get_section_id (const struct dwarf2_section_info *section)
2149 {
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155 }
2156
2157 /* Return the flags of SECTION.
2158 SECTION (or containing section if this is a virtual section) must exist. */
2159
2160 static int
2161 get_section_flags (const struct dwarf2_section_info *section)
2162 {
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167 }
2168
2169 /* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
2171
2172 static int
2173 section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
2175 {
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
2183 }
2184
2185 /* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189 static void
2190 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2191 {
2192 const struct dwarf2_debug_sections *names;
2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
2204 {
2205 dwarf2_per_objfile->info.s.section = sectp;
2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2207 }
2208 else if (section_is_p (sectp->name, &names->abbrev))
2209 {
2210 dwarf2_per_objfile->abbrev.s.section = sectp;
2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2212 }
2213 else if (section_is_p (sectp->name, &names->line))
2214 {
2215 dwarf2_per_objfile->line.s.section = sectp;
2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2217 }
2218 else if (section_is_p (sectp->name, &names->loc))
2219 {
2220 dwarf2_per_objfile->loc.s.section = sectp;
2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2222 }
2223 else if (section_is_p (sectp->name, &names->macinfo))
2224 {
2225 dwarf2_per_objfile->macinfo.s.section = sectp;
2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2227 }
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
2230 dwarf2_per_objfile->macro.s.section = sectp;
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
2233 else if (section_is_p (sectp->name, &names->str))
2234 {
2235 dwarf2_per_objfile->str.s.section = sectp;
2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2237 }
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
2240 dwarf2_per_objfile->addr.s.section = sectp;
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
2243 else if (section_is_p (sectp->name, &names->frame))
2244 {
2245 dwarf2_per_objfile->frame.s.section = sectp;
2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2247 }
2248 else if (section_is_p (sectp->name, &names->eh_frame))
2249 {
2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2252 }
2253 else if (section_is_p (sectp->name, &names->ranges))
2254 {
2255 dwarf2_per_objfile->ranges.s.section = sectp;
2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2257 }
2258 else if (section_is_p (sectp->name, &names->types))
2259 {
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
2263 type_section.s.section = sectp;
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
2268 }
2269 else if (section_is_p (sectp->name, &names->gdb_index))
2270 {
2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
2274
2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
2278 }
2279
2280 /* A helper function that decides whether a section is empty,
2281 or not present. */
2282
2283 static int
2284 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 return section->size == 0;
2288 return section->s.section == NULL || section->size == 0;
2289 }
2290
2291 /* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
2295 If the section is compressed, uncompress it before returning. */
2296
2297 static void
2298 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2299 {
2300 asection *sectp;
2301 bfd *abfd;
2302 gdb_byte *buf, *retbuf;
2303
2304 if (info->readin)
2305 return;
2306 info->buffer = NULL;
2307 info->readin = 1;
2308
2309 if (dwarf2_section_empty_p (info))
2310 return;
2311
2312 sectp = get_section_bfd_section (info);
2313
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
2342 {
2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2344 return;
2345 }
2346
2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2348 info->buffer = buf;
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
2371 }
2372
2373 /* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380 static bfd_size_type
2381 dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383 {
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387 }
2388
2389 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2390 SECTION_NAME. */
2391
2392 void
2393 dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
2395 asection **sectp, const gdb_byte **bufp,
2396 bfd_size_type *sizep)
2397 {
2398 struct dwarf2_per_objfile *data
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
2401 struct dwarf2_section_info *info;
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
2423
2424 dwarf2_read_section (objfile, info);
2425
2426 *sectp = get_section_bfd_section (info);
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429 }
2430
2431 /* A helper function to find the sections for a .dwz file. */
2432
2433 static void
2434 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435 {
2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
2442 dwz_file->abbrev.s.section = sectp;
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
2447 dwz_file->info.s.section = sectp;
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
2452 dwz_file->str.s.section = sectp;
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
2457 dwz_file->line.s.section = sectp;
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
2462 dwz_file->macro.s.section = sectp;
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
2467 dwz_file->gdb_index.s.section = sectp;
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
2470 }
2471
2472 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
2475
2476 static struct dwz_file *
2477 dwarf2_get_dwz_file (void)
2478 {
2479 bfd *dwz_bfd;
2480 char *data;
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
2484 bfd_size_type buildid_len_arg;
2485 size_t buildid_len;
2486 bfd_byte *buildid;
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2493 &buildid_len_arg, &buildid);
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
2501 cleanup = make_cleanup (xfree, data);
2502 make_cleanup (xfree, buildid);
2503
2504 buildid_len = (size_t) buildid_len_arg;
2505
2506 filename = (const char *) data;
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2524 if (dwz_bfd != NULL)
2525 {
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
2531 }
2532
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2549 dwarf2_per_objfile->dwz_file = result;
2550 return result;
2551 }
2552 \f
2553 /* DWARF quick_symbols_functions support. */
2554
2555 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560 struct quick_file_names
2561 {
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575 };
2576
2577 /* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580 struct dwarf2_per_cu_quick_data
2581 {
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
2589 struct compunit_symtab *compunit_symtab;
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598 };
2599
2600 /* Utility hash function for a stmt_list_hash. */
2601
2602 static hashval_t
2603 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604 {
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611 }
2612
2613 /* Utility equality function for a stmt_list_hash. */
2614
2615 static int
2616 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618 {
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626 }
2627
2628 /* Hash function for a quick_file_names. */
2629
2630 static hashval_t
2631 hash_file_name_entry (const void *e)
2632 {
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
2635
2636 return hash_stmt_list_entry (&file_data->hash);
2637 }
2638
2639 /* Equality function for a quick_file_names. */
2640
2641 static int
2642 eq_file_name_entry (const void *a, const void *b)
2643 {
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2646
2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2648 }
2649
2650 /* Delete function for a quick_file_names. */
2651
2652 static void
2653 delete_file_name_entry (void *e)
2654 {
2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667 }
2668
2669 /* Create a quick_file_names hash table. */
2670
2671 static htab_t
2672 create_quick_file_names_table (unsigned int nr_initial_entries)
2673 {
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677 }
2678
2679 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683 static void
2684 load_cu (struct dwarf2_per_cu_data *per_cu)
2685 {
2686 if (per_cu->is_debug_types)
2687 load_full_type_unit (per_cu);
2688 else
2689 load_full_comp_unit (per_cu, language_minimal);
2690
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2695 }
2696
2697 /* Read in the symbols for PER_CU. */
2698
2699 static void
2700 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2701 {
2702 struct cleanup *back_to;
2703
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
2711 if (dwarf2_per_objfile->using_index
2712 ? per_cu->v.quick->compunit_symtab == NULL
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
2722 && per_cu->cu != NULL
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
2729 }
2730
2731 process_queue ();
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738 }
2739
2740 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2743
2744 static struct compunit_symtab *
2745 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2746 {
2747 gdb_assert (dwarf2_per_objfile->using_index);
2748 if (!per_cu->v.quick->compunit_symtab)
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
2752 dw2_do_instantiate_symtab (per_cu);
2753 process_cu_includes ();
2754 do_cleanups (back_to);
2755 }
2756
2757 return per_cu->v.quick->compunit_symtab;
2758 }
2759
2760 /* Return the CU/TU given its index.
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2768
2769 ...;
2770 }
2771 */
2772
2773 static struct dwarf2_per_cu_data *
2774 dw2_get_cutu (int index)
2775 {
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
2778 index -= dwarf2_per_objfile->n_comp_units;
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784 }
2785
2786 /* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
2789
2790 static struct dwarf2_per_cu_data *
2791 dw2_get_cu (int index)
2792 {
2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2794
2795 return dwarf2_per_objfile->all_comp_units[index];
2796 }
2797
2798 /* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2800
2801 static void
2802 create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
2807 {
2808 offset_type i;
2809
2810 for (i = 0; i < n_elements; i += 2)
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
2822 the_cu->offset.sect_off = offset;
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
2825 the_cu->section = section;
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2830 }
2831 }
2832
2833 /* Read the CU list from the mapped index, and use it to create all
2834 the CU objects for this objfile. */
2835
2836 static void
2837 create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840 {
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2847
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2850
2851 if (dwz_elements == 0)
2852 return;
2853
2854 dwz = dwarf2_get_dwz_file ();
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2857 }
2858
2859 /* Create the signatured type hash table from the index. */
2860
2861 static void
2862 create_signatured_type_table_from_index (struct objfile *objfile,
2863 struct dwarf2_section_info *section,
2864 const gdb_byte *bytes,
2865 offset_type elements)
2866 {
2867 offset_type i;
2868 htab_t sig_types_hash;
2869
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2875
2876 sig_types_hash = allocate_signatured_type_table (objfile);
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
2882 void **slot;
2883
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2892 struct signatured_type);
2893 sig_type->signature = signature;
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
2896 sig_type->per_cu.section = section;
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
2905
2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2907 }
2908
2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
2910 }
2911
2912 /* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2914
2915 static void
2916 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917 {
2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
2943
2944 if (lo > hi)
2945 {
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
2948 hex_string (lo), hex_string (hi));
2949 continue;
2950 }
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
2957 continue;
2958 }
2959
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968 }
2969
2970 /* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2977
2978 static hashval_t
2979 mapped_index_string_hash (int index_version, const void *p)
2980 {
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
2991
2992 return r;
2993 }
2994
2995 /* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2998
2999 static int
3000 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002 {
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
3005 offset_type slot, step;
3006 int (*cmp) (const char *, const char *);
3007
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_fortran
3010 || current_language->la_language == language_d)
3011 {
3012 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3013 not contain any. */
3014
3015 if (strchr (name, '(') != NULL)
3016 {
3017 char *without_params = cp_remove_params (name);
3018
3019 if (without_params != NULL)
3020 {
3021 make_cleanup (xfree, without_params);
3022 name = without_params;
3023 }
3024 }
3025 }
3026
3027 /* Index version 4 did not support case insensitive searches. But the
3028 indices for case insensitive languages are built in lowercase, therefore
3029 simulate our NAME being searched is also lowercased. */
3030 hash = mapped_index_string_hash ((index->version == 4
3031 && case_sensitivity == case_sensitive_off
3032 ? 5 : index->version),
3033 name);
3034
3035 slot = hash & (index->symbol_table_slots - 1);
3036 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3037 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3038
3039 for (;;)
3040 {
3041 /* Convert a slot number to an offset into the table. */
3042 offset_type i = 2 * slot;
3043 const char *str;
3044 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3045 {
3046 do_cleanups (back_to);
3047 return 0;
3048 }
3049
3050 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3051 if (!cmp (name, str))
3052 {
3053 *vec_out = (offset_type *) (index->constant_pool
3054 + MAYBE_SWAP (index->symbol_table[i + 1]));
3055 do_cleanups (back_to);
3056 return 1;
3057 }
3058
3059 slot = (slot + step) & (index->symbol_table_slots - 1);
3060 }
3061 }
3062
3063 /* A helper function that reads the .gdb_index from SECTION and fills
3064 in MAP. FILENAME is the name of the file containing the section;
3065 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3066 ok to use deprecated sections.
3067
3068 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3069 out parameters that are filled in with information about the CU and
3070 TU lists in the section.
3071
3072 Returns 1 if all went well, 0 otherwise. */
3073
3074 static int
3075 read_index_from_section (struct objfile *objfile,
3076 const char *filename,
3077 int deprecated_ok,
3078 struct dwarf2_section_info *section,
3079 struct mapped_index *map,
3080 const gdb_byte **cu_list,
3081 offset_type *cu_list_elements,
3082 const gdb_byte **types_list,
3083 offset_type *types_list_elements)
3084 {
3085 const gdb_byte *addr;
3086 offset_type version;
3087 offset_type *metadata;
3088 int i;
3089
3090 if (dwarf2_section_empty_p (section))
3091 return 0;
3092
3093 /* Older elfutils strip versions could keep the section in the main
3094 executable while splitting it for the separate debug info file. */
3095 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3096 return 0;
3097
3098 dwarf2_read_section (objfile, section);
3099
3100 addr = section->buffer;
3101 /* Version check. */
3102 version = MAYBE_SWAP (*(offset_type *) addr);
3103 /* Versions earlier than 3 emitted every copy of a psymbol. This
3104 causes the index to behave very poorly for certain requests. Version 3
3105 contained incomplete addrmap. So, it seems better to just ignore such
3106 indices. */
3107 if (version < 4)
3108 {
3109 static int warning_printed = 0;
3110 if (!warning_printed)
3111 {
3112 warning (_("Skipping obsolete .gdb_index section in %s."),
3113 filename);
3114 warning_printed = 1;
3115 }
3116 return 0;
3117 }
3118 /* Index version 4 uses a different hash function than index version
3119 5 and later.
3120
3121 Versions earlier than 6 did not emit psymbols for inlined
3122 functions. Using these files will cause GDB not to be able to
3123 set breakpoints on inlined functions by name, so we ignore these
3124 indices unless the user has done
3125 "set use-deprecated-index-sections on". */
3126 if (version < 6 && !deprecated_ok)
3127 {
3128 static int warning_printed = 0;
3129 if (!warning_printed)
3130 {
3131 warning (_("\
3132 Skipping deprecated .gdb_index section in %s.\n\
3133 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3134 to use the section anyway."),
3135 filename);
3136 warning_printed = 1;
3137 }
3138 return 0;
3139 }
3140 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3141 of the TU (for symbols coming from TUs),
3142 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3143 Plus gold-generated indices can have duplicate entries for global symbols,
3144 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3145 These are just performance bugs, and we can't distinguish gdb-generated
3146 indices from gold-generated ones, so issue no warning here. */
3147
3148 /* Indexes with higher version than the one supported by GDB may be no
3149 longer backward compatible. */
3150 if (version > 8)
3151 return 0;
3152
3153 map->version = version;
3154 map->total_size = section->size;
3155
3156 metadata = (offset_type *) (addr + sizeof (offset_type));
3157
3158 i = 0;
3159 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3160 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3161 / 8);
3162 ++i;
3163
3164 *types_list = addr + MAYBE_SWAP (metadata[i]);
3165 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3166 - MAYBE_SWAP (metadata[i]))
3167 / 8);
3168 ++i;
3169
3170 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3171 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3172 - MAYBE_SWAP (metadata[i]));
3173 ++i;
3174
3175 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3176 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3177 - MAYBE_SWAP (metadata[i]))
3178 / (2 * sizeof (offset_type)));
3179 ++i;
3180
3181 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3182
3183 return 1;
3184 }
3185
3186
3187 /* Read the index file. If everything went ok, initialize the "quick"
3188 elements of all the CUs and return 1. Otherwise, return 0. */
3189
3190 static int
3191 dwarf2_read_index (struct objfile *objfile)
3192 {
3193 struct mapped_index local_map, *map;
3194 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3195 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3196 struct dwz_file *dwz;
3197
3198 if (!read_index_from_section (objfile, objfile_name (objfile),
3199 use_deprecated_index_sections,
3200 &dwarf2_per_objfile->gdb_index, &local_map,
3201 &cu_list, &cu_list_elements,
3202 &types_list, &types_list_elements))
3203 return 0;
3204
3205 /* Don't use the index if it's empty. */
3206 if (local_map.symbol_table_slots == 0)
3207 return 0;
3208
3209 /* If there is a .dwz file, read it so we can get its CU list as
3210 well. */
3211 dwz = dwarf2_get_dwz_file ();
3212 if (dwz != NULL)
3213 {
3214 struct mapped_index dwz_map;
3215 const gdb_byte *dwz_types_ignore;
3216 offset_type dwz_types_elements_ignore;
3217
3218 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3219 1,
3220 &dwz->gdb_index, &dwz_map,
3221 &dwz_list, &dwz_list_elements,
3222 &dwz_types_ignore,
3223 &dwz_types_elements_ignore))
3224 {
3225 warning (_("could not read '.gdb_index' section from %s; skipping"),
3226 bfd_get_filename (dwz->dwz_bfd));
3227 return 0;
3228 }
3229 }
3230
3231 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3232 dwz_list_elements);
3233
3234 if (types_list_elements)
3235 {
3236 struct dwarf2_section_info *section;
3237
3238 /* We can only handle a single .debug_types when we have an
3239 index. */
3240 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3241 return 0;
3242
3243 section = VEC_index (dwarf2_section_info_def,
3244 dwarf2_per_objfile->types, 0);
3245
3246 create_signatured_type_table_from_index (objfile, section, types_list,
3247 types_list_elements);
3248 }
3249
3250 create_addrmap_from_index (objfile, &local_map);
3251
3252 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3253 *map = local_map;
3254
3255 dwarf2_per_objfile->index_table = map;
3256 dwarf2_per_objfile->using_index = 1;
3257 dwarf2_per_objfile->quick_file_names_table =
3258 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3259
3260 return 1;
3261 }
3262
3263 /* A helper for the "quick" functions which sets the global
3264 dwarf2_per_objfile according to OBJFILE. */
3265
3266 static void
3267 dw2_setup (struct objfile *objfile)
3268 {
3269 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3270 objfile_data (objfile, dwarf2_objfile_data_key));
3271 gdb_assert (dwarf2_per_objfile);
3272 }
3273
3274 /* die_reader_func for dw2_get_file_names. */
3275
3276 static void
3277 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3278 const gdb_byte *info_ptr,
3279 struct die_info *comp_unit_die,
3280 int has_children,
3281 void *data)
3282 {
3283 struct dwarf2_cu *cu = reader->cu;
3284 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3285 struct objfile *objfile = dwarf2_per_objfile->objfile;
3286 struct dwarf2_per_cu_data *lh_cu;
3287 struct line_header *lh;
3288 struct attribute *attr;
3289 int i;
3290 const char *name, *comp_dir;
3291 void **slot;
3292 struct quick_file_names *qfn;
3293 unsigned int line_offset;
3294
3295 gdb_assert (! this_cu->is_debug_types);
3296
3297 /* Our callers never want to match partial units -- instead they
3298 will match the enclosing full CU. */
3299 if (comp_unit_die->tag == DW_TAG_partial_unit)
3300 {
3301 this_cu->v.quick->no_file_data = 1;
3302 return;
3303 }
3304
3305 lh_cu = this_cu;
3306 lh = NULL;
3307 slot = NULL;
3308 line_offset = 0;
3309
3310 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3311 if (attr)
3312 {
3313 struct quick_file_names find_entry;
3314
3315 line_offset = DW_UNSND (attr);
3316
3317 /* We may have already read in this line header (TU line header sharing).
3318 If we have we're done. */
3319 find_entry.hash.dwo_unit = cu->dwo_unit;
3320 find_entry.hash.line_offset.sect_off = line_offset;
3321 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3322 &find_entry, INSERT);
3323 if (*slot != NULL)
3324 {
3325 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3326 return;
3327 }
3328
3329 lh = dwarf_decode_line_header (line_offset, cu);
3330 }
3331 if (lh == NULL)
3332 {
3333 lh_cu->v.quick->no_file_data = 1;
3334 return;
3335 }
3336
3337 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3338 qfn->hash.dwo_unit = cu->dwo_unit;
3339 qfn->hash.line_offset.sect_off = line_offset;
3340 gdb_assert (slot != NULL);
3341 *slot = qfn;
3342
3343 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3344
3345 qfn->num_file_names = lh->num_file_names;
3346 qfn->file_names =
3347 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3348 for (i = 0; i < lh->num_file_names; ++i)
3349 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3350 qfn->real_names = NULL;
3351
3352 free_line_header (lh);
3353
3354 lh_cu->v.quick->file_names = qfn;
3355 }
3356
3357 /* A helper for the "quick" functions which attempts to read the line
3358 table for THIS_CU. */
3359
3360 static struct quick_file_names *
3361 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3362 {
3363 /* This should never be called for TUs. */
3364 gdb_assert (! this_cu->is_debug_types);
3365 /* Nor type unit groups. */
3366 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3367
3368 if (this_cu->v.quick->file_names != NULL)
3369 return this_cu->v.quick->file_names;
3370 /* If we know there is no line data, no point in looking again. */
3371 if (this_cu->v.quick->no_file_data)
3372 return NULL;
3373
3374 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3375
3376 if (this_cu->v.quick->no_file_data)
3377 return NULL;
3378 return this_cu->v.quick->file_names;
3379 }
3380
3381 /* A helper for the "quick" functions which computes and caches the
3382 real path for a given file name from the line table. */
3383
3384 static const char *
3385 dw2_get_real_path (struct objfile *objfile,
3386 struct quick_file_names *qfn, int index)
3387 {
3388 if (qfn->real_names == NULL)
3389 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3390 qfn->num_file_names, const char *);
3391
3392 if (qfn->real_names[index] == NULL)
3393 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3394
3395 return qfn->real_names[index];
3396 }
3397
3398 static struct symtab *
3399 dw2_find_last_source_symtab (struct objfile *objfile)
3400 {
3401 struct compunit_symtab *cust;
3402 int index;
3403
3404 dw2_setup (objfile);
3405 index = dwarf2_per_objfile->n_comp_units - 1;
3406 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3407 if (cust == NULL)
3408 return NULL;
3409 return compunit_primary_filetab (cust);
3410 }
3411
3412 /* Traversal function for dw2_forget_cached_source_info. */
3413
3414 static int
3415 dw2_free_cached_file_names (void **slot, void *info)
3416 {
3417 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3418
3419 if (file_data->real_names)
3420 {
3421 int i;
3422
3423 for (i = 0; i < file_data->num_file_names; ++i)
3424 {
3425 xfree ((void*) file_data->real_names[i]);
3426 file_data->real_names[i] = NULL;
3427 }
3428 }
3429
3430 return 1;
3431 }
3432
3433 static void
3434 dw2_forget_cached_source_info (struct objfile *objfile)
3435 {
3436 dw2_setup (objfile);
3437
3438 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3439 dw2_free_cached_file_names, NULL);
3440 }
3441
3442 /* Helper function for dw2_map_symtabs_matching_filename that expands
3443 the symtabs and calls the iterator. */
3444
3445 static int
3446 dw2_map_expand_apply (struct objfile *objfile,
3447 struct dwarf2_per_cu_data *per_cu,
3448 const char *name, const char *real_path,
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
3451 {
3452 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3453
3454 /* Don't visit already-expanded CUs. */
3455 if (per_cu->v.quick->compunit_symtab)
3456 return 0;
3457
3458 /* This may expand more than one symtab, and we want to iterate over
3459 all of them. */
3460 dw2_instantiate_symtab (per_cu);
3461
3462 return iterate_over_some_symtabs (name, real_path, callback, data,
3463 objfile->compunit_symtabs, last_made);
3464 }
3465
3466 /* Implementation of the map_symtabs_matching_filename method. */
3467
3468 static int
3469 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3470 const char *real_path,
3471 int (*callback) (struct symtab *, void *),
3472 void *data)
3473 {
3474 int i;
3475 const char *name_basename = lbasename (name);
3476
3477 dw2_setup (objfile);
3478
3479 /* The rule is CUs specify all the files, including those used by
3480 any TU, so there's no need to scan TUs here. */
3481
3482 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3483 {
3484 int j;
3485 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3486 struct quick_file_names *file_data;
3487
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->compunit_symtab)
3490 continue;
3491
3492 file_data = dw2_get_file_names (per_cu);
3493 if (file_data == NULL)
3494 continue;
3495
3496 for (j = 0; j < file_data->num_file_names; ++j)
3497 {
3498 const char *this_name = file_data->file_names[j];
3499 const char *this_real_name;
3500
3501 if (compare_filenames_for_search (this_name, name))
3502 {
3503 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3504 callback, data))
3505 return 1;
3506 continue;
3507 }
3508
3509 /* Before we invoke realpath, which can get expensive when many
3510 files are involved, do a quick comparison of the basenames. */
3511 if (! basenames_may_differ
3512 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3513 continue;
3514
3515 this_real_name = dw2_get_real_path (objfile, file_data, j);
3516 if (compare_filenames_for_search (this_real_name, name))
3517 {
3518 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3519 callback, data))
3520 return 1;
3521 continue;
3522 }
3523
3524 if (real_path != NULL)
3525 {
3526 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3527 gdb_assert (IS_ABSOLUTE_PATH (name));
3528 if (this_real_name != NULL
3529 && FILENAME_CMP (real_path, this_real_name) == 0)
3530 {
3531 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3532 callback, data))
3533 return 1;
3534 continue;
3535 }
3536 }
3537 }
3538 }
3539
3540 return 0;
3541 }
3542
3543 /* Struct used to manage iterating over all CUs looking for a symbol. */
3544
3545 struct dw2_symtab_iterator
3546 {
3547 /* The internalized form of .gdb_index. */
3548 struct mapped_index *index;
3549 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3550 int want_specific_block;
3551 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3552 Unused if !WANT_SPECIFIC_BLOCK. */
3553 int block_index;
3554 /* The kind of symbol we're looking for. */
3555 domain_enum domain;
3556 /* The list of CUs from the index entry of the symbol,
3557 or NULL if not found. */
3558 offset_type *vec;
3559 /* The next element in VEC to look at. */
3560 int next;
3561 /* The number of elements in VEC, or zero if there is no match. */
3562 int length;
3563 /* Have we seen a global version of the symbol?
3564 If so we can ignore all further global instances.
3565 This is to work around gold/15646, inefficient gold-generated
3566 indices. */
3567 int global_seen;
3568 };
3569
3570 /* Initialize the index symtab iterator ITER.
3571 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3572 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3573
3574 static void
3575 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3576 struct mapped_index *index,
3577 int want_specific_block,
3578 int block_index,
3579 domain_enum domain,
3580 const char *name)
3581 {
3582 iter->index = index;
3583 iter->want_specific_block = want_specific_block;
3584 iter->block_index = block_index;
3585 iter->domain = domain;
3586 iter->next = 0;
3587 iter->global_seen = 0;
3588
3589 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3590 iter->length = MAYBE_SWAP (*iter->vec);
3591 else
3592 {
3593 iter->vec = NULL;
3594 iter->length = 0;
3595 }
3596 }
3597
3598 /* Return the next matching CU or NULL if there are no more. */
3599
3600 static struct dwarf2_per_cu_data *
3601 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3602 {
3603 for ( ; iter->next < iter->length; ++iter->next)
3604 {
3605 offset_type cu_index_and_attrs =
3606 MAYBE_SWAP (iter->vec[iter->next + 1]);
3607 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3608 struct dwarf2_per_cu_data *per_cu;
3609 int want_static = iter->block_index != GLOBAL_BLOCK;
3610 /* This value is only valid for index versions >= 7. */
3611 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3612 gdb_index_symbol_kind symbol_kind =
3613 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3614 /* Only check the symbol attributes if they're present.
3615 Indices prior to version 7 don't record them,
3616 and indices >= 7 may elide them for certain symbols
3617 (gold does this). */
3618 int attrs_valid =
3619 (iter->index->version >= 7
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3621
3622 /* Don't crash on bad data. */
3623 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3624 + dwarf2_per_objfile->n_type_units))
3625 {
3626 complaint (&symfile_complaints,
3627 _(".gdb_index entry has bad CU index"
3628 " [in module %s]"),
3629 objfile_name (dwarf2_per_objfile->objfile));
3630 continue;
3631 }
3632
3633 per_cu = dw2_get_cutu (cu_index);
3634
3635 /* Skip if already read in. */
3636 if (per_cu->v.quick->compunit_symtab)
3637 continue;
3638
3639 /* Check static vs global. */
3640 if (attrs_valid)
3641 {
3642 if (iter->want_specific_block
3643 && want_static != is_static)
3644 continue;
3645 /* Work around gold/15646. */
3646 if (!is_static && iter->global_seen)
3647 continue;
3648 if (!is_static)
3649 iter->global_seen = 1;
3650 }
3651
3652 /* Only check the symbol's kind if it has one. */
3653 if (attrs_valid)
3654 {
3655 switch (iter->domain)
3656 {
3657 case VAR_DOMAIN:
3658 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3659 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3660 /* Some types are also in VAR_DOMAIN. */
3661 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3662 continue;
3663 break;
3664 case STRUCT_DOMAIN:
3665 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3666 continue;
3667 break;
3668 case LABEL_DOMAIN:
3669 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3670 continue;
3671 break;
3672 default:
3673 break;
3674 }
3675 }
3676
3677 ++iter->next;
3678 return per_cu;
3679 }
3680
3681 return NULL;
3682 }
3683
3684 static struct compunit_symtab *
3685 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3686 const char *name, domain_enum domain)
3687 {
3688 struct compunit_symtab *stab_best = NULL;
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3702
3703 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3704 {
3705 struct symbol *sym, *with_opaque = NULL;
3706 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3707 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3708 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3709
3710 sym = block_find_symbol (block, name, domain,
3711 block_find_non_opaque_type_preferred,
3712 &with_opaque);
3713
3714 /* Some caution must be observed with overloaded functions
3715 and methods, since the index will not contain any overload
3716 information (but NAME might contain it). */
3717
3718 if (sym != NULL
3719 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3720 return stab;
3721 if (with_opaque != NULL
3722 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3723 stab_best = stab;
3724
3725 /* Keep looking through other CUs. */
3726 }
3727 }
3728
3729 return stab_best;
3730 }
3731
3732 static void
3733 dw2_print_stats (struct objfile *objfile)
3734 {
3735 int i, total, count;
3736
3737 dw2_setup (objfile);
3738 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3739 count = 0;
3740 for (i = 0; i < total; ++i)
3741 {
3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3743
3744 if (!per_cu->v.quick->compunit_symtab)
3745 ++count;
3746 }
3747 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3748 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3749 }
3750
3751 /* This dumps minimal information about the index.
3752 It is called via "mt print objfiles".
3753 One use is to verify .gdb_index has been loaded by the
3754 gdb.dwarf2/gdb-index.exp testcase. */
3755
3756 static void
3757 dw2_dump (struct objfile *objfile)
3758 {
3759 dw2_setup (objfile);
3760 gdb_assert (dwarf2_per_objfile->using_index);
3761 printf_filtered (".gdb_index:");
3762 if (dwarf2_per_objfile->index_table != NULL)
3763 {
3764 printf_filtered (" version %d\n",
3765 dwarf2_per_objfile->index_table->version);
3766 }
3767 else
3768 printf_filtered (" faked for \"readnow\"\n");
3769 printf_filtered ("\n");
3770 }
3771
3772 static void
3773 dw2_relocate (struct objfile *objfile,
3774 const struct section_offsets *new_offsets,
3775 const struct section_offsets *delta)
3776 {
3777 /* There's nothing to relocate here. */
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_for_function (struct objfile *objfile,
3782 const char *func_name)
3783 {
3784 struct mapped_index *index;
3785
3786 dw2_setup (objfile);
3787
3788 index = dwarf2_per_objfile->index_table;
3789
3790 /* index is NULL if OBJF_READNOW. */
3791 if (index)
3792 {
3793 struct dw2_symtab_iterator iter;
3794 struct dwarf2_per_cu_data *per_cu;
3795
3796 /* Note: It doesn't matter what we pass for block_index here. */
3797 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3798 func_name);
3799
3800 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3801 dw2_instantiate_symtab (per_cu);
3802 }
3803 }
3804
3805 static void
3806 dw2_expand_all_symtabs (struct objfile *objfile)
3807 {
3808 int i;
3809
3810 dw2_setup (objfile);
3811
3812 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3813 + dwarf2_per_objfile->n_type_units); ++i)
3814 {
3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3816
3817 dw2_instantiate_symtab (per_cu);
3818 }
3819 }
3820
3821 static void
3822 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3823 const char *fullname)
3824 {
3825 int i;
3826
3827 dw2_setup (objfile);
3828
3829 /* We don't need to consider type units here.
3830 This is only called for examining code, e.g. expand_line_sal.
3831 There can be an order of magnitude (or more) more type units
3832 than comp units, and we avoid them if we can. */
3833
3834 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3835 {
3836 int j;
3837 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3838 struct quick_file_names *file_data;
3839
3840 /* We only need to look at symtabs not already expanded. */
3841 if (per_cu->v.quick->compunit_symtab)
3842 continue;
3843
3844 file_data = dw2_get_file_names (per_cu);
3845 if (file_data == NULL)
3846 continue;
3847
3848 for (j = 0; j < file_data->num_file_names; ++j)
3849 {
3850 const char *this_fullname = file_data->file_names[j];
3851
3852 if (filename_cmp (this_fullname, fullname) == 0)
3853 {
3854 dw2_instantiate_symtab (per_cu);
3855 break;
3856 }
3857 }
3858 }
3859 }
3860
3861 static void
3862 dw2_map_matching_symbols (struct objfile *objfile,
3863 const char * name, domain_enum domain,
3864 int global,
3865 int (*callback) (struct block *,
3866 struct symbol *, void *),
3867 void *data, symbol_compare_ftype *match,
3868 symbol_compare_ftype *ordered_compare)
3869 {
3870 /* Currently unimplemented; used for Ada. The function can be called if the
3871 current language is Ada for a non-Ada objfile using GNU index. As Ada
3872 does not look for non-Ada symbols this function should just return. */
3873 }
3874
3875 static void
3876 dw2_expand_symtabs_matching
3877 (struct objfile *objfile,
3878 expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3880 expand_symtabs_exp_notify_ftype *expansion_notify,
3881 enum search_domain kind,
3882 void *data)
3883 {
3884 int i;
3885 offset_type iter;
3886 struct mapped_index *index;
3887
3888 dw2_setup (objfile);
3889
3890 /* index_table is NULL if OBJF_READNOW. */
3891 if (!dwarf2_per_objfile->index_table)
3892 return;
3893 index = dwarf2_per_objfile->index_table;
3894
3895 if (file_matcher != NULL)
3896 {
3897 struct cleanup *cleanup;
3898 htab_t visited_found, visited_not_found;
3899
3900 visited_found = htab_create_alloc (10,
3901 htab_hash_pointer, htab_eq_pointer,
3902 NULL, xcalloc, xfree);
3903 cleanup = make_cleanup_htab_delete (visited_found);
3904 visited_not_found = htab_create_alloc (10,
3905 htab_hash_pointer, htab_eq_pointer,
3906 NULL, xcalloc, xfree);
3907 make_cleanup_htab_delete (visited_not_found);
3908
3909 /* The rule is CUs specify all the files, including those used by
3910 any TU, so there's no need to scan TUs here. */
3911
3912 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3913 {
3914 int j;
3915 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3916 struct quick_file_names *file_data;
3917 void **slot;
3918
3919 QUIT;
3920
3921 per_cu->v.quick->mark = 0;
3922
3923 /* We only need to look at symtabs not already expanded. */
3924 if (per_cu->v.quick->compunit_symtab)
3925 continue;
3926
3927 file_data = dw2_get_file_names (per_cu);
3928 if (file_data == NULL)
3929 continue;
3930
3931 if (htab_find (visited_not_found, file_data) != NULL)
3932 continue;
3933 else if (htab_find (visited_found, file_data) != NULL)
3934 {
3935 per_cu->v.quick->mark = 1;
3936 continue;
3937 }
3938
3939 for (j = 0; j < file_data->num_file_names; ++j)
3940 {
3941 const char *this_real_name;
3942
3943 if (file_matcher (file_data->file_names[j], data, 0))
3944 {
3945 per_cu->v.quick->mark = 1;
3946 break;
3947 }
3948
3949 /* Before we invoke realpath, which can get expensive when many
3950 files are involved, do a quick comparison of the basenames. */
3951 if (!basenames_may_differ
3952 && !file_matcher (lbasename (file_data->file_names[j]),
3953 data, 1))
3954 continue;
3955
3956 this_real_name = dw2_get_real_path (objfile, file_data, j);
3957 if (file_matcher (this_real_name, data, 0))
3958 {
3959 per_cu->v.quick->mark = 1;
3960 break;
3961 }
3962 }
3963
3964 slot = htab_find_slot (per_cu->v.quick->mark
3965 ? visited_found
3966 : visited_not_found,
3967 file_data, INSERT);
3968 *slot = file_data;
3969 }
3970
3971 do_cleanups (cleanup);
3972 }
3973
3974 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3975 {
3976 offset_type idx = 2 * iter;
3977 const char *name;
3978 offset_type *vec, vec_len, vec_idx;
3979 int global_seen = 0;
3980
3981 QUIT;
3982
3983 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3984 continue;
3985
3986 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3987
3988 if (! (*symbol_matcher) (name, data))
3989 continue;
3990
3991 /* The name was matched, now expand corresponding CUs that were
3992 marked. */
3993 vec = (offset_type *) (index->constant_pool
3994 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3995 vec_len = MAYBE_SWAP (vec[0]);
3996 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3997 {
3998 struct dwarf2_per_cu_data *per_cu;
3999 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4000 /* This value is only valid for index versions >= 7. */
4001 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4002 gdb_index_symbol_kind symbol_kind =
4003 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4004 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4005 /* Only check the symbol attributes if they're present.
4006 Indices prior to version 7 don't record them,
4007 and indices >= 7 may elide them for certain symbols
4008 (gold does this). */
4009 int attrs_valid =
4010 (index->version >= 7
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4012
4013 /* Work around gold/15646. */
4014 if (attrs_valid)
4015 {
4016 if (!is_static && global_seen)
4017 continue;
4018 if (!is_static)
4019 global_seen = 1;
4020 }
4021
4022 /* Only check the symbol's kind if it has one. */
4023 if (attrs_valid)
4024 {
4025 switch (kind)
4026 {
4027 case VARIABLES_DOMAIN:
4028 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4029 continue;
4030 break;
4031 case FUNCTIONS_DOMAIN:
4032 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4033 continue;
4034 break;
4035 case TYPES_DOMAIN:
4036 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4037 continue;
4038 break;
4039 default:
4040 break;
4041 }
4042 }
4043
4044 /* Don't crash on bad data. */
4045 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4046 + dwarf2_per_objfile->n_type_units))
4047 {
4048 complaint (&symfile_complaints,
4049 _(".gdb_index entry has bad CU index"
4050 " [in module %s]"), objfile_name (objfile));
4051 continue;
4052 }
4053
4054 per_cu = dw2_get_cutu (cu_index);
4055 if (file_matcher == NULL || per_cu->v.quick->mark)
4056 {
4057 int symtab_was_null =
4058 (per_cu->v.quick->compunit_symtab == NULL);
4059
4060 dw2_instantiate_symtab (per_cu);
4061
4062 if (expansion_notify != NULL
4063 && symtab_was_null
4064 && per_cu->v.quick->compunit_symtab != NULL)
4065 {
4066 expansion_notify (per_cu->v.quick->compunit_symtab,
4067 data);
4068 }
4069 }
4070 }
4071 }
4072 }
4073
4074 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4075 symtab. */
4076
4077 static struct compunit_symtab *
4078 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4079 CORE_ADDR pc)
4080 {
4081 int i;
4082
4083 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4084 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4085 return cust;
4086
4087 if (cust->includes == NULL)
4088 return NULL;
4089
4090 for (i = 0; cust->includes[i]; ++i)
4091 {
4092 struct compunit_symtab *s = cust->includes[i];
4093
4094 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4095 if (s != NULL)
4096 return s;
4097 }
4098
4099 return NULL;
4100 }
4101
4102 static struct compunit_symtab *
4103 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4104 struct bound_minimal_symbol msymbol,
4105 CORE_ADDR pc,
4106 struct obj_section *section,
4107 int warn_if_readin)
4108 {
4109 struct dwarf2_per_cu_data *data;
4110 struct compunit_symtab *result;
4111
4112 dw2_setup (objfile);
4113
4114 if (!objfile->psymtabs_addrmap)
4115 return NULL;
4116
4117 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4118 pc);
4119 if (!data)
4120 return NULL;
4121
4122 if (warn_if_readin && data->v.quick->compunit_symtab)
4123 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4124 paddress (get_objfile_arch (objfile), pc));
4125
4126 result
4127 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4128 pc);
4129 gdb_assert (result != NULL);
4130 return result;
4131 }
4132
4133 static void
4134 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4135 void *data, int need_fullname)
4136 {
4137 int i;
4138 struct cleanup *cleanup;
4139 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4140 NULL, xcalloc, xfree);
4141
4142 cleanup = make_cleanup_htab_delete (visited);
4143 dw2_setup (objfile);
4144
4145 /* The rule is CUs specify all the files, including those used by
4146 any TU, so there's no need to scan TUs here.
4147 We can ignore file names coming from already-expanded CUs. */
4148
4149 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4150 {
4151 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4152
4153 if (per_cu->v.quick->compunit_symtab)
4154 {
4155 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4156 INSERT);
4157
4158 *slot = per_cu->v.quick->file_names;
4159 }
4160 }
4161
4162 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4163 {
4164 int j;
4165 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4166 struct quick_file_names *file_data;
4167 void **slot;
4168
4169 /* We only need to look at symtabs not already expanded. */
4170 if (per_cu->v.quick->compunit_symtab)
4171 continue;
4172
4173 file_data = dw2_get_file_names (per_cu);
4174 if (file_data == NULL)
4175 continue;
4176
4177 slot = htab_find_slot (visited, file_data, INSERT);
4178 if (*slot)
4179 {
4180 /* Already visited. */
4181 continue;
4182 }
4183 *slot = file_data;
4184
4185 for (j = 0; j < file_data->num_file_names; ++j)
4186 {
4187 const char *this_real_name;
4188
4189 if (need_fullname)
4190 this_real_name = dw2_get_real_path (objfile, file_data, j);
4191 else
4192 this_real_name = NULL;
4193 (*fun) (file_data->file_names[j], this_real_name, data);
4194 }
4195 }
4196
4197 do_cleanups (cleanup);
4198 }
4199
4200 static int
4201 dw2_has_symbols (struct objfile *objfile)
4202 {
4203 return 1;
4204 }
4205
4206 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4207 {
4208 dw2_has_symbols,
4209 dw2_find_last_source_symtab,
4210 dw2_forget_cached_source_info,
4211 dw2_map_symtabs_matching_filename,
4212 dw2_lookup_symbol,
4213 dw2_print_stats,
4214 dw2_dump,
4215 dw2_relocate,
4216 dw2_expand_symtabs_for_function,
4217 dw2_expand_all_symtabs,
4218 dw2_expand_symtabs_with_fullname,
4219 dw2_map_matching_symbols,
4220 dw2_expand_symtabs_matching,
4221 dw2_find_pc_sect_compunit_symtab,
4222 dw2_map_symbol_filenames
4223 };
4224
4225 /* Initialize for reading DWARF for this objfile. Return 0 if this
4226 file will use psymtabs, or 1 if using the GNU index. */
4227
4228 int
4229 dwarf2_initialize_objfile (struct objfile *objfile)
4230 {
4231 /* If we're about to read full symbols, don't bother with the
4232 indices. In this case we also don't care if some other debug
4233 format is making psymtabs, because they are all about to be
4234 expanded anyway. */
4235 if ((objfile->flags & OBJF_READNOW))
4236 {
4237 int i;
4238
4239 dwarf2_per_objfile->using_index = 1;
4240 create_all_comp_units (objfile);
4241 create_all_type_units (objfile);
4242 dwarf2_per_objfile->quick_file_names_table =
4243 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4244
4245 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4246 + dwarf2_per_objfile->n_type_units); ++i)
4247 {
4248 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4249
4250 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4251 struct dwarf2_per_cu_quick_data);
4252 }
4253
4254 /* Return 1 so that gdb sees the "quick" functions. However,
4255 these functions will be no-ops because we will have expanded
4256 all symtabs. */
4257 return 1;
4258 }
4259
4260 if (dwarf2_read_index (objfile))
4261 return 1;
4262
4263 return 0;
4264 }
4265
4266 \f
4267
4268 /* Build a partial symbol table. */
4269
4270 void
4271 dwarf2_build_psymtabs (struct objfile *objfile)
4272 {
4273
4274 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4275 {
4276 init_psymbol_list (objfile, 1024);
4277 }
4278
4279 TRY
4280 {
4281 /* This isn't really ideal: all the data we allocate on the
4282 objfile's obstack is still uselessly kept around. However,
4283 freeing it seems unsafe. */
4284 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4285
4286 dwarf2_build_psymtabs_hard (objfile);
4287 discard_cleanups (cleanups);
4288 }
4289 CATCH (except, RETURN_MASK_ERROR)
4290 {
4291 exception_print (gdb_stderr, except);
4292 }
4293 END_CATCH
4294 }
4295
4296 /* Return the total length of the CU described by HEADER. */
4297
4298 static unsigned int
4299 get_cu_length (const struct comp_unit_head *header)
4300 {
4301 return header->initial_length_size + header->length;
4302 }
4303
4304 /* Return TRUE if OFFSET is within CU_HEADER. */
4305
4306 static inline int
4307 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4308 {
4309 sect_offset bottom = { cu_header->offset.sect_off };
4310 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4311
4312 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4313 }
4314
4315 /* Find the base address of the compilation unit for range lists and
4316 location lists. It will normally be specified by DW_AT_low_pc.
4317 In DWARF-3 draft 4, the base address could be overridden by
4318 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4319 compilation units with discontinuous ranges. */
4320
4321 static void
4322 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4323 {
4324 struct attribute *attr;
4325
4326 cu->base_known = 0;
4327 cu->base_address = 0;
4328
4329 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4330 if (attr)
4331 {
4332 cu->base_address = attr_value_as_address (attr);
4333 cu->base_known = 1;
4334 }
4335 else
4336 {
4337 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4338 if (attr)
4339 {
4340 cu->base_address = attr_value_as_address (attr);
4341 cu->base_known = 1;
4342 }
4343 }
4344 }
4345
4346 /* Read in the comp unit header information from the debug_info at info_ptr.
4347 NOTE: This leaves members offset, first_die_offset to be filled in
4348 by the caller. */
4349
4350 static const gdb_byte *
4351 read_comp_unit_head (struct comp_unit_head *cu_header,
4352 const gdb_byte *info_ptr, bfd *abfd)
4353 {
4354 int signed_addr;
4355 unsigned int bytes_read;
4356
4357 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4358 cu_header->initial_length_size = bytes_read;
4359 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4360 info_ptr += bytes_read;
4361 cu_header->version = read_2_bytes (abfd, info_ptr);
4362 info_ptr += 2;
4363 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4364 &bytes_read);
4365 info_ptr += bytes_read;
4366 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4367 info_ptr += 1;
4368 signed_addr = bfd_get_sign_extend_vma (abfd);
4369 if (signed_addr < 0)
4370 internal_error (__FILE__, __LINE__,
4371 _("read_comp_unit_head: dwarf from non elf file"));
4372 cu_header->signed_addr_p = signed_addr;
4373
4374 return info_ptr;
4375 }
4376
4377 /* Helper function that returns the proper abbrev section for
4378 THIS_CU. */
4379
4380 static struct dwarf2_section_info *
4381 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4382 {
4383 struct dwarf2_section_info *abbrev;
4384
4385 if (this_cu->is_dwz)
4386 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4387 else
4388 abbrev = &dwarf2_per_objfile->abbrev;
4389
4390 return abbrev;
4391 }
4392
4393 /* Subroutine of read_and_check_comp_unit_head and
4394 read_and_check_type_unit_head to simplify them.
4395 Perform various error checking on the header. */
4396
4397 static void
4398 error_check_comp_unit_head (struct comp_unit_head *header,
4399 struct dwarf2_section_info *section,
4400 struct dwarf2_section_info *abbrev_section)
4401 {
4402 const char *filename = get_section_file_name (section);
4403
4404 if (header->version != 2 && header->version != 3 && header->version != 4)
4405 error (_("Dwarf Error: wrong version in compilation unit header "
4406 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4407 filename);
4408
4409 if (header->abbrev_offset.sect_off
4410 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4411 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4412 "(offset 0x%lx + 6) [in module %s]"),
4413 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4414 filename);
4415
4416 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4417 avoid potential 32-bit overflow. */
4418 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4419 > section->size)
4420 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4421 "(offset 0x%lx + 0) [in module %s]"),
4422 (long) header->length, (long) header->offset.sect_off,
4423 filename);
4424 }
4425
4426 /* Read in a CU/TU header and perform some basic error checking.
4427 The contents of the header are stored in HEADER.
4428 The result is a pointer to the start of the first DIE. */
4429
4430 static const gdb_byte *
4431 read_and_check_comp_unit_head (struct comp_unit_head *header,
4432 struct dwarf2_section_info *section,
4433 struct dwarf2_section_info *abbrev_section,
4434 const gdb_byte *info_ptr,
4435 int is_debug_types_section)
4436 {
4437 const gdb_byte *beg_of_comp_unit = info_ptr;
4438 bfd *abfd = get_section_bfd_owner (section);
4439
4440 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4441
4442 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4443
4444 /* If we're reading a type unit, skip over the signature and
4445 type_offset fields. */
4446 if (is_debug_types_section)
4447 info_ptr += 8 /*signature*/ + header->offset_size;
4448
4449 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4450
4451 error_check_comp_unit_head (header, section, abbrev_section);
4452
4453 return info_ptr;
4454 }
4455
4456 /* Read in the types comp unit header information from .debug_types entry at
4457 types_ptr. The result is a pointer to one past the end of the header. */
4458
4459 static const gdb_byte *
4460 read_and_check_type_unit_head (struct comp_unit_head *header,
4461 struct dwarf2_section_info *section,
4462 struct dwarf2_section_info *abbrev_section,
4463 const gdb_byte *info_ptr,
4464 ULONGEST *signature,
4465 cu_offset *type_offset_in_tu)
4466 {
4467 const gdb_byte *beg_of_comp_unit = info_ptr;
4468 bfd *abfd = get_section_bfd_owner (section);
4469
4470 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4471
4472 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4473
4474 /* If we're reading a type unit, skip over the signature and
4475 type_offset fields. */
4476 if (signature != NULL)
4477 *signature = read_8_bytes (abfd, info_ptr);
4478 info_ptr += 8;
4479 if (type_offset_in_tu != NULL)
4480 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4481 header->offset_size);
4482 info_ptr += header->offset_size;
4483
4484 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4485
4486 error_check_comp_unit_head (header, section, abbrev_section);
4487
4488 return info_ptr;
4489 }
4490
4491 /* Fetch the abbreviation table offset from a comp or type unit header. */
4492
4493 static sect_offset
4494 read_abbrev_offset (struct dwarf2_section_info *section,
4495 sect_offset offset)
4496 {
4497 bfd *abfd = get_section_bfd_owner (section);
4498 const gdb_byte *info_ptr;
4499 unsigned int initial_length_size, offset_size;
4500 sect_offset abbrev_offset;
4501
4502 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4503 info_ptr = section->buffer + offset.sect_off;
4504 read_initial_length (abfd, info_ptr, &initial_length_size);
4505 offset_size = initial_length_size == 4 ? 4 : 8;
4506 info_ptr += initial_length_size + 2 /*version*/;
4507 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4508 return abbrev_offset;
4509 }
4510
4511 /* Allocate a new partial symtab for file named NAME and mark this new
4512 partial symtab as being an include of PST. */
4513
4514 static void
4515 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4516 struct objfile *objfile)
4517 {
4518 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4519
4520 if (!IS_ABSOLUTE_PATH (subpst->filename))
4521 {
4522 /* It shares objfile->objfile_obstack. */
4523 subpst->dirname = pst->dirname;
4524 }
4525
4526 subpst->textlow = 0;
4527 subpst->texthigh = 0;
4528
4529 subpst->dependencies
4530 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4531 subpst->dependencies[0] = pst;
4532 subpst->number_of_dependencies = 1;
4533
4534 subpst->globals_offset = 0;
4535 subpst->n_global_syms = 0;
4536 subpst->statics_offset = 0;
4537 subpst->n_static_syms = 0;
4538 subpst->compunit_symtab = NULL;
4539 subpst->read_symtab = pst->read_symtab;
4540 subpst->readin = 0;
4541
4542 /* No private part is necessary for include psymtabs. This property
4543 can be used to differentiate between such include psymtabs and
4544 the regular ones. */
4545 subpst->read_symtab_private = NULL;
4546 }
4547
4548 /* Read the Line Number Program data and extract the list of files
4549 included by the source file represented by PST. Build an include
4550 partial symtab for each of these included files. */
4551
4552 static void
4553 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4554 struct die_info *die,
4555 struct partial_symtab *pst)
4556 {
4557 struct line_header *lh = NULL;
4558 struct attribute *attr;
4559
4560 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4561 if (attr)
4562 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4563 if (lh == NULL)
4564 return; /* No linetable, so no includes. */
4565
4566 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4567 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4568
4569 free_line_header (lh);
4570 }
4571
4572 static hashval_t
4573 hash_signatured_type (const void *item)
4574 {
4575 const struct signatured_type *sig_type
4576 = (const struct signatured_type *) item;
4577
4578 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4579 return sig_type->signature;
4580 }
4581
4582 static int
4583 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4584 {
4585 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4586 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4587
4588 return lhs->signature == rhs->signature;
4589 }
4590
4591 /* Allocate a hash table for signatured types. */
4592
4593 static htab_t
4594 allocate_signatured_type_table (struct objfile *objfile)
4595 {
4596 return htab_create_alloc_ex (41,
4597 hash_signatured_type,
4598 eq_signatured_type,
4599 NULL,
4600 &objfile->objfile_obstack,
4601 hashtab_obstack_allocate,
4602 dummy_obstack_deallocate);
4603 }
4604
4605 /* A helper function to add a signatured type CU to a table. */
4606
4607 static int
4608 add_signatured_type_cu_to_table (void **slot, void *datum)
4609 {
4610 struct signatured_type *sigt = (struct signatured_type *) *slot;
4611 struct signatured_type ***datap = (struct signatured_type ***) datum;
4612
4613 **datap = sigt;
4614 ++*datap;
4615
4616 return 1;
4617 }
4618
4619 /* Create the hash table of all entries in the .debug_types
4620 (or .debug_types.dwo) section(s).
4621 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4622 otherwise it is NULL.
4623
4624 The result is a pointer to the hash table or NULL if there are no types.
4625
4626 Note: This function processes DWO files only, not DWP files. */
4627
4628 static htab_t
4629 create_debug_types_hash_table (struct dwo_file *dwo_file,
4630 VEC (dwarf2_section_info_def) *types)
4631 {
4632 struct objfile *objfile = dwarf2_per_objfile->objfile;
4633 htab_t types_htab = NULL;
4634 int ix;
4635 struct dwarf2_section_info *section;
4636 struct dwarf2_section_info *abbrev_section;
4637
4638 if (VEC_empty (dwarf2_section_info_def, types))
4639 return NULL;
4640
4641 abbrev_section = (dwo_file != NULL
4642 ? &dwo_file->sections.abbrev
4643 : &dwarf2_per_objfile->abbrev);
4644
4645 if (dwarf_read_debug)
4646 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4647 dwo_file ? ".dwo" : "",
4648 get_section_file_name (abbrev_section));
4649
4650 for (ix = 0;
4651 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4652 ++ix)
4653 {
4654 bfd *abfd;
4655 const gdb_byte *info_ptr, *end_ptr;
4656
4657 dwarf2_read_section (objfile, section);
4658 info_ptr = section->buffer;
4659
4660 if (info_ptr == NULL)
4661 continue;
4662
4663 /* We can't set abfd until now because the section may be empty or
4664 not present, in which case the bfd is unknown. */
4665 abfd = get_section_bfd_owner (section);
4666
4667 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4668 because we don't need to read any dies: the signature is in the
4669 header. */
4670
4671 end_ptr = info_ptr + section->size;
4672 while (info_ptr < end_ptr)
4673 {
4674 sect_offset offset;
4675 cu_offset type_offset_in_tu;
4676 ULONGEST signature;
4677 struct signatured_type *sig_type;
4678 struct dwo_unit *dwo_tu;
4679 void **slot;
4680 const gdb_byte *ptr = info_ptr;
4681 struct comp_unit_head header;
4682 unsigned int length;
4683
4684 offset.sect_off = ptr - section->buffer;
4685
4686 /* We need to read the type's signature in order to build the hash
4687 table, but we don't need anything else just yet. */
4688
4689 ptr = read_and_check_type_unit_head (&header, section,
4690 abbrev_section, ptr,
4691 &signature, &type_offset_in_tu);
4692
4693 length = get_cu_length (&header);
4694
4695 /* Skip dummy type units. */
4696 if (ptr >= info_ptr + length
4697 || peek_abbrev_code (abfd, ptr) == 0)
4698 {
4699 info_ptr += length;
4700 continue;
4701 }
4702
4703 if (types_htab == NULL)
4704 {
4705 if (dwo_file)
4706 types_htab = allocate_dwo_unit_table (objfile);
4707 else
4708 types_htab = allocate_signatured_type_table (objfile);
4709 }
4710
4711 if (dwo_file)
4712 {
4713 sig_type = NULL;
4714 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4715 struct dwo_unit);
4716 dwo_tu->dwo_file = dwo_file;
4717 dwo_tu->signature = signature;
4718 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4719 dwo_tu->section = section;
4720 dwo_tu->offset = offset;
4721 dwo_tu->length = length;
4722 }
4723 else
4724 {
4725 /* N.B.: type_offset is not usable if this type uses a DWO file.
4726 The real type_offset is in the DWO file. */
4727 dwo_tu = NULL;
4728 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4729 struct signatured_type);
4730 sig_type->signature = signature;
4731 sig_type->type_offset_in_tu = type_offset_in_tu;
4732 sig_type->per_cu.objfile = objfile;
4733 sig_type->per_cu.is_debug_types = 1;
4734 sig_type->per_cu.section = section;
4735 sig_type->per_cu.offset = offset;
4736 sig_type->per_cu.length = length;
4737 }
4738
4739 slot = htab_find_slot (types_htab,
4740 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4741 INSERT);
4742 gdb_assert (slot != NULL);
4743 if (*slot != NULL)
4744 {
4745 sect_offset dup_offset;
4746
4747 if (dwo_file)
4748 {
4749 const struct dwo_unit *dup_tu
4750 = (const struct dwo_unit *) *slot;
4751
4752 dup_offset = dup_tu->offset;
4753 }
4754 else
4755 {
4756 const struct signatured_type *dup_tu
4757 = (const struct signatured_type *) *slot;
4758
4759 dup_offset = dup_tu->per_cu.offset;
4760 }
4761
4762 complaint (&symfile_complaints,
4763 _("debug type entry at offset 0x%x is duplicate to"
4764 " the entry at offset 0x%x, signature %s"),
4765 offset.sect_off, dup_offset.sect_off,
4766 hex_string (signature));
4767 }
4768 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4769
4770 if (dwarf_read_debug > 1)
4771 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4772 offset.sect_off,
4773 hex_string (signature));
4774
4775 info_ptr += length;
4776 }
4777 }
4778
4779 return types_htab;
4780 }
4781
4782 /* Create the hash table of all entries in the .debug_types section,
4783 and initialize all_type_units.
4784 The result is zero if there is an error (e.g. missing .debug_types section),
4785 otherwise non-zero. */
4786
4787 static int
4788 create_all_type_units (struct objfile *objfile)
4789 {
4790 htab_t types_htab;
4791 struct signatured_type **iter;
4792
4793 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4794 if (types_htab == NULL)
4795 {
4796 dwarf2_per_objfile->signatured_types = NULL;
4797 return 0;
4798 }
4799
4800 dwarf2_per_objfile->signatured_types = types_htab;
4801
4802 dwarf2_per_objfile->n_type_units
4803 = dwarf2_per_objfile->n_allocated_type_units
4804 = htab_elements (types_htab);
4805 dwarf2_per_objfile->all_type_units =
4806 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4807 iter = &dwarf2_per_objfile->all_type_units[0];
4808 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4809 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4810 == dwarf2_per_objfile->n_type_units);
4811
4812 return 1;
4813 }
4814
4815 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4816 If SLOT is non-NULL, it is the entry to use in the hash table.
4817 Otherwise we find one. */
4818
4819 static struct signatured_type *
4820 add_type_unit (ULONGEST sig, void **slot)
4821 {
4822 struct objfile *objfile = dwarf2_per_objfile->objfile;
4823 int n_type_units = dwarf2_per_objfile->n_type_units;
4824 struct signatured_type *sig_type;
4825
4826 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4827 ++n_type_units;
4828 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4829 {
4830 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4831 dwarf2_per_objfile->n_allocated_type_units = 1;
4832 dwarf2_per_objfile->n_allocated_type_units *= 2;
4833 dwarf2_per_objfile->all_type_units
4834 = XRESIZEVEC (struct signatured_type *,
4835 dwarf2_per_objfile->all_type_units,
4836 dwarf2_per_objfile->n_allocated_type_units);
4837 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4838 }
4839 dwarf2_per_objfile->n_type_units = n_type_units;
4840
4841 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4842 struct signatured_type);
4843 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4844 sig_type->signature = sig;
4845 sig_type->per_cu.is_debug_types = 1;
4846 if (dwarf2_per_objfile->using_index)
4847 {
4848 sig_type->per_cu.v.quick =
4849 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4850 struct dwarf2_per_cu_quick_data);
4851 }
4852
4853 if (slot == NULL)
4854 {
4855 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4856 sig_type, INSERT);
4857 }
4858 gdb_assert (*slot == NULL);
4859 *slot = sig_type;
4860 /* The rest of sig_type must be filled in by the caller. */
4861 return sig_type;
4862 }
4863
4864 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4865 Fill in SIG_ENTRY with DWO_ENTRY. */
4866
4867 static void
4868 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4869 struct signatured_type *sig_entry,
4870 struct dwo_unit *dwo_entry)
4871 {
4872 /* Make sure we're not clobbering something we don't expect to. */
4873 gdb_assert (! sig_entry->per_cu.queued);
4874 gdb_assert (sig_entry->per_cu.cu == NULL);
4875 if (dwarf2_per_objfile->using_index)
4876 {
4877 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4878 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4879 }
4880 else
4881 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4882 gdb_assert (sig_entry->signature == dwo_entry->signature);
4883 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4884 gdb_assert (sig_entry->type_unit_group == NULL);
4885 gdb_assert (sig_entry->dwo_unit == NULL);
4886
4887 sig_entry->per_cu.section = dwo_entry->section;
4888 sig_entry->per_cu.offset = dwo_entry->offset;
4889 sig_entry->per_cu.length = dwo_entry->length;
4890 sig_entry->per_cu.reading_dwo_directly = 1;
4891 sig_entry->per_cu.objfile = objfile;
4892 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4893 sig_entry->dwo_unit = dwo_entry;
4894 }
4895
4896 /* Subroutine of lookup_signatured_type.
4897 If we haven't read the TU yet, create the signatured_type data structure
4898 for a TU to be read in directly from a DWO file, bypassing the stub.
4899 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4900 using .gdb_index, then when reading a CU we want to stay in the DWO file
4901 containing that CU. Otherwise we could end up reading several other DWO
4902 files (due to comdat folding) to process the transitive closure of all the
4903 mentioned TUs, and that can be slow. The current DWO file will have every
4904 type signature that it needs.
4905 We only do this for .gdb_index because in the psymtab case we already have
4906 to read all the DWOs to build the type unit groups. */
4907
4908 static struct signatured_type *
4909 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4910 {
4911 struct objfile *objfile = dwarf2_per_objfile->objfile;
4912 struct dwo_file *dwo_file;
4913 struct dwo_unit find_dwo_entry, *dwo_entry;
4914 struct signatured_type find_sig_entry, *sig_entry;
4915 void **slot;
4916
4917 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4918
4919 /* If TU skeletons have been removed then we may not have read in any
4920 TUs yet. */
4921 if (dwarf2_per_objfile->signatured_types == NULL)
4922 {
4923 dwarf2_per_objfile->signatured_types
4924 = allocate_signatured_type_table (objfile);
4925 }
4926
4927 /* We only ever need to read in one copy of a signatured type.
4928 Use the global signatured_types array to do our own comdat-folding
4929 of types. If this is the first time we're reading this TU, and
4930 the TU has an entry in .gdb_index, replace the recorded data from
4931 .gdb_index with this TU. */
4932
4933 find_sig_entry.signature = sig;
4934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4935 &find_sig_entry, INSERT);
4936 sig_entry = (struct signatured_type *) *slot;
4937
4938 /* We can get here with the TU already read, *or* in the process of being
4939 read. Don't reassign the global entry to point to this DWO if that's
4940 the case. Also note that if the TU is already being read, it may not
4941 have come from a DWO, the program may be a mix of Fission-compiled
4942 code and non-Fission-compiled code. */
4943
4944 /* Have we already tried to read this TU?
4945 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4946 needn't exist in the global table yet). */
4947 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4948 return sig_entry;
4949
4950 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4951 dwo_unit of the TU itself. */
4952 dwo_file = cu->dwo_unit->dwo_file;
4953
4954 /* Ok, this is the first time we're reading this TU. */
4955 if (dwo_file->tus == NULL)
4956 return NULL;
4957 find_dwo_entry.signature = sig;
4958 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4959 if (dwo_entry == NULL)
4960 return NULL;
4961
4962 /* If the global table doesn't have an entry for this TU, add one. */
4963 if (sig_entry == NULL)
4964 sig_entry = add_type_unit (sig, slot);
4965
4966 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4967 sig_entry->per_cu.tu_read = 1;
4968 return sig_entry;
4969 }
4970
4971 /* Subroutine of lookup_signatured_type.
4972 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4973 then try the DWP file. If the TU stub (skeleton) has been removed then
4974 it won't be in .gdb_index. */
4975
4976 static struct signatured_type *
4977 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4978 {
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwp_file *dwp_file = get_dwp_file ();
4981 struct dwo_unit *dwo_entry;
4982 struct signatured_type find_sig_entry, *sig_entry;
4983 void **slot;
4984
4985 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4986 gdb_assert (dwp_file != NULL);
4987
4988 /* If TU skeletons have been removed then we may not have read in any
4989 TUs yet. */
4990 if (dwarf2_per_objfile->signatured_types == NULL)
4991 {
4992 dwarf2_per_objfile->signatured_types
4993 = allocate_signatured_type_table (objfile);
4994 }
4995
4996 find_sig_entry.signature = sig;
4997 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4998 &find_sig_entry, INSERT);
4999 sig_entry = (struct signatured_type *) *slot;
5000
5001 /* Have we already tried to read this TU?
5002 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5003 needn't exist in the global table yet). */
5004 if (sig_entry != NULL)
5005 return sig_entry;
5006
5007 if (dwp_file->tus == NULL)
5008 return NULL;
5009 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5010 sig, 1 /* is_debug_types */);
5011 if (dwo_entry == NULL)
5012 return NULL;
5013
5014 sig_entry = add_type_unit (sig, slot);
5015 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5016
5017 return sig_entry;
5018 }
5019
5020 /* Lookup a signature based type for DW_FORM_ref_sig8.
5021 Returns NULL if signature SIG is not present in the table.
5022 It is up to the caller to complain about this. */
5023
5024 static struct signatured_type *
5025 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5026 {
5027 if (cu->dwo_unit
5028 && dwarf2_per_objfile->using_index)
5029 {
5030 /* We're in a DWO/DWP file, and we're using .gdb_index.
5031 These cases require special processing. */
5032 if (get_dwp_file () == NULL)
5033 return lookup_dwo_signatured_type (cu, sig);
5034 else
5035 return lookup_dwp_signatured_type (cu, sig);
5036 }
5037 else
5038 {
5039 struct signatured_type find_entry, *entry;
5040
5041 if (dwarf2_per_objfile->signatured_types == NULL)
5042 return NULL;
5043 find_entry.signature = sig;
5044 entry = ((struct signatured_type *)
5045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5046 return entry;
5047 }
5048 }
5049 \f
5050 /* Low level DIE reading support. */
5051
5052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5053
5054 static void
5055 init_cu_die_reader (struct die_reader_specs *reader,
5056 struct dwarf2_cu *cu,
5057 struct dwarf2_section_info *section,
5058 struct dwo_file *dwo_file)
5059 {
5060 gdb_assert (section->readin && section->buffer != NULL);
5061 reader->abfd = get_section_bfd_owner (section);
5062 reader->cu = cu;
5063 reader->dwo_file = dwo_file;
5064 reader->die_section = section;
5065 reader->buffer = section->buffer;
5066 reader->buffer_end = section->buffer + section->size;
5067 reader->comp_dir = NULL;
5068 }
5069
5070 /* Subroutine of init_cutu_and_read_dies to simplify it.
5071 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5072 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5073 already.
5074
5075 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5076 from it to the DIE in the DWO. If NULL we are skipping the stub.
5077 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5078 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5079 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5080 STUB_COMP_DIR may be non-NULL.
5081 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5082 are filled in with the info of the DIE from the DWO file.
5083 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5084 provided an abbrev table to use.
5085 The result is non-zero if a valid (non-dummy) DIE was found. */
5086
5087 static int
5088 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5089 struct dwo_unit *dwo_unit,
5090 int abbrev_table_provided,
5091 struct die_info *stub_comp_unit_die,
5092 const char *stub_comp_dir,
5093 struct die_reader_specs *result_reader,
5094 const gdb_byte **result_info_ptr,
5095 struct die_info **result_comp_unit_die,
5096 int *result_has_children)
5097 {
5098 struct objfile *objfile = dwarf2_per_objfile->objfile;
5099 struct dwarf2_cu *cu = this_cu->cu;
5100 struct dwarf2_section_info *section;
5101 bfd *abfd;
5102 const gdb_byte *begin_info_ptr, *info_ptr;
5103 ULONGEST signature; /* Or dwo_id. */
5104 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5105 int i,num_extra_attrs;
5106 struct dwarf2_section_info *dwo_abbrev_section;
5107 struct attribute *attr;
5108 struct die_info *comp_unit_die;
5109
5110 /* At most one of these may be provided. */
5111 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5112
5113 /* These attributes aren't processed until later:
5114 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5115 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5116 referenced later. However, these attributes are found in the stub
5117 which we won't have later. In order to not impose this complication
5118 on the rest of the code, we read them here and copy them to the
5119 DWO CU/TU die. */
5120
5121 stmt_list = NULL;
5122 low_pc = NULL;
5123 high_pc = NULL;
5124 ranges = NULL;
5125 comp_dir = NULL;
5126
5127 if (stub_comp_unit_die != NULL)
5128 {
5129 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5130 DWO file. */
5131 if (! this_cu->is_debug_types)
5132 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5133 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5134 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5135 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5136 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5137
5138 /* There should be a DW_AT_addr_base attribute here (if needed).
5139 We need the value before we can process DW_FORM_GNU_addr_index. */
5140 cu->addr_base = 0;
5141 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5142 if (attr)
5143 cu->addr_base = DW_UNSND (attr);
5144
5145 /* There should be a DW_AT_ranges_base attribute here (if needed).
5146 We need the value before we can process DW_AT_ranges. */
5147 cu->ranges_base = 0;
5148 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5149 if (attr)
5150 cu->ranges_base = DW_UNSND (attr);
5151 }
5152 else if (stub_comp_dir != NULL)
5153 {
5154 /* Reconstruct the comp_dir attribute to simplify the code below. */
5155 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5156 comp_dir->name = DW_AT_comp_dir;
5157 comp_dir->form = DW_FORM_string;
5158 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5159 DW_STRING (comp_dir) = stub_comp_dir;
5160 }
5161
5162 /* Set up for reading the DWO CU/TU. */
5163 cu->dwo_unit = dwo_unit;
5164 section = dwo_unit->section;
5165 dwarf2_read_section (objfile, section);
5166 abfd = get_section_bfd_owner (section);
5167 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5168 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5169 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5170
5171 if (this_cu->is_debug_types)
5172 {
5173 ULONGEST header_signature;
5174 cu_offset type_offset_in_tu;
5175 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5176
5177 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5178 dwo_abbrev_section,
5179 info_ptr,
5180 &header_signature,
5181 &type_offset_in_tu);
5182 /* This is not an assert because it can be caused by bad debug info. */
5183 if (sig_type->signature != header_signature)
5184 {
5185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5186 " TU at offset 0x%x [in module %s]"),
5187 hex_string (sig_type->signature),
5188 hex_string (header_signature),
5189 dwo_unit->offset.sect_off,
5190 bfd_get_filename (abfd));
5191 }
5192 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5193 /* For DWOs coming from DWP files, we don't know the CU length
5194 nor the type's offset in the TU until now. */
5195 dwo_unit->length = get_cu_length (&cu->header);
5196 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5197
5198 /* Establish the type offset that can be used to lookup the type.
5199 For DWO files, we don't know it until now. */
5200 sig_type->type_offset_in_section.sect_off =
5201 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5202 }
5203 else
5204 {
5205 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5206 dwo_abbrev_section,
5207 info_ptr, 0);
5208 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5209 /* For DWOs coming from DWP files, we don't know the CU length
5210 until now. */
5211 dwo_unit->length = get_cu_length (&cu->header);
5212 }
5213
5214 /* Replace the CU's original abbrev table with the DWO's.
5215 Reminder: We can't read the abbrev table until we've read the header. */
5216 if (abbrev_table_provided)
5217 {
5218 /* Don't free the provided abbrev table, the caller of
5219 init_cutu_and_read_dies owns it. */
5220 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5221 /* Ensure the DWO abbrev table gets freed. */
5222 make_cleanup (dwarf2_free_abbrev_table, cu);
5223 }
5224 else
5225 {
5226 dwarf2_free_abbrev_table (cu);
5227 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5228 /* Leave any existing abbrev table cleanup as is. */
5229 }
5230
5231 /* Read in the die, but leave space to copy over the attributes
5232 from the stub. This has the benefit of simplifying the rest of
5233 the code - all the work to maintain the illusion of a single
5234 DW_TAG_{compile,type}_unit DIE is done here. */
5235 num_extra_attrs = ((stmt_list != NULL)
5236 + (low_pc != NULL)
5237 + (high_pc != NULL)
5238 + (ranges != NULL)
5239 + (comp_dir != NULL));
5240 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5241 result_has_children, num_extra_attrs);
5242
5243 /* Copy over the attributes from the stub to the DIE we just read in. */
5244 comp_unit_die = *result_comp_unit_die;
5245 i = comp_unit_die->num_attrs;
5246 if (stmt_list != NULL)
5247 comp_unit_die->attrs[i++] = *stmt_list;
5248 if (low_pc != NULL)
5249 comp_unit_die->attrs[i++] = *low_pc;
5250 if (high_pc != NULL)
5251 comp_unit_die->attrs[i++] = *high_pc;
5252 if (ranges != NULL)
5253 comp_unit_die->attrs[i++] = *ranges;
5254 if (comp_dir != NULL)
5255 comp_unit_die->attrs[i++] = *comp_dir;
5256 comp_unit_die->num_attrs += num_extra_attrs;
5257
5258 if (dwarf_die_debug)
5259 {
5260 fprintf_unfiltered (gdb_stdlog,
5261 "Read die from %s@0x%x of %s:\n",
5262 get_section_name (section),
5263 (unsigned) (begin_info_ptr - section->buffer),
5264 bfd_get_filename (abfd));
5265 dump_die (comp_unit_die, dwarf_die_debug);
5266 }
5267
5268 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5269 TUs by skipping the stub and going directly to the entry in the DWO file.
5270 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5271 to get it via circuitous means. Blech. */
5272 if (comp_dir != NULL)
5273 result_reader->comp_dir = DW_STRING (comp_dir);
5274
5275 /* Skip dummy compilation units. */
5276 if (info_ptr >= begin_info_ptr + dwo_unit->length
5277 || peek_abbrev_code (abfd, info_ptr) == 0)
5278 return 0;
5279
5280 *result_info_ptr = info_ptr;
5281 return 1;
5282 }
5283
5284 /* Subroutine of init_cutu_and_read_dies to simplify it.
5285 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5286 Returns NULL if the specified DWO unit cannot be found. */
5287
5288 static struct dwo_unit *
5289 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5290 struct die_info *comp_unit_die)
5291 {
5292 struct dwarf2_cu *cu = this_cu->cu;
5293 struct attribute *attr;
5294 ULONGEST signature;
5295 struct dwo_unit *dwo_unit;
5296 const char *comp_dir, *dwo_name;
5297
5298 gdb_assert (cu != NULL);
5299
5300 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5301 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5302 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5303
5304 if (this_cu->is_debug_types)
5305 {
5306 struct signatured_type *sig_type;
5307
5308 /* Since this_cu is the first member of struct signatured_type,
5309 we can go from a pointer to one to a pointer to the other. */
5310 sig_type = (struct signatured_type *) this_cu;
5311 signature = sig_type->signature;
5312 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5313 }
5314 else
5315 {
5316 struct attribute *attr;
5317
5318 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5319 if (! attr)
5320 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5321 " [in module %s]"),
5322 dwo_name, objfile_name (this_cu->objfile));
5323 signature = DW_UNSND (attr);
5324 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5325 signature);
5326 }
5327
5328 return dwo_unit;
5329 }
5330
5331 /* Subroutine of init_cutu_and_read_dies to simplify it.
5332 See it for a description of the parameters.
5333 Read a TU directly from a DWO file, bypassing the stub.
5334
5335 Note: This function could be a little bit simpler if we shared cleanups
5336 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5337 to do, so we keep this function self-contained. Or we could move this
5338 into our caller, but it's complex enough already. */
5339
5340 static void
5341 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5342 int use_existing_cu, int keep,
5343 die_reader_func_ftype *die_reader_func,
5344 void *data)
5345 {
5346 struct dwarf2_cu *cu;
5347 struct signatured_type *sig_type;
5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5349 struct die_reader_specs reader;
5350 const gdb_byte *info_ptr;
5351 struct die_info *comp_unit_die;
5352 int has_children;
5353
5354 /* Verify we can do the following downcast, and that we have the
5355 data we need. */
5356 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5357 sig_type = (struct signatured_type *) this_cu;
5358 gdb_assert (sig_type->dwo_unit != NULL);
5359
5360 cleanups = make_cleanup (null_cleanup, NULL);
5361
5362 if (use_existing_cu && this_cu->cu != NULL)
5363 {
5364 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5365 cu = this_cu->cu;
5366 /* There's no need to do the rereading_dwo_cu handling that
5367 init_cutu_and_read_dies does since we don't read the stub. */
5368 }
5369 else
5370 {
5371 /* If !use_existing_cu, this_cu->cu must be NULL. */
5372 gdb_assert (this_cu->cu == NULL);
5373 cu = XNEW (struct dwarf2_cu);
5374 init_one_comp_unit (cu, this_cu);
5375 /* If an error occurs while loading, release our storage. */
5376 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5377 }
5378
5379 /* A future optimization, if needed, would be to use an existing
5380 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5381 could share abbrev tables. */
5382
5383 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5384 0 /* abbrev_table_provided */,
5385 NULL /* stub_comp_unit_die */,
5386 sig_type->dwo_unit->dwo_file->comp_dir,
5387 &reader, &info_ptr,
5388 &comp_unit_die, &has_children) == 0)
5389 {
5390 /* Dummy die. */
5391 do_cleanups (cleanups);
5392 return;
5393 }
5394
5395 /* All the "real" work is done here. */
5396 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5397
5398 /* This duplicates the code in init_cutu_and_read_dies,
5399 but the alternative is making the latter more complex.
5400 This function is only for the special case of using DWO files directly:
5401 no point in overly complicating the general case just to handle this. */
5402 if (free_cu_cleanup != NULL)
5403 {
5404 if (keep)
5405 {
5406 /* We've successfully allocated this compilation unit. Let our
5407 caller clean it up when finished with it. */
5408 discard_cleanups (free_cu_cleanup);
5409
5410 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5411 So we have to manually free the abbrev table. */
5412 dwarf2_free_abbrev_table (cu);
5413
5414 /* Link this CU into read_in_chain. */
5415 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5416 dwarf2_per_objfile->read_in_chain = this_cu;
5417 }
5418 else
5419 do_cleanups (free_cu_cleanup);
5420 }
5421
5422 do_cleanups (cleanups);
5423 }
5424
5425 /* Initialize a CU (or TU) and read its DIEs.
5426 If the CU defers to a DWO file, read the DWO file as well.
5427
5428 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5429 Otherwise the table specified in the comp unit header is read in and used.
5430 This is an optimization for when we already have the abbrev table.
5431
5432 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5433 Otherwise, a new CU is allocated with xmalloc.
5434
5435 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5436 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5437
5438 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5439 linker) then DIE_READER_FUNC will not get called. */
5440
5441 static void
5442 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5443 struct abbrev_table *abbrev_table,
5444 int use_existing_cu, int keep,
5445 die_reader_func_ftype *die_reader_func,
5446 void *data)
5447 {
5448 struct objfile *objfile = dwarf2_per_objfile->objfile;
5449 struct dwarf2_section_info *section = this_cu->section;
5450 bfd *abfd = get_section_bfd_owner (section);
5451 struct dwarf2_cu *cu;
5452 const gdb_byte *begin_info_ptr, *info_ptr;
5453 struct die_reader_specs reader;
5454 struct die_info *comp_unit_die;
5455 int has_children;
5456 struct attribute *attr;
5457 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5458 struct signatured_type *sig_type = NULL;
5459 struct dwarf2_section_info *abbrev_section;
5460 /* Non-zero if CU currently points to a DWO file and we need to
5461 reread it. When this happens we need to reread the skeleton die
5462 before we can reread the DWO file (this only applies to CUs, not TUs). */
5463 int rereading_dwo_cu = 0;
5464
5465 if (dwarf_die_debug)
5466 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5467 this_cu->is_debug_types ? "type" : "comp",
5468 this_cu->offset.sect_off);
5469
5470 if (use_existing_cu)
5471 gdb_assert (keep);
5472
5473 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5474 file (instead of going through the stub), short-circuit all of this. */
5475 if (this_cu->reading_dwo_directly)
5476 {
5477 /* Narrow down the scope of possibilities to have to understand. */
5478 gdb_assert (this_cu->is_debug_types);
5479 gdb_assert (abbrev_table == NULL);
5480 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5481 die_reader_func, data);
5482 return;
5483 }
5484
5485 cleanups = make_cleanup (null_cleanup, NULL);
5486
5487 /* This is cheap if the section is already read in. */
5488 dwarf2_read_section (objfile, section);
5489
5490 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5491
5492 abbrev_section = get_abbrev_section_for_cu (this_cu);
5493
5494 if (use_existing_cu && this_cu->cu != NULL)
5495 {
5496 cu = this_cu->cu;
5497 /* If this CU is from a DWO file we need to start over, we need to
5498 refetch the attributes from the skeleton CU.
5499 This could be optimized by retrieving those attributes from when we
5500 were here the first time: the previous comp_unit_die was stored in
5501 comp_unit_obstack. But there's no data yet that we need this
5502 optimization. */
5503 if (cu->dwo_unit != NULL)
5504 rereading_dwo_cu = 1;
5505 }
5506 else
5507 {
5508 /* If !use_existing_cu, this_cu->cu must be NULL. */
5509 gdb_assert (this_cu->cu == NULL);
5510 cu = XNEW (struct dwarf2_cu);
5511 init_one_comp_unit (cu, this_cu);
5512 /* If an error occurs while loading, release our storage. */
5513 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5514 }
5515
5516 /* Get the header. */
5517 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5518 {
5519 /* We already have the header, there's no need to read it in again. */
5520 info_ptr += cu->header.first_die_offset.cu_off;
5521 }
5522 else
5523 {
5524 if (this_cu->is_debug_types)
5525 {
5526 ULONGEST signature;
5527 cu_offset type_offset_in_tu;
5528
5529 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5530 abbrev_section, info_ptr,
5531 &signature,
5532 &type_offset_in_tu);
5533
5534 /* Since per_cu is the first member of struct signatured_type,
5535 we can go from a pointer to one to a pointer to the other. */
5536 sig_type = (struct signatured_type *) this_cu;
5537 gdb_assert (sig_type->signature == signature);
5538 gdb_assert (sig_type->type_offset_in_tu.cu_off
5539 == type_offset_in_tu.cu_off);
5540 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5541
5542 /* LENGTH has not been set yet for type units if we're
5543 using .gdb_index. */
5544 this_cu->length = get_cu_length (&cu->header);
5545
5546 /* Establish the type offset that can be used to lookup the type. */
5547 sig_type->type_offset_in_section.sect_off =
5548 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5549 }
5550 else
5551 {
5552 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5553 abbrev_section,
5554 info_ptr, 0);
5555
5556 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5557 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5558 }
5559 }
5560
5561 /* Skip dummy compilation units. */
5562 if (info_ptr >= begin_info_ptr + this_cu->length
5563 || peek_abbrev_code (abfd, info_ptr) == 0)
5564 {
5565 do_cleanups (cleanups);
5566 return;
5567 }
5568
5569 /* If we don't have them yet, read the abbrevs for this compilation unit.
5570 And if we need to read them now, make sure they're freed when we're
5571 done. Note that it's important that if the CU had an abbrev table
5572 on entry we don't free it when we're done: Somewhere up the call stack
5573 it may be in use. */
5574 if (abbrev_table != NULL)
5575 {
5576 gdb_assert (cu->abbrev_table == NULL);
5577 gdb_assert (cu->header.abbrev_offset.sect_off
5578 == abbrev_table->offset.sect_off);
5579 cu->abbrev_table = abbrev_table;
5580 }
5581 else if (cu->abbrev_table == NULL)
5582 {
5583 dwarf2_read_abbrevs (cu, abbrev_section);
5584 make_cleanup (dwarf2_free_abbrev_table, cu);
5585 }
5586 else if (rereading_dwo_cu)
5587 {
5588 dwarf2_free_abbrev_table (cu);
5589 dwarf2_read_abbrevs (cu, abbrev_section);
5590 }
5591
5592 /* Read the top level CU/TU die. */
5593 init_cu_die_reader (&reader, cu, section, NULL);
5594 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5595
5596 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5597 from the DWO file.
5598 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5599 DWO CU, that this test will fail (the attribute will not be present). */
5600 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5601 if (attr)
5602 {
5603 struct dwo_unit *dwo_unit;
5604 struct die_info *dwo_comp_unit_die;
5605
5606 if (has_children)
5607 {
5608 complaint (&symfile_complaints,
5609 _("compilation unit with DW_AT_GNU_dwo_name"
5610 " has children (offset 0x%x) [in module %s]"),
5611 this_cu->offset.sect_off, bfd_get_filename (abfd));
5612 }
5613 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5614 if (dwo_unit != NULL)
5615 {
5616 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5617 abbrev_table != NULL,
5618 comp_unit_die, NULL,
5619 &reader, &info_ptr,
5620 &dwo_comp_unit_die, &has_children) == 0)
5621 {
5622 /* Dummy die. */
5623 do_cleanups (cleanups);
5624 return;
5625 }
5626 comp_unit_die = dwo_comp_unit_die;
5627 }
5628 else
5629 {
5630 /* Yikes, we couldn't find the rest of the DIE, we only have
5631 the stub. A complaint has already been logged. There's
5632 not much more we can do except pass on the stub DIE to
5633 die_reader_func. We don't want to throw an error on bad
5634 debug info. */
5635 }
5636 }
5637
5638 /* All of the above is setup for this call. Yikes. */
5639 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5640
5641 /* Done, clean up. */
5642 if (free_cu_cleanup != NULL)
5643 {
5644 if (keep)
5645 {
5646 /* We've successfully allocated this compilation unit. Let our
5647 caller clean it up when finished with it. */
5648 discard_cleanups (free_cu_cleanup);
5649
5650 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5651 So we have to manually free the abbrev table. */
5652 dwarf2_free_abbrev_table (cu);
5653
5654 /* Link this CU into read_in_chain. */
5655 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5656 dwarf2_per_objfile->read_in_chain = this_cu;
5657 }
5658 else
5659 do_cleanups (free_cu_cleanup);
5660 }
5661
5662 do_cleanups (cleanups);
5663 }
5664
5665 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5666 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5667 to have already done the lookup to find the DWO file).
5668
5669 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5670 THIS_CU->is_debug_types, but nothing else.
5671
5672 We fill in THIS_CU->length.
5673
5674 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5675 linker) then DIE_READER_FUNC will not get called.
5676
5677 THIS_CU->cu is always freed when done.
5678 This is done in order to not leave THIS_CU->cu in a state where we have
5679 to care whether it refers to the "main" CU or the DWO CU. */
5680
5681 static void
5682 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5683 struct dwo_file *dwo_file,
5684 die_reader_func_ftype *die_reader_func,
5685 void *data)
5686 {
5687 struct objfile *objfile = dwarf2_per_objfile->objfile;
5688 struct dwarf2_section_info *section = this_cu->section;
5689 bfd *abfd = get_section_bfd_owner (section);
5690 struct dwarf2_section_info *abbrev_section;
5691 struct dwarf2_cu cu;
5692 const gdb_byte *begin_info_ptr, *info_ptr;
5693 struct die_reader_specs reader;
5694 struct cleanup *cleanups;
5695 struct die_info *comp_unit_die;
5696 int has_children;
5697
5698 if (dwarf_die_debug)
5699 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5700 this_cu->is_debug_types ? "type" : "comp",
5701 this_cu->offset.sect_off);
5702
5703 gdb_assert (this_cu->cu == NULL);
5704
5705 abbrev_section = (dwo_file != NULL
5706 ? &dwo_file->sections.abbrev
5707 : get_abbrev_section_for_cu (this_cu));
5708
5709 /* This is cheap if the section is already read in. */
5710 dwarf2_read_section (objfile, section);
5711
5712 init_one_comp_unit (&cu, this_cu);
5713
5714 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5715
5716 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5717 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5718 abbrev_section, info_ptr,
5719 this_cu->is_debug_types);
5720
5721 this_cu->length = get_cu_length (&cu.header);
5722
5723 /* Skip dummy compilation units. */
5724 if (info_ptr >= begin_info_ptr + this_cu->length
5725 || peek_abbrev_code (abfd, info_ptr) == 0)
5726 {
5727 do_cleanups (cleanups);
5728 return;
5729 }
5730
5731 dwarf2_read_abbrevs (&cu, abbrev_section);
5732 make_cleanup (dwarf2_free_abbrev_table, &cu);
5733
5734 init_cu_die_reader (&reader, &cu, section, dwo_file);
5735 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5736
5737 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5738
5739 do_cleanups (cleanups);
5740 }
5741
5742 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5743 does not lookup the specified DWO file.
5744 This cannot be used to read DWO files.
5745
5746 THIS_CU->cu is always freed when done.
5747 This is done in order to not leave THIS_CU->cu in a state where we have
5748 to care whether it refers to the "main" CU or the DWO CU.
5749 We can revisit this if the data shows there's a performance issue. */
5750
5751 static void
5752 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5753 die_reader_func_ftype *die_reader_func,
5754 void *data)
5755 {
5756 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5757 }
5758 \f
5759 /* Type Unit Groups.
5760
5761 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5762 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5763 so that all types coming from the same compilation (.o file) are grouped
5764 together. A future step could be to put the types in the same symtab as
5765 the CU the types ultimately came from. */
5766
5767 static hashval_t
5768 hash_type_unit_group (const void *item)
5769 {
5770 const struct type_unit_group *tu_group
5771 = (const struct type_unit_group *) item;
5772
5773 return hash_stmt_list_entry (&tu_group->hash);
5774 }
5775
5776 static int
5777 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5778 {
5779 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5780 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5781
5782 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5783 }
5784
5785 /* Allocate a hash table for type unit groups. */
5786
5787 static htab_t
5788 allocate_type_unit_groups_table (void)
5789 {
5790 return htab_create_alloc_ex (3,
5791 hash_type_unit_group,
5792 eq_type_unit_group,
5793 NULL,
5794 &dwarf2_per_objfile->objfile->objfile_obstack,
5795 hashtab_obstack_allocate,
5796 dummy_obstack_deallocate);
5797 }
5798
5799 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5800 partial symtabs. We combine several TUs per psymtab to not let the size
5801 of any one psymtab grow too big. */
5802 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5803 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5804
5805 /* Helper routine for get_type_unit_group.
5806 Create the type_unit_group object used to hold one or more TUs. */
5807
5808 static struct type_unit_group *
5809 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5810 {
5811 struct objfile *objfile = dwarf2_per_objfile->objfile;
5812 struct dwarf2_per_cu_data *per_cu;
5813 struct type_unit_group *tu_group;
5814
5815 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5816 struct type_unit_group);
5817 per_cu = &tu_group->per_cu;
5818 per_cu->objfile = objfile;
5819
5820 if (dwarf2_per_objfile->using_index)
5821 {
5822 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5823 struct dwarf2_per_cu_quick_data);
5824 }
5825 else
5826 {
5827 unsigned int line_offset = line_offset_struct.sect_off;
5828 struct partial_symtab *pst;
5829 char *name;
5830
5831 /* Give the symtab a useful name for debug purposes. */
5832 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5833 name = xstrprintf ("<type_units_%d>",
5834 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5835 else
5836 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5837
5838 pst = create_partial_symtab (per_cu, name);
5839 pst->anonymous = 1;
5840
5841 xfree (name);
5842 }
5843
5844 tu_group->hash.dwo_unit = cu->dwo_unit;
5845 tu_group->hash.line_offset = line_offset_struct;
5846
5847 return tu_group;
5848 }
5849
5850 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5851 STMT_LIST is a DW_AT_stmt_list attribute. */
5852
5853 static struct type_unit_group *
5854 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5855 {
5856 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5857 struct type_unit_group *tu_group;
5858 void **slot;
5859 unsigned int line_offset;
5860 struct type_unit_group type_unit_group_for_lookup;
5861
5862 if (dwarf2_per_objfile->type_unit_groups == NULL)
5863 {
5864 dwarf2_per_objfile->type_unit_groups =
5865 allocate_type_unit_groups_table ();
5866 }
5867
5868 /* Do we need to create a new group, or can we use an existing one? */
5869
5870 if (stmt_list)
5871 {
5872 line_offset = DW_UNSND (stmt_list);
5873 ++tu_stats->nr_symtab_sharers;
5874 }
5875 else
5876 {
5877 /* Ugh, no stmt_list. Rare, but we have to handle it.
5878 We can do various things here like create one group per TU or
5879 spread them over multiple groups to split up the expansion work.
5880 To avoid worst case scenarios (too many groups or too large groups)
5881 we, umm, group them in bunches. */
5882 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5883 | (tu_stats->nr_stmt_less_type_units
5884 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5885 ++tu_stats->nr_stmt_less_type_units;
5886 }
5887
5888 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5889 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5890 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5891 &type_unit_group_for_lookup, INSERT);
5892 if (*slot != NULL)
5893 {
5894 tu_group = (struct type_unit_group *) *slot;
5895 gdb_assert (tu_group != NULL);
5896 }
5897 else
5898 {
5899 sect_offset line_offset_struct;
5900
5901 line_offset_struct.sect_off = line_offset;
5902 tu_group = create_type_unit_group (cu, line_offset_struct);
5903 *slot = tu_group;
5904 ++tu_stats->nr_symtabs;
5905 }
5906
5907 return tu_group;
5908 }
5909 \f
5910 /* Partial symbol tables. */
5911
5912 /* Create a psymtab named NAME and assign it to PER_CU.
5913
5914 The caller must fill in the following details:
5915 dirname, textlow, texthigh. */
5916
5917 static struct partial_symtab *
5918 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5919 {
5920 struct objfile *objfile = per_cu->objfile;
5921 struct partial_symtab *pst;
5922
5923 pst = start_psymtab_common (objfile, name, 0,
5924 objfile->global_psymbols.next,
5925 objfile->static_psymbols.next);
5926
5927 pst->psymtabs_addrmap_supported = 1;
5928
5929 /* This is the glue that links PST into GDB's symbol API. */
5930 pst->read_symtab_private = per_cu;
5931 pst->read_symtab = dwarf2_read_symtab;
5932 per_cu->v.psymtab = pst;
5933
5934 return pst;
5935 }
5936
5937 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5938 type. */
5939
5940 struct process_psymtab_comp_unit_data
5941 {
5942 /* True if we are reading a DW_TAG_partial_unit. */
5943
5944 int want_partial_unit;
5945
5946 /* The "pretend" language that is used if the CU doesn't declare a
5947 language. */
5948
5949 enum language pretend_language;
5950 };
5951
5952 /* die_reader_func for process_psymtab_comp_unit. */
5953
5954 static void
5955 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5956 const gdb_byte *info_ptr,
5957 struct die_info *comp_unit_die,
5958 int has_children,
5959 void *data)
5960 {
5961 struct dwarf2_cu *cu = reader->cu;
5962 struct objfile *objfile = cu->objfile;
5963 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5964 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5965 CORE_ADDR baseaddr;
5966 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5967 struct partial_symtab *pst;
5968 enum pc_bounds_kind cu_bounds_kind;
5969 const char *filename;
5970 struct process_psymtab_comp_unit_data *info
5971 = (struct process_psymtab_comp_unit_data *) data;
5972
5973 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5974 return;
5975
5976 gdb_assert (! per_cu->is_debug_types);
5977
5978 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5979
5980 cu->list_in_scope = &file_symbols;
5981
5982 /* Allocate a new partial symbol table structure. */
5983 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5984 if (filename == NULL)
5985 filename = "";
5986
5987 pst = create_partial_symtab (per_cu, filename);
5988
5989 /* This must be done before calling dwarf2_build_include_psymtabs. */
5990 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5991
5992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5993
5994 dwarf2_find_base_address (comp_unit_die, cu);
5995
5996 /* Possibly set the default values of LOWPC and HIGHPC from
5997 `DW_AT_ranges'. */
5998 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5999 &best_highpc, cu, pst);
6000 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
6001 /* Store the contiguous range if it is not empty; it can be empty for
6002 CUs with no code. */
6003 addrmap_set_empty (objfile->psymtabs_addrmap,
6004 gdbarch_adjust_dwarf2_addr (gdbarch,
6005 best_lowpc + baseaddr),
6006 gdbarch_adjust_dwarf2_addr (gdbarch,
6007 best_highpc + baseaddr) - 1,
6008 pst);
6009
6010 /* Check if comp unit has_children.
6011 If so, read the rest of the partial symbols from this comp unit.
6012 If not, there's no more debug_info for this comp unit. */
6013 if (has_children)
6014 {
6015 struct partial_die_info *first_die;
6016 CORE_ADDR lowpc, highpc;
6017
6018 lowpc = ((CORE_ADDR) -1);
6019 highpc = ((CORE_ADDR) 0);
6020
6021 first_die = load_partial_dies (reader, info_ptr, 1);
6022
6023 scan_partial_symbols (first_die, &lowpc, &highpc,
6024 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6025
6026 /* If we didn't find a lowpc, set it to highpc to avoid
6027 complaints from `maint check'. */
6028 if (lowpc == ((CORE_ADDR) -1))
6029 lowpc = highpc;
6030
6031 /* If the compilation unit didn't have an explicit address range,
6032 then use the information extracted from its child dies. */
6033 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6034 {
6035 best_lowpc = lowpc;
6036 best_highpc = highpc;
6037 }
6038 }
6039 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6040 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6041
6042 end_psymtab_common (objfile, pst);
6043
6044 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6045 {
6046 int i;
6047 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6048 struct dwarf2_per_cu_data *iter;
6049
6050 /* Fill in 'dependencies' here; we fill in 'users' in a
6051 post-pass. */
6052 pst->number_of_dependencies = len;
6053 pst->dependencies =
6054 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6055 for (i = 0;
6056 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6057 i, iter);
6058 ++i)
6059 pst->dependencies[i] = iter->v.psymtab;
6060
6061 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6062 }
6063
6064 /* Get the list of files included in the current compilation unit,
6065 and build a psymtab for each of them. */
6066 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6067
6068 if (dwarf_read_debug)
6069 {
6070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6071
6072 fprintf_unfiltered (gdb_stdlog,
6073 "Psymtab for %s unit @0x%x: %s - %s"
6074 ", %d global, %d static syms\n",
6075 per_cu->is_debug_types ? "type" : "comp",
6076 per_cu->offset.sect_off,
6077 paddress (gdbarch, pst->textlow),
6078 paddress (gdbarch, pst->texthigh),
6079 pst->n_global_syms, pst->n_static_syms);
6080 }
6081 }
6082
6083 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6084 Process compilation unit THIS_CU for a psymtab. */
6085
6086 static void
6087 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6088 int want_partial_unit,
6089 enum language pretend_language)
6090 {
6091 struct process_psymtab_comp_unit_data info;
6092
6093 /* If this compilation unit was already read in, free the
6094 cached copy in order to read it in again. This is
6095 necessary because we skipped some symbols when we first
6096 read in the compilation unit (see load_partial_dies).
6097 This problem could be avoided, but the benefit is unclear. */
6098 if (this_cu->cu != NULL)
6099 free_one_cached_comp_unit (this_cu);
6100
6101 gdb_assert (! this_cu->is_debug_types);
6102 info.want_partial_unit = want_partial_unit;
6103 info.pretend_language = pretend_language;
6104 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6105 process_psymtab_comp_unit_reader,
6106 &info);
6107
6108 /* Age out any secondary CUs. */
6109 age_cached_comp_units ();
6110 }
6111
6112 /* Reader function for build_type_psymtabs. */
6113
6114 static void
6115 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6116 const gdb_byte *info_ptr,
6117 struct die_info *type_unit_die,
6118 int has_children,
6119 void *data)
6120 {
6121 struct objfile *objfile = dwarf2_per_objfile->objfile;
6122 struct dwarf2_cu *cu = reader->cu;
6123 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6124 struct signatured_type *sig_type;
6125 struct type_unit_group *tu_group;
6126 struct attribute *attr;
6127 struct partial_die_info *first_die;
6128 CORE_ADDR lowpc, highpc;
6129 struct partial_symtab *pst;
6130
6131 gdb_assert (data == NULL);
6132 gdb_assert (per_cu->is_debug_types);
6133 sig_type = (struct signatured_type *) per_cu;
6134
6135 if (! has_children)
6136 return;
6137
6138 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6139 tu_group = get_type_unit_group (cu, attr);
6140
6141 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6142
6143 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6144 cu->list_in_scope = &file_symbols;
6145 pst = create_partial_symtab (per_cu, "");
6146 pst->anonymous = 1;
6147
6148 first_die = load_partial_dies (reader, info_ptr, 1);
6149
6150 lowpc = (CORE_ADDR) -1;
6151 highpc = (CORE_ADDR) 0;
6152 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6153
6154 end_psymtab_common (objfile, pst);
6155 }
6156
6157 /* Struct used to sort TUs by their abbreviation table offset. */
6158
6159 struct tu_abbrev_offset
6160 {
6161 struct signatured_type *sig_type;
6162 sect_offset abbrev_offset;
6163 };
6164
6165 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6166
6167 static int
6168 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6169 {
6170 const struct tu_abbrev_offset * const *a
6171 = (const struct tu_abbrev_offset * const*) ap;
6172 const struct tu_abbrev_offset * const *b
6173 = (const struct tu_abbrev_offset * const*) bp;
6174 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6175 unsigned int boff = (*b)->abbrev_offset.sect_off;
6176
6177 return (aoff > boff) - (aoff < boff);
6178 }
6179
6180 /* Efficiently read all the type units.
6181 This does the bulk of the work for build_type_psymtabs.
6182
6183 The efficiency is because we sort TUs by the abbrev table they use and
6184 only read each abbrev table once. In one program there are 200K TUs
6185 sharing 8K abbrev tables.
6186
6187 The main purpose of this function is to support building the
6188 dwarf2_per_objfile->type_unit_groups table.
6189 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6190 can collapse the search space by grouping them by stmt_list.
6191 The savings can be significant, in the same program from above the 200K TUs
6192 share 8K stmt_list tables.
6193
6194 FUNC is expected to call get_type_unit_group, which will create the
6195 struct type_unit_group if necessary and add it to
6196 dwarf2_per_objfile->type_unit_groups. */
6197
6198 static void
6199 build_type_psymtabs_1 (void)
6200 {
6201 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6202 struct cleanup *cleanups;
6203 struct abbrev_table *abbrev_table;
6204 sect_offset abbrev_offset;
6205 struct tu_abbrev_offset *sorted_by_abbrev;
6206 int i;
6207
6208 /* It's up to the caller to not call us multiple times. */
6209 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6210
6211 if (dwarf2_per_objfile->n_type_units == 0)
6212 return;
6213
6214 /* TUs typically share abbrev tables, and there can be way more TUs than
6215 abbrev tables. Sort by abbrev table to reduce the number of times we
6216 read each abbrev table in.
6217 Alternatives are to punt or to maintain a cache of abbrev tables.
6218 This is simpler and efficient enough for now.
6219
6220 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6221 symtab to use). Typically TUs with the same abbrev offset have the same
6222 stmt_list value too so in practice this should work well.
6223
6224 The basic algorithm here is:
6225
6226 sort TUs by abbrev table
6227 for each TU with same abbrev table:
6228 read abbrev table if first user
6229 read TU top level DIE
6230 [IWBN if DWO skeletons had DW_AT_stmt_list]
6231 call FUNC */
6232
6233 if (dwarf_read_debug)
6234 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6235
6236 /* Sort in a separate table to maintain the order of all_type_units
6237 for .gdb_index: TU indices directly index all_type_units. */
6238 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6239 dwarf2_per_objfile->n_type_units);
6240 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6241 {
6242 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6243
6244 sorted_by_abbrev[i].sig_type = sig_type;
6245 sorted_by_abbrev[i].abbrev_offset =
6246 read_abbrev_offset (sig_type->per_cu.section,
6247 sig_type->per_cu.offset);
6248 }
6249 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6250 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6251 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6252
6253 abbrev_offset.sect_off = ~(unsigned) 0;
6254 abbrev_table = NULL;
6255 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6256
6257 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6258 {
6259 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6260
6261 /* Switch to the next abbrev table if necessary. */
6262 if (abbrev_table == NULL
6263 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6264 {
6265 if (abbrev_table != NULL)
6266 {
6267 abbrev_table_free (abbrev_table);
6268 /* Reset to NULL in case abbrev_table_read_table throws
6269 an error: abbrev_table_free_cleanup will get called. */
6270 abbrev_table = NULL;
6271 }
6272 abbrev_offset = tu->abbrev_offset;
6273 abbrev_table =
6274 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6275 abbrev_offset);
6276 ++tu_stats->nr_uniq_abbrev_tables;
6277 }
6278
6279 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6280 build_type_psymtabs_reader, NULL);
6281 }
6282
6283 do_cleanups (cleanups);
6284 }
6285
6286 /* Print collected type unit statistics. */
6287
6288 static void
6289 print_tu_stats (void)
6290 {
6291 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6292
6293 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6294 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6295 dwarf2_per_objfile->n_type_units);
6296 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6297 tu_stats->nr_uniq_abbrev_tables);
6298 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6299 tu_stats->nr_symtabs);
6300 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6301 tu_stats->nr_symtab_sharers);
6302 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6303 tu_stats->nr_stmt_less_type_units);
6304 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6305 tu_stats->nr_all_type_units_reallocs);
6306 }
6307
6308 /* Traversal function for build_type_psymtabs. */
6309
6310 static int
6311 build_type_psymtab_dependencies (void **slot, void *info)
6312 {
6313 struct objfile *objfile = dwarf2_per_objfile->objfile;
6314 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6315 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6316 struct partial_symtab *pst = per_cu->v.psymtab;
6317 int len = VEC_length (sig_type_ptr, tu_group->tus);
6318 struct signatured_type *iter;
6319 int i;
6320
6321 gdb_assert (len > 0);
6322 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6323
6324 pst->number_of_dependencies = len;
6325 pst->dependencies =
6326 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6327 for (i = 0;
6328 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6329 ++i)
6330 {
6331 gdb_assert (iter->per_cu.is_debug_types);
6332 pst->dependencies[i] = iter->per_cu.v.psymtab;
6333 iter->type_unit_group = tu_group;
6334 }
6335
6336 VEC_free (sig_type_ptr, tu_group->tus);
6337
6338 return 1;
6339 }
6340
6341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6342 Build partial symbol tables for the .debug_types comp-units. */
6343
6344 static void
6345 build_type_psymtabs (struct objfile *objfile)
6346 {
6347 if (! create_all_type_units (objfile))
6348 return;
6349
6350 build_type_psymtabs_1 ();
6351 }
6352
6353 /* Traversal function for process_skeletonless_type_unit.
6354 Read a TU in a DWO file and build partial symbols for it. */
6355
6356 static int
6357 process_skeletonless_type_unit (void **slot, void *info)
6358 {
6359 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6360 struct objfile *objfile = (struct objfile *) info;
6361 struct signatured_type find_entry, *entry;
6362
6363 /* If this TU doesn't exist in the global table, add it and read it in. */
6364
6365 if (dwarf2_per_objfile->signatured_types == NULL)
6366 {
6367 dwarf2_per_objfile->signatured_types
6368 = allocate_signatured_type_table (objfile);
6369 }
6370
6371 find_entry.signature = dwo_unit->signature;
6372 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6373 INSERT);
6374 /* If we've already seen this type there's nothing to do. What's happening
6375 is we're doing our own version of comdat-folding here. */
6376 if (*slot != NULL)
6377 return 1;
6378
6379 /* This does the job that create_all_type_units would have done for
6380 this TU. */
6381 entry = add_type_unit (dwo_unit->signature, slot);
6382 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6383 *slot = entry;
6384
6385 /* This does the job that build_type_psymtabs_1 would have done. */
6386 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6387 build_type_psymtabs_reader, NULL);
6388
6389 return 1;
6390 }
6391
6392 /* Traversal function for process_skeletonless_type_units. */
6393
6394 static int
6395 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6396 {
6397 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6398
6399 if (dwo_file->tus != NULL)
6400 {
6401 htab_traverse_noresize (dwo_file->tus,
6402 process_skeletonless_type_unit, info);
6403 }
6404
6405 return 1;
6406 }
6407
6408 /* Scan all TUs of DWO files, verifying we've processed them.
6409 This is needed in case a TU was emitted without its skeleton.
6410 Note: This can't be done until we know what all the DWO files are. */
6411
6412 static void
6413 process_skeletonless_type_units (struct objfile *objfile)
6414 {
6415 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6416 if (get_dwp_file () == NULL
6417 && dwarf2_per_objfile->dwo_files != NULL)
6418 {
6419 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6420 process_dwo_file_for_skeletonless_type_units,
6421 objfile);
6422 }
6423 }
6424
6425 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6426
6427 static void
6428 psymtabs_addrmap_cleanup (void *o)
6429 {
6430 struct objfile *objfile = (struct objfile *) o;
6431
6432 objfile->psymtabs_addrmap = NULL;
6433 }
6434
6435 /* Compute the 'user' field for each psymtab in OBJFILE. */
6436
6437 static void
6438 set_partial_user (struct objfile *objfile)
6439 {
6440 int i;
6441
6442 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6443 {
6444 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6445 struct partial_symtab *pst = per_cu->v.psymtab;
6446 int j;
6447
6448 if (pst == NULL)
6449 continue;
6450
6451 for (j = 0; j < pst->number_of_dependencies; ++j)
6452 {
6453 /* Set the 'user' field only if it is not already set. */
6454 if (pst->dependencies[j]->user == NULL)
6455 pst->dependencies[j]->user = pst;
6456 }
6457 }
6458 }
6459
6460 /* Build the partial symbol table by doing a quick pass through the
6461 .debug_info and .debug_abbrev sections. */
6462
6463 static void
6464 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6465 {
6466 struct cleanup *back_to, *addrmap_cleanup;
6467 struct obstack temp_obstack;
6468 int i;
6469
6470 if (dwarf_read_debug)
6471 {
6472 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6473 objfile_name (objfile));
6474 }
6475
6476 dwarf2_per_objfile->reading_partial_symbols = 1;
6477
6478 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6479
6480 /* Any cached compilation units will be linked by the per-objfile
6481 read_in_chain. Make sure to free them when we're done. */
6482 back_to = make_cleanup (free_cached_comp_units, NULL);
6483
6484 build_type_psymtabs (objfile);
6485
6486 create_all_comp_units (objfile);
6487
6488 /* Create a temporary address map on a temporary obstack. We later
6489 copy this to the final obstack. */
6490 obstack_init (&temp_obstack);
6491 make_cleanup_obstack_free (&temp_obstack);
6492 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6493 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6494
6495 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6496 {
6497 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6498
6499 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6500 }
6501
6502 /* This has to wait until we read the CUs, we need the list of DWOs. */
6503 process_skeletonless_type_units (objfile);
6504
6505 /* Now that all TUs have been processed we can fill in the dependencies. */
6506 if (dwarf2_per_objfile->type_unit_groups != NULL)
6507 {
6508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6509 build_type_psymtab_dependencies, NULL);
6510 }
6511
6512 if (dwarf_read_debug)
6513 print_tu_stats ();
6514
6515 set_partial_user (objfile);
6516
6517 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6518 &objfile->objfile_obstack);
6519 discard_cleanups (addrmap_cleanup);
6520
6521 do_cleanups (back_to);
6522
6523 if (dwarf_read_debug)
6524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6525 objfile_name (objfile));
6526 }
6527
6528 /* die_reader_func for load_partial_comp_unit. */
6529
6530 static void
6531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6532 const gdb_byte *info_ptr,
6533 struct die_info *comp_unit_die,
6534 int has_children,
6535 void *data)
6536 {
6537 struct dwarf2_cu *cu = reader->cu;
6538
6539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6540
6541 /* Check if comp unit has_children.
6542 If so, read the rest of the partial symbols from this comp unit.
6543 If not, there's no more debug_info for this comp unit. */
6544 if (has_children)
6545 load_partial_dies (reader, info_ptr, 0);
6546 }
6547
6548 /* Load the partial DIEs for a secondary CU into memory.
6549 This is also used when rereading a primary CU with load_all_dies. */
6550
6551 static void
6552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6553 {
6554 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6555 load_partial_comp_unit_reader, NULL);
6556 }
6557
6558 static void
6559 read_comp_units_from_section (struct objfile *objfile,
6560 struct dwarf2_section_info *section,
6561 unsigned int is_dwz,
6562 int *n_allocated,
6563 int *n_comp_units,
6564 struct dwarf2_per_cu_data ***all_comp_units)
6565 {
6566 const gdb_byte *info_ptr;
6567 bfd *abfd = get_section_bfd_owner (section);
6568
6569 if (dwarf_read_debug)
6570 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6571 get_section_name (section),
6572 get_section_file_name (section));
6573
6574 dwarf2_read_section (objfile, section);
6575
6576 info_ptr = section->buffer;
6577
6578 while (info_ptr < section->buffer + section->size)
6579 {
6580 unsigned int length, initial_length_size;
6581 struct dwarf2_per_cu_data *this_cu;
6582 sect_offset offset;
6583
6584 offset.sect_off = info_ptr - section->buffer;
6585
6586 /* Read just enough information to find out where the next
6587 compilation unit is. */
6588 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6589
6590 /* Save the compilation unit for later lookup. */
6591 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6592 memset (this_cu, 0, sizeof (*this_cu));
6593 this_cu->offset = offset;
6594 this_cu->length = length + initial_length_size;
6595 this_cu->is_dwz = is_dwz;
6596 this_cu->objfile = objfile;
6597 this_cu->section = section;
6598
6599 if (*n_comp_units == *n_allocated)
6600 {
6601 *n_allocated *= 2;
6602 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6603 *all_comp_units, *n_allocated);
6604 }
6605 (*all_comp_units)[*n_comp_units] = this_cu;
6606 ++*n_comp_units;
6607
6608 info_ptr = info_ptr + this_cu->length;
6609 }
6610 }
6611
6612 /* Create a list of all compilation units in OBJFILE.
6613 This is only done for -readnow and building partial symtabs. */
6614
6615 static void
6616 create_all_comp_units (struct objfile *objfile)
6617 {
6618 int n_allocated;
6619 int n_comp_units;
6620 struct dwarf2_per_cu_data **all_comp_units;
6621 struct dwz_file *dwz;
6622
6623 n_comp_units = 0;
6624 n_allocated = 10;
6625 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6626
6627 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6628 &n_allocated, &n_comp_units, &all_comp_units);
6629
6630 dwz = dwarf2_get_dwz_file ();
6631 if (dwz != NULL)
6632 read_comp_units_from_section (objfile, &dwz->info, 1,
6633 &n_allocated, &n_comp_units,
6634 &all_comp_units);
6635
6636 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6637 struct dwarf2_per_cu_data *,
6638 n_comp_units);
6639 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6640 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6641 xfree (all_comp_units);
6642 dwarf2_per_objfile->n_comp_units = n_comp_units;
6643 }
6644
6645 /* Process all loaded DIEs for compilation unit CU, starting at
6646 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6647 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6648 DW_AT_ranges). See the comments of add_partial_subprogram on how
6649 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6650
6651 static void
6652 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6653 CORE_ADDR *highpc, int set_addrmap,
6654 struct dwarf2_cu *cu)
6655 {
6656 struct partial_die_info *pdi;
6657
6658 /* Now, march along the PDI's, descending into ones which have
6659 interesting children but skipping the children of the other ones,
6660 until we reach the end of the compilation unit. */
6661
6662 pdi = first_die;
6663
6664 while (pdi != NULL)
6665 {
6666 fixup_partial_die (pdi, cu);
6667
6668 /* Anonymous namespaces or modules have no name but have interesting
6669 children, so we need to look at them. Ditto for anonymous
6670 enums. */
6671
6672 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6673 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6674 || pdi->tag == DW_TAG_imported_unit)
6675 {
6676 switch (pdi->tag)
6677 {
6678 case DW_TAG_subprogram:
6679 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6680 break;
6681 case DW_TAG_constant:
6682 case DW_TAG_variable:
6683 case DW_TAG_typedef:
6684 case DW_TAG_union_type:
6685 if (!pdi->is_declaration)
6686 {
6687 add_partial_symbol (pdi, cu);
6688 }
6689 break;
6690 case DW_TAG_class_type:
6691 case DW_TAG_interface_type:
6692 case DW_TAG_structure_type:
6693 if (!pdi->is_declaration)
6694 {
6695 add_partial_symbol (pdi, cu);
6696 }
6697 if (cu->language == language_rust && pdi->has_children)
6698 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6699 set_addrmap, cu);
6700 break;
6701 case DW_TAG_enumeration_type:
6702 if (!pdi->is_declaration)
6703 add_partial_enumeration (pdi, cu);
6704 break;
6705 case DW_TAG_base_type:
6706 case DW_TAG_subrange_type:
6707 /* File scope base type definitions are added to the partial
6708 symbol table. */
6709 add_partial_symbol (pdi, cu);
6710 break;
6711 case DW_TAG_namespace:
6712 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6713 break;
6714 case DW_TAG_module:
6715 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6716 break;
6717 case DW_TAG_imported_unit:
6718 {
6719 struct dwarf2_per_cu_data *per_cu;
6720
6721 /* For now we don't handle imported units in type units. */
6722 if (cu->per_cu->is_debug_types)
6723 {
6724 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6725 " supported in type units [in module %s]"),
6726 objfile_name (cu->objfile));
6727 }
6728
6729 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6730 pdi->is_dwz,
6731 cu->objfile);
6732
6733 /* Go read the partial unit, if needed. */
6734 if (per_cu->v.psymtab == NULL)
6735 process_psymtab_comp_unit (per_cu, 1, cu->language);
6736
6737 VEC_safe_push (dwarf2_per_cu_ptr,
6738 cu->per_cu->imported_symtabs, per_cu);
6739 }
6740 break;
6741 case DW_TAG_imported_declaration:
6742 add_partial_symbol (pdi, cu);
6743 break;
6744 default:
6745 break;
6746 }
6747 }
6748
6749 /* If the die has a sibling, skip to the sibling. */
6750
6751 pdi = pdi->die_sibling;
6752 }
6753 }
6754
6755 /* Functions used to compute the fully scoped name of a partial DIE.
6756
6757 Normally, this is simple. For C++, the parent DIE's fully scoped
6758 name is concatenated with "::" and the partial DIE's name.
6759 Enumerators are an exception; they use the scope of their parent
6760 enumeration type, i.e. the name of the enumeration type is not
6761 prepended to the enumerator.
6762
6763 There are two complexities. One is DW_AT_specification; in this
6764 case "parent" means the parent of the target of the specification,
6765 instead of the direct parent of the DIE. The other is compilers
6766 which do not emit DW_TAG_namespace; in this case we try to guess
6767 the fully qualified name of structure types from their members'
6768 linkage names. This must be done using the DIE's children rather
6769 than the children of any DW_AT_specification target. We only need
6770 to do this for structures at the top level, i.e. if the target of
6771 any DW_AT_specification (if any; otherwise the DIE itself) does not
6772 have a parent. */
6773
6774 /* Compute the scope prefix associated with PDI's parent, in
6775 compilation unit CU. The result will be allocated on CU's
6776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6777 field. NULL is returned if no prefix is necessary. */
6778 static const char *
6779 partial_die_parent_scope (struct partial_die_info *pdi,
6780 struct dwarf2_cu *cu)
6781 {
6782 const char *grandparent_scope;
6783 struct partial_die_info *parent, *real_pdi;
6784
6785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6786 then this means the parent of the specification DIE. */
6787
6788 real_pdi = pdi;
6789 while (real_pdi->has_specification)
6790 real_pdi = find_partial_die (real_pdi->spec_offset,
6791 real_pdi->spec_is_dwz, cu);
6792
6793 parent = real_pdi->die_parent;
6794 if (parent == NULL)
6795 return NULL;
6796
6797 if (parent->scope_set)
6798 return parent->scope;
6799
6800 fixup_partial_die (parent, cu);
6801
6802 grandparent_scope = partial_die_parent_scope (parent, cu);
6803
6804 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6805 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6806 Work around this problem here. */
6807 if (cu->language == language_cplus
6808 && parent->tag == DW_TAG_namespace
6809 && strcmp (parent->name, "::") == 0
6810 && grandparent_scope == NULL)
6811 {
6812 parent->scope = NULL;
6813 parent->scope_set = 1;
6814 return NULL;
6815 }
6816
6817 if (pdi->tag == DW_TAG_enumerator)
6818 /* Enumerators should not get the name of the enumeration as a prefix. */
6819 parent->scope = grandparent_scope;
6820 else if (parent->tag == DW_TAG_namespace
6821 || parent->tag == DW_TAG_module
6822 || parent->tag == DW_TAG_structure_type
6823 || parent->tag == DW_TAG_class_type
6824 || parent->tag == DW_TAG_interface_type
6825 || parent->tag == DW_TAG_union_type
6826 || parent->tag == DW_TAG_enumeration_type)
6827 {
6828 if (grandparent_scope == NULL)
6829 parent->scope = parent->name;
6830 else
6831 parent->scope = typename_concat (&cu->comp_unit_obstack,
6832 grandparent_scope,
6833 parent->name, 0, cu);
6834 }
6835 else
6836 {
6837 /* FIXME drow/2004-04-01: What should we be doing with
6838 function-local names? For partial symbols, we should probably be
6839 ignoring them. */
6840 complaint (&symfile_complaints,
6841 _("unhandled containing DIE tag %d for DIE at %d"),
6842 parent->tag, pdi->offset.sect_off);
6843 parent->scope = grandparent_scope;
6844 }
6845
6846 parent->scope_set = 1;
6847 return parent->scope;
6848 }
6849
6850 /* Return the fully scoped name associated with PDI, from compilation unit
6851 CU. The result will be allocated with malloc. */
6852
6853 static char *
6854 partial_die_full_name (struct partial_die_info *pdi,
6855 struct dwarf2_cu *cu)
6856 {
6857 const char *parent_scope;
6858
6859 /* If this is a template instantiation, we can not work out the
6860 template arguments from partial DIEs. So, unfortunately, we have
6861 to go through the full DIEs. At least any work we do building
6862 types here will be reused if full symbols are loaded later. */
6863 if (pdi->has_template_arguments)
6864 {
6865 fixup_partial_die (pdi, cu);
6866
6867 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6868 {
6869 struct die_info *die;
6870 struct attribute attr;
6871 struct dwarf2_cu *ref_cu = cu;
6872
6873 /* DW_FORM_ref_addr is using section offset. */
6874 attr.name = (enum dwarf_attribute) 0;
6875 attr.form = DW_FORM_ref_addr;
6876 attr.u.unsnd = pdi->offset.sect_off;
6877 die = follow_die_ref (NULL, &attr, &ref_cu);
6878
6879 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6880 }
6881 }
6882
6883 parent_scope = partial_die_parent_scope (pdi, cu);
6884 if (parent_scope == NULL)
6885 return NULL;
6886 else
6887 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6888 }
6889
6890 static void
6891 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6892 {
6893 struct objfile *objfile = cu->objfile;
6894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6895 CORE_ADDR addr = 0;
6896 const char *actual_name = NULL;
6897 CORE_ADDR baseaddr;
6898 char *built_actual_name;
6899
6900 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6901
6902 built_actual_name = partial_die_full_name (pdi, cu);
6903 if (built_actual_name != NULL)
6904 actual_name = built_actual_name;
6905
6906 if (actual_name == NULL)
6907 actual_name = pdi->name;
6908
6909 switch (pdi->tag)
6910 {
6911 case DW_TAG_subprogram:
6912 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6913 if (pdi->is_external || cu->language == language_ada)
6914 {
6915 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6916 of the global scope. But in Ada, we want to be able to access
6917 nested procedures globally. So all Ada subprograms are stored
6918 in the global scope. */
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 VAR_DOMAIN, LOC_BLOCK,
6922 &objfile->global_psymbols,
6923 addr, cu->language, objfile);
6924 }
6925 else
6926 {
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 VAR_DOMAIN, LOC_BLOCK,
6930 &objfile->static_psymbols,
6931 addr, cu->language, objfile);
6932 }
6933 break;
6934 case DW_TAG_constant:
6935 {
6936 struct psymbol_allocation_list *list;
6937
6938 if (pdi->is_external)
6939 list = &objfile->global_psymbols;
6940 else
6941 list = &objfile->static_psymbols;
6942 add_psymbol_to_list (actual_name, strlen (actual_name),
6943 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6944 list, 0, cu->language, objfile);
6945 }
6946 break;
6947 case DW_TAG_variable:
6948 if (pdi->d.locdesc)
6949 addr = decode_locdesc (pdi->d.locdesc, cu);
6950
6951 if (pdi->d.locdesc
6952 && addr == 0
6953 && !dwarf2_per_objfile->has_section_at_zero)
6954 {
6955 /* A global or static variable may also have been stripped
6956 out by the linker if unused, in which case its address
6957 will be nullified; do not add such variables into partial
6958 symbol table then. */
6959 }
6960 else if (pdi->is_external)
6961 {
6962 /* Global Variable.
6963 Don't enter into the minimal symbol tables as there is
6964 a minimal symbol table entry from the ELF symbols already.
6965 Enter into partial symbol table if it has a location
6966 descriptor or a type.
6967 If the location descriptor is missing, new_symbol will create
6968 a LOC_UNRESOLVED symbol, the address of the variable will then
6969 be determined from the minimal symbol table whenever the variable
6970 is referenced.
6971 The address for the partial symbol table entry is not
6972 used by GDB, but it comes in handy for debugging partial symbol
6973 table building. */
6974
6975 if (pdi->d.locdesc || pdi->has_type)
6976 add_psymbol_to_list (actual_name, strlen (actual_name),
6977 built_actual_name != NULL,
6978 VAR_DOMAIN, LOC_STATIC,
6979 &objfile->global_psymbols,
6980 addr + baseaddr,
6981 cu->language, objfile);
6982 }
6983 else
6984 {
6985 int has_loc = pdi->d.locdesc != NULL;
6986
6987 /* Static Variable. Skip symbols whose value we cannot know (those
6988 without location descriptors or constant values). */
6989 if (!has_loc && !pdi->has_const_value)
6990 {
6991 xfree (built_actual_name);
6992 return;
6993 }
6994
6995 add_psymbol_to_list (actual_name, strlen (actual_name),
6996 built_actual_name != NULL,
6997 VAR_DOMAIN, LOC_STATIC,
6998 &objfile->static_psymbols,
6999 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
7000 cu->language, objfile);
7001 }
7002 break;
7003 case DW_TAG_typedef:
7004 case DW_TAG_base_type:
7005 case DW_TAG_subrange_type:
7006 add_psymbol_to_list (actual_name, strlen (actual_name),
7007 built_actual_name != NULL,
7008 VAR_DOMAIN, LOC_TYPEDEF,
7009 &objfile->static_psymbols,
7010 0, cu->language, objfile);
7011 break;
7012 case DW_TAG_imported_declaration:
7013 case DW_TAG_namespace:
7014 add_psymbol_to_list (actual_name, strlen (actual_name),
7015 built_actual_name != NULL,
7016 VAR_DOMAIN, LOC_TYPEDEF,
7017 &objfile->global_psymbols,
7018 0, cu->language, objfile);
7019 break;
7020 case DW_TAG_module:
7021 add_psymbol_to_list (actual_name, strlen (actual_name),
7022 built_actual_name != NULL,
7023 MODULE_DOMAIN, LOC_TYPEDEF,
7024 &objfile->global_psymbols,
7025 0, cu->language, objfile);
7026 break;
7027 case DW_TAG_class_type:
7028 case DW_TAG_interface_type:
7029 case DW_TAG_structure_type:
7030 case DW_TAG_union_type:
7031 case DW_TAG_enumeration_type:
7032 /* Skip external references. The DWARF standard says in the section
7033 about "Structure, Union, and Class Type Entries": "An incomplete
7034 structure, union or class type is represented by a structure,
7035 union or class entry that does not have a byte size attribute
7036 and that has a DW_AT_declaration attribute." */
7037 if (!pdi->has_byte_size && pdi->is_declaration)
7038 {
7039 xfree (built_actual_name);
7040 return;
7041 }
7042
7043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7044 static vs. global. */
7045 add_psymbol_to_list (actual_name, strlen (actual_name),
7046 built_actual_name != NULL,
7047 STRUCT_DOMAIN, LOC_TYPEDEF,
7048 cu->language == language_cplus
7049 ? &objfile->global_psymbols
7050 : &objfile->static_psymbols,
7051 0, cu->language, objfile);
7052
7053 break;
7054 case DW_TAG_enumerator:
7055 add_psymbol_to_list (actual_name, strlen (actual_name),
7056 built_actual_name != NULL,
7057 VAR_DOMAIN, LOC_CONST,
7058 cu->language == language_cplus
7059 ? &objfile->global_psymbols
7060 : &objfile->static_psymbols,
7061 0, cu->language, objfile);
7062 break;
7063 default:
7064 break;
7065 }
7066
7067 xfree (built_actual_name);
7068 }
7069
7070 /* Read a partial die corresponding to a namespace; also, add a symbol
7071 corresponding to that namespace to the symbol table. NAMESPACE is
7072 the name of the enclosing namespace. */
7073
7074 static void
7075 add_partial_namespace (struct partial_die_info *pdi,
7076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7077 int set_addrmap, struct dwarf2_cu *cu)
7078 {
7079 /* Add a symbol for the namespace. */
7080
7081 add_partial_symbol (pdi, cu);
7082
7083 /* Now scan partial symbols in that namespace. */
7084
7085 if (pdi->has_children)
7086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7087 }
7088
7089 /* Read a partial die corresponding to a Fortran module. */
7090
7091 static void
7092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7094 {
7095 /* Add a symbol for the namespace. */
7096
7097 add_partial_symbol (pdi, cu);
7098
7099 /* Now scan partial symbols in that module. */
7100
7101 if (pdi->has_children)
7102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7103 }
7104
7105 /* Read a partial die corresponding to a subprogram and create a partial
7106 symbol for that subprogram. When the CU language allows it, this
7107 routine also defines a partial symbol for each nested subprogram
7108 that this subprogram contains. If SET_ADDRMAP is true, record the
7109 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7110 and highest PC values found in PDI.
7111
7112 PDI may also be a lexical block, in which case we simply search
7113 recursively for subprograms defined inside that lexical block.
7114 Again, this is only performed when the CU language allows this
7115 type of definitions. */
7116
7117 static void
7118 add_partial_subprogram (struct partial_die_info *pdi,
7119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7120 int set_addrmap, struct dwarf2_cu *cu)
7121 {
7122 if (pdi->tag == DW_TAG_subprogram)
7123 {
7124 if (pdi->has_pc_info)
7125 {
7126 if (pdi->lowpc < *lowpc)
7127 *lowpc = pdi->lowpc;
7128 if (pdi->highpc > *highpc)
7129 *highpc = pdi->highpc;
7130 if (set_addrmap)
7131 {
7132 struct objfile *objfile = cu->objfile;
7133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7134 CORE_ADDR baseaddr;
7135 CORE_ADDR highpc;
7136 CORE_ADDR lowpc;
7137
7138 baseaddr = ANOFFSET (objfile->section_offsets,
7139 SECT_OFF_TEXT (objfile));
7140 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7141 pdi->lowpc + baseaddr);
7142 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7143 pdi->highpc + baseaddr);
7144 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7145 cu->per_cu->v.psymtab);
7146 }
7147 }
7148
7149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7150 {
7151 if (!pdi->is_declaration)
7152 /* Ignore subprogram DIEs that do not have a name, they are
7153 illegal. Do not emit a complaint at this point, we will
7154 do so when we convert this psymtab into a symtab. */
7155 if (pdi->name)
7156 add_partial_symbol (pdi, cu);
7157 }
7158 }
7159
7160 if (! pdi->has_children)
7161 return;
7162
7163 if (cu->language == language_ada)
7164 {
7165 pdi = pdi->die_child;
7166 while (pdi != NULL)
7167 {
7168 fixup_partial_die (pdi, cu);
7169 if (pdi->tag == DW_TAG_subprogram
7170 || pdi->tag == DW_TAG_lexical_block)
7171 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7172 pdi = pdi->die_sibling;
7173 }
7174 }
7175 }
7176
7177 /* Read a partial die corresponding to an enumeration type. */
7178
7179 static void
7180 add_partial_enumeration (struct partial_die_info *enum_pdi,
7181 struct dwarf2_cu *cu)
7182 {
7183 struct partial_die_info *pdi;
7184
7185 if (enum_pdi->name != NULL)
7186 add_partial_symbol (enum_pdi, cu);
7187
7188 pdi = enum_pdi->die_child;
7189 while (pdi)
7190 {
7191 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7192 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7193 else
7194 add_partial_symbol (pdi, cu);
7195 pdi = pdi->die_sibling;
7196 }
7197 }
7198
7199 /* Return the initial uleb128 in the die at INFO_PTR. */
7200
7201 static unsigned int
7202 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7203 {
7204 unsigned int bytes_read;
7205
7206 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7207 }
7208
7209 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7210 Return the corresponding abbrev, or NULL if the number is zero (indicating
7211 an empty DIE). In either case *BYTES_READ will be set to the length of
7212 the initial number. */
7213
7214 static struct abbrev_info *
7215 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7216 struct dwarf2_cu *cu)
7217 {
7218 bfd *abfd = cu->objfile->obfd;
7219 unsigned int abbrev_number;
7220 struct abbrev_info *abbrev;
7221
7222 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7223
7224 if (abbrev_number == 0)
7225 return NULL;
7226
7227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7228 if (!abbrev)
7229 {
7230 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7231 " at offset 0x%x [in module %s]"),
7232 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7233 cu->header.offset.sect_off, bfd_get_filename (abfd));
7234 }
7235
7236 return abbrev;
7237 }
7238
7239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7240 Returns a pointer to the end of a series of DIEs, terminated by an empty
7241 DIE. Any children of the skipped DIEs will also be skipped. */
7242
7243 static const gdb_byte *
7244 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7245 {
7246 struct dwarf2_cu *cu = reader->cu;
7247 struct abbrev_info *abbrev;
7248 unsigned int bytes_read;
7249
7250 while (1)
7251 {
7252 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7253 if (abbrev == NULL)
7254 return info_ptr + bytes_read;
7255 else
7256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7257 }
7258 }
7259
7260 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7262 abbrev corresponding to that skipped uleb128 should be passed in
7263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7264 children. */
7265
7266 static const gdb_byte *
7267 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7268 struct abbrev_info *abbrev)
7269 {
7270 unsigned int bytes_read;
7271 struct attribute attr;
7272 bfd *abfd = reader->abfd;
7273 struct dwarf2_cu *cu = reader->cu;
7274 const gdb_byte *buffer = reader->buffer;
7275 const gdb_byte *buffer_end = reader->buffer_end;
7276 unsigned int form, i;
7277
7278 for (i = 0; i < abbrev->num_attrs; i++)
7279 {
7280 /* The only abbrev we care about is DW_AT_sibling. */
7281 if (abbrev->attrs[i].name == DW_AT_sibling)
7282 {
7283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7284 if (attr.form == DW_FORM_ref_addr)
7285 complaint (&symfile_complaints,
7286 _("ignoring absolute DW_AT_sibling"));
7287 else
7288 {
7289 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7290 const gdb_byte *sibling_ptr = buffer + off;
7291
7292 if (sibling_ptr < info_ptr)
7293 complaint (&symfile_complaints,
7294 _("DW_AT_sibling points backwards"));
7295 else if (sibling_ptr > reader->buffer_end)
7296 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7297 else
7298 return sibling_ptr;
7299 }
7300 }
7301
7302 /* If it isn't DW_AT_sibling, skip this attribute. */
7303 form = abbrev->attrs[i].form;
7304 skip_attribute:
7305 switch (form)
7306 {
7307 case DW_FORM_ref_addr:
7308 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7309 and later it is offset sized. */
7310 if (cu->header.version == 2)
7311 info_ptr += cu->header.addr_size;
7312 else
7313 info_ptr += cu->header.offset_size;
7314 break;
7315 case DW_FORM_GNU_ref_alt:
7316 info_ptr += cu->header.offset_size;
7317 break;
7318 case DW_FORM_addr:
7319 info_ptr += cu->header.addr_size;
7320 break;
7321 case DW_FORM_data1:
7322 case DW_FORM_ref1:
7323 case DW_FORM_flag:
7324 info_ptr += 1;
7325 break;
7326 case DW_FORM_flag_present:
7327 break;
7328 case DW_FORM_data2:
7329 case DW_FORM_ref2:
7330 info_ptr += 2;
7331 break;
7332 case DW_FORM_data4:
7333 case DW_FORM_ref4:
7334 info_ptr += 4;
7335 break;
7336 case DW_FORM_data8:
7337 case DW_FORM_ref8:
7338 case DW_FORM_ref_sig8:
7339 info_ptr += 8;
7340 break;
7341 case DW_FORM_string:
7342 read_direct_string (abfd, info_ptr, &bytes_read);
7343 info_ptr += bytes_read;
7344 break;
7345 case DW_FORM_sec_offset:
7346 case DW_FORM_strp:
7347 case DW_FORM_GNU_strp_alt:
7348 info_ptr += cu->header.offset_size;
7349 break;
7350 case DW_FORM_exprloc:
7351 case DW_FORM_block:
7352 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7353 info_ptr += bytes_read;
7354 break;
7355 case DW_FORM_block1:
7356 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7357 break;
7358 case DW_FORM_block2:
7359 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7360 break;
7361 case DW_FORM_block4:
7362 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7363 break;
7364 case DW_FORM_sdata:
7365 case DW_FORM_udata:
7366 case DW_FORM_ref_udata:
7367 case DW_FORM_GNU_addr_index:
7368 case DW_FORM_GNU_str_index:
7369 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7370 break;
7371 case DW_FORM_indirect:
7372 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7373 info_ptr += bytes_read;
7374 /* We need to continue parsing from here, so just go back to
7375 the top. */
7376 goto skip_attribute;
7377
7378 default:
7379 error (_("Dwarf Error: Cannot handle %s "
7380 "in DWARF reader [in module %s]"),
7381 dwarf_form_name (form),
7382 bfd_get_filename (abfd));
7383 }
7384 }
7385
7386 if (abbrev->has_children)
7387 return skip_children (reader, info_ptr);
7388 else
7389 return info_ptr;
7390 }
7391
7392 /* Locate ORIG_PDI's sibling.
7393 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7394
7395 static const gdb_byte *
7396 locate_pdi_sibling (const struct die_reader_specs *reader,
7397 struct partial_die_info *orig_pdi,
7398 const gdb_byte *info_ptr)
7399 {
7400 /* Do we know the sibling already? */
7401
7402 if (orig_pdi->sibling)
7403 return orig_pdi->sibling;
7404
7405 /* Are there any children to deal with? */
7406
7407 if (!orig_pdi->has_children)
7408 return info_ptr;
7409
7410 /* Skip the children the long way. */
7411
7412 return skip_children (reader, info_ptr);
7413 }
7414
7415 /* Expand this partial symbol table into a full symbol table. SELF is
7416 not NULL. */
7417
7418 static void
7419 dwarf2_read_symtab (struct partial_symtab *self,
7420 struct objfile *objfile)
7421 {
7422 if (self->readin)
7423 {
7424 warning (_("bug: psymtab for %s is already read in."),
7425 self->filename);
7426 }
7427 else
7428 {
7429 if (info_verbose)
7430 {
7431 printf_filtered (_("Reading in symbols for %s..."),
7432 self->filename);
7433 gdb_flush (gdb_stdout);
7434 }
7435
7436 /* Restore our global data. */
7437 dwarf2_per_objfile
7438 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7439 dwarf2_objfile_data_key);
7440
7441 /* If this psymtab is constructed from a debug-only objfile, the
7442 has_section_at_zero flag will not necessarily be correct. We
7443 can get the correct value for this flag by looking at the data
7444 associated with the (presumably stripped) associated objfile. */
7445 if (objfile->separate_debug_objfile_backlink)
7446 {
7447 struct dwarf2_per_objfile *dpo_backlink
7448 = ((struct dwarf2_per_objfile *)
7449 objfile_data (objfile->separate_debug_objfile_backlink,
7450 dwarf2_objfile_data_key));
7451
7452 dwarf2_per_objfile->has_section_at_zero
7453 = dpo_backlink->has_section_at_zero;
7454 }
7455
7456 dwarf2_per_objfile->reading_partial_symbols = 0;
7457
7458 psymtab_to_symtab_1 (self);
7459
7460 /* Finish up the debug error message. */
7461 if (info_verbose)
7462 printf_filtered (_("done.\n"));
7463 }
7464
7465 process_cu_includes ();
7466 }
7467 \f
7468 /* Reading in full CUs. */
7469
7470 /* Add PER_CU to the queue. */
7471
7472 static void
7473 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
7475 {
7476 struct dwarf2_queue_item *item;
7477
7478 per_cu->queued = 1;
7479 item = XNEW (struct dwarf2_queue_item);
7480 item->per_cu = per_cu;
7481 item->pretend_language = pretend_language;
7482 item->next = NULL;
7483
7484 if (dwarf2_queue == NULL)
7485 dwarf2_queue = item;
7486 else
7487 dwarf2_queue_tail->next = item;
7488
7489 dwarf2_queue_tail = item;
7490 }
7491
7492 /* If PER_CU is not yet queued, add it to the queue.
7493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7494 dependency.
7495 The result is non-zero if PER_CU was queued, otherwise the result is zero
7496 meaning either PER_CU is already queued or it is already loaded.
7497
7498 N.B. There is an invariant here that if a CU is queued then it is loaded.
7499 The caller is required to load PER_CU if we return non-zero. */
7500
7501 static int
7502 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7503 struct dwarf2_per_cu_data *per_cu,
7504 enum language pretend_language)
7505 {
7506 /* We may arrive here during partial symbol reading, if we need full
7507 DIEs to process an unusual case (e.g. template arguments). Do
7508 not queue PER_CU, just tell our caller to load its DIEs. */
7509 if (dwarf2_per_objfile->reading_partial_symbols)
7510 {
7511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7512 return 1;
7513 return 0;
7514 }
7515
7516 /* Mark the dependence relation so that we don't flush PER_CU
7517 too early. */
7518 if (dependent_cu != NULL)
7519 dwarf2_add_dependence (dependent_cu, per_cu);
7520
7521 /* If it's already on the queue, we have nothing to do. */
7522 if (per_cu->queued)
7523 return 0;
7524
7525 /* If the compilation unit is already loaded, just mark it as
7526 used. */
7527 if (per_cu->cu != NULL)
7528 {
7529 per_cu->cu->last_used = 0;
7530 return 0;
7531 }
7532
7533 /* Add it to the queue. */
7534 queue_comp_unit (per_cu, pretend_language);
7535
7536 return 1;
7537 }
7538
7539 /* Process the queue. */
7540
7541 static void
7542 process_queue (void)
7543 {
7544 struct dwarf2_queue_item *item, *next_item;
7545
7546 if (dwarf_read_debug)
7547 {
7548 fprintf_unfiltered (gdb_stdlog,
7549 "Expanding one or more symtabs of objfile %s ...\n",
7550 objfile_name (dwarf2_per_objfile->objfile));
7551 }
7552
7553 /* The queue starts out with one item, but following a DIE reference
7554 may load a new CU, adding it to the end of the queue. */
7555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7556 {
7557 if ((dwarf2_per_objfile->using_index
7558 ? !item->per_cu->v.quick->compunit_symtab
7559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7560 /* Skip dummy CUs. */
7561 && item->per_cu->cu != NULL)
7562 {
7563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7564 unsigned int debug_print_threshold;
7565 char buf[100];
7566
7567 if (per_cu->is_debug_types)
7568 {
7569 struct signatured_type *sig_type =
7570 (struct signatured_type *) per_cu;
7571
7572 sprintf (buf, "TU %s at offset 0x%x",
7573 hex_string (sig_type->signature),
7574 per_cu->offset.sect_off);
7575 /* There can be 100s of TUs.
7576 Only print them in verbose mode. */
7577 debug_print_threshold = 2;
7578 }
7579 else
7580 {
7581 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7582 debug_print_threshold = 1;
7583 }
7584
7585 if (dwarf_read_debug >= debug_print_threshold)
7586 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7587
7588 if (per_cu->is_debug_types)
7589 process_full_type_unit (per_cu, item->pretend_language);
7590 else
7591 process_full_comp_unit (per_cu, item->pretend_language);
7592
7593 if (dwarf_read_debug >= debug_print_threshold)
7594 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7595 }
7596
7597 item->per_cu->queued = 0;
7598 next_item = item->next;
7599 xfree (item);
7600 }
7601
7602 dwarf2_queue_tail = NULL;
7603
7604 if (dwarf_read_debug)
7605 {
7606 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7607 objfile_name (dwarf2_per_objfile->objfile));
7608 }
7609 }
7610
7611 /* Free all allocated queue entries. This function only releases anything if
7612 an error was thrown; if the queue was processed then it would have been
7613 freed as we went along. */
7614
7615 static void
7616 dwarf2_release_queue (void *dummy)
7617 {
7618 struct dwarf2_queue_item *item, *last;
7619
7620 item = dwarf2_queue;
7621 while (item)
7622 {
7623 /* Anything still marked queued is likely to be in an
7624 inconsistent state, so discard it. */
7625 if (item->per_cu->queued)
7626 {
7627 if (item->per_cu->cu != NULL)
7628 free_one_cached_comp_unit (item->per_cu);
7629 item->per_cu->queued = 0;
7630 }
7631
7632 last = item;
7633 item = item->next;
7634 xfree (last);
7635 }
7636
7637 dwarf2_queue = dwarf2_queue_tail = NULL;
7638 }
7639
7640 /* Read in full symbols for PST, and anything it depends on. */
7641
7642 static void
7643 psymtab_to_symtab_1 (struct partial_symtab *pst)
7644 {
7645 struct dwarf2_per_cu_data *per_cu;
7646 int i;
7647
7648 if (pst->readin)
7649 return;
7650
7651 for (i = 0; i < pst->number_of_dependencies; i++)
7652 if (!pst->dependencies[i]->readin
7653 && pst->dependencies[i]->user == NULL)
7654 {
7655 /* Inform about additional files that need to be read in. */
7656 if (info_verbose)
7657 {
7658 /* FIXME: i18n: Need to make this a single string. */
7659 fputs_filtered (" ", gdb_stdout);
7660 wrap_here ("");
7661 fputs_filtered ("and ", gdb_stdout);
7662 wrap_here ("");
7663 printf_filtered ("%s...", pst->dependencies[i]->filename);
7664 wrap_here (""); /* Flush output. */
7665 gdb_flush (gdb_stdout);
7666 }
7667 psymtab_to_symtab_1 (pst->dependencies[i]);
7668 }
7669
7670 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7671
7672 if (per_cu == NULL)
7673 {
7674 /* It's an include file, no symbols to read for it.
7675 Everything is in the parent symtab. */
7676 pst->readin = 1;
7677 return;
7678 }
7679
7680 dw2_do_instantiate_symtab (per_cu);
7681 }
7682
7683 /* Trivial hash function for die_info: the hash value of a DIE
7684 is its offset in .debug_info for this objfile. */
7685
7686 static hashval_t
7687 die_hash (const void *item)
7688 {
7689 const struct die_info *die = (const struct die_info *) item;
7690
7691 return die->offset.sect_off;
7692 }
7693
7694 /* Trivial comparison function for die_info structures: two DIEs
7695 are equal if they have the same offset. */
7696
7697 static int
7698 die_eq (const void *item_lhs, const void *item_rhs)
7699 {
7700 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7701 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7702
7703 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7704 }
7705
7706 /* die_reader_func for load_full_comp_unit.
7707 This is identical to read_signatured_type_reader,
7708 but is kept separate for now. */
7709
7710 static void
7711 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7712 const gdb_byte *info_ptr,
7713 struct die_info *comp_unit_die,
7714 int has_children,
7715 void *data)
7716 {
7717 struct dwarf2_cu *cu = reader->cu;
7718 enum language *language_ptr = (enum language *) data;
7719
7720 gdb_assert (cu->die_hash == NULL);
7721 cu->die_hash =
7722 htab_create_alloc_ex (cu->header.length / 12,
7723 die_hash,
7724 die_eq,
7725 NULL,
7726 &cu->comp_unit_obstack,
7727 hashtab_obstack_allocate,
7728 dummy_obstack_deallocate);
7729
7730 if (has_children)
7731 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7732 &info_ptr, comp_unit_die);
7733 cu->dies = comp_unit_die;
7734 /* comp_unit_die is not stored in die_hash, no need. */
7735
7736 /* We try not to read any attributes in this function, because not
7737 all CUs needed for references have been loaded yet, and symbol
7738 table processing isn't initialized. But we have to set the CU language,
7739 or we won't be able to build types correctly.
7740 Similarly, if we do not read the producer, we can not apply
7741 producer-specific interpretation. */
7742 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7743 }
7744
7745 /* Load the DIEs associated with PER_CU into memory. */
7746
7747 static void
7748 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7749 enum language pretend_language)
7750 {
7751 gdb_assert (! this_cu->is_debug_types);
7752
7753 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7754 load_full_comp_unit_reader, &pretend_language);
7755 }
7756
7757 /* Add a DIE to the delayed physname list. */
7758
7759 static void
7760 add_to_method_list (struct type *type, int fnfield_index, int index,
7761 const char *name, struct die_info *die,
7762 struct dwarf2_cu *cu)
7763 {
7764 struct delayed_method_info mi;
7765 mi.type = type;
7766 mi.fnfield_index = fnfield_index;
7767 mi.index = index;
7768 mi.name = name;
7769 mi.die = die;
7770 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7771 }
7772
7773 /* A cleanup for freeing the delayed method list. */
7774
7775 static void
7776 free_delayed_list (void *ptr)
7777 {
7778 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7779 if (cu->method_list != NULL)
7780 {
7781 VEC_free (delayed_method_info, cu->method_list);
7782 cu->method_list = NULL;
7783 }
7784 }
7785
7786 /* Compute the physnames of any methods on the CU's method list.
7787
7788 The computation of method physnames is delayed in order to avoid the
7789 (bad) condition that one of the method's formal parameters is of an as yet
7790 incomplete type. */
7791
7792 static void
7793 compute_delayed_physnames (struct dwarf2_cu *cu)
7794 {
7795 int i;
7796 struct delayed_method_info *mi;
7797 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7798 {
7799 const char *physname;
7800 struct fn_fieldlist *fn_flp
7801 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7802 physname = dwarf2_physname (mi->name, mi->die, cu);
7803 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7804 = physname ? physname : "";
7805 }
7806 }
7807
7808 /* Go objects should be embedded in a DW_TAG_module DIE,
7809 and it's not clear if/how imported objects will appear.
7810 To keep Go support simple until that's worked out,
7811 go back through what we've read and create something usable.
7812 We could do this while processing each DIE, and feels kinda cleaner,
7813 but that way is more invasive.
7814 This is to, for example, allow the user to type "p var" or "b main"
7815 without having to specify the package name, and allow lookups
7816 of module.object to work in contexts that use the expression
7817 parser. */
7818
7819 static void
7820 fixup_go_packaging (struct dwarf2_cu *cu)
7821 {
7822 char *package_name = NULL;
7823 struct pending *list;
7824 int i;
7825
7826 for (list = global_symbols; list != NULL; list = list->next)
7827 {
7828 for (i = 0; i < list->nsyms; ++i)
7829 {
7830 struct symbol *sym = list->symbol[i];
7831
7832 if (SYMBOL_LANGUAGE (sym) == language_go
7833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7834 {
7835 char *this_package_name = go_symbol_package_name (sym);
7836
7837 if (this_package_name == NULL)
7838 continue;
7839 if (package_name == NULL)
7840 package_name = this_package_name;
7841 else
7842 {
7843 if (strcmp (package_name, this_package_name) != 0)
7844 complaint (&symfile_complaints,
7845 _("Symtab %s has objects from two different Go packages: %s and %s"),
7846 (symbol_symtab (sym) != NULL
7847 ? symtab_to_filename_for_display
7848 (symbol_symtab (sym))
7849 : objfile_name (cu->objfile)),
7850 this_package_name, package_name);
7851 xfree (this_package_name);
7852 }
7853 }
7854 }
7855 }
7856
7857 if (package_name != NULL)
7858 {
7859 struct objfile *objfile = cu->objfile;
7860 const char *saved_package_name
7861 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7862 package_name,
7863 strlen (package_name));
7864 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7865 saved_package_name);
7866 struct symbol *sym;
7867
7868 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7869
7870 sym = allocate_symbol (objfile);
7871 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7872 SYMBOL_SET_NAMES (sym, saved_package_name,
7873 strlen (saved_package_name), 0, objfile);
7874 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7875 e.g., "main" finds the "main" module and not C's main(). */
7876 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7877 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7878 SYMBOL_TYPE (sym) = type;
7879
7880 add_symbol_to_list (sym, &global_symbols);
7881
7882 xfree (package_name);
7883 }
7884 }
7885
7886 /* Return the symtab for PER_CU. This works properly regardless of
7887 whether we're using the index or psymtabs. */
7888
7889 static struct compunit_symtab *
7890 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7891 {
7892 return (dwarf2_per_objfile->using_index
7893 ? per_cu->v.quick->compunit_symtab
7894 : per_cu->v.psymtab->compunit_symtab);
7895 }
7896
7897 /* A helper function for computing the list of all symbol tables
7898 included by PER_CU. */
7899
7900 static void
7901 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7902 htab_t all_children, htab_t all_type_symtabs,
7903 struct dwarf2_per_cu_data *per_cu,
7904 struct compunit_symtab *immediate_parent)
7905 {
7906 void **slot;
7907 int ix;
7908 struct compunit_symtab *cust;
7909 struct dwarf2_per_cu_data *iter;
7910
7911 slot = htab_find_slot (all_children, per_cu, INSERT);
7912 if (*slot != NULL)
7913 {
7914 /* This inclusion and its children have been processed. */
7915 return;
7916 }
7917
7918 *slot = per_cu;
7919 /* Only add a CU if it has a symbol table. */
7920 cust = get_compunit_symtab (per_cu);
7921 if (cust != NULL)
7922 {
7923 /* If this is a type unit only add its symbol table if we haven't
7924 seen it yet (type unit per_cu's can share symtabs). */
7925 if (per_cu->is_debug_types)
7926 {
7927 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7928 if (*slot == NULL)
7929 {
7930 *slot = cust;
7931 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7932 if (cust->user == NULL)
7933 cust->user = immediate_parent;
7934 }
7935 }
7936 else
7937 {
7938 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7939 if (cust->user == NULL)
7940 cust->user = immediate_parent;
7941 }
7942 }
7943
7944 for (ix = 0;
7945 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7946 ++ix)
7947 {
7948 recursively_compute_inclusions (result, all_children,
7949 all_type_symtabs, iter, cust);
7950 }
7951 }
7952
7953 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7954 PER_CU. */
7955
7956 static void
7957 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7958 {
7959 gdb_assert (! per_cu->is_debug_types);
7960
7961 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7962 {
7963 int ix, len;
7964 struct dwarf2_per_cu_data *per_cu_iter;
7965 struct compunit_symtab *compunit_symtab_iter;
7966 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7967 htab_t all_children, all_type_symtabs;
7968 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7969
7970 /* If we don't have a symtab, we can just skip this case. */
7971 if (cust == NULL)
7972 return;
7973
7974 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7975 NULL, xcalloc, xfree);
7976 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7977 NULL, xcalloc, xfree);
7978
7979 for (ix = 0;
7980 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7981 ix, per_cu_iter);
7982 ++ix)
7983 {
7984 recursively_compute_inclusions (&result_symtabs, all_children,
7985 all_type_symtabs, per_cu_iter,
7986 cust);
7987 }
7988
7989 /* Now we have a transitive closure of all the included symtabs. */
7990 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7991 cust->includes
7992 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7993 struct compunit_symtab *, len + 1);
7994 for (ix = 0;
7995 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7996 compunit_symtab_iter);
7997 ++ix)
7998 cust->includes[ix] = compunit_symtab_iter;
7999 cust->includes[len] = NULL;
8000
8001 VEC_free (compunit_symtab_ptr, result_symtabs);
8002 htab_delete (all_children);
8003 htab_delete (all_type_symtabs);
8004 }
8005 }
8006
8007 /* Compute the 'includes' field for the symtabs of all the CUs we just
8008 read. */
8009
8010 static void
8011 process_cu_includes (void)
8012 {
8013 int ix;
8014 struct dwarf2_per_cu_data *iter;
8015
8016 for (ix = 0;
8017 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8018 ix, iter);
8019 ++ix)
8020 {
8021 if (! iter->is_debug_types)
8022 compute_compunit_symtab_includes (iter);
8023 }
8024
8025 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8026 }
8027
8028 /* Generate full symbol information for PER_CU, whose DIEs have
8029 already been loaded into memory. */
8030
8031 static void
8032 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8033 enum language pretend_language)
8034 {
8035 struct dwarf2_cu *cu = per_cu->cu;
8036 struct objfile *objfile = per_cu->objfile;
8037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8038 CORE_ADDR lowpc, highpc;
8039 struct compunit_symtab *cust;
8040 struct cleanup *back_to, *delayed_list_cleanup;
8041 CORE_ADDR baseaddr;
8042 struct block *static_block;
8043 CORE_ADDR addr;
8044
8045 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8046
8047 buildsym_init ();
8048 back_to = make_cleanup (really_free_pendings, NULL);
8049 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8050
8051 cu->list_in_scope = &file_symbols;
8052
8053 cu->language = pretend_language;
8054 cu->language_defn = language_def (cu->language);
8055
8056 /* Do line number decoding in read_file_scope () */
8057 process_die (cu->dies, cu);
8058
8059 /* For now fudge the Go package. */
8060 if (cu->language == language_go)
8061 fixup_go_packaging (cu);
8062
8063 /* Now that we have processed all the DIEs in the CU, all the types
8064 should be complete, and it should now be safe to compute all of the
8065 physnames. */
8066 compute_delayed_physnames (cu);
8067 do_cleanups (delayed_list_cleanup);
8068
8069 /* Some compilers don't define a DW_AT_high_pc attribute for the
8070 compilation unit. If the DW_AT_high_pc is missing, synthesize
8071 it, by scanning the DIE's below the compilation unit. */
8072 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8073
8074 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8075 static_block = end_symtab_get_static_block (addr, 0, 1);
8076
8077 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8078 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8079 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8080 addrmap to help ensure it has an accurate map of pc values belonging to
8081 this comp unit. */
8082 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8083
8084 cust = end_symtab_from_static_block (static_block,
8085 SECT_OFF_TEXT (objfile), 0);
8086
8087 if (cust != NULL)
8088 {
8089 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8090
8091 /* Set symtab language to language from DW_AT_language. If the
8092 compilation is from a C file generated by language preprocessors, do
8093 not set the language if it was already deduced by start_subfile. */
8094 if (!(cu->language == language_c
8095 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8096 COMPUNIT_FILETABS (cust)->language = cu->language;
8097
8098 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8099 produce DW_AT_location with location lists but it can be possibly
8100 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8101 there were bugs in prologue debug info, fixed later in GCC-4.5
8102 by "unwind info for epilogues" patch (which is not directly related).
8103
8104 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8105 needed, it would be wrong due to missing DW_AT_producer there.
8106
8107 Still one can confuse GDB by using non-standard GCC compilation
8108 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8109 */
8110 if (cu->has_loclist && gcc_4_minor >= 5)
8111 cust->locations_valid = 1;
8112
8113 if (gcc_4_minor >= 5)
8114 cust->epilogue_unwind_valid = 1;
8115
8116 cust->call_site_htab = cu->call_site_htab;
8117 }
8118
8119 if (dwarf2_per_objfile->using_index)
8120 per_cu->v.quick->compunit_symtab = cust;
8121 else
8122 {
8123 struct partial_symtab *pst = per_cu->v.psymtab;
8124 pst->compunit_symtab = cust;
8125 pst->readin = 1;
8126 }
8127
8128 /* Push it for inclusion processing later. */
8129 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8130
8131 do_cleanups (back_to);
8132 }
8133
8134 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8135 already been loaded into memory. */
8136
8137 static void
8138 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8139 enum language pretend_language)
8140 {
8141 struct dwarf2_cu *cu = per_cu->cu;
8142 struct objfile *objfile = per_cu->objfile;
8143 struct compunit_symtab *cust;
8144 struct cleanup *back_to, *delayed_list_cleanup;
8145 struct signatured_type *sig_type;
8146
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
8149
8150 buildsym_init ();
8151 back_to = make_cleanup (really_free_pendings, NULL);
8152 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8153
8154 cu->list_in_scope = &file_symbols;
8155
8156 cu->language = pretend_language;
8157 cu->language_defn = language_def (cu->language);
8158
8159 /* The symbol tables are set up in read_type_unit_scope. */
8160 process_die (cu->dies, cu);
8161
8162 /* For now fudge the Go package. */
8163 if (cu->language == language_go)
8164 fixup_go_packaging (cu);
8165
8166 /* Now that we have processed all the DIEs in the CU, all the types
8167 should be complete, and it should now be safe to compute all of the
8168 physnames. */
8169 compute_delayed_physnames (cu);
8170 do_cleanups (delayed_list_cleanup);
8171
8172 /* TUs share symbol tables.
8173 If this is the first TU to use this symtab, complete the construction
8174 of it with end_expandable_symtab. Otherwise, complete the addition of
8175 this TU's symbols to the existing symtab. */
8176 if (sig_type->type_unit_group->compunit_symtab == NULL)
8177 {
8178 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8179 sig_type->type_unit_group->compunit_symtab = cust;
8180
8181 if (cust != NULL)
8182 {
8183 /* Set symtab language to language from DW_AT_language. If the
8184 compilation is from a C file generated by language preprocessors,
8185 do not set the language if it was already deduced by
8186 start_subfile. */
8187 if (!(cu->language == language_c
8188 && COMPUNIT_FILETABS (cust)->language != language_c))
8189 COMPUNIT_FILETABS (cust)->language = cu->language;
8190 }
8191 }
8192 else
8193 {
8194 augment_type_symtab ();
8195 cust = sig_type->type_unit_group->compunit_symtab;
8196 }
8197
8198 if (dwarf2_per_objfile->using_index)
8199 per_cu->v.quick->compunit_symtab = cust;
8200 else
8201 {
8202 struct partial_symtab *pst = per_cu->v.psymtab;
8203 pst->compunit_symtab = cust;
8204 pst->readin = 1;
8205 }
8206
8207 do_cleanups (back_to);
8208 }
8209
8210 /* Process an imported unit DIE. */
8211
8212 static void
8213 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8214 {
8215 struct attribute *attr;
8216
8217 /* For now we don't handle imported units in type units. */
8218 if (cu->per_cu->is_debug_types)
8219 {
8220 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8221 " supported in type units [in module %s]"),
8222 objfile_name (cu->objfile));
8223 }
8224
8225 attr = dwarf2_attr (die, DW_AT_import, cu);
8226 if (attr != NULL)
8227 {
8228 struct dwarf2_per_cu_data *per_cu;
8229 sect_offset offset;
8230 int is_dwz;
8231
8232 offset = dwarf2_get_ref_die_offset (attr);
8233 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8234 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8235
8236 /* If necessary, add it to the queue and load its DIEs. */
8237 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8238 load_full_comp_unit (per_cu, cu->language);
8239
8240 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8241 per_cu);
8242 }
8243 }
8244
8245 /* Reset the in_process bit of a die. */
8246
8247 static void
8248 reset_die_in_process (void *arg)
8249 {
8250 struct die_info *die = (struct die_info *) arg;
8251
8252 die->in_process = 0;
8253 }
8254
8255 /* Process a die and its children. */
8256
8257 static void
8258 process_die (struct die_info *die, struct dwarf2_cu *cu)
8259 {
8260 struct cleanup *in_process;
8261
8262 /* We should only be processing those not already in process. */
8263 gdb_assert (!die->in_process);
8264
8265 die->in_process = 1;
8266 in_process = make_cleanup (reset_die_in_process,die);
8267
8268 switch (die->tag)
8269 {
8270 case DW_TAG_padding:
8271 break;
8272 case DW_TAG_compile_unit:
8273 case DW_TAG_partial_unit:
8274 read_file_scope (die, cu);
8275 break;
8276 case DW_TAG_type_unit:
8277 read_type_unit_scope (die, cu);
8278 break;
8279 case DW_TAG_subprogram:
8280 case DW_TAG_inlined_subroutine:
8281 read_func_scope (die, cu);
8282 break;
8283 case DW_TAG_lexical_block:
8284 case DW_TAG_try_block:
8285 case DW_TAG_catch_block:
8286 read_lexical_block_scope (die, cu);
8287 break;
8288 case DW_TAG_GNU_call_site:
8289 read_call_site_scope (die, cu);
8290 break;
8291 case DW_TAG_class_type:
8292 case DW_TAG_interface_type:
8293 case DW_TAG_structure_type:
8294 case DW_TAG_union_type:
8295 process_structure_scope (die, cu);
8296 break;
8297 case DW_TAG_enumeration_type:
8298 process_enumeration_scope (die, cu);
8299 break;
8300
8301 /* These dies have a type, but processing them does not create
8302 a symbol or recurse to process the children. Therefore we can
8303 read them on-demand through read_type_die. */
8304 case DW_TAG_subroutine_type:
8305 case DW_TAG_set_type:
8306 case DW_TAG_array_type:
8307 case DW_TAG_pointer_type:
8308 case DW_TAG_ptr_to_member_type:
8309 case DW_TAG_reference_type:
8310 case DW_TAG_string_type:
8311 break;
8312
8313 case DW_TAG_base_type:
8314 case DW_TAG_subrange_type:
8315 case DW_TAG_typedef:
8316 /* Add a typedef symbol for the type definition, if it has a
8317 DW_AT_name. */
8318 new_symbol (die, read_type_die (die, cu), cu);
8319 break;
8320 case DW_TAG_common_block:
8321 read_common_block (die, cu);
8322 break;
8323 case DW_TAG_common_inclusion:
8324 break;
8325 case DW_TAG_namespace:
8326 cu->processing_has_namespace_info = 1;
8327 read_namespace (die, cu);
8328 break;
8329 case DW_TAG_module:
8330 cu->processing_has_namespace_info = 1;
8331 read_module (die, cu);
8332 break;
8333 case DW_TAG_imported_declaration:
8334 cu->processing_has_namespace_info = 1;
8335 if (read_namespace_alias (die, cu))
8336 break;
8337 /* The declaration is not a global namespace alias: fall through. */
8338 case DW_TAG_imported_module:
8339 cu->processing_has_namespace_info = 1;
8340 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8341 || cu->language != language_fortran))
8342 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8343 dwarf_tag_name (die->tag));
8344 read_import_statement (die, cu);
8345 break;
8346
8347 case DW_TAG_imported_unit:
8348 process_imported_unit_die (die, cu);
8349 break;
8350
8351 default:
8352 new_symbol (die, NULL, cu);
8353 break;
8354 }
8355
8356 do_cleanups (in_process);
8357 }
8358 \f
8359 /* DWARF name computation. */
8360
8361 /* A helper function for dwarf2_compute_name which determines whether DIE
8362 needs to have the name of the scope prepended to the name listed in the
8363 die. */
8364
8365 static int
8366 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8367 {
8368 struct attribute *attr;
8369
8370 switch (die->tag)
8371 {
8372 case DW_TAG_namespace:
8373 case DW_TAG_typedef:
8374 case DW_TAG_class_type:
8375 case DW_TAG_interface_type:
8376 case DW_TAG_structure_type:
8377 case DW_TAG_union_type:
8378 case DW_TAG_enumeration_type:
8379 case DW_TAG_enumerator:
8380 case DW_TAG_subprogram:
8381 case DW_TAG_inlined_subroutine:
8382 case DW_TAG_member:
8383 case DW_TAG_imported_declaration:
8384 return 1;
8385
8386 case DW_TAG_variable:
8387 case DW_TAG_constant:
8388 /* We only need to prefix "globally" visible variables. These include
8389 any variable marked with DW_AT_external or any variable that
8390 lives in a namespace. [Variables in anonymous namespaces
8391 require prefixing, but they are not DW_AT_external.] */
8392
8393 if (dwarf2_attr (die, DW_AT_specification, cu))
8394 {
8395 struct dwarf2_cu *spec_cu = cu;
8396
8397 return die_needs_namespace (die_specification (die, &spec_cu),
8398 spec_cu);
8399 }
8400
8401 attr = dwarf2_attr (die, DW_AT_external, cu);
8402 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8403 && die->parent->tag != DW_TAG_module)
8404 return 0;
8405 /* A variable in a lexical block of some kind does not need a
8406 namespace, even though in C++ such variables may be external
8407 and have a mangled name. */
8408 if (die->parent->tag == DW_TAG_lexical_block
8409 || die->parent->tag == DW_TAG_try_block
8410 || die->parent->tag == DW_TAG_catch_block
8411 || die->parent->tag == DW_TAG_subprogram)
8412 return 0;
8413 return 1;
8414
8415 default:
8416 return 0;
8417 }
8418 }
8419
8420 /* Retrieve the last character from a mem_file. */
8421
8422 static void
8423 do_ui_file_peek_last (void *object, const char *buffer, long length)
8424 {
8425 char *last_char_p = (char *) object;
8426
8427 if (length > 0)
8428 *last_char_p = buffer[length - 1];
8429 }
8430
8431 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8432 compute the physname for the object, which include a method's:
8433 - formal parameters (C++),
8434 - receiver type (Go),
8435
8436 The term "physname" is a bit confusing.
8437 For C++, for example, it is the demangled name.
8438 For Go, for example, it's the mangled name.
8439
8440 For Ada, return the DIE's linkage name rather than the fully qualified
8441 name. PHYSNAME is ignored..
8442
8443 The result is allocated on the objfile_obstack and canonicalized. */
8444
8445 static const char *
8446 dwarf2_compute_name (const char *name,
8447 struct die_info *die, struct dwarf2_cu *cu,
8448 int physname)
8449 {
8450 struct objfile *objfile = cu->objfile;
8451
8452 if (name == NULL)
8453 name = dwarf2_name (die, cu);
8454
8455 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8456 but otherwise compute it by typename_concat inside GDB.
8457 FIXME: Actually this is not really true, or at least not always true.
8458 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8459 Fortran names because there is no mangling standard. So new_symbol_full
8460 will set the demangled name to the result of dwarf2_full_name, and it is
8461 the demangled name that GDB uses if it exists. */
8462 if (cu->language == language_ada
8463 || (cu->language == language_fortran && physname))
8464 {
8465 /* For Ada unit, we prefer the linkage name over the name, as
8466 the former contains the exported name, which the user expects
8467 to be able to reference. Ideally, we want the user to be able
8468 to reference this entity using either natural or linkage name,
8469 but we haven't started looking at this enhancement yet. */
8470 const char *linkage_name;
8471
8472 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8473 if (linkage_name == NULL)
8474 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8475 if (linkage_name != NULL)
8476 return linkage_name;
8477 }
8478
8479 /* These are the only languages we know how to qualify names in. */
8480 if (name != NULL
8481 && (cu->language == language_cplus
8482 || cu->language == language_fortran || cu->language == language_d
8483 || cu->language == language_rust))
8484 {
8485 if (die_needs_namespace (die, cu))
8486 {
8487 long length;
8488 const char *prefix;
8489 struct ui_file *buf;
8490 const char *canonical_name = NULL;
8491
8492 prefix = determine_prefix (die, cu);
8493 buf = mem_fileopen ();
8494 if (*prefix != '\0')
8495 {
8496 char *prefixed_name = typename_concat (NULL, prefix, name,
8497 physname, cu);
8498
8499 fputs_unfiltered (prefixed_name, buf);
8500 xfree (prefixed_name);
8501 }
8502 else
8503 fputs_unfiltered (name, buf);
8504
8505 /* Template parameters may be specified in the DIE's DW_AT_name, or
8506 as children with DW_TAG_template_type_param or
8507 DW_TAG_value_type_param. If the latter, add them to the name
8508 here. If the name already has template parameters, then
8509 skip this step; some versions of GCC emit both, and
8510 it is more efficient to use the pre-computed name.
8511
8512 Something to keep in mind about this process: it is very
8513 unlikely, or in some cases downright impossible, to produce
8514 something that will match the mangled name of a function.
8515 If the definition of the function has the same debug info,
8516 we should be able to match up with it anyway. But fallbacks
8517 using the minimal symbol, for instance to find a method
8518 implemented in a stripped copy of libstdc++, will not work.
8519 If we do not have debug info for the definition, we will have to
8520 match them up some other way.
8521
8522 When we do name matching there is a related problem with function
8523 templates; two instantiated function templates are allowed to
8524 differ only by their return types, which we do not add here. */
8525
8526 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8527 {
8528 struct attribute *attr;
8529 struct die_info *child;
8530 int first = 1;
8531
8532 die->building_fullname = 1;
8533
8534 for (child = die->child; child != NULL; child = child->sibling)
8535 {
8536 struct type *type;
8537 LONGEST value;
8538 const gdb_byte *bytes;
8539 struct dwarf2_locexpr_baton *baton;
8540 struct value *v;
8541
8542 if (child->tag != DW_TAG_template_type_param
8543 && child->tag != DW_TAG_template_value_param)
8544 continue;
8545
8546 if (first)
8547 {
8548 fputs_unfiltered ("<", buf);
8549 first = 0;
8550 }
8551 else
8552 fputs_unfiltered (", ", buf);
8553
8554 attr = dwarf2_attr (child, DW_AT_type, cu);
8555 if (attr == NULL)
8556 {
8557 complaint (&symfile_complaints,
8558 _("template parameter missing DW_AT_type"));
8559 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8560 continue;
8561 }
8562 type = die_type (child, cu);
8563
8564 if (child->tag == DW_TAG_template_type_param)
8565 {
8566 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8567 continue;
8568 }
8569
8570 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8571 if (attr == NULL)
8572 {
8573 complaint (&symfile_complaints,
8574 _("template parameter missing "
8575 "DW_AT_const_value"));
8576 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8577 continue;
8578 }
8579
8580 dwarf2_const_value_attr (attr, type, name,
8581 &cu->comp_unit_obstack, cu,
8582 &value, &bytes, &baton);
8583
8584 if (TYPE_NOSIGN (type))
8585 /* GDB prints characters as NUMBER 'CHAR'. If that's
8586 changed, this can use value_print instead. */
8587 c_printchar (value, type, buf);
8588 else
8589 {
8590 struct value_print_options opts;
8591
8592 if (baton != NULL)
8593 v = dwarf2_evaluate_loc_desc (type, NULL,
8594 baton->data,
8595 baton->size,
8596 baton->per_cu);
8597 else if (bytes != NULL)
8598 {
8599 v = allocate_value (type);
8600 memcpy (value_contents_writeable (v), bytes,
8601 TYPE_LENGTH (type));
8602 }
8603 else
8604 v = value_from_longest (type, value);
8605
8606 /* Specify decimal so that we do not depend on
8607 the radix. */
8608 get_formatted_print_options (&opts, 'd');
8609 opts.raw = 1;
8610 value_print (v, buf, &opts);
8611 release_value (v);
8612 value_free (v);
8613 }
8614 }
8615
8616 die->building_fullname = 0;
8617
8618 if (!first)
8619 {
8620 /* Close the argument list, with a space if necessary
8621 (nested templates). */
8622 char last_char = '\0';
8623 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8624 if (last_char == '>')
8625 fputs_unfiltered (" >", buf);
8626 else
8627 fputs_unfiltered (">", buf);
8628 }
8629 }
8630
8631 /* For C++ methods, append formal parameter type
8632 information, if PHYSNAME. */
8633
8634 if (physname && die->tag == DW_TAG_subprogram
8635 && cu->language == language_cplus)
8636 {
8637 struct type *type = read_type_die (die, cu);
8638
8639 c_type_print_args (type, buf, 1, cu->language,
8640 &type_print_raw_options);
8641
8642 if (cu->language == language_cplus)
8643 {
8644 /* Assume that an artificial first parameter is
8645 "this", but do not crash if it is not. RealView
8646 marks unnamed (and thus unused) parameters as
8647 artificial; there is no way to differentiate
8648 the two cases. */
8649 if (TYPE_NFIELDS (type) > 0
8650 && TYPE_FIELD_ARTIFICIAL (type, 0)
8651 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8652 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8653 0))))
8654 fputs_unfiltered (" const", buf);
8655 }
8656 }
8657
8658 std::string intermediate_name = ui_file_as_string (buf);
8659 ui_file_delete (buf);
8660
8661 if (cu->language == language_cplus)
8662 canonical_name
8663 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8664 &objfile->per_bfd->storage_obstack);
8665
8666 /* If we only computed INTERMEDIATE_NAME, or if
8667 INTERMEDIATE_NAME is already canonical, then we need to
8668 copy it to the appropriate obstack. */
8669 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8670 name = ((const char *)
8671 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8672 intermediate_name.c_str (),
8673 intermediate_name.length ()));
8674 else
8675 name = canonical_name;
8676 }
8677 }
8678
8679 return name;
8680 }
8681
8682 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8683 If scope qualifiers are appropriate they will be added. The result
8684 will be allocated on the storage_obstack, or NULL if the DIE does
8685 not have a name. NAME may either be from a previous call to
8686 dwarf2_name or NULL.
8687
8688 The output string will be canonicalized (if C++). */
8689
8690 static const char *
8691 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8692 {
8693 return dwarf2_compute_name (name, die, cu, 0);
8694 }
8695
8696 /* Construct a physname for the given DIE in CU. NAME may either be
8697 from a previous call to dwarf2_name or NULL. The result will be
8698 allocated on the objfile_objstack or NULL if the DIE does not have a
8699 name.
8700
8701 The output string will be canonicalized (if C++). */
8702
8703 static const char *
8704 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8705 {
8706 struct objfile *objfile = cu->objfile;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8721
8722 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8723 See https://github.com/rust-lang/rust/issues/32925. */
8724 if (cu->language == language_rust && mangled != NULL
8725 && strchr (mangled, '{') != NULL)
8726 mangled = NULL;
8727
8728 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8729 has computed. */
8730 if (mangled != NULL)
8731 {
8732 char *demangled;
8733
8734 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8735 type. It is easier for GDB users to search for such functions as
8736 `name(params)' than `long name(params)'. In such case the minimal
8737 symbol names do not match the full symbol names but for template
8738 functions there is never a need to look up their definition from their
8739 declaration so the only disadvantage remains the minimal symbol
8740 variant `long name(params)' does not have the proper inferior type.
8741 */
8742
8743 if (cu->language == language_go)
8744 {
8745 /* This is a lie, but we already lie to the caller new_symbol_full.
8746 new_symbol_full assumes we return the mangled name.
8747 This just undoes that lie until things are cleaned up. */
8748 demangled = NULL;
8749 }
8750 else
8751 {
8752 demangled = gdb_demangle (mangled,
8753 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8754 }
8755 if (demangled)
8756 {
8757 make_cleanup (xfree, demangled);
8758 canon = demangled;
8759 }
8760 else
8761 {
8762 canon = mangled;
8763 need_copy = 0;
8764 }
8765 }
8766
8767 if (canon == NULL || check_physname)
8768 {
8769 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8770
8771 if (canon != NULL && strcmp (physname, canon) != 0)
8772 {
8773 /* It may not mean a bug in GDB. The compiler could also
8774 compute DW_AT_linkage_name incorrectly. But in such case
8775 GDB would need to be bug-to-bug compatible. */
8776
8777 complaint (&symfile_complaints,
8778 _("Computed physname <%s> does not match demangled <%s> "
8779 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8780 physname, canon, mangled, die->offset.sect_off,
8781 objfile_name (objfile));
8782
8783 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8784 is available here - over computed PHYSNAME. It is safer
8785 against both buggy GDB and buggy compilers. */
8786
8787 retval = canon;
8788 }
8789 else
8790 {
8791 retval = physname;
8792 need_copy = 0;
8793 }
8794 }
8795 else
8796 retval = canon;
8797
8798 if (need_copy)
8799 retval = ((const char *)
8800 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8801 retval, strlen (retval)));
8802
8803 do_cleanups (back_to);
8804 return retval;
8805 }
8806
8807 /* Inspect DIE in CU for a namespace alias. If one exists, record
8808 a new symbol for it.
8809
8810 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8811
8812 static int
8813 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8814 {
8815 struct attribute *attr;
8816
8817 /* If the die does not have a name, this is not a namespace
8818 alias. */
8819 attr = dwarf2_attr (die, DW_AT_name, cu);
8820 if (attr != NULL)
8821 {
8822 int num;
8823 struct die_info *d = die;
8824 struct dwarf2_cu *imported_cu = cu;
8825
8826 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8827 keep inspecting DIEs until we hit the underlying import. */
8828 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8829 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8830 {
8831 attr = dwarf2_attr (d, DW_AT_import, cu);
8832 if (attr == NULL)
8833 break;
8834
8835 d = follow_die_ref (d, attr, &imported_cu);
8836 if (d->tag != DW_TAG_imported_declaration)
8837 break;
8838 }
8839
8840 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8841 {
8842 complaint (&symfile_complaints,
8843 _("DIE at 0x%x has too many recursively imported "
8844 "declarations"), d->offset.sect_off);
8845 return 0;
8846 }
8847
8848 if (attr != NULL)
8849 {
8850 struct type *type;
8851 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8852
8853 type = get_die_type_at_offset (offset, cu->per_cu);
8854 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8855 {
8856 /* This declaration is a global namespace alias. Add
8857 a symbol for it whose type is the aliased namespace. */
8858 new_symbol (die, type, cu);
8859 return 1;
8860 }
8861 }
8862 }
8863
8864 return 0;
8865 }
8866
8867 /* Return the using directives repository (global or local?) to use in the
8868 current context for LANGUAGE.
8869
8870 For Ada, imported declarations can materialize renamings, which *may* be
8871 global. However it is impossible (for now?) in DWARF to distinguish
8872 "external" imported declarations and "static" ones. As all imported
8873 declarations seem to be static in all other languages, make them all CU-wide
8874 global only in Ada. */
8875
8876 static struct using_direct **
8877 using_directives (enum language language)
8878 {
8879 if (language == language_ada && context_stack_depth == 0)
8880 return &global_using_directives;
8881 else
8882 return &local_using_directives;
8883 }
8884
8885 /* Read the import statement specified by the given die and record it. */
8886
8887 static void
8888 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8889 {
8890 struct objfile *objfile = cu->objfile;
8891 struct attribute *import_attr;
8892 struct die_info *imported_die, *child_die;
8893 struct dwarf2_cu *imported_cu;
8894 const char *imported_name;
8895 const char *imported_name_prefix;
8896 const char *canonical_name;
8897 const char *import_alias;
8898 const char *imported_declaration = NULL;
8899 const char *import_prefix;
8900 VEC (const_char_ptr) *excludes = NULL;
8901 struct cleanup *cleanups;
8902
8903 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8904 if (import_attr == NULL)
8905 {
8906 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8907 dwarf_tag_name (die->tag));
8908 return;
8909 }
8910
8911 imported_cu = cu;
8912 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8913 imported_name = dwarf2_name (imported_die, imported_cu);
8914 if (imported_name == NULL)
8915 {
8916 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8917
8918 The import in the following code:
8919 namespace A
8920 {
8921 typedef int B;
8922 }
8923
8924 int main ()
8925 {
8926 using A::B;
8927 B b;
8928 return b;
8929 }
8930
8931 ...
8932 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8933 <52> DW_AT_decl_file : 1
8934 <53> DW_AT_decl_line : 6
8935 <54> DW_AT_import : <0x75>
8936 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8937 <59> DW_AT_name : B
8938 <5b> DW_AT_decl_file : 1
8939 <5c> DW_AT_decl_line : 2
8940 <5d> DW_AT_type : <0x6e>
8941 ...
8942 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8943 <76> DW_AT_byte_size : 4
8944 <77> DW_AT_encoding : 5 (signed)
8945
8946 imports the wrong die ( 0x75 instead of 0x58 ).
8947 This case will be ignored until the gcc bug is fixed. */
8948 return;
8949 }
8950
8951 /* Figure out the local name after import. */
8952 import_alias = dwarf2_name (die, cu);
8953
8954 /* Figure out where the statement is being imported to. */
8955 import_prefix = determine_prefix (die, cu);
8956
8957 /* Figure out what the scope of the imported die is and prepend it
8958 to the name of the imported die. */
8959 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8960
8961 if (imported_die->tag != DW_TAG_namespace
8962 && imported_die->tag != DW_TAG_module)
8963 {
8964 imported_declaration = imported_name;
8965 canonical_name = imported_name_prefix;
8966 }
8967 else if (strlen (imported_name_prefix) > 0)
8968 canonical_name = obconcat (&objfile->objfile_obstack,
8969 imported_name_prefix,
8970 (cu->language == language_d ? "." : "::"),
8971 imported_name, (char *) NULL);
8972 else
8973 canonical_name = imported_name;
8974
8975 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8976
8977 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8978 for (child_die = die->child; child_die && child_die->tag;
8979 child_die = sibling_die (child_die))
8980 {
8981 /* DWARF-4: A Fortran use statement with a “rename list” may be
8982 represented by an imported module entry with an import attribute
8983 referring to the module and owned entries corresponding to those
8984 entities that are renamed as part of being imported. */
8985
8986 if (child_die->tag != DW_TAG_imported_declaration)
8987 {
8988 complaint (&symfile_complaints,
8989 _("child DW_TAG_imported_declaration expected "
8990 "- DIE at 0x%x [in module %s]"),
8991 child_die->offset.sect_off, objfile_name (objfile));
8992 continue;
8993 }
8994
8995 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8996 if (import_attr == NULL)
8997 {
8998 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8999 dwarf_tag_name (child_die->tag));
9000 continue;
9001 }
9002
9003 imported_cu = cu;
9004 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9005 &imported_cu);
9006 imported_name = dwarf2_name (imported_die, imported_cu);
9007 if (imported_name == NULL)
9008 {
9009 complaint (&symfile_complaints,
9010 _("child DW_TAG_imported_declaration has unknown "
9011 "imported name - DIE at 0x%x [in module %s]"),
9012 child_die->offset.sect_off, objfile_name (objfile));
9013 continue;
9014 }
9015
9016 VEC_safe_push (const_char_ptr, excludes, imported_name);
9017
9018 process_die (child_die, cu);
9019 }
9020
9021 add_using_directive (using_directives (cu->language),
9022 import_prefix,
9023 canonical_name,
9024 import_alias,
9025 imported_declaration,
9026 excludes,
9027 0,
9028 &objfile->objfile_obstack);
9029
9030 do_cleanups (cleanups);
9031 }
9032
9033 /* Cleanup function for handle_DW_AT_stmt_list. */
9034
9035 static void
9036 free_cu_line_header (void *arg)
9037 {
9038 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9039
9040 free_line_header (cu->line_header);
9041 cu->line_header = NULL;
9042 }
9043
9044 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9045 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9046 this, it was first present in GCC release 4.3.0. */
9047
9048 static int
9049 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9050 {
9051 if (!cu->checked_producer)
9052 check_producer (cu);
9053
9054 return cu->producer_is_gcc_lt_4_3;
9055 }
9056
9057 static void
9058 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9059 const char **name, const char **comp_dir)
9060 {
9061 /* Find the filename. Do not use dwarf2_name here, since the filename
9062 is not a source language identifier. */
9063 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9064 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9065
9066 if (*comp_dir == NULL
9067 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9068 && IS_ABSOLUTE_PATH (*name))
9069 {
9070 char *d = ldirname (*name);
9071
9072 *comp_dir = d;
9073 if (d != NULL)
9074 make_cleanup (xfree, d);
9075 }
9076 if (*comp_dir != NULL)
9077 {
9078 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9079 directory, get rid of it. */
9080 const char *cp = strchr (*comp_dir, ':');
9081
9082 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9083 *comp_dir = cp + 1;
9084 }
9085
9086 if (*name == NULL)
9087 *name = "<unknown>";
9088 }
9089
9090 /* Handle DW_AT_stmt_list for a compilation unit.
9091 DIE is the DW_TAG_compile_unit die for CU.
9092 COMP_DIR is the compilation directory. LOWPC is passed to
9093 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9094
9095 static void
9096 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9097 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9098 {
9099 struct objfile *objfile = dwarf2_per_objfile->objfile;
9100 struct attribute *attr;
9101 unsigned int line_offset;
9102 struct line_header line_header_local;
9103 hashval_t line_header_local_hash;
9104 unsigned u;
9105 void **slot;
9106 int decode_mapping;
9107
9108 gdb_assert (! cu->per_cu->is_debug_types);
9109
9110 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9111 if (attr == NULL)
9112 return;
9113
9114 line_offset = DW_UNSND (attr);
9115
9116 /* The line header hash table is only created if needed (it exists to
9117 prevent redundant reading of the line table for partial_units).
9118 If we're given a partial_unit, we'll need it. If we're given a
9119 compile_unit, then use the line header hash table if it's already
9120 created, but don't create one just yet. */
9121
9122 if (dwarf2_per_objfile->line_header_hash == NULL
9123 && die->tag == DW_TAG_partial_unit)
9124 {
9125 dwarf2_per_objfile->line_header_hash
9126 = htab_create_alloc_ex (127, line_header_hash_voidp,
9127 line_header_eq_voidp,
9128 free_line_header_voidp,
9129 &objfile->objfile_obstack,
9130 hashtab_obstack_allocate,
9131 dummy_obstack_deallocate);
9132 }
9133
9134 line_header_local.offset.sect_off = line_offset;
9135 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9136 line_header_local_hash = line_header_hash (&line_header_local);
9137 if (dwarf2_per_objfile->line_header_hash != NULL)
9138 {
9139 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9140 &line_header_local,
9141 line_header_local_hash, NO_INSERT);
9142
9143 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9144 is not present in *SLOT (since if there is something in *SLOT then
9145 it will be for a partial_unit). */
9146 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9147 {
9148 gdb_assert (*slot != NULL);
9149 cu->line_header = (struct line_header *) *slot;
9150 return;
9151 }
9152 }
9153
9154 /* dwarf_decode_line_header does not yet provide sufficient information.
9155 We always have to call also dwarf_decode_lines for it. */
9156 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9157 if (cu->line_header == NULL)
9158 return;
9159
9160 if (dwarf2_per_objfile->line_header_hash == NULL)
9161 slot = NULL;
9162 else
9163 {
9164 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9165 &line_header_local,
9166 line_header_local_hash, INSERT);
9167 gdb_assert (slot != NULL);
9168 }
9169 if (slot != NULL && *slot == NULL)
9170 {
9171 /* This newly decoded line number information unit will be owned
9172 by line_header_hash hash table. */
9173 *slot = cu->line_header;
9174 }
9175 else
9176 {
9177 /* We cannot free any current entry in (*slot) as that struct line_header
9178 may be already used by multiple CUs. Create only temporary decoded
9179 line_header for this CU - it may happen at most once for each line
9180 number information unit. And if we're not using line_header_hash
9181 then this is what we want as well. */
9182 gdb_assert (die->tag != DW_TAG_partial_unit);
9183 make_cleanup (free_cu_line_header, cu);
9184 }
9185 decode_mapping = (die->tag != DW_TAG_partial_unit);
9186 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9187 decode_mapping);
9188 }
9189
9190 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9191
9192 static void
9193 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9194 {
9195 struct objfile *objfile = dwarf2_per_objfile->objfile;
9196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9197 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9198 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9199 CORE_ADDR highpc = ((CORE_ADDR) 0);
9200 struct attribute *attr;
9201 const char *name = NULL;
9202 const char *comp_dir = NULL;
9203 struct die_info *child_die;
9204 CORE_ADDR baseaddr;
9205
9206 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9207
9208 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9209
9210 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9211 from finish_block. */
9212 if (lowpc == ((CORE_ADDR) -1))
9213 lowpc = highpc;
9214 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9215
9216 find_file_and_directory (die, cu, &name, &comp_dir);
9217
9218 prepare_one_comp_unit (cu, die, cu->language);
9219
9220 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9221 standardised yet. As a workaround for the language detection we fall
9222 back to the DW_AT_producer string. */
9223 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9224 cu->language = language_opencl;
9225
9226 /* Similar hack for Go. */
9227 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9228 set_cu_language (DW_LANG_Go, cu);
9229
9230 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9231
9232 /* Decode line number information if present. We do this before
9233 processing child DIEs, so that the line header table is available
9234 for DW_AT_decl_file. */
9235 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9236
9237 /* Process all dies in compilation unit. */
9238 if (die->child != NULL)
9239 {
9240 child_die = die->child;
9241 while (child_die && child_die->tag)
9242 {
9243 process_die (child_die, cu);
9244 child_die = sibling_die (child_die);
9245 }
9246 }
9247
9248 /* Decode macro information, if present. Dwarf 2 macro information
9249 refers to information in the line number info statement program
9250 header, so we can only read it if we've read the header
9251 successfully. */
9252 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9253 if (attr && cu->line_header)
9254 {
9255 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9256 complaint (&symfile_complaints,
9257 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9258
9259 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9260 }
9261 else
9262 {
9263 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9264 if (attr && cu->line_header)
9265 {
9266 unsigned int macro_offset = DW_UNSND (attr);
9267
9268 dwarf_decode_macros (cu, macro_offset, 0);
9269 }
9270 }
9271
9272 do_cleanups (back_to);
9273 }
9274
9275 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9276 Create the set of symtabs used by this TU, or if this TU is sharing
9277 symtabs with another TU and the symtabs have already been created
9278 then restore those symtabs in the line header.
9279 We don't need the pc/line-number mapping for type units. */
9280
9281 static void
9282 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9283 {
9284 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9285 struct type_unit_group *tu_group;
9286 int first_time;
9287 struct line_header *lh;
9288 struct attribute *attr;
9289 unsigned int i, line_offset;
9290 struct signatured_type *sig_type;
9291
9292 gdb_assert (per_cu->is_debug_types);
9293 sig_type = (struct signatured_type *) per_cu;
9294
9295 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9296
9297 /* If we're using .gdb_index (includes -readnow) then
9298 per_cu->type_unit_group may not have been set up yet. */
9299 if (sig_type->type_unit_group == NULL)
9300 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9301 tu_group = sig_type->type_unit_group;
9302
9303 /* If we've already processed this stmt_list there's no real need to
9304 do it again, we could fake it and just recreate the part we need
9305 (file name,index -> symtab mapping). If data shows this optimization
9306 is useful we can do it then. */
9307 first_time = tu_group->compunit_symtab == NULL;
9308
9309 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9310 debug info. */
9311 lh = NULL;
9312 if (attr != NULL)
9313 {
9314 line_offset = DW_UNSND (attr);
9315 lh = dwarf_decode_line_header (line_offset, cu);
9316 }
9317 if (lh == NULL)
9318 {
9319 if (first_time)
9320 dwarf2_start_symtab (cu, "", NULL, 0);
9321 else
9322 {
9323 gdb_assert (tu_group->symtabs == NULL);
9324 restart_symtab (tu_group->compunit_symtab, "", 0);
9325 }
9326 return;
9327 }
9328
9329 cu->line_header = lh;
9330 make_cleanup (free_cu_line_header, cu);
9331
9332 if (first_time)
9333 {
9334 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9335
9336 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9337 still initializing it, and our caller (a few levels up)
9338 process_full_type_unit still needs to know if this is the first
9339 time. */
9340
9341 tu_group->num_symtabs = lh->num_file_names;
9342 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9343
9344 for (i = 0; i < lh->num_file_names; ++i)
9345 {
9346 const char *dir = NULL;
9347 struct file_entry *fe = &lh->file_names[i];
9348
9349 if (fe->dir_index && lh->include_dirs != NULL)
9350 dir = lh->include_dirs[fe->dir_index - 1];
9351 dwarf2_start_subfile (fe->name, dir);
9352
9353 if (current_subfile->symtab == NULL)
9354 {
9355 /* NOTE: start_subfile will recognize when it's been passed
9356 a file it has already seen. So we can't assume there's a
9357 simple mapping from lh->file_names to subfiles, plus
9358 lh->file_names may contain dups. */
9359 current_subfile->symtab
9360 = allocate_symtab (cust, current_subfile->name);
9361 }
9362
9363 fe->symtab = current_subfile->symtab;
9364 tu_group->symtabs[i] = fe->symtab;
9365 }
9366 }
9367 else
9368 {
9369 restart_symtab (tu_group->compunit_symtab, "", 0);
9370
9371 for (i = 0; i < lh->num_file_names; ++i)
9372 {
9373 struct file_entry *fe = &lh->file_names[i];
9374
9375 fe->symtab = tu_group->symtabs[i];
9376 }
9377 }
9378
9379 /* The main symtab is allocated last. Type units don't have DW_AT_name
9380 so they don't have a "real" (so to speak) symtab anyway.
9381 There is later code that will assign the main symtab to all symbols
9382 that don't have one. We need to handle the case of a symbol with a
9383 missing symtab (DW_AT_decl_file) anyway. */
9384 }
9385
9386 /* Process DW_TAG_type_unit.
9387 For TUs we want to skip the first top level sibling if it's not the
9388 actual type being defined by this TU. In this case the first top
9389 level sibling is there to provide context only. */
9390
9391 static void
9392 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9393 {
9394 struct die_info *child_die;
9395
9396 prepare_one_comp_unit (cu, die, language_minimal);
9397
9398 /* Initialize (or reinitialize) the machinery for building symtabs.
9399 We do this before processing child DIEs, so that the line header table
9400 is available for DW_AT_decl_file. */
9401 setup_type_unit_groups (die, cu);
9402
9403 if (die->child != NULL)
9404 {
9405 child_die = die->child;
9406 while (child_die && child_die->tag)
9407 {
9408 process_die (child_die, cu);
9409 child_die = sibling_die (child_die);
9410 }
9411 }
9412 }
9413 \f
9414 /* DWO/DWP files.
9415
9416 http://gcc.gnu.org/wiki/DebugFission
9417 http://gcc.gnu.org/wiki/DebugFissionDWP
9418
9419 To simplify handling of both DWO files ("object" files with the DWARF info)
9420 and DWP files (a file with the DWOs packaged up into one file), we treat
9421 DWP files as having a collection of virtual DWO files. */
9422
9423 static hashval_t
9424 hash_dwo_file (const void *item)
9425 {
9426 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9427 hashval_t hash;
9428
9429 hash = htab_hash_string (dwo_file->dwo_name);
9430 if (dwo_file->comp_dir != NULL)
9431 hash += htab_hash_string (dwo_file->comp_dir);
9432 return hash;
9433 }
9434
9435 static int
9436 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9437 {
9438 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9439 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9440
9441 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9442 return 0;
9443 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9444 return lhs->comp_dir == rhs->comp_dir;
9445 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9446 }
9447
9448 /* Allocate a hash table for DWO files. */
9449
9450 static htab_t
9451 allocate_dwo_file_hash_table (void)
9452 {
9453 struct objfile *objfile = dwarf2_per_objfile->objfile;
9454
9455 return htab_create_alloc_ex (41,
9456 hash_dwo_file,
9457 eq_dwo_file,
9458 NULL,
9459 &objfile->objfile_obstack,
9460 hashtab_obstack_allocate,
9461 dummy_obstack_deallocate);
9462 }
9463
9464 /* Lookup DWO file DWO_NAME. */
9465
9466 static void **
9467 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9468 {
9469 struct dwo_file find_entry;
9470 void **slot;
9471
9472 if (dwarf2_per_objfile->dwo_files == NULL)
9473 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9474
9475 memset (&find_entry, 0, sizeof (find_entry));
9476 find_entry.dwo_name = dwo_name;
9477 find_entry.comp_dir = comp_dir;
9478 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9479
9480 return slot;
9481 }
9482
9483 static hashval_t
9484 hash_dwo_unit (const void *item)
9485 {
9486 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9487
9488 /* This drops the top 32 bits of the id, but is ok for a hash. */
9489 return dwo_unit->signature;
9490 }
9491
9492 static int
9493 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9494 {
9495 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9496 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9497
9498 /* The signature is assumed to be unique within the DWO file.
9499 So while object file CU dwo_id's always have the value zero,
9500 that's OK, assuming each object file DWO file has only one CU,
9501 and that's the rule for now. */
9502 return lhs->signature == rhs->signature;
9503 }
9504
9505 /* Allocate a hash table for DWO CUs,TUs.
9506 There is one of these tables for each of CUs,TUs for each DWO file. */
9507
9508 static htab_t
9509 allocate_dwo_unit_table (struct objfile *objfile)
9510 {
9511 /* Start out with a pretty small number.
9512 Generally DWO files contain only one CU and maybe some TUs. */
9513 return htab_create_alloc_ex (3,
9514 hash_dwo_unit,
9515 eq_dwo_unit,
9516 NULL,
9517 &objfile->objfile_obstack,
9518 hashtab_obstack_allocate,
9519 dummy_obstack_deallocate);
9520 }
9521
9522 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9523
9524 struct create_dwo_cu_data
9525 {
9526 struct dwo_file *dwo_file;
9527 struct dwo_unit dwo_unit;
9528 };
9529
9530 /* die_reader_func for create_dwo_cu. */
9531
9532 static void
9533 create_dwo_cu_reader (const struct die_reader_specs *reader,
9534 const gdb_byte *info_ptr,
9535 struct die_info *comp_unit_die,
9536 int has_children,
9537 void *datap)
9538 {
9539 struct dwarf2_cu *cu = reader->cu;
9540 sect_offset offset = cu->per_cu->offset;
9541 struct dwarf2_section_info *section = cu->per_cu->section;
9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9543 struct dwo_file *dwo_file = data->dwo_file;
9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
9545 struct attribute *attr;
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
9554 return;
9555 }
9556
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
9559 dwo_unit->section = section;
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
9563 if (dwarf_read_debug)
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
9566 }
9567
9568 /* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
9570
9571 static struct dwo_unit *
9572 create_dwo_cu (struct dwo_file *dwo_file)
9573 {
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 const gdb_byte *info_ptr, *end_ptr;
9577 struct create_dwo_cu_data create_dwo_cu_data;
9578 struct dwo_unit *dwo_unit;
9579
9580 dwarf2_read_section (objfile, section);
9581 info_ptr = section->buffer;
9582
9583 if (info_ptr == NULL)
9584 return NULL;
9585
9586 if (dwarf_read_debug)
9587 {
9588 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9589 get_section_name (section),
9590 get_section_file_name (section));
9591 }
9592
9593 create_dwo_cu_data.dwo_file = dwo_file;
9594 dwo_unit = NULL;
9595
9596 end_ptr = info_ptr + section->size;
9597 while (info_ptr < end_ptr)
9598 {
9599 struct dwarf2_per_cu_data per_cu;
9600
9601 memset (&create_dwo_cu_data.dwo_unit, 0,
9602 sizeof (create_dwo_cu_data.dwo_unit));
9603 memset (&per_cu, 0, sizeof (per_cu));
9604 per_cu.objfile = objfile;
9605 per_cu.is_debug_types = 0;
9606 per_cu.offset.sect_off = info_ptr - section->buffer;
9607 per_cu.section = section;
9608
9609 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9610 create_dwo_cu_reader,
9611 &create_dwo_cu_data);
9612
9613 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9614 {
9615 /* If we've already found one, complain. We only support one
9616 because having more than one requires hacking the dwo_name of
9617 each to match, which is highly unlikely to happen. */
9618 if (dwo_unit != NULL)
9619 {
9620 complaint (&symfile_complaints,
9621 _("Multiple CUs in DWO file %s [in module %s]"),
9622 dwo_file->dwo_name, objfile_name (objfile));
9623 break;
9624 }
9625
9626 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9627 *dwo_unit = create_dwo_cu_data.dwo_unit;
9628 }
9629
9630 info_ptr += per_cu.length;
9631 }
9632
9633 return dwo_unit;
9634 }
9635
9636 /* DWP file .debug_{cu,tu}_index section format:
9637 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9638
9639 DWP Version 1:
9640
9641 Both index sections have the same format, and serve to map a 64-bit
9642 signature to a set of section numbers. Each section begins with a header,
9643 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9644 indexes, and a pool of 32-bit section numbers. The index sections will be
9645 aligned at 8-byte boundaries in the file.
9646
9647 The index section header consists of:
9648
9649 V, 32 bit version number
9650 -, 32 bits unused
9651 N, 32 bit number of compilation units or type units in the index
9652 M, 32 bit number of slots in the hash table
9653
9654 Numbers are recorded using the byte order of the application binary.
9655
9656 The hash table begins at offset 16 in the section, and consists of an array
9657 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9658 order of the application binary). Unused slots in the hash table are 0.
9659 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9660
9661 The parallel table begins immediately after the hash table
9662 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9663 array of 32-bit indexes (using the byte order of the application binary),
9664 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9665 table contains a 32-bit index into the pool of section numbers. For unused
9666 hash table slots, the corresponding entry in the parallel table will be 0.
9667
9668 The pool of section numbers begins immediately following the hash table
9669 (at offset 16 + 12 * M from the beginning of the section). The pool of
9670 section numbers consists of an array of 32-bit words (using the byte order
9671 of the application binary). Each item in the array is indexed starting
9672 from 0. The hash table entry provides the index of the first section
9673 number in the set. Additional section numbers in the set follow, and the
9674 set is terminated by a 0 entry (section number 0 is not used in ELF).
9675
9676 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9677 section must be the first entry in the set, and the .debug_abbrev.dwo must
9678 be the second entry. Other members of the set may follow in any order.
9679
9680 ---
9681
9682 DWP Version 2:
9683
9684 DWP Version 2 combines all the .debug_info, etc. sections into one,
9685 and the entries in the index tables are now offsets into these sections.
9686 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9687 section.
9688
9689 Index Section Contents:
9690 Header
9691 Hash Table of Signatures dwp_hash_table.hash_table
9692 Parallel Table of Indices dwp_hash_table.unit_table
9693 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9694 Table of Section Sizes dwp_hash_table.v2.sizes
9695
9696 The index section header consists of:
9697
9698 V, 32 bit version number
9699 L, 32 bit number of columns in the table of section offsets
9700 N, 32 bit number of compilation units or type units in the index
9701 M, 32 bit number of slots in the hash table
9702
9703 Numbers are recorded using the byte order of the application binary.
9704
9705 The hash table has the same format as version 1.
9706 The parallel table of indices has the same format as version 1,
9707 except that the entries are origin-1 indices into the table of sections
9708 offsets and the table of section sizes.
9709
9710 The table of offsets begins immediately following the parallel table
9711 (at offset 16 + 12 * M from the beginning of the section). The table is
9712 a two-dimensional array of 32-bit words (using the byte order of the
9713 application binary), with L columns and N+1 rows, in row-major order.
9714 Each row in the array is indexed starting from 0. The first row provides
9715 a key to the remaining rows: each column in this row provides an identifier
9716 for a debug section, and the offsets in the same column of subsequent rows
9717 refer to that section. The section identifiers are:
9718
9719 DW_SECT_INFO 1 .debug_info.dwo
9720 DW_SECT_TYPES 2 .debug_types.dwo
9721 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9722 DW_SECT_LINE 4 .debug_line.dwo
9723 DW_SECT_LOC 5 .debug_loc.dwo
9724 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9725 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9726 DW_SECT_MACRO 8 .debug_macro.dwo
9727
9728 The offsets provided by the CU and TU index sections are the base offsets
9729 for the contributions made by each CU or TU to the corresponding section
9730 in the package file. Each CU and TU header contains an abbrev_offset
9731 field, used to find the abbreviations table for that CU or TU within the
9732 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9733 be interpreted as relative to the base offset given in the index section.
9734 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9735 should be interpreted as relative to the base offset for .debug_line.dwo,
9736 and offsets into other debug sections obtained from DWARF attributes should
9737 also be interpreted as relative to the corresponding base offset.
9738
9739 The table of sizes begins immediately following the table of offsets.
9740 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9741 with L columns and N rows, in row-major order. Each row in the array is
9742 indexed starting from 1 (row 0 is shared by the two tables).
9743
9744 ---
9745
9746 Hash table lookup is handled the same in version 1 and 2:
9747
9748 We assume that N and M will not exceed 2^32 - 1.
9749 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9750
9751 Given a 64-bit compilation unit signature or a type signature S, an entry
9752 in the hash table is located as follows:
9753
9754 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9755 the low-order k bits all set to 1.
9756
9757 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9758
9759 3) If the hash table entry at index H matches the signature, use that
9760 entry. If the hash table entry at index H is unused (all zeroes),
9761 terminate the search: the signature is not present in the table.
9762
9763 4) Let H = (H + H') modulo M. Repeat at Step 3.
9764
9765 Because M > N and H' and M are relatively prime, the search is guaranteed
9766 to stop at an unused slot or find the match. */
9767
9768 /* Create a hash table to map DWO IDs to their CU/TU entry in
9769 .debug_{info,types}.dwo in DWP_FILE.
9770 Returns NULL if there isn't one.
9771 Note: This function processes DWP files only, not DWO files. */
9772
9773 static struct dwp_hash_table *
9774 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9775 {
9776 struct objfile *objfile = dwarf2_per_objfile->objfile;
9777 bfd *dbfd = dwp_file->dbfd;
9778 const gdb_byte *index_ptr, *index_end;
9779 struct dwarf2_section_info *index;
9780 uint32_t version, nr_columns, nr_units, nr_slots;
9781 struct dwp_hash_table *htab;
9782
9783 if (is_debug_types)
9784 index = &dwp_file->sections.tu_index;
9785 else
9786 index = &dwp_file->sections.cu_index;
9787
9788 if (dwarf2_section_empty_p (index))
9789 return NULL;
9790 dwarf2_read_section (objfile, index);
9791
9792 index_ptr = index->buffer;
9793 index_end = index_ptr + index->size;
9794
9795 version = read_4_bytes (dbfd, index_ptr);
9796 index_ptr += 4;
9797 if (version == 2)
9798 nr_columns = read_4_bytes (dbfd, index_ptr);
9799 else
9800 nr_columns = 0;
9801 index_ptr += 4;
9802 nr_units = read_4_bytes (dbfd, index_ptr);
9803 index_ptr += 4;
9804 nr_slots = read_4_bytes (dbfd, index_ptr);
9805 index_ptr += 4;
9806
9807 if (version != 1 && version != 2)
9808 {
9809 error (_("Dwarf Error: unsupported DWP file version (%s)"
9810 " [in module %s]"),
9811 pulongest (version), dwp_file->name);
9812 }
9813 if (nr_slots != (nr_slots & -nr_slots))
9814 {
9815 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9816 " is not power of 2 [in module %s]"),
9817 pulongest (nr_slots), dwp_file->name);
9818 }
9819
9820 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9821 htab->version = version;
9822 htab->nr_columns = nr_columns;
9823 htab->nr_units = nr_units;
9824 htab->nr_slots = nr_slots;
9825 htab->hash_table = index_ptr;
9826 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9827
9828 /* Exit early if the table is empty. */
9829 if (nr_slots == 0 || nr_units == 0
9830 || (version == 2 && nr_columns == 0))
9831 {
9832 /* All must be zero. */
9833 if (nr_slots != 0 || nr_units != 0
9834 || (version == 2 && nr_columns != 0))
9835 {
9836 complaint (&symfile_complaints,
9837 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9838 " all zero [in modules %s]"),
9839 dwp_file->name);
9840 }
9841 return htab;
9842 }
9843
9844 if (version == 1)
9845 {
9846 htab->section_pool.v1.indices =
9847 htab->unit_table + sizeof (uint32_t) * nr_slots;
9848 /* It's harder to decide whether the section is too small in v1.
9849 V1 is deprecated anyway so we punt. */
9850 }
9851 else
9852 {
9853 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 int *ids = htab->section_pool.v2.section_ids;
9855 /* Reverse map for error checking. */
9856 int ids_seen[DW_SECT_MAX + 1];
9857 int i;
9858
9859 if (nr_columns < 2)
9860 {
9861 error (_("Dwarf Error: bad DWP hash table, too few columns"
9862 " in section table [in module %s]"),
9863 dwp_file->name);
9864 }
9865 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too many columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9872 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9873 for (i = 0; i < nr_columns; ++i)
9874 {
9875 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9876
9877 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9878 {
9879 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9880 " in section table [in module %s]"),
9881 id, dwp_file->name);
9882 }
9883 if (ids_seen[id] != -1)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9886 " id %d in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 ids_seen[id] = i;
9890 ids[i] = id;
9891 }
9892 /* Must have exactly one info or types section. */
9893 if (((ids_seen[DW_SECT_INFO] != -1)
9894 + (ids_seen[DW_SECT_TYPES] != -1))
9895 != 1)
9896 {
9897 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9898 " DWO info/types section [in module %s]"),
9899 dwp_file->name);
9900 }
9901 /* Must have an abbrev section. */
9902 if (ids_seen[DW_SECT_ABBREV] == -1)
9903 {
9904 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9905 " section [in module %s]"),
9906 dwp_file->name);
9907 }
9908 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9909 htab->section_pool.v2.sizes =
9910 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9911 * nr_units * nr_columns);
9912 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9913 * nr_units * nr_columns))
9914 > index_end)
9915 {
9916 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9917 " [in module %s]"),
9918 dwp_file->name);
9919 }
9920 }
9921
9922 return htab;
9923 }
9924
9925 /* Update SECTIONS with the data from SECTP.
9926
9927 This function is like the other "locate" section routines that are
9928 passed to bfd_map_over_sections, but in this context the sections to
9929 read comes from the DWP V1 hash table, not the full ELF section table.
9930
9931 The result is non-zero for success, or zero if an error was found. */
9932
9933 static int
9934 locate_v1_virtual_dwo_sections (asection *sectp,
9935 struct virtual_v1_dwo_sections *sections)
9936 {
9937 const struct dwop_section_names *names = &dwop_section_names;
9938
9939 if (section_is_p (sectp->name, &names->abbrev_dwo))
9940 {
9941 /* There can be only one. */
9942 if (sections->abbrev.s.section != NULL)
9943 return 0;
9944 sections->abbrev.s.section = sectp;
9945 sections->abbrev.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->info_dwo)
9948 || section_is_p (sectp->name, &names->types_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->info_or_types.s.section != NULL)
9952 return 0;
9953 sections->info_or_types.s.section = sectp;
9954 sections->info_or_types.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->line_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->line.s.section != NULL)
9960 return 0;
9961 sections->line.s.section = sectp;
9962 sections->line.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->loc_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->loc.s.section != NULL)
9968 return 0;
9969 sections->loc.s.section = sectp;
9970 sections->loc.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->macinfo.s.section != NULL)
9976 return 0;
9977 sections->macinfo.s.section = sectp;
9978 sections->macinfo.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->macro_dwo))
9981 {
9982 /* There can be only one. */
9983 if (sections->macro.s.section != NULL)
9984 return 0;
9985 sections->macro.s.section = sectp;
9986 sections->macro.size = bfd_get_section_size (sectp);
9987 }
9988 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9989 {
9990 /* There can be only one. */
9991 if (sections->str_offsets.s.section != NULL)
9992 return 0;
9993 sections->str_offsets.s.section = sectp;
9994 sections->str_offsets.size = bfd_get_section_size (sectp);
9995 }
9996 else
9997 {
9998 /* No other kind of section is valid. */
9999 return 0;
10000 }
10001
10002 return 1;
10003 }
10004
10005 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10006 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10007 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10008 This is for DWP version 1 files. */
10009
10010 static struct dwo_unit *
10011 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10012 uint32_t unit_index,
10013 const char *comp_dir,
10014 ULONGEST signature, int is_debug_types)
10015 {
10016 struct objfile *objfile = dwarf2_per_objfile->objfile;
10017 const struct dwp_hash_table *dwp_htab =
10018 is_debug_types ? dwp_file->tus : dwp_file->cus;
10019 bfd *dbfd = dwp_file->dbfd;
10020 const char *kind = is_debug_types ? "TU" : "CU";
10021 struct dwo_file *dwo_file;
10022 struct dwo_unit *dwo_unit;
10023 struct virtual_v1_dwo_sections sections;
10024 void **dwo_file_slot;
10025 char *virtual_dwo_name;
10026 struct cleanup *cleanups;
10027 int i;
10028
10029 gdb_assert (dwp_file->version == 1);
10030
10031 if (dwarf_read_debug)
10032 {
10033 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10034 kind,
10035 pulongest (unit_index), hex_string (signature),
10036 dwp_file->name);
10037 }
10038
10039 /* Fetch the sections of this DWO unit.
10040 Put a limit on the number of sections we look for so that bad data
10041 doesn't cause us to loop forever. */
10042
10043 #define MAX_NR_V1_DWO_SECTIONS \
10044 (1 /* .debug_info or .debug_types */ \
10045 + 1 /* .debug_abbrev */ \
10046 + 1 /* .debug_line */ \
10047 + 1 /* .debug_loc */ \
10048 + 1 /* .debug_str_offsets */ \
10049 + 1 /* .debug_macro or .debug_macinfo */ \
10050 + 1 /* trailing zero */)
10051
10052 memset (&sections, 0, sizeof (sections));
10053 cleanups = make_cleanup (null_cleanup, 0);
10054
10055 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10056 {
10057 asection *sectp;
10058 uint32_t section_nr =
10059 read_4_bytes (dbfd,
10060 dwp_htab->section_pool.v1.indices
10061 + (unit_index + i) * sizeof (uint32_t));
10062
10063 if (section_nr == 0)
10064 break;
10065 if (section_nr >= dwp_file->num_sections)
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, section number too large"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071
10072 sectp = dwp_file->elf_sections[section_nr];
10073 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079 }
10080
10081 if (i < 2
10082 || dwarf2_section_empty_p (&sections.info_or_types)
10083 || dwarf2_section_empty_p (&sections.abbrev))
10084 {
10085 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10086 " [in module %s]"),
10087 dwp_file->name);
10088 }
10089 if (i == MAX_NR_V1_DWO_SECTIONS)
10090 {
10091 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10092 " [in module %s]"),
10093 dwp_file->name);
10094 }
10095
10096 /* It's easier for the rest of the code if we fake a struct dwo_file and
10097 have dwo_unit "live" in that. At least for now.
10098
10099 The DWP file can be made up of a random collection of CUs and TUs.
10100 However, for each CU + set of TUs that came from the same original DWO
10101 file, we can combine them back into a virtual DWO file to save space
10102 (fewer struct dwo_file objects to allocate). Remember that for really
10103 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10104
10105 virtual_dwo_name =
10106 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10107 get_section_id (&sections.abbrev),
10108 get_section_id (&sections.line),
10109 get_section_id (&sections.loc),
10110 get_section_id (&sections.str_offsets));
10111 make_cleanup (xfree, virtual_dwo_name);
10112 /* Can we use an existing virtual DWO file? */
10113 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10114 /* Create one if necessary. */
10115 if (*dwo_file_slot == NULL)
10116 {
10117 if (dwarf_read_debug)
10118 {
10119 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10120 virtual_dwo_name);
10121 }
10122 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10123 dwo_file->dwo_name
10124 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10125 virtual_dwo_name,
10126 strlen (virtual_dwo_name));
10127 dwo_file->comp_dir = comp_dir;
10128 dwo_file->sections.abbrev = sections.abbrev;
10129 dwo_file->sections.line = sections.line;
10130 dwo_file->sections.loc = sections.loc;
10131 dwo_file->sections.macinfo = sections.macinfo;
10132 dwo_file->sections.macro = sections.macro;
10133 dwo_file->sections.str_offsets = sections.str_offsets;
10134 /* The "str" section is global to the entire DWP file. */
10135 dwo_file->sections.str = dwp_file->sections.str;
10136 /* The info or types section is assigned below to dwo_unit,
10137 there's no need to record it in dwo_file.
10138 Also, we can't simply record type sections in dwo_file because
10139 we record a pointer into the vector in dwo_unit. As we collect more
10140 types we'll grow the vector and eventually have to reallocate space
10141 for it, invalidating all copies of pointers into the previous
10142 contents. */
10143 *dwo_file_slot = dwo_file;
10144 }
10145 else
10146 {
10147 if (dwarf_read_debug)
10148 {
10149 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10150 virtual_dwo_name);
10151 }
10152 dwo_file = (struct dwo_file *) *dwo_file_slot;
10153 }
10154 do_cleanups (cleanups);
10155
10156 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10157 dwo_unit->dwo_file = dwo_file;
10158 dwo_unit->signature = signature;
10159 dwo_unit->section =
10160 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10161 *dwo_unit->section = sections.info_or_types;
10162 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10163
10164 return dwo_unit;
10165 }
10166
10167 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10168 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10169 piece within that section used by a TU/CU, return a virtual section
10170 of just that piece. */
10171
10172 static struct dwarf2_section_info
10173 create_dwp_v2_section (struct dwarf2_section_info *section,
10174 bfd_size_type offset, bfd_size_type size)
10175 {
10176 struct dwarf2_section_info result;
10177 asection *sectp;
10178
10179 gdb_assert (section != NULL);
10180 gdb_assert (!section->is_virtual);
10181
10182 memset (&result, 0, sizeof (result));
10183 result.s.containing_section = section;
10184 result.is_virtual = 1;
10185
10186 if (size == 0)
10187 return result;
10188
10189 sectp = get_section_bfd_section (section);
10190
10191 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10192 bounds of the real section. This is a pretty-rare event, so just
10193 flag an error (easier) instead of a warning and trying to cope. */
10194 if (sectp == NULL
10195 || offset + size > bfd_get_section_size (sectp))
10196 {
10197 bfd *abfd = sectp->owner;
10198
10199 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10200 " in section %s [in module %s]"),
10201 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10202 objfile_name (dwarf2_per_objfile->objfile));
10203 }
10204
10205 result.virtual_offset = offset;
10206 result.size = size;
10207 return result;
10208 }
10209
10210 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10211 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10212 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10213 This is for DWP version 2 files. */
10214
10215 static struct dwo_unit *
10216 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10217 uint32_t unit_index,
10218 const char *comp_dir,
10219 ULONGEST signature, int is_debug_types)
10220 {
10221 struct objfile *objfile = dwarf2_per_objfile->objfile;
10222 const struct dwp_hash_table *dwp_htab =
10223 is_debug_types ? dwp_file->tus : dwp_file->cus;
10224 bfd *dbfd = dwp_file->dbfd;
10225 const char *kind = is_debug_types ? "TU" : "CU";
10226 struct dwo_file *dwo_file;
10227 struct dwo_unit *dwo_unit;
10228 struct virtual_v2_dwo_sections sections;
10229 void **dwo_file_slot;
10230 char *virtual_dwo_name;
10231 struct cleanup *cleanups;
10232 int i;
10233
10234 gdb_assert (dwp_file->version == 2);
10235
10236 if (dwarf_read_debug)
10237 {
10238 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10239 kind,
10240 pulongest (unit_index), hex_string (signature),
10241 dwp_file->name);
10242 }
10243
10244 /* Fetch the section offsets of this DWO unit. */
10245
10246 memset (&sections, 0, sizeof (sections));
10247 cleanups = make_cleanup (null_cleanup, 0);
10248
10249 for (i = 0; i < dwp_htab->nr_columns; ++i)
10250 {
10251 uint32_t offset = read_4_bytes (dbfd,
10252 dwp_htab->section_pool.v2.offsets
10253 + (((unit_index - 1) * dwp_htab->nr_columns
10254 + i)
10255 * sizeof (uint32_t)));
10256 uint32_t size = read_4_bytes (dbfd,
10257 dwp_htab->section_pool.v2.sizes
10258 + (((unit_index - 1) * dwp_htab->nr_columns
10259 + i)
10260 * sizeof (uint32_t)));
10261
10262 switch (dwp_htab->section_pool.v2.section_ids[i])
10263 {
10264 case DW_SECT_INFO:
10265 case DW_SECT_TYPES:
10266 sections.info_or_types_offset = offset;
10267 sections.info_or_types_size = size;
10268 break;
10269 case DW_SECT_ABBREV:
10270 sections.abbrev_offset = offset;
10271 sections.abbrev_size = size;
10272 break;
10273 case DW_SECT_LINE:
10274 sections.line_offset = offset;
10275 sections.line_size = size;
10276 break;
10277 case DW_SECT_LOC:
10278 sections.loc_offset = offset;
10279 sections.loc_size = size;
10280 break;
10281 case DW_SECT_STR_OFFSETS:
10282 sections.str_offsets_offset = offset;
10283 sections.str_offsets_size = size;
10284 break;
10285 case DW_SECT_MACINFO:
10286 sections.macinfo_offset = offset;
10287 sections.macinfo_size = size;
10288 break;
10289 case DW_SECT_MACRO:
10290 sections.macro_offset = offset;
10291 sections.macro_size = size;
10292 break;
10293 }
10294 }
10295
10296 /* It's easier for the rest of the code if we fake a struct dwo_file and
10297 have dwo_unit "live" in that. At least for now.
10298
10299 The DWP file can be made up of a random collection of CUs and TUs.
10300 However, for each CU + set of TUs that came from the same original DWO
10301 file, we can combine them back into a virtual DWO file to save space
10302 (fewer struct dwo_file objects to allocate). Remember that for really
10303 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10304
10305 virtual_dwo_name =
10306 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10307 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10308 (long) (sections.line_size ? sections.line_offset : 0),
10309 (long) (sections.loc_size ? sections.loc_offset : 0),
10310 (long) (sections.str_offsets_size
10311 ? sections.str_offsets_offset : 0));
10312 make_cleanup (xfree, virtual_dwo_name);
10313 /* Can we use an existing virtual DWO file? */
10314 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10315 /* Create one if necessary. */
10316 if (*dwo_file_slot == NULL)
10317 {
10318 if (dwarf_read_debug)
10319 {
10320 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10321 virtual_dwo_name);
10322 }
10323 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10324 dwo_file->dwo_name
10325 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10326 virtual_dwo_name,
10327 strlen (virtual_dwo_name));
10328 dwo_file->comp_dir = comp_dir;
10329 dwo_file->sections.abbrev =
10330 create_dwp_v2_section (&dwp_file->sections.abbrev,
10331 sections.abbrev_offset, sections.abbrev_size);
10332 dwo_file->sections.line =
10333 create_dwp_v2_section (&dwp_file->sections.line,
10334 sections.line_offset, sections.line_size);
10335 dwo_file->sections.loc =
10336 create_dwp_v2_section (&dwp_file->sections.loc,
10337 sections.loc_offset, sections.loc_size);
10338 dwo_file->sections.macinfo =
10339 create_dwp_v2_section (&dwp_file->sections.macinfo,
10340 sections.macinfo_offset, sections.macinfo_size);
10341 dwo_file->sections.macro =
10342 create_dwp_v2_section (&dwp_file->sections.macro,
10343 sections.macro_offset, sections.macro_size);
10344 dwo_file->sections.str_offsets =
10345 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10346 sections.str_offsets_offset,
10347 sections.str_offsets_size);
10348 /* The "str" section is global to the entire DWP file. */
10349 dwo_file->sections.str = dwp_file->sections.str;
10350 /* The info or types section is assigned below to dwo_unit,
10351 there's no need to record it in dwo_file.
10352 Also, we can't simply record type sections in dwo_file because
10353 we record a pointer into the vector in dwo_unit. As we collect more
10354 types we'll grow the vector and eventually have to reallocate space
10355 for it, invalidating all copies of pointers into the previous
10356 contents. */
10357 *dwo_file_slot = dwo_file;
10358 }
10359 else
10360 {
10361 if (dwarf_read_debug)
10362 {
10363 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10364 virtual_dwo_name);
10365 }
10366 dwo_file = (struct dwo_file *) *dwo_file_slot;
10367 }
10368 do_cleanups (cleanups);
10369
10370 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10371 dwo_unit->dwo_file = dwo_file;
10372 dwo_unit->signature = signature;
10373 dwo_unit->section =
10374 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10375 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10376 ? &dwp_file->sections.types
10377 : &dwp_file->sections.info,
10378 sections.info_or_types_offset,
10379 sections.info_or_types_size);
10380 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10381
10382 return dwo_unit;
10383 }
10384
10385 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10386 Returns NULL if the signature isn't found. */
10387
10388 static struct dwo_unit *
10389 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10390 ULONGEST signature, int is_debug_types)
10391 {
10392 const struct dwp_hash_table *dwp_htab =
10393 is_debug_types ? dwp_file->tus : dwp_file->cus;
10394 bfd *dbfd = dwp_file->dbfd;
10395 uint32_t mask = dwp_htab->nr_slots - 1;
10396 uint32_t hash = signature & mask;
10397 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10398 unsigned int i;
10399 void **slot;
10400 struct dwo_unit find_dwo_cu;
10401
10402 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10403 find_dwo_cu.signature = signature;
10404 slot = htab_find_slot (is_debug_types
10405 ? dwp_file->loaded_tus
10406 : dwp_file->loaded_cus,
10407 &find_dwo_cu, INSERT);
10408
10409 if (*slot != NULL)
10410 return (struct dwo_unit *) *slot;
10411
10412 /* Use a for loop so that we don't loop forever on bad debug info. */
10413 for (i = 0; i < dwp_htab->nr_slots; ++i)
10414 {
10415 ULONGEST signature_in_table;
10416
10417 signature_in_table =
10418 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10419 if (signature_in_table == signature)
10420 {
10421 uint32_t unit_index =
10422 read_4_bytes (dbfd,
10423 dwp_htab->unit_table + hash * sizeof (uint32_t));
10424
10425 if (dwp_file->version == 1)
10426 {
10427 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10428 comp_dir, signature,
10429 is_debug_types);
10430 }
10431 else
10432 {
10433 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10434 comp_dir, signature,
10435 is_debug_types);
10436 }
10437 return (struct dwo_unit *) *slot;
10438 }
10439 if (signature_in_table == 0)
10440 return NULL;
10441 hash = (hash + hash2) & mask;
10442 }
10443
10444 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10445 " [in module %s]"),
10446 dwp_file->name);
10447 }
10448
10449 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10450 Open the file specified by FILE_NAME and hand it off to BFD for
10451 preliminary analysis. Return a newly initialized bfd *, which
10452 includes a canonicalized copy of FILE_NAME.
10453 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10454 SEARCH_CWD is true if the current directory is to be searched.
10455 It will be searched before debug-file-directory.
10456 If successful, the file is added to the bfd include table of the
10457 objfile's bfd (see gdb_bfd_record_inclusion).
10458 If unable to find/open the file, return NULL.
10459 NOTE: This function is derived from symfile_bfd_open. */
10460
10461 static bfd *
10462 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10463 {
10464 bfd *sym_bfd;
10465 int desc, flags;
10466 char *absolute_name;
10467 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10468 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10469 to debug_file_directory. */
10470 char *search_path;
10471 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10472
10473 if (search_cwd)
10474 {
10475 if (*debug_file_directory != '\0')
10476 search_path = concat (".", dirname_separator_string,
10477 debug_file_directory, (char *) NULL);
10478 else
10479 search_path = xstrdup (".");
10480 }
10481 else
10482 search_path = xstrdup (debug_file_directory);
10483
10484 flags = OPF_RETURN_REALPATH;
10485 if (is_dwp)
10486 flags |= OPF_SEARCH_IN_PATH;
10487 desc = openp (search_path, flags, file_name,
10488 O_RDONLY | O_BINARY, &absolute_name);
10489 xfree (search_path);
10490 if (desc < 0)
10491 return NULL;
10492
10493 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10494 xfree (absolute_name);
10495 if (sym_bfd == NULL)
10496 return NULL;
10497 bfd_set_cacheable (sym_bfd, 1);
10498
10499 if (!bfd_check_format (sym_bfd, bfd_object))
10500 {
10501 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10502 return NULL;
10503 }
10504
10505 /* Success. Record the bfd as having been included by the objfile's bfd.
10506 This is important because things like demangled_names_hash lives in the
10507 objfile's per_bfd space and may have references to things like symbol
10508 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10509 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10510
10511 return sym_bfd;
10512 }
10513
10514 /* Try to open DWO file FILE_NAME.
10515 COMP_DIR is the DW_AT_comp_dir attribute.
10516 The result is the bfd handle of the file.
10517 If there is a problem finding or opening the file, return NULL.
10518 Upon success, the canonicalized path of the file is stored in the bfd,
10519 same as symfile_bfd_open. */
10520
10521 static bfd *
10522 open_dwo_file (const char *file_name, const char *comp_dir)
10523 {
10524 bfd *abfd;
10525
10526 if (IS_ABSOLUTE_PATH (file_name))
10527 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10528
10529 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10530
10531 if (comp_dir != NULL)
10532 {
10533 char *path_to_try = concat (comp_dir, SLASH_STRING,
10534 file_name, (char *) NULL);
10535
10536 /* NOTE: If comp_dir is a relative path, this will also try the
10537 search path, which seems useful. */
10538 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10539 xfree (path_to_try);
10540 if (abfd != NULL)
10541 return abfd;
10542 }
10543
10544 /* That didn't work, try debug-file-directory, which, despite its name,
10545 is a list of paths. */
10546
10547 if (*debug_file_directory == '\0')
10548 return NULL;
10549
10550 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10551 }
10552
10553 /* This function is mapped across the sections and remembers the offset and
10554 size of each of the DWO debugging sections we are interested in. */
10555
10556 static void
10557 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10558 {
10559 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10560 const struct dwop_section_names *names = &dwop_section_names;
10561
10562 if (section_is_p (sectp->name, &names->abbrev_dwo))
10563 {
10564 dwo_sections->abbrev.s.section = sectp;
10565 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->info_dwo))
10568 {
10569 dwo_sections->info.s.section = sectp;
10570 dwo_sections->info.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->line_dwo))
10573 {
10574 dwo_sections->line.s.section = sectp;
10575 dwo_sections->line.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->loc_dwo))
10578 {
10579 dwo_sections->loc.s.section = sectp;
10580 dwo_sections->loc.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10583 {
10584 dwo_sections->macinfo.s.section = sectp;
10585 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->macro_dwo))
10588 {
10589 dwo_sections->macro.s.section = sectp;
10590 dwo_sections->macro.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->str_dwo))
10593 {
10594 dwo_sections->str.s.section = sectp;
10595 dwo_sections->str.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10598 {
10599 dwo_sections->str_offsets.s.section = sectp;
10600 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->types_dwo))
10603 {
10604 struct dwarf2_section_info type_section;
10605
10606 memset (&type_section, 0, sizeof (type_section));
10607 type_section.s.section = sectp;
10608 type_section.size = bfd_get_section_size (sectp);
10609 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10610 &type_section);
10611 }
10612 }
10613
10614 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10615 by PER_CU. This is for the non-DWP case.
10616 The result is NULL if DWO_NAME can't be found. */
10617
10618 static struct dwo_file *
10619 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10620 const char *dwo_name, const char *comp_dir)
10621 {
10622 struct objfile *objfile = dwarf2_per_objfile->objfile;
10623 struct dwo_file *dwo_file;
10624 bfd *dbfd;
10625 struct cleanup *cleanups;
10626
10627 dbfd = open_dwo_file (dwo_name, comp_dir);
10628 if (dbfd == NULL)
10629 {
10630 if (dwarf_read_debug)
10631 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10632 return NULL;
10633 }
10634 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10635 dwo_file->dwo_name = dwo_name;
10636 dwo_file->comp_dir = comp_dir;
10637 dwo_file->dbfd = dbfd;
10638
10639 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10640
10641 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10642
10643 dwo_file->cu = create_dwo_cu (dwo_file);
10644
10645 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10646 dwo_file->sections.types);
10647
10648 discard_cleanups (cleanups);
10649
10650 if (dwarf_read_debug)
10651 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10652
10653 return dwo_file;
10654 }
10655
10656 /* This function is mapped across the sections and remembers the offset and
10657 size of each of the DWP debugging sections common to version 1 and 2 that
10658 we are interested in. */
10659
10660 static void
10661 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10662 void *dwp_file_ptr)
10663 {
10664 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10665 const struct dwop_section_names *names = &dwop_section_names;
10666 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10667
10668 /* Record the ELF section number for later lookup: this is what the
10669 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10670 gdb_assert (elf_section_nr < dwp_file->num_sections);
10671 dwp_file->elf_sections[elf_section_nr] = sectp;
10672
10673 /* Look for specific sections that we need. */
10674 if (section_is_p (sectp->name, &names->str_dwo))
10675 {
10676 dwp_file->sections.str.s.section = sectp;
10677 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10678 }
10679 else if (section_is_p (sectp->name, &names->cu_index))
10680 {
10681 dwp_file->sections.cu_index.s.section = sectp;
10682 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10683 }
10684 else if (section_is_p (sectp->name, &names->tu_index))
10685 {
10686 dwp_file->sections.tu_index.s.section = sectp;
10687 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10688 }
10689 }
10690
10691 /* This function is mapped across the sections and remembers the offset and
10692 size of each of the DWP version 2 debugging sections that we are interested
10693 in. This is split into a separate function because we don't know if we
10694 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10695
10696 static void
10697 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10698 {
10699 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10700 const struct dwop_section_names *names = &dwop_section_names;
10701 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10702
10703 /* Record the ELF section number for later lookup: this is what the
10704 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10705 gdb_assert (elf_section_nr < dwp_file->num_sections);
10706 dwp_file->elf_sections[elf_section_nr] = sectp;
10707
10708 /* Look for specific sections that we need. */
10709 if (section_is_p (sectp->name, &names->abbrev_dwo))
10710 {
10711 dwp_file->sections.abbrev.s.section = sectp;
10712 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->info_dwo))
10715 {
10716 dwp_file->sections.info.s.section = sectp;
10717 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->line_dwo))
10720 {
10721 dwp_file->sections.line.s.section = sectp;
10722 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->loc_dwo))
10725 {
10726 dwp_file->sections.loc.s.section = sectp;
10727 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10728 }
10729 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10730 {
10731 dwp_file->sections.macinfo.s.section = sectp;
10732 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->macro_dwo))
10735 {
10736 dwp_file->sections.macro.s.section = sectp;
10737 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10740 {
10741 dwp_file->sections.str_offsets.s.section = sectp;
10742 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->types_dwo))
10745 {
10746 dwp_file->sections.types.s.section = sectp;
10747 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10748 }
10749 }
10750
10751 /* Hash function for dwp_file loaded CUs/TUs. */
10752
10753 static hashval_t
10754 hash_dwp_loaded_cutus (const void *item)
10755 {
10756 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10757
10758 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10759 return dwo_unit->signature;
10760 }
10761
10762 /* Equality function for dwp_file loaded CUs/TUs. */
10763
10764 static int
10765 eq_dwp_loaded_cutus (const void *a, const void *b)
10766 {
10767 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10768 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10769
10770 return dua->signature == dub->signature;
10771 }
10772
10773 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10774
10775 static htab_t
10776 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10777 {
10778 return htab_create_alloc_ex (3,
10779 hash_dwp_loaded_cutus,
10780 eq_dwp_loaded_cutus,
10781 NULL,
10782 &objfile->objfile_obstack,
10783 hashtab_obstack_allocate,
10784 dummy_obstack_deallocate);
10785 }
10786
10787 /* Try to open DWP file FILE_NAME.
10788 The result is the bfd handle of the file.
10789 If there is a problem finding or opening the file, return NULL.
10790 Upon success, the canonicalized path of the file is stored in the bfd,
10791 same as symfile_bfd_open. */
10792
10793 static bfd *
10794 open_dwp_file (const char *file_name)
10795 {
10796 bfd *abfd;
10797
10798 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10799 if (abfd != NULL)
10800 return abfd;
10801
10802 /* Work around upstream bug 15652.
10803 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10804 [Whether that's a "bug" is debatable, but it is getting in our way.]
10805 We have no real idea where the dwp file is, because gdb's realpath-ing
10806 of the executable's path may have discarded the needed info.
10807 [IWBN if the dwp file name was recorded in the executable, akin to
10808 .gnu_debuglink, but that doesn't exist yet.]
10809 Strip the directory from FILE_NAME and search again. */
10810 if (*debug_file_directory != '\0')
10811 {
10812 /* Don't implicitly search the current directory here.
10813 If the user wants to search "." to handle this case,
10814 it must be added to debug-file-directory. */
10815 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10816 0 /*search_cwd*/);
10817 }
10818
10819 return NULL;
10820 }
10821
10822 /* Initialize the use of the DWP file for the current objfile.
10823 By convention the name of the DWP file is ${objfile}.dwp.
10824 The result is NULL if it can't be found. */
10825
10826 static struct dwp_file *
10827 open_and_init_dwp_file (void)
10828 {
10829 struct objfile *objfile = dwarf2_per_objfile->objfile;
10830 struct dwp_file *dwp_file;
10831 char *dwp_name;
10832 bfd *dbfd;
10833 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10834
10835 /* Try to find first .dwp for the binary file before any symbolic links
10836 resolving. */
10837
10838 /* If the objfile is a debug file, find the name of the real binary
10839 file and get the name of dwp file from there. */
10840 if (objfile->separate_debug_objfile_backlink != NULL)
10841 {
10842 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10843 const char *backlink_basename = lbasename (backlink->original_name);
10844 char *debug_dirname = ldirname (objfile->original_name);
10845
10846 make_cleanup (xfree, debug_dirname);
10847 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10848 SLASH_STRING, backlink_basename);
10849 }
10850 else
10851 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10852 make_cleanup (xfree, dwp_name);
10853
10854 dbfd = open_dwp_file (dwp_name);
10855 if (dbfd == NULL
10856 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10857 {
10858 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10859 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10860 make_cleanup (xfree, dwp_name);
10861 dbfd = open_dwp_file (dwp_name);
10862 }
10863
10864 if (dbfd == NULL)
10865 {
10866 if (dwarf_read_debug)
10867 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10868 do_cleanups (cleanups);
10869 return NULL;
10870 }
10871 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10872 dwp_file->name = bfd_get_filename (dbfd);
10873 dwp_file->dbfd = dbfd;
10874 do_cleanups (cleanups);
10875
10876 /* +1: section 0 is unused */
10877 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10878 dwp_file->elf_sections =
10879 OBSTACK_CALLOC (&objfile->objfile_obstack,
10880 dwp_file->num_sections, asection *);
10881
10882 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10883
10884 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10885
10886 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10887
10888 /* The DWP file version is stored in the hash table. Oh well. */
10889 if (dwp_file->cus->version != dwp_file->tus->version)
10890 {
10891 /* Technically speaking, we should try to limp along, but this is
10892 pretty bizarre. We use pulongest here because that's the established
10893 portability solution (e.g, we cannot use %u for uint32_t). */
10894 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10895 " TU version %s [in DWP file %s]"),
10896 pulongest (dwp_file->cus->version),
10897 pulongest (dwp_file->tus->version), dwp_name);
10898 }
10899 dwp_file->version = dwp_file->cus->version;
10900
10901 if (dwp_file->version == 2)
10902 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10903
10904 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10905 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10906
10907 if (dwarf_read_debug)
10908 {
10909 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10910 fprintf_unfiltered (gdb_stdlog,
10911 " %s CUs, %s TUs\n",
10912 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10913 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10914 }
10915
10916 return dwp_file;
10917 }
10918
10919 /* Wrapper around open_and_init_dwp_file, only open it once. */
10920
10921 static struct dwp_file *
10922 get_dwp_file (void)
10923 {
10924 if (! dwarf2_per_objfile->dwp_checked)
10925 {
10926 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10927 dwarf2_per_objfile->dwp_checked = 1;
10928 }
10929 return dwarf2_per_objfile->dwp_file;
10930 }
10931
10932 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10933 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10934 or in the DWP file for the objfile, referenced by THIS_UNIT.
10935 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10936 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10937
10938 This is called, for example, when wanting to read a variable with a
10939 complex location. Therefore we don't want to do file i/o for every call.
10940 Therefore we don't want to look for a DWO file on every call.
10941 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10942 then we check if we've already seen DWO_NAME, and only THEN do we check
10943 for a DWO file.
10944
10945 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10946 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10947
10948 static struct dwo_unit *
10949 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10950 const char *dwo_name, const char *comp_dir,
10951 ULONGEST signature, int is_debug_types)
10952 {
10953 struct objfile *objfile = dwarf2_per_objfile->objfile;
10954 const char *kind = is_debug_types ? "TU" : "CU";
10955 void **dwo_file_slot;
10956 struct dwo_file *dwo_file;
10957 struct dwp_file *dwp_file;
10958
10959 /* First see if there's a DWP file.
10960 If we have a DWP file but didn't find the DWO inside it, don't
10961 look for the original DWO file. It makes gdb behave differently
10962 depending on whether one is debugging in the build tree. */
10963
10964 dwp_file = get_dwp_file ();
10965 if (dwp_file != NULL)
10966 {
10967 const struct dwp_hash_table *dwp_htab =
10968 is_debug_types ? dwp_file->tus : dwp_file->cus;
10969
10970 if (dwp_htab != NULL)
10971 {
10972 struct dwo_unit *dwo_cutu =
10973 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10974 signature, is_debug_types);
10975
10976 if (dwo_cutu != NULL)
10977 {
10978 if (dwarf_read_debug)
10979 {
10980 fprintf_unfiltered (gdb_stdlog,
10981 "Virtual DWO %s %s found: @%s\n",
10982 kind, hex_string (signature),
10983 host_address_to_string (dwo_cutu));
10984 }
10985 return dwo_cutu;
10986 }
10987 }
10988 }
10989 else
10990 {
10991 /* No DWP file, look for the DWO file. */
10992
10993 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10994 if (*dwo_file_slot == NULL)
10995 {
10996 /* Read in the file and build a table of the CUs/TUs it contains. */
10997 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10998 }
10999 /* NOTE: This will be NULL if unable to open the file. */
11000 dwo_file = (struct dwo_file *) *dwo_file_slot;
11001
11002 if (dwo_file != NULL)
11003 {
11004 struct dwo_unit *dwo_cutu = NULL;
11005
11006 if (is_debug_types && dwo_file->tus)
11007 {
11008 struct dwo_unit find_dwo_cutu;
11009
11010 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11011 find_dwo_cutu.signature = signature;
11012 dwo_cutu
11013 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11014 }
11015 else if (!is_debug_types && dwo_file->cu)
11016 {
11017 if (signature == dwo_file->cu->signature)
11018 dwo_cutu = dwo_file->cu;
11019 }
11020
11021 if (dwo_cutu != NULL)
11022 {
11023 if (dwarf_read_debug)
11024 {
11025 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11026 kind, dwo_name, hex_string (signature),
11027 host_address_to_string (dwo_cutu));
11028 }
11029 return dwo_cutu;
11030 }
11031 }
11032 }
11033
11034 /* We didn't find it. This could mean a dwo_id mismatch, or
11035 someone deleted the DWO/DWP file, or the search path isn't set up
11036 correctly to find the file. */
11037
11038 if (dwarf_read_debug)
11039 {
11040 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11041 kind, dwo_name, hex_string (signature));
11042 }
11043
11044 /* This is a warning and not a complaint because it can be caused by
11045 pilot error (e.g., user accidentally deleting the DWO). */
11046 {
11047 /* Print the name of the DWP file if we looked there, helps the user
11048 better diagnose the problem. */
11049 char *dwp_text = NULL;
11050 struct cleanup *cleanups;
11051
11052 if (dwp_file != NULL)
11053 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11054 cleanups = make_cleanup (xfree, dwp_text);
11055
11056 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11057 " [in module %s]"),
11058 kind, dwo_name, hex_string (signature),
11059 dwp_text != NULL ? dwp_text : "",
11060 this_unit->is_debug_types ? "TU" : "CU",
11061 this_unit->offset.sect_off, objfile_name (objfile));
11062
11063 do_cleanups (cleanups);
11064 }
11065 return NULL;
11066 }
11067
11068 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11069 See lookup_dwo_cutu_unit for details. */
11070
11071 static struct dwo_unit *
11072 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11073 const char *dwo_name, const char *comp_dir,
11074 ULONGEST signature)
11075 {
11076 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11077 }
11078
11079 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11080 See lookup_dwo_cutu_unit for details. */
11081
11082 static struct dwo_unit *
11083 lookup_dwo_type_unit (struct signatured_type *this_tu,
11084 const char *dwo_name, const char *comp_dir)
11085 {
11086 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11087 }
11088
11089 /* Traversal function for queue_and_load_all_dwo_tus. */
11090
11091 static int
11092 queue_and_load_dwo_tu (void **slot, void *info)
11093 {
11094 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11095 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11096 ULONGEST signature = dwo_unit->signature;
11097 struct signatured_type *sig_type =
11098 lookup_dwo_signatured_type (per_cu->cu, signature);
11099
11100 if (sig_type != NULL)
11101 {
11102 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11103
11104 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11105 a real dependency of PER_CU on SIG_TYPE. That is detected later
11106 while processing PER_CU. */
11107 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11108 load_full_type_unit (sig_cu);
11109 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11110 }
11111
11112 return 1;
11113 }
11114
11115 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11116 The DWO may have the only definition of the type, though it may not be
11117 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11118 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11119
11120 static void
11121 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11122 {
11123 struct dwo_unit *dwo_unit;
11124 struct dwo_file *dwo_file;
11125
11126 gdb_assert (!per_cu->is_debug_types);
11127 gdb_assert (get_dwp_file () == NULL);
11128 gdb_assert (per_cu->cu != NULL);
11129
11130 dwo_unit = per_cu->cu->dwo_unit;
11131 gdb_assert (dwo_unit != NULL);
11132
11133 dwo_file = dwo_unit->dwo_file;
11134 if (dwo_file->tus != NULL)
11135 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11136 }
11137
11138 /* Free all resources associated with DWO_FILE.
11139 Close the DWO file and munmap the sections.
11140 All memory should be on the objfile obstack. */
11141
11142 static void
11143 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11144 {
11145
11146 /* Note: dbfd is NULL for virtual DWO files. */
11147 gdb_bfd_unref (dwo_file->dbfd);
11148
11149 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11150 }
11151
11152 /* Wrapper for free_dwo_file for use in cleanups. */
11153
11154 static void
11155 free_dwo_file_cleanup (void *arg)
11156 {
11157 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11158 struct objfile *objfile = dwarf2_per_objfile->objfile;
11159
11160 free_dwo_file (dwo_file, objfile);
11161 }
11162
11163 /* Traversal function for free_dwo_files. */
11164
11165 static int
11166 free_dwo_file_from_slot (void **slot, void *info)
11167 {
11168 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11169 struct objfile *objfile = (struct objfile *) info;
11170
11171 free_dwo_file (dwo_file, objfile);
11172
11173 return 1;
11174 }
11175
11176 /* Free all resources associated with DWO_FILES. */
11177
11178 static void
11179 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11180 {
11181 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11182 }
11183 \f
11184 /* Read in various DIEs. */
11185
11186 /* qsort helper for inherit_abstract_dies. */
11187
11188 static int
11189 unsigned_int_compar (const void *ap, const void *bp)
11190 {
11191 unsigned int a = *(unsigned int *) ap;
11192 unsigned int b = *(unsigned int *) bp;
11193
11194 return (a > b) - (b > a);
11195 }
11196
11197 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11198 Inherit only the children of the DW_AT_abstract_origin DIE not being
11199 already referenced by DW_AT_abstract_origin from the children of the
11200 current DIE. */
11201
11202 static void
11203 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11204 {
11205 struct die_info *child_die;
11206 unsigned die_children_count;
11207 /* CU offsets which were referenced by children of the current DIE. */
11208 sect_offset *offsets;
11209 sect_offset *offsets_end, *offsetp;
11210 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11211 struct die_info *origin_die;
11212 /* Iterator of the ORIGIN_DIE children. */
11213 struct die_info *origin_child_die;
11214 struct cleanup *cleanups;
11215 struct attribute *attr;
11216 struct dwarf2_cu *origin_cu;
11217 struct pending **origin_previous_list_in_scope;
11218
11219 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11220 if (!attr)
11221 return;
11222
11223 /* Note that following die references may follow to a die in a
11224 different cu. */
11225
11226 origin_cu = cu;
11227 origin_die = follow_die_ref (die, attr, &origin_cu);
11228
11229 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11230 symbols in. */
11231 origin_previous_list_in_scope = origin_cu->list_in_scope;
11232 origin_cu->list_in_scope = cu->list_in_scope;
11233
11234 if (die->tag != origin_die->tag
11235 && !(die->tag == DW_TAG_inlined_subroutine
11236 && origin_die->tag == DW_TAG_subprogram))
11237 complaint (&symfile_complaints,
11238 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11239 die->offset.sect_off, origin_die->offset.sect_off);
11240
11241 child_die = die->child;
11242 die_children_count = 0;
11243 while (child_die && child_die->tag)
11244 {
11245 child_die = sibling_die (child_die);
11246 die_children_count++;
11247 }
11248 offsets = XNEWVEC (sect_offset, die_children_count);
11249 cleanups = make_cleanup (xfree, offsets);
11250
11251 offsets_end = offsets;
11252 for (child_die = die->child;
11253 child_die && child_die->tag;
11254 child_die = sibling_die (child_die))
11255 {
11256 struct die_info *child_origin_die;
11257 struct dwarf2_cu *child_origin_cu;
11258
11259 /* We are trying to process concrete instance entries:
11260 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11261 it's not relevant to our analysis here. i.e. detecting DIEs that are
11262 present in the abstract instance but not referenced in the concrete
11263 one. */
11264 if (child_die->tag == DW_TAG_GNU_call_site)
11265 continue;
11266
11267 /* For each CHILD_DIE, find the corresponding child of
11268 ORIGIN_DIE. If there is more than one layer of
11269 DW_AT_abstract_origin, follow them all; there shouldn't be,
11270 but GCC versions at least through 4.4 generate this (GCC PR
11271 40573). */
11272 child_origin_die = child_die;
11273 child_origin_cu = cu;
11274 while (1)
11275 {
11276 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11277 child_origin_cu);
11278 if (attr == NULL)
11279 break;
11280 child_origin_die = follow_die_ref (child_origin_die, attr,
11281 &child_origin_cu);
11282 }
11283
11284 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11285 counterpart may exist. */
11286 if (child_origin_die != child_die)
11287 {
11288 if (child_die->tag != child_origin_die->tag
11289 && !(child_die->tag == DW_TAG_inlined_subroutine
11290 && child_origin_die->tag == DW_TAG_subprogram))
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
11293 "different tags"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
11295 if (child_origin_die->parent != origin_die)
11296 complaint (&symfile_complaints,
11297 _("Child DIE 0x%x and its abstract origin 0x%x have "
11298 "different parents"), child_die->offset.sect_off,
11299 child_origin_die->offset.sect_off);
11300 else
11301 *offsets_end++ = child_origin_die->offset;
11302 }
11303 }
11304 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11305 unsigned_int_compar);
11306 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11307 if (offsetp[-1].sect_off == offsetp->sect_off)
11308 complaint (&symfile_complaints,
11309 _("Multiple children of DIE 0x%x refer "
11310 "to DIE 0x%x as their abstract origin"),
11311 die->offset.sect_off, offsetp->sect_off);
11312
11313 offsetp = offsets;
11314 origin_child_die = origin_die->child;
11315 while (origin_child_die && origin_child_die->tag)
11316 {
11317 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11318 while (offsetp < offsets_end
11319 && offsetp->sect_off < origin_child_die->offset.sect_off)
11320 offsetp++;
11321 if (offsetp >= offsets_end
11322 || offsetp->sect_off > origin_child_die->offset.sect_off)
11323 {
11324 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11325 Check whether we're already processing ORIGIN_CHILD_DIE.
11326 This can happen with mutually referenced abstract_origins.
11327 PR 16581. */
11328 if (!origin_child_die->in_process)
11329 process_die (origin_child_die, origin_cu);
11330 }
11331 origin_child_die = sibling_die (origin_child_die);
11332 }
11333 origin_cu->list_in_scope = origin_previous_list_in_scope;
11334
11335 do_cleanups (cleanups);
11336 }
11337
11338 static void
11339 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11340 {
11341 struct objfile *objfile = cu->objfile;
11342 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11343 struct context_stack *newobj;
11344 CORE_ADDR lowpc;
11345 CORE_ADDR highpc;
11346 struct die_info *child_die;
11347 struct attribute *attr, *call_line, *call_file;
11348 const char *name;
11349 CORE_ADDR baseaddr;
11350 struct block *block;
11351 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11352 VEC (symbolp) *template_args = NULL;
11353 struct template_symbol *templ_func = NULL;
11354
11355 if (inlined_func)
11356 {
11357 /* If we do not have call site information, we can't show the
11358 caller of this inlined function. That's too confusing, so
11359 only use the scope for local variables. */
11360 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11361 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11362 if (call_line == NULL || call_file == NULL)
11363 {
11364 read_lexical_block_scope (die, cu);
11365 return;
11366 }
11367 }
11368
11369 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11370
11371 name = dwarf2_name (die, cu);
11372
11373 /* Ignore functions with missing or empty names. These are actually
11374 illegal according to the DWARF standard. */
11375 if (name == NULL)
11376 {
11377 complaint (&symfile_complaints,
11378 _("missing name for subprogram DIE at %d"),
11379 die->offset.sect_off);
11380 return;
11381 }
11382
11383 /* Ignore functions with missing or invalid low and high pc attributes. */
11384 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11385 <= PC_BOUNDS_INVALID)
11386 {
11387 attr = dwarf2_attr (die, DW_AT_external, cu);
11388 if (!attr || !DW_UNSND (attr))
11389 complaint (&symfile_complaints,
11390 _("cannot get low and high bounds "
11391 "for subprogram DIE at %d"),
11392 die->offset.sect_off);
11393 return;
11394 }
11395
11396 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11397 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11398
11399 /* If we have any template arguments, then we must allocate a
11400 different sort of symbol. */
11401 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11402 {
11403 if (child_die->tag == DW_TAG_template_type_param
11404 || child_die->tag == DW_TAG_template_value_param)
11405 {
11406 templ_func = allocate_template_symbol (objfile);
11407 templ_func->base.is_cplus_template_function = 1;
11408 break;
11409 }
11410 }
11411
11412 newobj = push_context (0, lowpc);
11413 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11414 (struct symbol *) templ_func);
11415
11416 /* If there is a location expression for DW_AT_frame_base, record
11417 it. */
11418 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11419 if (attr)
11420 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11421
11422 /* If there is a location for the static link, record it. */
11423 newobj->static_link = NULL;
11424 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11425 if (attr)
11426 {
11427 newobj->static_link
11428 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11429 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11430 }
11431
11432 cu->list_in_scope = &local_symbols;
11433
11434 if (die->child != NULL)
11435 {
11436 child_die = die->child;
11437 while (child_die && child_die->tag)
11438 {
11439 if (child_die->tag == DW_TAG_template_type_param
11440 || child_die->tag == DW_TAG_template_value_param)
11441 {
11442 struct symbol *arg = new_symbol (child_die, NULL, cu);
11443
11444 if (arg != NULL)
11445 VEC_safe_push (symbolp, template_args, arg);
11446 }
11447 else
11448 process_die (child_die, cu);
11449 child_die = sibling_die (child_die);
11450 }
11451 }
11452
11453 inherit_abstract_dies (die, cu);
11454
11455 /* If we have a DW_AT_specification, we might need to import using
11456 directives from the context of the specification DIE. See the
11457 comment in determine_prefix. */
11458 if (cu->language == language_cplus
11459 && dwarf2_attr (die, DW_AT_specification, cu))
11460 {
11461 struct dwarf2_cu *spec_cu = cu;
11462 struct die_info *spec_die = die_specification (die, &spec_cu);
11463
11464 while (spec_die)
11465 {
11466 child_die = spec_die->child;
11467 while (child_die && child_die->tag)
11468 {
11469 if (child_die->tag == DW_TAG_imported_module)
11470 process_die (child_die, spec_cu);
11471 child_die = sibling_die (child_die);
11472 }
11473
11474 /* In some cases, GCC generates specification DIEs that
11475 themselves contain DW_AT_specification attributes. */
11476 spec_die = die_specification (spec_die, &spec_cu);
11477 }
11478 }
11479
11480 newobj = pop_context ();
11481 /* Make a block for the local symbols within. */
11482 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11483 newobj->static_link, lowpc, highpc);
11484
11485 /* For C++, set the block's scope. */
11486 if ((cu->language == language_cplus
11487 || cu->language == language_fortran
11488 || cu->language == language_d
11489 || cu->language == language_rust)
11490 && cu->processing_has_namespace_info)
11491 block_set_scope (block, determine_prefix (die, cu),
11492 &objfile->objfile_obstack);
11493
11494 /* If we have address ranges, record them. */
11495 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11496
11497 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11498
11499 /* Attach template arguments to function. */
11500 if (! VEC_empty (symbolp, template_args))
11501 {
11502 gdb_assert (templ_func != NULL);
11503
11504 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11505 templ_func->template_arguments
11506 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11507 templ_func->n_template_arguments);
11508 memcpy (templ_func->template_arguments,
11509 VEC_address (symbolp, template_args),
11510 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11511 VEC_free (symbolp, template_args);
11512 }
11513
11514 /* In C++, we can have functions nested inside functions (e.g., when
11515 a function declares a class that has methods). This means that
11516 when we finish processing a function scope, we may need to go
11517 back to building a containing block's symbol lists. */
11518 local_symbols = newobj->locals;
11519 local_using_directives = newobj->local_using_directives;
11520
11521 /* If we've finished processing a top-level function, subsequent
11522 symbols go in the file symbol list. */
11523 if (outermost_context_p ())
11524 cu->list_in_scope = &file_symbols;
11525 }
11526
11527 /* Process all the DIES contained within a lexical block scope. Start
11528 a new scope, process the dies, and then close the scope. */
11529
11530 static void
11531 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11532 {
11533 struct objfile *objfile = cu->objfile;
11534 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11535 struct context_stack *newobj;
11536 CORE_ADDR lowpc, highpc;
11537 struct die_info *child_die;
11538 CORE_ADDR baseaddr;
11539
11540 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11541
11542 /* Ignore blocks with missing or invalid low and high pc attributes. */
11543 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11544 as multiple lexical blocks? Handling children in a sane way would
11545 be nasty. Might be easier to properly extend generic blocks to
11546 describe ranges. */
11547 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11548 {
11549 case PC_BOUNDS_NOT_PRESENT:
11550 /* DW_TAG_lexical_block has no attributes, process its children as if
11551 there was no wrapping by that DW_TAG_lexical_block.
11552 GCC does no longer produces such DWARF since GCC r224161. */
11553 for (child_die = die->child;
11554 child_die != NULL && child_die->tag;
11555 child_die = sibling_die (child_die))
11556 process_die (child_die, cu);
11557 return;
11558 case PC_BOUNDS_INVALID:
11559 return;
11560 }
11561 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11562 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11563
11564 push_context (0, lowpc);
11565 if (die->child != NULL)
11566 {
11567 child_die = die->child;
11568 while (child_die && child_die->tag)
11569 {
11570 process_die (child_die, cu);
11571 child_die = sibling_die (child_die);
11572 }
11573 }
11574 inherit_abstract_dies (die, cu);
11575 newobj = pop_context ();
11576
11577 if (local_symbols != NULL || local_using_directives != NULL)
11578 {
11579 struct block *block
11580 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11581 newobj->start_addr, highpc);
11582
11583 /* Note that recording ranges after traversing children, as we
11584 do here, means that recording a parent's ranges entails
11585 walking across all its children's ranges as they appear in
11586 the address map, which is quadratic behavior.
11587
11588 It would be nicer to record the parent's ranges before
11589 traversing its children, simply overriding whatever you find
11590 there. But since we don't even decide whether to create a
11591 block until after we've traversed its children, that's hard
11592 to do. */
11593 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11594 }
11595 local_symbols = newobj->locals;
11596 local_using_directives = newobj->local_using_directives;
11597 }
11598
11599 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11600
11601 static void
11602 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11603 {
11604 struct objfile *objfile = cu->objfile;
11605 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11606 CORE_ADDR pc, baseaddr;
11607 struct attribute *attr;
11608 struct call_site *call_site, call_site_local;
11609 void **slot;
11610 int nparams;
11611 struct die_info *child_die;
11612
11613 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11614
11615 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11616 if (!attr)
11617 {
11618 complaint (&symfile_complaints,
11619 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11620 "DIE 0x%x [in module %s]"),
11621 die->offset.sect_off, objfile_name (objfile));
11622 return;
11623 }
11624 pc = attr_value_as_address (attr) + baseaddr;
11625 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11626
11627 if (cu->call_site_htab == NULL)
11628 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11629 NULL, &objfile->objfile_obstack,
11630 hashtab_obstack_allocate, NULL);
11631 call_site_local.pc = pc;
11632 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11633 if (*slot != NULL)
11634 {
11635 complaint (&symfile_complaints,
11636 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11637 "DIE 0x%x [in module %s]"),
11638 paddress (gdbarch, pc), die->offset.sect_off,
11639 objfile_name (objfile));
11640 return;
11641 }
11642
11643 /* Count parameters at the caller. */
11644
11645 nparams = 0;
11646 for (child_die = die->child; child_die && child_die->tag;
11647 child_die = sibling_die (child_die))
11648 {
11649 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11650 {
11651 complaint (&symfile_complaints,
11652 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11653 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11654 child_die->tag, child_die->offset.sect_off,
11655 objfile_name (objfile));
11656 continue;
11657 }
11658
11659 nparams++;
11660 }
11661
11662 call_site
11663 = ((struct call_site *)
11664 obstack_alloc (&objfile->objfile_obstack,
11665 sizeof (*call_site)
11666 + (sizeof (*call_site->parameter) * (nparams - 1))));
11667 *slot = call_site;
11668 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11669 call_site->pc = pc;
11670
11671 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11672 {
11673 struct die_info *func_die;
11674
11675 /* Skip also over DW_TAG_inlined_subroutine. */
11676 for (func_die = die->parent;
11677 func_die && func_die->tag != DW_TAG_subprogram
11678 && func_die->tag != DW_TAG_subroutine_type;
11679 func_die = func_die->parent);
11680
11681 /* DW_AT_GNU_all_call_sites is a superset
11682 of DW_AT_GNU_all_tail_call_sites. */
11683 if (func_die
11684 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11685 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11686 {
11687 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11688 not complete. But keep CALL_SITE for look ups via call_site_htab,
11689 both the initial caller containing the real return address PC and
11690 the final callee containing the current PC of a chain of tail
11691 calls do not need to have the tail call list complete. But any
11692 function candidate for a virtual tail call frame searched via
11693 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11694 determined unambiguously. */
11695 }
11696 else
11697 {
11698 struct type *func_type = NULL;
11699
11700 if (func_die)
11701 func_type = get_die_type (func_die, cu);
11702 if (func_type != NULL)
11703 {
11704 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11705
11706 /* Enlist this call site to the function. */
11707 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11708 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11709 }
11710 else
11711 complaint (&symfile_complaints,
11712 _("Cannot find function owning DW_TAG_GNU_call_site "
11713 "DIE 0x%x [in module %s]"),
11714 die->offset.sect_off, objfile_name (objfile));
11715 }
11716 }
11717
11718 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11719 if (attr == NULL)
11720 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11721 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11722 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11723 /* Keep NULL DWARF_BLOCK. */;
11724 else if (attr_form_is_block (attr))
11725 {
11726 struct dwarf2_locexpr_baton *dlbaton;
11727
11728 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11729 dlbaton->data = DW_BLOCK (attr)->data;
11730 dlbaton->size = DW_BLOCK (attr)->size;
11731 dlbaton->per_cu = cu->per_cu;
11732
11733 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11734 }
11735 else if (attr_form_is_ref (attr))
11736 {
11737 struct dwarf2_cu *target_cu = cu;
11738 struct die_info *target_die;
11739
11740 target_die = follow_die_ref (die, attr, &target_cu);
11741 gdb_assert (target_cu->objfile == objfile);
11742 if (die_is_declaration (target_die, target_cu))
11743 {
11744 const char *target_physname;
11745
11746 /* Prefer the mangled name; otherwise compute the demangled one. */
11747 target_physname = dwarf2_string_attr (target_die,
11748 DW_AT_linkage_name,
11749 target_cu);
11750 if (target_physname == NULL)
11751 target_physname = dwarf2_string_attr (target_die,
11752 DW_AT_MIPS_linkage_name,
11753 target_cu);
11754 if (target_physname == NULL)
11755 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11756 if (target_physname == NULL)
11757 complaint (&symfile_complaints,
11758 _("DW_AT_GNU_call_site_target target DIE has invalid "
11759 "physname, for referencing DIE 0x%x [in module %s]"),
11760 die->offset.sect_off, objfile_name (objfile));
11761 else
11762 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11763 }
11764 else
11765 {
11766 CORE_ADDR lowpc;
11767
11768 /* DW_AT_entry_pc should be preferred. */
11769 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11770 <= PC_BOUNDS_INVALID)
11771 complaint (&symfile_complaints,
11772 _("DW_AT_GNU_call_site_target target DIE has invalid "
11773 "low pc, for referencing DIE 0x%x [in module %s]"),
11774 die->offset.sect_off, objfile_name (objfile));
11775 else
11776 {
11777 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11778 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11779 }
11780 }
11781 }
11782 else
11783 complaint (&symfile_complaints,
11784 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11785 "block nor reference, for DIE 0x%x [in module %s]"),
11786 die->offset.sect_off, objfile_name (objfile));
11787
11788 call_site->per_cu = cu->per_cu;
11789
11790 for (child_die = die->child;
11791 child_die && child_die->tag;
11792 child_die = sibling_die (child_die))
11793 {
11794 struct call_site_parameter *parameter;
11795 struct attribute *loc, *origin;
11796
11797 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11798 {
11799 /* Already printed the complaint above. */
11800 continue;
11801 }
11802
11803 gdb_assert (call_site->parameter_count < nparams);
11804 parameter = &call_site->parameter[call_site->parameter_count];
11805
11806 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11807 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11808 register is contained in DW_AT_GNU_call_site_value. */
11809
11810 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11811 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11812 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11813 {
11814 sect_offset offset;
11815
11816 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11817 offset = dwarf2_get_ref_die_offset (origin);
11818 if (!offset_in_cu_p (&cu->header, offset))
11819 {
11820 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11821 binding can be done only inside one CU. Such referenced DIE
11822 therefore cannot be even moved to DW_TAG_partial_unit. */
11823 complaint (&symfile_complaints,
11824 _("DW_AT_abstract_origin offset is not in CU for "
11825 "DW_TAG_GNU_call_site child DIE 0x%x "
11826 "[in module %s]"),
11827 child_die->offset.sect_off, objfile_name (objfile));
11828 continue;
11829 }
11830 parameter->u.param_offset.cu_off = (offset.sect_off
11831 - cu->header.offset.sect_off);
11832 }
11833 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11834 {
11835 complaint (&symfile_complaints,
11836 _("No DW_FORM_block* DW_AT_location for "
11837 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11838 child_die->offset.sect_off, objfile_name (objfile));
11839 continue;
11840 }
11841 else
11842 {
11843 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11844 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11845 if (parameter->u.dwarf_reg != -1)
11846 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11847 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11848 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11849 &parameter->u.fb_offset))
11850 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11851 else
11852 {
11853 complaint (&symfile_complaints,
11854 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11855 "for DW_FORM_block* DW_AT_location is supported for "
11856 "DW_TAG_GNU_call_site child DIE 0x%x "
11857 "[in module %s]"),
11858 child_die->offset.sect_off, objfile_name (objfile));
11859 continue;
11860 }
11861 }
11862
11863 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11864 if (!attr_form_is_block (attr))
11865 {
11866 complaint (&symfile_complaints,
11867 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11868 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11869 child_die->offset.sect_off, objfile_name (objfile));
11870 continue;
11871 }
11872 parameter->value = DW_BLOCK (attr)->data;
11873 parameter->value_size = DW_BLOCK (attr)->size;
11874
11875 /* Parameters are not pre-cleared by memset above. */
11876 parameter->data_value = NULL;
11877 parameter->data_value_size = 0;
11878 call_site->parameter_count++;
11879
11880 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11881 if (attr)
11882 {
11883 if (!attr_form_is_block (attr))
11884 complaint (&symfile_complaints,
11885 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11886 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11887 child_die->offset.sect_off, objfile_name (objfile));
11888 else
11889 {
11890 parameter->data_value = DW_BLOCK (attr)->data;
11891 parameter->data_value_size = DW_BLOCK (attr)->size;
11892 }
11893 }
11894 }
11895 }
11896
11897 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11898 Return 1 if the attributes are present and valid, otherwise, return 0.
11899 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11900
11901 static int
11902 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11903 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11904 struct partial_symtab *ranges_pst)
11905 {
11906 struct objfile *objfile = cu->objfile;
11907 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11908 struct comp_unit_head *cu_header = &cu->header;
11909 bfd *obfd = objfile->obfd;
11910 unsigned int addr_size = cu_header->addr_size;
11911 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11912 /* Base address selection entry. */
11913 CORE_ADDR base;
11914 int found_base;
11915 unsigned int dummy;
11916 const gdb_byte *buffer;
11917 int low_set;
11918 CORE_ADDR low = 0;
11919 CORE_ADDR high = 0;
11920 CORE_ADDR baseaddr;
11921
11922 found_base = cu->base_known;
11923 base = cu->base_address;
11924
11925 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11926 if (offset >= dwarf2_per_objfile->ranges.size)
11927 {
11928 complaint (&symfile_complaints,
11929 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11930 offset);
11931 return 0;
11932 }
11933 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11934
11935 low_set = 0;
11936
11937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11938
11939 while (1)
11940 {
11941 CORE_ADDR range_beginning, range_end;
11942
11943 range_beginning = read_address (obfd, buffer, cu, &dummy);
11944 buffer += addr_size;
11945 range_end = read_address (obfd, buffer, cu, &dummy);
11946 buffer += addr_size;
11947 offset += 2 * addr_size;
11948
11949 /* An end of list marker is a pair of zero addresses. */
11950 if (range_beginning == 0 && range_end == 0)
11951 /* Found the end of list entry. */
11952 break;
11953
11954 /* Each base address selection entry is a pair of 2 values.
11955 The first is the largest possible address, the second is
11956 the base address. Check for a base address here. */
11957 if ((range_beginning & mask) == mask)
11958 {
11959 /* If we found the largest possible address, then we already
11960 have the base address in range_end. */
11961 base = range_end;
11962 found_base = 1;
11963 continue;
11964 }
11965
11966 if (!found_base)
11967 {
11968 /* We have no valid base address for the ranges
11969 data. */
11970 complaint (&symfile_complaints,
11971 _("Invalid .debug_ranges data (no base address)"));
11972 return 0;
11973 }
11974
11975 if (range_beginning > range_end)
11976 {
11977 /* Inverted range entries are invalid. */
11978 complaint (&symfile_complaints,
11979 _("Invalid .debug_ranges data (inverted range)"));
11980 return 0;
11981 }
11982
11983 /* Empty range entries have no effect. */
11984 if (range_beginning == range_end)
11985 continue;
11986
11987 range_beginning += base;
11988 range_end += base;
11989
11990 /* A not-uncommon case of bad debug info.
11991 Don't pollute the addrmap with bad data. */
11992 if (range_beginning + baseaddr == 0
11993 && !dwarf2_per_objfile->has_section_at_zero)
11994 {
11995 complaint (&symfile_complaints,
11996 _(".debug_ranges entry has start address of zero"
11997 " [in module %s]"), objfile_name (objfile));
11998 continue;
11999 }
12000
12001 if (ranges_pst != NULL)
12002 {
12003 CORE_ADDR lowpc;
12004 CORE_ADDR highpc;
12005
12006 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12007 range_beginning + baseaddr);
12008 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12009 range_end + baseaddr);
12010 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12011 ranges_pst);
12012 }
12013
12014 /* FIXME: This is recording everything as a low-high
12015 segment of consecutive addresses. We should have a
12016 data structure for discontiguous block ranges
12017 instead. */
12018 if (! low_set)
12019 {
12020 low = range_beginning;
12021 high = range_end;
12022 low_set = 1;
12023 }
12024 else
12025 {
12026 if (range_beginning < low)
12027 low = range_beginning;
12028 if (range_end > high)
12029 high = range_end;
12030 }
12031 }
12032
12033 if (! low_set)
12034 /* If the first entry is an end-of-list marker, the range
12035 describes an empty scope, i.e. no instructions. */
12036 return 0;
12037
12038 if (low_return)
12039 *low_return = low;
12040 if (high_return)
12041 *high_return = high;
12042 return 1;
12043 }
12044
12045 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12046 definition for the return value. *LOWPC and *HIGHPC are set iff
12047 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12048
12049 static enum pc_bounds_kind
12050 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12051 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12052 struct partial_symtab *pst)
12053 {
12054 struct attribute *attr;
12055 struct attribute *attr_high;
12056 CORE_ADDR low = 0;
12057 CORE_ADDR high = 0;
12058 enum pc_bounds_kind ret;
12059
12060 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12061 if (attr_high)
12062 {
12063 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12064 if (attr)
12065 {
12066 low = attr_value_as_address (attr);
12067 high = attr_value_as_address (attr_high);
12068 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12069 high += low;
12070 }
12071 else
12072 /* Found high w/o low attribute. */
12073 return PC_BOUNDS_INVALID;
12074
12075 /* Found consecutive range of addresses. */
12076 ret = PC_BOUNDS_HIGH_LOW;
12077 }
12078 else
12079 {
12080 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12081 if (attr != NULL)
12082 {
12083 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12084 We take advantage of the fact that DW_AT_ranges does not appear
12085 in DW_TAG_compile_unit of DWO files. */
12086 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12087 unsigned int ranges_offset = (DW_UNSND (attr)
12088 + (need_ranges_base
12089 ? cu->ranges_base
12090 : 0));
12091
12092 /* Value of the DW_AT_ranges attribute is the offset in the
12093 .debug_ranges section. */
12094 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12095 return PC_BOUNDS_INVALID;
12096 /* Found discontinuous range of addresses. */
12097 ret = PC_BOUNDS_RANGES;
12098 }
12099 else
12100 return PC_BOUNDS_NOT_PRESENT;
12101 }
12102
12103 /* read_partial_die has also the strict LOW < HIGH requirement. */
12104 if (high <= low)
12105 return PC_BOUNDS_INVALID;
12106
12107 /* When using the GNU linker, .gnu.linkonce. sections are used to
12108 eliminate duplicate copies of functions and vtables and such.
12109 The linker will arbitrarily choose one and discard the others.
12110 The AT_*_pc values for such functions refer to local labels in
12111 these sections. If the section from that file was discarded, the
12112 labels are not in the output, so the relocs get a value of 0.
12113 If this is a discarded function, mark the pc bounds as invalid,
12114 so that GDB will ignore it. */
12115 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12116 return PC_BOUNDS_INVALID;
12117
12118 *lowpc = low;
12119 if (highpc)
12120 *highpc = high;
12121 return ret;
12122 }
12123
12124 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12125 its low and high PC addresses. Do nothing if these addresses could not
12126 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12127 and HIGHPC to the high address if greater than HIGHPC. */
12128
12129 static void
12130 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12131 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12132 struct dwarf2_cu *cu)
12133 {
12134 CORE_ADDR low, high;
12135 struct die_info *child = die->child;
12136
12137 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12138 {
12139 *lowpc = std::min (*lowpc, low);
12140 *highpc = std::max (*highpc, high);
12141 }
12142
12143 /* If the language does not allow nested subprograms (either inside
12144 subprograms or lexical blocks), we're done. */
12145 if (cu->language != language_ada)
12146 return;
12147
12148 /* Check all the children of the given DIE. If it contains nested
12149 subprograms, then check their pc bounds. Likewise, we need to
12150 check lexical blocks as well, as they may also contain subprogram
12151 definitions. */
12152 while (child && child->tag)
12153 {
12154 if (child->tag == DW_TAG_subprogram
12155 || child->tag == DW_TAG_lexical_block)
12156 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12157 child = sibling_die (child);
12158 }
12159 }
12160
12161 /* Get the low and high pc's represented by the scope DIE, and store
12162 them in *LOWPC and *HIGHPC. If the correct values can't be
12163 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12164
12165 static void
12166 get_scope_pc_bounds (struct die_info *die,
12167 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12168 struct dwarf2_cu *cu)
12169 {
12170 CORE_ADDR best_low = (CORE_ADDR) -1;
12171 CORE_ADDR best_high = (CORE_ADDR) 0;
12172 CORE_ADDR current_low, current_high;
12173
12174 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12175 >= PC_BOUNDS_RANGES)
12176 {
12177 best_low = current_low;
12178 best_high = current_high;
12179 }
12180 else
12181 {
12182 struct die_info *child = die->child;
12183
12184 while (child && child->tag)
12185 {
12186 switch (child->tag) {
12187 case DW_TAG_subprogram:
12188 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12189 break;
12190 case DW_TAG_namespace:
12191 case DW_TAG_module:
12192 /* FIXME: carlton/2004-01-16: Should we do this for
12193 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12194 that current GCC's always emit the DIEs corresponding
12195 to definitions of methods of classes as children of a
12196 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12197 the DIEs giving the declarations, which could be
12198 anywhere). But I don't see any reason why the
12199 standards says that they have to be there. */
12200 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12201
12202 if (current_low != ((CORE_ADDR) -1))
12203 {
12204 best_low = std::min (best_low, current_low);
12205 best_high = std::max (best_high, current_high);
12206 }
12207 break;
12208 default:
12209 /* Ignore. */
12210 break;
12211 }
12212
12213 child = sibling_die (child);
12214 }
12215 }
12216
12217 *lowpc = best_low;
12218 *highpc = best_high;
12219 }
12220
12221 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12222 in DIE. */
12223
12224 static void
12225 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12226 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12227 {
12228 struct objfile *objfile = cu->objfile;
12229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12230 struct attribute *attr;
12231 struct attribute *attr_high;
12232
12233 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12234 if (attr_high)
12235 {
12236 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12237 if (attr)
12238 {
12239 CORE_ADDR low = attr_value_as_address (attr);
12240 CORE_ADDR high = attr_value_as_address (attr_high);
12241
12242 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12243 high += low;
12244
12245 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12246 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12247 record_block_range (block, low, high - 1);
12248 }
12249 }
12250
12251 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12252 if (attr)
12253 {
12254 bfd *obfd = objfile->obfd;
12255 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12256 We take advantage of the fact that DW_AT_ranges does not appear
12257 in DW_TAG_compile_unit of DWO files. */
12258 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12259
12260 /* The value of the DW_AT_ranges attribute is the offset of the
12261 address range list in the .debug_ranges section. */
12262 unsigned long offset = (DW_UNSND (attr)
12263 + (need_ranges_base ? cu->ranges_base : 0));
12264 const gdb_byte *buffer;
12265
12266 /* For some target architectures, but not others, the
12267 read_address function sign-extends the addresses it returns.
12268 To recognize base address selection entries, we need a
12269 mask. */
12270 unsigned int addr_size = cu->header.addr_size;
12271 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12272
12273 /* The base address, to which the next pair is relative. Note
12274 that this 'base' is a DWARF concept: most entries in a range
12275 list are relative, to reduce the number of relocs against the
12276 debugging information. This is separate from this function's
12277 'baseaddr' argument, which GDB uses to relocate debugging
12278 information from a shared library based on the address at
12279 which the library was loaded. */
12280 CORE_ADDR base = cu->base_address;
12281 int base_known = cu->base_known;
12282
12283 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12284 if (offset >= dwarf2_per_objfile->ranges.size)
12285 {
12286 complaint (&symfile_complaints,
12287 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12288 offset);
12289 return;
12290 }
12291 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12292
12293 for (;;)
12294 {
12295 unsigned int bytes_read;
12296 CORE_ADDR start, end;
12297
12298 start = read_address (obfd, buffer, cu, &bytes_read);
12299 buffer += bytes_read;
12300 end = read_address (obfd, buffer, cu, &bytes_read);
12301 buffer += bytes_read;
12302
12303 /* Did we find the end of the range list? */
12304 if (start == 0 && end == 0)
12305 break;
12306
12307 /* Did we find a base address selection entry? */
12308 else if ((start & base_select_mask) == base_select_mask)
12309 {
12310 base = end;
12311 base_known = 1;
12312 }
12313
12314 /* We found an ordinary address range. */
12315 else
12316 {
12317 if (!base_known)
12318 {
12319 complaint (&symfile_complaints,
12320 _("Invalid .debug_ranges data "
12321 "(no base address)"));
12322 return;
12323 }
12324
12325 if (start > end)
12326 {
12327 /* Inverted range entries are invalid. */
12328 complaint (&symfile_complaints,
12329 _("Invalid .debug_ranges data "
12330 "(inverted range)"));
12331 return;
12332 }
12333
12334 /* Empty range entries have no effect. */
12335 if (start == end)
12336 continue;
12337
12338 start += base + baseaddr;
12339 end += base + baseaddr;
12340
12341 /* A not-uncommon case of bad debug info.
12342 Don't pollute the addrmap with bad data. */
12343 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12344 {
12345 complaint (&symfile_complaints,
12346 _(".debug_ranges entry has start address of zero"
12347 " [in module %s]"), objfile_name (objfile));
12348 continue;
12349 }
12350
12351 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12352 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12353 record_block_range (block, start, end - 1);
12354 }
12355 }
12356 }
12357 }
12358
12359 /* Check whether the producer field indicates either of GCC < 4.6, or the
12360 Intel C/C++ compiler, and cache the result in CU. */
12361
12362 static void
12363 check_producer (struct dwarf2_cu *cu)
12364 {
12365 int major, minor;
12366
12367 if (cu->producer == NULL)
12368 {
12369 /* For unknown compilers expect their behavior is DWARF version
12370 compliant.
12371
12372 GCC started to support .debug_types sections by -gdwarf-4 since
12373 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12374 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12375 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12376 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12377 }
12378 else if (producer_is_gcc (cu->producer, &major, &minor))
12379 {
12380 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12381 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12382 }
12383 else if (startswith (cu->producer, "Intel(R) C"))
12384 cu->producer_is_icc = 1;
12385 else
12386 {
12387 /* For other non-GCC compilers, expect their behavior is DWARF version
12388 compliant. */
12389 }
12390
12391 cu->checked_producer = 1;
12392 }
12393
12394 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12395 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12396 during 4.6.0 experimental. */
12397
12398 static int
12399 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12400 {
12401 if (!cu->checked_producer)
12402 check_producer (cu);
12403
12404 return cu->producer_is_gxx_lt_4_6;
12405 }
12406
12407 /* Return the default accessibility type if it is not overriden by
12408 DW_AT_accessibility. */
12409
12410 static enum dwarf_access_attribute
12411 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12412 {
12413 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12414 {
12415 /* The default DWARF 2 accessibility for members is public, the default
12416 accessibility for inheritance is private. */
12417
12418 if (die->tag != DW_TAG_inheritance)
12419 return DW_ACCESS_public;
12420 else
12421 return DW_ACCESS_private;
12422 }
12423 else
12424 {
12425 /* DWARF 3+ defines the default accessibility a different way. The same
12426 rules apply now for DW_TAG_inheritance as for the members and it only
12427 depends on the container kind. */
12428
12429 if (die->parent->tag == DW_TAG_class_type)
12430 return DW_ACCESS_private;
12431 else
12432 return DW_ACCESS_public;
12433 }
12434 }
12435
12436 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12437 offset. If the attribute was not found return 0, otherwise return
12438 1. If it was found but could not properly be handled, set *OFFSET
12439 to 0. */
12440
12441 static int
12442 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12443 LONGEST *offset)
12444 {
12445 struct attribute *attr;
12446
12447 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12448 if (attr != NULL)
12449 {
12450 *offset = 0;
12451
12452 /* Note that we do not check for a section offset first here.
12453 This is because DW_AT_data_member_location is new in DWARF 4,
12454 so if we see it, we can assume that a constant form is really
12455 a constant and not a section offset. */
12456 if (attr_form_is_constant (attr))
12457 *offset = dwarf2_get_attr_constant_value (attr, 0);
12458 else if (attr_form_is_section_offset (attr))
12459 dwarf2_complex_location_expr_complaint ();
12460 else if (attr_form_is_block (attr))
12461 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12462 else
12463 dwarf2_complex_location_expr_complaint ();
12464
12465 return 1;
12466 }
12467
12468 return 0;
12469 }
12470
12471 /* Add an aggregate field to the field list. */
12472
12473 static void
12474 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12475 struct dwarf2_cu *cu)
12476 {
12477 struct objfile *objfile = cu->objfile;
12478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12479 struct nextfield *new_field;
12480 struct attribute *attr;
12481 struct field *fp;
12482 const char *fieldname = "";
12483
12484 /* Allocate a new field list entry and link it in. */
12485 new_field = XNEW (struct nextfield);
12486 make_cleanup (xfree, new_field);
12487 memset (new_field, 0, sizeof (struct nextfield));
12488
12489 if (die->tag == DW_TAG_inheritance)
12490 {
12491 new_field->next = fip->baseclasses;
12492 fip->baseclasses = new_field;
12493 }
12494 else
12495 {
12496 new_field->next = fip->fields;
12497 fip->fields = new_field;
12498 }
12499 fip->nfields++;
12500
12501 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12502 if (attr)
12503 new_field->accessibility = DW_UNSND (attr);
12504 else
12505 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12506 if (new_field->accessibility != DW_ACCESS_public)
12507 fip->non_public_fields = 1;
12508
12509 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12510 if (attr)
12511 new_field->virtuality = DW_UNSND (attr);
12512 else
12513 new_field->virtuality = DW_VIRTUALITY_none;
12514
12515 fp = &new_field->field;
12516
12517 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12518 {
12519 LONGEST offset;
12520
12521 /* Data member other than a C++ static data member. */
12522
12523 /* Get type of field. */
12524 fp->type = die_type (die, cu);
12525
12526 SET_FIELD_BITPOS (*fp, 0);
12527
12528 /* Get bit size of field (zero if none). */
12529 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12530 if (attr)
12531 {
12532 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12533 }
12534 else
12535 {
12536 FIELD_BITSIZE (*fp) = 0;
12537 }
12538
12539 /* Get bit offset of field. */
12540 if (handle_data_member_location (die, cu, &offset))
12541 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12542 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12543 if (attr)
12544 {
12545 if (gdbarch_bits_big_endian (gdbarch))
12546 {
12547 /* For big endian bits, the DW_AT_bit_offset gives the
12548 additional bit offset from the MSB of the containing
12549 anonymous object to the MSB of the field. We don't
12550 have to do anything special since we don't need to
12551 know the size of the anonymous object. */
12552 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12553 }
12554 else
12555 {
12556 /* For little endian bits, compute the bit offset to the
12557 MSB of the anonymous object, subtract off the number of
12558 bits from the MSB of the field to the MSB of the
12559 object, and then subtract off the number of bits of
12560 the field itself. The result is the bit offset of
12561 the LSB of the field. */
12562 int anonymous_size;
12563 int bit_offset = DW_UNSND (attr);
12564
12565 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12566 if (attr)
12567 {
12568 /* The size of the anonymous object containing
12569 the bit field is explicit, so use the
12570 indicated size (in bytes). */
12571 anonymous_size = DW_UNSND (attr);
12572 }
12573 else
12574 {
12575 /* The size of the anonymous object containing
12576 the bit field must be inferred from the type
12577 attribute of the data member containing the
12578 bit field. */
12579 anonymous_size = TYPE_LENGTH (fp->type);
12580 }
12581 SET_FIELD_BITPOS (*fp,
12582 (FIELD_BITPOS (*fp)
12583 + anonymous_size * bits_per_byte
12584 - bit_offset - FIELD_BITSIZE (*fp)));
12585 }
12586 }
12587 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12588 if (attr != NULL)
12589 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12590 + dwarf2_get_attr_constant_value (attr, 0)));
12591
12592 /* Get name of field. */
12593 fieldname = dwarf2_name (die, cu);
12594 if (fieldname == NULL)
12595 fieldname = "";
12596
12597 /* The name is already allocated along with this objfile, so we don't
12598 need to duplicate it for the type. */
12599 fp->name = fieldname;
12600
12601 /* Change accessibility for artificial fields (e.g. virtual table
12602 pointer or virtual base class pointer) to private. */
12603 if (dwarf2_attr (die, DW_AT_artificial, cu))
12604 {
12605 FIELD_ARTIFICIAL (*fp) = 1;
12606 new_field->accessibility = DW_ACCESS_private;
12607 fip->non_public_fields = 1;
12608 }
12609 }
12610 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12611 {
12612 /* C++ static member. */
12613
12614 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12615 is a declaration, but all versions of G++ as of this writing
12616 (so through at least 3.2.1) incorrectly generate
12617 DW_TAG_variable tags. */
12618
12619 const char *physname;
12620
12621 /* Get name of field. */
12622 fieldname = dwarf2_name (die, cu);
12623 if (fieldname == NULL)
12624 return;
12625
12626 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12627 if (attr
12628 /* Only create a symbol if this is an external value.
12629 new_symbol checks this and puts the value in the global symbol
12630 table, which we want. If it is not external, new_symbol
12631 will try to put the value in cu->list_in_scope which is wrong. */
12632 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12633 {
12634 /* A static const member, not much different than an enum as far as
12635 we're concerned, except that we can support more types. */
12636 new_symbol (die, NULL, cu);
12637 }
12638
12639 /* Get physical name. */
12640 physname = dwarf2_physname (fieldname, die, cu);
12641
12642 /* The name is already allocated along with this objfile, so we don't
12643 need to duplicate it for the type. */
12644 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12645 FIELD_TYPE (*fp) = die_type (die, cu);
12646 FIELD_NAME (*fp) = fieldname;
12647 }
12648 else if (die->tag == DW_TAG_inheritance)
12649 {
12650 LONGEST offset;
12651
12652 /* C++ base class field. */
12653 if (handle_data_member_location (die, cu, &offset))
12654 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12655 FIELD_BITSIZE (*fp) = 0;
12656 FIELD_TYPE (*fp) = die_type (die, cu);
12657 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12658 fip->nbaseclasses++;
12659 }
12660 }
12661
12662 /* Add a typedef defined in the scope of the FIP's class. */
12663
12664 static void
12665 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12666 struct dwarf2_cu *cu)
12667 {
12668 struct typedef_field_list *new_field;
12669 struct typedef_field *fp;
12670
12671 /* Allocate a new field list entry and link it in. */
12672 new_field = XCNEW (struct typedef_field_list);
12673 make_cleanup (xfree, new_field);
12674
12675 gdb_assert (die->tag == DW_TAG_typedef);
12676
12677 fp = &new_field->field;
12678
12679 /* Get name of field. */
12680 fp->name = dwarf2_name (die, cu);
12681 if (fp->name == NULL)
12682 return;
12683
12684 fp->type = read_type_die (die, cu);
12685
12686 new_field->next = fip->typedef_field_list;
12687 fip->typedef_field_list = new_field;
12688 fip->typedef_field_list_count++;
12689 }
12690
12691 /* Create the vector of fields, and attach it to the type. */
12692
12693 static void
12694 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12695 struct dwarf2_cu *cu)
12696 {
12697 int nfields = fip->nfields;
12698
12699 /* Record the field count, allocate space for the array of fields,
12700 and create blank accessibility bitfields if necessary. */
12701 TYPE_NFIELDS (type) = nfields;
12702 TYPE_FIELDS (type) = (struct field *)
12703 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12704 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12705
12706 if (fip->non_public_fields && cu->language != language_ada)
12707 {
12708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12709
12710 TYPE_FIELD_PRIVATE_BITS (type) =
12711 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12712 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12713
12714 TYPE_FIELD_PROTECTED_BITS (type) =
12715 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12716 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12717
12718 TYPE_FIELD_IGNORE_BITS (type) =
12719 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12720 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12721 }
12722
12723 /* If the type has baseclasses, allocate and clear a bit vector for
12724 TYPE_FIELD_VIRTUAL_BITS. */
12725 if (fip->nbaseclasses && cu->language != language_ada)
12726 {
12727 int num_bytes = B_BYTES (fip->nbaseclasses);
12728 unsigned char *pointer;
12729
12730 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12731 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12732 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12733 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12734 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12735 }
12736
12737 /* Copy the saved-up fields into the field vector. Start from the head of
12738 the list, adding to the tail of the field array, so that they end up in
12739 the same order in the array in which they were added to the list. */
12740 while (nfields-- > 0)
12741 {
12742 struct nextfield *fieldp;
12743
12744 if (fip->fields)
12745 {
12746 fieldp = fip->fields;
12747 fip->fields = fieldp->next;
12748 }
12749 else
12750 {
12751 fieldp = fip->baseclasses;
12752 fip->baseclasses = fieldp->next;
12753 }
12754
12755 TYPE_FIELD (type, nfields) = fieldp->field;
12756 switch (fieldp->accessibility)
12757 {
12758 case DW_ACCESS_private:
12759 if (cu->language != language_ada)
12760 SET_TYPE_FIELD_PRIVATE (type, nfields);
12761 break;
12762
12763 case DW_ACCESS_protected:
12764 if (cu->language != language_ada)
12765 SET_TYPE_FIELD_PROTECTED (type, nfields);
12766 break;
12767
12768 case DW_ACCESS_public:
12769 break;
12770
12771 default:
12772 /* Unknown accessibility. Complain and treat it as public. */
12773 {
12774 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12775 fieldp->accessibility);
12776 }
12777 break;
12778 }
12779 if (nfields < fip->nbaseclasses)
12780 {
12781 switch (fieldp->virtuality)
12782 {
12783 case DW_VIRTUALITY_virtual:
12784 case DW_VIRTUALITY_pure_virtual:
12785 if (cu->language == language_ada)
12786 error (_("unexpected virtuality in component of Ada type"));
12787 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12788 break;
12789 }
12790 }
12791 }
12792 }
12793
12794 /* Return true if this member function is a constructor, false
12795 otherwise. */
12796
12797 static int
12798 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12799 {
12800 const char *fieldname;
12801 const char *type_name;
12802 int len;
12803
12804 if (die->parent == NULL)
12805 return 0;
12806
12807 if (die->parent->tag != DW_TAG_structure_type
12808 && die->parent->tag != DW_TAG_union_type
12809 && die->parent->tag != DW_TAG_class_type)
12810 return 0;
12811
12812 fieldname = dwarf2_name (die, cu);
12813 type_name = dwarf2_name (die->parent, cu);
12814 if (fieldname == NULL || type_name == NULL)
12815 return 0;
12816
12817 len = strlen (fieldname);
12818 return (strncmp (fieldname, type_name, len) == 0
12819 && (type_name[len] == '\0' || type_name[len] == '<'));
12820 }
12821
12822 /* Add a member function to the proper fieldlist. */
12823
12824 static void
12825 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12826 struct type *type, struct dwarf2_cu *cu)
12827 {
12828 struct objfile *objfile = cu->objfile;
12829 struct attribute *attr;
12830 struct fnfieldlist *flp;
12831 int i;
12832 struct fn_field *fnp;
12833 const char *fieldname;
12834 struct nextfnfield *new_fnfield;
12835 struct type *this_type;
12836 enum dwarf_access_attribute accessibility;
12837
12838 if (cu->language == language_ada)
12839 error (_("unexpected member function in Ada type"));
12840
12841 /* Get name of member function. */
12842 fieldname = dwarf2_name (die, cu);
12843 if (fieldname == NULL)
12844 return;
12845
12846 /* Look up member function name in fieldlist. */
12847 for (i = 0; i < fip->nfnfields; i++)
12848 {
12849 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12850 break;
12851 }
12852
12853 /* Create new list element if necessary. */
12854 if (i < fip->nfnfields)
12855 flp = &fip->fnfieldlists[i];
12856 else
12857 {
12858 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12859 {
12860 fip->fnfieldlists = (struct fnfieldlist *)
12861 xrealloc (fip->fnfieldlists,
12862 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12863 * sizeof (struct fnfieldlist));
12864 if (fip->nfnfields == 0)
12865 make_cleanup (free_current_contents, &fip->fnfieldlists);
12866 }
12867 flp = &fip->fnfieldlists[fip->nfnfields];
12868 flp->name = fieldname;
12869 flp->length = 0;
12870 flp->head = NULL;
12871 i = fip->nfnfields++;
12872 }
12873
12874 /* Create a new member function field and chain it to the field list
12875 entry. */
12876 new_fnfield = XNEW (struct nextfnfield);
12877 make_cleanup (xfree, new_fnfield);
12878 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12879 new_fnfield->next = flp->head;
12880 flp->head = new_fnfield;
12881 flp->length++;
12882
12883 /* Fill in the member function field info. */
12884 fnp = &new_fnfield->fnfield;
12885
12886 /* Delay processing of the physname until later. */
12887 if (cu->language == language_cplus)
12888 {
12889 add_to_method_list (type, i, flp->length - 1, fieldname,
12890 die, cu);
12891 }
12892 else
12893 {
12894 const char *physname = dwarf2_physname (fieldname, die, cu);
12895 fnp->physname = physname ? physname : "";
12896 }
12897
12898 fnp->type = alloc_type (objfile);
12899 this_type = read_type_die (die, cu);
12900 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12901 {
12902 int nparams = TYPE_NFIELDS (this_type);
12903
12904 /* TYPE is the domain of this method, and THIS_TYPE is the type
12905 of the method itself (TYPE_CODE_METHOD). */
12906 smash_to_method_type (fnp->type, type,
12907 TYPE_TARGET_TYPE (this_type),
12908 TYPE_FIELDS (this_type),
12909 TYPE_NFIELDS (this_type),
12910 TYPE_VARARGS (this_type));
12911
12912 /* Handle static member functions.
12913 Dwarf2 has no clean way to discern C++ static and non-static
12914 member functions. G++ helps GDB by marking the first
12915 parameter for non-static member functions (which is the this
12916 pointer) as artificial. We obtain this information from
12917 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12918 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12919 fnp->voffset = VOFFSET_STATIC;
12920 }
12921 else
12922 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12923 dwarf2_full_name (fieldname, die, cu));
12924
12925 /* Get fcontext from DW_AT_containing_type if present. */
12926 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12927 fnp->fcontext = die_containing_type (die, cu);
12928
12929 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12930 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12931
12932 /* Get accessibility. */
12933 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12934 if (attr)
12935 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12936 else
12937 accessibility = dwarf2_default_access_attribute (die, cu);
12938 switch (accessibility)
12939 {
12940 case DW_ACCESS_private:
12941 fnp->is_private = 1;
12942 break;
12943 case DW_ACCESS_protected:
12944 fnp->is_protected = 1;
12945 break;
12946 }
12947
12948 /* Check for artificial methods. */
12949 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12950 if (attr && DW_UNSND (attr) != 0)
12951 fnp->is_artificial = 1;
12952
12953 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12954
12955 /* Get index in virtual function table if it is a virtual member
12956 function. For older versions of GCC, this is an offset in the
12957 appropriate virtual table, as specified by DW_AT_containing_type.
12958 For everyone else, it is an expression to be evaluated relative
12959 to the object address. */
12960
12961 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12962 if (attr)
12963 {
12964 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12965 {
12966 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12967 {
12968 /* Old-style GCC. */
12969 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12970 }
12971 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12972 || (DW_BLOCK (attr)->size > 1
12973 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12974 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12975 {
12976 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12977 if ((fnp->voffset % cu->header.addr_size) != 0)
12978 dwarf2_complex_location_expr_complaint ();
12979 else
12980 fnp->voffset /= cu->header.addr_size;
12981 fnp->voffset += 2;
12982 }
12983 else
12984 dwarf2_complex_location_expr_complaint ();
12985
12986 if (!fnp->fcontext)
12987 {
12988 /* If there is no `this' field and no DW_AT_containing_type,
12989 we cannot actually find a base class context for the
12990 vtable! */
12991 if (TYPE_NFIELDS (this_type) == 0
12992 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12993 {
12994 complaint (&symfile_complaints,
12995 _("cannot determine context for virtual member "
12996 "function \"%s\" (offset %d)"),
12997 fieldname, die->offset.sect_off);
12998 }
12999 else
13000 {
13001 fnp->fcontext
13002 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13003 }
13004 }
13005 }
13006 else if (attr_form_is_section_offset (attr))
13007 {
13008 dwarf2_complex_location_expr_complaint ();
13009 }
13010 else
13011 {
13012 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13013 fieldname);
13014 }
13015 }
13016 else
13017 {
13018 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13019 if (attr && DW_UNSND (attr))
13020 {
13021 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13022 complaint (&symfile_complaints,
13023 _("Member function \"%s\" (offset %d) is virtual "
13024 "but the vtable offset is not specified"),
13025 fieldname, die->offset.sect_off);
13026 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13027 TYPE_CPLUS_DYNAMIC (type) = 1;
13028 }
13029 }
13030 }
13031
13032 /* Create the vector of member function fields, and attach it to the type. */
13033
13034 static void
13035 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13036 struct dwarf2_cu *cu)
13037 {
13038 struct fnfieldlist *flp;
13039 int i;
13040
13041 if (cu->language == language_ada)
13042 error (_("unexpected member functions in Ada type"));
13043
13044 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13045 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13046 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13047
13048 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13049 {
13050 struct nextfnfield *nfp = flp->head;
13051 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13052 int k;
13053
13054 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13055 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13056 fn_flp->fn_fields = (struct fn_field *)
13057 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13058 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13059 fn_flp->fn_fields[k] = nfp->fnfield;
13060 }
13061
13062 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13063 }
13064
13065 /* Returns non-zero if NAME is the name of a vtable member in CU's
13066 language, zero otherwise. */
13067 static int
13068 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13069 {
13070 static const char vptr[] = "_vptr";
13071 static const char vtable[] = "vtable";
13072
13073 /* Look for the C++ form of the vtable. */
13074 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13075 return 1;
13076
13077 return 0;
13078 }
13079
13080 /* GCC outputs unnamed structures that are really pointers to member
13081 functions, with the ABI-specified layout. If TYPE describes
13082 such a structure, smash it into a member function type.
13083
13084 GCC shouldn't do this; it should just output pointer to member DIEs.
13085 This is GCC PR debug/28767. */
13086
13087 static void
13088 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13089 {
13090 struct type *pfn_type, *self_type, *new_type;
13091
13092 /* Check for a structure with no name and two children. */
13093 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13094 return;
13095
13096 /* Check for __pfn and __delta members. */
13097 if (TYPE_FIELD_NAME (type, 0) == NULL
13098 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13099 || TYPE_FIELD_NAME (type, 1) == NULL
13100 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13101 return;
13102
13103 /* Find the type of the method. */
13104 pfn_type = TYPE_FIELD_TYPE (type, 0);
13105 if (pfn_type == NULL
13106 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13107 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13108 return;
13109
13110 /* Look for the "this" argument. */
13111 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13112 if (TYPE_NFIELDS (pfn_type) == 0
13113 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13114 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13115 return;
13116
13117 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13118 new_type = alloc_type (objfile);
13119 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13120 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13121 TYPE_VARARGS (pfn_type));
13122 smash_to_methodptr_type (type, new_type);
13123 }
13124
13125 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13126 (icc). */
13127
13128 static int
13129 producer_is_icc (struct dwarf2_cu *cu)
13130 {
13131 if (!cu->checked_producer)
13132 check_producer (cu);
13133
13134 return cu->producer_is_icc;
13135 }
13136
13137 /* Called when we find the DIE that starts a structure or union scope
13138 (definition) to create a type for the structure or union. Fill in
13139 the type's name and general properties; the members will not be
13140 processed until process_structure_scope. A symbol table entry for
13141 the type will also not be done until process_structure_scope (assuming
13142 the type has a name).
13143
13144 NOTE: we need to call these functions regardless of whether or not the
13145 DIE has a DW_AT_name attribute, since it might be an anonymous
13146 structure or union. This gets the type entered into our set of
13147 user defined types. */
13148
13149 static struct type *
13150 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13151 {
13152 struct objfile *objfile = cu->objfile;
13153 struct type *type;
13154 struct attribute *attr;
13155 const char *name;
13156
13157 /* If the definition of this type lives in .debug_types, read that type.
13158 Don't follow DW_AT_specification though, that will take us back up
13159 the chain and we want to go down. */
13160 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13161 if (attr)
13162 {
13163 type = get_DW_AT_signature_type (die, attr, cu);
13164
13165 /* The type's CU may not be the same as CU.
13166 Ensure TYPE is recorded with CU in die_type_hash. */
13167 return set_die_type (die, type, cu);
13168 }
13169
13170 type = alloc_type (objfile);
13171 INIT_CPLUS_SPECIFIC (type);
13172
13173 name = dwarf2_name (die, cu);
13174 if (name != NULL)
13175 {
13176 if (cu->language == language_cplus
13177 || cu->language == language_d
13178 || cu->language == language_rust)
13179 {
13180 const char *full_name = dwarf2_full_name (name, die, cu);
13181
13182 /* dwarf2_full_name might have already finished building the DIE's
13183 type. If so, there is no need to continue. */
13184 if (get_die_type (die, cu) != NULL)
13185 return get_die_type (die, cu);
13186
13187 TYPE_TAG_NAME (type) = full_name;
13188 if (die->tag == DW_TAG_structure_type
13189 || die->tag == DW_TAG_class_type)
13190 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13191 }
13192 else
13193 {
13194 /* The name is already allocated along with this objfile, so
13195 we don't need to duplicate it for the type. */
13196 TYPE_TAG_NAME (type) = name;
13197 if (die->tag == DW_TAG_class_type)
13198 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13199 }
13200 }
13201
13202 if (die->tag == DW_TAG_structure_type)
13203 {
13204 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13205 }
13206 else if (die->tag == DW_TAG_union_type)
13207 {
13208 TYPE_CODE (type) = TYPE_CODE_UNION;
13209 }
13210 else
13211 {
13212 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13213 }
13214
13215 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13216 TYPE_DECLARED_CLASS (type) = 1;
13217
13218 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13219 if (attr)
13220 {
13221 if (attr_form_is_constant (attr))
13222 TYPE_LENGTH (type) = DW_UNSND (attr);
13223 else
13224 {
13225 /* For the moment, dynamic type sizes are not supported
13226 by GDB's struct type. The actual size is determined
13227 on-demand when resolving the type of a given object,
13228 so set the type's length to zero for now. Otherwise,
13229 we record an expression as the length, and that expression
13230 could lead to a very large value, which could eventually
13231 lead to us trying to allocate that much memory when creating
13232 a value of that type. */
13233 TYPE_LENGTH (type) = 0;
13234 }
13235 }
13236 else
13237 {
13238 TYPE_LENGTH (type) = 0;
13239 }
13240
13241 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13242 {
13243 /* ICC does not output the required DW_AT_declaration
13244 on incomplete types, but gives them a size of zero. */
13245 TYPE_STUB (type) = 1;
13246 }
13247 else
13248 TYPE_STUB_SUPPORTED (type) = 1;
13249
13250 if (die_is_declaration (die, cu))
13251 TYPE_STUB (type) = 1;
13252 else if (attr == NULL && die->child == NULL
13253 && producer_is_realview (cu->producer))
13254 /* RealView does not output the required DW_AT_declaration
13255 on incomplete types. */
13256 TYPE_STUB (type) = 1;
13257
13258 /* We need to add the type field to the die immediately so we don't
13259 infinitely recurse when dealing with pointers to the structure
13260 type within the structure itself. */
13261 set_die_type (die, type, cu);
13262
13263 /* set_die_type should be already done. */
13264 set_descriptive_type (type, die, cu);
13265
13266 return type;
13267 }
13268
13269 /* Finish creating a structure or union type, including filling in
13270 its members and creating a symbol for it. */
13271
13272 static void
13273 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13274 {
13275 struct objfile *objfile = cu->objfile;
13276 struct die_info *child_die;
13277 struct type *type;
13278
13279 type = get_die_type (die, cu);
13280 if (type == NULL)
13281 type = read_structure_type (die, cu);
13282
13283 if (die->child != NULL && ! die_is_declaration (die, cu))
13284 {
13285 struct field_info fi;
13286 VEC (symbolp) *template_args = NULL;
13287 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13288
13289 memset (&fi, 0, sizeof (struct field_info));
13290
13291 child_die = die->child;
13292
13293 while (child_die && child_die->tag)
13294 {
13295 if (child_die->tag == DW_TAG_member
13296 || child_die->tag == DW_TAG_variable)
13297 {
13298 /* NOTE: carlton/2002-11-05: A C++ static data member
13299 should be a DW_TAG_member that is a declaration, but
13300 all versions of G++ as of this writing (so through at
13301 least 3.2.1) incorrectly generate DW_TAG_variable
13302 tags for them instead. */
13303 dwarf2_add_field (&fi, child_die, cu);
13304 }
13305 else if (child_die->tag == DW_TAG_subprogram)
13306 {
13307 /* Rust doesn't have member functions in the C++ sense.
13308 However, it does emit ordinary functions as children
13309 of a struct DIE. */
13310 if (cu->language == language_rust)
13311 read_func_scope (child_die, cu);
13312 else
13313 {
13314 /* C++ member function. */
13315 dwarf2_add_member_fn (&fi, child_die, type, cu);
13316 }
13317 }
13318 else if (child_die->tag == DW_TAG_inheritance)
13319 {
13320 /* C++ base class field. */
13321 dwarf2_add_field (&fi, child_die, cu);
13322 }
13323 else if (child_die->tag == DW_TAG_typedef)
13324 dwarf2_add_typedef (&fi, child_die, cu);
13325 else if (child_die->tag == DW_TAG_template_type_param
13326 || child_die->tag == DW_TAG_template_value_param)
13327 {
13328 struct symbol *arg = new_symbol (child_die, NULL, cu);
13329
13330 if (arg != NULL)
13331 VEC_safe_push (symbolp, template_args, arg);
13332 }
13333
13334 child_die = sibling_die (child_die);
13335 }
13336
13337 /* Attach template arguments to type. */
13338 if (! VEC_empty (symbolp, template_args))
13339 {
13340 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13341 TYPE_N_TEMPLATE_ARGUMENTS (type)
13342 = VEC_length (symbolp, template_args);
13343 TYPE_TEMPLATE_ARGUMENTS (type)
13344 = XOBNEWVEC (&objfile->objfile_obstack,
13345 struct symbol *,
13346 TYPE_N_TEMPLATE_ARGUMENTS (type));
13347 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13348 VEC_address (symbolp, template_args),
13349 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13350 * sizeof (struct symbol *)));
13351 VEC_free (symbolp, template_args);
13352 }
13353
13354 /* Attach fields and member functions to the type. */
13355 if (fi.nfields)
13356 dwarf2_attach_fields_to_type (&fi, type, cu);
13357 if (fi.nfnfields)
13358 {
13359 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13360
13361 /* Get the type which refers to the base class (possibly this
13362 class itself) which contains the vtable pointer for the current
13363 class from the DW_AT_containing_type attribute. This use of
13364 DW_AT_containing_type is a GNU extension. */
13365
13366 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13367 {
13368 struct type *t = die_containing_type (die, cu);
13369
13370 set_type_vptr_basetype (type, t);
13371 if (type == t)
13372 {
13373 int i;
13374
13375 /* Our own class provides vtbl ptr. */
13376 for (i = TYPE_NFIELDS (t) - 1;
13377 i >= TYPE_N_BASECLASSES (t);
13378 --i)
13379 {
13380 const char *fieldname = TYPE_FIELD_NAME (t, i);
13381
13382 if (is_vtable_name (fieldname, cu))
13383 {
13384 set_type_vptr_fieldno (type, i);
13385 break;
13386 }
13387 }
13388
13389 /* Complain if virtual function table field not found. */
13390 if (i < TYPE_N_BASECLASSES (t))
13391 complaint (&symfile_complaints,
13392 _("virtual function table pointer "
13393 "not found when defining class '%s'"),
13394 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13395 "");
13396 }
13397 else
13398 {
13399 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13400 }
13401 }
13402 else if (cu->producer
13403 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13404 {
13405 /* The IBM XLC compiler does not provide direct indication
13406 of the containing type, but the vtable pointer is
13407 always named __vfp. */
13408
13409 int i;
13410
13411 for (i = TYPE_NFIELDS (type) - 1;
13412 i >= TYPE_N_BASECLASSES (type);
13413 --i)
13414 {
13415 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13416 {
13417 set_type_vptr_fieldno (type, i);
13418 set_type_vptr_basetype (type, type);
13419 break;
13420 }
13421 }
13422 }
13423 }
13424
13425 /* Copy fi.typedef_field_list linked list elements content into the
13426 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13427 if (fi.typedef_field_list)
13428 {
13429 int i = fi.typedef_field_list_count;
13430
13431 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13432 TYPE_TYPEDEF_FIELD_ARRAY (type)
13433 = ((struct typedef_field *)
13434 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13435 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13436
13437 /* Reverse the list order to keep the debug info elements order. */
13438 while (--i >= 0)
13439 {
13440 struct typedef_field *dest, *src;
13441
13442 dest = &TYPE_TYPEDEF_FIELD (type, i);
13443 src = &fi.typedef_field_list->field;
13444 fi.typedef_field_list = fi.typedef_field_list->next;
13445 *dest = *src;
13446 }
13447 }
13448
13449 do_cleanups (back_to);
13450 }
13451
13452 quirk_gcc_member_function_pointer (type, objfile);
13453
13454 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13455 snapshots) has been known to create a die giving a declaration
13456 for a class that has, as a child, a die giving a definition for a
13457 nested class. So we have to process our children even if the
13458 current die is a declaration. Normally, of course, a declaration
13459 won't have any children at all. */
13460
13461 child_die = die->child;
13462
13463 while (child_die != NULL && child_die->tag)
13464 {
13465 if (child_die->tag == DW_TAG_member
13466 || child_die->tag == DW_TAG_variable
13467 || child_die->tag == DW_TAG_inheritance
13468 || child_die->tag == DW_TAG_template_value_param
13469 || child_die->tag == DW_TAG_template_type_param)
13470 {
13471 /* Do nothing. */
13472 }
13473 else
13474 process_die (child_die, cu);
13475
13476 child_die = sibling_die (child_die);
13477 }
13478
13479 /* Do not consider external references. According to the DWARF standard,
13480 these DIEs are identified by the fact that they have no byte_size
13481 attribute, and a declaration attribute. */
13482 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13483 || !die_is_declaration (die, cu))
13484 new_symbol (die, type, cu);
13485 }
13486
13487 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13488 update TYPE using some information only available in DIE's children. */
13489
13490 static void
13491 update_enumeration_type_from_children (struct die_info *die,
13492 struct type *type,
13493 struct dwarf2_cu *cu)
13494 {
13495 struct obstack obstack;
13496 struct die_info *child_die;
13497 int unsigned_enum = 1;
13498 int flag_enum = 1;
13499 ULONGEST mask = 0;
13500 struct cleanup *old_chain;
13501
13502 obstack_init (&obstack);
13503 old_chain = make_cleanup_obstack_free (&obstack);
13504
13505 for (child_die = die->child;
13506 child_die != NULL && child_die->tag;
13507 child_die = sibling_die (child_die))
13508 {
13509 struct attribute *attr;
13510 LONGEST value;
13511 const gdb_byte *bytes;
13512 struct dwarf2_locexpr_baton *baton;
13513 const char *name;
13514
13515 if (child_die->tag != DW_TAG_enumerator)
13516 continue;
13517
13518 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13519 if (attr == NULL)
13520 continue;
13521
13522 name = dwarf2_name (child_die, cu);
13523 if (name == NULL)
13524 name = "<anonymous enumerator>";
13525
13526 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13527 &value, &bytes, &baton);
13528 if (value < 0)
13529 {
13530 unsigned_enum = 0;
13531 flag_enum = 0;
13532 }
13533 else if ((mask & value) != 0)
13534 flag_enum = 0;
13535 else
13536 mask |= value;
13537
13538 /* If we already know that the enum type is neither unsigned, nor
13539 a flag type, no need to look at the rest of the enumerates. */
13540 if (!unsigned_enum && !flag_enum)
13541 break;
13542 }
13543
13544 if (unsigned_enum)
13545 TYPE_UNSIGNED (type) = 1;
13546 if (flag_enum)
13547 TYPE_FLAG_ENUM (type) = 1;
13548
13549 do_cleanups (old_chain);
13550 }
13551
13552 /* Given a DW_AT_enumeration_type die, set its type. We do not
13553 complete the type's fields yet, or create any symbols. */
13554
13555 static struct type *
13556 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13557 {
13558 struct objfile *objfile = cu->objfile;
13559 struct type *type;
13560 struct attribute *attr;
13561 const char *name;
13562
13563 /* If the definition of this type lives in .debug_types, read that type.
13564 Don't follow DW_AT_specification though, that will take us back up
13565 the chain and we want to go down. */
13566 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13567 if (attr)
13568 {
13569 type = get_DW_AT_signature_type (die, attr, cu);
13570
13571 /* The type's CU may not be the same as CU.
13572 Ensure TYPE is recorded with CU in die_type_hash. */
13573 return set_die_type (die, type, cu);
13574 }
13575
13576 type = alloc_type (objfile);
13577
13578 TYPE_CODE (type) = TYPE_CODE_ENUM;
13579 name = dwarf2_full_name (NULL, die, cu);
13580 if (name != NULL)
13581 TYPE_TAG_NAME (type) = name;
13582
13583 attr = dwarf2_attr (die, DW_AT_type, cu);
13584 if (attr != NULL)
13585 {
13586 struct type *underlying_type = die_type (die, cu);
13587
13588 TYPE_TARGET_TYPE (type) = underlying_type;
13589 }
13590
13591 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13592 if (attr)
13593 {
13594 TYPE_LENGTH (type) = DW_UNSND (attr);
13595 }
13596 else
13597 {
13598 TYPE_LENGTH (type) = 0;
13599 }
13600
13601 /* The enumeration DIE can be incomplete. In Ada, any type can be
13602 declared as private in the package spec, and then defined only
13603 inside the package body. Such types are known as Taft Amendment
13604 Types. When another package uses such a type, an incomplete DIE
13605 may be generated by the compiler. */
13606 if (die_is_declaration (die, cu))
13607 TYPE_STUB (type) = 1;
13608
13609 /* Finish the creation of this type by using the enum's children.
13610 We must call this even when the underlying type has been provided
13611 so that we can determine if we're looking at a "flag" enum. */
13612 update_enumeration_type_from_children (die, type, cu);
13613
13614 /* If this type has an underlying type that is not a stub, then we
13615 may use its attributes. We always use the "unsigned" attribute
13616 in this situation, because ordinarily we guess whether the type
13617 is unsigned -- but the guess can be wrong and the underlying type
13618 can tell us the reality. However, we defer to a local size
13619 attribute if one exists, because this lets the compiler override
13620 the underlying type if needed. */
13621 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13622 {
13623 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13624 if (TYPE_LENGTH (type) == 0)
13625 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13626 }
13627
13628 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13629
13630 return set_die_type (die, type, cu);
13631 }
13632
13633 /* Given a pointer to a die which begins an enumeration, process all
13634 the dies that define the members of the enumeration, and create the
13635 symbol for the enumeration type.
13636
13637 NOTE: We reverse the order of the element list. */
13638
13639 static void
13640 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13641 {
13642 struct type *this_type;
13643
13644 this_type = get_die_type (die, cu);
13645 if (this_type == NULL)
13646 this_type = read_enumeration_type (die, cu);
13647
13648 if (die->child != NULL)
13649 {
13650 struct die_info *child_die;
13651 struct symbol *sym;
13652 struct field *fields = NULL;
13653 int num_fields = 0;
13654 const char *name;
13655
13656 child_die = die->child;
13657 while (child_die && child_die->tag)
13658 {
13659 if (child_die->tag != DW_TAG_enumerator)
13660 {
13661 process_die (child_die, cu);
13662 }
13663 else
13664 {
13665 name = dwarf2_name (child_die, cu);
13666 if (name)
13667 {
13668 sym = new_symbol (child_die, this_type, cu);
13669
13670 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13671 {
13672 fields = (struct field *)
13673 xrealloc (fields,
13674 (num_fields + DW_FIELD_ALLOC_CHUNK)
13675 * sizeof (struct field));
13676 }
13677
13678 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13679 FIELD_TYPE (fields[num_fields]) = NULL;
13680 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13681 FIELD_BITSIZE (fields[num_fields]) = 0;
13682
13683 num_fields++;
13684 }
13685 }
13686
13687 child_die = sibling_die (child_die);
13688 }
13689
13690 if (num_fields)
13691 {
13692 TYPE_NFIELDS (this_type) = num_fields;
13693 TYPE_FIELDS (this_type) = (struct field *)
13694 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13695 memcpy (TYPE_FIELDS (this_type), fields,
13696 sizeof (struct field) * num_fields);
13697 xfree (fields);
13698 }
13699 }
13700
13701 /* If we are reading an enum from a .debug_types unit, and the enum
13702 is a declaration, and the enum is not the signatured type in the
13703 unit, then we do not want to add a symbol for it. Adding a
13704 symbol would in some cases obscure the true definition of the
13705 enum, giving users an incomplete type when the definition is
13706 actually available. Note that we do not want to do this for all
13707 enums which are just declarations, because C++0x allows forward
13708 enum declarations. */
13709 if (cu->per_cu->is_debug_types
13710 && die_is_declaration (die, cu))
13711 {
13712 struct signatured_type *sig_type;
13713
13714 sig_type = (struct signatured_type *) cu->per_cu;
13715 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13716 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13717 return;
13718 }
13719
13720 new_symbol (die, this_type, cu);
13721 }
13722
13723 /* Extract all information from a DW_TAG_array_type DIE and put it in
13724 the DIE's type field. For now, this only handles one dimensional
13725 arrays. */
13726
13727 static struct type *
13728 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13729 {
13730 struct objfile *objfile = cu->objfile;
13731 struct die_info *child_die;
13732 struct type *type;
13733 struct type *element_type, *range_type, *index_type;
13734 struct type **range_types = NULL;
13735 struct attribute *attr;
13736 int ndim = 0;
13737 struct cleanup *back_to;
13738 const char *name;
13739 unsigned int bit_stride = 0;
13740
13741 element_type = die_type (die, cu);
13742
13743 /* The die_type call above may have already set the type for this DIE. */
13744 type = get_die_type (die, cu);
13745 if (type)
13746 return type;
13747
13748 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13749 if (attr != NULL)
13750 bit_stride = DW_UNSND (attr) * 8;
13751
13752 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13753 if (attr != NULL)
13754 bit_stride = DW_UNSND (attr);
13755
13756 /* Irix 6.2 native cc creates array types without children for
13757 arrays with unspecified length. */
13758 if (die->child == NULL)
13759 {
13760 index_type = objfile_type (objfile)->builtin_int;
13761 range_type = create_static_range_type (NULL, index_type, 0, -1);
13762 type = create_array_type_with_stride (NULL, element_type, range_type,
13763 bit_stride);
13764 return set_die_type (die, type, cu);
13765 }
13766
13767 back_to = make_cleanup (null_cleanup, NULL);
13768 child_die = die->child;
13769 while (child_die && child_die->tag)
13770 {
13771 if (child_die->tag == DW_TAG_subrange_type)
13772 {
13773 struct type *child_type = read_type_die (child_die, cu);
13774
13775 if (child_type != NULL)
13776 {
13777 /* The range type was succesfully read. Save it for the
13778 array type creation. */
13779 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13780 {
13781 range_types = (struct type **)
13782 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13783 * sizeof (struct type *));
13784 if (ndim == 0)
13785 make_cleanup (free_current_contents, &range_types);
13786 }
13787 range_types[ndim++] = child_type;
13788 }
13789 }
13790 child_die = sibling_die (child_die);
13791 }
13792
13793 /* Dwarf2 dimensions are output from left to right, create the
13794 necessary array types in backwards order. */
13795
13796 type = element_type;
13797
13798 if (read_array_order (die, cu) == DW_ORD_col_major)
13799 {
13800 int i = 0;
13801
13802 while (i < ndim)
13803 type = create_array_type_with_stride (NULL, type, range_types[i++],
13804 bit_stride);
13805 }
13806 else
13807 {
13808 while (ndim-- > 0)
13809 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13810 bit_stride);
13811 }
13812
13813 /* Understand Dwarf2 support for vector types (like they occur on
13814 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13815 array type. This is not part of the Dwarf2/3 standard yet, but a
13816 custom vendor extension. The main difference between a regular
13817 array and the vector variant is that vectors are passed by value
13818 to functions. */
13819 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13820 if (attr)
13821 make_vector_type (type);
13822
13823 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13824 implementation may choose to implement triple vectors using this
13825 attribute. */
13826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13827 if (attr)
13828 {
13829 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13830 TYPE_LENGTH (type) = DW_UNSND (attr);
13831 else
13832 complaint (&symfile_complaints,
13833 _("DW_AT_byte_size for array type smaller "
13834 "than the total size of elements"));
13835 }
13836
13837 name = dwarf2_name (die, cu);
13838 if (name)
13839 TYPE_NAME (type) = name;
13840
13841 /* Install the type in the die. */
13842 set_die_type (die, type, cu);
13843
13844 /* set_die_type should be already done. */
13845 set_descriptive_type (type, die, cu);
13846
13847 do_cleanups (back_to);
13848
13849 return type;
13850 }
13851
13852 static enum dwarf_array_dim_ordering
13853 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13854 {
13855 struct attribute *attr;
13856
13857 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13858
13859 if (attr)
13860 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13861
13862 /* GNU F77 is a special case, as at 08/2004 array type info is the
13863 opposite order to the dwarf2 specification, but data is still
13864 laid out as per normal fortran.
13865
13866 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13867 version checking. */
13868
13869 if (cu->language == language_fortran
13870 && cu->producer && strstr (cu->producer, "GNU F77"))
13871 {
13872 return DW_ORD_row_major;
13873 }
13874
13875 switch (cu->language_defn->la_array_ordering)
13876 {
13877 case array_column_major:
13878 return DW_ORD_col_major;
13879 case array_row_major:
13880 default:
13881 return DW_ORD_row_major;
13882 };
13883 }
13884
13885 /* Extract all information from a DW_TAG_set_type DIE and put it in
13886 the DIE's type field. */
13887
13888 static struct type *
13889 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13890 {
13891 struct type *domain_type, *set_type;
13892 struct attribute *attr;
13893
13894 domain_type = die_type (die, cu);
13895
13896 /* The die_type call above may have already set the type for this DIE. */
13897 set_type = get_die_type (die, cu);
13898 if (set_type)
13899 return set_type;
13900
13901 set_type = create_set_type (NULL, domain_type);
13902
13903 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13904 if (attr)
13905 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13906
13907 return set_die_type (die, set_type, cu);
13908 }
13909
13910 /* A helper for read_common_block that creates a locexpr baton.
13911 SYM is the symbol which we are marking as computed.
13912 COMMON_DIE is the DIE for the common block.
13913 COMMON_LOC is the location expression attribute for the common
13914 block itself.
13915 MEMBER_LOC is the location expression attribute for the particular
13916 member of the common block that we are processing.
13917 CU is the CU from which the above come. */
13918
13919 static void
13920 mark_common_block_symbol_computed (struct symbol *sym,
13921 struct die_info *common_die,
13922 struct attribute *common_loc,
13923 struct attribute *member_loc,
13924 struct dwarf2_cu *cu)
13925 {
13926 struct objfile *objfile = dwarf2_per_objfile->objfile;
13927 struct dwarf2_locexpr_baton *baton;
13928 gdb_byte *ptr;
13929 unsigned int cu_off;
13930 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13931 LONGEST offset = 0;
13932
13933 gdb_assert (common_loc && member_loc);
13934 gdb_assert (attr_form_is_block (common_loc));
13935 gdb_assert (attr_form_is_block (member_loc)
13936 || attr_form_is_constant (member_loc));
13937
13938 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13939 baton->per_cu = cu->per_cu;
13940 gdb_assert (baton->per_cu);
13941
13942 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13943
13944 if (attr_form_is_constant (member_loc))
13945 {
13946 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13947 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13948 }
13949 else
13950 baton->size += DW_BLOCK (member_loc)->size;
13951
13952 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13953 baton->data = ptr;
13954
13955 *ptr++ = DW_OP_call4;
13956 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13957 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13958 ptr += 4;
13959
13960 if (attr_form_is_constant (member_loc))
13961 {
13962 *ptr++ = DW_OP_addr;
13963 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13964 ptr += cu->header.addr_size;
13965 }
13966 else
13967 {
13968 /* We have to copy the data here, because DW_OP_call4 will only
13969 use a DW_AT_location attribute. */
13970 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13971 ptr += DW_BLOCK (member_loc)->size;
13972 }
13973
13974 *ptr++ = DW_OP_plus;
13975 gdb_assert (ptr - baton->data == baton->size);
13976
13977 SYMBOL_LOCATION_BATON (sym) = baton;
13978 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13979 }
13980
13981 /* Create appropriate locally-scoped variables for all the
13982 DW_TAG_common_block entries. Also create a struct common_block
13983 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13984 is used to sepate the common blocks name namespace from regular
13985 variable names. */
13986
13987 static void
13988 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13989 {
13990 struct attribute *attr;
13991
13992 attr = dwarf2_attr (die, DW_AT_location, cu);
13993 if (attr)
13994 {
13995 /* Support the .debug_loc offsets. */
13996 if (attr_form_is_block (attr))
13997 {
13998 /* Ok. */
13999 }
14000 else if (attr_form_is_section_offset (attr))
14001 {
14002 dwarf2_complex_location_expr_complaint ();
14003 attr = NULL;
14004 }
14005 else
14006 {
14007 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14008 "common block member");
14009 attr = NULL;
14010 }
14011 }
14012
14013 if (die->child != NULL)
14014 {
14015 struct objfile *objfile = cu->objfile;
14016 struct die_info *child_die;
14017 size_t n_entries = 0, size;
14018 struct common_block *common_block;
14019 struct symbol *sym;
14020
14021 for (child_die = die->child;
14022 child_die && child_die->tag;
14023 child_die = sibling_die (child_die))
14024 ++n_entries;
14025
14026 size = (sizeof (struct common_block)
14027 + (n_entries - 1) * sizeof (struct symbol *));
14028 common_block
14029 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14030 size);
14031 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14032 common_block->n_entries = 0;
14033
14034 for (child_die = die->child;
14035 child_die && child_die->tag;
14036 child_die = sibling_die (child_die))
14037 {
14038 /* Create the symbol in the DW_TAG_common_block block in the current
14039 symbol scope. */
14040 sym = new_symbol (child_die, NULL, cu);
14041 if (sym != NULL)
14042 {
14043 struct attribute *member_loc;
14044
14045 common_block->contents[common_block->n_entries++] = sym;
14046
14047 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14048 cu);
14049 if (member_loc)
14050 {
14051 /* GDB has handled this for a long time, but it is
14052 not specified by DWARF. It seems to have been
14053 emitted by gfortran at least as recently as:
14054 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14055 complaint (&symfile_complaints,
14056 _("Variable in common block has "
14057 "DW_AT_data_member_location "
14058 "- DIE at 0x%x [in module %s]"),
14059 child_die->offset.sect_off,
14060 objfile_name (cu->objfile));
14061
14062 if (attr_form_is_section_offset (member_loc))
14063 dwarf2_complex_location_expr_complaint ();
14064 else if (attr_form_is_constant (member_loc)
14065 || attr_form_is_block (member_loc))
14066 {
14067 if (attr)
14068 mark_common_block_symbol_computed (sym, die, attr,
14069 member_loc, cu);
14070 }
14071 else
14072 dwarf2_complex_location_expr_complaint ();
14073 }
14074 }
14075 }
14076
14077 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14078 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14079 }
14080 }
14081
14082 /* Create a type for a C++ namespace. */
14083
14084 static struct type *
14085 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14086 {
14087 struct objfile *objfile = cu->objfile;
14088 const char *previous_prefix, *name;
14089 int is_anonymous;
14090 struct type *type;
14091
14092 /* For extensions, reuse the type of the original namespace. */
14093 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14094 {
14095 struct die_info *ext_die;
14096 struct dwarf2_cu *ext_cu = cu;
14097
14098 ext_die = dwarf2_extension (die, &ext_cu);
14099 type = read_type_die (ext_die, ext_cu);
14100
14101 /* EXT_CU may not be the same as CU.
14102 Ensure TYPE is recorded with CU in die_type_hash. */
14103 return set_die_type (die, type, cu);
14104 }
14105
14106 name = namespace_name (die, &is_anonymous, cu);
14107
14108 /* Now build the name of the current namespace. */
14109
14110 previous_prefix = determine_prefix (die, cu);
14111 if (previous_prefix[0] != '\0')
14112 name = typename_concat (&objfile->objfile_obstack,
14113 previous_prefix, name, 0, cu);
14114
14115 /* Create the type. */
14116 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14117 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14118
14119 return set_die_type (die, type, cu);
14120 }
14121
14122 /* Read a namespace scope. */
14123
14124 static void
14125 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14126 {
14127 struct objfile *objfile = cu->objfile;
14128 int is_anonymous;
14129
14130 /* Add a symbol associated to this if we haven't seen the namespace
14131 before. Also, add a using directive if it's an anonymous
14132 namespace. */
14133
14134 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14135 {
14136 struct type *type;
14137
14138 type = read_type_die (die, cu);
14139 new_symbol (die, type, cu);
14140
14141 namespace_name (die, &is_anonymous, cu);
14142 if (is_anonymous)
14143 {
14144 const char *previous_prefix = determine_prefix (die, cu);
14145
14146 add_using_directive (using_directives (cu->language),
14147 previous_prefix, TYPE_NAME (type), NULL,
14148 NULL, NULL, 0, &objfile->objfile_obstack);
14149 }
14150 }
14151
14152 if (die->child != NULL)
14153 {
14154 struct die_info *child_die = die->child;
14155
14156 while (child_die && child_die->tag)
14157 {
14158 process_die (child_die, cu);
14159 child_die = sibling_die (child_die);
14160 }
14161 }
14162 }
14163
14164 /* Read a Fortran module as type. This DIE can be only a declaration used for
14165 imported module. Still we need that type as local Fortran "use ... only"
14166 declaration imports depend on the created type in determine_prefix. */
14167
14168 static struct type *
14169 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14170 {
14171 struct objfile *objfile = cu->objfile;
14172 const char *module_name;
14173 struct type *type;
14174
14175 module_name = dwarf2_name (die, cu);
14176 if (!module_name)
14177 complaint (&symfile_complaints,
14178 _("DW_TAG_module has no name, offset 0x%x"),
14179 die->offset.sect_off);
14180 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14181
14182 /* determine_prefix uses TYPE_TAG_NAME. */
14183 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14184
14185 return set_die_type (die, type, cu);
14186 }
14187
14188 /* Read a Fortran module. */
14189
14190 static void
14191 read_module (struct die_info *die, struct dwarf2_cu *cu)
14192 {
14193 struct die_info *child_die = die->child;
14194 struct type *type;
14195
14196 type = read_type_die (die, cu);
14197 new_symbol (die, type, cu);
14198
14199 while (child_die && child_die->tag)
14200 {
14201 process_die (child_die, cu);
14202 child_die = sibling_die (child_die);
14203 }
14204 }
14205
14206 /* Return the name of the namespace represented by DIE. Set
14207 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14208 namespace. */
14209
14210 static const char *
14211 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14212 {
14213 struct die_info *current_die;
14214 const char *name = NULL;
14215
14216 /* Loop through the extensions until we find a name. */
14217
14218 for (current_die = die;
14219 current_die != NULL;
14220 current_die = dwarf2_extension (die, &cu))
14221 {
14222 /* We don't use dwarf2_name here so that we can detect the absence
14223 of a name -> anonymous namespace. */
14224 name = dwarf2_string_attr (die, DW_AT_name, cu);
14225
14226 if (name != NULL)
14227 break;
14228 }
14229
14230 /* Is it an anonymous namespace? */
14231
14232 *is_anonymous = (name == NULL);
14233 if (*is_anonymous)
14234 name = CP_ANONYMOUS_NAMESPACE_STR;
14235
14236 return name;
14237 }
14238
14239 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14240 the user defined type vector. */
14241
14242 static struct type *
14243 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14244 {
14245 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14246 struct comp_unit_head *cu_header = &cu->header;
14247 struct type *type;
14248 struct attribute *attr_byte_size;
14249 struct attribute *attr_address_class;
14250 int byte_size, addr_class;
14251 struct type *target_type;
14252
14253 target_type = die_type (die, cu);
14254
14255 /* The die_type call above may have already set the type for this DIE. */
14256 type = get_die_type (die, cu);
14257 if (type)
14258 return type;
14259
14260 type = lookup_pointer_type (target_type);
14261
14262 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14263 if (attr_byte_size)
14264 byte_size = DW_UNSND (attr_byte_size);
14265 else
14266 byte_size = cu_header->addr_size;
14267
14268 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14269 if (attr_address_class)
14270 addr_class = DW_UNSND (attr_address_class);
14271 else
14272 addr_class = DW_ADDR_none;
14273
14274 /* If the pointer size or address class is different than the
14275 default, create a type variant marked as such and set the
14276 length accordingly. */
14277 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14278 {
14279 if (gdbarch_address_class_type_flags_p (gdbarch))
14280 {
14281 int type_flags;
14282
14283 type_flags = gdbarch_address_class_type_flags
14284 (gdbarch, byte_size, addr_class);
14285 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14286 == 0);
14287 type = make_type_with_address_space (type, type_flags);
14288 }
14289 else if (TYPE_LENGTH (type) != byte_size)
14290 {
14291 complaint (&symfile_complaints,
14292 _("invalid pointer size %d"), byte_size);
14293 }
14294 else
14295 {
14296 /* Should we also complain about unhandled address classes? */
14297 }
14298 }
14299
14300 TYPE_LENGTH (type) = byte_size;
14301 return set_die_type (die, type, cu);
14302 }
14303
14304 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14305 the user defined type vector. */
14306
14307 static struct type *
14308 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14309 {
14310 struct type *type;
14311 struct type *to_type;
14312 struct type *domain;
14313
14314 to_type = die_type (die, cu);
14315 domain = die_containing_type (die, cu);
14316
14317 /* The calls above may have already set the type for this DIE. */
14318 type = get_die_type (die, cu);
14319 if (type)
14320 return type;
14321
14322 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14323 type = lookup_methodptr_type (to_type);
14324 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14325 {
14326 struct type *new_type = alloc_type (cu->objfile);
14327
14328 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14329 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14330 TYPE_VARARGS (to_type));
14331 type = lookup_methodptr_type (new_type);
14332 }
14333 else
14334 type = lookup_memberptr_type (to_type, domain);
14335
14336 return set_die_type (die, type, cu);
14337 }
14338
14339 /* Extract all information from a DW_TAG_reference_type DIE and add to
14340 the user defined type vector. */
14341
14342 static struct type *
14343 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14344 {
14345 struct comp_unit_head *cu_header = &cu->header;
14346 struct type *type, *target_type;
14347 struct attribute *attr;
14348
14349 target_type = die_type (die, cu);
14350
14351 /* The die_type call above may have already set the type for this DIE. */
14352 type = get_die_type (die, cu);
14353 if (type)
14354 return type;
14355
14356 type = lookup_reference_type (target_type);
14357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14358 if (attr)
14359 {
14360 TYPE_LENGTH (type) = DW_UNSND (attr);
14361 }
14362 else
14363 {
14364 TYPE_LENGTH (type) = cu_header->addr_size;
14365 }
14366 return set_die_type (die, type, cu);
14367 }
14368
14369 /* Add the given cv-qualifiers to the element type of the array. GCC
14370 outputs DWARF type qualifiers that apply to an array, not the
14371 element type. But GDB relies on the array element type to carry
14372 the cv-qualifiers. This mimics section 6.7.3 of the C99
14373 specification. */
14374
14375 static struct type *
14376 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14377 struct type *base_type, int cnst, int voltl)
14378 {
14379 struct type *el_type, *inner_array;
14380
14381 base_type = copy_type (base_type);
14382 inner_array = base_type;
14383
14384 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14385 {
14386 TYPE_TARGET_TYPE (inner_array) =
14387 copy_type (TYPE_TARGET_TYPE (inner_array));
14388 inner_array = TYPE_TARGET_TYPE (inner_array);
14389 }
14390
14391 el_type = TYPE_TARGET_TYPE (inner_array);
14392 cnst |= TYPE_CONST (el_type);
14393 voltl |= TYPE_VOLATILE (el_type);
14394 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14395
14396 return set_die_type (die, base_type, cu);
14397 }
14398
14399 static struct type *
14400 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14401 {
14402 struct type *base_type, *cv_type;
14403
14404 base_type = die_type (die, cu);
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
14411 /* In case the const qualifier is applied to an array type, the element type
14412 is so qualified, not the array type (section 6.7.3 of C99). */
14413 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14414 return add_array_cv_type (die, cu, base_type, 1, 0);
14415
14416 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14417 return set_die_type (die, cv_type, cu);
14418 }
14419
14420 static struct type *
14421 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14422 {
14423 struct type *base_type, *cv_type;
14424
14425 base_type = die_type (die, cu);
14426
14427 /* The die_type call above may have already set the type for this DIE. */
14428 cv_type = get_die_type (die, cu);
14429 if (cv_type)
14430 return cv_type;
14431
14432 /* In case the volatile qualifier is applied to an array type, the
14433 element type is so qualified, not the array type (section 6.7.3
14434 of C99). */
14435 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14436 return add_array_cv_type (die, cu, base_type, 0, 1);
14437
14438 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14439 return set_die_type (die, cv_type, cu);
14440 }
14441
14442 /* Handle DW_TAG_restrict_type. */
14443
14444 static struct type *
14445 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14446 {
14447 struct type *base_type, *cv_type;
14448
14449 base_type = die_type (die, cu);
14450
14451 /* The die_type call above may have already set the type for this DIE. */
14452 cv_type = get_die_type (die, cu);
14453 if (cv_type)
14454 return cv_type;
14455
14456 cv_type = make_restrict_type (base_type);
14457 return set_die_type (die, cv_type, cu);
14458 }
14459
14460 /* Handle DW_TAG_atomic_type. */
14461
14462 static struct type *
14463 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14464 {
14465 struct type *base_type, *cv_type;
14466
14467 base_type = die_type (die, cu);
14468
14469 /* The die_type call above may have already set the type for this DIE. */
14470 cv_type = get_die_type (die, cu);
14471 if (cv_type)
14472 return cv_type;
14473
14474 cv_type = make_atomic_type (base_type);
14475 return set_die_type (die, cv_type, cu);
14476 }
14477
14478 /* Extract all information from a DW_TAG_string_type DIE and add to
14479 the user defined type vector. It isn't really a user defined type,
14480 but it behaves like one, with other DIE's using an AT_user_def_type
14481 attribute to reference it. */
14482
14483 static struct type *
14484 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14485 {
14486 struct objfile *objfile = cu->objfile;
14487 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14488 struct type *type, *range_type, *index_type, *char_type;
14489 struct attribute *attr;
14490 unsigned int length;
14491
14492 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14493 if (attr)
14494 {
14495 length = DW_UNSND (attr);
14496 }
14497 else
14498 {
14499 /* Check for the DW_AT_byte_size attribute. */
14500 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14501 if (attr)
14502 {
14503 length = DW_UNSND (attr);
14504 }
14505 else
14506 {
14507 length = 1;
14508 }
14509 }
14510
14511 index_type = objfile_type (objfile)->builtin_int;
14512 range_type = create_static_range_type (NULL, index_type, 1, length);
14513 char_type = language_string_char_type (cu->language_defn, gdbarch);
14514 type = create_string_type (NULL, char_type, range_type);
14515
14516 return set_die_type (die, type, cu);
14517 }
14518
14519 /* Assuming that DIE corresponds to a function, returns nonzero
14520 if the function is prototyped. */
14521
14522 static int
14523 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14524 {
14525 struct attribute *attr;
14526
14527 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14528 if (attr && (DW_UNSND (attr) != 0))
14529 return 1;
14530
14531 /* The DWARF standard implies that the DW_AT_prototyped attribute
14532 is only meaninful for C, but the concept also extends to other
14533 languages that allow unprototyped functions (Eg: Objective C).
14534 For all other languages, assume that functions are always
14535 prototyped. */
14536 if (cu->language != language_c
14537 && cu->language != language_objc
14538 && cu->language != language_opencl)
14539 return 1;
14540
14541 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14542 prototyped and unprototyped functions; default to prototyped,
14543 since that is more common in modern code (and RealView warns
14544 about unprototyped functions). */
14545 if (producer_is_realview (cu->producer))
14546 return 1;
14547
14548 return 0;
14549 }
14550
14551 /* Handle DIES due to C code like:
14552
14553 struct foo
14554 {
14555 int (*funcp)(int a, long l);
14556 int b;
14557 };
14558
14559 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14560
14561 static struct type *
14562 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14563 {
14564 struct objfile *objfile = cu->objfile;
14565 struct type *type; /* Type that this function returns. */
14566 struct type *ftype; /* Function that returns above type. */
14567 struct attribute *attr;
14568
14569 type = die_type (die, cu);
14570
14571 /* The die_type call above may have already set the type for this DIE. */
14572 ftype = get_die_type (die, cu);
14573 if (ftype)
14574 return ftype;
14575
14576 ftype = lookup_function_type (type);
14577
14578 if (prototyped_function_p (die, cu))
14579 TYPE_PROTOTYPED (ftype) = 1;
14580
14581 /* Store the calling convention in the type if it's available in
14582 the subroutine die. Otherwise set the calling convention to
14583 the default value DW_CC_normal. */
14584 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14585 if (attr)
14586 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14587 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14588 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14589 else
14590 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14591
14592 /* Record whether the function returns normally to its caller or not
14593 if the DWARF producer set that information. */
14594 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14595 if (attr && (DW_UNSND (attr) != 0))
14596 TYPE_NO_RETURN (ftype) = 1;
14597
14598 /* We need to add the subroutine type to the die immediately so
14599 we don't infinitely recurse when dealing with parameters
14600 declared as the same subroutine type. */
14601 set_die_type (die, ftype, cu);
14602
14603 if (die->child != NULL)
14604 {
14605 struct type *void_type = objfile_type (objfile)->builtin_void;
14606 struct die_info *child_die;
14607 int nparams, iparams;
14608
14609 /* Count the number of parameters.
14610 FIXME: GDB currently ignores vararg functions, but knows about
14611 vararg member functions. */
14612 nparams = 0;
14613 child_die = die->child;
14614 while (child_die && child_die->tag)
14615 {
14616 if (child_die->tag == DW_TAG_formal_parameter)
14617 nparams++;
14618 else if (child_die->tag == DW_TAG_unspecified_parameters)
14619 TYPE_VARARGS (ftype) = 1;
14620 child_die = sibling_die (child_die);
14621 }
14622
14623 /* Allocate storage for parameters and fill them in. */
14624 TYPE_NFIELDS (ftype) = nparams;
14625 TYPE_FIELDS (ftype) = (struct field *)
14626 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14627
14628 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14629 even if we error out during the parameters reading below. */
14630 for (iparams = 0; iparams < nparams; iparams++)
14631 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14632
14633 iparams = 0;
14634 child_die = die->child;
14635 while (child_die && child_die->tag)
14636 {
14637 if (child_die->tag == DW_TAG_formal_parameter)
14638 {
14639 struct type *arg_type;
14640
14641 /* DWARF version 2 has no clean way to discern C++
14642 static and non-static member functions. G++ helps
14643 GDB by marking the first parameter for non-static
14644 member functions (which is the this pointer) as
14645 artificial. We pass this information to
14646 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14647
14648 DWARF version 3 added DW_AT_object_pointer, which GCC
14649 4.5 does not yet generate. */
14650 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14651 if (attr)
14652 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14653 else
14654 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14655 arg_type = die_type (child_die, cu);
14656
14657 /* RealView does not mark THIS as const, which the testsuite
14658 expects. GCC marks THIS as const in method definitions,
14659 but not in the class specifications (GCC PR 43053). */
14660 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14661 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14662 {
14663 int is_this = 0;
14664 struct dwarf2_cu *arg_cu = cu;
14665 const char *name = dwarf2_name (child_die, cu);
14666
14667 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14668 if (attr)
14669 {
14670 /* If the compiler emits this, use it. */
14671 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14672 is_this = 1;
14673 }
14674 else if (name && strcmp (name, "this") == 0)
14675 /* Function definitions will have the argument names. */
14676 is_this = 1;
14677 else if (name == NULL && iparams == 0)
14678 /* Declarations may not have the names, so like
14679 elsewhere in GDB, assume an artificial first
14680 argument is "this". */
14681 is_this = 1;
14682
14683 if (is_this)
14684 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14685 arg_type, 0);
14686 }
14687
14688 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14689 iparams++;
14690 }
14691 child_die = sibling_die (child_die);
14692 }
14693 }
14694
14695 return ftype;
14696 }
14697
14698 static struct type *
14699 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14700 {
14701 struct objfile *objfile = cu->objfile;
14702 const char *name = NULL;
14703 struct type *this_type, *target_type;
14704
14705 name = dwarf2_full_name (NULL, die, cu);
14706 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14707 TYPE_TARGET_STUB (this_type) = 1;
14708 set_die_type (die, this_type, cu);
14709 target_type = die_type (die, cu);
14710 if (target_type != this_type)
14711 TYPE_TARGET_TYPE (this_type) = target_type;
14712 else
14713 {
14714 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14715 spec and cause infinite loops in GDB. */
14716 complaint (&symfile_complaints,
14717 _("Self-referential DW_TAG_typedef "
14718 "- DIE at 0x%x [in module %s]"),
14719 die->offset.sect_off, objfile_name (objfile));
14720 TYPE_TARGET_TYPE (this_type) = NULL;
14721 }
14722 return this_type;
14723 }
14724
14725 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14726 (which may be different from NAME) to the architecture back-end to allow
14727 it to guess the correct format if necessary. */
14728
14729 static struct type *
14730 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14731 const char *name_hint)
14732 {
14733 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14734 const struct floatformat **format;
14735 struct type *type;
14736
14737 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14738 if (format)
14739 type = init_float_type (objfile, bits, name, format);
14740 else
14741 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14742
14743 return type;
14744 }
14745
14746 /* Find a representation of a given base type and install
14747 it in the TYPE field of the die. */
14748
14749 static struct type *
14750 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14751 {
14752 struct objfile *objfile = cu->objfile;
14753 struct type *type;
14754 struct attribute *attr;
14755 int encoding = 0, bits = 0;
14756 const char *name;
14757
14758 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14759 if (attr)
14760 {
14761 encoding = DW_UNSND (attr);
14762 }
14763 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14764 if (attr)
14765 {
14766 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14767 }
14768 name = dwarf2_name (die, cu);
14769 if (!name)
14770 {
14771 complaint (&symfile_complaints,
14772 _("DW_AT_name missing from DW_TAG_base_type"));
14773 }
14774
14775 switch (encoding)
14776 {
14777 case DW_ATE_address:
14778 /* Turn DW_ATE_address into a void * pointer. */
14779 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14780 type = init_pointer_type (objfile, bits, name, type);
14781 break;
14782 case DW_ATE_boolean:
14783 type = init_boolean_type (objfile, bits, 1, name);
14784 break;
14785 case DW_ATE_complex_float:
14786 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14787 type = init_complex_type (objfile, name, type);
14788 break;
14789 case DW_ATE_decimal_float:
14790 type = init_decfloat_type (objfile, bits, name);
14791 break;
14792 case DW_ATE_float:
14793 type = dwarf2_init_float_type (objfile, bits, name, name);
14794 break;
14795 case DW_ATE_signed:
14796 type = init_integer_type (objfile, bits, 0, name);
14797 break;
14798 case DW_ATE_unsigned:
14799 if (cu->language == language_fortran
14800 && name
14801 && startswith (name, "character("))
14802 type = init_character_type (objfile, bits, 1, name);
14803 else
14804 type = init_integer_type (objfile, bits, 1, name);
14805 break;
14806 case DW_ATE_signed_char:
14807 if (cu->language == language_ada || cu->language == language_m2
14808 || cu->language == language_pascal
14809 || cu->language == language_fortran)
14810 type = init_character_type (objfile, bits, 0, name);
14811 else
14812 type = init_integer_type (objfile, bits, 0, name);
14813 break;
14814 case DW_ATE_unsigned_char:
14815 if (cu->language == language_ada || cu->language == language_m2
14816 || cu->language == language_pascal
14817 || cu->language == language_fortran
14818 || cu->language == language_rust)
14819 type = init_character_type (objfile, bits, 1, name);
14820 else
14821 type = init_integer_type (objfile, bits, 1, name);
14822 break;
14823 case DW_ATE_UTF:
14824 /* We just treat this as an integer and then recognize the
14825 type by name elsewhere. */
14826 type = init_integer_type (objfile, bits, 0, name);
14827 break;
14828
14829 default:
14830 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14831 dwarf_type_encoding_name (encoding));
14832 type = init_type (objfile, TYPE_CODE_ERROR,
14833 bits / TARGET_CHAR_BIT, name);
14834 break;
14835 }
14836
14837 if (name && strcmp (name, "char") == 0)
14838 TYPE_NOSIGN (type) = 1;
14839
14840 return set_die_type (die, type, cu);
14841 }
14842
14843 /* Parse dwarf attribute if it's a block, reference or constant and put the
14844 resulting value of the attribute into struct bound_prop.
14845 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14846
14847 static int
14848 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14849 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14850 {
14851 struct dwarf2_property_baton *baton;
14852 struct obstack *obstack = &cu->objfile->objfile_obstack;
14853
14854 if (attr == NULL || prop == NULL)
14855 return 0;
14856
14857 if (attr_form_is_block (attr))
14858 {
14859 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14860 baton->referenced_type = NULL;
14861 baton->locexpr.per_cu = cu->per_cu;
14862 baton->locexpr.size = DW_BLOCK (attr)->size;
14863 baton->locexpr.data = DW_BLOCK (attr)->data;
14864 prop->data.baton = baton;
14865 prop->kind = PROP_LOCEXPR;
14866 gdb_assert (prop->data.baton != NULL);
14867 }
14868 else if (attr_form_is_ref (attr))
14869 {
14870 struct dwarf2_cu *target_cu = cu;
14871 struct die_info *target_die;
14872 struct attribute *target_attr;
14873
14874 target_die = follow_die_ref (die, attr, &target_cu);
14875 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14876 if (target_attr == NULL)
14877 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14878 target_cu);
14879 if (target_attr == NULL)
14880 return 0;
14881
14882 switch (target_attr->name)
14883 {
14884 case DW_AT_location:
14885 if (attr_form_is_section_offset (target_attr))
14886 {
14887 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14888 baton->referenced_type = die_type (target_die, target_cu);
14889 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14890 prop->data.baton = baton;
14891 prop->kind = PROP_LOCLIST;
14892 gdb_assert (prop->data.baton != NULL);
14893 }
14894 else if (attr_form_is_block (target_attr))
14895 {
14896 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14897 baton->referenced_type = die_type (target_die, target_cu);
14898 baton->locexpr.per_cu = cu->per_cu;
14899 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14900 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14901 prop->data.baton = baton;
14902 prop->kind = PROP_LOCEXPR;
14903 gdb_assert (prop->data.baton != NULL);
14904 }
14905 else
14906 {
14907 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14908 "dynamic property");
14909 return 0;
14910 }
14911 break;
14912 case DW_AT_data_member_location:
14913 {
14914 LONGEST offset;
14915
14916 if (!handle_data_member_location (target_die, target_cu,
14917 &offset))
14918 return 0;
14919
14920 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14921 baton->referenced_type = read_type_die (target_die->parent,
14922 target_cu);
14923 baton->offset_info.offset = offset;
14924 baton->offset_info.type = die_type (target_die, target_cu);
14925 prop->data.baton = baton;
14926 prop->kind = PROP_ADDR_OFFSET;
14927 break;
14928 }
14929 }
14930 }
14931 else if (attr_form_is_constant (attr))
14932 {
14933 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14934 prop->kind = PROP_CONST;
14935 }
14936 else
14937 {
14938 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14939 dwarf2_name (die, cu));
14940 return 0;
14941 }
14942
14943 return 1;
14944 }
14945
14946 /* Read the given DW_AT_subrange DIE. */
14947
14948 static struct type *
14949 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14950 {
14951 struct type *base_type, *orig_base_type;
14952 struct type *range_type;
14953 struct attribute *attr;
14954 struct dynamic_prop low, high;
14955 int low_default_is_valid;
14956 int high_bound_is_count = 0;
14957 const char *name;
14958 LONGEST negative_mask;
14959
14960 orig_base_type = die_type (die, cu);
14961 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14962 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14963 creating the range type, but we use the result of check_typedef
14964 when examining properties of the type. */
14965 base_type = check_typedef (orig_base_type);
14966
14967 /* The die_type call above may have already set the type for this DIE. */
14968 range_type = get_die_type (die, cu);
14969 if (range_type)
14970 return range_type;
14971
14972 low.kind = PROP_CONST;
14973 high.kind = PROP_CONST;
14974 high.data.const_val = 0;
14975
14976 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14977 omitting DW_AT_lower_bound. */
14978 switch (cu->language)
14979 {
14980 case language_c:
14981 case language_cplus:
14982 low.data.const_val = 0;
14983 low_default_is_valid = 1;
14984 break;
14985 case language_fortran:
14986 low.data.const_val = 1;
14987 low_default_is_valid = 1;
14988 break;
14989 case language_d:
14990 case language_objc:
14991 case language_rust:
14992 low.data.const_val = 0;
14993 low_default_is_valid = (cu->header.version >= 4);
14994 break;
14995 case language_ada:
14996 case language_m2:
14997 case language_pascal:
14998 low.data.const_val = 1;
14999 low_default_is_valid = (cu->header.version >= 4);
15000 break;
15001 default:
15002 low.data.const_val = 0;
15003 low_default_is_valid = 0;
15004 break;
15005 }
15006
15007 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
15008 if (attr)
15009 attr_to_dynamic_prop (attr, die, cu, &low);
15010 else if (!low_default_is_valid)
15011 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15012 "- DIE at 0x%x [in module %s]"),
15013 die->offset.sect_off, objfile_name (cu->objfile));
15014
15015 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15016 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15017 {
15018 attr = dwarf2_attr (die, DW_AT_count, cu);
15019 if (attr_to_dynamic_prop (attr, die, cu, &high))
15020 {
15021 /* If bounds are constant do the final calculation here. */
15022 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15023 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15024 else
15025 high_bound_is_count = 1;
15026 }
15027 }
15028
15029 /* Dwarf-2 specifications explicitly allows to create subrange types
15030 without specifying a base type.
15031 In that case, the base type must be set to the type of
15032 the lower bound, upper bound or count, in that order, if any of these
15033 three attributes references an object that has a type.
15034 If no base type is found, the Dwarf-2 specifications say that
15035 a signed integer type of size equal to the size of an address should
15036 be used.
15037 For the following C code: `extern char gdb_int [];'
15038 GCC produces an empty range DIE.
15039 FIXME: muller/2010-05-28: Possible references to object for low bound,
15040 high bound or count are not yet handled by this code. */
15041 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15042 {
15043 struct objfile *objfile = cu->objfile;
15044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15045 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15046 struct type *int_type = objfile_type (objfile)->builtin_int;
15047
15048 /* Test "int", "long int", and "long long int" objfile types,
15049 and select the first one having a size above or equal to the
15050 architecture address size. */
15051 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15052 base_type = int_type;
15053 else
15054 {
15055 int_type = objfile_type (objfile)->builtin_long;
15056 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15057 base_type = int_type;
15058 else
15059 {
15060 int_type = objfile_type (objfile)->builtin_long_long;
15061 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15062 base_type = int_type;
15063 }
15064 }
15065 }
15066
15067 /* Normally, the DWARF producers are expected to use a signed
15068 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15069 But this is unfortunately not always the case, as witnessed
15070 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15071 is used instead. To work around that ambiguity, we treat
15072 the bounds as signed, and thus sign-extend their values, when
15073 the base type is signed. */
15074 negative_mask =
15075 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15076 if (low.kind == PROP_CONST
15077 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15078 low.data.const_val |= negative_mask;
15079 if (high.kind == PROP_CONST
15080 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15081 high.data.const_val |= negative_mask;
15082
15083 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15084
15085 if (high_bound_is_count)
15086 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15087
15088 /* Ada expects an empty array on no boundary attributes. */
15089 if (attr == NULL && cu->language != language_ada)
15090 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15091
15092 name = dwarf2_name (die, cu);
15093 if (name)
15094 TYPE_NAME (range_type) = name;
15095
15096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15097 if (attr)
15098 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15099
15100 set_die_type (die, range_type, cu);
15101
15102 /* set_die_type should be already done. */
15103 set_descriptive_type (range_type, die, cu);
15104
15105 return range_type;
15106 }
15107
15108 static struct type *
15109 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15110 {
15111 struct type *type;
15112
15113 /* For now, we only support the C meaning of an unspecified type: void. */
15114
15115 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15116 TYPE_NAME (type) = dwarf2_name (die, cu);
15117
15118 return set_die_type (die, type, cu);
15119 }
15120
15121 /* Read a single die and all its descendents. Set the die's sibling
15122 field to NULL; set other fields in the die correctly, and set all
15123 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15124 location of the info_ptr after reading all of those dies. PARENT
15125 is the parent of the die in question. */
15126
15127 static struct die_info *
15128 read_die_and_children (const struct die_reader_specs *reader,
15129 const gdb_byte *info_ptr,
15130 const gdb_byte **new_info_ptr,
15131 struct die_info *parent)
15132 {
15133 struct die_info *die;
15134 const gdb_byte *cur_ptr;
15135 int has_children;
15136
15137 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15138 if (die == NULL)
15139 {
15140 *new_info_ptr = cur_ptr;
15141 return NULL;
15142 }
15143 store_in_ref_table (die, reader->cu);
15144
15145 if (has_children)
15146 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15147 else
15148 {
15149 die->child = NULL;
15150 *new_info_ptr = cur_ptr;
15151 }
15152
15153 die->sibling = NULL;
15154 die->parent = parent;
15155 return die;
15156 }
15157
15158 /* Read a die, all of its descendents, and all of its siblings; set
15159 all of the fields of all of the dies correctly. Arguments are as
15160 in read_die_and_children. */
15161
15162 static struct die_info *
15163 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15164 const gdb_byte *info_ptr,
15165 const gdb_byte **new_info_ptr,
15166 struct die_info *parent)
15167 {
15168 struct die_info *first_die, *last_sibling;
15169 const gdb_byte *cur_ptr;
15170
15171 cur_ptr = info_ptr;
15172 first_die = last_sibling = NULL;
15173
15174 while (1)
15175 {
15176 struct die_info *die
15177 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15178
15179 if (die == NULL)
15180 {
15181 *new_info_ptr = cur_ptr;
15182 return first_die;
15183 }
15184
15185 if (!first_die)
15186 first_die = die;
15187 else
15188 last_sibling->sibling = die;
15189
15190 last_sibling = die;
15191 }
15192 }
15193
15194 /* Read a die, all of its descendents, and all of its siblings; set
15195 all of the fields of all of the dies correctly. Arguments are as
15196 in read_die_and_children.
15197 This the main entry point for reading a DIE and all its children. */
15198
15199 static struct die_info *
15200 read_die_and_siblings (const struct die_reader_specs *reader,
15201 const gdb_byte *info_ptr,
15202 const gdb_byte **new_info_ptr,
15203 struct die_info *parent)
15204 {
15205 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15206 new_info_ptr, parent);
15207
15208 if (dwarf_die_debug)
15209 {
15210 fprintf_unfiltered (gdb_stdlog,
15211 "Read die from %s@0x%x of %s:\n",
15212 get_section_name (reader->die_section),
15213 (unsigned) (info_ptr - reader->die_section->buffer),
15214 bfd_get_filename (reader->abfd));
15215 dump_die (die, dwarf_die_debug);
15216 }
15217
15218 return die;
15219 }
15220
15221 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15222 attributes.
15223 The caller is responsible for filling in the extra attributes
15224 and updating (*DIEP)->num_attrs.
15225 Set DIEP to point to a newly allocated die with its information,
15226 except for its child, sibling, and parent fields.
15227 Set HAS_CHILDREN to tell whether the die has children or not. */
15228
15229 static const gdb_byte *
15230 read_full_die_1 (const struct die_reader_specs *reader,
15231 struct die_info **diep, const gdb_byte *info_ptr,
15232 int *has_children, int num_extra_attrs)
15233 {
15234 unsigned int abbrev_number, bytes_read, i;
15235 sect_offset offset;
15236 struct abbrev_info *abbrev;
15237 struct die_info *die;
15238 struct dwarf2_cu *cu = reader->cu;
15239 bfd *abfd = reader->abfd;
15240
15241 offset.sect_off = info_ptr - reader->buffer;
15242 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15243 info_ptr += bytes_read;
15244 if (!abbrev_number)
15245 {
15246 *diep = NULL;
15247 *has_children = 0;
15248 return info_ptr;
15249 }
15250
15251 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15252 if (!abbrev)
15253 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15254 abbrev_number,
15255 bfd_get_filename (abfd));
15256
15257 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15258 die->offset = offset;
15259 die->tag = abbrev->tag;
15260 die->abbrev = abbrev_number;
15261
15262 /* Make the result usable.
15263 The caller needs to update num_attrs after adding the extra
15264 attributes. */
15265 die->num_attrs = abbrev->num_attrs;
15266
15267 for (i = 0; i < abbrev->num_attrs; ++i)
15268 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15269 info_ptr);
15270
15271 *diep = die;
15272 *has_children = abbrev->has_children;
15273 return info_ptr;
15274 }
15275
15276 /* Read a die and all its attributes.
15277 Set DIEP to point to a newly allocated die with its information,
15278 except for its child, sibling, and parent fields.
15279 Set HAS_CHILDREN to tell whether the die has children or not. */
15280
15281 static const gdb_byte *
15282 read_full_die (const struct die_reader_specs *reader,
15283 struct die_info **diep, const gdb_byte *info_ptr,
15284 int *has_children)
15285 {
15286 const gdb_byte *result;
15287
15288 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15289
15290 if (dwarf_die_debug)
15291 {
15292 fprintf_unfiltered (gdb_stdlog,
15293 "Read die from %s@0x%x of %s:\n",
15294 get_section_name (reader->die_section),
15295 (unsigned) (info_ptr - reader->die_section->buffer),
15296 bfd_get_filename (reader->abfd));
15297 dump_die (*diep, dwarf_die_debug);
15298 }
15299
15300 return result;
15301 }
15302 \f
15303 /* Abbreviation tables.
15304
15305 In DWARF version 2, the description of the debugging information is
15306 stored in a separate .debug_abbrev section. Before we read any
15307 dies from a section we read in all abbreviations and install them
15308 in a hash table. */
15309
15310 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15311
15312 static struct abbrev_info *
15313 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15314 {
15315 struct abbrev_info *abbrev;
15316
15317 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15318 memset (abbrev, 0, sizeof (struct abbrev_info));
15319
15320 return abbrev;
15321 }
15322
15323 /* Add an abbreviation to the table. */
15324
15325 static void
15326 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15327 unsigned int abbrev_number,
15328 struct abbrev_info *abbrev)
15329 {
15330 unsigned int hash_number;
15331
15332 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15333 abbrev->next = abbrev_table->abbrevs[hash_number];
15334 abbrev_table->abbrevs[hash_number] = abbrev;
15335 }
15336
15337 /* Look up an abbrev in the table.
15338 Returns NULL if the abbrev is not found. */
15339
15340 static struct abbrev_info *
15341 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15342 unsigned int abbrev_number)
15343 {
15344 unsigned int hash_number;
15345 struct abbrev_info *abbrev;
15346
15347 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15348 abbrev = abbrev_table->abbrevs[hash_number];
15349
15350 while (abbrev)
15351 {
15352 if (abbrev->number == abbrev_number)
15353 return abbrev;
15354 abbrev = abbrev->next;
15355 }
15356 return NULL;
15357 }
15358
15359 /* Read in an abbrev table. */
15360
15361 static struct abbrev_table *
15362 abbrev_table_read_table (struct dwarf2_section_info *section,
15363 sect_offset offset)
15364 {
15365 struct objfile *objfile = dwarf2_per_objfile->objfile;
15366 bfd *abfd = get_section_bfd_owner (section);
15367 struct abbrev_table *abbrev_table;
15368 const gdb_byte *abbrev_ptr;
15369 struct abbrev_info *cur_abbrev;
15370 unsigned int abbrev_number, bytes_read, abbrev_name;
15371 unsigned int abbrev_form;
15372 struct attr_abbrev *cur_attrs;
15373 unsigned int allocated_attrs;
15374
15375 abbrev_table = XNEW (struct abbrev_table);
15376 abbrev_table->offset = offset;
15377 obstack_init (&abbrev_table->abbrev_obstack);
15378 abbrev_table->abbrevs =
15379 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15380 ABBREV_HASH_SIZE);
15381 memset (abbrev_table->abbrevs, 0,
15382 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15383
15384 dwarf2_read_section (objfile, section);
15385 abbrev_ptr = section->buffer + offset.sect_off;
15386 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15387 abbrev_ptr += bytes_read;
15388
15389 allocated_attrs = ATTR_ALLOC_CHUNK;
15390 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15391
15392 /* Loop until we reach an abbrev number of 0. */
15393 while (abbrev_number)
15394 {
15395 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15396
15397 /* read in abbrev header */
15398 cur_abbrev->number = abbrev_number;
15399 cur_abbrev->tag
15400 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15401 abbrev_ptr += bytes_read;
15402 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15403 abbrev_ptr += 1;
15404
15405 /* now read in declarations */
15406 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15407 abbrev_ptr += bytes_read;
15408 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15409 abbrev_ptr += bytes_read;
15410 while (abbrev_name)
15411 {
15412 if (cur_abbrev->num_attrs == allocated_attrs)
15413 {
15414 allocated_attrs += ATTR_ALLOC_CHUNK;
15415 cur_attrs
15416 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15417 }
15418
15419 cur_attrs[cur_abbrev->num_attrs].name
15420 = (enum dwarf_attribute) abbrev_name;
15421 cur_attrs[cur_abbrev->num_attrs++].form
15422 = (enum dwarf_form) abbrev_form;
15423 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15424 abbrev_ptr += bytes_read;
15425 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15426 abbrev_ptr += bytes_read;
15427 }
15428
15429 cur_abbrev->attrs =
15430 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15431 cur_abbrev->num_attrs);
15432 memcpy (cur_abbrev->attrs, cur_attrs,
15433 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15434
15435 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15436
15437 /* Get next abbreviation.
15438 Under Irix6 the abbreviations for a compilation unit are not
15439 always properly terminated with an abbrev number of 0.
15440 Exit loop if we encounter an abbreviation which we have
15441 already read (which means we are about to read the abbreviations
15442 for the next compile unit) or if the end of the abbreviation
15443 table is reached. */
15444 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15445 break;
15446 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15447 abbrev_ptr += bytes_read;
15448 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15449 break;
15450 }
15451
15452 xfree (cur_attrs);
15453 return abbrev_table;
15454 }
15455
15456 /* Free the resources held by ABBREV_TABLE. */
15457
15458 static void
15459 abbrev_table_free (struct abbrev_table *abbrev_table)
15460 {
15461 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15462 xfree (abbrev_table);
15463 }
15464
15465 /* Same as abbrev_table_free but as a cleanup.
15466 We pass in a pointer to the pointer to the table so that we can
15467 set the pointer to NULL when we're done. It also simplifies
15468 build_type_psymtabs_1. */
15469
15470 static void
15471 abbrev_table_free_cleanup (void *table_ptr)
15472 {
15473 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15474
15475 if (*abbrev_table_ptr != NULL)
15476 abbrev_table_free (*abbrev_table_ptr);
15477 *abbrev_table_ptr = NULL;
15478 }
15479
15480 /* Read the abbrev table for CU from ABBREV_SECTION. */
15481
15482 static void
15483 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15484 struct dwarf2_section_info *abbrev_section)
15485 {
15486 cu->abbrev_table =
15487 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15488 }
15489
15490 /* Release the memory used by the abbrev table for a compilation unit. */
15491
15492 static void
15493 dwarf2_free_abbrev_table (void *ptr_to_cu)
15494 {
15495 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15496
15497 if (cu->abbrev_table != NULL)
15498 abbrev_table_free (cu->abbrev_table);
15499 /* Set this to NULL so that we SEGV if we try to read it later,
15500 and also because free_comp_unit verifies this is NULL. */
15501 cu->abbrev_table = NULL;
15502 }
15503 \f
15504 /* Returns nonzero if TAG represents a type that we might generate a partial
15505 symbol for. */
15506
15507 static int
15508 is_type_tag_for_partial (int tag)
15509 {
15510 switch (tag)
15511 {
15512 #if 0
15513 /* Some types that would be reasonable to generate partial symbols for,
15514 that we don't at present. */
15515 case DW_TAG_array_type:
15516 case DW_TAG_file_type:
15517 case DW_TAG_ptr_to_member_type:
15518 case DW_TAG_set_type:
15519 case DW_TAG_string_type:
15520 case DW_TAG_subroutine_type:
15521 #endif
15522 case DW_TAG_base_type:
15523 case DW_TAG_class_type:
15524 case DW_TAG_interface_type:
15525 case DW_TAG_enumeration_type:
15526 case DW_TAG_structure_type:
15527 case DW_TAG_subrange_type:
15528 case DW_TAG_typedef:
15529 case DW_TAG_union_type:
15530 return 1;
15531 default:
15532 return 0;
15533 }
15534 }
15535
15536 /* Load all DIEs that are interesting for partial symbols into memory. */
15537
15538 static struct partial_die_info *
15539 load_partial_dies (const struct die_reader_specs *reader,
15540 const gdb_byte *info_ptr, int building_psymtab)
15541 {
15542 struct dwarf2_cu *cu = reader->cu;
15543 struct objfile *objfile = cu->objfile;
15544 struct partial_die_info *part_die;
15545 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15546 struct abbrev_info *abbrev;
15547 unsigned int bytes_read;
15548 unsigned int load_all = 0;
15549 int nesting_level = 1;
15550
15551 parent_die = NULL;
15552 last_die = NULL;
15553
15554 gdb_assert (cu->per_cu != NULL);
15555 if (cu->per_cu->load_all_dies)
15556 load_all = 1;
15557
15558 cu->partial_dies
15559 = htab_create_alloc_ex (cu->header.length / 12,
15560 partial_die_hash,
15561 partial_die_eq,
15562 NULL,
15563 &cu->comp_unit_obstack,
15564 hashtab_obstack_allocate,
15565 dummy_obstack_deallocate);
15566
15567 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15568
15569 while (1)
15570 {
15571 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15572
15573 /* A NULL abbrev means the end of a series of children. */
15574 if (abbrev == NULL)
15575 {
15576 if (--nesting_level == 0)
15577 {
15578 /* PART_DIE was probably the last thing allocated on the
15579 comp_unit_obstack, so we could call obstack_free
15580 here. We don't do that because the waste is small,
15581 and will be cleaned up when we're done with this
15582 compilation unit. This way, we're also more robust
15583 against other users of the comp_unit_obstack. */
15584 return first_die;
15585 }
15586 info_ptr += bytes_read;
15587 last_die = parent_die;
15588 parent_die = parent_die->die_parent;
15589 continue;
15590 }
15591
15592 /* Check for template arguments. We never save these; if
15593 they're seen, we just mark the parent, and go on our way. */
15594 if (parent_die != NULL
15595 && cu->language == language_cplus
15596 && (abbrev->tag == DW_TAG_template_type_param
15597 || abbrev->tag == DW_TAG_template_value_param))
15598 {
15599 parent_die->has_template_arguments = 1;
15600
15601 if (!load_all)
15602 {
15603 /* We don't need a partial DIE for the template argument. */
15604 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15605 continue;
15606 }
15607 }
15608
15609 /* We only recurse into c++ subprograms looking for template arguments.
15610 Skip their other children. */
15611 if (!load_all
15612 && cu->language == language_cplus
15613 && parent_die != NULL
15614 && parent_die->tag == DW_TAG_subprogram)
15615 {
15616 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15617 continue;
15618 }
15619
15620 /* Check whether this DIE is interesting enough to save. Normally
15621 we would not be interested in members here, but there may be
15622 later variables referencing them via DW_AT_specification (for
15623 static members). */
15624 if (!load_all
15625 && !is_type_tag_for_partial (abbrev->tag)
15626 && abbrev->tag != DW_TAG_constant
15627 && abbrev->tag != DW_TAG_enumerator
15628 && abbrev->tag != DW_TAG_subprogram
15629 && abbrev->tag != DW_TAG_lexical_block
15630 && abbrev->tag != DW_TAG_variable
15631 && abbrev->tag != DW_TAG_namespace
15632 && abbrev->tag != DW_TAG_module
15633 && abbrev->tag != DW_TAG_member
15634 && abbrev->tag != DW_TAG_imported_unit
15635 && abbrev->tag != DW_TAG_imported_declaration)
15636 {
15637 /* Otherwise we skip to the next sibling, if any. */
15638 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15639 continue;
15640 }
15641
15642 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15643 info_ptr);
15644
15645 /* This two-pass algorithm for processing partial symbols has a
15646 high cost in cache pressure. Thus, handle some simple cases
15647 here which cover the majority of C partial symbols. DIEs
15648 which neither have specification tags in them, nor could have
15649 specification tags elsewhere pointing at them, can simply be
15650 processed and discarded.
15651
15652 This segment is also optional; scan_partial_symbols and
15653 add_partial_symbol will handle these DIEs if we chain
15654 them in normally. When compilers which do not emit large
15655 quantities of duplicate debug information are more common,
15656 this code can probably be removed. */
15657
15658 /* Any complete simple types at the top level (pretty much all
15659 of them, for a language without namespaces), can be processed
15660 directly. */
15661 if (parent_die == NULL
15662 && part_die->has_specification == 0
15663 && part_die->is_declaration == 0
15664 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15665 || part_die->tag == DW_TAG_base_type
15666 || part_die->tag == DW_TAG_subrange_type))
15667 {
15668 if (building_psymtab && part_die->name != NULL)
15669 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15670 VAR_DOMAIN, LOC_TYPEDEF,
15671 &objfile->static_psymbols,
15672 0, cu->language, objfile);
15673 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15674 continue;
15675 }
15676
15677 /* The exception for DW_TAG_typedef with has_children above is
15678 a workaround of GCC PR debug/47510. In the case of this complaint
15679 type_name_no_tag_or_error will error on such types later.
15680
15681 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15682 it could not find the child DIEs referenced later, this is checked
15683 above. In correct DWARF DW_TAG_typedef should have no children. */
15684
15685 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15686 complaint (&symfile_complaints,
15687 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15688 "- DIE at 0x%x [in module %s]"),
15689 part_die->offset.sect_off, objfile_name (objfile));
15690
15691 /* If we're at the second level, and we're an enumerator, and
15692 our parent has no specification (meaning possibly lives in a
15693 namespace elsewhere), then we can add the partial symbol now
15694 instead of queueing it. */
15695 if (part_die->tag == DW_TAG_enumerator
15696 && parent_die != NULL
15697 && parent_die->die_parent == NULL
15698 && parent_die->tag == DW_TAG_enumeration_type
15699 && parent_die->has_specification == 0)
15700 {
15701 if (part_die->name == NULL)
15702 complaint (&symfile_complaints,
15703 _("malformed enumerator DIE ignored"));
15704 else if (building_psymtab)
15705 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15706 VAR_DOMAIN, LOC_CONST,
15707 cu->language == language_cplus
15708 ? &objfile->global_psymbols
15709 : &objfile->static_psymbols,
15710 0, cu->language, objfile);
15711
15712 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15713 continue;
15714 }
15715
15716 /* We'll save this DIE so link it in. */
15717 part_die->die_parent = parent_die;
15718 part_die->die_sibling = NULL;
15719 part_die->die_child = NULL;
15720
15721 if (last_die && last_die == parent_die)
15722 last_die->die_child = part_die;
15723 else if (last_die)
15724 last_die->die_sibling = part_die;
15725
15726 last_die = part_die;
15727
15728 if (first_die == NULL)
15729 first_die = part_die;
15730
15731 /* Maybe add the DIE to the hash table. Not all DIEs that we
15732 find interesting need to be in the hash table, because we
15733 also have the parent/sibling/child chains; only those that we
15734 might refer to by offset later during partial symbol reading.
15735
15736 For now this means things that might have be the target of a
15737 DW_AT_specification, DW_AT_abstract_origin, or
15738 DW_AT_extension. DW_AT_extension will refer only to
15739 namespaces; DW_AT_abstract_origin refers to functions (and
15740 many things under the function DIE, but we do not recurse
15741 into function DIEs during partial symbol reading) and
15742 possibly variables as well; DW_AT_specification refers to
15743 declarations. Declarations ought to have the DW_AT_declaration
15744 flag. It happens that GCC forgets to put it in sometimes, but
15745 only for functions, not for types.
15746
15747 Adding more things than necessary to the hash table is harmless
15748 except for the performance cost. Adding too few will result in
15749 wasted time in find_partial_die, when we reread the compilation
15750 unit with load_all_dies set. */
15751
15752 if (load_all
15753 || abbrev->tag == DW_TAG_constant
15754 || abbrev->tag == DW_TAG_subprogram
15755 || abbrev->tag == DW_TAG_variable
15756 || abbrev->tag == DW_TAG_namespace
15757 || part_die->is_declaration)
15758 {
15759 void **slot;
15760
15761 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15762 part_die->offset.sect_off, INSERT);
15763 *slot = part_die;
15764 }
15765
15766 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15767
15768 /* For some DIEs we want to follow their children (if any). For C
15769 we have no reason to follow the children of structures; for other
15770 languages we have to, so that we can get at method physnames
15771 to infer fully qualified class names, for DW_AT_specification,
15772 and for C++ template arguments. For C++, we also look one level
15773 inside functions to find template arguments (if the name of the
15774 function does not already contain the template arguments).
15775
15776 For Ada, we need to scan the children of subprograms and lexical
15777 blocks as well because Ada allows the definition of nested
15778 entities that could be interesting for the debugger, such as
15779 nested subprograms for instance. */
15780 if (last_die->has_children
15781 && (load_all
15782 || last_die->tag == DW_TAG_namespace
15783 || last_die->tag == DW_TAG_module
15784 || last_die->tag == DW_TAG_enumeration_type
15785 || (cu->language == language_cplus
15786 && last_die->tag == DW_TAG_subprogram
15787 && (last_die->name == NULL
15788 || strchr (last_die->name, '<') == NULL))
15789 || (cu->language != language_c
15790 && (last_die->tag == DW_TAG_class_type
15791 || last_die->tag == DW_TAG_interface_type
15792 || last_die->tag == DW_TAG_structure_type
15793 || last_die->tag == DW_TAG_union_type))
15794 || (cu->language == language_ada
15795 && (last_die->tag == DW_TAG_subprogram
15796 || last_die->tag == DW_TAG_lexical_block))))
15797 {
15798 nesting_level++;
15799 parent_die = last_die;
15800 continue;
15801 }
15802
15803 /* Otherwise we skip to the next sibling, if any. */
15804 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15805
15806 /* Back to the top, do it again. */
15807 }
15808 }
15809
15810 /* Read a minimal amount of information into the minimal die structure. */
15811
15812 static const gdb_byte *
15813 read_partial_die (const struct die_reader_specs *reader,
15814 struct partial_die_info *part_die,
15815 struct abbrev_info *abbrev, unsigned int abbrev_len,
15816 const gdb_byte *info_ptr)
15817 {
15818 struct dwarf2_cu *cu = reader->cu;
15819 struct objfile *objfile = cu->objfile;
15820 const gdb_byte *buffer = reader->buffer;
15821 unsigned int i;
15822 struct attribute attr;
15823 int has_low_pc_attr = 0;
15824 int has_high_pc_attr = 0;
15825 int high_pc_relative = 0;
15826
15827 memset (part_die, 0, sizeof (struct partial_die_info));
15828
15829 part_die->offset.sect_off = info_ptr - buffer;
15830
15831 info_ptr += abbrev_len;
15832
15833 if (abbrev == NULL)
15834 return info_ptr;
15835
15836 part_die->tag = abbrev->tag;
15837 part_die->has_children = abbrev->has_children;
15838
15839 for (i = 0; i < abbrev->num_attrs; ++i)
15840 {
15841 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15842
15843 /* Store the data if it is of an attribute we want to keep in a
15844 partial symbol table. */
15845 switch (attr.name)
15846 {
15847 case DW_AT_name:
15848 switch (part_die->tag)
15849 {
15850 case DW_TAG_compile_unit:
15851 case DW_TAG_partial_unit:
15852 case DW_TAG_type_unit:
15853 /* Compilation units have a DW_AT_name that is a filename, not
15854 a source language identifier. */
15855 case DW_TAG_enumeration_type:
15856 case DW_TAG_enumerator:
15857 /* These tags always have simple identifiers already; no need
15858 to canonicalize them. */
15859 part_die->name = DW_STRING (&attr);
15860 break;
15861 default:
15862 part_die->name
15863 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15864 &objfile->per_bfd->storage_obstack);
15865 break;
15866 }
15867 break;
15868 case DW_AT_linkage_name:
15869 case DW_AT_MIPS_linkage_name:
15870 /* Note that both forms of linkage name might appear. We
15871 assume they will be the same, and we only store the last
15872 one we see. */
15873 if (cu->language == language_ada)
15874 part_die->name = DW_STRING (&attr);
15875 part_die->linkage_name = DW_STRING (&attr);
15876 break;
15877 case DW_AT_low_pc:
15878 has_low_pc_attr = 1;
15879 part_die->lowpc = attr_value_as_address (&attr);
15880 break;
15881 case DW_AT_high_pc:
15882 has_high_pc_attr = 1;
15883 part_die->highpc = attr_value_as_address (&attr);
15884 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15885 high_pc_relative = 1;
15886 break;
15887 case DW_AT_location:
15888 /* Support the .debug_loc offsets. */
15889 if (attr_form_is_block (&attr))
15890 {
15891 part_die->d.locdesc = DW_BLOCK (&attr);
15892 }
15893 else if (attr_form_is_section_offset (&attr))
15894 {
15895 dwarf2_complex_location_expr_complaint ();
15896 }
15897 else
15898 {
15899 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15900 "partial symbol information");
15901 }
15902 break;
15903 case DW_AT_external:
15904 part_die->is_external = DW_UNSND (&attr);
15905 break;
15906 case DW_AT_declaration:
15907 part_die->is_declaration = DW_UNSND (&attr);
15908 break;
15909 case DW_AT_type:
15910 part_die->has_type = 1;
15911 break;
15912 case DW_AT_abstract_origin:
15913 case DW_AT_specification:
15914 case DW_AT_extension:
15915 part_die->has_specification = 1;
15916 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15917 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15918 || cu->per_cu->is_dwz);
15919 break;
15920 case DW_AT_sibling:
15921 /* Ignore absolute siblings, they might point outside of
15922 the current compile unit. */
15923 if (attr.form == DW_FORM_ref_addr)
15924 complaint (&symfile_complaints,
15925 _("ignoring absolute DW_AT_sibling"));
15926 else
15927 {
15928 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15929 const gdb_byte *sibling_ptr = buffer + off;
15930
15931 if (sibling_ptr < info_ptr)
15932 complaint (&symfile_complaints,
15933 _("DW_AT_sibling points backwards"));
15934 else if (sibling_ptr > reader->buffer_end)
15935 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15936 else
15937 part_die->sibling = sibling_ptr;
15938 }
15939 break;
15940 case DW_AT_byte_size:
15941 part_die->has_byte_size = 1;
15942 break;
15943 case DW_AT_const_value:
15944 part_die->has_const_value = 1;
15945 break;
15946 case DW_AT_calling_convention:
15947 /* DWARF doesn't provide a way to identify a program's source-level
15948 entry point. DW_AT_calling_convention attributes are only meant
15949 to describe functions' calling conventions.
15950
15951 However, because it's a necessary piece of information in
15952 Fortran, and because DW_CC_program is the only piece of debugging
15953 information whose definition refers to a 'main program' at all,
15954 several compilers have begun marking Fortran main programs with
15955 DW_CC_program --- even when those functions use the standard
15956 calling conventions.
15957
15958 So until DWARF specifies a way to provide this information and
15959 compilers pick up the new representation, we'll support this
15960 practice. */
15961 if (DW_UNSND (&attr) == DW_CC_program
15962 && cu->language == language_fortran
15963 && part_die->name != NULL)
15964 set_objfile_main_name (objfile, part_die->name, language_fortran);
15965 break;
15966 case DW_AT_inline:
15967 if (DW_UNSND (&attr) == DW_INL_inlined
15968 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15969 part_die->may_be_inlined = 1;
15970 break;
15971
15972 case DW_AT_import:
15973 if (part_die->tag == DW_TAG_imported_unit)
15974 {
15975 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15976 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15977 || cu->per_cu->is_dwz);
15978 }
15979 break;
15980
15981 default:
15982 break;
15983 }
15984 }
15985
15986 if (high_pc_relative)
15987 part_die->highpc += part_die->lowpc;
15988
15989 if (has_low_pc_attr && has_high_pc_attr)
15990 {
15991 /* When using the GNU linker, .gnu.linkonce. sections are used to
15992 eliminate duplicate copies of functions and vtables and such.
15993 The linker will arbitrarily choose one and discard the others.
15994 The AT_*_pc values for such functions refer to local labels in
15995 these sections. If the section from that file was discarded, the
15996 labels are not in the output, so the relocs get a value of 0.
15997 If this is a discarded function, mark the pc bounds as invalid,
15998 so that GDB will ignore it. */
15999 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16000 {
16001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16002
16003 complaint (&symfile_complaints,
16004 _("DW_AT_low_pc %s is zero "
16005 "for DIE at 0x%x [in module %s]"),
16006 paddress (gdbarch, part_die->lowpc),
16007 part_die->offset.sect_off, objfile_name (objfile));
16008 }
16009 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16010 else if (part_die->lowpc >= part_die->highpc)
16011 {
16012 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16013
16014 complaint (&symfile_complaints,
16015 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16016 "for DIE at 0x%x [in module %s]"),
16017 paddress (gdbarch, part_die->lowpc),
16018 paddress (gdbarch, part_die->highpc),
16019 part_die->offset.sect_off, objfile_name (objfile));
16020 }
16021 else
16022 part_die->has_pc_info = 1;
16023 }
16024
16025 return info_ptr;
16026 }
16027
16028 /* Find a cached partial DIE at OFFSET in CU. */
16029
16030 static struct partial_die_info *
16031 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16032 {
16033 struct partial_die_info *lookup_die = NULL;
16034 struct partial_die_info part_die;
16035
16036 part_die.offset = offset;
16037 lookup_die = ((struct partial_die_info *)
16038 htab_find_with_hash (cu->partial_dies, &part_die,
16039 offset.sect_off));
16040
16041 return lookup_die;
16042 }
16043
16044 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16045 except in the case of .debug_types DIEs which do not reference
16046 outside their CU (they do however referencing other types via
16047 DW_FORM_ref_sig8). */
16048
16049 static struct partial_die_info *
16050 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16051 {
16052 struct objfile *objfile = cu->objfile;
16053 struct dwarf2_per_cu_data *per_cu = NULL;
16054 struct partial_die_info *pd = NULL;
16055
16056 if (offset_in_dwz == cu->per_cu->is_dwz
16057 && offset_in_cu_p (&cu->header, offset))
16058 {
16059 pd = find_partial_die_in_comp_unit (offset, cu);
16060 if (pd != NULL)
16061 return pd;
16062 /* We missed recording what we needed.
16063 Load all dies and try again. */
16064 per_cu = cu->per_cu;
16065 }
16066 else
16067 {
16068 /* TUs don't reference other CUs/TUs (except via type signatures). */
16069 if (cu->per_cu->is_debug_types)
16070 {
16071 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16072 " external reference to offset 0x%lx [in module %s].\n"),
16073 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16074 bfd_get_filename (objfile->obfd));
16075 }
16076 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16077 objfile);
16078
16079 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16080 load_partial_comp_unit (per_cu);
16081
16082 per_cu->cu->last_used = 0;
16083 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16084 }
16085
16086 /* If we didn't find it, and not all dies have been loaded,
16087 load them all and try again. */
16088
16089 if (pd == NULL && per_cu->load_all_dies == 0)
16090 {
16091 per_cu->load_all_dies = 1;
16092
16093 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16094 THIS_CU->cu may already be in use. So we can't just free it and
16095 replace its DIEs with the ones we read in. Instead, we leave those
16096 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16097 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16098 set. */
16099 load_partial_comp_unit (per_cu);
16100
16101 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16102 }
16103
16104 if (pd == NULL)
16105 internal_error (__FILE__, __LINE__,
16106 _("could not find partial DIE 0x%x "
16107 "in cache [from module %s]\n"),
16108 offset.sect_off, bfd_get_filename (objfile->obfd));
16109 return pd;
16110 }
16111
16112 /* See if we can figure out if the class lives in a namespace. We do
16113 this by looking for a member function; its demangled name will
16114 contain namespace info, if there is any. */
16115
16116 static void
16117 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16118 struct dwarf2_cu *cu)
16119 {
16120 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16121 what template types look like, because the demangler
16122 frequently doesn't give the same name as the debug info. We
16123 could fix this by only using the demangled name to get the
16124 prefix (but see comment in read_structure_type). */
16125
16126 struct partial_die_info *real_pdi;
16127 struct partial_die_info *child_pdi;
16128
16129 /* If this DIE (this DIE's specification, if any) has a parent, then
16130 we should not do this. We'll prepend the parent's fully qualified
16131 name when we create the partial symbol. */
16132
16133 real_pdi = struct_pdi;
16134 while (real_pdi->has_specification)
16135 real_pdi = find_partial_die (real_pdi->spec_offset,
16136 real_pdi->spec_is_dwz, cu);
16137
16138 if (real_pdi->die_parent != NULL)
16139 return;
16140
16141 for (child_pdi = struct_pdi->die_child;
16142 child_pdi != NULL;
16143 child_pdi = child_pdi->die_sibling)
16144 {
16145 if (child_pdi->tag == DW_TAG_subprogram
16146 && child_pdi->linkage_name != NULL)
16147 {
16148 char *actual_class_name
16149 = language_class_name_from_physname (cu->language_defn,
16150 child_pdi->linkage_name);
16151 if (actual_class_name != NULL)
16152 {
16153 struct_pdi->name
16154 = ((const char *)
16155 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16156 actual_class_name,
16157 strlen (actual_class_name)));
16158 xfree (actual_class_name);
16159 }
16160 break;
16161 }
16162 }
16163 }
16164
16165 /* Adjust PART_DIE before generating a symbol for it. This function
16166 may set the is_external flag or change the DIE's name. */
16167
16168 static void
16169 fixup_partial_die (struct partial_die_info *part_die,
16170 struct dwarf2_cu *cu)
16171 {
16172 /* Once we've fixed up a die, there's no point in doing so again.
16173 This also avoids a memory leak if we were to call
16174 guess_partial_die_structure_name multiple times. */
16175 if (part_die->fixup_called)
16176 return;
16177
16178 /* If we found a reference attribute and the DIE has no name, try
16179 to find a name in the referred to DIE. */
16180
16181 if (part_die->name == NULL && part_die->has_specification)
16182 {
16183 struct partial_die_info *spec_die;
16184
16185 spec_die = find_partial_die (part_die->spec_offset,
16186 part_die->spec_is_dwz, cu);
16187
16188 fixup_partial_die (spec_die, cu);
16189
16190 if (spec_die->name)
16191 {
16192 part_die->name = spec_die->name;
16193
16194 /* Copy DW_AT_external attribute if it is set. */
16195 if (spec_die->is_external)
16196 part_die->is_external = spec_die->is_external;
16197 }
16198 }
16199
16200 /* Set default names for some unnamed DIEs. */
16201
16202 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16203 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16204
16205 /* If there is no parent die to provide a namespace, and there are
16206 children, see if we can determine the namespace from their linkage
16207 name. */
16208 if (cu->language == language_cplus
16209 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16210 && part_die->die_parent == NULL
16211 && part_die->has_children
16212 && (part_die->tag == DW_TAG_class_type
16213 || part_die->tag == DW_TAG_structure_type
16214 || part_die->tag == DW_TAG_union_type))
16215 guess_partial_die_structure_name (part_die, cu);
16216
16217 /* GCC might emit a nameless struct or union that has a linkage
16218 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16219 if (part_die->name == NULL
16220 && (part_die->tag == DW_TAG_class_type
16221 || part_die->tag == DW_TAG_interface_type
16222 || part_die->tag == DW_TAG_structure_type
16223 || part_die->tag == DW_TAG_union_type)
16224 && part_die->linkage_name != NULL)
16225 {
16226 char *demangled;
16227
16228 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16229 if (demangled)
16230 {
16231 const char *base;
16232
16233 /* Strip any leading namespaces/classes, keep only the base name.
16234 DW_AT_name for named DIEs does not contain the prefixes. */
16235 base = strrchr (demangled, ':');
16236 if (base && base > demangled && base[-1] == ':')
16237 base++;
16238 else
16239 base = demangled;
16240
16241 part_die->name
16242 = ((const char *)
16243 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16244 base, strlen (base)));
16245 xfree (demangled);
16246 }
16247 }
16248
16249 part_die->fixup_called = 1;
16250 }
16251
16252 /* Read an attribute value described by an attribute form. */
16253
16254 static const gdb_byte *
16255 read_attribute_value (const struct die_reader_specs *reader,
16256 struct attribute *attr, unsigned form,
16257 const gdb_byte *info_ptr)
16258 {
16259 struct dwarf2_cu *cu = reader->cu;
16260 struct objfile *objfile = cu->objfile;
16261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16262 bfd *abfd = reader->abfd;
16263 struct comp_unit_head *cu_header = &cu->header;
16264 unsigned int bytes_read;
16265 struct dwarf_block *blk;
16266
16267 attr->form = (enum dwarf_form) form;
16268 switch (form)
16269 {
16270 case DW_FORM_ref_addr:
16271 if (cu->header.version == 2)
16272 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16273 else
16274 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16275 &cu->header, &bytes_read);
16276 info_ptr += bytes_read;
16277 break;
16278 case DW_FORM_GNU_ref_alt:
16279 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16280 info_ptr += bytes_read;
16281 break;
16282 case DW_FORM_addr:
16283 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16284 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16285 info_ptr += bytes_read;
16286 break;
16287 case DW_FORM_block2:
16288 blk = dwarf_alloc_block (cu);
16289 blk->size = read_2_bytes (abfd, info_ptr);
16290 info_ptr += 2;
16291 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16292 info_ptr += blk->size;
16293 DW_BLOCK (attr) = blk;
16294 break;
16295 case DW_FORM_block4:
16296 blk = dwarf_alloc_block (cu);
16297 blk->size = read_4_bytes (abfd, info_ptr);
16298 info_ptr += 4;
16299 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16300 info_ptr += blk->size;
16301 DW_BLOCK (attr) = blk;
16302 break;
16303 case DW_FORM_data2:
16304 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16305 info_ptr += 2;
16306 break;
16307 case DW_FORM_data4:
16308 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16309 info_ptr += 4;
16310 break;
16311 case DW_FORM_data8:
16312 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16313 info_ptr += 8;
16314 break;
16315 case DW_FORM_sec_offset:
16316 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16317 info_ptr += bytes_read;
16318 break;
16319 case DW_FORM_string:
16320 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16321 DW_STRING_IS_CANONICAL (attr) = 0;
16322 info_ptr += bytes_read;
16323 break;
16324 case DW_FORM_strp:
16325 if (!cu->per_cu->is_dwz)
16326 {
16327 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16328 &bytes_read);
16329 DW_STRING_IS_CANONICAL (attr) = 0;
16330 info_ptr += bytes_read;
16331 break;
16332 }
16333 /* FALLTHROUGH */
16334 case DW_FORM_GNU_strp_alt:
16335 {
16336 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16337 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16338 &bytes_read);
16339
16340 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16341 DW_STRING_IS_CANONICAL (attr) = 0;
16342 info_ptr += bytes_read;
16343 }
16344 break;
16345 case DW_FORM_exprloc:
16346 case DW_FORM_block:
16347 blk = dwarf_alloc_block (cu);
16348 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16349 info_ptr += bytes_read;
16350 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16351 info_ptr += blk->size;
16352 DW_BLOCK (attr) = blk;
16353 break;
16354 case DW_FORM_block1:
16355 blk = dwarf_alloc_block (cu);
16356 blk->size = read_1_byte (abfd, info_ptr);
16357 info_ptr += 1;
16358 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16359 info_ptr += blk->size;
16360 DW_BLOCK (attr) = blk;
16361 break;
16362 case DW_FORM_data1:
16363 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16364 info_ptr += 1;
16365 break;
16366 case DW_FORM_flag:
16367 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16368 info_ptr += 1;
16369 break;
16370 case DW_FORM_flag_present:
16371 DW_UNSND (attr) = 1;
16372 break;
16373 case DW_FORM_sdata:
16374 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16375 info_ptr += bytes_read;
16376 break;
16377 case DW_FORM_udata:
16378 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16379 info_ptr += bytes_read;
16380 break;
16381 case DW_FORM_ref1:
16382 DW_UNSND (attr) = (cu->header.offset.sect_off
16383 + read_1_byte (abfd, info_ptr));
16384 info_ptr += 1;
16385 break;
16386 case DW_FORM_ref2:
16387 DW_UNSND (attr) = (cu->header.offset.sect_off
16388 + read_2_bytes (abfd, info_ptr));
16389 info_ptr += 2;
16390 break;
16391 case DW_FORM_ref4:
16392 DW_UNSND (attr) = (cu->header.offset.sect_off
16393 + read_4_bytes (abfd, info_ptr));
16394 info_ptr += 4;
16395 break;
16396 case DW_FORM_ref8:
16397 DW_UNSND (attr) = (cu->header.offset.sect_off
16398 + read_8_bytes (abfd, info_ptr));
16399 info_ptr += 8;
16400 break;
16401 case DW_FORM_ref_sig8:
16402 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16403 info_ptr += 8;
16404 break;
16405 case DW_FORM_ref_udata:
16406 DW_UNSND (attr) = (cu->header.offset.sect_off
16407 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16408 info_ptr += bytes_read;
16409 break;
16410 case DW_FORM_indirect:
16411 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16412 info_ptr += bytes_read;
16413 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16414 break;
16415 case DW_FORM_GNU_addr_index:
16416 if (reader->dwo_file == NULL)
16417 {
16418 /* For now flag a hard error.
16419 Later we can turn this into a complaint. */
16420 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16421 dwarf_form_name (form),
16422 bfd_get_filename (abfd));
16423 }
16424 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16425 info_ptr += bytes_read;
16426 break;
16427 case DW_FORM_GNU_str_index:
16428 if (reader->dwo_file == NULL)
16429 {
16430 /* For now flag a hard error.
16431 Later we can turn this into a complaint if warranted. */
16432 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16433 dwarf_form_name (form),
16434 bfd_get_filename (abfd));
16435 }
16436 {
16437 ULONGEST str_index =
16438 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16439
16440 DW_STRING (attr) = read_str_index (reader, str_index);
16441 DW_STRING_IS_CANONICAL (attr) = 0;
16442 info_ptr += bytes_read;
16443 }
16444 break;
16445 default:
16446 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16447 dwarf_form_name (form),
16448 bfd_get_filename (abfd));
16449 }
16450
16451 /* Super hack. */
16452 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16453 attr->form = DW_FORM_GNU_ref_alt;
16454
16455 /* We have seen instances where the compiler tried to emit a byte
16456 size attribute of -1 which ended up being encoded as an unsigned
16457 0xffffffff. Although 0xffffffff is technically a valid size value,
16458 an object of this size seems pretty unlikely so we can relatively
16459 safely treat these cases as if the size attribute was invalid and
16460 treat them as zero by default. */
16461 if (attr->name == DW_AT_byte_size
16462 && form == DW_FORM_data4
16463 && DW_UNSND (attr) >= 0xffffffff)
16464 {
16465 complaint
16466 (&symfile_complaints,
16467 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16468 hex_string (DW_UNSND (attr)));
16469 DW_UNSND (attr) = 0;
16470 }
16471
16472 return info_ptr;
16473 }
16474
16475 /* Read an attribute described by an abbreviated attribute. */
16476
16477 static const gdb_byte *
16478 read_attribute (const struct die_reader_specs *reader,
16479 struct attribute *attr, struct attr_abbrev *abbrev,
16480 const gdb_byte *info_ptr)
16481 {
16482 attr->name = abbrev->name;
16483 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16484 }
16485
16486 /* Read dwarf information from a buffer. */
16487
16488 static unsigned int
16489 read_1_byte (bfd *abfd, const gdb_byte *buf)
16490 {
16491 return bfd_get_8 (abfd, buf);
16492 }
16493
16494 static int
16495 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16496 {
16497 return bfd_get_signed_8 (abfd, buf);
16498 }
16499
16500 static unsigned int
16501 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16502 {
16503 return bfd_get_16 (abfd, buf);
16504 }
16505
16506 static int
16507 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16508 {
16509 return bfd_get_signed_16 (abfd, buf);
16510 }
16511
16512 static unsigned int
16513 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16514 {
16515 return bfd_get_32 (abfd, buf);
16516 }
16517
16518 static int
16519 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16520 {
16521 return bfd_get_signed_32 (abfd, buf);
16522 }
16523
16524 static ULONGEST
16525 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16526 {
16527 return bfd_get_64 (abfd, buf);
16528 }
16529
16530 static CORE_ADDR
16531 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16532 unsigned int *bytes_read)
16533 {
16534 struct comp_unit_head *cu_header = &cu->header;
16535 CORE_ADDR retval = 0;
16536
16537 if (cu_header->signed_addr_p)
16538 {
16539 switch (cu_header->addr_size)
16540 {
16541 case 2:
16542 retval = bfd_get_signed_16 (abfd, buf);
16543 break;
16544 case 4:
16545 retval = bfd_get_signed_32 (abfd, buf);
16546 break;
16547 case 8:
16548 retval = bfd_get_signed_64 (abfd, buf);
16549 break;
16550 default:
16551 internal_error (__FILE__, __LINE__,
16552 _("read_address: bad switch, signed [in module %s]"),
16553 bfd_get_filename (abfd));
16554 }
16555 }
16556 else
16557 {
16558 switch (cu_header->addr_size)
16559 {
16560 case 2:
16561 retval = bfd_get_16 (abfd, buf);
16562 break;
16563 case 4:
16564 retval = bfd_get_32 (abfd, buf);
16565 break;
16566 case 8:
16567 retval = bfd_get_64 (abfd, buf);
16568 break;
16569 default:
16570 internal_error (__FILE__, __LINE__,
16571 _("read_address: bad switch, "
16572 "unsigned [in module %s]"),
16573 bfd_get_filename (abfd));
16574 }
16575 }
16576
16577 *bytes_read = cu_header->addr_size;
16578 return retval;
16579 }
16580
16581 /* Read the initial length from a section. The (draft) DWARF 3
16582 specification allows the initial length to take up either 4 bytes
16583 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16584 bytes describe the length and all offsets will be 8 bytes in length
16585 instead of 4.
16586
16587 An older, non-standard 64-bit format is also handled by this
16588 function. The older format in question stores the initial length
16589 as an 8-byte quantity without an escape value. Lengths greater
16590 than 2^32 aren't very common which means that the initial 4 bytes
16591 is almost always zero. Since a length value of zero doesn't make
16592 sense for the 32-bit format, this initial zero can be considered to
16593 be an escape value which indicates the presence of the older 64-bit
16594 format. As written, the code can't detect (old format) lengths
16595 greater than 4GB. If it becomes necessary to handle lengths
16596 somewhat larger than 4GB, we could allow other small values (such
16597 as the non-sensical values of 1, 2, and 3) to also be used as
16598 escape values indicating the presence of the old format.
16599
16600 The value returned via bytes_read should be used to increment the
16601 relevant pointer after calling read_initial_length().
16602
16603 [ Note: read_initial_length() and read_offset() are based on the
16604 document entitled "DWARF Debugging Information Format", revision
16605 3, draft 8, dated November 19, 2001. This document was obtained
16606 from:
16607
16608 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16609
16610 This document is only a draft and is subject to change. (So beware.)
16611
16612 Details regarding the older, non-standard 64-bit format were
16613 determined empirically by examining 64-bit ELF files produced by
16614 the SGI toolchain on an IRIX 6.5 machine.
16615
16616 - Kevin, July 16, 2002
16617 ] */
16618
16619 static LONGEST
16620 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16621 {
16622 LONGEST length = bfd_get_32 (abfd, buf);
16623
16624 if (length == 0xffffffff)
16625 {
16626 length = bfd_get_64 (abfd, buf + 4);
16627 *bytes_read = 12;
16628 }
16629 else if (length == 0)
16630 {
16631 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16632 length = bfd_get_64 (abfd, buf);
16633 *bytes_read = 8;
16634 }
16635 else
16636 {
16637 *bytes_read = 4;
16638 }
16639
16640 return length;
16641 }
16642
16643 /* Cover function for read_initial_length.
16644 Returns the length of the object at BUF, and stores the size of the
16645 initial length in *BYTES_READ and stores the size that offsets will be in
16646 *OFFSET_SIZE.
16647 If the initial length size is not equivalent to that specified in
16648 CU_HEADER then issue a complaint.
16649 This is useful when reading non-comp-unit headers. */
16650
16651 static LONGEST
16652 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16653 const struct comp_unit_head *cu_header,
16654 unsigned int *bytes_read,
16655 unsigned int *offset_size)
16656 {
16657 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16658
16659 gdb_assert (cu_header->initial_length_size == 4
16660 || cu_header->initial_length_size == 8
16661 || cu_header->initial_length_size == 12);
16662
16663 if (cu_header->initial_length_size != *bytes_read)
16664 complaint (&symfile_complaints,
16665 _("intermixed 32-bit and 64-bit DWARF sections"));
16666
16667 *offset_size = (*bytes_read == 4) ? 4 : 8;
16668 return length;
16669 }
16670
16671 /* Read an offset from the data stream. The size of the offset is
16672 given by cu_header->offset_size. */
16673
16674 static LONGEST
16675 read_offset (bfd *abfd, const gdb_byte *buf,
16676 const struct comp_unit_head *cu_header,
16677 unsigned int *bytes_read)
16678 {
16679 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16680
16681 *bytes_read = cu_header->offset_size;
16682 return offset;
16683 }
16684
16685 /* Read an offset from the data stream. */
16686
16687 static LONGEST
16688 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16689 {
16690 LONGEST retval = 0;
16691
16692 switch (offset_size)
16693 {
16694 case 4:
16695 retval = bfd_get_32 (abfd, buf);
16696 break;
16697 case 8:
16698 retval = bfd_get_64 (abfd, buf);
16699 break;
16700 default:
16701 internal_error (__FILE__, __LINE__,
16702 _("read_offset_1: bad switch [in module %s]"),
16703 bfd_get_filename (abfd));
16704 }
16705
16706 return retval;
16707 }
16708
16709 static const gdb_byte *
16710 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16711 {
16712 /* If the size of a host char is 8 bits, we can return a pointer
16713 to the buffer, otherwise we have to copy the data to a buffer
16714 allocated on the temporary obstack. */
16715 gdb_assert (HOST_CHAR_BIT == 8);
16716 return buf;
16717 }
16718
16719 static const char *
16720 read_direct_string (bfd *abfd, const gdb_byte *buf,
16721 unsigned int *bytes_read_ptr)
16722 {
16723 /* If the size of a host char is 8 bits, we can return a pointer
16724 to the string, otherwise we have to copy the string to a buffer
16725 allocated on the temporary obstack. */
16726 gdb_assert (HOST_CHAR_BIT == 8);
16727 if (*buf == '\0')
16728 {
16729 *bytes_read_ptr = 1;
16730 return NULL;
16731 }
16732 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16733 return (const char *) buf;
16734 }
16735
16736 static const char *
16737 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16738 {
16739 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16740 if (dwarf2_per_objfile->str.buffer == NULL)
16741 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16742 bfd_get_filename (abfd));
16743 if (str_offset >= dwarf2_per_objfile->str.size)
16744 error (_("DW_FORM_strp pointing outside of "
16745 ".debug_str section [in module %s]"),
16746 bfd_get_filename (abfd));
16747 gdb_assert (HOST_CHAR_BIT == 8);
16748 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16749 return NULL;
16750 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16751 }
16752
16753 /* Read a string at offset STR_OFFSET in the .debug_str section from
16754 the .dwz file DWZ. Throw an error if the offset is too large. If
16755 the string consists of a single NUL byte, return NULL; otherwise
16756 return a pointer to the string. */
16757
16758 static const char *
16759 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16760 {
16761 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16762
16763 if (dwz->str.buffer == NULL)
16764 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16765 "section [in module %s]"),
16766 bfd_get_filename (dwz->dwz_bfd));
16767 if (str_offset >= dwz->str.size)
16768 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16769 ".debug_str section [in module %s]"),
16770 bfd_get_filename (dwz->dwz_bfd));
16771 gdb_assert (HOST_CHAR_BIT == 8);
16772 if (dwz->str.buffer[str_offset] == '\0')
16773 return NULL;
16774 return (const char *) (dwz->str.buffer + str_offset);
16775 }
16776
16777 static const char *
16778 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16779 const struct comp_unit_head *cu_header,
16780 unsigned int *bytes_read_ptr)
16781 {
16782 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16783
16784 return read_indirect_string_at_offset (abfd, str_offset);
16785 }
16786
16787 static ULONGEST
16788 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16789 unsigned int *bytes_read_ptr)
16790 {
16791 ULONGEST result;
16792 unsigned int num_read;
16793 int shift;
16794 unsigned char byte;
16795
16796 result = 0;
16797 shift = 0;
16798 num_read = 0;
16799 while (1)
16800 {
16801 byte = bfd_get_8 (abfd, buf);
16802 buf++;
16803 num_read++;
16804 result |= ((ULONGEST) (byte & 127) << shift);
16805 if ((byte & 128) == 0)
16806 {
16807 break;
16808 }
16809 shift += 7;
16810 }
16811 *bytes_read_ptr = num_read;
16812 return result;
16813 }
16814
16815 static LONGEST
16816 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16817 unsigned int *bytes_read_ptr)
16818 {
16819 LONGEST result;
16820 int shift, num_read;
16821 unsigned char byte;
16822
16823 result = 0;
16824 shift = 0;
16825 num_read = 0;
16826 while (1)
16827 {
16828 byte = bfd_get_8 (abfd, buf);
16829 buf++;
16830 num_read++;
16831 result |= ((LONGEST) (byte & 127) << shift);
16832 shift += 7;
16833 if ((byte & 128) == 0)
16834 {
16835 break;
16836 }
16837 }
16838 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16839 result |= -(((LONGEST) 1) << shift);
16840 *bytes_read_ptr = num_read;
16841 return result;
16842 }
16843
16844 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16845 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16846 ADDR_SIZE is the size of addresses from the CU header. */
16847
16848 static CORE_ADDR
16849 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16850 {
16851 struct objfile *objfile = dwarf2_per_objfile->objfile;
16852 bfd *abfd = objfile->obfd;
16853 const gdb_byte *info_ptr;
16854
16855 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16856 if (dwarf2_per_objfile->addr.buffer == NULL)
16857 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16858 objfile_name (objfile));
16859 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16860 error (_("DW_FORM_addr_index pointing outside of "
16861 ".debug_addr section [in module %s]"),
16862 objfile_name (objfile));
16863 info_ptr = (dwarf2_per_objfile->addr.buffer
16864 + addr_base + addr_index * addr_size);
16865 if (addr_size == 4)
16866 return bfd_get_32 (abfd, info_ptr);
16867 else
16868 return bfd_get_64 (abfd, info_ptr);
16869 }
16870
16871 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16872
16873 static CORE_ADDR
16874 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16875 {
16876 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16877 }
16878
16879 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16880
16881 static CORE_ADDR
16882 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16883 unsigned int *bytes_read)
16884 {
16885 bfd *abfd = cu->objfile->obfd;
16886 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16887
16888 return read_addr_index (cu, addr_index);
16889 }
16890
16891 /* Data structure to pass results from dwarf2_read_addr_index_reader
16892 back to dwarf2_read_addr_index. */
16893
16894 struct dwarf2_read_addr_index_data
16895 {
16896 ULONGEST addr_base;
16897 int addr_size;
16898 };
16899
16900 /* die_reader_func for dwarf2_read_addr_index. */
16901
16902 static void
16903 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16904 const gdb_byte *info_ptr,
16905 struct die_info *comp_unit_die,
16906 int has_children,
16907 void *data)
16908 {
16909 struct dwarf2_cu *cu = reader->cu;
16910 struct dwarf2_read_addr_index_data *aidata =
16911 (struct dwarf2_read_addr_index_data *) data;
16912
16913 aidata->addr_base = cu->addr_base;
16914 aidata->addr_size = cu->header.addr_size;
16915 }
16916
16917 /* Given an index in .debug_addr, fetch the value.
16918 NOTE: This can be called during dwarf expression evaluation,
16919 long after the debug information has been read, and thus per_cu->cu
16920 may no longer exist. */
16921
16922 CORE_ADDR
16923 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16924 unsigned int addr_index)
16925 {
16926 struct objfile *objfile = per_cu->objfile;
16927 struct dwarf2_cu *cu = per_cu->cu;
16928 ULONGEST addr_base;
16929 int addr_size;
16930
16931 /* This is intended to be called from outside this file. */
16932 dw2_setup (objfile);
16933
16934 /* We need addr_base and addr_size.
16935 If we don't have PER_CU->cu, we have to get it.
16936 Nasty, but the alternative is storing the needed info in PER_CU,
16937 which at this point doesn't seem justified: it's not clear how frequently
16938 it would get used and it would increase the size of every PER_CU.
16939 Entry points like dwarf2_per_cu_addr_size do a similar thing
16940 so we're not in uncharted territory here.
16941 Alas we need to be a bit more complicated as addr_base is contained
16942 in the DIE.
16943
16944 We don't need to read the entire CU(/TU).
16945 We just need the header and top level die.
16946
16947 IWBN to use the aging mechanism to let us lazily later discard the CU.
16948 For now we skip this optimization. */
16949
16950 if (cu != NULL)
16951 {
16952 addr_base = cu->addr_base;
16953 addr_size = cu->header.addr_size;
16954 }
16955 else
16956 {
16957 struct dwarf2_read_addr_index_data aidata;
16958
16959 /* Note: We can't use init_cutu_and_read_dies_simple here,
16960 we need addr_base. */
16961 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16962 dwarf2_read_addr_index_reader, &aidata);
16963 addr_base = aidata.addr_base;
16964 addr_size = aidata.addr_size;
16965 }
16966
16967 return read_addr_index_1 (addr_index, addr_base, addr_size);
16968 }
16969
16970 /* Given a DW_FORM_GNU_str_index, fetch the string.
16971 This is only used by the Fission support. */
16972
16973 static const char *
16974 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16975 {
16976 struct objfile *objfile = dwarf2_per_objfile->objfile;
16977 const char *objf_name = objfile_name (objfile);
16978 bfd *abfd = objfile->obfd;
16979 struct dwarf2_cu *cu = reader->cu;
16980 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16981 struct dwarf2_section_info *str_offsets_section =
16982 &reader->dwo_file->sections.str_offsets;
16983 const gdb_byte *info_ptr;
16984 ULONGEST str_offset;
16985 static const char form_name[] = "DW_FORM_GNU_str_index";
16986
16987 dwarf2_read_section (objfile, str_section);
16988 dwarf2_read_section (objfile, str_offsets_section);
16989 if (str_section->buffer == NULL)
16990 error (_("%s used without .debug_str.dwo section"
16991 " in CU at offset 0x%lx [in module %s]"),
16992 form_name, (long) cu->header.offset.sect_off, objf_name);
16993 if (str_offsets_section->buffer == NULL)
16994 error (_("%s used without .debug_str_offsets.dwo section"
16995 " in CU at offset 0x%lx [in module %s]"),
16996 form_name, (long) cu->header.offset.sect_off, objf_name);
16997 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16998 error (_("%s pointing outside of .debug_str_offsets.dwo"
16999 " section in CU at offset 0x%lx [in module %s]"),
17000 form_name, (long) cu->header.offset.sect_off, objf_name);
17001 info_ptr = (str_offsets_section->buffer
17002 + str_index * cu->header.offset_size);
17003 if (cu->header.offset_size == 4)
17004 str_offset = bfd_get_32 (abfd, info_ptr);
17005 else
17006 str_offset = bfd_get_64 (abfd, info_ptr);
17007 if (str_offset >= str_section->size)
17008 error (_("Offset from %s pointing outside of"
17009 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17010 form_name, (long) cu->header.offset.sect_off, objf_name);
17011 return (const char *) (str_section->buffer + str_offset);
17012 }
17013
17014 /* Return the length of an LEB128 number in BUF. */
17015
17016 static int
17017 leb128_size (const gdb_byte *buf)
17018 {
17019 const gdb_byte *begin = buf;
17020 gdb_byte byte;
17021
17022 while (1)
17023 {
17024 byte = *buf++;
17025 if ((byte & 128) == 0)
17026 return buf - begin;
17027 }
17028 }
17029
17030 static void
17031 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17032 {
17033 switch (lang)
17034 {
17035 case DW_LANG_C89:
17036 case DW_LANG_C99:
17037 case DW_LANG_C11:
17038 case DW_LANG_C:
17039 case DW_LANG_UPC:
17040 cu->language = language_c;
17041 break;
17042 case DW_LANG_Java:
17043 case DW_LANG_C_plus_plus:
17044 case DW_LANG_C_plus_plus_11:
17045 case DW_LANG_C_plus_plus_14:
17046 cu->language = language_cplus;
17047 break;
17048 case DW_LANG_D:
17049 cu->language = language_d;
17050 break;
17051 case DW_LANG_Fortran77:
17052 case DW_LANG_Fortran90:
17053 case DW_LANG_Fortran95:
17054 case DW_LANG_Fortran03:
17055 case DW_LANG_Fortran08:
17056 cu->language = language_fortran;
17057 break;
17058 case DW_LANG_Go:
17059 cu->language = language_go;
17060 break;
17061 case DW_LANG_Mips_Assembler:
17062 cu->language = language_asm;
17063 break;
17064 case DW_LANG_Ada83:
17065 case DW_LANG_Ada95:
17066 cu->language = language_ada;
17067 break;
17068 case DW_LANG_Modula2:
17069 cu->language = language_m2;
17070 break;
17071 case DW_LANG_Pascal83:
17072 cu->language = language_pascal;
17073 break;
17074 case DW_LANG_ObjC:
17075 cu->language = language_objc;
17076 break;
17077 case DW_LANG_Rust:
17078 case DW_LANG_Rust_old:
17079 cu->language = language_rust;
17080 break;
17081 case DW_LANG_Cobol74:
17082 case DW_LANG_Cobol85:
17083 default:
17084 cu->language = language_minimal;
17085 break;
17086 }
17087 cu->language_defn = language_def (cu->language);
17088 }
17089
17090 /* Return the named attribute or NULL if not there. */
17091
17092 static struct attribute *
17093 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17094 {
17095 for (;;)
17096 {
17097 unsigned int i;
17098 struct attribute *spec = NULL;
17099
17100 for (i = 0; i < die->num_attrs; ++i)
17101 {
17102 if (die->attrs[i].name == name)
17103 return &die->attrs[i];
17104 if (die->attrs[i].name == DW_AT_specification
17105 || die->attrs[i].name == DW_AT_abstract_origin)
17106 spec = &die->attrs[i];
17107 }
17108
17109 if (!spec)
17110 break;
17111
17112 die = follow_die_ref (die, spec, &cu);
17113 }
17114
17115 return NULL;
17116 }
17117
17118 /* Return the named attribute or NULL if not there,
17119 but do not follow DW_AT_specification, etc.
17120 This is for use in contexts where we're reading .debug_types dies.
17121 Following DW_AT_specification, DW_AT_abstract_origin will take us
17122 back up the chain, and we want to go down. */
17123
17124 static struct attribute *
17125 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17126 {
17127 unsigned int i;
17128
17129 for (i = 0; i < die->num_attrs; ++i)
17130 if (die->attrs[i].name == name)
17131 return &die->attrs[i];
17132
17133 return NULL;
17134 }
17135
17136 /* Return the string associated with a string-typed attribute, or NULL if it
17137 is either not found or is of an incorrect type. */
17138
17139 static const char *
17140 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17141 {
17142 struct attribute *attr;
17143 const char *str = NULL;
17144
17145 attr = dwarf2_attr (die, name, cu);
17146
17147 if (attr != NULL)
17148 {
17149 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17150 || attr->form == DW_FORM_GNU_strp_alt)
17151 str = DW_STRING (attr);
17152 else
17153 complaint (&symfile_complaints,
17154 _("string type expected for attribute %s for "
17155 "DIE at 0x%x in module %s"),
17156 dwarf_attr_name (name), die->offset.sect_off,
17157 objfile_name (cu->objfile));
17158 }
17159
17160 return str;
17161 }
17162
17163 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17164 and holds a non-zero value. This function should only be used for
17165 DW_FORM_flag or DW_FORM_flag_present attributes. */
17166
17167 static int
17168 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17169 {
17170 struct attribute *attr = dwarf2_attr (die, name, cu);
17171
17172 return (attr && DW_UNSND (attr));
17173 }
17174
17175 static int
17176 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17177 {
17178 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17179 which value is non-zero. However, we have to be careful with
17180 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17181 (via dwarf2_flag_true_p) follows this attribute. So we may
17182 end up accidently finding a declaration attribute that belongs
17183 to a different DIE referenced by the specification attribute,
17184 even though the given DIE does not have a declaration attribute. */
17185 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17186 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17187 }
17188
17189 /* Return the die giving the specification for DIE, if there is
17190 one. *SPEC_CU is the CU containing DIE on input, and the CU
17191 containing the return value on output. If there is no
17192 specification, but there is an abstract origin, that is
17193 returned. */
17194
17195 static struct die_info *
17196 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17197 {
17198 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17199 *spec_cu);
17200
17201 if (spec_attr == NULL)
17202 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17203
17204 if (spec_attr == NULL)
17205 return NULL;
17206 else
17207 return follow_die_ref (die, spec_attr, spec_cu);
17208 }
17209
17210 /* Free the line_header structure *LH, and any arrays and strings it
17211 refers to.
17212 NOTE: This is also used as a "cleanup" function. */
17213
17214 static void
17215 free_line_header (struct line_header *lh)
17216 {
17217 if (lh->standard_opcode_lengths)
17218 xfree (lh->standard_opcode_lengths);
17219
17220 /* Remember that all the lh->file_names[i].name pointers are
17221 pointers into debug_line_buffer, and don't need to be freed. */
17222 if (lh->file_names)
17223 xfree (lh->file_names);
17224
17225 /* Similarly for the include directory names. */
17226 if (lh->include_dirs)
17227 xfree (lh->include_dirs);
17228
17229 xfree (lh);
17230 }
17231
17232 /* Stub for free_line_header to match void * callback types. */
17233
17234 static void
17235 free_line_header_voidp (void *arg)
17236 {
17237 struct line_header *lh = (struct line_header *) arg;
17238
17239 free_line_header (lh);
17240 }
17241
17242 /* Add an entry to LH's include directory table. */
17243
17244 static void
17245 add_include_dir (struct line_header *lh, const char *include_dir)
17246 {
17247 if (dwarf_line_debug >= 2)
17248 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17249 lh->num_include_dirs + 1, include_dir);
17250
17251 /* Grow the array if necessary. */
17252 if (lh->include_dirs_size == 0)
17253 {
17254 lh->include_dirs_size = 1; /* for testing */
17255 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17256 }
17257 else if (lh->num_include_dirs >= lh->include_dirs_size)
17258 {
17259 lh->include_dirs_size *= 2;
17260 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17261 lh->include_dirs_size);
17262 }
17263
17264 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17265 }
17266
17267 /* Add an entry to LH's file name table. */
17268
17269 static void
17270 add_file_name (struct line_header *lh,
17271 const char *name,
17272 unsigned int dir_index,
17273 unsigned int mod_time,
17274 unsigned int length)
17275 {
17276 struct file_entry *fe;
17277
17278 if (dwarf_line_debug >= 2)
17279 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17280 lh->num_file_names + 1, name);
17281
17282 /* Grow the array if necessary. */
17283 if (lh->file_names_size == 0)
17284 {
17285 lh->file_names_size = 1; /* for testing */
17286 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17287 }
17288 else if (lh->num_file_names >= lh->file_names_size)
17289 {
17290 lh->file_names_size *= 2;
17291 lh->file_names
17292 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17293 }
17294
17295 fe = &lh->file_names[lh->num_file_names++];
17296 fe->name = name;
17297 fe->dir_index = dir_index;
17298 fe->mod_time = mod_time;
17299 fe->length = length;
17300 fe->included_p = 0;
17301 fe->symtab = NULL;
17302 }
17303
17304 /* A convenience function to find the proper .debug_line section for a CU. */
17305
17306 static struct dwarf2_section_info *
17307 get_debug_line_section (struct dwarf2_cu *cu)
17308 {
17309 struct dwarf2_section_info *section;
17310
17311 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17312 DWO file. */
17313 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17314 section = &cu->dwo_unit->dwo_file->sections.line;
17315 else if (cu->per_cu->is_dwz)
17316 {
17317 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17318
17319 section = &dwz->line;
17320 }
17321 else
17322 section = &dwarf2_per_objfile->line;
17323
17324 return section;
17325 }
17326
17327 /* Read the statement program header starting at OFFSET in
17328 .debug_line, or .debug_line.dwo. Return a pointer
17329 to a struct line_header, allocated using xmalloc.
17330 Returns NULL if there is a problem reading the header, e.g., if it
17331 has a version we don't understand.
17332
17333 NOTE: the strings in the include directory and file name tables of
17334 the returned object point into the dwarf line section buffer,
17335 and must not be freed. */
17336
17337 static struct line_header *
17338 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17339 {
17340 struct cleanup *back_to;
17341 struct line_header *lh;
17342 const gdb_byte *line_ptr;
17343 unsigned int bytes_read, offset_size;
17344 int i;
17345 const char *cur_dir, *cur_file;
17346 struct dwarf2_section_info *section;
17347 bfd *abfd;
17348
17349 section = get_debug_line_section (cu);
17350 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17351 if (section->buffer == NULL)
17352 {
17353 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17354 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17355 else
17356 complaint (&symfile_complaints, _("missing .debug_line section"));
17357 return 0;
17358 }
17359
17360 /* We can't do this until we know the section is non-empty.
17361 Only then do we know we have such a section. */
17362 abfd = get_section_bfd_owner (section);
17363
17364 /* Make sure that at least there's room for the total_length field.
17365 That could be 12 bytes long, but we're just going to fudge that. */
17366 if (offset + 4 >= section->size)
17367 {
17368 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17369 return 0;
17370 }
17371
17372 lh = XNEW (struct line_header);
17373 memset (lh, 0, sizeof (*lh));
17374 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17375 (void *) lh);
17376
17377 lh->offset.sect_off = offset;
17378 lh->offset_in_dwz = cu->per_cu->is_dwz;
17379
17380 line_ptr = section->buffer + offset;
17381
17382 /* Read in the header. */
17383 lh->total_length =
17384 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17385 &bytes_read, &offset_size);
17386 line_ptr += bytes_read;
17387 if (line_ptr + lh->total_length > (section->buffer + section->size))
17388 {
17389 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17390 do_cleanups (back_to);
17391 return 0;
17392 }
17393 lh->statement_program_end = line_ptr + lh->total_length;
17394 lh->version = read_2_bytes (abfd, line_ptr);
17395 line_ptr += 2;
17396 if (lh->version > 4)
17397 {
17398 /* This is a version we don't understand. The format could have
17399 changed in ways we don't handle properly so just punt. */
17400 complaint (&symfile_complaints,
17401 _("unsupported version in .debug_line section"));
17402 return NULL;
17403 }
17404 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17405 line_ptr += offset_size;
17406 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17407 line_ptr += 1;
17408 if (lh->version >= 4)
17409 {
17410 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17411 line_ptr += 1;
17412 }
17413 else
17414 lh->maximum_ops_per_instruction = 1;
17415
17416 if (lh->maximum_ops_per_instruction == 0)
17417 {
17418 lh->maximum_ops_per_instruction = 1;
17419 complaint (&symfile_complaints,
17420 _("invalid maximum_ops_per_instruction "
17421 "in `.debug_line' section"));
17422 }
17423
17424 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17425 line_ptr += 1;
17426 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17427 line_ptr += 1;
17428 lh->line_range = read_1_byte (abfd, line_ptr);
17429 line_ptr += 1;
17430 lh->opcode_base = read_1_byte (abfd, line_ptr);
17431 line_ptr += 1;
17432 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17433
17434 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17435 for (i = 1; i < lh->opcode_base; ++i)
17436 {
17437 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17438 line_ptr += 1;
17439 }
17440
17441 /* Read directory table. */
17442 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17443 {
17444 line_ptr += bytes_read;
17445 add_include_dir (lh, cur_dir);
17446 }
17447 line_ptr += bytes_read;
17448
17449 /* Read file name table. */
17450 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17451 {
17452 unsigned int dir_index, mod_time, length;
17453
17454 line_ptr += bytes_read;
17455 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17456 line_ptr += bytes_read;
17457 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17458 line_ptr += bytes_read;
17459 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17460 line_ptr += bytes_read;
17461
17462 add_file_name (lh, cur_file, dir_index, mod_time, length);
17463 }
17464 line_ptr += bytes_read;
17465 lh->statement_program_start = line_ptr;
17466
17467 if (line_ptr > (section->buffer + section->size))
17468 complaint (&symfile_complaints,
17469 _("line number info header doesn't "
17470 "fit in `.debug_line' section"));
17471
17472 discard_cleanups (back_to);
17473 return lh;
17474 }
17475
17476 /* Subroutine of dwarf_decode_lines to simplify it.
17477 Return the file name of the psymtab for included file FILE_INDEX
17478 in line header LH of PST.
17479 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17480 If space for the result is malloc'd, it will be freed by a cleanup.
17481 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17482
17483 The function creates dangling cleanup registration. */
17484
17485 static const char *
17486 psymtab_include_file_name (const struct line_header *lh, int file_index,
17487 const struct partial_symtab *pst,
17488 const char *comp_dir)
17489 {
17490 const struct file_entry fe = lh->file_names [file_index];
17491 const char *include_name = fe.name;
17492 const char *include_name_to_compare = include_name;
17493 const char *dir_name = NULL;
17494 const char *pst_filename;
17495 char *copied_name = NULL;
17496 int file_is_pst;
17497
17498 if (fe.dir_index && lh->include_dirs != NULL)
17499 dir_name = lh->include_dirs[fe.dir_index - 1];
17500
17501 if (!IS_ABSOLUTE_PATH (include_name)
17502 && (dir_name != NULL || comp_dir != NULL))
17503 {
17504 /* Avoid creating a duplicate psymtab for PST.
17505 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17506 Before we do the comparison, however, we need to account
17507 for DIR_NAME and COMP_DIR.
17508 First prepend dir_name (if non-NULL). If we still don't
17509 have an absolute path prepend comp_dir (if non-NULL).
17510 However, the directory we record in the include-file's
17511 psymtab does not contain COMP_DIR (to match the
17512 corresponding symtab(s)).
17513
17514 Example:
17515
17516 bash$ cd /tmp
17517 bash$ gcc -g ./hello.c
17518 include_name = "hello.c"
17519 dir_name = "."
17520 DW_AT_comp_dir = comp_dir = "/tmp"
17521 DW_AT_name = "./hello.c"
17522
17523 */
17524
17525 if (dir_name != NULL)
17526 {
17527 char *tem = concat (dir_name, SLASH_STRING,
17528 include_name, (char *)NULL);
17529
17530 make_cleanup (xfree, tem);
17531 include_name = tem;
17532 include_name_to_compare = include_name;
17533 }
17534 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17535 {
17536 char *tem = concat (comp_dir, SLASH_STRING,
17537 include_name, (char *)NULL);
17538
17539 make_cleanup (xfree, tem);
17540 include_name_to_compare = tem;
17541 }
17542 }
17543
17544 pst_filename = pst->filename;
17545 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17546 {
17547 copied_name = concat (pst->dirname, SLASH_STRING,
17548 pst_filename, (char *)NULL);
17549 pst_filename = copied_name;
17550 }
17551
17552 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17553
17554 if (copied_name != NULL)
17555 xfree (copied_name);
17556
17557 if (file_is_pst)
17558 return NULL;
17559 return include_name;
17560 }
17561
17562 /* State machine to track the state of the line number program. */
17563
17564 typedef struct
17565 {
17566 /* These are part of the standard DWARF line number state machine. */
17567
17568 unsigned char op_index;
17569 unsigned int file;
17570 unsigned int line;
17571 CORE_ADDR address;
17572 int is_stmt;
17573 unsigned int discriminator;
17574
17575 /* Additional bits of state we need to track. */
17576
17577 /* The last file that we called dwarf2_start_subfile for.
17578 This is only used for TLLs. */
17579 unsigned int last_file;
17580 /* The last file a line number was recorded for. */
17581 struct subfile *last_subfile;
17582
17583 /* The function to call to record a line. */
17584 record_line_ftype *record_line;
17585
17586 /* The last line number that was recorded, used to coalesce
17587 consecutive entries for the same line. This can happen, for
17588 example, when discriminators are present. PR 17276. */
17589 unsigned int last_line;
17590 int line_has_non_zero_discriminator;
17591 } lnp_state_machine;
17592
17593 /* There's a lot of static state to pass to dwarf_record_line.
17594 This keeps it all together. */
17595
17596 typedef struct
17597 {
17598 /* The gdbarch. */
17599 struct gdbarch *gdbarch;
17600
17601 /* The line number header. */
17602 struct line_header *line_header;
17603
17604 /* Non-zero if we're recording lines.
17605 Otherwise we're building partial symtabs and are just interested in
17606 finding include files mentioned by the line number program. */
17607 int record_lines_p;
17608 } lnp_reader_state;
17609
17610 /* Ignore this record_line request. */
17611
17612 static void
17613 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17614 {
17615 return;
17616 }
17617
17618 /* Return non-zero if we should add LINE to the line number table.
17619 LINE is the line to add, LAST_LINE is the last line that was added,
17620 LAST_SUBFILE is the subfile for LAST_LINE.
17621 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17622 had a non-zero discriminator.
17623
17624 We have to be careful in the presence of discriminators.
17625 E.g., for this line:
17626
17627 for (i = 0; i < 100000; i++);
17628
17629 clang can emit four line number entries for that one line,
17630 each with a different discriminator.
17631 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17632
17633 However, we want gdb to coalesce all four entries into one.
17634 Otherwise the user could stepi into the middle of the line and
17635 gdb would get confused about whether the pc really was in the
17636 middle of the line.
17637
17638 Things are further complicated by the fact that two consecutive
17639 line number entries for the same line is a heuristic used by gcc
17640 to denote the end of the prologue. So we can't just discard duplicate
17641 entries, we have to be selective about it. The heuristic we use is
17642 that we only collapse consecutive entries for the same line if at least
17643 one of those entries has a non-zero discriminator. PR 17276.
17644
17645 Note: Addresses in the line number state machine can never go backwards
17646 within one sequence, thus this coalescing is ok. */
17647
17648 static int
17649 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17650 int line_has_non_zero_discriminator,
17651 struct subfile *last_subfile)
17652 {
17653 if (current_subfile != last_subfile)
17654 return 1;
17655 if (line != last_line)
17656 return 1;
17657 /* Same line for the same file that we've seen already.
17658 As a last check, for pr 17276, only record the line if the line
17659 has never had a non-zero discriminator. */
17660 if (!line_has_non_zero_discriminator)
17661 return 1;
17662 return 0;
17663 }
17664
17665 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17666 in the line table of subfile SUBFILE. */
17667
17668 static void
17669 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17670 unsigned int line, CORE_ADDR address,
17671 record_line_ftype p_record_line)
17672 {
17673 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17674
17675 if (dwarf_line_debug)
17676 {
17677 fprintf_unfiltered (gdb_stdlog,
17678 "Recording line %u, file %s, address %s\n",
17679 line, lbasename (subfile->name),
17680 paddress (gdbarch, address));
17681 }
17682
17683 (*p_record_line) (subfile, line, addr);
17684 }
17685
17686 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17687 Mark the end of a set of line number records.
17688 The arguments are the same as for dwarf_record_line_1.
17689 If SUBFILE is NULL the request is ignored. */
17690
17691 static void
17692 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17693 CORE_ADDR address, record_line_ftype p_record_line)
17694 {
17695 if (subfile == NULL)
17696 return;
17697
17698 if (dwarf_line_debug)
17699 {
17700 fprintf_unfiltered (gdb_stdlog,
17701 "Finishing current line, file %s, address %s\n",
17702 lbasename (subfile->name),
17703 paddress (gdbarch, address));
17704 }
17705
17706 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17707 }
17708
17709 /* Record the line in STATE.
17710 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17711
17712 static void
17713 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17714 int end_sequence)
17715 {
17716 const struct line_header *lh = reader->line_header;
17717 unsigned int file, line, discriminator;
17718 int is_stmt;
17719
17720 file = state->file;
17721 line = state->line;
17722 is_stmt = state->is_stmt;
17723 discriminator = state->discriminator;
17724
17725 if (dwarf_line_debug)
17726 {
17727 fprintf_unfiltered (gdb_stdlog,
17728 "Processing actual line %u: file %u,"
17729 " address %s, is_stmt %u, discrim %u\n",
17730 line, file,
17731 paddress (reader->gdbarch, state->address),
17732 is_stmt, discriminator);
17733 }
17734
17735 if (file == 0 || file - 1 >= lh->num_file_names)
17736 dwarf2_debug_line_missing_file_complaint ();
17737 /* For now we ignore lines not starting on an instruction boundary.
17738 But not when processing end_sequence for compatibility with the
17739 previous version of the code. */
17740 else if (state->op_index == 0 || end_sequence)
17741 {
17742 lh->file_names[file - 1].included_p = 1;
17743 if (reader->record_lines_p && is_stmt)
17744 {
17745 if (state->last_subfile != current_subfile || end_sequence)
17746 {
17747 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17748 state->address, state->record_line);
17749 }
17750
17751 if (!end_sequence)
17752 {
17753 if (dwarf_record_line_p (line, state->last_line,
17754 state->line_has_non_zero_discriminator,
17755 state->last_subfile))
17756 {
17757 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17758 line, state->address,
17759 state->record_line);
17760 }
17761 state->last_subfile = current_subfile;
17762 state->last_line = line;
17763 }
17764 }
17765 }
17766 }
17767
17768 /* Initialize STATE for the start of a line number program. */
17769
17770 static void
17771 init_lnp_state_machine (lnp_state_machine *state,
17772 const lnp_reader_state *reader)
17773 {
17774 memset (state, 0, sizeof (*state));
17775
17776 /* Just starting, there is no "last file". */
17777 state->last_file = 0;
17778 state->last_subfile = NULL;
17779
17780 state->record_line = record_line;
17781
17782 state->last_line = 0;
17783 state->line_has_non_zero_discriminator = 0;
17784
17785 /* Initialize these according to the DWARF spec. */
17786 state->op_index = 0;
17787 state->file = 1;
17788 state->line = 1;
17789 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17790 was a line entry for it so that the backend has a chance to adjust it
17791 and also record it in case it needs it. This is currently used by MIPS
17792 code, cf. `mips_adjust_dwarf2_line'. */
17793 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17794 state->is_stmt = reader->line_header->default_is_stmt;
17795 state->discriminator = 0;
17796 }
17797
17798 /* Check address and if invalid nop-out the rest of the lines in this
17799 sequence. */
17800
17801 static void
17802 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17803 const gdb_byte *line_ptr,
17804 CORE_ADDR lowpc, CORE_ADDR address)
17805 {
17806 /* If address < lowpc then it's not a usable value, it's outside the
17807 pc range of the CU. However, we restrict the test to only address
17808 values of zero to preserve GDB's previous behaviour which is to
17809 handle the specific case of a function being GC'd by the linker. */
17810
17811 if (address == 0 && address < lowpc)
17812 {
17813 /* This line table is for a function which has been
17814 GCd by the linker. Ignore it. PR gdb/12528 */
17815
17816 struct objfile *objfile = cu->objfile;
17817 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17818
17819 complaint (&symfile_complaints,
17820 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17821 line_offset, objfile_name (objfile));
17822 state->record_line = noop_record_line;
17823 /* Note: sm.record_line is left as noop_record_line
17824 until we see DW_LNE_end_sequence. */
17825 }
17826 }
17827
17828 /* Subroutine of dwarf_decode_lines to simplify it.
17829 Process the line number information in LH.
17830 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17831 program in order to set included_p for every referenced header. */
17832
17833 static void
17834 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17835 const int decode_for_pst_p, CORE_ADDR lowpc)
17836 {
17837 const gdb_byte *line_ptr, *extended_end;
17838 const gdb_byte *line_end;
17839 unsigned int bytes_read, extended_len;
17840 unsigned char op_code, extended_op;
17841 CORE_ADDR baseaddr;
17842 struct objfile *objfile = cu->objfile;
17843 bfd *abfd = objfile->obfd;
17844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17845 /* Non-zero if we're recording line info (as opposed to building partial
17846 symtabs). */
17847 int record_lines_p = !decode_for_pst_p;
17848 /* A collection of things we need to pass to dwarf_record_line. */
17849 lnp_reader_state reader_state;
17850
17851 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17852
17853 line_ptr = lh->statement_program_start;
17854 line_end = lh->statement_program_end;
17855
17856 reader_state.gdbarch = gdbarch;
17857 reader_state.line_header = lh;
17858 reader_state.record_lines_p = record_lines_p;
17859
17860 /* Read the statement sequences until there's nothing left. */
17861 while (line_ptr < line_end)
17862 {
17863 /* The DWARF line number program state machine. */
17864 lnp_state_machine state_machine;
17865 int end_sequence = 0;
17866
17867 /* Reset the state machine at the start of each sequence. */
17868 init_lnp_state_machine (&state_machine, &reader_state);
17869
17870 if (record_lines_p && lh->num_file_names >= state_machine.file)
17871 {
17872 /* Start a subfile for the current file of the state machine. */
17873 /* lh->include_dirs and lh->file_names are 0-based, but the
17874 directory and file name numbers in the statement program
17875 are 1-based. */
17876 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17877 const char *dir = NULL;
17878
17879 if (fe->dir_index && lh->include_dirs != NULL)
17880 dir = lh->include_dirs[fe->dir_index - 1];
17881
17882 dwarf2_start_subfile (fe->name, dir);
17883 }
17884
17885 /* Decode the table. */
17886 while (line_ptr < line_end && !end_sequence)
17887 {
17888 op_code = read_1_byte (abfd, line_ptr);
17889 line_ptr += 1;
17890
17891 if (op_code >= lh->opcode_base)
17892 {
17893 /* Special opcode. */
17894 unsigned char adj_opcode;
17895 CORE_ADDR addr_adj;
17896 int line_delta;
17897
17898 adj_opcode = op_code - lh->opcode_base;
17899 addr_adj = (((state_machine.op_index
17900 + (adj_opcode / lh->line_range))
17901 / lh->maximum_ops_per_instruction)
17902 * lh->minimum_instruction_length);
17903 state_machine.address
17904 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17905 state_machine.op_index = ((state_machine.op_index
17906 + (adj_opcode / lh->line_range))
17907 % lh->maximum_ops_per_instruction);
17908 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17909 state_machine.line += line_delta;
17910 if (line_delta != 0)
17911 state_machine.line_has_non_zero_discriminator
17912 = state_machine.discriminator != 0;
17913
17914 dwarf_record_line (&reader_state, &state_machine, 0);
17915 state_machine.discriminator = 0;
17916 }
17917 else switch (op_code)
17918 {
17919 case DW_LNS_extended_op:
17920 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17921 &bytes_read);
17922 line_ptr += bytes_read;
17923 extended_end = line_ptr + extended_len;
17924 extended_op = read_1_byte (abfd, line_ptr);
17925 line_ptr += 1;
17926 switch (extended_op)
17927 {
17928 case DW_LNE_end_sequence:
17929 state_machine.record_line = record_line;
17930 end_sequence = 1;
17931 break;
17932 case DW_LNE_set_address:
17933 {
17934 CORE_ADDR address
17935 = read_address (abfd, line_ptr, cu, &bytes_read);
17936
17937 line_ptr += bytes_read;
17938 check_line_address (cu, &state_machine, line_ptr,
17939 lowpc, address);
17940 state_machine.op_index = 0;
17941 address += baseaddr;
17942 state_machine.address
17943 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17944 }
17945 break;
17946 case DW_LNE_define_file:
17947 {
17948 const char *cur_file;
17949 unsigned int dir_index, mod_time, length;
17950
17951 cur_file = read_direct_string (abfd, line_ptr,
17952 &bytes_read);
17953 line_ptr += bytes_read;
17954 dir_index =
17955 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17956 line_ptr += bytes_read;
17957 mod_time =
17958 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17959 line_ptr += bytes_read;
17960 length =
17961 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17962 line_ptr += bytes_read;
17963 add_file_name (lh, cur_file, dir_index, mod_time, length);
17964 }
17965 break;
17966 case DW_LNE_set_discriminator:
17967 /* The discriminator is not interesting to the debugger;
17968 just ignore it. We still need to check its value though:
17969 if there are consecutive entries for the same
17970 (non-prologue) line we want to coalesce them.
17971 PR 17276. */
17972 state_machine.discriminator
17973 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17974 state_machine.line_has_non_zero_discriminator
17975 |= state_machine.discriminator != 0;
17976 line_ptr += bytes_read;
17977 break;
17978 default:
17979 complaint (&symfile_complaints,
17980 _("mangled .debug_line section"));
17981 return;
17982 }
17983 /* Make sure that we parsed the extended op correctly. If e.g.
17984 we expected a different address size than the producer used,
17985 we may have read the wrong number of bytes. */
17986 if (line_ptr != extended_end)
17987 {
17988 complaint (&symfile_complaints,
17989 _("mangled .debug_line section"));
17990 return;
17991 }
17992 break;
17993 case DW_LNS_copy:
17994 dwarf_record_line (&reader_state, &state_machine, 0);
17995 state_machine.discriminator = 0;
17996 break;
17997 case DW_LNS_advance_pc:
17998 {
17999 CORE_ADDR adjust
18000 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18001 CORE_ADDR addr_adj;
18002
18003 addr_adj = (((state_machine.op_index + adjust)
18004 / lh->maximum_ops_per_instruction)
18005 * lh->minimum_instruction_length);
18006 state_machine.address
18007 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18008 state_machine.op_index = ((state_machine.op_index + adjust)
18009 % lh->maximum_ops_per_instruction);
18010 line_ptr += bytes_read;
18011 }
18012 break;
18013 case DW_LNS_advance_line:
18014 {
18015 int line_delta
18016 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18017
18018 state_machine.line += line_delta;
18019 if (line_delta != 0)
18020 state_machine.line_has_non_zero_discriminator
18021 = state_machine.discriminator != 0;
18022 line_ptr += bytes_read;
18023 }
18024 break;
18025 case DW_LNS_set_file:
18026 {
18027 /* The arrays lh->include_dirs and lh->file_names are
18028 0-based, but the directory and file name numbers in
18029 the statement program are 1-based. */
18030 struct file_entry *fe;
18031 const char *dir = NULL;
18032
18033 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18034 &bytes_read);
18035 line_ptr += bytes_read;
18036 if (state_machine.file == 0
18037 || state_machine.file - 1 >= lh->num_file_names)
18038 dwarf2_debug_line_missing_file_complaint ();
18039 else
18040 {
18041 fe = &lh->file_names[state_machine.file - 1];
18042 if (fe->dir_index && lh->include_dirs != NULL)
18043 dir = lh->include_dirs[fe->dir_index - 1];
18044 if (record_lines_p)
18045 {
18046 state_machine.last_subfile = current_subfile;
18047 state_machine.line_has_non_zero_discriminator
18048 = state_machine.discriminator != 0;
18049 dwarf2_start_subfile (fe->name, dir);
18050 }
18051 }
18052 }
18053 break;
18054 case DW_LNS_set_column:
18055 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18056 line_ptr += bytes_read;
18057 break;
18058 case DW_LNS_negate_stmt:
18059 state_machine.is_stmt = (!state_machine.is_stmt);
18060 break;
18061 case DW_LNS_set_basic_block:
18062 break;
18063 /* Add to the address register of the state machine the
18064 address increment value corresponding to special opcode
18065 255. I.e., this value is scaled by the minimum
18066 instruction length since special opcode 255 would have
18067 scaled the increment. */
18068 case DW_LNS_const_add_pc:
18069 {
18070 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18071 CORE_ADDR addr_adj;
18072
18073 addr_adj = (((state_machine.op_index + adjust)
18074 / lh->maximum_ops_per_instruction)
18075 * lh->minimum_instruction_length);
18076 state_machine.address
18077 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18078 state_machine.op_index = ((state_machine.op_index + adjust)
18079 % lh->maximum_ops_per_instruction);
18080 }
18081 break;
18082 case DW_LNS_fixed_advance_pc:
18083 {
18084 CORE_ADDR addr_adj;
18085
18086 addr_adj = read_2_bytes (abfd, line_ptr);
18087 state_machine.address
18088 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18089 state_machine.op_index = 0;
18090 line_ptr += 2;
18091 }
18092 break;
18093 default:
18094 {
18095 /* Unknown standard opcode, ignore it. */
18096 int i;
18097
18098 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18099 {
18100 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18101 line_ptr += bytes_read;
18102 }
18103 }
18104 }
18105 }
18106
18107 if (!end_sequence)
18108 dwarf2_debug_line_missing_end_sequence_complaint ();
18109
18110 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18111 in which case we still finish recording the last line). */
18112 dwarf_record_line (&reader_state, &state_machine, 1);
18113 }
18114 }
18115
18116 /* Decode the Line Number Program (LNP) for the given line_header
18117 structure and CU. The actual information extracted and the type
18118 of structures created from the LNP depends on the value of PST.
18119
18120 1. If PST is NULL, then this procedure uses the data from the program
18121 to create all necessary symbol tables, and their linetables.
18122
18123 2. If PST is not NULL, this procedure reads the program to determine
18124 the list of files included by the unit represented by PST, and
18125 builds all the associated partial symbol tables.
18126
18127 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18128 It is used for relative paths in the line table.
18129 NOTE: When processing partial symtabs (pst != NULL),
18130 comp_dir == pst->dirname.
18131
18132 NOTE: It is important that psymtabs have the same file name (via strcmp)
18133 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18134 symtab we don't use it in the name of the psymtabs we create.
18135 E.g. expand_line_sal requires this when finding psymtabs to expand.
18136 A good testcase for this is mb-inline.exp.
18137
18138 LOWPC is the lowest address in CU (or 0 if not known).
18139
18140 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18141 for its PC<->lines mapping information. Otherwise only the filename
18142 table is read in. */
18143
18144 static void
18145 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18146 struct dwarf2_cu *cu, struct partial_symtab *pst,
18147 CORE_ADDR lowpc, int decode_mapping)
18148 {
18149 struct objfile *objfile = cu->objfile;
18150 const int decode_for_pst_p = (pst != NULL);
18151
18152 if (decode_mapping)
18153 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18154
18155 if (decode_for_pst_p)
18156 {
18157 int file_index;
18158
18159 /* Now that we're done scanning the Line Header Program, we can
18160 create the psymtab of each included file. */
18161 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18162 if (lh->file_names[file_index].included_p == 1)
18163 {
18164 const char *include_name =
18165 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18166 if (include_name != NULL)
18167 dwarf2_create_include_psymtab (include_name, pst, objfile);
18168 }
18169 }
18170 else
18171 {
18172 /* Make sure a symtab is created for every file, even files
18173 which contain only variables (i.e. no code with associated
18174 line numbers). */
18175 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18176 int i;
18177
18178 for (i = 0; i < lh->num_file_names; i++)
18179 {
18180 const char *dir = NULL;
18181 struct file_entry *fe;
18182
18183 fe = &lh->file_names[i];
18184 if (fe->dir_index && lh->include_dirs != NULL)
18185 dir = lh->include_dirs[fe->dir_index - 1];
18186 dwarf2_start_subfile (fe->name, dir);
18187
18188 if (current_subfile->symtab == NULL)
18189 {
18190 current_subfile->symtab
18191 = allocate_symtab (cust, current_subfile->name);
18192 }
18193 fe->symtab = current_subfile->symtab;
18194 }
18195 }
18196 }
18197
18198 /* Start a subfile for DWARF. FILENAME is the name of the file and
18199 DIRNAME the name of the source directory which contains FILENAME
18200 or NULL if not known.
18201 This routine tries to keep line numbers from identical absolute and
18202 relative file names in a common subfile.
18203
18204 Using the `list' example from the GDB testsuite, which resides in
18205 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18206 of /srcdir/list0.c yields the following debugging information for list0.c:
18207
18208 DW_AT_name: /srcdir/list0.c
18209 DW_AT_comp_dir: /compdir
18210 files.files[0].name: list0.h
18211 files.files[0].dir: /srcdir
18212 files.files[1].name: list0.c
18213 files.files[1].dir: /srcdir
18214
18215 The line number information for list0.c has to end up in a single
18216 subfile, so that `break /srcdir/list0.c:1' works as expected.
18217 start_subfile will ensure that this happens provided that we pass the
18218 concatenation of files.files[1].dir and files.files[1].name as the
18219 subfile's name. */
18220
18221 static void
18222 dwarf2_start_subfile (const char *filename, const char *dirname)
18223 {
18224 char *copy = NULL;
18225
18226 /* In order not to lose the line information directory,
18227 we concatenate it to the filename when it makes sense.
18228 Note that the Dwarf3 standard says (speaking of filenames in line
18229 information): ``The directory index is ignored for file names
18230 that represent full path names''. Thus ignoring dirname in the
18231 `else' branch below isn't an issue. */
18232
18233 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18234 {
18235 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18236 filename = copy;
18237 }
18238
18239 start_subfile (filename);
18240
18241 if (copy != NULL)
18242 xfree (copy);
18243 }
18244
18245 /* Start a symtab for DWARF.
18246 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18247
18248 static struct compunit_symtab *
18249 dwarf2_start_symtab (struct dwarf2_cu *cu,
18250 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18251 {
18252 struct compunit_symtab *cust
18253 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18254
18255 record_debugformat ("DWARF 2");
18256 record_producer (cu->producer);
18257
18258 /* We assume that we're processing GCC output. */
18259 processing_gcc_compilation = 2;
18260
18261 cu->processing_has_namespace_info = 0;
18262
18263 return cust;
18264 }
18265
18266 static void
18267 var_decode_location (struct attribute *attr, struct symbol *sym,
18268 struct dwarf2_cu *cu)
18269 {
18270 struct objfile *objfile = cu->objfile;
18271 struct comp_unit_head *cu_header = &cu->header;
18272
18273 /* NOTE drow/2003-01-30: There used to be a comment and some special
18274 code here to turn a symbol with DW_AT_external and a
18275 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18276 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18277 with some versions of binutils) where shared libraries could have
18278 relocations against symbols in their debug information - the
18279 minimal symbol would have the right address, but the debug info
18280 would not. It's no longer necessary, because we will explicitly
18281 apply relocations when we read in the debug information now. */
18282
18283 /* A DW_AT_location attribute with no contents indicates that a
18284 variable has been optimized away. */
18285 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18286 {
18287 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18288 return;
18289 }
18290
18291 /* Handle one degenerate form of location expression specially, to
18292 preserve GDB's previous behavior when section offsets are
18293 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18294 then mark this symbol as LOC_STATIC. */
18295
18296 if (attr_form_is_block (attr)
18297 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18298 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18299 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18300 && (DW_BLOCK (attr)->size
18301 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18302 {
18303 unsigned int dummy;
18304
18305 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18306 SYMBOL_VALUE_ADDRESS (sym) =
18307 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18308 else
18309 SYMBOL_VALUE_ADDRESS (sym) =
18310 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18311 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18312 fixup_symbol_section (sym, objfile);
18313 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18314 SYMBOL_SECTION (sym));
18315 return;
18316 }
18317
18318 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18319 expression evaluator, and use LOC_COMPUTED only when necessary
18320 (i.e. when the value of a register or memory location is
18321 referenced, or a thread-local block, etc.). Then again, it might
18322 not be worthwhile. I'm assuming that it isn't unless performance
18323 or memory numbers show me otherwise. */
18324
18325 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18326
18327 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18328 cu->has_loclist = 1;
18329 }
18330
18331 /* Given a pointer to a DWARF information entry, figure out if we need
18332 to make a symbol table entry for it, and if so, create a new entry
18333 and return a pointer to it.
18334 If TYPE is NULL, determine symbol type from the die, otherwise
18335 used the passed type.
18336 If SPACE is not NULL, use it to hold the new symbol. If it is
18337 NULL, allocate a new symbol on the objfile's obstack. */
18338
18339 static struct symbol *
18340 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18341 struct symbol *space)
18342 {
18343 struct objfile *objfile = cu->objfile;
18344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18345 struct symbol *sym = NULL;
18346 const char *name;
18347 struct attribute *attr = NULL;
18348 struct attribute *attr2 = NULL;
18349 CORE_ADDR baseaddr;
18350 struct pending **list_to_add = NULL;
18351
18352 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18353
18354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18355
18356 name = dwarf2_name (die, cu);
18357 if (name)
18358 {
18359 const char *linkagename;
18360 int suppress_add = 0;
18361
18362 if (space)
18363 sym = space;
18364 else
18365 sym = allocate_symbol (objfile);
18366 OBJSTAT (objfile, n_syms++);
18367
18368 /* Cache this symbol's name and the name's demangled form (if any). */
18369 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18370 linkagename = dwarf2_physname (name, die, cu);
18371 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18372
18373 /* Fortran does not have mangling standard and the mangling does differ
18374 between gfortran, iFort etc. */
18375 if (cu->language == language_fortran
18376 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18377 symbol_set_demangled_name (&(sym->ginfo),
18378 dwarf2_full_name (name, die, cu),
18379 NULL);
18380
18381 /* Default assumptions.
18382 Use the passed type or decode it from the die. */
18383 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18384 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18385 if (type != NULL)
18386 SYMBOL_TYPE (sym) = type;
18387 else
18388 SYMBOL_TYPE (sym) = die_type (die, cu);
18389 attr = dwarf2_attr (die,
18390 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18391 cu);
18392 if (attr)
18393 {
18394 SYMBOL_LINE (sym) = DW_UNSND (attr);
18395 }
18396
18397 attr = dwarf2_attr (die,
18398 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18399 cu);
18400 if (attr)
18401 {
18402 int file_index = DW_UNSND (attr);
18403
18404 if (cu->line_header == NULL
18405 || file_index > cu->line_header->num_file_names)
18406 complaint (&symfile_complaints,
18407 _("file index out of range"));
18408 else if (file_index > 0)
18409 {
18410 struct file_entry *fe;
18411
18412 fe = &cu->line_header->file_names[file_index - 1];
18413 symbol_set_symtab (sym, fe->symtab);
18414 }
18415 }
18416
18417 switch (die->tag)
18418 {
18419 case DW_TAG_label:
18420 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18421 if (attr)
18422 {
18423 CORE_ADDR addr;
18424
18425 addr = attr_value_as_address (attr);
18426 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18427 SYMBOL_VALUE_ADDRESS (sym) = addr;
18428 }
18429 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18430 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18431 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18432 add_symbol_to_list (sym, cu->list_in_scope);
18433 break;
18434 case DW_TAG_subprogram:
18435 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18436 finish_block. */
18437 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18438 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18439 if ((attr2 && (DW_UNSND (attr2) != 0))
18440 || cu->language == language_ada)
18441 {
18442 /* Subprograms marked external are stored as a global symbol.
18443 Ada subprograms, whether marked external or not, are always
18444 stored as a global symbol, because we want to be able to
18445 access them globally. For instance, we want to be able
18446 to break on a nested subprogram without having to
18447 specify the context. */
18448 list_to_add = &global_symbols;
18449 }
18450 else
18451 {
18452 list_to_add = cu->list_in_scope;
18453 }
18454 break;
18455 case DW_TAG_inlined_subroutine:
18456 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18457 finish_block. */
18458 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18459 SYMBOL_INLINED (sym) = 1;
18460 list_to_add = cu->list_in_scope;
18461 break;
18462 case DW_TAG_template_value_param:
18463 suppress_add = 1;
18464 /* Fall through. */
18465 case DW_TAG_constant:
18466 case DW_TAG_variable:
18467 case DW_TAG_member:
18468 /* Compilation with minimal debug info may result in
18469 variables with missing type entries. Change the
18470 misleading `void' type to something sensible. */
18471 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18472 SYMBOL_TYPE (sym)
18473 = objfile_type (objfile)->nodebug_data_symbol;
18474
18475 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18476 /* In the case of DW_TAG_member, we should only be called for
18477 static const members. */
18478 if (die->tag == DW_TAG_member)
18479 {
18480 /* dwarf2_add_field uses die_is_declaration,
18481 so we do the same. */
18482 gdb_assert (die_is_declaration (die, cu));
18483 gdb_assert (attr);
18484 }
18485 if (attr)
18486 {
18487 dwarf2_const_value (attr, sym, cu);
18488 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18489 if (!suppress_add)
18490 {
18491 if (attr2 && (DW_UNSND (attr2) != 0))
18492 list_to_add = &global_symbols;
18493 else
18494 list_to_add = cu->list_in_scope;
18495 }
18496 break;
18497 }
18498 attr = dwarf2_attr (die, DW_AT_location, cu);
18499 if (attr)
18500 {
18501 var_decode_location (attr, sym, cu);
18502 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18503
18504 /* Fortran explicitly imports any global symbols to the local
18505 scope by DW_TAG_common_block. */
18506 if (cu->language == language_fortran && die->parent
18507 && die->parent->tag == DW_TAG_common_block)
18508 attr2 = NULL;
18509
18510 if (SYMBOL_CLASS (sym) == LOC_STATIC
18511 && SYMBOL_VALUE_ADDRESS (sym) == 0
18512 && !dwarf2_per_objfile->has_section_at_zero)
18513 {
18514 /* When a static variable is eliminated by the linker,
18515 the corresponding debug information is not stripped
18516 out, but the variable address is set to null;
18517 do not add such variables into symbol table. */
18518 }
18519 else if (attr2 && (DW_UNSND (attr2) != 0))
18520 {
18521 /* Workaround gfortran PR debug/40040 - it uses
18522 DW_AT_location for variables in -fPIC libraries which may
18523 get overriden by other libraries/executable and get
18524 a different address. Resolve it by the minimal symbol
18525 which may come from inferior's executable using copy
18526 relocation. Make this workaround only for gfortran as for
18527 other compilers GDB cannot guess the minimal symbol
18528 Fortran mangling kind. */
18529 if (cu->language == language_fortran && die->parent
18530 && die->parent->tag == DW_TAG_module
18531 && cu->producer
18532 && startswith (cu->producer, "GNU Fortran"))
18533 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18534
18535 /* A variable with DW_AT_external is never static,
18536 but it may be block-scoped. */
18537 list_to_add = (cu->list_in_scope == &file_symbols
18538 ? &global_symbols : cu->list_in_scope);
18539 }
18540 else
18541 list_to_add = cu->list_in_scope;
18542 }
18543 else
18544 {
18545 /* We do not know the address of this symbol.
18546 If it is an external symbol and we have type information
18547 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18548 The address of the variable will then be determined from
18549 the minimal symbol table whenever the variable is
18550 referenced. */
18551 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18552
18553 /* Fortran explicitly imports any global symbols to the local
18554 scope by DW_TAG_common_block. */
18555 if (cu->language == language_fortran && die->parent
18556 && die->parent->tag == DW_TAG_common_block)
18557 {
18558 /* SYMBOL_CLASS doesn't matter here because
18559 read_common_block is going to reset it. */
18560 if (!suppress_add)
18561 list_to_add = cu->list_in_scope;
18562 }
18563 else if (attr2 && (DW_UNSND (attr2) != 0)
18564 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18565 {
18566 /* A variable with DW_AT_external is never static, but it
18567 may be block-scoped. */
18568 list_to_add = (cu->list_in_scope == &file_symbols
18569 ? &global_symbols : cu->list_in_scope);
18570
18571 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18572 }
18573 else if (!die_is_declaration (die, cu))
18574 {
18575 /* Use the default LOC_OPTIMIZED_OUT class. */
18576 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18577 if (!suppress_add)
18578 list_to_add = cu->list_in_scope;
18579 }
18580 }
18581 break;
18582 case DW_TAG_formal_parameter:
18583 /* If we are inside a function, mark this as an argument. If
18584 not, we might be looking at an argument to an inlined function
18585 when we do not have enough information to show inlined frames;
18586 pretend it's a local variable in that case so that the user can
18587 still see it. */
18588 if (context_stack_depth > 0
18589 && context_stack[context_stack_depth - 1].name != NULL)
18590 SYMBOL_IS_ARGUMENT (sym) = 1;
18591 attr = dwarf2_attr (die, DW_AT_location, cu);
18592 if (attr)
18593 {
18594 var_decode_location (attr, sym, cu);
18595 }
18596 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18597 if (attr)
18598 {
18599 dwarf2_const_value (attr, sym, cu);
18600 }
18601
18602 list_to_add = cu->list_in_scope;
18603 break;
18604 case DW_TAG_unspecified_parameters:
18605 /* From varargs functions; gdb doesn't seem to have any
18606 interest in this information, so just ignore it for now.
18607 (FIXME?) */
18608 break;
18609 case DW_TAG_template_type_param:
18610 suppress_add = 1;
18611 /* Fall through. */
18612 case DW_TAG_class_type:
18613 case DW_TAG_interface_type:
18614 case DW_TAG_structure_type:
18615 case DW_TAG_union_type:
18616 case DW_TAG_set_type:
18617 case DW_TAG_enumeration_type:
18618 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18619 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18620
18621 {
18622 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18623 really ever be static objects: otherwise, if you try
18624 to, say, break of a class's method and you're in a file
18625 which doesn't mention that class, it won't work unless
18626 the check for all static symbols in lookup_symbol_aux
18627 saves you. See the OtherFileClass tests in
18628 gdb.c++/namespace.exp. */
18629
18630 if (!suppress_add)
18631 {
18632 list_to_add = (cu->list_in_scope == &file_symbols
18633 && cu->language == language_cplus
18634 ? &global_symbols : cu->list_in_scope);
18635
18636 /* The semantics of C++ state that "struct foo {
18637 ... }" also defines a typedef for "foo". */
18638 if (cu->language == language_cplus
18639 || cu->language == language_ada
18640 || cu->language == language_d
18641 || cu->language == language_rust)
18642 {
18643 /* The symbol's name is already allocated along
18644 with this objfile, so we don't need to
18645 duplicate it for the type. */
18646 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18647 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18648 }
18649 }
18650 }
18651 break;
18652 case DW_TAG_typedef:
18653 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18654 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18655 list_to_add = cu->list_in_scope;
18656 break;
18657 case DW_TAG_base_type:
18658 case DW_TAG_subrange_type:
18659 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18660 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18661 list_to_add = cu->list_in_scope;
18662 break;
18663 case DW_TAG_enumerator:
18664 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18665 if (attr)
18666 {
18667 dwarf2_const_value (attr, sym, cu);
18668 }
18669 {
18670 /* NOTE: carlton/2003-11-10: See comment above in the
18671 DW_TAG_class_type, etc. block. */
18672
18673 list_to_add = (cu->list_in_scope == &file_symbols
18674 && cu->language == language_cplus
18675 ? &global_symbols : cu->list_in_scope);
18676 }
18677 break;
18678 case DW_TAG_imported_declaration:
18679 case DW_TAG_namespace:
18680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18681 list_to_add = &global_symbols;
18682 break;
18683 case DW_TAG_module:
18684 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18685 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18686 list_to_add = &global_symbols;
18687 break;
18688 case DW_TAG_common_block:
18689 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18690 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18691 add_symbol_to_list (sym, cu->list_in_scope);
18692 break;
18693 default:
18694 /* Not a tag we recognize. Hopefully we aren't processing
18695 trash data, but since we must specifically ignore things
18696 we don't recognize, there is nothing else we should do at
18697 this point. */
18698 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18699 dwarf_tag_name (die->tag));
18700 break;
18701 }
18702
18703 if (suppress_add)
18704 {
18705 sym->hash_next = objfile->template_symbols;
18706 objfile->template_symbols = sym;
18707 list_to_add = NULL;
18708 }
18709
18710 if (list_to_add != NULL)
18711 add_symbol_to_list (sym, list_to_add);
18712
18713 /* For the benefit of old versions of GCC, check for anonymous
18714 namespaces based on the demangled name. */
18715 if (!cu->processing_has_namespace_info
18716 && cu->language == language_cplus)
18717 cp_scan_for_anonymous_namespaces (sym, objfile);
18718 }
18719 return (sym);
18720 }
18721
18722 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18723
18724 static struct symbol *
18725 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18726 {
18727 return new_symbol_full (die, type, cu, NULL);
18728 }
18729
18730 /* Given an attr with a DW_FORM_dataN value in host byte order,
18731 zero-extend it as appropriate for the symbol's type. The DWARF
18732 standard (v4) is not entirely clear about the meaning of using
18733 DW_FORM_dataN for a constant with a signed type, where the type is
18734 wider than the data. The conclusion of a discussion on the DWARF
18735 list was that this is unspecified. We choose to always zero-extend
18736 because that is the interpretation long in use by GCC. */
18737
18738 static gdb_byte *
18739 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18740 struct dwarf2_cu *cu, LONGEST *value, int bits)
18741 {
18742 struct objfile *objfile = cu->objfile;
18743 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18744 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18745 LONGEST l = DW_UNSND (attr);
18746
18747 if (bits < sizeof (*value) * 8)
18748 {
18749 l &= ((LONGEST) 1 << bits) - 1;
18750 *value = l;
18751 }
18752 else if (bits == sizeof (*value) * 8)
18753 *value = l;
18754 else
18755 {
18756 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18757 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18758 return bytes;
18759 }
18760
18761 return NULL;
18762 }
18763
18764 /* Read a constant value from an attribute. Either set *VALUE, or if
18765 the value does not fit in *VALUE, set *BYTES - either already
18766 allocated on the objfile obstack, or newly allocated on OBSTACK,
18767 or, set *BATON, if we translated the constant to a location
18768 expression. */
18769
18770 static void
18771 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18772 const char *name, struct obstack *obstack,
18773 struct dwarf2_cu *cu,
18774 LONGEST *value, const gdb_byte **bytes,
18775 struct dwarf2_locexpr_baton **baton)
18776 {
18777 struct objfile *objfile = cu->objfile;
18778 struct comp_unit_head *cu_header = &cu->header;
18779 struct dwarf_block *blk;
18780 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18781 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18782
18783 *value = 0;
18784 *bytes = NULL;
18785 *baton = NULL;
18786
18787 switch (attr->form)
18788 {
18789 case DW_FORM_addr:
18790 case DW_FORM_GNU_addr_index:
18791 {
18792 gdb_byte *data;
18793
18794 if (TYPE_LENGTH (type) != cu_header->addr_size)
18795 dwarf2_const_value_length_mismatch_complaint (name,
18796 cu_header->addr_size,
18797 TYPE_LENGTH (type));
18798 /* Symbols of this form are reasonably rare, so we just
18799 piggyback on the existing location code rather than writing
18800 a new implementation of symbol_computed_ops. */
18801 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18802 (*baton)->per_cu = cu->per_cu;
18803 gdb_assert ((*baton)->per_cu);
18804
18805 (*baton)->size = 2 + cu_header->addr_size;
18806 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18807 (*baton)->data = data;
18808
18809 data[0] = DW_OP_addr;
18810 store_unsigned_integer (&data[1], cu_header->addr_size,
18811 byte_order, DW_ADDR (attr));
18812 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18813 }
18814 break;
18815 case DW_FORM_string:
18816 case DW_FORM_strp:
18817 case DW_FORM_GNU_str_index:
18818 case DW_FORM_GNU_strp_alt:
18819 /* DW_STRING is already allocated on the objfile obstack, point
18820 directly to it. */
18821 *bytes = (const gdb_byte *) DW_STRING (attr);
18822 break;
18823 case DW_FORM_block1:
18824 case DW_FORM_block2:
18825 case DW_FORM_block4:
18826 case DW_FORM_block:
18827 case DW_FORM_exprloc:
18828 blk = DW_BLOCK (attr);
18829 if (TYPE_LENGTH (type) != blk->size)
18830 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18831 TYPE_LENGTH (type));
18832 *bytes = blk->data;
18833 break;
18834
18835 /* The DW_AT_const_value attributes are supposed to carry the
18836 symbol's value "represented as it would be on the target
18837 architecture." By the time we get here, it's already been
18838 converted to host endianness, so we just need to sign- or
18839 zero-extend it as appropriate. */
18840 case DW_FORM_data1:
18841 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18842 break;
18843 case DW_FORM_data2:
18844 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18845 break;
18846 case DW_FORM_data4:
18847 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18848 break;
18849 case DW_FORM_data8:
18850 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18851 break;
18852
18853 case DW_FORM_sdata:
18854 *value = DW_SND (attr);
18855 break;
18856
18857 case DW_FORM_udata:
18858 *value = DW_UNSND (attr);
18859 break;
18860
18861 default:
18862 complaint (&symfile_complaints,
18863 _("unsupported const value attribute form: '%s'"),
18864 dwarf_form_name (attr->form));
18865 *value = 0;
18866 break;
18867 }
18868 }
18869
18870
18871 /* Copy constant value from an attribute to a symbol. */
18872
18873 static void
18874 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18875 struct dwarf2_cu *cu)
18876 {
18877 struct objfile *objfile = cu->objfile;
18878 LONGEST value;
18879 const gdb_byte *bytes;
18880 struct dwarf2_locexpr_baton *baton;
18881
18882 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18883 SYMBOL_PRINT_NAME (sym),
18884 &objfile->objfile_obstack, cu,
18885 &value, &bytes, &baton);
18886
18887 if (baton != NULL)
18888 {
18889 SYMBOL_LOCATION_BATON (sym) = baton;
18890 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18891 }
18892 else if (bytes != NULL)
18893 {
18894 SYMBOL_VALUE_BYTES (sym) = bytes;
18895 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18896 }
18897 else
18898 {
18899 SYMBOL_VALUE (sym) = value;
18900 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18901 }
18902 }
18903
18904 /* Return the type of the die in question using its DW_AT_type attribute. */
18905
18906 static struct type *
18907 die_type (struct die_info *die, struct dwarf2_cu *cu)
18908 {
18909 struct attribute *type_attr;
18910
18911 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18912 if (!type_attr)
18913 {
18914 /* A missing DW_AT_type represents a void type. */
18915 return objfile_type (cu->objfile)->builtin_void;
18916 }
18917
18918 return lookup_die_type (die, type_attr, cu);
18919 }
18920
18921 /* True iff CU's producer generates GNAT Ada auxiliary information
18922 that allows to find parallel types through that information instead
18923 of having to do expensive parallel lookups by type name. */
18924
18925 static int
18926 need_gnat_info (struct dwarf2_cu *cu)
18927 {
18928 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18929 of GNAT produces this auxiliary information, without any indication
18930 that it is produced. Part of enhancing the FSF version of GNAT
18931 to produce that information will be to put in place an indicator
18932 that we can use in order to determine whether the descriptive type
18933 info is available or not. One suggestion that has been made is
18934 to use a new attribute, attached to the CU die. For now, assume
18935 that the descriptive type info is not available. */
18936 return 0;
18937 }
18938
18939 /* Return the auxiliary type of the die in question using its
18940 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18941 attribute is not present. */
18942
18943 static struct type *
18944 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18945 {
18946 struct attribute *type_attr;
18947
18948 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18949 if (!type_attr)
18950 return NULL;
18951
18952 return lookup_die_type (die, type_attr, cu);
18953 }
18954
18955 /* If DIE has a descriptive_type attribute, then set the TYPE's
18956 descriptive type accordingly. */
18957
18958 static void
18959 set_descriptive_type (struct type *type, struct die_info *die,
18960 struct dwarf2_cu *cu)
18961 {
18962 struct type *descriptive_type = die_descriptive_type (die, cu);
18963
18964 if (descriptive_type)
18965 {
18966 ALLOCATE_GNAT_AUX_TYPE (type);
18967 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18968 }
18969 }
18970
18971 /* Return the containing type of the die in question using its
18972 DW_AT_containing_type attribute. */
18973
18974 static struct type *
18975 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18976 {
18977 struct attribute *type_attr;
18978
18979 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18980 if (!type_attr)
18981 error (_("Dwarf Error: Problem turning containing type into gdb type "
18982 "[in module %s]"), objfile_name (cu->objfile));
18983
18984 return lookup_die_type (die, type_attr, cu);
18985 }
18986
18987 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18988
18989 static struct type *
18990 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18991 {
18992 struct objfile *objfile = dwarf2_per_objfile->objfile;
18993 char *message, *saved;
18994
18995 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18996 objfile_name (objfile),
18997 cu->header.offset.sect_off,
18998 die->offset.sect_off);
18999 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19000 message, strlen (message));
19001 xfree (message);
19002
19003 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
19004 }
19005
19006 /* Look up the type of DIE in CU using its type attribute ATTR.
19007 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19008 DW_AT_containing_type.
19009 If there is no type substitute an error marker. */
19010
19011 static struct type *
19012 lookup_die_type (struct die_info *die, const struct attribute *attr,
19013 struct dwarf2_cu *cu)
19014 {
19015 struct objfile *objfile = cu->objfile;
19016 struct type *this_type;
19017
19018 gdb_assert (attr->name == DW_AT_type
19019 || attr->name == DW_AT_GNAT_descriptive_type
19020 || attr->name == DW_AT_containing_type);
19021
19022 /* First see if we have it cached. */
19023
19024 if (attr->form == DW_FORM_GNU_ref_alt)
19025 {
19026 struct dwarf2_per_cu_data *per_cu;
19027 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19028
19029 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19030 this_type = get_die_type_at_offset (offset, per_cu);
19031 }
19032 else if (attr_form_is_ref (attr))
19033 {
19034 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19035
19036 this_type = get_die_type_at_offset (offset, cu->per_cu);
19037 }
19038 else if (attr->form == DW_FORM_ref_sig8)
19039 {
19040 ULONGEST signature = DW_SIGNATURE (attr);
19041
19042 return get_signatured_type (die, signature, cu);
19043 }
19044 else
19045 {
19046 complaint (&symfile_complaints,
19047 _("Dwarf Error: Bad type attribute %s in DIE"
19048 " at 0x%x [in module %s]"),
19049 dwarf_attr_name (attr->name), die->offset.sect_off,
19050 objfile_name (objfile));
19051 return build_error_marker_type (cu, die);
19052 }
19053
19054 /* If not cached we need to read it in. */
19055
19056 if (this_type == NULL)
19057 {
19058 struct die_info *type_die = NULL;
19059 struct dwarf2_cu *type_cu = cu;
19060
19061 if (attr_form_is_ref (attr))
19062 type_die = follow_die_ref (die, attr, &type_cu);
19063 if (type_die == NULL)
19064 return build_error_marker_type (cu, die);
19065 /* If we find the type now, it's probably because the type came
19066 from an inter-CU reference and the type's CU got expanded before
19067 ours. */
19068 this_type = read_type_die (type_die, type_cu);
19069 }
19070
19071 /* If we still don't have a type use an error marker. */
19072
19073 if (this_type == NULL)
19074 return build_error_marker_type (cu, die);
19075
19076 return this_type;
19077 }
19078
19079 /* Return the type in DIE, CU.
19080 Returns NULL for invalid types.
19081
19082 This first does a lookup in die_type_hash,
19083 and only reads the die in if necessary.
19084
19085 NOTE: This can be called when reading in partial or full symbols. */
19086
19087 static struct type *
19088 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19089 {
19090 struct type *this_type;
19091
19092 this_type = get_die_type (die, cu);
19093 if (this_type)
19094 return this_type;
19095
19096 return read_type_die_1 (die, cu);
19097 }
19098
19099 /* Read the type in DIE, CU.
19100 Returns NULL for invalid types. */
19101
19102 static struct type *
19103 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19104 {
19105 struct type *this_type = NULL;
19106
19107 switch (die->tag)
19108 {
19109 case DW_TAG_class_type:
19110 case DW_TAG_interface_type:
19111 case DW_TAG_structure_type:
19112 case DW_TAG_union_type:
19113 this_type = read_structure_type (die, cu);
19114 break;
19115 case DW_TAG_enumeration_type:
19116 this_type = read_enumeration_type (die, cu);
19117 break;
19118 case DW_TAG_subprogram:
19119 case DW_TAG_subroutine_type:
19120 case DW_TAG_inlined_subroutine:
19121 this_type = read_subroutine_type (die, cu);
19122 break;
19123 case DW_TAG_array_type:
19124 this_type = read_array_type (die, cu);
19125 break;
19126 case DW_TAG_set_type:
19127 this_type = read_set_type (die, cu);
19128 break;
19129 case DW_TAG_pointer_type:
19130 this_type = read_tag_pointer_type (die, cu);
19131 break;
19132 case DW_TAG_ptr_to_member_type:
19133 this_type = read_tag_ptr_to_member_type (die, cu);
19134 break;
19135 case DW_TAG_reference_type:
19136 this_type = read_tag_reference_type (die, cu);
19137 break;
19138 case DW_TAG_const_type:
19139 this_type = read_tag_const_type (die, cu);
19140 break;
19141 case DW_TAG_volatile_type:
19142 this_type = read_tag_volatile_type (die, cu);
19143 break;
19144 case DW_TAG_restrict_type:
19145 this_type = read_tag_restrict_type (die, cu);
19146 break;
19147 case DW_TAG_string_type:
19148 this_type = read_tag_string_type (die, cu);
19149 break;
19150 case DW_TAG_typedef:
19151 this_type = read_typedef (die, cu);
19152 break;
19153 case DW_TAG_subrange_type:
19154 this_type = read_subrange_type (die, cu);
19155 break;
19156 case DW_TAG_base_type:
19157 this_type = read_base_type (die, cu);
19158 break;
19159 case DW_TAG_unspecified_type:
19160 this_type = read_unspecified_type (die, cu);
19161 break;
19162 case DW_TAG_namespace:
19163 this_type = read_namespace_type (die, cu);
19164 break;
19165 case DW_TAG_module:
19166 this_type = read_module_type (die, cu);
19167 break;
19168 case DW_TAG_atomic_type:
19169 this_type = read_tag_atomic_type (die, cu);
19170 break;
19171 default:
19172 complaint (&symfile_complaints,
19173 _("unexpected tag in read_type_die: '%s'"),
19174 dwarf_tag_name (die->tag));
19175 break;
19176 }
19177
19178 return this_type;
19179 }
19180
19181 /* See if we can figure out if the class lives in a namespace. We do
19182 this by looking for a member function; its demangled name will
19183 contain namespace info, if there is any.
19184 Return the computed name or NULL.
19185 Space for the result is allocated on the objfile's obstack.
19186 This is the full-die version of guess_partial_die_structure_name.
19187 In this case we know DIE has no useful parent. */
19188
19189 static char *
19190 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19191 {
19192 struct die_info *spec_die;
19193 struct dwarf2_cu *spec_cu;
19194 struct die_info *child;
19195
19196 spec_cu = cu;
19197 spec_die = die_specification (die, &spec_cu);
19198 if (spec_die != NULL)
19199 {
19200 die = spec_die;
19201 cu = spec_cu;
19202 }
19203
19204 for (child = die->child;
19205 child != NULL;
19206 child = child->sibling)
19207 {
19208 if (child->tag == DW_TAG_subprogram)
19209 {
19210 const char *linkage_name;
19211
19212 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19213 if (linkage_name == NULL)
19214 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19215 cu);
19216 if (linkage_name != NULL)
19217 {
19218 char *actual_name
19219 = language_class_name_from_physname (cu->language_defn,
19220 linkage_name);
19221 char *name = NULL;
19222
19223 if (actual_name != NULL)
19224 {
19225 const char *die_name = dwarf2_name (die, cu);
19226
19227 if (die_name != NULL
19228 && strcmp (die_name, actual_name) != 0)
19229 {
19230 /* Strip off the class name from the full name.
19231 We want the prefix. */
19232 int die_name_len = strlen (die_name);
19233 int actual_name_len = strlen (actual_name);
19234
19235 /* Test for '::' as a sanity check. */
19236 if (actual_name_len > die_name_len + 2
19237 && actual_name[actual_name_len
19238 - die_name_len - 1] == ':')
19239 name = (char *) obstack_copy0 (
19240 &cu->objfile->per_bfd->storage_obstack,
19241 actual_name, actual_name_len - die_name_len - 2);
19242 }
19243 }
19244 xfree (actual_name);
19245 return name;
19246 }
19247 }
19248 }
19249
19250 return NULL;
19251 }
19252
19253 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19254 prefix part in such case. See
19255 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19256
19257 static char *
19258 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19259 {
19260 struct attribute *attr;
19261 const char *base;
19262
19263 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19264 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19265 return NULL;
19266
19267 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19268 return NULL;
19269
19270 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19271 if (attr == NULL)
19272 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19273 if (attr == NULL || DW_STRING (attr) == NULL)
19274 return NULL;
19275
19276 /* dwarf2_name had to be already called. */
19277 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19278
19279 /* Strip the base name, keep any leading namespaces/classes. */
19280 base = strrchr (DW_STRING (attr), ':');
19281 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19282 return "";
19283
19284 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19285 DW_STRING (attr),
19286 &base[-1] - DW_STRING (attr));
19287 }
19288
19289 /* Return the name of the namespace/class that DIE is defined within,
19290 or "" if we can't tell. The caller should not xfree the result.
19291
19292 For example, if we're within the method foo() in the following
19293 code:
19294
19295 namespace N {
19296 class C {
19297 void foo () {
19298 }
19299 };
19300 }
19301
19302 then determine_prefix on foo's die will return "N::C". */
19303
19304 static const char *
19305 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19306 {
19307 struct die_info *parent, *spec_die;
19308 struct dwarf2_cu *spec_cu;
19309 struct type *parent_type;
19310 char *retval;
19311
19312 if (cu->language != language_cplus
19313 && cu->language != language_fortran && cu->language != language_d
19314 && cu->language != language_rust)
19315 return "";
19316
19317 retval = anonymous_struct_prefix (die, cu);
19318 if (retval)
19319 return retval;
19320
19321 /* We have to be careful in the presence of DW_AT_specification.
19322 For example, with GCC 3.4, given the code
19323
19324 namespace N {
19325 void foo() {
19326 // Definition of N::foo.
19327 }
19328 }
19329
19330 then we'll have a tree of DIEs like this:
19331
19332 1: DW_TAG_compile_unit
19333 2: DW_TAG_namespace // N
19334 3: DW_TAG_subprogram // declaration of N::foo
19335 4: DW_TAG_subprogram // definition of N::foo
19336 DW_AT_specification // refers to die #3
19337
19338 Thus, when processing die #4, we have to pretend that we're in
19339 the context of its DW_AT_specification, namely the contex of die
19340 #3. */
19341 spec_cu = cu;
19342 spec_die = die_specification (die, &spec_cu);
19343 if (spec_die == NULL)
19344 parent = die->parent;
19345 else
19346 {
19347 parent = spec_die->parent;
19348 cu = spec_cu;
19349 }
19350
19351 if (parent == NULL)
19352 return "";
19353 else if (parent->building_fullname)
19354 {
19355 const char *name;
19356 const char *parent_name;
19357
19358 /* It has been seen on RealView 2.2 built binaries,
19359 DW_TAG_template_type_param types actually _defined_ as
19360 children of the parent class:
19361
19362 enum E {};
19363 template class <class Enum> Class{};
19364 Class<enum E> class_e;
19365
19366 1: DW_TAG_class_type (Class)
19367 2: DW_TAG_enumeration_type (E)
19368 3: DW_TAG_enumerator (enum1:0)
19369 3: DW_TAG_enumerator (enum2:1)
19370 ...
19371 2: DW_TAG_template_type_param
19372 DW_AT_type DW_FORM_ref_udata (E)
19373
19374 Besides being broken debug info, it can put GDB into an
19375 infinite loop. Consider:
19376
19377 When we're building the full name for Class<E>, we'll start
19378 at Class, and go look over its template type parameters,
19379 finding E. We'll then try to build the full name of E, and
19380 reach here. We're now trying to build the full name of E,
19381 and look over the parent DIE for containing scope. In the
19382 broken case, if we followed the parent DIE of E, we'd again
19383 find Class, and once again go look at its template type
19384 arguments, etc., etc. Simply don't consider such parent die
19385 as source-level parent of this die (it can't be, the language
19386 doesn't allow it), and break the loop here. */
19387 name = dwarf2_name (die, cu);
19388 parent_name = dwarf2_name (parent, cu);
19389 complaint (&symfile_complaints,
19390 _("template param type '%s' defined within parent '%s'"),
19391 name ? name : "<unknown>",
19392 parent_name ? parent_name : "<unknown>");
19393 return "";
19394 }
19395 else
19396 switch (parent->tag)
19397 {
19398 case DW_TAG_namespace:
19399 parent_type = read_type_die (parent, cu);
19400 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19401 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19402 Work around this problem here. */
19403 if (cu->language == language_cplus
19404 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19405 return "";
19406 /* We give a name to even anonymous namespaces. */
19407 return TYPE_TAG_NAME (parent_type);
19408 case DW_TAG_class_type:
19409 case DW_TAG_interface_type:
19410 case DW_TAG_structure_type:
19411 case DW_TAG_union_type:
19412 case DW_TAG_module:
19413 parent_type = read_type_die (parent, cu);
19414 if (TYPE_TAG_NAME (parent_type) != NULL)
19415 return TYPE_TAG_NAME (parent_type);
19416 else
19417 /* An anonymous structure is only allowed non-static data
19418 members; no typedefs, no member functions, et cetera.
19419 So it does not need a prefix. */
19420 return "";
19421 case DW_TAG_compile_unit:
19422 case DW_TAG_partial_unit:
19423 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19424 if (cu->language == language_cplus
19425 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19426 && die->child != NULL
19427 && (die->tag == DW_TAG_class_type
19428 || die->tag == DW_TAG_structure_type
19429 || die->tag == DW_TAG_union_type))
19430 {
19431 char *name = guess_full_die_structure_name (die, cu);
19432 if (name != NULL)
19433 return name;
19434 }
19435 return "";
19436 case DW_TAG_enumeration_type:
19437 parent_type = read_type_die (parent, cu);
19438 if (TYPE_DECLARED_CLASS (parent_type))
19439 {
19440 if (TYPE_TAG_NAME (parent_type) != NULL)
19441 return TYPE_TAG_NAME (parent_type);
19442 return "";
19443 }
19444 /* Fall through. */
19445 default:
19446 return determine_prefix (parent, cu);
19447 }
19448 }
19449
19450 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19451 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19452 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19453 an obconcat, otherwise allocate storage for the result. The CU argument is
19454 used to determine the language and hence, the appropriate separator. */
19455
19456 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19457
19458 static char *
19459 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19460 int physname, struct dwarf2_cu *cu)
19461 {
19462 const char *lead = "";
19463 const char *sep;
19464
19465 if (suffix == NULL || suffix[0] == '\0'
19466 || prefix == NULL || prefix[0] == '\0')
19467 sep = "";
19468 else if (cu->language == language_d)
19469 {
19470 /* For D, the 'main' function could be defined in any module, but it
19471 should never be prefixed. */
19472 if (strcmp (suffix, "D main") == 0)
19473 {
19474 prefix = "";
19475 sep = "";
19476 }
19477 else
19478 sep = ".";
19479 }
19480 else if (cu->language == language_fortran && physname)
19481 {
19482 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19483 DW_AT_MIPS_linkage_name is preferred and used instead. */
19484
19485 lead = "__";
19486 sep = "_MOD_";
19487 }
19488 else
19489 sep = "::";
19490
19491 if (prefix == NULL)
19492 prefix = "";
19493 if (suffix == NULL)
19494 suffix = "";
19495
19496 if (obs == NULL)
19497 {
19498 char *retval
19499 = ((char *)
19500 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19501
19502 strcpy (retval, lead);
19503 strcat (retval, prefix);
19504 strcat (retval, sep);
19505 strcat (retval, suffix);
19506 return retval;
19507 }
19508 else
19509 {
19510 /* We have an obstack. */
19511 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19512 }
19513 }
19514
19515 /* Return sibling of die, NULL if no sibling. */
19516
19517 static struct die_info *
19518 sibling_die (struct die_info *die)
19519 {
19520 return die->sibling;
19521 }
19522
19523 /* Get name of a die, return NULL if not found. */
19524
19525 static const char *
19526 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19527 struct obstack *obstack)
19528 {
19529 if (name && cu->language == language_cplus)
19530 {
19531 std::string canon_name = cp_canonicalize_string (name);
19532
19533 if (!canon_name.empty ())
19534 {
19535 if (canon_name != name)
19536 name = (const char *) obstack_copy0 (obstack,
19537 canon_name.c_str (),
19538 canon_name.length ());
19539 }
19540 }
19541
19542 return name;
19543 }
19544
19545 /* Get name of a die, return NULL if not found.
19546 Anonymous namespaces are converted to their magic string. */
19547
19548 static const char *
19549 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19550 {
19551 struct attribute *attr;
19552
19553 attr = dwarf2_attr (die, DW_AT_name, cu);
19554 if ((!attr || !DW_STRING (attr))
19555 && die->tag != DW_TAG_namespace
19556 && die->tag != DW_TAG_class_type
19557 && die->tag != DW_TAG_interface_type
19558 && die->tag != DW_TAG_structure_type
19559 && die->tag != DW_TAG_union_type)
19560 return NULL;
19561
19562 switch (die->tag)
19563 {
19564 case DW_TAG_compile_unit:
19565 case DW_TAG_partial_unit:
19566 /* Compilation units have a DW_AT_name that is a filename, not
19567 a source language identifier. */
19568 case DW_TAG_enumeration_type:
19569 case DW_TAG_enumerator:
19570 /* These tags always have simple identifiers already; no need
19571 to canonicalize them. */
19572 return DW_STRING (attr);
19573
19574 case DW_TAG_namespace:
19575 if (attr != NULL && DW_STRING (attr) != NULL)
19576 return DW_STRING (attr);
19577 return CP_ANONYMOUS_NAMESPACE_STR;
19578
19579 case DW_TAG_class_type:
19580 case DW_TAG_interface_type:
19581 case DW_TAG_structure_type:
19582 case DW_TAG_union_type:
19583 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19584 structures or unions. These were of the form "._%d" in GCC 4.1,
19585 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19586 and GCC 4.4. We work around this problem by ignoring these. */
19587 if (attr && DW_STRING (attr)
19588 && (startswith (DW_STRING (attr), "._")
19589 || startswith (DW_STRING (attr), "<anonymous")))
19590 return NULL;
19591
19592 /* GCC might emit a nameless typedef that has a linkage name. See
19593 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19594 if (!attr || DW_STRING (attr) == NULL)
19595 {
19596 char *demangled = NULL;
19597
19598 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19599 if (attr == NULL)
19600 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19601
19602 if (attr == NULL || DW_STRING (attr) == NULL)
19603 return NULL;
19604
19605 /* Avoid demangling DW_STRING (attr) the second time on a second
19606 call for the same DIE. */
19607 if (!DW_STRING_IS_CANONICAL (attr))
19608 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19609
19610 if (demangled)
19611 {
19612 const char *base;
19613
19614 /* FIXME: we already did this for the partial symbol... */
19615 DW_STRING (attr)
19616 = ((const char *)
19617 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19618 demangled, strlen (demangled)));
19619 DW_STRING_IS_CANONICAL (attr) = 1;
19620 xfree (demangled);
19621
19622 /* Strip any leading namespaces/classes, keep only the base name.
19623 DW_AT_name for named DIEs does not contain the prefixes. */
19624 base = strrchr (DW_STRING (attr), ':');
19625 if (base && base > DW_STRING (attr) && base[-1] == ':')
19626 return &base[1];
19627 else
19628 return DW_STRING (attr);
19629 }
19630 }
19631 break;
19632
19633 default:
19634 break;
19635 }
19636
19637 if (!DW_STRING_IS_CANONICAL (attr))
19638 {
19639 DW_STRING (attr)
19640 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19641 &cu->objfile->per_bfd->storage_obstack);
19642 DW_STRING_IS_CANONICAL (attr) = 1;
19643 }
19644 return DW_STRING (attr);
19645 }
19646
19647 /* Return the die that this die in an extension of, or NULL if there
19648 is none. *EXT_CU is the CU containing DIE on input, and the CU
19649 containing the return value on output. */
19650
19651 static struct die_info *
19652 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19653 {
19654 struct attribute *attr;
19655
19656 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19657 if (attr == NULL)
19658 return NULL;
19659
19660 return follow_die_ref (die, attr, ext_cu);
19661 }
19662
19663 /* Convert a DIE tag into its string name. */
19664
19665 static const char *
19666 dwarf_tag_name (unsigned tag)
19667 {
19668 const char *name = get_DW_TAG_name (tag);
19669
19670 if (name == NULL)
19671 return "DW_TAG_<unknown>";
19672
19673 return name;
19674 }
19675
19676 /* Convert a DWARF attribute code into its string name. */
19677
19678 static const char *
19679 dwarf_attr_name (unsigned attr)
19680 {
19681 const char *name;
19682
19683 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19684 if (attr == DW_AT_MIPS_fde)
19685 return "DW_AT_MIPS_fde";
19686 #else
19687 if (attr == DW_AT_HP_block_index)
19688 return "DW_AT_HP_block_index";
19689 #endif
19690
19691 name = get_DW_AT_name (attr);
19692
19693 if (name == NULL)
19694 return "DW_AT_<unknown>";
19695
19696 return name;
19697 }
19698
19699 /* Convert a DWARF value form code into its string name. */
19700
19701 static const char *
19702 dwarf_form_name (unsigned form)
19703 {
19704 const char *name = get_DW_FORM_name (form);
19705
19706 if (name == NULL)
19707 return "DW_FORM_<unknown>";
19708
19709 return name;
19710 }
19711
19712 static char *
19713 dwarf_bool_name (unsigned mybool)
19714 {
19715 if (mybool)
19716 return "TRUE";
19717 else
19718 return "FALSE";
19719 }
19720
19721 /* Convert a DWARF type code into its string name. */
19722
19723 static const char *
19724 dwarf_type_encoding_name (unsigned enc)
19725 {
19726 const char *name = get_DW_ATE_name (enc);
19727
19728 if (name == NULL)
19729 return "DW_ATE_<unknown>";
19730
19731 return name;
19732 }
19733
19734 static void
19735 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19736 {
19737 unsigned int i;
19738
19739 print_spaces (indent, f);
19740 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19741 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19742
19743 if (die->parent != NULL)
19744 {
19745 print_spaces (indent, f);
19746 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19747 die->parent->offset.sect_off);
19748 }
19749
19750 print_spaces (indent, f);
19751 fprintf_unfiltered (f, " has children: %s\n",
19752 dwarf_bool_name (die->child != NULL));
19753
19754 print_spaces (indent, f);
19755 fprintf_unfiltered (f, " attributes:\n");
19756
19757 for (i = 0; i < die->num_attrs; ++i)
19758 {
19759 print_spaces (indent, f);
19760 fprintf_unfiltered (f, " %s (%s) ",
19761 dwarf_attr_name (die->attrs[i].name),
19762 dwarf_form_name (die->attrs[i].form));
19763
19764 switch (die->attrs[i].form)
19765 {
19766 case DW_FORM_addr:
19767 case DW_FORM_GNU_addr_index:
19768 fprintf_unfiltered (f, "address: ");
19769 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19770 break;
19771 case DW_FORM_block2:
19772 case DW_FORM_block4:
19773 case DW_FORM_block:
19774 case DW_FORM_block1:
19775 fprintf_unfiltered (f, "block: size %s",
19776 pulongest (DW_BLOCK (&die->attrs[i])->size));
19777 break;
19778 case DW_FORM_exprloc:
19779 fprintf_unfiltered (f, "expression: size %s",
19780 pulongest (DW_BLOCK (&die->attrs[i])->size));
19781 break;
19782 case DW_FORM_ref_addr:
19783 fprintf_unfiltered (f, "ref address: ");
19784 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19785 break;
19786 case DW_FORM_GNU_ref_alt:
19787 fprintf_unfiltered (f, "alt ref address: ");
19788 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19789 break;
19790 case DW_FORM_ref1:
19791 case DW_FORM_ref2:
19792 case DW_FORM_ref4:
19793 case DW_FORM_ref8:
19794 case DW_FORM_ref_udata:
19795 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19796 (long) (DW_UNSND (&die->attrs[i])));
19797 break;
19798 case DW_FORM_data1:
19799 case DW_FORM_data2:
19800 case DW_FORM_data4:
19801 case DW_FORM_data8:
19802 case DW_FORM_udata:
19803 case DW_FORM_sdata:
19804 fprintf_unfiltered (f, "constant: %s",
19805 pulongest (DW_UNSND (&die->attrs[i])));
19806 break;
19807 case DW_FORM_sec_offset:
19808 fprintf_unfiltered (f, "section offset: %s",
19809 pulongest (DW_UNSND (&die->attrs[i])));
19810 break;
19811 case DW_FORM_ref_sig8:
19812 fprintf_unfiltered (f, "signature: %s",
19813 hex_string (DW_SIGNATURE (&die->attrs[i])));
19814 break;
19815 case DW_FORM_string:
19816 case DW_FORM_strp:
19817 case DW_FORM_GNU_str_index:
19818 case DW_FORM_GNU_strp_alt:
19819 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19820 DW_STRING (&die->attrs[i])
19821 ? DW_STRING (&die->attrs[i]) : "",
19822 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19823 break;
19824 case DW_FORM_flag:
19825 if (DW_UNSND (&die->attrs[i]))
19826 fprintf_unfiltered (f, "flag: TRUE");
19827 else
19828 fprintf_unfiltered (f, "flag: FALSE");
19829 break;
19830 case DW_FORM_flag_present:
19831 fprintf_unfiltered (f, "flag: TRUE");
19832 break;
19833 case DW_FORM_indirect:
19834 /* The reader will have reduced the indirect form to
19835 the "base form" so this form should not occur. */
19836 fprintf_unfiltered (f,
19837 "unexpected attribute form: DW_FORM_indirect");
19838 break;
19839 default:
19840 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19841 die->attrs[i].form);
19842 break;
19843 }
19844 fprintf_unfiltered (f, "\n");
19845 }
19846 }
19847
19848 static void
19849 dump_die_for_error (struct die_info *die)
19850 {
19851 dump_die_shallow (gdb_stderr, 0, die);
19852 }
19853
19854 static void
19855 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19856 {
19857 int indent = level * 4;
19858
19859 gdb_assert (die != NULL);
19860
19861 if (level >= max_level)
19862 return;
19863
19864 dump_die_shallow (f, indent, die);
19865
19866 if (die->child != NULL)
19867 {
19868 print_spaces (indent, f);
19869 fprintf_unfiltered (f, " Children:");
19870 if (level + 1 < max_level)
19871 {
19872 fprintf_unfiltered (f, "\n");
19873 dump_die_1 (f, level + 1, max_level, die->child);
19874 }
19875 else
19876 {
19877 fprintf_unfiltered (f,
19878 " [not printed, max nesting level reached]\n");
19879 }
19880 }
19881
19882 if (die->sibling != NULL && level > 0)
19883 {
19884 dump_die_1 (f, level, max_level, die->sibling);
19885 }
19886 }
19887
19888 /* This is called from the pdie macro in gdbinit.in.
19889 It's not static so gcc will keep a copy callable from gdb. */
19890
19891 void
19892 dump_die (struct die_info *die, int max_level)
19893 {
19894 dump_die_1 (gdb_stdlog, 0, max_level, die);
19895 }
19896
19897 static void
19898 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19899 {
19900 void **slot;
19901
19902 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19903 INSERT);
19904
19905 *slot = die;
19906 }
19907
19908 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19909 required kind. */
19910
19911 static sect_offset
19912 dwarf2_get_ref_die_offset (const struct attribute *attr)
19913 {
19914 sect_offset retval = { DW_UNSND (attr) };
19915
19916 if (attr_form_is_ref (attr))
19917 return retval;
19918
19919 retval.sect_off = 0;
19920 complaint (&symfile_complaints,
19921 _("unsupported die ref attribute form: '%s'"),
19922 dwarf_form_name (attr->form));
19923 return retval;
19924 }
19925
19926 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19927 * the value held by the attribute is not constant. */
19928
19929 static LONGEST
19930 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19931 {
19932 if (attr->form == DW_FORM_sdata)
19933 return DW_SND (attr);
19934 else if (attr->form == DW_FORM_udata
19935 || attr->form == DW_FORM_data1
19936 || attr->form == DW_FORM_data2
19937 || attr->form == DW_FORM_data4
19938 || attr->form == DW_FORM_data8)
19939 return DW_UNSND (attr);
19940 else
19941 {
19942 complaint (&symfile_complaints,
19943 _("Attribute value is not a constant (%s)"),
19944 dwarf_form_name (attr->form));
19945 return default_value;
19946 }
19947 }
19948
19949 /* Follow reference or signature attribute ATTR of SRC_DIE.
19950 On entry *REF_CU is the CU of SRC_DIE.
19951 On exit *REF_CU is the CU of the result. */
19952
19953 static struct die_info *
19954 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19955 struct dwarf2_cu **ref_cu)
19956 {
19957 struct die_info *die;
19958
19959 if (attr_form_is_ref (attr))
19960 die = follow_die_ref (src_die, attr, ref_cu);
19961 else if (attr->form == DW_FORM_ref_sig8)
19962 die = follow_die_sig (src_die, attr, ref_cu);
19963 else
19964 {
19965 dump_die_for_error (src_die);
19966 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19967 objfile_name ((*ref_cu)->objfile));
19968 }
19969
19970 return die;
19971 }
19972
19973 /* Follow reference OFFSET.
19974 On entry *REF_CU is the CU of the source die referencing OFFSET.
19975 On exit *REF_CU is the CU of the result.
19976 Returns NULL if OFFSET is invalid. */
19977
19978 static struct die_info *
19979 follow_die_offset (sect_offset offset, int offset_in_dwz,
19980 struct dwarf2_cu **ref_cu)
19981 {
19982 struct die_info temp_die;
19983 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19984
19985 gdb_assert (cu->per_cu != NULL);
19986
19987 target_cu = cu;
19988
19989 if (cu->per_cu->is_debug_types)
19990 {
19991 /* .debug_types CUs cannot reference anything outside their CU.
19992 If they need to, they have to reference a signatured type via
19993 DW_FORM_ref_sig8. */
19994 if (! offset_in_cu_p (&cu->header, offset))
19995 return NULL;
19996 }
19997 else if (offset_in_dwz != cu->per_cu->is_dwz
19998 || ! offset_in_cu_p (&cu->header, offset))
19999 {
20000 struct dwarf2_per_cu_data *per_cu;
20001
20002 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20003 cu->objfile);
20004
20005 /* If necessary, add it to the queue and load its DIEs. */
20006 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20007 load_full_comp_unit (per_cu, cu->language);
20008
20009 target_cu = per_cu->cu;
20010 }
20011 else if (cu->dies == NULL)
20012 {
20013 /* We're loading full DIEs during partial symbol reading. */
20014 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20015 load_full_comp_unit (cu->per_cu, language_minimal);
20016 }
20017
20018 *ref_cu = target_cu;
20019 temp_die.offset = offset;
20020 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20021 &temp_die, offset.sect_off);
20022 }
20023
20024 /* Follow reference attribute ATTR of SRC_DIE.
20025 On entry *REF_CU is the CU of SRC_DIE.
20026 On exit *REF_CU is the CU of the result. */
20027
20028 static struct die_info *
20029 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20030 struct dwarf2_cu **ref_cu)
20031 {
20032 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20033 struct dwarf2_cu *cu = *ref_cu;
20034 struct die_info *die;
20035
20036 die = follow_die_offset (offset,
20037 (attr->form == DW_FORM_GNU_ref_alt
20038 || cu->per_cu->is_dwz),
20039 ref_cu);
20040 if (!die)
20041 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20042 "at 0x%x [in module %s]"),
20043 offset.sect_off, src_die->offset.sect_off,
20044 objfile_name (cu->objfile));
20045
20046 return die;
20047 }
20048
20049 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20050 Returned value is intended for DW_OP_call*. Returned
20051 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20052
20053 struct dwarf2_locexpr_baton
20054 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20055 struct dwarf2_per_cu_data *per_cu,
20056 CORE_ADDR (*get_frame_pc) (void *baton),
20057 void *baton)
20058 {
20059 struct dwarf2_cu *cu;
20060 struct die_info *die;
20061 struct attribute *attr;
20062 struct dwarf2_locexpr_baton retval;
20063
20064 dw2_setup (per_cu->objfile);
20065
20066 if (per_cu->cu == NULL)
20067 load_cu (per_cu);
20068 cu = per_cu->cu;
20069 if (cu == NULL)
20070 {
20071 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20072 Instead just throw an error, not much else we can do. */
20073 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20074 offset.sect_off, objfile_name (per_cu->objfile));
20075 }
20076
20077 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20078 if (!die)
20079 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20080 offset.sect_off, objfile_name (per_cu->objfile));
20081
20082 attr = dwarf2_attr (die, DW_AT_location, cu);
20083 if (!attr)
20084 {
20085 /* DWARF: "If there is no such attribute, then there is no effect.".
20086 DATA is ignored if SIZE is 0. */
20087
20088 retval.data = NULL;
20089 retval.size = 0;
20090 }
20091 else if (attr_form_is_section_offset (attr))
20092 {
20093 struct dwarf2_loclist_baton loclist_baton;
20094 CORE_ADDR pc = (*get_frame_pc) (baton);
20095 size_t size;
20096
20097 fill_in_loclist_baton (cu, &loclist_baton, attr);
20098
20099 retval.data = dwarf2_find_location_expression (&loclist_baton,
20100 &size, pc);
20101 retval.size = size;
20102 }
20103 else
20104 {
20105 if (!attr_form_is_block (attr))
20106 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20107 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20108 offset.sect_off, objfile_name (per_cu->objfile));
20109
20110 retval.data = DW_BLOCK (attr)->data;
20111 retval.size = DW_BLOCK (attr)->size;
20112 }
20113 retval.per_cu = cu->per_cu;
20114
20115 age_cached_comp_units ();
20116
20117 return retval;
20118 }
20119
20120 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20121 offset. */
20122
20123 struct dwarf2_locexpr_baton
20124 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20125 struct dwarf2_per_cu_data *per_cu,
20126 CORE_ADDR (*get_frame_pc) (void *baton),
20127 void *baton)
20128 {
20129 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20130
20131 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20132 }
20133
20134 /* Write a constant of a given type as target-ordered bytes into
20135 OBSTACK. */
20136
20137 static const gdb_byte *
20138 write_constant_as_bytes (struct obstack *obstack,
20139 enum bfd_endian byte_order,
20140 struct type *type,
20141 ULONGEST value,
20142 LONGEST *len)
20143 {
20144 gdb_byte *result;
20145
20146 *len = TYPE_LENGTH (type);
20147 result = (gdb_byte *) obstack_alloc (obstack, *len);
20148 store_unsigned_integer (result, *len, byte_order, value);
20149
20150 return result;
20151 }
20152
20153 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20154 pointer to the constant bytes and set LEN to the length of the
20155 data. If memory is needed, allocate it on OBSTACK. If the DIE
20156 does not have a DW_AT_const_value, return NULL. */
20157
20158 const gdb_byte *
20159 dwarf2_fetch_constant_bytes (sect_offset offset,
20160 struct dwarf2_per_cu_data *per_cu,
20161 struct obstack *obstack,
20162 LONGEST *len)
20163 {
20164 struct dwarf2_cu *cu;
20165 struct die_info *die;
20166 struct attribute *attr;
20167 const gdb_byte *result = NULL;
20168 struct type *type;
20169 LONGEST value;
20170 enum bfd_endian byte_order;
20171
20172 dw2_setup (per_cu->objfile);
20173
20174 if (per_cu->cu == NULL)
20175 load_cu (per_cu);
20176 cu = per_cu->cu;
20177 if (cu == NULL)
20178 {
20179 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20180 Instead just throw an error, not much else we can do. */
20181 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20182 offset.sect_off, objfile_name (per_cu->objfile));
20183 }
20184
20185 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20186 if (!die)
20187 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20188 offset.sect_off, objfile_name (per_cu->objfile));
20189
20190
20191 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20192 if (attr == NULL)
20193 return NULL;
20194
20195 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20196 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20197
20198 switch (attr->form)
20199 {
20200 case DW_FORM_addr:
20201 case DW_FORM_GNU_addr_index:
20202 {
20203 gdb_byte *tem;
20204
20205 *len = cu->header.addr_size;
20206 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20207 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20208 result = tem;
20209 }
20210 break;
20211 case DW_FORM_string:
20212 case DW_FORM_strp:
20213 case DW_FORM_GNU_str_index:
20214 case DW_FORM_GNU_strp_alt:
20215 /* DW_STRING is already allocated on the objfile obstack, point
20216 directly to it. */
20217 result = (const gdb_byte *) DW_STRING (attr);
20218 *len = strlen (DW_STRING (attr));
20219 break;
20220 case DW_FORM_block1:
20221 case DW_FORM_block2:
20222 case DW_FORM_block4:
20223 case DW_FORM_block:
20224 case DW_FORM_exprloc:
20225 result = DW_BLOCK (attr)->data;
20226 *len = DW_BLOCK (attr)->size;
20227 break;
20228
20229 /* The DW_AT_const_value attributes are supposed to carry the
20230 symbol's value "represented as it would be on the target
20231 architecture." By the time we get here, it's already been
20232 converted to host endianness, so we just need to sign- or
20233 zero-extend it as appropriate. */
20234 case DW_FORM_data1:
20235 type = die_type (die, cu);
20236 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20237 if (result == NULL)
20238 result = write_constant_as_bytes (obstack, byte_order,
20239 type, value, len);
20240 break;
20241 case DW_FORM_data2:
20242 type = die_type (die, cu);
20243 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20244 if (result == NULL)
20245 result = write_constant_as_bytes (obstack, byte_order,
20246 type, value, len);
20247 break;
20248 case DW_FORM_data4:
20249 type = die_type (die, cu);
20250 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20251 if (result == NULL)
20252 result = write_constant_as_bytes (obstack, byte_order,
20253 type, value, len);
20254 break;
20255 case DW_FORM_data8:
20256 type = die_type (die, cu);
20257 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20258 if (result == NULL)
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, value, len);
20261 break;
20262
20263 case DW_FORM_sdata:
20264 type = die_type (die, cu);
20265 result = write_constant_as_bytes (obstack, byte_order,
20266 type, DW_SND (attr), len);
20267 break;
20268
20269 case DW_FORM_udata:
20270 type = die_type (die, cu);
20271 result = write_constant_as_bytes (obstack, byte_order,
20272 type, DW_UNSND (attr), len);
20273 break;
20274
20275 default:
20276 complaint (&symfile_complaints,
20277 _("unsupported const value attribute form: '%s'"),
20278 dwarf_form_name (attr->form));
20279 break;
20280 }
20281
20282 return result;
20283 }
20284
20285 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20286 PER_CU. */
20287
20288 struct type *
20289 dwarf2_get_die_type (cu_offset die_offset,
20290 struct dwarf2_per_cu_data *per_cu)
20291 {
20292 sect_offset die_offset_sect;
20293
20294 dw2_setup (per_cu->objfile);
20295
20296 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20297 return get_die_type_at_offset (die_offset_sect, per_cu);
20298 }
20299
20300 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20301 On entry *REF_CU is the CU of SRC_DIE.
20302 On exit *REF_CU is the CU of the result.
20303 Returns NULL if the referenced DIE isn't found. */
20304
20305 static struct die_info *
20306 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20307 struct dwarf2_cu **ref_cu)
20308 {
20309 struct die_info temp_die;
20310 struct dwarf2_cu *sig_cu;
20311 struct die_info *die;
20312
20313 /* While it might be nice to assert sig_type->type == NULL here,
20314 we can get here for DW_AT_imported_declaration where we need
20315 the DIE not the type. */
20316
20317 /* If necessary, add it to the queue and load its DIEs. */
20318
20319 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20320 read_signatured_type (sig_type);
20321
20322 sig_cu = sig_type->per_cu.cu;
20323 gdb_assert (sig_cu != NULL);
20324 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20325 temp_die.offset = sig_type->type_offset_in_section;
20326 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20327 temp_die.offset.sect_off);
20328 if (die)
20329 {
20330 /* For .gdb_index version 7 keep track of included TUs.
20331 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20332 if (dwarf2_per_objfile->index_table != NULL
20333 && dwarf2_per_objfile->index_table->version <= 7)
20334 {
20335 VEC_safe_push (dwarf2_per_cu_ptr,
20336 (*ref_cu)->per_cu->imported_symtabs,
20337 sig_cu->per_cu);
20338 }
20339
20340 *ref_cu = sig_cu;
20341 return die;
20342 }
20343
20344 return NULL;
20345 }
20346
20347 /* Follow signatured type referenced by ATTR in SRC_DIE.
20348 On entry *REF_CU is the CU of SRC_DIE.
20349 On exit *REF_CU is the CU of the result.
20350 The result is the DIE of the type.
20351 If the referenced type cannot be found an error is thrown. */
20352
20353 static struct die_info *
20354 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20355 struct dwarf2_cu **ref_cu)
20356 {
20357 ULONGEST signature = DW_SIGNATURE (attr);
20358 struct signatured_type *sig_type;
20359 struct die_info *die;
20360
20361 gdb_assert (attr->form == DW_FORM_ref_sig8);
20362
20363 sig_type = lookup_signatured_type (*ref_cu, signature);
20364 /* sig_type will be NULL if the signatured type is missing from
20365 the debug info. */
20366 if (sig_type == NULL)
20367 {
20368 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20369 " from DIE at 0x%x [in module %s]"),
20370 hex_string (signature), src_die->offset.sect_off,
20371 objfile_name ((*ref_cu)->objfile));
20372 }
20373
20374 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20375 if (die == NULL)
20376 {
20377 dump_die_for_error (src_die);
20378 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20379 " from DIE at 0x%x [in module %s]"),
20380 hex_string (signature), src_die->offset.sect_off,
20381 objfile_name ((*ref_cu)->objfile));
20382 }
20383
20384 return die;
20385 }
20386
20387 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20388 reading in and processing the type unit if necessary. */
20389
20390 static struct type *
20391 get_signatured_type (struct die_info *die, ULONGEST signature,
20392 struct dwarf2_cu *cu)
20393 {
20394 struct signatured_type *sig_type;
20395 struct dwarf2_cu *type_cu;
20396 struct die_info *type_die;
20397 struct type *type;
20398
20399 sig_type = lookup_signatured_type (cu, signature);
20400 /* sig_type will be NULL if the signatured type is missing from
20401 the debug info. */
20402 if (sig_type == NULL)
20403 {
20404 complaint (&symfile_complaints,
20405 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20406 " from DIE at 0x%x [in module %s]"),
20407 hex_string (signature), die->offset.sect_off,
20408 objfile_name (dwarf2_per_objfile->objfile));
20409 return build_error_marker_type (cu, die);
20410 }
20411
20412 /* If we already know the type we're done. */
20413 if (sig_type->type != NULL)
20414 return sig_type->type;
20415
20416 type_cu = cu;
20417 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20418 if (type_die != NULL)
20419 {
20420 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20421 is created. This is important, for example, because for c++ classes
20422 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20423 type = read_type_die (type_die, type_cu);
20424 if (type == NULL)
20425 {
20426 complaint (&symfile_complaints,
20427 _("Dwarf Error: Cannot build signatured type %s"
20428 " referenced from DIE at 0x%x [in module %s]"),
20429 hex_string (signature), die->offset.sect_off,
20430 objfile_name (dwarf2_per_objfile->objfile));
20431 type = build_error_marker_type (cu, die);
20432 }
20433 }
20434 else
20435 {
20436 complaint (&symfile_complaints,
20437 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20438 " from DIE at 0x%x [in module %s]"),
20439 hex_string (signature), die->offset.sect_off,
20440 objfile_name (dwarf2_per_objfile->objfile));
20441 type = build_error_marker_type (cu, die);
20442 }
20443 sig_type->type = type;
20444
20445 return type;
20446 }
20447
20448 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20449 reading in and processing the type unit if necessary. */
20450
20451 static struct type *
20452 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20453 struct dwarf2_cu *cu) /* ARI: editCase function */
20454 {
20455 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20456 if (attr_form_is_ref (attr))
20457 {
20458 struct dwarf2_cu *type_cu = cu;
20459 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20460
20461 return read_type_die (type_die, type_cu);
20462 }
20463 else if (attr->form == DW_FORM_ref_sig8)
20464 {
20465 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20466 }
20467 else
20468 {
20469 complaint (&symfile_complaints,
20470 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20471 " at 0x%x [in module %s]"),
20472 dwarf_form_name (attr->form), die->offset.sect_off,
20473 objfile_name (dwarf2_per_objfile->objfile));
20474 return build_error_marker_type (cu, die);
20475 }
20476 }
20477
20478 /* Load the DIEs associated with type unit PER_CU into memory. */
20479
20480 static void
20481 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20482 {
20483 struct signatured_type *sig_type;
20484
20485 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20486 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20487
20488 /* We have the per_cu, but we need the signatured_type.
20489 Fortunately this is an easy translation. */
20490 gdb_assert (per_cu->is_debug_types);
20491 sig_type = (struct signatured_type *) per_cu;
20492
20493 gdb_assert (per_cu->cu == NULL);
20494
20495 read_signatured_type (sig_type);
20496
20497 gdb_assert (per_cu->cu != NULL);
20498 }
20499
20500 /* die_reader_func for read_signatured_type.
20501 This is identical to load_full_comp_unit_reader,
20502 but is kept separate for now. */
20503
20504 static void
20505 read_signatured_type_reader (const struct die_reader_specs *reader,
20506 const gdb_byte *info_ptr,
20507 struct die_info *comp_unit_die,
20508 int has_children,
20509 void *data)
20510 {
20511 struct dwarf2_cu *cu = reader->cu;
20512
20513 gdb_assert (cu->die_hash == NULL);
20514 cu->die_hash =
20515 htab_create_alloc_ex (cu->header.length / 12,
20516 die_hash,
20517 die_eq,
20518 NULL,
20519 &cu->comp_unit_obstack,
20520 hashtab_obstack_allocate,
20521 dummy_obstack_deallocate);
20522
20523 if (has_children)
20524 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20525 &info_ptr, comp_unit_die);
20526 cu->dies = comp_unit_die;
20527 /* comp_unit_die is not stored in die_hash, no need. */
20528
20529 /* We try not to read any attributes in this function, because not
20530 all CUs needed for references have been loaded yet, and symbol
20531 table processing isn't initialized. But we have to set the CU language,
20532 or we won't be able to build types correctly.
20533 Similarly, if we do not read the producer, we can not apply
20534 producer-specific interpretation. */
20535 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20536 }
20537
20538 /* Read in a signatured type and build its CU and DIEs.
20539 If the type is a stub for the real type in a DWO file,
20540 read in the real type from the DWO file as well. */
20541
20542 static void
20543 read_signatured_type (struct signatured_type *sig_type)
20544 {
20545 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20546
20547 gdb_assert (per_cu->is_debug_types);
20548 gdb_assert (per_cu->cu == NULL);
20549
20550 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20551 read_signatured_type_reader, NULL);
20552 sig_type->per_cu.tu_read = 1;
20553 }
20554
20555 /* Decode simple location descriptions.
20556 Given a pointer to a dwarf block that defines a location, compute
20557 the location and return the value.
20558
20559 NOTE drow/2003-11-18: This function is called in two situations
20560 now: for the address of static or global variables (partial symbols
20561 only) and for offsets into structures which are expected to be
20562 (more or less) constant. The partial symbol case should go away,
20563 and only the constant case should remain. That will let this
20564 function complain more accurately. A few special modes are allowed
20565 without complaint for global variables (for instance, global
20566 register values and thread-local values).
20567
20568 A location description containing no operations indicates that the
20569 object is optimized out. The return value is 0 for that case.
20570 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20571 callers will only want a very basic result and this can become a
20572 complaint.
20573
20574 Note that stack[0] is unused except as a default error return. */
20575
20576 static CORE_ADDR
20577 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20578 {
20579 struct objfile *objfile = cu->objfile;
20580 size_t i;
20581 size_t size = blk->size;
20582 const gdb_byte *data = blk->data;
20583 CORE_ADDR stack[64];
20584 int stacki;
20585 unsigned int bytes_read, unsnd;
20586 gdb_byte op;
20587
20588 i = 0;
20589 stacki = 0;
20590 stack[stacki] = 0;
20591 stack[++stacki] = 0;
20592
20593 while (i < size)
20594 {
20595 op = data[i++];
20596 switch (op)
20597 {
20598 case DW_OP_lit0:
20599 case DW_OP_lit1:
20600 case DW_OP_lit2:
20601 case DW_OP_lit3:
20602 case DW_OP_lit4:
20603 case DW_OP_lit5:
20604 case DW_OP_lit6:
20605 case DW_OP_lit7:
20606 case DW_OP_lit8:
20607 case DW_OP_lit9:
20608 case DW_OP_lit10:
20609 case DW_OP_lit11:
20610 case DW_OP_lit12:
20611 case DW_OP_lit13:
20612 case DW_OP_lit14:
20613 case DW_OP_lit15:
20614 case DW_OP_lit16:
20615 case DW_OP_lit17:
20616 case DW_OP_lit18:
20617 case DW_OP_lit19:
20618 case DW_OP_lit20:
20619 case DW_OP_lit21:
20620 case DW_OP_lit22:
20621 case DW_OP_lit23:
20622 case DW_OP_lit24:
20623 case DW_OP_lit25:
20624 case DW_OP_lit26:
20625 case DW_OP_lit27:
20626 case DW_OP_lit28:
20627 case DW_OP_lit29:
20628 case DW_OP_lit30:
20629 case DW_OP_lit31:
20630 stack[++stacki] = op - DW_OP_lit0;
20631 break;
20632
20633 case DW_OP_reg0:
20634 case DW_OP_reg1:
20635 case DW_OP_reg2:
20636 case DW_OP_reg3:
20637 case DW_OP_reg4:
20638 case DW_OP_reg5:
20639 case DW_OP_reg6:
20640 case DW_OP_reg7:
20641 case DW_OP_reg8:
20642 case DW_OP_reg9:
20643 case DW_OP_reg10:
20644 case DW_OP_reg11:
20645 case DW_OP_reg12:
20646 case DW_OP_reg13:
20647 case DW_OP_reg14:
20648 case DW_OP_reg15:
20649 case DW_OP_reg16:
20650 case DW_OP_reg17:
20651 case DW_OP_reg18:
20652 case DW_OP_reg19:
20653 case DW_OP_reg20:
20654 case DW_OP_reg21:
20655 case DW_OP_reg22:
20656 case DW_OP_reg23:
20657 case DW_OP_reg24:
20658 case DW_OP_reg25:
20659 case DW_OP_reg26:
20660 case DW_OP_reg27:
20661 case DW_OP_reg28:
20662 case DW_OP_reg29:
20663 case DW_OP_reg30:
20664 case DW_OP_reg31:
20665 stack[++stacki] = op - DW_OP_reg0;
20666 if (i < size)
20667 dwarf2_complex_location_expr_complaint ();
20668 break;
20669
20670 case DW_OP_regx:
20671 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20672 i += bytes_read;
20673 stack[++stacki] = unsnd;
20674 if (i < size)
20675 dwarf2_complex_location_expr_complaint ();
20676 break;
20677
20678 case DW_OP_addr:
20679 stack[++stacki] = read_address (objfile->obfd, &data[i],
20680 cu, &bytes_read);
20681 i += bytes_read;
20682 break;
20683
20684 case DW_OP_const1u:
20685 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20686 i += 1;
20687 break;
20688
20689 case DW_OP_const1s:
20690 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20691 i += 1;
20692 break;
20693
20694 case DW_OP_const2u:
20695 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20696 i += 2;
20697 break;
20698
20699 case DW_OP_const2s:
20700 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20701 i += 2;
20702 break;
20703
20704 case DW_OP_const4u:
20705 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20706 i += 4;
20707 break;
20708
20709 case DW_OP_const4s:
20710 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20711 i += 4;
20712 break;
20713
20714 case DW_OP_const8u:
20715 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20716 i += 8;
20717 break;
20718
20719 case DW_OP_constu:
20720 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20721 &bytes_read);
20722 i += bytes_read;
20723 break;
20724
20725 case DW_OP_consts:
20726 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20727 i += bytes_read;
20728 break;
20729
20730 case DW_OP_dup:
20731 stack[stacki + 1] = stack[stacki];
20732 stacki++;
20733 break;
20734
20735 case DW_OP_plus:
20736 stack[stacki - 1] += stack[stacki];
20737 stacki--;
20738 break;
20739
20740 case DW_OP_plus_uconst:
20741 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20742 &bytes_read);
20743 i += bytes_read;
20744 break;
20745
20746 case DW_OP_minus:
20747 stack[stacki - 1] -= stack[stacki];
20748 stacki--;
20749 break;
20750
20751 case DW_OP_deref:
20752 /* If we're not the last op, then we definitely can't encode
20753 this using GDB's address_class enum. This is valid for partial
20754 global symbols, although the variable's address will be bogus
20755 in the psymtab. */
20756 if (i < size)
20757 dwarf2_complex_location_expr_complaint ();
20758 break;
20759
20760 case DW_OP_GNU_push_tls_address:
20761 case DW_OP_form_tls_address:
20762 /* The top of the stack has the offset from the beginning
20763 of the thread control block at which the variable is located. */
20764 /* Nothing should follow this operator, so the top of stack would
20765 be returned. */
20766 /* This is valid for partial global symbols, but the variable's
20767 address will be bogus in the psymtab. Make it always at least
20768 non-zero to not look as a variable garbage collected by linker
20769 which have DW_OP_addr 0. */
20770 if (i < size)
20771 dwarf2_complex_location_expr_complaint ();
20772 stack[stacki]++;
20773 break;
20774
20775 case DW_OP_GNU_uninit:
20776 break;
20777
20778 case DW_OP_GNU_addr_index:
20779 case DW_OP_GNU_const_index:
20780 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20781 &bytes_read);
20782 i += bytes_read;
20783 break;
20784
20785 default:
20786 {
20787 const char *name = get_DW_OP_name (op);
20788
20789 if (name)
20790 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20791 name);
20792 else
20793 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20794 op);
20795 }
20796
20797 return (stack[stacki]);
20798 }
20799
20800 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20801 outside of the allocated space. Also enforce minimum>0. */
20802 if (stacki >= ARRAY_SIZE (stack) - 1)
20803 {
20804 complaint (&symfile_complaints,
20805 _("location description stack overflow"));
20806 return 0;
20807 }
20808
20809 if (stacki <= 0)
20810 {
20811 complaint (&symfile_complaints,
20812 _("location description stack underflow"));
20813 return 0;
20814 }
20815 }
20816 return (stack[stacki]);
20817 }
20818
20819 /* memory allocation interface */
20820
20821 static struct dwarf_block *
20822 dwarf_alloc_block (struct dwarf2_cu *cu)
20823 {
20824 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20825 }
20826
20827 static struct die_info *
20828 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20829 {
20830 struct die_info *die;
20831 size_t size = sizeof (struct die_info);
20832
20833 if (num_attrs > 1)
20834 size += (num_attrs - 1) * sizeof (struct attribute);
20835
20836 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20837 memset (die, 0, sizeof (struct die_info));
20838 return (die);
20839 }
20840
20841 \f
20842 /* Macro support. */
20843
20844 /* Return file name relative to the compilation directory of file number I in
20845 *LH's file name table. The result is allocated using xmalloc; the caller is
20846 responsible for freeing it. */
20847
20848 static char *
20849 file_file_name (int file, struct line_header *lh)
20850 {
20851 /* Is the file number a valid index into the line header's file name
20852 table? Remember that file numbers start with one, not zero. */
20853 if (1 <= file && file <= lh->num_file_names)
20854 {
20855 struct file_entry *fe = &lh->file_names[file - 1];
20856
20857 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20858 || lh->include_dirs == NULL)
20859 return xstrdup (fe->name);
20860 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20861 fe->name, (char *) NULL);
20862 }
20863 else
20864 {
20865 /* The compiler produced a bogus file number. We can at least
20866 record the macro definitions made in the file, even if we
20867 won't be able to find the file by name. */
20868 char fake_name[80];
20869
20870 xsnprintf (fake_name, sizeof (fake_name),
20871 "<bad macro file number %d>", file);
20872
20873 complaint (&symfile_complaints,
20874 _("bad file number in macro information (%d)"),
20875 file);
20876
20877 return xstrdup (fake_name);
20878 }
20879 }
20880
20881 /* Return the full name of file number I in *LH's file name table.
20882 Use COMP_DIR as the name of the current directory of the
20883 compilation. The result is allocated using xmalloc; the caller is
20884 responsible for freeing it. */
20885 static char *
20886 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20887 {
20888 /* Is the file number a valid index into the line header's file name
20889 table? Remember that file numbers start with one, not zero. */
20890 if (1 <= file && file <= lh->num_file_names)
20891 {
20892 char *relative = file_file_name (file, lh);
20893
20894 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20895 return relative;
20896 return reconcat (relative, comp_dir, SLASH_STRING,
20897 relative, (char *) NULL);
20898 }
20899 else
20900 return file_file_name (file, lh);
20901 }
20902
20903
20904 static struct macro_source_file *
20905 macro_start_file (int file, int line,
20906 struct macro_source_file *current_file,
20907 struct line_header *lh)
20908 {
20909 /* File name relative to the compilation directory of this source file. */
20910 char *file_name = file_file_name (file, lh);
20911
20912 if (! current_file)
20913 {
20914 /* Note: We don't create a macro table for this compilation unit
20915 at all until we actually get a filename. */
20916 struct macro_table *macro_table = get_macro_table ();
20917
20918 /* If we have no current file, then this must be the start_file
20919 directive for the compilation unit's main source file. */
20920 current_file = macro_set_main (macro_table, file_name);
20921 macro_define_special (macro_table);
20922 }
20923 else
20924 current_file = macro_include (current_file, line, file_name);
20925
20926 xfree (file_name);
20927
20928 return current_file;
20929 }
20930
20931
20932 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20933 followed by a null byte. */
20934 static char *
20935 copy_string (const char *buf, int len)
20936 {
20937 char *s = (char *) xmalloc (len + 1);
20938
20939 memcpy (s, buf, len);
20940 s[len] = '\0';
20941 return s;
20942 }
20943
20944
20945 static const char *
20946 consume_improper_spaces (const char *p, const char *body)
20947 {
20948 if (*p == ' ')
20949 {
20950 complaint (&symfile_complaints,
20951 _("macro definition contains spaces "
20952 "in formal argument list:\n`%s'"),
20953 body);
20954
20955 while (*p == ' ')
20956 p++;
20957 }
20958
20959 return p;
20960 }
20961
20962
20963 static void
20964 parse_macro_definition (struct macro_source_file *file, int line,
20965 const char *body)
20966 {
20967 const char *p;
20968
20969 /* The body string takes one of two forms. For object-like macro
20970 definitions, it should be:
20971
20972 <macro name> " " <definition>
20973
20974 For function-like macro definitions, it should be:
20975
20976 <macro name> "() " <definition>
20977 or
20978 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20979
20980 Spaces may appear only where explicitly indicated, and in the
20981 <definition>.
20982
20983 The Dwarf 2 spec says that an object-like macro's name is always
20984 followed by a space, but versions of GCC around March 2002 omit
20985 the space when the macro's definition is the empty string.
20986
20987 The Dwarf 2 spec says that there should be no spaces between the
20988 formal arguments in a function-like macro's formal argument list,
20989 but versions of GCC around March 2002 include spaces after the
20990 commas. */
20991
20992
20993 /* Find the extent of the macro name. The macro name is terminated
20994 by either a space or null character (for an object-like macro) or
20995 an opening paren (for a function-like macro). */
20996 for (p = body; *p; p++)
20997 if (*p == ' ' || *p == '(')
20998 break;
20999
21000 if (*p == ' ' || *p == '\0')
21001 {
21002 /* It's an object-like macro. */
21003 int name_len = p - body;
21004 char *name = copy_string (body, name_len);
21005 const char *replacement;
21006
21007 if (*p == ' ')
21008 replacement = body + name_len + 1;
21009 else
21010 {
21011 dwarf2_macro_malformed_definition_complaint (body);
21012 replacement = body + name_len;
21013 }
21014
21015 macro_define_object (file, line, name, replacement);
21016
21017 xfree (name);
21018 }
21019 else if (*p == '(')
21020 {
21021 /* It's a function-like macro. */
21022 char *name = copy_string (body, p - body);
21023 int argc = 0;
21024 int argv_size = 1;
21025 char **argv = XNEWVEC (char *, argv_size);
21026
21027 p++;
21028
21029 p = consume_improper_spaces (p, body);
21030
21031 /* Parse the formal argument list. */
21032 while (*p && *p != ')')
21033 {
21034 /* Find the extent of the current argument name. */
21035 const char *arg_start = p;
21036
21037 while (*p && *p != ',' && *p != ')' && *p != ' ')
21038 p++;
21039
21040 if (! *p || p == arg_start)
21041 dwarf2_macro_malformed_definition_complaint (body);
21042 else
21043 {
21044 /* Make sure argv has room for the new argument. */
21045 if (argc >= argv_size)
21046 {
21047 argv_size *= 2;
21048 argv = XRESIZEVEC (char *, argv, argv_size);
21049 }
21050
21051 argv[argc++] = copy_string (arg_start, p - arg_start);
21052 }
21053
21054 p = consume_improper_spaces (p, body);
21055
21056 /* Consume the comma, if present. */
21057 if (*p == ',')
21058 {
21059 p++;
21060
21061 p = consume_improper_spaces (p, body);
21062 }
21063 }
21064
21065 if (*p == ')')
21066 {
21067 p++;
21068
21069 if (*p == ' ')
21070 /* Perfectly formed definition, no complaints. */
21071 macro_define_function (file, line, name,
21072 argc, (const char **) argv,
21073 p + 1);
21074 else if (*p == '\0')
21075 {
21076 /* Complain, but do define it. */
21077 dwarf2_macro_malformed_definition_complaint (body);
21078 macro_define_function (file, line, name,
21079 argc, (const char **) argv,
21080 p);
21081 }
21082 else
21083 /* Just complain. */
21084 dwarf2_macro_malformed_definition_complaint (body);
21085 }
21086 else
21087 /* Just complain. */
21088 dwarf2_macro_malformed_definition_complaint (body);
21089
21090 xfree (name);
21091 {
21092 int i;
21093
21094 for (i = 0; i < argc; i++)
21095 xfree (argv[i]);
21096 }
21097 xfree (argv);
21098 }
21099 else
21100 dwarf2_macro_malformed_definition_complaint (body);
21101 }
21102
21103 /* Skip some bytes from BYTES according to the form given in FORM.
21104 Returns the new pointer. */
21105
21106 static const gdb_byte *
21107 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21108 enum dwarf_form form,
21109 unsigned int offset_size,
21110 struct dwarf2_section_info *section)
21111 {
21112 unsigned int bytes_read;
21113
21114 switch (form)
21115 {
21116 case DW_FORM_data1:
21117 case DW_FORM_flag:
21118 ++bytes;
21119 break;
21120
21121 case DW_FORM_data2:
21122 bytes += 2;
21123 break;
21124
21125 case DW_FORM_data4:
21126 bytes += 4;
21127 break;
21128
21129 case DW_FORM_data8:
21130 bytes += 8;
21131 break;
21132
21133 case DW_FORM_string:
21134 read_direct_string (abfd, bytes, &bytes_read);
21135 bytes += bytes_read;
21136 break;
21137
21138 case DW_FORM_sec_offset:
21139 case DW_FORM_strp:
21140 case DW_FORM_GNU_strp_alt:
21141 bytes += offset_size;
21142 break;
21143
21144 case DW_FORM_block:
21145 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21146 bytes += bytes_read;
21147 break;
21148
21149 case DW_FORM_block1:
21150 bytes += 1 + read_1_byte (abfd, bytes);
21151 break;
21152 case DW_FORM_block2:
21153 bytes += 2 + read_2_bytes (abfd, bytes);
21154 break;
21155 case DW_FORM_block4:
21156 bytes += 4 + read_4_bytes (abfd, bytes);
21157 break;
21158
21159 case DW_FORM_sdata:
21160 case DW_FORM_udata:
21161 case DW_FORM_GNU_addr_index:
21162 case DW_FORM_GNU_str_index:
21163 bytes = gdb_skip_leb128 (bytes, buffer_end);
21164 if (bytes == NULL)
21165 {
21166 dwarf2_section_buffer_overflow_complaint (section);
21167 return NULL;
21168 }
21169 break;
21170
21171 default:
21172 {
21173 complain:
21174 complaint (&symfile_complaints,
21175 _("invalid form 0x%x in `%s'"),
21176 form, get_section_name (section));
21177 return NULL;
21178 }
21179 }
21180
21181 return bytes;
21182 }
21183
21184 /* A helper for dwarf_decode_macros that handles skipping an unknown
21185 opcode. Returns an updated pointer to the macro data buffer; or,
21186 on error, issues a complaint and returns NULL. */
21187
21188 static const gdb_byte *
21189 skip_unknown_opcode (unsigned int opcode,
21190 const gdb_byte **opcode_definitions,
21191 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21192 bfd *abfd,
21193 unsigned int offset_size,
21194 struct dwarf2_section_info *section)
21195 {
21196 unsigned int bytes_read, i;
21197 unsigned long arg;
21198 const gdb_byte *defn;
21199
21200 if (opcode_definitions[opcode] == NULL)
21201 {
21202 complaint (&symfile_complaints,
21203 _("unrecognized DW_MACFINO opcode 0x%x"),
21204 opcode);
21205 return NULL;
21206 }
21207
21208 defn = opcode_definitions[opcode];
21209 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21210 defn += bytes_read;
21211
21212 for (i = 0; i < arg; ++i)
21213 {
21214 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21215 (enum dwarf_form) defn[i], offset_size,
21216 section);
21217 if (mac_ptr == NULL)
21218 {
21219 /* skip_form_bytes already issued the complaint. */
21220 return NULL;
21221 }
21222 }
21223
21224 return mac_ptr;
21225 }
21226
21227 /* A helper function which parses the header of a macro section.
21228 If the macro section is the extended (for now called "GNU") type,
21229 then this updates *OFFSET_SIZE. Returns a pointer to just after
21230 the header, or issues a complaint and returns NULL on error. */
21231
21232 static const gdb_byte *
21233 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21234 bfd *abfd,
21235 const gdb_byte *mac_ptr,
21236 unsigned int *offset_size,
21237 int section_is_gnu)
21238 {
21239 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21240
21241 if (section_is_gnu)
21242 {
21243 unsigned int version, flags;
21244
21245 version = read_2_bytes (abfd, mac_ptr);
21246 if (version != 4)
21247 {
21248 complaint (&symfile_complaints,
21249 _("unrecognized version `%d' in .debug_macro section"),
21250 version);
21251 return NULL;
21252 }
21253 mac_ptr += 2;
21254
21255 flags = read_1_byte (abfd, mac_ptr);
21256 ++mac_ptr;
21257 *offset_size = (flags & 1) ? 8 : 4;
21258
21259 if ((flags & 2) != 0)
21260 /* We don't need the line table offset. */
21261 mac_ptr += *offset_size;
21262
21263 /* Vendor opcode descriptions. */
21264 if ((flags & 4) != 0)
21265 {
21266 unsigned int i, count;
21267
21268 count = read_1_byte (abfd, mac_ptr);
21269 ++mac_ptr;
21270 for (i = 0; i < count; ++i)
21271 {
21272 unsigned int opcode, bytes_read;
21273 unsigned long arg;
21274
21275 opcode = read_1_byte (abfd, mac_ptr);
21276 ++mac_ptr;
21277 opcode_definitions[opcode] = mac_ptr;
21278 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21279 mac_ptr += bytes_read;
21280 mac_ptr += arg;
21281 }
21282 }
21283 }
21284
21285 return mac_ptr;
21286 }
21287
21288 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21289 including DW_MACRO_GNU_transparent_include. */
21290
21291 static void
21292 dwarf_decode_macro_bytes (bfd *abfd,
21293 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21294 struct macro_source_file *current_file,
21295 struct line_header *lh,
21296 struct dwarf2_section_info *section,
21297 int section_is_gnu, int section_is_dwz,
21298 unsigned int offset_size,
21299 htab_t include_hash)
21300 {
21301 struct objfile *objfile = dwarf2_per_objfile->objfile;
21302 enum dwarf_macro_record_type macinfo_type;
21303 int at_commandline;
21304 const gdb_byte *opcode_definitions[256];
21305
21306 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21307 &offset_size, section_is_gnu);
21308 if (mac_ptr == NULL)
21309 {
21310 /* We already issued a complaint. */
21311 return;
21312 }
21313
21314 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21315 GDB is still reading the definitions from command line. First
21316 DW_MACINFO_start_file will need to be ignored as it was already executed
21317 to create CURRENT_FILE for the main source holding also the command line
21318 definitions. On first met DW_MACINFO_start_file this flag is reset to
21319 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21320
21321 at_commandline = 1;
21322
21323 do
21324 {
21325 /* Do we at least have room for a macinfo type byte? */
21326 if (mac_ptr >= mac_end)
21327 {
21328 dwarf2_section_buffer_overflow_complaint (section);
21329 break;
21330 }
21331
21332 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21333 mac_ptr++;
21334
21335 /* Note that we rely on the fact that the corresponding GNU and
21336 DWARF constants are the same. */
21337 switch (macinfo_type)
21338 {
21339 /* A zero macinfo type indicates the end of the macro
21340 information. */
21341 case 0:
21342 break;
21343
21344 case DW_MACRO_GNU_define:
21345 case DW_MACRO_GNU_undef:
21346 case DW_MACRO_GNU_define_indirect:
21347 case DW_MACRO_GNU_undef_indirect:
21348 case DW_MACRO_GNU_define_indirect_alt:
21349 case DW_MACRO_GNU_undef_indirect_alt:
21350 {
21351 unsigned int bytes_read;
21352 int line;
21353 const char *body;
21354 int is_define;
21355
21356 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21357 mac_ptr += bytes_read;
21358
21359 if (macinfo_type == DW_MACRO_GNU_define
21360 || macinfo_type == DW_MACRO_GNU_undef)
21361 {
21362 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21363 mac_ptr += bytes_read;
21364 }
21365 else
21366 {
21367 LONGEST str_offset;
21368
21369 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21370 mac_ptr += offset_size;
21371
21372 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21373 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21374 || section_is_dwz)
21375 {
21376 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21377
21378 body = read_indirect_string_from_dwz (dwz, str_offset);
21379 }
21380 else
21381 body = read_indirect_string_at_offset (abfd, str_offset);
21382 }
21383
21384 is_define = (macinfo_type == DW_MACRO_GNU_define
21385 || macinfo_type == DW_MACRO_GNU_define_indirect
21386 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21387 if (! current_file)
21388 {
21389 /* DWARF violation as no main source is present. */
21390 complaint (&symfile_complaints,
21391 _("debug info with no main source gives macro %s "
21392 "on line %d: %s"),
21393 is_define ? _("definition") : _("undefinition"),
21394 line, body);
21395 break;
21396 }
21397 if ((line == 0 && !at_commandline)
21398 || (line != 0 && at_commandline))
21399 complaint (&symfile_complaints,
21400 _("debug info gives %s macro %s with %s line %d: %s"),
21401 at_commandline ? _("command-line") : _("in-file"),
21402 is_define ? _("definition") : _("undefinition"),
21403 line == 0 ? _("zero") : _("non-zero"), line, body);
21404
21405 if (is_define)
21406 parse_macro_definition (current_file, line, body);
21407 else
21408 {
21409 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21410 || macinfo_type == DW_MACRO_GNU_undef_indirect
21411 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21412 macro_undef (current_file, line, body);
21413 }
21414 }
21415 break;
21416
21417 case DW_MACRO_GNU_start_file:
21418 {
21419 unsigned int bytes_read;
21420 int line, file;
21421
21422 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21423 mac_ptr += bytes_read;
21424 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21425 mac_ptr += bytes_read;
21426
21427 if ((line == 0 && !at_commandline)
21428 || (line != 0 && at_commandline))
21429 complaint (&symfile_complaints,
21430 _("debug info gives source %d included "
21431 "from %s at %s line %d"),
21432 file, at_commandline ? _("command-line") : _("file"),
21433 line == 0 ? _("zero") : _("non-zero"), line);
21434
21435 if (at_commandline)
21436 {
21437 /* This DW_MACRO_GNU_start_file was executed in the
21438 pass one. */
21439 at_commandline = 0;
21440 }
21441 else
21442 current_file = macro_start_file (file, line, current_file, lh);
21443 }
21444 break;
21445
21446 case DW_MACRO_GNU_end_file:
21447 if (! current_file)
21448 complaint (&symfile_complaints,
21449 _("macro debug info has an unmatched "
21450 "`close_file' directive"));
21451 else
21452 {
21453 current_file = current_file->included_by;
21454 if (! current_file)
21455 {
21456 enum dwarf_macro_record_type next_type;
21457
21458 /* GCC circa March 2002 doesn't produce the zero
21459 type byte marking the end of the compilation
21460 unit. Complain if it's not there, but exit no
21461 matter what. */
21462
21463 /* Do we at least have room for a macinfo type byte? */
21464 if (mac_ptr >= mac_end)
21465 {
21466 dwarf2_section_buffer_overflow_complaint (section);
21467 return;
21468 }
21469
21470 /* We don't increment mac_ptr here, so this is just
21471 a look-ahead. */
21472 next_type
21473 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21474 mac_ptr);
21475 if (next_type != 0)
21476 complaint (&symfile_complaints,
21477 _("no terminating 0-type entry for "
21478 "macros in `.debug_macinfo' section"));
21479
21480 return;
21481 }
21482 }
21483 break;
21484
21485 case DW_MACRO_GNU_transparent_include:
21486 case DW_MACRO_GNU_transparent_include_alt:
21487 {
21488 LONGEST offset;
21489 void **slot;
21490 bfd *include_bfd = abfd;
21491 struct dwarf2_section_info *include_section = section;
21492 const gdb_byte *include_mac_end = mac_end;
21493 int is_dwz = section_is_dwz;
21494 const gdb_byte *new_mac_ptr;
21495
21496 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21497 mac_ptr += offset_size;
21498
21499 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21500 {
21501 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21502
21503 dwarf2_read_section (objfile, &dwz->macro);
21504
21505 include_section = &dwz->macro;
21506 include_bfd = get_section_bfd_owner (include_section);
21507 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21508 is_dwz = 1;
21509 }
21510
21511 new_mac_ptr = include_section->buffer + offset;
21512 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21513
21514 if (*slot != NULL)
21515 {
21516 /* This has actually happened; see
21517 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21518 complaint (&symfile_complaints,
21519 _("recursive DW_MACRO_GNU_transparent_include in "
21520 ".debug_macro section"));
21521 }
21522 else
21523 {
21524 *slot = (void *) new_mac_ptr;
21525
21526 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21527 include_mac_end, current_file, lh,
21528 section, section_is_gnu, is_dwz,
21529 offset_size, include_hash);
21530
21531 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21532 }
21533 }
21534 break;
21535
21536 case DW_MACINFO_vendor_ext:
21537 if (!section_is_gnu)
21538 {
21539 unsigned int bytes_read;
21540
21541 /* This reads the constant, but since we don't recognize
21542 any vendor extensions, we ignore it. */
21543 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21544 mac_ptr += bytes_read;
21545 read_direct_string (abfd, mac_ptr, &bytes_read);
21546 mac_ptr += bytes_read;
21547
21548 /* We don't recognize any vendor extensions. */
21549 break;
21550 }
21551 /* FALLTHROUGH */
21552
21553 default:
21554 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21555 mac_ptr, mac_end, abfd, offset_size,
21556 section);
21557 if (mac_ptr == NULL)
21558 return;
21559 break;
21560 }
21561 } while (macinfo_type != 0);
21562 }
21563
21564 static void
21565 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21566 int section_is_gnu)
21567 {
21568 struct objfile *objfile = dwarf2_per_objfile->objfile;
21569 struct line_header *lh = cu->line_header;
21570 bfd *abfd;
21571 const gdb_byte *mac_ptr, *mac_end;
21572 struct macro_source_file *current_file = 0;
21573 enum dwarf_macro_record_type macinfo_type;
21574 unsigned int offset_size = cu->header.offset_size;
21575 const gdb_byte *opcode_definitions[256];
21576 struct cleanup *cleanup;
21577 htab_t include_hash;
21578 void **slot;
21579 struct dwarf2_section_info *section;
21580 const char *section_name;
21581
21582 if (cu->dwo_unit != NULL)
21583 {
21584 if (section_is_gnu)
21585 {
21586 section = &cu->dwo_unit->dwo_file->sections.macro;
21587 section_name = ".debug_macro.dwo";
21588 }
21589 else
21590 {
21591 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21592 section_name = ".debug_macinfo.dwo";
21593 }
21594 }
21595 else
21596 {
21597 if (section_is_gnu)
21598 {
21599 section = &dwarf2_per_objfile->macro;
21600 section_name = ".debug_macro";
21601 }
21602 else
21603 {
21604 section = &dwarf2_per_objfile->macinfo;
21605 section_name = ".debug_macinfo";
21606 }
21607 }
21608
21609 dwarf2_read_section (objfile, section);
21610 if (section->buffer == NULL)
21611 {
21612 complaint (&symfile_complaints, _("missing %s section"), section_name);
21613 return;
21614 }
21615 abfd = get_section_bfd_owner (section);
21616
21617 /* First pass: Find the name of the base filename.
21618 This filename is needed in order to process all macros whose definition
21619 (or undefinition) comes from the command line. These macros are defined
21620 before the first DW_MACINFO_start_file entry, and yet still need to be
21621 associated to the base file.
21622
21623 To determine the base file name, we scan the macro definitions until we
21624 reach the first DW_MACINFO_start_file entry. We then initialize
21625 CURRENT_FILE accordingly so that any macro definition found before the
21626 first DW_MACINFO_start_file can still be associated to the base file. */
21627
21628 mac_ptr = section->buffer + offset;
21629 mac_end = section->buffer + section->size;
21630
21631 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21632 &offset_size, section_is_gnu);
21633 if (mac_ptr == NULL)
21634 {
21635 /* We already issued a complaint. */
21636 return;
21637 }
21638
21639 do
21640 {
21641 /* Do we at least have room for a macinfo type byte? */
21642 if (mac_ptr >= mac_end)
21643 {
21644 /* Complaint is printed during the second pass as GDB will probably
21645 stop the first pass earlier upon finding
21646 DW_MACINFO_start_file. */
21647 break;
21648 }
21649
21650 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21651 mac_ptr++;
21652
21653 /* Note that we rely on the fact that the corresponding GNU and
21654 DWARF constants are the same. */
21655 switch (macinfo_type)
21656 {
21657 /* A zero macinfo type indicates the end of the macro
21658 information. */
21659 case 0:
21660 break;
21661
21662 case DW_MACRO_GNU_define:
21663 case DW_MACRO_GNU_undef:
21664 /* Only skip the data by MAC_PTR. */
21665 {
21666 unsigned int bytes_read;
21667
21668 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21669 mac_ptr += bytes_read;
21670 read_direct_string (abfd, mac_ptr, &bytes_read);
21671 mac_ptr += bytes_read;
21672 }
21673 break;
21674
21675 case DW_MACRO_GNU_start_file:
21676 {
21677 unsigned int bytes_read;
21678 int line, file;
21679
21680 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21681 mac_ptr += bytes_read;
21682 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21683 mac_ptr += bytes_read;
21684
21685 current_file = macro_start_file (file, line, current_file, lh);
21686 }
21687 break;
21688
21689 case DW_MACRO_GNU_end_file:
21690 /* No data to skip by MAC_PTR. */
21691 break;
21692
21693 case DW_MACRO_GNU_define_indirect:
21694 case DW_MACRO_GNU_undef_indirect:
21695 case DW_MACRO_GNU_define_indirect_alt:
21696 case DW_MACRO_GNU_undef_indirect_alt:
21697 {
21698 unsigned int bytes_read;
21699
21700 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21701 mac_ptr += bytes_read;
21702 mac_ptr += offset_size;
21703 }
21704 break;
21705
21706 case DW_MACRO_GNU_transparent_include:
21707 case DW_MACRO_GNU_transparent_include_alt:
21708 /* Note that, according to the spec, a transparent include
21709 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21710 skip this opcode. */
21711 mac_ptr += offset_size;
21712 break;
21713
21714 case DW_MACINFO_vendor_ext:
21715 /* Only skip the data by MAC_PTR. */
21716 if (!section_is_gnu)
21717 {
21718 unsigned int bytes_read;
21719
21720 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21721 mac_ptr += bytes_read;
21722 read_direct_string (abfd, mac_ptr, &bytes_read);
21723 mac_ptr += bytes_read;
21724 }
21725 /* FALLTHROUGH */
21726
21727 default:
21728 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21729 mac_ptr, mac_end, abfd, offset_size,
21730 section);
21731 if (mac_ptr == NULL)
21732 return;
21733 break;
21734 }
21735 } while (macinfo_type != 0 && current_file == NULL);
21736
21737 /* Second pass: Process all entries.
21738
21739 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21740 command-line macro definitions/undefinitions. This flag is unset when we
21741 reach the first DW_MACINFO_start_file entry. */
21742
21743 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21744 NULL, xcalloc, xfree);
21745 cleanup = make_cleanup_htab_delete (include_hash);
21746 mac_ptr = section->buffer + offset;
21747 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21748 *slot = (void *) mac_ptr;
21749 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21750 current_file, lh, section,
21751 section_is_gnu, 0, offset_size, include_hash);
21752 do_cleanups (cleanup);
21753 }
21754
21755 /* Check if the attribute's form is a DW_FORM_block*
21756 if so return true else false. */
21757
21758 static int
21759 attr_form_is_block (const struct attribute *attr)
21760 {
21761 return (attr == NULL ? 0 :
21762 attr->form == DW_FORM_block1
21763 || attr->form == DW_FORM_block2
21764 || attr->form == DW_FORM_block4
21765 || attr->form == DW_FORM_block
21766 || attr->form == DW_FORM_exprloc);
21767 }
21768
21769 /* Return non-zero if ATTR's value is a section offset --- classes
21770 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21771 You may use DW_UNSND (attr) to retrieve such offsets.
21772
21773 Section 7.5.4, "Attribute Encodings", explains that no attribute
21774 may have a value that belongs to more than one of these classes; it
21775 would be ambiguous if we did, because we use the same forms for all
21776 of them. */
21777
21778 static int
21779 attr_form_is_section_offset (const struct attribute *attr)
21780 {
21781 return (attr->form == DW_FORM_data4
21782 || attr->form == DW_FORM_data8
21783 || attr->form == DW_FORM_sec_offset);
21784 }
21785
21786 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21787 zero otherwise. When this function returns true, you can apply
21788 dwarf2_get_attr_constant_value to it.
21789
21790 However, note that for some attributes you must check
21791 attr_form_is_section_offset before using this test. DW_FORM_data4
21792 and DW_FORM_data8 are members of both the constant class, and of
21793 the classes that contain offsets into other debug sections
21794 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21795 that, if an attribute's can be either a constant or one of the
21796 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21797 taken as section offsets, not constants. */
21798
21799 static int
21800 attr_form_is_constant (const struct attribute *attr)
21801 {
21802 switch (attr->form)
21803 {
21804 case DW_FORM_sdata:
21805 case DW_FORM_udata:
21806 case DW_FORM_data1:
21807 case DW_FORM_data2:
21808 case DW_FORM_data4:
21809 case DW_FORM_data8:
21810 return 1;
21811 default:
21812 return 0;
21813 }
21814 }
21815
21816
21817 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21818 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21819
21820 static int
21821 attr_form_is_ref (const struct attribute *attr)
21822 {
21823 switch (attr->form)
21824 {
21825 case DW_FORM_ref_addr:
21826 case DW_FORM_ref1:
21827 case DW_FORM_ref2:
21828 case DW_FORM_ref4:
21829 case DW_FORM_ref8:
21830 case DW_FORM_ref_udata:
21831 case DW_FORM_GNU_ref_alt:
21832 return 1;
21833 default:
21834 return 0;
21835 }
21836 }
21837
21838 /* Return the .debug_loc section to use for CU.
21839 For DWO files use .debug_loc.dwo. */
21840
21841 static struct dwarf2_section_info *
21842 cu_debug_loc_section (struct dwarf2_cu *cu)
21843 {
21844 if (cu->dwo_unit)
21845 return &cu->dwo_unit->dwo_file->sections.loc;
21846 return &dwarf2_per_objfile->loc;
21847 }
21848
21849 /* A helper function that fills in a dwarf2_loclist_baton. */
21850
21851 static void
21852 fill_in_loclist_baton (struct dwarf2_cu *cu,
21853 struct dwarf2_loclist_baton *baton,
21854 const struct attribute *attr)
21855 {
21856 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21857
21858 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21859
21860 baton->per_cu = cu->per_cu;
21861 gdb_assert (baton->per_cu);
21862 /* We don't know how long the location list is, but make sure we
21863 don't run off the edge of the section. */
21864 baton->size = section->size - DW_UNSND (attr);
21865 baton->data = section->buffer + DW_UNSND (attr);
21866 baton->base_address = cu->base_address;
21867 baton->from_dwo = cu->dwo_unit != NULL;
21868 }
21869
21870 static void
21871 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21872 struct dwarf2_cu *cu, int is_block)
21873 {
21874 struct objfile *objfile = dwarf2_per_objfile->objfile;
21875 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21876
21877 if (attr_form_is_section_offset (attr)
21878 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21879 the section. If so, fall through to the complaint in the
21880 other branch. */
21881 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21882 {
21883 struct dwarf2_loclist_baton *baton;
21884
21885 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21886
21887 fill_in_loclist_baton (cu, baton, attr);
21888
21889 if (cu->base_known == 0)
21890 complaint (&symfile_complaints,
21891 _("Location list used without "
21892 "specifying the CU base address."));
21893
21894 SYMBOL_ACLASS_INDEX (sym) = (is_block
21895 ? dwarf2_loclist_block_index
21896 : dwarf2_loclist_index);
21897 SYMBOL_LOCATION_BATON (sym) = baton;
21898 }
21899 else
21900 {
21901 struct dwarf2_locexpr_baton *baton;
21902
21903 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21904 baton->per_cu = cu->per_cu;
21905 gdb_assert (baton->per_cu);
21906
21907 if (attr_form_is_block (attr))
21908 {
21909 /* Note that we're just copying the block's data pointer
21910 here, not the actual data. We're still pointing into the
21911 info_buffer for SYM's objfile; right now we never release
21912 that buffer, but when we do clean up properly this may
21913 need to change. */
21914 baton->size = DW_BLOCK (attr)->size;
21915 baton->data = DW_BLOCK (attr)->data;
21916 }
21917 else
21918 {
21919 dwarf2_invalid_attrib_class_complaint ("location description",
21920 SYMBOL_NATURAL_NAME (sym));
21921 baton->size = 0;
21922 }
21923
21924 SYMBOL_ACLASS_INDEX (sym) = (is_block
21925 ? dwarf2_locexpr_block_index
21926 : dwarf2_locexpr_index);
21927 SYMBOL_LOCATION_BATON (sym) = baton;
21928 }
21929 }
21930
21931 /* Return the OBJFILE associated with the compilation unit CU. If CU
21932 came from a separate debuginfo file, then the master objfile is
21933 returned. */
21934
21935 struct objfile *
21936 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21937 {
21938 struct objfile *objfile = per_cu->objfile;
21939
21940 /* Return the master objfile, so that we can report and look up the
21941 correct file containing this variable. */
21942 if (objfile->separate_debug_objfile_backlink)
21943 objfile = objfile->separate_debug_objfile_backlink;
21944
21945 return objfile;
21946 }
21947
21948 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21949 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21950 CU_HEADERP first. */
21951
21952 static const struct comp_unit_head *
21953 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21954 struct dwarf2_per_cu_data *per_cu)
21955 {
21956 const gdb_byte *info_ptr;
21957
21958 if (per_cu->cu)
21959 return &per_cu->cu->header;
21960
21961 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21962
21963 memset (cu_headerp, 0, sizeof (*cu_headerp));
21964 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21965
21966 return cu_headerp;
21967 }
21968
21969 /* Return the address size given in the compilation unit header for CU. */
21970
21971 int
21972 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21973 {
21974 struct comp_unit_head cu_header_local;
21975 const struct comp_unit_head *cu_headerp;
21976
21977 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21978
21979 return cu_headerp->addr_size;
21980 }
21981
21982 /* Return the offset size given in the compilation unit header for CU. */
21983
21984 int
21985 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21986 {
21987 struct comp_unit_head cu_header_local;
21988 const struct comp_unit_head *cu_headerp;
21989
21990 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21991
21992 return cu_headerp->offset_size;
21993 }
21994
21995 /* See its dwarf2loc.h declaration. */
21996
21997 int
21998 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21999 {
22000 struct comp_unit_head cu_header_local;
22001 const struct comp_unit_head *cu_headerp;
22002
22003 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22004
22005 if (cu_headerp->version == 2)
22006 return cu_headerp->addr_size;
22007 else
22008 return cu_headerp->offset_size;
22009 }
22010
22011 /* Return the text offset of the CU. The returned offset comes from
22012 this CU's objfile. If this objfile came from a separate debuginfo
22013 file, then the offset may be different from the corresponding
22014 offset in the parent objfile. */
22015
22016 CORE_ADDR
22017 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22018 {
22019 struct objfile *objfile = per_cu->objfile;
22020
22021 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22022 }
22023
22024 /* Locate the .debug_info compilation unit from CU's objfile which contains
22025 the DIE at OFFSET. Raises an error on failure. */
22026
22027 static struct dwarf2_per_cu_data *
22028 dwarf2_find_containing_comp_unit (sect_offset offset,
22029 unsigned int offset_in_dwz,
22030 struct objfile *objfile)
22031 {
22032 struct dwarf2_per_cu_data *this_cu;
22033 int low, high;
22034 const sect_offset *cu_off;
22035
22036 low = 0;
22037 high = dwarf2_per_objfile->n_comp_units - 1;
22038 while (high > low)
22039 {
22040 struct dwarf2_per_cu_data *mid_cu;
22041 int mid = low + (high - low) / 2;
22042
22043 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22044 cu_off = &mid_cu->offset;
22045 if (mid_cu->is_dwz > offset_in_dwz
22046 || (mid_cu->is_dwz == offset_in_dwz
22047 && cu_off->sect_off >= offset.sect_off))
22048 high = mid;
22049 else
22050 low = mid + 1;
22051 }
22052 gdb_assert (low == high);
22053 this_cu = dwarf2_per_objfile->all_comp_units[low];
22054 cu_off = &this_cu->offset;
22055 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22056 {
22057 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22058 error (_("Dwarf Error: could not find partial DIE containing "
22059 "offset 0x%lx [in module %s]"),
22060 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22061
22062 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22063 <= offset.sect_off);
22064 return dwarf2_per_objfile->all_comp_units[low-1];
22065 }
22066 else
22067 {
22068 this_cu = dwarf2_per_objfile->all_comp_units[low];
22069 if (low == dwarf2_per_objfile->n_comp_units - 1
22070 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22071 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22072 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22073 return this_cu;
22074 }
22075 }
22076
22077 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22078
22079 static void
22080 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22081 {
22082 memset (cu, 0, sizeof (*cu));
22083 per_cu->cu = cu;
22084 cu->per_cu = per_cu;
22085 cu->objfile = per_cu->objfile;
22086 obstack_init (&cu->comp_unit_obstack);
22087 }
22088
22089 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22090
22091 static void
22092 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22093 enum language pretend_language)
22094 {
22095 struct attribute *attr;
22096
22097 /* Set the language we're debugging. */
22098 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22099 if (attr)
22100 set_cu_language (DW_UNSND (attr), cu);
22101 else
22102 {
22103 cu->language = pretend_language;
22104 cu->language_defn = language_def (cu->language);
22105 }
22106
22107 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22108 }
22109
22110 /* Release one cached compilation unit, CU. We unlink it from the tree
22111 of compilation units, but we don't remove it from the read_in_chain;
22112 the caller is responsible for that.
22113 NOTE: DATA is a void * because this function is also used as a
22114 cleanup routine. */
22115
22116 static void
22117 free_heap_comp_unit (void *data)
22118 {
22119 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22120
22121 gdb_assert (cu->per_cu != NULL);
22122 cu->per_cu->cu = NULL;
22123 cu->per_cu = NULL;
22124
22125 obstack_free (&cu->comp_unit_obstack, NULL);
22126
22127 xfree (cu);
22128 }
22129
22130 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22131 when we're finished with it. We can't free the pointer itself, but be
22132 sure to unlink it from the cache. Also release any associated storage. */
22133
22134 static void
22135 free_stack_comp_unit (void *data)
22136 {
22137 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22138
22139 gdb_assert (cu->per_cu != NULL);
22140 cu->per_cu->cu = NULL;
22141 cu->per_cu = NULL;
22142
22143 obstack_free (&cu->comp_unit_obstack, NULL);
22144 cu->partial_dies = NULL;
22145 }
22146
22147 /* Free all cached compilation units. */
22148
22149 static void
22150 free_cached_comp_units (void *data)
22151 {
22152 struct dwarf2_per_cu_data *per_cu, **last_chain;
22153
22154 per_cu = dwarf2_per_objfile->read_in_chain;
22155 last_chain = &dwarf2_per_objfile->read_in_chain;
22156 while (per_cu != NULL)
22157 {
22158 struct dwarf2_per_cu_data *next_cu;
22159
22160 next_cu = per_cu->cu->read_in_chain;
22161
22162 free_heap_comp_unit (per_cu->cu);
22163 *last_chain = next_cu;
22164
22165 per_cu = next_cu;
22166 }
22167 }
22168
22169 /* Increase the age counter on each cached compilation unit, and free
22170 any that are too old. */
22171
22172 static void
22173 age_cached_comp_units (void)
22174 {
22175 struct dwarf2_per_cu_data *per_cu, **last_chain;
22176
22177 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22178 per_cu = dwarf2_per_objfile->read_in_chain;
22179 while (per_cu != NULL)
22180 {
22181 per_cu->cu->last_used ++;
22182 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22183 dwarf2_mark (per_cu->cu);
22184 per_cu = per_cu->cu->read_in_chain;
22185 }
22186
22187 per_cu = dwarf2_per_objfile->read_in_chain;
22188 last_chain = &dwarf2_per_objfile->read_in_chain;
22189 while (per_cu != NULL)
22190 {
22191 struct dwarf2_per_cu_data *next_cu;
22192
22193 next_cu = per_cu->cu->read_in_chain;
22194
22195 if (!per_cu->cu->mark)
22196 {
22197 free_heap_comp_unit (per_cu->cu);
22198 *last_chain = next_cu;
22199 }
22200 else
22201 last_chain = &per_cu->cu->read_in_chain;
22202
22203 per_cu = next_cu;
22204 }
22205 }
22206
22207 /* Remove a single compilation unit from the cache. */
22208
22209 static void
22210 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22211 {
22212 struct dwarf2_per_cu_data *per_cu, **last_chain;
22213
22214 per_cu = dwarf2_per_objfile->read_in_chain;
22215 last_chain = &dwarf2_per_objfile->read_in_chain;
22216 while (per_cu != NULL)
22217 {
22218 struct dwarf2_per_cu_data *next_cu;
22219
22220 next_cu = per_cu->cu->read_in_chain;
22221
22222 if (per_cu == target_per_cu)
22223 {
22224 free_heap_comp_unit (per_cu->cu);
22225 per_cu->cu = NULL;
22226 *last_chain = next_cu;
22227 break;
22228 }
22229 else
22230 last_chain = &per_cu->cu->read_in_chain;
22231
22232 per_cu = next_cu;
22233 }
22234 }
22235
22236 /* Release all extra memory associated with OBJFILE. */
22237
22238 void
22239 dwarf2_free_objfile (struct objfile *objfile)
22240 {
22241 dwarf2_per_objfile
22242 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22243 dwarf2_objfile_data_key);
22244
22245 if (dwarf2_per_objfile == NULL)
22246 return;
22247
22248 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22249 free_cached_comp_units (NULL);
22250
22251 if (dwarf2_per_objfile->quick_file_names_table)
22252 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22253
22254 if (dwarf2_per_objfile->line_header_hash)
22255 htab_delete (dwarf2_per_objfile->line_header_hash);
22256
22257 /* Everything else should be on the objfile obstack. */
22258 }
22259
22260 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22261 We store these in a hash table separate from the DIEs, and preserve them
22262 when the DIEs are flushed out of cache.
22263
22264 The CU "per_cu" pointer is needed because offset alone is not enough to
22265 uniquely identify the type. A file may have multiple .debug_types sections,
22266 or the type may come from a DWO file. Furthermore, while it's more logical
22267 to use per_cu->section+offset, with Fission the section with the data is in
22268 the DWO file but we don't know that section at the point we need it.
22269 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22270 because we can enter the lookup routine, get_die_type_at_offset, from
22271 outside this file, and thus won't necessarily have PER_CU->cu.
22272 Fortunately, PER_CU is stable for the life of the objfile. */
22273
22274 struct dwarf2_per_cu_offset_and_type
22275 {
22276 const struct dwarf2_per_cu_data *per_cu;
22277 sect_offset offset;
22278 struct type *type;
22279 };
22280
22281 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22282
22283 static hashval_t
22284 per_cu_offset_and_type_hash (const void *item)
22285 {
22286 const struct dwarf2_per_cu_offset_and_type *ofs
22287 = (const struct dwarf2_per_cu_offset_and_type *) item;
22288
22289 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22290 }
22291
22292 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22293
22294 static int
22295 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22296 {
22297 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22298 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22299 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22300 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22301
22302 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22303 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22304 }
22305
22306 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22307 table if necessary. For convenience, return TYPE.
22308
22309 The DIEs reading must have careful ordering to:
22310 * Not cause infite loops trying to read in DIEs as a prerequisite for
22311 reading current DIE.
22312 * Not trying to dereference contents of still incompletely read in types
22313 while reading in other DIEs.
22314 * Enable referencing still incompletely read in types just by a pointer to
22315 the type without accessing its fields.
22316
22317 Therefore caller should follow these rules:
22318 * Try to fetch any prerequisite types we may need to build this DIE type
22319 before building the type and calling set_die_type.
22320 * After building type call set_die_type for current DIE as soon as
22321 possible before fetching more types to complete the current type.
22322 * Make the type as complete as possible before fetching more types. */
22323
22324 static struct type *
22325 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22326 {
22327 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22328 struct objfile *objfile = cu->objfile;
22329 struct attribute *attr;
22330 struct dynamic_prop prop;
22331
22332 /* For Ada types, make sure that the gnat-specific data is always
22333 initialized (if not already set). There are a few types where
22334 we should not be doing so, because the type-specific area is
22335 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22336 where the type-specific area is used to store the floatformat).
22337 But this is not a problem, because the gnat-specific information
22338 is actually not needed for these types. */
22339 if (need_gnat_info (cu)
22340 && TYPE_CODE (type) != TYPE_CODE_FUNC
22341 && TYPE_CODE (type) != TYPE_CODE_FLT
22342 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22343 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22344 && TYPE_CODE (type) != TYPE_CODE_METHOD
22345 && !HAVE_GNAT_AUX_INFO (type))
22346 INIT_GNAT_SPECIFIC (type);
22347
22348 /* Read DW_AT_allocated and set in type. */
22349 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22350 if (attr_form_is_block (attr))
22351 {
22352 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22353 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22354 }
22355 else if (attr != NULL)
22356 {
22357 complaint (&symfile_complaints,
22358 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22359 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22360 die->offset.sect_off);
22361 }
22362
22363 /* Read DW_AT_associated and set in type. */
22364 attr = dwarf2_attr (die, DW_AT_associated, cu);
22365 if (attr_form_is_block (attr))
22366 {
22367 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22368 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22369 }
22370 else if (attr != NULL)
22371 {
22372 complaint (&symfile_complaints,
22373 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22374 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22375 die->offset.sect_off);
22376 }
22377
22378 /* Read DW_AT_data_location and set in type. */
22379 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22380 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22381 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22382
22383 if (dwarf2_per_objfile->die_type_hash == NULL)
22384 {
22385 dwarf2_per_objfile->die_type_hash =
22386 htab_create_alloc_ex (127,
22387 per_cu_offset_and_type_hash,
22388 per_cu_offset_and_type_eq,
22389 NULL,
22390 &objfile->objfile_obstack,
22391 hashtab_obstack_allocate,
22392 dummy_obstack_deallocate);
22393 }
22394
22395 ofs.per_cu = cu->per_cu;
22396 ofs.offset = die->offset;
22397 ofs.type = type;
22398 slot = (struct dwarf2_per_cu_offset_and_type **)
22399 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22400 if (*slot)
22401 complaint (&symfile_complaints,
22402 _("A problem internal to GDB: DIE 0x%x has type already set"),
22403 die->offset.sect_off);
22404 *slot = XOBNEW (&objfile->objfile_obstack,
22405 struct dwarf2_per_cu_offset_and_type);
22406 **slot = ofs;
22407 return type;
22408 }
22409
22410 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22411 or return NULL if the die does not have a saved type. */
22412
22413 static struct type *
22414 get_die_type_at_offset (sect_offset offset,
22415 struct dwarf2_per_cu_data *per_cu)
22416 {
22417 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22418
22419 if (dwarf2_per_objfile->die_type_hash == NULL)
22420 return NULL;
22421
22422 ofs.per_cu = per_cu;
22423 ofs.offset = offset;
22424 slot = ((struct dwarf2_per_cu_offset_and_type *)
22425 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22426 if (slot)
22427 return slot->type;
22428 else
22429 return NULL;
22430 }
22431
22432 /* Look up the type for DIE in CU in die_type_hash,
22433 or return NULL if DIE does not have a saved type. */
22434
22435 static struct type *
22436 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22437 {
22438 return get_die_type_at_offset (die->offset, cu->per_cu);
22439 }
22440
22441 /* Add a dependence relationship from CU to REF_PER_CU. */
22442
22443 static void
22444 dwarf2_add_dependence (struct dwarf2_cu *cu,
22445 struct dwarf2_per_cu_data *ref_per_cu)
22446 {
22447 void **slot;
22448
22449 if (cu->dependencies == NULL)
22450 cu->dependencies
22451 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22452 NULL, &cu->comp_unit_obstack,
22453 hashtab_obstack_allocate,
22454 dummy_obstack_deallocate);
22455
22456 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22457 if (*slot == NULL)
22458 *slot = ref_per_cu;
22459 }
22460
22461 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22462 Set the mark field in every compilation unit in the
22463 cache that we must keep because we are keeping CU. */
22464
22465 static int
22466 dwarf2_mark_helper (void **slot, void *data)
22467 {
22468 struct dwarf2_per_cu_data *per_cu;
22469
22470 per_cu = (struct dwarf2_per_cu_data *) *slot;
22471
22472 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22473 reading of the chain. As such dependencies remain valid it is not much
22474 useful to track and undo them during QUIT cleanups. */
22475 if (per_cu->cu == NULL)
22476 return 1;
22477
22478 if (per_cu->cu->mark)
22479 return 1;
22480 per_cu->cu->mark = 1;
22481
22482 if (per_cu->cu->dependencies != NULL)
22483 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22484
22485 return 1;
22486 }
22487
22488 /* Set the mark field in CU and in every other compilation unit in the
22489 cache that we must keep because we are keeping CU. */
22490
22491 static void
22492 dwarf2_mark (struct dwarf2_cu *cu)
22493 {
22494 if (cu->mark)
22495 return;
22496 cu->mark = 1;
22497 if (cu->dependencies != NULL)
22498 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22499 }
22500
22501 static void
22502 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22503 {
22504 while (per_cu)
22505 {
22506 per_cu->cu->mark = 0;
22507 per_cu = per_cu->cu->read_in_chain;
22508 }
22509 }
22510
22511 /* Trivial hash function for partial_die_info: the hash value of a DIE
22512 is its offset in .debug_info for this objfile. */
22513
22514 static hashval_t
22515 partial_die_hash (const void *item)
22516 {
22517 const struct partial_die_info *part_die
22518 = (const struct partial_die_info *) item;
22519
22520 return part_die->offset.sect_off;
22521 }
22522
22523 /* Trivial comparison function for partial_die_info structures: two DIEs
22524 are equal if they have the same offset. */
22525
22526 static int
22527 partial_die_eq (const void *item_lhs, const void *item_rhs)
22528 {
22529 const struct partial_die_info *part_die_lhs
22530 = (const struct partial_die_info *) item_lhs;
22531 const struct partial_die_info *part_die_rhs
22532 = (const struct partial_die_info *) item_rhs;
22533
22534 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22535 }
22536
22537 static struct cmd_list_element *set_dwarf_cmdlist;
22538 static struct cmd_list_element *show_dwarf_cmdlist;
22539
22540 static void
22541 set_dwarf_cmd (char *args, int from_tty)
22542 {
22543 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22544 gdb_stdout);
22545 }
22546
22547 static void
22548 show_dwarf_cmd (char *args, int from_tty)
22549 {
22550 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22551 }
22552
22553 /* Free data associated with OBJFILE, if necessary. */
22554
22555 static void
22556 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22557 {
22558 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22559 int ix;
22560
22561 /* Make sure we don't accidentally use dwarf2_per_objfile while
22562 cleaning up. */
22563 dwarf2_per_objfile = NULL;
22564
22565 for (ix = 0; ix < data->n_comp_units; ++ix)
22566 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22567
22568 for (ix = 0; ix < data->n_type_units; ++ix)
22569 VEC_free (dwarf2_per_cu_ptr,
22570 data->all_type_units[ix]->per_cu.imported_symtabs);
22571 xfree (data->all_type_units);
22572
22573 VEC_free (dwarf2_section_info_def, data->types);
22574
22575 if (data->dwo_files)
22576 free_dwo_files (data->dwo_files, objfile);
22577 if (data->dwp_file)
22578 gdb_bfd_unref (data->dwp_file->dbfd);
22579
22580 if (data->dwz_file && data->dwz_file->dwz_bfd)
22581 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22582 }
22583
22584 \f
22585 /* The "save gdb-index" command. */
22586
22587 /* The contents of the hash table we create when building the string
22588 table. */
22589 struct strtab_entry
22590 {
22591 offset_type offset;
22592 const char *str;
22593 };
22594
22595 /* Hash function for a strtab_entry.
22596
22597 Function is used only during write_hash_table so no index format backward
22598 compatibility is needed. */
22599
22600 static hashval_t
22601 hash_strtab_entry (const void *e)
22602 {
22603 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22604 return mapped_index_string_hash (INT_MAX, entry->str);
22605 }
22606
22607 /* Equality function for a strtab_entry. */
22608
22609 static int
22610 eq_strtab_entry (const void *a, const void *b)
22611 {
22612 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22613 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22614 return !strcmp (ea->str, eb->str);
22615 }
22616
22617 /* Create a strtab_entry hash table. */
22618
22619 static htab_t
22620 create_strtab (void)
22621 {
22622 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22623 xfree, xcalloc, xfree);
22624 }
22625
22626 /* Add a string to the constant pool. Return the string's offset in
22627 host order. */
22628
22629 static offset_type
22630 add_string (htab_t table, struct obstack *cpool, const char *str)
22631 {
22632 void **slot;
22633 struct strtab_entry entry;
22634 struct strtab_entry *result;
22635
22636 entry.str = str;
22637 slot = htab_find_slot (table, &entry, INSERT);
22638 if (*slot)
22639 result = (struct strtab_entry *) *slot;
22640 else
22641 {
22642 result = XNEW (struct strtab_entry);
22643 result->offset = obstack_object_size (cpool);
22644 result->str = str;
22645 obstack_grow_str0 (cpool, str);
22646 *slot = result;
22647 }
22648 return result->offset;
22649 }
22650
22651 /* An entry in the symbol table. */
22652 struct symtab_index_entry
22653 {
22654 /* The name of the symbol. */
22655 const char *name;
22656 /* The offset of the name in the constant pool. */
22657 offset_type index_offset;
22658 /* A sorted vector of the indices of all the CUs that hold an object
22659 of this name. */
22660 VEC (offset_type) *cu_indices;
22661 };
22662
22663 /* The symbol table. This is a power-of-2-sized hash table. */
22664 struct mapped_symtab
22665 {
22666 offset_type n_elements;
22667 offset_type size;
22668 struct symtab_index_entry **data;
22669 };
22670
22671 /* Hash function for a symtab_index_entry. */
22672
22673 static hashval_t
22674 hash_symtab_entry (const void *e)
22675 {
22676 const struct symtab_index_entry *entry
22677 = (const struct symtab_index_entry *) e;
22678 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22679 sizeof (offset_type) * VEC_length (offset_type,
22680 entry->cu_indices),
22681 0);
22682 }
22683
22684 /* Equality function for a symtab_index_entry. */
22685
22686 static int
22687 eq_symtab_entry (const void *a, const void *b)
22688 {
22689 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22690 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22691 int len = VEC_length (offset_type, ea->cu_indices);
22692 if (len != VEC_length (offset_type, eb->cu_indices))
22693 return 0;
22694 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22695 VEC_address (offset_type, eb->cu_indices),
22696 sizeof (offset_type) * len);
22697 }
22698
22699 /* Destroy a symtab_index_entry. */
22700
22701 static void
22702 delete_symtab_entry (void *p)
22703 {
22704 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22705 VEC_free (offset_type, entry->cu_indices);
22706 xfree (entry);
22707 }
22708
22709 /* Create a hash table holding symtab_index_entry objects. */
22710
22711 static htab_t
22712 create_symbol_hash_table (void)
22713 {
22714 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22715 delete_symtab_entry, xcalloc, xfree);
22716 }
22717
22718 /* Create a new mapped symtab object. */
22719
22720 static struct mapped_symtab *
22721 create_mapped_symtab (void)
22722 {
22723 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22724 symtab->n_elements = 0;
22725 symtab->size = 1024;
22726 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22727 return symtab;
22728 }
22729
22730 /* Destroy a mapped_symtab. */
22731
22732 static void
22733 cleanup_mapped_symtab (void *p)
22734 {
22735 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22736 /* The contents of the array are freed when the other hash table is
22737 destroyed. */
22738 xfree (symtab->data);
22739 xfree (symtab);
22740 }
22741
22742 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22743 the slot.
22744
22745 Function is used only during write_hash_table so no index format backward
22746 compatibility is needed. */
22747
22748 static struct symtab_index_entry **
22749 find_slot (struct mapped_symtab *symtab, const char *name)
22750 {
22751 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22752
22753 index = hash & (symtab->size - 1);
22754 step = ((hash * 17) & (symtab->size - 1)) | 1;
22755
22756 for (;;)
22757 {
22758 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22759 return &symtab->data[index];
22760 index = (index + step) & (symtab->size - 1);
22761 }
22762 }
22763
22764 /* Expand SYMTAB's hash table. */
22765
22766 static void
22767 hash_expand (struct mapped_symtab *symtab)
22768 {
22769 offset_type old_size = symtab->size;
22770 offset_type i;
22771 struct symtab_index_entry **old_entries = symtab->data;
22772
22773 symtab->size *= 2;
22774 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22775
22776 for (i = 0; i < old_size; ++i)
22777 {
22778 if (old_entries[i])
22779 {
22780 struct symtab_index_entry **slot = find_slot (symtab,
22781 old_entries[i]->name);
22782 *slot = old_entries[i];
22783 }
22784 }
22785
22786 xfree (old_entries);
22787 }
22788
22789 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22790 CU_INDEX is the index of the CU in which the symbol appears.
22791 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22792
22793 static void
22794 add_index_entry (struct mapped_symtab *symtab, const char *name,
22795 int is_static, gdb_index_symbol_kind kind,
22796 offset_type cu_index)
22797 {
22798 struct symtab_index_entry **slot;
22799 offset_type cu_index_and_attrs;
22800
22801 ++symtab->n_elements;
22802 if (4 * symtab->n_elements / 3 >= symtab->size)
22803 hash_expand (symtab);
22804
22805 slot = find_slot (symtab, name);
22806 if (!*slot)
22807 {
22808 *slot = XNEW (struct symtab_index_entry);
22809 (*slot)->name = name;
22810 /* index_offset is set later. */
22811 (*slot)->cu_indices = NULL;
22812 }
22813
22814 cu_index_and_attrs = 0;
22815 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22816 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22817 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22818
22819 /* We don't want to record an index value twice as we want to avoid the
22820 duplication.
22821 We process all global symbols and then all static symbols
22822 (which would allow us to avoid the duplication by only having to check
22823 the last entry pushed), but a symbol could have multiple kinds in one CU.
22824 To keep things simple we don't worry about the duplication here and
22825 sort and uniqufy the list after we've processed all symbols. */
22826 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22827 }
22828
22829 /* qsort helper routine for uniquify_cu_indices. */
22830
22831 static int
22832 offset_type_compare (const void *ap, const void *bp)
22833 {
22834 offset_type a = *(offset_type *) ap;
22835 offset_type b = *(offset_type *) bp;
22836
22837 return (a > b) - (b > a);
22838 }
22839
22840 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22841
22842 static void
22843 uniquify_cu_indices (struct mapped_symtab *symtab)
22844 {
22845 int i;
22846
22847 for (i = 0; i < symtab->size; ++i)
22848 {
22849 struct symtab_index_entry *entry = symtab->data[i];
22850
22851 if (entry
22852 && entry->cu_indices != NULL)
22853 {
22854 unsigned int next_to_insert, next_to_check;
22855 offset_type last_value;
22856
22857 qsort (VEC_address (offset_type, entry->cu_indices),
22858 VEC_length (offset_type, entry->cu_indices),
22859 sizeof (offset_type), offset_type_compare);
22860
22861 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22862 next_to_insert = 1;
22863 for (next_to_check = 1;
22864 next_to_check < VEC_length (offset_type, entry->cu_indices);
22865 ++next_to_check)
22866 {
22867 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22868 != last_value)
22869 {
22870 last_value = VEC_index (offset_type, entry->cu_indices,
22871 next_to_check);
22872 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22873 last_value);
22874 ++next_to_insert;
22875 }
22876 }
22877 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22878 }
22879 }
22880 }
22881
22882 /* Add a vector of indices to the constant pool. */
22883
22884 static offset_type
22885 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22886 struct symtab_index_entry *entry)
22887 {
22888 void **slot;
22889
22890 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22891 if (!*slot)
22892 {
22893 offset_type len = VEC_length (offset_type, entry->cu_indices);
22894 offset_type val = MAYBE_SWAP (len);
22895 offset_type iter;
22896 int i;
22897
22898 *slot = entry;
22899 entry->index_offset = obstack_object_size (cpool);
22900
22901 obstack_grow (cpool, &val, sizeof (val));
22902 for (i = 0;
22903 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22904 ++i)
22905 {
22906 val = MAYBE_SWAP (iter);
22907 obstack_grow (cpool, &val, sizeof (val));
22908 }
22909 }
22910 else
22911 {
22912 struct symtab_index_entry *old_entry
22913 = (struct symtab_index_entry *) *slot;
22914 entry->index_offset = old_entry->index_offset;
22915 entry = old_entry;
22916 }
22917 return entry->index_offset;
22918 }
22919
22920 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22921 constant pool entries going into the obstack CPOOL. */
22922
22923 static void
22924 write_hash_table (struct mapped_symtab *symtab,
22925 struct obstack *output, struct obstack *cpool)
22926 {
22927 offset_type i;
22928 htab_t symbol_hash_table;
22929 htab_t str_table;
22930
22931 symbol_hash_table = create_symbol_hash_table ();
22932 str_table = create_strtab ();
22933
22934 /* We add all the index vectors to the constant pool first, to
22935 ensure alignment is ok. */
22936 for (i = 0; i < symtab->size; ++i)
22937 {
22938 if (symtab->data[i])
22939 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22940 }
22941
22942 /* Now write out the hash table. */
22943 for (i = 0; i < symtab->size; ++i)
22944 {
22945 offset_type str_off, vec_off;
22946
22947 if (symtab->data[i])
22948 {
22949 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22950 vec_off = symtab->data[i]->index_offset;
22951 }
22952 else
22953 {
22954 /* While 0 is a valid constant pool index, it is not valid
22955 to have 0 for both offsets. */
22956 str_off = 0;
22957 vec_off = 0;
22958 }
22959
22960 str_off = MAYBE_SWAP (str_off);
22961 vec_off = MAYBE_SWAP (vec_off);
22962
22963 obstack_grow (output, &str_off, sizeof (str_off));
22964 obstack_grow (output, &vec_off, sizeof (vec_off));
22965 }
22966
22967 htab_delete (str_table);
22968 htab_delete (symbol_hash_table);
22969 }
22970
22971 /* Struct to map psymtab to CU index in the index file. */
22972 struct psymtab_cu_index_map
22973 {
22974 struct partial_symtab *psymtab;
22975 unsigned int cu_index;
22976 };
22977
22978 static hashval_t
22979 hash_psymtab_cu_index (const void *item)
22980 {
22981 const struct psymtab_cu_index_map *map
22982 = (const struct psymtab_cu_index_map *) item;
22983
22984 return htab_hash_pointer (map->psymtab);
22985 }
22986
22987 static int
22988 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22989 {
22990 const struct psymtab_cu_index_map *lhs
22991 = (const struct psymtab_cu_index_map *) item_lhs;
22992 const struct psymtab_cu_index_map *rhs
22993 = (const struct psymtab_cu_index_map *) item_rhs;
22994
22995 return lhs->psymtab == rhs->psymtab;
22996 }
22997
22998 /* Helper struct for building the address table. */
22999 struct addrmap_index_data
23000 {
23001 struct objfile *objfile;
23002 struct obstack *addr_obstack;
23003 htab_t cu_index_htab;
23004
23005 /* Non-zero if the previous_* fields are valid.
23006 We can't write an entry until we see the next entry (since it is only then
23007 that we know the end of the entry). */
23008 int previous_valid;
23009 /* Index of the CU in the table of all CUs in the index file. */
23010 unsigned int previous_cu_index;
23011 /* Start address of the CU. */
23012 CORE_ADDR previous_cu_start;
23013 };
23014
23015 /* Write an address entry to OBSTACK. */
23016
23017 static void
23018 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23019 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23020 {
23021 offset_type cu_index_to_write;
23022 gdb_byte addr[8];
23023 CORE_ADDR baseaddr;
23024
23025 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23026
23027 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23028 obstack_grow (obstack, addr, 8);
23029 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23030 obstack_grow (obstack, addr, 8);
23031 cu_index_to_write = MAYBE_SWAP (cu_index);
23032 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23033 }
23034
23035 /* Worker function for traversing an addrmap to build the address table. */
23036
23037 static int
23038 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23039 {
23040 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23041 struct partial_symtab *pst = (struct partial_symtab *) obj;
23042
23043 if (data->previous_valid)
23044 add_address_entry (data->objfile, data->addr_obstack,
23045 data->previous_cu_start, start_addr,
23046 data->previous_cu_index);
23047
23048 data->previous_cu_start = start_addr;
23049 if (pst != NULL)
23050 {
23051 struct psymtab_cu_index_map find_map, *map;
23052 find_map.psymtab = pst;
23053 map = ((struct psymtab_cu_index_map *)
23054 htab_find (data->cu_index_htab, &find_map));
23055 gdb_assert (map != NULL);
23056 data->previous_cu_index = map->cu_index;
23057 data->previous_valid = 1;
23058 }
23059 else
23060 data->previous_valid = 0;
23061
23062 return 0;
23063 }
23064
23065 /* Write OBJFILE's address map to OBSTACK.
23066 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23067 in the index file. */
23068
23069 static void
23070 write_address_map (struct objfile *objfile, struct obstack *obstack,
23071 htab_t cu_index_htab)
23072 {
23073 struct addrmap_index_data addrmap_index_data;
23074
23075 /* When writing the address table, we have to cope with the fact that
23076 the addrmap iterator only provides the start of a region; we have to
23077 wait until the next invocation to get the start of the next region. */
23078
23079 addrmap_index_data.objfile = objfile;
23080 addrmap_index_data.addr_obstack = obstack;
23081 addrmap_index_data.cu_index_htab = cu_index_htab;
23082 addrmap_index_data.previous_valid = 0;
23083
23084 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23085 &addrmap_index_data);
23086
23087 /* It's highly unlikely the last entry (end address = 0xff...ff)
23088 is valid, but we should still handle it.
23089 The end address is recorded as the start of the next region, but that
23090 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23091 anyway. */
23092 if (addrmap_index_data.previous_valid)
23093 add_address_entry (objfile, obstack,
23094 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23095 addrmap_index_data.previous_cu_index);
23096 }
23097
23098 /* Return the symbol kind of PSYM. */
23099
23100 static gdb_index_symbol_kind
23101 symbol_kind (struct partial_symbol *psym)
23102 {
23103 domain_enum domain = PSYMBOL_DOMAIN (psym);
23104 enum address_class aclass = PSYMBOL_CLASS (psym);
23105
23106 switch (domain)
23107 {
23108 case VAR_DOMAIN:
23109 switch (aclass)
23110 {
23111 case LOC_BLOCK:
23112 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23113 case LOC_TYPEDEF:
23114 return GDB_INDEX_SYMBOL_KIND_TYPE;
23115 case LOC_COMPUTED:
23116 case LOC_CONST_BYTES:
23117 case LOC_OPTIMIZED_OUT:
23118 case LOC_STATIC:
23119 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23120 case LOC_CONST:
23121 /* Note: It's currently impossible to recognize psyms as enum values
23122 short of reading the type info. For now punt. */
23123 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23124 default:
23125 /* There are other LOC_FOO values that one might want to classify
23126 as variables, but dwarf2read.c doesn't currently use them. */
23127 return GDB_INDEX_SYMBOL_KIND_OTHER;
23128 }
23129 case STRUCT_DOMAIN:
23130 return GDB_INDEX_SYMBOL_KIND_TYPE;
23131 default:
23132 return GDB_INDEX_SYMBOL_KIND_OTHER;
23133 }
23134 }
23135
23136 /* Add a list of partial symbols to SYMTAB. */
23137
23138 static void
23139 write_psymbols (struct mapped_symtab *symtab,
23140 htab_t psyms_seen,
23141 struct partial_symbol **psymp,
23142 int count,
23143 offset_type cu_index,
23144 int is_static)
23145 {
23146 for (; count-- > 0; ++psymp)
23147 {
23148 struct partial_symbol *psym = *psymp;
23149 void **slot;
23150
23151 if (SYMBOL_LANGUAGE (psym) == language_ada)
23152 error (_("Ada is not currently supported by the index"));
23153
23154 /* Only add a given psymbol once. */
23155 slot = htab_find_slot (psyms_seen, psym, INSERT);
23156 if (!*slot)
23157 {
23158 gdb_index_symbol_kind kind = symbol_kind (psym);
23159
23160 *slot = psym;
23161 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23162 is_static, kind, cu_index);
23163 }
23164 }
23165 }
23166
23167 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23168 exception if there is an error. */
23169
23170 static void
23171 write_obstack (FILE *file, struct obstack *obstack)
23172 {
23173 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23174 file)
23175 != obstack_object_size (obstack))
23176 error (_("couldn't data write to file"));
23177 }
23178
23179 /* Unlink a file if the argument is not NULL. */
23180
23181 static void
23182 unlink_if_set (void *p)
23183 {
23184 char **filename = (char **) p;
23185 if (*filename)
23186 unlink (*filename);
23187 }
23188
23189 /* A helper struct used when iterating over debug_types. */
23190 struct signatured_type_index_data
23191 {
23192 struct objfile *objfile;
23193 struct mapped_symtab *symtab;
23194 struct obstack *types_list;
23195 htab_t psyms_seen;
23196 int cu_index;
23197 };
23198
23199 /* A helper function that writes a single signatured_type to an
23200 obstack. */
23201
23202 static int
23203 write_one_signatured_type (void **slot, void *d)
23204 {
23205 struct signatured_type_index_data *info
23206 = (struct signatured_type_index_data *) d;
23207 struct signatured_type *entry = (struct signatured_type *) *slot;
23208 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23209 gdb_byte val[8];
23210
23211 write_psymbols (info->symtab,
23212 info->psyms_seen,
23213 info->objfile->global_psymbols.list
23214 + psymtab->globals_offset,
23215 psymtab->n_global_syms, info->cu_index,
23216 0);
23217 write_psymbols (info->symtab,
23218 info->psyms_seen,
23219 info->objfile->static_psymbols.list
23220 + psymtab->statics_offset,
23221 psymtab->n_static_syms, info->cu_index,
23222 1);
23223
23224 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23225 entry->per_cu.offset.sect_off);
23226 obstack_grow (info->types_list, val, 8);
23227 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23228 entry->type_offset_in_tu.cu_off);
23229 obstack_grow (info->types_list, val, 8);
23230 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23231 obstack_grow (info->types_list, val, 8);
23232
23233 ++info->cu_index;
23234
23235 return 1;
23236 }
23237
23238 /* Recurse into all "included" dependencies and write their symbols as
23239 if they appeared in this psymtab. */
23240
23241 static void
23242 recursively_write_psymbols (struct objfile *objfile,
23243 struct partial_symtab *psymtab,
23244 struct mapped_symtab *symtab,
23245 htab_t psyms_seen,
23246 offset_type cu_index)
23247 {
23248 int i;
23249
23250 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23251 if (psymtab->dependencies[i]->user != NULL)
23252 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23253 symtab, psyms_seen, cu_index);
23254
23255 write_psymbols (symtab,
23256 psyms_seen,
23257 objfile->global_psymbols.list + psymtab->globals_offset,
23258 psymtab->n_global_syms, cu_index,
23259 0);
23260 write_psymbols (symtab,
23261 psyms_seen,
23262 objfile->static_psymbols.list + psymtab->statics_offset,
23263 psymtab->n_static_syms, cu_index,
23264 1);
23265 }
23266
23267 /* Create an index file for OBJFILE in the directory DIR. */
23268
23269 static void
23270 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23271 {
23272 struct cleanup *cleanup;
23273 char *filename, *cleanup_filename;
23274 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23275 struct obstack cu_list, types_cu_list;
23276 int i;
23277 FILE *out_file;
23278 struct mapped_symtab *symtab;
23279 offset_type val, size_of_contents, total_len;
23280 struct stat st;
23281 htab_t psyms_seen;
23282 htab_t cu_index_htab;
23283 struct psymtab_cu_index_map *psymtab_cu_index_map;
23284
23285 if (dwarf2_per_objfile->using_index)
23286 error (_("Cannot use an index to create the index"));
23287
23288 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23289 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23290
23291 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23292 return;
23293
23294 if (stat (objfile_name (objfile), &st) < 0)
23295 perror_with_name (objfile_name (objfile));
23296
23297 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23298 INDEX_SUFFIX, (char *) NULL);
23299 cleanup = make_cleanup (xfree, filename);
23300
23301 out_file = gdb_fopen_cloexec (filename, "wb");
23302 if (!out_file)
23303 error (_("Can't open `%s' for writing"), filename);
23304
23305 cleanup_filename = filename;
23306 make_cleanup (unlink_if_set, &cleanup_filename);
23307
23308 symtab = create_mapped_symtab ();
23309 make_cleanup (cleanup_mapped_symtab, symtab);
23310
23311 obstack_init (&addr_obstack);
23312 make_cleanup_obstack_free (&addr_obstack);
23313
23314 obstack_init (&cu_list);
23315 make_cleanup_obstack_free (&cu_list);
23316
23317 obstack_init (&types_cu_list);
23318 make_cleanup_obstack_free (&types_cu_list);
23319
23320 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23321 NULL, xcalloc, xfree);
23322 make_cleanup_htab_delete (psyms_seen);
23323
23324 /* While we're scanning CU's create a table that maps a psymtab pointer
23325 (which is what addrmap records) to its index (which is what is recorded
23326 in the index file). This will later be needed to write the address
23327 table. */
23328 cu_index_htab = htab_create_alloc (100,
23329 hash_psymtab_cu_index,
23330 eq_psymtab_cu_index,
23331 NULL, xcalloc, xfree);
23332 make_cleanup_htab_delete (cu_index_htab);
23333 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23334 dwarf2_per_objfile->n_comp_units);
23335 make_cleanup (xfree, psymtab_cu_index_map);
23336
23337 /* The CU list is already sorted, so we don't need to do additional
23338 work here. Also, the debug_types entries do not appear in
23339 all_comp_units, but only in their own hash table. */
23340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23341 {
23342 struct dwarf2_per_cu_data *per_cu
23343 = dwarf2_per_objfile->all_comp_units[i];
23344 struct partial_symtab *psymtab = per_cu->v.psymtab;
23345 gdb_byte val[8];
23346 struct psymtab_cu_index_map *map;
23347 void **slot;
23348
23349 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23350 It may be referenced from a local scope but in such case it does not
23351 need to be present in .gdb_index. */
23352 if (psymtab == NULL)
23353 continue;
23354
23355 if (psymtab->user == NULL)
23356 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23357
23358 map = &psymtab_cu_index_map[i];
23359 map->psymtab = psymtab;
23360 map->cu_index = i;
23361 slot = htab_find_slot (cu_index_htab, map, INSERT);
23362 gdb_assert (slot != NULL);
23363 gdb_assert (*slot == NULL);
23364 *slot = map;
23365
23366 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23367 per_cu->offset.sect_off);
23368 obstack_grow (&cu_list, val, 8);
23369 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23370 obstack_grow (&cu_list, val, 8);
23371 }
23372
23373 /* Dump the address map. */
23374 write_address_map (objfile, &addr_obstack, cu_index_htab);
23375
23376 /* Write out the .debug_type entries, if any. */
23377 if (dwarf2_per_objfile->signatured_types)
23378 {
23379 struct signatured_type_index_data sig_data;
23380
23381 sig_data.objfile = objfile;
23382 sig_data.symtab = symtab;
23383 sig_data.types_list = &types_cu_list;
23384 sig_data.psyms_seen = psyms_seen;
23385 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23386 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23387 write_one_signatured_type, &sig_data);
23388 }
23389
23390 /* Now that we've processed all symbols we can shrink their cu_indices
23391 lists. */
23392 uniquify_cu_indices (symtab);
23393
23394 obstack_init (&constant_pool);
23395 make_cleanup_obstack_free (&constant_pool);
23396 obstack_init (&symtab_obstack);
23397 make_cleanup_obstack_free (&symtab_obstack);
23398 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23399
23400 obstack_init (&contents);
23401 make_cleanup_obstack_free (&contents);
23402 size_of_contents = 6 * sizeof (offset_type);
23403 total_len = size_of_contents;
23404
23405 /* The version number. */
23406 val = MAYBE_SWAP (8);
23407 obstack_grow (&contents, &val, sizeof (val));
23408
23409 /* The offset of the CU list from the start of the file. */
23410 val = MAYBE_SWAP (total_len);
23411 obstack_grow (&contents, &val, sizeof (val));
23412 total_len += obstack_object_size (&cu_list);
23413
23414 /* The offset of the types CU list from the start of the file. */
23415 val = MAYBE_SWAP (total_len);
23416 obstack_grow (&contents, &val, sizeof (val));
23417 total_len += obstack_object_size (&types_cu_list);
23418
23419 /* The offset of the address table from the start of the file. */
23420 val = MAYBE_SWAP (total_len);
23421 obstack_grow (&contents, &val, sizeof (val));
23422 total_len += obstack_object_size (&addr_obstack);
23423
23424 /* The offset of the symbol table from the start of the file. */
23425 val = MAYBE_SWAP (total_len);
23426 obstack_grow (&contents, &val, sizeof (val));
23427 total_len += obstack_object_size (&symtab_obstack);
23428
23429 /* The offset of the constant pool from the start of the file. */
23430 val = MAYBE_SWAP (total_len);
23431 obstack_grow (&contents, &val, sizeof (val));
23432 total_len += obstack_object_size (&constant_pool);
23433
23434 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23435
23436 write_obstack (out_file, &contents);
23437 write_obstack (out_file, &cu_list);
23438 write_obstack (out_file, &types_cu_list);
23439 write_obstack (out_file, &addr_obstack);
23440 write_obstack (out_file, &symtab_obstack);
23441 write_obstack (out_file, &constant_pool);
23442
23443 fclose (out_file);
23444
23445 /* We want to keep the file, so we set cleanup_filename to NULL
23446 here. See unlink_if_set. */
23447 cleanup_filename = NULL;
23448
23449 do_cleanups (cleanup);
23450 }
23451
23452 /* Implementation of the `save gdb-index' command.
23453
23454 Note that the file format used by this command is documented in the
23455 GDB manual. Any changes here must be documented there. */
23456
23457 static void
23458 save_gdb_index_command (char *arg, int from_tty)
23459 {
23460 struct objfile *objfile;
23461
23462 if (!arg || !*arg)
23463 error (_("usage: save gdb-index DIRECTORY"));
23464
23465 ALL_OBJFILES (objfile)
23466 {
23467 struct stat st;
23468
23469 /* If the objfile does not correspond to an actual file, skip it. */
23470 if (stat (objfile_name (objfile), &st) < 0)
23471 continue;
23472
23473 dwarf2_per_objfile
23474 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23475 dwarf2_objfile_data_key);
23476 if (dwarf2_per_objfile)
23477 {
23478
23479 TRY
23480 {
23481 write_psymtabs_to_index (objfile, arg);
23482 }
23483 CATCH (except, RETURN_MASK_ERROR)
23484 {
23485 exception_fprintf (gdb_stderr, except,
23486 _("Error while writing index for `%s': "),
23487 objfile_name (objfile));
23488 }
23489 END_CATCH
23490 }
23491 }
23492 }
23493
23494 \f
23495
23496 int dwarf_always_disassemble;
23497
23498 static void
23499 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23500 struct cmd_list_element *c, const char *value)
23501 {
23502 fprintf_filtered (file,
23503 _("Whether to always disassemble "
23504 "DWARF expressions is %s.\n"),
23505 value);
23506 }
23507
23508 static void
23509 show_check_physname (struct ui_file *file, int from_tty,
23510 struct cmd_list_element *c, const char *value)
23511 {
23512 fprintf_filtered (file,
23513 _("Whether to check \"physname\" is %s.\n"),
23514 value);
23515 }
23516
23517 void _initialize_dwarf2_read (void);
23518
23519 void
23520 _initialize_dwarf2_read (void)
23521 {
23522 struct cmd_list_element *c;
23523
23524 dwarf2_objfile_data_key
23525 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23526
23527 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23528 Set DWARF specific variables.\n\
23529 Configure DWARF variables such as the cache size"),
23530 &set_dwarf_cmdlist, "maintenance set dwarf ",
23531 0/*allow-unknown*/, &maintenance_set_cmdlist);
23532
23533 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23534 Show DWARF specific variables\n\
23535 Show DWARF variables such as the cache size"),
23536 &show_dwarf_cmdlist, "maintenance show dwarf ",
23537 0/*allow-unknown*/, &maintenance_show_cmdlist);
23538
23539 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23540 &dwarf_max_cache_age, _("\
23541 Set the upper bound on the age of cached DWARF compilation units."), _("\
23542 Show the upper bound on the age of cached DWARF compilation units."), _("\
23543 A higher limit means that cached compilation units will be stored\n\
23544 in memory longer, and more total memory will be used. Zero disables\n\
23545 caching, which can slow down startup."),
23546 NULL,
23547 show_dwarf_max_cache_age,
23548 &set_dwarf_cmdlist,
23549 &show_dwarf_cmdlist);
23550
23551 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23552 &dwarf_always_disassemble, _("\
23553 Set whether `info address' always disassembles DWARF expressions."), _("\
23554 Show whether `info address' always disassembles DWARF expressions."), _("\
23555 When enabled, DWARF expressions are always printed in an assembly-like\n\
23556 syntax. When disabled, expressions will be printed in a more\n\
23557 conversational style, when possible."),
23558 NULL,
23559 show_dwarf_always_disassemble,
23560 &set_dwarf_cmdlist,
23561 &show_dwarf_cmdlist);
23562
23563 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23564 Set debugging of the DWARF reader."), _("\
23565 Show debugging of the DWARF reader."), _("\
23566 When enabled (non-zero), debugging messages are printed during DWARF\n\
23567 reading and symtab expansion. A value of 1 (one) provides basic\n\
23568 information. A value greater than 1 provides more verbose information."),
23569 NULL,
23570 NULL,
23571 &setdebuglist, &showdebuglist);
23572
23573 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23574 Set debugging of the DWARF DIE reader."), _("\
23575 Show debugging of the DWARF DIE reader."), _("\
23576 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23577 The value is the maximum depth to print."),
23578 NULL,
23579 NULL,
23580 &setdebuglist, &showdebuglist);
23581
23582 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23583 Set debugging of the dwarf line reader."), _("\
23584 Show debugging of the dwarf line reader."), _("\
23585 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23586 A value of 1 (one) provides basic information.\n\
23587 A value greater than 1 provides more verbose information."),
23588 NULL,
23589 NULL,
23590 &setdebuglist, &showdebuglist);
23591
23592 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23593 Set cross-checking of \"physname\" code against demangler."), _("\
23594 Show cross-checking of \"physname\" code against demangler."), _("\
23595 When enabled, GDB's internal \"physname\" code is checked against\n\
23596 the demangler."),
23597 NULL, show_check_physname,
23598 &setdebuglist, &showdebuglist);
23599
23600 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23601 no_class, &use_deprecated_index_sections, _("\
23602 Set whether to use deprecated gdb_index sections."), _("\
23603 Show whether to use deprecated gdb_index sections."), _("\
23604 When enabled, deprecated .gdb_index sections are used anyway.\n\
23605 Normally they are ignored either because of a missing feature or\n\
23606 performance issue.\n\
23607 Warning: This option must be enabled before gdb reads the file."),
23608 NULL,
23609 NULL,
23610 &setlist, &showlist);
23611
23612 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23613 _("\
23614 Save a gdb-index file.\n\
23615 Usage: save gdb-index DIRECTORY"),
23616 &save_cmdlist);
23617 set_cmd_completer (c, filename_completer);
23618
23619 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23620 &dwarf2_locexpr_funcs);
23621 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23622 &dwarf2_loclist_funcs);
23623
23624 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23625 &dwarf2_block_frame_base_locexpr_funcs);
23626 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23627 &dwarf2_block_frame_base_loclist_funcs);
23628 }
This page took 0.726511 seconds and 4 git commands to generate.