Move current_subfile to buildsym_compunit
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
814 : name (name_),
815 dbfd (std::move (abfd))
816 {
817 }
818
819 /* Name of the file. */
820 const char *name;
821
822 /* File format version. */
823 int version = 0;
824
825 /* The bfd. */
826 gdb_bfd_ref_ptr dbfd;
827
828 /* Section info for this file. */
829 struct dwp_sections sections {};
830
831 /* Table of CUs in the file. */
832 const struct dwp_hash_table *cus = nullptr;
833
834 /* Table of TUs in the file. */
835 const struct dwp_hash_table *tus = nullptr;
836
837 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
838 htab_t loaded_cus {};
839 htab_t loaded_tus {};
840
841 /* Table to map ELF section numbers to their sections.
842 This is only needed for the DWP V1 file format. */
843 unsigned int num_sections = 0;
844 asection **elf_sections = nullptr;
845 };
846
847 /* This represents a '.dwz' file. */
848
849 struct dwz_file
850 {
851 dwz_file (gdb_bfd_ref_ptr &&bfd)
852 : dwz_bfd (std::move (bfd))
853 {
854 }
855
856 /* A dwz file can only contain a few sections. */
857 struct dwarf2_section_info abbrev {};
858 struct dwarf2_section_info info {};
859 struct dwarf2_section_info str {};
860 struct dwarf2_section_info line {};
861 struct dwarf2_section_info macro {};
862 struct dwarf2_section_info gdb_index {};
863 struct dwarf2_section_info debug_names {};
864
865 /* The dwz's BFD. */
866 gdb_bfd_ref_ptr dwz_bfd;
867 };
868
869 /* Struct used to pass misc. parameters to read_die_and_children, et
870 al. which are used for both .debug_info and .debug_types dies.
871 All parameters here are unchanging for the life of the call. This
872 struct exists to abstract away the constant parameters of die reading. */
873
874 struct die_reader_specs
875 {
876 /* The bfd of die_section. */
877 bfd* abfd;
878
879 /* The CU of the DIE we are parsing. */
880 struct dwarf2_cu *cu;
881
882 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
883 struct dwo_file *dwo_file;
884
885 /* The section the die comes from.
886 This is either .debug_info or .debug_types, or the .dwo variants. */
887 struct dwarf2_section_info *die_section;
888
889 /* die_section->buffer. */
890 const gdb_byte *buffer;
891
892 /* The end of the buffer. */
893 const gdb_byte *buffer_end;
894
895 /* The value of the DW_AT_comp_dir attribute. */
896 const char *comp_dir;
897
898 /* The abbreviation table to use when reading the DIEs. */
899 struct abbrev_table *abbrev_table;
900 };
901
902 /* Type of function passed to init_cutu_and_read_dies, et.al. */
903 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
904 const gdb_byte *info_ptr,
905 struct die_info *comp_unit_die,
906 int has_children,
907 void *data);
908
909 /* A 1-based directory index. This is a strong typedef to prevent
910 accidentally using a directory index as a 0-based index into an
911 array/vector. */
912 enum class dir_index : unsigned int {};
913
914 /* Likewise, a 1-based file name index. */
915 enum class file_name_index : unsigned int {};
916
917 struct file_entry
918 {
919 file_entry () = default;
920
921 file_entry (const char *name_, dir_index d_index_,
922 unsigned int mod_time_, unsigned int length_)
923 : name (name_),
924 d_index (d_index_),
925 mod_time (mod_time_),
926 length (length_)
927 {}
928
929 /* Return the include directory at D_INDEX stored in LH. Returns
930 NULL if D_INDEX is out of bounds. */
931 const char *include_dir (const line_header *lh) const;
932
933 /* The file name. Note this is an observing pointer. The memory is
934 owned by debug_line_buffer. */
935 const char *name {};
936
937 /* The directory index (1-based). */
938 dir_index d_index {};
939
940 unsigned int mod_time {};
941
942 unsigned int length {};
943
944 /* True if referenced by the Line Number Program. */
945 bool included_p {};
946
947 /* The associated symbol table, if any. */
948 struct symtab *symtab {};
949 };
950
951 /* The line number information for a compilation unit (found in the
952 .debug_line section) begins with a "statement program header",
953 which contains the following information. */
954 struct line_header
955 {
956 line_header ()
957 : offset_in_dwz {}
958 {}
959
960 /* Add an entry to the include directory table. */
961 void add_include_dir (const char *include_dir);
962
963 /* Add an entry to the file name table. */
964 void add_file_name (const char *name, dir_index d_index,
965 unsigned int mod_time, unsigned int length);
966
967 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
968 is out of bounds. */
969 const char *include_dir_at (dir_index index) const
970 {
971 /* Convert directory index number (1-based) to vector index
972 (0-based). */
973 size_t vec_index = to_underlying (index) - 1;
974
975 if (vec_index >= include_dirs.size ())
976 return NULL;
977 return include_dirs[vec_index];
978 }
979
980 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
981 is out of bounds. */
982 file_entry *file_name_at (file_name_index index)
983 {
984 /* Convert file name index number (1-based) to vector index
985 (0-based). */
986 size_t vec_index = to_underlying (index) - 1;
987
988 if (vec_index >= file_names.size ())
989 return NULL;
990 return &file_names[vec_index];
991 }
992
993 /* Const version of the above. */
994 const file_entry *file_name_at (unsigned int index) const
995 {
996 if (index >= file_names.size ())
997 return NULL;
998 return &file_names[index];
999 }
1000
1001 /* Offset of line number information in .debug_line section. */
1002 sect_offset sect_off {};
1003
1004 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1005 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1006
1007 unsigned int total_length {};
1008 unsigned short version {};
1009 unsigned int header_length {};
1010 unsigned char minimum_instruction_length {};
1011 unsigned char maximum_ops_per_instruction {};
1012 unsigned char default_is_stmt {};
1013 int line_base {};
1014 unsigned char line_range {};
1015 unsigned char opcode_base {};
1016
1017 /* standard_opcode_lengths[i] is the number of operands for the
1018 standard opcode whose value is i. This means that
1019 standard_opcode_lengths[0] is unused, and the last meaningful
1020 element is standard_opcode_lengths[opcode_base - 1]. */
1021 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1022
1023 /* The include_directories table. Note these are observing
1024 pointers. The memory is owned by debug_line_buffer. */
1025 std::vector<const char *> include_dirs;
1026
1027 /* The file_names table. */
1028 std::vector<file_entry> file_names;
1029
1030 /* The start and end of the statement program following this
1031 header. These point into dwarf2_per_objfile->line_buffer. */
1032 const gdb_byte *statement_program_start {}, *statement_program_end {};
1033 };
1034
1035 typedef std::unique_ptr<line_header> line_header_up;
1036
1037 const char *
1038 file_entry::include_dir (const line_header *lh) const
1039 {
1040 return lh->include_dir_at (d_index);
1041 }
1042
1043 /* When we construct a partial symbol table entry we only
1044 need this much information. */
1045 struct partial_die_info : public allocate_on_obstack
1046 {
1047 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1048
1049 /* Disable assign but still keep copy ctor, which is needed
1050 load_partial_dies. */
1051 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1052
1053 /* Adjust the partial die before generating a symbol for it. This
1054 function may set the is_external flag or change the DIE's
1055 name. */
1056 void fixup (struct dwarf2_cu *cu);
1057
1058 /* Read a minimal amount of information into the minimal die
1059 structure. */
1060 const gdb_byte *read (const struct die_reader_specs *reader,
1061 const struct abbrev_info &abbrev,
1062 const gdb_byte *info_ptr);
1063
1064 /* Offset of this DIE. */
1065 const sect_offset sect_off;
1066
1067 /* DWARF-2 tag for this DIE. */
1068 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1069
1070 /* Assorted flags describing the data found in this DIE. */
1071 const unsigned int has_children : 1;
1072
1073 unsigned int is_external : 1;
1074 unsigned int is_declaration : 1;
1075 unsigned int has_type : 1;
1076 unsigned int has_specification : 1;
1077 unsigned int has_pc_info : 1;
1078 unsigned int may_be_inlined : 1;
1079
1080 /* This DIE has been marked DW_AT_main_subprogram. */
1081 unsigned int main_subprogram : 1;
1082
1083 /* Flag set if the SCOPE field of this structure has been
1084 computed. */
1085 unsigned int scope_set : 1;
1086
1087 /* Flag set if the DIE has a byte_size attribute. */
1088 unsigned int has_byte_size : 1;
1089
1090 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1091 unsigned int has_const_value : 1;
1092
1093 /* Flag set if any of the DIE's children are template arguments. */
1094 unsigned int has_template_arguments : 1;
1095
1096 /* Flag set if fixup has been called on this die. */
1097 unsigned int fixup_called : 1;
1098
1099 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1100 unsigned int is_dwz : 1;
1101
1102 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1103 unsigned int spec_is_dwz : 1;
1104
1105 /* The name of this DIE. Normally the value of DW_AT_name, but
1106 sometimes a default name for unnamed DIEs. */
1107 const char *name = nullptr;
1108
1109 /* The linkage name, if present. */
1110 const char *linkage_name = nullptr;
1111
1112 /* The scope to prepend to our children. This is generally
1113 allocated on the comp_unit_obstack, so will disappear
1114 when this compilation unit leaves the cache. */
1115 const char *scope = nullptr;
1116
1117 /* Some data associated with the partial DIE. The tag determines
1118 which field is live. */
1119 union
1120 {
1121 /* The location description associated with this DIE, if any. */
1122 struct dwarf_block *locdesc;
1123 /* The offset of an import, for DW_TAG_imported_unit. */
1124 sect_offset sect_off;
1125 } d {};
1126
1127 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1128 CORE_ADDR lowpc = 0;
1129 CORE_ADDR highpc = 0;
1130
1131 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1132 DW_AT_sibling, if any. */
1133 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1134 could return DW_AT_sibling values to its caller load_partial_dies. */
1135 const gdb_byte *sibling = nullptr;
1136
1137 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1138 DW_AT_specification (or DW_AT_abstract_origin or
1139 DW_AT_extension). */
1140 sect_offset spec_offset {};
1141
1142 /* Pointers to this DIE's parent, first child, and next sibling,
1143 if any. */
1144 struct partial_die_info *die_parent = nullptr;
1145 struct partial_die_info *die_child = nullptr;
1146 struct partial_die_info *die_sibling = nullptr;
1147
1148 friend struct partial_die_info *
1149 dwarf2_cu::find_partial_die (sect_offset sect_off);
1150
1151 private:
1152 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1153 partial_die_info (sect_offset sect_off)
1154 : partial_die_info (sect_off, DW_TAG_padding, 0)
1155 {
1156 }
1157
1158 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1159 int has_children_)
1160 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1161 {
1162 is_external = 0;
1163 is_declaration = 0;
1164 has_type = 0;
1165 has_specification = 0;
1166 has_pc_info = 0;
1167 may_be_inlined = 0;
1168 main_subprogram = 0;
1169 scope_set = 0;
1170 has_byte_size = 0;
1171 has_const_value = 0;
1172 has_template_arguments = 0;
1173 fixup_called = 0;
1174 is_dwz = 0;
1175 spec_is_dwz = 0;
1176 }
1177 };
1178
1179 /* This data structure holds the information of an abbrev. */
1180 struct abbrev_info
1181 {
1182 unsigned int number; /* number identifying abbrev */
1183 enum dwarf_tag tag; /* dwarf tag */
1184 unsigned short has_children; /* boolean */
1185 unsigned short num_attrs; /* number of attributes */
1186 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1187 struct abbrev_info *next; /* next in chain */
1188 };
1189
1190 struct attr_abbrev
1191 {
1192 ENUM_BITFIELD(dwarf_attribute) name : 16;
1193 ENUM_BITFIELD(dwarf_form) form : 16;
1194
1195 /* It is valid only if FORM is DW_FORM_implicit_const. */
1196 LONGEST implicit_const;
1197 };
1198
1199 /* Size of abbrev_table.abbrev_hash_table. */
1200 #define ABBREV_HASH_SIZE 121
1201
1202 /* Top level data structure to contain an abbreviation table. */
1203
1204 struct abbrev_table
1205 {
1206 explicit abbrev_table (sect_offset off)
1207 : sect_off (off)
1208 {
1209 m_abbrevs =
1210 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1211 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1212 }
1213
1214 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1215
1216 /* Allocate space for a struct abbrev_info object in
1217 ABBREV_TABLE. */
1218 struct abbrev_info *alloc_abbrev ();
1219
1220 /* Add an abbreviation to the table. */
1221 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1222
1223 /* Look up an abbrev in the table.
1224 Returns NULL if the abbrev is not found. */
1225
1226 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1227
1228
1229 /* Where the abbrev table came from.
1230 This is used as a sanity check when the table is used. */
1231 const sect_offset sect_off;
1232
1233 /* Storage for the abbrev table. */
1234 auto_obstack abbrev_obstack;
1235
1236 private:
1237
1238 /* Hash table of abbrevs.
1239 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1240 It could be statically allocated, but the previous code didn't so we
1241 don't either. */
1242 struct abbrev_info **m_abbrevs;
1243 };
1244
1245 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1246
1247 /* Attributes have a name and a value. */
1248 struct attribute
1249 {
1250 ENUM_BITFIELD(dwarf_attribute) name : 16;
1251 ENUM_BITFIELD(dwarf_form) form : 15;
1252
1253 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1254 field should be in u.str (existing only for DW_STRING) but it is kept
1255 here for better struct attribute alignment. */
1256 unsigned int string_is_canonical : 1;
1257
1258 union
1259 {
1260 const char *str;
1261 struct dwarf_block *blk;
1262 ULONGEST unsnd;
1263 LONGEST snd;
1264 CORE_ADDR addr;
1265 ULONGEST signature;
1266 }
1267 u;
1268 };
1269
1270 /* This data structure holds a complete die structure. */
1271 struct die_info
1272 {
1273 /* DWARF-2 tag for this DIE. */
1274 ENUM_BITFIELD(dwarf_tag) tag : 16;
1275
1276 /* Number of attributes */
1277 unsigned char num_attrs;
1278
1279 /* True if we're presently building the full type name for the
1280 type derived from this DIE. */
1281 unsigned char building_fullname : 1;
1282
1283 /* True if this die is in process. PR 16581. */
1284 unsigned char in_process : 1;
1285
1286 /* Abbrev number */
1287 unsigned int abbrev;
1288
1289 /* Offset in .debug_info or .debug_types section. */
1290 sect_offset sect_off;
1291
1292 /* The dies in a compilation unit form an n-ary tree. PARENT
1293 points to this die's parent; CHILD points to the first child of
1294 this node; and all the children of a given node are chained
1295 together via their SIBLING fields. */
1296 struct die_info *child; /* Its first child, if any. */
1297 struct die_info *sibling; /* Its next sibling, if any. */
1298 struct die_info *parent; /* Its parent, if any. */
1299
1300 /* An array of attributes, with NUM_ATTRS elements. There may be
1301 zero, but it's not common and zero-sized arrays are not
1302 sufficiently portable C. */
1303 struct attribute attrs[1];
1304 };
1305
1306 /* Get at parts of an attribute structure. */
1307
1308 #define DW_STRING(attr) ((attr)->u.str)
1309 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1310 #define DW_UNSND(attr) ((attr)->u.unsnd)
1311 #define DW_BLOCK(attr) ((attr)->u.blk)
1312 #define DW_SND(attr) ((attr)->u.snd)
1313 #define DW_ADDR(attr) ((attr)->u.addr)
1314 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1315
1316 /* Blocks are a bunch of untyped bytes. */
1317 struct dwarf_block
1318 {
1319 size_t size;
1320
1321 /* Valid only if SIZE is not zero. */
1322 const gdb_byte *data;
1323 };
1324
1325 #ifndef ATTR_ALLOC_CHUNK
1326 #define ATTR_ALLOC_CHUNK 4
1327 #endif
1328
1329 /* Allocate fields for structs, unions and enums in this size. */
1330 #ifndef DW_FIELD_ALLOC_CHUNK
1331 #define DW_FIELD_ALLOC_CHUNK 4
1332 #endif
1333
1334 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1335 but this would require a corresponding change in unpack_field_as_long
1336 and friends. */
1337 static int bits_per_byte = 8;
1338
1339 /* When reading a variant or variant part, we track a bit more
1340 information about the field, and store it in an object of this
1341 type. */
1342
1343 struct variant_field
1344 {
1345 /* If we see a DW_TAG_variant, then this will be the discriminant
1346 value. */
1347 ULONGEST discriminant_value;
1348 /* If we see a DW_TAG_variant, then this will be set if this is the
1349 default branch. */
1350 bool default_branch;
1351 /* While reading a DW_TAG_variant_part, this will be set if this
1352 field is the discriminant. */
1353 bool is_discriminant;
1354 };
1355
1356 struct nextfield
1357 {
1358 int accessibility = 0;
1359 int virtuality = 0;
1360 /* Extra information to describe a variant or variant part. */
1361 struct variant_field variant {};
1362 struct field field {};
1363 };
1364
1365 struct fnfieldlist
1366 {
1367 const char *name = nullptr;
1368 std::vector<struct fn_field> fnfields;
1369 };
1370
1371 /* The routines that read and process dies for a C struct or C++ class
1372 pass lists of data member fields and lists of member function fields
1373 in an instance of a field_info structure, as defined below. */
1374 struct field_info
1375 {
1376 /* List of data member and baseclasses fields. */
1377 std::vector<struct nextfield> fields;
1378 std::vector<struct nextfield> baseclasses;
1379
1380 /* Number of fields (including baseclasses). */
1381 int nfields = 0;
1382
1383 /* Set if the accesibility of one of the fields is not public. */
1384 int non_public_fields = 0;
1385
1386 /* Member function fieldlist array, contains name of possibly overloaded
1387 member function, number of overloaded member functions and a pointer
1388 to the head of the member function field chain. */
1389 std::vector<struct fnfieldlist> fnfieldlists;
1390
1391 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1392 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1393 std::vector<struct decl_field> typedef_field_list;
1394
1395 /* Nested types defined by this class and the number of elements in this
1396 list. */
1397 std::vector<struct decl_field> nested_types_list;
1398 };
1399
1400 /* One item on the queue of compilation units to read in full symbols
1401 for. */
1402 struct dwarf2_queue_item
1403 {
1404 struct dwarf2_per_cu_data *per_cu;
1405 enum language pretend_language;
1406 struct dwarf2_queue_item *next;
1407 };
1408
1409 /* The current queue. */
1410 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1411
1412 /* Loaded secondary compilation units are kept in memory until they
1413 have not been referenced for the processing of this many
1414 compilation units. Set this to zero to disable caching. Cache
1415 sizes of up to at least twenty will improve startup time for
1416 typical inter-CU-reference binaries, at an obvious memory cost. */
1417 static int dwarf_max_cache_age = 5;
1418 static void
1419 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file, _("The upper bound on the age of cached "
1423 "DWARF compilation units is %s.\n"),
1424 value);
1425 }
1426 \f
1427 /* local function prototypes */
1428
1429 static const char *get_section_name (const struct dwarf2_section_info *);
1430
1431 static const char *get_section_file_name (const struct dwarf2_section_info *);
1432
1433 static void dwarf2_find_base_address (struct die_info *die,
1434 struct dwarf2_cu *cu);
1435
1436 static struct partial_symtab *create_partial_symtab
1437 (struct dwarf2_per_cu_data *per_cu, const char *name);
1438
1439 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1440 const gdb_byte *info_ptr,
1441 struct die_info *type_unit_die,
1442 int has_children, void *data);
1443
1444 static void dwarf2_build_psymtabs_hard
1445 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1446
1447 static void scan_partial_symbols (struct partial_die_info *,
1448 CORE_ADDR *, CORE_ADDR *,
1449 int, struct dwarf2_cu *);
1450
1451 static void add_partial_symbol (struct partial_die_info *,
1452 struct dwarf2_cu *);
1453
1454 static void add_partial_namespace (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int set_addrmap, struct dwarf2_cu *cu);
1457
1458 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1459 CORE_ADDR *highpc, int set_addrmap,
1460 struct dwarf2_cu *cu);
1461
1462 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1463 struct dwarf2_cu *cu);
1464
1465 static void add_partial_subprogram (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int need_pc, struct dwarf2_cu *cu);
1468
1469 static void dwarf2_read_symtab (struct partial_symtab *,
1470 struct objfile *);
1471
1472 static void psymtab_to_symtab_1 (struct partial_symtab *);
1473
1474 static abbrev_table_up abbrev_table_read_table
1475 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1476 sect_offset);
1477
1478 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1479
1480 static struct partial_die_info *load_partial_dies
1481 (const struct die_reader_specs *, const gdb_byte *, int);
1482
1483 static struct partial_die_info *find_partial_die (sect_offset, int,
1484 struct dwarf2_cu *);
1485
1486 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1487 struct attribute *, struct attr_abbrev *,
1488 const gdb_byte *);
1489
1490 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1491
1492 static int read_1_signed_byte (bfd *, const gdb_byte *);
1493
1494 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1495
1496 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1497
1498 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1499
1500 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1501 unsigned int *);
1502
1503 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_checked_initial_length_and_offset
1506 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1507 unsigned int *, unsigned int *);
1508
1509 static LONGEST read_offset (bfd *, const gdb_byte *,
1510 const struct comp_unit_head *,
1511 unsigned int *);
1512
1513 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1514
1515 static sect_offset read_abbrev_offset
1516 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1517 struct dwarf2_section_info *, sect_offset);
1518
1519 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1520
1521 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1522
1523 static const char *read_indirect_string
1524 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1525 const struct comp_unit_head *, unsigned int *);
1526
1527 static const char *read_indirect_line_string
1528 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1529 const struct comp_unit_head *, unsigned int *);
1530
1531 static const char *read_indirect_string_at_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1533 LONGEST str_offset);
1534
1535 static const char *read_indirect_string_from_dwz
1536 (struct objfile *objfile, struct dwz_file *, LONGEST);
1537
1538 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1539
1540 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1541 const gdb_byte *,
1542 unsigned int *);
1543
1544 static const char *read_str_index (const struct die_reader_specs *reader,
1545 ULONGEST str_index);
1546
1547 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1548
1549 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1550 struct dwarf2_cu *);
1551
1552 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1553 unsigned int);
1554
1555 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1556 struct dwarf2_cu *cu);
1557
1558 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1559 struct dwarf2_cu *cu);
1560
1561 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1562
1563 static struct die_info *die_specification (struct die_info *die,
1564 struct dwarf2_cu **);
1565
1566 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1567 struct dwarf2_cu *cu);
1568
1569 static void dwarf_decode_lines (struct line_header *, const char *,
1570 struct dwarf2_cu *, struct partial_symtab *,
1571 CORE_ADDR, int decode_mapping);
1572
1573 static void dwarf2_start_subfile (const char *, const char *);
1574
1575 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1576 const char *, const char *,
1577 CORE_ADDR);
1578
1579 static struct symbol *new_symbol (struct die_info *, struct type *,
1580 struct dwarf2_cu *, struct symbol * = NULL);
1581
1582 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1583 struct dwarf2_cu *);
1584
1585 static void dwarf2_const_value_attr (const struct attribute *attr,
1586 struct type *type,
1587 const char *name,
1588 struct obstack *obstack,
1589 struct dwarf2_cu *cu, LONGEST *value,
1590 const gdb_byte **bytes,
1591 struct dwarf2_locexpr_baton **baton);
1592
1593 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1594
1595 static int need_gnat_info (struct dwarf2_cu *);
1596
1597 static struct type *die_descriptive_type (struct die_info *,
1598 struct dwarf2_cu *);
1599
1600 static void set_descriptive_type (struct type *, struct die_info *,
1601 struct dwarf2_cu *);
1602
1603 static struct type *die_containing_type (struct die_info *,
1604 struct dwarf2_cu *);
1605
1606 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1607 struct dwarf2_cu *);
1608
1609 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1610
1611 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1612
1613 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1614
1615 static char *typename_concat (struct obstack *obs, const char *prefix,
1616 const char *suffix, int physname,
1617 struct dwarf2_cu *cu);
1618
1619 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1620
1621 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1626
1627 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1630
1631 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *, struct partial_symtab *);
1633
1634 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1635 values. Keep the items ordered with increasing constraints compliance. */
1636 enum pc_bounds_kind
1637 {
1638 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1639 PC_BOUNDS_NOT_PRESENT,
1640
1641 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1642 were present but they do not form a valid range of PC addresses. */
1643 PC_BOUNDS_INVALID,
1644
1645 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1646 PC_BOUNDS_RANGES,
1647
1648 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1649 PC_BOUNDS_HIGH_LOW,
1650 };
1651
1652 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1653 CORE_ADDR *, CORE_ADDR *,
1654 struct dwarf2_cu *,
1655 struct partial_symtab *);
1656
1657 static void get_scope_pc_bounds (struct die_info *,
1658 CORE_ADDR *, CORE_ADDR *,
1659 struct dwarf2_cu *);
1660
1661 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1662 CORE_ADDR, struct dwarf2_cu *);
1663
1664 static void dwarf2_add_field (struct field_info *, struct die_info *,
1665 struct dwarf2_cu *);
1666
1667 static void dwarf2_attach_fields_to_type (struct field_info *,
1668 struct type *, struct dwarf2_cu *);
1669
1670 static void dwarf2_add_member_fn (struct field_info *,
1671 struct die_info *, struct type *,
1672 struct dwarf2_cu *);
1673
1674 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1675 struct type *,
1676 struct dwarf2_cu *);
1677
1678 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1679
1680 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1681
1682 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1683
1684 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1685
1686 static struct using_direct **using_directives (enum language);
1687
1688 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1689
1690 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1691
1692 static struct type *read_module_type (struct die_info *die,
1693 struct dwarf2_cu *cu);
1694
1695 static const char *namespace_name (struct die_info *die,
1696 int *is_anonymous, struct dwarf2_cu *);
1697
1698 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1699
1700 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1701
1702 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static struct die_info *read_die_and_siblings_1
1706 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1707 struct die_info *);
1708
1709 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1710 const gdb_byte *info_ptr,
1711 const gdb_byte **new_info_ptr,
1712 struct die_info *parent);
1713
1714 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1715 struct die_info **, const gdb_byte *,
1716 int *, int);
1717
1718 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1719 struct die_info **, const gdb_byte *,
1720 int *);
1721
1722 static void process_die (struct die_info *, struct dwarf2_cu *);
1723
1724 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1725 struct obstack *);
1726
1727 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1728
1729 static const char *dwarf2_full_name (const char *name,
1730 struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *dwarf2_physname (const char *name, struct die_info *die,
1734 struct dwarf2_cu *cu);
1735
1736 static struct die_info *dwarf2_extension (struct die_info *die,
1737 struct dwarf2_cu **);
1738
1739 static const char *dwarf_tag_name (unsigned int);
1740
1741 static const char *dwarf_attr_name (unsigned int);
1742
1743 static const char *dwarf_form_name (unsigned int);
1744
1745 static const char *dwarf_bool_name (unsigned int);
1746
1747 static const char *dwarf_type_encoding_name (unsigned int);
1748
1749 static struct die_info *sibling_die (struct die_info *);
1750
1751 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1752
1753 static void dump_die_for_error (struct die_info *);
1754
1755 static void dump_die_1 (struct ui_file *, int level, int max_level,
1756 struct die_info *);
1757
1758 /*static*/ void dump_die (struct die_info *, int max_level);
1759
1760 static void store_in_ref_table (struct die_info *,
1761 struct dwarf2_cu *);
1762
1763 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1764
1765 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1766
1767 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1768 const struct attribute *,
1769 struct dwarf2_cu **);
1770
1771 static struct die_info *follow_die_ref (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu **);
1774
1775 static struct die_info *follow_die_sig (struct die_info *,
1776 const struct attribute *,
1777 struct dwarf2_cu **);
1778
1779 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1780 struct dwarf2_cu *);
1781
1782 static struct type *get_DW_AT_signature_type (struct die_info *,
1783 const struct attribute *,
1784 struct dwarf2_cu *);
1785
1786 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1787
1788 static void read_signatured_type (struct signatured_type *);
1789
1790 static int attr_to_dynamic_prop (const struct attribute *attr,
1791 struct die_info *die, struct dwarf2_cu *cu,
1792 struct dynamic_prop *prop);
1793
1794 /* memory allocation interface */
1795
1796 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1797
1798 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1799
1800 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1801
1802 static int attr_form_is_block (const struct attribute *);
1803
1804 static int attr_form_is_section_offset (const struct attribute *);
1805
1806 static int attr_form_is_constant (const struct attribute *);
1807
1808 static int attr_form_is_ref (const struct attribute *);
1809
1810 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1811 struct dwarf2_loclist_baton *baton,
1812 const struct attribute *attr);
1813
1814 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1815 struct symbol *sym,
1816 struct dwarf2_cu *cu,
1817 int is_block);
1818
1819 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1820 const gdb_byte *info_ptr,
1821 struct abbrev_info *abbrev);
1822
1823 static hashval_t partial_die_hash (const void *item);
1824
1825 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1826
1827 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1828 (sect_offset sect_off, unsigned int offset_in_dwz,
1829 struct dwarf2_per_objfile *dwarf2_per_objfile);
1830
1831 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1832 struct die_info *comp_unit_die,
1833 enum language pretend_language);
1834
1835 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1836
1837 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1838
1839 static struct type *set_die_type (struct die_info *, struct type *,
1840 struct dwarf2_cu *);
1841
1842 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1843
1844 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1845
1846 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1847 enum language);
1848
1849 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1850 enum language);
1851
1852 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1853 enum language);
1854
1855 static void dwarf2_add_dependence (struct dwarf2_cu *,
1856 struct dwarf2_per_cu_data *);
1857
1858 static void dwarf2_mark (struct dwarf2_cu *);
1859
1860 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1861
1862 static struct type *get_die_type_at_offset (sect_offset,
1863 struct dwarf2_per_cu_data *);
1864
1865 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1866
1867 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1868 enum language pretend_language);
1869
1870 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 /* Class, the destructor of which frees all allocated queue entries. This
1873 will only have work to do if an error was thrown while processing the
1874 dwarf. If no error was thrown then the queue entries should have all
1875 been processed, and freed, as we went along. */
1876
1877 class dwarf2_queue_guard
1878 {
1879 public:
1880 dwarf2_queue_guard () = default;
1881
1882 /* Free any entries remaining on the queue. There should only be
1883 entries left if we hit an error while processing the dwarf. */
1884 ~dwarf2_queue_guard ()
1885 {
1886 struct dwarf2_queue_item *item, *last;
1887
1888 item = dwarf2_queue;
1889 while (item)
1890 {
1891 /* Anything still marked queued is likely to be in an
1892 inconsistent state, so discard it. */
1893 if (item->per_cu->queued)
1894 {
1895 if (item->per_cu->cu != NULL)
1896 free_one_cached_comp_unit (item->per_cu);
1897 item->per_cu->queued = 0;
1898 }
1899
1900 last = item;
1901 item = item->next;
1902 xfree (last);
1903 }
1904
1905 dwarf2_queue = dwarf2_queue_tail = NULL;
1906 }
1907 };
1908
1909 /* The return type of find_file_and_directory. Note, the enclosed
1910 string pointers are only valid while this object is valid. */
1911
1912 struct file_and_directory
1913 {
1914 /* The filename. This is never NULL. */
1915 const char *name;
1916
1917 /* The compilation directory. NULL if not known. If we needed to
1918 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1919 points directly to the DW_AT_comp_dir string attribute owned by
1920 the obstack that owns the DIE. */
1921 const char *comp_dir;
1922
1923 /* If we needed to build a new string for comp_dir, this is what
1924 owns the storage. */
1925 std::string comp_dir_storage;
1926 };
1927
1928 static file_and_directory find_file_and_directory (struct die_info *die,
1929 struct dwarf2_cu *cu);
1930
1931 static char *file_full_name (int file, struct line_header *lh,
1932 const char *comp_dir);
1933
1934 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1935 enum class rcuh_kind { COMPILE, TYPE };
1936
1937 static const gdb_byte *read_and_check_comp_unit_head
1938 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1939 struct comp_unit_head *header,
1940 struct dwarf2_section_info *section,
1941 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1942 rcuh_kind section_kind);
1943
1944 static void init_cutu_and_read_dies
1945 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1946 int use_existing_cu, int keep, bool skip_partial,
1947 die_reader_func_ftype *die_reader_func, void *data);
1948
1949 static void init_cutu_and_read_dies_simple
1950 (struct dwarf2_per_cu_data *this_cu,
1951 die_reader_func_ftype *die_reader_func, void *data);
1952
1953 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1954
1955 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1956
1957 static struct dwo_unit *lookup_dwo_unit_in_dwp
1958 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1959 struct dwp_file *dwp_file, const char *comp_dir,
1960 ULONGEST signature, int is_debug_types);
1961
1962 static struct dwp_file *get_dwp_file
1963 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1964
1965 static struct dwo_unit *lookup_dwo_comp_unit
1966 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1967
1968 static struct dwo_unit *lookup_dwo_type_unit
1969 (struct signatured_type *, const char *, const char *);
1970
1971 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1972
1973 static void free_dwo_file (struct dwo_file *);
1974
1975 /* A unique_ptr helper to free a dwo_file. */
1976
1977 struct dwo_file_deleter
1978 {
1979 void operator() (struct dwo_file *df) const
1980 {
1981 free_dwo_file (df);
1982 }
1983 };
1984
1985 /* A unique pointer to a dwo_file. */
1986
1987 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1988
1989 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1990
1991 static void check_producer (struct dwarf2_cu *cu);
1992
1993 static void free_line_header_voidp (void *arg);
1994 \f
1995 /* Various complaints about symbol reading that don't abort the process. */
1996
1997 static void
1998 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1999 {
2000 complaint (_("statement list doesn't fit in .debug_line section"));
2001 }
2002
2003 static void
2004 dwarf2_debug_line_missing_file_complaint (void)
2005 {
2006 complaint (_(".debug_line section has line data without a file"));
2007 }
2008
2009 static void
2010 dwarf2_debug_line_missing_end_sequence_complaint (void)
2011 {
2012 complaint (_(".debug_line section has line "
2013 "program sequence without an end"));
2014 }
2015
2016 static void
2017 dwarf2_complex_location_expr_complaint (void)
2018 {
2019 complaint (_("location expression too complex"));
2020 }
2021
2022 static void
2023 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2024 int arg3)
2025 {
2026 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2027 arg1, arg2, arg3);
2028 }
2029
2030 static void
2031 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2032 {
2033 complaint (_("debug info runs off end of %s section"
2034 " [in module %s]"),
2035 get_section_name (section),
2036 get_section_file_name (section));
2037 }
2038
2039 static void
2040 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2041 {
2042 complaint (_("macro debug info contains a "
2043 "malformed macro definition:\n`%s'"),
2044 arg1);
2045 }
2046
2047 static void
2048 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2049 {
2050 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2051 arg1, arg2);
2052 }
2053
2054 /* Hash function for line_header_hash. */
2055
2056 static hashval_t
2057 line_header_hash (const struct line_header *ofs)
2058 {
2059 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2060 }
2061
2062 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2063
2064 static hashval_t
2065 line_header_hash_voidp (const void *item)
2066 {
2067 const struct line_header *ofs = (const struct line_header *) item;
2068
2069 return line_header_hash (ofs);
2070 }
2071
2072 /* Equality function for line_header_hash. */
2073
2074 static int
2075 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2076 {
2077 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2078 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2079
2080 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2081 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2082 }
2083
2084 \f
2085
2086 /* Read the given attribute value as an address, taking the attribute's
2087 form into account. */
2088
2089 static CORE_ADDR
2090 attr_value_as_address (struct attribute *attr)
2091 {
2092 CORE_ADDR addr;
2093
2094 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2095 {
2096 /* Aside from a few clearly defined exceptions, attributes that
2097 contain an address must always be in DW_FORM_addr form.
2098 Unfortunately, some compilers happen to be violating this
2099 requirement by encoding addresses using other forms, such
2100 as DW_FORM_data4 for example. For those broken compilers,
2101 we try to do our best, without any guarantee of success,
2102 to interpret the address correctly. It would also be nice
2103 to generate a complaint, but that would require us to maintain
2104 a list of legitimate cases where a non-address form is allowed,
2105 as well as update callers to pass in at least the CU's DWARF
2106 version. This is more overhead than what we're willing to
2107 expand for a pretty rare case. */
2108 addr = DW_UNSND (attr);
2109 }
2110 else
2111 addr = DW_ADDR (attr);
2112
2113 return addr;
2114 }
2115
2116 /* See declaration. */
2117
2118 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2119 const dwarf2_debug_sections *names)
2120 : objfile (objfile_)
2121 {
2122 if (names == NULL)
2123 names = &dwarf2_elf_names;
2124
2125 bfd *obfd = objfile->obfd;
2126
2127 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2128 locate_sections (obfd, sec, *names);
2129 }
2130
2131 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2132
2133 dwarf2_per_objfile::~dwarf2_per_objfile ()
2134 {
2135 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2136 free_cached_comp_units ();
2137
2138 if (quick_file_names_table)
2139 htab_delete (quick_file_names_table);
2140
2141 if (line_header_hash)
2142 htab_delete (line_header_hash);
2143
2144 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2145 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2146
2147 for (signatured_type *sig_type : all_type_units)
2148 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2149
2150 VEC_free (dwarf2_section_info_def, types);
2151
2152 if (dwo_files != NULL)
2153 free_dwo_files (dwo_files, objfile);
2154
2155 /* Everything else should be on the objfile obstack. */
2156 }
2157
2158 /* See declaration. */
2159
2160 void
2161 dwarf2_per_objfile::free_cached_comp_units ()
2162 {
2163 dwarf2_per_cu_data *per_cu = read_in_chain;
2164 dwarf2_per_cu_data **last_chain = &read_in_chain;
2165 while (per_cu != NULL)
2166 {
2167 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2168
2169 delete per_cu->cu;
2170 *last_chain = next_cu;
2171 per_cu = next_cu;
2172 }
2173 }
2174
2175 /* A helper class that calls free_cached_comp_units on
2176 destruction. */
2177
2178 class free_cached_comp_units
2179 {
2180 public:
2181
2182 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2183 : m_per_objfile (per_objfile)
2184 {
2185 }
2186
2187 ~free_cached_comp_units ()
2188 {
2189 m_per_objfile->free_cached_comp_units ();
2190 }
2191
2192 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2193
2194 private:
2195
2196 dwarf2_per_objfile *m_per_objfile;
2197 };
2198
2199 /* Try to locate the sections we need for DWARF 2 debugging
2200 information and return true if we have enough to do something.
2201 NAMES points to the dwarf2 section names, or is NULL if the standard
2202 ELF names are used. */
2203
2204 int
2205 dwarf2_has_info (struct objfile *objfile,
2206 const struct dwarf2_debug_sections *names)
2207 {
2208 if (objfile->flags & OBJF_READNEVER)
2209 return 0;
2210
2211 struct dwarf2_per_objfile *dwarf2_per_objfile
2212 = get_dwarf2_per_objfile (objfile);
2213
2214 if (dwarf2_per_objfile == NULL)
2215 {
2216 /* Initialize per-objfile state. */
2217 dwarf2_per_objfile
2218 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2219 names);
2220 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2221 }
2222 return (!dwarf2_per_objfile->info.is_virtual
2223 && dwarf2_per_objfile->info.s.section != NULL
2224 && !dwarf2_per_objfile->abbrev.is_virtual
2225 && dwarf2_per_objfile->abbrev.s.section != NULL);
2226 }
2227
2228 /* Return the containing section of virtual section SECTION. */
2229
2230 static struct dwarf2_section_info *
2231 get_containing_section (const struct dwarf2_section_info *section)
2232 {
2233 gdb_assert (section->is_virtual);
2234 return section->s.containing_section;
2235 }
2236
2237 /* Return the bfd owner of SECTION. */
2238
2239 static struct bfd *
2240 get_section_bfd_owner (const struct dwarf2_section_info *section)
2241 {
2242 if (section->is_virtual)
2243 {
2244 section = get_containing_section (section);
2245 gdb_assert (!section->is_virtual);
2246 }
2247 return section->s.section->owner;
2248 }
2249
2250 /* Return the bfd section of SECTION.
2251 Returns NULL if the section is not present. */
2252
2253 static asection *
2254 get_section_bfd_section (const struct dwarf2_section_info *section)
2255 {
2256 if (section->is_virtual)
2257 {
2258 section = get_containing_section (section);
2259 gdb_assert (!section->is_virtual);
2260 }
2261 return section->s.section;
2262 }
2263
2264 /* Return the name of SECTION. */
2265
2266 static const char *
2267 get_section_name (const struct dwarf2_section_info *section)
2268 {
2269 asection *sectp = get_section_bfd_section (section);
2270
2271 gdb_assert (sectp != NULL);
2272 return bfd_section_name (get_section_bfd_owner (section), sectp);
2273 }
2274
2275 /* Return the name of the file SECTION is in. */
2276
2277 static const char *
2278 get_section_file_name (const struct dwarf2_section_info *section)
2279 {
2280 bfd *abfd = get_section_bfd_owner (section);
2281
2282 return bfd_get_filename (abfd);
2283 }
2284
2285 /* Return the id of SECTION.
2286 Returns 0 if SECTION doesn't exist. */
2287
2288 static int
2289 get_section_id (const struct dwarf2_section_info *section)
2290 {
2291 asection *sectp = get_section_bfd_section (section);
2292
2293 if (sectp == NULL)
2294 return 0;
2295 return sectp->id;
2296 }
2297
2298 /* Return the flags of SECTION.
2299 SECTION (or containing section if this is a virtual section) must exist. */
2300
2301 static int
2302 get_section_flags (const struct dwarf2_section_info *section)
2303 {
2304 asection *sectp = get_section_bfd_section (section);
2305
2306 gdb_assert (sectp != NULL);
2307 return bfd_get_section_flags (sectp->owner, sectp);
2308 }
2309
2310 /* When loading sections, we look either for uncompressed section or for
2311 compressed section names. */
2312
2313 static int
2314 section_is_p (const char *section_name,
2315 const struct dwarf2_section_names *names)
2316 {
2317 if (names->normal != NULL
2318 && strcmp (section_name, names->normal) == 0)
2319 return 1;
2320 if (names->compressed != NULL
2321 && strcmp (section_name, names->compressed) == 0)
2322 return 1;
2323 return 0;
2324 }
2325
2326 /* See declaration. */
2327
2328 void
2329 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2330 const dwarf2_debug_sections &names)
2331 {
2332 flagword aflag = bfd_get_section_flags (abfd, sectp);
2333
2334 if ((aflag & SEC_HAS_CONTENTS) == 0)
2335 {
2336 }
2337 else if (section_is_p (sectp->name, &names.info))
2338 {
2339 this->info.s.section = sectp;
2340 this->info.size = bfd_get_section_size (sectp);
2341 }
2342 else if (section_is_p (sectp->name, &names.abbrev))
2343 {
2344 this->abbrev.s.section = sectp;
2345 this->abbrev.size = bfd_get_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.line))
2348 {
2349 this->line.s.section = sectp;
2350 this->line.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.loc))
2353 {
2354 this->loc.s.section = sectp;
2355 this->loc.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loclists))
2358 {
2359 this->loclists.s.section = sectp;
2360 this->loclists.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.macinfo))
2363 {
2364 this->macinfo.s.section = sectp;
2365 this->macinfo.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macro))
2368 {
2369 this->macro.s.section = sectp;
2370 this->macro.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.str))
2373 {
2374 this->str.s.section = sectp;
2375 this->str.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.line_str))
2378 {
2379 this->line_str.s.section = sectp;
2380 this->line_str.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.addr))
2383 {
2384 this->addr.s.section = sectp;
2385 this->addr.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.frame))
2388 {
2389 this->frame.s.section = sectp;
2390 this->frame.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.eh_frame))
2393 {
2394 this->eh_frame.s.section = sectp;
2395 this->eh_frame.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.ranges))
2398 {
2399 this->ranges.s.section = sectp;
2400 this->ranges.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.rnglists))
2403 {
2404 this->rnglists.s.section = sectp;
2405 this->rnglists.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.types))
2408 {
2409 struct dwarf2_section_info type_section;
2410
2411 memset (&type_section, 0, sizeof (type_section));
2412 type_section.s.section = sectp;
2413 type_section.size = bfd_get_section_size (sectp);
2414
2415 VEC_safe_push (dwarf2_section_info_def, this->types,
2416 &type_section);
2417 }
2418 else if (section_is_p (sectp->name, &names.gdb_index))
2419 {
2420 this->gdb_index.s.section = sectp;
2421 this->gdb_index.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.debug_names))
2424 {
2425 this->debug_names.s.section = sectp;
2426 this->debug_names.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.debug_aranges))
2429 {
2430 this->debug_aranges.s.section = sectp;
2431 this->debug_aranges.size = bfd_get_section_size (sectp);
2432 }
2433
2434 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2435 && bfd_section_vma (abfd, sectp) == 0)
2436 this->has_section_at_zero = true;
2437 }
2438
2439 /* A helper function that decides whether a section is empty,
2440 or not present. */
2441
2442 static int
2443 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2444 {
2445 if (section->is_virtual)
2446 return section->size == 0;
2447 return section->s.section == NULL || section->size == 0;
2448 }
2449
2450 /* See dwarf2read.h. */
2451
2452 void
2453 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2454 {
2455 asection *sectp;
2456 bfd *abfd;
2457 gdb_byte *buf, *retbuf;
2458
2459 if (info->readin)
2460 return;
2461 info->buffer = NULL;
2462 info->readin = 1;
2463
2464 if (dwarf2_section_empty_p (info))
2465 return;
2466
2467 sectp = get_section_bfd_section (info);
2468
2469 /* If this is a virtual section we need to read in the real one first. */
2470 if (info->is_virtual)
2471 {
2472 struct dwarf2_section_info *containing_section =
2473 get_containing_section (info);
2474
2475 gdb_assert (sectp != NULL);
2476 if ((sectp->flags & SEC_RELOC) != 0)
2477 {
2478 error (_("Dwarf Error: DWP format V2 with relocations is not"
2479 " supported in section %s [in module %s]"),
2480 get_section_name (info), get_section_file_name (info));
2481 }
2482 dwarf2_read_section (objfile, containing_section);
2483 /* Other code should have already caught virtual sections that don't
2484 fit. */
2485 gdb_assert (info->virtual_offset + info->size
2486 <= containing_section->size);
2487 /* If the real section is empty or there was a problem reading the
2488 section we shouldn't get here. */
2489 gdb_assert (containing_section->buffer != NULL);
2490 info->buffer = containing_section->buffer + info->virtual_offset;
2491 return;
2492 }
2493
2494 /* If the section has relocations, we must read it ourselves.
2495 Otherwise we attach it to the BFD. */
2496 if ((sectp->flags & SEC_RELOC) == 0)
2497 {
2498 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2499 return;
2500 }
2501
2502 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2503 info->buffer = buf;
2504
2505 /* When debugging .o files, we may need to apply relocations; see
2506 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2507 We never compress sections in .o files, so we only need to
2508 try this when the section is not compressed. */
2509 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2510 if (retbuf != NULL)
2511 {
2512 info->buffer = retbuf;
2513 return;
2514 }
2515
2516 abfd = get_section_bfd_owner (info);
2517 gdb_assert (abfd != NULL);
2518
2519 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2520 || bfd_bread (buf, info->size, abfd) != info->size)
2521 {
2522 error (_("Dwarf Error: Can't read DWARF data"
2523 " in section %s [in module %s]"),
2524 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2525 }
2526 }
2527
2528 /* A helper function that returns the size of a section in a safe way.
2529 If you are positive that the section has been read before using the
2530 size, then it is safe to refer to the dwarf2_section_info object's
2531 "size" field directly. In other cases, you must call this
2532 function, because for compressed sections the size field is not set
2533 correctly until the section has been read. */
2534
2535 static bfd_size_type
2536 dwarf2_section_size (struct objfile *objfile,
2537 struct dwarf2_section_info *info)
2538 {
2539 if (!info->readin)
2540 dwarf2_read_section (objfile, info);
2541 return info->size;
2542 }
2543
2544 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2545 SECTION_NAME. */
2546
2547 void
2548 dwarf2_get_section_info (struct objfile *objfile,
2549 enum dwarf2_section_enum sect,
2550 asection **sectp, const gdb_byte **bufp,
2551 bfd_size_type *sizep)
2552 {
2553 struct dwarf2_per_objfile *data
2554 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2555 dwarf2_objfile_data_key);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2633 there is no .gnu_debugaltlink section in the file. Error if there
2634 is such a section but the file cannot be found. */
2635
2636 static struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.release ();
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3182 &objfile->objfile_obstack);
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %zu "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile), entry_addr - section->buffer,
3242 plongest (bytes_read + entry_length),
3243 pulongest (section->size));
3244 return;
3245 }
3246
3247 /* The version number. */
3248 const uint16_t version = read_2_bytes (abfd, addr);
3249 addr += 2;
3250 if (version != 2)
3251 {
3252 warning (_("Section .debug_aranges in %s entry at offset %zu "
3253 "has unsupported version %d, ignoring .debug_aranges."),
3254 objfile_name (objfile), entry_addr - section->buffer,
3255 version);
3256 return;
3257 }
3258
3259 const uint64_t debug_info_offset
3260 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3261 addr += offset_size;
3262 const auto per_cu_it
3263 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3264 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3265 {
3266 warning (_("Section .debug_aranges in %s entry at offset %zu "
3267 "debug_info_offset %s does not exists, "
3268 "ignoring .debug_aranges."),
3269 objfile_name (objfile), entry_addr - section->buffer,
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile), entry_addr - section->buffer,
3292 segment_selector_size);
3293 return;
3294 }
3295
3296 /* Must pad to an alignment boundary that is twice the address
3297 size. It is undocumented by the DWARF standard but GCC does
3298 use it. */
3299 for (size_t padding = ((-(addr - section->buffer))
3300 & (2 * address_size - 1));
3301 padding > 0; padding--)
3302 if (*addr++ != 0)
3303 {
3304 warning (_("Section .debug_aranges in %s entry at offset %zu "
3305 "padding is not zero, ignoring .debug_aranges."),
3306 objfile_name (objfile), entry_addr - section->buffer);
3307 return;
3308 }
3309
3310 for (;;)
3311 {
3312 if (addr + 2 * address_size > entry_end)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "address list is not properly terminated, "
3316 "ignoring .debug_aranges."),
3317 objfile_name (objfile), entry_addr - section->buffer);
3318 return;
3319 }
3320 ULONGEST start = extract_unsigned_integer (addr, address_size,
3321 dwarf5_byte_order);
3322 addr += address_size;
3323 ULONGEST length = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 if (start == 0 && length == 0)
3327 break;
3328 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3329 {
3330 /* Symbol was eliminated due to a COMDAT group. */
3331 continue;
3332 }
3333 ULONGEST end = start + length;
3334 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3335 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3336 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3337 }
3338 }
3339
3340 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3341 &objfile->objfile_obstack);
3342 }
3343
3344 /* Find a slot in the mapped index INDEX for the object named NAME.
3345 If NAME is found, set *VEC_OUT to point to the CU vector in the
3346 constant pool and return true. If NAME cannot be found, return
3347 false. */
3348
3349 static bool
3350 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3351 offset_type **vec_out)
3352 {
3353 offset_type hash;
3354 offset_type slot, step;
3355 int (*cmp) (const char *, const char *);
3356
3357 gdb::unique_xmalloc_ptr<char> without_params;
3358 if (current_language->la_language == language_cplus
3359 || current_language->la_language == language_fortran
3360 || current_language->la_language == language_d)
3361 {
3362 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3363 not contain any. */
3364
3365 if (strchr (name, '(') != NULL)
3366 {
3367 without_params = cp_remove_params (name);
3368
3369 if (without_params != NULL)
3370 name = without_params.get ();
3371 }
3372 }
3373
3374 /* Index version 4 did not support case insensitive searches. But the
3375 indices for case insensitive languages are built in lowercase, therefore
3376 simulate our NAME being searched is also lowercased. */
3377 hash = mapped_index_string_hash ((index->version == 4
3378 && case_sensitivity == case_sensitive_off
3379 ? 5 : index->version),
3380 name);
3381
3382 slot = hash & (index->symbol_table.size () - 1);
3383 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3384 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3385
3386 for (;;)
3387 {
3388 const char *str;
3389
3390 const auto &bucket = index->symbol_table[slot];
3391 if (bucket.name == 0 && bucket.vec == 0)
3392 return false;
3393
3394 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3395 if (!cmp (name, str))
3396 {
3397 *vec_out = (offset_type *) (index->constant_pool
3398 + MAYBE_SWAP (bucket.vec));
3399 return true;
3400 }
3401
3402 slot = (slot + step) & (index->symbol_table.size () - 1);
3403 }
3404 }
3405
3406 /* A helper function that reads the .gdb_index from SECTION and fills
3407 in MAP. FILENAME is the name of the file containing the section;
3408 it is used for error reporting. DEPRECATED_OK is true if it is
3409 ok to use deprecated sections.
3410
3411 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3412 out parameters that are filled in with information about the CU and
3413 TU lists in the section.
3414
3415 Returns 1 if all went well, 0 otherwise. */
3416
3417 static bool
3418 read_gdb_index_from_section (struct objfile *objfile,
3419 const char *filename,
3420 bool deprecated_ok,
3421 struct dwarf2_section_info *section,
3422 struct mapped_index *map,
3423 const gdb_byte **cu_list,
3424 offset_type *cu_list_elements,
3425 const gdb_byte **types_list,
3426 offset_type *types_list_elements)
3427 {
3428 const gdb_byte *addr;
3429 offset_type version;
3430 offset_type *metadata;
3431 int i;
3432
3433 if (dwarf2_section_empty_p (section))
3434 return 0;
3435
3436 /* Older elfutils strip versions could keep the section in the main
3437 executable while splitting it for the separate debug info file. */
3438 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3439 return 0;
3440
3441 dwarf2_read_section (objfile, section);
3442
3443 addr = section->buffer;
3444 /* Version check. */
3445 version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3536 {
3537 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3538 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3539 struct dwz_file *dwz;
3540 struct objfile *objfile = dwarf2_per_objfile->objfile;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_gdb_index_from_section (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 &dwarf2_per_objfile->gdb_index, map.get (),
3546 &cu_list, &cu_list_elements,
3547 &types_list, &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 if (!read_gdb_index_from_section (objfile,
3564 bfd_get_filename (dwz->dwz_bfd), 1,
3565 &dwz->gdb_index, &dwz_map,
3566 &dwz_list, &dwz_list_elements,
3567 &dwz_types_ignore,
3568 &dwz_types_elements_ignore))
3569 {
3570 warning (_("could not read '.gdb_index' section from %s; skipping"),
3571 bfd_get_filename (dwz->dwz_bfd));
3572 return 0;
3573 }
3574 }
3575
3576 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3577 dwz_list, dwz_list_elements);
3578
3579 if (types_list_elements)
3580 {
3581 struct dwarf2_section_info *section;
3582
3583 /* We can only handle a single .debug_types when we have an
3584 index. */
3585 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3586 return 0;
3587
3588 section = VEC_index (dwarf2_section_info_def,
3589 dwarf2_per_objfile->types, 0);
3590
3591 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3592 types_list, types_list_elements);
3593 }
3594
3595 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3596
3597 dwarf2_per_objfile->index_table = std::move (map);
3598 dwarf2_per_objfile->using_index = 1;
3599 dwarf2_per_objfile->quick_file_names_table =
3600 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3601
3602 return 1;
3603 }
3604
3605 /* die_reader_func for dw2_get_file_names. */
3606
3607 static void
3608 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3609 const gdb_byte *info_ptr,
3610 struct die_info *comp_unit_die,
3611 int has_children,
3612 void *data)
3613 {
3614 struct dwarf2_cu *cu = reader->cu;
3615 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3616 struct dwarf2_per_objfile *dwarf2_per_objfile
3617 = cu->per_cu->dwarf2_per_objfile;
3618 struct objfile *objfile = dwarf2_per_objfile->objfile;
3619 struct dwarf2_per_cu_data *lh_cu;
3620 struct attribute *attr;
3621 int i;
3622 void **slot;
3623 struct quick_file_names *qfn;
3624
3625 gdb_assert (! this_cu->is_debug_types);
3626
3627 /* Our callers never want to match partial units -- instead they
3628 will match the enclosing full CU. */
3629 if (comp_unit_die->tag == DW_TAG_partial_unit)
3630 {
3631 this_cu->v.quick->no_file_data = 1;
3632 return;
3633 }
3634
3635 lh_cu = this_cu;
3636 slot = NULL;
3637
3638 line_header_up lh;
3639 sect_offset line_offset {};
3640
3641 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3642 if (attr)
3643 {
3644 struct quick_file_names find_entry;
3645
3646 line_offset = (sect_offset) DW_UNSND (attr);
3647
3648 /* We may have already read in this line header (TU line header sharing).
3649 If we have we're done. */
3650 find_entry.hash.dwo_unit = cu->dwo_unit;
3651 find_entry.hash.line_sect_off = line_offset;
3652 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3653 &find_entry, INSERT);
3654 if (*slot != NULL)
3655 {
3656 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3657 return;
3658 }
3659
3660 lh = dwarf_decode_line_header (line_offset, cu);
3661 }
3662 if (lh == NULL)
3663 {
3664 lh_cu->v.quick->no_file_data = 1;
3665 return;
3666 }
3667
3668 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3669 qfn->hash.dwo_unit = cu->dwo_unit;
3670 qfn->hash.line_sect_off = line_offset;
3671 gdb_assert (slot != NULL);
3672 *slot = qfn;
3673
3674 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3675
3676 qfn->num_file_names = lh->file_names.size ();
3677 qfn->file_names =
3678 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3679 for (i = 0; i < lh->file_names.size (); ++i)
3680 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3681 qfn->real_names = NULL;
3682
3683 lh_cu->v.quick->file_names = qfn;
3684 }
3685
3686 /* A helper for the "quick" functions which attempts to read the line
3687 table for THIS_CU. */
3688
3689 static struct quick_file_names *
3690 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3691 {
3692 /* This should never be called for TUs. */
3693 gdb_assert (! this_cu->is_debug_types);
3694 /* Nor type unit groups. */
3695 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3696
3697 if (this_cu->v.quick->file_names != NULL)
3698 return this_cu->v.quick->file_names;
3699 /* If we know there is no line data, no point in looking again. */
3700 if (this_cu->v.quick->no_file_data)
3701 return NULL;
3702
3703 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3704
3705 if (this_cu->v.quick->no_file_data)
3706 return NULL;
3707 return this_cu->v.quick->file_names;
3708 }
3709
3710 /* A helper for the "quick" functions which computes and caches the
3711 real path for a given file name from the line table. */
3712
3713 static const char *
3714 dw2_get_real_path (struct objfile *objfile,
3715 struct quick_file_names *qfn, int index)
3716 {
3717 if (qfn->real_names == NULL)
3718 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3719 qfn->num_file_names, const char *);
3720
3721 if (qfn->real_names[index] == NULL)
3722 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3723
3724 return qfn->real_names[index];
3725 }
3726
3727 static struct symtab *
3728 dw2_find_last_source_symtab (struct objfile *objfile)
3729 {
3730 struct dwarf2_per_objfile *dwarf2_per_objfile
3731 = get_dwarf2_per_objfile (objfile);
3732 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3733 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3734
3735 if (cust == NULL)
3736 return NULL;
3737
3738 return compunit_primary_filetab (cust);
3739 }
3740
3741 /* Traversal function for dw2_forget_cached_source_info. */
3742
3743 static int
3744 dw2_free_cached_file_names (void **slot, void *info)
3745 {
3746 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3747
3748 if (file_data->real_names)
3749 {
3750 int i;
3751
3752 for (i = 0; i < file_data->num_file_names; ++i)
3753 {
3754 xfree ((void*) file_data->real_names[i]);
3755 file_data->real_names[i] = NULL;
3756 }
3757 }
3758
3759 return 1;
3760 }
3761
3762 static void
3763 dw2_forget_cached_source_info (struct objfile *objfile)
3764 {
3765 struct dwarf2_per_objfile *dwarf2_per_objfile
3766 = get_dwarf2_per_objfile (objfile);
3767
3768 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3769 dw2_free_cached_file_names, NULL);
3770 }
3771
3772 /* Helper function for dw2_map_symtabs_matching_filename that expands
3773 the symtabs and calls the iterator. */
3774
3775 static int
3776 dw2_map_expand_apply (struct objfile *objfile,
3777 struct dwarf2_per_cu_data *per_cu,
3778 const char *name, const char *real_path,
3779 gdb::function_view<bool (symtab *)> callback)
3780 {
3781 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3782
3783 /* Don't visit already-expanded CUs. */
3784 if (per_cu->v.quick->compunit_symtab)
3785 return 0;
3786
3787 /* This may expand more than one symtab, and we want to iterate over
3788 all of them. */
3789 dw2_instantiate_symtab (per_cu, false);
3790
3791 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3792 last_made, callback);
3793 }
3794
3795 /* Implementation of the map_symtabs_matching_filename method. */
3796
3797 static bool
3798 dw2_map_symtabs_matching_filename
3799 (struct objfile *objfile, const char *name, const char *real_path,
3800 gdb::function_view<bool (symtab *)> callback)
3801 {
3802 const char *name_basename = lbasename (name);
3803 struct dwarf2_per_objfile *dwarf2_per_objfile
3804 = get_dwarf2_per_objfile (objfile);
3805
3806 /* The rule is CUs specify all the files, including those used by
3807 any TU, so there's no need to scan TUs here. */
3808
3809 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3810 {
3811 /* We only need to look at symtabs not already expanded. */
3812 if (per_cu->v.quick->compunit_symtab)
3813 continue;
3814
3815 quick_file_names *file_data = dw2_get_file_names (per_cu);
3816 if (file_data == NULL)
3817 continue;
3818
3819 for (int j = 0; j < file_data->num_file_names; ++j)
3820 {
3821 const char *this_name = file_data->file_names[j];
3822 const char *this_real_name;
3823
3824 if (compare_filenames_for_search (this_name, name))
3825 {
3826 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3827 callback))
3828 return true;
3829 continue;
3830 }
3831
3832 /* Before we invoke realpath, which can get expensive when many
3833 files are involved, do a quick comparison of the basenames. */
3834 if (! basenames_may_differ
3835 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3836 continue;
3837
3838 this_real_name = dw2_get_real_path (objfile, file_data, j);
3839 if (compare_filenames_for_search (this_real_name, name))
3840 {
3841 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3842 callback))
3843 return true;
3844 continue;
3845 }
3846
3847 if (real_path != NULL)
3848 {
3849 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3850 gdb_assert (IS_ABSOLUTE_PATH (name));
3851 if (this_real_name != NULL
3852 && FILENAME_CMP (real_path, this_real_name) == 0)
3853 {
3854 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3855 callback))
3856 return true;
3857 continue;
3858 }
3859 }
3860 }
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Struct used to manage iterating over all CUs looking for a symbol. */
3867
3868 struct dw2_symtab_iterator
3869 {
3870 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3871 struct dwarf2_per_objfile *dwarf2_per_objfile;
3872 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3873 int want_specific_block;
3874 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3875 Unused if !WANT_SPECIFIC_BLOCK. */
3876 int block_index;
3877 /* The kind of symbol we're looking for. */
3878 domain_enum domain;
3879 /* The list of CUs from the index entry of the symbol,
3880 or NULL if not found. */
3881 offset_type *vec;
3882 /* The next element in VEC to look at. */
3883 int next;
3884 /* The number of elements in VEC, or zero if there is no match. */
3885 int length;
3886 /* Have we seen a global version of the symbol?
3887 If so we can ignore all further global instances.
3888 This is to work around gold/15646, inefficient gold-generated
3889 indices. */
3890 int global_seen;
3891 };
3892
3893 /* Initialize the index symtab iterator ITER.
3894 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3895 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3896
3897 static void
3898 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3899 struct dwarf2_per_objfile *dwarf2_per_objfile,
3900 int want_specific_block,
3901 int block_index,
3902 domain_enum domain,
3903 const char *name)
3904 {
3905 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3906 iter->want_specific_block = want_specific_block;
3907 iter->block_index = block_index;
3908 iter->domain = domain;
3909 iter->next = 0;
3910 iter->global_seen = 0;
3911
3912 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3913
3914 /* index is NULL if OBJF_READNOW. */
3915 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3916 iter->length = MAYBE_SWAP (*iter->vec);
3917 else
3918 {
3919 iter->vec = NULL;
3920 iter->length = 0;
3921 }
3922 }
3923
3924 /* Return the next matching CU or NULL if there are no more. */
3925
3926 static struct dwarf2_per_cu_data *
3927 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3928 {
3929 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3930
3931 for ( ; iter->next < iter->length; ++iter->next)
3932 {
3933 offset_type cu_index_and_attrs =
3934 MAYBE_SWAP (iter->vec[iter->next + 1]);
3935 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3936 int want_static = iter->block_index != GLOBAL_BLOCK;
3937 /* This value is only valid for index versions >= 7. */
3938 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3939 gdb_index_symbol_kind symbol_kind =
3940 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3941 /* Only check the symbol attributes if they're present.
3942 Indices prior to version 7 don't record them,
3943 and indices >= 7 may elide them for certain symbols
3944 (gold does this). */
3945 int attrs_valid =
3946 (dwarf2_per_objfile->index_table->version >= 7
3947 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3948
3949 /* Don't crash on bad data. */
3950 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3951 + dwarf2_per_objfile->all_type_units.size ()))
3952 {
3953 complaint (_(".gdb_index entry has bad CU index"
3954 " [in module %s]"),
3955 objfile_name (dwarf2_per_objfile->objfile));
3956 continue;
3957 }
3958
3959 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3960
3961 /* Skip if already read in. */
3962 if (per_cu->v.quick->compunit_symtab)
3963 continue;
3964
3965 /* Check static vs global. */
3966 if (attrs_valid)
3967 {
3968 if (iter->want_specific_block
3969 && want_static != is_static)
3970 continue;
3971 /* Work around gold/15646. */
3972 if (!is_static && iter->global_seen)
3973 continue;
3974 if (!is_static)
3975 iter->global_seen = 1;
3976 }
3977
3978 /* Only check the symbol's kind if it has one. */
3979 if (attrs_valid)
3980 {
3981 switch (iter->domain)
3982 {
3983 case VAR_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3985 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3986 /* Some types are also in VAR_DOMAIN. */
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3988 continue;
3989 break;
3990 case STRUCT_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3992 continue;
3993 break;
3994 case LABEL_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 ++iter->next;
4004 return per_cu;
4005 }
4006
4007 return NULL;
4008 }
4009
4010 static struct compunit_symtab *
4011 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4012 const char *name, domain_enum domain)
4013 {
4014 struct compunit_symtab *stab_best = NULL;
4015 struct dwarf2_per_objfile *dwarf2_per_objfile
4016 = get_dwarf2_per_objfile (objfile);
4017
4018 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4019
4020 struct dw2_symtab_iterator iter;
4021 struct dwarf2_per_cu_data *per_cu;
4022
4023 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4024
4025 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4026 {
4027 struct symbol *sym, *with_opaque = NULL;
4028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4030 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4031
4032 sym = block_find_symbol (block, name, domain,
4033 block_find_non_opaque_type_preferred,
4034 &with_opaque);
4035
4036 /* Some caution must be observed with overloaded functions
4037 and methods, since the index will not contain any overload
4038 information (but NAME might contain it). */
4039
4040 if (sym != NULL
4041 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4042 return stab;
4043 if (with_opaque != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4045 stab_best = stab;
4046
4047 /* Keep looking through other CUs. */
4048 }
4049
4050 return stab_best;
4051 }
4052
4053 static void
4054 dw2_print_stats (struct objfile *objfile)
4055 {
4056 struct dwarf2_per_objfile *dwarf2_per_objfile
4057 = get_dwarf2_per_objfile (objfile);
4058 int total = (dwarf2_per_objfile->all_comp_units.size ()
4059 + dwarf2_per_objfile->all_type_units.size ());
4060 int count = 0;
4061
4062 for (int i = 0; i < total; ++i)
4063 {
4064 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4065
4066 if (!per_cu->v.quick->compunit_symtab)
4067 ++count;
4068 }
4069 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4070 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4071 }
4072
4073 /* This dumps minimal information about the index.
4074 It is called via "mt print objfiles".
4075 One use is to verify .gdb_index has been loaded by the
4076 gdb.dwarf2/gdb-index.exp testcase. */
4077
4078 static void
4079 dw2_dump (struct objfile *objfile)
4080 {
4081 struct dwarf2_per_objfile *dwarf2_per_objfile
4082 = get_dwarf2_per_objfile (objfile);
4083
4084 gdb_assert (dwarf2_per_objfile->using_index);
4085 printf_filtered (".gdb_index:");
4086 if (dwarf2_per_objfile->index_table != NULL)
4087 {
4088 printf_filtered (" version %d\n",
4089 dwarf2_per_objfile->index_table->version);
4090 }
4091 else
4092 printf_filtered (" faked for \"readnow\"\n");
4093 printf_filtered ("\n");
4094 }
4095
4096 static void
4097 dw2_relocate (struct objfile *objfile,
4098 const struct section_offsets *new_offsets,
4099 const struct section_offsets *delta)
4100 {
4101 /* There's nothing to relocate here. */
4102 }
4103
4104 static void
4105 dw2_expand_symtabs_for_function (struct objfile *objfile,
4106 const char *func_name)
4107 {
4108 struct dwarf2_per_objfile *dwarf2_per_objfile
4109 = get_dwarf2_per_objfile (objfile);
4110
4111 struct dw2_symtab_iterator iter;
4112 struct dwarf2_per_cu_data *per_cu;
4113
4114 /* Note: It doesn't matter what we pass for block_index here. */
4115 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4116 func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->psymtabs_addrmap)
5233 return NULL;
5234
5235 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5236 pc);
5237 if (!data)
5238 return NULL;
5239
5240 if (warn_if_readin && data->v.quick->compunit_symtab)
5241 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5242 paddress (get_objfile_arch (objfile), pc));
5243
5244 result
5245 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5246 false),
5247 pc);
5248 gdb_assert (result != NULL);
5249 return result;
5250 }
5251
5252 static void
5253 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5254 void *data, int need_fullname)
5255 {
5256 struct dwarf2_per_objfile *dwarf2_per_objfile
5257 = get_dwarf2_per_objfile (objfile);
5258
5259 if (!dwarf2_per_objfile->filenames_cache)
5260 {
5261 dwarf2_per_objfile->filenames_cache.emplace ();
5262
5263 htab_up visited (htab_create_alloc (10,
5264 htab_hash_pointer, htab_eq_pointer,
5265 NULL, xcalloc, xfree));
5266
5267 /* The rule is CUs specify all the files, including those used
5268 by any TU, so there's no need to scan TUs here. We can
5269 ignore file names coming from already-expanded CUs. */
5270
5271 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5272 {
5273 if (per_cu->v.quick->compunit_symtab)
5274 {
5275 void **slot = htab_find_slot (visited.get (),
5276 per_cu->v.quick->file_names,
5277 INSERT);
5278
5279 *slot = per_cu->v.quick->file_names;
5280 }
5281 }
5282
5283 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5284 {
5285 /* We only need to look at symtabs not already expanded. */
5286 if (per_cu->v.quick->compunit_symtab)
5287 continue;
5288
5289 quick_file_names *file_data = dw2_get_file_names (per_cu);
5290 if (file_data == NULL)
5291 continue;
5292
5293 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5294 if (*slot)
5295 {
5296 /* Already visited. */
5297 continue;
5298 }
5299 *slot = file_data;
5300
5301 for (int j = 0; j < file_data->num_file_names; ++j)
5302 {
5303 const char *filename = file_data->file_names[j];
5304 dwarf2_per_objfile->filenames_cache->seen (filename);
5305 }
5306 }
5307 }
5308
5309 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5310 {
5311 gdb::unique_xmalloc_ptr<char> this_real_name;
5312
5313 if (need_fullname)
5314 this_real_name = gdb_realpath (filename);
5315 (*fun) (filename, this_real_name.get (), data);
5316 });
5317 }
5318
5319 static int
5320 dw2_has_symbols (struct objfile *objfile)
5321 {
5322 return 1;
5323 }
5324
5325 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5326 {
5327 dw2_has_symbols,
5328 dw2_find_last_source_symtab,
5329 dw2_forget_cached_source_info,
5330 dw2_map_symtabs_matching_filename,
5331 dw2_lookup_symbol,
5332 dw2_print_stats,
5333 dw2_dump,
5334 dw2_relocate,
5335 dw2_expand_symtabs_for_function,
5336 dw2_expand_all_symtabs,
5337 dw2_expand_symtabs_with_fullname,
5338 dw2_map_matching_symbols,
5339 dw2_expand_symtabs_matching,
5340 dw2_find_pc_sect_compunit_symtab,
5341 NULL,
5342 dw2_map_symbol_filenames
5343 };
5344
5345 /* DWARF-5 debug_names reader. */
5346
5347 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5348 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5349
5350 /* A helper function that reads the .debug_names section in SECTION
5351 and fills in MAP. FILENAME is the name of the file containing the
5352 section; it is used for error reporting.
5353
5354 Returns true if all went well, false otherwise. */
5355
5356 static bool
5357 read_debug_names_from_section (struct objfile *objfile,
5358 const char *filename,
5359 struct dwarf2_section_info *section,
5360 mapped_debug_names &map)
5361 {
5362 if (dwarf2_section_empty_p (section))
5363 return false;
5364
5365 /* Older elfutils strip versions could keep the section in the main
5366 executable while splitting it for the separate debug info file. */
5367 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5368 return false;
5369
5370 dwarf2_read_section (objfile, section);
5371
5372 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5373
5374 const gdb_byte *addr = section->buffer;
5375
5376 bfd *const abfd = get_section_bfd_owner (section);
5377
5378 unsigned int bytes_read;
5379 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5380 addr += bytes_read;
5381
5382 map.dwarf5_is_dwarf64 = bytes_read != 4;
5383 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5384 if (bytes_read + length != section->size)
5385 {
5386 /* There may be multiple per-CU indices. */
5387 warning (_("Section .debug_names in %s length %s does not match "
5388 "section length %s, ignoring .debug_names."),
5389 filename, plongest (bytes_read + length),
5390 pulongest (section->size));
5391 return false;
5392 }
5393
5394 /* The version number. */
5395 uint16_t version = read_2_bytes (abfd, addr);
5396 addr += 2;
5397 if (version != 5)
5398 {
5399 warning (_("Section .debug_names in %s has unsupported version %d, "
5400 "ignoring .debug_names."),
5401 filename, version);
5402 return false;
5403 }
5404
5405 /* Padding. */
5406 uint16_t padding = read_2_bytes (abfd, addr);
5407 addr += 2;
5408 if (padding != 0)
5409 {
5410 warning (_("Section .debug_names in %s has unsupported padding %d, "
5411 "ignoring .debug_names."),
5412 filename, padding);
5413 return false;
5414 }
5415
5416 /* comp_unit_count - The number of CUs in the CU list. */
5417 map.cu_count = read_4_bytes (abfd, addr);
5418 addr += 4;
5419
5420 /* local_type_unit_count - The number of TUs in the local TU
5421 list. */
5422 map.tu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* foreign_type_unit_count - The number of TUs in the foreign TU
5426 list. */
5427 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429 if (foreign_tu_count != 0)
5430 {
5431 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5432 "ignoring .debug_names."),
5433 filename, static_cast<unsigned long> (foreign_tu_count));
5434 return false;
5435 }
5436
5437 /* bucket_count - The number of hash buckets in the hash lookup
5438 table. */
5439 map.bucket_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* name_count - The number of unique names in the index. */
5443 map.name_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* abbrev_table_size - The size in bytes of the abbreviations
5447 table. */
5448 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* augmentation_string_size - The size in bytes of the augmentation
5452 string. This value is rounded up to a multiple of 4. */
5453 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455 map.augmentation_is_gdb = ((augmentation_string_size
5456 == sizeof (dwarf5_augmentation))
5457 && memcmp (addr, dwarf5_augmentation,
5458 sizeof (dwarf5_augmentation)) == 0);
5459 augmentation_string_size += (-augmentation_string_size) & 3;
5460 addr += augmentation_string_size;
5461
5462 /* List of CUs */
5463 map.cu_table_reordered = addr;
5464 addr += map.cu_count * map.offset_size;
5465
5466 /* List of Local TUs */
5467 map.tu_table_reordered = addr;
5468 addr += map.tu_count * map.offset_size;
5469
5470 /* Hash Lookup Table */
5471 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5472 addr += map.bucket_count * 4;
5473 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5474 addr += map.name_count * 4;
5475
5476 /* Name Table */
5477 map.name_table_string_offs_reordered = addr;
5478 addr += map.name_count * map.offset_size;
5479 map.name_table_entry_offs_reordered = addr;
5480 addr += map.name_count * map.offset_size;
5481
5482 const gdb_byte *abbrev_table_start = addr;
5483 for (;;)
5484 {
5485 unsigned int bytes_read;
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %zu vs. written as %u, ignoring .debug_names."),
5526 filename, addr - abbrev_table_start, abbrev_table_size);
5527 return false;
5528 }
5529 map.entry_pool = addr;
5530
5531 return true;
5532 }
5533
5534 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5535 list. */
5536
5537 static void
5538 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5539 const mapped_debug_names &map,
5540 dwarf2_section_info &section,
5541 bool is_dwz)
5542 {
5543 sect_offset sect_off_prev;
5544 for (uint32_t i = 0; i <= map.cu_count; ++i)
5545 {
5546 sect_offset sect_off_next;
5547 if (i < map.cu_count)
5548 {
5549 sect_off_next
5550 = (sect_offset) (extract_unsigned_integer
5551 (map.cu_table_reordered + i * map.offset_size,
5552 map.offset_size,
5553 map.dwarf5_byte_order));
5554 }
5555 else
5556 sect_off_next = (sect_offset) section.size;
5557 if (i >= 1)
5558 {
5559 const ULONGEST length = sect_off_next - sect_off_prev;
5560 dwarf2_per_cu_data *per_cu
5561 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5562 sect_off_prev, length);
5563 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5564 }
5565 sect_off_prev = sect_off_next;
5566 }
5567 }
5568
5569 /* Read the CU list from the mapped index, and use it to create all
5570 the CU objects for this dwarf2_per_objfile. */
5571
5572 static void
5573 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5574 const mapped_debug_names &map,
5575 const mapped_debug_names &dwz_map)
5576 {
5577 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5578 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5579
5580 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5581 dwarf2_per_objfile->info,
5582 false /* is_dwz */);
5583
5584 if (dwz_map.cu_count == 0)
5585 return;
5586
5587 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5589 true /* is_dwz */);
5590 }
5591
5592 /* Read .debug_names. If everything went ok, initialize the "quick"
5593 elements of all the CUs and return true. Otherwise, return false. */
5594
5595 static bool
5596 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5597 {
5598 std::unique_ptr<mapped_debug_names> map
5599 (new mapped_debug_names (dwarf2_per_objfile));
5600 mapped_debug_names dwz_map (dwarf2_per_objfile);
5601 struct objfile *objfile = dwarf2_per_objfile->objfile;
5602
5603 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5604 &dwarf2_per_objfile->debug_names,
5605 *map))
5606 return false;
5607
5608 /* Don't use the index if it's empty. */
5609 if (map->name_count == 0)
5610 return false;
5611
5612 /* If there is a .dwz file, read it so we can get its CU list as
5613 well. */
5614 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5615 if (dwz != NULL)
5616 {
5617 if (!read_debug_names_from_section (objfile,
5618 bfd_get_filename (dwz->dwz_bfd),
5619 &dwz->debug_names, dwz_map))
5620 {
5621 warning (_("could not read '.debug_names' section from %s; skipping"),
5622 bfd_get_filename (dwz->dwz_bfd));
5623 return false;
5624 }
5625 }
5626
5627 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5628
5629 if (map->tu_count != 0)
5630 {
5631 /* We can only handle a single .debug_types when we have an
5632 index. */
5633 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5634 return false;
5635
5636 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5637 dwarf2_per_objfile->types, 0);
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5661 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5662 dw2_debug_names_iterator (const mapped_debug_names &map,
5663 bool want_specific_block,
5664 block_enum block_index, domain_enum domain,
5665 const char *name)
5666 : m_map (map), m_want_specific_block (want_specific_block),
5667 m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 /* Return the next matching CU or NULL if there are no more. */
5679 dwarf2_per_cu_data *next ();
5680
5681 private:
5682 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5683 const char *name);
5684 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5685 uint32_t namei);
5686
5687 /* The internalized form of .debug_names. */
5688 const mapped_debug_names &m_map;
5689
5690 /* If true, only look for symbols that match BLOCK_INDEX. */
5691 const bool m_want_specific_block = false;
5692
5693 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5694 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5695 value. */
5696 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 if (current_language->la_language == language_cplus
5730 || current_language->la_language == language_fortran
5731 || current_language->la_language == language_d)
5732 {
5733 /* NAME is already canonical. Drop any qualifiers as
5734 .debug_names does not contain any. */
5735
5736 if (strchr (name, '(') != NULL)
5737 {
5738 gdb::unique_xmalloc_ptr<char> without_params
5739 = cp_remove_params (name);
5740
5741 if (without_params != NULL)
5742 {
5743 name = without_params.get();
5744 }
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 bool have_is_static = false;
5857 bool is_static;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = true;
5911 break;
5912 case DW_IDX_GNU_external:
5913 if (!m_map.augmentation_is_gdb)
5914 break;
5915 have_is_static = true;
5916 is_static = false;
5917 break;
5918 }
5919 }
5920
5921 /* Skip if already read in. */
5922 if (per_cu->v.quick->compunit_symtab)
5923 goto again;
5924
5925 /* Check static vs global. */
5926 if (have_is_static)
5927 {
5928 const bool want_static = m_block_index != GLOBAL_BLOCK;
5929 if (m_want_specific_block && want_static != is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6015 const char *name, domain_enum domain)
6016 {
6017 const block_enum block_index = static_cast<block_enum> (block_index_int);
6018 struct dwarf2_per_objfile *dwarf2_per_objfile
6019 = get_dwarf2_per_objfile (objfile);
6020
6021 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6022 if (!mapp)
6023 {
6024 /* index is NULL if OBJF_READNOW. */
6025 return NULL;
6026 }
6027 const auto &map = *mapp;
6028
6029 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6030 block_index, domain, name);
6031
6032 struct compunit_symtab *stab_best = NULL;
6033 struct dwarf2_per_cu_data *per_cu;
6034 while ((per_cu = iter.next ()) != NULL)
6035 {
6036 struct symbol *sym, *with_opaque = NULL;
6037 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6038 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6039 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6040
6041 sym = block_find_symbol (block, name, domain,
6042 block_find_non_opaque_type_preferred,
6043 &with_opaque);
6044
6045 /* Some caution must be observed with overloaded functions and
6046 methods, since the index will not contain any overload
6047 information (but NAME might contain it). */
6048
6049 if (sym != NULL
6050 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6051 return stab;
6052 if (with_opaque != NULL
6053 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6054 stab_best = stab;
6055
6056 /* Keep looking through other CUs. */
6057 }
6058
6059 return stab_best;
6060 }
6061
6062 /* This dumps minimal information about .debug_names. It is called
6063 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6064 uses this to verify that .debug_names has been loaded. */
6065
6066 static void
6067 dw2_debug_names_dump (struct objfile *objfile)
6068 {
6069 struct dwarf2_per_objfile *dwarf2_per_objfile
6070 = get_dwarf2_per_objfile (objfile);
6071
6072 gdb_assert (dwarf2_per_objfile->using_index);
6073 printf_filtered (".debug_names:");
6074 if (dwarf2_per_objfile->debug_names_table)
6075 printf_filtered (" exists\n");
6076 else
6077 printf_filtered (" faked for \"readnow\"\n");
6078 printf_filtered ("\n");
6079 }
6080
6081 static void
6082 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6083 const char *func_name)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6089 if (dwarf2_per_objfile->debug_names_table)
6090 {
6091 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6092
6093 /* Note: It doesn't matter what we pass for block_index here. */
6094 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6095 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6096
6097 struct dwarf2_per_cu_data *per_cu;
6098 while ((per_cu = iter.next ()) != NULL)
6099 dw2_instantiate_symtab (per_cu, false);
6100 }
6101 }
6102
6103 static void
6104 dw2_debug_names_expand_symtabs_matching
6105 (struct objfile *objfile,
6106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6107 const lookup_name_info &lookup_name,
6108 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6109 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6110 enum search_domain kind)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 /* debug_names_table is NULL if OBJF_READNOW. */
6116 if (!dwarf2_per_objfile->debug_names_table)
6117 return;
6118
6119 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6120
6121 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6122
6123 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6124 symbol_matcher,
6125 kind, [&] (offset_type namei)
6126 {
6127 /* The name was matched, now expand corresponding CUs that were
6128 marked. */
6129 dw2_debug_names_iterator iter (map, kind, namei);
6130
6131 struct dwarf2_per_cu_data *per_cu;
6132 while ((per_cu = iter.next ()) != NULL)
6133 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6134 expansion_notify);
6135 });
6136 }
6137
6138 const struct quick_symbol_functions dwarf2_debug_names_functions =
6139 {
6140 dw2_has_symbols,
6141 dw2_find_last_source_symtab,
6142 dw2_forget_cached_source_info,
6143 dw2_map_symtabs_matching_filename,
6144 dw2_debug_names_lookup_symbol,
6145 dw2_print_stats,
6146 dw2_debug_names_dump,
6147 dw2_relocate,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* See symfile.h. */
6159
6160 bool
6161 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6162 {
6163 struct dwarf2_per_objfile *dwarf2_per_objfile
6164 = get_dwarf2_per_objfile (objfile);
6165
6166 /* If we're about to read full symbols, don't bother with the
6167 indices. In this case we also don't care if some other debug
6168 format is making psymtabs, because they are all about to be
6169 expanded anyway. */
6170 if ((objfile->flags & OBJF_READNOW))
6171 {
6172 dwarf2_per_objfile->using_index = 1;
6173 create_all_comp_units (dwarf2_per_objfile);
6174 create_all_type_units (dwarf2_per_objfile);
6175 dwarf2_per_objfile->quick_file_names_table
6176 = create_quick_file_names_table
6177 (dwarf2_per_objfile->all_comp_units.size ());
6178
6179 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6180 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6181 {
6182 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6183
6184 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6185 struct dwarf2_per_cu_quick_data);
6186 }
6187
6188 /* Return 1 so that gdb sees the "quick" functions. However,
6189 these functions will be no-ops because we will have expanded
6190 all symtabs. */
6191 *index_kind = dw_index_kind::GDB_INDEX;
6192 return true;
6193 }
6194
6195 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6196 {
6197 *index_kind = dw_index_kind::DEBUG_NAMES;
6198 return true;
6199 }
6200
6201 if (dwarf2_read_gdb_index (dwarf2_per_objfile))
6202 {
6203 *index_kind = dw_index_kind::GDB_INDEX;
6204 return true;
6205 }
6206
6207 return false;
6208 }
6209
6210 \f
6211
6212 /* Build a partial symbol table. */
6213
6214 void
6215 dwarf2_build_psymtabs (struct objfile *objfile)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 if (objfile->global_psymbols.capacity () == 0
6221 && objfile->static_psymbols.capacity () == 0)
6222 init_psymbol_list (objfile, 1024);
6223
6224 TRY
6225 {
6226 /* This isn't really ideal: all the data we allocate on the
6227 objfile's obstack is still uselessly kept around. However,
6228 freeing it seems unsafe. */
6229 psymtab_discarder psymtabs (objfile);
6230 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6231 psymtabs.keep ();
6232 }
6233 CATCH (except, RETURN_MASK_ERROR)
6234 {
6235 exception_print (gdb_stderr, except);
6236 }
6237 END_CATCH
6238 }
6239
6240 /* Return the total length of the CU described by HEADER. */
6241
6242 static unsigned int
6243 get_cu_length (const struct comp_unit_head *header)
6244 {
6245 return header->initial_length_size + header->length;
6246 }
6247
6248 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6249
6250 static inline bool
6251 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6252 {
6253 sect_offset bottom = cu_header->sect_off;
6254 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6255
6256 return sect_off >= bottom && sect_off < top;
6257 }
6258
6259 /* Find the base address of the compilation unit for range lists and
6260 location lists. It will normally be specified by DW_AT_low_pc.
6261 In DWARF-3 draft 4, the base address could be overridden by
6262 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6263 compilation units with discontinuous ranges. */
6264
6265 static void
6266 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6267 {
6268 struct attribute *attr;
6269
6270 cu->base_known = 0;
6271 cu->base_address = 0;
6272
6273 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6274 if (attr)
6275 {
6276 cu->base_address = attr_value_as_address (attr);
6277 cu->base_known = 1;
6278 }
6279 else
6280 {
6281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6282 if (attr)
6283 {
6284 cu->base_address = attr_value_as_address (attr);
6285 cu->base_known = 1;
6286 }
6287 }
6288 }
6289
6290 /* Read in the comp unit header information from the debug_info at info_ptr.
6291 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6292 NOTE: This leaves members offset, first_die_offset to be filled in
6293 by the caller. */
6294
6295 static const gdb_byte *
6296 read_comp_unit_head (struct comp_unit_head *cu_header,
6297 const gdb_byte *info_ptr,
6298 struct dwarf2_section_info *section,
6299 rcuh_kind section_kind)
6300 {
6301 int signed_addr;
6302 unsigned int bytes_read;
6303 const char *filename = get_section_file_name (section);
6304 bfd *abfd = get_section_bfd_owner (section);
6305
6306 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6307 cu_header->initial_length_size = bytes_read;
6308 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6309 info_ptr += bytes_read;
6310 cu_header->version = read_2_bytes (abfd, info_ptr);
6311 if (cu_header->version < 2 || cu_header->version > 5)
6312 error (_("Dwarf Error: wrong version in compilation unit header "
6313 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6314 cu_header->version, filename);
6315 info_ptr += 2;
6316 if (cu_header->version < 5)
6317 switch (section_kind)
6318 {
6319 case rcuh_kind::COMPILE:
6320 cu_header->unit_type = DW_UT_compile;
6321 break;
6322 case rcuh_kind::TYPE:
6323 cu_header->unit_type = DW_UT_type;
6324 break;
6325 default:
6326 internal_error (__FILE__, __LINE__,
6327 _("read_comp_unit_head: invalid section_kind"));
6328 }
6329 else
6330 {
6331 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6332 (read_1_byte (abfd, info_ptr));
6333 info_ptr += 1;
6334 switch (cu_header->unit_type)
6335 {
6336 case DW_UT_compile:
6337 if (section_kind != rcuh_kind::COMPILE)
6338 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6339 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6340 filename);
6341 break;
6342 case DW_UT_type:
6343 section_kind = rcuh_kind::TYPE;
6344 break;
6345 default:
6346 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6347 "(is %d, should be %d or %d) [in module %s]"),
6348 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6349 }
6350
6351 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6352 info_ptr += 1;
6353 }
6354 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6355 cu_header,
6356 &bytes_read);
6357 info_ptr += bytes_read;
6358 if (cu_header->version < 5)
6359 {
6360 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6361 info_ptr += 1;
6362 }
6363 signed_addr = bfd_get_sign_extend_vma (abfd);
6364 if (signed_addr < 0)
6365 internal_error (__FILE__, __LINE__,
6366 _("read_comp_unit_head: dwarf from non elf file"));
6367 cu_header->signed_addr_p = signed_addr;
6368
6369 if (section_kind == rcuh_kind::TYPE)
6370 {
6371 LONGEST type_offset;
6372
6373 cu_header->signature = read_8_bytes (abfd, info_ptr);
6374 info_ptr += 8;
6375
6376 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6377 info_ptr += bytes_read;
6378 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6379 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6380 error (_("Dwarf Error: Too big type_offset in compilation unit "
6381 "header (is %s) [in module %s]"), plongest (type_offset),
6382 filename);
6383 }
6384
6385 return info_ptr;
6386 }
6387
6388 /* Helper function that returns the proper abbrev section for
6389 THIS_CU. */
6390
6391 static struct dwarf2_section_info *
6392 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6393 {
6394 struct dwarf2_section_info *abbrev;
6395 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6396
6397 if (this_cu->is_dwz)
6398 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6399 else
6400 abbrev = &dwarf2_per_objfile->abbrev;
6401
6402 return abbrev;
6403 }
6404
6405 /* Subroutine of read_and_check_comp_unit_head and
6406 read_and_check_type_unit_head to simplify them.
6407 Perform various error checking on the header. */
6408
6409 static void
6410 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6411 struct comp_unit_head *header,
6412 struct dwarf2_section_info *section,
6413 struct dwarf2_section_info *abbrev_section)
6414 {
6415 const char *filename = get_section_file_name (section);
6416
6417 if (to_underlying (header->abbrev_sect_off)
6418 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6419 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6420 "(offset %s + 6) [in module %s]"),
6421 sect_offset_str (header->abbrev_sect_off),
6422 sect_offset_str (header->sect_off),
6423 filename);
6424
6425 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6426 avoid potential 32-bit overflow. */
6427 if (((ULONGEST) header->sect_off + get_cu_length (header))
6428 > section->size)
6429 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6430 "(offset %s + 0) [in module %s]"),
6431 header->length, sect_offset_str (header->sect_off),
6432 filename);
6433 }
6434
6435 /* Read in a CU/TU header and perform some basic error checking.
6436 The contents of the header are stored in HEADER.
6437 The result is a pointer to the start of the first DIE. */
6438
6439 static const gdb_byte *
6440 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6441 struct comp_unit_head *header,
6442 struct dwarf2_section_info *section,
6443 struct dwarf2_section_info *abbrev_section,
6444 const gdb_byte *info_ptr,
6445 rcuh_kind section_kind)
6446 {
6447 const gdb_byte *beg_of_comp_unit = info_ptr;
6448
6449 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6450
6451 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6452
6453 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6454
6455 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6456 abbrev_section);
6457
6458 return info_ptr;
6459 }
6460
6461 /* Fetch the abbreviation table offset from a comp or type unit header. */
6462
6463 static sect_offset
6464 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6465 struct dwarf2_section_info *section,
6466 sect_offset sect_off)
6467 {
6468 bfd *abfd = get_section_bfd_owner (section);
6469 const gdb_byte *info_ptr;
6470 unsigned int initial_length_size, offset_size;
6471 uint16_t version;
6472
6473 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6474 info_ptr = section->buffer + to_underlying (sect_off);
6475 read_initial_length (abfd, info_ptr, &initial_length_size);
6476 offset_size = initial_length_size == 4 ? 4 : 8;
6477 info_ptr += initial_length_size;
6478
6479 version = read_2_bytes (abfd, info_ptr);
6480 info_ptr += 2;
6481 if (version >= 5)
6482 {
6483 /* Skip unit type and address size. */
6484 info_ptr += 2;
6485 }
6486
6487 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6488 }
6489
6490 /* Allocate a new partial symtab for file named NAME and mark this new
6491 partial symtab as being an include of PST. */
6492
6493 static void
6494 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6495 struct objfile *objfile)
6496 {
6497 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6498
6499 if (!IS_ABSOLUTE_PATH (subpst->filename))
6500 {
6501 /* It shares objfile->objfile_obstack. */
6502 subpst->dirname = pst->dirname;
6503 }
6504
6505 subpst->textlow = 0;
6506 subpst->texthigh = 0;
6507
6508 subpst->dependencies
6509 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6510 subpst->dependencies[0] = pst;
6511 subpst->number_of_dependencies = 1;
6512
6513 subpst->globals_offset = 0;
6514 subpst->n_global_syms = 0;
6515 subpst->statics_offset = 0;
6516 subpst->n_static_syms = 0;
6517 subpst->compunit_symtab = NULL;
6518 subpst->read_symtab = pst->read_symtab;
6519 subpst->readin = 0;
6520
6521 /* No private part is necessary for include psymtabs. This property
6522 can be used to differentiate between such include psymtabs and
6523 the regular ones. */
6524 subpst->read_symtab_private = NULL;
6525 }
6526
6527 /* Read the Line Number Program data and extract the list of files
6528 included by the source file represented by PST. Build an include
6529 partial symtab for each of these included files. */
6530
6531 static void
6532 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6533 struct die_info *die,
6534 struct partial_symtab *pst)
6535 {
6536 line_header_up lh;
6537 struct attribute *attr;
6538
6539 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6540 if (attr)
6541 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6542 if (lh == NULL)
6543 return; /* No linetable, so no includes. */
6544
6545 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6546 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6547 }
6548
6549 static hashval_t
6550 hash_signatured_type (const void *item)
6551 {
6552 const struct signatured_type *sig_type
6553 = (const struct signatured_type *) item;
6554
6555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6556 return sig_type->signature;
6557 }
6558
6559 static int
6560 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6561 {
6562 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6563 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6564
6565 return lhs->signature == rhs->signature;
6566 }
6567
6568 /* Allocate a hash table for signatured types. */
6569
6570 static htab_t
6571 allocate_signatured_type_table (struct objfile *objfile)
6572 {
6573 return htab_create_alloc_ex (41,
6574 hash_signatured_type,
6575 eq_signatured_type,
6576 NULL,
6577 &objfile->objfile_obstack,
6578 hashtab_obstack_allocate,
6579 dummy_obstack_deallocate);
6580 }
6581
6582 /* A helper function to add a signatured type CU to a table. */
6583
6584 static int
6585 add_signatured_type_cu_to_table (void **slot, void *datum)
6586 {
6587 struct signatured_type *sigt = (struct signatured_type *) *slot;
6588 std::vector<signatured_type *> *all_type_units
6589 = (std::vector<signatured_type *> *) datum;
6590
6591 all_type_units->push_back (sigt);
6592
6593 return 1;
6594 }
6595
6596 /* A helper for create_debug_types_hash_table. Read types from SECTION
6597 and fill them into TYPES_HTAB. It will process only type units,
6598 therefore DW_UT_type. */
6599
6600 static void
6601 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6602 struct dwo_file *dwo_file,
6603 dwarf2_section_info *section, htab_t &types_htab,
6604 rcuh_kind section_kind)
6605 {
6606 struct objfile *objfile = dwarf2_per_objfile->objfile;
6607 struct dwarf2_section_info *abbrev_section;
6608 bfd *abfd;
6609 const gdb_byte *info_ptr, *end_ptr;
6610
6611 abbrev_section = (dwo_file != NULL
6612 ? &dwo_file->sections.abbrev
6613 : &dwarf2_per_objfile->abbrev);
6614
6615 if (dwarf_read_debug)
6616 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6617 get_section_name (section),
6618 get_section_file_name (abbrev_section));
6619
6620 dwarf2_read_section (objfile, section);
6621 info_ptr = section->buffer;
6622
6623 if (info_ptr == NULL)
6624 return;
6625
6626 /* We can't set abfd until now because the section may be empty or
6627 not present, in which case the bfd is unknown. */
6628 abfd = get_section_bfd_owner (section);
6629
6630 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6631 because we don't need to read any dies: the signature is in the
6632 header. */
6633
6634 end_ptr = info_ptr + section->size;
6635 while (info_ptr < end_ptr)
6636 {
6637 struct signatured_type *sig_type;
6638 struct dwo_unit *dwo_tu;
6639 void **slot;
6640 const gdb_byte *ptr = info_ptr;
6641 struct comp_unit_head header;
6642 unsigned int length;
6643
6644 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6645
6646 /* Initialize it due to a false compiler warning. */
6647 header.signature = -1;
6648 header.type_cu_offset_in_tu = (cu_offset) -1;
6649
6650 /* We need to read the type's signature in order to build the hash
6651 table, but we don't need anything else just yet. */
6652
6653 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6654 abbrev_section, ptr, section_kind);
6655
6656 length = get_cu_length (&header);
6657
6658 /* Skip dummy type units. */
6659 if (ptr >= info_ptr + length
6660 || peek_abbrev_code (abfd, ptr) == 0
6661 || header.unit_type != DW_UT_type)
6662 {
6663 info_ptr += length;
6664 continue;
6665 }
6666
6667 if (types_htab == NULL)
6668 {
6669 if (dwo_file)
6670 types_htab = allocate_dwo_unit_table (objfile);
6671 else
6672 types_htab = allocate_signatured_type_table (objfile);
6673 }
6674
6675 if (dwo_file)
6676 {
6677 sig_type = NULL;
6678 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6679 struct dwo_unit);
6680 dwo_tu->dwo_file = dwo_file;
6681 dwo_tu->signature = header.signature;
6682 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6683 dwo_tu->section = section;
6684 dwo_tu->sect_off = sect_off;
6685 dwo_tu->length = length;
6686 }
6687 else
6688 {
6689 /* N.B.: type_offset is not usable if this type uses a DWO file.
6690 The real type_offset is in the DWO file. */
6691 dwo_tu = NULL;
6692 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6693 struct signatured_type);
6694 sig_type->signature = header.signature;
6695 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6696 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6697 sig_type->per_cu.is_debug_types = 1;
6698 sig_type->per_cu.section = section;
6699 sig_type->per_cu.sect_off = sect_off;
6700 sig_type->per_cu.length = length;
6701 }
6702
6703 slot = htab_find_slot (types_htab,
6704 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6705 INSERT);
6706 gdb_assert (slot != NULL);
6707 if (*slot != NULL)
6708 {
6709 sect_offset dup_sect_off;
6710
6711 if (dwo_file)
6712 {
6713 const struct dwo_unit *dup_tu
6714 = (const struct dwo_unit *) *slot;
6715
6716 dup_sect_off = dup_tu->sect_off;
6717 }
6718 else
6719 {
6720 const struct signatured_type *dup_tu
6721 = (const struct signatured_type *) *slot;
6722
6723 dup_sect_off = dup_tu->per_cu.sect_off;
6724 }
6725
6726 complaint (_("debug type entry at offset %s is duplicate to"
6727 " the entry at offset %s, signature %s"),
6728 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6729 hex_string (header.signature));
6730 }
6731 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6732
6733 if (dwarf_read_debug > 1)
6734 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6735 sect_offset_str (sect_off),
6736 hex_string (header.signature));
6737
6738 info_ptr += length;
6739 }
6740 }
6741
6742 /* Create the hash table of all entries in the .debug_types
6743 (or .debug_types.dwo) section(s).
6744 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6745 otherwise it is NULL.
6746
6747 The result is a pointer to the hash table or NULL if there are no types.
6748
6749 Note: This function processes DWO files only, not DWP files. */
6750
6751 static void
6752 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6753 struct dwo_file *dwo_file,
6754 VEC (dwarf2_section_info_def) *types,
6755 htab_t &types_htab)
6756 {
6757 int ix;
6758 struct dwarf2_section_info *section;
6759
6760 if (VEC_empty (dwarf2_section_info_def, types))
6761 return;
6762
6763 for (ix = 0;
6764 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6765 ++ix)
6766 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6767 types_htab, rcuh_kind::TYPE);
6768 }
6769
6770 /* Create the hash table of all entries in the .debug_types section,
6771 and initialize all_type_units.
6772 The result is zero if there is an error (e.g. missing .debug_types section),
6773 otherwise non-zero. */
6774
6775 static int
6776 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6777 {
6778 htab_t types_htab = NULL;
6779
6780 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6781 &dwarf2_per_objfile->info, types_htab,
6782 rcuh_kind::COMPILE);
6783 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6784 dwarf2_per_objfile->types, types_htab);
6785 if (types_htab == NULL)
6786 {
6787 dwarf2_per_objfile->signatured_types = NULL;
6788 return 0;
6789 }
6790
6791 dwarf2_per_objfile->signatured_types = types_htab;
6792
6793 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6794 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6795
6796 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6797 &dwarf2_per_objfile->all_type_units);
6798
6799 return 1;
6800 }
6801
6802 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6803 If SLOT is non-NULL, it is the entry to use in the hash table.
6804 Otherwise we find one. */
6805
6806 static struct signatured_type *
6807 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6808 void **slot)
6809 {
6810 struct objfile *objfile = dwarf2_per_objfile->objfile;
6811
6812 if (dwarf2_per_objfile->all_type_units.size ()
6813 == dwarf2_per_objfile->all_type_units.capacity ())
6814 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6815
6816 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6817 struct signatured_type);
6818
6819 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6820 sig_type->signature = sig;
6821 sig_type->per_cu.is_debug_types = 1;
6822 if (dwarf2_per_objfile->using_index)
6823 {
6824 sig_type->per_cu.v.quick =
6825 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6826 struct dwarf2_per_cu_quick_data);
6827 }
6828
6829 if (slot == NULL)
6830 {
6831 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6832 sig_type, INSERT);
6833 }
6834 gdb_assert (*slot == NULL);
6835 *slot = sig_type;
6836 /* The rest of sig_type must be filled in by the caller. */
6837 return sig_type;
6838 }
6839
6840 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6841 Fill in SIG_ENTRY with DWO_ENTRY. */
6842
6843 static void
6844 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6845 struct signatured_type *sig_entry,
6846 struct dwo_unit *dwo_entry)
6847 {
6848 /* Make sure we're not clobbering something we don't expect to. */
6849 gdb_assert (! sig_entry->per_cu.queued);
6850 gdb_assert (sig_entry->per_cu.cu == NULL);
6851 if (dwarf2_per_objfile->using_index)
6852 {
6853 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6854 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6855 }
6856 else
6857 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6858 gdb_assert (sig_entry->signature == dwo_entry->signature);
6859 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6860 gdb_assert (sig_entry->type_unit_group == NULL);
6861 gdb_assert (sig_entry->dwo_unit == NULL);
6862
6863 sig_entry->per_cu.section = dwo_entry->section;
6864 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6865 sig_entry->per_cu.length = dwo_entry->length;
6866 sig_entry->per_cu.reading_dwo_directly = 1;
6867 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6868 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6869 sig_entry->dwo_unit = dwo_entry;
6870 }
6871
6872 /* Subroutine of lookup_signatured_type.
6873 If we haven't read the TU yet, create the signatured_type data structure
6874 for a TU to be read in directly from a DWO file, bypassing the stub.
6875 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6876 using .gdb_index, then when reading a CU we want to stay in the DWO file
6877 containing that CU. Otherwise we could end up reading several other DWO
6878 files (due to comdat folding) to process the transitive closure of all the
6879 mentioned TUs, and that can be slow. The current DWO file will have every
6880 type signature that it needs.
6881 We only do this for .gdb_index because in the psymtab case we already have
6882 to read all the DWOs to build the type unit groups. */
6883
6884 static struct signatured_type *
6885 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6886 {
6887 struct dwarf2_per_objfile *dwarf2_per_objfile
6888 = cu->per_cu->dwarf2_per_objfile;
6889 struct objfile *objfile = dwarf2_per_objfile->objfile;
6890 struct dwo_file *dwo_file;
6891 struct dwo_unit find_dwo_entry, *dwo_entry;
6892 struct signatured_type find_sig_entry, *sig_entry;
6893 void **slot;
6894
6895 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6896
6897 /* If TU skeletons have been removed then we may not have read in any
6898 TUs yet. */
6899 if (dwarf2_per_objfile->signatured_types == NULL)
6900 {
6901 dwarf2_per_objfile->signatured_types
6902 = allocate_signatured_type_table (objfile);
6903 }
6904
6905 /* We only ever need to read in one copy of a signatured type.
6906 Use the global signatured_types array to do our own comdat-folding
6907 of types. If this is the first time we're reading this TU, and
6908 the TU has an entry in .gdb_index, replace the recorded data from
6909 .gdb_index with this TU. */
6910
6911 find_sig_entry.signature = sig;
6912 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6913 &find_sig_entry, INSERT);
6914 sig_entry = (struct signatured_type *) *slot;
6915
6916 /* We can get here with the TU already read, *or* in the process of being
6917 read. Don't reassign the global entry to point to this DWO if that's
6918 the case. Also note that if the TU is already being read, it may not
6919 have come from a DWO, the program may be a mix of Fission-compiled
6920 code and non-Fission-compiled code. */
6921
6922 /* Have we already tried to read this TU?
6923 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6924 needn't exist in the global table yet). */
6925 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6926 return sig_entry;
6927
6928 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6929 dwo_unit of the TU itself. */
6930 dwo_file = cu->dwo_unit->dwo_file;
6931
6932 /* Ok, this is the first time we're reading this TU. */
6933 if (dwo_file->tus == NULL)
6934 return NULL;
6935 find_dwo_entry.signature = sig;
6936 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6937 if (dwo_entry == NULL)
6938 return NULL;
6939
6940 /* If the global table doesn't have an entry for this TU, add one. */
6941 if (sig_entry == NULL)
6942 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6943
6944 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6945 sig_entry->per_cu.tu_read = 1;
6946 return sig_entry;
6947 }
6948
6949 /* Subroutine of lookup_signatured_type.
6950 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6951 then try the DWP file. If the TU stub (skeleton) has been removed then
6952 it won't be in .gdb_index. */
6953
6954 static struct signatured_type *
6955 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6956 {
6957 struct dwarf2_per_objfile *dwarf2_per_objfile
6958 = cu->per_cu->dwarf2_per_objfile;
6959 struct objfile *objfile = dwarf2_per_objfile->objfile;
6960 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6961 struct dwo_unit *dwo_entry;
6962 struct signatured_type find_sig_entry, *sig_entry;
6963 void **slot;
6964
6965 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6966 gdb_assert (dwp_file != NULL);
6967
6968 /* If TU skeletons have been removed then we may not have read in any
6969 TUs yet. */
6970 if (dwarf2_per_objfile->signatured_types == NULL)
6971 {
6972 dwarf2_per_objfile->signatured_types
6973 = allocate_signatured_type_table (objfile);
6974 }
6975
6976 find_sig_entry.signature = sig;
6977 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6978 &find_sig_entry, INSERT);
6979 sig_entry = (struct signatured_type *) *slot;
6980
6981 /* Have we already tried to read this TU?
6982 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6983 needn't exist in the global table yet). */
6984 if (sig_entry != NULL)
6985 return sig_entry;
6986
6987 if (dwp_file->tus == NULL)
6988 return NULL;
6989 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6990 sig, 1 /* is_debug_types */);
6991 if (dwo_entry == NULL)
6992 return NULL;
6993
6994 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6995 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6996
6997 return sig_entry;
6998 }
6999
7000 /* Lookup a signature based type for DW_FORM_ref_sig8.
7001 Returns NULL if signature SIG is not present in the table.
7002 It is up to the caller to complain about this. */
7003
7004 static struct signatured_type *
7005 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7006 {
7007 struct dwarf2_per_objfile *dwarf2_per_objfile
7008 = cu->per_cu->dwarf2_per_objfile;
7009
7010 if (cu->dwo_unit
7011 && dwarf2_per_objfile->using_index)
7012 {
7013 /* We're in a DWO/DWP file, and we're using .gdb_index.
7014 These cases require special processing. */
7015 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7016 return lookup_dwo_signatured_type (cu, sig);
7017 else
7018 return lookup_dwp_signatured_type (cu, sig);
7019 }
7020 else
7021 {
7022 struct signatured_type find_entry, *entry;
7023
7024 if (dwarf2_per_objfile->signatured_types == NULL)
7025 return NULL;
7026 find_entry.signature = sig;
7027 entry = ((struct signatured_type *)
7028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7029 return entry;
7030 }
7031 }
7032 \f
7033 /* Low level DIE reading support. */
7034
7035 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7036
7037 static void
7038 init_cu_die_reader (struct die_reader_specs *reader,
7039 struct dwarf2_cu *cu,
7040 struct dwarf2_section_info *section,
7041 struct dwo_file *dwo_file,
7042 struct abbrev_table *abbrev_table)
7043 {
7044 gdb_assert (section->readin && section->buffer != NULL);
7045 reader->abfd = get_section_bfd_owner (section);
7046 reader->cu = cu;
7047 reader->dwo_file = dwo_file;
7048 reader->die_section = section;
7049 reader->buffer = section->buffer;
7050 reader->buffer_end = section->buffer + section->size;
7051 reader->comp_dir = NULL;
7052 reader->abbrev_table = abbrev_table;
7053 }
7054
7055 /* Subroutine of init_cutu_and_read_dies to simplify it.
7056 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7057 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7058 already.
7059
7060 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7061 from it to the DIE in the DWO. If NULL we are skipping the stub.
7062 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7063 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7064 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7065 STUB_COMP_DIR may be non-NULL.
7066 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7067 are filled in with the info of the DIE from the DWO file.
7068 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7069 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7070 kept around for at least as long as *RESULT_READER.
7071
7072 The result is non-zero if a valid (non-dummy) DIE was found. */
7073
7074 static int
7075 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7076 struct dwo_unit *dwo_unit,
7077 struct die_info *stub_comp_unit_die,
7078 const char *stub_comp_dir,
7079 struct die_reader_specs *result_reader,
7080 const gdb_byte **result_info_ptr,
7081 struct die_info **result_comp_unit_die,
7082 int *result_has_children,
7083 abbrev_table_up *result_dwo_abbrev_table)
7084 {
7085 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7086 struct objfile *objfile = dwarf2_per_objfile->objfile;
7087 struct dwarf2_cu *cu = this_cu->cu;
7088 bfd *abfd;
7089 const gdb_byte *begin_info_ptr, *info_ptr;
7090 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7091 int i,num_extra_attrs;
7092 struct dwarf2_section_info *dwo_abbrev_section;
7093 struct attribute *attr;
7094 struct die_info *comp_unit_die;
7095
7096 /* At most one of these may be provided. */
7097 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7098
7099 /* These attributes aren't processed until later:
7100 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7101 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7102 referenced later. However, these attributes are found in the stub
7103 which we won't have later. In order to not impose this complication
7104 on the rest of the code, we read them here and copy them to the
7105 DWO CU/TU die. */
7106
7107 stmt_list = NULL;
7108 low_pc = NULL;
7109 high_pc = NULL;
7110 ranges = NULL;
7111 comp_dir = NULL;
7112
7113 if (stub_comp_unit_die != NULL)
7114 {
7115 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7116 DWO file. */
7117 if (! this_cu->is_debug_types)
7118 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7119 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7120 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7121 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7122 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7123
7124 /* There should be a DW_AT_addr_base attribute here (if needed).
7125 We need the value before we can process DW_FORM_GNU_addr_index. */
7126 cu->addr_base = 0;
7127 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7128 if (attr)
7129 cu->addr_base = DW_UNSND (attr);
7130
7131 /* There should be a DW_AT_ranges_base attribute here (if needed).
7132 We need the value before we can process DW_AT_ranges. */
7133 cu->ranges_base = 0;
7134 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7135 if (attr)
7136 cu->ranges_base = DW_UNSND (attr);
7137 }
7138 else if (stub_comp_dir != NULL)
7139 {
7140 /* Reconstruct the comp_dir attribute to simplify the code below. */
7141 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7142 comp_dir->name = DW_AT_comp_dir;
7143 comp_dir->form = DW_FORM_string;
7144 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7145 DW_STRING (comp_dir) = stub_comp_dir;
7146 }
7147
7148 /* Set up for reading the DWO CU/TU. */
7149 cu->dwo_unit = dwo_unit;
7150 dwarf2_section_info *section = dwo_unit->section;
7151 dwarf2_read_section (objfile, section);
7152 abfd = get_section_bfd_owner (section);
7153 begin_info_ptr = info_ptr = (section->buffer
7154 + to_underlying (dwo_unit->sect_off));
7155 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7156
7157 if (this_cu->is_debug_types)
7158 {
7159 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7160
7161 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7162 &cu->header, section,
7163 dwo_abbrev_section,
7164 info_ptr, rcuh_kind::TYPE);
7165 /* This is not an assert because it can be caused by bad debug info. */
7166 if (sig_type->signature != cu->header.signature)
7167 {
7168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7169 " TU at offset %s [in module %s]"),
7170 hex_string (sig_type->signature),
7171 hex_string (cu->header.signature),
7172 sect_offset_str (dwo_unit->sect_off),
7173 bfd_get_filename (abfd));
7174 }
7175 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7176 /* For DWOs coming from DWP files, we don't know the CU length
7177 nor the type's offset in the TU until now. */
7178 dwo_unit->length = get_cu_length (&cu->header);
7179 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7180
7181 /* Establish the type offset that can be used to lookup the type.
7182 For DWO files, we don't know it until now. */
7183 sig_type->type_offset_in_section
7184 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7185 }
7186 else
7187 {
7188 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7189 &cu->header, section,
7190 dwo_abbrev_section,
7191 info_ptr, rcuh_kind::COMPILE);
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 }
7197
7198 *result_dwo_abbrev_table
7199 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7200 cu->header.abbrev_sect_off);
7201 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7202 result_dwo_abbrev_table->get ());
7203
7204 /* Read in the die, but leave space to copy over the attributes
7205 from the stub. This has the benefit of simplifying the rest of
7206 the code - all the work to maintain the illusion of a single
7207 DW_TAG_{compile,type}_unit DIE is done here. */
7208 num_extra_attrs = ((stmt_list != NULL)
7209 + (low_pc != NULL)
7210 + (high_pc != NULL)
7211 + (ranges != NULL)
7212 + (comp_dir != NULL));
7213 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7214 result_has_children, num_extra_attrs);
7215
7216 /* Copy over the attributes from the stub to the DIE we just read in. */
7217 comp_unit_die = *result_comp_unit_die;
7218 i = comp_unit_die->num_attrs;
7219 if (stmt_list != NULL)
7220 comp_unit_die->attrs[i++] = *stmt_list;
7221 if (low_pc != NULL)
7222 comp_unit_die->attrs[i++] = *low_pc;
7223 if (high_pc != NULL)
7224 comp_unit_die->attrs[i++] = *high_pc;
7225 if (ranges != NULL)
7226 comp_unit_die->attrs[i++] = *ranges;
7227 if (comp_dir != NULL)
7228 comp_unit_die->attrs[i++] = *comp_dir;
7229 comp_unit_die->num_attrs += num_extra_attrs;
7230
7231 if (dwarf_die_debug)
7232 {
7233 fprintf_unfiltered (gdb_stdlog,
7234 "Read die from %s@0x%x of %s:\n",
7235 get_section_name (section),
7236 (unsigned) (begin_info_ptr - section->buffer),
7237 bfd_get_filename (abfd));
7238 dump_die (comp_unit_die, dwarf_die_debug);
7239 }
7240
7241 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7242 TUs by skipping the stub and going directly to the entry in the DWO file.
7243 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7244 to get it via circuitous means. Blech. */
7245 if (comp_dir != NULL)
7246 result_reader->comp_dir = DW_STRING (comp_dir);
7247
7248 /* Skip dummy compilation units. */
7249 if (info_ptr >= begin_info_ptr + dwo_unit->length
7250 || peek_abbrev_code (abfd, info_ptr) == 0)
7251 return 0;
7252
7253 *result_info_ptr = info_ptr;
7254 return 1;
7255 }
7256
7257 /* Subroutine of init_cutu_and_read_dies to simplify it.
7258 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7259 Returns NULL if the specified DWO unit cannot be found. */
7260
7261 static struct dwo_unit *
7262 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7263 struct die_info *comp_unit_die)
7264 {
7265 struct dwarf2_cu *cu = this_cu->cu;
7266 ULONGEST signature;
7267 struct dwo_unit *dwo_unit;
7268 const char *comp_dir, *dwo_name;
7269
7270 gdb_assert (cu != NULL);
7271
7272 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7273 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7274 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7275
7276 if (this_cu->is_debug_types)
7277 {
7278 struct signatured_type *sig_type;
7279
7280 /* Since this_cu is the first member of struct signatured_type,
7281 we can go from a pointer to one to a pointer to the other. */
7282 sig_type = (struct signatured_type *) this_cu;
7283 signature = sig_type->signature;
7284 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7285 }
7286 else
7287 {
7288 struct attribute *attr;
7289
7290 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7291 if (! attr)
7292 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7293 " [in module %s]"),
7294 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7295 signature = DW_UNSND (attr);
7296 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7297 signature);
7298 }
7299
7300 return dwo_unit;
7301 }
7302
7303 /* Subroutine of init_cutu_and_read_dies to simplify it.
7304 See it for a description of the parameters.
7305 Read a TU directly from a DWO file, bypassing the stub. */
7306
7307 static void
7308 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7309 int use_existing_cu, int keep,
7310 die_reader_func_ftype *die_reader_func,
7311 void *data)
7312 {
7313 std::unique_ptr<dwarf2_cu> new_cu;
7314 struct signatured_type *sig_type;
7315 struct die_reader_specs reader;
7316 const gdb_byte *info_ptr;
7317 struct die_info *comp_unit_die;
7318 int has_children;
7319 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7320
7321 /* Verify we can do the following downcast, and that we have the
7322 data we need. */
7323 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7324 sig_type = (struct signatured_type *) this_cu;
7325 gdb_assert (sig_type->dwo_unit != NULL);
7326
7327 if (use_existing_cu && this_cu->cu != NULL)
7328 {
7329 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7330 /* There's no need to do the rereading_dwo_cu handling that
7331 init_cutu_and_read_dies does since we don't read the stub. */
7332 }
7333 else
7334 {
7335 /* If !use_existing_cu, this_cu->cu must be NULL. */
7336 gdb_assert (this_cu->cu == NULL);
7337 new_cu.reset (new dwarf2_cu (this_cu));
7338 }
7339
7340 /* A future optimization, if needed, would be to use an existing
7341 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7342 could share abbrev tables. */
7343
7344 /* The abbreviation table used by READER, this must live at least as long as
7345 READER. */
7346 abbrev_table_up dwo_abbrev_table;
7347
7348 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7349 NULL /* stub_comp_unit_die */,
7350 sig_type->dwo_unit->dwo_file->comp_dir,
7351 &reader, &info_ptr,
7352 &comp_unit_die, &has_children,
7353 &dwo_abbrev_table) == 0)
7354 {
7355 /* Dummy die. */
7356 return;
7357 }
7358
7359 /* All the "real" work is done here. */
7360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7361
7362 /* This duplicates the code in init_cutu_and_read_dies,
7363 but the alternative is making the latter more complex.
7364 This function is only for the special case of using DWO files directly:
7365 no point in overly complicating the general case just to handle this. */
7366 if (new_cu != NULL && keep)
7367 {
7368 /* Link this CU into read_in_chain. */
7369 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7370 dwarf2_per_objfile->read_in_chain = this_cu;
7371 /* The chain owns it now. */
7372 new_cu.release ();
7373 }
7374 }
7375
7376 /* Initialize a CU (or TU) and read its DIEs.
7377 If the CU defers to a DWO file, read the DWO file as well.
7378
7379 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7380 Otherwise the table specified in the comp unit header is read in and used.
7381 This is an optimization for when we already have the abbrev table.
7382
7383 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7384 Otherwise, a new CU is allocated with xmalloc.
7385
7386 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7387 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7388
7389 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7390 linker) then DIE_READER_FUNC will not get called. */
7391
7392 static void
7393 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7394 struct abbrev_table *abbrev_table,
7395 int use_existing_cu, int keep,
7396 bool skip_partial,
7397 die_reader_func_ftype *die_reader_func,
7398 void *data)
7399 {
7400 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7401 struct objfile *objfile = dwarf2_per_objfile->objfile;
7402 struct dwarf2_section_info *section = this_cu->section;
7403 bfd *abfd = get_section_bfd_owner (section);
7404 struct dwarf2_cu *cu;
7405 const gdb_byte *begin_info_ptr, *info_ptr;
7406 struct die_reader_specs reader;
7407 struct die_info *comp_unit_die;
7408 int has_children;
7409 struct attribute *attr;
7410 struct signatured_type *sig_type = NULL;
7411 struct dwarf2_section_info *abbrev_section;
7412 /* Non-zero if CU currently points to a DWO file and we need to
7413 reread it. When this happens we need to reread the skeleton die
7414 before we can reread the DWO file (this only applies to CUs, not TUs). */
7415 int rereading_dwo_cu = 0;
7416
7417 if (dwarf_die_debug)
7418 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7419 this_cu->is_debug_types ? "type" : "comp",
7420 sect_offset_str (this_cu->sect_off));
7421
7422 if (use_existing_cu)
7423 gdb_assert (keep);
7424
7425 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7426 file (instead of going through the stub), short-circuit all of this. */
7427 if (this_cu->reading_dwo_directly)
7428 {
7429 /* Narrow down the scope of possibilities to have to understand. */
7430 gdb_assert (this_cu->is_debug_types);
7431 gdb_assert (abbrev_table == NULL);
7432 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7433 die_reader_func, data);
7434 return;
7435 }
7436
7437 /* This is cheap if the section is already read in. */
7438 dwarf2_read_section (objfile, section);
7439
7440 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7441
7442 abbrev_section = get_abbrev_section_for_cu (this_cu);
7443
7444 std::unique_ptr<dwarf2_cu> new_cu;
7445 if (use_existing_cu && this_cu->cu != NULL)
7446 {
7447 cu = this_cu->cu;
7448 /* If this CU is from a DWO file we need to start over, we need to
7449 refetch the attributes from the skeleton CU.
7450 This could be optimized by retrieving those attributes from when we
7451 were here the first time: the previous comp_unit_die was stored in
7452 comp_unit_obstack. But there's no data yet that we need this
7453 optimization. */
7454 if (cu->dwo_unit != NULL)
7455 rereading_dwo_cu = 1;
7456 }
7457 else
7458 {
7459 /* If !use_existing_cu, this_cu->cu must be NULL. */
7460 gdb_assert (this_cu->cu == NULL);
7461 new_cu.reset (new dwarf2_cu (this_cu));
7462 cu = new_cu.get ();
7463 }
7464
7465 /* Get the header. */
7466 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7467 {
7468 /* We already have the header, there's no need to read it in again. */
7469 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7470 }
7471 else
7472 {
7473 if (this_cu->is_debug_types)
7474 {
7475 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7476 &cu->header, section,
7477 abbrev_section, info_ptr,
7478 rcuh_kind::TYPE);
7479
7480 /* Since per_cu is the first member of struct signatured_type,
7481 we can go from a pointer to one to a pointer to the other. */
7482 sig_type = (struct signatured_type *) this_cu;
7483 gdb_assert (sig_type->signature == cu->header.signature);
7484 gdb_assert (sig_type->type_offset_in_tu
7485 == cu->header.type_cu_offset_in_tu);
7486 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7487
7488 /* LENGTH has not been set yet for type units if we're
7489 using .gdb_index. */
7490 this_cu->length = get_cu_length (&cu->header);
7491
7492 /* Establish the type offset that can be used to lookup the type. */
7493 sig_type->type_offset_in_section =
7494 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7495
7496 this_cu->dwarf_version = cu->header.version;
7497 }
7498 else
7499 {
7500 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7501 &cu->header, section,
7502 abbrev_section,
7503 info_ptr,
7504 rcuh_kind::COMPILE);
7505
7506 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7507 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7508 this_cu->dwarf_version = cu->header.version;
7509 }
7510 }
7511
7512 /* Skip dummy compilation units. */
7513 if (info_ptr >= begin_info_ptr + this_cu->length
7514 || peek_abbrev_code (abfd, info_ptr) == 0)
7515 return;
7516
7517 /* If we don't have them yet, read the abbrevs for this compilation unit.
7518 And if we need to read them now, make sure they're freed when we're
7519 done (own the table through ABBREV_TABLE_HOLDER). */
7520 abbrev_table_up abbrev_table_holder;
7521 if (abbrev_table != NULL)
7522 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7523 else
7524 {
7525 abbrev_table_holder
7526 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7527 cu->header.abbrev_sect_off);
7528 abbrev_table = abbrev_table_holder.get ();
7529 }
7530
7531 /* Read the top level CU/TU die. */
7532 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7533 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7534
7535 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7536 return;
7537
7538 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7539 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7540 table from the DWO file and pass the ownership over to us. It will be
7541 referenced from READER, so we must make sure to free it after we're done
7542 with READER.
7543
7544 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7545 DWO CU, that this test will fail (the attribute will not be present). */
7546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7547 abbrev_table_up dwo_abbrev_table;
7548 if (attr)
7549 {
7550 struct dwo_unit *dwo_unit;
7551 struct die_info *dwo_comp_unit_die;
7552
7553 if (has_children)
7554 {
7555 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7556 " has children (offset %s) [in module %s]"),
7557 sect_offset_str (this_cu->sect_off),
7558 bfd_get_filename (abfd));
7559 }
7560 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7561 if (dwo_unit != NULL)
7562 {
7563 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7564 comp_unit_die, NULL,
7565 &reader, &info_ptr,
7566 &dwo_comp_unit_die, &has_children,
7567 &dwo_abbrev_table) == 0)
7568 {
7569 /* Dummy die. */
7570 return;
7571 }
7572 comp_unit_die = dwo_comp_unit_die;
7573 }
7574 else
7575 {
7576 /* Yikes, we couldn't find the rest of the DIE, we only have
7577 the stub. A complaint has already been logged. There's
7578 not much more we can do except pass on the stub DIE to
7579 die_reader_func. We don't want to throw an error on bad
7580 debug info. */
7581 }
7582 }
7583
7584 /* All of the above is setup for this call. Yikes. */
7585 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7586
7587 /* Done, clean up. */
7588 if (new_cu != NULL && keep)
7589 {
7590 /* Link this CU into read_in_chain. */
7591 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7592 dwarf2_per_objfile->read_in_chain = this_cu;
7593 /* The chain owns it now. */
7594 new_cu.release ();
7595 }
7596 }
7597
7598 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7599 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7600 to have already done the lookup to find the DWO file).
7601
7602 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7603 THIS_CU->is_debug_types, but nothing else.
7604
7605 We fill in THIS_CU->length.
7606
7607 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7608 linker) then DIE_READER_FUNC will not get called.
7609
7610 THIS_CU->cu is always freed when done.
7611 This is done in order to not leave THIS_CU->cu in a state where we have
7612 to care whether it refers to the "main" CU or the DWO CU. */
7613
7614 static void
7615 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7616 struct dwo_file *dwo_file,
7617 die_reader_func_ftype *die_reader_func,
7618 void *data)
7619 {
7620 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7621 struct objfile *objfile = dwarf2_per_objfile->objfile;
7622 struct dwarf2_section_info *section = this_cu->section;
7623 bfd *abfd = get_section_bfd_owner (section);
7624 struct dwarf2_section_info *abbrev_section;
7625 const gdb_byte *begin_info_ptr, *info_ptr;
7626 struct die_reader_specs reader;
7627 struct die_info *comp_unit_die;
7628 int has_children;
7629
7630 if (dwarf_die_debug)
7631 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7632 this_cu->is_debug_types ? "type" : "comp",
7633 sect_offset_str (this_cu->sect_off));
7634
7635 gdb_assert (this_cu->cu == NULL);
7636
7637 abbrev_section = (dwo_file != NULL
7638 ? &dwo_file->sections.abbrev
7639 : get_abbrev_section_for_cu (this_cu));
7640
7641 /* This is cheap if the section is already read in. */
7642 dwarf2_read_section (objfile, section);
7643
7644 struct dwarf2_cu cu (this_cu);
7645
7646 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7647 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7648 &cu.header, section,
7649 abbrev_section, info_ptr,
7650 (this_cu->is_debug_types
7651 ? rcuh_kind::TYPE
7652 : rcuh_kind::COMPILE));
7653
7654 this_cu->length = get_cu_length (&cu.header);
7655
7656 /* Skip dummy compilation units. */
7657 if (info_ptr >= begin_info_ptr + this_cu->length
7658 || peek_abbrev_code (abfd, info_ptr) == 0)
7659 return;
7660
7661 abbrev_table_up abbrev_table
7662 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7663 cu.header.abbrev_sect_off);
7664
7665 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7666 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7667
7668 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7669 }
7670
7671 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7672 does not lookup the specified DWO file.
7673 This cannot be used to read DWO files.
7674
7675 THIS_CU->cu is always freed when done.
7676 This is done in order to not leave THIS_CU->cu in a state where we have
7677 to care whether it refers to the "main" CU or the DWO CU.
7678 We can revisit this if the data shows there's a performance issue. */
7679
7680 static void
7681 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7682 die_reader_func_ftype *die_reader_func,
7683 void *data)
7684 {
7685 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7686 }
7687 \f
7688 /* Type Unit Groups.
7689
7690 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7691 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7692 so that all types coming from the same compilation (.o file) are grouped
7693 together. A future step could be to put the types in the same symtab as
7694 the CU the types ultimately came from. */
7695
7696 static hashval_t
7697 hash_type_unit_group (const void *item)
7698 {
7699 const struct type_unit_group *tu_group
7700 = (const struct type_unit_group *) item;
7701
7702 return hash_stmt_list_entry (&tu_group->hash);
7703 }
7704
7705 static int
7706 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7707 {
7708 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7709 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7710
7711 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7712 }
7713
7714 /* Allocate a hash table for type unit groups. */
7715
7716 static htab_t
7717 allocate_type_unit_groups_table (struct objfile *objfile)
7718 {
7719 return htab_create_alloc_ex (3,
7720 hash_type_unit_group,
7721 eq_type_unit_group,
7722 NULL,
7723 &objfile->objfile_obstack,
7724 hashtab_obstack_allocate,
7725 dummy_obstack_deallocate);
7726 }
7727
7728 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7729 partial symtabs. We combine several TUs per psymtab to not let the size
7730 of any one psymtab grow too big. */
7731 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7732 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7733
7734 /* Helper routine for get_type_unit_group.
7735 Create the type_unit_group object used to hold one or more TUs. */
7736
7737 static struct type_unit_group *
7738 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7739 {
7740 struct dwarf2_per_objfile *dwarf2_per_objfile
7741 = cu->per_cu->dwarf2_per_objfile;
7742 struct objfile *objfile = dwarf2_per_objfile->objfile;
7743 struct dwarf2_per_cu_data *per_cu;
7744 struct type_unit_group *tu_group;
7745
7746 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7747 struct type_unit_group);
7748 per_cu = &tu_group->per_cu;
7749 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7750
7751 if (dwarf2_per_objfile->using_index)
7752 {
7753 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7754 struct dwarf2_per_cu_quick_data);
7755 }
7756 else
7757 {
7758 unsigned int line_offset = to_underlying (line_offset_struct);
7759 struct partial_symtab *pst;
7760 char *name;
7761
7762 /* Give the symtab a useful name for debug purposes. */
7763 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7764 name = xstrprintf ("<type_units_%d>",
7765 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7766 else
7767 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7768
7769 pst = create_partial_symtab (per_cu, name);
7770 pst->anonymous = 1;
7771
7772 xfree (name);
7773 }
7774
7775 tu_group->hash.dwo_unit = cu->dwo_unit;
7776 tu_group->hash.line_sect_off = line_offset_struct;
7777
7778 return tu_group;
7779 }
7780
7781 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7782 STMT_LIST is a DW_AT_stmt_list attribute. */
7783
7784 static struct type_unit_group *
7785 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7786 {
7787 struct dwarf2_per_objfile *dwarf2_per_objfile
7788 = cu->per_cu->dwarf2_per_objfile;
7789 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7790 struct type_unit_group *tu_group;
7791 void **slot;
7792 unsigned int line_offset;
7793 struct type_unit_group type_unit_group_for_lookup;
7794
7795 if (dwarf2_per_objfile->type_unit_groups == NULL)
7796 {
7797 dwarf2_per_objfile->type_unit_groups =
7798 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7799 }
7800
7801 /* Do we need to create a new group, or can we use an existing one? */
7802
7803 if (stmt_list)
7804 {
7805 line_offset = DW_UNSND (stmt_list);
7806 ++tu_stats->nr_symtab_sharers;
7807 }
7808 else
7809 {
7810 /* Ugh, no stmt_list. Rare, but we have to handle it.
7811 We can do various things here like create one group per TU or
7812 spread them over multiple groups to split up the expansion work.
7813 To avoid worst case scenarios (too many groups or too large groups)
7814 we, umm, group them in bunches. */
7815 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7816 | (tu_stats->nr_stmt_less_type_units
7817 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7818 ++tu_stats->nr_stmt_less_type_units;
7819 }
7820
7821 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7822 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7823 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7824 &type_unit_group_for_lookup, INSERT);
7825 if (*slot != NULL)
7826 {
7827 tu_group = (struct type_unit_group *) *slot;
7828 gdb_assert (tu_group != NULL);
7829 }
7830 else
7831 {
7832 sect_offset line_offset_struct = (sect_offset) line_offset;
7833 tu_group = create_type_unit_group (cu, line_offset_struct);
7834 *slot = tu_group;
7835 ++tu_stats->nr_symtabs;
7836 }
7837
7838 return tu_group;
7839 }
7840 \f
7841 /* Partial symbol tables. */
7842
7843 /* Create a psymtab named NAME and assign it to PER_CU.
7844
7845 The caller must fill in the following details:
7846 dirname, textlow, texthigh. */
7847
7848 static struct partial_symtab *
7849 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7850 {
7851 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7852 struct partial_symtab *pst;
7853
7854 pst = start_psymtab_common (objfile, name, 0,
7855 objfile->global_psymbols,
7856 objfile->static_psymbols);
7857
7858 pst->psymtabs_addrmap_supported = 1;
7859
7860 /* This is the glue that links PST into GDB's symbol API. */
7861 pst->read_symtab_private = per_cu;
7862 pst->read_symtab = dwarf2_read_symtab;
7863 per_cu->v.psymtab = pst;
7864
7865 return pst;
7866 }
7867
7868 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7869 type. */
7870
7871 struct process_psymtab_comp_unit_data
7872 {
7873 /* True if we are reading a DW_TAG_partial_unit. */
7874
7875 int want_partial_unit;
7876
7877 /* The "pretend" language that is used if the CU doesn't declare a
7878 language. */
7879
7880 enum language pretend_language;
7881 };
7882
7883 /* die_reader_func for process_psymtab_comp_unit. */
7884
7885 static void
7886 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7887 const gdb_byte *info_ptr,
7888 struct die_info *comp_unit_die,
7889 int has_children,
7890 void *data)
7891 {
7892 struct dwarf2_cu *cu = reader->cu;
7893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7895 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7896 CORE_ADDR baseaddr;
7897 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7898 struct partial_symtab *pst;
7899 enum pc_bounds_kind cu_bounds_kind;
7900 const char *filename;
7901 struct process_psymtab_comp_unit_data *info
7902 = (struct process_psymtab_comp_unit_data *) data;
7903
7904 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7905 return;
7906
7907 gdb_assert (! per_cu->is_debug_types);
7908
7909 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7910
7911 cu->list_in_scope = &file_symbols;
7912
7913 /* Allocate a new partial symbol table structure. */
7914 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7915 if (filename == NULL)
7916 filename = "";
7917
7918 pst = create_partial_symtab (per_cu, filename);
7919
7920 /* This must be done before calling dwarf2_build_include_psymtabs. */
7921 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7922
7923 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7924
7925 dwarf2_find_base_address (comp_unit_die, cu);
7926
7927 /* Possibly set the default values of LOWPC and HIGHPC from
7928 `DW_AT_ranges'. */
7929 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7930 &best_highpc, cu, pst);
7931 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7932 /* Store the contiguous range if it is not empty; it can be empty for
7933 CUs with no code. */
7934 addrmap_set_empty (objfile->psymtabs_addrmap,
7935 gdbarch_adjust_dwarf2_addr (gdbarch,
7936 best_lowpc + baseaddr),
7937 gdbarch_adjust_dwarf2_addr (gdbarch,
7938 best_highpc + baseaddr) - 1,
7939 pst);
7940
7941 /* Check if comp unit has_children.
7942 If so, read the rest of the partial symbols from this comp unit.
7943 If not, there's no more debug_info for this comp unit. */
7944 if (has_children)
7945 {
7946 struct partial_die_info *first_die;
7947 CORE_ADDR lowpc, highpc;
7948
7949 lowpc = ((CORE_ADDR) -1);
7950 highpc = ((CORE_ADDR) 0);
7951
7952 first_die = load_partial_dies (reader, info_ptr, 1);
7953
7954 scan_partial_symbols (first_die, &lowpc, &highpc,
7955 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7956
7957 /* If we didn't find a lowpc, set it to highpc to avoid
7958 complaints from `maint check'. */
7959 if (lowpc == ((CORE_ADDR) -1))
7960 lowpc = highpc;
7961
7962 /* If the compilation unit didn't have an explicit address range,
7963 then use the information extracted from its child dies. */
7964 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7965 {
7966 best_lowpc = lowpc;
7967 best_highpc = highpc;
7968 }
7969 }
7970 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7971 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7972
7973 end_psymtab_common (objfile, pst);
7974
7975 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7976 {
7977 int i;
7978 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7979 struct dwarf2_per_cu_data *iter;
7980
7981 /* Fill in 'dependencies' here; we fill in 'users' in a
7982 post-pass. */
7983 pst->number_of_dependencies = len;
7984 pst->dependencies =
7985 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7986 for (i = 0;
7987 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7988 i, iter);
7989 ++i)
7990 pst->dependencies[i] = iter->v.psymtab;
7991
7992 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 }
7994
7995 /* Get the list of files included in the current compilation unit,
7996 and build a psymtab for each of them. */
7997 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7998
7999 if (dwarf_read_debug)
8000 {
8001 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8002
8003 fprintf_unfiltered (gdb_stdlog,
8004 "Psymtab for %s unit @%s: %s - %s"
8005 ", %d global, %d static syms\n",
8006 per_cu->is_debug_types ? "type" : "comp",
8007 sect_offset_str (per_cu->sect_off),
8008 paddress (gdbarch, pst->textlow),
8009 paddress (gdbarch, pst->texthigh),
8010 pst->n_global_syms, pst->n_static_syms);
8011 }
8012 }
8013
8014 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8015 Process compilation unit THIS_CU for a psymtab. */
8016
8017 static void
8018 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8019 int want_partial_unit,
8020 enum language pretend_language)
8021 {
8022 /* If this compilation unit was already read in, free the
8023 cached copy in order to read it in again. This is
8024 necessary because we skipped some symbols when we first
8025 read in the compilation unit (see load_partial_dies).
8026 This problem could be avoided, but the benefit is unclear. */
8027 if (this_cu->cu != NULL)
8028 free_one_cached_comp_unit (this_cu);
8029
8030 if (this_cu->is_debug_types)
8031 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8032 build_type_psymtabs_reader, NULL);
8033 else
8034 {
8035 process_psymtab_comp_unit_data info;
8036 info.want_partial_unit = want_partial_unit;
8037 info.pretend_language = pretend_language;
8038 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8039 process_psymtab_comp_unit_reader, &info);
8040 }
8041
8042 /* Age out any secondary CUs. */
8043 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8044 }
8045
8046 /* Reader function for build_type_psymtabs. */
8047
8048 static void
8049 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8050 const gdb_byte *info_ptr,
8051 struct die_info *type_unit_die,
8052 int has_children,
8053 void *data)
8054 {
8055 struct dwarf2_per_objfile *dwarf2_per_objfile
8056 = reader->cu->per_cu->dwarf2_per_objfile;
8057 struct objfile *objfile = dwarf2_per_objfile->objfile;
8058 struct dwarf2_cu *cu = reader->cu;
8059 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8060 struct signatured_type *sig_type;
8061 struct type_unit_group *tu_group;
8062 struct attribute *attr;
8063 struct partial_die_info *first_die;
8064 CORE_ADDR lowpc, highpc;
8065 struct partial_symtab *pst;
8066
8067 gdb_assert (data == NULL);
8068 gdb_assert (per_cu->is_debug_types);
8069 sig_type = (struct signatured_type *) per_cu;
8070
8071 if (! has_children)
8072 return;
8073
8074 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8075 tu_group = get_type_unit_group (cu, attr);
8076
8077 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8078
8079 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8080 cu->list_in_scope = &file_symbols;
8081 pst = create_partial_symtab (per_cu, "");
8082 pst->anonymous = 1;
8083
8084 first_die = load_partial_dies (reader, info_ptr, 1);
8085
8086 lowpc = (CORE_ADDR) -1;
8087 highpc = (CORE_ADDR) 0;
8088 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8089
8090 end_psymtab_common (objfile, pst);
8091 }
8092
8093 /* Struct used to sort TUs by their abbreviation table offset. */
8094
8095 struct tu_abbrev_offset
8096 {
8097 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8098 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8099 {}
8100
8101 signatured_type *sig_type;
8102 sect_offset abbrev_offset;
8103 };
8104
8105 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8106
8107 static bool
8108 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8109 const struct tu_abbrev_offset &b)
8110 {
8111 return a.abbrev_offset < b.abbrev_offset;
8112 }
8113
8114 /* Efficiently read all the type units.
8115 This does the bulk of the work for build_type_psymtabs.
8116
8117 The efficiency is because we sort TUs by the abbrev table they use and
8118 only read each abbrev table once. In one program there are 200K TUs
8119 sharing 8K abbrev tables.
8120
8121 The main purpose of this function is to support building the
8122 dwarf2_per_objfile->type_unit_groups table.
8123 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8124 can collapse the search space by grouping them by stmt_list.
8125 The savings can be significant, in the same program from above the 200K TUs
8126 share 8K stmt_list tables.
8127
8128 FUNC is expected to call get_type_unit_group, which will create the
8129 struct type_unit_group if necessary and add it to
8130 dwarf2_per_objfile->type_unit_groups. */
8131
8132 static void
8133 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8134 {
8135 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8136 abbrev_table_up abbrev_table;
8137 sect_offset abbrev_offset;
8138
8139 /* It's up to the caller to not call us multiple times. */
8140 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8141
8142 if (dwarf2_per_objfile->all_type_units.empty ())
8143 return;
8144
8145 /* TUs typically share abbrev tables, and there can be way more TUs than
8146 abbrev tables. Sort by abbrev table to reduce the number of times we
8147 read each abbrev table in.
8148 Alternatives are to punt or to maintain a cache of abbrev tables.
8149 This is simpler and efficient enough for now.
8150
8151 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8152 symtab to use). Typically TUs with the same abbrev offset have the same
8153 stmt_list value too so in practice this should work well.
8154
8155 The basic algorithm here is:
8156
8157 sort TUs by abbrev table
8158 for each TU with same abbrev table:
8159 read abbrev table if first user
8160 read TU top level DIE
8161 [IWBN if DWO skeletons had DW_AT_stmt_list]
8162 call FUNC */
8163
8164 if (dwarf_read_debug)
8165 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8166
8167 /* Sort in a separate table to maintain the order of all_type_units
8168 for .gdb_index: TU indices directly index all_type_units. */
8169 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8170 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8171
8172 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8173 sorted_by_abbrev.emplace_back
8174 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8175 sig_type->per_cu.section,
8176 sig_type->per_cu.sect_off));
8177
8178 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8179 sort_tu_by_abbrev_offset);
8180
8181 abbrev_offset = (sect_offset) ~(unsigned) 0;
8182
8183 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8184 {
8185 /* Switch to the next abbrev table if necessary. */
8186 if (abbrev_table == NULL
8187 || tu.abbrev_offset != abbrev_offset)
8188 {
8189 abbrev_offset = tu.abbrev_offset;
8190 abbrev_table =
8191 abbrev_table_read_table (dwarf2_per_objfile,
8192 &dwarf2_per_objfile->abbrev,
8193 abbrev_offset);
8194 ++tu_stats->nr_uniq_abbrev_tables;
8195 }
8196
8197 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8198 0, 0, false, build_type_psymtabs_reader, NULL);
8199 }
8200 }
8201
8202 /* Print collected type unit statistics. */
8203
8204 static void
8205 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8206 {
8207 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8208
8209 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8210 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8211 dwarf2_per_objfile->all_type_units.size ());
8212 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8213 tu_stats->nr_uniq_abbrev_tables);
8214 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8215 tu_stats->nr_symtabs);
8216 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8217 tu_stats->nr_symtab_sharers);
8218 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8219 tu_stats->nr_stmt_less_type_units);
8220 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8221 tu_stats->nr_all_type_units_reallocs);
8222 }
8223
8224 /* Traversal function for build_type_psymtabs. */
8225
8226 static int
8227 build_type_psymtab_dependencies (void **slot, void *info)
8228 {
8229 struct dwarf2_per_objfile *dwarf2_per_objfile
8230 = (struct dwarf2_per_objfile *) info;
8231 struct objfile *objfile = dwarf2_per_objfile->objfile;
8232 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8233 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8234 struct partial_symtab *pst = per_cu->v.psymtab;
8235 int len = VEC_length (sig_type_ptr, tu_group->tus);
8236 struct signatured_type *iter;
8237 int i;
8238
8239 gdb_assert (len > 0);
8240 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8241
8242 pst->number_of_dependencies = len;
8243 pst->dependencies =
8244 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8245 for (i = 0;
8246 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8247 ++i)
8248 {
8249 gdb_assert (iter->per_cu.is_debug_types);
8250 pst->dependencies[i] = iter->per_cu.v.psymtab;
8251 iter->type_unit_group = tu_group;
8252 }
8253
8254 VEC_free (sig_type_ptr, tu_group->tus);
8255
8256 return 1;
8257 }
8258
8259 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8260 Build partial symbol tables for the .debug_types comp-units. */
8261
8262 static void
8263 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8264 {
8265 if (! create_all_type_units (dwarf2_per_objfile))
8266 return;
8267
8268 build_type_psymtabs_1 (dwarf2_per_objfile);
8269 }
8270
8271 /* Traversal function for process_skeletonless_type_unit.
8272 Read a TU in a DWO file and build partial symbols for it. */
8273
8274 static int
8275 process_skeletonless_type_unit (void **slot, void *info)
8276 {
8277 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8278 struct dwarf2_per_objfile *dwarf2_per_objfile
8279 = (struct dwarf2_per_objfile *) info;
8280 struct signatured_type find_entry, *entry;
8281
8282 /* If this TU doesn't exist in the global table, add it and read it in. */
8283
8284 if (dwarf2_per_objfile->signatured_types == NULL)
8285 {
8286 dwarf2_per_objfile->signatured_types
8287 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8288 }
8289
8290 find_entry.signature = dwo_unit->signature;
8291 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8292 INSERT);
8293 /* If we've already seen this type there's nothing to do. What's happening
8294 is we're doing our own version of comdat-folding here. */
8295 if (*slot != NULL)
8296 return 1;
8297
8298 /* This does the job that create_all_type_units would have done for
8299 this TU. */
8300 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8301 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8302 *slot = entry;
8303
8304 /* This does the job that build_type_psymtabs_1 would have done. */
8305 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8306 build_type_psymtabs_reader, NULL);
8307
8308 return 1;
8309 }
8310
8311 /* Traversal function for process_skeletonless_type_units. */
8312
8313 static int
8314 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8315 {
8316 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8317
8318 if (dwo_file->tus != NULL)
8319 {
8320 htab_traverse_noresize (dwo_file->tus,
8321 process_skeletonless_type_unit, info);
8322 }
8323
8324 return 1;
8325 }
8326
8327 /* Scan all TUs of DWO files, verifying we've processed them.
8328 This is needed in case a TU was emitted without its skeleton.
8329 Note: This can't be done until we know what all the DWO files are. */
8330
8331 static void
8332 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8333 {
8334 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8335 if (get_dwp_file (dwarf2_per_objfile) == NULL
8336 && dwarf2_per_objfile->dwo_files != NULL)
8337 {
8338 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8339 process_dwo_file_for_skeletonless_type_units,
8340 dwarf2_per_objfile);
8341 }
8342 }
8343
8344 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8345
8346 static void
8347 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8348 {
8349 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8350 {
8351 struct partial_symtab *pst = per_cu->v.psymtab;
8352
8353 if (pst == NULL)
8354 continue;
8355
8356 for (int j = 0; j < pst->number_of_dependencies; ++j)
8357 {
8358 /* Set the 'user' field only if it is not already set. */
8359 if (pst->dependencies[j]->user == NULL)
8360 pst->dependencies[j]->user = pst;
8361 }
8362 }
8363 }
8364
8365 /* Build the partial symbol table by doing a quick pass through the
8366 .debug_info and .debug_abbrev sections. */
8367
8368 static void
8369 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8370 {
8371 struct objfile *objfile = dwarf2_per_objfile->objfile;
8372
8373 if (dwarf_read_debug)
8374 {
8375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8376 objfile_name (objfile));
8377 }
8378
8379 dwarf2_per_objfile->reading_partial_symbols = 1;
8380
8381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8382
8383 /* Any cached compilation units will be linked by the per-objfile
8384 read_in_chain. Make sure to free them when we're done. */
8385 free_cached_comp_units freer (dwarf2_per_objfile);
8386
8387 build_type_psymtabs (dwarf2_per_objfile);
8388
8389 create_all_comp_units (dwarf2_per_objfile);
8390
8391 /* Create a temporary address map on a temporary obstack. We later
8392 copy this to the final obstack. */
8393 auto_obstack temp_obstack;
8394
8395 scoped_restore save_psymtabs_addrmap
8396 = make_scoped_restore (&objfile->psymtabs_addrmap,
8397 addrmap_create_mutable (&temp_obstack));
8398
8399 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8400 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8401
8402 /* This has to wait until we read the CUs, we need the list of DWOs. */
8403 process_skeletonless_type_units (dwarf2_per_objfile);
8404
8405 /* Now that all TUs have been processed we can fill in the dependencies. */
8406 if (dwarf2_per_objfile->type_unit_groups != NULL)
8407 {
8408 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8409 build_type_psymtab_dependencies, dwarf2_per_objfile);
8410 }
8411
8412 if (dwarf_read_debug)
8413 print_tu_stats (dwarf2_per_objfile);
8414
8415 set_partial_user (dwarf2_per_objfile);
8416
8417 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8418 &objfile->objfile_obstack);
8419 /* At this point we want to keep the address map. */
8420 save_psymtabs_addrmap.release ();
8421
8422 if (dwarf_read_debug)
8423 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8424 objfile_name (objfile));
8425 }
8426
8427 /* die_reader_func for load_partial_comp_unit. */
8428
8429 static void
8430 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8431 const gdb_byte *info_ptr,
8432 struct die_info *comp_unit_die,
8433 int has_children,
8434 void *data)
8435 {
8436 struct dwarf2_cu *cu = reader->cu;
8437
8438 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8439
8440 /* Check if comp unit has_children.
8441 If so, read the rest of the partial symbols from this comp unit.
8442 If not, there's no more debug_info for this comp unit. */
8443 if (has_children)
8444 load_partial_dies (reader, info_ptr, 0);
8445 }
8446
8447 /* Load the partial DIEs for a secondary CU into memory.
8448 This is also used when rereading a primary CU with load_all_dies. */
8449
8450 static void
8451 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8452 {
8453 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8454 load_partial_comp_unit_reader, NULL);
8455 }
8456
8457 static void
8458 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8459 struct dwarf2_section_info *section,
8460 struct dwarf2_section_info *abbrev_section,
8461 unsigned int is_dwz)
8462 {
8463 const gdb_byte *info_ptr;
8464 struct objfile *objfile = dwarf2_per_objfile->objfile;
8465
8466 if (dwarf_read_debug)
8467 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8468 get_section_name (section),
8469 get_section_file_name (section));
8470
8471 dwarf2_read_section (objfile, section);
8472
8473 info_ptr = section->buffer;
8474
8475 while (info_ptr < section->buffer + section->size)
8476 {
8477 struct dwarf2_per_cu_data *this_cu;
8478
8479 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8480
8481 comp_unit_head cu_header;
8482 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8483 abbrev_section, info_ptr,
8484 rcuh_kind::COMPILE);
8485
8486 /* Save the compilation unit for later lookup. */
8487 if (cu_header.unit_type != DW_UT_type)
8488 {
8489 this_cu = XOBNEW (&objfile->objfile_obstack,
8490 struct dwarf2_per_cu_data);
8491 memset (this_cu, 0, sizeof (*this_cu));
8492 }
8493 else
8494 {
8495 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8496 struct signatured_type);
8497 memset (sig_type, 0, sizeof (*sig_type));
8498 sig_type->signature = cu_header.signature;
8499 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8500 this_cu = &sig_type->per_cu;
8501 }
8502 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8503 this_cu->sect_off = sect_off;
8504 this_cu->length = cu_header.length + cu_header.initial_length_size;
8505 this_cu->is_dwz = is_dwz;
8506 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8507 this_cu->section = section;
8508
8509 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8510
8511 info_ptr = info_ptr + this_cu->length;
8512 }
8513 }
8514
8515 /* Create a list of all compilation units in OBJFILE.
8516 This is only done for -readnow and building partial symtabs. */
8517
8518 static void
8519 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8520 {
8521 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8522 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8523 &dwarf2_per_objfile->abbrev, 0);
8524
8525 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8526 if (dwz != NULL)
8527 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8528 1);
8529 }
8530
8531 /* Process all loaded DIEs for compilation unit CU, starting at
8532 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8533 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8534 DW_AT_ranges). See the comments of add_partial_subprogram on how
8535 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8536
8537 static void
8538 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8539 CORE_ADDR *highpc, int set_addrmap,
8540 struct dwarf2_cu *cu)
8541 {
8542 struct partial_die_info *pdi;
8543
8544 /* Now, march along the PDI's, descending into ones which have
8545 interesting children but skipping the children of the other ones,
8546 until we reach the end of the compilation unit. */
8547
8548 pdi = first_die;
8549
8550 while (pdi != NULL)
8551 {
8552 pdi->fixup (cu);
8553
8554 /* Anonymous namespaces or modules have no name but have interesting
8555 children, so we need to look at them. Ditto for anonymous
8556 enums. */
8557
8558 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8559 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8560 || pdi->tag == DW_TAG_imported_unit
8561 || pdi->tag == DW_TAG_inlined_subroutine)
8562 {
8563 switch (pdi->tag)
8564 {
8565 case DW_TAG_subprogram:
8566 case DW_TAG_inlined_subroutine:
8567 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8568 break;
8569 case DW_TAG_constant:
8570 case DW_TAG_variable:
8571 case DW_TAG_typedef:
8572 case DW_TAG_union_type:
8573 if (!pdi->is_declaration)
8574 {
8575 add_partial_symbol (pdi, cu);
8576 }
8577 break;
8578 case DW_TAG_class_type:
8579 case DW_TAG_interface_type:
8580 case DW_TAG_structure_type:
8581 if (!pdi->is_declaration)
8582 {
8583 add_partial_symbol (pdi, cu);
8584 }
8585 if ((cu->language == language_rust
8586 || cu->language == language_cplus) && pdi->has_children)
8587 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8588 set_addrmap, cu);
8589 break;
8590 case DW_TAG_enumeration_type:
8591 if (!pdi->is_declaration)
8592 add_partial_enumeration (pdi, cu);
8593 break;
8594 case DW_TAG_base_type:
8595 case DW_TAG_subrange_type:
8596 /* File scope base type definitions are added to the partial
8597 symbol table. */
8598 add_partial_symbol (pdi, cu);
8599 break;
8600 case DW_TAG_namespace:
8601 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8602 break;
8603 case DW_TAG_module:
8604 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8605 break;
8606 case DW_TAG_imported_unit:
8607 {
8608 struct dwarf2_per_cu_data *per_cu;
8609
8610 /* For now we don't handle imported units in type units. */
8611 if (cu->per_cu->is_debug_types)
8612 {
8613 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8614 " supported in type units [in module %s]"),
8615 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8616 }
8617
8618 per_cu = dwarf2_find_containing_comp_unit
8619 (pdi->d.sect_off, pdi->is_dwz,
8620 cu->per_cu->dwarf2_per_objfile);
8621
8622 /* Go read the partial unit, if needed. */
8623 if (per_cu->v.psymtab == NULL)
8624 process_psymtab_comp_unit (per_cu, 1, cu->language);
8625
8626 VEC_safe_push (dwarf2_per_cu_ptr,
8627 cu->per_cu->imported_symtabs, per_cu);
8628 }
8629 break;
8630 case DW_TAG_imported_declaration:
8631 add_partial_symbol (pdi, cu);
8632 break;
8633 default:
8634 break;
8635 }
8636 }
8637
8638 /* If the die has a sibling, skip to the sibling. */
8639
8640 pdi = pdi->die_sibling;
8641 }
8642 }
8643
8644 /* Functions used to compute the fully scoped name of a partial DIE.
8645
8646 Normally, this is simple. For C++, the parent DIE's fully scoped
8647 name is concatenated with "::" and the partial DIE's name.
8648 Enumerators are an exception; they use the scope of their parent
8649 enumeration type, i.e. the name of the enumeration type is not
8650 prepended to the enumerator.
8651
8652 There are two complexities. One is DW_AT_specification; in this
8653 case "parent" means the parent of the target of the specification,
8654 instead of the direct parent of the DIE. The other is compilers
8655 which do not emit DW_TAG_namespace; in this case we try to guess
8656 the fully qualified name of structure types from their members'
8657 linkage names. This must be done using the DIE's children rather
8658 than the children of any DW_AT_specification target. We only need
8659 to do this for structures at the top level, i.e. if the target of
8660 any DW_AT_specification (if any; otherwise the DIE itself) does not
8661 have a parent. */
8662
8663 /* Compute the scope prefix associated with PDI's parent, in
8664 compilation unit CU. The result will be allocated on CU's
8665 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8666 field. NULL is returned if no prefix is necessary. */
8667 static const char *
8668 partial_die_parent_scope (struct partial_die_info *pdi,
8669 struct dwarf2_cu *cu)
8670 {
8671 const char *grandparent_scope;
8672 struct partial_die_info *parent, *real_pdi;
8673
8674 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8675 then this means the parent of the specification DIE. */
8676
8677 real_pdi = pdi;
8678 while (real_pdi->has_specification)
8679 real_pdi = find_partial_die (real_pdi->spec_offset,
8680 real_pdi->spec_is_dwz, cu);
8681
8682 parent = real_pdi->die_parent;
8683 if (parent == NULL)
8684 return NULL;
8685
8686 if (parent->scope_set)
8687 return parent->scope;
8688
8689 parent->fixup (cu);
8690
8691 grandparent_scope = partial_die_parent_scope (parent, cu);
8692
8693 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8694 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8695 Work around this problem here. */
8696 if (cu->language == language_cplus
8697 && parent->tag == DW_TAG_namespace
8698 && strcmp (parent->name, "::") == 0
8699 && grandparent_scope == NULL)
8700 {
8701 parent->scope = NULL;
8702 parent->scope_set = 1;
8703 return NULL;
8704 }
8705
8706 if (pdi->tag == DW_TAG_enumerator)
8707 /* Enumerators should not get the name of the enumeration as a prefix. */
8708 parent->scope = grandparent_scope;
8709 else if (parent->tag == DW_TAG_namespace
8710 || parent->tag == DW_TAG_module
8711 || parent->tag == DW_TAG_structure_type
8712 || parent->tag == DW_TAG_class_type
8713 || parent->tag == DW_TAG_interface_type
8714 || parent->tag == DW_TAG_union_type
8715 || parent->tag == DW_TAG_enumeration_type)
8716 {
8717 if (grandparent_scope == NULL)
8718 parent->scope = parent->name;
8719 else
8720 parent->scope = typename_concat (&cu->comp_unit_obstack,
8721 grandparent_scope,
8722 parent->name, 0, cu);
8723 }
8724 else
8725 {
8726 /* FIXME drow/2004-04-01: What should we be doing with
8727 function-local names? For partial symbols, we should probably be
8728 ignoring them. */
8729 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8730 parent->tag, sect_offset_str (pdi->sect_off));
8731 parent->scope = grandparent_scope;
8732 }
8733
8734 parent->scope_set = 1;
8735 return parent->scope;
8736 }
8737
8738 /* Return the fully scoped name associated with PDI, from compilation unit
8739 CU. The result will be allocated with malloc. */
8740
8741 static char *
8742 partial_die_full_name (struct partial_die_info *pdi,
8743 struct dwarf2_cu *cu)
8744 {
8745 const char *parent_scope;
8746
8747 /* If this is a template instantiation, we can not work out the
8748 template arguments from partial DIEs. So, unfortunately, we have
8749 to go through the full DIEs. At least any work we do building
8750 types here will be reused if full symbols are loaded later. */
8751 if (pdi->has_template_arguments)
8752 {
8753 pdi->fixup (cu);
8754
8755 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8756 {
8757 struct die_info *die;
8758 struct attribute attr;
8759 struct dwarf2_cu *ref_cu = cu;
8760
8761 /* DW_FORM_ref_addr is using section offset. */
8762 attr.name = (enum dwarf_attribute) 0;
8763 attr.form = DW_FORM_ref_addr;
8764 attr.u.unsnd = to_underlying (pdi->sect_off);
8765 die = follow_die_ref (NULL, &attr, &ref_cu);
8766
8767 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8768 }
8769 }
8770
8771 parent_scope = partial_die_parent_scope (pdi, cu);
8772 if (parent_scope == NULL)
8773 return NULL;
8774 else
8775 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8776 }
8777
8778 static void
8779 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8780 {
8781 struct dwarf2_per_objfile *dwarf2_per_objfile
8782 = cu->per_cu->dwarf2_per_objfile;
8783 struct objfile *objfile = dwarf2_per_objfile->objfile;
8784 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8785 CORE_ADDR addr = 0;
8786 const char *actual_name = NULL;
8787 CORE_ADDR baseaddr;
8788 char *built_actual_name;
8789
8790 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8791
8792 built_actual_name = partial_die_full_name (pdi, cu);
8793 if (built_actual_name != NULL)
8794 actual_name = built_actual_name;
8795
8796 if (actual_name == NULL)
8797 actual_name = pdi->name;
8798
8799 switch (pdi->tag)
8800 {
8801 case DW_TAG_inlined_subroutine:
8802 case DW_TAG_subprogram:
8803 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8804 if (pdi->is_external || cu->language == language_ada)
8805 {
8806 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8807 of the global scope. But in Ada, we want to be able to access
8808 nested procedures globally. So all Ada subprograms are stored
8809 in the global scope. */
8810 add_psymbol_to_list (actual_name, strlen (actual_name),
8811 built_actual_name != NULL,
8812 VAR_DOMAIN, LOC_BLOCK,
8813 &objfile->global_psymbols,
8814 addr, cu->language, objfile);
8815 }
8816 else
8817 {
8818 add_psymbol_to_list (actual_name, strlen (actual_name),
8819 built_actual_name != NULL,
8820 VAR_DOMAIN, LOC_BLOCK,
8821 &objfile->static_psymbols,
8822 addr, cu->language, objfile);
8823 }
8824
8825 if (pdi->main_subprogram && actual_name != NULL)
8826 set_objfile_main_name (objfile, actual_name, cu->language);
8827 break;
8828 case DW_TAG_constant:
8829 {
8830 std::vector<partial_symbol *> *list;
8831
8832 if (pdi->is_external)
8833 list = &objfile->global_psymbols;
8834 else
8835 list = &objfile->static_psymbols;
8836 add_psymbol_to_list (actual_name, strlen (actual_name),
8837 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8838 list, 0, cu->language, objfile);
8839 }
8840 break;
8841 case DW_TAG_variable:
8842 if (pdi->d.locdesc)
8843 addr = decode_locdesc (pdi->d.locdesc, cu);
8844
8845 if (pdi->d.locdesc
8846 && addr == 0
8847 && !dwarf2_per_objfile->has_section_at_zero)
8848 {
8849 /* A global or static variable may also have been stripped
8850 out by the linker if unused, in which case its address
8851 will be nullified; do not add such variables into partial
8852 symbol table then. */
8853 }
8854 else if (pdi->is_external)
8855 {
8856 /* Global Variable.
8857 Don't enter into the minimal symbol tables as there is
8858 a minimal symbol table entry from the ELF symbols already.
8859 Enter into partial symbol table if it has a location
8860 descriptor or a type.
8861 If the location descriptor is missing, new_symbol will create
8862 a LOC_UNRESOLVED symbol, the address of the variable will then
8863 be determined from the minimal symbol table whenever the variable
8864 is referenced.
8865 The address for the partial symbol table entry is not
8866 used by GDB, but it comes in handy for debugging partial symbol
8867 table building. */
8868
8869 if (pdi->d.locdesc || pdi->has_type)
8870 add_psymbol_to_list (actual_name, strlen (actual_name),
8871 built_actual_name != NULL,
8872 VAR_DOMAIN, LOC_STATIC,
8873 &objfile->global_psymbols,
8874 addr + baseaddr,
8875 cu->language, objfile);
8876 }
8877 else
8878 {
8879 int has_loc = pdi->d.locdesc != NULL;
8880
8881 /* Static Variable. Skip symbols whose value we cannot know (those
8882 without location descriptors or constant values). */
8883 if (!has_loc && !pdi->has_const_value)
8884 {
8885 xfree (built_actual_name);
8886 return;
8887 }
8888
8889 add_psymbol_to_list (actual_name, strlen (actual_name),
8890 built_actual_name != NULL,
8891 VAR_DOMAIN, LOC_STATIC,
8892 &objfile->static_psymbols,
8893 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8894 cu->language, objfile);
8895 }
8896 break;
8897 case DW_TAG_typedef:
8898 case DW_TAG_base_type:
8899 case DW_TAG_subrange_type:
8900 add_psymbol_to_list (actual_name, strlen (actual_name),
8901 built_actual_name != NULL,
8902 VAR_DOMAIN, LOC_TYPEDEF,
8903 &objfile->static_psymbols,
8904 0, cu->language, objfile);
8905 break;
8906 case DW_TAG_imported_declaration:
8907 case DW_TAG_namespace:
8908 add_psymbol_to_list (actual_name, strlen (actual_name),
8909 built_actual_name != NULL,
8910 VAR_DOMAIN, LOC_TYPEDEF,
8911 &objfile->global_psymbols,
8912 0, cu->language, objfile);
8913 break;
8914 case DW_TAG_module:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 MODULE_DOMAIN, LOC_TYPEDEF,
8918 &objfile->global_psymbols,
8919 0, cu->language, objfile);
8920 break;
8921 case DW_TAG_class_type:
8922 case DW_TAG_interface_type:
8923 case DW_TAG_structure_type:
8924 case DW_TAG_union_type:
8925 case DW_TAG_enumeration_type:
8926 /* Skip external references. The DWARF standard says in the section
8927 about "Structure, Union, and Class Type Entries": "An incomplete
8928 structure, union or class type is represented by a structure,
8929 union or class entry that does not have a byte size attribute
8930 and that has a DW_AT_declaration attribute." */
8931 if (!pdi->has_byte_size && pdi->is_declaration)
8932 {
8933 xfree (built_actual_name);
8934 return;
8935 }
8936
8937 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8938 static vs. global. */
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 STRUCT_DOMAIN, LOC_TYPEDEF,
8942 cu->language == language_cplus
8943 ? &objfile->global_psymbols
8944 : &objfile->static_psymbols,
8945 0, cu->language, objfile);
8946
8947 break;
8948 case DW_TAG_enumerator:
8949 add_psymbol_to_list (actual_name, strlen (actual_name),
8950 built_actual_name != NULL,
8951 VAR_DOMAIN, LOC_CONST,
8952 cu->language == language_cplus
8953 ? &objfile->global_psymbols
8954 : &objfile->static_psymbols,
8955 0, cu->language, objfile);
8956 break;
8957 default:
8958 break;
8959 }
8960
8961 xfree (built_actual_name);
8962 }
8963
8964 /* Read a partial die corresponding to a namespace; also, add a symbol
8965 corresponding to that namespace to the symbol table. NAMESPACE is
8966 the name of the enclosing namespace. */
8967
8968 static void
8969 add_partial_namespace (struct partial_die_info *pdi,
8970 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8971 int set_addrmap, struct dwarf2_cu *cu)
8972 {
8973 /* Add a symbol for the namespace. */
8974
8975 add_partial_symbol (pdi, cu);
8976
8977 /* Now scan partial symbols in that namespace. */
8978
8979 if (pdi->has_children)
8980 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8981 }
8982
8983 /* Read a partial die corresponding to a Fortran module. */
8984
8985 static void
8986 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8987 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8988 {
8989 /* Add a symbol for the namespace. */
8990
8991 add_partial_symbol (pdi, cu);
8992
8993 /* Now scan partial symbols in that module. */
8994
8995 if (pdi->has_children)
8996 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8997 }
8998
8999 /* Read a partial die corresponding to a subprogram or an inlined
9000 subprogram and create a partial symbol for that subprogram.
9001 When the CU language allows it, this routine also defines a partial
9002 symbol for each nested subprogram that this subprogram contains.
9003 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9004 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9005
9006 PDI may also be a lexical block, in which case we simply search
9007 recursively for subprograms defined inside that lexical block.
9008 Again, this is only performed when the CU language allows this
9009 type of definitions. */
9010
9011 static void
9012 add_partial_subprogram (struct partial_die_info *pdi,
9013 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9014 int set_addrmap, struct dwarf2_cu *cu)
9015 {
9016 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9017 {
9018 if (pdi->has_pc_info)
9019 {
9020 if (pdi->lowpc < *lowpc)
9021 *lowpc = pdi->lowpc;
9022 if (pdi->highpc > *highpc)
9023 *highpc = pdi->highpc;
9024 if (set_addrmap)
9025 {
9026 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9027 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9028 CORE_ADDR baseaddr;
9029 CORE_ADDR highpc;
9030 CORE_ADDR lowpc;
9031
9032 baseaddr = ANOFFSET (objfile->section_offsets,
9033 SECT_OFF_TEXT (objfile));
9034 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9035 pdi->lowpc + baseaddr);
9036 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9037 pdi->highpc + baseaddr);
9038 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9039 cu->per_cu->v.psymtab);
9040 }
9041 }
9042
9043 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9044 {
9045 if (!pdi->is_declaration)
9046 /* Ignore subprogram DIEs that do not have a name, they are
9047 illegal. Do not emit a complaint at this point, we will
9048 do so when we convert this psymtab into a symtab. */
9049 if (pdi->name)
9050 add_partial_symbol (pdi, cu);
9051 }
9052 }
9053
9054 if (! pdi->has_children)
9055 return;
9056
9057 if (cu->language == language_ada)
9058 {
9059 pdi = pdi->die_child;
9060 while (pdi != NULL)
9061 {
9062 pdi->fixup (cu);
9063 if (pdi->tag == DW_TAG_subprogram
9064 || pdi->tag == DW_TAG_inlined_subroutine
9065 || pdi->tag == DW_TAG_lexical_block)
9066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9067 pdi = pdi->die_sibling;
9068 }
9069 }
9070 }
9071
9072 /* Read a partial die corresponding to an enumeration type. */
9073
9074 static void
9075 add_partial_enumeration (struct partial_die_info *enum_pdi,
9076 struct dwarf2_cu *cu)
9077 {
9078 struct partial_die_info *pdi;
9079
9080 if (enum_pdi->name != NULL)
9081 add_partial_symbol (enum_pdi, cu);
9082
9083 pdi = enum_pdi->die_child;
9084 while (pdi)
9085 {
9086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9087 complaint (_("malformed enumerator DIE ignored"));
9088 else
9089 add_partial_symbol (pdi, cu);
9090 pdi = pdi->die_sibling;
9091 }
9092 }
9093
9094 /* Return the initial uleb128 in the die at INFO_PTR. */
9095
9096 static unsigned int
9097 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9098 {
9099 unsigned int bytes_read;
9100
9101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9102 }
9103
9104 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9105 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9106
9107 Return the corresponding abbrev, or NULL if the number is zero (indicating
9108 an empty DIE). In either case *BYTES_READ will be set to the length of
9109 the initial number. */
9110
9111 static struct abbrev_info *
9112 peek_die_abbrev (const die_reader_specs &reader,
9113 const gdb_byte *info_ptr, unsigned int *bytes_read)
9114 {
9115 dwarf2_cu *cu = reader.cu;
9116 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9117 unsigned int abbrev_number
9118 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9119
9120 if (abbrev_number == 0)
9121 return NULL;
9122
9123 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9124 if (!abbrev)
9125 {
9126 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9127 " at offset %s [in module %s]"),
9128 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9129 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9130 }
9131
9132 return abbrev;
9133 }
9134
9135 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9136 Returns a pointer to the end of a series of DIEs, terminated by an empty
9137 DIE. Any children of the skipped DIEs will also be skipped. */
9138
9139 static const gdb_byte *
9140 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9141 {
9142 while (1)
9143 {
9144 unsigned int bytes_read;
9145 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9146
9147 if (abbrev == NULL)
9148 return info_ptr + bytes_read;
9149 else
9150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9151 }
9152 }
9153
9154 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9156 abbrev corresponding to that skipped uleb128 should be passed in
9157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9158 children. */
9159
9160 static const gdb_byte *
9161 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9162 struct abbrev_info *abbrev)
9163 {
9164 unsigned int bytes_read;
9165 struct attribute attr;
9166 bfd *abfd = reader->abfd;
9167 struct dwarf2_cu *cu = reader->cu;
9168 const gdb_byte *buffer = reader->buffer;
9169 const gdb_byte *buffer_end = reader->buffer_end;
9170 unsigned int form, i;
9171
9172 for (i = 0; i < abbrev->num_attrs; i++)
9173 {
9174 /* The only abbrev we care about is DW_AT_sibling. */
9175 if (abbrev->attrs[i].name == DW_AT_sibling)
9176 {
9177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9178 if (attr.form == DW_FORM_ref_addr)
9179 complaint (_("ignoring absolute DW_AT_sibling"));
9180 else
9181 {
9182 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9183 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9184
9185 if (sibling_ptr < info_ptr)
9186 complaint (_("DW_AT_sibling points backwards"));
9187 else if (sibling_ptr > reader->buffer_end)
9188 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9189 else
9190 return sibling_ptr;
9191 }
9192 }
9193
9194 /* If it isn't DW_AT_sibling, skip this attribute. */
9195 form = abbrev->attrs[i].form;
9196 skip_attribute:
9197 switch (form)
9198 {
9199 case DW_FORM_ref_addr:
9200 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9201 and later it is offset sized. */
9202 if (cu->header.version == 2)
9203 info_ptr += cu->header.addr_size;
9204 else
9205 info_ptr += cu->header.offset_size;
9206 break;
9207 case DW_FORM_GNU_ref_alt:
9208 info_ptr += cu->header.offset_size;
9209 break;
9210 case DW_FORM_addr:
9211 info_ptr += cu->header.addr_size;
9212 break;
9213 case DW_FORM_data1:
9214 case DW_FORM_ref1:
9215 case DW_FORM_flag:
9216 info_ptr += 1;
9217 break;
9218 case DW_FORM_flag_present:
9219 case DW_FORM_implicit_const:
9220 break;
9221 case DW_FORM_data2:
9222 case DW_FORM_ref2:
9223 info_ptr += 2;
9224 break;
9225 case DW_FORM_data4:
9226 case DW_FORM_ref4:
9227 info_ptr += 4;
9228 break;
9229 case DW_FORM_data8:
9230 case DW_FORM_ref8:
9231 case DW_FORM_ref_sig8:
9232 info_ptr += 8;
9233 break;
9234 case DW_FORM_data16:
9235 info_ptr += 16;
9236 break;
9237 case DW_FORM_string:
9238 read_direct_string (abfd, info_ptr, &bytes_read);
9239 info_ptr += bytes_read;
9240 break;
9241 case DW_FORM_sec_offset:
9242 case DW_FORM_strp:
9243 case DW_FORM_GNU_strp_alt:
9244 info_ptr += cu->header.offset_size;
9245 break;
9246 case DW_FORM_exprloc:
9247 case DW_FORM_block:
9248 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9249 info_ptr += bytes_read;
9250 break;
9251 case DW_FORM_block1:
9252 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9253 break;
9254 case DW_FORM_block2:
9255 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9256 break;
9257 case DW_FORM_block4:
9258 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9259 break;
9260 case DW_FORM_sdata:
9261 case DW_FORM_udata:
9262 case DW_FORM_ref_udata:
9263 case DW_FORM_GNU_addr_index:
9264 case DW_FORM_GNU_str_index:
9265 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9266 break;
9267 case DW_FORM_indirect:
9268 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9269 info_ptr += bytes_read;
9270 /* We need to continue parsing from here, so just go back to
9271 the top. */
9272 goto skip_attribute;
9273
9274 default:
9275 error (_("Dwarf Error: Cannot handle %s "
9276 "in DWARF reader [in module %s]"),
9277 dwarf_form_name (form),
9278 bfd_get_filename (abfd));
9279 }
9280 }
9281
9282 if (abbrev->has_children)
9283 return skip_children (reader, info_ptr);
9284 else
9285 return info_ptr;
9286 }
9287
9288 /* Locate ORIG_PDI's sibling.
9289 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9290
9291 static const gdb_byte *
9292 locate_pdi_sibling (const struct die_reader_specs *reader,
9293 struct partial_die_info *orig_pdi,
9294 const gdb_byte *info_ptr)
9295 {
9296 /* Do we know the sibling already? */
9297
9298 if (orig_pdi->sibling)
9299 return orig_pdi->sibling;
9300
9301 /* Are there any children to deal with? */
9302
9303 if (!orig_pdi->has_children)
9304 return info_ptr;
9305
9306 /* Skip the children the long way. */
9307
9308 return skip_children (reader, info_ptr);
9309 }
9310
9311 /* Expand this partial symbol table into a full symbol table. SELF is
9312 not NULL. */
9313
9314 static void
9315 dwarf2_read_symtab (struct partial_symtab *self,
9316 struct objfile *objfile)
9317 {
9318 struct dwarf2_per_objfile *dwarf2_per_objfile
9319 = get_dwarf2_per_objfile (objfile);
9320
9321 if (self->readin)
9322 {
9323 warning (_("bug: psymtab for %s is already read in."),
9324 self->filename);
9325 }
9326 else
9327 {
9328 if (info_verbose)
9329 {
9330 printf_filtered (_("Reading in symbols for %s..."),
9331 self->filename);
9332 gdb_flush (gdb_stdout);
9333 }
9334
9335 /* If this psymtab is constructed from a debug-only objfile, the
9336 has_section_at_zero flag will not necessarily be correct. We
9337 can get the correct value for this flag by looking at the data
9338 associated with the (presumably stripped) associated objfile. */
9339 if (objfile->separate_debug_objfile_backlink)
9340 {
9341 struct dwarf2_per_objfile *dpo_backlink
9342 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9343
9344 dwarf2_per_objfile->has_section_at_zero
9345 = dpo_backlink->has_section_at_zero;
9346 }
9347
9348 dwarf2_per_objfile->reading_partial_symbols = 0;
9349
9350 psymtab_to_symtab_1 (self);
9351
9352 /* Finish up the debug error message. */
9353 if (info_verbose)
9354 printf_filtered (_("done.\n"));
9355 }
9356
9357 process_cu_includes (dwarf2_per_objfile);
9358 }
9359 \f
9360 /* Reading in full CUs. */
9361
9362 /* Add PER_CU to the queue. */
9363
9364 static void
9365 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9366 enum language pretend_language)
9367 {
9368 struct dwarf2_queue_item *item;
9369
9370 per_cu->queued = 1;
9371 item = XNEW (struct dwarf2_queue_item);
9372 item->per_cu = per_cu;
9373 item->pretend_language = pretend_language;
9374 item->next = NULL;
9375
9376 if (dwarf2_queue == NULL)
9377 dwarf2_queue = item;
9378 else
9379 dwarf2_queue_tail->next = item;
9380
9381 dwarf2_queue_tail = item;
9382 }
9383
9384 /* If PER_CU is not yet queued, add it to the queue.
9385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9386 dependency.
9387 The result is non-zero if PER_CU was queued, otherwise the result is zero
9388 meaning either PER_CU is already queued or it is already loaded.
9389
9390 N.B. There is an invariant here that if a CU is queued then it is loaded.
9391 The caller is required to load PER_CU if we return non-zero. */
9392
9393 static int
9394 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9395 struct dwarf2_per_cu_data *per_cu,
9396 enum language pretend_language)
9397 {
9398 /* We may arrive here during partial symbol reading, if we need full
9399 DIEs to process an unusual case (e.g. template arguments). Do
9400 not queue PER_CU, just tell our caller to load its DIEs. */
9401 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9402 {
9403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9404 return 1;
9405 return 0;
9406 }
9407
9408 /* Mark the dependence relation so that we don't flush PER_CU
9409 too early. */
9410 if (dependent_cu != NULL)
9411 dwarf2_add_dependence (dependent_cu, per_cu);
9412
9413 /* If it's already on the queue, we have nothing to do. */
9414 if (per_cu->queued)
9415 return 0;
9416
9417 /* If the compilation unit is already loaded, just mark it as
9418 used. */
9419 if (per_cu->cu != NULL)
9420 {
9421 per_cu->cu->last_used = 0;
9422 return 0;
9423 }
9424
9425 /* Add it to the queue. */
9426 queue_comp_unit (per_cu, pretend_language);
9427
9428 return 1;
9429 }
9430
9431 /* Process the queue. */
9432
9433 static void
9434 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9435 {
9436 struct dwarf2_queue_item *item, *next_item;
9437
9438 if (dwarf_read_debug)
9439 {
9440 fprintf_unfiltered (gdb_stdlog,
9441 "Expanding one or more symtabs of objfile %s ...\n",
9442 objfile_name (dwarf2_per_objfile->objfile));
9443 }
9444
9445 /* The queue starts out with one item, but following a DIE reference
9446 may load a new CU, adding it to the end of the queue. */
9447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9448 {
9449 if ((dwarf2_per_objfile->using_index
9450 ? !item->per_cu->v.quick->compunit_symtab
9451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9452 /* Skip dummy CUs. */
9453 && item->per_cu->cu != NULL)
9454 {
9455 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9456 unsigned int debug_print_threshold;
9457 char buf[100];
9458
9459 if (per_cu->is_debug_types)
9460 {
9461 struct signatured_type *sig_type =
9462 (struct signatured_type *) per_cu;
9463
9464 sprintf (buf, "TU %s at offset %s",
9465 hex_string (sig_type->signature),
9466 sect_offset_str (per_cu->sect_off));
9467 /* There can be 100s of TUs.
9468 Only print them in verbose mode. */
9469 debug_print_threshold = 2;
9470 }
9471 else
9472 {
9473 sprintf (buf, "CU at offset %s",
9474 sect_offset_str (per_cu->sect_off));
9475 debug_print_threshold = 1;
9476 }
9477
9478 if (dwarf_read_debug >= debug_print_threshold)
9479 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9480
9481 if (per_cu->is_debug_types)
9482 process_full_type_unit (per_cu, item->pretend_language);
9483 else
9484 process_full_comp_unit (per_cu, item->pretend_language);
9485
9486 if (dwarf_read_debug >= debug_print_threshold)
9487 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9488 }
9489
9490 item->per_cu->queued = 0;
9491 next_item = item->next;
9492 xfree (item);
9493 }
9494
9495 dwarf2_queue_tail = NULL;
9496
9497 if (dwarf_read_debug)
9498 {
9499 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9500 objfile_name (dwarf2_per_objfile->objfile));
9501 }
9502 }
9503
9504 /* Read in full symbols for PST, and anything it depends on. */
9505
9506 static void
9507 psymtab_to_symtab_1 (struct partial_symtab *pst)
9508 {
9509 struct dwarf2_per_cu_data *per_cu;
9510 int i;
9511
9512 if (pst->readin)
9513 return;
9514
9515 for (i = 0; i < pst->number_of_dependencies; i++)
9516 if (!pst->dependencies[i]->readin
9517 && pst->dependencies[i]->user == NULL)
9518 {
9519 /* Inform about additional files that need to be read in. */
9520 if (info_verbose)
9521 {
9522 /* FIXME: i18n: Need to make this a single string. */
9523 fputs_filtered (" ", gdb_stdout);
9524 wrap_here ("");
9525 fputs_filtered ("and ", gdb_stdout);
9526 wrap_here ("");
9527 printf_filtered ("%s...", pst->dependencies[i]->filename);
9528 wrap_here (""); /* Flush output. */
9529 gdb_flush (gdb_stdout);
9530 }
9531 psymtab_to_symtab_1 (pst->dependencies[i]);
9532 }
9533
9534 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9535
9536 if (per_cu == NULL)
9537 {
9538 /* It's an include file, no symbols to read for it.
9539 Everything is in the parent symtab. */
9540 pst->readin = 1;
9541 return;
9542 }
9543
9544 dw2_do_instantiate_symtab (per_cu, false);
9545 }
9546
9547 /* Trivial hash function for die_info: the hash value of a DIE
9548 is its offset in .debug_info for this objfile. */
9549
9550 static hashval_t
9551 die_hash (const void *item)
9552 {
9553 const struct die_info *die = (const struct die_info *) item;
9554
9555 return to_underlying (die->sect_off);
9556 }
9557
9558 /* Trivial comparison function for die_info structures: two DIEs
9559 are equal if they have the same offset. */
9560
9561 static int
9562 die_eq (const void *item_lhs, const void *item_rhs)
9563 {
9564 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9565 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9566
9567 return die_lhs->sect_off == die_rhs->sect_off;
9568 }
9569
9570 /* die_reader_func for load_full_comp_unit.
9571 This is identical to read_signatured_type_reader,
9572 but is kept separate for now. */
9573
9574 static void
9575 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9576 const gdb_byte *info_ptr,
9577 struct die_info *comp_unit_die,
9578 int has_children,
9579 void *data)
9580 {
9581 struct dwarf2_cu *cu = reader->cu;
9582 enum language *language_ptr = (enum language *) data;
9583
9584 gdb_assert (cu->die_hash == NULL);
9585 cu->die_hash =
9586 htab_create_alloc_ex (cu->header.length / 12,
9587 die_hash,
9588 die_eq,
9589 NULL,
9590 &cu->comp_unit_obstack,
9591 hashtab_obstack_allocate,
9592 dummy_obstack_deallocate);
9593
9594 if (has_children)
9595 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9596 &info_ptr, comp_unit_die);
9597 cu->dies = comp_unit_die;
9598 /* comp_unit_die is not stored in die_hash, no need. */
9599
9600 /* We try not to read any attributes in this function, because not
9601 all CUs needed for references have been loaded yet, and symbol
9602 table processing isn't initialized. But we have to set the CU language,
9603 or we won't be able to build types correctly.
9604 Similarly, if we do not read the producer, we can not apply
9605 producer-specific interpretation. */
9606 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9607 }
9608
9609 /* Load the DIEs associated with PER_CU into memory. */
9610
9611 static void
9612 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9613 bool skip_partial,
9614 enum language pretend_language)
9615 {
9616 gdb_assert (! this_cu->is_debug_types);
9617
9618 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9619 load_full_comp_unit_reader, &pretend_language);
9620 }
9621
9622 /* Add a DIE to the delayed physname list. */
9623
9624 static void
9625 add_to_method_list (struct type *type, int fnfield_index, int index,
9626 const char *name, struct die_info *die,
9627 struct dwarf2_cu *cu)
9628 {
9629 struct delayed_method_info mi;
9630 mi.type = type;
9631 mi.fnfield_index = fnfield_index;
9632 mi.index = index;
9633 mi.name = name;
9634 mi.die = die;
9635 cu->method_list.push_back (mi);
9636 }
9637
9638 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9639 "const" / "volatile". If so, decrements LEN by the length of the
9640 modifier and return true. Otherwise return false. */
9641
9642 template<size_t N>
9643 static bool
9644 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9645 {
9646 size_t mod_len = sizeof (mod) - 1;
9647 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9648 {
9649 len -= mod_len;
9650 return true;
9651 }
9652 return false;
9653 }
9654
9655 /* Compute the physnames of any methods on the CU's method list.
9656
9657 The computation of method physnames is delayed in order to avoid the
9658 (bad) condition that one of the method's formal parameters is of an as yet
9659 incomplete type. */
9660
9661 static void
9662 compute_delayed_physnames (struct dwarf2_cu *cu)
9663 {
9664 /* Only C++ delays computing physnames. */
9665 if (cu->method_list.empty ())
9666 return;
9667 gdb_assert (cu->language == language_cplus);
9668
9669 for (const delayed_method_info &mi : cu->method_list)
9670 {
9671 const char *physname;
9672 struct fn_fieldlist *fn_flp
9673 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9674 physname = dwarf2_physname (mi.name, mi.die, cu);
9675 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9676 = physname ? physname : "";
9677
9678 /* Since there's no tag to indicate whether a method is a
9679 const/volatile overload, extract that information out of the
9680 demangled name. */
9681 if (physname != NULL)
9682 {
9683 size_t len = strlen (physname);
9684
9685 while (1)
9686 {
9687 if (physname[len] == ')') /* shortcut */
9688 break;
9689 else if (check_modifier (physname, len, " const"))
9690 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9691 else if (check_modifier (physname, len, " volatile"))
9692 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9693 else
9694 break;
9695 }
9696 }
9697 }
9698
9699 /* The list is no longer needed. */
9700 cu->method_list.clear ();
9701 }
9702
9703 /* Go objects should be embedded in a DW_TAG_module DIE,
9704 and it's not clear if/how imported objects will appear.
9705 To keep Go support simple until that's worked out,
9706 go back through what we've read and create something usable.
9707 We could do this while processing each DIE, and feels kinda cleaner,
9708 but that way is more invasive.
9709 This is to, for example, allow the user to type "p var" or "b main"
9710 without having to specify the package name, and allow lookups
9711 of module.object to work in contexts that use the expression
9712 parser. */
9713
9714 static void
9715 fixup_go_packaging (struct dwarf2_cu *cu)
9716 {
9717 char *package_name = NULL;
9718 struct pending *list;
9719 int i;
9720
9721 for (list = global_symbols; list != NULL; list = list->next)
9722 {
9723 for (i = 0; i < list->nsyms; ++i)
9724 {
9725 struct symbol *sym = list->symbol[i];
9726
9727 if (SYMBOL_LANGUAGE (sym) == language_go
9728 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9729 {
9730 char *this_package_name = go_symbol_package_name (sym);
9731
9732 if (this_package_name == NULL)
9733 continue;
9734 if (package_name == NULL)
9735 package_name = this_package_name;
9736 else
9737 {
9738 struct objfile *objfile
9739 = cu->per_cu->dwarf2_per_objfile->objfile;
9740 if (strcmp (package_name, this_package_name) != 0)
9741 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9742 (symbol_symtab (sym) != NULL
9743 ? symtab_to_filename_for_display
9744 (symbol_symtab (sym))
9745 : objfile_name (objfile)),
9746 this_package_name, package_name);
9747 xfree (this_package_name);
9748 }
9749 }
9750 }
9751 }
9752
9753 if (package_name != NULL)
9754 {
9755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9756 const char *saved_package_name
9757 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9758 package_name,
9759 strlen (package_name));
9760 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9761 saved_package_name);
9762 struct symbol *sym;
9763
9764 sym = allocate_symbol (objfile);
9765 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9766 SYMBOL_SET_NAMES (sym, saved_package_name,
9767 strlen (saved_package_name), 0, objfile);
9768 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9769 e.g., "main" finds the "main" module and not C's main(). */
9770 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9771 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9772 SYMBOL_TYPE (sym) = type;
9773
9774 add_symbol_to_list (sym, &global_symbols);
9775
9776 xfree (package_name);
9777 }
9778 }
9779
9780 /* Allocate a fully-qualified name consisting of the two parts on the
9781 obstack. */
9782
9783 static const char *
9784 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9785 {
9786 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9787 }
9788
9789 /* A helper that allocates a struct discriminant_info to attach to a
9790 union type. */
9791
9792 static struct discriminant_info *
9793 alloc_discriminant_info (struct type *type, int discriminant_index,
9794 int default_index)
9795 {
9796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9797 gdb_assert (discriminant_index == -1
9798 || (discriminant_index >= 0
9799 && discriminant_index < TYPE_NFIELDS (type)));
9800 gdb_assert (default_index == -1
9801 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9802
9803 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9804
9805 struct discriminant_info *disc
9806 = ((struct discriminant_info *)
9807 TYPE_ZALLOC (type,
9808 offsetof (struct discriminant_info, discriminants)
9809 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9810 disc->default_index = default_index;
9811 disc->discriminant_index = discriminant_index;
9812
9813 struct dynamic_prop prop;
9814 prop.kind = PROP_UNDEFINED;
9815 prop.data.baton = disc;
9816
9817 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9818
9819 return disc;
9820 }
9821
9822 /* Some versions of rustc emitted enums in an unusual way.
9823
9824 Ordinary enums were emitted as unions. The first element of each
9825 structure in the union was named "RUST$ENUM$DISR". This element
9826 held the discriminant.
9827
9828 These versions of Rust also implemented the "non-zero"
9829 optimization. When the enum had two values, and one is empty and
9830 the other holds a pointer that cannot be zero, the pointer is used
9831 as the discriminant, with a zero value meaning the empty variant.
9832 Here, the union's first member is of the form
9833 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9834 where the fieldnos are the indices of the fields that should be
9835 traversed in order to find the field (which may be several fields deep)
9836 and the variantname is the name of the variant of the case when the
9837 field is zero.
9838
9839 This function recognizes whether TYPE is of one of these forms,
9840 and, if so, smashes it to be a variant type. */
9841
9842 static void
9843 quirk_rust_enum (struct type *type, struct objfile *objfile)
9844 {
9845 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9846
9847 /* We don't need to deal with empty enums. */
9848 if (TYPE_NFIELDS (type) == 0)
9849 return;
9850
9851 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9852 if (TYPE_NFIELDS (type) == 1
9853 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9854 {
9855 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9856
9857 /* Decode the field name to find the offset of the
9858 discriminant. */
9859 ULONGEST bit_offset = 0;
9860 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9861 while (name[0] >= '0' && name[0] <= '9')
9862 {
9863 char *tail;
9864 unsigned long index = strtoul (name, &tail, 10);
9865 name = tail;
9866 if (*name != '$'
9867 || index >= TYPE_NFIELDS (field_type)
9868 || (TYPE_FIELD_LOC_KIND (field_type, index)
9869 != FIELD_LOC_KIND_BITPOS))
9870 {
9871 complaint (_("Could not parse Rust enum encoding string \"%s\""
9872 "[in module %s]"),
9873 TYPE_FIELD_NAME (type, 0),
9874 objfile_name (objfile));
9875 return;
9876 }
9877 ++name;
9878
9879 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9880 field_type = TYPE_FIELD_TYPE (field_type, index);
9881 }
9882
9883 /* Make a union to hold the variants. */
9884 struct type *union_type = alloc_type (objfile);
9885 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9886 TYPE_NFIELDS (union_type) = 3;
9887 TYPE_FIELDS (union_type)
9888 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9889 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9890 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9891
9892 /* Put the discriminant must at index 0. */
9893 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9894 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9895 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9896 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9897
9898 /* The order of fields doesn't really matter, so put the real
9899 field at index 1 and the data-less field at index 2. */
9900 struct discriminant_info *disc
9901 = alloc_discriminant_info (union_type, 0, 1);
9902 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9903 TYPE_FIELD_NAME (union_type, 1)
9904 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9905 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9906 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9907 TYPE_FIELD_NAME (union_type, 1));
9908
9909 const char *dataless_name
9910 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9911 name);
9912 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9913 dataless_name);
9914 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9915 /* NAME points into the original discriminant name, which
9916 already has the correct lifetime. */
9917 TYPE_FIELD_NAME (union_type, 2) = name;
9918 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9919 disc->discriminants[2] = 0;
9920
9921 /* Smash this type to be a structure type. We have to do this
9922 because the type has already been recorded. */
9923 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9924 TYPE_NFIELDS (type) = 1;
9925 TYPE_FIELDS (type)
9926 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9927
9928 /* Install the variant part. */
9929 TYPE_FIELD_TYPE (type, 0) = union_type;
9930 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9931 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9932 }
9933 else if (TYPE_NFIELDS (type) == 1)
9934 {
9935 /* We assume that a union with a single field is a univariant
9936 enum. */
9937 /* Smash this type to be a structure type. We have to do this
9938 because the type has already been recorded. */
9939 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9940
9941 /* Make a union to hold the variants. */
9942 struct type *union_type = alloc_type (objfile);
9943 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9944 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9945 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9946 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9947 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9948
9949 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9950 const char *variant_name
9951 = rust_last_path_segment (TYPE_NAME (field_type));
9952 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9953 TYPE_NAME (field_type)
9954 = rust_fully_qualify (&objfile->objfile_obstack,
9955 TYPE_NAME (type), variant_name);
9956
9957 /* Install the union in the outer struct type. */
9958 TYPE_NFIELDS (type) = 1;
9959 TYPE_FIELDS (type)
9960 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9961 TYPE_FIELD_TYPE (type, 0) = union_type;
9962 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9963 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9964
9965 alloc_discriminant_info (union_type, -1, 0);
9966 }
9967 else
9968 {
9969 struct type *disr_type = nullptr;
9970 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9971 {
9972 disr_type = TYPE_FIELD_TYPE (type, i);
9973
9974 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9975 {
9976 /* All fields of a true enum will be structs. */
9977 return;
9978 }
9979 else if (TYPE_NFIELDS (disr_type) == 0)
9980 {
9981 /* Could be data-less variant, so keep going. */
9982 disr_type = nullptr;
9983 }
9984 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9985 "RUST$ENUM$DISR") != 0)
9986 {
9987 /* Not a Rust enum. */
9988 return;
9989 }
9990 else
9991 {
9992 /* Found one. */
9993 break;
9994 }
9995 }
9996
9997 /* If we got here without a discriminant, then it's probably
9998 just a union. */
9999 if (disr_type == nullptr)
10000 return;
10001
10002 /* Smash this type to be a structure type. We have to do this
10003 because the type has already been recorded. */
10004 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10005
10006 /* Make a union to hold the variants. */
10007 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10008 struct type *union_type = alloc_type (objfile);
10009 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10010 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10011 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10012 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10013 TYPE_FIELDS (union_type)
10014 = (struct field *) TYPE_ZALLOC (union_type,
10015 (TYPE_NFIELDS (union_type)
10016 * sizeof (struct field)));
10017
10018 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10019 TYPE_NFIELDS (type) * sizeof (struct field));
10020
10021 /* Install the discriminant at index 0 in the union. */
10022 TYPE_FIELD (union_type, 0) = *disr_field;
10023 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10024 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10025
10026 /* Install the union in the outer struct type. */
10027 TYPE_FIELD_TYPE (type, 0) = union_type;
10028 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10029 TYPE_NFIELDS (type) = 1;
10030
10031 /* Set the size and offset of the union type. */
10032 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10033
10034 /* We need a way to find the correct discriminant given a
10035 variant name. For convenience we build a map here. */
10036 struct type *enum_type = FIELD_TYPE (*disr_field);
10037 std::unordered_map<std::string, ULONGEST> discriminant_map;
10038 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10039 {
10040 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10041 {
10042 const char *name
10043 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10044 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10045 }
10046 }
10047
10048 int n_fields = TYPE_NFIELDS (union_type);
10049 struct discriminant_info *disc
10050 = alloc_discriminant_info (union_type, 0, -1);
10051 /* Skip the discriminant here. */
10052 for (int i = 1; i < n_fields; ++i)
10053 {
10054 /* Find the final word in the name of this variant's type.
10055 That name can be used to look up the correct
10056 discriminant. */
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10059 i)));
10060
10061 auto iter = discriminant_map.find (variant_name);
10062 if (iter != discriminant_map.end ())
10063 disc->discriminants[i] = iter->second;
10064
10065 /* Remove the discriminant field, if it exists. */
10066 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10067 if (TYPE_NFIELDS (sub_type) > 0)
10068 {
10069 --TYPE_NFIELDS (sub_type);
10070 ++TYPE_FIELDS (sub_type);
10071 }
10072 TYPE_FIELD_NAME (union_type, i) = variant_name;
10073 TYPE_NAME (sub_type)
10074 = rust_fully_qualify (&objfile->objfile_obstack,
10075 TYPE_NAME (type), variant_name);
10076 }
10077 }
10078 }
10079
10080 /* Rewrite some Rust unions to be structures with variants parts. */
10081
10082 static void
10083 rust_union_quirks (struct dwarf2_cu *cu)
10084 {
10085 gdb_assert (cu->language == language_rust);
10086 for (type *type_ : cu->rust_unions)
10087 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10088 /* We don't need this any more. */
10089 cu->rust_unions.clear ();
10090 }
10091
10092 /* Return the symtab for PER_CU. This works properly regardless of
10093 whether we're using the index or psymtabs. */
10094
10095 static struct compunit_symtab *
10096 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10097 {
10098 return (per_cu->dwarf2_per_objfile->using_index
10099 ? per_cu->v.quick->compunit_symtab
10100 : per_cu->v.psymtab->compunit_symtab);
10101 }
10102
10103 /* A helper function for computing the list of all symbol tables
10104 included by PER_CU. */
10105
10106 static void
10107 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10108 htab_t all_children, htab_t all_type_symtabs,
10109 struct dwarf2_per_cu_data *per_cu,
10110 struct compunit_symtab *immediate_parent)
10111 {
10112 void **slot;
10113 int ix;
10114 struct compunit_symtab *cust;
10115 struct dwarf2_per_cu_data *iter;
10116
10117 slot = htab_find_slot (all_children, per_cu, INSERT);
10118 if (*slot != NULL)
10119 {
10120 /* This inclusion and its children have been processed. */
10121 return;
10122 }
10123
10124 *slot = per_cu;
10125 /* Only add a CU if it has a symbol table. */
10126 cust = get_compunit_symtab (per_cu);
10127 if (cust != NULL)
10128 {
10129 /* If this is a type unit only add its symbol table if we haven't
10130 seen it yet (type unit per_cu's can share symtabs). */
10131 if (per_cu->is_debug_types)
10132 {
10133 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10134 if (*slot == NULL)
10135 {
10136 *slot = cust;
10137 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10138 if (cust->user == NULL)
10139 cust->user = immediate_parent;
10140 }
10141 }
10142 else
10143 {
10144 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10145 if (cust->user == NULL)
10146 cust->user = immediate_parent;
10147 }
10148 }
10149
10150 for (ix = 0;
10151 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10152 ++ix)
10153 {
10154 recursively_compute_inclusions (result, all_children,
10155 all_type_symtabs, iter, cust);
10156 }
10157 }
10158
10159 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10160 PER_CU. */
10161
10162 static void
10163 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10164 {
10165 gdb_assert (! per_cu->is_debug_types);
10166
10167 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10168 {
10169 int ix, len;
10170 struct dwarf2_per_cu_data *per_cu_iter;
10171 struct compunit_symtab *compunit_symtab_iter;
10172 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10173 htab_t all_children, all_type_symtabs;
10174 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10175
10176 /* If we don't have a symtab, we can just skip this case. */
10177 if (cust == NULL)
10178 return;
10179
10180 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10181 NULL, xcalloc, xfree);
10182 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10183 NULL, xcalloc, xfree);
10184
10185 for (ix = 0;
10186 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10187 ix, per_cu_iter);
10188 ++ix)
10189 {
10190 recursively_compute_inclusions (&result_symtabs, all_children,
10191 all_type_symtabs, per_cu_iter,
10192 cust);
10193 }
10194
10195 /* Now we have a transitive closure of all the included symtabs. */
10196 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10197 cust->includes
10198 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10199 struct compunit_symtab *, len + 1);
10200 for (ix = 0;
10201 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10202 compunit_symtab_iter);
10203 ++ix)
10204 cust->includes[ix] = compunit_symtab_iter;
10205 cust->includes[len] = NULL;
10206
10207 VEC_free (compunit_symtab_ptr, result_symtabs);
10208 htab_delete (all_children);
10209 htab_delete (all_type_symtabs);
10210 }
10211 }
10212
10213 /* Compute the 'includes' field for the symtabs of all the CUs we just
10214 read. */
10215
10216 static void
10217 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10218 {
10219 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10220 {
10221 if (! iter->is_debug_types)
10222 compute_compunit_symtab_includes (iter);
10223 }
10224
10225 dwarf2_per_objfile->just_read_cus.clear ();
10226 }
10227
10228 /* Generate full symbol information for PER_CU, whose DIEs have
10229 already been loaded into memory. */
10230
10231 static void
10232 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10233 enum language pretend_language)
10234 {
10235 struct dwarf2_cu *cu = per_cu->cu;
10236 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10237 struct objfile *objfile = dwarf2_per_objfile->objfile;
10238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10239 CORE_ADDR lowpc, highpc;
10240 struct compunit_symtab *cust;
10241 CORE_ADDR baseaddr;
10242 struct block *static_block;
10243 CORE_ADDR addr;
10244
10245 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10246
10247 buildsym_init ();
10248 scoped_free_pendings free_pending;
10249
10250 /* Clear the list here in case something was left over. */
10251 cu->method_list.clear ();
10252
10253 cu->list_in_scope = &file_symbols;
10254
10255 cu->language = pretend_language;
10256 cu->language_defn = language_def (cu->language);
10257
10258 /* Do line number decoding in read_file_scope () */
10259 process_die (cu->dies, cu);
10260
10261 /* For now fudge the Go package. */
10262 if (cu->language == language_go)
10263 fixup_go_packaging (cu);
10264
10265 /* Now that we have processed all the DIEs in the CU, all the types
10266 should be complete, and it should now be safe to compute all of the
10267 physnames. */
10268 compute_delayed_physnames (cu);
10269
10270 if (cu->language == language_rust)
10271 rust_union_quirks (cu);
10272
10273 /* Some compilers don't define a DW_AT_high_pc attribute for the
10274 compilation unit. If the DW_AT_high_pc is missing, synthesize
10275 it, by scanning the DIE's below the compilation unit. */
10276 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10277
10278 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10279 static_block = end_symtab_get_static_block (addr, 0, 1);
10280
10281 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10282 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10283 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10284 addrmap to help ensure it has an accurate map of pc values belonging to
10285 this comp unit. */
10286 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10287
10288 cust = end_symtab_from_static_block (static_block,
10289 SECT_OFF_TEXT (objfile), 0);
10290
10291 if (cust != NULL)
10292 {
10293 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10294
10295 /* Set symtab language to language from DW_AT_language. If the
10296 compilation is from a C file generated by language preprocessors, do
10297 not set the language if it was already deduced by start_subfile. */
10298 if (!(cu->language == language_c
10299 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10300 COMPUNIT_FILETABS (cust)->language = cu->language;
10301
10302 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10303 produce DW_AT_location with location lists but it can be possibly
10304 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10305 there were bugs in prologue debug info, fixed later in GCC-4.5
10306 by "unwind info for epilogues" patch (which is not directly related).
10307
10308 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10309 needed, it would be wrong due to missing DW_AT_producer there.
10310
10311 Still one can confuse GDB by using non-standard GCC compilation
10312 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10313 */
10314 if (cu->has_loclist && gcc_4_minor >= 5)
10315 cust->locations_valid = 1;
10316
10317 if (gcc_4_minor >= 5)
10318 cust->epilogue_unwind_valid = 1;
10319
10320 cust->call_site_htab = cu->call_site_htab;
10321 }
10322
10323 if (dwarf2_per_objfile->using_index)
10324 per_cu->v.quick->compunit_symtab = cust;
10325 else
10326 {
10327 struct partial_symtab *pst = per_cu->v.psymtab;
10328 pst->compunit_symtab = cust;
10329 pst->readin = 1;
10330 }
10331
10332 /* Push it for inclusion processing later. */
10333 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10334 }
10335
10336 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10337 already been loaded into memory. */
10338
10339 static void
10340 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10342 {
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct compunit_symtab *cust;
10347 struct signatured_type *sig_type;
10348
10349 gdb_assert (per_cu->is_debug_types);
10350 sig_type = (struct signatured_type *) per_cu;
10351
10352 buildsym_init ();
10353 scoped_free_pendings free_pending;
10354
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10357
10358 cu->list_in_scope = &file_symbols;
10359
10360 cu->language = pretend_language;
10361 cu->language_defn = language_def (cu->language);
10362
10363 /* The symbol tables are set up in read_type_unit_scope. */
10364 process_die (cu->dies, cu);
10365
10366 /* For now fudge the Go package. */
10367 if (cu->language == language_go)
10368 fixup_go_packaging (cu);
10369
10370 /* Now that we have processed all the DIEs in the CU, all the types
10371 should be complete, and it should now be safe to compute all of the
10372 physnames. */
10373 compute_delayed_physnames (cu);
10374
10375 if (cu->language == language_rust)
10376 rust_union_quirks (cu);
10377
10378 /* TUs share symbol tables.
10379 If this is the first TU to use this symtab, complete the construction
10380 of it with end_expandable_symtab. Otherwise, complete the addition of
10381 this TU's symbols to the existing symtab. */
10382 if (sig_type->type_unit_group->compunit_symtab == NULL)
10383 {
10384 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10385 sig_type->type_unit_group->compunit_symtab = cust;
10386
10387 if (cust != NULL)
10388 {
10389 /* Set symtab language to language from DW_AT_language. If the
10390 compilation is from a C file generated by language preprocessors,
10391 do not set the language if it was already deduced by
10392 start_subfile. */
10393 if (!(cu->language == language_c
10394 && COMPUNIT_FILETABS (cust)->language != language_c))
10395 COMPUNIT_FILETABS (cust)->language = cu->language;
10396 }
10397 }
10398 else
10399 {
10400 augment_type_symtab ();
10401 cust = sig_type->type_unit_group->compunit_symtab;
10402 }
10403
10404 if (dwarf2_per_objfile->using_index)
10405 per_cu->v.quick->compunit_symtab = cust;
10406 else
10407 {
10408 struct partial_symtab *pst = per_cu->v.psymtab;
10409 pst->compunit_symtab = cust;
10410 pst->readin = 1;
10411 }
10412 }
10413
10414 /* Process an imported unit DIE. */
10415
10416 static void
10417 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10418 {
10419 struct attribute *attr;
10420
10421 /* For now we don't handle imported units in type units. */
10422 if (cu->per_cu->is_debug_types)
10423 {
10424 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10425 " supported in type units [in module %s]"),
10426 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10427 }
10428
10429 attr = dwarf2_attr (die, DW_AT_import, cu);
10430 if (attr != NULL)
10431 {
10432 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10433 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10434 dwarf2_per_cu_data *per_cu
10435 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10436 cu->per_cu->dwarf2_per_objfile);
10437
10438 /* If necessary, add it to the queue and load its DIEs. */
10439 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10440 load_full_comp_unit (per_cu, false, cu->language);
10441
10442 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10443 per_cu);
10444 }
10445 }
10446
10447 /* RAII object that represents a process_die scope: i.e.,
10448 starts/finishes processing a DIE. */
10449 class process_die_scope
10450 {
10451 public:
10452 process_die_scope (die_info *die, dwarf2_cu *cu)
10453 : m_die (die), m_cu (cu)
10454 {
10455 /* We should only be processing DIEs not already in process. */
10456 gdb_assert (!m_die->in_process);
10457 m_die->in_process = true;
10458 }
10459
10460 ~process_die_scope ()
10461 {
10462 m_die->in_process = false;
10463
10464 /* If we're done processing the DIE for the CU that owns the line
10465 header, we don't need the line header anymore. */
10466 if (m_cu->line_header_die_owner == m_die)
10467 {
10468 delete m_cu->line_header;
10469 m_cu->line_header = NULL;
10470 m_cu->line_header_die_owner = NULL;
10471 }
10472 }
10473
10474 private:
10475 die_info *m_die;
10476 dwarf2_cu *m_cu;
10477 };
10478
10479 /* Process a die and its children. */
10480
10481 static void
10482 process_die (struct die_info *die, struct dwarf2_cu *cu)
10483 {
10484 process_die_scope scope (die, cu);
10485
10486 switch (die->tag)
10487 {
10488 case DW_TAG_padding:
10489 break;
10490 case DW_TAG_compile_unit:
10491 case DW_TAG_partial_unit:
10492 read_file_scope (die, cu);
10493 break;
10494 case DW_TAG_type_unit:
10495 read_type_unit_scope (die, cu);
10496 break;
10497 case DW_TAG_subprogram:
10498 case DW_TAG_inlined_subroutine:
10499 read_func_scope (die, cu);
10500 break;
10501 case DW_TAG_lexical_block:
10502 case DW_TAG_try_block:
10503 case DW_TAG_catch_block:
10504 read_lexical_block_scope (die, cu);
10505 break;
10506 case DW_TAG_call_site:
10507 case DW_TAG_GNU_call_site:
10508 read_call_site_scope (die, cu);
10509 break;
10510 case DW_TAG_class_type:
10511 case DW_TAG_interface_type:
10512 case DW_TAG_structure_type:
10513 case DW_TAG_union_type:
10514 process_structure_scope (die, cu);
10515 break;
10516 case DW_TAG_enumeration_type:
10517 process_enumeration_scope (die, cu);
10518 break;
10519
10520 /* These dies have a type, but processing them does not create
10521 a symbol or recurse to process the children. Therefore we can
10522 read them on-demand through read_type_die. */
10523 case DW_TAG_subroutine_type:
10524 case DW_TAG_set_type:
10525 case DW_TAG_array_type:
10526 case DW_TAG_pointer_type:
10527 case DW_TAG_ptr_to_member_type:
10528 case DW_TAG_reference_type:
10529 case DW_TAG_rvalue_reference_type:
10530 case DW_TAG_string_type:
10531 break;
10532
10533 case DW_TAG_base_type:
10534 case DW_TAG_subrange_type:
10535 case DW_TAG_typedef:
10536 /* Add a typedef symbol for the type definition, if it has a
10537 DW_AT_name. */
10538 new_symbol (die, read_type_die (die, cu), cu);
10539 break;
10540 case DW_TAG_common_block:
10541 read_common_block (die, cu);
10542 break;
10543 case DW_TAG_common_inclusion:
10544 break;
10545 case DW_TAG_namespace:
10546 cu->processing_has_namespace_info = 1;
10547 read_namespace (die, cu);
10548 break;
10549 case DW_TAG_module:
10550 cu->processing_has_namespace_info = 1;
10551 read_module (die, cu);
10552 break;
10553 case DW_TAG_imported_declaration:
10554 cu->processing_has_namespace_info = 1;
10555 if (read_namespace_alias (die, cu))
10556 break;
10557 /* The declaration is not a global namespace alias. */
10558 /* Fall through. */
10559 case DW_TAG_imported_module:
10560 cu->processing_has_namespace_info = 1;
10561 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10562 || cu->language != language_fortran))
10563 complaint (_("Tag '%s' has unexpected children"),
10564 dwarf_tag_name (die->tag));
10565 read_import_statement (die, cu);
10566 break;
10567
10568 case DW_TAG_imported_unit:
10569 process_imported_unit_die (die, cu);
10570 break;
10571
10572 case DW_TAG_variable:
10573 read_variable (die, cu);
10574 break;
10575
10576 default:
10577 new_symbol (die, NULL, cu);
10578 break;
10579 }
10580 }
10581 \f
10582 /* DWARF name computation. */
10583
10584 /* A helper function for dwarf2_compute_name which determines whether DIE
10585 needs to have the name of the scope prepended to the name listed in the
10586 die. */
10587
10588 static int
10589 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10590 {
10591 struct attribute *attr;
10592
10593 switch (die->tag)
10594 {
10595 case DW_TAG_namespace:
10596 case DW_TAG_typedef:
10597 case DW_TAG_class_type:
10598 case DW_TAG_interface_type:
10599 case DW_TAG_structure_type:
10600 case DW_TAG_union_type:
10601 case DW_TAG_enumeration_type:
10602 case DW_TAG_enumerator:
10603 case DW_TAG_subprogram:
10604 case DW_TAG_inlined_subroutine:
10605 case DW_TAG_member:
10606 case DW_TAG_imported_declaration:
10607 return 1;
10608
10609 case DW_TAG_variable:
10610 case DW_TAG_constant:
10611 /* We only need to prefix "globally" visible variables. These include
10612 any variable marked with DW_AT_external or any variable that
10613 lives in a namespace. [Variables in anonymous namespaces
10614 require prefixing, but they are not DW_AT_external.] */
10615
10616 if (dwarf2_attr (die, DW_AT_specification, cu))
10617 {
10618 struct dwarf2_cu *spec_cu = cu;
10619
10620 return die_needs_namespace (die_specification (die, &spec_cu),
10621 spec_cu);
10622 }
10623
10624 attr = dwarf2_attr (die, DW_AT_external, cu);
10625 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10626 && die->parent->tag != DW_TAG_module)
10627 return 0;
10628 /* A variable in a lexical block of some kind does not need a
10629 namespace, even though in C++ such variables may be external
10630 and have a mangled name. */
10631 if (die->parent->tag == DW_TAG_lexical_block
10632 || die->parent->tag == DW_TAG_try_block
10633 || die->parent->tag == DW_TAG_catch_block
10634 || die->parent->tag == DW_TAG_subprogram)
10635 return 0;
10636 return 1;
10637
10638 default:
10639 return 0;
10640 }
10641 }
10642
10643 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10644 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10645 defined for the given DIE. */
10646
10647 static struct attribute *
10648 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10649 {
10650 struct attribute *attr;
10651
10652 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10653 if (attr == NULL)
10654 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10655
10656 return attr;
10657 }
10658
10659 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10660 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10661 defined for the given DIE. */
10662
10663 static const char *
10664 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10665 {
10666 const char *linkage_name;
10667
10668 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10669 if (linkage_name == NULL)
10670 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10671
10672 return linkage_name;
10673 }
10674
10675 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10676 compute the physname for the object, which include a method's:
10677 - formal parameters (C++),
10678 - receiver type (Go),
10679
10680 The term "physname" is a bit confusing.
10681 For C++, for example, it is the demangled name.
10682 For Go, for example, it's the mangled name.
10683
10684 For Ada, return the DIE's linkage name rather than the fully qualified
10685 name. PHYSNAME is ignored..
10686
10687 The result is allocated on the objfile_obstack and canonicalized. */
10688
10689 static const char *
10690 dwarf2_compute_name (const char *name,
10691 struct die_info *die, struct dwarf2_cu *cu,
10692 int physname)
10693 {
10694 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10695
10696 if (name == NULL)
10697 name = dwarf2_name (die, cu);
10698
10699 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10700 but otherwise compute it by typename_concat inside GDB.
10701 FIXME: Actually this is not really true, or at least not always true.
10702 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10703 Fortran names because there is no mangling standard. So new_symbol
10704 will set the demangled name to the result of dwarf2_full_name, and it is
10705 the demangled name that GDB uses if it exists. */
10706 if (cu->language == language_ada
10707 || (cu->language == language_fortran && physname))
10708 {
10709 /* For Ada unit, we prefer the linkage name over the name, as
10710 the former contains the exported name, which the user expects
10711 to be able to reference. Ideally, we want the user to be able
10712 to reference this entity using either natural or linkage name,
10713 but we haven't started looking at this enhancement yet. */
10714 const char *linkage_name = dw2_linkage_name (die, cu);
10715
10716 if (linkage_name != NULL)
10717 return linkage_name;
10718 }
10719
10720 /* These are the only languages we know how to qualify names in. */
10721 if (name != NULL
10722 && (cu->language == language_cplus
10723 || cu->language == language_fortran || cu->language == language_d
10724 || cu->language == language_rust))
10725 {
10726 if (die_needs_namespace (die, cu))
10727 {
10728 const char *prefix;
10729 const char *canonical_name = NULL;
10730
10731 string_file buf;
10732
10733 prefix = determine_prefix (die, cu);
10734 if (*prefix != '\0')
10735 {
10736 char *prefixed_name = typename_concat (NULL, prefix, name,
10737 physname, cu);
10738
10739 buf.puts (prefixed_name);
10740 xfree (prefixed_name);
10741 }
10742 else
10743 buf.puts (name);
10744
10745 /* Template parameters may be specified in the DIE's DW_AT_name, or
10746 as children with DW_TAG_template_type_param or
10747 DW_TAG_value_type_param. If the latter, add them to the name
10748 here. If the name already has template parameters, then
10749 skip this step; some versions of GCC emit both, and
10750 it is more efficient to use the pre-computed name.
10751
10752 Something to keep in mind about this process: it is very
10753 unlikely, or in some cases downright impossible, to produce
10754 something that will match the mangled name of a function.
10755 If the definition of the function has the same debug info,
10756 we should be able to match up with it anyway. But fallbacks
10757 using the minimal symbol, for instance to find a method
10758 implemented in a stripped copy of libstdc++, will not work.
10759 If we do not have debug info for the definition, we will have to
10760 match them up some other way.
10761
10762 When we do name matching there is a related problem with function
10763 templates; two instantiated function templates are allowed to
10764 differ only by their return types, which we do not add here. */
10765
10766 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10767 {
10768 struct attribute *attr;
10769 struct die_info *child;
10770 int first = 1;
10771
10772 die->building_fullname = 1;
10773
10774 for (child = die->child; child != NULL; child = child->sibling)
10775 {
10776 struct type *type;
10777 LONGEST value;
10778 const gdb_byte *bytes;
10779 struct dwarf2_locexpr_baton *baton;
10780 struct value *v;
10781
10782 if (child->tag != DW_TAG_template_type_param
10783 && child->tag != DW_TAG_template_value_param)
10784 continue;
10785
10786 if (first)
10787 {
10788 buf.puts ("<");
10789 first = 0;
10790 }
10791 else
10792 buf.puts (", ");
10793
10794 attr = dwarf2_attr (child, DW_AT_type, cu);
10795 if (attr == NULL)
10796 {
10797 complaint (_("template parameter missing DW_AT_type"));
10798 buf.puts ("UNKNOWN_TYPE");
10799 continue;
10800 }
10801 type = die_type (child, cu);
10802
10803 if (child->tag == DW_TAG_template_type_param)
10804 {
10805 c_print_type (type, "", &buf, -1, 0, cu->language,
10806 &type_print_raw_options);
10807 continue;
10808 }
10809
10810 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10811 if (attr == NULL)
10812 {
10813 complaint (_("template parameter missing "
10814 "DW_AT_const_value"));
10815 buf.puts ("UNKNOWN_VALUE");
10816 continue;
10817 }
10818
10819 dwarf2_const_value_attr (attr, type, name,
10820 &cu->comp_unit_obstack, cu,
10821 &value, &bytes, &baton);
10822
10823 if (TYPE_NOSIGN (type))
10824 /* GDB prints characters as NUMBER 'CHAR'. If that's
10825 changed, this can use value_print instead. */
10826 c_printchar (value, type, &buf);
10827 else
10828 {
10829 struct value_print_options opts;
10830
10831 if (baton != NULL)
10832 v = dwarf2_evaluate_loc_desc (type, NULL,
10833 baton->data,
10834 baton->size,
10835 baton->per_cu);
10836 else if (bytes != NULL)
10837 {
10838 v = allocate_value (type);
10839 memcpy (value_contents_writeable (v), bytes,
10840 TYPE_LENGTH (type));
10841 }
10842 else
10843 v = value_from_longest (type, value);
10844
10845 /* Specify decimal so that we do not depend on
10846 the radix. */
10847 get_formatted_print_options (&opts, 'd');
10848 opts.raw = 1;
10849 value_print (v, &buf, &opts);
10850 release_value (v);
10851 }
10852 }
10853
10854 die->building_fullname = 0;
10855
10856 if (!first)
10857 {
10858 /* Close the argument list, with a space if necessary
10859 (nested templates). */
10860 if (!buf.empty () && buf.string ().back () == '>')
10861 buf.puts (" >");
10862 else
10863 buf.puts (">");
10864 }
10865 }
10866
10867 /* For C++ methods, append formal parameter type
10868 information, if PHYSNAME. */
10869
10870 if (physname && die->tag == DW_TAG_subprogram
10871 && cu->language == language_cplus)
10872 {
10873 struct type *type = read_type_die (die, cu);
10874
10875 c_type_print_args (type, &buf, 1, cu->language,
10876 &type_print_raw_options);
10877
10878 if (cu->language == language_cplus)
10879 {
10880 /* Assume that an artificial first parameter is
10881 "this", but do not crash if it is not. RealView
10882 marks unnamed (and thus unused) parameters as
10883 artificial; there is no way to differentiate
10884 the two cases. */
10885 if (TYPE_NFIELDS (type) > 0
10886 && TYPE_FIELD_ARTIFICIAL (type, 0)
10887 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10888 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10889 0))))
10890 buf.puts (" const");
10891 }
10892 }
10893
10894 const std::string &intermediate_name = buf.string ();
10895
10896 if (cu->language == language_cplus)
10897 canonical_name
10898 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10899 &objfile->per_bfd->storage_obstack);
10900
10901 /* If we only computed INTERMEDIATE_NAME, or if
10902 INTERMEDIATE_NAME is already canonical, then we need to
10903 copy it to the appropriate obstack. */
10904 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10905 name = ((const char *)
10906 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10907 intermediate_name.c_str (),
10908 intermediate_name.length ()));
10909 else
10910 name = canonical_name;
10911 }
10912 }
10913
10914 return name;
10915 }
10916
10917 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10918 If scope qualifiers are appropriate they will be added. The result
10919 will be allocated on the storage_obstack, or NULL if the DIE does
10920 not have a name. NAME may either be from a previous call to
10921 dwarf2_name or NULL.
10922
10923 The output string will be canonicalized (if C++). */
10924
10925 static const char *
10926 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10927 {
10928 return dwarf2_compute_name (name, die, cu, 0);
10929 }
10930
10931 /* Construct a physname for the given DIE in CU. NAME may either be
10932 from a previous call to dwarf2_name or NULL. The result will be
10933 allocated on the objfile_objstack or NULL if the DIE does not have a
10934 name.
10935
10936 The output string will be canonicalized (if C++). */
10937
10938 static const char *
10939 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10940 {
10941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10942 const char *retval, *mangled = NULL, *canon = NULL;
10943 int need_copy = 1;
10944
10945 /* In this case dwarf2_compute_name is just a shortcut not building anything
10946 on its own. */
10947 if (!die_needs_namespace (die, cu))
10948 return dwarf2_compute_name (name, die, cu, 1);
10949
10950 mangled = dw2_linkage_name (die, cu);
10951
10952 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10953 See https://github.com/rust-lang/rust/issues/32925. */
10954 if (cu->language == language_rust && mangled != NULL
10955 && strchr (mangled, '{') != NULL)
10956 mangled = NULL;
10957
10958 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10959 has computed. */
10960 gdb::unique_xmalloc_ptr<char> demangled;
10961 if (mangled != NULL)
10962 {
10963
10964 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10965 {
10966 /* Do nothing (do not demangle the symbol name). */
10967 }
10968 else if (cu->language == language_go)
10969 {
10970 /* This is a lie, but we already lie to the caller new_symbol.
10971 new_symbol assumes we return the mangled name.
10972 This just undoes that lie until things are cleaned up. */
10973 }
10974 else
10975 {
10976 /* Use DMGL_RET_DROP for C++ template functions to suppress
10977 their return type. It is easier for GDB users to search
10978 for such functions as `name(params)' than `long name(params)'.
10979 In such case the minimal symbol names do not match the full
10980 symbol names but for template functions there is never a need
10981 to look up their definition from their declaration so
10982 the only disadvantage remains the minimal symbol variant
10983 `long name(params)' does not have the proper inferior type. */
10984 demangled.reset (gdb_demangle (mangled,
10985 (DMGL_PARAMS | DMGL_ANSI
10986 | DMGL_RET_DROP)));
10987 }
10988 if (demangled)
10989 canon = demangled.get ();
10990 else
10991 {
10992 canon = mangled;
10993 need_copy = 0;
10994 }
10995 }
10996
10997 if (canon == NULL || check_physname)
10998 {
10999 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11000
11001 if (canon != NULL && strcmp (physname, canon) != 0)
11002 {
11003 /* It may not mean a bug in GDB. The compiler could also
11004 compute DW_AT_linkage_name incorrectly. But in such case
11005 GDB would need to be bug-to-bug compatible. */
11006
11007 complaint (_("Computed physname <%s> does not match demangled <%s> "
11008 "(from linkage <%s>) - DIE at %s [in module %s]"),
11009 physname, canon, mangled, sect_offset_str (die->sect_off),
11010 objfile_name (objfile));
11011
11012 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11013 is available here - over computed PHYSNAME. It is safer
11014 against both buggy GDB and buggy compilers. */
11015
11016 retval = canon;
11017 }
11018 else
11019 {
11020 retval = physname;
11021 need_copy = 0;
11022 }
11023 }
11024 else
11025 retval = canon;
11026
11027 if (need_copy)
11028 retval = ((const char *)
11029 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11030 retval, strlen (retval)));
11031
11032 return retval;
11033 }
11034
11035 /* Inspect DIE in CU for a namespace alias. If one exists, record
11036 a new symbol for it.
11037
11038 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11039
11040 static int
11041 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11042 {
11043 struct attribute *attr;
11044
11045 /* If the die does not have a name, this is not a namespace
11046 alias. */
11047 attr = dwarf2_attr (die, DW_AT_name, cu);
11048 if (attr != NULL)
11049 {
11050 int num;
11051 struct die_info *d = die;
11052 struct dwarf2_cu *imported_cu = cu;
11053
11054 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11055 keep inspecting DIEs until we hit the underlying import. */
11056 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11057 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11058 {
11059 attr = dwarf2_attr (d, DW_AT_import, cu);
11060 if (attr == NULL)
11061 break;
11062
11063 d = follow_die_ref (d, attr, &imported_cu);
11064 if (d->tag != DW_TAG_imported_declaration)
11065 break;
11066 }
11067
11068 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11069 {
11070 complaint (_("DIE at %s has too many recursively imported "
11071 "declarations"), sect_offset_str (d->sect_off));
11072 return 0;
11073 }
11074
11075 if (attr != NULL)
11076 {
11077 struct type *type;
11078 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11079
11080 type = get_die_type_at_offset (sect_off, cu->per_cu);
11081 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11082 {
11083 /* This declaration is a global namespace alias. Add
11084 a symbol for it whose type is the aliased namespace. */
11085 new_symbol (die, type, cu);
11086 return 1;
11087 }
11088 }
11089 }
11090
11091 return 0;
11092 }
11093
11094 /* Return the using directives repository (global or local?) to use in the
11095 current context for LANGUAGE.
11096
11097 For Ada, imported declarations can materialize renamings, which *may* be
11098 global. However it is impossible (for now?) in DWARF to distinguish
11099 "external" imported declarations and "static" ones. As all imported
11100 declarations seem to be static in all other languages, make them all CU-wide
11101 global only in Ada. */
11102
11103 static struct using_direct **
11104 using_directives (enum language language)
11105 {
11106 if (language == language_ada && outermost_context_p ())
11107 return get_global_using_directives ();
11108 else
11109 return get_local_using_directives ();
11110 }
11111
11112 /* Read the import statement specified by the given die and record it. */
11113
11114 static void
11115 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11116 {
11117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11118 struct attribute *import_attr;
11119 struct die_info *imported_die, *child_die;
11120 struct dwarf2_cu *imported_cu;
11121 const char *imported_name;
11122 const char *imported_name_prefix;
11123 const char *canonical_name;
11124 const char *import_alias;
11125 const char *imported_declaration = NULL;
11126 const char *import_prefix;
11127 std::vector<const char *> excludes;
11128
11129 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11130 if (import_attr == NULL)
11131 {
11132 complaint (_("Tag '%s' has no DW_AT_import"),
11133 dwarf_tag_name (die->tag));
11134 return;
11135 }
11136
11137 imported_cu = cu;
11138 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11139 imported_name = dwarf2_name (imported_die, imported_cu);
11140 if (imported_name == NULL)
11141 {
11142 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11143
11144 The import in the following code:
11145 namespace A
11146 {
11147 typedef int B;
11148 }
11149
11150 int main ()
11151 {
11152 using A::B;
11153 B b;
11154 return b;
11155 }
11156
11157 ...
11158 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11159 <52> DW_AT_decl_file : 1
11160 <53> DW_AT_decl_line : 6
11161 <54> DW_AT_import : <0x75>
11162 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11163 <59> DW_AT_name : B
11164 <5b> DW_AT_decl_file : 1
11165 <5c> DW_AT_decl_line : 2
11166 <5d> DW_AT_type : <0x6e>
11167 ...
11168 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11169 <76> DW_AT_byte_size : 4
11170 <77> DW_AT_encoding : 5 (signed)
11171
11172 imports the wrong die ( 0x75 instead of 0x58 ).
11173 This case will be ignored until the gcc bug is fixed. */
11174 return;
11175 }
11176
11177 /* Figure out the local name after import. */
11178 import_alias = dwarf2_name (die, cu);
11179
11180 /* Figure out where the statement is being imported to. */
11181 import_prefix = determine_prefix (die, cu);
11182
11183 /* Figure out what the scope of the imported die is and prepend it
11184 to the name of the imported die. */
11185 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11186
11187 if (imported_die->tag != DW_TAG_namespace
11188 && imported_die->tag != DW_TAG_module)
11189 {
11190 imported_declaration = imported_name;
11191 canonical_name = imported_name_prefix;
11192 }
11193 else if (strlen (imported_name_prefix) > 0)
11194 canonical_name = obconcat (&objfile->objfile_obstack,
11195 imported_name_prefix,
11196 (cu->language == language_d ? "." : "::"),
11197 imported_name, (char *) NULL);
11198 else
11199 canonical_name = imported_name;
11200
11201 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11202 for (child_die = die->child; child_die && child_die->tag;
11203 child_die = sibling_die (child_die))
11204 {
11205 /* DWARF-4: A Fortran use statement with a “rename list” may be
11206 represented by an imported module entry with an import attribute
11207 referring to the module and owned entries corresponding to those
11208 entities that are renamed as part of being imported. */
11209
11210 if (child_die->tag != DW_TAG_imported_declaration)
11211 {
11212 complaint (_("child DW_TAG_imported_declaration expected "
11213 "- DIE at %s [in module %s]"),
11214 sect_offset_str (child_die->sect_off),
11215 objfile_name (objfile));
11216 continue;
11217 }
11218
11219 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11220 if (import_attr == NULL)
11221 {
11222 complaint (_("Tag '%s' has no DW_AT_import"),
11223 dwarf_tag_name (child_die->tag));
11224 continue;
11225 }
11226
11227 imported_cu = cu;
11228 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11229 &imported_cu);
11230 imported_name = dwarf2_name (imported_die, imported_cu);
11231 if (imported_name == NULL)
11232 {
11233 complaint (_("child DW_TAG_imported_declaration has unknown "
11234 "imported name - DIE at %s [in module %s]"),
11235 sect_offset_str (child_die->sect_off),
11236 objfile_name (objfile));
11237 continue;
11238 }
11239
11240 excludes.push_back (imported_name);
11241
11242 process_die (child_die, cu);
11243 }
11244
11245 add_using_directive (using_directives (cu->language),
11246 import_prefix,
11247 canonical_name,
11248 import_alias,
11249 imported_declaration,
11250 excludes,
11251 0,
11252 &objfile->objfile_obstack);
11253 }
11254
11255 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11256 types, but gives them a size of zero. Starting with version 14,
11257 ICC is compatible with GCC. */
11258
11259 static int
11260 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11261 {
11262 if (!cu->checked_producer)
11263 check_producer (cu);
11264
11265 return cu->producer_is_icc_lt_14;
11266 }
11267
11268 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11269 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11270 this, it was first present in GCC release 4.3.0. */
11271
11272 static int
11273 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11274 {
11275 if (!cu->checked_producer)
11276 check_producer (cu);
11277
11278 return cu->producer_is_gcc_lt_4_3;
11279 }
11280
11281 static file_and_directory
11282 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11283 {
11284 file_and_directory res;
11285
11286 /* Find the filename. Do not use dwarf2_name here, since the filename
11287 is not a source language identifier. */
11288 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11289 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11290
11291 if (res.comp_dir == NULL
11292 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11293 && IS_ABSOLUTE_PATH (res.name))
11294 {
11295 res.comp_dir_storage = ldirname (res.name);
11296 if (!res.comp_dir_storage.empty ())
11297 res.comp_dir = res.comp_dir_storage.c_str ();
11298 }
11299 if (res.comp_dir != NULL)
11300 {
11301 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11302 directory, get rid of it. */
11303 const char *cp = strchr (res.comp_dir, ':');
11304
11305 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11306 res.comp_dir = cp + 1;
11307 }
11308
11309 if (res.name == NULL)
11310 res.name = "<unknown>";
11311
11312 return res;
11313 }
11314
11315 /* Handle DW_AT_stmt_list for a compilation unit.
11316 DIE is the DW_TAG_compile_unit die for CU.
11317 COMP_DIR is the compilation directory. LOWPC is passed to
11318 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11319
11320 static void
11321 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11322 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11323 {
11324 struct dwarf2_per_objfile *dwarf2_per_objfile
11325 = cu->per_cu->dwarf2_per_objfile;
11326 struct objfile *objfile = dwarf2_per_objfile->objfile;
11327 struct attribute *attr;
11328 struct line_header line_header_local;
11329 hashval_t line_header_local_hash;
11330 void **slot;
11331 int decode_mapping;
11332
11333 gdb_assert (! cu->per_cu->is_debug_types);
11334
11335 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11336 if (attr == NULL)
11337 return;
11338
11339 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11340
11341 /* The line header hash table is only created if needed (it exists to
11342 prevent redundant reading of the line table for partial_units).
11343 If we're given a partial_unit, we'll need it. If we're given a
11344 compile_unit, then use the line header hash table if it's already
11345 created, but don't create one just yet. */
11346
11347 if (dwarf2_per_objfile->line_header_hash == NULL
11348 && die->tag == DW_TAG_partial_unit)
11349 {
11350 dwarf2_per_objfile->line_header_hash
11351 = htab_create_alloc_ex (127, line_header_hash_voidp,
11352 line_header_eq_voidp,
11353 free_line_header_voidp,
11354 &objfile->objfile_obstack,
11355 hashtab_obstack_allocate,
11356 dummy_obstack_deallocate);
11357 }
11358
11359 line_header_local.sect_off = line_offset;
11360 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11361 line_header_local_hash = line_header_hash (&line_header_local);
11362 if (dwarf2_per_objfile->line_header_hash != NULL)
11363 {
11364 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11365 &line_header_local,
11366 line_header_local_hash, NO_INSERT);
11367
11368 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11369 is not present in *SLOT (since if there is something in *SLOT then
11370 it will be for a partial_unit). */
11371 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11372 {
11373 gdb_assert (*slot != NULL);
11374 cu->line_header = (struct line_header *) *slot;
11375 return;
11376 }
11377 }
11378
11379 /* dwarf_decode_line_header does not yet provide sufficient information.
11380 We always have to call also dwarf_decode_lines for it. */
11381 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11382 if (lh == NULL)
11383 return;
11384
11385 cu->line_header = lh.release ();
11386 cu->line_header_die_owner = die;
11387
11388 if (dwarf2_per_objfile->line_header_hash == NULL)
11389 slot = NULL;
11390 else
11391 {
11392 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11393 &line_header_local,
11394 line_header_local_hash, INSERT);
11395 gdb_assert (slot != NULL);
11396 }
11397 if (slot != NULL && *slot == NULL)
11398 {
11399 /* This newly decoded line number information unit will be owned
11400 by line_header_hash hash table. */
11401 *slot = cu->line_header;
11402 cu->line_header_die_owner = NULL;
11403 }
11404 else
11405 {
11406 /* We cannot free any current entry in (*slot) as that struct line_header
11407 may be already used by multiple CUs. Create only temporary decoded
11408 line_header for this CU - it may happen at most once for each line
11409 number information unit. And if we're not using line_header_hash
11410 then this is what we want as well. */
11411 gdb_assert (die->tag != DW_TAG_partial_unit);
11412 }
11413 decode_mapping = (die->tag != DW_TAG_partial_unit);
11414 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11415 decode_mapping);
11416
11417 }
11418
11419 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11420
11421 static void
11422 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11423 {
11424 struct dwarf2_per_objfile *dwarf2_per_objfile
11425 = cu->per_cu->dwarf2_per_objfile;
11426 struct objfile *objfile = dwarf2_per_objfile->objfile;
11427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11428 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11429 CORE_ADDR highpc = ((CORE_ADDR) 0);
11430 struct attribute *attr;
11431 struct die_info *child_die;
11432 CORE_ADDR baseaddr;
11433
11434 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11435
11436 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11437
11438 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11439 from finish_block. */
11440 if (lowpc == ((CORE_ADDR) -1))
11441 lowpc = highpc;
11442 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11443
11444 file_and_directory fnd = find_file_and_directory (die, cu);
11445
11446 prepare_one_comp_unit (cu, die, cu->language);
11447
11448 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11449 standardised yet. As a workaround for the language detection we fall
11450 back to the DW_AT_producer string. */
11451 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11452 cu->language = language_opencl;
11453
11454 /* Similar hack for Go. */
11455 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11456 set_cu_language (DW_LANG_Go, cu);
11457
11458 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11459
11460 /* Decode line number information if present. We do this before
11461 processing child DIEs, so that the line header table is available
11462 for DW_AT_decl_file. */
11463 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11464
11465 /* Process all dies in compilation unit. */
11466 if (die->child != NULL)
11467 {
11468 child_die = die->child;
11469 while (child_die && child_die->tag)
11470 {
11471 process_die (child_die, cu);
11472 child_die = sibling_die (child_die);
11473 }
11474 }
11475
11476 /* Decode macro information, if present. Dwarf 2 macro information
11477 refers to information in the line number info statement program
11478 header, so we can only read it if we've read the header
11479 successfully. */
11480 attr = dwarf2_attr (die, DW_AT_macros, cu);
11481 if (attr == NULL)
11482 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11483 if (attr && cu->line_header)
11484 {
11485 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11486 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11487
11488 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11489 }
11490 else
11491 {
11492 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11493 if (attr && cu->line_header)
11494 {
11495 unsigned int macro_offset = DW_UNSND (attr);
11496
11497 dwarf_decode_macros (cu, macro_offset, 0);
11498 }
11499 }
11500 }
11501
11502 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11503 Create the set of symtabs used by this TU, or if this TU is sharing
11504 symtabs with another TU and the symtabs have already been created
11505 then restore those symtabs in the line header.
11506 We don't need the pc/line-number mapping for type units. */
11507
11508 static void
11509 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11510 {
11511 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11512 struct type_unit_group *tu_group;
11513 int first_time;
11514 struct attribute *attr;
11515 unsigned int i;
11516 struct signatured_type *sig_type;
11517
11518 gdb_assert (per_cu->is_debug_types);
11519 sig_type = (struct signatured_type *) per_cu;
11520
11521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11522
11523 /* If we're using .gdb_index (includes -readnow) then
11524 per_cu->type_unit_group may not have been set up yet. */
11525 if (sig_type->type_unit_group == NULL)
11526 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11527 tu_group = sig_type->type_unit_group;
11528
11529 /* If we've already processed this stmt_list there's no real need to
11530 do it again, we could fake it and just recreate the part we need
11531 (file name,index -> symtab mapping). If data shows this optimization
11532 is useful we can do it then. */
11533 first_time = tu_group->compunit_symtab == NULL;
11534
11535 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11536 debug info. */
11537 line_header_up lh;
11538 if (attr != NULL)
11539 {
11540 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11541 lh = dwarf_decode_line_header (line_offset, cu);
11542 }
11543 if (lh == NULL)
11544 {
11545 if (first_time)
11546 dwarf2_start_symtab (cu, "", NULL, 0);
11547 else
11548 {
11549 gdb_assert (tu_group->symtabs == NULL);
11550 restart_symtab (tu_group->compunit_symtab, "", 0);
11551 }
11552 return;
11553 }
11554
11555 cu->line_header = lh.release ();
11556 cu->line_header_die_owner = die;
11557
11558 if (first_time)
11559 {
11560 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11561
11562 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11563 still initializing it, and our caller (a few levels up)
11564 process_full_type_unit still needs to know if this is the first
11565 time. */
11566
11567 tu_group->num_symtabs = cu->line_header->file_names.size ();
11568 tu_group->symtabs = XNEWVEC (struct symtab *,
11569 cu->line_header->file_names.size ());
11570
11571 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11572 {
11573 file_entry &fe = cu->line_header->file_names[i];
11574
11575 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11576
11577 if (get_current_subfile ()->symtab == NULL)
11578 {
11579 /* NOTE: start_subfile will recognize when it's been
11580 passed a file it has already seen. So we can't
11581 assume there's a simple mapping from
11582 cu->line_header->file_names to subfiles, plus
11583 cu->line_header->file_names may contain dups. */
11584 get_current_subfile ()->symtab
11585 = allocate_symtab (cust, get_current_subfile ()->name);
11586 }
11587
11588 fe.symtab = get_current_subfile ()->symtab;
11589 tu_group->symtabs[i] = fe.symtab;
11590 }
11591 }
11592 else
11593 {
11594 restart_symtab (tu_group->compunit_symtab, "", 0);
11595
11596 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11597 {
11598 file_entry &fe = cu->line_header->file_names[i];
11599
11600 fe.symtab = tu_group->symtabs[i];
11601 }
11602 }
11603
11604 /* The main symtab is allocated last. Type units don't have DW_AT_name
11605 so they don't have a "real" (so to speak) symtab anyway.
11606 There is later code that will assign the main symtab to all symbols
11607 that don't have one. We need to handle the case of a symbol with a
11608 missing symtab (DW_AT_decl_file) anyway. */
11609 }
11610
11611 /* Process DW_TAG_type_unit.
11612 For TUs we want to skip the first top level sibling if it's not the
11613 actual type being defined by this TU. In this case the first top
11614 level sibling is there to provide context only. */
11615
11616 static void
11617 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11618 {
11619 struct die_info *child_die;
11620
11621 prepare_one_comp_unit (cu, die, language_minimal);
11622
11623 /* Initialize (or reinitialize) the machinery for building symtabs.
11624 We do this before processing child DIEs, so that the line header table
11625 is available for DW_AT_decl_file. */
11626 setup_type_unit_groups (die, cu);
11627
11628 if (die->child != NULL)
11629 {
11630 child_die = die->child;
11631 while (child_die && child_die->tag)
11632 {
11633 process_die (child_die, cu);
11634 child_die = sibling_die (child_die);
11635 }
11636 }
11637 }
11638 \f
11639 /* DWO/DWP files.
11640
11641 http://gcc.gnu.org/wiki/DebugFission
11642 http://gcc.gnu.org/wiki/DebugFissionDWP
11643
11644 To simplify handling of both DWO files ("object" files with the DWARF info)
11645 and DWP files (a file with the DWOs packaged up into one file), we treat
11646 DWP files as having a collection of virtual DWO files. */
11647
11648 static hashval_t
11649 hash_dwo_file (const void *item)
11650 {
11651 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11652 hashval_t hash;
11653
11654 hash = htab_hash_string (dwo_file->dwo_name);
11655 if (dwo_file->comp_dir != NULL)
11656 hash += htab_hash_string (dwo_file->comp_dir);
11657 return hash;
11658 }
11659
11660 static int
11661 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11662 {
11663 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11664 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11665
11666 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11667 return 0;
11668 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11669 return lhs->comp_dir == rhs->comp_dir;
11670 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11671 }
11672
11673 /* Allocate a hash table for DWO files. */
11674
11675 static htab_t
11676 allocate_dwo_file_hash_table (struct objfile *objfile)
11677 {
11678 return htab_create_alloc_ex (41,
11679 hash_dwo_file,
11680 eq_dwo_file,
11681 NULL,
11682 &objfile->objfile_obstack,
11683 hashtab_obstack_allocate,
11684 dummy_obstack_deallocate);
11685 }
11686
11687 /* Lookup DWO file DWO_NAME. */
11688
11689 static void **
11690 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11691 const char *dwo_name,
11692 const char *comp_dir)
11693 {
11694 struct dwo_file find_entry;
11695 void **slot;
11696
11697 if (dwarf2_per_objfile->dwo_files == NULL)
11698 dwarf2_per_objfile->dwo_files
11699 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11700
11701 memset (&find_entry, 0, sizeof (find_entry));
11702 find_entry.dwo_name = dwo_name;
11703 find_entry.comp_dir = comp_dir;
11704 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11705
11706 return slot;
11707 }
11708
11709 static hashval_t
11710 hash_dwo_unit (const void *item)
11711 {
11712 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11713
11714 /* This drops the top 32 bits of the id, but is ok for a hash. */
11715 return dwo_unit->signature;
11716 }
11717
11718 static int
11719 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11720 {
11721 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11722 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11723
11724 /* The signature is assumed to be unique within the DWO file.
11725 So while object file CU dwo_id's always have the value zero,
11726 that's OK, assuming each object file DWO file has only one CU,
11727 and that's the rule for now. */
11728 return lhs->signature == rhs->signature;
11729 }
11730
11731 /* Allocate a hash table for DWO CUs,TUs.
11732 There is one of these tables for each of CUs,TUs for each DWO file. */
11733
11734 static htab_t
11735 allocate_dwo_unit_table (struct objfile *objfile)
11736 {
11737 /* Start out with a pretty small number.
11738 Generally DWO files contain only one CU and maybe some TUs. */
11739 return htab_create_alloc_ex (3,
11740 hash_dwo_unit,
11741 eq_dwo_unit,
11742 NULL,
11743 &objfile->objfile_obstack,
11744 hashtab_obstack_allocate,
11745 dummy_obstack_deallocate);
11746 }
11747
11748 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11749
11750 struct create_dwo_cu_data
11751 {
11752 struct dwo_file *dwo_file;
11753 struct dwo_unit dwo_unit;
11754 };
11755
11756 /* die_reader_func for create_dwo_cu. */
11757
11758 static void
11759 create_dwo_cu_reader (const struct die_reader_specs *reader,
11760 const gdb_byte *info_ptr,
11761 struct die_info *comp_unit_die,
11762 int has_children,
11763 void *datap)
11764 {
11765 struct dwarf2_cu *cu = reader->cu;
11766 sect_offset sect_off = cu->per_cu->sect_off;
11767 struct dwarf2_section_info *section = cu->per_cu->section;
11768 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11769 struct dwo_file *dwo_file = data->dwo_file;
11770 struct dwo_unit *dwo_unit = &data->dwo_unit;
11771 struct attribute *attr;
11772
11773 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11774 if (attr == NULL)
11775 {
11776 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11777 " its dwo_id [in module %s]"),
11778 sect_offset_str (sect_off), dwo_file->dwo_name);
11779 return;
11780 }
11781
11782 dwo_unit->dwo_file = dwo_file;
11783 dwo_unit->signature = DW_UNSND (attr);
11784 dwo_unit->section = section;
11785 dwo_unit->sect_off = sect_off;
11786 dwo_unit->length = cu->per_cu->length;
11787
11788 if (dwarf_read_debug)
11789 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11790 sect_offset_str (sect_off),
11791 hex_string (dwo_unit->signature));
11792 }
11793
11794 /* Create the dwo_units for the CUs in a DWO_FILE.
11795 Note: This function processes DWO files only, not DWP files. */
11796
11797 static void
11798 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11799 struct dwo_file &dwo_file, dwarf2_section_info &section,
11800 htab_t &cus_htab)
11801 {
11802 struct objfile *objfile = dwarf2_per_objfile->objfile;
11803 const gdb_byte *info_ptr, *end_ptr;
11804
11805 dwarf2_read_section (objfile, &section);
11806 info_ptr = section.buffer;
11807
11808 if (info_ptr == NULL)
11809 return;
11810
11811 if (dwarf_read_debug)
11812 {
11813 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11814 get_section_name (&section),
11815 get_section_file_name (&section));
11816 }
11817
11818 end_ptr = info_ptr + section.size;
11819 while (info_ptr < end_ptr)
11820 {
11821 struct dwarf2_per_cu_data per_cu;
11822 struct create_dwo_cu_data create_dwo_cu_data;
11823 struct dwo_unit *dwo_unit;
11824 void **slot;
11825 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11826
11827 memset (&create_dwo_cu_data.dwo_unit, 0,
11828 sizeof (create_dwo_cu_data.dwo_unit));
11829 memset (&per_cu, 0, sizeof (per_cu));
11830 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11831 per_cu.is_debug_types = 0;
11832 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11833 per_cu.section = &section;
11834 create_dwo_cu_data.dwo_file = &dwo_file;
11835
11836 init_cutu_and_read_dies_no_follow (
11837 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11838 info_ptr += per_cu.length;
11839
11840 // If the unit could not be parsed, skip it.
11841 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11842 continue;
11843
11844 if (cus_htab == NULL)
11845 cus_htab = allocate_dwo_unit_table (objfile);
11846
11847 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11848 *dwo_unit = create_dwo_cu_data.dwo_unit;
11849 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11850 gdb_assert (slot != NULL);
11851 if (*slot != NULL)
11852 {
11853 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11854 sect_offset dup_sect_off = dup_cu->sect_off;
11855
11856 complaint (_("debug cu entry at offset %s is duplicate to"
11857 " the entry at offset %s, signature %s"),
11858 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11859 hex_string (dwo_unit->signature));
11860 }
11861 *slot = (void *)dwo_unit;
11862 }
11863 }
11864
11865 /* DWP file .debug_{cu,tu}_index section format:
11866 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11867
11868 DWP Version 1:
11869
11870 Both index sections have the same format, and serve to map a 64-bit
11871 signature to a set of section numbers. Each section begins with a header,
11872 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11873 indexes, and a pool of 32-bit section numbers. The index sections will be
11874 aligned at 8-byte boundaries in the file.
11875
11876 The index section header consists of:
11877
11878 V, 32 bit version number
11879 -, 32 bits unused
11880 N, 32 bit number of compilation units or type units in the index
11881 M, 32 bit number of slots in the hash table
11882
11883 Numbers are recorded using the byte order of the application binary.
11884
11885 The hash table begins at offset 16 in the section, and consists of an array
11886 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11887 order of the application binary). Unused slots in the hash table are 0.
11888 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11889
11890 The parallel table begins immediately after the hash table
11891 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11892 array of 32-bit indexes (using the byte order of the application binary),
11893 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11894 table contains a 32-bit index into the pool of section numbers. For unused
11895 hash table slots, the corresponding entry in the parallel table will be 0.
11896
11897 The pool of section numbers begins immediately following the hash table
11898 (at offset 16 + 12 * M from the beginning of the section). The pool of
11899 section numbers consists of an array of 32-bit words (using the byte order
11900 of the application binary). Each item in the array is indexed starting
11901 from 0. The hash table entry provides the index of the first section
11902 number in the set. Additional section numbers in the set follow, and the
11903 set is terminated by a 0 entry (section number 0 is not used in ELF).
11904
11905 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11906 section must be the first entry in the set, and the .debug_abbrev.dwo must
11907 be the second entry. Other members of the set may follow in any order.
11908
11909 ---
11910
11911 DWP Version 2:
11912
11913 DWP Version 2 combines all the .debug_info, etc. sections into one,
11914 and the entries in the index tables are now offsets into these sections.
11915 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11916 section.
11917
11918 Index Section Contents:
11919 Header
11920 Hash Table of Signatures dwp_hash_table.hash_table
11921 Parallel Table of Indices dwp_hash_table.unit_table
11922 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11923 Table of Section Sizes dwp_hash_table.v2.sizes
11924
11925 The index section header consists of:
11926
11927 V, 32 bit version number
11928 L, 32 bit number of columns in the table of section offsets
11929 N, 32 bit number of compilation units or type units in the index
11930 M, 32 bit number of slots in the hash table
11931
11932 Numbers are recorded using the byte order of the application binary.
11933
11934 The hash table has the same format as version 1.
11935 The parallel table of indices has the same format as version 1,
11936 except that the entries are origin-1 indices into the table of sections
11937 offsets and the table of section sizes.
11938
11939 The table of offsets begins immediately following the parallel table
11940 (at offset 16 + 12 * M from the beginning of the section). The table is
11941 a two-dimensional array of 32-bit words (using the byte order of the
11942 application binary), with L columns and N+1 rows, in row-major order.
11943 Each row in the array is indexed starting from 0. The first row provides
11944 a key to the remaining rows: each column in this row provides an identifier
11945 for a debug section, and the offsets in the same column of subsequent rows
11946 refer to that section. The section identifiers are:
11947
11948 DW_SECT_INFO 1 .debug_info.dwo
11949 DW_SECT_TYPES 2 .debug_types.dwo
11950 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11951 DW_SECT_LINE 4 .debug_line.dwo
11952 DW_SECT_LOC 5 .debug_loc.dwo
11953 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11954 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11955 DW_SECT_MACRO 8 .debug_macro.dwo
11956
11957 The offsets provided by the CU and TU index sections are the base offsets
11958 for the contributions made by each CU or TU to the corresponding section
11959 in the package file. Each CU and TU header contains an abbrev_offset
11960 field, used to find the abbreviations table for that CU or TU within the
11961 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11962 be interpreted as relative to the base offset given in the index section.
11963 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11964 should be interpreted as relative to the base offset for .debug_line.dwo,
11965 and offsets into other debug sections obtained from DWARF attributes should
11966 also be interpreted as relative to the corresponding base offset.
11967
11968 The table of sizes begins immediately following the table of offsets.
11969 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11970 with L columns and N rows, in row-major order. Each row in the array is
11971 indexed starting from 1 (row 0 is shared by the two tables).
11972
11973 ---
11974
11975 Hash table lookup is handled the same in version 1 and 2:
11976
11977 We assume that N and M will not exceed 2^32 - 1.
11978 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11979
11980 Given a 64-bit compilation unit signature or a type signature S, an entry
11981 in the hash table is located as follows:
11982
11983 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11984 the low-order k bits all set to 1.
11985
11986 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11987
11988 3) If the hash table entry at index H matches the signature, use that
11989 entry. If the hash table entry at index H is unused (all zeroes),
11990 terminate the search: the signature is not present in the table.
11991
11992 4) Let H = (H + H') modulo M. Repeat at Step 3.
11993
11994 Because M > N and H' and M are relatively prime, the search is guaranteed
11995 to stop at an unused slot or find the match. */
11996
11997 /* Create a hash table to map DWO IDs to their CU/TU entry in
11998 .debug_{info,types}.dwo in DWP_FILE.
11999 Returns NULL if there isn't one.
12000 Note: This function processes DWP files only, not DWO files. */
12001
12002 static struct dwp_hash_table *
12003 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12004 struct dwp_file *dwp_file, int is_debug_types)
12005 {
12006 struct objfile *objfile = dwarf2_per_objfile->objfile;
12007 bfd *dbfd = dwp_file->dbfd.get ();
12008 const gdb_byte *index_ptr, *index_end;
12009 struct dwarf2_section_info *index;
12010 uint32_t version, nr_columns, nr_units, nr_slots;
12011 struct dwp_hash_table *htab;
12012
12013 if (is_debug_types)
12014 index = &dwp_file->sections.tu_index;
12015 else
12016 index = &dwp_file->sections.cu_index;
12017
12018 if (dwarf2_section_empty_p (index))
12019 return NULL;
12020 dwarf2_read_section (objfile, index);
12021
12022 index_ptr = index->buffer;
12023 index_end = index_ptr + index->size;
12024
12025 version = read_4_bytes (dbfd, index_ptr);
12026 index_ptr += 4;
12027 if (version == 2)
12028 nr_columns = read_4_bytes (dbfd, index_ptr);
12029 else
12030 nr_columns = 0;
12031 index_ptr += 4;
12032 nr_units = read_4_bytes (dbfd, index_ptr);
12033 index_ptr += 4;
12034 nr_slots = read_4_bytes (dbfd, index_ptr);
12035 index_ptr += 4;
12036
12037 if (version != 1 && version != 2)
12038 {
12039 error (_("Dwarf Error: unsupported DWP file version (%s)"
12040 " [in module %s]"),
12041 pulongest (version), dwp_file->name);
12042 }
12043 if (nr_slots != (nr_slots & -nr_slots))
12044 {
12045 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12046 " is not power of 2 [in module %s]"),
12047 pulongest (nr_slots), dwp_file->name);
12048 }
12049
12050 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12051 htab->version = version;
12052 htab->nr_columns = nr_columns;
12053 htab->nr_units = nr_units;
12054 htab->nr_slots = nr_slots;
12055 htab->hash_table = index_ptr;
12056 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12057
12058 /* Exit early if the table is empty. */
12059 if (nr_slots == 0 || nr_units == 0
12060 || (version == 2 && nr_columns == 0))
12061 {
12062 /* All must be zero. */
12063 if (nr_slots != 0 || nr_units != 0
12064 || (version == 2 && nr_columns != 0))
12065 {
12066 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12067 " all zero [in modules %s]"),
12068 dwp_file->name);
12069 }
12070 return htab;
12071 }
12072
12073 if (version == 1)
12074 {
12075 htab->section_pool.v1.indices =
12076 htab->unit_table + sizeof (uint32_t) * nr_slots;
12077 /* It's harder to decide whether the section is too small in v1.
12078 V1 is deprecated anyway so we punt. */
12079 }
12080 else
12081 {
12082 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12083 int *ids = htab->section_pool.v2.section_ids;
12084 /* Reverse map for error checking. */
12085 int ids_seen[DW_SECT_MAX + 1];
12086 int i;
12087
12088 if (nr_columns < 2)
12089 {
12090 error (_("Dwarf Error: bad DWP hash table, too few columns"
12091 " in section table [in module %s]"),
12092 dwp_file->name);
12093 }
12094 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12095 {
12096 error (_("Dwarf Error: bad DWP hash table, too many columns"
12097 " in section table [in module %s]"),
12098 dwp_file->name);
12099 }
12100 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12101 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12102 for (i = 0; i < nr_columns; ++i)
12103 {
12104 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12105
12106 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12107 {
12108 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12109 " in section table [in module %s]"),
12110 id, dwp_file->name);
12111 }
12112 if (ids_seen[id] != -1)
12113 {
12114 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12115 " id %d in section table [in module %s]"),
12116 id, dwp_file->name);
12117 }
12118 ids_seen[id] = i;
12119 ids[i] = id;
12120 }
12121 /* Must have exactly one info or types section. */
12122 if (((ids_seen[DW_SECT_INFO] != -1)
12123 + (ids_seen[DW_SECT_TYPES] != -1))
12124 != 1)
12125 {
12126 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12127 " DWO info/types section [in module %s]"),
12128 dwp_file->name);
12129 }
12130 /* Must have an abbrev section. */
12131 if (ids_seen[DW_SECT_ABBREV] == -1)
12132 {
12133 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12134 " section [in module %s]"),
12135 dwp_file->name);
12136 }
12137 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12138 htab->section_pool.v2.sizes =
12139 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12140 * nr_units * nr_columns);
12141 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12142 * nr_units * nr_columns))
12143 > index_end)
12144 {
12145 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12146 " [in module %s]"),
12147 dwp_file->name);
12148 }
12149 }
12150
12151 return htab;
12152 }
12153
12154 /* Update SECTIONS with the data from SECTP.
12155
12156 This function is like the other "locate" section routines that are
12157 passed to bfd_map_over_sections, but in this context the sections to
12158 read comes from the DWP V1 hash table, not the full ELF section table.
12159
12160 The result is non-zero for success, or zero if an error was found. */
12161
12162 static int
12163 locate_v1_virtual_dwo_sections (asection *sectp,
12164 struct virtual_v1_dwo_sections *sections)
12165 {
12166 const struct dwop_section_names *names = &dwop_section_names;
12167
12168 if (section_is_p (sectp->name, &names->abbrev_dwo))
12169 {
12170 /* There can be only one. */
12171 if (sections->abbrev.s.section != NULL)
12172 return 0;
12173 sections->abbrev.s.section = sectp;
12174 sections->abbrev.size = bfd_get_section_size (sectp);
12175 }
12176 else if (section_is_p (sectp->name, &names->info_dwo)
12177 || section_is_p (sectp->name, &names->types_dwo))
12178 {
12179 /* There can be only one. */
12180 if (sections->info_or_types.s.section != NULL)
12181 return 0;
12182 sections->info_or_types.s.section = sectp;
12183 sections->info_or_types.size = bfd_get_section_size (sectp);
12184 }
12185 else if (section_is_p (sectp->name, &names->line_dwo))
12186 {
12187 /* There can be only one. */
12188 if (sections->line.s.section != NULL)
12189 return 0;
12190 sections->line.s.section = sectp;
12191 sections->line.size = bfd_get_section_size (sectp);
12192 }
12193 else if (section_is_p (sectp->name, &names->loc_dwo))
12194 {
12195 /* There can be only one. */
12196 if (sections->loc.s.section != NULL)
12197 return 0;
12198 sections->loc.s.section = sectp;
12199 sections->loc.size = bfd_get_section_size (sectp);
12200 }
12201 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12202 {
12203 /* There can be only one. */
12204 if (sections->macinfo.s.section != NULL)
12205 return 0;
12206 sections->macinfo.s.section = sectp;
12207 sections->macinfo.size = bfd_get_section_size (sectp);
12208 }
12209 else if (section_is_p (sectp->name, &names->macro_dwo))
12210 {
12211 /* There can be only one. */
12212 if (sections->macro.s.section != NULL)
12213 return 0;
12214 sections->macro.s.section = sectp;
12215 sections->macro.size = bfd_get_section_size (sectp);
12216 }
12217 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12218 {
12219 /* There can be only one. */
12220 if (sections->str_offsets.s.section != NULL)
12221 return 0;
12222 sections->str_offsets.s.section = sectp;
12223 sections->str_offsets.size = bfd_get_section_size (sectp);
12224 }
12225 else
12226 {
12227 /* No other kind of section is valid. */
12228 return 0;
12229 }
12230
12231 return 1;
12232 }
12233
12234 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12235 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12236 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12237 This is for DWP version 1 files. */
12238
12239 static struct dwo_unit *
12240 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12241 struct dwp_file *dwp_file,
12242 uint32_t unit_index,
12243 const char *comp_dir,
12244 ULONGEST signature, int is_debug_types)
12245 {
12246 struct objfile *objfile = dwarf2_per_objfile->objfile;
12247 const struct dwp_hash_table *dwp_htab =
12248 is_debug_types ? dwp_file->tus : dwp_file->cus;
12249 bfd *dbfd = dwp_file->dbfd.get ();
12250 const char *kind = is_debug_types ? "TU" : "CU";
12251 struct dwo_file *dwo_file;
12252 struct dwo_unit *dwo_unit;
12253 struct virtual_v1_dwo_sections sections;
12254 void **dwo_file_slot;
12255 int i;
12256
12257 gdb_assert (dwp_file->version == 1);
12258
12259 if (dwarf_read_debug)
12260 {
12261 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12262 kind,
12263 pulongest (unit_index), hex_string (signature),
12264 dwp_file->name);
12265 }
12266
12267 /* Fetch the sections of this DWO unit.
12268 Put a limit on the number of sections we look for so that bad data
12269 doesn't cause us to loop forever. */
12270
12271 #define MAX_NR_V1_DWO_SECTIONS \
12272 (1 /* .debug_info or .debug_types */ \
12273 + 1 /* .debug_abbrev */ \
12274 + 1 /* .debug_line */ \
12275 + 1 /* .debug_loc */ \
12276 + 1 /* .debug_str_offsets */ \
12277 + 1 /* .debug_macro or .debug_macinfo */ \
12278 + 1 /* trailing zero */)
12279
12280 memset (&sections, 0, sizeof (sections));
12281
12282 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12283 {
12284 asection *sectp;
12285 uint32_t section_nr =
12286 read_4_bytes (dbfd,
12287 dwp_htab->section_pool.v1.indices
12288 + (unit_index + i) * sizeof (uint32_t));
12289
12290 if (section_nr == 0)
12291 break;
12292 if (section_nr >= dwp_file->num_sections)
12293 {
12294 error (_("Dwarf Error: bad DWP hash table, section number too large"
12295 " [in module %s]"),
12296 dwp_file->name);
12297 }
12298
12299 sectp = dwp_file->elf_sections[section_nr];
12300 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12301 {
12302 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12303 " [in module %s]"),
12304 dwp_file->name);
12305 }
12306 }
12307
12308 if (i < 2
12309 || dwarf2_section_empty_p (&sections.info_or_types)
12310 || dwarf2_section_empty_p (&sections.abbrev))
12311 {
12312 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12313 " [in module %s]"),
12314 dwp_file->name);
12315 }
12316 if (i == MAX_NR_V1_DWO_SECTIONS)
12317 {
12318 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12319 " [in module %s]"),
12320 dwp_file->name);
12321 }
12322
12323 /* It's easier for the rest of the code if we fake a struct dwo_file and
12324 have dwo_unit "live" in that. At least for now.
12325
12326 The DWP file can be made up of a random collection of CUs and TUs.
12327 However, for each CU + set of TUs that came from the same original DWO
12328 file, we can combine them back into a virtual DWO file to save space
12329 (fewer struct dwo_file objects to allocate). Remember that for really
12330 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12331
12332 std::string virtual_dwo_name =
12333 string_printf ("virtual-dwo/%d-%d-%d-%d",
12334 get_section_id (&sections.abbrev),
12335 get_section_id (&sections.line),
12336 get_section_id (&sections.loc),
12337 get_section_id (&sections.str_offsets));
12338 /* Can we use an existing virtual DWO file? */
12339 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12340 virtual_dwo_name.c_str (),
12341 comp_dir);
12342 /* Create one if necessary. */
12343 if (*dwo_file_slot == NULL)
12344 {
12345 if (dwarf_read_debug)
12346 {
12347 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12348 virtual_dwo_name.c_str ());
12349 }
12350 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12351 dwo_file->dwo_name
12352 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12353 virtual_dwo_name.c_str (),
12354 virtual_dwo_name.size ());
12355 dwo_file->comp_dir = comp_dir;
12356 dwo_file->sections.abbrev = sections.abbrev;
12357 dwo_file->sections.line = sections.line;
12358 dwo_file->sections.loc = sections.loc;
12359 dwo_file->sections.macinfo = sections.macinfo;
12360 dwo_file->sections.macro = sections.macro;
12361 dwo_file->sections.str_offsets = sections.str_offsets;
12362 /* The "str" section is global to the entire DWP file. */
12363 dwo_file->sections.str = dwp_file->sections.str;
12364 /* The info or types section is assigned below to dwo_unit,
12365 there's no need to record it in dwo_file.
12366 Also, we can't simply record type sections in dwo_file because
12367 we record a pointer into the vector in dwo_unit. As we collect more
12368 types we'll grow the vector and eventually have to reallocate space
12369 for it, invalidating all copies of pointers into the previous
12370 contents. */
12371 *dwo_file_slot = dwo_file;
12372 }
12373 else
12374 {
12375 if (dwarf_read_debug)
12376 {
12377 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12378 virtual_dwo_name.c_str ());
12379 }
12380 dwo_file = (struct dwo_file *) *dwo_file_slot;
12381 }
12382
12383 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12384 dwo_unit->dwo_file = dwo_file;
12385 dwo_unit->signature = signature;
12386 dwo_unit->section =
12387 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12388 *dwo_unit->section = sections.info_or_types;
12389 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12390
12391 return dwo_unit;
12392 }
12393
12394 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12395 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12396 piece within that section used by a TU/CU, return a virtual section
12397 of just that piece. */
12398
12399 static struct dwarf2_section_info
12400 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12401 struct dwarf2_section_info *section,
12402 bfd_size_type offset, bfd_size_type size)
12403 {
12404 struct dwarf2_section_info result;
12405 asection *sectp;
12406
12407 gdb_assert (section != NULL);
12408 gdb_assert (!section->is_virtual);
12409
12410 memset (&result, 0, sizeof (result));
12411 result.s.containing_section = section;
12412 result.is_virtual = 1;
12413
12414 if (size == 0)
12415 return result;
12416
12417 sectp = get_section_bfd_section (section);
12418
12419 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12420 bounds of the real section. This is a pretty-rare event, so just
12421 flag an error (easier) instead of a warning and trying to cope. */
12422 if (sectp == NULL
12423 || offset + size > bfd_get_section_size (sectp))
12424 {
12425 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12426 " in section %s [in module %s]"),
12427 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12428 objfile_name (dwarf2_per_objfile->objfile));
12429 }
12430
12431 result.virtual_offset = offset;
12432 result.size = size;
12433 return result;
12434 }
12435
12436 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12437 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12438 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12439 This is for DWP version 2 files. */
12440
12441 static struct dwo_unit *
12442 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12443 struct dwp_file *dwp_file,
12444 uint32_t unit_index,
12445 const char *comp_dir,
12446 ULONGEST signature, int is_debug_types)
12447 {
12448 struct objfile *objfile = dwarf2_per_objfile->objfile;
12449 const struct dwp_hash_table *dwp_htab =
12450 is_debug_types ? dwp_file->tus : dwp_file->cus;
12451 bfd *dbfd = dwp_file->dbfd.get ();
12452 const char *kind = is_debug_types ? "TU" : "CU";
12453 struct dwo_file *dwo_file;
12454 struct dwo_unit *dwo_unit;
12455 struct virtual_v2_dwo_sections sections;
12456 void **dwo_file_slot;
12457 int i;
12458
12459 gdb_assert (dwp_file->version == 2);
12460
12461 if (dwarf_read_debug)
12462 {
12463 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12464 kind,
12465 pulongest (unit_index), hex_string (signature),
12466 dwp_file->name);
12467 }
12468
12469 /* Fetch the section offsets of this DWO unit. */
12470
12471 memset (&sections, 0, sizeof (sections));
12472
12473 for (i = 0; i < dwp_htab->nr_columns; ++i)
12474 {
12475 uint32_t offset = read_4_bytes (dbfd,
12476 dwp_htab->section_pool.v2.offsets
12477 + (((unit_index - 1) * dwp_htab->nr_columns
12478 + i)
12479 * sizeof (uint32_t)));
12480 uint32_t size = read_4_bytes (dbfd,
12481 dwp_htab->section_pool.v2.sizes
12482 + (((unit_index - 1) * dwp_htab->nr_columns
12483 + i)
12484 * sizeof (uint32_t)));
12485
12486 switch (dwp_htab->section_pool.v2.section_ids[i])
12487 {
12488 case DW_SECT_INFO:
12489 case DW_SECT_TYPES:
12490 sections.info_or_types_offset = offset;
12491 sections.info_or_types_size = size;
12492 break;
12493 case DW_SECT_ABBREV:
12494 sections.abbrev_offset = offset;
12495 sections.abbrev_size = size;
12496 break;
12497 case DW_SECT_LINE:
12498 sections.line_offset = offset;
12499 sections.line_size = size;
12500 break;
12501 case DW_SECT_LOC:
12502 sections.loc_offset = offset;
12503 sections.loc_size = size;
12504 break;
12505 case DW_SECT_STR_OFFSETS:
12506 sections.str_offsets_offset = offset;
12507 sections.str_offsets_size = size;
12508 break;
12509 case DW_SECT_MACINFO:
12510 sections.macinfo_offset = offset;
12511 sections.macinfo_size = size;
12512 break;
12513 case DW_SECT_MACRO:
12514 sections.macro_offset = offset;
12515 sections.macro_size = size;
12516 break;
12517 }
12518 }
12519
12520 /* It's easier for the rest of the code if we fake a struct dwo_file and
12521 have dwo_unit "live" in that. At least for now.
12522
12523 The DWP file can be made up of a random collection of CUs and TUs.
12524 However, for each CU + set of TUs that came from the same original DWO
12525 file, we can combine them back into a virtual DWO file to save space
12526 (fewer struct dwo_file objects to allocate). Remember that for really
12527 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12528
12529 std::string virtual_dwo_name =
12530 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12531 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12532 (long) (sections.line_size ? sections.line_offset : 0),
12533 (long) (sections.loc_size ? sections.loc_offset : 0),
12534 (long) (sections.str_offsets_size
12535 ? sections.str_offsets_offset : 0));
12536 /* Can we use an existing virtual DWO file? */
12537 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12538 virtual_dwo_name.c_str (),
12539 comp_dir);
12540 /* Create one if necessary. */
12541 if (*dwo_file_slot == NULL)
12542 {
12543 if (dwarf_read_debug)
12544 {
12545 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12546 virtual_dwo_name.c_str ());
12547 }
12548 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12549 dwo_file->dwo_name
12550 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12551 virtual_dwo_name.c_str (),
12552 virtual_dwo_name.size ());
12553 dwo_file->comp_dir = comp_dir;
12554 dwo_file->sections.abbrev =
12555 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12556 sections.abbrev_offset, sections.abbrev_size);
12557 dwo_file->sections.line =
12558 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12559 sections.line_offset, sections.line_size);
12560 dwo_file->sections.loc =
12561 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12562 sections.loc_offset, sections.loc_size);
12563 dwo_file->sections.macinfo =
12564 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12565 sections.macinfo_offset, sections.macinfo_size);
12566 dwo_file->sections.macro =
12567 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12568 sections.macro_offset, sections.macro_size);
12569 dwo_file->sections.str_offsets =
12570 create_dwp_v2_section (dwarf2_per_objfile,
12571 &dwp_file->sections.str_offsets,
12572 sections.str_offsets_offset,
12573 sections.str_offsets_size);
12574 /* The "str" section is global to the entire DWP file. */
12575 dwo_file->sections.str = dwp_file->sections.str;
12576 /* The info or types section is assigned below to dwo_unit,
12577 there's no need to record it in dwo_file.
12578 Also, we can't simply record type sections in dwo_file because
12579 we record a pointer into the vector in dwo_unit. As we collect more
12580 types we'll grow the vector and eventually have to reallocate space
12581 for it, invalidating all copies of pointers into the previous
12582 contents. */
12583 *dwo_file_slot = dwo_file;
12584 }
12585 else
12586 {
12587 if (dwarf_read_debug)
12588 {
12589 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12590 virtual_dwo_name.c_str ());
12591 }
12592 dwo_file = (struct dwo_file *) *dwo_file_slot;
12593 }
12594
12595 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12596 dwo_unit->dwo_file = dwo_file;
12597 dwo_unit->signature = signature;
12598 dwo_unit->section =
12599 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12600 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12601 is_debug_types
12602 ? &dwp_file->sections.types
12603 : &dwp_file->sections.info,
12604 sections.info_or_types_offset,
12605 sections.info_or_types_size);
12606 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12607
12608 return dwo_unit;
12609 }
12610
12611 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12612 Returns NULL if the signature isn't found. */
12613
12614 static struct dwo_unit *
12615 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12616 struct dwp_file *dwp_file, const char *comp_dir,
12617 ULONGEST signature, int is_debug_types)
12618 {
12619 const struct dwp_hash_table *dwp_htab =
12620 is_debug_types ? dwp_file->tus : dwp_file->cus;
12621 bfd *dbfd = dwp_file->dbfd.get ();
12622 uint32_t mask = dwp_htab->nr_slots - 1;
12623 uint32_t hash = signature & mask;
12624 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12625 unsigned int i;
12626 void **slot;
12627 struct dwo_unit find_dwo_cu;
12628
12629 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12630 find_dwo_cu.signature = signature;
12631 slot = htab_find_slot (is_debug_types
12632 ? dwp_file->loaded_tus
12633 : dwp_file->loaded_cus,
12634 &find_dwo_cu, INSERT);
12635
12636 if (*slot != NULL)
12637 return (struct dwo_unit *) *slot;
12638
12639 /* Use a for loop so that we don't loop forever on bad debug info. */
12640 for (i = 0; i < dwp_htab->nr_slots; ++i)
12641 {
12642 ULONGEST signature_in_table;
12643
12644 signature_in_table =
12645 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12646 if (signature_in_table == signature)
12647 {
12648 uint32_t unit_index =
12649 read_4_bytes (dbfd,
12650 dwp_htab->unit_table + hash * sizeof (uint32_t));
12651
12652 if (dwp_file->version == 1)
12653 {
12654 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12655 dwp_file, unit_index,
12656 comp_dir, signature,
12657 is_debug_types);
12658 }
12659 else
12660 {
12661 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12662 dwp_file, unit_index,
12663 comp_dir, signature,
12664 is_debug_types);
12665 }
12666 return (struct dwo_unit *) *slot;
12667 }
12668 if (signature_in_table == 0)
12669 return NULL;
12670 hash = (hash + hash2) & mask;
12671 }
12672
12673 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12674 " [in module %s]"),
12675 dwp_file->name);
12676 }
12677
12678 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12679 Open the file specified by FILE_NAME and hand it off to BFD for
12680 preliminary analysis. Return a newly initialized bfd *, which
12681 includes a canonicalized copy of FILE_NAME.
12682 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12683 SEARCH_CWD is true if the current directory is to be searched.
12684 It will be searched before debug-file-directory.
12685 If successful, the file is added to the bfd include table of the
12686 objfile's bfd (see gdb_bfd_record_inclusion).
12687 If unable to find/open the file, return NULL.
12688 NOTE: This function is derived from symfile_bfd_open. */
12689
12690 static gdb_bfd_ref_ptr
12691 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12692 const char *file_name, int is_dwp, int search_cwd)
12693 {
12694 int desc;
12695 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12696 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12697 to debug_file_directory. */
12698 const char *search_path;
12699 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12700
12701 gdb::unique_xmalloc_ptr<char> search_path_holder;
12702 if (search_cwd)
12703 {
12704 if (*debug_file_directory != '\0')
12705 {
12706 search_path_holder.reset (concat (".", dirname_separator_string,
12707 debug_file_directory,
12708 (char *) NULL));
12709 search_path = search_path_holder.get ();
12710 }
12711 else
12712 search_path = ".";
12713 }
12714 else
12715 search_path = debug_file_directory;
12716
12717 openp_flags flags = OPF_RETURN_REALPATH;
12718 if (is_dwp)
12719 flags |= OPF_SEARCH_IN_PATH;
12720
12721 gdb::unique_xmalloc_ptr<char> absolute_name;
12722 desc = openp (search_path, flags, file_name,
12723 O_RDONLY | O_BINARY, &absolute_name);
12724 if (desc < 0)
12725 return NULL;
12726
12727 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12728 gnutarget, desc));
12729 if (sym_bfd == NULL)
12730 return NULL;
12731 bfd_set_cacheable (sym_bfd.get (), 1);
12732
12733 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12734 return NULL;
12735
12736 /* Success. Record the bfd as having been included by the objfile's bfd.
12737 This is important because things like demangled_names_hash lives in the
12738 objfile's per_bfd space and may have references to things like symbol
12739 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12740 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12741
12742 return sym_bfd;
12743 }
12744
12745 /* Try to open DWO file FILE_NAME.
12746 COMP_DIR is the DW_AT_comp_dir attribute.
12747 The result is the bfd handle of the file.
12748 If there is a problem finding or opening the file, return NULL.
12749 Upon success, the canonicalized path of the file is stored in the bfd,
12750 same as symfile_bfd_open. */
12751
12752 static gdb_bfd_ref_ptr
12753 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12754 const char *file_name, const char *comp_dir)
12755 {
12756 if (IS_ABSOLUTE_PATH (file_name))
12757 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12758 0 /*is_dwp*/, 0 /*search_cwd*/);
12759
12760 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12761
12762 if (comp_dir != NULL)
12763 {
12764 char *path_to_try = concat (comp_dir, SLASH_STRING,
12765 file_name, (char *) NULL);
12766
12767 /* NOTE: If comp_dir is a relative path, this will also try the
12768 search path, which seems useful. */
12769 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12770 path_to_try,
12771 0 /*is_dwp*/,
12772 1 /*search_cwd*/));
12773 xfree (path_to_try);
12774 if (abfd != NULL)
12775 return abfd;
12776 }
12777
12778 /* That didn't work, try debug-file-directory, which, despite its name,
12779 is a list of paths. */
12780
12781 if (*debug_file_directory == '\0')
12782 return NULL;
12783
12784 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12785 0 /*is_dwp*/, 1 /*search_cwd*/);
12786 }
12787
12788 /* This function is mapped across the sections and remembers the offset and
12789 size of each of the DWO debugging sections we are interested in. */
12790
12791 static void
12792 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12793 {
12794 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12795 const struct dwop_section_names *names = &dwop_section_names;
12796
12797 if (section_is_p (sectp->name, &names->abbrev_dwo))
12798 {
12799 dwo_sections->abbrev.s.section = sectp;
12800 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12801 }
12802 else if (section_is_p (sectp->name, &names->info_dwo))
12803 {
12804 dwo_sections->info.s.section = sectp;
12805 dwo_sections->info.size = bfd_get_section_size (sectp);
12806 }
12807 else if (section_is_p (sectp->name, &names->line_dwo))
12808 {
12809 dwo_sections->line.s.section = sectp;
12810 dwo_sections->line.size = bfd_get_section_size (sectp);
12811 }
12812 else if (section_is_p (sectp->name, &names->loc_dwo))
12813 {
12814 dwo_sections->loc.s.section = sectp;
12815 dwo_sections->loc.size = bfd_get_section_size (sectp);
12816 }
12817 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12818 {
12819 dwo_sections->macinfo.s.section = sectp;
12820 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12821 }
12822 else if (section_is_p (sectp->name, &names->macro_dwo))
12823 {
12824 dwo_sections->macro.s.section = sectp;
12825 dwo_sections->macro.size = bfd_get_section_size (sectp);
12826 }
12827 else if (section_is_p (sectp->name, &names->str_dwo))
12828 {
12829 dwo_sections->str.s.section = sectp;
12830 dwo_sections->str.size = bfd_get_section_size (sectp);
12831 }
12832 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12833 {
12834 dwo_sections->str_offsets.s.section = sectp;
12835 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12836 }
12837 else if (section_is_p (sectp->name, &names->types_dwo))
12838 {
12839 struct dwarf2_section_info type_section;
12840
12841 memset (&type_section, 0, sizeof (type_section));
12842 type_section.s.section = sectp;
12843 type_section.size = bfd_get_section_size (sectp);
12844 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12845 &type_section);
12846 }
12847 }
12848
12849 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12850 by PER_CU. This is for the non-DWP case.
12851 The result is NULL if DWO_NAME can't be found. */
12852
12853 static struct dwo_file *
12854 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12855 const char *dwo_name, const char *comp_dir)
12856 {
12857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12858 struct objfile *objfile = dwarf2_per_objfile->objfile;
12859
12860 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12861 if (dbfd == NULL)
12862 {
12863 if (dwarf_read_debug)
12864 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12865 return NULL;
12866 }
12867
12868 /* We use a unique pointer here, despite the obstack allocation,
12869 because a dwo_file needs some cleanup if it is abandoned. */
12870 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12871 struct dwo_file));
12872 dwo_file->dwo_name = dwo_name;
12873 dwo_file->comp_dir = comp_dir;
12874 dwo_file->dbfd = dbfd.release ();
12875
12876 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12877 &dwo_file->sections);
12878
12879 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12880 dwo_file->cus);
12881
12882 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12883 dwo_file->sections.types, dwo_file->tus);
12884
12885 if (dwarf_read_debug)
12886 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12887
12888 return dwo_file.release ();
12889 }
12890
12891 /* This function is mapped across the sections and remembers the offset and
12892 size of each of the DWP debugging sections common to version 1 and 2 that
12893 we are interested in. */
12894
12895 static void
12896 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12897 void *dwp_file_ptr)
12898 {
12899 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12900 const struct dwop_section_names *names = &dwop_section_names;
12901 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12902
12903 /* Record the ELF section number for later lookup: this is what the
12904 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12905 gdb_assert (elf_section_nr < dwp_file->num_sections);
12906 dwp_file->elf_sections[elf_section_nr] = sectp;
12907
12908 /* Look for specific sections that we need. */
12909 if (section_is_p (sectp->name, &names->str_dwo))
12910 {
12911 dwp_file->sections.str.s.section = sectp;
12912 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12913 }
12914 else if (section_is_p (sectp->name, &names->cu_index))
12915 {
12916 dwp_file->sections.cu_index.s.section = sectp;
12917 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12918 }
12919 else if (section_is_p (sectp->name, &names->tu_index))
12920 {
12921 dwp_file->sections.tu_index.s.section = sectp;
12922 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12923 }
12924 }
12925
12926 /* This function is mapped across the sections and remembers the offset and
12927 size of each of the DWP version 2 debugging sections that we are interested
12928 in. This is split into a separate function because we don't know if we
12929 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12930
12931 static void
12932 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12933 {
12934 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12935 const struct dwop_section_names *names = &dwop_section_names;
12936 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12937
12938 /* Record the ELF section number for later lookup: this is what the
12939 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12940 gdb_assert (elf_section_nr < dwp_file->num_sections);
12941 dwp_file->elf_sections[elf_section_nr] = sectp;
12942
12943 /* Look for specific sections that we need. */
12944 if (section_is_p (sectp->name, &names->abbrev_dwo))
12945 {
12946 dwp_file->sections.abbrev.s.section = sectp;
12947 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12948 }
12949 else if (section_is_p (sectp->name, &names->info_dwo))
12950 {
12951 dwp_file->sections.info.s.section = sectp;
12952 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12953 }
12954 else if (section_is_p (sectp->name, &names->line_dwo))
12955 {
12956 dwp_file->sections.line.s.section = sectp;
12957 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12958 }
12959 else if (section_is_p (sectp->name, &names->loc_dwo))
12960 {
12961 dwp_file->sections.loc.s.section = sectp;
12962 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12963 }
12964 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12965 {
12966 dwp_file->sections.macinfo.s.section = sectp;
12967 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12968 }
12969 else if (section_is_p (sectp->name, &names->macro_dwo))
12970 {
12971 dwp_file->sections.macro.s.section = sectp;
12972 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
12973 }
12974 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12975 {
12976 dwp_file->sections.str_offsets.s.section = sectp;
12977 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
12978 }
12979 else if (section_is_p (sectp->name, &names->types_dwo))
12980 {
12981 dwp_file->sections.types.s.section = sectp;
12982 dwp_file->sections.types.size = bfd_get_section_size (sectp);
12983 }
12984 }
12985
12986 /* Hash function for dwp_file loaded CUs/TUs. */
12987
12988 static hashval_t
12989 hash_dwp_loaded_cutus (const void *item)
12990 {
12991 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12992
12993 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12994 return dwo_unit->signature;
12995 }
12996
12997 /* Equality function for dwp_file loaded CUs/TUs. */
12998
12999 static int
13000 eq_dwp_loaded_cutus (const void *a, const void *b)
13001 {
13002 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13003 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13004
13005 return dua->signature == dub->signature;
13006 }
13007
13008 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13009
13010 static htab_t
13011 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13012 {
13013 return htab_create_alloc_ex (3,
13014 hash_dwp_loaded_cutus,
13015 eq_dwp_loaded_cutus,
13016 NULL,
13017 &objfile->objfile_obstack,
13018 hashtab_obstack_allocate,
13019 dummy_obstack_deallocate);
13020 }
13021
13022 /* Try to open DWP file FILE_NAME.
13023 The result is the bfd handle of the file.
13024 If there is a problem finding or opening the file, return NULL.
13025 Upon success, the canonicalized path of the file is stored in the bfd,
13026 same as symfile_bfd_open. */
13027
13028 static gdb_bfd_ref_ptr
13029 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13030 const char *file_name)
13031 {
13032 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13033 1 /*is_dwp*/,
13034 1 /*search_cwd*/));
13035 if (abfd != NULL)
13036 return abfd;
13037
13038 /* Work around upstream bug 15652.
13039 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13040 [Whether that's a "bug" is debatable, but it is getting in our way.]
13041 We have no real idea where the dwp file is, because gdb's realpath-ing
13042 of the executable's path may have discarded the needed info.
13043 [IWBN if the dwp file name was recorded in the executable, akin to
13044 .gnu_debuglink, but that doesn't exist yet.]
13045 Strip the directory from FILE_NAME and search again. */
13046 if (*debug_file_directory != '\0')
13047 {
13048 /* Don't implicitly search the current directory here.
13049 If the user wants to search "." to handle this case,
13050 it must be added to debug-file-directory. */
13051 return try_open_dwop_file (dwarf2_per_objfile,
13052 lbasename (file_name), 1 /*is_dwp*/,
13053 0 /*search_cwd*/);
13054 }
13055
13056 return NULL;
13057 }
13058
13059 /* Initialize the use of the DWP file for the current objfile.
13060 By convention the name of the DWP file is ${objfile}.dwp.
13061 The result is NULL if it can't be found. */
13062
13063 static std::unique_ptr<struct dwp_file>
13064 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13065 {
13066 struct objfile *objfile = dwarf2_per_objfile->objfile;
13067
13068 /* Try to find first .dwp for the binary file before any symbolic links
13069 resolving. */
13070
13071 /* If the objfile is a debug file, find the name of the real binary
13072 file and get the name of dwp file from there. */
13073 std::string dwp_name;
13074 if (objfile->separate_debug_objfile_backlink != NULL)
13075 {
13076 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13077 const char *backlink_basename = lbasename (backlink->original_name);
13078
13079 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13080 }
13081 else
13082 dwp_name = objfile->original_name;
13083
13084 dwp_name += ".dwp";
13085
13086 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13087 if (dbfd == NULL
13088 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13089 {
13090 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13091 dwp_name = objfile_name (objfile);
13092 dwp_name += ".dwp";
13093 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13094 }
13095
13096 if (dbfd == NULL)
13097 {
13098 if (dwarf_read_debug)
13099 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13100 return std::unique_ptr<dwp_file> ();
13101 }
13102
13103 const char *name = bfd_get_filename (dbfd.get ());
13104 std::unique_ptr<struct dwp_file> dwp_file
13105 (new struct dwp_file (name, std::move (dbfd)));
13106
13107 /* +1: section 0 is unused */
13108 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13109 dwp_file->elf_sections =
13110 OBSTACK_CALLOC (&objfile->objfile_obstack,
13111 dwp_file->num_sections, asection *);
13112
13113 bfd_map_over_sections (dwp_file->dbfd.get (),
13114 dwarf2_locate_common_dwp_sections,
13115 dwp_file.get ());
13116
13117 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13118 0);
13119
13120 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13121 1);
13122
13123 /* The DWP file version is stored in the hash table. Oh well. */
13124 if (dwp_file->cus && dwp_file->tus
13125 && dwp_file->cus->version != dwp_file->tus->version)
13126 {
13127 /* Technically speaking, we should try to limp along, but this is
13128 pretty bizarre. We use pulongest here because that's the established
13129 portability solution (e.g, we cannot use %u for uint32_t). */
13130 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13131 " TU version %s [in DWP file %s]"),
13132 pulongest (dwp_file->cus->version),
13133 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13134 }
13135
13136 if (dwp_file->cus)
13137 dwp_file->version = dwp_file->cus->version;
13138 else if (dwp_file->tus)
13139 dwp_file->version = dwp_file->tus->version;
13140 else
13141 dwp_file->version = 2;
13142
13143 if (dwp_file->version == 2)
13144 bfd_map_over_sections (dwp_file->dbfd.get (),
13145 dwarf2_locate_v2_dwp_sections,
13146 dwp_file.get ());
13147
13148 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13149 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13150
13151 if (dwarf_read_debug)
13152 {
13153 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13154 fprintf_unfiltered (gdb_stdlog,
13155 " %s CUs, %s TUs\n",
13156 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13157 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13158 }
13159
13160 return dwp_file;
13161 }
13162
13163 /* Wrapper around open_and_init_dwp_file, only open it once. */
13164
13165 static struct dwp_file *
13166 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13167 {
13168 if (! dwarf2_per_objfile->dwp_checked)
13169 {
13170 dwarf2_per_objfile->dwp_file
13171 = open_and_init_dwp_file (dwarf2_per_objfile);
13172 dwarf2_per_objfile->dwp_checked = 1;
13173 }
13174 return dwarf2_per_objfile->dwp_file.get ();
13175 }
13176
13177 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13178 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13179 or in the DWP file for the objfile, referenced by THIS_UNIT.
13180 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13181 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13182
13183 This is called, for example, when wanting to read a variable with a
13184 complex location. Therefore we don't want to do file i/o for every call.
13185 Therefore we don't want to look for a DWO file on every call.
13186 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13187 then we check if we've already seen DWO_NAME, and only THEN do we check
13188 for a DWO file.
13189
13190 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13191 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13192
13193 static struct dwo_unit *
13194 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13195 const char *dwo_name, const char *comp_dir,
13196 ULONGEST signature, int is_debug_types)
13197 {
13198 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13199 struct objfile *objfile = dwarf2_per_objfile->objfile;
13200 const char *kind = is_debug_types ? "TU" : "CU";
13201 void **dwo_file_slot;
13202 struct dwo_file *dwo_file;
13203 struct dwp_file *dwp_file;
13204
13205 /* First see if there's a DWP file.
13206 If we have a DWP file but didn't find the DWO inside it, don't
13207 look for the original DWO file. It makes gdb behave differently
13208 depending on whether one is debugging in the build tree. */
13209
13210 dwp_file = get_dwp_file (dwarf2_per_objfile);
13211 if (dwp_file != NULL)
13212 {
13213 const struct dwp_hash_table *dwp_htab =
13214 is_debug_types ? dwp_file->tus : dwp_file->cus;
13215
13216 if (dwp_htab != NULL)
13217 {
13218 struct dwo_unit *dwo_cutu =
13219 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13220 signature, is_debug_types);
13221
13222 if (dwo_cutu != NULL)
13223 {
13224 if (dwarf_read_debug)
13225 {
13226 fprintf_unfiltered (gdb_stdlog,
13227 "Virtual DWO %s %s found: @%s\n",
13228 kind, hex_string (signature),
13229 host_address_to_string (dwo_cutu));
13230 }
13231 return dwo_cutu;
13232 }
13233 }
13234 }
13235 else
13236 {
13237 /* No DWP file, look for the DWO file. */
13238
13239 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13240 dwo_name, comp_dir);
13241 if (*dwo_file_slot == NULL)
13242 {
13243 /* Read in the file and build a table of the CUs/TUs it contains. */
13244 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13245 }
13246 /* NOTE: This will be NULL if unable to open the file. */
13247 dwo_file = (struct dwo_file *) *dwo_file_slot;
13248
13249 if (dwo_file != NULL)
13250 {
13251 struct dwo_unit *dwo_cutu = NULL;
13252
13253 if (is_debug_types && dwo_file->tus)
13254 {
13255 struct dwo_unit find_dwo_cutu;
13256
13257 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13258 find_dwo_cutu.signature = signature;
13259 dwo_cutu
13260 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13261 }
13262 else if (!is_debug_types && dwo_file->cus)
13263 {
13264 struct dwo_unit find_dwo_cutu;
13265
13266 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13267 find_dwo_cutu.signature = signature;
13268 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13269 &find_dwo_cutu);
13270 }
13271
13272 if (dwo_cutu != NULL)
13273 {
13274 if (dwarf_read_debug)
13275 {
13276 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13277 kind, dwo_name, hex_string (signature),
13278 host_address_to_string (dwo_cutu));
13279 }
13280 return dwo_cutu;
13281 }
13282 }
13283 }
13284
13285 /* We didn't find it. This could mean a dwo_id mismatch, or
13286 someone deleted the DWO/DWP file, or the search path isn't set up
13287 correctly to find the file. */
13288
13289 if (dwarf_read_debug)
13290 {
13291 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13292 kind, dwo_name, hex_string (signature));
13293 }
13294
13295 /* This is a warning and not a complaint because it can be caused by
13296 pilot error (e.g., user accidentally deleting the DWO). */
13297 {
13298 /* Print the name of the DWP file if we looked there, helps the user
13299 better diagnose the problem. */
13300 std::string dwp_text;
13301
13302 if (dwp_file != NULL)
13303 dwp_text = string_printf (" [in DWP file %s]",
13304 lbasename (dwp_file->name));
13305
13306 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13307 " [in module %s]"),
13308 kind, dwo_name, hex_string (signature),
13309 dwp_text.c_str (),
13310 this_unit->is_debug_types ? "TU" : "CU",
13311 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13312 }
13313 return NULL;
13314 }
13315
13316 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13317 See lookup_dwo_cutu_unit for details. */
13318
13319 static struct dwo_unit *
13320 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13321 const char *dwo_name, const char *comp_dir,
13322 ULONGEST signature)
13323 {
13324 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13325 }
13326
13327 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13328 See lookup_dwo_cutu_unit for details. */
13329
13330 static struct dwo_unit *
13331 lookup_dwo_type_unit (struct signatured_type *this_tu,
13332 const char *dwo_name, const char *comp_dir)
13333 {
13334 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13335 }
13336
13337 /* Traversal function for queue_and_load_all_dwo_tus. */
13338
13339 static int
13340 queue_and_load_dwo_tu (void **slot, void *info)
13341 {
13342 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13343 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13344 ULONGEST signature = dwo_unit->signature;
13345 struct signatured_type *sig_type =
13346 lookup_dwo_signatured_type (per_cu->cu, signature);
13347
13348 if (sig_type != NULL)
13349 {
13350 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13351
13352 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13353 a real dependency of PER_CU on SIG_TYPE. That is detected later
13354 while processing PER_CU. */
13355 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13356 load_full_type_unit (sig_cu);
13357 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13358 }
13359
13360 return 1;
13361 }
13362
13363 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13364 The DWO may have the only definition of the type, though it may not be
13365 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13366 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13367
13368 static void
13369 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13370 {
13371 struct dwo_unit *dwo_unit;
13372 struct dwo_file *dwo_file;
13373
13374 gdb_assert (!per_cu->is_debug_types);
13375 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13376 gdb_assert (per_cu->cu != NULL);
13377
13378 dwo_unit = per_cu->cu->dwo_unit;
13379 gdb_assert (dwo_unit != NULL);
13380
13381 dwo_file = dwo_unit->dwo_file;
13382 if (dwo_file->tus != NULL)
13383 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13384 }
13385
13386 /* Free all resources associated with DWO_FILE.
13387 Close the DWO file and munmap the sections. */
13388
13389 static void
13390 free_dwo_file (struct dwo_file *dwo_file)
13391 {
13392 /* Note: dbfd is NULL for virtual DWO files. */
13393 gdb_bfd_unref (dwo_file->dbfd);
13394
13395 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13396 }
13397
13398 /* Traversal function for free_dwo_files. */
13399
13400 static int
13401 free_dwo_file_from_slot (void **slot, void *info)
13402 {
13403 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13404
13405 free_dwo_file (dwo_file);
13406
13407 return 1;
13408 }
13409
13410 /* Free all resources associated with DWO_FILES. */
13411
13412 static void
13413 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13414 {
13415 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13416 }
13417 \f
13418 /* Read in various DIEs. */
13419
13420 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13421 Inherit only the children of the DW_AT_abstract_origin DIE not being
13422 already referenced by DW_AT_abstract_origin from the children of the
13423 current DIE. */
13424
13425 static void
13426 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13427 {
13428 struct die_info *child_die;
13429 sect_offset *offsetp;
13430 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13431 struct die_info *origin_die;
13432 /* Iterator of the ORIGIN_DIE children. */
13433 struct die_info *origin_child_die;
13434 struct attribute *attr;
13435 struct dwarf2_cu *origin_cu;
13436 struct pending **origin_previous_list_in_scope;
13437
13438 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13439 if (!attr)
13440 return;
13441
13442 /* Note that following die references may follow to a die in a
13443 different cu. */
13444
13445 origin_cu = cu;
13446 origin_die = follow_die_ref (die, attr, &origin_cu);
13447
13448 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13449 symbols in. */
13450 origin_previous_list_in_scope = origin_cu->list_in_scope;
13451 origin_cu->list_in_scope = cu->list_in_scope;
13452
13453 if (die->tag != origin_die->tag
13454 && !(die->tag == DW_TAG_inlined_subroutine
13455 && origin_die->tag == DW_TAG_subprogram))
13456 complaint (_("DIE %s and its abstract origin %s have different tags"),
13457 sect_offset_str (die->sect_off),
13458 sect_offset_str (origin_die->sect_off));
13459
13460 std::vector<sect_offset> offsets;
13461
13462 for (child_die = die->child;
13463 child_die && child_die->tag;
13464 child_die = sibling_die (child_die))
13465 {
13466 struct die_info *child_origin_die;
13467 struct dwarf2_cu *child_origin_cu;
13468
13469 /* We are trying to process concrete instance entries:
13470 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13471 it's not relevant to our analysis here. i.e. detecting DIEs that are
13472 present in the abstract instance but not referenced in the concrete
13473 one. */
13474 if (child_die->tag == DW_TAG_call_site
13475 || child_die->tag == DW_TAG_GNU_call_site)
13476 continue;
13477
13478 /* For each CHILD_DIE, find the corresponding child of
13479 ORIGIN_DIE. If there is more than one layer of
13480 DW_AT_abstract_origin, follow them all; there shouldn't be,
13481 but GCC versions at least through 4.4 generate this (GCC PR
13482 40573). */
13483 child_origin_die = child_die;
13484 child_origin_cu = cu;
13485 while (1)
13486 {
13487 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13488 child_origin_cu);
13489 if (attr == NULL)
13490 break;
13491 child_origin_die = follow_die_ref (child_origin_die, attr,
13492 &child_origin_cu);
13493 }
13494
13495 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13496 counterpart may exist. */
13497 if (child_origin_die != child_die)
13498 {
13499 if (child_die->tag != child_origin_die->tag
13500 && !(child_die->tag == DW_TAG_inlined_subroutine
13501 && child_origin_die->tag == DW_TAG_subprogram))
13502 complaint (_("Child DIE %s and its abstract origin %s have "
13503 "different tags"),
13504 sect_offset_str (child_die->sect_off),
13505 sect_offset_str (child_origin_die->sect_off));
13506 if (child_origin_die->parent != origin_die)
13507 complaint (_("Child DIE %s and its abstract origin %s have "
13508 "different parents"),
13509 sect_offset_str (child_die->sect_off),
13510 sect_offset_str (child_origin_die->sect_off));
13511 else
13512 offsets.push_back (child_origin_die->sect_off);
13513 }
13514 }
13515 std::sort (offsets.begin (), offsets.end ());
13516 sect_offset *offsets_end = offsets.data () + offsets.size ();
13517 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13518 if (offsetp[-1] == *offsetp)
13519 complaint (_("Multiple children of DIE %s refer "
13520 "to DIE %s as their abstract origin"),
13521 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13522
13523 offsetp = offsets.data ();
13524 origin_child_die = origin_die->child;
13525 while (origin_child_die && origin_child_die->tag)
13526 {
13527 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13528 while (offsetp < offsets_end
13529 && *offsetp < origin_child_die->sect_off)
13530 offsetp++;
13531 if (offsetp >= offsets_end
13532 || *offsetp > origin_child_die->sect_off)
13533 {
13534 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13535 Check whether we're already processing ORIGIN_CHILD_DIE.
13536 This can happen with mutually referenced abstract_origins.
13537 PR 16581. */
13538 if (!origin_child_die->in_process)
13539 process_die (origin_child_die, origin_cu);
13540 }
13541 origin_child_die = sibling_die (origin_child_die);
13542 }
13543 origin_cu->list_in_scope = origin_previous_list_in_scope;
13544 }
13545
13546 static void
13547 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13548 {
13549 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13551 struct context_stack *newobj;
13552 CORE_ADDR lowpc;
13553 CORE_ADDR highpc;
13554 struct die_info *child_die;
13555 struct attribute *attr, *call_line, *call_file;
13556 const char *name;
13557 CORE_ADDR baseaddr;
13558 struct block *block;
13559 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13560 std::vector<struct symbol *> template_args;
13561 struct template_symbol *templ_func = NULL;
13562
13563 if (inlined_func)
13564 {
13565 /* If we do not have call site information, we can't show the
13566 caller of this inlined function. That's too confusing, so
13567 only use the scope for local variables. */
13568 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13569 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13570 if (call_line == NULL || call_file == NULL)
13571 {
13572 read_lexical_block_scope (die, cu);
13573 return;
13574 }
13575 }
13576
13577 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13578
13579 name = dwarf2_name (die, cu);
13580
13581 /* Ignore functions with missing or empty names. These are actually
13582 illegal according to the DWARF standard. */
13583 if (name == NULL)
13584 {
13585 complaint (_("missing name for subprogram DIE at %s"),
13586 sect_offset_str (die->sect_off));
13587 return;
13588 }
13589
13590 /* Ignore functions with missing or invalid low and high pc attributes. */
13591 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13592 <= PC_BOUNDS_INVALID)
13593 {
13594 attr = dwarf2_attr (die, DW_AT_external, cu);
13595 if (!attr || !DW_UNSND (attr))
13596 complaint (_("cannot get low and high bounds "
13597 "for subprogram DIE at %s"),
13598 sect_offset_str (die->sect_off));
13599 return;
13600 }
13601
13602 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13603 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13604
13605 /* If we have any template arguments, then we must allocate a
13606 different sort of symbol. */
13607 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13608 {
13609 if (child_die->tag == DW_TAG_template_type_param
13610 || child_die->tag == DW_TAG_template_value_param)
13611 {
13612 templ_func = allocate_template_symbol (objfile);
13613 templ_func->subclass = SYMBOL_TEMPLATE;
13614 break;
13615 }
13616 }
13617
13618 newobj = push_context (0, lowpc);
13619 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13620 (struct symbol *) templ_func);
13621
13622 /* If there is a location expression for DW_AT_frame_base, record
13623 it. */
13624 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13625 if (attr)
13626 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13627
13628 /* If there is a location for the static link, record it. */
13629 newobj->static_link = NULL;
13630 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13631 if (attr)
13632 {
13633 newobj->static_link
13634 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13635 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13636 }
13637
13638 cu->list_in_scope = &local_symbols;
13639
13640 if (die->child != NULL)
13641 {
13642 child_die = die->child;
13643 while (child_die && child_die->tag)
13644 {
13645 if (child_die->tag == DW_TAG_template_type_param
13646 || child_die->tag == DW_TAG_template_value_param)
13647 {
13648 struct symbol *arg = new_symbol (child_die, NULL, cu);
13649
13650 if (arg != NULL)
13651 template_args.push_back (arg);
13652 }
13653 else
13654 process_die (child_die, cu);
13655 child_die = sibling_die (child_die);
13656 }
13657 }
13658
13659 inherit_abstract_dies (die, cu);
13660
13661 /* If we have a DW_AT_specification, we might need to import using
13662 directives from the context of the specification DIE. See the
13663 comment in determine_prefix. */
13664 if (cu->language == language_cplus
13665 && dwarf2_attr (die, DW_AT_specification, cu))
13666 {
13667 struct dwarf2_cu *spec_cu = cu;
13668 struct die_info *spec_die = die_specification (die, &spec_cu);
13669
13670 while (spec_die)
13671 {
13672 child_die = spec_die->child;
13673 while (child_die && child_die->tag)
13674 {
13675 if (child_die->tag == DW_TAG_imported_module)
13676 process_die (child_die, spec_cu);
13677 child_die = sibling_die (child_die);
13678 }
13679
13680 /* In some cases, GCC generates specification DIEs that
13681 themselves contain DW_AT_specification attributes. */
13682 spec_die = die_specification (spec_die, &spec_cu);
13683 }
13684 }
13685
13686 struct context_stack cstk = pop_context ();
13687 /* Make a block for the local symbols within. */
13688 block = finish_block (cstk.name, &local_symbols, cstk.old_blocks,
13689 cstk.static_link, lowpc, highpc);
13690
13691 /* For C++, set the block's scope. */
13692 if ((cu->language == language_cplus
13693 || cu->language == language_fortran
13694 || cu->language == language_d
13695 || cu->language == language_rust)
13696 && cu->processing_has_namespace_info)
13697 block_set_scope (block, determine_prefix (die, cu),
13698 &objfile->objfile_obstack);
13699
13700 /* If we have address ranges, record them. */
13701 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13702
13703 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13704
13705 /* Attach template arguments to function. */
13706 if (!template_args.empty ())
13707 {
13708 gdb_assert (templ_func != NULL);
13709
13710 templ_func->n_template_arguments = template_args.size ();
13711 templ_func->template_arguments
13712 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13713 templ_func->n_template_arguments);
13714 memcpy (templ_func->template_arguments,
13715 template_args.data (),
13716 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13717 }
13718
13719 /* In C++, we can have functions nested inside functions (e.g., when
13720 a function declares a class that has methods). This means that
13721 when we finish processing a function scope, we may need to go
13722 back to building a containing block's symbol lists. */
13723 local_symbols = cstk.locals;
13724 set_local_using_directives (cstk.local_using_directives);
13725
13726 /* If we've finished processing a top-level function, subsequent
13727 symbols go in the file symbol list. */
13728 if (outermost_context_p ())
13729 cu->list_in_scope = &file_symbols;
13730 }
13731
13732 /* Process all the DIES contained within a lexical block scope. Start
13733 a new scope, process the dies, and then close the scope. */
13734
13735 static void
13736 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13737 {
13738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13740 CORE_ADDR lowpc, highpc;
13741 struct die_info *child_die;
13742 CORE_ADDR baseaddr;
13743
13744 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13745
13746 /* Ignore blocks with missing or invalid low and high pc attributes. */
13747 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13748 as multiple lexical blocks? Handling children in a sane way would
13749 be nasty. Might be easier to properly extend generic blocks to
13750 describe ranges. */
13751 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13752 {
13753 case PC_BOUNDS_NOT_PRESENT:
13754 /* DW_TAG_lexical_block has no attributes, process its children as if
13755 there was no wrapping by that DW_TAG_lexical_block.
13756 GCC does no longer produces such DWARF since GCC r224161. */
13757 for (child_die = die->child;
13758 child_die != NULL && child_die->tag;
13759 child_die = sibling_die (child_die))
13760 process_die (child_die, cu);
13761 return;
13762 case PC_BOUNDS_INVALID:
13763 return;
13764 }
13765 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13766 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13767
13768 push_context (0, lowpc);
13769 if (die->child != NULL)
13770 {
13771 child_die = die->child;
13772 while (child_die && child_die->tag)
13773 {
13774 process_die (child_die, cu);
13775 child_die = sibling_die (child_die);
13776 }
13777 }
13778 inherit_abstract_dies (die, cu);
13779 struct context_stack cstk = pop_context ();
13780
13781 if (local_symbols != NULL || (*get_local_using_directives ()) != NULL)
13782 {
13783 struct block *block
13784 = finish_block (0, &local_symbols, cstk.old_blocks, NULL,
13785 cstk.start_addr, highpc);
13786
13787 /* Note that recording ranges after traversing children, as we
13788 do here, means that recording a parent's ranges entails
13789 walking across all its children's ranges as they appear in
13790 the address map, which is quadratic behavior.
13791
13792 It would be nicer to record the parent's ranges before
13793 traversing its children, simply overriding whatever you find
13794 there. But since we don't even decide whether to create a
13795 block until after we've traversed its children, that's hard
13796 to do. */
13797 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13798 }
13799 local_symbols = cstk.locals;
13800 set_local_using_directives (cstk.local_using_directives);
13801 }
13802
13803 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13804
13805 static void
13806 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13807 {
13808 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13809 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13810 CORE_ADDR pc, baseaddr;
13811 struct attribute *attr;
13812 struct call_site *call_site, call_site_local;
13813 void **slot;
13814 int nparams;
13815 struct die_info *child_die;
13816
13817 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13818
13819 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13820 if (attr == NULL)
13821 {
13822 /* This was a pre-DWARF-5 GNU extension alias
13823 for DW_AT_call_return_pc. */
13824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13825 }
13826 if (!attr)
13827 {
13828 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13829 "DIE %s [in module %s]"),
13830 sect_offset_str (die->sect_off), objfile_name (objfile));
13831 return;
13832 }
13833 pc = attr_value_as_address (attr) + baseaddr;
13834 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13835
13836 if (cu->call_site_htab == NULL)
13837 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13838 NULL, &objfile->objfile_obstack,
13839 hashtab_obstack_allocate, NULL);
13840 call_site_local.pc = pc;
13841 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13842 if (*slot != NULL)
13843 {
13844 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13845 "DIE %s [in module %s]"),
13846 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13847 objfile_name (objfile));
13848 return;
13849 }
13850
13851 /* Count parameters at the caller. */
13852
13853 nparams = 0;
13854 for (child_die = die->child; child_die && child_die->tag;
13855 child_die = sibling_die (child_die))
13856 {
13857 if (child_die->tag != DW_TAG_call_site_parameter
13858 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13859 {
13860 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13861 "DW_TAG_call_site child DIE %s [in module %s]"),
13862 child_die->tag, sect_offset_str (child_die->sect_off),
13863 objfile_name (objfile));
13864 continue;
13865 }
13866
13867 nparams++;
13868 }
13869
13870 call_site
13871 = ((struct call_site *)
13872 obstack_alloc (&objfile->objfile_obstack,
13873 sizeof (*call_site)
13874 + (sizeof (*call_site->parameter) * (nparams - 1))));
13875 *slot = call_site;
13876 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13877 call_site->pc = pc;
13878
13879 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13880 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13881 {
13882 struct die_info *func_die;
13883
13884 /* Skip also over DW_TAG_inlined_subroutine. */
13885 for (func_die = die->parent;
13886 func_die && func_die->tag != DW_TAG_subprogram
13887 && func_die->tag != DW_TAG_subroutine_type;
13888 func_die = func_die->parent);
13889
13890 /* DW_AT_call_all_calls is a superset
13891 of DW_AT_call_all_tail_calls. */
13892 if (func_die
13893 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13894 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13895 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13896 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13897 {
13898 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13899 not complete. But keep CALL_SITE for look ups via call_site_htab,
13900 both the initial caller containing the real return address PC and
13901 the final callee containing the current PC of a chain of tail
13902 calls do not need to have the tail call list complete. But any
13903 function candidate for a virtual tail call frame searched via
13904 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13905 determined unambiguously. */
13906 }
13907 else
13908 {
13909 struct type *func_type = NULL;
13910
13911 if (func_die)
13912 func_type = get_die_type (func_die, cu);
13913 if (func_type != NULL)
13914 {
13915 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13916
13917 /* Enlist this call site to the function. */
13918 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13919 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13920 }
13921 else
13922 complaint (_("Cannot find function owning DW_TAG_call_site "
13923 "DIE %s [in module %s]"),
13924 sect_offset_str (die->sect_off), objfile_name (objfile));
13925 }
13926 }
13927
13928 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13929 if (attr == NULL)
13930 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13931 if (attr == NULL)
13932 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13933 if (attr == NULL)
13934 {
13935 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13936 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13937 }
13938 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13939 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13940 /* Keep NULL DWARF_BLOCK. */;
13941 else if (attr_form_is_block (attr))
13942 {
13943 struct dwarf2_locexpr_baton *dlbaton;
13944
13945 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13946 dlbaton->data = DW_BLOCK (attr)->data;
13947 dlbaton->size = DW_BLOCK (attr)->size;
13948 dlbaton->per_cu = cu->per_cu;
13949
13950 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13951 }
13952 else if (attr_form_is_ref (attr))
13953 {
13954 struct dwarf2_cu *target_cu = cu;
13955 struct die_info *target_die;
13956
13957 target_die = follow_die_ref (die, attr, &target_cu);
13958 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13959 if (die_is_declaration (target_die, target_cu))
13960 {
13961 const char *target_physname;
13962
13963 /* Prefer the mangled name; otherwise compute the demangled one. */
13964 target_physname = dw2_linkage_name (target_die, target_cu);
13965 if (target_physname == NULL)
13966 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13967 if (target_physname == NULL)
13968 complaint (_("DW_AT_call_target target DIE has invalid "
13969 "physname, for referencing DIE %s [in module %s]"),
13970 sect_offset_str (die->sect_off), objfile_name (objfile));
13971 else
13972 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13973 }
13974 else
13975 {
13976 CORE_ADDR lowpc;
13977
13978 /* DW_AT_entry_pc should be preferred. */
13979 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13980 <= PC_BOUNDS_INVALID)
13981 complaint (_("DW_AT_call_target target DIE has invalid "
13982 "low pc, for referencing DIE %s [in module %s]"),
13983 sect_offset_str (die->sect_off), objfile_name (objfile));
13984 else
13985 {
13986 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13987 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13988 }
13989 }
13990 }
13991 else
13992 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13993 "block nor reference, for DIE %s [in module %s]"),
13994 sect_offset_str (die->sect_off), objfile_name (objfile));
13995
13996 call_site->per_cu = cu->per_cu;
13997
13998 for (child_die = die->child;
13999 child_die && child_die->tag;
14000 child_die = sibling_die (child_die))
14001 {
14002 struct call_site_parameter *parameter;
14003 struct attribute *loc, *origin;
14004
14005 if (child_die->tag != DW_TAG_call_site_parameter
14006 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14007 {
14008 /* Already printed the complaint above. */
14009 continue;
14010 }
14011
14012 gdb_assert (call_site->parameter_count < nparams);
14013 parameter = &call_site->parameter[call_site->parameter_count];
14014
14015 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14016 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14017 register is contained in DW_AT_call_value. */
14018
14019 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14020 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14021 if (origin == NULL)
14022 {
14023 /* This was a pre-DWARF-5 GNU extension alias
14024 for DW_AT_call_parameter. */
14025 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14026 }
14027 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14028 {
14029 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14030
14031 sect_offset sect_off
14032 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14033 if (!offset_in_cu_p (&cu->header, sect_off))
14034 {
14035 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14036 binding can be done only inside one CU. Such referenced DIE
14037 therefore cannot be even moved to DW_TAG_partial_unit. */
14038 complaint (_("DW_AT_call_parameter offset is not in CU for "
14039 "DW_TAG_call_site child DIE %s [in module %s]"),
14040 sect_offset_str (child_die->sect_off),
14041 objfile_name (objfile));
14042 continue;
14043 }
14044 parameter->u.param_cu_off
14045 = (cu_offset) (sect_off - cu->header.sect_off);
14046 }
14047 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14048 {
14049 complaint (_("No DW_FORM_block* DW_AT_location for "
14050 "DW_TAG_call_site child DIE %s [in module %s]"),
14051 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14052 continue;
14053 }
14054 else
14055 {
14056 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14057 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14058 if (parameter->u.dwarf_reg != -1)
14059 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14060 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14061 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14062 &parameter->u.fb_offset))
14063 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14064 else
14065 {
14066 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14067 "for DW_FORM_block* DW_AT_location is supported for "
14068 "DW_TAG_call_site child DIE %s "
14069 "[in module %s]"),
14070 sect_offset_str (child_die->sect_off),
14071 objfile_name (objfile));
14072 continue;
14073 }
14074 }
14075
14076 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14077 if (attr == NULL)
14078 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14079 if (!attr_form_is_block (attr))
14080 {
14081 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087 parameter->value = DW_BLOCK (attr)->data;
14088 parameter->value_size = DW_BLOCK (attr)->size;
14089
14090 /* Parameters are not pre-cleared by memset above. */
14091 parameter->data_value = NULL;
14092 parameter->data_value_size = 0;
14093 call_site->parameter_count++;
14094
14095 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14096 if (attr == NULL)
14097 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14098 if (attr)
14099 {
14100 if (!attr_form_is_block (attr))
14101 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14102 "DW_TAG_call_site child DIE %s [in module %s]"),
14103 sect_offset_str (child_die->sect_off),
14104 objfile_name (objfile));
14105 else
14106 {
14107 parameter->data_value = DW_BLOCK (attr)->data;
14108 parameter->data_value_size = DW_BLOCK (attr)->size;
14109 }
14110 }
14111 }
14112 }
14113
14114 /* Helper function for read_variable. If DIE represents a virtual
14115 table, then return the type of the concrete object that is
14116 associated with the virtual table. Otherwise, return NULL. */
14117
14118 static struct type *
14119 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14120 {
14121 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14122 if (attr == NULL)
14123 return NULL;
14124
14125 /* Find the type DIE. */
14126 struct die_info *type_die = NULL;
14127 struct dwarf2_cu *type_cu = cu;
14128
14129 if (attr_form_is_ref (attr))
14130 type_die = follow_die_ref (die, attr, &type_cu);
14131 if (type_die == NULL)
14132 return NULL;
14133
14134 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14135 return NULL;
14136 return die_containing_type (type_die, type_cu);
14137 }
14138
14139 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14140
14141 static void
14142 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14143 {
14144 struct rust_vtable_symbol *storage = NULL;
14145
14146 if (cu->language == language_rust)
14147 {
14148 struct type *containing_type = rust_containing_type (die, cu);
14149
14150 if (containing_type != NULL)
14151 {
14152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14153
14154 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14155 struct rust_vtable_symbol);
14156 initialize_objfile_symbol (storage);
14157 storage->concrete_type = containing_type;
14158 storage->subclass = SYMBOL_RUST_VTABLE;
14159 }
14160 }
14161
14162 new_symbol (die, NULL, cu, storage);
14163 }
14164
14165 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14166 reading .debug_rnglists.
14167 Callback's type should be:
14168 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14169 Return true if the attributes are present and valid, otherwise,
14170 return false. */
14171
14172 template <typename Callback>
14173 static bool
14174 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14175 Callback &&callback)
14176 {
14177 struct dwarf2_per_objfile *dwarf2_per_objfile
14178 = cu->per_cu->dwarf2_per_objfile;
14179 struct objfile *objfile = dwarf2_per_objfile->objfile;
14180 bfd *obfd = objfile->obfd;
14181 /* Base address selection entry. */
14182 CORE_ADDR base;
14183 int found_base;
14184 const gdb_byte *buffer;
14185 CORE_ADDR baseaddr;
14186 bool overflow = false;
14187
14188 found_base = cu->base_known;
14189 base = cu->base_address;
14190
14191 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14192 if (offset >= dwarf2_per_objfile->rnglists.size)
14193 {
14194 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14195 offset);
14196 return false;
14197 }
14198 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14199
14200 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14201
14202 while (1)
14203 {
14204 /* Initialize it due to a false compiler warning. */
14205 CORE_ADDR range_beginning = 0, range_end = 0;
14206 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14207 + dwarf2_per_objfile->rnglists.size);
14208 unsigned int bytes_read;
14209
14210 if (buffer == buf_end)
14211 {
14212 overflow = true;
14213 break;
14214 }
14215 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14216 switch (rlet)
14217 {
14218 case DW_RLE_end_of_list:
14219 break;
14220 case DW_RLE_base_address:
14221 if (buffer + cu->header.addr_size > buf_end)
14222 {
14223 overflow = true;
14224 break;
14225 }
14226 base = read_address (obfd, buffer, cu, &bytes_read);
14227 found_base = 1;
14228 buffer += bytes_read;
14229 break;
14230 case DW_RLE_start_length:
14231 if (buffer + cu->header.addr_size > buf_end)
14232 {
14233 overflow = true;
14234 break;
14235 }
14236 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14237 buffer += bytes_read;
14238 range_end = (range_beginning
14239 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14240 buffer += bytes_read;
14241 if (buffer > buf_end)
14242 {
14243 overflow = true;
14244 break;
14245 }
14246 break;
14247 case DW_RLE_offset_pair:
14248 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14249 buffer += bytes_read;
14250 if (buffer > buf_end)
14251 {
14252 overflow = true;
14253 break;
14254 }
14255 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14256 buffer += bytes_read;
14257 if (buffer > buf_end)
14258 {
14259 overflow = true;
14260 break;
14261 }
14262 break;
14263 case DW_RLE_start_end:
14264 if (buffer + 2 * cu->header.addr_size > buf_end)
14265 {
14266 overflow = true;
14267 break;
14268 }
14269 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14270 buffer += bytes_read;
14271 range_end = read_address (obfd, buffer, cu, &bytes_read);
14272 buffer += bytes_read;
14273 break;
14274 default:
14275 complaint (_("Invalid .debug_rnglists data (no base address)"));
14276 return false;
14277 }
14278 if (rlet == DW_RLE_end_of_list || overflow)
14279 break;
14280 if (rlet == DW_RLE_base_address)
14281 continue;
14282
14283 if (!found_base)
14284 {
14285 /* We have no valid base address for the ranges
14286 data. */
14287 complaint (_("Invalid .debug_rnglists data (no base address)"));
14288 return false;
14289 }
14290
14291 if (range_beginning > range_end)
14292 {
14293 /* Inverted range entries are invalid. */
14294 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14295 return false;
14296 }
14297
14298 /* Empty range entries have no effect. */
14299 if (range_beginning == range_end)
14300 continue;
14301
14302 range_beginning += base;
14303 range_end += base;
14304
14305 /* A not-uncommon case of bad debug info.
14306 Don't pollute the addrmap with bad data. */
14307 if (range_beginning + baseaddr == 0
14308 && !dwarf2_per_objfile->has_section_at_zero)
14309 {
14310 complaint (_(".debug_rnglists entry has start address of zero"
14311 " [in module %s]"), objfile_name (objfile));
14312 continue;
14313 }
14314
14315 callback (range_beginning, range_end);
14316 }
14317
14318 if (overflow)
14319 {
14320 complaint (_("Offset %d is not terminated "
14321 "for DW_AT_ranges attribute"),
14322 offset);
14323 return false;
14324 }
14325
14326 return true;
14327 }
14328
14329 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14330 Callback's type should be:
14331 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14332 Return 1 if the attributes are present and valid, otherwise, return 0. */
14333
14334 template <typename Callback>
14335 static int
14336 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14337 Callback &&callback)
14338 {
14339 struct dwarf2_per_objfile *dwarf2_per_objfile
14340 = cu->per_cu->dwarf2_per_objfile;
14341 struct objfile *objfile = dwarf2_per_objfile->objfile;
14342 struct comp_unit_head *cu_header = &cu->header;
14343 bfd *obfd = objfile->obfd;
14344 unsigned int addr_size = cu_header->addr_size;
14345 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14346 /* Base address selection entry. */
14347 CORE_ADDR base;
14348 int found_base;
14349 unsigned int dummy;
14350 const gdb_byte *buffer;
14351 CORE_ADDR baseaddr;
14352
14353 if (cu_header->version >= 5)
14354 return dwarf2_rnglists_process (offset, cu, callback);
14355
14356 found_base = cu->base_known;
14357 base = cu->base_address;
14358
14359 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14360 if (offset >= dwarf2_per_objfile->ranges.size)
14361 {
14362 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14363 offset);
14364 return 0;
14365 }
14366 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14367
14368 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14369
14370 while (1)
14371 {
14372 CORE_ADDR range_beginning, range_end;
14373
14374 range_beginning = read_address (obfd, buffer, cu, &dummy);
14375 buffer += addr_size;
14376 range_end = read_address (obfd, buffer, cu, &dummy);
14377 buffer += addr_size;
14378 offset += 2 * addr_size;
14379
14380 /* An end of list marker is a pair of zero addresses. */
14381 if (range_beginning == 0 && range_end == 0)
14382 /* Found the end of list entry. */
14383 break;
14384
14385 /* Each base address selection entry is a pair of 2 values.
14386 The first is the largest possible address, the second is
14387 the base address. Check for a base address here. */
14388 if ((range_beginning & mask) == mask)
14389 {
14390 /* If we found the largest possible address, then we already
14391 have the base address in range_end. */
14392 base = range_end;
14393 found_base = 1;
14394 continue;
14395 }
14396
14397 if (!found_base)
14398 {
14399 /* We have no valid base address for the ranges
14400 data. */
14401 complaint (_("Invalid .debug_ranges data (no base address)"));
14402 return 0;
14403 }
14404
14405 if (range_beginning > range_end)
14406 {
14407 /* Inverted range entries are invalid. */
14408 complaint (_("Invalid .debug_ranges data (inverted range)"));
14409 return 0;
14410 }
14411
14412 /* Empty range entries have no effect. */
14413 if (range_beginning == range_end)
14414 continue;
14415
14416 range_beginning += base;
14417 range_end += base;
14418
14419 /* A not-uncommon case of bad debug info.
14420 Don't pollute the addrmap with bad data. */
14421 if (range_beginning + baseaddr == 0
14422 && !dwarf2_per_objfile->has_section_at_zero)
14423 {
14424 complaint (_(".debug_ranges entry has start address of zero"
14425 " [in module %s]"), objfile_name (objfile));
14426 continue;
14427 }
14428
14429 callback (range_beginning, range_end);
14430 }
14431
14432 return 1;
14433 }
14434
14435 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14436 Return 1 if the attributes are present and valid, otherwise, return 0.
14437 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14438
14439 static int
14440 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14441 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14442 struct partial_symtab *ranges_pst)
14443 {
14444 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14445 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14446 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14447 SECT_OFF_TEXT (objfile));
14448 int low_set = 0;
14449 CORE_ADDR low = 0;
14450 CORE_ADDR high = 0;
14451 int retval;
14452
14453 retval = dwarf2_ranges_process (offset, cu,
14454 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14455 {
14456 if (ranges_pst != NULL)
14457 {
14458 CORE_ADDR lowpc;
14459 CORE_ADDR highpc;
14460
14461 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14462 range_beginning + baseaddr);
14463 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14464 range_end + baseaddr);
14465 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14466 ranges_pst);
14467 }
14468
14469 /* FIXME: This is recording everything as a low-high
14470 segment of consecutive addresses. We should have a
14471 data structure for discontiguous block ranges
14472 instead. */
14473 if (! low_set)
14474 {
14475 low = range_beginning;
14476 high = range_end;
14477 low_set = 1;
14478 }
14479 else
14480 {
14481 if (range_beginning < low)
14482 low = range_beginning;
14483 if (range_end > high)
14484 high = range_end;
14485 }
14486 });
14487 if (!retval)
14488 return 0;
14489
14490 if (! low_set)
14491 /* If the first entry is an end-of-list marker, the range
14492 describes an empty scope, i.e. no instructions. */
14493 return 0;
14494
14495 if (low_return)
14496 *low_return = low;
14497 if (high_return)
14498 *high_return = high;
14499 return 1;
14500 }
14501
14502 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14503 definition for the return value. *LOWPC and *HIGHPC are set iff
14504 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14505
14506 static enum pc_bounds_kind
14507 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14508 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14509 struct partial_symtab *pst)
14510 {
14511 struct dwarf2_per_objfile *dwarf2_per_objfile
14512 = cu->per_cu->dwarf2_per_objfile;
14513 struct attribute *attr;
14514 struct attribute *attr_high;
14515 CORE_ADDR low = 0;
14516 CORE_ADDR high = 0;
14517 enum pc_bounds_kind ret;
14518
14519 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14520 if (attr_high)
14521 {
14522 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14523 if (attr)
14524 {
14525 low = attr_value_as_address (attr);
14526 high = attr_value_as_address (attr_high);
14527 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14528 high += low;
14529 }
14530 else
14531 /* Found high w/o low attribute. */
14532 return PC_BOUNDS_INVALID;
14533
14534 /* Found consecutive range of addresses. */
14535 ret = PC_BOUNDS_HIGH_LOW;
14536 }
14537 else
14538 {
14539 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14540 if (attr != NULL)
14541 {
14542 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14543 We take advantage of the fact that DW_AT_ranges does not appear
14544 in DW_TAG_compile_unit of DWO files. */
14545 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14546 unsigned int ranges_offset = (DW_UNSND (attr)
14547 + (need_ranges_base
14548 ? cu->ranges_base
14549 : 0));
14550
14551 /* Value of the DW_AT_ranges attribute is the offset in the
14552 .debug_ranges section. */
14553 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14554 return PC_BOUNDS_INVALID;
14555 /* Found discontinuous range of addresses. */
14556 ret = PC_BOUNDS_RANGES;
14557 }
14558 else
14559 return PC_BOUNDS_NOT_PRESENT;
14560 }
14561
14562 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14563 if (high <= low)
14564 return PC_BOUNDS_INVALID;
14565
14566 /* When using the GNU linker, .gnu.linkonce. sections are used to
14567 eliminate duplicate copies of functions and vtables and such.
14568 The linker will arbitrarily choose one and discard the others.
14569 The AT_*_pc values for such functions refer to local labels in
14570 these sections. If the section from that file was discarded, the
14571 labels are not in the output, so the relocs get a value of 0.
14572 If this is a discarded function, mark the pc bounds as invalid,
14573 so that GDB will ignore it. */
14574 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14575 return PC_BOUNDS_INVALID;
14576
14577 *lowpc = low;
14578 if (highpc)
14579 *highpc = high;
14580 return ret;
14581 }
14582
14583 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14584 its low and high PC addresses. Do nothing if these addresses could not
14585 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14586 and HIGHPC to the high address if greater than HIGHPC. */
14587
14588 static void
14589 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14590 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14591 struct dwarf2_cu *cu)
14592 {
14593 CORE_ADDR low, high;
14594 struct die_info *child = die->child;
14595
14596 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14597 {
14598 *lowpc = std::min (*lowpc, low);
14599 *highpc = std::max (*highpc, high);
14600 }
14601
14602 /* If the language does not allow nested subprograms (either inside
14603 subprograms or lexical blocks), we're done. */
14604 if (cu->language != language_ada)
14605 return;
14606
14607 /* Check all the children of the given DIE. If it contains nested
14608 subprograms, then check their pc bounds. Likewise, we need to
14609 check lexical blocks as well, as they may also contain subprogram
14610 definitions. */
14611 while (child && child->tag)
14612 {
14613 if (child->tag == DW_TAG_subprogram
14614 || child->tag == DW_TAG_lexical_block)
14615 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14616 child = sibling_die (child);
14617 }
14618 }
14619
14620 /* Get the low and high pc's represented by the scope DIE, and store
14621 them in *LOWPC and *HIGHPC. If the correct values can't be
14622 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14623
14624 static void
14625 get_scope_pc_bounds (struct die_info *die,
14626 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14627 struct dwarf2_cu *cu)
14628 {
14629 CORE_ADDR best_low = (CORE_ADDR) -1;
14630 CORE_ADDR best_high = (CORE_ADDR) 0;
14631 CORE_ADDR current_low, current_high;
14632
14633 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14634 >= PC_BOUNDS_RANGES)
14635 {
14636 best_low = current_low;
14637 best_high = current_high;
14638 }
14639 else
14640 {
14641 struct die_info *child = die->child;
14642
14643 while (child && child->tag)
14644 {
14645 switch (child->tag) {
14646 case DW_TAG_subprogram:
14647 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14648 break;
14649 case DW_TAG_namespace:
14650 case DW_TAG_module:
14651 /* FIXME: carlton/2004-01-16: Should we do this for
14652 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14653 that current GCC's always emit the DIEs corresponding
14654 to definitions of methods of classes as children of a
14655 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14656 the DIEs giving the declarations, which could be
14657 anywhere). But I don't see any reason why the
14658 standards says that they have to be there. */
14659 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14660
14661 if (current_low != ((CORE_ADDR) -1))
14662 {
14663 best_low = std::min (best_low, current_low);
14664 best_high = std::max (best_high, current_high);
14665 }
14666 break;
14667 default:
14668 /* Ignore. */
14669 break;
14670 }
14671
14672 child = sibling_die (child);
14673 }
14674 }
14675
14676 *lowpc = best_low;
14677 *highpc = best_high;
14678 }
14679
14680 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14681 in DIE. */
14682
14683 static void
14684 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14685 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14686 {
14687 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14688 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14689 struct attribute *attr;
14690 struct attribute *attr_high;
14691
14692 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14693 if (attr_high)
14694 {
14695 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14696 if (attr)
14697 {
14698 CORE_ADDR low = attr_value_as_address (attr);
14699 CORE_ADDR high = attr_value_as_address (attr_high);
14700
14701 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14702 high += low;
14703
14704 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14705 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14706 record_block_range (block, low, high - 1);
14707 }
14708 }
14709
14710 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14711 if (attr)
14712 {
14713 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14714 We take advantage of the fact that DW_AT_ranges does not appear
14715 in DW_TAG_compile_unit of DWO files. */
14716 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14717
14718 /* The value of the DW_AT_ranges attribute is the offset of the
14719 address range list in the .debug_ranges section. */
14720 unsigned long offset = (DW_UNSND (attr)
14721 + (need_ranges_base ? cu->ranges_base : 0));
14722
14723 dwarf2_ranges_process (offset, cu,
14724 [&] (CORE_ADDR start, CORE_ADDR end)
14725 {
14726 start += baseaddr;
14727 end += baseaddr;
14728 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14729 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14730 record_block_range (block, start, end - 1);
14731 });
14732 }
14733 }
14734
14735 /* Check whether the producer field indicates either of GCC < 4.6, or the
14736 Intel C/C++ compiler, and cache the result in CU. */
14737
14738 static void
14739 check_producer (struct dwarf2_cu *cu)
14740 {
14741 int major, minor;
14742
14743 if (cu->producer == NULL)
14744 {
14745 /* For unknown compilers expect their behavior is DWARF version
14746 compliant.
14747
14748 GCC started to support .debug_types sections by -gdwarf-4 since
14749 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14750 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14751 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14752 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14753 }
14754 else if (producer_is_gcc (cu->producer, &major, &minor))
14755 {
14756 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14757 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14758 }
14759 else if (producer_is_icc (cu->producer, &major, &minor))
14760 cu->producer_is_icc_lt_14 = major < 14;
14761 else
14762 {
14763 /* For other non-GCC compilers, expect their behavior is DWARF version
14764 compliant. */
14765 }
14766
14767 cu->checked_producer = 1;
14768 }
14769
14770 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14771 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14772 during 4.6.0 experimental. */
14773
14774 static int
14775 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14776 {
14777 if (!cu->checked_producer)
14778 check_producer (cu);
14779
14780 return cu->producer_is_gxx_lt_4_6;
14781 }
14782
14783 /* Return the default accessibility type if it is not overriden by
14784 DW_AT_accessibility. */
14785
14786 static enum dwarf_access_attribute
14787 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14788 {
14789 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14790 {
14791 /* The default DWARF 2 accessibility for members is public, the default
14792 accessibility for inheritance is private. */
14793
14794 if (die->tag != DW_TAG_inheritance)
14795 return DW_ACCESS_public;
14796 else
14797 return DW_ACCESS_private;
14798 }
14799 else
14800 {
14801 /* DWARF 3+ defines the default accessibility a different way. The same
14802 rules apply now for DW_TAG_inheritance as for the members and it only
14803 depends on the container kind. */
14804
14805 if (die->parent->tag == DW_TAG_class_type)
14806 return DW_ACCESS_private;
14807 else
14808 return DW_ACCESS_public;
14809 }
14810 }
14811
14812 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14813 offset. If the attribute was not found return 0, otherwise return
14814 1. If it was found but could not properly be handled, set *OFFSET
14815 to 0. */
14816
14817 static int
14818 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14819 LONGEST *offset)
14820 {
14821 struct attribute *attr;
14822
14823 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14824 if (attr != NULL)
14825 {
14826 *offset = 0;
14827
14828 /* Note that we do not check for a section offset first here.
14829 This is because DW_AT_data_member_location is new in DWARF 4,
14830 so if we see it, we can assume that a constant form is really
14831 a constant and not a section offset. */
14832 if (attr_form_is_constant (attr))
14833 *offset = dwarf2_get_attr_constant_value (attr, 0);
14834 else if (attr_form_is_section_offset (attr))
14835 dwarf2_complex_location_expr_complaint ();
14836 else if (attr_form_is_block (attr))
14837 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14838 else
14839 dwarf2_complex_location_expr_complaint ();
14840
14841 return 1;
14842 }
14843
14844 return 0;
14845 }
14846
14847 /* Add an aggregate field to the field list. */
14848
14849 static void
14850 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14851 struct dwarf2_cu *cu)
14852 {
14853 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14855 struct nextfield *new_field;
14856 struct attribute *attr;
14857 struct field *fp;
14858 const char *fieldname = "";
14859
14860 if (die->tag == DW_TAG_inheritance)
14861 {
14862 fip->baseclasses.emplace_back ();
14863 new_field = &fip->baseclasses.back ();
14864 }
14865 else
14866 {
14867 fip->fields.emplace_back ();
14868 new_field = &fip->fields.back ();
14869 }
14870
14871 fip->nfields++;
14872
14873 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14874 if (attr)
14875 new_field->accessibility = DW_UNSND (attr);
14876 else
14877 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14878 if (new_field->accessibility != DW_ACCESS_public)
14879 fip->non_public_fields = 1;
14880
14881 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14882 if (attr)
14883 new_field->virtuality = DW_UNSND (attr);
14884 else
14885 new_field->virtuality = DW_VIRTUALITY_none;
14886
14887 fp = &new_field->field;
14888
14889 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14890 {
14891 LONGEST offset;
14892
14893 /* Data member other than a C++ static data member. */
14894
14895 /* Get type of field. */
14896 fp->type = die_type (die, cu);
14897
14898 SET_FIELD_BITPOS (*fp, 0);
14899
14900 /* Get bit size of field (zero if none). */
14901 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14902 if (attr)
14903 {
14904 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14905 }
14906 else
14907 {
14908 FIELD_BITSIZE (*fp) = 0;
14909 }
14910
14911 /* Get bit offset of field. */
14912 if (handle_data_member_location (die, cu, &offset))
14913 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14914 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14915 if (attr)
14916 {
14917 if (gdbarch_bits_big_endian (gdbarch))
14918 {
14919 /* For big endian bits, the DW_AT_bit_offset gives the
14920 additional bit offset from the MSB of the containing
14921 anonymous object to the MSB of the field. We don't
14922 have to do anything special since we don't need to
14923 know the size of the anonymous object. */
14924 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14925 }
14926 else
14927 {
14928 /* For little endian bits, compute the bit offset to the
14929 MSB of the anonymous object, subtract off the number of
14930 bits from the MSB of the field to the MSB of the
14931 object, and then subtract off the number of bits of
14932 the field itself. The result is the bit offset of
14933 the LSB of the field. */
14934 int anonymous_size;
14935 int bit_offset = DW_UNSND (attr);
14936
14937 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14938 if (attr)
14939 {
14940 /* The size of the anonymous object containing
14941 the bit field is explicit, so use the
14942 indicated size (in bytes). */
14943 anonymous_size = DW_UNSND (attr);
14944 }
14945 else
14946 {
14947 /* The size of the anonymous object containing
14948 the bit field must be inferred from the type
14949 attribute of the data member containing the
14950 bit field. */
14951 anonymous_size = TYPE_LENGTH (fp->type);
14952 }
14953 SET_FIELD_BITPOS (*fp,
14954 (FIELD_BITPOS (*fp)
14955 + anonymous_size * bits_per_byte
14956 - bit_offset - FIELD_BITSIZE (*fp)));
14957 }
14958 }
14959 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14960 if (attr != NULL)
14961 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14962 + dwarf2_get_attr_constant_value (attr, 0)));
14963
14964 /* Get name of field. */
14965 fieldname = dwarf2_name (die, cu);
14966 if (fieldname == NULL)
14967 fieldname = "";
14968
14969 /* The name is already allocated along with this objfile, so we don't
14970 need to duplicate it for the type. */
14971 fp->name = fieldname;
14972
14973 /* Change accessibility for artificial fields (e.g. virtual table
14974 pointer or virtual base class pointer) to private. */
14975 if (dwarf2_attr (die, DW_AT_artificial, cu))
14976 {
14977 FIELD_ARTIFICIAL (*fp) = 1;
14978 new_field->accessibility = DW_ACCESS_private;
14979 fip->non_public_fields = 1;
14980 }
14981 }
14982 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14983 {
14984 /* C++ static member. */
14985
14986 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14987 is a declaration, but all versions of G++ as of this writing
14988 (so through at least 3.2.1) incorrectly generate
14989 DW_TAG_variable tags. */
14990
14991 const char *physname;
14992
14993 /* Get name of field. */
14994 fieldname = dwarf2_name (die, cu);
14995 if (fieldname == NULL)
14996 return;
14997
14998 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14999 if (attr
15000 /* Only create a symbol if this is an external value.
15001 new_symbol checks this and puts the value in the global symbol
15002 table, which we want. If it is not external, new_symbol
15003 will try to put the value in cu->list_in_scope which is wrong. */
15004 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15005 {
15006 /* A static const member, not much different than an enum as far as
15007 we're concerned, except that we can support more types. */
15008 new_symbol (die, NULL, cu);
15009 }
15010
15011 /* Get physical name. */
15012 physname = dwarf2_physname (fieldname, die, cu);
15013
15014 /* The name is already allocated along with this objfile, so we don't
15015 need to duplicate it for the type. */
15016 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15017 FIELD_TYPE (*fp) = die_type (die, cu);
15018 FIELD_NAME (*fp) = fieldname;
15019 }
15020 else if (die->tag == DW_TAG_inheritance)
15021 {
15022 LONGEST offset;
15023
15024 /* C++ base class field. */
15025 if (handle_data_member_location (die, cu, &offset))
15026 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15027 FIELD_BITSIZE (*fp) = 0;
15028 FIELD_TYPE (*fp) = die_type (die, cu);
15029 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15030 }
15031 else if (die->tag == DW_TAG_variant_part)
15032 {
15033 /* process_structure_scope will treat this DIE as a union. */
15034 process_structure_scope (die, cu);
15035
15036 /* The variant part is relative to the start of the enclosing
15037 structure. */
15038 SET_FIELD_BITPOS (*fp, 0);
15039 fp->type = get_die_type (die, cu);
15040 fp->artificial = 1;
15041 fp->name = "<<variant>>";
15042 }
15043 else
15044 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15045 }
15046
15047 /* Can the type given by DIE define another type? */
15048
15049 static bool
15050 type_can_define_types (const struct die_info *die)
15051 {
15052 switch (die->tag)
15053 {
15054 case DW_TAG_typedef:
15055 case DW_TAG_class_type:
15056 case DW_TAG_structure_type:
15057 case DW_TAG_union_type:
15058 case DW_TAG_enumeration_type:
15059 return true;
15060
15061 default:
15062 return false;
15063 }
15064 }
15065
15066 /* Add a type definition defined in the scope of the FIP's class. */
15067
15068 static void
15069 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15070 struct dwarf2_cu *cu)
15071 {
15072 struct decl_field fp;
15073 memset (&fp, 0, sizeof (fp));
15074
15075 gdb_assert (type_can_define_types (die));
15076
15077 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15078 fp.name = dwarf2_name (die, cu);
15079 fp.type = read_type_die (die, cu);
15080
15081 /* Save accessibility. */
15082 enum dwarf_access_attribute accessibility;
15083 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15084 if (attr != NULL)
15085 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15086 else
15087 accessibility = dwarf2_default_access_attribute (die, cu);
15088 switch (accessibility)
15089 {
15090 case DW_ACCESS_public:
15091 /* The assumed value if neither private nor protected. */
15092 break;
15093 case DW_ACCESS_private:
15094 fp.is_private = 1;
15095 break;
15096 case DW_ACCESS_protected:
15097 fp.is_protected = 1;
15098 break;
15099 default:
15100 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15101 }
15102
15103 if (die->tag == DW_TAG_typedef)
15104 fip->typedef_field_list.push_back (fp);
15105 else
15106 fip->nested_types_list.push_back (fp);
15107 }
15108
15109 /* Create the vector of fields, and attach it to the type. */
15110
15111 static void
15112 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15113 struct dwarf2_cu *cu)
15114 {
15115 int nfields = fip->nfields;
15116
15117 /* Record the field count, allocate space for the array of fields,
15118 and create blank accessibility bitfields if necessary. */
15119 TYPE_NFIELDS (type) = nfields;
15120 TYPE_FIELDS (type) = (struct field *)
15121 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15122
15123 if (fip->non_public_fields && cu->language != language_ada)
15124 {
15125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15126
15127 TYPE_FIELD_PRIVATE_BITS (type) =
15128 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15129 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15130
15131 TYPE_FIELD_PROTECTED_BITS (type) =
15132 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15133 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15134
15135 TYPE_FIELD_IGNORE_BITS (type) =
15136 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15137 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15138 }
15139
15140 /* If the type has baseclasses, allocate and clear a bit vector for
15141 TYPE_FIELD_VIRTUAL_BITS. */
15142 if (!fip->baseclasses.empty () && cu->language != language_ada)
15143 {
15144 int num_bytes = B_BYTES (fip->baseclasses.size ());
15145 unsigned char *pointer;
15146
15147 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15148 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15149 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15150 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15151 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15152 }
15153
15154 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15155 {
15156 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15157
15158 for (int index = 0; index < nfields; ++index)
15159 {
15160 struct nextfield &field = fip->fields[index];
15161
15162 if (field.variant.is_discriminant)
15163 di->discriminant_index = index;
15164 else if (field.variant.default_branch)
15165 di->default_index = index;
15166 else
15167 di->discriminants[index] = field.variant.discriminant_value;
15168 }
15169 }
15170
15171 /* Copy the saved-up fields into the field vector. */
15172 for (int i = 0; i < nfields; ++i)
15173 {
15174 struct nextfield &field
15175 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15176 : fip->fields[i - fip->baseclasses.size ()]);
15177
15178 TYPE_FIELD (type, i) = field.field;
15179 switch (field.accessibility)
15180 {
15181 case DW_ACCESS_private:
15182 if (cu->language != language_ada)
15183 SET_TYPE_FIELD_PRIVATE (type, i);
15184 break;
15185
15186 case DW_ACCESS_protected:
15187 if (cu->language != language_ada)
15188 SET_TYPE_FIELD_PROTECTED (type, i);
15189 break;
15190
15191 case DW_ACCESS_public:
15192 break;
15193
15194 default:
15195 /* Unknown accessibility. Complain and treat it as public. */
15196 {
15197 complaint (_("unsupported accessibility %d"),
15198 field.accessibility);
15199 }
15200 break;
15201 }
15202 if (i < fip->baseclasses.size ())
15203 {
15204 switch (field.virtuality)
15205 {
15206 case DW_VIRTUALITY_virtual:
15207 case DW_VIRTUALITY_pure_virtual:
15208 if (cu->language == language_ada)
15209 error (_("unexpected virtuality in component of Ada type"));
15210 SET_TYPE_FIELD_VIRTUAL (type, i);
15211 break;
15212 }
15213 }
15214 }
15215 }
15216
15217 /* Return true if this member function is a constructor, false
15218 otherwise. */
15219
15220 static int
15221 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15222 {
15223 const char *fieldname;
15224 const char *type_name;
15225 int len;
15226
15227 if (die->parent == NULL)
15228 return 0;
15229
15230 if (die->parent->tag != DW_TAG_structure_type
15231 && die->parent->tag != DW_TAG_union_type
15232 && die->parent->tag != DW_TAG_class_type)
15233 return 0;
15234
15235 fieldname = dwarf2_name (die, cu);
15236 type_name = dwarf2_name (die->parent, cu);
15237 if (fieldname == NULL || type_name == NULL)
15238 return 0;
15239
15240 len = strlen (fieldname);
15241 return (strncmp (fieldname, type_name, len) == 0
15242 && (type_name[len] == '\0' || type_name[len] == '<'));
15243 }
15244
15245 /* Add a member function to the proper fieldlist. */
15246
15247 static void
15248 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15249 struct type *type, struct dwarf2_cu *cu)
15250 {
15251 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15252 struct attribute *attr;
15253 int i;
15254 struct fnfieldlist *flp = nullptr;
15255 struct fn_field *fnp;
15256 const char *fieldname;
15257 struct type *this_type;
15258 enum dwarf_access_attribute accessibility;
15259
15260 if (cu->language == language_ada)
15261 error (_("unexpected member function in Ada type"));
15262
15263 /* Get name of member function. */
15264 fieldname = dwarf2_name (die, cu);
15265 if (fieldname == NULL)
15266 return;
15267
15268 /* Look up member function name in fieldlist. */
15269 for (i = 0; i < fip->fnfieldlists.size (); i++)
15270 {
15271 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15272 {
15273 flp = &fip->fnfieldlists[i];
15274 break;
15275 }
15276 }
15277
15278 /* Create a new fnfieldlist if necessary. */
15279 if (flp == nullptr)
15280 {
15281 fip->fnfieldlists.emplace_back ();
15282 flp = &fip->fnfieldlists.back ();
15283 flp->name = fieldname;
15284 i = fip->fnfieldlists.size () - 1;
15285 }
15286
15287 /* Create a new member function field and add it to the vector of
15288 fnfieldlists. */
15289 flp->fnfields.emplace_back ();
15290 fnp = &flp->fnfields.back ();
15291
15292 /* Delay processing of the physname until later. */
15293 if (cu->language == language_cplus)
15294 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15295 die, cu);
15296 else
15297 {
15298 const char *physname = dwarf2_physname (fieldname, die, cu);
15299 fnp->physname = physname ? physname : "";
15300 }
15301
15302 fnp->type = alloc_type (objfile);
15303 this_type = read_type_die (die, cu);
15304 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15305 {
15306 int nparams = TYPE_NFIELDS (this_type);
15307
15308 /* TYPE is the domain of this method, and THIS_TYPE is the type
15309 of the method itself (TYPE_CODE_METHOD). */
15310 smash_to_method_type (fnp->type, type,
15311 TYPE_TARGET_TYPE (this_type),
15312 TYPE_FIELDS (this_type),
15313 TYPE_NFIELDS (this_type),
15314 TYPE_VARARGS (this_type));
15315
15316 /* Handle static member functions.
15317 Dwarf2 has no clean way to discern C++ static and non-static
15318 member functions. G++ helps GDB by marking the first
15319 parameter for non-static member functions (which is the this
15320 pointer) as artificial. We obtain this information from
15321 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15322 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15323 fnp->voffset = VOFFSET_STATIC;
15324 }
15325 else
15326 complaint (_("member function type missing for '%s'"),
15327 dwarf2_full_name (fieldname, die, cu));
15328
15329 /* Get fcontext from DW_AT_containing_type if present. */
15330 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15331 fnp->fcontext = die_containing_type (die, cu);
15332
15333 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15334 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15335
15336 /* Get accessibility. */
15337 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15338 if (attr)
15339 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15340 else
15341 accessibility = dwarf2_default_access_attribute (die, cu);
15342 switch (accessibility)
15343 {
15344 case DW_ACCESS_private:
15345 fnp->is_private = 1;
15346 break;
15347 case DW_ACCESS_protected:
15348 fnp->is_protected = 1;
15349 break;
15350 }
15351
15352 /* Check for artificial methods. */
15353 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15354 if (attr && DW_UNSND (attr) != 0)
15355 fnp->is_artificial = 1;
15356
15357 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15358
15359 /* Get index in virtual function table if it is a virtual member
15360 function. For older versions of GCC, this is an offset in the
15361 appropriate virtual table, as specified by DW_AT_containing_type.
15362 For everyone else, it is an expression to be evaluated relative
15363 to the object address. */
15364
15365 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15366 if (attr)
15367 {
15368 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15369 {
15370 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15371 {
15372 /* Old-style GCC. */
15373 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15374 }
15375 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15376 || (DW_BLOCK (attr)->size > 1
15377 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15378 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15379 {
15380 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15381 if ((fnp->voffset % cu->header.addr_size) != 0)
15382 dwarf2_complex_location_expr_complaint ();
15383 else
15384 fnp->voffset /= cu->header.addr_size;
15385 fnp->voffset += 2;
15386 }
15387 else
15388 dwarf2_complex_location_expr_complaint ();
15389
15390 if (!fnp->fcontext)
15391 {
15392 /* If there is no `this' field and no DW_AT_containing_type,
15393 we cannot actually find a base class context for the
15394 vtable! */
15395 if (TYPE_NFIELDS (this_type) == 0
15396 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15397 {
15398 complaint (_("cannot determine context for virtual member "
15399 "function \"%s\" (offset %s)"),
15400 fieldname, sect_offset_str (die->sect_off));
15401 }
15402 else
15403 {
15404 fnp->fcontext
15405 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15406 }
15407 }
15408 }
15409 else if (attr_form_is_section_offset (attr))
15410 {
15411 dwarf2_complex_location_expr_complaint ();
15412 }
15413 else
15414 {
15415 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15416 fieldname);
15417 }
15418 }
15419 else
15420 {
15421 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15422 if (attr && DW_UNSND (attr))
15423 {
15424 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15425 complaint (_("Member function \"%s\" (offset %s) is virtual "
15426 "but the vtable offset is not specified"),
15427 fieldname, sect_offset_str (die->sect_off));
15428 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15429 TYPE_CPLUS_DYNAMIC (type) = 1;
15430 }
15431 }
15432 }
15433
15434 /* Create the vector of member function fields, and attach it to the type. */
15435
15436 static void
15437 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15438 struct dwarf2_cu *cu)
15439 {
15440 if (cu->language == language_ada)
15441 error (_("unexpected member functions in Ada type"));
15442
15443 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15444 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15445 TYPE_ALLOC (type,
15446 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15447
15448 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15449 {
15450 struct fnfieldlist &nf = fip->fnfieldlists[i];
15451 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15452
15453 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15454 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15455 fn_flp->fn_fields = (struct fn_field *)
15456 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15457
15458 for (int k = 0; k < nf.fnfields.size (); ++k)
15459 fn_flp->fn_fields[k] = nf.fnfields[k];
15460 }
15461
15462 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15463 }
15464
15465 /* Returns non-zero if NAME is the name of a vtable member in CU's
15466 language, zero otherwise. */
15467 static int
15468 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15469 {
15470 static const char vptr[] = "_vptr";
15471
15472 /* Look for the C++ form of the vtable. */
15473 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15474 return 1;
15475
15476 return 0;
15477 }
15478
15479 /* GCC outputs unnamed structures that are really pointers to member
15480 functions, with the ABI-specified layout. If TYPE describes
15481 such a structure, smash it into a member function type.
15482
15483 GCC shouldn't do this; it should just output pointer to member DIEs.
15484 This is GCC PR debug/28767. */
15485
15486 static void
15487 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15488 {
15489 struct type *pfn_type, *self_type, *new_type;
15490
15491 /* Check for a structure with no name and two children. */
15492 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15493 return;
15494
15495 /* Check for __pfn and __delta members. */
15496 if (TYPE_FIELD_NAME (type, 0) == NULL
15497 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15498 || TYPE_FIELD_NAME (type, 1) == NULL
15499 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15500 return;
15501
15502 /* Find the type of the method. */
15503 pfn_type = TYPE_FIELD_TYPE (type, 0);
15504 if (pfn_type == NULL
15505 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15506 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15507 return;
15508
15509 /* Look for the "this" argument. */
15510 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15511 if (TYPE_NFIELDS (pfn_type) == 0
15512 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15513 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15514 return;
15515
15516 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15517 new_type = alloc_type (objfile);
15518 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15519 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15520 TYPE_VARARGS (pfn_type));
15521 smash_to_methodptr_type (type, new_type);
15522 }
15523
15524 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15525 appropriate error checking and issuing complaints if there is a
15526 problem. */
15527
15528 static ULONGEST
15529 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15530 {
15531 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15532
15533 if (attr == nullptr)
15534 return 0;
15535
15536 if (!attr_form_is_constant (attr))
15537 {
15538 complaint (_("DW_AT_alignment must have constant form"
15539 " - DIE at %s [in module %s]"),
15540 sect_offset_str (die->sect_off),
15541 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15542 return 0;
15543 }
15544
15545 ULONGEST align;
15546 if (attr->form == DW_FORM_sdata)
15547 {
15548 LONGEST val = DW_SND (attr);
15549 if (val < 0)
15550 {
15551 complaint (_("DW_AT_alignment value must not be negative"
15552 " - DIE at %s [in module %s]"),
15553 sect_offset_str (die->sect_off),
15554 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15555 return 0;
15556 }
15557 align = val;
15558 }
15559 else
15560 align = DW_UNSND (attr);
15561
15562 if (align == 0)
15563 {
15564 complaint (_("DW_AT_alignment value must not be zero"
15565 " - DIE at %s [in module %s]"),
15566 sect_offset_str (die->sect_off),
15567 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15568 return 0;
15569 }
15570 if ((align & (align - 1)) != 0)
15571 {
15572 complaint (_("DW_AT_alignment value must be a power of 2"
15573 " - DIE at %s [in module %s]"),
15574 sect_offset_str (die->sect_off),
15575 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15576 return 0;
15577 }
15578
15579 return align;
15580 }
15581
15582 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15583 the alignment for TYPE. */
15584
15585 static void
15586 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15587 struct type *type)
15588 {
15589 if (!set_type_align (type, get_alignment (cu, die)))
15590 complaint (_("DW_AT_alignment value too large"
15591 " - DIE at %s [in module %s]"),
15592 sect_offset_str (die->sect_off),
15593 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15594 }
15595
15596 /* Called when we find the DIE that starts a structure or union scope
15597 (definition) to create a type for the structure or union. Fill in
15598 the type's name and general properties; the members will not be
15599 processed until process_structure_scope. A symbol table entry for
15600 the type will also not be done until process_structure_scope (assuming
15601 the type has a name).
15602
15603 NOTE: we need to call these functions regardless of whether or not the
15604 DIE has a DW_AT_name attribute, since it might be an anonymous
15605 structure or union. This gets the type entered into our set of
15606 user defined types. */
15607
15608 static struct type *
15609 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15610 {
15611 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15612 struct type *type;
15613 struct attribute *attr;
15614 const char *name;
15615
15616 /* If the definition of this type lives in .debug_types, read that type.
15617 Don't follow DW_AT_specification though, that will take us back up
15618 the chain and we want to go down. */
15619 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15620 if (attr)
15621 {
15622 type = get_DW_AT_signature_type (die, attr, cu);
15623
15624 /* The type's CU may not be the same as CU.
15625 Ensure TYPE is recorded with CU in die_type_hash. */
15626 return set_die_type (die, type, cu);
15627 }
15628
15629 type = alloc_type (objfile);
15630 INIT_CPLUS_SPECIFIC (type);
15631
15632 name = dwarf2_name (die, cu);
15633 if (name != NULL)
15634 {
15635 if (cu->language == language_cplus
15636 || cu->language == language_d
15637 || cu->language == language_rust)
15638 {
15639 const char *full_name = dwarf2_full_name (name, die, cu);
15640
15641 /* dwarf2_full_name might have already finished building the DIE's
15642 type. If so, there is no need to continue. */
15643 if (get_die_type (die, cu) != NULL)
15644 return get_die_type (die, cu);
15645
15646 TYPE_NAME (type) = full_name;
15647 }
15648 else
15649 {
15650 /* The name is already allocated along with this objfile, so
15651 we don't need to duplicate it for the type. */
15652 TYPE_NAME (type) = name;
15653 }
15654 }
15655
15656 if (die->tag == DW_TAG_structure_type)
15657 {
15658 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15659 }
15660 else if (die->tag == DW_TAG_union_type)
15661 {
15662 TYPE_CODE (type) = TYPE_CODE_UNION;
15663 }
15664 else if (die->tag == DW_TAG_variant_part)
15665 {
15666 TYPE_CODE (type) = TYPE_CODE_UNION;
15667 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15668 }
15669 else
15670 {
15671 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15672 }
15673
15674 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15675 TYPE_DECLARED_CLASS (type) = 1;
15676
15677 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15678 if (attr)
15679 {
15680 if (attr_form_is_constant (attr))
15681 TYPE_LENGTH (type) = DW_UNSND (attr);
15682 else
15683 {
15684 /* For the moment, dynamic type sizes are not supported
15685 by GDB's struct type. The actual size is determined
15686 on-demand when resolving the type of a given object,
15687 so set the type's length to zero for now. Otherwise,
15688 we record an expression as the length, and that expression
15689 could lead to a very large value, which could eventually
15690 lead to us trying to allocate that much memory when creating
15691 a value of that type. */
15692 TYPE_LENGTH (type) = 0;
15693 }
15694 }
15695 else
15696 {
15697 TYPE_LENGTH (type) = 0;
15698 }
15699
15700 maybe_set_alignment (cu, die, type);
15701
15702 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15703 {
15704 /* ICC<14 does not output the required DW_AT_declaration on
15705 incomplete types, but gives them a size of zero. */
15706 TYPE_STUB (type) = 1;
15707 }
15708 else
15709 TYPE_STUB_SUPPORTED (type) = 1;
15710
15711 if (die_is_declaration (die, cu))
15712 TYPE_STUB (type) = 1;
15713 else if (attr == NULL && die->child == NULL
15714 && producer_is_realview (cu->producer))
15715 /* RealView does not output the required DW_AT_declaration
15716 on incomplete types. */
15717 TYPE_STUB (type) = 1;
15718
15719 /* We need to add the type field to the die immediately so we don't
15720 infinitely recurse when dealing with pointers to the structure
15721 type within the structure itself. */
15722 set_die_type (die, type, cu);
15723
15724 /* set_die_type should be already done. */
15725 set_descriptive_type (type, die, cu);
15726
15727 return type;
15728 }
15729
15730 /* A helper for process_structure_scope that handles a single member
15731 DIE. */
15732
15733 static void
15734 handle_struct_member_die (struct die_info *child_die, struct type *type,
15735 struct field_info *fi,
15736 std::vector<struct symbol *> *template_args,
15737 struct dwarf2_cu *cu)
15738 {
15739 if (child_die->tag == DW_TAG_member
15740 || child_die->tag == DW_TAG_variable
15741 || child_die->tag == DW_TAG_variant_part)
15742 {
15743 /* NOTE: carlton/2002-11-05: A C++ static data member
15744 should be a DW_TAG_member that is a declaration, but
15745 all versions of G++ as of this writing (so through at
15746 least 3.2.1) incorrectly generate DW_TAG_variable
15747 tags for them instead. */
15748 dwarf2_add_field (fi, child_die, cu);
15749 }
15750 else if (child_die->tag == DW_TAG_subprogram)
15751 {
15752 /* Rust doesn't have member functions in the C++ sense.
15753 However, it does emit ordinary functions as children
15754 of a struct DIE. */
15755 if (cu->language == language_rust)
15756 read_func_scope (child_die, cu);
15757 else
15758 {
15759 /* C++ member function. */
15760 dwarf2_add_member_fn (fi, child_die, type, cu);
15761 }
15762 }
15763 else if (child_die->tag == DW_TAG_inheritance)
15764 {
15765 /* C++ base class field. */
15766 dwarf2_add_field (fi, child_die, cu);
15767 }
15768 else if (type_can_define_types (child_die))
15769 dwarf2_add_type_defn (fi, child_die, cu);
15770 else if (child_die->tag == DW_TAG_template_type_param
15771 || child_die->tag == DW_TAG_template_value_param)
15772 {
15773 struct symbol *arg = new_symbol (child_die, NULL, cu);
15774
15775 if (arg != NULL)
15776 template_args->push_back (arg);
15777 }
15778 else if (child_die->tag == DW_TAG_variant)
15779 {
15780 /* In a variant we want to get the discriminant and also add a
15781 field for our sole member child. */
15782 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15783
15784 for (struct die_info *variant_child = child_die->child;
15785 variant_child != NULL;
15786 variant_child = sibling_die (variant_child))
15787 {
15788 if (variant_child->tag == DW_TAG_member)
15789 {
15790 handle_struct_member_die (variant_child, type, fi,
15791 template_args, cu);
15792 /* Only handle the one. */
15793 break;
15794 }
15795 }
15796
15797 /* We don't handle this but we might as well report it if we see
15798 it. */
15799 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15800 complaint (_("DW_AT_discr_list is not supported yet"
15801 " - DIE at %s [in module %s]"),
15802 sect_offset_str (child_die->sect_off),
15803 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15804
15805 /* The first field was just added, so we can stash the
15806 discriminant there. */
15807 gdb_assert (!fi->fields.empty ());
15808 if (discr == NULL)
15809 fi->fields.back ().variant.default_branch = true;
15810 else
15811 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15812 }
15813 }
15814
15815 /* Finish creating a structure or union type, including filling in
15816 its members and creating a symbol for it. */
15817
15818 static void
15819 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15820 {
15821 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15822 struct die_info *child_die;
15823 struct type *type;
15824
15825 type = get_die_type (die, cu);
15826 if (type == NULL)
15827 type = read_structure_type (die, cu);
15828
15829 /* When reading a DW_TAG_variant_part, we need to notice when we
15830 read the discriminant member, so we can record it later in the
15831 discriminant_info. */
15832 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15833 sect_offset discr_offset;
15834
15835 if (is_variant_part)
15836 {
15837 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15838 if (discr == NULL)
15839 {
15840 /* Maybe it's a univariant form, an extension we support.
15841 In this case arrange not to check the offset. */
15842 is_variant_part = false;
15843 }
15844 else if (attr_form_is_ref (discr))
15845 {
15846 struct dwarf2_cu *target_cu = cu;
15847 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15848
15849 discr_offset = target_die->sect_off;
15850 }
15851 else
15852 {
15853 complaint (_("DW_AT_discr does not have DIE reference form"
15854 " - DIE at %s [in module %s]"),
15855 sect_offset_str (die->sect_off),
15856 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15857 is_variant_part = false;
15858 }
15859 }
15860
15861 if (die->child != NULL && ! die_is_declaration (die, cu))
15862 {
15863 struct field_info fi;
15864 std::vector<struct symbol *> template_args;
15865
15866 child_die = die->child;
15867
15868 while (child_die && child_die->tag)
15869 {
15870 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15871
15872 if (is_variant_part && discr_offset == child_die->sect_off)
15873 fi.fields.back ().variant.is_discriminant = true;
15874
15875 child_die = sibling_die (child_die);
15876 }
15877
15878 /* Attach template arguments to type. */
15879 if (!template_args.empty ())
15880 {
15881 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15882 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15883 TYPE_TEMPLATE_ARGUMENTS (type)
15884 = XOBNEWVEC (&objfile->objfile_obstack,
15885 struct symbol *,
15886 TYPE_N_TEMPLATE_ARGUMENTS (type));
15887 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15888 template_args.data (),
15889 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15890 * sizeof (struct symbol *)));
15891 }
15892
15893 /* Attach fields and member functions to the type. */
15894 if (fi.nfields)
15895 dwarf2_attach_fields_to_type (&fi, type, cu);
15896 if (!fi.fnfieldlists.empty ())
15897 {
15898 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15899
15900 /* Get the type which refers to the base class (possibly this
15901 class itself) which contains the vtable pointer for the current
15902 class from the DW_AT_containing_type attribute. This use of
15903 DW_AT_containing_type is a GNU extension. */
15904
15905 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15906 {
15907 struct type *t = die_containing_type (die, cu);
15908
15909 set_type_vptr_basetype (type, t);
15910 if (type == t)
15911 {
15912 int i;
15913
15914 /* Our own class provides vtbl ptr. */
15915 for (i = TYPE_NFIELDS (t) - 1;
15916 i >= TYPE_N_BASECLASSES (t);
15917 --i)
15918 {
15919 const char *fieldname = TYPE_FIELD_NAME (t, i);
15920
15921 if (is_vtable_name (fieldname, cu))
15922 {
15923 set_type_vptr_fieldno (type, i);
15924 break;
15925 }
15926 }
15927
15928 /* Complain if virtual function table field not found. */
15929 if (i < TYPE_N_BASECLASSES (t))
15930 complaint (_("virtual function table pointer "
15931 "not found when defining class '%s'"),
15932 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15933 }
15934 else
15935 {
15936 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15937 }
15938 }
15939 else if (cu->producer
15940 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15941 {
15942 /* The IBM XLC compiler does not provide direct indication
15943 of the containing type, but the vtable pointer is
15944 always named __vfp. */
15945
15946 int i;
15947
15948 for (i = TYPE_NFIELDS (type) - 1;
15949 i >= TYPE_N_BASECLASSES (type);
15950 --i)
15951 {
15952 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15953 {
15954 set_type_vptr_fieldno (type, i);
15955 set_type_vptr_basetype (type, type);
15956 break;
15957 }
15958 }
15959 }
15960 }
15961
15962 /* Copy fi.typedef_field_list linked list elements content into the
15963 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15964 if (!fi.typedef_field_list.empty ())
15965 {
15966 int count = fi.typedef_field_list.size ();
15967
15968 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15969 TYPE_TYPEDEF_FIELD_ARRAY (type)
15970 = ((struct decl_field *)
15971 TYPE_ALLOC (type,
15972 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15973 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15974
15975 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15976 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15977 }
15978
15979 /* Copy fi.nested_types_list linked list elements content into the
15980 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15981 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15982 {
15983 int count = fi.nested_types_list.size ();
15984
15985 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15986 TYPE_NESTED_TYPES_ARRAY (type)
15987 = ((struct decl_field *)
15988 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15989 TYPE_NESTED_TYPES_COUNT (type) = count;
15990
15991 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15992 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15993 }
15994 }
15995
15996 quirk_gcc_member_function_pointer (type, objfile);
15997 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15998 cu->rust_unions.push_back (type);
15999
16000 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16001 snapshots) has been known to create a die giving a declaration
16002 for a class that has, as a child, a die giving a definition for a
16003 nested class. So we have to process our children even if the
16004 current die is a declaration. Normally, of course, a declaration
16005 won't have any children at all. */
16006
16007 child_die = die->child;
16008
16009 while (child_die != NULL && child_die->tag)
16010 {
16011 if (child_die->tag == DW_TAG_member
16012 || child_die->tag == DW_TAG_variable
16013 || child_die->tag == DW_TAG_inheritance
16014 || child_die->tag == DW_TAG_template_value_param
16015 || child_die->tag == DW_TAG_template_type_param)
16016 {
16017 /* Do nothing. */
16018 }
16019 else
16020 process_die (child_die, cu);
16021
16022 child_die = sibling_die (child_die);
16023 }
16024
16025 /* Do not consider external references. According to the DWARF standard,
16026 these DIEs are identified by the fact that they have no byte_size
16027 attribute, and a declaration attribute. */
16028 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16029 || !die_is_declaration (die, cu))
16030 new_symbol (die, type, cu);
16031 }
16032
16033 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16034 update TYPE using some information only available in DIE's children. */
16035
16036 static void
16037 update_enumeration_type_from_children (struct die_info *die,
16038 struct type *type,
16039 struct dwarf2_cu *cu)
16040 {
16041 struct die_info *child_die;
16042 int unsigned_enum = 1;
16043 int flag_enum = 1;
16044 ULONGEST mask = 0;
16045
16046 auto_obstack obstack;
16047
16048 for (child_die = die->child;
16049 child_die != NULL && child_die->tag;
16050 child_die = sibling_die (child_die))
16051 {
16052 struct attribute *attr;
16053 LONGEST value;
16054 const gdb_byte *bytes;
16055 struct dwarf2_locexpr_baton *baton;
16056 const char *name;
16057
16058 if (child_die->tag != DW_TAG_enumerator)
16059 continue;
16060
16061 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16062 if (attr == NULL)
16063 continue;
16064
16065 name = dwarf2_name (child_die, cu);
16066 if (name == NULL)
16067 name = "<anonymous enumerator>";
16068
16069 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16070 &value, &bytes, &baton);
16071 if (value < 0)
16072 {
16073 unsigned_enum = 0;
16074 flag_enum = 0;
16075 }
16076 else if ((mask & value) != 0)
16077 flag_enum = 0;
16078 else
16079 mask |= value;
16080
16081 /* If we already know that the enum type is neither unsigned, nor
16082 a flag type, no need to look at the rest of the enumerates. */
16083 if (!unsigned_enum && !flag_enum)
16084 break;
16085 }
16086
16087 if (unsigned_enum)
16088 TYPE_UNSIGNED (type) = 1;
16089 if (flag_enum)
16090 TYPE_FLAG_ENUM (type) = 1;
16091 }
16092
16093 /* Given a DW_AT_enumeration_type die, set its type. We do not
16094 complete the type's fields yet, or create any symbols. */
16095
16096 static struct type *
16097 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16098 {
16099 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16100 struct type *type;
16101 struct attribute *attr;
16102 const char *name;
16103
16104 /* If the definition of this type lives in .debug_types, read that type.
16105 Don't follow DW_AT_specification though, that will take us back up
16106 the chain and we want to go down. */
16107 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16108 if (attr)
16109 {
16110 type = get_DW_AT_signature_type (die, attr, cu);
16111
16112 /* The type's CU may not be the same as CU.
16113 Ensure TYPE is recorded with CU in die_type_hash. */
16114 return set_die_type (die, type, cu);
16115 }
16116
16117 type = alloc_type (objfile);
16118
16119 TYPE_CODE (type) = TYPE_CODE_ENUM;
16120 name = dwarf2_full_name (NULL, die, cu);
16121 if (name != NULL)
16122 TYPE_NAME (type) = name;
16123
16124 attr = dwarf2_attr (die, DW_AT_type, cu);
16125 if (attr != NULL)
16126 {
16127 struct type *underlying_type = die_type (die, cu);
16128
16129 TYPE_TARGET_TYPE (type) = underlying_type;
16130 }
16131
16132 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16133 if (attr)
16134 {
16135 TYPE_LENGTH (type) = DW_UNSND (attr);
16136 }
16137 else
16138 {
16139 TYPE_LENGTH (type) = 0;
16140 }
16141
16142 maybe_set_alignment (cu, die, type);
16143
16144 /* The enumeration DIE can be incomplete. In Ada, any type can be
16145 declared as private in the package spec, and then defined only
16146 inside the package body. Such types are known as Taft Amendment
16147 Types. When another package uses such a type, an incomplete DIE
16148 may be generated by the compiler. */
16149 if (die_is_declaration (die, cu))
16150 TYPE_STUB (type) = 1;
16151
16152 /* Finish the creation of this type by using the enum's children.
16153 We must call this even when the underlying type has been provided
16154 so that we can determine if we're looking at a "flag" enum. */
16155 update_enumeration_type_from_children (die, type, cu);
16156
16157 /* If this type has an underlying type that is not a stub, then we
16158 may use its attributes. We always use the "unsigned" attribute
16159 in this situation, because ordinarily we guess whether the type
16160 is unsigned -- but the guess can be wrong and the underlying type
16161 can tell us the reality. However, we defer to a local size
16162 attribute if one exists, because this lets the compiler override
16163 the underlying type if needed. */
16164 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16165 {
16166 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16167 if (TYPE_LENGTH (type) == 0)
16168 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16169 if (TYPE_RAW_ALIGN (type) == 0
16170 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16171 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16172 }
16173
16174 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16175
16176 return set_die_type (die, type, cu);
16177 }
16178
16179 /* Given a pointer to a die which begins an enumeration, process all
16180 the dies that define the members of the enumeration, and create the
16181 symbol for the enumeration type.
16182
16183 NOTE: We reverse the order of the element list. */
16184
16185 static void
16186 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16187 {
16188 struct type *this_type;
16189
16190 this_type = get_die_type (die, cu);
16191 if (this_type == NULL)
16192 this_type = read_enumeration_type (die, cu);
16193
16194 if (die->child != NULL)
16195 {
16196 struct die_info *child_die;
16197 struct symbol *sym;
16198 struct field *fields = NULL;
16199 int num_fields = 0;
16200 const char *name;
16201
16202 child_die = die->child;
16203 while (child_die && child_die->tag)
16204 {
16205 if (child_die->tag != DW_TAG_enumerator)
16206 {
16207 process_die (child_die, cu);
16208 }
16209 else
16210 {
16211 name = dwarf2_name (child_die, cu);
16212 if (name)
16213 {
16214 sym = new_symbol (child_die, this_type, cu);
16215
16216 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16217 {
16218 fields = (struct field *)
16219 xrealloc (fields,
16220 (num_fields + DW_FIELD_ALLOC_CHUNK)
16221 * sizeof (struct field));
16222 }
16223
16224 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16225 FIELD_TYPE (fields[num_fields]) = NULL;
16226 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16227 FIELD_BITSIZE (fields[num_fields]) = 0;
16228
16229 num_fields++;
16230 }
16231 }
16232
16233 child_die = sibling_die (child_die);
16234 }
16235
16236 if (num_fields)
16237 {
16238 TYPE_NFIELDS (this_type) = num_fields;
16239 TYPE_FIELDS (this_type) = (struct field *)
16240 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16241 memcpy (TYPE_FIELDS (this_type), fields,
16242 sizeof (struct field) * num_fields);
16243 xfree (fields);
16244 }
16245 }
16246
16247 /* If we are reading an enum from a .debug_types unit, and the enum
16248 is a declaration, and the enum is not the signatured type in the
16249 unit, then we do not want to add a symbol for it. Adding a
16250 symbol would in some cases obscure the true definition of the
16251 enum, giving users an incomplete type when the definition is
16252 actually available. Note that we do not want to do this for all
16253 enums which are just declarations, because C++0x allows forward
16254 enum declarations. */
16255 if (cu->per_cu->is_debug_types
16256 && die_is_declaration (die, cu))
16257 {
16258 struct signatured_type *sig_type;
16259
16260 sig_type = (struct signatured_type *) cu->per_cu;
16261 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16262 if (sig_type->type_offset_in_section != die->sect_off)
16263 return;
16264 }
16265
16266 new_symbol (die, this_type, cu);
16267 }
16268
16269 /* Extract all information from a DW_TAG_array_type DIE and put it in
16270 the DIE's type field. For now, this only handles one dimensional
16271 arrays. */
16272
16273 static struct type *
16274 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16275 {
16276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16277 struct die_info *child_die;
16278 struct type *type;
16279 struct type *element_type, *range_type, *index_type;
16280 struct attribute *attr;
16281 const char *name;
16282 struct dynamic_prop *byte_stride_prop = NULL;
16283 unsigned int bit_stride = 0;
16284
16285 element_type = die_type (die, cu);
16286
16287 /* The die_type call above may have already set the type for this DIE. */
16288 type = get_die_type (die, cu);
16289 if (type)
16290 return type;
16291
16292 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16293 if (attr != NULL)
16294 {
16295 int stride_ok;
16296
16297 byte_stride_prop
16298 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16299 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16300 if (!stride_ok)
16301 {
16302 complaint (_("unable to read array DW_AT_byte_stride "
16303 " - DIE at %s [in module %s]"),
16304 sect_offset_str (die->sect_off),
16305 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16306 /* Ignore this attribute. We will likely not be able to print
16307 arrays of this type correctly, but there is little we can do
16308 to help if we cannot read the attribute's value. */
16309 byte_stride_prop = NULL;
16310 }
16311 }
16312
16313 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16314 if (attr != NULL)
16315 bit_stride = DW_UNSND (attr);
16316
16317 /* Irix 6.2 native cc creates array types without children for
16318 arrays with unspecified length. */
16319 if (die->child == NULL)
16320 {
16321 index_type = objfile_type (objfile)->builtin_int;
16322 range_type = create_static_range_type (NULL, index_type, 0, -1);
16323 type = create_array_type_with_stride (NULL, element_type, range_type,
16324 byte_stride_prop, bit_stride);
16325 return set_die_type (die, type, cu);
16326 }
16327
16328 std::vector<struct type *> range_types;
16329 child_die = die->child;
16330 while (child_die && child_die->tag)
16331 {
16332 if (child_die->tag == DW_TAG_subrange_type)
16333 {
16334 struct type *child_type = read_type_die (child_die, cu);
16335
16336 if (child_type != NULL)
16337 {
16338 /* The range type was succesfully read. Save it for the
16339 array type creation. */
16340 range_types.push_back (child_type);
16341 }
16342 }
16343 child_die = sibling_die (child_die);
16344 }
16345
16346 /* Dwarf2 dimensions are output from left to right, create the
16347 necessary array types in backwards order. */
16348
16349 type = element_type;
16350
16351 if (read_array_order (die, cu) == DW_ORD_col_major)
16352 {
16353 int i = 0;
16354
16355 while (i < range_types.size ())
16356 type = create_array_type_with_stride (NULL, type, range_types[i++],
16357 byte_stride_prop, bit_stride);
16358 }
16359 else
16360 {
16361 size_t ndim = range_types.size ();
16362 while (ndim-- > 0)
16363 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16364 byte_stride_prop, bit_stride);
16365 }
16366
16367 /* Understand Dwarf2 support for vector types (like they occur on
16368 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16369 array type. This is not part of the Dwarf2/3 standard yet, but a
16370 custom vendor extension. The main difference between a regular
16371 array and the vector variant is that vectors are passed by value
16372 to functions. */
16373 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16374 if (attr)
16375 make_vector_type (type);
16376
16377 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16378 implementation may choose to implement triple vectors using this
16379 attribute. */
16380 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16381 if (attr)
16382 {
16383 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16384 TYPE_LENGTH (type) = DW_UNSND (attr);
16385 else
16386 complaint (_("DW_AT_byte_size for array type smaller "
16387 "than the total size of elements"));
16388 }
16389
16390 name = dwarf2_name (die, cu);
16391 if (name)
16392 TYPE_NAME (type) = name;
16393
16394 maybe_set_alignment (cu, die, type);
16395
16396 /* Install the type in the die. */
16397 set_die_type (die, type, cu);
16398
16399 /* set_die_type should be already done. */
16400 set_descriptive_type (type, die, cu);
16401
16402 return type;
16403 }
16404
16405 static enum dwarf_array_dim_ordering
16406 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16407 {
16408 struct attribute *attr;
16409
16410 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16411
16412 if (attr)
16413 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16414
16415 /* GNU F77 is a special case, as at 08/2004 array type info is the
16416 opposite order to the dwarf2 specification, but data is still
16417 laid out as per normal fortran.
16418
16419 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16420 version checking. */
16421
16422 if (cu->language == language_fortran
16423 && cu->producer && strstr (cu->producer, "GNU F77"))
16424 {
16425 return DW_ORD_row_major;
16426 }
16427
16428 switch (cu->language_defn->la_array_ordering)
16429 {
16430 case array_column_major:
16431 return DW_ORD_col_major;
16432 case array_row_major:
16433 default:
16434 return DW_ORD_row_major;
16435 };
16436 }
16437
16438 /* Extract all information from a DW_TAG_set_type DIE and put it in
16439 the DIE's type field. */
16440
16441 static struct type *
16442 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16443 {
16444 struct type *domain_type, *set_type;
16445 struct attribute *attr;
16446
16447 domain_type = die_type (die, cu);
16448
16449 /* The die_type call above may have already set the type for this DIE. */
16450 set_type = get_die_type (die, cu);
16451 if (set_type)
16452 return set_type;
16453
16454 set_type = create_set_type (NULL, domain_type);
16455
16456 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16457 if (attr)
16458 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16459
16460 maybe_set_alignment (cu, die, set_type);
16461
16462 return set_die_type (die, set_type, cu);
16463 }
16464
16465 /* A helper for read_common_block that creates a locexpr baton.
16466 SYM is the symbol which we are marking as computed.
16467 COMMON_DIE is the DIE for the common block.
16468 COMMON_LOC is the location expression attribute for the common
16469 block itself.
16470 MEMBER_LOC is the location expression attribute for the particular
16471 member of the common block that we are processing.
16472 CU is the CU from which the above come. */
16473
16474 static void
16475 mark_common_block_symbol_computed (struct symbol *sym,
16476 struct die_info *common_die,
16477 struct attribute *common_loc,
16478 struct attribute *member_loc,
16479 struct dwarf2_cu *cu)
16480 {
16481 struct dwarf2_per_objfile *dwarf2_per_objfile
16482 = cu->per_cu->dwarf2_per_objfile;
16483 struct objfile *objfile = dwarf2_per_objfile->objfile;
16484 struct dwarf2_locexpr_baton *baton;
16485 gdb_byte *ptr;
16486 unsigned int cu_off;
16487 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16488 LONGEST offset = 0;
16489
16490 gdb_assert (common_loc && member_loc);
16491 gdb_assert (attr_form_is_block (common_loc));
16492 gdb_assert (attr_form_is_block (member_loc)
16493 || attr_form_is_constant (member_loc));
16494
16495 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16496 baton->per_cu = cu->per_cu;
16497 gdb_assert (baton->per_cu);
16498
16499 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16500
16501 if (attr_form_is_constant (member_loc))
16502 {
16503 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16504 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16505 }
16506 else
16507 baton->size += DW_BLOCK (member_loc)->size;
16508
16509 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16510 baton->data = ptr;
16511
16512 *ptr++ = DW_OP_call4;
16513 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16514 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16515 ptr += 4;
16516
16517 if (attr_form_is_constant (member_loc))
16518 {
16519 *ptr++ = DW_OP_addr;
16520 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16521 ptr += cu->header.addr_size;
16522 }
16523 else
16524 {
16525 /* We have to copy the data here, because DW_OP_call4 will only
16526 use a DW_AT_location attribute. */
16527 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16528 ptr += DW_BLOCK (member_loc)->size;
16529 }
16530
16531 *ptr++ = DW_OP_plus;
16532 gdb_assert (ptr - baton->data == baton->size);
16533
16534 SYMBOL_LOCATION_BATON (sym) = baton;
16535 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16536 }
16537
16538 /* Create appropriate locally-scoped variables for all the
16539 DW_TAG_common_block entries. Also create a struct common_block
16540 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16541 is used to sepate the common blocks name namespace from regular
16542 variable names. */
16543
16544 static void
16545 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16546 {
16547 struct attribute *attr;
16548
16549 attr = dwarf2_attr (die, DW_AT_location, cu);
16550 if (attr)
16551 {
16552 /* Support the .debug_loc offsets. */
16553 if (attr_form_is_block (attr))
16554 {
16555 /* Ok. */
16556 }
16557 else if (attr_form_is_section_offset (attr))
16558 {
16559 dwarf2_complex_location_expr_complaint ();
16560 attr = NULL;
16561 }
16562 else
16563 {
16564 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16565 "common block member");
16566 attr = NULL;
16567 }
16568 }
16569
16570 if (die->child != NULL)
16571 {
16572 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16573 struct die_info *child_die;
16574 size_t n_entries = 0, size;
16575 struct common_block *common_block;
16576 struct symbol *sym;
16577
16578 for (child_die = die->child;
16579 child_die && child_die->tag;
16580 child_die = sibling_die (child_die))
16581 ++n_entries;
16582
16583 size = (sizeof (struct common_block)
16584 + (n_entries - 1) * sizeof (struct symbol *));
16585 common_block
16586 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16587 size);
16588 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16589 common_block->n_entries = 0;
16590
16591 for (child_die = die->child;
16592 child_die && child_die->tag;
16593 child_die = sibling_die (child_die))
16594 {
16595 /* Create the symbol in the DW_TAG_common_block block in the current
16596 symbol scope. */
16597 sym = new_symbol (child_die, NULL, cu);
16598 if (sym != NULL)
16599 {
16600 struct attribute *member_loc;
16601
16602 common_block->contents[common_block->n_entries++] = sym;
16603
16604 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16605 cu);
16606 if (member_loc)
16607 {
16608 /* GDB has handled this for a long time, but it is
16609 not specified by DWARF. It seems to have been
16610 emitted by gfortran at least as recently as:
16611 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16612 complaint (_("Variable in common block has "
16613 "DW_AT_data_member_location "
16614 "- DIE at %s [in module %s]"),
16615 sect_offset_str (child_die->sect_off),
16616 objfile_name (objfile));
16617
16618 if (attr_form_is_section_offset (member_loc))
16619 dwarf2_complex_location_expr_complaint ();
16620 else if (attr_form_is_constant (member_loc)
16621 || attr_form_is_block (member_loc))
16622 {
16623 if (attr)
16624 mark_common_block_symbol_computed (sym, die, attr,
16625 member_loc, cu);
16626 }
16627 else
16628 dwarf2_complex_location_expr_complaint ();
16629 }
16630 }
16631 }
16632
16633 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16634 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16635 }
16636 }
16637
16638 /* Create a type for a C++ namespace. */
16639
16640 static struct type *
16641 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16642 {
16643 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16644 const char *previous_prefix, *name;
16645 int is_anonymous;
16646 struct type *type;
16647
16648 /* For extensions, reuse the type of the original namespace. */
16649 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16650 {
16651 struct die_info *ext_die;
16652 struct dwarf2_cu *ext_cu = cu;
16653
16654 ext_die = dwarf2_extension (die, &ext_cu);
16655 type = read_type_die (ext_die, ext_cu);
16656
16657 /* EXT_CU may not be the same as CU.
16658 Ensure TYPE is recorded with CU in die_type_hash. */
16659 return set_die_type (die, type, cu);
16660 }
16661
16662 name = namespace_name (die, &is_anonymous, cu);
16663
16664 /* Now build the name of the current namespace. */
16665
16666 previous_prefix = determine_prefix (die, cu);
16667 if (previous_prefix[0] != '\0')
16668 name = typename_concat (&objfile->objfile_obstack,
16669 previous_prefix, name, 0, cu);
16670
16671 /* Create the type. */
16672 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16673
16674 return set_die_type (die, type, cu);
16675 }
16676
16677 /* Read a namespace scope. */
16678
16679 static void
16680 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16681 {
16682 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16683 int is_anonymous;
16684
16685 /* Add a symbol associated to this if we haven't seen the namespace
16686 before. Also, add a using directive if it's an anonymous
16687 namespace. */
16688
16689 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16690 {
16691 struct type *type;
16692
16693 type = read_type_die (die, cu);
16694 new_symbol (die, type, cu);
16695
16696 namespace_name (die, &is_anonymous, cu);
16697 if (is_anonymous)
16698 {
16699 const char *previous_prefix = determine_prefix (die, cu);
16700
16701 std::vector<const char *> excludes;
16702 add_using_directive (using_directives (cu->language),
16703 previous_prefix, TYPE_NAME (type), NULL,
16704 NULL, excludes, 0, &objfile->objfile_obstack);
16705 }
16706 }
16707
16708 if (die->child != NULL)
16709 {
16710 struct die_info *child_die = die->child;
16711
16712 while (child_die && child_die->tag)
16713 {
16714 process_die (child_die, cu);
16715 child_die = sibling_die (child_die);
16716 }
16717 }
16718 }
16719
16720 /* Read a Fortran module as type. This DIE can be only a declaration used for
16721 imported module. Still we need that type as local Fortran "use ... only"
16722 declaration imports depend on the created type in determine_prefix. */
16723
16724 static struct type *
16725 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16726 {
16727 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16728 const char *module_name;
16729 struct type *type;
16730
16731 module_name = dwarf2_name (die, cu);
16732 if (!module_name)
16733 complaint (_("DW_TAG_module has no name, offset %s"),
16734 sect_offset_str (die->sect_off));
16735 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16736
16737 return set_die_type (die, type, cu);
16738 }
16739
16740 /* Read a Fortran module. */
16741
16742 static void
16743 read_module (struct die_info *die, struct dwarf2_cu *cu)
16744 {
16745 struct die_info *child_die = die->child;
16746 struct type *type;
16747
16748 type = read_type_die (die, cu);
16749 new_symbol (die, type, cu);
16750
16751 while (child_die && child_die->tag)
16752 {
16753 process_die (child_die, cu);
16754 child_die = sibling_die (child_die);
16755 }
16756 }
16757
16758 /* Return the name of the namespace represented by DIE. Set
16759 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16760 namespace. */
16761
16762 static const char *
16763 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16764 {
16765 struct die_info *current_die;
16766 const char *name = NULL;
16767
16768 /* Loop through the extensions until we find a name. */
16769
16770 for (current_die = die;
16771 current_die != NULL;
16772 current_die = dwarf2_extension (die, &cu))
16773 {
16774 /* We don't use dwarf2_name here so that we can detect the absence
16775 of a name -> anonymous namespace. */
16776 name = dwarf2_string_attr (die, DW_AT_name, cu);
16777
16778 if (name != NULL)
16779 break;
16780 }
16781
16782 /* Is it an anonymous namespace? */
16783
16784 *is_anonymous = (name == NULL);
16785 if (*is_anonymous)
16786 name = CP_ANONYMOUS_NAMESPACE_STR;
16787
16788 return name;
16789 }
16790
16791 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16792 the user defined type vector. */
16793
16794 static struct type *
16795 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16796 {
16797 struct gdbarch *gdbarch
16798 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16799 struct comp_unit_head *cu_header = &cu->header;
16800 struct type *type;
16801 struct attribute *attr_byte_size;
16802 struct attribute *attr_address_class;
16803 int byte_size, addr_class;
16804 struct type *target_type;
16805
16806 target_type = die_type (die, cu);
16807
16808 /* The die_type call above may have already set the type for this DIE. */
16809 type = get_die_type (die, cu);
16810 if (type)
16811 return type;
16812
16813 type = lookup_pointer_type (target_type);
16814
16815 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16816 if (attr_byte_size)
16817 byte_size = DW_UNSND (attr_byte_size);
16818 else
16819 byte_size = cu_header->addr_size;
16820
16821 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16822 if (attr_address_class)
16823 addr_class = DW_UNSND (attr_address_class);
16824 else
16825 addr_class = DW_ADDR_none;
16826
16827 ULONGEST alignment = get_alignment (cu, die);
16828
16829 /* If the pointer size, alignment, or address class is different
16830 than the default, create a type variant marked as such and set
16831 the length accordingly. */
16832 if (TYPE_LENGTH (type) != byte_size
16833 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16834 && alignment != TYPE_RAW_ALIGN (type))
16835 || addr_class != DW_ADDR_none)
16836 {
16837 if (gdbarch_address_class_type_flags_p (gdbarch))
16838 {
16839 int type_flags;
16840
16841 type_flags = gdbarch_address_class_type_flags
16842 (gdbarch, byte_size, addr_class);
16843 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16844 == 0);
16845 type = make_type_with_address_space (type, type_flags);
16846 }
16847 else if (TYPE_LENGTH (type) != byte_size)
16848 {
16849 complaint (_("invalid pointer size %d"), byte_size);
16850 }
16851 else if (TYPE_RAW_ALIGN (type) != alignment)
16852 {
16853 complaint (_("Invalid DW_AT_alignment"
16854 " - DIE at %s [in module %s]"),
16855 sect_offset_str (die->sect_off),
16856 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16857 }
16858 else
16859 {
16860 /* Should we also complain about unhandled address classes? */
16861 }
16862 }
16863
16864 TYPE_LENGTH (type) = byte_size;
16865 set_type_align (type, alignment);
16866 return set_die_type (die, type, cu);
16867 }
16868
16869 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16870 the user defined type vector. */
16871
16872 static struct type *
16873 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16874 {
16875 struct type *type;
16876 struct type *to_type;
16877 struct type *domain;
16878
16879 to_type = die_type (die, cu);
16880 domain = die_containing_type (die, cu);
16881
16882 /* The calls above may have already set the type for this DIE. */
16883 type = get_die_type (die, cu);
16884 if (type)
16885 return type;
16886
16887 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16888 type = lookup_methodptr_type (to_type);
16889 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16890 {
16891 struct type *new_type
16892 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16893
16894 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16895 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16896 TYPE_VARARGS (to_type));
16897 type = lookup_methodptr_type (new_type);
16898 }
16899 else
16900 type = lookup_memberptr_type (to_type, domain);
16901
16902 return set_die_type (die, type, cu);
16903 }
16904
16905 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16906 the user defined type vector. */
16907
16908 static struct type *
16909 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16910 enum type_code refcode)
16911 {
16912 struct comp_unit_head *cu_header = &cu->header;
16913 struct type *type, *target_type;
16914 struct attribute *attr;
16915
16916 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16917
16918 target_type = die_type (die, cu);
16919
16920 /* The die_type call above may have already set the type for this DIE. */
16921 type = get_die_type (die, cu);
16922 if (type)
16923 return type;
16924
16925 type = lookup_reference_type (target_type, refcode);
16926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16927 if (attr)
16928 {
16929 TYPE_LENGTH (type) = DW_UNSND (attr);
16930 }
16931 else
16932 {
16933 TYPE_LENGTH (type) = cu_header->addr_size;
16934 }
16935 maybe_set_alignment (cu, die, type);
16936 return set_die_type (die, type, cu);
16937 }
16938
16939 /* Add the given cv-qualifiers to the element type of the array. GCC
16940 outputs DWARF type qualifiers that apply to an array, not the
16941 element type. But GDB relies on the array element type to carry
16942 the cv-qualifiers. This mimics section 6.7.3 of the C99
16943 specification. */
16944
16945 static struct type *
16946 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16947 struct type *base_type, int cnst, int voltl)
16948 {
16949 struct type *el_type, *inner_array;
16950
16951 base_type = copy_type (base_type);
16952 inner_array = base_type;
16953
16954 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16955 {
16956 TYPE_TARGET_TYPE (inner_array) =
16957 copy_type (TYPE_TARGET_TYPE (inner_array));
16958 inner_array = TYPE_TARGET_TYPE (inner_array);
16959 }
16960
16961 el_type = TYPE_TARGET_TYPE (inner_array);
16962 cnst |= TYPE_CONST (el_type);
16963 voltl |= TYPE_VOLATILE (el_type);
16964 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16965
16966 return set_die_type (die, base_type, cu);
16967 }
16968
16969 static struct type *
16970 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16971 {
16972 struct type *base_type, *cv_type;
16973
16974 base_type = die_type (die, cu);
16975
16976 /* The die_type call above may have already set the type for this DIE. */
16977 cv_type = get_die_type (die, cu);
16978 if (cv_type)
16979 return cv_type;
16980
16981 /* In case the const qualifier is applied to an array type, the element type
16982 is so qualified, not the array type (section 6.7.3 of C99). */
16983 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16984 return add_array_cv_type (die, cu, base_type, 1, 0);
16985
16986 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16987 return set_die_type (die, cv_type, cu);
16988 }
16989
16990 static struct type *
16991 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16992 {
16993 struct type *base_type, *cv_type;
16994
16995 base_type = die_type (die, cu);
16996
16997 /* The die_type call above may have already set the type for this DIE. */
16998 cv_type = get_die_type (die, cu);
16999 if (cv_type)
17000 return cv_type;
17001
17002 /* In case the volatile qualifier is applied to an array type, the
17003 element type is so qualified, not the array type (section 6.7.3
17004 of C99). */
17005 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17006 return add_array_cv_type (die, cu, base_type, 0, 1);
17007
17008 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17009 return set_die_type (die, cv_type, cu);
17010 }
17011
17012 /* Handle DW_TAG_restrict_type. */
17013
17014 static struct type *
17015 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17016 {
17017 struct type *base_type, *cv_type;
17018
17019 base_type = die_type (die, cu);
17020
17021 /* The die_type call above may have already set the type for this DIE. */
17022 cv_type = get_die_type (die, cu);
17023 if (cv_type)
17024 return cv_type;
17025
17026 cv_type = make_restrict_type (base_type);
17027 return set_die_type (die, cv_type, cu);
17028 }
17029
17030 /* Handle DW_TAG_atomic_type. */
17031
17032 static struct type *
17033 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17034 {
17035 struct type *base_type, *cv_type;
17036
17037 base_type = die_type (die, cu);
17038
17039 /* The die_type call above may have already set the type for this DIE. */
17040 cv_type = get_die_type (die, cu);
17041 if (cv_type)
17042 return cv_type;
17043
17044 cv_type = make_atomic_type (base_type);
17045 return set_die_type (die, cv_type, cu);
17046 }
17047
17048 /* Extract all information from a DW_TAG_string_type DIE and add to
17049 the user defined type vector. It isn't really a user defined type,
17050 but it behaves like one, with other DIE's using an AT_user_def_type
17051 attribute to reference it. */
17052
17053 static struct type *
17054 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17055 {
17056 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17057 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17058 struct type *type, *range_type, *index_type, *char_type;
17059 struct attribute *attr;
17060 unsigned int length;
17061
17062 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17063 if (attr)
17064 {
17065 length = DW_UNSND (attr);
17066 }
17067 else
17068 {
17069 /* Check for the DW_AT_byte_size attribute. */
17070 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17071 if (attr)
17072 {
17073 length = DW_UNSND (attr);
17074 }
17075 else
17076 {
17077 length = 1;
17078 }
17079 }
17080
17081 index_type = objfile_type (objfile)->builtin_int;
17082 range_type = create_static_range_type (NULL, index_type, 1, length);
17083 char_type = language_string_char_type (cu->language_defn, gdbarch);
17084 type = create_string_type (NULL, char_type, range_type);
17085
17086 return set_die_type (die, type, cu);
17087 }
17088
17089 /* Assuming that DIE corresponds to a function, returns nonzero
17090 if the function is prototyped. */
17091
17092 static int
17093 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17094 {
17095 struct attribute *attr;
17096
17097 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17098 if (attr && (DW_UNSND (attr) != 0))
17099 return 1;
17100
17101 /* The DWARF standard implies that the DW_AT_prototyped attribute
17102 is only meaninful for C, but the concept also extends to other
17103 languages that allow unprototyped functions (Eg: Objective C).
17104 For all other languages, assume that functions are always
17105 prototyped. */
17106 if (cu->language != language_c
17107 && cu->language != language_objc
17108 && cu->language != language_opencl)
17109 return 1;
17110
17111 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17112 prototyped and unprototyped functions; default to prototyped,
17113 since that is more common in modern code (and RealView warns
17114 about unprototyped functions). */
17115 if (producer_is_realview (cu->producer))
17116 return 1;
17117
17118 return 0;
17119 }
17120
17121 /* Handle DIES due to C code like:
17122
17123 struct foo
17124 {
17125 int (*funcp)(int a, long l);
17126 int b;
17127 };
17128
17129 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17130
17131 static struct type *
17132 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17133 {
17134 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17135 struct type *type; /* Type that this function returns. */
17136 struct type *ftype; /* Function that returns above type. */
17137 struct attribute *attr;
17138
17139 type = die_type (die, cu);
17140
17141 /* The die_type call above may have already set the type for this DIE. */
17142 ftype = get_die_type (die, cu);
17143 if (ftype)
17144 return ftype;
17145
17146 ftype = lookup_function_type (type);
17147
17148 if (prototyped_function_p (die, cu))
17149 TYPE_PROTOTYPED (ftype) = 1;
17150
17151 /* Store the calling convention in the type if it's available in
17152 the subroutine die. Otherwise set the calling convention to
17153 the default value DW_CC_normal. */
17154 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17155 if (attr)
17156 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17157 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17158 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17159 else
17160 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17161
17162 /* Record whether the function returns normally to its caller or not
17163 if the DWARF producer set that information. */
17164 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17165 if (attr && (DW_UNSND (attr) != 0))
17166 TYPE_NO_RETURN (ftype) = 1;
17167
17168 /* We need to add the subroutine type to the die immediately so
17169 we don't infinitely recurse when dealing with parameters
17170 declared as the same subroutine type. */
17171 set_die_type (die, ftype, cu);
17172
17173 if (die->child != NULL)
17174 {
17175 struct type *void_type = objfile_type (objfile)->builtin_void;
17176 struct die_info *child_die;
17177 int nparams, iparams;
17178
17179 /* Count the number of parameters.
17180 FIXME: GDB currently ignores vararg functions, but knows about
17181 vararg member functions. */
17182 nparams = 0;
17183 child_die = die->child;
17184 while (child_die && child_die->tag)
17185 {
17186 if (child_die->tag == DW_TAG_formal_parameter)
17187 nparams++;
17188 else if (child_die->tag == DW_TAG_unspecified_parameters)
17189 TYPE_VARARGS (ftype) = 1;
17190 child_die = sibling_die (child_die);
17191 }
17192
17193 /* Allocate storage for parameters and fill them in. */
17194 TYPE_NFIELDS (ftype) = nparams;
17195 TYPE_FIELDS (ftype) = (struct field *)
17196 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17197
17198 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17199 even if we error out during the parameters reading below. */
17200 for (iparams = 0; iparams < nparams; iparams++)
17201 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17202
17203 iparams = 0;
17204 child_die = die->child;
17205 while (child_die && child_die->tag)
17206 {
17207 if (child_die->tag == DW_TAG_formal_parameter)
17208 {
17209 struct type *arg_type;
17210
17211 /* DWARF version 2 has no clean way to discern C++
17212 static and non-static member functions. G++ helps
17213 GDB by marking the first parameter for non-static
17214 member functions (which is the this pointer) as
17215 artificial. We pass this information to
17216 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17217
17218 DWARF version 3 added DW_AT_object_pointer, which GCC
17219 4.5 does not yet generate. */
17220 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17221 if (attr)
17222 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17223 else
17224 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17225 arg_type = die_type (child_die, cu);
17226
17227 /* RealView does not mark THIS as const, which the testsuite
17228 expects. GCC marks THIS as const in method definitions,
17229 but not in the class specifications (GCC PR 43053). */
17230 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17231 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17232 {
17233 int is_this = 0;
17234 struct dwarf2_cu *arg_cu = cu;
17235 const char *name = dwarf2_name (child_die, cu);
17236
17237 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17238 if (attr)
17239 {
17240 /* If the compiler emits this, use it. */
17241 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17242 is_this = 1;
17243 }
17244 else if (name && strcmp (name, "this") == 0)
17245 /* Function definitions will have the argument names. */
17246 is_this = 1;
17247 else if (name == NULL && iparams == 0)
17248 /* Declarations may not have the names, so like
17249 elsewhere in GDB, assume an artificial first
17250 argument is "this". */
17251 is_this = 1;
17252
17253 if (is_this)
17254 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17255 arg_type, 0);
17256 }
17257
17258 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17259 iparams++;
17260 }
17261 child_die = sibling_die (child_die);
17262 }
17263 }
17264
17265 return ftype;
17266 }
17267
17268 static struct type *
17269 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17270 {
17271 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17272 const char *name = NULL;
17273 struct type *this_type, *target_type;
17274
17275 name = dwarf2_full_name (NULL, die, cu);
17276 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17277 TYPE_TARGET_STUB (this_type) = 1;
17278 set_die_type (die, this_type, cu);
17279 target_type = die_type (die, cu);
17280 if (target_type != this_type)
17281 TYPE_TARGET_TYPE (this_type) = target_type;
17282 else
17283 {
17284 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17285 spec and cause infinite loops in GDB. */
17286 complaint (_("Self-referential DW_TAG_typedef "
17287 "- DIE at %s [in module %s]"),
17288 sect_offset_str (die->sect_off), objfile_name (objfile));
17289 TYPE_TARGET_TYPE (this_type) = NULL;
17290 }
17291 return this_type;
17292 }
17293
17294 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17295 (which may be different from NAME) to the architecture back-end to allow
17296 it to guess the correct format if necessary. */
17297
17298 static struct type *
17299 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17300 const char *name_hint)
17301 {
17302 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17303 const struct floatformat **format;
17304 struct type *type;
17305
17306 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17307 if (format)
17308 type = init_float_type (objfile, bits, name, format);
17309 else
17310 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17311
17312 return type;
17313 }
17314
17315 /* Find a representation of a given base type and install
17316 it in the TYPE field of the die. */
17317
17318 static struct type *
17319 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17320 {
17321 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17322 struct type *type;
17323 struct attribute *attr;
17324 int encoding = 0, bits = 0;
17325 const char *name;
17326
17327 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17328 if (attr)
17329 {
17330 encoding = DW_UNSND (attr);
17331 }
17332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17333 if (attr)
17334 {
17335 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17336 }
17337 name = dwarf2_name (die, cu);
17338 if (!name)
17339 {
17340 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17341 }
17342
17343 switch (encoding)
17344 {
17345 case DW_ATE_address:
17346 /* Turn DW_ATE_address into a void * pointer. */
17347 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17348 type = init_pointer_type (objfile, bits, name, type);
17349 break;
17350 case DW_ATE_boolean:
17351 type = init_boolean_type (objfile, bits, 1, name);
17352 break;
17353 case DW_ATE_complex_float:
17354 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17355 type = init_complex_type (objfile, name, type);
17356 break;
17357 case DW_ATE_decimal_float:
17358 type = init_decfloat_type (objfile, bits, name);
17359 break;
17360 case DW_ATE_float:
17361 type = dwarf2_init_float_type (objfile, bits, name, name);
17362 break;
17363 case DW_ATE_signed:
17364 type = init_integer_type (objfile, bits, 0, name);
17365 break;
17366 case DW_ATE_unsigned:
17367 if (cu->language == language_fortran
17368 && name
17369 && startswith (name, "character("))
17370 type = init_character_type (objfile, bits, 1, name);
17371 else
17372 type = init_integer_type (objfile, bits, 1, name);
17373 break;
17374 case DW_ATE_signed_char:
17375 if (cu->language == language_ada || cu->language == language_m2
17376 || cu->language == language_pascal
17377 || cu->language == language_fortran)
17378 type = init_character_type (objfile, bits, 0, name);
17379 else
17380 type = init_integer_type (objfile, bits, 0, name);
17381 break;
17382 case DW_ATE_unsigned_char:
17383 if (cu->language == language_ada || cu->language == language_m2
17384 || cu->language == language_pascal
17385 || cu->language == language_fortran
17386 || cu->language == language_rust)
17387 type = init_character_type (objfile, bits, 1, name);
17388 else
17389 type = init_integer_type (objfile, bits, 1, name);
17390 break;
17391 case DW_ATE_UTF:
17392 {
17393 gdbarch *arch = get_objfile_arch (objfile);
17394
17395 if (bits == 16)
17396 type = builtin_type (arch)->builtin_char16;
17397 else if (bits == 32)
17398 type = builtin_type (arch)->builtin_char32;
17399 else
17400 {
17401 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17402 bits);
17403 type = init_integer_type (objfile, bits, 1, name);
17404 }
17405 return set_die_type (die, type, cu);
17406 }
17407 break;
17408
17409 default:
17410 complaint (_("unsupported DW_AT_encoding: '%s'"),
17411 dwarf_type_encoding_name (encoding));
17412 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17413 break;
17414 }
17415
17416 if (name && strcmp (name, "char") == 0)
17417 TYPE_NOSIGN (type) = 1;
17418
17419 maybe_set_alignment (cu, die, type);
17420
17421 return set_die_type (die, type, cu);
17422 }
17423
17424 /* Parse dwarf attribute if it's a block, reference or constant and put the
17425 resulting value of the attribute into struct bound_prop.
17426 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17427
17428 static int
17429 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17430 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17431 {
17432 struct dwarf2_property_baton *baton;
17433 struct obstack *obstack
17434 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17435
17436 if (attr == NULL || prop == NULL)
17437 return 0;
17438
17439 if (attr_form_is_block (attr))
17440 {
17441 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17442 baton->referenced_type = NULL;
17443 baton->locexpr.per_cu = cu->per_cu;
17444 baton->locexpr.size = DW_BLOCK (attr)->size;
17445 baton->locexpr.data = DW_BLOCK (attr)->data;
17446 prop->data.baton = baton;
17447 prop->kind = PROP_LOCEXPR;
17448 gdb_assert (prop->data.baton != NULL);
17449 }
17450 else if (attr_form_is_ref (attr))
17451 {
17452 struct dwarf2_cu *target_cu = cu;
17453 struct die_info *target_die;
17454 struct attribute *target_attr;
17455
17456 target_die = follow_die_ref (die, attr, &target_cu);
17457 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17458 if (target_attr == NULL)
17459 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17460 target_cu);
17461 if (target_attr == NULL)
17462 return 0;
17463
17464 switch (target_attr->name)
17465 {
17466 case DW_AT_location:
17467 if (attr_form_is_section_offset (target_attr))
17468 {
17469 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17470 baton->referenced_type = die_type (target_die, target_cu);
17471 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17472 prop->data.baton = baton;
17473 prop->kind = PROP_LOCLIST;
17474 gdb_assert (prop->data.baton != NULL);
17475 }
17476 else if (attr_form_is_block (target_attr))
17477 {
17478 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17479 baton->referenced_type = die_type (target_die, target_cu);
17480 baton->locexpr.per_cu = cu->per_cu;
17481 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17482 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17483 prop->data.baton = baton;
17484 prop->kind = PROP_LOCEXPR;
17485 gdb_assert (prop->data.baton != NULL);
17486 }
17487 else
17488 {
17489 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17490 "dynamic property");
17491 return 0;
17492 }
17493 break;
17494 case DW_AT_data_member_location:
17495 {
17496 LONGEST offset;
17497
17498 if (!handle_data_member_location (target_die, target_cu,
17499 &offset))
17500 return 0;
17501
17502 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17503 baton->referenced_type = read_type_die (target_die->parent,
17504 target_cu);
17505 baton->offset_info.offset = offset;
17506 baton->offset_info.type = die_type (target_die, target_cu);
17507 prop->data.baton = baton;
17508 prop->kind = PROP_ADDR_OFFSET;
17509 break;
17510 }
17511 }
17512 }
17513 else if (attr_form_is_constant (attr))
17514 {
17515 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17516 prop->kind = PROP_CONST;
17517 }
17518 else
17519 {
17520 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17521 dwarf2_name (die, cu));
17522 return 0;
17523 }
17524
17525 return 1;
17526 }
17527
17528 /* Read the given DW_AT_subrange DIE. */
17529
17530 static struct type *
17531 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17532 {
17533 struct type *base_type, *orig_base_type;
17534 struct type *range_type;
17535 struct attribute *attr;
17536 struct dynamic_prop low, high;
17537 int low_default_is_valid;
17538 int high_bound_is_count = 0;
17539 const char *name;
17540 LONGEST negative_mask;
17541
17542 orig_base_type = die_type (die, cu);
17543 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17544 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17545 creating the range type, but we use the result of check_typedef
17546 when examining properties of the type. */
17547 base_type = check_typedef (orig_base_type);
17548
17549 /* The die_type call above may have already set the type for this DIE. */
17550 range_type = get_die_type (die, cu);
17551 if (range_type)
17552 return range_type;
17553
17554 low.kind = PROP_CONST;
17555 high.kind = PROP_CONST;
17556 high.data.const_val = 0;
17557
17558 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17559 omitting DW_AT_lower_bound. */
17560 switch (cu->language)
17561 {
17562 case language_c:
17563 case language_cplus:
17564 low.data.const_val = 0;
17565 low_default_is_valid = 1;
17566 break;
17567 case language_fortran:
17568 low.data.const_val = 1;
17569 low_default_is_valid = 1;
17570 break;
17571 case language_d:
17572 case language_objc:
17573 case language_rust:
17574 low.data.const_val = 0;
17575 low_default_is_valid = (cu->header.version >= 4);
17576 break;
17577 case language_ada:
17578 case language_m2:
17579 case language_pascal:
17580 low.data.const_val = 1;
17581 low_default_is_valid = (cu->header.version >= 4);
17582 break;
17583 default:
17584 low.data.const_val = 0;
17585 low_default_is_valid = 0;
17586 break;
17587 }
17588
17589 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17590 if (attr)
17591 attr_to_dynamic_prop (attr, die, cu, &low);
17592 else if (!low_default_is_valid)
17593 complaint (_("Missing DW_AT_lower_bound "
17594 "- DIE at %s [in module %s]"),
17595 sect_offset_str (die->sect_off),
17596 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17597
17598 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17599 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17600 {
17601 attr = dwarf2_attr (die, DW_AT_count, cu);
17602 if (attr_to_dynamic_prop (attr, die, cu, &high))
17603 {
17604 /* If bounds are constant do the final calculation here. */
17605 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17606 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17607 else
17608 high_bound_is_count = 1;
17609 }
17610 }
17611
17612 /* Dwarf-2 specifications explicitly allows to create subrange types
17613 without specifying a base type.
17614 In that case, the base type must be set to the type of
17615 the lower bound, upper bound or count, in that order, if any of these
17616 three attributes references an object that has a type.
17617 If no base type is found, the Dwarf-2 specifications say that
17618 a signed integer type of size equal to the size of an address should
17619 be used.
17620 For the following C code: `extern char gdb_int [];'
17621 GCC produces an empty range DIE.
17622 FIXME: muller/2010-05-28: Possible references to object for low bound,
17623 high bound or count are not yet handled by this code. */
17624 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17625 {
17626 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17628 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17629 struct type *int_type = objfile_type (objfile)->builtin_int;
17630
17631 /* Test "int", "long int", and "long long int" objfile types,
17632 and select the first one having a size above or equal to the
17633 architecture address size. */
17634 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17635 base_type = int_type;
17636 else
17637 {
17638 int_type = objfile_type (objfile)->builtin_long;
17639 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17640 base_type = int_type;
17641 else
17642 {
17643 int_type = objfile_type (objfile)->builtin_long_long;
17644 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17645 base_type = int_type;
17646 }
17647 }
17648 }
17649
17650 /* Normally, the DWARF producers are expected to use a signed
17651 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17652 But this is unfortunately not always the case, as witnessed
17653 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17654 is used instead. To work around that ambiguity, we treat
17655 the bounds as signed, and thus sign-extend their values, when
17656 the base type is signed. */
17657 negative_mask =
17658 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17659 if (low.kind == PROP_CONST
17660 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17661 low.data.const_val |= negative_mask;
17662 if (high.kind == PROP_CONST
17663 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17664 high.data.const_val |= negative_mask;
17665
17666 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17667
17668 if (high_bound_is_count)
17669 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17670
17671 /* Ada expects an empty array on no boundary attributes. */
17672 if (attr == NULL && cu->language != language_ada)
17673 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17674
17675 name = dwarf2_name (die, cu);
17676 if (name)
17677 TYPE_NAME (range_type) = name;
17678
17679 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17680 if (attr)
17681 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17682
17683 maybe_set_alignment (cu, die, range_type);
17684
17685 set_die_type (die, range_type, cu);
17686
17687 /* set_die_type should be already done. */
17688 set_descriptive_type (range_type, die, cu);
17689
17690 return range_type;
17691 }
17692
17693 static struct type *
17694 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17695 {
17696 struct type *type;
17697
17698 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17699 NULL);
17700 TYPE_NAME (type) = dwarf2_name (die, cu);
17701
17702 /* In Ada, an unspecified type is typically used when the description
17703 of the type is defered to a different unit. When encountering
17704 such a type, we treat it as a stub, and try to resolve it later on,
17705 when needed. */
17706 if (cu->language == language_ada)
17707 TYPE_STUB (type) = 1;
17708
17709 return set_die_type (die, type, cu);
17710 }
17711
17712 /* Read a single die and all its descendents. Set the die's sibling
17713 field to NULL; set other fields in the die correctly, and set all
17714 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17715 location of the info_ptr after reading all of those dies. PARENT
17716 is the parent of the die in question. */
17717
17718 static struct die_info *
17719 read_die_and_children (const struct die_reader_specs *reader,
17720 const gdb_byte *info_ptr,
17721 const gdb_byte **new_info_ptr,
17722 struct die_info *parent)
17723 {
17724 struct die_info *die;
17725 const gdb_byte *cur_ptr;
17726 int has_children;
17727
17728 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17729 if (die == NULL)
17730 {
17731 *new_info_ptr = cur_ptr;
17732 return NULL;
17733 }
17734 store_in_ref_table (die, reader->cu);
17735
17736 if (has_children)
17737 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17738 else
17739 {
17740 die->child = NULL;
17741 *new_info_ptr = cur_ptr;
17742 }
17743
17744 die->sibling = NULL;
17745 die->parent = parent;
17746 return die;
17747 }
17748
17749 /* Read a die, all of its descendents, and all of its siblings; set
17750 all of the fields of all of the dies correctly. Arguments are as
17751 in read_die_and_children. */
17752
17753 static struct die_info *
17754 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17755 const gdb_byte *info_ptr,
17756 const gdb_byte **new_info_ptr,
17757 struct die_info *parent)
17758 {
17759 struct die_info *first_die, *last_sibling;
17760 const gdb_byte *cur_ptr;
17761
17762 cur_ptr = info_ptr;
17763 first_die = last_sibling = NULL;
17764
17765 while (1)
17766 {
17767 struct die_info *die
17768 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17769
17770 if (die == NULL)
17771 {
17772 *new_info_ptr = cur_ptr;
17773 return first_die;
17774 }
17775
17776 if (!first_die)
17777 first_die = die;
17778 else
17779 last_sibling->sibling = die;
17780
17781 last_sibling = die;
17782 }
17783 }
17784
17785 /* Read a die, all of its descendents, and all of its siblings; set
17786 all of the fields of all of the dies correctly. Arguments are as
17787 in read_die_and_children.
17788 This the main entry point for reading a DIE and all its children. */
17789
17790 static struct die_info *
17791 read_die_and_siblings (const struct die_reader_specs *reader,
17792 const gdb_byte *info_ptr,
17793 const gdb_byte **new_info_ptr,
17794 struct die_info *parent)
17795 {
17796 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17797 new_info_ptr, parent);
17798
17799 if (dwarf_die_debug)
17800 {
17801 fprintf_unfiltered (gdb_stdlog,
17802 "Read die from %s@0x%x of %s:\n",
17803 get_section_name (reader->die_section),
17804 (unsigned) (info_ptr - reader->die_section->buffer),
17805 bfd_get_filename (reader->abfd));
17806 dump_die (die, dwarf_die_debug);
17807 }
17808
17809 return die;
17810 }
17811
17812 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17813 attributes.
17814 The caller is responsible for filling in the extra attributes
17815 and updating (*DIEP)->num_attrs.
17816 Set DIEP to point to a newly allocated die with its information,
17817 except for its child, sibling, and parent fields.
17818 Set HAS_CHILDREN to tell whether the die has children or not. */
17819
17820 static const gdb_byte *
17821 read_full_die_1 (const struct die_reader_specs *reader,
17822 struct die_info **diep, const gdb_byte *info_ptr,
17823 int *has_children, int num_extra_attrs)
17824 {
17825 unsigned int abbrev_number, bytes_read, i;
17826 struct abbrev_info *abbrev;
17827 struct die_info *die;
17828 struct dwarf2_cu *cu = reader->cu;
17829 bfd *abfd = reader->abfd;
17830
17831 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17832 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17833 info_ptr += bytes_read;
17834 if (!abbrev_number)
17835 {
17836 *diep = NULL;
17837 *has_children = 0;
17838 return info_ptr;
17839 }
17840
17841 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17842 if (!abbrev)
17843 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17844 abbrev_number,
17845 bfd_get_filename (abfd));
17846
17847 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17848 die->sect_off = sect_off;
17849 die->tag = abbrev->tag;
17850 die->abbrev = abbrev_number;
17851
17852 /* Make the result usable.
17853 The caller needs to update num_attrs after adding the extra
17854 attributes. */
17855 die->num_attrs = abbrev->num_attrs;
17856
17857 for (i = 0; i < abbrev->num_attrs; ++i)
17858 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17859 info_ptr);
17860
17861 *diep = die;
17862 *has_children = abbrev->has_children;
17863 return info_ptr;
17864 }
17865
17866 /* Read a die and all its attributes.
17867 Set DIEP to point to a newly allocated die with its information,
17868 except for its child, sibling, and parent fields.
17869 Set HAS_CHILDREN to tell whether the die has children or not. */
17870
17871 static const gdb_byte *
17872 read_full_die (const struct die_reader_specs *reader,
17873 struct die_info **diep, const gdb_byte *info_ptr,
17874 int *has_children)
17875 {
17876 const gdb_byte *result;
17877
17878 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17879
17880 if (dwarf_die_debug)
17881 {
17882 fprintf_unfiltered (gdb_stdlog,
17883 "Read die from %s@0x%x of %s:\n",
17884 get_section_name (reader->die_section),
17885 (unsigned) (info_ptr - reader->die_section->buffer),
17886 bfd_get_filename (reader->abfd));
17887 dump_die (*diep, dwarf_die_debug);
17888 }
17889
17890 return result;
17891 }
17892 \f
17893 /* Abbreviation tables.
17894
17895 In DWARF version 2, the description of the debugging information is
17896 stored in a separate .debug_abbrev section. Before we read any
17897 dies from a section we read in all abbreviations and install them
17898 in a hash table. */
17899
17900 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17901
17902 struct abbrev_info *
17903 abbrev_table::alloc_abbrev ()
17904 {
17905 struct abbrev_info *abbrev;
17906
17907 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17908 memset (abbrev, 0, sizeof (struct abbrev_info));
17909
17910 return abbrev;
17911 }
17912
17913 /* Add an abbreviation to the table. */
17914
17915 void
17916 abbrev_table::add_abbrev (unsigned int abbrev_number,
17917 struct abbrev_info *abbrev)
17918 {
17919 unsigned int hash_number;
17920
17921 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17922 abbrev->next = m_abbrevs[hash_number];
17923 m_abbrevs[hash_number] = abbrev;
17924 }
17925
17926 /* Look up an abbrev in the table.
17927 Returns NULL if the abbrev is not found. */
17928
17929 struct abbrev_info *
17930 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17931 {
17932 unsigned int hash_number;
17933 struct abbrev_info *abbrev;
17934
17935 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17936 abbrev = m_abbrevs[hash_number];
17937
17938 while (abbrev)
17939 {
17940 if (abbrev->number == abbrev_number)
17941 return abbrev;
17942 abbrev = abbrev->next;
17943 }
17944 return NULL;
17945 }
17946
17947 /* Read in an abbrev table. */
17948
17949 static abbrev_table_up
17950 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17951 struct dwarf2_section_info *section,
17952 sect_offset sect_off)
17953 {
17954 struct objfile *objfile = dwarf2_per_objfile->objfile;
17955 bfd *abfd = get_section_bfd_owner (section);
17956 const gdb_byte *abbrev_ptr;
17957 struct abbrev_info *cur_abbrev;
17958 unsigned int abbrev_number, bytes_read, abbrev_name;
17959 unsigned int abbrev_form;
17960 struct attr_abbrev *cur_attrs;
17961 unsigned int allocated_attrs;
17962
17963 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17964
17965 dwarf2_read_section (objfile, section);
17966 abbrev_ptr = section->buffer + to_underlying (sect_off);
17967 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17968 abbrev_ptr += bytes_read;
17969
17970 allocated_attrs = ATTR_ALLOC_CHUNK;
17971 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17972
17973 /* Loop until we reach an abbrev number of 0. */
17974 while (abbrev_number)
17975 {
17976 cur_abbrev = abbrev_table->alloc_abbrev ();
17977
17978 /* read in abbrev header */
17979 cur_abbrev->number = abbrev_number;
17980 cur_abbrev->tag
17981 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17982 abbrev_ptr += bytes_read;
17983 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17984 abbrev_ptr += 1;
17985
17986 /* now read in declarations */
17987 for (;;)
17988 {
17989 LONGEST implicit_const;
17990
17991 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17992 abbrev_ptr += bytes_read;
17993 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17994 abbrev_ptr += bytes_read;
17995 if (abbrev_form == DW_FORM_implicit_const)
17996 {
17997 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17998 &bytes_read);
17999 abbrev_ptr += bytes_read;
18000 }
18001 else
18002 {
18003 /* Initialize it due to a false compiler warning. */
18004 implicit_const = -1;
18005 }
18006
18007 if (abbrev_name == 0)
18008 break;
18009
18010 if (cur_abbrev->num_attrs == allocated_attrs)
18011 {
18012 allocated_attrs += ATTR_ALLOC_CHUNK;
18013 cur_attrs
18014 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18015 }
18016
18017 cur_attrs[cur_abbrev->num_attrs].name
18018 = (enum dwarf_attribute) abbrev_name;
18019 cur_attrs[cur_abbrev->num_attrs].form
18020 = (enum dwarf_form) abbrev_form;
18021 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18022 ++cur_abbrev->num_attrs;
18023 }
18024
18025 cur_abbrev->attrs =
18026 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18027 cur_abbrev->num_attrs);
18028 memcpy (cur_abbrev->attrs, cur_attrs,
18029 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18030
18031 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18032
18033 /* Get next abbreviation.
18034 Under Irix6 the abbreviations for a compilation unit are not
18035 always properly terminated with an abbrev number of 0.
18036 Exit loop if we encounter an abbreviation which we have
18037 already read (which means we are about to read the abbreviations
18038 for the next compile unit) or if the end of the abbreviation
18039 table is reached. */
18040 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18041 break;
18042 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18043 abbrev_ptr += bytes_read;
18044 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18045 break;
18046 }
18047
18048 xfree (cur_attrs);
18049 return abbrev_table;
18050 }
18051
18052 /* Returns nonzero if TAG represents a type that we might generate a partial
18053 symbol for. */
18054
18055 static int
18056 is_type_tag_for_partial (int tag)
18057 {
18058 switch (tag)
18059 {
18060 #if 0
18061 /* Some types that would be reasonable to generate partial symbols for,
18062 that we don't at present. */
18063 case DW_TAG_array_type:
18064 case DW_TAG_file_type:
18065 case DW_TAG_ptr_to_member_type:
18066 case DW_TAG_set_type:
18067 case DW_TAG_string_type:
18068 case DW_TAG_subroutine_type:
18069 #endif
18070 case DW_TAG_base_type:
18071 case DW_TAG_class_type:
18072 case DW_TAG_interface_type:
18073 case DW_TAG_enumeration_type:
18074 case DW_TAG_structure_type:
18075 case DW_TAG_subrange_type:
18076 case DW_TAG_typedef:
18077 case DW_TAG_union_type:
18078 return 1;
18079 default:
18080 return 0;
18081 }
18082 }
18083
18084 /* Load all DIEs that are interesting for partial symbols into memory. */
18085
18086 static struct partial_die_info *
18087 load_partial_dies (const struct die_reader_specs *reader,
18088 const gdb_byte *info_ptr, int building_psymtab)
18089 {
18090 struct dwarf2_cu *cu = reader->cu;
18091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18092 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18093 unsigned int bytes_read;
18094 unsigned int load_all = 0;
18095 int nesting_level = 1;
18096
18097 parent_die = NULL;
18098 last_die = NULL;
18099
18100 gdb_assert (cu->per_cu != NULL);
18101 if (cu->per_cu->load_all_dies)
18102 load_all = 1;
18103
18104 cu->partial_dies
18105 = htab_create_alloc_ex (cu->header.length / 12,
18106 partial_die_hash,
18107 partial_die_eq,
18108 NULL,
18109 &cu->comp_unit_obstack,
18110 hashtab_obstack_allocate,
18111 dummy_obstack_deallocate);
18112
18113 while (1)
18114 {
18115 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18116
18117 /* A NULL abbrev means the end of a series of children. */
18118 if (abbrev == NULL)
18119 {
18120 if (--nesting_level == 0)
18121 return first_die;
18122
18123 info_ptr += bytes_read;
18124 last_die = parent_die;
18125 parent_die = parent_die->die_parent;
18126 continue;
18127 }
18128
18129 /* Check for template arguments. We never save these; if
18130 they're seen, we just mark the parent, and go on our way. */
18131 if (parent_die != NULL
18132 && cu->language == language_cplus
18133 && (abbrev->tag == DW_TAG_template_type_param
18134 || abbrev->tag == DW_TAG_template_value_param))
18135 {
18136 parent_die->has_template_arguments = 1;
18137
18138 if (!load_all)
18139 {
18140 /* We don't need a partial DIE for the template argument. */
18141 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18142 continue;
18143 }
18144 }
18145
18146 /* We only recurse into c++ subprograms looking for template arguments.
18147 Skip their other children. */
18148 if (!load_all
18149 && cu->language == language_cplus
18150 && parent_die != NULL
18151 && parent_die->tag == DW_TAG_subprogram)
18152 {
18153 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18154 continue;
18155 }
18156
18157 /* Check whether this DIE is interesting enough to save. Normally
18158 we would not be interested in members here, but there may be
18159 later variables referencing them via DW_AT_specification (for
18160 static members). */
18161 if (!load_all
18162 && !is_type_tag_for_partial (abbrev->tag)
18163 && abbrev->tag != DW_TAG_constant
18164 && abbrev->tag != DW_TAG_enumerator
18165 && abbrev->tag != DW_TAG_subprogram
18166 && abbrev->tag != DW_TAG_inlined_subroutine
18167 && abbrev->tag != DW_TAG_lexical_block
18168 && abbrev->tag != DW_TAG_variable
18169 && abbrev->tag != DW_TAG_namespace
18170 && abbrev->tag != DW_TAG_module
18171 && abbrev->tag != DW_TAG_member
18172 && abbrev->tag != DW_TAG_imported_unit
18173 && abbrev->tag != DW_TAG_imported_declaration)
18174 {
18175 /* Otherwise we skip to the next sibling, if any. */
18176 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18177 continue;
18178 }
18179
18180 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18181 abbrev);
18182
18183 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18184
18185 /* This two-pass algorithm for processing partial symbols has a
18186 high cost in cache pressure. Thus, handle some simple cases
18187 here which cover the majority of C partial symbols. DIEs
18188 which neither have specification tags in them, nor could have
18189 specification tags elsewhere pointing at them, can simply be
18190 processed and discarded.
18191
18192 This segment is also optional; scan_partial_symbols and
18193 add_partial_symbol will handle these DIEs if we chain
18194 them in normally. When compilers which do not emit large
18195 quantities of duplicate debug information are more common,
18196 this code can probably be removed. */
18197
18198 /* Any complete simple types at the top level (pretty much all
18199 of them, for a language without namespaces), can be processed
18200 directly. */
18201 if (parent_die == NULL
18202 && pdi.has_specification == 0
18203 && pdi.is_declaration == 0
18204 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18205 || pdi.tag == DW_TAG_base_type
18206 || pdi.tag == DW_TAG_subrange_type))
18207 {
18208 if (building_psymtab && pdi.name != NULL)
18209 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18210 VAR_DOMAIN, LOC_TYPEDEF,
18211 &objfile->static_psymbols,
18212 0, cu->language, objfile);
18213 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18214 continue;
18215 }
18216
18217 /* The exception for DW_TAG_typedef with has_children above is
18218 a workaround of GCC PR debug/47510. In the case of this complaint
18219 type_name_or_error will error on such types later.
18220
18221 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18222 it could not find the child DIEs referenced later, this is checked
18223 above. In correct DWARF DW_TAG_typedef should have no children. */
18224
18225 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18226 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18227 "- DIE at %s [in module %s]"),
18228 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18229
18230 /* If we're at the second level, and we're an enumerator, and
18231 our parent has no specification (meaning possibly lives in a
18232 namespace elsewhere), then we can add the partial symbol now
18233 instead of queueing it. */
18234 if (pdi.tag == DW_TAG_enumerator
18235 && parent_die != NULL
18236 && parent_die->die_parent == NULL
18237 && parent_die->tag == DW_TAG_enumeration_type
18238 && parent_die->has_specification == 0)
18239 {
18240 if (pdi.name == NULL)
18241 complaint (_("malformed enumerator DIE ignored"));
18242 else if (building_psymtab)
18243 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18244 VAR_DOMAIN, LOC_CONST,
18245 cu->language == language_cplus
18246 ? &objfile->global_psymbols
18247 : &objfile->static_psymbols,
18248 0, cu->language, objfile);
18249
18250 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18251 continue;
18252 }
18253
18254 struct partial_die_info *part_die
18255 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18256
18257 /* We'll save this DIE so link it in. */
18258 part_die->die_parent = parent_die;
18259 part_die->die_sibling = NULL;
18260 part_die->die_child = NULL;
18261
18262 if (last_die && last_die == parent_die)
18263 last_die->die_child = part_die;
18264 else if (last_die)
18265 last_die->die_sibling = part_die;
18266
18267 last_die = part_die;
18268
18269 if (first_die == NULL)
18270 first_die = part_die;
18271
18272 /* Maybe add the DIE to the hash table. Not all DIEs that we
18273 find interesting need to be in the hash table, because we
18274 also have the parent/sibling/child chains; only those that we
18275 might refer to by offset later during partial symbol reading.
18276
18277 For now this means things that might have be the target of a
18278 DW_AT_specification, DW_AT_abstract_origin, or
18279 DW_AT_extension. DW_AT_extension will refer only to
18280 namespaces; DW_AT_abstract_origin refers to functions (and
18281 many things under the function DIE, but we do not recurse
18282 into function DIEs during partial symbol reading) and
18283 possibly variables as well; DW_AT_specification refers to
18284 declarations. Declarations ought to have the DW_AT_declaration
18285 flag. It happens that GCC forgets to put it in sometimes, but
18286 only for functions, not for types.
18287
18288 Adding more things than necessary to the hash table is harmless
18289 except for the performance cost. Adding too few will result in
18290 wasted time in find_partial_die, when we reread the compilation
18291 unit with load_all_dies set. */
18292
18293 if (load_all
18294 || abbrev->tag == DW_TAG_constant
18295 || abbrev->tag == DW_TAG_subprogram
18296 || abbrev->tag == DW_TAG_variable
18297 || abbrev->tag == DW_TAG_namespace
18298 || part_die->is_declaration)
18299 {
18300 void **slot;
18301
18302 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18303 to_underlying (part_die->sect_off),
18304 INSERT);
18305 *slot = part_die;
18306 }
18307
18308 /* For some DIEs we want to follow their children (if any). For C
18309 we have no reason to follow the children of structures; for other
18310 languages we have to, so that we can get at method physnames
18311 to infer fully qualified class names, for DW_AT_specification,
18312 and for C++ template arguments. For C++, we also look one level
18313 inside functions to find template arguments (if the name of the
18314 function does not already contain the template arguments).
18315
18316 For Ada, we need to scan the children of subprograms and lexical
18317 blocks as well because Ada allows the definition of nested
18318 entities that could be interesting for the debugger, such as
18319 nested subprograms for instance. */
18320 if (last_die->has_children
18321 && (load_all
18322 || last_die->tag == DW_TAG_namespace
18323 || last_die->tag == DW_TAG_module
18324 || last_die->tag == DW_TAG_enumeration_type
18325 || (cu->language == language_cplus
18326 && last_die->tag == DW_TAG_subprogram
18327 && (last_die->name == NULL
18328 || strchr (last_die->name, '<') == NULL))
18329 || (cu->language != language_c
18330 && (last_die->tag == DW_TAG_class_type
18331 || last_die->tag == DW_TAG_interface_type
18332 || last_die->tag == DW_TAG_structure_type
18333 || last_die->tag == DW_TAG_union_type))
18334 || (cu->language == language_ada
18335 && (last_die->tag == DW_TAG_subprogram
18336 || last_die->tag == DW_TAG_lexical_block))))
18337 {
18338 nesting_level++;
18339 parent_die = last_die;
18340 continue;
18341 }
18342
18343 /* Otherwise we skip to the next sibling, if any. */
18344 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18345
18346 /* Back to the top, do it again. */
18347 }
18348 }
18349
18350 partial_die_info::partial_die_info (sect_offset sect_off_,
18351 struct abbrev_info *abbrev)
18352 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18353 {
18354 }
18355
18356 /* Read a minimal amount of information into the minimal die structure.
18357 INFO_PTR should point just after the initial uleb128 of a DIE. */
18358
18359 const gdb_byte *
18360 partial_die_info::read (const struct die_reader_specs *reader,
18361 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18362 {
18363 struct dwarf2_cu *cu = reader->cu;
18364 struct dwarf2_per_objfile *dwarf2_per_objfile
18365 = cu->per_cu->dwarf2_per_objfile;
18366 unsigned int i;
18367 int has_low_pc_attr = 0;
18368 int has_high_pc_attr = 0;
18369 int high_pc_relative = 0;
18370
18371 for (i = 0; i < abbrev.num_attrs; ++i)
18372 {
18373 struct attribute attr;
18374
18375 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18376
18377 /* Store the data if it is of an attribute we want to keep in a
18378 partial symbol table. */
18379 switch (attr.name)
18380 {
18381 case DW_AT_name:
18382 switch (tag)
18383 {
18384 case DW_TAG_compile_unit:
18385 case DW_TAG_partial_unit:
18386 case DW_TAG_type_unit:
18387 /* Compilation units have a DW_AT_name that is a filename, not
18388 a source language identifier. */
18389 case DW_TAG_enumeration_type:
18390 case DW_TAG_enumerator:
18391 /* These tags always have simple identifiers already; no need
18392 to canonicalize them. */
18393 name = DW_STRING (&attr);
18394 break;
18395 default:
18396 {
18397 struct objfile *objfile = dwarf2_per_objfile->objfile;
18398
18399 name
18400 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18401 &objfile->per_bfd->storage_obstack);
18402 }
18403 break;
18404 }
18405 break;
18406 case DW_AT_linkage_name:
18407 case DW_AT_MIPS_linkage_name:
18408 /* Note that both forms of linkage name might appear. We
18409 assume they will be the same, and we only store the last
18410 one we see. */
18411 if (cu->language == language_ada)
18412 name = DW_STRING (&attr);
18413 linkage_name = DW_STRING (&attr);
18414 break;
18415 case DW_AT_low_pc:
18416 has_low_pc_attr = 1;
18417 lowpc = attr_value_as_address (&attr);
18418 break;
18419 case DW_AT_high_pc:
18420 has_high_pc_attr = 1;
18421 highpc = attr_value_as_address (&attr);
18422 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18423 high_pc_relative = 1;
18424 break;
18425 case DW_AT_location:
18426 /* Support the .debug_loc offsets. */
18427 if (attr_form_is_block (&attr))
18428 {
18429 d.locdesc = DW_BLOCK (&attr);
18430 }
18431 else if (attr_form_is_section_offset (&attr))
18432 {
18433 dwarf2_complex_location_expr_complaint ();
18434 }
18435 else
18436 {
18437 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18438 "partial symbol information");
18439 }
18440 break;
18441 case DW_AT_external:
18442 is_external = DW_UNSND (&attr);
18443 break;
18444 case DW_AT_declaration:
18445 is_declaration = DW_UNSND (&attr);
18446 break;
18447 case DW_AT_type:
18448 has_type = 1;
18449 break;
18450 case DW_AT_abstract_origin:
18451 case DW_AT_specification:
18452 case DW_AT_extension:
18453 has_specification = 1;
18454 spec_offset = dwarf2_get_ref_die_offset (&attr);
18455 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18456 || cu->per_cu->is_dwz);
18457 break;
18458 case DW_AT_sibling:
18459 /* Ignore absolute siblings, they might point outside of
18460 the current compile unit. */
18461 if (attr.form == DW_FORM_ref_addr)
18462 complaint (_("ignoring absolute DW_AT_sibling"));
18463 else
18464 {
18465 const gdb_byte *buffer = reader->buffer;
18466 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18467 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18468
18469 if (sibling_ptr < info_ptr)
18470 complaint (_("DW_AT_sibling points backwards"));
18471 else if (sibling_ptr > reader->buffer_end)
18472 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18473 else
18474 sibling = sibling_ptr;
18475 }
18476 break;
18477 case DW_AT_byte_size:
18478 has_byte_size = 1;
18479 break;
18480 case DW_AT_const_value:
18481 has_const_value = 1;
18482 break;
18483 case DW_AT_calling_convention:
18484 /* DWARF doesn't provide a way to identify a program's source-level
18485 entry point. DW_AT_calling_convention attributes are only meant
18486 to describe functions' calling conventions.
18487
18488 However, because it's a necessary piece of information in
18489 Fortran, and before DWARF 4 DW_CC_program was the only
18490 piece of debugging information whose definition refers to
18491 a 'main program' at all, several compilers marked Fortran
18492 main programs with DW_CC_program --- even when those
18493 functions use the standard calling conventions.
18494
18495 Although DWARF now specifies a way to provide this
18496 information, we support this practice for backward
18497 compatibility. */
18498 if (DW_UNSND (&attr) == DW_CC_program
18499 && cu->language == language_fortran)
18500 main_subprogram = 1;
18501 break;
18502 case DW_AT_inline:
18503 if (DW_UNSND (&attr) == DW_INL_inlined
18504 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18505 may_be_inlined = 1;
18506 break;
18507
18508 case DW_AT_import:
18509 if (tag == DW_TAG_imported_unit)
18510 {
18511 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18512 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18513 || cu->per_cu->is_dwz);
18514 }
18515 break;
18516
18517 case DW_AT_main_subprogram:
18518 main_subprogram = DW_UNSND (&attr);
18519 break;
18520
18521 default:
18522 break;
18523 }
18524 }
18525
18526 if (high_pc_relative)
18527 highpc += lowpc;
18528
18529 if (has_low_pc_attr && has_high_pc_attr)
18530 {
18531 /* When using the GNU linker, .gnu.linkonce. sections are used to
18532 eliminate duplicate copies of functions and vtables and such.
18533 The linker will arbitrarily choose one and discard the others.
18534 The AT_*_pc values for such functions refer to local labels in
18535 these sections. If the section from that file was discarded, the
18536 labels are not in the output, so the relocs get a value of 0.
18537 If this is a discarded function, mark the pc bounds as invalid,
18538 so that GDB will ignore it. */
18539 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18540 {
18541 struct objfile *objfile = dwarf2_per_objfile->objfile;
18542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18543
18544 complaint (_("DW_AT_low_pc %s is zero "
18545 "for DIE at %s [in module %s]"),
18546 paddress (gdbarch, lowpc),
18547 sect_offset_str (sect_off),
18548 objfile_name (objfile));
18549 }
18550 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18551 else if (lowpc >= highpc)
18552 {
18553 struct objfile *objfile = dwarf2_per_objfile->objfile;
18554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18555
18556 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18557 "for DIE at %s [in module %s]"),
18558 paddress (gdbarch, lowpc),
18559 paddress (gdbarch, highpc),
18560 sect_offset_str (sect_off),
18561 objfile_name (objfile));
18562 }
18563 else
18564 has_pc_info = 1;
18565 }
18566
18567 return info_ptr;
18568 }
18569
18570 /* Find a cached partial DIE at OFFSET in CU. */
18571
18572 struct partial_die_info *
18573 dwarf2_cu::find_partial_die (sect_offset sect_off)
18574 {
18575 struct partial_die_info *lookup_die = NULL;
18576 struct partial_die_info part_die (sect_off);
18577
18578 lookup_die = ((struct partial_die_info *)
18579 htab_find_with_hash (partial_dies, &part_die,
18580 to_underlying (sect_off)));
18581
18582 return lookup_die;
18583 }
18584
18585 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18586 except in the case of .debug_types DIEs which do not reference
18587 outside their CU (they do however referencing other types via
18588 DW_FORM_ref_sig8). */
18589
18590 static struct partial_die_info *
18591 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18592 {
18593 struct dwarf2_per_objfile *dwarf2_per_objfile
18594 = cu->per_cu->dwarf2_per_objfile;
18595 struct objfile *objfile = dwarf2_per_objfile->objfile;
18596 struct dwarf2_per_cu_data *per_cu = NULL;
18597 struct partial_die_info *pd = NULL;
18598
18599 if (offset_in_dwz == cu->per_cu->is_dwz
18600 && offset_in_cu_p (&cu->header, sect_off))
18601 {
18602 pd = cu->find_partial_die (sect_off);
18603 if (pd != NULL)
18604 return pd;
18605 /* We missed recording what we needed.
18606 Load all dies and try again. */
18607 per_cu = cu->per_cu;
18608 }
18609 else
18610 {
18611 /* TUs don't reference other CUs/TUs (except via type signatures). */
18612 if (cu->per_cu->is_debug_types)
18613 {
18614 error (_("Dwarf Error: Type Unit at offset %s contains"
18615 " external reference to offset %s [in module %s].\n"),
18616 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18617 bfd_get_filename (objfile->obfd));
18618 }
18619 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18620 dwarf2_per_objfile);
18621
18622 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18623 load_partial_comp_unit (per_cu);
18624
18625 per_cu->cu->last_used = 0;
18626 pd = per_cu->cu->find_partial_die (sect_off);
18627 }
18628
18629 /* If we didn't find it, and not all dies have been loaded,
18630 load them all and try again. */
18631
18632 if (pd == NULL && per_cu->load_all_dies == 0)
18633 {
18634 per_cu->load_all_dies = 1;
18635
18636 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18637 THIS_CU->cu may already be in use. So we can't just free it and
18638 replace its DIEs with the ones we read in. Instead, we leave those
18639 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18640 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18641 set. */
18642 load_partial_comp_unit (per_cu);
18643
18644 pd = per_cu->cu->find_partial_die (sect_off);
18645 }
18646
18647 if (pd == NULL)
18648 internal_error (__FILE__, __LINE__,
18649 _("could not find partial DIE %s "
18650 "in cache [from module %s]\n"),
18651 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18652 return pd;
18653 }
18654
18655 /* See if we can figure out if the class lives in a namespace. We do
18656 this by looking for a member function; its demangled name will
18657 contain namespace info, if there is any. */
18658
18659 static void
18660 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18661 struct dwarf2_cu *cu)
18662 {
18663 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18664 what template types look like, because the demangler
18665 frequently doesn't give the same name as the debug info. We
18666 could fix this by only using the demangled name to get the
18667 prefix (but see comment in read_structure_type). */
18668
18669 struct partial_die_info *real_pdi;
18670 struct partial_die_info *child_pdi;
18671
18672 /* If this DIE (this DIE's specification, if any) has a parent, then
18673 we should not do this. We'll prepend the parent's fully qualified
18674 name when we create the partial symbol. */
18675
18676 real_pdi = struct_pdi;
18677 while (real_pdi->has_specification)
18678 real_pdi = find_partial_die (real_pdi->spec_offset,
18679 real_pdi->spec_is_dwz, cu);
18680
18681 if (real_pdi->die_parent != NULL)
18682 return;
18683
18684 for (child_pdi = struct_pdi->die_child;
18685 child_pdi != NULL;
18686 child_pdi = child_pdi->die_sibling)
18687 {
18688 if (child_pdi->tag == DW_TAG_subprogram
18689 && child_pdi->linkage_name != NULL)
18690 {
18691 char *actual_class_name
18692 = language_class_name_from_physname (cu->language_defn,
18693 child_pdi->linkage_name);
18694 if (actual_class_name != NULL)
18695 {
18696 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18697 struct_pdi->name
18698 = ((const char *)
18699 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18700 actual_class_name,
18701 strlen (actual_class_name)));
18702 xfree (actual_class_name);
18703 }
18704 break;
18705 }
18706 }
18707 }
18708
18709 void
18710 partial_die_info::fixup (struct dwarf2_cu *cu)
18711 {
18712 /* Once we've fixed up a die, there's no point in doing so again.
18713 This also avoids a memory leak if we were to call
18714 guess_partial_die_structure_name multiple times. */
18715 if (fixup_called)
18716 return;
18717
18718 /* If we found a reference attribute and the DIE has no name, try
18719 to find a name in the referred to DIE. */
18720
18721 if (name == NULL && has_specification)
18722 {
18723 struct partial_die_info *spec_die;
18724
18725 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18726
18727 spec_die->fixup (cu);
18728
18729 if (spec_die->name)
18730 {
18731 name = spec_die->name;
18732
18733 /* Copy DW_AT_external attribute if it is set. */
18734 if (spec_die->is_external)
18735 is_external = spec_die->is_external;
18736 }
18737 }
18738
18739 /* Set default names for some unnamed DIEs. */
18740
18741 if (name == NULL && tag == DW_TAG_namespace)
18742 name = CP_ANONYMOUS_NAMESPACE_STR;
18743
18744 /* If there is no parent die to provide a namespace, and there are
18745 children, see if we can determine the namespace from their linkage
18746 name. */
18747 if (cu->language == language_cplus
18748 && !VEC_empty (dwarf2_section_info_def,
18749 cu->per_cu->dwarf2_per_objfile->types)
18750 && die_parent == NULL
18751 && has_children
18752 && (tag == DW_TAG_class_type
18753 || tag == DW_TAG_structure_type
18754 || tag == DW_TAG_union_type))
18755 guess_partial_die_structure_name (this, cu);
18756
18757 /* GCC might emit a nameless struct or union that has a linkage
18758 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18759 if (name == NULL
18760 && (tag == DW_TAG_class_type
18761 || tag == DW_TAG_interface_type
18762 || tag == DW_TAG_structure_type
18763 || tag == DW_TAG_union_type)
18764 && linkage_name != NULL)
18765 {
18766 char *demangled;
18767
18768 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18769 if (demangled)
18770 {
18771 const char *base;
18772
18773 /* Strip any leading namespaces/classes, keep only the base name.
18774 DW_AT_name for named DIEs does not contain the prefixes. */
18775 base = strrchr (demangled, ':');
18776 if (base && base > demangled && base[-1] == ':')
18777 base++;
18778 else
18779 base = demangled;
18780
18781 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18782 name
18783 = ((const char *)
18784 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18785 base, strlen (base)));
18786 xfree (demangled);
18787 }
18788 }
18789
18790 fixup_called = 1;
18791 }
18792
18793 /* Read an attribute value described by an attribute form. */
18794
18795 static const gdb_byte *
18796 read_attribute_value (const struct die_reader_specs *reader,
18797 struct attribute *attr, unsigned form,
18798 LONGEST implicit_const, const gdb_byte *info_ptr)
18799 {
18800 struct dwarf2_cu *cu = reader->cu;
18801 struct dwarf2_per_objfile *dwarf2_per_objfile
18802 = cu->per_cu->dwarf2_per_objfile;
18803 struct objfile *objfile = dwarf2_per_objfile->objfile;
18804 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18805 bfd *abfd = reader->abfd;
18806 struct comp_unit_head *cu_header = &cu->header;
18807 unsigned int bytes_read;
18808 struct dwarf_block *blk;
18809
18810 attr->form = (enum dwarf_form) form;
18811 switch (form)
18812 {
18813 case DW_FORM_ref_addr:
18814 if (cu->header.version == 2)
18815 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18816 else
18817 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18818 &cu->header, &bytes_read);
18819 info_ptr += bytes_read;
18820 break;
18821 case DW_FORM_GNU_ref_alt:
18822 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18823 info_ptr += bytes_read;
18824 break;
18825 case DW_FORM_addr:
18826 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18827 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18828 info_ptr += bytes_read;
18829 break;
18830 case DW_FORM_block2:
18831 blk = dwarf_alloc_block (cu);
18832 blk->size = read_2_bytes (abfd, info_ptr);
18833 info_ptr += 2;
18834 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18835 info_ptr += blk->size;
18836 DW_BLOCK (attr) = blk;
18837 break;
18838 case DW_FORM_block4:
18839 blk = dwarf_alloc_block (cu);
18840 blk->size = read_4_bytes (abfd, info_ptr);
18841 info_ptr += 4;
18842 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18843 info_ptr += blk->size;
18844 DW_BLOCK (attr) = blk;
18845 break;
18846 case DW_FORM_data2:
18847 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18848 info_ptr += 2;
18849 break;
18850 case DW_FORM_data4:
18851 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18852 info_ptr += 4;
18853 break;
18854 case DW_FORM_data8:
18855 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18856 info_ptr += 8;
18857 break;
18858 case DW_FORM_data16:
18859 blk = dwarf_alloc_block (cu);
18860 blk->size = 16;
18861 blk->data = read_n_bytes (abfd, info_ptr, 16);
18862 info_ptr += 16;
18863 DW_BLOCK (attr) = blk;
18864 break;
18865 case DW_FORM_sec_offset:
18866 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18867 info_ptr += bytes_read;
18868 break;
18869 case DW_FORM_string:
18870 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18871 DW_STRING_IS_CANONICAL (attr) = 0;
18872 info_ptr += bytes_read;
18873 break;
18874 case DW_FORM_strp:
18875 if (!cu->per_cu->is_dwz)
18876 {
18877 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18878 abfd, info_ptr, cu_header,
18879 &bytes_read);
18880 DW_STRING_IS_CANONICAL (attr) = 0;
18881 info_ptr += bytes_read;
18882 break;
18883 }
18884 /* FALLTHROUGH */
18885 case DW_FORM_line_strp:
18886 if (!cu->per_cu->is_dwz)
18887 {
18888 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18889 abfd, info_ptr,
18890 cu_header, &bytes_read);
18891 DW_STRING_IS_CANONICAL (attr) = 0;
18892 info_ptr += bytes_read;
18893 break;
18894 }
18895 /* FALLTHROUGH */
18896 case DW_FORM_GNU_strp_alt:
18897 {
18898 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18899 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18900 &bytes_read);
18901
18902 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18903 dwz, str_offset);
18904 DW_STRING_IS_CANONICAL (attr) = 0;
18905 info_ptr += bytes_read;
18906 }
18907 break;
18908 case DW_FORM_exprloc:
18909 case DW_FORM_block:
18910 blk = dwarf_alloc_block (cu);
18911 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18912 info_ptr += bytes_read;
18913 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18914 info_ptr += blk->size;
18915 DW_BLOCK (attr) = blk;
18916 break;
18917 case DW_FORM_block1:
18918 blk = dwarf_alloc_block (cu);
18919 blk->size = read_1_byte (abfd, info_ptr);
18920 info_ptr += 1;
18921 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18922 info_ptr += blk->size;
18923 DW_BLOCK (attr) = blk;
18924 break;
18925 case DW_FORM_data1:
18926 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18927 info_ptr += 1;
18928 break;
18929 case DW_FORM_flag:
18930 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18931 info_ptr += 1;
18932 break;
18933 case DW_FORM_flag_present:
18934 DW_UNSND (attr) = 1;
18935 break;
18936 case DW_FORM_sdata:
18937 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18938 info_ptr += bytes_read;
18939 break;
18940 case DW_FORM_udata:
18941 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18942 info_ptr += bytes_read;
18943 break;
18944 case DW_FORM_ref1:
18945 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18946 + read_1_byte (abfd, info_ptr));
18947 info_ptr += 1;
18948 break;
18949 case DW_FORM_ref2:
18950 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18951 + read_2_bytes (abfd, info_ptr));
18952 info_ptr += 2;
18953 break;
18954 case DW_FORM_ref4:
18955 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18956 + read_4_bytes (abfd, info_ptr));
18957 info_ptr += 4;
18958 break;
18959 case DW_FORM_ref8:
18960 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18961 + read_8_bytes (abfd, info_ptr));
18962 info_ptr += 8;
18963 break;
18964 case DW_FORM_ref_sig8:
18965 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18966 info_ptr += 8;
18967 break;
18968 case DW_FORM_ref_udata:
18969 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18970 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18971 info_ptr += bytes_read;
18972 break;
18973 case DW_FORM_indirect:
18974 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18975 info_ptr += bytes_read;
18976 if (form == DW_FORM_implicit_const)
18977 {
18978 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18979 info_ptr += bytes_read;
18980 }
18981 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18982 info_ptr);
18983 break;
18984 case DW_FORM_implicit_const:
18985 DW_SND (attr) = implicit_const;
18986 break;
18987 case DW_FORM_GNU_addr_index:
18988 if (reader->dwo_file == NULL)
18989 {
18990 /* For now flag a hard error.
18991 Later we can turn this into a complaint. */
18992 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18993 dwarf_form_name (form),
18994 bfd_get_filename (abfd));
18995 }
18996 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18997 info_ptr += bytes_read;
18998 break;
18999 case DW_FORM_GNU_str_index:
19000 if (reader->dwo_file == NULL)
19001 {
19002 /* For now flag a hard error.
19003 Later we can turn this into a complaint if warranted. */
19004 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19005 dwarf_form_name (form),
19006 bfd_get_filename (abfd));
19007 }
19008 {
19009 ULONGEST str_index =
19010 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19011
19012 DW_STRING (attr) = read_str_index (reader, str_index);
19013 DW_STRING_IS_CANONICAL (attr) = 0;
19014 info_ptr += bytes_read;
19015 }
19016 break;
19017 default:
19018 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19019 dwarf_form_name (form),
19020 bfd_get_filename (abfd));
19021 }
19022
19023 /* Super hack. */
19024 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19025 attr->form = DW_FORM_GNU_ref_alt;
19026
19027 /* We have seen instances where the compiler tried to emit a byte
19028 size attribute of -1 which ended up being encoded as an unsigned
19029 0xffffffff. Although 0xffffffff is technically a valid size value,
19030 an object of this size seems pretty unlikely so we can relatively
19031 safely treat these cases as if the size attribute was invalid and
19032 treat them as zero by default. */
19033 if (attr->name == DW_AT_byte_size
19034 && form == DW_FORM_data4
19035 && DW_UNSND (attr) >= 0xffffffff)
19036 {
19037 complaint
19038 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19039 hex_string (DW_UNSND (attr)));
19040 DW_UNSND (attr) = 0;
19041 }
19042
19043 return info_ptr;
19044 }
19045
19046 /* Read an attribute described by an abbreviated attribute. */
19047
19048 static const gdb_byte *
19049 read_attribute (const struct die_reader_specs *reader,
19050 struct attribute *attr, struct attr_abbrev *abbrev,
19051 const gdb_byte *info_ptr)
19052 {
19053 attr->name = abbrev->name;
19054 return read_attribute_value (reader, attr, abbrev->form,
19055 abbrev->implicit_const, info_ptr);
19056 }
19057
19058 /* Read dwarf information from a buffer. */
19059
19060 static unsigned int
19061 read_1_byte (bfd *abfd, const gdb_byte *buf)
19062 {
19063 return bfd_get_8 (abfd, buf);
19064 }
19065
19066 static int
19067 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19068 {
19069 return bfd_get_signed_8 (abfd, buf);
19070 }
19071
19072 static unsigned int
19073 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19074 {
19075 return bfd_get_16 (abfd, buf);
19076 }
19077
19078 static int
19079 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19080 {
19081 return bfd_get_signed_16 (abfd, buf);
19082 }
19083
19084 static unsigned int
19085 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19086 {
19087 return bfd_get_32 (abfd, buf);
19088 }
19089
19090 static int
19091 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19092 {
19093 return bfd_get_signed_32 (abfd, buf);
19094 }
19095
19096 static ULONGEST
19097 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19098 {
19099 return bfd_get_64 (abfd, buf);
19100 }
19101
19102 static CORE_ADDR
19103 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19104 unsigned int *bytes_read)
19105 {
19106 struct comp_unit_head *cu_header = &cu->header;
19107 CORE_ADDR retval = 0;
19108
19109 if (cu_header->signed_addr_p)
19110 {
19111 switch (cu_header->addr_size)
19112 {
19113 case 2:
19114 retval = bfd_get_signed_16 (abfd, buf);
19115 break;
19116 case 4:
19117 retval = bfd_get_signed_32 (abfd, buf);
19118 break;
19119 case 8:
19120 retval = bfd_get_signed_64 (abfd, buf);
19121 break;
19122 default:
19123 internal_error (__FILE__, __LINE__,
19124 _("read_address: bad switch, signed [in module %s]"),
19125 bfd_get_filename (abfd));
19126 }
19127 }
19128 else
19129 {
19130 switch (cu_header->addr_size)
19131 {
19132 case 2:
19133 retval = bfd_get_16 (abfd, buf);
19134 break;
19135 case 4:
19136 retval = bfd_get_32 (abfd, buf);
19137 break;
19138 case 8:
19139 retval = bfd_get_64 (abfd, buf);
19140 break;
19141 default:
19142 internal_error (__FILE__, __LINE__,
19143 _("read_address: bad switch, "
19144 "unsigned [in module %s]"),
19145 bfd_get_filename (abfd));
19146 }
19147 }
19148
19149 *bytes_read = cu_header->addr_size;
19150 return retval;
19151 }
19152
19153 /* Read the initial length from a section. The (draft) DWARF 3
19154 specification allows the initial length to take up either 4 bytes
19155 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19156 bytes describe the length and all offsets will be 8 bytes in length
19157 instead of 4.
19158
19159 An older, non-standard 64-bit format is also handled by this
19160 function. The older format in question stores the initial length
19161 as an 8-byte quantity without an escape value. Lengths greater
19162 than 2^32 aren't very common which means that the initial 4 bytes
19163 is almost always zero. Since a length value of zero doesn't make
19164 sense for the 32-bit format, this initial zero can be considered to
19165 be an escape value which indicates the presence of the older 64-bit
19166 format. As written, the code can't detect (old format) lengths
19167 greater than 4GB. If it becomes necessary to handle lengths
19168 somewhat larger than 4GB, we could allow other small values (such
19169 as the non-sensical values of 1, 2, and 3) to also be used as
19170 escape values indicating the presence of the old format.
19171
19172 The value returned via bytes_read should be used to increment the
19173 relevant pointer after calling read_initial_length().
19174
19175 [ Note: read_initial_length() and read_offset() are based on the
19176 document entitled "DWARF Debugging Information Format", revision
19177 3, draft 8, dated November 19, 2001. This document was obtained
19178 from:
19179
19180 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19181
19182 This document is only a draft and is subject to change. (So beware.)
19183
19184 Details regarding the older, non-standard 64-bit format were
19185 determined empirically by examining 64-bit ELF files produced by
19186 the SGI toolchain on an IRIX 6.5 machine.
19187
19188 - Kevin, July 16, 2002
19189 ] */
19190
19191 static LONGEST
19192 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19193 {
19194 LONGEST length = bfd_get_32 (abfd, buf);
19195
19196 if (length == 0xffffffff)
19197 {
19198 length = bfd_get_64 (abfd, buf + 4);
19199 *bytes_read = 12;
19200 }
19201 else if (length == 0)
19202 {
19203 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19204 length = bfd_get_64 (abfd, buf);
19205 *bytes_read = 8;
19206 }
19207 else
19208 {
19209 *bytes_read = 4;
19210 }
19211
19212 return length;
19213 }
19214
19215 /* Cover function for read_initial_length.
19216 Returns the length of the object at BUF, and stores the size of the
19217 initial length in *BYTES_READ and stores the size that offsets will be in
19218 *OFFSET_SIZE.
19219 If the initial length size is not equivalent to that specified in
19220 CU_HEADER then issue a complaint.
19221 This is useful when reading non-comp-unit headers. */
19222
19223 static LONGEST
19224 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19225 const struct comp_unit_head *cu_header,
19226 unsigned int *bytes_read,
19227 unsigned int *offset_size)
19228 {
19229 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19230
19231 gdb_assert (cu_header->initial_length_size == 4
19232 || cu_header->initial_length_size == 8
19233 || cu_header->initial_length_size == 12);
19234
19235 if (cu_header->initial_length_size != *bytes_read)
19236 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19237
19238 *offset_size = (*bytes_read == 4) ? 4 : 8;
19239 return length;
19240 }
19241
19242 /* Read an offset from the data stream. The size of the offset is
19243 given by cu_header->offset_size. */
19244
19245 static LONGEST
19246 read_offset (bfd *abfd, const gdb_byte *buf,
19247 const struct comp_unit_head *cu_header,
19248 unsigned int *bytes_read)
19249 {
19250 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19251
19252 *bytes_read = cu_header->offset_size;
19253 return offset;
19254 }
19255
19256 /* Read an offset from the data stream. */
19257
19258 static LONGEST
19259 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19260 {
19261 LONGEST retval = 0;
19262
19263 switch (offset_size)
19264 {
19265 case 4:
19266 retval = bfd_get_32 (abfd, buf);
19267 break;
19268 case 8:
19269 retval = bfd_get_64 (abfd, buf);
19270 break;
19271 default:
19272 internal_error (__FILE__, __LINE__,
19273 _("read_offset_1: bad switch [in module %s]"),
19274 bfd_get_filename (abfd));
19275 }
19276
19277 return retval;
19278 }
19279
19280 static const gdb_byte *
19281 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19282 {
19283 /* If the size of a host char is 8 bits, we can return a pointer
19284 to the buffer, otherwise we have to copy the data to a buffer
19285 allocated on the temporary obstack. */
19286 gdb_assert (HOST_CHAR_BIT == 8);
19287 return buf;
19288 }
19289
19290 static const char *
19291 read_direct_string (bfd *abfd, const gdb_byte *buf,
19292 unsigned int *bytes_read_ptr)
19293 {
19294 /* If the size of a host char is 8 bits, we can return a pointer
19295 to the string, otherwise we have to copy the string to a buffer
19296 allocated on the temporary obstack. */
19297 gdb_assert (HOST_CHAR_BIT == 8);
19298 if (*buf == '\0')
19299 {
19300 *bytes_read_ptr = 1;
19301 return NULL;
19302 }
19303 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19304 return (const char *) buf;
19305 }
19306
19307 /* Return pointer to string at section SECT offset STR_OFFSET with error
19308 reporting strings FORM_NAME and SECT_NAME. */
19309
19310 static const char *
19311 read_indirect_string_at_offset_from (struct objfile *objfile,
19312 bfd *abfd, LONGEST str_offset,
19313 struct dwarf2_section_info *sect,
19314 const char *form_name,
19315 const char *sect_name)
19316 {
19317 dwarf2_read_section (objfile, sect);
19318 if (sect->buffer == NULL)
19319 error (_("%s used without %s section [in module %s]"),
19320 form_name, sect_name, bfd_get_filename (abfd));
19321 if (str_offset >= sect->size)
19322 error (_("%s pointing outside of %s section [in module %s]"),
19323 form_name, sect_name, bfd_get_filename (abfd));
19324 gdb_assert (HOST_CHAR_BIT == 8);
19325 if (sect->buffer[str_offset] == '\0')
19326 return NULL;
19327 return (const char *) (sect->buffer + str_offset);
19328 }
19329
19330 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19331
19332 static const char *
19333 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19334 bfd *abfd, LONGEST str_offset)
19335 {
19336 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19337 abfd, str_offset,
19338 &dwarf2_per_objfile->str,
19339 "DW_FORM_strp", ".debug_str");
19340 }
19341
19342 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19343
19344 static const char *
19345 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19346 bfd *abfd, LONGEST str_offset)
19347 {
19348 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19349 abfd, str_offset,
19350 &dwarf2_per_objfile->line_str,
19351 "DW_FORM_line_strp",
19352 ".debug_line_str");
19353 }
19354
19355 /* Read a string at offset STR_OFFSET in the .debug_str section from
19356 the .dwz file DWZ. Throw an error if the offset is too large. If
19357 the string consists of a single NUL byte, return NULL; otherwise
19358 return a pointer to the string. */
19359
19360 static const char *
19361 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19362 LONGEST str_offset)
19363 {
19364 dwarf2_read_section (objfile, &dwz->str);
19365
19366 if (dwz->str.buffer == NULL)
19367 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19368 "section [in module %s]"),
19369 bfd_get_filename (dwz->dwz_bfd));
19370 if (str_offset >= dwz->str.size)
19371 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19372 ".debug_str section [in module %s]"),
19373 bfd_get_filename (dwz->dwz_bfd));
19374 gdb_assert (HOST_CHAR_BIT == 8);
19375 if (dwz->str.buffer[str_offset] == '\0')
19376 return NULL;
19377 return (const char *) (dwz->str.buffer + str_offset);
19378 }
19379
19380 /* Return pointer to string at .debug_str offset as read from BUF.
19381 BUF is assumed to be in a compilation unit described by CU_HEADER.
19382 Return *BYTES_READ_PTR count of bytes read from BUF. */
19383
19384 static const char *
19385 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19386 const gdb_byte *buf,
19387 const struct comp_unit_head *cu_header,
19388 unsigned int *bytes_read_ptr)
19389 {
19390 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19391
19392 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19393 }
19394
19395 /* Return pointer to string at .debug_line_str offset as read from BUF.
19396 BUF is assumed to be in a compilation unit described by CU_HEADER.
19397 Return *BYTES_READ_PTR count of bytes read from BUF. */
19398
19399 static const char *
19400 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19401 bfd *abfd, const gdb_byte *buf,
19402 const struct comp_unit_head *cu_header,
19403 unsigned int *bytes_read_ptr)
19404 {
19405 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19406
19407 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19408 str_offset);
19409 }
19410
19411 ULONGEST
19412 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19413 unsigned int *bytes_read_ptr)
19414 {
19415 ULONGEST result;
19416 unsigned int num_read;
19417 int shift;
19418 unsigned char byte;
19419
19420 result = 0;
19421 shift = 0;
19422 num_read = 0;
19423 while (1)
19424 {
19425 byte = bfd_get_8 (abfd, buf);
19426 buf++;
19427 num_read++;
19428 result |= ((ULONGEST) (byte & 127) << shift);
19429 if ((byte & 128) == 0)
19430 {
19431 break;
19432 }
19433 shift += 7;
19434 }
19435 *bytes_read_ptr = num_read;
19436 return result;
19437 }
19438
19439 static LONGEST
19440 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19441 unsigned int *bytes_read_ptr)
19442 {
19443 LONGEST result;
19444 int shift, num_read;
19445 unsigned char byte;
19446
19447 result = 0;
19448 shift = 0;
19449 num_read = 0;
19450 while (1)
19451 {
19452 byte = bfd_get_8 (abfd, buf);
19453 buf++;
19454 num_read++;
19455 result |= ((LONGEST) (byte & 127) << shift);
19456 shift += 7;
19457 if ((byte & 128) == 0)
19458 {
19459 break;
19460 }
19461 }
19462 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19463 result |= -(((LONGEST) 1) << shift);
19464 *bytes_read_ptr = num_read;
19465 return result;
19466 }
19467
19468 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19469 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19470 ADDR_SIZE is the size of addresses from the CU header. */
19471
19472 static CORE_ADDR
19473 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19474 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19475 {
19476 struct objfile *objfile = dwarf2_per_objfile->objfile;
19477 bfd *abfd = objfile->obfd;
19478 const gdb_byte *info_ptr;
19479
19480 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19481 if (dwarf2_per_objfile->addr.buffer == NULL)
19482 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19483 objfile_name (objfile));
19484 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19485 error (_("DW_FORM_addr_index pointing outside of "
19486 ".debug_addr section [in module %s]"),
19487 objfile_name (objfile));
19488 info_ptr = (dwarf2_per_objfile->addr.buffer
19489 + addr_base + addr_index * addr_size);
19490 if (addr_size == 4)
19491 return bfd_get_32 (abfd, info_ptr);
19492 else
19493 return bfd_get_64 (abfd, info_ptr);
19494 }
19495
19496 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19497
19498 static CORE_ADDR
19499 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19500 {
19501 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19502 cu->addr_base, cu->header.addr_size);
19503 }
19504
19505 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19506
19507 static CORE_ADDR
19508 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19509 unsigned int *bytes_read)
19510 {
19511 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19512 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19513
19514 return read_addr_index (cu, addr_index);
19515 }
19516
19517 /* Data structure to pass results from dwarf2_read_addr_index_reader
19518 back to dwarf2_read_addr_index. */
19519
19520 struct dwarf2_read_addr_index_data
19521 {
19522 ULONGEST addr_base;
19523 int addr_size;
19524 };
19525
19526 /* die_reader_func for dwarf2_read_addr_index. */
19527
19528 static void
19529 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19530 const gdb_byte *info_ptr,
19531 struct die_info *comp_unit_die,
19532 int has_children,
19533 void *data)
19534 {
19535 struct dwarf2_cu *cu = reader->cu;
19536 struct dwarf2_read_addr_index_data *aidata =
19537 (struct dwarf2_read_addr_index_data *) data;
19538
19539 aidata->addr_base = cu->addr_base;
19540 aidata->addr_size = cu->header.addr_size;
19541 }
19542
19543 /* Given an index in .debug_addr, fetch the value.
19544 NOTE: This can be called during dwarf expression evaluation,
19545 long after the debug information has been read, and thus per_cu->cu
19546 may no longer exist. */
19547
19548 CORE_ADDR
19549 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19550 unsigned int addr_index)
19551 {
19552 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19553 struct dwarf2_cu *cu = per_cu->cu;
19554 ULONGEST addr_base;
19555 int addr_size;
19556
19557 /* We need addr_base and addr_size.
19558 If we don't have PER_CU->cu, we have to get it.
19559 Nasty, but the alternative is storing the needed info in PER_CU,
19560 which at this point doesn't seem justified: it's not clear how frequently
19561 it would get used and it would increase the size of every PER_CU.
19562 Entry points like dwarf2_per_cu_addr_size do a similar thing
19563 so we're not in uncharted territory here.
19564 Alas we need to be a bit more complicated as addr_base is contained
19565 in the DIE.
19566
19567 We don't need to read the entire CU(/TU).
19568 We just need the header and top level die.
19569
19570 IWBN to use the aging mechanism to let us lazily later discard the CU.
19571 For now we skip this optimization. */
19572
19573 if (cu != NULL)
19574 {
19575 addr_base = cu->addr_base;
19576 addr_size = cu->header.addr_size;
19577 }
19578 else
19579 {
19580 struct dwarf2_read_addr_index_data aidata;
19581
19582 /* Note: We can't use init_cutu_and_read_dies_simple here,
19583 we need addr_base. */
19584 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19585 dwarf2_read_addr_index_reader, &aidata);
19586 addr_base = aidata.addr_base;
19587 addr_size = aidata.addr_size;
19588 }
19589
19590 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19591 addr_size);
19592 }
19593
19594 /* Given a DW_FORM_GNU_str_index, fetch the string.
19595 This is only used by the Fission support. */
19596
19597 static const char *
19598 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19599 {
19600 struct dwarf2_cu *cu = reader->cu;
19601 struct dwarf2_per_objfile *dwarf2_per_objfile
19602 = cu->per_cu->dwarf2_per_objfile;
19603 struct objfile *objfile = dwarf2_per_objfile->objfile;
19604 const char *objf_name = objfile_name (objfile);
19605 bfd *abfd = objfile->obfd;
19606 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19607 struct dwarf2_section_info *str_offsets_section =
19608 &reader->dwo_file->sections.str_offsets;
19609 const gdb_byte *info_ptr;
19610 ULONGEST str_offset;
19611 static const char form_name[] = "DW_FORM_GNU_str_index";
19612
19613 dwarf2_read_section (objfile, str_section);
19614 dwarf2_read_section (objfile, str_offsets_section);
19615 if (str_section->buffer == NULL)
19616 error (_("%s used without .debug_str.dwo section"
19617 " in CU at offset %s [in module %s]"),
19618 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19619 if (str_offsets_section->buffer == NULL)
19620 error (_("%s used without .debug_str_offsets.dwo section"
19621 " in CU at offset %s [in module %s]"),
19622 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19623 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19624 error (_("%s pointing outside of .debug_str_offsets.dwo"
19625 " section in CU at offset %s [in module %s]"),
19626 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19627 info_ptr = (str_offsets_section->buffer
19628 + str_index * cu->header.offset_size);
19629 if (cu->header.offset_size == 4)
19630 str_offset = bfd_get_32 (abfd, info_ptr);
19631 else
19632 str_offset = bfd_get_64 (abfd, info_ptr);
19633 if (str_offset >= str_section->size)
19634 error (_("Offset from %s pointing outside of"
19635 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19636 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19637 return (const char *) (str_section->buffer + str_offset);
19638 }
19639
19640 /* Return the length of an LEB128 number in BUF. */
19641
19642 static int
19643 leb128_size (const gdb_byte *buf)
19644 {
19645 const gdb_byte *begin = buf;
19646 gdb_byte byte;
19647
19648 while (1)
19649 {
19650 byte = *buf++;
19651 if ((byte & 128) == 0)
19652 return buf - begin;
19653 }
19654 }
19655
19656 static void
19657 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19658 {
19659 switch (lang)
19660 {
19661 case DW_LANG_C89:
19662 case DW_LANG_C99:
19663 case DW_LANG_C11:
19664 case DW_LANG_C:
19665 case DW_LANG_UPC:
19666 cu->language = language_c;
19667 break;
19668 case DW_LANG_Java:
19669 case DW_LANG_C_plus_plus:
19670 case DW_LANG_C_plus_plus_11:
19671 case DW_LANG_C_plus_plus_14:
19672 cu->language = language_cplus;
19673 break;
19674 case DW_LANG_D:
19675 cu->language = language_d;
19676 break;
19677 case DW_LANG_Fortran77:
19678 case DW_LANG_Fortran90:
19679 case DW_LANG_Fortran95:
19680 case DW_LANG_Fortran03:
19681 case DW_LANG_Fortran08:
19682 cu->language = language_fortran;
19683 break;
19684 case DW_LANG_Go:
19685 cu->language = language_go;
19686 break;
19687 case DW_LANG_Mips_Assembler:
19688 cu->language = language_asm;
19689 break;
19690 case DW_LANG_Ada83:
19691 case DW_LANG_Ada95:
19692 cu->language = language_ada;
19693 break;
19694 case DW_LANG_Modula2:
19695 cu->language = language_m2;
19696 break;
19697 case DW_LANG_Pascal83:
19698 cu->language = language_pascal;
19699 break;
19700 case DW_LANG_ObjC:
19701 cu->language = language_objc;
19702 break;
19703 case DW_LANG_Rust:
19704 case DW_LANG_Rust_old:
19705 cu->language = language_rust;
19706 break;
19707 case DW_LANG_Cobol74:
19708 case DW_LANG_Cobol85:
19709 default:
19710 cu->language = language_minimal;
19711 break;
19712 }
19713 cu->language_defn = language_def (cu->language);
19714 }
19715
19716 /* Return the named attribute or NULL if not there. */
19717
19718 static struct attribute *
19719 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19720 {
19721 for (;;)
19722 {
19723 unsigned int i;
19724 struct attribute *spec = NULL;
19725
19726 for (i = 0; i < die->num_attrs; ++i)
19727 {
19728 if (die->attrs[i].name == name)
19729 return &die->attrs[i];
19730 if (die->attrs[i].name == DW_AT_specification
19731 || die->attrs[i].name == DW_AT_abstract_origin)
19732 spec = &die->attrs[i];
19733 }
19734
19735 if (!spec)
19736 break;
19737
19738 die = follow_die_ref (die, spec, &cu);
19739 }
19740
19741 return NULL;
19742 }
19743
19744 /* Return the named attribute or NULL if not there,
19745 but do not follow DW_AT_specification, etc.
19746 This is for use in contexts where we're reading .debug_types dies.
19747 Following DW_AT_specification, DW_AT_abstract_origin will take us
19748 back up the chain, and we want to go down. */
19749
19750 static struct attribute *
19751 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19752 {
19753 unsigned int i;
19754
19755 for (i = 0; i < die->num_attrs; ++i)
19756 if (die->attrs[i].name == name)
19757 return &die->attrs[i];
19758
19759 return NULL;
19760 }
19761
19762 /* Return the string associated with a string-typed attribute, or NULL if it
19763 is either not found or is of an incorrect type. */
19764
19765 static const char *
19766 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19767 {
19768 struct attribute *attr;
19769 const char *str = NULL;
19770
19771 attr = dwarf2_attr (die, name, cu);
19772
19773 if (attr != NULL)
19774 {
19775 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19776 || attr->form == DW_FORM_string
19777 || attr->form == DW_FORM_GNU_str_index
19778 || attr->form == DW_FORM_GNU_strp_alt)
19779 str = DW_STRING (attr);
19780 else
19781 complaint (_("string type expected for attribute %s for "
19782 "DIE at %s in module %s"),
19783 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19784 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19785 }
19786
19787 return str;
19788 }
19789
19790 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19791 and holds a non-zero value. This function should only be used for
19792 DW_FORM_flag or DW_FORM_flag_present attributes. */
19793
19794 static int
19795 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19796 {
19797 struct attribute *attr = dwarf2_attr (die, name, cu);
19798
19799 return (attr && DW_UNSND (attr));
19800 }
19801
19802 static int
19803 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19804 {
19805 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19806 which value is non-zero. However, we have to be careful with
19807 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19808 (via dwarf2_flag_true_p) follows this attribute. So we may
19809 end up accidently finding a declaration attribute that belongs
19810 to a different DIE referenced by the specification attribute,
19811 even though the given DIE does not have a declaration attribute. */
19812 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19813 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19814 }
19815
19816 /* Return the die giving the specification for DIE, if there is
19817 one. *SPEC_CU is the CU containing DIE on input, and the CU
19818 containing the return value on output. If there is no
19819 specification, but there is an abstract origin, that is
19820 returned. */
19821
19822 static struct die_info *
19823 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19824 {
19825 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19826 *spec_cu);
19827
19828 if (spec_attr == NULL)
19829 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19830
19831 if (spec_attr == NULL)
19832 return NULL;
19833 else
19834 return follow_die_ref (die, spec_attr, spec_cu);
19835 }
19836
19837 /* Stub for free_line_header to match void * callback types. */
19838
19839 static void
19840 free_line_header_voidp (void *arg)
19841 {
19842 struct line_header *lh = (struct line_header *) arg;
19843
19844 delete lh;
19845 }
19846
19847 void
19848 line_header::add_include_dir (const char *include_dir)
19849 {
19850 if (dwarf_line_debug >= 2)
19851 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19852 include_dirs.size () + 1, include_dir);
19853
19854 include_dirs.push_back (include_dir);
19855 }
19856
19857 void
19858 line_header::add_file_name (const char *name,
19859 dir_index d_index,
19860 unsigned int mod_time,
19861 unsigned int length)
19862 {
19863 if (dwarf_line_debug >= 2)
19864 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19865 (unsigned) file_names.size () + 1, name);
19866
19867 file_names.emplace_back (name, d_index, mod_time, length);
19868 }
19869
19870 /* A convenience function to find the proper .debug_line section for a CU. */
19871
19872 static struct dwarf2_section_info *
19873 get_debug_line_section (struct dwarf2_cu *cu)
19874 {
19875 struct dwarf2_section_info *section;
19876 struct dwarf2_per_objfile *dwarf2_per_objfile
19877 = cu->per_cu->dwarf2_per_objfile;
19878
19879 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19880 DWO file. */
19881 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19882 section = &cu->dwo_unit->dwo_file->sections.line;
19883 else if (cu->per_cu->is_dwz)
19884 {
19885 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19886
19887 section = &dwz->line;
19888 }
19889 else
19890 section = &dwarf2_per_objfile->line;
19891
19892 return section;
19893 }
19894
19895 /* Read directory or file name entry format, starting with byte of
19896 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19897 entries count and the entries themselves in the described entry
19898 format. */
19899
19900 static void
19901 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19902 bfd *abfd, const gdb_byte **bufp,
19903 struct line_header *lh,
19904 const struct comp_unit_head *cu_header,
19905 void (*callback) (struct line_header *lh,
19906 const char *name,
19907 dir_index d_index,
19908 unsigned int mod_time,
19909 unsigned int length))
19910 {
19911 gdb_byte format_count, formati;
19912 ULONGEST data_count, datai;
19913 const gdb_byte *buf = *bufp;
19914 const gdb_byte *format_header_data;
19915 unsigned int bytes_read;
19916
19917 format_count = read_1_byte (abfd, buf);
19918 buf += 1;
19919 format_header_data = buf;
19920 for (formati = 0; formati < format_count; formati++)
19921 {
19922 read_unsigned_leb128 (abfd, buf, &bytes_read);
19923 buf += bytes_read;
19924 read_unsigned_leb128 (abfd, buf, &bytes_read);
19925 buf += bytes_read;
19926 }
19927
19928 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19929 buf += bytes_read;
19930 for (datai = 0; datai < data_count; datai++)
19931 {
19932 const gdb_byte *format = format_header_data;
19933 struct file_entry fe;
19934
19935 for (formati = 0; formati < format_count; formati++)
19936 {
19937 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19938 format += bytes_read;
19939
19940 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19941 format += bytes_read;
19942
19943 gdb::optional<const char *> string;
19944 gdb::optional<unsigned int> uint;
19945
19946 switch (form)
19947 {
19948 case DW_FORM_string:
19949 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19950 buf += bytes_read;
19951 break;
19952
19953 case DW_FORM_line_strp:
19954 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19955 abfd, buf,
19956 cu_header,
19957 &bytes_read));
19958 buf += bytes_read;
19959 break;
19960
19961 case DW_FORM_data1:
19962 uint.emplace (read_1_byte (abfd, buf));
19963 buf += 1;
19964 break;
19965
19966 case DW_FORM_data2:
19967 uint.emplace (read_2_bytes (abfd, buf));
19968 buf += 2;
19969 break;
19970
19971 case DW_FORM_data4:
19972 uint.emplace (read_4_bytes (abfd, buf));
19973 buf += 4;
19974 break;
19975
19976 case DW_FORM_data8:
19977 uint.emplace (read_8_bytes (abfd, buf));
19978 buf += 8;
19979 break;
19980
19981 case DW_FORM_udata:
19982 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19983 buf += bytes_read;
19984 break;
19985
19986 case DW_FORM_block:
19987 /* It is valid only for DW_LNCT_timestamp which is ignored by
19988 current GDB. */
19989 break;
19990 }
19991
19992 switch (content_type)
19993 {
19994 case DW_LNCT_path:
19995 if (string.has_value ())
19996 fe.name = *string;
19997 break;
19998 case DW_LNCT_directory_index:
19999 if (uint.has_value ())
20000 fe.d_index = (dir_index) *uint;
20001 break;
20002 case DW_LNCT_timestamp:
20003 if (uint.has_value ())
20004 fe.mod_time = *uint;
20005 break;
20006 case DW_LNCT_size:
20007 if (uint.has_value ())
20008 fe.length = *uint;
20009 break;
20010 case DW_LNCT_MD5:
20011 break;
20012 default:
20013 complaint (_("Unknown format content type %s"),
20014 pulongest (content_type));
20015 }
20016 }
20017
20018 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20019 }
20020
20021 *bufp = buf;
20022 }
20023
20024 /* Read the statement program header starting at OFFSET in
20025 .debug_line, or .debug_line.dwo. Return a pointer
20026 to a struct line_header, allocated using xmalloc.
20027 Returns NULL if there is a problem reading the header, e.g., if it
20028 has a version we don't understand.
20029
20030 NOTE: the strings in the include directory and file name tables of
20031 the returned object point into the dwarf line section buffer,
20032 and must not be freed. */
20033
20034 static line_header_up
20035 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20036 {
20037 const gdb_byte *line_ptr;
20038 unsigned int bytes_read, offset_size;
20039 int i;
20040 const char *cur_dir, *cur_file;
20041 struct dwarf2_section_info *section;
20042 bfd *abfd;
20043 struct dwarf2_per_objfile *dwarf2_per_objfile
20044 = cu->per_cu->dwarf2_per_objfile;
20045
20046 section = get_debug_line_section (cu);
20047 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20048 if (section->buffer == NULL)
20049 {
20050 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20051 complaint (_("missing .debug_line.dwo section"));
20052 else
20053 complaint (_("missing .debug_line section"));
20054 return 0;
20055 }
20056
20057 /* We can't do this until we know the section is non-empty.
20058 Only then do we know we have such a section. */
20059 abfd = get_section_bfd_owner (section);
20060
20061 /* Make sure that at least there's room for the total_length field.
20062 That could be 12 bytes long, but we're just going to fudge that. */
20063 if (to_underlying (sect_off) + 4 >= section->size)
20064 {
20065 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20066 return 0;
20067 }
20068
20069 line_header_up lh (new line_header ());
20070
20071 lh->sect_off = sect_off;
20072 lh->offset_in_dwz = cu->per_cu->is_dwz;
20073
20074 line_ptr = section->buffer + to_underlying (sect_off);
20075
20076 /* Read in the header. */
20077 lh->total_length =
20078 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20079 &bytes_read, &offset_size);
20080 line_ptr += bytes_read;
20081 if (line_ptr + lh->total_length > (section->buffer + section->size))
20082 {
20083 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20084 return 0;
20085 }
20086 lh->statement_program_end = line_ptr + lh->total_length;
20087 lh->version = read_2_bytes (abfd, line_ptr);
20088 line_ptr += 2;
20089 if (lh->version > 5)
20090 {
20091 /* This is a version we don't understand. The format could have
20092 changed in ways we don't handle properly so just punt. */
20093 complaint (_("unsupported version in .debug_line section"));
20094 return NULL;
20095 }
20096 if (lh->version >= 5)
20097 {
20098 gdb_byte segment_selector_size;
20099
20100 /* Skip address size. */
20101 read_1_byte (abfd, line_ptr);
20102 line_ptr += 1;
20103
20104 segment_selector_size = read_1_byte (abfd, line_ptr);
20105 line_ptr += 1;
20106 if (segment_selector_size != 0)
20107 {
20108 complaint (_("unsupported segment selector size %u "
20109 "in .debug_line section"),
20110 segment_selector_size);
20111 return NULL;
20112 }
20113 }
20114 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20115 line_ptr += offset_size;
20116 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20117 line_ptr += 1;
20118 if (lh->version >= 4)
20119 {
20120 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20121 line_ptr += 1;
20122 }
20123 else
20124 lh->maximum_ops_per_instruction = 1;
20125
20126 if (lh->maximum_ops_per_instruction == 0)
20127 {
20128 lh->maximum_ops_per_instruction = 1;
20129 complaint (_("invalid maximum_ops_per_instruction "
20130 "in `.debug_line' section"));
20131 }
20132
20133 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20134 line_ptr += 1;
20135 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20136 line_ptr += 1;
20137 lh->line_range = read_1_byte (abfd, line_ptr);
20138 line_ptr += 1;
20139 lh->opcode_base = read_1_byte (abfd, line_ptr);
20140 line_ptr += 1;
20141 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20142
20143 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20144 for (i = 1; i < lh->opcode_base; ++i)
20145 {
20146 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20147 line_ptr += 1;
20148 }
20149
20150 if (lh->version >= 5)
20151 {
20152 /* Read directory table. */
20153 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20154 &cu->header,
20155 [] (struct line_header *lh, const char *name,
20156 dir_index d_index, unsigned int mod_time,
20157 unsigned int length)
20158 {
20159 lh->add_include_dir (name);
20160 });
20161
20162 /* Read file name table. */
20163 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20164 &cu->header,
20165 [] (struct line_header *lh, const char *name,
20166 dir_index d_index, unsigned int mod_time,
20167 unsigned int length)
20168 {
20169 lh->add_file_name (name, d_index, mod_time, length);
20170 });
20171 }
20172 else
20173 {
20174 /* Read directory table. */
20175 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20176 {
20177 line_ptr += bytes_read;
20178 lh->add_include_dir (cur_dir);
20179 }
20180 line_ptr += bytes_read;
20181
20182 /* Read file name table. */
20183 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20184 {
20185 unsigned int mod_time, length;
20186 dir_index d_index;
20187
20188 line_ptr += bytes_read;
20189 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20190 line_ptr += bytes_read;
20191 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20192 line_ptr += bytes_read;
20193 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20194 line_ptr += bytes_read;
20195
20196 lh->add_file_name (cur_file, d_index, mod_time, length);
20197 }
20198 line_ptr += bytes_read;
20199 }
20200 lh->statement_program_start = line_ptr;
20201
20202 if (line_ptr > (section->buffer + section->size))
20203 complaint (_("line number info header doesn't "
20204 "fit in `.debug_line' section"));
20205
20206 return lh;
20207 }
20208
20209 /* Subroutine of dwarf_decode_lines to simplify it.
20210 Return the file name of the psymtab for included file FILE_INDEX
20211 in line header LH of PST.
20212 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20213 If space for the result is malloc'd, *NAME_HOLDER will be set.
20214 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20215
20216 static const char *
20217 psymtab_include_file_name (const struct line_header *lh, int file_index,
20218 const struct partial_symtab *pst,
20219 const char *comp_dir,
20220 gdb::unique_xmalloc_ptr<char> *name_holder)
20221 {
20222 const file_entry &fe = lh->file_names[file_index];
20223 const char *include_name = fe.name;
20224 const char *include_name_to_compare = include_name;
20225 const char *pst_filename;
20226 int file_is_pst;
20227
20228 const char *dir_name = fe.include_dir (lh);
20229
20230 gdb::unique_xmalloc_ptr<char> hold_compare;
20231 if (!IS_ABSOLUTE_PATH (include_name)
20232 && (dir_name != NULL || comp_dir != NULL))
20233 {
20234 /* Avoid creating a duplicate psymtab for PST.
20235 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20236 Before we do the comparison, however, we need to account
20237 for DIR_NAME and COMP_DIR.
20238 First prepend dir_name (if non-NULL). If we still don't
20239 have an absolute path prepend comp_dir (if non-NULL).
20240 However, the directory we record in the include-file's
20241 psymtab does not contain COMP_DIR (to match the
20242 corresponding symtab(s)).
20243
20244 Example:
20245
20246 bash$ cd /tmp
20247 bash$ gcc -g ./hello.c
20248 include_name = "hello.c"
20249 dir_name = "."
20250 DW_AT_comp_dir = comp_dir = "/tmp"
20251 DW_AT_name = "./hello.c"
20252
20253 */
20254
20255 if (dir_name != NULL)
20256 {
20257 name_holder->reset (concat (dir_name, SLASH_STRING,
20258 include_name, (char *) NULL));
20259 include_name = name_holder->get ();
20260 include_name_to_compare = include_name;
20261 }
20262 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20263 {
20264 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20265 include_name, (char *) NULL));
20266 include_name_to_compare = hold_compare.get ();
20267 }
20268 }
20269
20270 pst_filename = pst->filename;
20271 gdb::unique_xmalloc_ptr<char> copied_name;
20272 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20273 {
20274 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20275 pst_filename, (char *) NULL));
20276 pst_filename = copied_name.get ();
20277 }
20278
20279 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20280
20281 if (file_is_pst)
20282 return NULL;
20283 return include_name;
20284 }
20285
20286 /* State machine to track the state of the line number program. */
20287
20288 class lnp_state_machine
20289 {
20290 public:
20291 /* Initialize a machine state for the start of a line number
20292 program. */
20293 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20294
20295 file_entry *current_file ()
20296 {
20297 /* lh->file_names is 0-based, but the file name numbers in the
20298 statement program are 1-based. */
20299 return m_line_header->file_name_at (m_file);
20300 }
20301
20302 /* Record the line in the state machine. END_SEQUENCE is true if
20303 we're processing the end of a sequence. */
20304 void record_line (bool end_sequence);
20305
20306 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20307 nop-out rest of the lines in this sequence. */
20308 void check_line_address (struct dwarf2_cu *cu,
20309 const gdb_byte *line_ptr,
20310 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20311
20312 void handle_set_discriminator (unsigned int discriminator)
20313 {
20314 m_discriminator = discriminator;
20315 m_line_has_non_zero_discriminator |= discriminator != 0;
20316 }
20317
20318 /* Handle DW_LNE_set_address. */
20319 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20320 {
20321 m_op_index = 0;
20322 address += baseaddr;
20323 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20324 }
20325
20326 /* Handle DW_LNS_advance_pc. */
20327 void handle_advance_pc (CORE_ADDR adjust);
20328
20329 /* Handle a special opcode. */
20330 void handle_special_opcode (unsigned char op_code);
20331
20332 /* Handle DW_LNS_advance_line. */
20333 void handle_advance_line (int line_delta)
20334 {
20335 advance_line (line_delta);
20336 }
20337
20338 /* Handle DW_LNS_set_file. */
20339 void handle_set_file (file_name_index file);
20340
20341 /* Handle DW_LNS_negate_stmt. */
20342 void handle_negate_stmt ()
20343 {
20344 m_is_stmt = !m_is_stmt;
20345 }
20346
20347 /* Handle DW_LNS_const_add_pc. */
20348 void handle_const_add_pc ();
20349
20350 /* Handle DW_LNS_fixed_advance_pc. */
20351 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20352 {
20353 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20354 m_op_index = 0;
20355 }
20356
20357 /* Handle DW_LNS_copy. */
20358 void handle_copy ()
20359 {
20360 record_line (false);
20361 m_discriminator = 0;
20362 }
20363
20364 /* Handle DW_LNE_end_sequence. */
20365 void handle_end_sequence ()
20366 {
20367 m_record_line_callback = ::record_line;
20368 }
20369
20370 private:
20371 /* Advance the line by LINE_DELTA. */
20372 void advance_line (int line_delta)
20373 {
20374 m_line += line_delta;
20375
20376 if (line_delta != 0)
20377 m_line_has_non_zero_discriminator = m_discriminator != 0;
20378 }
20379
20380 gdbarch *m_gdbarch;
20381
20382 /* True if we're recording lines.
20383 Otherwise we're building partial symtabs and are just interested in
20384 finding include files mentioned by the line number program. */
20385 bool m_record_lines_p;
20386
20387 /* The line number header. */
20388 line_header *m_line_header;
20389
20390 /* These are part of the standard DWARF line number state machine,
20391 and initialized according to the DWARF spec. */
20392
20393 unsigned char m_op_index = 0;
20394 /* The line table index (1-based) of the current file. */
20395 file_name_index m_file = (file_name_index) 1;
20396 unsigned int m_line = 1;
20397
20398 /* These are initialized in the constructor. */
20399
20400 CORE_ADDR m_address;
20401 bool m_is_stmt;
20402 unsigned int m_discriminator;
20403
20404 /* Additional bits of state we need to track. */
20405
20406 /* The last file that we called dwarf2_start_subfile for.
20407 This is only used for TLLs. */
20408 unsigned int m_last_file = 0;
20409 /* The last file a line number was recorded for. */
20410 struct subfile *m_last_subfile = NULL;
20411
20412 /* The function to call to record a line. */
20413 record_line_ftype *m_record_line_callback = NULL;
20414
20415 /* The last line number that was recorded, used to coalesce
20416 consecutive entries for the same line. This can happen, for
20417 example, when discriminators are present. PR 17276. */
20418 unsigned int m_last_line = 0;
20419 bool m_line_has_non_zero_discriminator = false;
20420 };
20421
20422 void
20423 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20424 {
20425 CORE_ADDR addr_adj = (((m_op_index + adjust)
20426 / m_line_header->maximum_ops_per_instruction)
20427 * m_line_header->minimum_instruction_length);
20428 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20429 m_op_index = ((m_op_index + adjust)
20430 % m_line_header->maximum_ops_per_instruction);
20431 }
20432
20433 void
20434 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20435 {
20436 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20437 CORE_ADDR addr_adj = (((m_op_index
20438 + (adj_opcode / m_line_header->line_range))
20439 / m_line_header->maximum_ops_per_instruction)
20440 * m_line_header->minimum_instruction_length);
20441 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20442 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20443 % m_line_header->maximum_ops_per_instruction);
20444
20445 int line_delta = (m_line_header->line_base
20446 + (adj_opcode % m_line_header->line_range));
20447 advance_line (line_delta);
20448 record_line (false);
20449 m_discriminator = 0;
20450 }
20451
20452 void
20453 lnp_state_machine::handle_set_file (file_name_index file)
20454 {
20455 m_file = file;
20456
20457 const file_entry *fe = current_file ();
20458 if (fe == NULL)
20459 dwarf2_debug_line_missing_file_complaint ();
20460 else if (m_record_lines_p)
20461 {
20462 const char *dir = fe->include_dir (m_line_header);
20463
20464 m_last_subfile = get_current_subfile ();
20465 m_line_has_non_zero_discriminator = m_discriminator != 0;
20466 dwarf2_start_subfile (fe->name, dir);
20467 }
20468 }
20469
20470 void
20471 lnp_state_machine::handle_const_add_pc ()
20472 {
20473 CORE_ADDR adjust
20474 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20475
20476 CORE_ADDR addr_adj
20477 = (((m_op_index + adjust)
20478 / m_line_header->maximum_ops_per_instruction)
20479 * m_line_header->minimum_instruction_length);
20480
20481 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20482 m_op_index = ((m_op_index + adjust)
20483 % m_line_header->maximum_ops_per_instruction);
20484 }
20485
20486 /* Ignore this record_line request. */
20487
20488 static void
20489 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20490 {
20491 return;
20492 }
20493
20494 /* Return non-zero if we should add LINE to the line number table.
20495 LINE is the line to add, LAST_LINE is the last line that was added,
20496 LAST_SUBFILE is the subfile for LAST_LINE.
20497 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20498 had a non-zero discriminator.
20499
20500 We have to be careful in the presence of discriminators.
20501 E.g., for this line:
20502
20503 for (i = 0; i < 100000; i++);
20504
20505 clang can emit four line number entries for that one line,
20506 each with a different discriminator.
20507 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20508
20509 However, we want gdb to coalesce all four entries into one.
20510 Otherwise the user could stepi into the middle of the line and
20511 gdb would get confused about whether the pc really was in the
20512 middle of the line.
20513
20514 Things are further complicated by the fact that two consecutive
20515 line number entries for the same line is a heuristic used by gcc
20516 to denote the end of the prologue. So we can't just discard duplicate
20517 entries, we have to be selective about it. The heuristic we use is
20518 that we only collapse consecutive entries for the same line if at least
20519 one of those entries has a non-zero discriminator. PR 17276.
20520
20521 Note: Addresses in the line number state machine can never go backwards
20522 within one sequence, thus this coalescing is ok. */
20523
20524 static int
20525 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20526 int line_has_non_zero_discriminator,
20527 struct subfile *last_subfile)
20528 {
20529 if (get_current_subfile () != last_subfile)
20530 return 1;
20531 if (line != last_line)
20532 return 1;
20533 /* Same line for the same file that we've seen already.
20534 As a last check, for pr 17276, only record the line if the line
20535 has never had a non-zero discriminator. */
20536 if (!line_has_non_zero_discriminator)
20537 return 1;
20538 return 0;
20539 }
20540
20541 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20542 in the line table of subfile SUBFILE. */
20543
20544 static void
20545 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20546 unsigned int line, CORE_ADDR address,
20547 record_line_ftype p_record_line)
20548 {
20549 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20550
20551 if (dwarf_line_debug)
20552 {
20553 fprintf_unfiltered (gdb_stdlog,
20554 "Recording line %u, file %s, address %s\n",
20555 line, lbasename (subfile->name),
20556 paddress (gdbarch, address));
20557 }
20558
20559 (*p_record_line) (subfile, line, addr);
20560 }
20561
20562 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20563 Mark the end of a set of line number records.
20564 The arguments are the same as for dwarf_record_line_1.
20565 If SUBFILE is NULL the request is ignored. */
20566
20567 static void
20568 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20569 CORE_ADDR address, record_line_ftype p_record_line)
20570 {
20571 if (subfile == NULL)
20572 return;
20573
20574 if (dwarf_line_debug)
20575 {
20576 fprintf_unfiltered (gdb_stdlog,
20577 "Finishing current line, file %s, address %s\n",
20578 lbasename (subfile->name),
20579 paddress (gdbarch, address));
20580 }
20581
20582 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20583 }
20584
20585 void
20586 lnp_state_machine::record_line (bool end_sequence)
20587 {
20588 if (dwarf_line_debug)
20589 {
20590 fprintf_unfiltered (gdb_stdlog,
20591 "Processing actual line %u: file %u,"
20592 " address %s, is_stmt %u, discrim %u\n",
20593 m_line, to_underlying (m_file),
20594 paddress (m_gdbarch, m_address),
20595 m_is_stmt, m_discriminator);
20596 }
20597
20598 file_entry *fe = current_file ();
20599
20600 if (fe == NULL)
20601 dwarf2_debug_line_missing_file_complaint ();
20602 /* For now we ignore lines not starting on an instruction boundary.
20603 But not when processing end_sequence for compatibility with the
20604 previous version of the code. */
20605 else if (m_op_index == 0 || end_sequence)
20606 {
20607 fe->included_p = 1;
20608 if (m_record_lines_p && m_is_stmt)
20609 {
20610 if (m_last_subfile != get_current_subfile () || end_sequence)
20611 {
20612 dwarf_finish_line (m_gdbarch, m_last_subfile,
20613 m_address, m_record_line_callback);
20614 }
20615
20616 if (!end_sequence)
20617 {
20618 if (dwarf_record_line_p (m_line, m_last_line,
20619 m_line_has_non_zero_discriminator,
20620 m_last_subfile))
20621 {
20622 dwarf_record_line_1 (m_gdbarch, get_current_subfile (),
20623 m_line, m_address,
20624 m_record_line_callback);
20625 }
20626 m_last_subfile = get_current_subfile ();
20627 m_last_line = m_line;
20628 }
20629 }
20630 }
20631 }
20632
20633 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20634 bool record_lines_p)
20635 {
20636 m_gdbarch = arch;
20637 m_record_lines_p = record_lines_p;
20638 m_line_header = lh;
20639
20640 m_record_line_callback = ::record_line;
20641
20642 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20643 was a line entry for it so that the backend has a chance to adjust it
20644 and also record it in case it needs it. This is currently used by MIPS
20645 code, cf. `mips_adjust_dwarf2_line'. */
20646 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20647 m_is_stmt = lh->default_is_stmt;
20648 m_discriminator = 0;
20649 }
20650
20651 void
20652 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20653 const gdb_byte *line_ptr,
20654 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20655 {
20656 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20657 the pc range of the CU. However, we restrict the test to only ADDRESS
20658 values of zero to preserve GDB's previous behaviour which is to handle
20659 the specific case of a function being GC'd by the linker. */
20660
20661 if (address == 0 && address < unrelocated_lowpc)
20662 {
20663 /* This line table is for a function which has been
20664 GCd by the linker. Ignore it. PR gdb/12528 */
20665
20666 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20667 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20668
20669 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20670 line_offset, objfile_name (objfile));
20671 m_record_line_callback = noop_record_line;
20672 /* Note: record_line_callback is left as noop_record_line until
20673 we see DW_LNE_end_sequence. */
20674 }
20675 }
20676
20677 /* Subroutine of dwarf_decode_lines to simplify it.
20678 Process the line number information in LH.
20679 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20680 program in order to set included_p for every referenced header. */
20681
20682 static void
20683 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20684 const int decode_for_pst_p, CORE_ADDR lowpc)
20685 {
20686 const gdb_byte *line_ptr, *extended_end;
20687 const gdb_byte *line_end;
20688 unsigned int bytes_read, extended_len;
20689 unsigned char op_code, extended_op;
20690 CORE_ADDR baseaddr;
20691 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20692 bfd *abfd = objfile->obfd;
20693 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20694 /* True if we're recording line info (as opposed to building partial
20695 symtabs and just interested in finding include files mentioned by
20696 the line number program). */
20697 bool record_lines_p = !decode_for_pst_p;
20698
20699 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20700
20701 line_ptr = lh->statement_program_start;
20702 line_end = lh->statement_program_end;
20703
20704 /* Read the statement sequences until there's nothing left. */
20705 while (line_ptr < line_end)
20706 {
20707 /* The DWARF line number program state machine. Reset the state
20708 machine at the start of each sequence. */
20709 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20710 bool end_sequence = false;
20711
20712 if (record_lines_p)
20713 {
20714 /* Start a subfile for the current file of the state
20715 machine. */
20716 const file_entry *fe = state_machine.current_file ();
20717
20718 if (fe != NULL)
20719 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20720 }
20721
20722 /* Decode the table. */
20723 while (line_ptr < line_end && !end_sequence)
20724 {
20725 op_code = read_1_byte (abfd, line_ptr);
20726 line_ptr += 1;
20727
20728 if (op_code >= lh->opcode_base)
20729 {
20730 /* Special opcode. */
20731 state_machine.handle_special_opcode (op_code);
20732 }
20733 else switch (op_code)
20734 {
20735 case DW_LNS_extended_op:
20736 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20737 &bytes_read);
20738 line_ptr += bytes_read;
20739 extended_end = line_ptr + extended_len;
20740 extended_op = read_1_byte (abfd, line_ptr);
20741 line_ptr += 1;
20742 switch (extended_op)
20743 {
20744 case DW_LNE_end_sequence:
20745 state_machine.handle_end_sequence ();
20746 end_sequence = true;
20747 break;
20748 case DW_LNE_set_address:
20749 {
20750 CORE_ADDR address
20751 = read_address (abfd, line_ptr, cu, &bytes_read);
20752 line_ptr += bytes_read;
20753
20754 state_machine.check_line_address (cu, line_ptr,
20755 lowpc - baseaddr, address);
20756 state_machine.handle_set_address (baseaddr, address);
20757 }
20758 break;
20759 case DW_LNE_define_file:
20760 {
20761 const char *cur_file;
20762 unsigned int mod_time, length;
20763 dir_index dindex;
20764
20765 cur_file = read_direct_string (abfd, line_ptr,
20766 &bytes_read);
20767 line_ptr += bytes_read;
20768 dindex = (dir_index)
20769 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20770 line_ptr += bytes_read;
20771 mod_time =
20772 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20773 line_ptr += bytes_read;
20774 length =
20775 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20776 line_ptr += bytes_read;
20777 lh->add_file_name (cur_file, dindex, mod_time, length);
20778 }
20779 break;
20780 case DW_LNE_set_discriminator:
20781 {
20782 /* The discriminator is not interesting to the
20783 debugger; just ignore it. We still need to
20784 check its value though:
20785 if there are consecutive entries for the same
20786 (non-prologue) line we want to coalesce them.
20787 PR 17276. */
20788 unsigned int discr
20789 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20790 line_ptr += bytes_read;
20791
20792 state_machine.handle_set_discriminator (discr);
20793 }
20794 break;
20795 default:
20796 complaint (_("mangled .debug_line section"));
20797 return;
20798 }
20799 /* Make sure that we parsed the extended op correctly. If e.g.
20800 we expected a different address size than the producer used,
20801 we may have read the wrong number of bytes. */
20802 if (line_ptr != extended_end)
20803 {
20804 complaint (_("mangled .debug_line section"));
20805 return;
20806 }
20807 break;
20808 case DW_LNS_copy:
20809 state_machine.handle_copy ();
20810 break;
20811 case DW_LNS_advance_pc:
20812 {
20813 CORE_ADDR adjust
20814 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20815 line_ptr += bytes_read;
20816
20817 state_machine.handle_advance_pc (adjust);
20818 }
20819 break;
20820 case DW_LNS_advance_line:
20821 {
20822 int line_delta
20823 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20824 line_ptr += bytes_read;
20825
20826 state_machine.handle_advance_line (line_delta);
20827 }
20828 break;
20829 case DW_LNS_set_file:
20830 {
20831 file_name_index file
20832 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20833 &bytes_read);
20834 line_ptr += bytes_read;
20835
20836 state_machine.handle_set_file (file);
20837 }
20838 break;
20839 case DW_LNS_set_column:
20840 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20841 line_ptr += bytes_read;
20842 break;
20843 case DW_LNS_negate_stmt:
20844 state_machine.handle_negate_stmt ();
20845 break;
20846 case DW_LNS_set_basic_block:
20847 break;
20848 /* Add to the address register of the state machine the
20849 address increment value corresponding to special opcode
20850 255. I.e., this value is scaled by the minimum
20851 instruction length since special opcode 255 would have
20852 scaled the increment. */
20853 case DW_LNS_const_add_pc:
20854 state_machine.handle_const_add_pc ();
20855 break;
20856 case DW_LNS_fixed_advance_pc:
20857 {
20858 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20859 line_ptr += 2;
20860
20861 state_machine.handle_fixed_advance_pc (addr_adj);
20862 }
20863 break;
20864 default:
20865 {
20866 /* Unknown standard opcode, ignore it. */
20867 int i;
20868
20869 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20870 {
20871 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20872 line_ptr += bytes_read;
20873 }
20874 }
20875 }
20876 }
20877
20878 if (!end_sequence)
20879 dwarf2_debug_line_missing_end_sequence_complaint ();
20880
20881 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20882 in which case we still finish recording the last line). */
20883 state_machine.record_line (true);
20884 }
20885 }
20886
20887 /* Decode the Line Number Program (LNP) for the given line_header
20888 structure and CU. The actual information extracted and the type
20889 of structures created from the LNP depends on the value of PST.
20890
20891 1. If PST is NULL, then this procedure uses the data from the program
20892 to create all necessary symbol tables, and their linetables.
20893
20894 2. If PST is not NULL, this procedure reads the program to determine
20895 the list of files included by the unit represented by PST, and
20896 builds all the associated partial symbol tables.
20897
20898 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20899 It is used for relative paths in the line table.
20900 NOTE: When processing partial symtabs (pst != NULL),
20901 comp_dir == pst->dirname.
20902
20903 NOTE: It is important that psymtabs have the same file name (via strcmp)
20904 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20905 symtab we don't use it in the name of the psymtabs we create.
20906 E.g. expand_line_sal requires this when finding psymtabs to expand.
20907 A good testcase for this is mb-inline.exp.
20908
20909 LOWPC is the lowest address in CU (or 0 if not known).
20910
20911 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20912 for its PC<->lines mapping information. Otherwise only the filename
20913 table is read in. */
20914
20915 static void
20916 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20917 struct dwarf2_cu *cu, struct partial_symtab *pst,
20918 CORE_ADDR lowpc, int decode_mapping)
20919 {
20920 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20921 const int decode_for_pst_p = (pst != NULL);
20922
20923 if (decode_mapping)
20924 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20925
20926 if (decode_for_pst_p)
20927 {
20928 int file_index;
20929
20930 /* Now that we're done scanning the Line Header Program, we can
20931 create the psymtab of each included file. */
20932 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20933 if (lh->file_names[file_index].included_p == 1)
20934 {
20935 gdb::unique_xmalloc_ptr<char> name_holder;
20936 const char *include_name =
20937 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20938 &name_holder);
20939 if (include_name != NULL)
20940 dwarf2_create_include_psymtab (include_name, pst, objfile);
20941 }
20942 }
20943 else
20944 {
20945 /* Make sure a symtab is created for every file, even files
20946 which contain only variables (i.e. no code with associated
20947 line numbers). */
20948 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20949 int i;
20950
20951 for (i = 0; i < lh->file_names.size (); i++)
20952 {
20953 file_entry &fe = lh->file_names[i];
20954
20955 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20956
20957 if (get_current_subfile ()->symtab == NULL)
20958 {
20959 get_current_subfile ()->symtab
20960 = allocate_symtab (cust, get_current_subfile ()->name);
20961 }
20962 fe.symtab = get_current_subfile ()->symtab;
20963 }
20964 }
20965 }
20966
20967 /* Start a subfile for DWARF. FILENAME is the name of the file and
20968 DIRNAME the name of the source directory which contains FILENAME
20969 or NULL if not known.
20970 This routine tries to keep line numbers from identical absolute and
20971 relative file names in a common subfile.
20972
20973 Using the `list' example from the GDB testsuite, which resides in
20974 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20975 of /srcdir/list0.c yields the following debugging information for list0.c:
20976
20977 DW_AT_name: /srcdir/list0.c
20978 DW_AT_comp_dir: /compdir
20979 files.files[0].name: list0.h
20980 files.files[0].dir: /srcdir
20981 files.files[1].name: list0.c
20982 files.files[1].dir: /srcdir
20983
20984 The line number information for list0.c has to end up in a single
20985 subfile, so that `break /srcdir/list0.c:1' works as expected.
20986 start_subfile will ensure that this happens provided that we pass the
20987 concatenation of files.files[1].dir and files.files[1].name as the
20988 subfile's name. */
20989
20990 static void
20991 dwarf2_start_subfile (const char *filename, const char *dirname)
20992 {
20993 char *copy = NULL;
20994
20995 /* In order not to lose the line information directory,
20996 we concatenate it to the filename when it makes sense.
20997 Note that the Dwarf3 standard says (speaking of filenames in line
20998 information): ``The directory index is ignored for file names
20999 that represent full path names''. Thus ignoring dirname in the
21000 `else' branch below isn't an issue. */
21001
21002 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21003 {
21004 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21005 filename = copy;
21006 }
21007
21008 start_subfile (filename);
21009
21010 if (copy != NULL)
21011 xfree (copy);
21012 }
21013
21014 /* Start a symtab for DWARF.
21015 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21016
21017 static struct compunit_symtab *
21018 dwarf2_start_symtab (struct dwarf2_cu *cu,
21019 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21020 {
21021 struct compunit_symtab *cust
21022 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21023 low_pc, cu->language);
21024
21025 record_debugformat ("DWARF 2");
21026 record_producer (cu->producer);
21027
21028 cu->processing_has_namespace_info = 0;
21029
21030 return cust;
21031 }
21032
21033 static void
21034 var_decode_location (struct attribute *attr, struct symbol *sym,
21035 struct dwarf2_cu *cu)
21036 {
21037 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21038 struct comp_unit_head *cu_header = &cu->header;
21039
21040 /* NOTE drow/2003-01-30: There used to be a comment and some special
21041 code here to turn a symbol with DW_AT_external and a
21042 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21043 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21044 with some versions of binutils) where shared libraries could have
21045 relocations against symbols in their debug information - the
21046 minimal symbol would have the right address, but the debug info
21047 would not. It's no longer necessary, because we will explicitly
21048 apply relocations when we read in the debug information now. */
21049
21050 /* A DW_AT_location attribute with no contents indicates that a
21051 variable has been optimized away. */
21052 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21053 {
21054 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21055 return;
21056 }
21057
21058 /* Handle one degenerate form of location expression specially, to
21059 preserve GDB's previous behavior when section offsets are
21060 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21061 then mark this symbol as LOC_STATIC. */
21062
21063 if (attr_form_is_block (attr)
21064 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21065 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21066 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21067 && (DW_BLOCK (attr)->size
21068 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21069 {
21070 unsigned int dummy;
21071
21072 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21073 SYMBOL_VALUE_ADDRESS (sym) =
21074 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21075 else
21076 SYMBOL_VALUE_ADDRESS (sym) =
21077 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21078 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21079 fixup_symbol_section (sym, objfile);
21080 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21081 SYMBOL_SECTION (sym));
21082 return;
21083 }
21084
21085 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21086 expression evaluator, and use LOC_COMPUTED only when necessary
21087 (i.e. when the value of a register or memory location is
21088 referenced, or a thread-local block, etc.). Then again, it might
21089 not be worthwhile. I'm assuming that it isn't unless performance
21090 or memory numbers show me otherwise. */
21091
21092 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21093
21094 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21095 cu->has_loclist = 1;
21096 }
21097
21098 /* Given a pointer to a DWARF information entry, figure out if we need
21099 to make a symbol table entry for it, and if so, create a new entry
21100 and return a pointer to it.
21101 If TYPE is NULL, determine symbol type from the die, otherwise
21102 used the passed type.
21103 If SPACE is not NULL, use it to hold the new symbol. If it is
21104 NULL, allocate a new symbol on the objfile's obstack. */
21105
21106 static struct symbol *
21107 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21108 struct symbol *space)
21109 {
21110 struct dwarf2_per_objfile *dwarf2_per_objfile
21111 = cu->per_cu->dwarf2_per_objfile;
21112 struct objfile *objfile = dwarf2_per_objfile->objfile;
21113 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21114 struct symbol *sym = NULL;
21115 const char *name;
21116 struct attribute *attr = NULL;
21117 struct attribute *attr2 = NULL;
21118 CORE_ADDR baseaddr;
21119 struct pending **list_to_add = NULL;
21120
21121 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21122
21123 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21124
21125 name = dwarf2_name (die, cu);
21126 if (name)
21127 {
21128 const char *linkagename;
21129 int suppress_add = 0;
21130
21131 if (space)
21132 sym = space;
21133 else
21134 sym = allocate_symbol (objfile);
21135 OBJSTAT (objfile, n_syms++);
21136
21137 /* Cache this symbol's name and the name's demangled form (if any). */
21138 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21139 linkagename = dwarf2_physname (name, die, cu);
21140 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21141
21142 /* Fortran does not have mangling standard and the mangling does differ
21143 between gfortran, iFort etc. */
21144 if (cu->language == language_fortran
21145 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21146 symbol_set_demangled_name (&(sym->ginfo),
21147 dwarf2_full_name (name, die, cu),
21148 NULL);
21149
21150 /* Default assumptions.
21151 Use the passed type or decode it from the die. */
21152 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21153 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21154 if (type != NULL)
21155 SYMBOL_TYPE (sym) = type;
21156 else
21157 SYMBOL_TYPE (sym) = die_type (die, cu);
21158 attr = dwarf2_attr (die,
21159 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21160 cu);
21161 if (attr)
21162 {
21163 SYMBOL_LINE (sym) = DW_UNSND (attr);
21164 }
21165
21166 attr = dwarf2_attr (die,
21167 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21168 cu);
21169 if (attr)
21170 {
21171 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21172 struct file_entry *fe;
21173
21174 if (cu->line_header != NULL)
21175 fe = cu->line_header->file_name_at (file_index);
21176 else
21177 fe = NULL;
21178
21179 if (fe == NULL)
21180 complaint (_("file index out of range"));
21181 else
21182 symbol_set_symtab (sym, fe->symtab);
21183 }
21184
21185 switch (die->tag)
21186 {
21187 case DW_TAG_label:
21188 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21189 if (attr)
21190 {
21191 CORE_ADDR addr;
21192
21193 addr = attr_value_as_address (attr);
21194 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21195 SYMBOL_VALUE_ADDRESS (sym) = addr;
21196 }
21197 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21198 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21199 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21200 add_symbol_to_list (sym, cu->list_in_scope);
21201 break;
21202 case DW_TAG_subprogram:
21203 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21204 finish_block. */
21205 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21206 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21207 if ((attr2 && (DW_UNSND (attr2) != 0))
21208 || cu->language == language_ada)
21209 {
21210 /* Subprograms marked external are stored as a global symbol.
21211 Ada subprograms, whether marked external or not, are always
21212 stored as a global symbol, because we want to be able to
21213 access them globally. For instance, we want to be able
21214 to break on a nested subprogram without having to
21215 specify the context. */
21216 list_to_add = &global_symbols;
21217 }
21218 else
21219 {
21220 list_to_add = cu->list_in_scope;
21221 }
21222 break;
21223 case DW_TAG_inlined_subroutine:
21224 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21225 finish_block. */
21226 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21227 SYMBOL_INLINED (sym) = 1;
21228 list_to_add = cu->list_in_scope;
21229 break;
21230 case DW_TAG_template_value_param:
21231 suppress_add = 1;
21232 /* Fall through. */
21233 case DW_TAG_constant:
21234 case DW_TAG_variable:
21235 case DW_TAG_member:
21236 /* Compilation with minimal debug info may result in
21237 variables with missing type entries. Change the
21238 misleading `void' type to something sensible. */
21239 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21240 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21241
21242 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21243 /* In the case of DW_TAG_member, we should only be called for
21244 static const members. */
21245 if (die->tag == DW_TAG_member)
21246 {
21247 /* dwarf2_add_field uses die_is_declaration,
21248 so we do the same. */
21249 gdb_assert (die_is_declaration (die, cu));
21250 gdb_assert (attr);
21251 }
21252 if (attr)
21253 {
21254 dwarf2_const_value (attr, sym, cu);
21255 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21256 if (!suppress_add)
21257 {
21258 if (attr2 && (DW_UNSND (attr2) != 0))
21259 list_to_add = &global_symbols;
21260 else
21261 list_to_add = cu->list_in_scope;
21262 }
21263 break;
21264 }
21265 attr = dwarf2_attr (die, DW_AT_location, cu);
21266 if (attr)
21267 {
21268 var_decode_location (attr, sym, cu);
21269 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21270
21271 /* Fortran explicitly imports any global symbols to the local
21272 scope by DW_TAG_common_block. */
21273 if (cu->language == language_fortran && die->parent
21274 && die->parent->tag == DW_TAG_common_block)
21275 attr2 = NULL;
21276
21277 if (SYMBOL_CLASS (sym) == LOC_STATIC
21278 && SYMBOL_VALUE_ADDRESS (sym) == 0
21279 && !dwarf2_per_objfile->has_section_at_zero)
21280 {
21281 /* When a static variable is eliminated by the linker,
21282 the corresponding debug information is not stripped
21283 out, but the variable address is set to null;
21284 do not add such variables into symbol table. */
21285 }
21286 else if (attr2 && (DW_UNSND (attr2) != 0))
21287 {
21288 /* Workaround gfortran PR debug/40040 - it uses
21289 DW_AT_location for variables in -fPIC libraries which may
21290 get overriden by other libraries/executable and get
21291 a different address. Resolve it by the minimal symbol
21292 which may come from inferior's executable using copy
21293 relocation. Make this workaround only for gfortran as for
21294 other compilers GDB cannot guess the minimal symbol
21295 Fortran mangling kind. */
21296 if (cu->language == language_fortran && die->parent
21297 && die->parent->tag == DW_TAG_module
21298 && cu->producer
21299 && startswith (cu->producer, "GNU Fortran"))
21300 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21301
21302 /* A variable with DW_AT_external is never static,
21303 but it may be block-scoped. */
21304 list_to_add = (cu->list_in_scope == &file_symbols
21305 ? &global_symbols : cu->list_in_scope);
21306 }
21307 else
21308 list_to_add = cu->list_in_scope;
21309 }
21310 else
21311 {
21312 /* We do not know the address of this symbol.
21313 If it is an external symbol and we have type information
21314 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21315 The address of the variable will then be determined from
21316 the minimal symbol table whenever the variable is
21317 referenced. */
21318 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21319
21320 /* Fortran explicitly imports any global symbols to the local
21321 scope by DW_TAG_common_block. */
21322 if (cu->language == language_fortran && die->parent
21323 && die->parent->tag == DW_TAG_common_block)
21324 {
21325 /* SYMBOL_CLASS doesn't matter here because
21326 read_common_block is going to reset it. */
21327 if (!suppress_add)
21328 list_to_add = cu->list_in_scope;
21329 }
21330 else if (attr2 && (DW_UNSND (attr2) != 0)
21331 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21332 {
21333 /* A variable with DW_AT_external is never static, but it
21334 may be block-scoped. */
21335 list_to_add = (cu->list_in_scope == &file_symbols
21336 ? &global_symbols : cu->list_in_scope);
21337
21338 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21339 }
21340 else if (!die_is_declaration (die, cu))
21341 {
21342 /* Use the default LOC_OPTIMIZED_OUT class. */
21343 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21344 if (!suppress_add)
21345 list_to_add = cu->list_in_scope;
21346 }
21347 }
21348 break;
21349 case DW_TAG_formal_parameter:
21350 {
21351 /* If we are inside a function, mark this as an argument. If
21352 not, we might be looking at an argument to an inlined function
21353 when we do not have enough information to show inlined frames;
21354 pretend it's a local variable in that case so that the user can
21355 still see it. */
21356 struct context_stack *curr = get_current_context_stack ();
21357 if (curr != nullptr && curr->name != nullptr)
21358 SYMBOL_IS_ARGUMENT (sym) = 1;
21359 attr = dwarf2_attr (die, DW_AT_location, cu);
21360 if (attr)
21361 {
21362 var_decode_location (attr, sym, cu);
21363 }
21364 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21365 if (attr)
21366 {
21367 dwarf2_const_value (attr, sym, cu);
21368 }
21369
21370 list_to_add = cu->list_in_scope;
21371 }
21372 break;
21373 case DW_TAG_unspecified_parameters:
21374 /* From varargs functions; gdb doesn't seem to have any
21375 interest in this information, so just ignore it for now.
21376 (FIXME?) */
21377 break;
21378 case DW_TAG_template_type_param:
21379 suppress_add = 1;
21380 /* Fall through. */
21381 case DW_TAG_class_type:
21382 case DW_TAG_interface_type:
21383 case DW_TAG_structure_type:
21384 case DW_TAG_union_type:
21385 case DW_TAG_set_type:
21386 case DW_TAG_enumeration_type:
21387 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21388 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21389
21390 {
21391 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21392 really ever be static objects: otherwise, if you try
21393 to, say, break of a class's method and you're in a file
21394 which doesn't mention that class, it won't work unless
21395 the check for all static symbols in lookup_symbol_aux
21396 saves you. See the OtherFileClass tests in
21397 gdb.c++/namespace.exp. */
21398
21399 if (!suppress_add)
21400 {
21401 list_to_add = (cu->list_in_scope == &file_symbols
21402 && cu->language == language_cplus
21403 ? &global_symbols : cu->list_in_scope);
21404
21405 /* The semantics of C++ state that "struct foo {
21406 ... }" also defines a typedef for "foo". */
21407 if (cu->language == language_cplus
21408 || cu->language == language_ada
21409 || cu->language == language_d
21410 || cu->language == language_rust)
21411 {
21412 /* The symbol's name is already allocated along
21413 with this objfile, so we don't need to
21414 duplicate it for the type. */
21415 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21416 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21417 }
21418 }
21419 }
21420 break;
21421 case DW_TAG_typedef:
21422 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21423 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21424 list_to_add = cu->list_in_scope;
21425 break;
21426 case DW_TAG_base_type:
21427 case DW_TAG_subrange_type:
21428 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21429 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21430 list_to_add = cu->list_in_scope;
21431 break;
21432 case DW_TAG_enumerator:
21433 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21434 if (attr)
21435 {
21436 dwarf2_const_value (attr, sym, cu);
21437 }
21438 {
21439 /* NOTE: carlton/2003-11-10: See comment above in the
21440 DW_TAG_class_type, etc. block. */
21441
21442 list_to_add = (cu->list_in_scope == &file_symbols
21443 && cu->language == language_cplus
21444 ? &global_symbols : cu->list_in_scope);
21445 }
21446 break;
21447 case DW_TAG_imported_declaration:
21448 case DW_TAG_namespace:
21449 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21450 list_to_add = &global_symbols;
21451 break;
21452 case DW_TAG_module:
21453 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21454 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21455 list_to_add = &global_symbols;
21456 break;
21457 case DW_TAG_common_block:
21458 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21459 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21460 add_symbol_to_list (sym, cu->list_in_scope);
21461 break;
21462 default:
21463 /* Not a tag we recognize. Hopefully we aren't processing
21464 trash data, but since we must specifically ignore things
21465 we don't recognize, there is nothing else we should do at
21466 this point. */
21467 complaint (_("unsupported tag: '%s'"),
21468 dwarf_tag_name (die->tag));
21469 break;
21470 }
21471
21472 if (suppress_add)
21473 {
21474 sym->hash_next = objfile->template_symbols;
21475 objfile->template_symbols = sym;
21476 list_to_add = NULL;
21477 }
21478
21479 if (list_to_add != NULL)
21480 add_symbol_to_list (sym, list_to_add);
21481
21482 /* For the benefit of old versions of GCC, check for anonymous
21483 namespaces based on the demangled name. */
21484 if (!cu->processing_has_namespace_info
21485 && cu->language == language_cplus)
21486 cp_scan_for_anonymous_namespaces (sym, objfile);
21487 }
21488 return (sym);
21489 }
21490
21491 /* Given an attr with a DW_FORM_dataN value in host byte order,
21492 zero-extend it as appropriate for the symbol's type. The DWARF
21493 standard (v4) is not entirely clear about the meaning of using
21494 DW_FORM_dataN for a constant with a signed type, where the type is
21495 wider than the data. The conclusion of a discussion on the DWARF
21496 list was that this is unspecified. We choose to always zero-extend
21497 because that is the interpretation long in use by GCC. */
21498
21499 static gdb_byte *
21500 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21501 struct dwarf2_cu *cu, LONGEST *value, int bits)
21502 {
21503 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21504 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21505 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21506 LONGEST l = DW_UNSND (attr);
21507
21508 if (bits < sizeof (*value) * 8)
21509 {
21510 l &= ((LONGEST) 1 << bits) - 1;
21511 *value = l;
21512 }
21513 else if (bits == sizeof (*value) * 8)
21514 *value = l;
21515 else
21516 {
21517 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21518 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21519 return bytes;
21520 }
21521
21522 return NULL;
21523 }
21524
21525 /* Read a constant value from an attribute. Either set *VALUE, or if
21526 the value does not fit in *VALUE, set *BYTES - either already
21527 allocated on the objfile obstack, or newly allocated on OBSTACK,
21528 or, set *BATON, if we translated the constant to a location
21529 expression. */
21530
21531 static void
21532 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21533 const char *name, struct obstack *obstack,
21534 struct dwarf2_cu *cu,
21535 LONGEST *value, const gdb_byte **bytes,
21536 struct dwarf2_locexpr_baton **baton)
21537 {
21538 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21539 struct comp_unit_head *cu_header = &cu->header;
21540 struct dwarf_block *blk;
21541 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21542 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21543
21544 *value = 0;
21545 *bytes = NULL;
21546 *baton = NULL;
21547
21548 switch (attr->form)
21549 {
21550 case DW_FORM_addr:
21551 case DW_FORM_GNU_addr_index:
21552 {
21553 gdb_byte *data;
21554
21555 if (TYPE_LENGTH (type) != cu_header->addr_size)
21556 dwarf2_const_value_length_mismatch_complaint (name,
21557 cu_header->addr_size,
21558 TYPE_LENGTH (type));
21559 /* Symbols of this form are reasonably rare, so we just
21560 piggyback on the existing location code rather than writing
21561 a new implementation of symbol_computed_ops. */
21562 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21563 (*baton)->per_cu = cu->per_cu;
21564 gdb_assert ((*baton)->per_cu);
21565
21566 (*baton)->size = 2 + cu_header->addr_size;
21567 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21568 (*baton)->data = data;
21569
21570 data[0] = DW_OP_addr;
21571 store_unsigned_integer (&data[1], cu_header->addr_size,
21572 byte_order, DW_ADDR (attr));
21573 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21574 }
21575 break;
21576 case DW_FORM_string:
21577 case DW_FORM_strp:
21578 case DW_FORM_GNU_str_index:
21579 case DW_FORM_GNU_strp_alt:
21580 /* DW_STRING is already allocated on the objfile obstack, point
21581 directly to it. */
21582 *bytes = (const gdb_byte *) DW_STRING (attr);
21583 break;
21584 case DW_FORM_block1:
21585 case DW_FORM_block2:
21586 case DW_FORM_block4:
21587 case DW_FORM_block:
21588 case DW_FORM_exprloc:
21589 case DW_FORM_data16:
21590 blk = DW_BLOCK (attr);
21591 if (TYPE_LENGTH (type) != blk->size)
21592 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21593 TYPE_LENGTH (type));
21594 *bytes = blk->data;
21595 break;
21596
21597 /* The DW_AT_const_value attributes are supposed to carry the
21598 symbol's value "represented as it would be on the target
21599 architecture." By the time we get here, it's already been
21600 converted to host endianness, so we just need to sign- or
21601 zero-extend it as appropriate. */
21602 case DW_FORM_data1:
21603 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21604 break;
21605 case DW_FORM_data2:
21606 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21607 break;
21608 case DW_FORM_data4:
21609 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21610 break;
21611 case DW_FORM_data8:
21612 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21613 break;
21614
21615 case DW_FORM_sdata:
21616 case DW_FORM_implicit_const:
21617 *value = DW_SND (attr);
21618 break;
21619
21620 case DW_FORM_udata:
21621 *value = DW_UNSND (attr);
21622 break;
21623
21624 default:
21625 complaint (_("unsupported const value attribute form: '%s'"),
21626 dwarf_form_name (attr->form));
21627 *value = 0;
21628 break;
21629 }
21630 }
21631
21632
21633 /* Copy constant value from an attribute to a symbol. */
21634
21635 static void
21636 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21637 struct dwarf2_cu *cu)
21638 {
21639 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21640 LONGEST value;
21641 const gdb_byte *bytes;
21642 struct dwarf2_locexpr_baton *baton;
21643
21644 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21645 SYMBOL_PRINT_NAME (sym),
21646 &objfile->objfile_obstack, cu,
21647 &value, &bytes, &baton);
21648
21649 if (baton != NULL)
21650 {
21651 SYMBOL_LOCATION_BATON (sym) = baton;
21652 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21653 }
21654 else if (bytes != NULL)
21655 {
21656 SYMBOL_VALUE_BYTES (sym) = bytes;
21657 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21658 }
21659 else
21660 {
21661 SYMBOL_VALUE (sym) = value;
21662 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21663 }
21664 }
21665
21666 /* Return the type of the die in question using its DW_AT_type attribute. */
21667
21668 static struct type *
21669 die_type (struct die_info *die, struct dwarf2_cu *cu)
21670 {
21671 struct attribute *type_attr;
21672
21673 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21674 if (!type_attr)
21675 {
21676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21677 /* A missing DW_AT_type represents a void type. */
21678 return objfile_type (objfile)->builtin_void;
21679 }
21680
21681 return lookup_die_type (die, type_attr, cu);
21682 }
21683
21684 /* True iff CU's producer generates GNAT Ada auxiliary information
21685 that allows to find parallel types through that information instead
21686 of having to do expensive parallel lookups by type name. */
21687
21688 static int
21689 need_gnat_info (struct dwarf2_cu *cu)
21690 {
21691 /* Assume that the Ada compiler was GNAT, which always produces
21692 the auxiliary information. */
21693 return (cu->language == language_ada);
21694 }
21695
21696 /* Return the auxiliary type of the die in question using its
21697 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21698 attribute is not present. */
21699
21700 static struct type *
21701 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21702 {
21703 struct attribute *type_attr;
21704
21705 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21706 if (!type_attr)
21707 return NULL;
21708
21709 return lookup_die_type (die, type_attr, cu);
21710 }
21711
21712 /* If DIE has a descriptive_type attribute, then set the TYPE's
21713 descriptive type accordingly. */
21714
21715 static void
21716 set_descriptive_type (struct type *type, struct die_info *die,
21717 struct dwarf2_cu *cu)
21718 {
21719 struct type *descriptive_type = die_descriptive_type (die, cu);
21720
21721 if (descriptive_type)
21722 {
21723 ALLOCATE_GNAT_AUX_TYPE (type);
21724 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21725 }
21726 }
21727
21728 /* Return the containing type of the die in question using its
21729 DW_AT_containing_type attribute. */
21730
21731 static struct type *
21732 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21733 {
21734 struct attribute *type_attr;
21735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21736
21737 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21738 if (!type_attr)
21739 error (_("Dwarf Error: Problem turning containing type into gdb type "
21740 "[in module %s]"), objfile_name (objfile));
21741
21742 return lookup_die_type (die, type_attr, cu);
21743 }
21744
21745 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21746
21747 static struct type *
21748 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21749 {
21750 struct dwarf2_per_objfile *dwarf2_per_objfile
21751 = cu->per_cu->dwarf2_per_objfile;
21752 struct objfile *objfile = dwarf2_per_objfile->objfile;
21753 char *message, *saved;
21754
21755 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21756 objfile_name (objfile),
21757 sect_offset_str (cu->header.sect_off),
21758 sect_offset_str (die->sect_off));
21759 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21760 message, strlen (message));
21761 xfree (message);
21762
21763 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21764 }
21765
21766 /* Look up the type of DIE in CU using its type attribute ATTR.
21767 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21768 DW_AT_containing_type.
21769 If there is no type substitute an error marker. */
21770
21771 static struct type *
21772 lookup_die_type (struct die_info *die, const struct attribute *attr,
21773 struct dwarf2_cu *cu)
21774 {
21775 struct dwarf2_per_objfile *dwarf2_per_objfile
21776 = cu->per_cu->dwarf2_per_objfile;
21777 struct objfile *objfile = dwarf2_per_objfile->objfile;
21778 struct type *this_type;
21779
21780 gdb_assert (attr->name == DW_AT_type
21781 || attr->name == DW_AT_GNAT_descriptive_type
21782 || attr->name == DW_AT_containing_type);
21783
21784 /* First see if we have it cached. */
21785
21786 if (attr->form == DW_FORM_GNU_ref_alt)
21787 {
21788 struct dwarf2_per_cu_data *per_cu;
21789 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21790
21791 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21792 dwarf2_per_objfile);
21793 this_type = get_die_type_at_offset (sect_off, per_cu);
21794 }
21795 else if (attr_form_is_ref (attr))
21796 {
21797 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21798
21799 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21800 }
21801 else if (attr->form == DW_FORM_ref_sig8)
21802 {
21803 ULONGEST signature = DW_SIGNATURE (attr);
21804
21805 return get_signatured_type (die, signature, cu);
21806 }
21807 else
21808 {
21809 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21810 " at %s [in module %s]"),
21811 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21812 objfile_name (objfile));
21813 return build_error_marker_type (cu, die);
21814 }
21815
21816 /* If not cached we need to read it in. */
21817
21818 if (this_type == NULL)
21819 {
21820 struct die_info *type_die = NULL;
21821 struct dwarf2_cu *type_cu = cu;
21822
21823 if (attr_form_is_ref (attr))
21824 type_die = follow_die_ref (die, attr, &type_cu);
21825 if (type_die == NULL)
21826 return build_error_marker_type (cu, die);
21827 /* If we find the type now, it's probably because the type came
21828 from an inter-CU reference and the type's CU got expanded before
21829 ours. */
21830 this_type = read_type_die (type_die, type_cu);
21831 }
21832
21833 /* If we still don't have a type use an error marker. */
21834
21835 if (this_type == NULL)
21836 return build_error_marker_type (cu, die);
21837
21838 return this_type;
21839 }
21840
21841 /* Return the type in DIE, CU.
21842 Returns NULL for invalid types.
21843
21844 This first does a lookup in die_type_hash,
21845 and only reads the die in if necessary.
21846
21847 NOTE: This can be called when reading in partial or full symbols. */
21848
21849 static struct type *
21850 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21851 {
21852 struct type *this_type;
21853
21854 this_type = get_die_type (die, cu);
21855 if (this_type)
21856 return this_type;
21857
21858 return read_type_die_1 (die, cu);
21859 }
21860
21861 /* Read the type in DIE, CU.
21862 Returns NULL for invalid types. */
21863
21864 static struct type *
21865 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21866 {
21867 struct type *this_type = NULL;
21868
21869 switch (die->tag)
21870 {
21871 case DW_TAG_class_type:
21872 case DW_TAG_interface_type:
21873 case DW_TAG_structure_type:
21874 case DW_TAG_union_type:
21875 this_type = read_structure_type (die, cu);
21876 break;
21877 case DW_TAG_enumeration_type:
21878 this_type = read_enumeration_type (die, cu);
21879 break;
21880 case DW_TAG_subprogram:
21881 case DW_TAG_subroutine_type:
21882 case DW_TAG_inlined_subroutine:
21883 this_type = read_subroutine_type (die, cu);
21884 break;
21885 case DW_TAG_array_type:
21886 this_type = read_array_type (die, cu);
21887 break;
21888 case DW_TAG_set_type:
21889 this_type = read_set_type (die, cu);
21890 break;
21891 case DW_TAG_pointer_type:
21892 this_type = read_tag_pointer_type (die, cu);
21893 break;
21894 case DW_TAG_ptr_to_member_type:
21895 this_type = read_tag_ptr_to_member_type (die, cu);
21896 break;
21897 case DW_TAG_reference_type:
21898 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21899 break;
21900 case DW_TAG_rvalue_reference_type:
21901 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21902 break;
21903 case DW_TAG_const_type:
21904 this_type = read_tag_const_type (die, cu);
21905 break;
21906 case DW_TAG_volatile_type:
21907 this_type = read_tag_volatile_type (die, cu);
21908 break;
21909 case DW_TAG_restrict_type:
21910 this_type = read_tag_restrict_type (die, cu);
21911 break;
21912 case DW_TAG_string_type:
21913 this_type = read_tag_string_type (die, cu);
21914 break;
21915 case DW_TAG_typedef:
21916 this_type = read_typedef (die, cu);
21917 break;
21918 case DW_TAG_subrange_type:
21919 this_type = read_subrange_type (die, cu);
21920 break;
21921 case DW_TAG_base_type:
21922 this_type = read_base_type (die, cu);
21923 break;
21924 case DW_TAG_unspecified_type:
21925 this_type = read_unspecified_type (die, cu);
21926 break;
21927 case DW_TAG_namespace:
21928 this_type = read_namespace_type (die, cu);
21929 break;
21930 case DW_TAG_module:
21931 this_type = read_module_type (die, cu);
21932 break;
21933 case DW_TAG_atomic_type:
21934 this_type = read_tag_atomic_type (die, cu);
21935 break;
21936 default:
21937 complaint (_("unexpected tag in read_type_die: '%s'"),
21938 dwarf_tag_name (die->tag));
21939 break;
21940 }
21941
21942 return this_type;
21943 }
21944
21945 /* See if we can figure out if the class lives in a namespace. We do
21946 this by looking for a member function; its demangled name will
21947 contain namespace info, if there is any.
21948 Return the computed name or NULL.
21949 Space for the result is allocated on the objfile's obstack.
21950 This is the full-die version of guess_partial_die_structure_name.
21951 In this case we know DIE has no useful parent. */
21952
21953 static char *
21954 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21955 {
21956 struct die_info *spec_die;
21957 struct dwarf2_cu *spec_cu;
21958 struct die_info *child;
21959 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21960
21961 spec_cu = cu;
21962 spec_die = die_specification (die, &spec_cu);
21963 if (spec_die != NULL)
21964 {
21965 die = spec_die;
21966 cu = spec_cu;
21967 }
21968
21969 for (child = die->child;
21970 child != NULL;
21971 child = child->sibling)
21972 {
21973 if (child->tag == DW_TAG_subprogram)
21974 {
21975 const char *linkage_name = dw2_linkage_name (child, cu);
21976
21977 if (linkage_name != NULL)
21978 {
21979 char *actual_name
21980 = language_class_name_from_physname (cu->language_defn,
21981 linkage_name);
21982 char *name = NULL;
21983
21984 if (actual_name != NULL)
21985 {
21986 const char *die_name = dwarf2_name (die, cu);
21987
21988 if (die_name != NULL
21989 && strcmp (die_name, actual_name) != 0)
21990 {
21991 /* Strip off the class name from the full name.
21992 We want the prefix. */
21993 int die_name_len = strlen (die_name);
21994 int actual_name_len = strlen (actual_name);
21995
21996 /* Test for '::' as a sanity check. */
21997 if (actual_name_len > die_name_len + 2
21998 && actual_name[actual_name_len
21999 - die_name_len - 1] == ':')
22000 name = (char *) obstack_copy0 (
22001 &objfile->per_bfd->storage_obstack,
22002 actual_name, actual_name_len - die_name_len - 2);
22003 }
22004 }
22005 xfree (actual_name);
22006 return name;
22007 }
22008 }
22009 }
22010
22011 return NULL;
22012 }
22013
22014 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22015 prefix part in such case. See
22016 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22017
22018 static const char *
22019 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22020 {
22021 struct attribute *attr;
22022 const char *base;
22023
22024 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22025 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22026 return NULL;
22027
22028 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22029 return NULL;
22030
22031 attr = dw2_linkage_name_attr (die, cu);
22032 if (attr == NULL || DW_STRING (attr) == NULL)
22033 return NULL;
22034
22035 /* dwarf2_name had to be already called. */
22036 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22037
22038 /* Strip the base name, keep any leading namespaces/classes. */
22039 base = strrchr (DW_STRING (attr), ':');
22040 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22041 return "";
22042
22043 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22044 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22045 DW_STRING (attr),
22046 &base[-1] - DW_STRING (attr));
22047 }
22048
22049 /* Return the name of the namespace/class that DIE is defined within,
22050 or "" if we can't tell. The caller should not xfree the result.
22051
22052 For example, if we're within the method foo() in the following
22053 code:
22054
22055 namespace N {
22056 class C {
22057 void foo () {
22058 }
22059 };
22060 }
22061
22062 then determine_prefix on foo's die will return "N::C". */
22063
22064 static const char *
22065 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22066 {
22067 struct dwarf2_per_objfile *dwarf2_per_objfile
22068 = cu->per_cu->dwarf2_per_objfile;
22069 struct die_info *parent, *spec_die;
22070 struct dwarf2_cu *spec_cu;
22071 struct type *parent_type;
22072 const char *retval;
22073
22074 if (cu->language != language_cplus
22075 && cu->language != language_fortran && cu->language != language_d
22076 && cu->language != language_rust)
22077 return "";
22078
22079 retval = anonymous_struct_prefix (die, cu);
22080 if (retval)
22081 return retval;
22082
22083 /* We have to be careful in the presence of DW_AT_specification.
22084 For example, with GCC 3.4, given the code
22085
22086 namespace N {
22087 void foo() {
22088 // Definition of N::foo.
22089 }
22090 }
22091
22092 then we'll have a tree of DIEs like this:
22093
22094 1: DW_TAG_compile_unit
22095 2: DW_TAG_namespace // N
22096 3: DW_TAG_subprogram // declaration of N::foo
22097 4: DW_TAG_subprogram // definition of N::foo
22098 DW_AT_specification // refers to die #3
22099
22100 Thus, when processing die #4, we have to pretend that we're in
22101 the context of its DW_AT_specification, namely the contex of die
22102 #3. */
22103 spec_cu = cu;
22104 spec_die = die_specification (die, &spec_cu);
22105 if (spec_die == NULL)
22106 parent = die->parent;
22107 else
22108 {
22109 parent = spec_die->parent;
22110 cu = spec_cu;
22111 }
22112
22113 if (parent == NULL)
22114 return "";
22115 else if (parent->building_fullname)
22116 {
22117 const char *name;
22118 const char *parent_name;
22119
22120 /* It has been seen on RealView 2.2 built binaries,
22121 DW_TAG_template_type_param types actually _defined_ as
22122 children of the parent class:
22123
22124 enum E {};
22125 template class <class Enum> Class{};
22126 Class<enum E> class_e;
22127
22128 1: DW_TAG_class_type (Class)
22129 2: DW_TAG_enumeration_type (E)
22130 3: DW_TAG_enumerator (enum1:0)
22131 3: DW_TAG_enumerator (enum2:1)
22132 ...
22133 2: DW_TAG_template_type_param
22134 DW_AT_type DW_FORM_ref_udata (E)
22135
22136 Besides being broken debug info, it can put GDB into an
22137 infinite loop. Consider:
22138
22139 When we're building the full name for Class<E>, we'll start
22140 at Class, and go look over its template type parameters,
22141 finding E. We'll then try to build the full name of E, and
22142 reach here. We're now trying to build the full name of E,
22143 and look over the parent DIE for containing scope. In the
22144 broken case, if we followed the parent DIE of E, we'd again
22145 find Class, and once again go look at its template type
22146 arguments, etc., etc. Simply don't consider such parent die
22147 as source-level parent of this die (it can't be, the language
22148 doesn't allow it), and break the loop here. */
22149 name = dwarf2_name (die, cu);
22150 parent_name = dwarf2_name (parent, cu);
22151 complaint (_("template param type '%s' defined within parent '%s'"),
22152 name ? name : "<unknown>",
22153 parent_name ? parent_name : "<unknown>");
22154 return "";
22155 }
22156 else
22157 switch (parent->tag)
22158 {
22159 case DW_TAG_namespace:
22160 parent_type = read_type_die (parent, cu);
22161 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22162 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22163 Work around this problem here. */
22164 if (cu->language == language_cplus
22165 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22166 return "";
22167 /* We give a name to even anonymous namespaces. */
22168 return TYPE_NAME (parent_type);
22169 case DW_TAG_class_type:
22170 case DW_TAG_interface_type:
22171 case DW_TAG_structure_type:
22172 case DW_TAG_union_type:
22173 case DW_TAG_module:
22174 parent_type = read_type_die (parent, cu);
22175 if (TYPE_NAME (parent_type) != NULL)
22176 return TYPE_NAME (parent_type);
22177 else
22178 /* An anonymous structure is only allowed non-static data
22179 members; no typedefs, no member functions, et cetera.
22180 So it does not need a prefix. */
22181 return "";
22182 case DW_TAG_compile_unit:
22183 case DW_TAG_partial_unit:
22184 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22185 if (cu->language == language_cplus
22186 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22187 && die->child != NULL
22188 && (die->tag == DW_TAG_class_type
22189 || die->tag == DW_TAG_structure_type
22190 || die->tag == DW_TAG_union_type))
22191 {
22192 char *name = guess_full_die_structure_name (die, cu);
22193 if (name != NULL)
22194 return name;
22195 }
22196 return "";
22197 case DW_TAG_enumeration_type:
22198 parent_type = read_type_die (parent, cu);
22199 if (TYPE_DECLARED_CLASS (parent_type))
22200 {
22201 if (TYPE_NAME (parent_type) != NULL)
22202 return TYPE_NAME (parent_type);
22203 return "";
22204 }
22205 /* Fall through. */
22206 default:
22207 return determine_prefix (parent, cu);
22208 }
22209 }
22210
22211 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22212 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22213 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22214 an obconcat, otherwise allocate storage for the result. The CU argument is
22215 used to determine the language and hence, the appropriate separator. */
22216
22217 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22218
22219 static char *
22220 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22221 int physname, struct dwarf2_cu *cu)
22222 {
22223 const char *lead = "";
22224 const char *sep;
22225
22226 if (suffix == NULL || suffix[0] == '\0'
22227 || prefix == NULL || prefix[0] == '\0')
22228 sep = "";
22229 else if (cu->language == language_d)
22230 {
22231 /* For D, the 'main' function could be defined in any module, but it
22232 should never be prefixed. */
22233 if (strcmp (suffix, "D main") == 0)
22234 {
22235 prefix = "";
22236 sep = "";
22237 }
22238 else
22239 sep = ".";
22240 }
22241 else if (cu->language == language_fortran && physname)
22242 {
22243 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22244 DW_AT_MIPS_linkage_name is preferred and used instead. */
22245
22246 lead = "__";
22247 sep = "_MOD_";
22248 }
22249 else
22250 sep = "::";
22251
22252 if (prefix == NULL)
22253 prefix = "";
22254 if (suffix == NULL)
22255 suffix = "";
22256
22257 if (obs == NULL)
22258 {
22259 char *retval
22260 = ((char *)
22261 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22262
22263 strcpy (retval, lead);
22264 strcat (retval, prefix);
22265 strcat (retval, sep);
22266 strcat (retval, suffix);
22267 return retval;
22268 }
22269 else
22270 {
22271 /* We have an obstack. */
22272 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22273 }
22274 }
22275
22276 /* Return sibling of die, NULL if no sibling. */
22277
22278 static struct die_info *
22279 sibling_die (struct die_info *die)
22280 {
22281 return die->sibling;
22282 }
22283
22284 /* Get name of a die, return NULL if not found. */
22285
22286 static const char *
22287 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22288 struct obstack *obstack)
22289 {
22290 if (name && cu->language == language_cplus)
22291 {
22292 std::string canon_name = cp_canonicalize_string (name);
22293
22294 if (!canon_name.empty ())
22295 {
22296 if (canon_name != name)
22297 name = (const char *) obstack_copy0 (obstack,
22298 canon_name.c_str (),
22299 canon_name.length ());
22300 }
22301 }
22302
22303 return name;
22304 }
22305
22306 /* Get name of a die, return NULL if not found.
22307 Anonymous namespaces are converted to their magic string. */
22308
22309 static const char *
22310 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22311 {
22312 struct attribute *attr;
22313 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22314
22315 attr = dwarf2_attr (die, DW_AT_name, cu);
22316 if ((!attr || !DW_STRING (attr))
22317 && die->tag != DW_TAG_namespace
22318 && die->tag != DW_TAG_class_type
22319 && die->tag != DW_TAG_interface_type
22320 && die->tag != DW_TAG_structure_type
22321 && die->tag != DW_TAG_union_type)
22322 return NULL;
22323
22324 switch (die->tag)
22325 {
22326 case DW_TAG_compile_unit:
22327 case DW_TAG_partial_unit:
22328 /* Compilation units have a DW_AT_name that is a filename, not
22329 a source language identifier. */
22330 case DW_TAG_enumeration_type:
22331 case DW_TAG_enumerator:
22332 /* These tags always have simple identifiers already; no need
22333 to canonicalize them. */
22334 return DW_STRING (attr);
22335
22336 case DW_TAG_namespace:
22337 if (attr != NULL && DW_STRING (attr) != NULL)
22338 return DW_STRING (attr);
22339 return CP_ANONYMOUS_NAMESPACE_STR;
22340
22341 case DW_TAG_class_type:
22342 case DW_TAG_interface_type:
22343 case DW_TAG_structure_type:
22344 case DW_TAG_union_type:
22345 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22346 structures or unions. These were of the form "._%d" in GCC 4.1,
22347 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22348 and GCC 4.4. We work around this problem by ignoring these. */
22349 if (attr && DW_STRING (attr)
22350 && (startswith (DW_STRING (attr), "._")
22351 || startswith (DW_STRING (attr), "<anonymous")))
22352 return NULL;
22353
22354 /* GCC might emit a nameless typedef that has a linkage name. See
22355 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22356 if (!attr || DW_STRING (attr) == NULL)
22357 {
22358 char *demangled = NULL;
22359
22360 attr = dw2_linkage_name_attr (die, cu);
22361 if (attr == NULL || DW_STRING (attr) == NULL)
22362 return NULL;
22363
22364 /* Avoid demangling DW_STRING (attr) the second time on a second
22365 call for the same DIE. */
22366 if (!DW_STRING_IS_CANONICAL (attr))
22367 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22368
22369 if (demangled)
22370 {
22371 const char *base;
22372
22373 /* FIXME: we already did this for the partial symbol... */
22374 DW_STRING (attr)
22375 = ((const char *)
22376 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22377 demangled, strlen (demangled)));
22378 DW_STRING_IS_CANONICAL (attr) = 1;
22379 xfree (demangled);
22380
22381 /* Strip any leading namespaces/classes, keep only the base name.
22382 DW_AT_name for named DIEs does not contain the prefixes. */
22383 base = strrchr (DW_STRING (attr), ':');
22384 if (base && base > DW_STRING (attr) && base[-1] == ':')
22385 return &base[1];
22386 else
22387 return DW_STRING (attr);
22388 }
22389 }
22390 break;
22391
22392 default:
22393 break;
22394 }
22395
22396 if (!DW_STRING_IS_CANONICAL (attr))
22397 {
22398 DW_STRING (attr)
22399 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22400 &objfile->per_bfd->storage_obstack);
22401 DW_STRING_IS_CANONICAL (attr) = 1;
22402 }
22403 return DW_STRING (attr);
22404 }
22405
22406 /* Return the die that this die in an extension of, or NULL if there
22407 is none. *EXT_CU is the CU containing DIE on input, and the CU
22408 containing the return value on output. */
22409
22410 static struct die_info *
22411 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22412 {
22413 struct attribute *attr;
22414
22415 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22416 if (attr == NULL)
22417 return NULL;
22418
22419 return follow_die_ref (die, attr, ext_cu);
22420 }
22421
22422 /* Convert a DIE tag into its string name. */
22423
22424 static const char *
22425 dwarf_tag_name (unsigned tag)
22426 {
22427 const char *name = get_DW_TAG_name (tag);
22428
22429 if (name == NULL)
22430 return "DW_TAG_<unknown>";
22431
22432 return name;
22433 }
22434
22435 /* Convert a DWARF attribute code into its string name. */
22436
22437 static const char *
22438 dwarf_attr_name (unsigned attr)
22439 {
22440 const char *name;
22441
22442 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22443 if (attr == DW_AT_MIPS_fde)
22444 return "DW_AT_MIPS_fde";
22445 #else
22446 if (attr == DW_AT_HP_block_index)
22447 return "DW_AT_HP_block_index";
22448 #endif
22449
22450 name = get_DW_AT_name (attr);
22451
22452 if (name == NULL)
22453 return "DW_AT_<unknown>";
22454
22455 return name;
22456 }
22457
22458 /* Convert a DWARF value form code into its string name. */
22459
22460 static const char *
22461 dwarf_form_name (unsigned form)
22462 {
22463 const char *name = get_DW_FORM_name (form);
22464
22465 if (name == NULL)
22466 return "DW_FORM_<unknown>";
22467
22468 return name;
22469 }
22470
22471 static const char *
22472 dwarf_bool_name (unsigned mybool)
22473 {
22474 if (mybool)
22475 return "TRUE";
22476 else
22477 return "FALSE";
22478 }
22479
22480 /* Convert a DWARF type code into its string name. */
22481
22482 static const char *
22483 dwarf_type_encoding_name (unsigned enc)
22484 {
22485 const char *name = get_DW_ATE_name (enc);
22486
22487 if (name == NULL)
22488 return "DW_ATE_<unknown>";
22489
22490 return name;
22491 }
22492
22493 static void
22494 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22495 {
22496 unsigned int i;
22497
22498 print_spaces (indent, f);
22499 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22500 dwarf_tag_name (die->tag), die->abbrev,
22501 sect_offset_str (die->sect_off));
22502
22503 if (die->parent != NULL)
22504 {
22505 print_spaces (indent, f);
22506 fprintf_unfiltered (f, " parent at offset: %s\n",
22507 sect_offset_str (die->parent->sect_off));
22508 }
22509
22510 print_spaces (indent, f);
22511 fprintf_unfiltered (f, " has children: %s\n",
22512 dwarf_bool_name (die->child != NULL));
22513
22514 print_spaces (indent, f);
22515 fprintf_unfiltered (f, " attributes:\n");
22516
22517 for (i = 0; i < die->num_attrs; ++i)
22518 {
22519 print_spaces (indent, f);
22520 fprintf_unfiltered (f, " %s (%s) ",
22521 dwarf_attr_name (die->attrs[i].name),
22522 dwarf_form_name (die->attrs[i].form));
22523
22524 switch (die->attrs[i].form)
22525 {
22526 case DW_FORM_addr:
22527 case DW_FORM_GNU_addr_index:
22528 fprintf_unfiltered (f, "address: ");
22529 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22530 break;
22531 case DW_FORM_block2:
22532 case DW_FORM_block4:
22533 case DW_FORM_block:
22534 case DW_FORM_block1:
22535 fprintf_unfiltered (f, "block: size %s",
22536 pulongest (DW_BLOCK (&die->attrs[i])->size));
22537 break;
22538 case DW_FORM_exprloc:
22539 fprintf_unfiltered (f, "expression: size %s",
22540 pulongest (DW_BLOCK (&die->attrs[i])->size));
22541 break;
22542 case DW_FORM_data16:
22543 fprintf_unfiltered (f, "constant of 16 bytes");
22544 break;
22545 case DW_FORM_ref_addr:
22546 fprintf_unfiltered (f, "ref address: ");
22547 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22548 break;
22549 case DW_FORM_GNU_ref_alt:
22550 fprintf_unfiltered (f, "alt ref address: ");
22551 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22552 break;
22553 case DW_FORM_ref1:
22554 case DW_FORM_ref2:
22555 case DW_FORM_ref4:
22556 case DW_FORM_ref8:
22557 case DW_FORM_ref_udata:
22558 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22559 (long) (DW_UNSND (&die->attrs[i])));
22560 break;
22561 case DW_FORM_data1:
22562 case DW_FORM_data2:
22563 case DW_FORM_data4:
22564 case DW_FORM_data8:
22565 case DW_FORM_udata:
22566 case DW_FORM_sdata:
22567 fprintf_unfiltered (f, "constant: %s",
22568 pulongest (DW_UNSND (&die->attrs[i])));
22569 break;
22570 case DW_FORM_sec_offset:
22571 fprintf_unfiltered (f, "section offset: %s",
22572 pulongest (DW_UNSND (&die->attrs[i])));
22573 break;
22574 case DW_FORM_ref_sig8:
22575 fprintf_unfiltered (f, "signature: %s",
22576 hex_string (DW_SIGNATURE (&die->attrs[i])));
22577 break;
22578 case DW_FORM_string:
22579 case DW_FORM_strp:
22580 case DW_FORM_line_strp:
22581 case DW_FORM_GNU_str_index:
22582 case DW_FORM_GNU_strp_alt:
22583 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22584 DW_STRING (&die->attrs[i])
22585 ? DW_STRING (&die->attrs[i]) : "",
22586 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22587 break;
22588 case DW_FORM_flag:
22589 if (DW_UNSND (&die->attrs[i]))
22590 fprintf_unfiltered (f, "flag: TRUE");
22591 else
22592 fprintf_unfiltered (f, "flag: FALSE");
22593 break;
22594 case DW_FORM_flag_present:
22595 fprintf_unfiltered (f, "flag: TRUE");
22596 break;
22597 case DW_FORM_indirect:
22598 /* The reader will have reduced the indirect form to
22599 the "base form" so this form should not occur. */
22600 fprintf_unfiltered (f,
22601 "unexpected attribute form: DW_FORM_indirect");
22602 break;
22603 case DW_FORM_implicit_const:
22604 fprintf_unfiltered (f, "constant: %s",
22605 plongest (DW_SND (&die->attrs[i])));
22606 break;
22607 default:
22608 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22609 die->attrs[i].form);
22610 break;
22611 }
22612 fprintf_unfiltered (f, "\n");
22613 }
22614 }
22615
22616 static void
22617 dump_die_for_error (struct die_info *die)
22618 {
22619 dump_die_shallow (gdb_stderr, 0, die);
22620 }
22621
22622 static void
22623 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22624 {
22625 int indent = level * 4;
22626
22627 gdb_assert (die != NULL);
22628
22629 if (level >= max_level)
22630 return;
22631
22632 dump_die_shallow (f, indent, die);
22633
22634 if (die->child != NULL)
22635 {
22636 print_spaces (indent, f);
22637 fprintf_unfiltered (f, " Children:");
22638 if (level + 1 < max_level)
22639 {
22640 fprintf_unfiltered (f, "\n");
22641 dump_die_1 (f, level + 1, max_level, die->child);
22642 }
22643 else
22644 {
22645 fprintf_unfiltered (f,
22646 " [not printed, max nesting level reached]\n");
22647 }
22648 }
22649
22650 if (die->sibling != NULL && level > 0)
22651 {
22652 dump_die_1 (f, level, max_level, die->sibling);
22653 }
22654 }
22655
22656 /* This is called from the pdie macro in gdbinit.in.
22657 It's not static so gcc will keep a copy callable from gdb. */
22658
22659 void
22660 dump_die (struct die_info *die, int max_level)
22661 {
22662 dump_die_1 (gdb_stdlog, 0, max_level, die);
22663 }
22664
22665 static void
22666 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22667 {
22668 void **slot;
22669
22670 slot = htab_find_slot_with_hash (cu->die_hash, die,
22671 to_underlying (die->sect_off),
22672 INSERT);
22673
22674 *slot = die;
22675 }
22676
22677 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22678 required kind. */
22679
22680 static sect_offset
22681 dwarf2_get_ref_die_offset (const struct attribute *attr)
22682 {
22683 if (attr_form_is_ref (attr))
22684 return (sect_offset) DW_UNSND (attr);
22685
22686 complaint (_("unsupported die ref attribute form: '%s'"),
22687 dwarf_form_name (attr->form));
22688 return {};
22689 }
22690
22691 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22692 * the value held by the attribute is not constant. */
22693
22694 static LONGEST
22695 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22696 {
22697 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22698 return DW_SND (attr);
22699 else if (attr->form == DW_FORM_udata
22700 || attr->form == DW_FORM_data1
22701 || attr->form == DW_FORM_data2
22702 || attr->form == DW_FORM_data4
22703 || attr->form == DW_FORM_data8)
22704 return DW_UNSND (attr);
22705 else
22706 {
22707 /* For DW_FORM_data16 see attr_form_is_constant. */
22708 complaint (_("Attribute value is not a constant (%s)"),
22709 dwarf_form_name (attr->form));
22710 return default_value;
22711 }
22712 }
22713
22714 /* Follow reference or signature attribute ATTR of SRC_DIE.
22715 On entry *REF_CU is the CU of SRC_DIE.
22716 On exit *REF_CU is the CU of the result. */
22717
22718 static struct die_info *
22719 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22720 struct dwarf2_cu **ref_cu)
22721 {
22722 struct die_info *die;
22723
22724 if (attr_form_is_ref (attr))
22725 die = follow_die_ref (src_die, attr, ref_cu);
22726 else if (attr->form == DW_FORM_ref_sig8)
22727 die = follow_die_sig (src_die, attr, ref_cu);
22728 else
22729 {
22730 dump_die_for_error (src_die);
22731 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22732 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22733 }
22734
22735 return die;
22736 }
22737
22738 /* Follow reference OFFSET.
22739 On entry *REF_CU is the CU of the source die referencing OFFSET.
22740 On exit *REF_CU is the CU of the result.
22741 Returns NULL if OFFSET is invalid. */
22742
22743 static struct die_info *
22744 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22745 struct dwarf2_cu **ref_cu)
22746 {
22747 struct die_info temp_die;
22748 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22749 struct dwarf2_per_objfile *dwarf2_per_objfile
22750 = cu->per_cu->dwarf2_per_objfile;
22751
22752 gdb_assert (cu->per_cu != NULL);
22753
22754 target_cu = cu;
22755
22756 if (cu->per_cu->is_debug_types)
22757 {
22758 /* .debug_types CUs cannot reference anything outside their CU.
22759 If they need to, they have to reference a signatured type via
22760 DW_FORM_ref_sig8. */
22761 if (!offset_in_cu_p (&cu->header, sect_off))
22762 return NULL;
22763 }
22764 else if (offset_in_dwz != cu->per_cu->is_dwz
22765 || !offset_in_cu_p (&cu->header, sect_off))
22766 {
22767 struct dwarf2_per_cu_data *per_cu;
22768
22769 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22770 dwarf2_per_objfile);
22771
22772 /* If necessary, add it to the queue and load its DIEs. */
22773 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22774 load_full_comp_unit (per_cu, false, cu->language);
22775
22776 target_cu = per_cu->cu;
22777 }
22778 else if (cu->dies == NULL)
22779 {
22780 /* We're loading full DIEs during partial symbol reading. */
22781 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22782 load_full_comp_unit (cu->per_cu, false, language_minimal);
22783 }
22784
22785 *ref_cu = target_cu;
22786 temp_die.sect_off = sect_off;
22787 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22788 &temp_die,
22789 to_underlying (sect_off));
22790 }
22791
22792 /* Follow reference attribute ATTR of SRC_DIE.
22793 On entry *REF_CU is the CU of SRC_DIE.
22794 On exit *REF_CU is the CU of the result. */
22795
22796 static struct die_info *
22797 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22798 struct dwarf2_cu **ref_cu)
22799 {
22800 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22801 struct dwarf2_cu *cu = *ref_cu;
22802 struct die_info *die;
22803
22804 die = follow_die_offset (sect_off,
22805 (attr->form == DW_FORM_GNU_ref_alt
22806 || cu->per_cu->is_dwz),
22807 ref_cu);
22808 if (!die)
22809 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22810 "at %s [in module %s]"),
22811 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22812 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22813
22814 return die;
22815 }
22816
22817 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22818 Returned value is intended for DW_OP_call*. Returned
22819 dwarf2_locexpr_baton->data has lifetime of
22820 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22821
22822 struct dwarf2_locexpr_baton
22823 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22824 struct dwarf2_per_cu_data *per_cu,
22825 CORE_ADDR (*get_frame_pc) (void *baton),
22826 void *baton)
22827 {
22828 struct dwarf2_cu *cu;
22829 struct die_info *die;
22830 struct attribute *attr;
22831 struct dwarf2_locexpr_baton retval;
22832 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22833 struct objfile *objfile = dwarf2_per_objfile->objfile;
22834
22835 if (per_cu->cu == NULL)
22836 load_cu (per_cu, false);
22837 cu = per_cu->cu;
22838 if (cu == NULL)
22839 {
22840 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22841 Instead just throw an error, not much else we can do. */
22842 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22843 sect_offset_str (sect_off), objfile_name (objfile));
22844 }
22845
22846 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22847 if (!die)
22848 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22849 sect_offset_str (sect_off), objfile_name (objfile));
22850
22851 attr = dwarf2_attr (die, DW_AT_location, cu);
22852 if (!attr)
22853 {
22854 /* DWARF: "If there is no such attribute, then there is no effect.".
22855 DATA is ignored if SIZE is 0. */
22856
22857 retval.data = NULL;
22858 retval.size = 0;
22859 }
22860 else if (attr_form_is_section_offset (attr))
22861 {
22862 struct dwarf2_loclist_baton loclist_baton;
22863 CORE_ADDR pc = (*get_frame_pc) (baton);
22864 size_t size;
22865
22866 fill_in_loclist_baton (cu, &loclist_baton, attr);
22867
22868 retval.data = dwarf2_find_location_expression (&loclist_baton,
22869 &size, pc);
22870 retval.size = size;
22871 }
22872 else
22873 {
22874 if (!attr_form_is_block (attr))
22875 error (_("Dwarf Error: DIE at %s referenced in module %s "
22876 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22877 sect_offset_str (sect_off), objfile_name (objfile));
22878
22879 retval.data = DW_BLOCK (attr)->data;
22880 retval.size = DW_BLOCK (attr)->size;
22881 }
22882 retval.per_cu = cu->per_cu;
22883
22884 age_cached_comp_units (dwarf2_per_objfile);
22885
22886 return retval;
22887 }
22888
22889 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22890 offset. */
22891
22892 struct dwarf2_locexpr_baton
22893 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22894 struct dwarf2_per_cu_data *per_cu,
22895 CORE_ADDR (*get_frame_pc) (void *baton),
22896 void *baton)
22897 {
22898 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22899
22900 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22901 }
22902
22903 /* Write a constant of a given type as target-ordered bytes into
22904 OBSTACK. */
22905
22906 static const gdb_byte *
22907 write_constant_as_bytes (struct obstack *obstack,
22908 enum bfd_endian byte_order,
22909 struct type *type,
22910 ULONGEST value,
22911 LONGEST *len)
22912 {
22913 gdb_byte *result;
22914
22915 *len = TYPE_LENGTH (type);
22916 result = (gdb_byte *) obstack_alloc (obstack, *len);
22917 store_unsigned_integer (result, *len, byte_order, value);
22918
22919 return result;
22920 }
22921
22922 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22923 pointer to the constant bytes and set LEN to the length of the
22924 data. If memory is needed, allocate it on OBSTACK. If the DIE
22925 does not have a DW_AT_const_value, return NULL. */
22926
22927 const gdb_byte *
22928 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22929 struct dwarf2_per_cu_data *per_cu,
22930 struct obstack *obstack,
22931 LONGEST *len)
22932 {
22933 struct dwarf2_cu *cu;
22934 struct die_info *die;
22935 struct attribute *attr;
22936 const gdb_byte *result = NULL;
22937 struct type *type;
22938 LONGEST value;
22939 enum bfd_endian byte_order;
22940 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22941
22942 if (per_cu->cu == NULL)
22943 load_cu (per_cu, false);
22944 cu = per_cu->cu;
22945 if (cu == NULL)
22946 {
22947 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22948 Instead just throw an error, not much else we can do. */
22949 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22950 sect_offset_str (sect_off), objfile_name (objfile));
22951 }
22952
22953 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22954 if (!die)
22955 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22956 sect_offset_str (sect_off), objfile_name (objfile));
22957
22958 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22959 if (attr == NULL)
22960 return NULL;
22961
22962 byte_order = (bfd_big_endian (objfile->obfd)
22963 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22964
22965 switch (attr->form)
22966 {
22967 case DW_FORM_addr:
22968 case DW_FORM_GNU_addr_index:
22969 {
22970 gdb_byte *tem;
22971
22972 *len = cu->header.addr_size;
22973 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22974 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22975 result = tem;
22976 }
22977 break;
22978 case DW_FORM_string:
22979 case DW_FORM_strp:
22980 case DW_FORM_GNU_str_index:
22981 case DW_FORM_GNU_strp_alt:
22982 /* DW_STRING is already allocated on the objfile obstack, point
22983 directly to it. */
22984 result = (const gdb_byte *) DW_STRING (attr);
22985 *len = strlen (DW_STRING (attr));
22986 break;
22987 case DW_FORM_block1:
22988 case DW_FORM_block2:
22989 case DW_FORM_block4:
22990 case DW_FORM_block:
22991 case DW_FORM_exprloc:
22992 case DW_FORM_data16:
22993 result = DW_BLOCK (attr)->data;
22994 *len = DW_BLOCK (attr)->size;
22995 break;
22996
22997 /* The DW_AT_const_value attributes are supposed to carry the
22998 symbol's value "represented as it would be on the target
22999 architecture." By the time we get here, it's already been
23000 converted to host endianness, so we just need to sign- or
23001 zero-extend it as appropriate. */
23002 case DW_FORM_data1:
23003 type = die_type (die, cu);
23004 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23005 if (result == NULL)
23006 result = write_constant_as_bytes (obstack, byte_order,
23007 type, value, len);
23008 break;
23009 case DW_FORM_data2:
23010 type = die_type (die, cu);
23011 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23012 if (result == NULL)
23013 result = write_constant_as_bytes (obstack, byte_order,
23014 type, value, len);
23015 break;
23016 case DW_FORM_data4:
23017 type = die_type (die, cu);
23018 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23019 if (result == NULL)
23020 result = write_constant_as_bytes (obstack, byte_order,
23021 type, value, len);
23022 break;
23023 case DW_FORM_data8:
23024 type = die_type (die, cu);
23025 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23026 if (result == NULL)
23027 result = write_constant_as_bytes (obstack, byte_order,
23028 type, value, len);
23029 break;
23030
23031 case DW_FORM_sdata:
23032 case DW_FORM_implicit_const:
23033 type = die_type (die, cu);
23034 result = write_constant_as_bytes (obstack, byte_order,
23035 type, DW_SND (attr), len);
23036 break;
23037
23038 case DW_FORM_udata:
23039 type = die_type (die, cu);
23040 result = write_constant_as_bytes (obstack, byte_order,
23041 type, DW_UNSND (attr), len);
23042 break;
23043
23044 default:
23045 complaint (_("unsupported const value attribute form: '%s'"),
23046 dwarf_form_name (attr->form));
23047 break;
23048 }
23049
23050 return result;
23051 }
23052
23053 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23054 valid type for this die is found. */
23055
23056 struct type *
23057 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23058 struct dwarf2_per_cu_data *per_cu)
23059 {
23060 struct dwarf2_cu *cu;
23061 struct die_info *die;
23062
23063 if (per_cu->cu == NULL)
23064 load_cu (per_cu, false);
23065 cu = per_cu->cu;
23066 if (!cu)
23067 return NULL;
23068
23069 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23070 if (!die)
23071 return NULL;
23072
23073 return die_type (die, cu);
23074 }
23075
23076 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23077 PER_CU. */
23078
23079 struct type *
23080 dwarf2_get_die_type (cu_offset die_offset,
23081 struct dwarf2_per_cu_data *per_cu)
23082 {
23083 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23084 return get_die_type_at_offset (die_offset_sect, per_cu);
23085 }
23086
23087 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23088 On entry *REF_CU is the CU of SRC_DIE.
23089 On exit *REF_CU is the CU of the result.
23090 Returns NULL if the referenced DIE isn't found. */
23091
23092 static struct die_info *
23093 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23094 struct dwarf2_cu **ref_cu)
23095 {
23096 struct die_info temp_die;
23097 struct dwarf2_cu *sig_cu;
23098 struct die_info *die;
23099
23100 /* While it might be nice to assert sig_type->type == NULL here,
23101 we can get here for DW_AT_imported_declaration where we need
23102 the DIE not the type. */
23103
23104 /* If necessary, add it to the queue and load its DIEs. */
23105
23106 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23107 read_signatured_type (sig_type);
23108
23109 sig_cu = sig_type->per_cu.cu;
23110 gdb_assert (sig_cu != NULL);
23111 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23112 temp_die.sect_off = sig_type->type_offset_in_section;
23113 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23114 to_underlying (temp_die.sect_off));
23115 if (die)
23116 {
23117 struct dwarf2_per_objfile *dwarf2_per_objfile
23118 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23119
23120 /* For .gdb_index version 7 keep track of included TUs.
23121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23122 if (dwarf2_per_objfile->index_table != NULL
23123 && dwarf2_per_objfile->index_table->version <= 7)
23124 {
23125 VEC_safe_push (dwarf2_per_cu_ptr,
23126 (*ref_cu)->per_cu->imported_symtabs,
23127 sig_cu->per_cu);
23128 }
23129
23130 *ref_cu = sig_cu;
23131 return die;
23132 }
23133
23134 return NULL;
23135 }
23136
23137 /* Follow signatured type referenced by ATTR in SRC_DIE.
23138 On entry *REF_CU is the CU of SRC_DIE.
23139 On exit *REF_CU is the CU of the result.
23140 The result is the DIE of the type.
23141 If the referenced type cannot be found an error is thrown. */
23142
23143 static struct die_info *
23144 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23145 struct dwarf2_cu **ref_cu)
23146 {
23147 ULONGEST signature = DW_SIGNATURE (attr);
23148 struct signatured_type *sig_type;
23149 struct die_info *die;
23150
23151 gdb_assert (attr->form == DW_FORM_ref_sig8);
23152
23153 sig_type = lookup_signatured_type (*ref_cu, signature);
23154 /* sig_type will be NULL if the signatured type is missing from
23155 the debug info. */
23156 if (sig_type == NULL)
23157 {
23158 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23159 " from DIE at %s [in module %s]"),
23160 hex_string (signature), sect_offset_str (src_die->sect_off),
23161 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23162 }
23163
23164 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23165 if (die == NULL)
23166 {
23167 dump_die_for_error (src_die);
23168 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23169 " from DIE at %s [in module %s]"),
23170 hex_string (signature), sect_offset_str (src_die->sect_off),
23171 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23172 }
23173
23174 return die;
23175 }
23176
23177 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23178 reading in and processing the type unit if necessary. */
23179
23180 static struct type *
23181 get_signatured_type (struct die_info *die, ULONGEST signature,
23182 struct dwarf2_cu *cu)
23183 {
23184 struct dwarf2_per_objfile *dwarf2_per_objfile
23185 = cu->per_cu->dwarf2_per_objfile;
23186 struct signatured_type *sig_type;
23187 struct dwarf2_cu *type_cu;
23188 struct die_info *type_die;
23189 struct type *type;
23190
23191 sig_type = lookup_signatured_type (cu, signature);
23192 /* sig_type will be NULL if the signatured type is missing from
23193 the debug info. */
23194 if (sig_type == NULL)
23195 {
23196 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23197 " from DIE at %s [in module %s]"),
23198 hex_string (signature), sect_offset_str (die->sect_off),
23199 objfile_name (dwarf2_per_objfile->objfile));
23200 return build_error_marker_type (cu, die);
23201 }
23202
23203 /* If we already know the type we're done. */
23204 if (sig_type->type != NULL)
23205 return sig_type->type;
23206
23207 type_cu = cu;
23208 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23209 if (type_die != NULL)
23210 {
23211 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23212 is created. This is important, for example, because for c++ classes
23213 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23214 type = read_type_die (type_die, type_cu);
23215 if (type == NULL)
23216 {
23217 complaint (_("Dwarf Error: Cannot build signatured type %s"
23218 " referenced from DIE at %s [in module %s]"),
23219 hex_string (signature), sect_offset_str (die->sect_off),
23220 objfile_name (dwarf2_per_objfile->objfile));
23221 type = build_error_marker_type (cu, die);
23222 }
23223 }
23224 else
23225 {
23226 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23227 " from DIE at %s [in module %s]"),
23228 hex_string (signature), sect_offset_str (die->sect_off),
23229 objfile_name (dwarf2_per_objfile->objfile));
23230 type = build_error_marker_type (cu, die);
23231 }
23232 sig_type->type = type;
23233
23234 return type;
23235 }
23236
23237 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23238 reading in and processing the type unit if necessary. */
23239
23240 static struct type *
23241 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23242 struct dwarf2_cu *cu) /* ARI: editCase function */
23243 {
23244 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23245 if (attr_form_is_ref (attr))
23246 {
23247 struct dwarf2_cu *type_cu = cu;
23248 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23249
23250 return read_type_die (type_die, type_cu);
23251 }
23252 else if (attr->form == DW_FORM_ref_sig8)
23253 {
23254 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23255 }
23256 else
23257 {
23258 struct dwarf2_per_objfile *dwarf2_per_objfile
23259 = cu->per_cu->dwarf2_per_objfile;
23260
23261 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23262 " at %s [in module %s]"),
23263 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23264 objfile_name (dwarf2_per_objfile->objfile));
23265 return build_error_marker_type (cu, die);
23266 }
23267 }
23268
23269 /* Load the DIEs associated with type unit PER_CU into memory. */
23270
23271 static void
23272 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23273 {
23274 struct signatured_type *sig_type;
23275
23276 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23277 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23278
23279 /* We have the per_cu, but we need the signatured_type.
23280 Fortunately this is an easy translation. */
23281 gdb_assert (per_cu->is_debug_types);
23282 sig_type = (struct signatured_type *) per_cu;
23283
23284 gdb_assert (per_cu->cu == NULL);
23285
23286 read_signatured_type (sig_type);
23287
23288 gdb_assert (per_cu->cu != NULL);
23289 }
23290
23291 /* die_reader_func for read_signatured_type.
23292 This is identical to load_full_comp_unit_reader,
23293 but is kept separate for now. */
23294
23295 static void
23296 read_signatured_type_reader (const struct die_reader_specs *reader,
23297 const gdb_byte *info_ptr,
23298 struct die_info *comp_unit_die,
23299 int has_children,
23300 void *data)
23301 {
23302 struct dwarf2_cu *cu = reader->cu;
23303
23304 gdb_assert (cu->die_hash == NULL);
23305 cu->die_hash =
23306 htab_create_alloc_ex (cu->header.length / 12,
23307 die_hash,
23308 die_eq,
23309 NULL,
23310 &cu->comp_unit_obstack,
23311 hashtab_obstack_allocate,
23312 dummy_obstack_deallocate);
23313
23314 if (has_children)
23315 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23316 &info_ptr, comp_unit_die);
23317 cu->dies = comp_unit_die;
23318 /* comp_unit_die is not stored in die_hash, no need. */
23319
23320 /* We try not to read any attributes in this function, because not
23321 all CUs needed for references have been loaded yet, and symbol
23322 table processing isn't initialized. But we have to set the CU language,
23323 or we won't be able to build types correctly.
23324 Similarly, if we do not read the producer, we can not apply
23325 producer-specific interpretation. */
23326 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23327 }
23328
23329 /* Read in a signatured type and build its CU and DIEs.
23330 If the type is a stub for the real type in a DWO file,
23331 read in the real type from the DWO file as well. */
23332
23333 static void
23334 read_signatured_type (struct signatured_type *sig_type)
23335 {
23336 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23337
23338 gdb_assert (per_cu->is_debug_types);
23339 gdb_assert (per_cu->cu == NULL);
23340
23341 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23342 read_signatured_type_reader, NULL);
23343 sig_type->per_cu.tu_read = 1;
23344 }
23345
23346 /* Decode simple location descriptions.
23347 Given a pointer to a dwarf block that defines a location, compute
23348 the location and return the value.
23349
23350 NOTE drow/2003-11-18: This function is called in two situations
23351 now: for the address of static or global variables (partial symbols
23352 only) and for offsets into structures which are expected to be
23353 (more or less) constant. The partial symbol case should go away,
23354 and only the constant case should remain. That will let this
23355 function complain more accurately. A few special modes are allowed
23356 without complaint for global variables (for instance, global
23357 register values and thread-local values).
23358
23359 A location description containing no operations indicates that the
23360 object is optimized out. The return value is 0 for that case.
23361 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23362 callers will only want a very basic result and this can become a
23363 complaint.
23364
23365 Note that stack[0] is unused except as a default error return. */
23366
23367 static CORE_ADDR
23368 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23369 {
23370 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23371 size_t i;
23372 size_t size = blk->size;
23373 const gdb_byte *data = blk->data;
23374 CORE_ADDR stack[64];
23375 int stacki;
23376 unsigned int bytes_read, unsnd;
23377 gdb_byte op;
23378
23379 i = 0;
23380 stacki = 0;
23381 stack[stacki] = 0;
23382 stack[++stacki] = 0;
23383
23384 while (i < size)
23385 {
23386 op = data[i++];
23387 switch (op)
23388 {
23389 case DW_OP_lit0:
23390 case DW_OP_lit1:
23391 case DW_OP_lit2:
23392 case DW_OP_lit3:
23393 case DW_OP_lit4:
23394 case DW_OP_lit5:
23395 case DW_OP_lit6:
23396 case DW_OP_lit7:
23397 case DW_OP_lit8:
23398 case DW_OP_lit9:
23399 case DW_OP_lit10:
23400 case DW_OP_lit11:
23401 case DW_OP_lit12:
23402 case DW_OP_lit13:
23403 case DW_OP_lit14:
23404 case DW_OP_lit15:
23405 case DW_OP_lit16:
23406 case DW_OP_lit17:
23407 case DW_OP_lit18:
23408 case DW_OP_lit19:
23409 case DW_OP_lit20:
23410 case DW_OP_lit21:
23411 case DW_OP_lit22:
23412 case DW_OP_lit23:
23413 case DW_OP_lit24:
23414 case DW_OP_lit25:
23415 case DW_OP_lit26:
23416 case DW_OP_lit27:
23417 case DW_OP_lit28:
23418 case DW_OP_lit29:
23419 case DW_OP_lit30:
23420 case DW_OP_lit31:
23421 stack[++stacki] = op - DW_OP_lit0;
23422 break;
23423
23424 case DW_OP_reg0:
23425 case DW_OP_reg1:
23426 case DW_OP_reg2:
23427 case DW_OP_reg3:
23428 case DW_OP_reg4:
23429 case DW_OP_reg5:
23430 case DW_OP_reg6:
23431 case DW_OP_reg7:
23432 case DW_OP_reg8:
23433 case DW_OP_reg9:
23434 case DW_OP_reg10:
23435 case DW_OP_reg11:
23436 case DW_OP_reg12:
23437 case DW_OP_reg13:
23438 case DW_OP_reg14:
23439 case DW_OP_reg15:
23440 case DW_OP_reg16:
23441 case DW_OP_reg17:
23442 case DW_OP_reg18:
23443 case DW_OP_reg19:
23444 case DW_OP_reg20:
23445 case DW_OP_reg21:
23446 case DW_OP_reg22:
23447 case DW_OP_reg23:
23448 case DW_OP_reg24:
23449 case DW_OP_reg25:
23450 case DW_OP_reg26:
23451 case DW_OP_reg27:
23452 case DW_OP_reg28:
23453 case DW_OP_reg29:
23454 case DW_OP_reg30:
23455 case DW_OP_reg31:
23456 stack[++stacki] = op - DW_OP_reg0;
23457 if (i < size)
23458 dwarf2_complex_location_expr_complaint ();
23459 break;
23460
23461 case DW_OP_regx:
23462 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23463 i += bytes_read;
23464 stack[++stacki] = unsnd;
23465 if (i < size)
23466 dwarf2_complex_location_expr_complaint ();
23467 break;
23468
23469 case DW_OP_addr:
23470 stack[++stacki] = read_address (objfile->obfd, &data[i],
23471 cu, &bytes_read);
23472 i += bytes_read;
23473 break;
23474
23475 case DW_OP_const1u:
23476 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23477 i += 1;
23478 break;
23479
23480 case DW_OP_const1s:
23481 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23482 i += 1;
23483 break;
23484
23485 case DW_OP_const2u:
23486 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23487 i += 2;
23488 break;
23489
23490 case DW_OP_const2s:
23491 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23492 i += 2;
23493 break;
23494
23495 case DW_OP_const4u:
23496 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23497 i += 4;
23498 break;
23499
23500 case DW_OP_const4s:
23501 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23502 i += 4;
23503 break;
23504
23505 case DW_OP_const8u:
23506 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23507 i += 8;
23508 break;
23509
23510 case DW_OP_constu:
23511 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23512 &bytes_read);
23513 i += bytes_read;
23514 break;
23515
23516 case DW_OP_consts:
23517 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23518 i += bytes_read;
23519 break;
23520
23521 case DW_OP_dup:
23522 stack[stacki + 1] = stack[stacki];
23523 stacki++;
23524 break;
23525
23526 case DW_OP_plus:
23527 stack[stacki - 1] += stack[stacki];
23528 stacki--;
23529 break;
23530
23531 case DW_OP_plus_uconst:
23532 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23533 &bytes_read);
23534 i += bytes_read;
23535 break;
23536
23537 case DW_OP_minus:
23538 stack[stacki - 1] -= stack[stacki];
23539 stacki--;
23540 break;
23541
23542 case DW_OP_deref:
23543 /* If we're not the last op, then we definitely can't encode
23544 this using GDB's address_class enum. This is valid for partial
23545 global symbols, although the variable's address will be bogus
23546 in the psymtab. */
23547 if (i < size)
23548 dwarf2_complex_location_expr_complaint ();
23549 break;
23550
23551 case DW_OP_GNU_push_tls_address:
23552 case DW_OP_form_tls_address:
23553 /* The top of the stack has the offset from the beginning
23554 of the thread control block at which the variable is located. */
23555 /* Nothing should follow this operator, so the top of stack would
23556 be returned. */
23557 /* This is valid for partial global symbols, but the variable's
23558 address will be bogus in the psymtab. Make it always at least
23559 non-zero to not look as a variable garbage collected by linker
23560 which have DW_OP_addr 0. */
23561 if (i < size)
23562 dwarf2_complex_location_expr_complaint ();
23563 stack[stacki]++;
23564 break;
23565
23566 case DW_OP_GNU_uninit:
23567 break;
23568
23569 case DW_OP_GNU_addr_index:
23570 case DW_OP_GNU_const_index:
23571 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23572 &bytes_read);
23573 i += bytes_read;
23574 break;
23575
23576 default:
23577 {
23578 const char *name = get_DW_OP_name (op);
23579
23580 if (name)
23581 complaint (_("unsupported stack op: '%s'"),
23582 name);
23583 else
23584 complaint (_("unsupported stack op: '%02x'"),
23585 op);
23586 }
23587
23588 return (stack[stacki]);
23589 }
23590
23591 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23592 outside of the allocated space. Also enforce minimum>0. */
23593 if (stacki >= ARRAY_SIZE (stack) - 1)
23594 {
23595 complaint (_("location description stack overflow"));
23596 return 0;
23597 }
23598
23599 if (stacki <= 0)
23600 {
23601 complaint (_("location description stack underflow"));
23602 return 0;
23603 }
23604 }
23605 return (stack[stacki]);
23606 }
23607
23608 /* memory allocation interface */
23609
23610 static struct dwarf_block *
23611 dwarf_alloc_block (struct dwarf2_cu *cu)
23612 {
23613 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23614 }
23615
23616 static struct die_info *
23617 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23618 {
23619 struct die_info *die;
23620 size_t size = sizeof (struct die_info);
23621
23622 if (num_attrs > 1)
23623 size += (num_attrs - 1) * sizeof (struct attribute);
23624
23625 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23626 memset (die, 0, sizeof (struct die_info));
23627 return (die);
23628 }
23629
23630 \f
23631 /* Macro support. */
23632
23633 /* Return file name relative to the compilation directory of file number I in
23634 *LH's file name table. The result is allocated using xmalloc; the caller is
23635 responsible for freeing it. */
23636
23637 static char *
23638 file_file_name (int file, struct line_header *lh)
23639 {
23640 /* Is the file number a valid index into the line header's file name
23641 table? Remember that file numbers start with one, not zero. */
23642 if (1 <= file && file <= lh->file_names.size ())
23643 {
23644 const file_entry &fe = lh->file_names[file - 1];
23645
23646 if (!IS_ABSOLUTE_PATH (fe.name))
23647 {
23648 const char *dir = fe.include_dir (lh);
23649 if (dir != NULL)
23650 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23651 }
23652 return xstrdup (fe.name);
23653 }
23654 else
23655 {
23656 /* The compiler produced a bogus file number. We can at least
23657 record the macro definitions made in the file, even if we
23658 won't be able to find the file by name. */
23659 char fake_name[80];
23660
23661 xsnprintf (fake_name, sizeof (fake_name),
23662 "<bad macro file number %d>", file);
23663
23664 complaint (_("bad file number in macro information (%d)"),
23665 file);
23666
23667 return xstrdup (fake_name);
23668 }
23669 }
23670
23671 /* Return the full name of file number I in *LH's file name table.
23672 Use COMP_DIR as the name of the current directory of the
23673 compilation. The result is allocated using xmalloc; the caller is
23674 responsible for freeing it. */
23675 static char *
23676 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23677 {
23678 /* Is the file number a valid index into the line header's file name
23679 table? Remember that file numbers start with one, not zero. */
23680 if (1 <= file && file <= lh->file_names.size ())
23681 {
23682 char *relative = file_file_name (file, lh);
23683
23684 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23685 return relative;
23686 return reconcat (relative, comp_dir, SLASH_STRING,
23687 relative, (char *) NULL);
23688 }
23689 else
23690 return file_file_name (file, lh);
23691 }
23692
23693
23694 static struct macro_source_file *
23695 macro_start_file (int file, int line,
23696 struct macro_source_file *current_file,
23697 struct line_header *lh)
23698 {
23699 /* File name relative to the compilation directory of this source file. */
23700 char *file_name = file_file_name (file, lh);
23701
23702 if (! current_file)
23703 {
23704 /* Note: We don't create a macro table for this compilation unit
23705 at all until we actually get a filename. */
23706 struct macro_table *macro_table = get_macro_table ();
23707
23708 /* If we have no current file, then this must be the start_file
23709 directive for the compilation unit's main source file. */
23710 current_file = macro_set_main (macro_table, file_name);
23711 macro_define_special (macro_table);
23712 }
23713 else
23714 current_file = macro_include (current_file, line, file_name);
23715
23716 xfree (file_name);
23717
23718 return current_file;
23719 }
23720
23721 static const char *
23722 consume_improper_spaces (const char *p, const char *body)
23723 {
23724 if (*p == ' ')
23725 {
23726 complaint (_("macro definition contains spaces "
23727 "in formal argument list:\n`%s'"),
23728 body);
23729
23730 while (*p == ' ')
23731 p++;
23732 }
23733
23734 return p;
23735 }
23736
23737
23738 static void
23739 parse_macro_definition (struct macro_source_file *file, int line,
23740 const char *body)
23741 {
23742 const char *p;
23743
23744 /* The body string takes one of two forms. For object-like macro
23745 definitions, it should be:
23746
23747 <macro name> " " <definition>
23748
23749 For function-like macro definitions, it should be:
23750
23751 <macro name> "() " <definition>
23752 or
23753 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23754
23755 Spaces may appear only where explicitly indicated, and in the
23756 <definition>.
23757
23758 The Dwarf 2 spec says that an object-like macro's name is always
23759 followed by a space, but versions of GCC around March 2002 omit
23760 the space when the macro's definition is the empty string.
23761
23762 The Dwarf 2 spec says that there should be no spaces between the
23763 formal arguments in a function-like macro's formal argument list,
23764 but versions of GCC around March 2002 include spaces after the
23765 commas. */
23766
23767
23768 /* Find the extent of the macro name. The macro name is terminated
23769 by either a space or null character (for an object-like macro) or
23770 an opening paren (for a function-like macro). */
23771 for (p = body; *p; p++)
23772 if (*p == ' ' || *p == '(')
23773 break;
23774
23775 if (*p == ' ' || *p == '\0')
23776 {
23777 /* It's an object-like macro. */
23778 int name_len = p - body;
23779 char *name = savestring (body, name_len);
23780 const char *replacement;
23781
23782 if (*p == ' ')
23783 replacement = body + name_len + 1;
23784 else
23785 {
23786 dwarf2_macro_malformed_definition_complaint (body);
23787 replacement = body + name_len;
23788 }
23789
23790 macro_define_object (file, line, name, replacement);
23791
23792 xfree (name);
23793 }
23794 else if (*p == '(')
23795 {
23796 /* It's a function-like macro. */
23797 char *name = savestring (body, p - body);
23798 int argc = 0;
23799 int argv_size = 1;
23800 char **argv = XNEWVEC (char *, argv_size);
23801
23802 p++;
23803
23804 p = consume_improper_spaces (p, body);
23805
23806 /* Parse the formal argument list. */
23807 while (*p && *p != ')')
23808 {
23809 /* Find the extent of the current argument name. */
23810 const char *arg_start = p;
23811
23812 while (*p && *p != ',' && *p != ')' && *p != ' ')
23813 p++;
23814
23815 if (! *p || p == arg_start)
23816 dwarf2_macro_malformed_definition_complaint (body);
23817 else
23818 {
23819 /* Make sure argv has room for the new argument. */
23820 if (argc >= argv_size)
23821 {
23822 argv_size *= 2;
23823 argv = XRESIZEVEC (char *, argv, argv_size);
23824 }
23825
23826 argv[argc++] = savestring (arg_start, p - arg_start);
23827 }
23828
23829 p = consume_improper_spaces (p, body);
23830
23831 /* Consume the comma, if present. */
23832 if (*p == ',')
23833 {
23834 p++;
23835
23836 p = consume_improper_spaces (p, body);
23837 }
23838 }
23839
23840 if (*p == ')')
23841 {
23842 p++;
23843
23844 if (*p == ' ')
23845 /* Perfectly formed definition, no complaints. */
23846 macro_define_function (file, line, name,
23847 argc, (const char **) argv,
23848 p + 1);
23849 else if (*p == '\0')
23850 {
23851 /* Complain, but do define it. */
23852 dwarf2_macro_malformed_definition_complaint (body);
23853 macro_define_function (file, line, name,
23854 argc, (const char **) argv,
23855 p);
23856 }
23857 else
23858 /* Just complain. */
23859 dwarf2_macro_malformed_definition_complaint (body);
23860 }
23861 else
23862 /* Just complain. */
23863 dwarf2_macro_malformed_definition_complaint (body);
23864
23865 xfree (name);
23866 {
23867 int i;
23868
23869 for (i = 0; i < argc; i++)
23870 xfree (argv[i]);
23871 }
23872 xfree (argv);
23873 }
23874 else
23875 dwarf2_macro_malformed_definition_complaint (body);
23876 }
23877
23878 /* Skip some bytes from BYTES according to the form given in FORM.
23879 Returns the new pointer. */
23880
23881 static const gdb_byte *
23882 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23883 enum dwarf_form form,
23884 unsigned int offset_size,
23885 struct dwarf2_section_info *section)
23886 {
23887 unsigned int bytes_read;
23888
23889 switch (form)
23890 {
23891 case DW_FORM_data1:
23892 case DW_FORM_flag:
23893 ++bytes;
23894 break;
23895
23896 case DW_FORM_data2:
23897 bytes += 2;
23898 break;
23899
23900 case DW_FORM_data4:
23901 bytes += 4;
23902 break;
23903
23904 case DW_FORM_data8:
23905 bytes += 8;
23906 break;
23907
23908 case DW_FORM_data16:
23909 bytes += 16;
23910 break;
23911
23912 case DW_FORM_string:
23913 read_direct_string (abfd, bytes, &bytes_read);
23914 bytes += bytes_read;
23915 break;
23916
23917 case DW_FORM_sec_offset:
23918 case DW_FORM_strp:
23919 case DW_FORM_GNU_strp_alt:
23920 bytes += offset_size;
23921 break;
23922
23923 case DW_FORM_block:
23924 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23925 bytes += bytes_read;
23926 break;
23927
23928 case DW_FORM_block1:
23929 bytes += 1 + read_1_byte (abfd, bytes);
23930 break;
23931 case DW_FORM_block2:
23932 bytes += 2 + read_2_bytes (abfd, bytes);
23933 break;
23934 case DW_FORM_block4:
23935 bytes += 4 + read_4_bytes (abfd, bytes);
23936 break;
23937
23938 case DW_FORM_sdata:
23939 case DW_FORM_udata:
23940 case DW_FORM_GNU_addr_index:
23941 case DW_FORM_GNU_str_index:
23942 bytes = gdb_skip_leb128 (bytes, buffer_end);
23943 if (bytes == NULL)
23944 {
23945 dwarf2_section_buffer_overflow_complaint (section);
23946 return NULL;
23947 }
23948 break;
23949
23950 case DW_FORM_implicit_const:
23951 break;
23952
23953 default:
23954 {
23955 complaint (_("invalid form 0x%x in `%s'"),
23956 form, get_section_name (section));
23957 return NULL;
23958 }
23959 }
23960
23961 return bytes;
23962 }
23963
23964 /* A helper for dwarf_decode_macros that handles skipping an unknown
23965 opcode. Returns an updated pointer to the macro data buffer; or,
23966 on error, issues a complaint and returns NULL. */
23967
23968 static const gdb_byte *
23969 skip_unknown_opcode (unsigned int opcode,
23970 const gdb_byte **opcode_definitions,
23971 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23972 bfd *abfd,
23973 unsigned int offset_size,
23974 struct dwarf2_section_info *section)
23975 {
23976 unsigned int bytes_read, i;
23977 unsigned long arg;
23978 const gdb_byte *defn;
23979
23980 if (opcode_definitions[opcode] == NULL)
23981 {
23982 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
23983 opcode);
23984 return NULL;
23985 }
23986
23987 defn = opcode_definitions[opcode];
23988 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
23989 defn += bytes_read;
23990
23991 for (i = 0; i < arg; ++i)
23992 {
23993 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
23994 (enum dwarf_form) defn[i], offset_size,
23995 section);
23996 if (mac_ptr == NULL)
23997 {
23998 /* skip_form_bytes already issued the complaint. */
23999 return NULL;
24000 }
24001 }
24002
24003 return mac_ptr;
24004 }
24005
24006 /* A helper function which parses the header of a macro section.
24007 If the macro section is the extended (for now called "GNU") type,
24008 then this updates *OFFSET_SIZE. Returns a pointer to just after
24009 the header, or issues a complaint and returns NULL on error. */
24010
24011 static const gdb_byte *
24012 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24013 bfd *abfd,
24014 const gdb_byte *mac_ptr,
24015 unsigned int *offset_size,
24016 int section_is_gnu)
24017 {
24018 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24019
24020 if (section_is_gnu)
24021 {
24022 unsigned int version, flags;
24023
24024 version = read_2_bytes (abfd, mac_ptr);
24025 if (version != 4 && version != 5)
24026 {
24027 complaint (_("unrecognized version `%d' in .debug_macro section"),
24028 version);
24029 return NULL;
24030 }
24031 mac_ptr += 2;
24032
24033 flags = read_1_byte (abfd, mac_ptr);
24034 ++mac_ptr;
24035 *offset_size = (flags & 1) ? 8 : 4;
24036
24037 if ((flags & 2) != 0)
24038 /* We don't need the line table offset. */
24039 mac_ptr += *offset_size;
24040
24041 /* Vendor opcode descriptions. */
24042 if ((flags & 4) != 0)
24043 {
24044 unsigned int i, count;
24045
24046 count = read_1_byte (abfd, mac_ptr);
24047 ++mac_ptr;
24048 for (i = 0; i < count; ++i)
24049 {
24050 unsigned int opcode, bytes_read;
24051 unsigned long arg;
24052
24053 opcode = read_1_byte (abfd, mac_ptr);
24054 ++mac_ptr;
24055 opcode_definitions[opcode] = mac_ptr;
24056 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24057 mac_ptr += bytes_read;
24058 mac_ptr += arg;
24059 }
24060 }
24061 }
24062
24063 return mac_ptr;
24064 }
24065
24066 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24067 including DW_MACRO_import. */
24068
24069 static void
24070 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24071 bfd *abfd,
24072 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24073 struct macro_source_file *current_file,
24074 struct line_header *lh,
24075 struct dwarf2_section_info *section,
24076 int section_is_gnu, int section_is_dwz,
24077 unsigned int offset_size,
24078 htab_t include_hash)
24079 {
24080 struct objfile *objfile = dwarf2_per_objfile->objfile;
24081 enum dwarf_macro_record_type macinfo_type;
24082 int at_commandline;
24083 const gdb_byte *opcode_definitions[256];
24084
24085 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24086 &offset_size, section_is_gnu);
24087 if (mac_ptr == NULL)
24088 {
24089 /* We already issued a complaint. */
24090 return;
24091 }
24092
24093 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24094 GDB is still reading the definitions from command line. First
24095 DW_MACINFO_start_file will need to be ignored as it was already executed
24096 to create CURRENT_FILE for the main source holding also the command line
24097 definitions. On first met DW_MACINFO_start_file this flag is reset to
24098 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24099
24100 at_commandline = 1;
24101
24102 do
24103 {
24104 /* Do we at least have room for a macinfo type byte? */
24105 if (mac_ptr >= mac_end)
24106 {
24107 dwarf2_section_buffer_overflow_complaint (section);
24108 break;
24109 }
24110
24111 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24112 mac_ptr++;
24113
24114 /* Note that we rely on the fact that the corresponding GNU and
24115 DWARF constants are the same. */
24116 DIAGNOSTIC_PUSH
24117 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24118 switch (macinfo_type)
24119 {
24120 /* A zero macinfo type indicates the end of the macro
24121 information. */
24122 case 0:
24123 break;
24124
24125 case DW_MACRO_define:
24126 case DW_MACRO_undef:
24127 case DW_MACRO_define_strp:
24128 case DW_MACRO_undef_strp:
24129 case DW_MACRO_define_sup:
24130 case DW_MACRO_undef_sup:
24131 {
24132 unsigned int bytes_read;
24133 int line;
24134 const char *body;
24135 int is_define;
24136
24137 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24138 mac_ptr += bytes_read;
24139
24140 if (macinfo_type == DW_MACRO_define
24141 || macinfo_type == DW_MACRO_undef)
24142 {
24143 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24144 mac_ptr += bytes_read;
24145 }
24146 else
24147 {
24148 LONGEST str_offset;
24149
24150 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24151 mac_ptr += offset_size;
24152
24153 if (macinfo_type == DW_MACRO_define_sup
24154 || macinfo_type == DW_MACRO_undef_sup
24155 || section_is_dwz)
24156 {
24157 struct dwz_file *dwz
24158 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24159
24160 body = read_indirect_string_from_dwz (objfile,
24161 dwz, str_offset);
24162 }
24163 else
24164 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24165 abfd, str_offset);
24166 }
24167
24168 is_define = (macinfo_type == DW_MACRO_define
24169 || macinfo_type == DW_MACRO_define_strp
24170 || macinfo_type == DW_MACRO_define_sup);
24171 if (! current_file)
24172 {
24173 /* DWARF violation as no main source is present. */
24174 complaint (_("debug info with no main source gives macro %s "
24175 "on line %d: %s"),
24176 is_define ? _("definition") : _("undefinition"),
24177 line, body);
24178 break;
24179 }
24180 if ((line == 0 && !at_commandline)
24181 || (line != 0 && at_commandline))
24182 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24183 at_commandline ? _("command-line") : _("in-file"),
24184 is_define ? _("definition") : _("undefinition"),
24185 line == 0 ? _("zero") : _("non-zero"), line, body);
24186
24187 if (is_define)
24188 parse_macro_definition (current_file, line, body);
24189 else
24190 {
24191 gdb_assert (macinfo_type == DW_MACRO_undef
24192 || macinfo_type == DW_MACRO_undef_strp
24193 || macinfo_type == DW_MACRO_undef_sup);
24194 macro_undef (current_file, line, body);
24195 }
24196 }
24197 break;
24198
24199 case DW_MACRO_start_file:
24200 {
24201 unsigned int bytes_read;
24202 int line, file;
24203
24204 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24205 mac_ptr += bytes_read;
24206 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24207 mac_ptr += bytes_read;
24208
24209 if ((line == 0 && !at_commandline)
24210 || (line != 0 && at_commandline))
24211 complaint (_("debug info gives source %d included "
24212 "from %s at %s line %d"),
24213 file, at_commandline ? _("command-line") : _("file"),
24214 line == 0 ? _("zero") : _("non-zero"), line);
24215
24216 if (at_commandline)
24217 {
24218 /* This DW_MACRO_start_file was executed in the
24219 pass one. */
24220 at_commandline = 0;
24221 }
24222 else
24223 current_file = macro_start_file (file, line, current_file, lh);
24224 }
24225 break;
24226
24227 case DW_MACRO_end_file:
24228 if (! current_file)
24229 complaint (_("macro debug info has an unmatched "
24230 "`close_file' directive"));
24231 else
24232 {
24233 current_file = current_file->included_by;
24234 if (! current_file)
24235 {
24236 enum dwarf_macro_record_type next_type;
24237
24238 /* GCC circa March 2002 doesn't produce the zero
24239 type byte marking the end of the compilation
24240 unit. Complain if it's not there, but exit no
24241 matter what. */
24242
24243 /* Do we at least have room for a macinfo type byte? */
24244 if (mac_ptr >= mac_end)
24245 {
24246 dwarf2_section_buffer_overflow_complaint (section);
24247 return;
24248 }
24249
24250 /* We don't increment mac_ptr here, so this is just
24251 a look-ahead. */
24252 next_type
24253 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24254 mac_ptr);
24255 if (next_type != 0)
24256 complaint (_("no terminating 0-type entry for "
24257 "macros in `.debug_macinfo' section"));
24258
24259 return;
24260 }
24261 }
24262 break;
24263
24264 case DW_MACRO_import:
24265 case DW_MACRO_import_sup:
24266 {
24267 LONGEST offset;
24268 void **slot;
24269 bfd *include_bfd = abfd;
24270 struct dwarf2_section_info *include_section = section;
24271 const gdb_byte *include_mac_end = mac_end;
24272 int is_dwz = section_is_dwz;
24273 const gdb_byte *new_mac_ptr;
24274
24275 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24276 mac_ptr += offset_size;
24277
24278 if (macinfo_type == DW_MACRO_import_sup)
24279 {
24280 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24281
24282 dwarf2_read_section (objfile, &dwz->macro);
24283
24284 include_section = &dwz->macro;
24285 include_bfd = get_section_bfd_owner (include_section);
24286 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24287 is_dwz = 1;
24288 }
24289
24290 new_mac_ptr = include_section->buffer + offset;
24291 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24292
24293 if (*slot != NULL)
24294 {
24295 /* This has actually happened; see
24296 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24297 complaint (_("recursive DW_MACRO_import in "
24298 ".debug_macro section"));
24299 }
24300 else
24301 {
24302 *slot = (void *) new_mac_ptr;
24303
24304 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24305 include_bfd, new_mac_ptr,
24306 include_mac_end, current_file, lh,
24307 section, section_is_gnu, is_dwz,
24308 offset_size, include_hash);
24309
24310 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24311 }
24312 }
24313 break;
24314
24315 case DW_MACINFO_vendor_ext:
24316 if (!section_is_gnu)
24317 {
24318 unsigned int bytes_read;
24319
24320 /* This reads the constant, but since we don't recognize
24321 any vendor extensions, we ignore it. */
24322 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24323 mac_ptr += bytes_read;
24324 read_direct_string (abfd, mac_ptr, &bytes_read);
24325 mac_ptr += bytes_read;
24326
24327 /* We don't recognize any vendor extensions. */
24328 break;
24329 }
24330 /* FALLTHROUGH */
24331
24332 default:
24333 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24334 mac_ptr, mac_end, abfd, offset_size,
24335 section);
24336 if (mac_ptr == NULL)
24337 return;
24338 break;
24339 }
24340 DIAGNOSTIC_POP
24341 } while (macinfo_type != 0);
24342 }
24343
24344 static void
24345 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24346 int section_is_gnu)
24347 {
24348 struct dwarf2_per_objfile *dwarf2_per_objfile
24349 = cu->per_cu->dwarf2_per_objfile;
24350 struct objfile *objfile = dwarf2_per_objfile->objfile;
24351 struct line_header *lh = cu->line_header;
24352 bfd *abfd;
24353 const gdb_byte *mac_ptr, *mac_end;
24354 struct macro_source_file *current_file = 0;
24355 enum dwarf_macro_record_type macinfo_type;
24356 unsigned int offset_size = cu->header.offset_size;
24357 const gdb_byte *opcode_definitions[256];
24358 void **slot;
24359 struct dwarf2_section_info *section;
24360 const char *section_name;
24361
24362 if (cu->dwo_unit != NULL)
24363 {
24364 if (section_is_gnu)
24365 {
24366 section = &cu->dwo_unit->dwo_file->sections.macro;
24367 section_name = ".debug_macro.dwo";
24368 }
24369 else
24370 {
24371 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24372 section_name = ".debug_macinfo.dwo";
24373 }
24374 }
24375 else
24376 {
24377 if (section_is_gnu)
24378 {
24379 section = &dwarf2_per_objfile->macro;
24380 section_name = ".debug_macro";
24381 }
24382 else
24383 {
24384 section = &dwarf2_per_objfile->macinfo;
24385 section_name = ".debug_macinfo";
24386 }
24387 }
24388
24389 dwarf2_read_section (objfile, section);
24390 if (section->buffer == NULL)
24391 {
24392 complaint (_("missing %s section"), section_name);
24393 return;
24394 }
24395 abfd = get_section_bfd_owner (section);
24396
24397 /* First pass: Find the name of the base filename.
24398 This filename is needed in order to process all macros whose definition
24399 (or undefinition) comes from the command line. These macros are defined
24400 before the first DW_MACINFO_start_file entry, and yet still need to be
24401 associated to the base file.
24402
24403 To determine the base file name, we scan the macro definitions until we
24404 reach the first DW_MACINFO_start_file entry. We then initialize
24405 CURRENT_FILE accordingly so that any macro definition found before the
24406 first DW_MACINFO_start_file can still be associated to the base file. */
24407
24408 mac_ptr = section->buffer + offset;
24409 mac_end = section->buffer + section->size;
24410
24411 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24412 &offset_size, section_is_gnu);
24413 if (mac_ptr == NULL)
24414 {
24415 /* We already issued a complaint. */
24416 return;
24417 }
24418
24419 do
24420 {
24421 /* Do we at least have room for a macinfo type byte? */
24422 if (mac_ptr >= mac_end)
24423 {
24424 /* Complaint is printed during the second pass as GDB will probably
24425 stop the first pass earlier upon finding
24426 DW_MACINFO_start_file. */
24427 break;
24428 }
24429
24430 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24431 mac_ptr++;
24432
24433 /* Note that we rely on the fact that the corresponding GNU and
24434 DWARF constants are the same. */
24435 DIAGNOSTIC_PUSH
24436 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24437 switch (macinfo_type)
24438 {
24439 /* A zero macinfo type indicates the end of the macro
24440 information. */
24441 case 0:
24442 break;
24443
24444 case DW_MACRO_define:
24445 case DW_MACRO_undef:
24446 /* Only skip the data by MAC_PTR. */
24447 {
24448 unsigned int bytes_read;
24449
24450 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24451 mac_ptr += bytes_read;
24452 read_direct_string (abfd, mac_ptr, &bytes_read);
24453 mac_ptr += bytes_read;
24454 }
24455 break;
24456
24457 case DW_MACRO_start_file:
24458 {
24459 unsigned int bytes_read;
24460 int line, file;
24461
24462 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24463 mac_ptr += bytes_read;
24464 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24465 mac_ptr += bytes_read;
24466
24467 current_file = macro_start_file (file, line, current_file, lh);
24468 }
24469 break;
24470
24471 case DW_MACRO_end_file:
24472 /* No data to skip by MAC_PTR. */
24473 break;
24474
24475 case DW_MACRO_define_strp:
24476 case DW_MACRO_undef_strp:
24477 case DW_MACRO_define_sup:
24478 case DW_MACRO_undef_sup:
24479 {
24480 unsigned int bytes_read;
24481
24482 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24483 mac_ptr += bytes_read;
24484 mac_ptr += offset_size;
24485 }
24486 break;
24487
24488 case DW_MACRO_import:
24489 case DW_MACRO_import_sup:
24490 /* Note that, according to the spec, a transparent include
24491 chain cannot call DW_MACRO_start_file. So, we can just
24492 skip this opcode. */
24493 mac_ptr += offset_size;
24494 break;
24495
24496 case DW_MACINFO_vendor_ext:
24497 /* Only skip the data by MAC_PTR. */
24498 if (!section_is_gnu)
24499 {
24500 unsigned int bytes_read;
24501
24502 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24503 mac_ptr += bytes_read;
24504 read_direct_string (abfd, mac_ptr, &bytes_read);
24505 mac_ptr += bytes_read;
24506 }
24507 /* FALLTHROUGH */
24508
24509 default:
24510 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24511 mac_ptr, mac_end, abfd, offset_size,
24512 section);
24513 if (mac_ptr == NULL)
24514 return;
24515 break;
24516 }
24517 DIAGNOSTIC_POP
24518 } while (macinfo_type != 0 && current_file == NULL);
24519
24520 /* Second pass: Process all entries.
24521
24522 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24523 command-line macro definitions/undefinitions. This flag is unset when we
24524 reach the first DW_MACINFO_start_file entry. */
24525
24526 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24527 htab_eq_pointer,
24528 NULL, xcalloc, xfree));
24529 mac_ptr = section->buffer + offset;
24530 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24531 *slot = (void *) mac_ptr;
24532 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24533 abfd, mac_ptr, mac_end,
24534 current_file, lh, section,
24535 section_is_gnu, 0, offset_size,
24536 include_hash.get ());
24537 }
24538
24539 /* Check if the attribute's form is a DW_FORM_block*
24540 if so return true else false. */
24541
24542 static int
24543 attr_form_is_block (const struct attribute *attr)
24544 {
24545 return (attr == NULL ? 0 :
24546 attr->form == DW_FORM_block1
24547 || attr->form == DW_FORM_block2
24548 || attr->form == DW_FORM_block4
24549 || attr->form == DW_FORM_block
24550 || attr->form == DW_FORM_exprloc);
24551 }
24552
24553 /* Return non-zero if ATTR's value is a section offset --- classes
24554 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24555 You may use DW_UNSND (attr) to retrieve such offsets.
24556
24557 Section 7.5.4, "Attribute Encodings", explains that no attribute
24558 may have a value that belongs to more than one of these classes; it
24559 would be ambiguous if we did, because we use the same forms for all
24560 of them. */
24561
24562 static int
24563 attr_form_is_section_offset (const struct attribute *attr)
24564 {
24565 return (attr->form == DW_FORM_data4
24566 || attr->form == DW_FORM_data8
24567 || attr->form == DW_FORM_sec_offset);
24568 }
24569
24570 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24571 zero otherwise. When this function returns true, you can apply
24572 dwarf2_get_attr_constant_value to it.
24573
24574 However, note that for some attributes you must check
24575 attr_form_is_section_offset before using this test. DW_FORM_data4
24576 and DW_FORM_data8 are members of both the constant class, and of
24577 the classes that contain offsets into other debug sections
24578 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24579 that, if an attribute's can be either a constant or one of the
24580 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24581 taken as section offsets, not constants.
24582
24583 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24584 cannot handle that. */
24585
24586 static int
24587 attr_form_is_constant (const struct attribute *attr)
24588 {
24589 switch (attr->form)
24590 {
24591 case DW_FORM_sdata:
24592 case DW_FORM_udata:
24593 case DW_FORM_data1:
24594 case DW_FORM_data2:
24595 case DW_FORM_data4:
24596 case DW_FORM_data8:
24597 case DW_FORM_implicit_const:
24598 return 1;
24599 default:
24600 return 0;
24601 }
24602 }
24603
24604
24605 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24606 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24607
24608 static int
24609 attr_form_is_ref (const struct attribute *attr)
24610 {
24611 switch (attr->form)
24612 {
24613 case DW_FORM_ref_addr:
24614 case DW_FORM_ref1:
24615 case DW_FORM_ref2:
24616 case DW_FORM_ref4:
24617 case DW_FORM_ref8:
24618 case DW_FORM_ref_udata:
24619 case DW_FORM_GNU_ref_alt:
24620 return 1;
24621 default:
24622 return 0;
24623 }
24624 }
24625
24626 /* Return the .debug_loc section to use for CU.
24627 For DWO files use .debug_loc.dwo. */
24628
24629 static struct dwarf2_section_info *
24630 cu_debug_loc_section (struct dwarf2_cu *cu)
24631 {
24632 struct dwarf2_per_objfile *dwarf2_per_objfile
24633 = cu->per_cu->dwarf2_per_objfile;
24634
24635 if (cu->dwo_unit)
24636 {
24637 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24638
24639 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24640 }
24641 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24642 : &dwarf2_per_objfile->loc);
24643 }
24644
24645 /* A helper function that fills in a dwarf2_loclist_baton. */
24646
24647 static void
24648 fill_in_loclist_baton (struct dwarf2_cu *cu,
24649 struct dwarf2_loclist_baton *baton,
24650 const struct attribute *attr)
24651 {
24652 struct dwarf2_per_objfile *dwarf2_per_objfile
24653 = cu->per_cu->dwarf2_per_objfile;
24654 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24655
24656 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24657
24658 baton->per_cu = cu->per_cu;
24659 gdb_assert (baton->per_cu);
24660 /* We don't know how long the location list is, but make sure we
24661 don't run off the edge of the section. */
24662 baton->size = section->size - DW_UNSND (attr);
24663 baton->data = section->buffer + DW_UNSND (attr);
24664 baton->base_address = cu->base_address;
24665 baton->from_dwo = cu->dwo_unit != NULL;
24666 }
24667
24668 static void
24669 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24670 struct dwarf2_cu *cu, int is_block)
24671 {
24672 struct dwarf2_per_objfile *dwarf2_per_objfile
24673 = cu->per_cu->dwarf2_per_objfile;
24674 struct objfile *objfile = dwarf2_per_objfile->objfile;
24675 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24676
24677 if (attr_form_is_section_offset (attr)
24678 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24679 the section. If so, fall through to the complaint in the
24680 other branch. */
24681 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24682 {
24683 struct dwarf2_loclist_baton *baton;
24684
24685 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24686
24687 fill_in_loclist_baton (cu, baton, attr);
24688
24689 if (cu->base_known == 0)
24690 complaint (_("Location list used without "
24691 "specifying the CU base address."));
24692
24693 SYMBOL_ACLASS_INDEX (sym) = (is_block
24694 ? dwarf2_loclist_block_index
24695 : dwarf2_loclist_index);
24696 SYMBOL_LOCATION_BATON (sym) = baton;
24697 }
24698 else
24699 {
24700 struct dwarf2_locexpr_baton *baton;
24701
24702 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24703 baton->per_cu = cu->per_cu;
24704 gdb_assert (baton->per_cu);
24705
24706 if (attr_form_is_block (attr))
24707 {
24708 /* Note that we're just copying the block's data pointer
24709 here, not the actual data. We're still pointing into the
24710 info_buffer for SYM's objfile; right now we never release
24711 that buffer, but when we do clean up properly this may
24712 need to change. */
24713 baton->size = DW_BLOCK (attr)->size;
24714 baton->data = DW_BLOCK (attr)->data;
24715 }
24716 else
24717 {
24718 dwarf2_invalid_attrib_class_complaint ("location description",
24719 SYMBOL_NATURAL_NAME (sym));
24720 baton->size = 0;
24721 }
24722
24723 SYMBOL_ACLASS_INDEX (sym) = (is_block
24724 ? dwarf2_locexpr_block_index
24725 : dwarf2_locexpr_index);
24726 SYMBOL_LOCATION_BATON (sym) = baton;
24727 }
24728 }
24729
24730 /* Return the OBJFILE associated with the compilation unit CU. If CU
24731 came from a separate debuginfo file, then the master objfile is
24732 returned. */
24733
24734 struct objfile *
24735 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24736 {
24737 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24738
24739 /* Return the master objfile, so that we can report and look up the
24740 correct file containing this variable. */
24741 if (objfile->separate_debug_objfile_backlink)
24742 objfile = objfile->separate_debug_objfile_backlink;
24743
24744 return objfile;
24745 }
24746
24747 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24748 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24749 CU_HEADERP first. */
24750
24751 static const struct comp_unit_head *
24752 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24753 struct dwarf2_per_cu_data *per_cu)
24754 {
24755 const gdb_byte *info_ptr;
24756
24757 if (per_cu->cu)
24758 return &per_cu->cu->header;
24759
24760 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24761
24762 memset (cu_headerp, 0, sizeof (*cu_headerp));
24763 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24764 rcuh_kind::COMPILE);
24765
24766 return cu_headerp;
24767 }
24768
24769 /* Return the address size given in the compilation unit header for CU. */
24770
24771 int
24772 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24773 {
24774 struct comp_unit_head cu_header_local;
24775 const struct comp_unit_head *cu_headerp;
24776
24777 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24778
24779 return cu_headerp->addr_size;
24780 }
24781
24782 /* Return the offset size given in the compilation unit header for CU. */
24783
24784 int
24785 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24786 {
24787 struct comp_unit_head cu_header_local;
24788 const struct comp_unit_head *cu_headerp;
24789
24790 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24791
24792 return cu_headerp->offset_size;
24793 }
24794
24795 /* See its dwarf2loc.h declaration. */
24796
24797 int
24798 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24799 {
24800 struct comp_unit_head cu_header_local;
24801 const struct comp_unit_head *cu_headerp;
24802
24803 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24804
24805 if (cu_headerp->version == 2)
24806 return cu_headerp->addr_size;
24807 else
24808 return cu_headerp->offset_size;
24809 }
24810
24811 /* Return the text offset of the CU. The returned offset comes from
24812 this CU's objfile. If this objfile came from a separate debuginfo
24813 file, then the offset may be different from the corresponding
24814 offset in the parent objfile. */
24815
24816 CORE_ADDR
24817 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24818 {
24819 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24820
24821 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24822 }
24823
24824 /* Return DWARF version number of PER_CU. */
24825
24826 short
24827 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24828 {
24829 return per_cu->dwarf_version;
24830 }
24831
24832 /* Locate the .debug_info compilation unit from CU's objfile which contains
24833 the DIE at OFFSET. Raises an error on failure. */
24834
24835 static struct dwarf2_per_cu_data *
24836 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24837 unsigned int offset_in_dwz,
24838 struct dwarf2_per_objfile *dwarf2_per_objfile)
24839 {
24840 struct dwarf2_per_cu_data *this_cu;
24841 int low, high;
24842 const sect_offset *cu_off;
24843
24844 low = 0;
24845 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24846 while (high > low)
24847 {
24848 struct dwarf2_per_cu_data *mid_cu;
24849 int mid = low + (high - low) / 2;
24850
24851 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24852 cu_off = &mid_cu->sect_off;
24853 if (mid_cu->is_dwz > offset_in_dwz
24854 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24855 high = mid;
24856 else
24857 low = mid + 1;
24858 }
24859 gdb_assert (low == high);
24860 this_cu = dwarf2_per_objfile->all_comp_units[low];
24861 cu_off = &this_cu->sect_off;
24862 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24863 {
24864 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24865 error (_("Dwarf Error: could not find partial DIE containing "
24866 "offset %s [in module %s]"),
24867 sect_offset_str (sect_off),
24868 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24869
24870 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24871 <= sect_off);
24872 return dwarf2_per_objfile->all_comp_units[low-1];
24873 }
24874 else
24875 {
24876 this_cu = dwarf2_per_objfile->all_comp_units[low];
24877 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24878 && sect_off >= this_cu->sect_off + this_cu->length)
24879 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24880 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24881 return this_cu;
24882 }
24883 }
24884
24885 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24886
24887 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24888 : per_cu (per_cu_),
24889 mark (0),
24890 has_loclist (0),
24891 checked_producer (0),
24892 producer_is_gxx_lt_4_6 (0),
24893 producer_is_gcc_lt_4_3 (0),
24894 producer_is_icc_lt_14 (0),
24895 processing_has_namespace_info (0)
24896 {
24897 per_cu->cu = this;
24898 }
24899
24900 /* Destroy a dwarf2_cu. */
24901
24902 dwarf2_cu::~dwarf2_cu ()
24903 {
24904 per_cu->cu = NULL;
24905 }
24906
24907 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24908
24909 static void
24910 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24911 enum language pretend_language)
24912 {
24913 struct attribute *attr;
24914
24915 /* Set the language we're debugging. */
24916 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24917 if (attr)
24918 set_cu_language (DW_UNSND (attr), cu);
24919 else
24920 {
24921 cu->language = pretend_language;
24922 cu->language_defn = language_def (cu->language);
24923 }
24924
24925 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24926 }
24927
24928 /* Increase the age counter on each cached compilation unit, and free
24929 any that are too old. */
24930
24931 static void
24932 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24933 {
24934 struct dwarf2_per_cu_data *per_cu, **last_chain;
24935
24936 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24937 per_cu = dwarf2_per_objfile->read_in_chain;
24938 while (per_cu != NULL)
24939 {
24940 per_cu->cu->last_used ++;
24941 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24942 dwarf2_mark (per_cu->cu);
24943 per_cu = per_cu->cu->read_in_chain;
24944 }
24945
24946 per_cu = dwarf2_per_objfile->read_in_chain;
24947 last_chain = &dwarf2_per_objfile->read_in_chain;
24948 while (per_cu != NULL)
24949 {
24950 struct dwarf2_per_cu_data *next_cu;
24951
24952 next_cu = per_cu->cu->read_in_chain;
24953
24954 if (!per_cu->cu->mark)
24955 {
24956 delete per_cu->cu;
24957 *last_chain = next_cu;
24958 }
24959 else
24960 last_chain = &per_cu->cu->read_in_chain;
24961
24962 per_cu = next_cu;
24963 }
24964 }
24965
24966 /* Remove a single compilation unit from the cache. */
24967
24968 static void
24969 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24970 {
24971 struct dwarf2_per_cu_data *per_cu, **last_chain;
24972 struct dwarf2_per_objfile *dwarf2_per_objfile
24973 = target_per_cu->dwarf2_per_objfile;
24974
24975 per_cu = dwarf2_per_objfile->read_in_chain;
24976 last_chain = &dwarf2_per_objfile->read_in_chain;
24977 while (per_cu != NULL)
24978 {
24979 struct dwarf2_per_cu_data *next_cu;
24980
24981 next_cu = per_cu->cu->read_in_chain;
24982
24983 if (per_cu == target_per_cu)
24984 {
24985 delete per_cu->cu;
24986 per_cu->cu = NULL;
24987 *last_chain = next_cu;
24988 break;
24989 }
24990 else
24991 last_chain = &per_cu->cu->read_in_chain;
24992
24993 per_cu = next_cu;
24994 }
24995 }
24996
24997 /* Cleanup function for the dwarf2_per_objfile data. */
24998
24999 static void
25000 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25001 {
25002 struct dwarf2_per_objfile *dwarf2_per_objfile
25003 = static_cast<struct dwarf2_per_objfile *> (datum);
25004
25005 delete dwarf2_per_objfile;
25006 }
25007
25008 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25009 We store these in a hash table separate from the DIEs, and preserve them
25010 when the DIEs are flushed out of cache.
25011
25012 The CU "per_cu" pointer is needed because offset alone is not enough to
25013 uniquely identify the type. A file may have multiple .debug_types sections,
25014 or the type may come from a DWO file. Furthermore, while it's more logical
25015 to use per_cu->section+offset, with Fission the section with the data is in
25016 the DWO file but we don't know that section at the point we need it.
25017 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25018 because we can enter the lookup routine, get_die_type_at_offset, from
25019 outside this file, and thus won't necessarily have PER_CU->cu.
25020 Fortunately, PER_CU is stable for the life of the objfile. */
25021
25022 struct dwarf2_per_cu_offset_and_type
25023 {
25024 const struct dwarf2_per_cu_data *per_cu;
25025 sect_offset sect_off;
25026 struct type *type;
25027 };
25028
25029 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25030
25031 static hashval_t
25032 per_cu_offset_and_type_hash (const void *item)
25033 {
25034 const struct dwarf2_per_cu_offset_and_type *ofs
25035 = (const struct dwarf2_per_cu_offset_and_type *) item;
25036
25037 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25038 }
25039
25040 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25041
25042 static int
25043 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25044 {
25045 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25046 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25047 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25048 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25049
25050 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25051 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25052 }
25053
25054 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25055 table if necessary. For convenience, return TYPE.
25056
25057 The DIEs reading must have careful ordering to:
25058 * Not cause infite loops trying to read in DIEs as a prerequisite for
25059 reading current DIE.
25060 * Not trying to dereference contents of still incompletely read in types
25061 while reading in other DIEs.
25062 * Enable referencing still incompletely read in types just by a pointer to
25063 the type without accessing its fields.
25064
25065 Therefore caller should follow these rules:
25066 * Try to fetch any prerequisite types we may need to build this DIE type
25067 before building the type and calling set_die_type.
25068 * After building type call set_die_type for current DIE as soon as
25069 possible before fetching more types to complete the current type.
25070 * Make the type as complete as possible before fetching more types. */
25071
25072 static struct type *
25073 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25074 {
25075 struct dwarf2_per_objfile *dwarf2_per_objfile
25076 = cu->per_cu->dwarf2_per_objfile;
25077 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25078 struct objfile *objfile = dwarf2_per_objfile->objfile;
25079 struct attribute *attr;
25080 struct dynamic_prop prop;
25081
25082 /* For Ada types, make sure that the gnat-specific data is always
25083 initialized (if not already set). There are a few types where
25084 we should not be doing so, because the type-specific area is
25085 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25086 where the type-specific area is used to store the floatformat).
25087 But this is not a problem, because the gnat-specific information
25088 is actually not needed for these types. */
25089 if (need_gnat_info (cu)
25090 && TYPE_CODE (type) != TYPE_CODE_FUNC
25091 && TYPE_CODE (type) != TYPE_CODE_FLT
25092 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25093 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25094 && TYPE_CODE (type) != TYPE_CODE_METHOD
25095 && !HAVE_GNAT_AUX_INFO (type))
25096 INIT_GNAT_SPECIFIC (type);
25097
25098 /* Read DW_AT_allocated and set in type. */
25099 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25100 if (attr_form_is_block (attr))
25101 {
25102 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25103 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25104 }
25105 else if (attr != NULL)
25106 {
25107 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25108 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25109 sect_offset_str (die->sect_off));
25110 }
25111
25112 /* Read DW_AT_associated and set in type. */
25113 attr = dwarf2_attr (die, DW_AT_associated, cu);
25114 if (attr_form_is_block (attr))
25115 {
25116 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25117 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25118 }
25119 else if (attr != NULL)
25120 {
25121 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25122 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25123 sect_offset_str (die->sect_off));
25124 }
25125
25126 /* Read DW_AT_data_location and set in type. */
25127 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25128 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25129 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25130
25131 if (dwarf2_per_objfile->die_type_hash == NULL)
25132 {
25133 dwarf2_per_objfile->die_type_hash =
25134 htab_create_alloc_ex (127,
25135 per_cu_offset_and_type_hash,
25136 per_cu_offset_and_type_eq,
25137 NULL,
25138 &objfile->objfile_obstack,
25139 hashtab_obstack_allocate,
25140 dummy_obstack_deallocate);
25141 }
25142
25143 ofs.per_cu = cu->per_cu;
25144 ofs.sect_off = die->sect_off;
25145 ofs.type = type;
25146 slot = (struct dwarf2_per_cu_offset_and_type **)
25147 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25148 if (*slot)
25149 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25150 sect_offset_str (die->sect_off));
25151 *slot = XOBNEW (&objfile->objfile_obstack,
25152 struct dwarf2_per_cu_offset_and_type);
25153 **slot = ofs;
25154 return type;
25155 }
25156
25157 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25158 or return NULL if the die does not have a saved type. */
25159
25160 static struct type *
25161 get_die_type_at_offset (sect_offset sect_off,
25162 struct dwarf2_per_cu_data *per_cu)
25163 {
25164 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25165 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25166
25167 if (dwarf2_per_objfile->die_type_hash == NULL)
25168 return NULL;
25169
25170 ofs.per_cu = per_cu;
25171 ofs.sect_off = sect_off;
25172 slot = ((struct dwarf2_per_cu_offset_and_type *)
25173 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25174 if (slot)
25175 return slot->type;
25176 else
25177 return NULL;
25178 }
25179
25180 /* Look up the type for DIE in CU in die_type_hash,
25181 or return NULL if DIE does not have a saved type. */
25182
25183 static struct type *
25184 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25185 {
25186 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25187 }
25188
25189 /* Add a dependence relationship from CU to REF_PER_CU. */
25190
25191 static void
25192 dwarf2_add_dependence (struct dwarf2_cu *cu,
25193 struct dwarf2_per_cu_data *ref_per_cu)
25194 {
25195 void **slot;
25196
25197 if (cu->dependencies == NULL)
25198 cu->dependencies
25199 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25200 NULL, &cu->comp_unit_obstack,
25201 hashtab_obstack_allocate,
25202 dummy_obstack_deallocate);
25203
25204 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25205 if (*slot == NULL)
25206 *slot = ref_per_cu;
25207 }
25208
25209 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25210 Set the mark field in every compilation unit in the
25211 cache that we must keep because we are keeping CU. */
25212
25213 static int
25214 dwarf2_mark_helper (void **slot, void *data)
25215 {
25216 struct dwarf2_per_cu_data *per_cu;
25217
25218 per_cu = (struct dwarf2_per_cu_data *) *slot;
25219
25220 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25221 reading of the chain. As such dependencies remain valid it is not much
25222 useful to track and undo them during QUIT cleanups. */
25223 if (per_cu->cu == NULL)
25224 return 1;
25225
25226 if (per_cu->cu->mark)
25227 return 1;
25228 per_cu->cu->mark = 1;
25229
25230 if (per_cu->cu->dependencies != NULL)
25231 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25232
25233 return 1;
25234 }
25235
25236 /* Set the mark field in CU and in every other compilation unit in the
25237 cache that we must keep because we are keeping CU. */
25238
25239 static void
25240 dwarf2_mark (struct dwarf2_cu *cu)
25241 {
25242 if (cu->mark)
25243 return;
25244 cu->mark = 1;
25245 if (cu->dependencies != NULL)
25246 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25247 }
25248
25249 static void
25250 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25251 {
25252 while (per_cu)
25253 {
25254 per_cu->cu->mark = 0;
25255 per_cu = per_cu->cu->read_in_chain;
25256 }
25257 }
25258
25259 /* Trivial hash function for partial_die_info: the hash value of a DIE
25260 is its offset in .debug_info for this objfile. */
25261
25262 static hashval_t
25263 partial_die_hash (const void *item)
25264 {
25265 const struct partial_die_info *part_die
25266 = (const struct partial_die_info *) item;
25267
25268 return to_underlying (part_die->sect_off);
25269 }
25270
25271 /* Trivial comparison function for partial_die_info structures: two DIEs
25272 are equal if they have the same offset. */
25273
25274 static int
25275 partial_die_eq (const void *item_lhs, const void *item_rhs)
25276 {
25277 const struct partial_die_info *part_die_lhs
25278 = (const struct partial_die_info *) item_lhs;
25279 const struct partial_die_info *part_die_rhs
25280 = (const struct partial_die_info *) item_rhs;
25281
25282 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25283 }
25284
25285 static struct cmd_list_element *set_dwarf_cmdlist;
25286 static struct cmd_list_element *show_dwarf_cmdlist;
25287
25288 static void
25289 set_dwarf_cmd (const char *args, int from_tty)
25290 {
25291 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25292 gdb_stdout);
25293 }
25294
25295 static void
25296 show_dwarf_cmd (const char *args, int from_tty)
25297 {
25298 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25299 }
25300
25301 int dwarf_always_disassemble;
25302
25303 static void
25304 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25305 struct cmd_list_element *c, const char *value)
25306 {
25307 fprintf_filtered (file,
25308 _("Whether to always disassemble "
25309 "DWARF expressions is %s.\n"),
25310 value);
25311 }
25312
25313 static void
25314 show_check_physname (struct ui_file *file, int from_tty,
25315 struct cmd_list_element *c, const char *value)
25316 {
25317 fprintf_filtered (file,
25318 _("Whether to check \"physname\" is %s.\n"),
25319 value);
25320 }
25321
25322 void
25323 _initialize_dwarf2_read (void)
25324 {
25325 dwarf2_objfile_data_key
25326 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25327
25328 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25329 Set DWARF specific variables.\n\
25330 Configure DWARF variables such as the cache size"),
25331 &set_dwarf_cmdlist, "maintenance set dwarf ",
25332 0/*allow-unknown*/, &maintenance_set_cmdlist);
25333
25334 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25335 Show DWARF specific variables\n\
25336 Show DWARF variables such as the cache size"),
25337 &show_dwarf_cmdlist, "maintenance show dwarf ",
25338 0/*allow-unknown*/, &maintenance_show_cmdlist);
25339
25340 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25341 &dwarf_max_cache_age, _("\
25342 Set the upper bound on the age of cached DWARF compilation units."), _("\
25343 Show the upper bound on the age of cached DWARF compilation units."), _("\
25344 A higher limit means that cached compilation units will be stored\n\
25345 in memory longer, and more total memory will be used. Zero disables\n\
25346 caching, which can slow down startup."),
25347 NULL,
25348 show_dwarf_max_cache_age,
25349 &set_dwarf_cmdlist,
25350 &show_dwarf_cmdlist);
25351
25352 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25353 &dwarf_always_disassemble, _("\
25354 Set whether `info address' always disassembles DWARF expressions."), _("\
25355 Show whether `info address' always disassembles DWARF expressions."), _("\
25356 When enabled, DWARF expressions are always printed in an assembly-like\n\
25357 syntax. When disabled, expressions will be printed in a more\n\
25358 conversational style, when possible."),
25359 NULL,
25360 show_dwarf_always_disassemble,
25361 &set_dwarf_cmdlist,
25362 &show_dwarf_cmdlist);
25363
25364 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25365 Set debugging of the DWARF reader."), _("\
25366 Show debugging of the DWARF reader."), _("\
25367 When enabled (non-zero), debugging messages are printed during DWARF\n\
25368 reading and symtab expansion. A value of 1 (one) provides basic\n\
25369 information. A value greater than 1 provides more verbose information."),
25370 NULL,
25371 NULL,
25372 &setdebuglist, &showdebuglist);
25373
25374 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25375 Set debugging of the DWARF DIE reader."), _("\
25376 Show debugging of the DWARF DIE reader."), _("\
25377 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25378 The value is the maximum depth to print."),
25379 NULL,
25380 NULL,
25381 &setdebuglist, &showdebuglist);
25382
25383 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25384 Set debugging of the dwarf line reader."), _("\
25385 Show debugging of the dwarf line reader."), _("\
25386 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25387 A value of 1 (one) provides basic information.\n\
25388 A value greater than 1 provides more verbose information."),
25389 NULL,
25390 NULL,
25391 &setdebuglist, &showdebuglist);
25392
25393 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25394 Set cross-checking of \"physname\" code against demangler."), _("\
25395 Show cross-checking of \"physname\" code against demangler."), _("\
25396 When enabled, GDB's internal \"physname\" code is checked against\n\
25397 the demangler."),
25398 NULL, show_check_physname,
25399 &setdebuglist, &showdebuglist);
25400
25401 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25402 no_class, &use_deprecated_index_sections, _("\
25403 Set whether to use deprecated gdb_index sections."), _("\
25404 Show whether to use deprecated gdb_index sections."), _("\
25405 When enabled, deprecated .gdb_index sections are used anyway.\n\
25406 Normally they are ignored either because of a missing feature or\n\
25407 performance issue.\n\
25408 Warning: This option must be enabled before gdb reads the file."),
25409 NULL,
25410 NULL,
25411 &setlist, &showlist);
25412
25413 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25414 &dwarf2_locexpr_funcs);
25415 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25416 &dwarf2_loclist_funcs);
25417
25418 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25419 &dwarf2_block_frame_base_locexpr_funcs);
25420 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25421 &dwarf2_block_frame_base_loclist_funcs);
25422
25423 #if GDB_SELF_TEST
25424 selftests::register_test ("dw2_expand_symtabs_matching",
25425 selftests::dw2_expand_symtabs_matching::run_test);
25426 #endif
25427 }
This page took 0.658104 seconds and 4 git commands to generate.