2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233 };
234
235 static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237 /* names of the debugging sections */
238
239 /* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242 #define INFO_SECTION "debug_info"
243 #define ABBREV_SECTION "debug_abbrev"
244 #define LINE_SECTION "debug_line"
245 #define LOC_SECTION "debug_loc"
246 #define MACINFO_SECTION "debug_macinfo"
247 #define STR_SECTION "debug_str"
248 #define RANGES_SECTION "debug_ranges"
249 #define TYPES_SECTION "debug_types"
250 #define FRAME_SECTION "debug_frame"
251 #define EH_FRAME_SECTION "eh_frame"
252 #define GDB_INDEX_SECTION "gdb_index"
253
254 /* local data types */
255
256 /* We hold several abbreviation tables in memory at the same time. */
257 #ifndef ABBREV_HASH_SIZE
258 #define ABBREV_HASH_SIZE 121
259 #endif
260
261 /* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263 struct comp_unit_head
264 {
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284 };
285
286 /* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288 struct delayed_method_info
289 {
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304 };
305
306 typedef struct delayed_method_info delayed_method_info;
307 DEF_VEC_O (delayed_method_info);
308
309 /* Internal state when decoding a particular compilation unit. */
310 struct dwarf2_cu
311 {
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406 struct dwarf2_per_cu_data
407 {
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465 };
466
467 /* Struct used to pass misc. parameters to read_die_and_children, et
468 al. which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call. This
470 struct exists to abstract away the constant parameters of die
471 reading. */
472
473 struct die_reader_specs
474 {
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484 };
485
486 /* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489 struct line_header
490 {
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531 };
532
533 /* When we construct a partial symbol table entry we only
534 need this much information. */
535 struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599 /* This data structure holds the information of an abbrev. */
600 struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610 struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616 /* Attributes have a name and a value. */
617 struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639 /* This data structure holds a complete die structure. */
640 struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672 struct function_range
673 {
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678 };
679
680 /* Get at parts of an attribute structure. */
681
682 #define DW_STRING(attr) ((attr)->u.str)
683 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684 #define DW_UNSND(attr) ((attr)->u.unsnd)
685 #define DW_BLOCK(attr) ((attr)->u.blk)
686 #define DW_SND(attr) ((attr)->u.snd)
687 #define DW_ADDR(attr) ((attr)->u.addr)
688 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690 /* Blocks are a bunch of untyped bytes. */
691 struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697 #ifndef ATTR_ALLOC_CHUNK
698 #define ATTR_ALLOC_CHUNK 4
699 #endif
700
701 /* Allocate fields for structs, unions and enums in this size. */
702 #ifndef DW_FIELD_ALLOC_CHUNK
703 #define DW_FIELD_ALLOC_CHUNK 4
704 #endif
705
706 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709 static int bits_per_byte = 8;
710
711 /* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714 struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769 /* One item on the queue of compilation units to read in full symbols
770 for. */
771 struct dwarf2_queue_item
772 {
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775 };
776
777 /* The current queue. */
778 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780 /* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785 static int dwarf2_max_cache_age = 5;
786 static void
787 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789 {
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793 }
794
795
796 /* Various complaints about symbol reading that don't abort the process. */
797
798 static void
799 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800 {
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803 }
804
805 static void
806 dwarf2_debug_line_missing_file_complaint (void)
807 {
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810 }
811
812 static void
813 dwarf2_debug_line_missing_end_sequence_complaint (void)
814 {
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818 }
819
820 static void
821 dwarf2_complex_location_expr_complaint (void)
822 {
823 complaint (&symfile_complaints, _("location expression too complex"));
824 }
825
826 static void
827 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829 {
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833 }
834
835 static void
836 dwarf2_macros_too_long_complaint (void)
837 {
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840 }
841
842 static void
843 dwarf2_macro_malformed_definition_complaint (const char *arg1)
844 {
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849 }
850
851 static void
852 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853 {
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857 }
858
859 /* local function prototypes */
860
861 static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866 static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868 static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872 static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875 static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886 static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896 static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900 static void dwarf2_free_abbrev_table (void *);
901
902 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908 static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912 static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918 static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921 static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930 static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932 static int read_1_signed_byte (bfd *, gdb_byte *);
933
934 static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936 static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945 static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958 static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968 static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982 static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985 static void free_line_header (struct line_header *lh);
986
987 static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990 static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997 static void dwarf2_start_subfile (char *, const char *, const char *);
998
999 static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005 static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008 static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018 static int need_gnat_info (struct dwarf2_cu *);
1019
1020 static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023 static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026 static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038 static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053 static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057 static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064 static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070 static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088 static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091 static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122 static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129 static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136 static char *dwarf_tag_name (unsigned int);
1137
1138 static char *dwarf_attr_name (unsigned int);
1139
1140 static char *dwarf_form_name (unsigned int);
1141
1142 static char *dwarf_bool_name (unsigned int);
1143
1144 static char *dwarf_type_encoding_name (unsigned int);
1145
1146 #if 0
1147 static char *dwarf_cfi_name (unsigned int);
1148 #endif
1149
1150 static struct die_info *sibling_die (struct die_info *);
1151
1152 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154 static void dump_die_for_error (struct die_info *);
1155
1156 static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159 /*static*/ void dump_die (struct die_info *, int max_level);
1160
1161 static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164 static int is_ref_attr (struct attribute *);
1165
1166 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174 static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178 static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182 static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185 static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188 /* memory allocation interface */
1189
1190 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196 static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201 static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240 static void free_one_comp_unit (void *);
1241
1242 static void free_cached_comp_units (void *);
1243
1244 static void age_cached_comp_units (void);
1245
1246 static void free_one_cached_comp_unit (void *);
1247
1248 static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251 static void create_all_comp_units (struct objfile *);
1252
1253 static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260 static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263 static void dwarf2_mark (struct dwarf2_cu *);
1264
1265 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267 static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272 static void dwarf2_release_queue (void *dummy);
1273
1274 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277 static void process_queue (struct objfile *objfile);
1278
1279 static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283 static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292 static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297 #if WORDS_BIGENDIAN
1298
1299 /* Convert VALUE between big- and little-endian. */
1300 static offset_type
1301 byte_swap (offset_type value)
1302 {
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310 }
1311
1312 #define MAYBE_SWAP(V) byte_swap (V)
1313
1314 #else
1315 #define MAYBE_SWAP(V) (V)
1316 #endif /* WORDS_BIGENDIAN */
1317
1318 /* The suffix for an index file. */
1319 #define INDEX_SUFFIX ".gdb-index"
1320
1321 static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324 /* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327 int
1328 dwarf2_has_info (struct objfile *objfile)
1329 {
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346 }
1347
1348 /* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351 static int
1352 section_is_p (const char *section_name, const char *name)
1353 {
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366 {
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431 }
1432
1433 /* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436 static void
1437 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439 {
1440 bfd *abfd = objfile->obfd;
1441 #ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445 #else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509 #endif
1510 }
1511
1512 /* Read the contents of the section SECTP from object file specified by
1513 OBJFILE, store info about the section into INFO.
1514 If the section is compressed, uncompress it before returning. */
1515
1516 static void
1517 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1518 {
1519 bfd *abfd = objfile->obfd;
1520 asection *sectp = info->asection;
1521 gdb_byte *buf, *retbuf;
1522 unsigned char header[4];
1523
1524 if (info->readin)
1525 return;
1526 info->buffer = NULL;
1527 info->was_mmapped = 0;
1528 info->readin = 1;
1529
1530 if (info->asection == NULL || info->size == 0)
1531 return;
1532
1533 /* Check if the file has a 4-byte header indicating compression. */
1534 if (info->size > sizeof (header)
1535 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1536 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1537 {
1538 /* Upon decompression, update the buffer and its size. */
1539 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1540 {
1541 zlib_decompress_section (objfile, sectp, &info->buffer,
1542 &info->size);
1543 return;
1544 }
1545 }
1546
1547 #ifdef HAVE_MMAP
1548 if (pagesize == 0)
1549 pagesize = getpagesize ();
1550
1551 /* Only try to mmap sections which are large enough: we don't want to
1552 waste space due to fragmentation. Also, only try mmap for sections
1553 without relocations. */
1554
1555 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1556 {
1557 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1558 size_t map_length = info->size + sectp->filepos - pg_offset;
1559 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1560 MAP_PRIVATE, pg_offset);
1561
1562 if (retbuf != MAP_FAILED)
1563 {
1564 info->was_mmapped = 1;
1565 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1566 #if HAVE_POSIX_MADVISE
1567 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1568 #endif
1569 return;
1570 }
1571 }
1572 #endif
1573
1574 /* If we get here, we are a normal, not-compressed section. */
1575 info->buffer = buf
1576 = obstack_alloc (&objfile->objfile_obstack, info->size);
1577
1578 /* When debugging .o files, we may need to apply relocations; see
1579 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1580 We never compress sections in .o files, so we only need to
1581 try this when the section is not compressed. */
1582 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1583 if (retbuf != NULL)
1584 {
1585 info->buffer = retbuf;
1586 return;
1587 }
1588
1589 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1590 || bfd_bread (buf, info->size, abfd) != info->size)
1591 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1592 bfd_get_filename (abfd));
1593 }
1594
1595 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1596 SECTION_NAME. */
1597
1598 void
1599 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1600 asection **sectp, gdb_byte **bufp,
1601 bfd_size_type *sizep)
1602 {
1603 struct dwarf2_per_objfile *data
1604 = objfile_data (objfile, dwarf2_objfile_data_key);
1605 struct dwarf2_section_info *info;
1606
1607 /* We may see an objfile without any DWARF, in which case we just
1608 return nothing. */
1609 if (data == NULL)
1610 {
1611 *sectp = NULL;
1612 *bufp = NULL;
1613 *sizep = 0;
1614 return;
1615 }
1616 if (section_is_p (section_name, EH_FRAME_SECTION))
1617 info = &data->eh_frame;
1618 else if (section_is_p (section_name, FRAME_SECTION))
1619 info = &data->frame;
1620 else
1621 gdb_assert_not_reached ("unexpected section");
1622
1623 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1624 /* We haven't read this section in yet. Do it now. */
1625 dwarf2_read_section (objfile, info);
1626
1627 *sectp = info->asection;
1628 *bufp = info->buffer;
1629 *sizep = info->size;
1630 }
1631
1632 \f
1633 /* DWARF quick_symbols_functions support. */
1634
1635 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1636 unique line tables, so we maintain a separate table of all .debug_line
1637 derived entries to support the sharing.
1638 All the quick functions need is the list of file names. We discard the
1639 line_header when we're done and don't need to record it here. */
1640 struct quick_file_names
1641 {
1642 /* The offset in .debug_line of the line table. We hash on this. */
1643 unsigned int offset;
1644
1645 /* The number of entries in file_names, real_names. */
1646 unsigned int num_file_names;
1647
1648 /* The file names from the line table, after being run through
1649 file_full_name. */
1650 const char **file_names;
1651
1652 /* The file names from the line table after being run through
1653 gdb_realpath. These are computed lazily. */
1654 const char **real_names;
1655 };
1656
1657 /* When using the index (and thus not using psymtabs), each CU has an
1658 object of this type. This is used to hold information needed by
1659 the various "quick" methods. */
1660 struct dwarf2_per_cu_quick_data
1661 {
1662 /* The file table. This can be NULL if there was no file table
1663 or it's currently not read in.
1664 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1665 struct quick_file_names *file_names;
1666
1667 /* The corresponding symbol table. This is NULL if symbols for this
1668 CU have not yet been read. */
1669 struct symtab *symtab;
1670
1671 /* A temporary mark bit used when iterating over all CUs in
1672 expand_symtabs_matching. */
1673 unsigned int mark : 1;
1674
1675 /* True if we've tried to read the file table and found there isn't one.
1676 There will be no point in trying to read it again next time. */
1677 unsigned int no_file_data : 1;
1678 };
1679
1680 /* Hash function for a quick_file_names. */
1681
1682 static hashval_t
1683 hash_file_name_entry (const void *e)
1684 {
1685 const struct quick_file_names *file_data = e;
1686
1687 return file_data->offset;
1688 }
1689
1690 /* Equality function for a quick_file_names. */
1691
1692 static int
1693 eq_file_name_entry (const void *a, const void *b)
1694 {
1695 const struct quick_file_names *ea = a;
1696 const struct quick_file_names *eb = b;
1697
1698 return ea->offset == eb->offset;
1699 }
1700
1701 /* Delete function for a quick_file_names. */
1702
1703 static void
1704 delete_file_name_entry (void *e)
1705 {
1706 struct quick_file_names *file_data = e;
1707 int i;
1708
1709 for (i = 0; i < file_data->num_file_names; ++i)
1710 {
1711 xfree ((void*) file_data->file_names[i]);
1712 if (file_data->real_names)
1713 xfree ((void*) file_data->real_names[i]);
1714 }
1715
1716 /* The space for the struct itself lives on objfile_obstack,
1717 so we don't free it here. */
1718 }
1719
1720 /* Create a quick_file_names hash table. */
1721
1722 static htab_t
1723 create_quick_file_names_table (unsigned int nr_initial_entries)
1724 {
1725 return htab_create_alloc (nr_initial_entries,
1726 hash_file_name_entry, eq_file_name_entry,
1727 delete_file_name_entry, xcalloc, xfree);
1728 }
1729
1730 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1731 this CU came. */
1732
1733 static void
1734 dw2_do_instantiate_symtab (struct objfile *objfile,
1735 struct dwarf2_per_cu_data *per_cu)
1736 {
1737 struct cleanup *back_to;
1738
1739 back_to = make_cleanup (dwarf2_release_queue, NULL);
1740
1741 queue_comp_unit (per_cu, objfile);
1742
1743 if (per_cu->from_debug_types)
1744 read_signatured_type_at_offset (objfile, per_cu->offset);
1745 else
1746 load_full_comp_unit (per_cu, objfile);
1747
1748 process_queue (objfile);
1749
1750 /* Age the cache, releasing compilation units that have not
1751 been used recently. */
1752 age_cached_comp_units ();
1753
1754 do_cleanups (back_to);
1755 }
1756
1757 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1758 the objfile from which this CU came. Returns the resulting symbol
1759 table. */
1760
1761 static struct symtab *
1762 dw2_instantiate_symtab (struct objfile *objfile,
1763 struct dwarf2_per_cu_data *per_cu)
1764 {
1765 if (!per_cu->v.quick->symtab)
1766 {
1767 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1768 increment_reading_symtab ();
1769 dw2_do_instantiate_symtab (objfile, per_cu);
1770 do_cleanups (back_to);
1771 }
1772 return per_cu->v.quick->symtab;
1773 }
1774
1775 /* Return the CU given its index. */
1776
1777 static struct dwarf2_per_cu_data *
1778 dw2_get_cu (int index)
1779 {
1780 if (index >= dwarf2_per_objfile->n_comp_units)
1781 {
1782 index -= dwarf2_per_objfile->n_comp_units;
1783 return dwarf2_per_objfile->type_comp_units[index];
1784 }
1785 return dwarf2_per_objfile->all_comp_units[index];
1786 }
1787
1788 /* A helper function that knows how to read a 64-bit value in a way
1789 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1790 otherwise. */
1791
1792 static int
1793 extract_cu_value (const char *bytes, ULONGEST *result)
1794 {
1795 if (sizeof (ULONGEST) < 8)
1796 {
1797 int i;
1798
1799 /* Ignore the upper 4 bytes if they are all zero. */
1800 for (i = 0; i < 4; ++i)
1801 if (bytes[i + 4] != 0)
1802 return 0;
1803
1804 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1805 }
1806 else
1807 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1808 return 1;
1809 }
1810
1811 /* Read the CU list from the mapped index, and use it to create all
1812 the CU objects for this objfile. Return 0 if something went wrong,
1813 1 if everything went ok. */
1814
1815 static int
1816 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1817 offset_type cu_list_elements)
1818 {
1819 offset_type i;
1820
1821 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1822 dwarf2_per_objfile->all_comp_units
1823 = obstack_alloc (&objfile->objfile_obstack,
1824 dwarf2_per_objfile->n_comp_units
1825 * sizeof (struct dwarf2_per_cu_data *));
1826
1827 for (i = 0; i < cu_list_elements; i += 2)
1828 {
1829 struct dwarf2_per_cu_data *the_cu;
1830 ULONGEST offset, length;
1831
1832 if (!extract_cu_value (cu_list, &offset)
1833 || !extract_cu_value (cu_list + 8, &length))
1834 return 0;
1835 cu_list += 2 * 8;
1836
1837 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1838 struct dwarf2_per_cu_data);
1839 the_cu->offset = offset;
1840 the_cu->length = length;
1841 the_cu->objfile = objfile;
1842 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1843 struct dwarf2_per_cu_quick_data);
1844 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1845 }
1846
1847 return 1;
1848 }
1849
1850 /* Create the signatured type hash table from the index. */
1851
1852 static int
1853 create_signatured_type_table_from_index (struct objfile *objfile,
1854 const gdb_byte *bytes,
1855 offset_type elements)
1856 {
1857 offset_type i;
1858 htab_t sig_types_hash;
1859
1860 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1861 dwarf2_per_objfile->type_comp_units
1862 = obstack_alloc (&objfile->objfile_obstack,
1863 dwarf2_per_objfile->n_type_comp_units
1864 * sizeof (struct dwarf2_per_cu_data *));
1865
1866 sig_types_hash = allocate_signatured_type_table (objfile);
1867
1868 for (i = 0; i < elements; i += 3)
1869 {
1870 struct signatured_type *type_sig;
1871 ULONGEST offset, type_offset, signature;
1872 void **slot;
1873
1874 if (!extract_cu_value (bytes, &offset)
1875 || !extract_cu_value (bytes + 8, &type_offset))
1876 return 0;
1877 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1878 bytes += 3 * 8;
1879
1880 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1881 struct signatured_type);
1882 type_sig->signature = signature;
1883 type_sig->offset = offset;
1884 type_sig->type_offset = type_offset;
1885 type_sig->per_cu.from_debug_types = 1;
1886 type_sig->per_cu.offset = offset;
1887 type_sig->per_cu.objfile = objfile;
1888 type_sig->per_cu.v.quick
1889 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1890 struct dwarf2_per_cu_quick_data);
1891
1892 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1893 *slot = type_sig;
1894
1895 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1896 }
1897
1898 dwarf2_per_objfile->signatured_types = sig_types_hash;
1899
1900 return 1;
1901 }
1902
1903 /* Read the address map data from the mapped index, and use it to
1904 populate the objfile's psymtabs_addrmap. */
1905
1906 static void
1907 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1908 {
1909 const gdb_byte *iter, *end;
1910 struct obstack temp_obstack;
1911 struct addrmap *mutable_map;
1912 struct cleanup *cleanup;
1913 CORE_ADDR baseaddr;
1914
1915 obstack_init (&temp_obstack);
1916 cleanup = make_cleanup_obstack_free (&temp_obstack);
1917 mutable_map = addrmap_create_mutable (&temp_obstack);
1918
1919 iter = index->address_table;
1920 end = iter + index->address_table_size;
1921
1922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1923
1924 while (iter < end)
1925 {
1926 ULONGEST hi, lo, cu_index;
1927 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1928 iter += 8;
1929 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1930 iter += 8;
1931 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1932 iter += 4;
1933
1934 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1935 dw2_get_cu (cu_index));
1936 }
1937
1938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1939 &objfile->objfile_obstack);
1940 do_cleanups (cleanup);
1941 }
1942
1943 /* The hash function for strings in the mapped index. This is the
1944 same as the hashtab.c hash function, but we keep a separate copy to
1945 maintain control over the implementation. This is necessary
1946 because the hash function is tied to the format of the mapped index
1947 file. */
1948
1949 static hashval_t
1950 mapped_index_string_hash (const void *p)
1951 {
1952 const unsigned char *str = (const unsigned char *) p;
1953 hashval_t r = 0;
1954 unsigned char c;
1955
1956 while ((c = *str++) != 0)
1957 r = r * 67 + c - 113;
1958
1959 return r;
1960 }
1961
1962 /* Find a slot in the mapped index INDEX for the object named NAME.
1963 If NAME is found, set *VEC_OUT to point to the CU vector in the
1964 constant pool and return 1. If NAME cannot be found, return 0. */
1965
1966 static int
1967 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1968 offset_type **vec_out)
1969 {
1970 offset_type hash = mapped_index_string_hash (name);
1971 offset_type slot, step;
1972
1973 slot = hash & (index->symbol_table_slots - 1);
1974 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1975
1976 for (;;)
1977 {
1978 /* Convert a slot number to an offset into the table. */
1979 offset_type i = 2 * slot;
1980 const char *str;
1981 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1982 return 0;
1983
1984 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1985 if (!strcmp (name, str))
1986 {
1987 *vec_out = (offset_type *) (index->constant_pool
1988 + MAYBE_SWAP (index->symbol_table[i + 1]));
1989 return 1;
1990 }
1991
1992 slot = (slot + step) & (index->symbol_table_slots - 1);
1993 }
1994 }
1995
1996 /* Read the index file. If everything went ok, initialize the "quick"
1997 elements of all the CUs and return 1. Otherwise, return 0. */
1998
1999 static int
2000 dwarf2_read_index (struct objfile *objfile)
2001 {
2002 char *addr;
2003 struct mapped_index *map;
2004 offset_type *metadata;
2005 const gdb_byte *cu_list;
2006 const gdb_byte *types_list = NULL;
2007 offset_type version, cu_list_elements;
2008 offset_type types_list_elements = 0;
2009 int i;
2010
2011 if (dwarf2_per_objfile->gdb_index.asection == NULL
2012 || dwarf2_per_objfile->gdb_index.size == 0)
2013 return 0;
2014
2015 /* Older elfutils strip versions could keep the section in the main
2016 executable while splitting it for the separate debug info file. */
2017 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2018 & SEC_HAS_CONTENTS) == 0)
2019 return 0;
2020
2021 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2022
2023 addr = dwarf2_per_objfile->gdb_index.buffer;
2024 /* Version check. */
2025 version = MAYBE_SWAP (*(offset_type *) addr);
2026 /* Versions earlier than 3 emitted every copy of a psymbol. This
2027 causes the index to behave very poorly for certain requests. So,
2028 it seems better to just ignore such indices. */
2029 if (version < 3)
2030 return 0;
2031 /* Indexes with higher version than the one supported by GDB may be no
2032 longer backward compatible. */
2033 if (version > 3)
2034 return 0;
2035
2036 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2037 map->total_size = dwarf2_per_objfile->gdb_index.size;
2038
2039 metadata = (offset_type *) (addr + sizeof (offset_type));
2040
2041 i = 0;
2042 cu_list = addr + MAYBE_SWAP (metadata[i]);
2043 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2044 / 8);
2045 ++i;
2046
2047 types_list = addr + MAYBE_SWAP (metadata[i]);
2048 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2049 - MAYBE_SWAP (metadata[i]))
2050 / 8);
2051 ++i;
2052
2053 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2054 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2055 - MAYBE_SWAP (metadata[i]));
2056 ++i;
2057
2058 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2059 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2060 - MAYBE_SWAP (metadata[i]))
2061 / (2 * sizeof (offset_type)));
2062 ++i;
2063
2064 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2065
2066 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2067 return 0;
2068
2069 if (types_list_elements
2070 && !create_signatured_type_table_from_index (objfile, types_list,
2071 types_list_elements))
2072 return 0;
2073
2074 create_addrmap_from_index (objfile, map);
2075
2076 dwarf2_per_objfile->index_table = map;
2077 dwarf2_per_objfile->using_index = 1;
2078 dwarf2_per_objfile->quick_file_names_table =
2079 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2080
2081 return 1;
2082 }
2083
2084 /* A helper for the "quick" functions which sets the global
2085 dwarf2_per_objfile according to OBJFILE. */
2086
2087 static void
2088 dw2_setup (struct objfile *objfile)
2089 {
2090 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2091 gdb_assert (dwarf2_per_objfile);
2092 }
2093
2094 /* A helper for the "quick" functions which attempts to read the line
2095 table for THIS_CU. */
2096
2097 static struct quick_file_names *
2098 dw2_get_file_names (struct objfile *objfile,
2099 struct dwarf2_per_cu_data *this_cu)
2100 {
2101 bfd *abfd = objfile->obfd;
2102 struct line_header *lh;
2103 struct attribute *attr;
2104 struct cleanup *cleanups;
2105 struct die_info *comp_unit_die;
2106 struct dwarf2_section_info* sec;
2107 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2108 int has_children, i;
2109 struct dwarf2_cu cu;
2110 unsigned int bytes_read, buffer_size;
2111 struct die_reader_specs reader_specs;
2112 char *name, *comp_dir;
2113 void **slot;
2114 struct quick_file_names *qfn;
2115 unsigned int line_offset;
2116
2117 if (this_cu->v.quick->file_names != NULL)
2118 return this_cu->v.quick->file_names;
2119 /* If we know there is no line data, no point in looking again. */
2120 if (this_cu->v.quick->no_file_data)
2121 return NULL;
2122
2123 init_one_comp_unit (&cu, objfile);
2124 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2125
2126 if (this_cu->from_debug_types)
2127 sec = &dwarf2_per_objfile->types;
2128 else
2129 sec = &dwarf2_per_objfile->info;
2130 dwarf2_read_section (objfile, sec);
2131 buffer_size = sec->size;
2132 buffer = sec->buffer;
2133 info_ptr = buffer + this_cu->offset;
2134 beg_of_comp_unit = info_ptr;
2135
2136 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2137 buffer, buffer_size,
2138 abfd);
2139
2140 /* Complete the cu_header. */
2141 cu.header.offset = beg_of_comp_unit - buffer;
2142 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2143
2144 this_cu->cu = &cu;
2145 cu.per_cu = this_cu;
2146
2147 dwarf2_read_abbrevs (abfd, &cu);
2148 make_cleanup (dwarf2_free_abbrev_table, &cu);
2149
2150 if (this_cu->from_debug_types)
2151 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2152 init_cu_die_reader (&reader_specs, &cu);
2153 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2154 &has_children);
2155
2156 lh = NULL;
2157 slot = NULL;
2158 line_offset = 0;
2159 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2160 if (attr)
2161 {
2162 struct quick_file_names find_entry;
2163
2164 line_offset = DW_UNSND (attr);
2165
2166 /* We may have already read in this line header (TU line header sharing).
2167 If we have we're done. */
2168 find_entry.offset = line_offset;
2169 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2170 &find_entry, INSERT);
2171 if (*slot != NULL)
2172 {
2173 do_cleanups (cleanups);
2174 this_cu->v.quick->file_names = *slot;
2175 return *slot;
2176 }
2177
2178 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2179 }
2180 if (lh == NULL)
2181 {
2182 do_cleanups (cleanups);
2183 this_cu->v.quick->no_file_data = 1;
2184 return NULL;
2185 }
2186
2187 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2188 qfn->offset = line_offset;
2189 gdb_assert (slot != NULL);
2190 *slot = qfn;
2191
2192 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2193
2194 qfn->num_file_names = lh->num_file_names;
2195 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2196 lh->num_file_names * sizeof (char *));
2197 for (i = 0; i < lh->num_file_names; ++i)
2198 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2199 qfn->real_names = NULL;
2200
2201 free_line_header (lh);
2202 do_cleanups (cleanups);
2203
2204 this_cu->v.quick->file_names = qfn;
2205 return qfn;
2206 }
2207
2208 /* A helper for the "quick" functions which computes and caches the
2209 real path for a given file name from the line table. */
2210
2211 static const char *
2212 dw2_get_real_path (struct objfile *objfile,
2213 struct quick_file_names *qfn, int index)
2214 {
2215 if (qfn->real_names == NULL)
2216 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2217 qfn->num_file_names, sizeof (char *));
2218
2219 if (qfn->real_names[index] == NULL)
2220 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2221
2222 return qfn->real_names[index];
2223 }
2224
2225 static struct symtab *
2226 dw2_find_last_source_symtab (struct objfile *objfile)
2227 {
2228 int index;
2229
2230 dw2_setup (objfile);
2231 index = dwarf2_per_objfile->n_comp_units - 1;
2232 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2233 }
2234
2235 /* Traversal function for dw2_forget_cached_source_info. */
2236
2237 static int
2238 dw2_free_cached_file_names (void **slot, void *info)
2239 {
2240 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2241
2242 if (file_data->real_names)
2243 {
2244 int i;
2245
2246 for (i = 0; i < file_data->num_file_names; ++i)
2247 {
2248 xfree ((void*) file_data->real_names[i]);
2249 file_data->real_names[i] = NULL;
2250 }
2251 }
2252
2253 return 1;
2254 }
2255
2256 static void
2257 dw2_forget_cached_source_info (struct objfile *objfile)
2258 {
2259 dw2_setup (objfile);
2260
2261 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2262 dw2_free_cached_file_names, NULL);
2263 }
2264
2265 static int
2266 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2267 const char *full_path, const char *real_path,
2268 struct symtab **result)
2269 {
2270 int i;
2271 int check_basename = lbasename (name) == name;
2272 struct dwarf2_per_cu_data *base_cu = NULL;
2273
2274 dw2_setup (objfile);
2275
2276 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2277 + dwarf2_per_objfile->n_type_comp_units); ++i)
2278 {
2279 int j;
2280 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2281 struct quick_file_names *file_data;
2282
2283 if (per_cu->v.quick->symtab)
2284 continue;
2285
2286 file_data = dw2_get_file_names (objfile, per_cu);
2287 if (file_data == NULL)
2288 continue;
2289
2290 for (j = 0; j < file_data->num_file_names; ++j)
2291 {
2292 const char *this_name = file_data->file_names[j];
2293
2294 if (FILENAME_CMP (name, this_name) == 0)
2295 {
2296 *result = dw2_instantiate_symtab (objfile, per_cu);
2297 return 1;
2298 }
2299
2300 if (check_basename && ! base_cu
2301 && FILENAME_CMP (lbasename (this_name), name) == 0)
2302 base_cu = per_cu;
2303
2304 if (full_path != NULL)
2305 {
2306 const char *this_real_name = dw2_get_real_path (objfile,
2307 file_data, j);
2308
2309 if (this_real_name != NULL
2310 && FILENAME_CMP (full_path, this_real_name) == 0)
2311 {
2312 *result = dw2_instantiate_symtab (objfile, per_cu);
2313 return 1;
2314 }
2315 }
2316
2317 if (real_path != NULL)
2318 {
2319 const char *this_real_name = dw2_get_real_path (objfile,
2320 file_data, j);
2321
2322 if (this_real_name != NULL
2323 && FILENAME_CMP (real_path, this_real_name) == 0)
2324 {
2325 *result = dw2_instantiate_symtab (objfile, per_cu);
2326 return 1;
2327 }
2328 }
2329 }
2330 }
2331
2332 if (base_cu)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, base_cu);
2335 return 1;
2336 }
2337
2338 return 0;
2339 }
2340
2341 static struct symtab *
2342 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2343 const char *name, domain_enum domain)
2344 {
2345 /* We do all the work in the pre_expand_symtabs_matching hook
2346 instead. */
2347 return NULL;
2348 }
2349
2350 /* A helper function that expands all symtabs that hold an object
2351 named NAME. */
2352
2353 static void
2354 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2355 {
2356 dw2_setup (objfile);
2357
2358 /* index_table is NULL if OBJF_READNOW. */
2359 if (dwarf2_per_objfile->index_table)
2360 {
2361 offset_type *vec;
2362
2363 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2364 name, &vec))
2365 {
2366 offset_type i, len = MAYBE_SWAP (*vec);
2367 for (i = 0; i < len; ++i)
2368 {
2369 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2371
2372 dw2_instantiate_symtab (objfile, per_cu);
2373 }
2374 }
2375 }
2376 }
2377
2378 static void
2379 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2380 int kind, const char *name,
2381 domain_enum domain)
2382 {
2383 dw2_do_expand_symtabs_matching (objfile, name);
2384 }
2385
2386 static void
2387 dw2_print_stats (struct objfile *objfile)
2388 {
2389 int i, count;
2390
2391 dw2_setup (objfile);
2392 count = 0;
2393 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2394 + dwarf2_per_objfile->n_type_comp_units); ++i)
2395 {
2396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2397
2398 if (!per_cu->v.quick->symtab)
2399 ++count;
2400 }
2401 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2402 }
2403
2404 static void
2405 dw2_dump (struct objfile *objfile)
2406 {
2407 /* Nothing worth printing. */
2408 }
2409
2410 static void
2411 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2412 struct section_offsets *delta)
2413 {
2414 /* There's nothing to relocate here. */
2415 }
2416
2417 static void
2418 dw2_expand_symtabs_for_function (struct objfile *objfile,
2419 const char *func_name)
2420 {
2421 dw2_do_expand_symtabs_matching (objfile, func_name);
2422 }
2423
2424 static void
2425 dw2_expand_all_symtabs (struct objfile *objfile)
2426 {
2427 int i;
2428
2429 dw2_setup (objfile);
2430
2431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2432 + dwarf2_per_objfile->n_type_comp_units); ++i)
2433 {
2434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2435
2436 dw2_instantiate_symtab (objfile, per_cu);
2437 }
2438 }
2439
2440 static void
2441 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2442 const char *filename)
2443 {
2444 int i;
2445
2446 dw2_setup (objfile);
2447
2448 /* We don't need to consider type units here.
2449 This is only called for examining code, e.g. expand_line_sal.
2450 There can be an order of magnitude (or more) more type units
2451 than comp units, and we avoid them if we can. */
2452
2453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2454 {
2455 int j;
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457 struct quick_file_names *file_data;
2458
2459 if (per_cu->v.quick->symtab)
2460 continue;
2461
2462 file_data = dw2_get_file_names (objfile, per_cu);
2463 if (file_data == NULL)
2464 continue;
2465
2466 for (j = 0; j < file_data->num_file_names; ++j)
2467 {
2468 const char *this_name = file_data->file_names[j];
2469 if (FILENAME_CMP (this_name, filename) == 0)
2470 {
2471 dw2_instantiate_symtab (objfile, per_cu);
2472 break;
2473 }
2474 }
2475 }
2476 }
2477
2478 static const char *
2479 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2480 {
2481 struct dwarf2_per_cu_data *per_cu;
2482 offset_type *vec;
2483 struct quick_file_names *file_data;
2484
2485 dw2_setup (objfile);
2486
2487 /* index_table is NULL if OBJF_READNOW. */
2488 if (!dwarf2_per_objfile->index_table)
2489 return NULL;
2490
2491 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2492 name, &vec))
2493 return NULL;
2494
2495 /* Note that this just looks at the very first one named NAME -- but
2496 actually we are looking for a function. find_main_filename
2497 should be rewritten so that it doesn't require a custom hook. It
2498 could just use the ordinary symbol tables. */
2499 /* vec[0] is the length, which must always be >0. */
2500 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2501
2502 file_data = dw2_get_file_names (objfile, per_cu);
2503 if (file_data == NULL)
2504 return NULL;
2505
2506 return file_data->file_names[file_data->num_file_names - 1];
2507 }
2508
2509 static void
2510 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2511 struct objfile *objfile, int global,
2512 int (*callback) (struct block *,
2513 struct symbol *, void *),
2514 void *data, symbol_compare_ftype *match,
2515 symbol_compare_ftype *ordered_compare)
2516 {
2517 /* Currently unimplemented; used for Ada. The function can be called if the
2518 current language is Ada for a non-Ada objfile using GNU index. As Ada
2519 does not look for non-Ada symbols this function should just return. */
2520 }
2521
2522 static void
2523 dw2_expand_symtabs_matching (struct objfile *objfile,
2524 int (*file_matcher) (const char *, void *),
2525 int (*name_matcher) (const char *, void *),
2526 domain_enum kind,
2527 void *data)
2528 {
2529 int i;
2530 offset_type iter;
2531 struct mapped_index *index;
2532
2533 dw2_setup (objfile);
2534
2535 /* index_table is NULL if OBJF_READNOW. */
2536 if (!dwarf2_per_objfile->index_table)
2537 return;
2538 index = dwarf2_per_objfile->index_table;
2539
2540 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2541 + dwarf2_per_objfile->n_type_comp_units); ++i)
2542 {
2543 int j;
2544 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2545 struct quick_file_names *file_data;
2546
2547 per_cu->v.quick->mark = 0;
2548 if (per_cu->v.quick->symtab)
2549 continue;
2550
2551 file_data = dw2_get_file_names (objfile, per_cu);
2552 if (file_data == NULL)
2553 continue;
2554
2555 for (j = 0; j < file_data->num_file_names; ++j)
2556 {
2557 if (file_matcher (file_data->file_names[j], data))
2558 {
2559 per_cu->v.quick->mark = 1;
2560 break;
2561 }
2562 }
2563 }
2564
2565 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2566 {
2567 offset_type idx = 2 * iter;
2568 const char *name;
2569 offset_type *vec, vec_len, vec_idx;
2570
2571 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2572 continue;
2573
2574 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2575
2576 if (! (*name_matcher) (name, data))
2577 continue;
2578
2579 /* The name was matched, now expand corresponding CUs that were
2580 marked. */
2581 vec = (offset_type *) (index->constant_pool
2582 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2583 vec_len = MAYBE_SWAP (vec[0]);
2584 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2585 {
2586 struct dwarf2_per_cu_data *per_cu;
2587
2588 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2589 if (per_cu->v.quick->mark)
2590 dw2_instantiate_symtab (objfile, per_cu);
2591 }
2592 }
2593 }
2594
2595 static struct symtab *
2596 dw2_find_pc_sect_symtab (struct objfile *objfile,
2597 struct minimal_symbol *msymbol,
2598 CORE_ADDR pc,
2599 struct obj_section *section,
2600 int warn_if_readin)
2601 {
2602 struct dwarf2_per_cu_data *data;
2603
2604 dw2_setup (objfile);
2605
2606 if (!objfile->psymtabs_addrmap)
2607 return NULL;
2608
2609 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2610 if (!data)
2611 return NULL;
2612
2613 if (warn_if_readin && data->v.quick->symtab)
2614 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2615 paddress (get_objfile_arch (objfile), pc));
2616
2617 return dw2_instantiate_symtab (objfile, data);
2618 }
2619
2620 static void
2621 dw2_map_symbol_names (struct objfile *objfile,
2622 void (*fun) (const char *, void *),
2623 void *data)
2624 {
2625 offset_type iter;
2626 struct mapped_index *index;
2627
2628 dw2_setup (objfile);
2629
2630 /* index_table is NULL if OBJF_READNOW. */
2631 if (!dwarf2_per_objfile->index_table)
2632 return;
2633 index = dwarf2_per_objfile->index_table;
2634
2635 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2636 {
2637 offset_type idx = 2 * iter;
2638 const char *name;
2639 offset_type *vec, vec_len, vec_idx;
2640
2641 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2642 continue;
2643
2644 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2645
2646 (*fun) (name, data);
2647 }
2648 }
2649
2650 static void
2651 dw2_map_symbol_filenames (struct objfile *objfile,
2652 void (*fun) (const char *, const char *, void *),
2653 void *data)
2654 {
2655 int i;
2656
2657 dw2_setup (objfile);
2658
2659 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2660 + dwarf2_per_objfile->n_type_comp_units); ++i)
2661 {
2662 int j;
2663 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2664 struct quick_file_names *file_data;
2665
2666 if (per_cu->v.quick->symtab)
2667 continue;
2668
2669 file_data = dw2_get_file_names (objfile, per_cu);
2670 if (file_data == NULL)
2671 continue;
2672
2673 for (j = 0; j < file_data->num_file_names; ++j)
2674 {
2675 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2676 j);
2677 (*fun) (file_data->file_names[j], this_real_name, data);
2678 }
2679 }
2680 }
2681
2682 static int
2683 dw2_has_symbols (struct objfile *objfile)
2684 {
2685 return 1;
2686 }
2687
2688 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2689 {
2690 dw2_has_symbols,
2691 dw2_find_last_source_symtab,
2692 dw2_forget_cached_source_info,
2693 dw2_lookup_symtab,
2694 dw2_lookup_symbol,
2695 dw2_pre_expand_symtabs_matching,
2696 dw2_print_stats,
2697 dw2_dump,
2698 dw2_relocate,
2699 dw2_expand_symtabs_for_function,
2700 dw2_expand_all_symtabs,
2701 dw2_expand_symtabs_with_filename,
2702 dw2_find_symbol_file,
2703 dw2_map_matching_symbols,
2704 dw2_expand_symtabs_matching,
2705 dw2_find_pc_sect_symtab,
2706 dw2_map_symbol_names,
2707 dw2_map_symbol_filenames
2708 };
2709
2710 /* Initialize for reading DWARF for this objfile. Return 0 if this
2711 file will use psymtabs, or 1 if using the GNU index. */
2712
2713 int
2714 dwarf2_initialize_objfile (struct objfile *objfile)
2715 {
2716 /* If we're about to read full symbols, don't bother with the
2717 indices. In this case we also don't care if some other debug
2718 format is making psymtabs, because they are all about to be
2719 expanded anyway. */
2720 if ((objfile->flags & OBJF_READNOW))
2721 {
2722 int i;
2723
2724 dwarf2_per_objfile->using_index = 1;
2725 create_all_comp_units (objfile);
2726 create_debug_types_hash_table (objfile);
2727 dwarf2_per_objfile->quick_file_names_table =
2728 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2729
2730 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2731 + dwarf2_per_objfile->n_type_comp_units); ++i)
2732 {
2733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2734
2735 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 }
2738
2739 /* Return 1 so that gdb sees the "quick" functions. However,
2740 these functions will be no-ops because we will have expanded
2741 all symtabs. */
2742 return 1;
2743 }
2744
2745 if (dwarf2_read_index (objfile))
2746 return 1;
2747
2748 dwarf2_build_psymtabs (objfile);
2749 return 0;
2750 }
2751
2752 \f
2753
2754 /* Build a partial symbol table. */
2755
2756 void
2757 dwarf2_build_psymtabs (struct objfile *objfile)
2758 {
2759 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2760 {
2761 init_psymbol_list (objfile, 1024);
2762 }
2763
2764 dwarf2_build_psymtabs_hard (objfile);
2765 }
2766
2767 /* Return TRUE if OFFSET is within CU_HEADER. */
2768
2769 static inline int
2770 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2771 {
2772 unsigned int bottom = cu_header->offset;
2773 unsigned int top = (cu_header->offset
2774 + cu_header->length
2775 + cu_header->initial_length_size);
2776
2777 return (offset >= bottom && offset < top);
2778 }
2779
2780 /* Read in the comp unit header information from the debug_info at info_ptr.
2781 NOTE: This leaves members offset, first_die_offset to be filled in
2782 by the caller. */
2783
2784 static gdb_byte *
2785 read_comp_unit_head (struct comp_unit_head *cu_header,
2786 gdb_byte *info_ptr, bfd *abfd)
2787 {
2788 int signed_addr;
2789 unsigned int bytes_read;
2790
2791 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2792 cu_header->initial_length_size = bytes_read;
2793 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2794 info_ptr += bytes_read;
2795 cu_header->version = read_2_bytes (abfd, info_ptr);
2796 info_ptr += 2;
2797 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2798 &bytes_read);
2799 info_ptr += bytes_read;
2800 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2801 info_ptr += 1;
2802 signed_addr = bfd_get_sign_extend_vma (abfd);
2803 if (signed_addr < 0)
2804 internal_error (__FILE__, __LINE__,
2805 _("read_comp_unit_head: dwarf from non elf file"));
2806 cu_header->signed_addr_p = signed_addr;
2807
2808 return info_ptr;
2809 }
2810
2811 static gdb_byte *
2812 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2813 gdb_byte *buffer, unsigned int buffer_size,
2814 bfd *abfd)
2815 {
2816 gdb_byte *beg_of_comp_unit = info_ptr;
2817
2818 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2819
2820 if (header->version != 2 && header->version != 3 && header->version != 4)
2821 error (_("Dwarf Error: wrong version in compilation unit header "
2822 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2823 bfd_get_filename (abfd));
2824
2825 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2826 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2827 "(offset 0x%lx + 6) [in module %s]"),
2828 (long) header->abbrev_offset,
2829 (long) (beg_of_comp_unit - buffer),
2830 bfd_get_filename (abfd));
2831
2832 if (beg_of_comp_unit + header->length + header->initial_length_size
2833 > buffer + buffer_size)
2834 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2835 "(offset 0x%lx + 0) [in module %s]"),
2836 (long) header->length,
2837 (long) (beg_of_comp_unit - buffer),
2838 bfd_get_filename (abfd));
2839
2840 return info_ptr;
2841 }
2842
2843 /* Read in the types comp unit header information from .debug_types entry at
2844 types_ptr. The result is a pointer to one past the end of the header. */
2845
2846 static gdb_byte *
2847 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2848 ULONGEST *signature,
2849 gdb_byte *types_ptr, bfd *abfd)
2850 {
2851 gdb_byte *initial_types_ptr = types_ptr;
2852
2853 dwarf2_read_section (dwarf2_per_objfile->objfile,
2854 &dwarf2_per_objfile->types);
2855 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2856
2857 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2858
2859 *signature = read_8_bytes (abfd, types_ptr);
2860 types_ptr += 8;
2861 types_ptr += cu_header->offset_size;
2862 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2863
2864 return types_ptr;
2865 }
2866
2867 /* Allocate a new partial symtab for file named NAME and mark this new
2868 partial symtab as being an include of PST. */
2869
2870 static void
2871 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2872 struct objfile *objfile)
2873 {
2874 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2875
2876 subpst->section_offsets = pst->section_offsets;
2877 subpst->textlow = 0;
2878 subpst->texthigh = 0;
2879
2880 subpst->dependencies = (struct partial_symtab **)
2881 obstack_alloc (&objfile->objfile_obstack,
2882 sizeof (struct partial_symtab *));
2883 subpst->dependencies[0] = pst;
2884 subpst->number_of_dependencies = 1;
2885
2886 subpst->globals_offset = 0;
2887 subpst->n_global_syms = 0;
2888 subpst->statics_offset = 0;
2889 subpst->n_static_syms = 0;
2890 subpst->symtab = NULL;
2891 subpst->read_symtab = pst->read_symtab;
2892 subpst->readin = 0;
2893
2894 /* No private part is necessary for include psymtabs. This property
2895 can be used to differentiate between such include psymtabs and
2896 the regular ones. */
2897 subpst->read_symtab_private = NULL;
2898 }
2899
2900 /* Read the Line Number Program data and extract the list of files
2901 included by the source file represented by PST. Build an include
2902 partial symtab for each of these included files. */
2903
2904 static void
2905 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2906 struct die_info *die,
2907 struct partial_symtab *pst)
2908 {
2909 struct objfile *objfile = cu->objfile;
2910 bfd *abfd = objfile->obfd;
2911 struct line_header *lh = NULL;
2912 struct attribute *attr;
2913
2914 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 unsigned int line_offset = DW_UNSND (attr);
2918
2919 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2920 }
2921 if (lh == NULL)
2922 return; /* No linetable, so no includes. */
2923
2924 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2925 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2926
2927 free_line_header (lh);
2928 }
2929
2930 static hashval_t
2931 hash_type_signature (const void *item)
2932 {
2933 const struct signatured_type *type_sig = item;
2934
2935 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2936 return type_sig->signature;
2937 }
2938
2939 static int
2940 eq_type_signature (const void *item_lhs, const void *item_rhs)
2941 {
2942 const struct signatured_type *lhs = item_lhs;
2943 const struct signatured_type *rhs = item_rhs;
2944
2945 return lhs->signature == rhs->signature;
2946 }
2947
2948 /* Allocate a hash table for signatured types. */
2949
2950 static htab_t
2951 allocate_signatured_type_table (struct objfile *objfile)
2952 {
2953 return htab_create_alloc_ex (41,
2954 hash_type_signature,
2955 eq_type_signature,
2956 NULL,
2957 &objfile->objfile_obstack,
2958 hashtab_obstack_allocate,
2959 dummy_obstack_deallocate);
2960 }
2961
2962 /* A helper function to add a signatured type CU to a list. */
2963
2964 static int
2965 add_signatured_type_cu_to_list (void **slot, void *datum)
2966 {
2967 struct signatured_type *sigt = *slot;
2968 struct dwarf2_per_cu_data ***datap = datum;
2969
2970 **datap = &sigt->per_cu;
2971 ++*datap;
2972
2973 return 1;
2974 }
2975
2976 /* Create the hash table of all entries in the .debug_types section.
2977 The result is zero if there is an error (e.g. missing .debug_types section),
2978 otherwise non-zero. */
2979
2980 static int
2981 create_debug_types_hash_table (struct objfile *objfile)
2982 {
2983 gdb_byte *info_ptr;
2984 htab_t types_htab;
2985 struct dwarf2_per_cu_data **iter;
2986
2987 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2988 info_ptr = dwarf2_per_objfile->types.buffer;
2989
2990 if (info_ptr == NULL)
2991 {
2992 dwarf2_per_objfile->signatured_types = NULL;
2993 return 0;
2994 }
2995
2996 types_htab = allocate_signatured_type_table (objfile);
2997
2998 if (dwarf2_die_debug)
2999 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3000
3001 while (info_ptr < dwarf2_per_objfile->types.buffer
3002 + dwarf2_per_objfile->types.size)
3003 {
3004 unsigned int offset;
3005 unsigned int offset_size;
3006 unsigned int type_offset;
3007 unsigned int length, initial_length_size;
3008 unsigned short version;
3009 ULONGEST signature;
3010 struct signatured_type *type_sig;
3011 void **slot;
3012 gdb_byte *ptr = info_ptr;
3013
3014 offset = ptr - dwarf2_per_objfile->types.buffer;
3015
3016 /* We need to read the type's signature in order to build the hash
3017 table, but we don't need to read anything else just yet. */
3018
3019 /* Sanity check to ensure entire cu is present. */
3020 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3021 if (ptr + length + initial_length_size
3022 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3023 {
3024 complaint (&symfile_complaints,
3025 _("debug type entry runs off end "
3026 "of `.debug_types' section, ignored"));
3027 break;
3028 }
3029
3030 offset_size = initial_length_size == 4 ? 4 : 8;
3031 ptr += initial_length_size;
3032 version = bfd_get_16 (objfile->obfd, ptr);
3033 ptr += 2;
3034 ptr += offset_size; /* abbrev offset */
3035 ptr += 1; /* address size */
3036 signature = bfd_get_64 (objfile->obfd, ptr);
3037 ptr += 8;
3038 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3039
3040 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3041 memset (type_sig, 0, sizeof (*type_sig));
3042 type_sig->signature = signature;
3043 type_sig->offset = offset;
3044 type_sig->type_offset = type_offset;
3045 type_sig->per_cu.objfile = objfile;
3046 type_sig->per_cu.from_debug_types = 1;
3047
3048 slot = htab_find_slot (types_htab, type_sig, INSERT);
3049 gdb_assert (slot != NULL);
3050 *slot = type_sig;
3051
3052 if (dwarf2_die_debug)
3053 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3054 offset, phex (signature, sizeof (signature)));
3055
3056 info_ptr = info_ptr + initial_length_size + length;
3057 }
3058
3059 dwarf2_per_objfile->signatured_types = types_htab;
3060
3061 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3062 dwarf2_per_objfile->type_comp_units
3063 = obstack_alloc (&objfile->objfile_obstack,
3064 dwarf2_per_objfile->n_type_comp_units
3065 * sizeof (struct dwarf2_per_cu_data *));
3066 iter = &dwarf2_per_objfile->type_comp_units[0];
3067 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3068 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3069 == dwarf2_per_objfile->n_type_comp_units);
3070
3071 return 1;
3072 }
3073
3074 /* Lookup a signature based type.
3075 Returns NULL if SIG is not present in the table. */
3076
3077 static struct signatured_type *
3078 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3079 {
3080 struct signatured_type find_entry, *entry;
3081
3082 if (dwarf2_per_objfile->signatured_types == NULL)
3083 {
3084 complaint (&symfile_complaints,
3085 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3086 return 0;
3087 }
3088
3089 find_entry.signature = sig;
3090 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3091 return entry;
3092 }
3093
3094 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3095
3096 static void
3097 init_cu_die_reader (struct die_reader_specs *reader,
3098 struct dwarf2_cu *cu)
3099 {
3100 reader->abfd = cu->objfile->obfd;
3101 reader->cu = cu;
3102 if (cu->per_cu->from_debug_types)
3103 {
3104 gdb_assert (dwarf2_per_objfile->types.readin);
3105 reader->buffer = dwarf2_per_objfile->types.buffer;
3106 }
3107 else
3108 {
3109 gdb_assert (dwarf2_per_objfile->info.readin);
3110 reader->buffer = dwarf2_per_objfile->info.buffer;
3111 }
3112 }
3113
3114 /* Find the base address of the compilation unit for range lists and
3115 location lists. It will normally be specified by DW_AT_low_pc.
3116 In DWARF-3 draft 4, the base address could be overridden by
3117 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3118 compilation units with discontinuous ranges. */
3119
3120 static void
3121 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3122 {
3123 struct attribute *attr;
3124
3125 cu->base_known = 0;
3126 cu->base_address = 0;
3127
3128 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3129 if (attr)
3130 {
3131 cu->base_address = DW_ADDR (attr);
3132 cu->base_known = 1;
3133 }
3134 else
3135 {
3136 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3137 if (attr)
3138 {
3139 cu->base_address = DW_ADDR (attr);
3140 cu->base_known = 1;
3141 }
3142 }
3143 }
3144
3145 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3146 to combine the common parts.
3147 Process a compilation unit for a psymtab.
3148 BUFFER is a pointer to the beginning of the dwarf section buffer,
3149 either .debug_info or debug_types.
3150 INFO_PTR is a pointer to the start of the CU.
3151 Returns a pointer to the next CU. */
3152
3153 static gdb_byte *
3154 process_psymtab_comp_unit (struct objfile *objfile,
3155 struct dwarf2_per_cu_data *this_cu,
3156 gdb_byte *buffer, gdb_byte *info_ptr,
3157 unsigned int buffer_size)
3158 {
3159 bfd *abfd = objfile->obfd;
3160 gdb_byte *beg_of_comp_unit = info_ptr;
3161 struct die_info *comp_unit_die;
3162 struct partial_symtab *pst;
3163 CORE_ADDR baseaddr;
3164 struct cleanup *back_to_inner;
3165 struct dwarf2_cu cu;
3166 int has_children, has_pc_info;
3167 struct attribute *attr;
3168 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3169 struct die_reader_specs reader_specs;
3170
3171 init_one_comp_unit (&cu, objfile);
3172 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3173
3174 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3175 buffer, buffer_size,
3176 abfd);
3177
3178 /* Complete the cu_header. */
3179 cu.header.offset = beg_of_comp_unit - buffer;
3180 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3181
3182 cu.list_in_scope = &file_symbols;
3183
3184 /* If this compilation unit was already read in, free the
3185 cached copy in order to read it in again. This is
3186 necessary because we skipped some symbols when we first
3187 read in the compilation unit (see load_partial_dies).
3188 This problem could be avoided, but the benefit is
3189 unclear. */
3190 if (this_cu->cu != NULL)
3191 free_one_cached_comp_unit (this_cu->cu);
3192
3193 /* Note that this is a pointer to our stack frame, being
3194 added to a global data structure. It will be cleaned up
3195 in free_stack_comp_unit when we finish with this
3196 compilation unit. */
3197 this_cu->cu = &cu;
3198 cu.per_cu = this_cu;
3199
3200 /* Read the abbrevs for this compilation unit into a table. */
3201 dwarf2_read_abbrevs (abfd, &cu);
3202 make_cleanup (dwarf2_free_abbrev_table, &cu);
3203
3204 /* Read the compilation unit die. */
3205 if (this_cu->from_debug_types)
3206 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3207 init_cu_die_reader (&reader_specs, &cu);
3208 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3209 &has_children);
3210
3211 if (this_cu->from_debug_types)
3212 {
3213 /* offset,length haven't been set yet for type units. */
3214 this_cu->offset = cu.header.offset;
3215 this_cu->length = cu.header.length + cu.header.initial_length_size;
3216 }
3217 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3218 {
3219 info_ptr = (beg_of_comp_unit + cu.header.length
3220 + cu.header.initial_length_size);
3221 do_cleanups (back_to_inner);
3222 return info_ptr;
3223 }
3224
3225 prepare_one_comp_unit (&cu, comp_unit_die);
3226
3227 /* Allocate a new partial symbol table structure. */
3228 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3229 pst = start_psymtab_common (objfile, objfile->section_offsets,
3230 (attr != NULL) ? DW_STRING (attr) : "",
3231 /* TEXTLOW and TEXTHIGH are set below. */
3232 0,
3233 objfile->global_psymbols.next,
3234 objfile->static_psymbols.next);
3235
3236 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3237 if (attr != NULL)
3238 pst->dirname = DW_STRING (attr);
3239
3240 pst->read_symtab_private = this_cu;
3241
3242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3243
3244 /* Store the function that reads in the rest of the symbol table. */
3245 pst->read_symtab = dwarf2_psymtab_to_symtab;
3246
3247 this_cu->v.psymtab = pst;
3248
3249 dwarf2_find_base_address (comp_unit_die, &cu);
3250
3251 /* Possibly set the default values of LOWPC and HIGHPC from
3252 `DW_AT_ranges'. */
3253 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3254 &best_highpc, &cu, pst);
3255 if (has_pc_info == 1 && best_lowpc < best_highpc)
3256 /* Store the contiguous range if it is not empty; it can be empty for
3257 CUs with no code. */
3258 addrmap_set_empty (objfile->psymtabs_addrmap,
3259 best_lowpc + baseaddr,
3260 best_highpc + baseaddr - 1, pst);
3261
3262 /* Check if comp unit has_children.
3263 If so, read the rest of the partial symbols from this comp unit.
3264 If not, there's no more debug_info for this comp unit. */
3265 if (has_children)
3266 {
3267 struct partial_die_info *first_die;
3268 CORE_ADDR lowpc, highpc;
3269
3270 lowpc = ((CORE_ADDR) -1);
3271 highpc = ((CORE_ADDR) 0);
3272
3273 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3274
3275 scan_partial_symbols (first_die, &lowpc, &highpc,
3276 ! has_pc_info, &cu);
3277
3278 /* If we didn't find a lowpc, set it to highpc to avoid
3279 complaints from `maint check'. */
3280 if (lowpc == ((CORE_ADDR) -1))
3281 lowpc = highpc;
3282
3283 /* If the compilation unit didn't have an explicit address range,
3284 then use the information extracted from its child dies. */
3285 if (! has_pc_info)
3286 {
3287 best_lowpc = lowpc;
3288 best_highpc = highpc;
3289 }
3290 }
3291 pst->textlow = best_lowpc + baseaddr;
3292 pst->texthigh = best_highpc + baseaddr;
3293
3294 pst->n_global_syms = objfile->global_psymbols.next -
3295 (objfile->global_psymbols.list + pst->globals_offset);
3296 pst->n_static_syms = objfile->static_psymbols.next -
3297 (objfile->static_psymbols.list + pst->statics_offset);
3298 sort_pst_symbols (pst);
3299
3300 info_ptr = (beg_of_comp_unit + cu.header.length
3301 + cu.header.initial_length_size);
3302
3303 if (this_cu->from_debug_types)
3304 {
3305 /* It's not clear we want to do anything with stmt lists here.
3306 Waiting to see what gcc ultimately does. */
3307 }
3308 else
3309 {
3310 /* Get the list of files included in the current compilation unit,
3311 and build a psymtab for each of them. */
3312 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3313 }
3314
3315 do_cleanups (back_to_inner);
3316
3317 return info_ptr;
3318 }
3319
3320 /* Traversal function for htab_traverse_noresize.
3321 Process one .debug_types comp-unit. */
3322
3323 static int
3324 process_type_comp_unit (void **slot, void *info)
3325 {
3326 struct signatured_type *entry = (struct signatured_type *) *slot;
3327 struct objfile *objfile = (struct objfile *) info;
3328 struct dwarf2_per_cu_data *this_cu;
3329
3330 this_cu = &entry->per_cu;
3331
3332 gdb_assert (dwarf2_per_objfile->types.readin);
3333 process_psymtab_comp_unit (objfile, this_cu,
3334 dwarf2_per_objfile->types.buffer,
3335 dwarf2_per_objfile->types.buffer + entry->offset,
3336 dwarf2_per_objfile->types.size);
3337
3338 return 1;
3339 }
3340
3341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3342 Build partial symbol tables for the .debug_types comp-units. */
3343
3344 static void
3345 build_type_psymtabs (struct objfile *objfile)
3346 {
3347 if (! create_debug_types_hash_table (objfile))
3348 return;
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3351 process_type_comp_unit, objfile);
3352 }
3353
3354 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3355
3356 static void
3357 psymtabs_addrmap_cleanup (void *o)
3358 {
3359 struct objfile *objfile = o;
3360
3361 objfile->psymtabs_addrmap = NULL;
3362 }
3363
3364 /* Build the partial symbol table by doing a quick pass through the
3365 .debug_info and .debug_abbrev sections. */
3366
3367 static void
3368 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3369 {
3370 gdb_byte *info_ptr;
3371 struct cleanup *back_to, *addrmap_cleanup;
3372 struct obstack temp_obstack;
3373
3374 dwarf2_per_objfile->reading_partial_symbols = 1;
3375
3376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3377 info_ptr = dwarf2_per_objfile->info.buffer;
3378
3379 /* Any cached compilation units will be linked by the per-objfile
3380 read_in_chain. Make sure to free them when we're done. */
3381 back_to = make_cleanup (free_cached_comp_units, NULL);
3382
3383 build_type_psymtabs (objfile);
3384
3385 create_all_comp_units (objfile);
3386
3387 /* Create a temporary address map on a temporary obstack. We later
3388 copy this to the final obstack. */
3389 obstack_init (&temp_obstack);
3390 make_cleanup_obstack_free (&temp_obstack);
3391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3393
3394 /* Since the objects we're extracting from .debug_info vary in
3395 length, only the individual functions to extract them (like
3396 read_comp_unit_head and load_partial_die) can really know whether
3397 the buffer is large enough to hold another complete object.
3398
3399 At the moment, they don't actually check that. If .debug_info
3400 holds just one extra byte after the last compilation unit's dies,
3401 then read_comp_unit_head will happily read off the end of the
3402 buffer. read_partial_die is similarly casual. Those functions
3403 should be fixed.
3404
3405 For this loop condition, simply checking whether there's any data
3406 left at all should be sufficient. */
3407
3408 while (info_ptr < (dwarf2_per_objfile->info.buffer
3409 + dwarf2_per_objfile->info.size))
3410 {
3411 struct dwarf2_per_cu_data *this_cu;
3412
3413 this_cu = dwarf2_find_comp_unit (info_ptr
3414 - dwarf2_per_objfile->info.buffer,
3415 objfile);
3416
3417 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3418 dwarf2_per_objfile->info.buffer,
3419 info_ptr,
3420 dwarf2_per_objfile->info.size);
3421 }
3422
3423 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3424 &objfile->objfile_obstack);
3425 discard_cleanups (addrmap_cleanup);
3426
3427 do_cleanups (back_to);
3428 }
3429
3430 /* Load the partial DIEs for a secondary CU into memory. */
3431
3432 static void
3433 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3434 struct objfile *objfile)
3435 {
3436 bfd *abfd = objfile->obfd;
3437 gdb_byte *info_ptr, *beg_of_comp_unit;
3438 struct die_info *comp_unit_die;
3439 struct dwarf2_cu *cu;
3440 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3441 int has_children;
3442 struct die_reader_specs reader_specs;
3443 int read_cu = 0;
3444
3445 gdb_assert (! this_cu->from_debug_types);
3446
3447 gdb_assert (dwarf2_per_objfile->info.readin);
3448 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3449 beg_of_comp_unit = info_ptr;
3450
3451 if (this_cu->cu == NULL)
3452 {
3453 cu = xmalloc (sizeof (*cu));
3454 init_one_comp_unit (cu, objfile);
3455
3456 read_cu = 1;
3457
3458 /* If an error occurs while loading, release our storage. */
3459 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3460
3461 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3462 dwarf2_per_objfile->info.buffer,
3463 dwarf2_per_objfile->info.size,
3464 abfd);
3465
3466 /* Complete the cu_header. */
3467 cu->header.offset = this_cu->offset;
3468 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3469
3470 /* Link this compilation unit into the compilation unit tree. */
3471 this_cu->cu = cu;
3472 cu->per_cu = this_cu;
3473
3474 /* Link this CU into read_in_chain. */
3475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3476 dwarf2_per_objfile->read_in_chain = this_cu;
3477 }
3478 else
3479 {
3480 cu = this_cu->cu;
3481 info_ptr += cu->header.first_die_offset;
3482 }
3483
3484 /* Read the abbrevs for this compilation unit into a table. */
3485 gdb_assert (cu->dwarf2_abbrevs == NULL);
3486 dwarf2_read_abbrevs (abfd, cu);
3487 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3488
3489 /* Read the compilation unit die. */
3490 init_cu_die_reader (&reader_specs, cu);
3491 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3492 &has_children);
3493
3494 prepare_one_comp_unit (cu, comp_unit_die);
3495
3496 /* Check if comp unit has_children.
3497 If so, read the rest of the partial symbols from this comp unit.
3498 If not, there's no more debug_info for this comp unit. */
3499 if (has_children)
3500 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3501
3502 do_cleanups (free_abbrevs_cleanup);
3503
3504 if (read_cu)
3505 {
3506 /* We've successfully allocated this compilation unit. Let our
3507 caller clean it up when finished with it. */
3508 discard_cleanups (free_cu_cleanup);
3509 }
3510 }
3511
3512 /* Create a list of all compilation units in OBJFILE. We do this only
3513 if an inter-comp-unit reference is found; presumably if there is one,
3514 there will be many, and one will occur early in the .debug_info section.
3515 So there's no point in building this list incrementally. */
3516
3517 static void
3518 create_all_comp_units (struct objfile *objfile)
3519 {
3520 int n_allocated;
3521 int n_comp_units;
3522 struct dwarf2_per_cu_data **all_comp_units;
3523 gdb_byte *info_ptr;
3524
3525 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3526 info_ptr = dwarf2_per_objfile->info.buffer;
3527
3528 n_comp_units = 0;
3529 n_allocated = 10;
3530 all_comp_units = xmalloc (n_allocated
3531 * sizeof (struct dwarf2_per_cu_data *));
3532
3533 while (info_ptr < dwarf2_per_objfile->info.buffer
3534 + dwarf2_per_objfile->info.size)
3535 {
3536 unsigned int length, initial_length_size;
3537 struct dwarf2_per_cu_data *this_cu;
3538 unsigned int offset;
3539
3540 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3541
3542 /* Read just enough information to find out where the next
3543 compilation unit is. */
3544 length = read_initial_length (objfile->obfd, info_ptr,
3545 &initial_length_size);
3546
3547 /* Save the compilation unit for later lookup. */
3548 this_cu = obstack_alloc (&objfile->objfile_obstack,
3549 sizeof (struct dwarf2_per_cu_data));
3550 memset (this_cu, 0, sizeof (*this_cu));
3551 this_cu->offset = offset;
3552 this_cu->length = length + initial_length_size;
3553 this_cu->objfile = objfile;
3554
3555 if (n_comp_units == n_allocated)
3556 {
3557 n_allocated *= 2;
3558 all_comp_units = xrealloc (all_comp_units,
3559 n_allocated
3560 * sizeof (struct dwarf2_per_cu_data *));
3561 }
3562 all_comp_units[n_comp_units++] = this_cu;
3563
3564 info_ptr = info_ptr + this_cu->length;
3565 }
3566
3567 dwarf2_per_objfile->all_comp_units
3568 = obstack_alloc (&objfile->objfile_obstack,
3569 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3570 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3571 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3572 xfree (all_comp_units);
3573 dwarf2_per_objfile->n_comp_units = n_comp_units;
3574 }
3575
3576 /* Process all loaded DIEs for compilation unit CU, starting at
3577 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3578 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3579 DW_AT_ranges). If NEED_PC is set, then this function will set
3580 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3581 and record the covered ranges in the addrmap. */
3582
3583 static void
3584 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3585 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3586 {
3587 struct partial_die_info *pdi;
3588
3589 /* Now, march along the PDI's, descending into ones which have
3590 interesting children but skipping the children of the other ones,
3591 until we reach the end of the compilation unit. */
3592
3593 pdi = first_die;
3594
3595 while (pdi != NULL)
3596 {
3597 fixup_partial_die (pdi, cu);
3598
3599 /* Anonymous namespaces or modules have no name but have interesting
3600 children, so we need to look at them. Ditto for anonymous
3601 enums. */
3602
3603 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3604 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3605 {
3606 switch (pdi->tag)
3607 {
3608 case DW_TAG_subprogram:
3609 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3610 break;
3611 case DW_TAG_constant:
3612 case DW_TAG_variable:
3613 case DW_TAG_typedef:
3614 case DW_TAG_union_type:
3615 if (!pdi->is_declaration)
3616 {
3617 add_partial_symbol (pdi, cu);
3618 }
3619 break;
3620 case DW_TAG_class_type:
3621 case DW_TAG_interface_type:
3622 case DW_TAG_structure_type:
3623 if (!pdi->is_declaration)
3624 {
3625 add_partial_symbol (pdi, cu);
3626 }
3627 break;
3628 case DW_TAG_enumeration_type:
3629 if (!pdi->is_declaration)
3630 add_partial_enumeration (pdi, cu);
3631 break;
3632 case DW_TAG_base_type:
3633 case DW_TAG_subrange_type:
3634 /* File scope base type definitions are added to the partial
3635 symbol table. */
3636 add_partial_symbol (pdi, cu);
3637 break;
3638 case DW_TAG_namespace:
3639 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3640 break;
3641 case DW_TAG_module:
3642 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3643 break;
3644 default:
3645 break;
3646 }
3647 }
3648
3649 /* If the die has a sibling, skip to the sibling. */
3650
3651 pdi = pdi->die_sibling;
3652 }
3653 }
3654
3655 /* Functions used to compute the fully scoped name of a partial DIE.
3656
3657 Normally, this is simple. For C++, the parent DIE's fully scoped
3658 name is concatenated with "::" and the partial DIE's name. For
3659 Java, the same thing occurs except that "." is used instead of "::".
3660 Enumerators are an exception; they use the scope of their parent
3661 enumeration type, i.e. the name of the enumeration type is not
3662 prepended to the enumerator.
3663
3664 There are two complexities. One is DW_AT_specification; in this
3665 case "parent" means the parent of the target of the specification,
3666 instead of the direct parent of the DIE. The other is compilers
3667 which do not emit DW_TAG_namespace; in this case we try to guess
3668 the fully qualified name of structure types from their members'
3669 linkage names. This must be done using the DIE's children rather
3670 than the children of any DW_AT_specification target. We only need
3671 to do this for structures at the top level, i.e. if the target of
3672 any DW_AT_specification (if any; otherwise the DIE itself) does not
3673 have a parent. */
3674
3675 /* Compute the scope prefix associated with PDI's parent, in
3676 compilation unit CU. The result will be allocated on CU's
3677 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3678 field. NULL is returned if no prefix is necessary. */
3679 static char *
3680 partial_die_parent_scope (struct partial_die_info *pdi,
3681 struct dwarf2_cu *cu)
3682 {
3683 char *grandparent_scope;
3684 struct partial_die_info *parent, *real_pdi;
3685
3686 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3687 then this means the parent of the specification DIE. */
3688
3689 real_pdi = pdi;
3690 while (real_pdi->has_specification)
3691 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3692
3693 parent = real_pdi->die_parent;
3694 if (parent == NULL)
3695 return NULL;
3696
3697 if (parent->scope_set)
3698 return parent->scope;
3699
3700 fixup_partial_die (parent, cu);
3701
3702 grandparent_scope = partial_die_parent_scope (parent, cu);
3703
3704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3706 Work around this problem here. */
3707 if (cu->language == language_cplus
3708 && parent->tag == DW_TAG_namespace
3709 && strcmp (parent->name, "::") == 0
3710 && grandparent_scope == NULL)
3711 {
3712 parent->scope = NULL;
3713 parent->scope_set = 1;
3714 return NULL;
3715 }
3716
3717 if (parent->tag == DW_TAG_namespace
3718 || parent->tag == DW_TAG_module
3719 || parent->tag == DW_TAG_structure_type
3720 || parent->tag == DW_TAG_class_type
3721 || parent->tag == DW_TAG_interface_type
3722 || parent->tag == DW_TAG_union_type
3723 || parent->tag == DW_TAG_enumeration_type)
3724 {
3725 if (grandparent_scope == NULL)
3726 parent->scope = parent->name;
3727 else
3728 parent->scope = typename_concat (&cu->comp_unit_obstack,
3729 grandparent_scope,
3730 parent->name, 0, cu);
3731 }
3732 else if (parent->tag == DW_TAG_enumerator)
3733 /* Enumerators should not get the name of the enumeration as a prefix. */
3734 parent->scope = grandparent_scope;
3735 else
3736 {
3737 /* FIXME drow/2004-04-01: What should we be doing with
3738 function-local names? For partial symbols, we should probably be
3739 ignoring them. */
3740 complaint (&symfile_complaints,
3741 _("unhandled containing DIE tag %d for DIE at %d"),
3742 parent->tag, pdi->offset);
3743 parent->scope = grandparent_scope;
3744 }
3745
3746 parent->scope_set = 1;
3747 return parent->scope;
3748 }
3749
3750 /* Return the fully scoped name associated with PDI, from compilation unit
3751 CU. The result will be allocated with malloc. */
3752 static char *
3753 partial_die_full_name (struct partial_die_info *pdi,
3754 struct dwarf2_cu *cu)
3755 {
3756 char *parent_scope;
3757
3758 /* If this is a template instantiation, we can not work out the
3759 template arguments from partial DIEs. So, unfortunately, we have
3760 to go through the full DIEs. At least any work we do building
3761 types here will be reused if full symbols are loaded later. */
3762 if (pdi->has_template_arguments)
3763 {
3764 fixup_partial_die (pdi, cu);
3765
3766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3767 {
3768 struct die_info *die;
3769 struct attribute attr;
3770 struct dwarf2_cu *ref_cu = cu;
3771
3772 attr.name = 0;
3773 attr.form = DW_FORM_ref_addr;
3774 attr.u.addr = pdi->offset;
3775 die = follow_die_ref (NULL, &attr, &ref_cu);
3776
3777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3778 }
3779 }
3780
3781 parent_scope = partial_die_parent_scope (pdi, cu);
3782 if (parent_scope == NULL)
3783 return NULL;
3784 else
3785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3786 }
3787
3788 static void
3789 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3790 {
3791 struct objfile *objfile = cu->objfile;
3792 CORE_ADDR addr = 0;
3793 char *actual_name = NULL;
3794 const struct partial_symbol *psym = NULL;
3795 CORE_ADDR baseaddr;
3796 int built_actual_name = 0;
3797
3798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3799
3800 actual_name = partial_die_full_name (pdi, cu);
3801 if (actual_name)
3802 built_actual_name = 1;
3803
3804 if (actual_name == NULL)
3805 actual_name = pdi->name;
3806
3807 switch (pdi->tag)
3808 {
3809 case DW_TAG_subprogram:
3810 if (pdi->is_external || cu->language == language_ada)
3811 {
3812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3813 of the global scope. But in Ada, we want to be able to access
3814 nested procedures globally. So all Ada subprograms are stored
3815 in the global scope. */
3816 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3817 mst_text, objfile); */
3818 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3819 built_actual_name,
3820 VAR_DOMAIN, LOC_BLOCK,
3821 &objfile->global_psymbols,
3822 0, pdi->lowpc + baseaddr,
3823 cu->language, objfile);
3824 }
3825 else
3826 {
3827 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3828 mst_file_text, objfile); */
3829 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3830 built_actual_name,
3831 VAR_DOMAIN, LOC_BLOCK,
3832 &objfile->static_psymbols,
3833 0, pdi->lowpc + baseaddr,
3834 cu->language, objfile);
3835 }
3836 break;
3837 case DW_TAG_constant:
3838 {
3839 struct psymbol_allocation_list *list;
3840
3841 if (pdi->is_external)
3842 list = &objfile->global_psymbols;
3843 else
3844 list = &objfile->static_psymbols;
3845 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3846 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3847 list, 0, 0, cu->language, objfile);
3848
3849 }
3850 break;
3851 case DW_TAG_variable:
3852 if (pdi->locdesc)
3853 addr = decode_locdesc (pdi->locdesc, cu);
3854
3855 if (pdi->locdesc
3856 && addr == 0
3857 && !dwarf2_per_objfile->has_section_at_zero)
3858 {
3859 /* A global or static variable may also have been stripped
3860 out by the linker if unused, in which case its address
3861 will be nullified; do not add such variables into partial
3862 symbol table then. */
3863 }
3864 else if (pdi->is_external)
3865 {
3866 /* Global Variable.
3867 Don't enter into the minimal symbol tables as there is
3868 a minimal symbol table entry from the ELF symbols already.
3869 Enter into partial symbol table if it has a location
3870 descriptor or a type.
3871 If the location descriptor is missing, new_symbol will create
3872 a LOC_UNRESOLVED symbol, the address of the variable will then
3873 be determined from the minimal symbol table whenever the variable
3874 is referenced.
3875 The address for the partial symbol table entry is not
3876 used by GDB, but it comes in handy for debugging partial symbol
3877 table building. */
3878
3879 if (pdi->locdesc || pdi->has_type)
3880 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3881 built_actual_name,
3882 VAR_DOMAIN, LOC_STATIC,
3883 &objfile->global_psymbols,
3884 0, addr + baseaddr,
3885 cu->language, objfile);
3886 }
3887 else
3888 {
3889 /* Static Variable. Skip symbols without location descriptors. */
3890 if (pdi->locdesc == NULL)
3891 {
3892 if (built_actual_name)
3893 xfree (actual_name);
3894 return;
3895 }
3896 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3897 mst_file_data, objfile); */
3898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3899 built_actual_name,
3900 VAR_DOMAIN, LOC_STATIC,
3901 &objfile->static_psymbols,
3902 0, addr + baseaddr,
3903 cu->language, objfile);
3904 }
3905 break;
3906 case DW_TAG_typedef:
3907 case DW_TAG_base_type:
3908 case DW_TAG_subrange_type:
3909 add_psymbol_to_list (actual_name, strlen (actual_name),
3910 built_actual_name,
3911 VAR_DOMAIN, LOC_TYPEDEF,
3912 &objfile->static_psymbols,
3913 0, (CORE_ADDR) 0, cu->language, objfile);
3914 break;
3915 case DW_TAG_namespace:
3916 add_psymbol_to_list (actual_name, strlen (actual_name),
3917 built_actual_name,
3918 VAR_DOMAIN, LOC_TYPEDEF,
3919 &objfile->global_psymbols,
3920 0, (CORE_ADDR) 0, cu->language, objfile);
3921 break;
3922 case DW_TAG_class_type:
3923 case DW_TAG_interface_type:
3924 case DW_TAG_structure_type:
3925 case DW_TAG_union_type:
3926 case DW_TAG_enumeration_type:
3927 /* Skip external references. The DWARF standard says in the section
3928 about "Structure, Union, and Class Type Entries": "An incomplete
3929 structure, union or class type is represented by a structure,
3930 union or class entry that does not have a byte size attribute
3931 and that has a DW_AT_declaration attribute." */
3932 if (!pdi->has_byte_size && pdi->is_declaration)
3933 {
3934 if (built_actual_name)
3935 xfree (actual_name);
3936 return;
3937 }
3938
3939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3940 static vs. global. */
3941 add_psymbol_to_list (actual_name, strlen (actual_name),
3942 built_actual_name,
3943 STRUCT_DOMAIN, LOC_TYPEDEF,
3944 (cu->language == language_cplus
3945 || cu->language == language_java)
3946 ? &objfile->global_psymbols
3947 : &objfile->static_psymbols,
3948 0, (CORE_ADDR) 0, cu->language, objfile);
3949
3950 break;
3951 case DW_TAG_enumerator:
3952 add_psymbol_to_list (actual_name, strlen (actual_name),
3953 built_actual_name,
3954 VAR_DOMAIN, LOC_CONST,
3955 (cu->language == language_cplus
3956 || cu->language == language_java)
3957 ? &objfile->global_psymbols
3958 : &objfile->static_psymbols,
3959 0, (CORE_ADDR) 0, cu->language, objfile);
3960 break;
3961 default:
3962 break;
3963 }
3964
3965 if (built_actual_name)
3966 xfree (actual_name);
3967 }
3968
3969 /* Read a partial die corresponding to a namespace; also, add a symbol
3970 corresponding to that namespace to the symbol table. NAMESPACE is
3971 the name of the enclosing namespace. */
3972
3973 static void
3974 add_partial_namespace (struct partial_die_info *pdi,
3975 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3976 int need_pc, struct dwarf2_cu *cu)
3977 {
3978 /* Add a symbol for the namespace. */
3979
3980 add_partial_symbol (pdi, cu);
3981
3982 /* Now scan partial symbols in that namespace. */
3983
3984 if (pdi->has_children)
3985 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3986 }
3987
3988 /* Read a partial die corresponding to a Fortran module. */
3989
3990 static void
3991 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3992 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3993 {
3994 /* Now scan partial symbols in that module. */
3995
3996 if (pdi->has_children)
3997 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3998 }
3999
4000 /* Read a partial die corresponding to a subprogram and create a partial
4001 symbol for that subprogram. When the CU language allows it, this
4002 routine also defines a partial symbol for each nested subprogram
4003 that this subprogram contains.
4004
4005 DIE my also be a lexical block, in which case we simply search
4006 recursively for suprograms defined inside that lexical block.
4007 Again, this is only performed when the CU language allows this
4008 type of definitions. */
4009
4010 static void
4011 add_partial_subprogram (struct partial_die_info *pdi,
4012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4013 int need_pc, struct dwarf2_cu *cu)
4014 {
4015 if (pdi->tag == DW_TAG_subprogram)
4016 {
4017 if (pdi->has_pc_info)
4018 {
4019 if (pdi->lowpc < *lowpc)
4020 *lowpc = pdi->lowpc;
4021 if (pdi->highpc > *highpc)
4022 *highpc = pdi->highpc;
4023 if (need_pc)
4024 {
4025 CORE_ADDR baseaddr;
4026 struct objfile *objfile = cu->objfile;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets,
4029 SECT_OFF_TEXT (objfile));
4030 addrmap_set_empty (objfile->psymtabs_addrmap,
4031 pdi->lowpc + baseaddr,
4032 pdi->highpc - 1 + baseaddr,
4033 cu->per_cu->v.psymtab);
4034 }
4035 if (!pdi->is_declaration)
4036 /* Ignore subprogram DIEs that do not have a name, they are
4037 illegal. Do not emit a complaint at this point, we will
4038 do so when we convert this psymtab into a symtab. */
4039 if (pdi->name)
4040 add_partial_symbol (pdi, cu);
4041 }
4042 }
4043
4044 if (! pdi->has_children)
4045 return;
4046
4047 if (cu->language == language_ada)
4048 {
4049 pdi = pdi->die_child;
4050 while (pdi != NULL)
4051 {
4052 fixup_partial_die (pdi, cu);
4053 if (pdi->tag == DW_TAG_subprogram
4054 || pdi->tag == DW_TAG_lexical_block)
4055 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4056 pdi = pdi->die_sibling;
4057 }
4058 }
4059 }
4060
4061 /* Read a partial die corresponding to an enumeration type. */
4062
4063 static void
4064 add_partial_enumeration (struct partial_die_info *enum_pdi,
4065 struct dwarf2_cu *cu)
4066 {
4067 struct partial_die_info *pdi;
4068
4069 if (enum_pdi->name != NULL)
4070 add_partial_symbol (enum_pdi, cu);
4071
4072 pdi = enum_pdi->die_child;
4073 while (pdi)
4074 {
4075 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4076 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4077 else
4078 add_partial_symbol (pdi, cu);
4079 pdi = pdi->die_sibling;
4080 }
4081 }
4082
4083 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4084 Return the corresponding abbrev, or NULL if the number is zero (indicating
4085 an empty DIE). In either case *BYTES_READ will be set to the length of
4086 the initial number. */
4087
4088 static struct abbrev_info *
4089 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4090 struct dwarf2_cu *cu)
4091 {
4092 bfd *abfd = cu->objfile->obfd;
4093 unsigned int abbrev_number;
4094 struct abbrev_info *abbrev;
4095
4096 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4097
4098 if (abbrev_number == 0)
4099 return NULL;
4100
4101 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4102 if (!abbrev)
4103 {
4104 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4105 abbrev_number, bfd_get_filename (abfd));
4106 }
4107
4108 return abbrev;
4109 }
4110
4111 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4112 Returns a pointer to the end of a series of DIEs, terminated by an empty
4113 DIE. Any children of the skipped DIEs will also be skipped. */
4114
4115 static gdb_byte *
4116 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4117 {
4118 struct abbrev_info *abbrev;
4119 unsigned int bytes_read;
4120
4121 while (1)
4122 {
4123 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4124 if (abbrev == NULL)
4125 return info_ptr + bytes_read;
4126 else
4127 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4128 }
4129 }
4130
4131 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4132 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4133 abbrev corresponding to that skipped uleb128 should be passed in
4134 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4135 children. */
4136
4137 static gdb_byte *
4138 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4139 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4140 {
4141 unsigned int bytes_read;
4142 struct attribute attr;
4143 bfd *abfd = cu->objfile->obfd;
4144 unsigned int form, i;
4145
4146 for (i = 0; i < abbrev->num_attrs; i++)
4147 {
4148 /* The only abbrev we care about is DW_AT_sibling. */
4149 if (abbrev->attrs[i].name == DW_AT_sibling)
4150 {
4151 read_attribute (&attr, &abbrev->attrs[i],
4152 abfd, info_ptr, cu);
4153 if (attr.form == DW_FORM_ref_addr)
4154 complaint (&symfile_complaints,
4155 _("ignoring absolute DW_AT_sibling"));
4156 else
4157 return buffer + dwarf2_get_ref_die_offset (&attr);
4158 }
4159
4160 /* If it isn't DW_AT_sibling, skip this attribute. */
4161 form = abbrev->attrs[i].form;
4162 skip_attribute:
4163 switch (form)
4164 {
4165 case DW_FORM_ref_addr:
4166 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4167 and later it is offset sized. */
4168 if (cu->header.version == 2)
4169 info_ptr += cu->header.addr_size;
4170 else
4171 info_ptr += cu->header.offset_size;
4172 break;
4173 case DW_FORM_addr:
4174 info_ptr += cu->header.addr_size;
4175 break;
4176 case DW_FORM_data1:
4177 case DW_FORM_ref1:
4178 case DW_FORM_flag:
4179 info_ptr += 1;
4180 break;
4181 case DW_FORM_flag_present:
4182 break;
4183 case DW_FORM_data2:
4184 case DW_FORM_ref2:
4185 info_ptr += 2;
4186 break;
4187 case DW_FORM_data4:
4188 case DW_FORM_ref4:
4189 info_ptr += 4;
4190 break;
4191 case DW_FORM_data8:
4192 case DW_FORM_ref8:
4193 case DW_FORM_sig8:
4194 info_ptr += 8;
4195 break;
4196 case DW_FORM_string:
4197 read_direct_string (abfd, info_ptr, &bytes_read);
4198 info_ptr += bytes_read;
4199 break;
4200 case DW_FORM_sec_offset:
4201 case DW_FORM_strp:
4202 info_ptr += cu->header.offset_size;
4203 break;
4204 case DW_FORM_exprloc:
4205 case DW_FORM_block:
4206 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4207 info_ptr += bytes_read;
4208 break;
4209 case DW_FORM_block1:
4210 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4211 break;
4212 case DW_FORM_block2:
4213 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4214 break;
4215 case DW_FORM_block4:
4216 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4217 break;
4218 case DW_FORM_sdata:
4219 case DW_FORM_udata:
4220 case DW_FORM_ref_udata:
4221 info_ptr = skip_leb128 (abfd, info_ptr);
4222 break;
4223 case DW_FORM_indirect:
4224 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 /* We need to continue parsing from here, so just go back to
4227 the top. */
4228 goto skip_attribute;
4229
4230 default:
4231 error (_("Dwarf Error: Cannot handle %s "
4232 "in DWARF reader [in module %s]"),
4233 dwarf_form_name (form),
4234 bfd_get_filename (abfd));
4235 }
4236 }
4237
4238 if (abbrev->has_children)
4239 return skip_children (buffer, info_ptr, cu);
4240 else
4241 return info_ptr;
4242 }
4243
4244 /* Locate ORIG_PDI's sibling.
4245 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4246 in BUFFER. */
4247
4248 static gdb_byte *
4249 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4250 gdb_byte *buffer, gdb_byte *info_ptr,
4251 bfd *abfd, struct dwarf2_cu *cu)
4252 {
4253 /* Do we know the sibling already? */
4254
4255 if (orig_pdi->sibling)
4256 return orig_pdi->sibling;
4257
4258 /* Are there any children to deal with? */
4259
4260 if (!orig_pdi->has_children)
4261 return info_ptr;
4262
4263 /* Skip the children the long way. */
4264
4265 return skip_children (buffer, info_ptr, cu);
4266 }
4267
4268 /* Expand this partial symbol table into a full symbol table. */
4269
4270 static void
4271 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4272 {
4273 if (pst != NULL)
4274 {
4275 if (pst->readin)
4276 {
4277 warning (_("bug: psymtab for %s is already read in."),
4278 pst->filename);
4279 }
4280 else
4281 {
4282 if (info_verbose)
4283 {
4284 printf_filtered (_("Reading in symbols for %s..."),
4285 pst->filename);
4286 gdb_flush (gdb_stdout);
4287 }
4288
4289 /* Restore our global data. */
4290 dwarf2_per_objfile = objfile_data (pst->objfile,
4291 dwarf2_objfile_data_key);
4292
4293 /* If this psymtab is constructed from a debug-only objfile, the
4294 has_section_at_zero flag will not necessarily be correct. We
4295 can get the correct value for this flag by looking at the data
4296 associated with the (presumably stripped) associated objfile. */
4297 if (pst->objfile->separate_debug_objfile_backlink)
4298 {
4299 struct dwarf2_per_objfile *dpo_backlink
4300 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4301 dwarf2_objfile_data_key);
4302
4303 dwarf2_per_objfile->has_section_at_zero
4304 = dpo_backlink->has_section_at_zero;
4305 }
4306
4307 dwarf2_per_objfile->reading_partial_symbols = 0;
4308
4309 psymtab_to_symtab_1 (pst);
4310
4311 /* Finish up the debug error message. */
4312 if (info_verbose)
4313 printf_filtered (_("done.\n"));
4314 }
4315 }
4316 }
4317
4318 /* Add PER_CU to the queue. */
4319
4320 static void
4321 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4322 {
4323 struct dwarf2_queue_item *item;
4324
4325 per_cu->queued = 1;
4326 item = xmalloc (sizeof (*item));
4327 item->per_cu = per_cu;
4328 item->next = NULL;
4329
4330 if (dwarf2_queue == NULL)
4331 dwarf2_queue = item;
4332 else
4333 dwarf2_queue_tail->next = item;
4334
4335 dwarf2_queue_tail = item;
4336 }
4337
4338 /* Process the queue. */
4339
4340 static void
4341 process_queue (struct objfile *objfile)
4342 {
4343 struct dwarf2_queue_item *item, *next_item;
4344
4345 /* The queue starts out with one item, but following a DIE reference
4346 may load a new CU, adding it to the end of the queue. */
4347 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4348 {
4349 if (dwarf2_per_objfile->using_index
4350 ? !item->per_cu->v.quick->symtab
4351 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4352 process_full_comp_unit (item->per_cu);
4353
4354 item->per_cu->queued = 0;
4355 next_item = item->next;
4356 xfree (item);
4357 }
4358
4359 dwarf2_queue_tail = NULL;
4360 }
4361
4362 /* Free all allocated queue entries. This function only releases anything if
4363 an error was thrown; if the queue was processed then it would have been
4364 freed as we went along. */
4365
4366 static void
4367 dwarf2_release_queue (void *dummy)
4368 {
4369 struct dwarf2_queue_item *item, *last;
4370
4371 item = dwarf2_queue;
4372 while (item)
4373 {
4374 /* Anything still marked queued is likely to be in an
4375 inconsistent state, so discard it. */
4376 if (item->per_cu->queued)
4377 {
4378 if (item->per_cu->cu != NULL)
4379 free_one_cached_comp_unit (item->per_cu->cu);
4380 item->per_cu->queued = 0;
4381 }
4382
4383 last = item;
4384 item = item->next;
4385 xfree (last);
4386 }
4387
4388 dwarf2_queue = dwarf2_queue_tail = NULL;
4389 }
4390
4391 /* Read in full symbols for PST, and anything it depends on. */
4392
4393 static void
4394 psymtab_to_symtab_1 (struct partial_symtab *pst)
4395 {
4396 struct dwarf2_per_cu_data *per_cu;
4397 struct cleanup *back_to;
4398 int i;
4399
4400 for (i = 0; i < pst->number_of_dependencies; i++)
4401 if (!pst->dependencies[i]->readin)
4402 {
4403 /* Inform about additional files that need to be read in. */
4404 if (info_verbose)
4405 {
4406 /* FIXME: i18n: Need to make this a single string. */
4407 fputs_filtered (" ", gdb_stdout);
4408 wrap_here ("");
4409 fputs_filtered ("and ", gdb_stdout);
4410 wrap_here ("");
4411 printf_filtered ("%s...", pst->dependencies[i]->filename);
4412 wrap_here (""); /* Flush output. */
4413 gdb_flush (gdb_stdout);
4414 }
4415 psymtab_to_symtab_1 (pst->dependencies[i]);
4416 }
4417
4418 per_cu = pst->read_symtab_private;
4419
4420 if (per_cu == NULL)
4421 {
4422 /* It's an include file, no symbols to read for it.
4423 Everything is in the parent symtab. */
4424 pst->readin = 1;
4425 return;
4426 }
4427
4428 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4429 }
4430
4431 /* Load the DIEs associated with PER_CU into memory. */
4432
4433 static void
4434 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4435 struct objfile *objfile)
4436 {
4437 bfd *abfd = objfile->obfd;
4438 struct dwarf2_cu *cu;
4439 unsigned int offset;
4440 gdb_byte *info_ptr, *beg_of_comp_unit;
4441 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4442 struct attribute *attr;
4443 int read_cu = 0;
4444
4445 gdb_assert (! per_cu->from_debug_types);
4446
4447 /* Set local variables from the partial symbol table info. */
4448 offset = per_cu->offset;
4449
4450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4451 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4452 beg_of_comp_unit = info_ptr;
4453
4454 if (per_cu->cu == NULL)
4455 {
4456 cu = xmalloc (sizeof (*cu));
4457 init_one_comp_unit (cu, objfile);
4458
4459 read_cu = 1;
4460
4461 /* If an error occurs while loading, release our storage. */
4462 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4463
4464 /* Read in the comp_unit header. */
4465 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4466
4467 /* Complete the cu_header. */
4468 cu->header.offset = offset;
4469 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4470
4471 /* Read the abbrevs for this compilation unit. */
4472 dwarf2_read_abbrevs (abfd, cu);
4473 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4474
4475 /* Link this compilation unit into the compilation unit tree. */
4476 per_cu->cu = cu;
4477 cu->per_cu = per_cu;
4478
4479 /* Link this CU into read_in_chain. */
4480 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4481 dwarf2_per_objfile->read_in_chain = per_cu;
4482 }
4483 else
4484 {
4485 cu = per_cu->cu;
4486 info_ptr += cu->header.first_die_offset;
4487 }
4488
4489 cu->dies = read_comp_unit (info_ptr, cu);
4490
4491 /* We try not to read any attributes in this function, because not
4492 all objfiles needed for references have been loaded yet, and symbol
4493 table processing isn't initialized. But we have to set the CU language,
4494 or we won't be able to build types correctly. */
4495 prepare_one_comp_unit (cu, cu->dies);
4496
4497 /* Similarly, if we do not read the producer, we can not apply
4498 producer-specific interpretation. */
4499 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4500 if (attr)
4501 cu->producer = DW_STRING (attr);
4502
4503 if (read_cu)
4504 {
4505 do_cleanups (free_abbrevs_cleanup);
4506
4507 /* We've successfully allocated this compilation unit. Let our
4508 caller clean it up when finished with it. */
4509 discard_cleanups (free_cu_cleanup);
4510 }
4511 }
4512
4513 /* Add a DIE to the delayed physname list. */
4514
4515 static void
4516 add_to_method_list (struct type *type, int fnfield_index, int index,
4517 const char *name, struct die_info *die,
4518 struct dwarf2_cu *cu)
4519 {
4520 struct delayed_method_info mi;
4521 mi.type = type;
4522 mi.fnfield_index = fnfield_index;
4523 mi.index = index;
4524 mi.name = name;
4525 mi.die = die;
4526 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4527 }
4528
4529 /* A cleanup for freeing the delayed method list. */
4530
4531 static void
4532 free_delayed_list (void *ptr)
4533 {
4534 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4535 if (cu->method_list != NULL)
4536 {
4537 VEC_free (delayed_method_info, cu->method_list);
4538 cu->method_list = NULL;
4539 }
4540 }
4541
4542 /* Compute the physnames of any methods on the CU's method list.
4543
4544 The computation of method physnames is delayed in order to avoid the
4545 (bad) condition that one of the method's formal parameters is of an as yet
4546 incomplete type. */
4547
4548 static void
4549 compute_delayed_physnames (struct dwarf2_cu *cu)
4550 {
4551 int i;
4552 struct delayed_method_info *mi;
4553 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4554 {
4555 char *physname;
4556 struct fn_fieldlist *fn_flp
4557 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4558 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4559 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4560 }
4561 }
4562
4563 /* Generate full symbol information for PST and CU, whose DIEs have
4564 already been loaded into memory. */
4565
4566 static void
4567 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4568 {
4569 struct dwarf2_cu *cu = per_cu->cu;
4570 struct objfile *objfile = per_cu->objfile;
4571 CORE_ADDR lowpc, highpc;
4572 struct symtab *symtab;
4573 struct cleanup *back_to, *delayed_list_cleanup;
4574 CORE_ADDR baseaddr;
4575
4576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4577
4578 buildsym_init ();
4579 back_to = make_cleanup (really_free_pendings, NULL);
4580 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4581
4582 cu->list_in_scope = &file_symbols;
4583
4584 dwarf2_find_base_address (cu->dies, cu);
4585
4586 /* Do line number decoding in read_file_scope () */
4587 process_die (cu->dies, cu);
4588
4589 /* Now that we have processed all the DIEs in the CU, all the types
4590 should be complete, and it should now be safe to compute all of the
4591 physnames. */
4592 compute_delayed_physnames (cu);
4593 do_cleanups (delayed_list_cleanup);
4594
4595 /* Some compilers don't define a DW_AT_high_pc attribute for the
4596 compilation unit. If the DW_AT_high_pc is missing, synthesize
4597 it, by scanning the DIE's below the compilation unit. */
4598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4599
4600 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4601
4602 /* Set symtab language to language from DW_AT_language.
4603 If the compilation is from a C file generated by language preprocessors,
4604 do not set the language if it was already deduced by start_subfile. */
4605 if (symtab != NULL
4606 && !(cu->language == language_c && symtab->language != language_c))
4607 {
4608 symtab->language = cu->language;
4609 }
4610
4611 if (dwarf2_per_objfile->using_index)
4612 per_cu->v.quick->symtab = symtab;
4613 else
4614 {
4615 struct partial_symtab *pst = per_cu->v.psymtab;
4616 pst->symtab = symtab;
4617 pst->readin = 1;
4618 }
4619
4620 do_cleanups (back_to);
4621 }
4622
4623 /* Process a die and its children. */
4624
4625 static void
4626 process_die (struct die_info *die, struct dwarf2_cu *cu)
4627 {
4628 switch (die->tag)
4629 {
4630 case DW_TAG_padding:
4631 break;
4632 case DW_TAG_compile_unit:
4633 read_file_scope (die, cu);
4634 break;
4635 case DW_TAG_type_unit:
4636 read_type_unit_scope (die, cu);
4637 break;
4638 case DW_TAG_subprogram:
4639 case DW_TAG_inlined_subroutine:
4640 read_func_scope (die, cu);
4641 break;
4642 case DW_TAG_lexical_block:
4643 case DW_TAG_try_block:
4644 case DW_TAG_catch_block:
4645 read_lexical_block_scope (die, cu);
4646 break;
4647 case DW_TAG_class_type:
4648 case DW_TAG_interface_type:
4649 case DW_TAG_structure_type:
4650 case DW_TAG_union_type:
4651 process_structure_scope (die, cu);
4652 break;
4653 case DW_TAG_enumeration_type:
4654 process_enumeration_scope (die, cu);
4655 break;
4656
4657 /* These dies have a type, but processing them does not create
4658 a symbol or recurse to process the children. Therefore we can
4659 read them on-demand through read_type_die. */
4660 case DW_TAG_subroutine_type:
4661 case DW_TAG_set_type:
4662 case DW_TAG_array_type:
4663 case DW_TAG_pointer_type:
4664 case DW_TAG_ptr_to_member_type:
4665 case DW_TAG_reference_type:
4666 case DW_TAG_string_type:
4667 break;
4668
4669 case DW_TAG_base_type:
4670 case DW_TAG_subrange_type:
4671 case DW_TAG_typedef:
4672 /* Add a typedef symbol for the type definition, if it has a
4673 DW_AT_name. */
4674 new_symbol (die, read_type_die (die, cu), cu);
4675 break;
4676 case DW_TAG_common_block:
4677 read_common_block (die, cu);
4678 break;
4679 case DW_TAG_common_inclusion:
4680 break;
4681 case DW_TAG_namespace:
4682 processing_has_namespace_info = 1;
4683 read_namespace (die, cu);
4684 break;
4685 case DW_TAG_module:
4686 processing_has_namespace_info = 1;
4687 read_module (die, cu);
4688 break;
4689 case DW_TAG_imported_declaration:
4690 case DW_TAG_imported_module:
4691 processing_has_namespace_info = 1;
4692 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4693 || cu->language != language_fortran))
4694 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4695 dwarf_tag_name (die->tag));
4696 read_import_statement (die, cu);
4697 break;
4698 default:
4699 new_symbol (die, NULL, cu);
4700 break;
4701 }
4702 }
4703
4704 /* A helper function for dwarf2_compute_name which determines whether DIE
4705 needs to have the name of the scope prepended to the name listed in the
4706 die. */
4707
4708 static int
4709 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4710 {
4711 struct attribute *attr;
4712
4713 switch (die->tag)
4714 {
4715 case DW_TAG_namespace:
4716 case DW_TAG_typedef:
4717 case DW_TAG_class_type:
4718 case DW_TAG_interface_type:
4719 case DW_TAG_structure_type:
4720 case DW_TAG_union_type:
4721 case DW_TAG_enumeration_type:
4722 case DW_TAG_enumerator:
4723 case DW_TAG_subprogram:
4724 case DW_TAG_member:
4725 return 1;
4726
4727 case DW_TAG_variable:
4728 case DW_TAG_constant:
4729 /* We only need to prefix "globally" visible variables. These include
4730 any variable marked with DW_AT_external or any variable that
4731 lives in a namespace. [Variables in anonymous namespaces
4732 require prefixing, but they are not DW_AT_external.] */
4733
4734 if (dwarf2_attr (die, DW_AT_specification, cu))
4735 {
4736 struct dwarf2_cu *spec_cu = cu;
4737
4738 return die_needs_namespace (die_specification (die, &spec_cu),
4739 spec_cu);
4740 }
4741
4742 attr = dwarf2_attr (die, DW_AT_external, cu);
4743 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4744 && die->parent->tag != DW_TAG_module)
4745 return 0;
4746 /* A variable in a lexical block of some kind does not need a
4747 namespace, even though in C++ such variables may be external
4748 and have a mangled name. */
4749 if (die->parent->tag == DW_TAG_lexical_block
4750 || die->parent->tag == DW_TAG_try_block
4751 || die->parent->tag == DW_TAG_catch_block
4752 || die->parent->tag == DW_TAG_subprogram)
4753 return 0;
4754 return 1;
4755
4756 default:
4757 return 0;
4758 }
4759 }
4760
4761 /* Retrieve the last character from a mem_file. */
4762
4763 static void
4764 do_ui_file_peek_last (void *object, const char *buffer, long length)
4765 {
4766 char *last_char_p = (char *) object;
4767
4768 if (length > 0)
4769 *last_char_p = buffer[length - 1];
4770 }
4771
4772 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4773 compute the physname for the object, which include a method's
4774 formal parameters (C++/Java) and return type (Java).
4775
4776 For Ada, return the DIE's linkage name rather than the fully qualified
4777 name. PHYSNAME is ignored..
4778
4779 The result is allocated on the objfile_obstack and canonicalized. */
4780
4781 static const char *
4782 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4783 int physname)
4784 {
4785 if (name == NULL)
4786 name = dwarf2_name (die, cu);
4787
4788 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4789 compute it by typename_concat inside GDB. */
4790 if (cu->language == language_ada
4791 || (cu->language == language_fortran && physname))
4792 {
4793 /* For Ada unit, we prefer the linkage name over the name, as
4794 the former contains the exported name, which the user expects
4795 to be able to reference. Ideally, we want the user to be able
4796 to reference this entity using either natural or linkage name,
4797 but we haven't started looking at this enhancement yet. */
4798 struct attribute *attr;
4799
4800 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4801 if (attr == NULL)
4802 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4803 if (attr && DW_STRING (attr))
4804 return DW_STRING (attr);
4805 }
4806
4807 /* These are the only languages we know how to qualify names in. */
4808 if (name != NULL
4809 && (cu->language == language_cplus || cu->language == language_java
4810 || cu->language == language_fortran))
4811 {
4812 if (die_needs_namespace (die, cu))
4813 {
4814 long length;
4815 char *prefix;
4816 struct ui_file *buf;
4817
4818 prefix = determine_prefix (die, cu);
4819 buf = mem_fileopen ();
4820 if (*prefix != '\0')
4821 {
4822 char *prefixed_name = typename_concat (NULL, prefix, name,
4823 physname, cu);
4824
4825 fputs_unfiltered (prefixed_name, buf);
4826 xfree (prefixed_name);
4827 }
4828 else
4829 fputs_unfiltered (name ? name : "", buf);
4830
4831 /* Template parameters may be specified in the DIE's DW_AT_name, or
4832 as children with DW_TAG_template_type_param or
4833 DW_TAG_value_type_param. If the latter, add them to the name
4834 here. If the name already has template parameters, then
4835 skip this step; some versions of GCC emit both, and
4836 it is more efficient to use the pre-computed name.
4837
4838 Something to keep in mind about this process: it is very
4839 unlikely, or in some cases downright impossible, to produce
4840 something that will match the mangled name of a function.
4841 If the definition of the function has the same debug info,
4842 we should be able to match up with it anyway. But fallbacks
4843 using the minimal symbol, for instance to find a method
4844 implemented in a stripped copy of libstdc++, will not work.
4845 If we do not have debug info for the definition, we will have to
4846 match them up some other way.
4847
4848 When we do name matching there is a related problem with function
4849 templates; two instantiated function templates are allowed to
4850 differ only by their return types, which we do not add here. */
4851
4852 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4853 {
4854 struct attribute *attr;
4855 struct die_info *child;
4856 int first = 1;
4857
4858 die->building_fullname = 1;
4859
4860 for (child = die->child; child != NULL; child = child->sibling)
4861 {
4862 struct type *type;
4863 long value;
4864 gdb_byte *bytes;
4865 struct dwarf2_locexpr_baton *baton;
4866 struct value *v;
4867
4868 if (child->tag != DW_TAG_template_type_param
4869 && child->tag != DW_TAG_template_value_param)
4870 continue;
4871
4872 if (first)
4873 {
4874 fputs_unfiltered ("<", buf);
4875 first = 0;
4876 }
4877 else
4878 fputs_unfiltered (", ", buf);
4879
4880 attr = dwarf2_attr (child, DW_AT_type, cu);
4881 if (attr == NULL)
4882 {
4883 complaint (&symfile_complaints,
4884 _("template parameter missing DW_AT_type"));
4885 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4886 continue;
4887 }
4888 type = die_type (child, cu);
4889
4890 if (child->tag == DW_TAG_template_type_param)
4891 {
4892 c_print_type (type, "", buf, -1, 0);
4893 continue;
4894 }
4895
4896 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4897 if (attr == NULL)
4898 {
4899 complaint (&symfile_complaints,
4900 _("template parameter missing "
4901 "DW_AT_const_value"));
4902 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4903 continue;
4904 }
4905
4906 dwarf2_const_value_attr (attr, type, name,
4907 &cu->comp_unit_obstack, cu,
4908 &value, &bytes, &baton);
4909
4910 if (TYPE_NOSIGN (type))
4911 /* GDB prints characters as NUMBER 'CHAR'. If that's
4912 changed, this can use value_print instead. */
4913 c_printchar (value, type, buf);
4914 else
4915 {
4916 struct value_print_options opts;
4917
4918 if (baton != NULL)
4919 v = dwarf2_evaluate_loc_desc (type, NULL,
4920 baton->data,
4921 baton->size,
4922 baton->per_cu);
4923 else if (bytes != NULL)
4924 {
4925 v = allocate_value (type);
4926 memcpy (value_contents_writeable (v), bytes,
4927 TYPE_LENGTH (type));
4928 }
4929 else
4930 v = value_from_longest (type, value);
4931
4932 /* Specify decimal so that we do not depend on
4933 the radix. */
4934 get_formatted_print_options (&opts, 'd');
4935 opts.raw = 1;
4936 value_print (v, buf, &opts);
4937 release_value (v);
4938 value_free (v);
4939 }
4940 }
4941
4942 die->building_fullname = 0;
4943
4944 if (!first)
4945 {
4946 /* Close the argument list, with a space if necessary
4947 (nested templates). */
4948 char last_char = '\0';
4949 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4950 if (last_char == '>')
4951 fputs_unfiltered (" >", buf);
4952 else
4953 fputs_unfiltered (">", buf);
4954 }
4955 }
4956
4957 /* For Java and C++ methods, append formal parameter type
4958 information, if PHYSNAME. */
4959
4960 if (physname && die->tag == DW_TAG_subprogram
4961 && (cu->language == language_cplus
4962 || cu->language == language_java))
4963 {
4964 struct type *type = read_type_die (die, cu);
4965
4966 c_type_print_args (type, buf, 0, cu->language);
4967
4968 if (cu->language == language_java)
4969 {
4970 /* For java, we must append the return type to method
4971 names. */
4972 if (die->tag == DW_TAG_subprogram)
4973 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4974 0, 0);
4975 }
4976 else if (cu->language == language_cplus)
4977 {
4978 /* Assume that an artificial first parameter is
4979 "this", but do not crash if it is not. RealView
4980 marks unnamed (and thus unused) parameters as
4981 artificial; there is no way to differentiate
4982 the two cases. */
4983 if (TYPE_NFIELDS (type) > 0
4984 && TYPE_FIELD_ARTIFICIAL (type, 0)
4985 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4986 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
4987 0))))
4988 fputs_unfiltered (" const", buf);
4989 }
4990 }
4991
4992 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4993 &length);
4994 ui_file_delete (buf);
4995
4996 if (cu->language == language_cplus)
4997 {
4998 char *cname
4999 = dwarf2_canonicalize_name (name, cu,
5000 &cu->objfile->objfile_obstack);
5001
5002 if (cname != NULL)
5003 name = cname;
5004 }
5005 }
5006 }
5007
5008 return name;
5009 }
5010
5011 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5012 If scope qualifiers are appropriate they will be added. The result
5013 will be allocated on the objfile_obstack, or NULL if the DIE does
5014 not have a name. NAME may either be from a previous call to
5015 dwarf2_name or NULL.
5016
5017 The output string will be canonicalized (if C++/Java). */
5018
5019 static const char *
5020 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5021 {
5022 return dwarf2_compute_name (name, die, cu, 0);
5023 }
5024
5025 /* Construct a physname for the given DIE in CU. NAME may either be
5026 from a previous call to dwarf2_name or NULL. The result will be
5027 allocated on the objfile_objstack or NULL if the DIE does not have a
5028 name.
5029
5030 The output string will be canonicalized (if C++/Java). */
5031
5032 static const char *
5033 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5034 {
5035 return dwarf2_compute_name (name, die, cu, 1);
5036 }
5037
5038 /* Read the import statement specified by the given die and record it. */
5039
5040 static void
5041 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5042 {
5043 struct attribute *import_attr;
5044 struct die_info *imported_die;
5045 struct dwarf2_cu *imported_cu;
5046 const char *imported_name;
5047 const char *imported_name_prefix;
5048 const char *canonical_name;
5049 const char *import_alias;
5050 const char *imported_declaration = NULL;
5051 const char *import_prefix;
5052
5053 char *temp;
5054
5055 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5056 if (import_attr == NULL)
5057 {
5058 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5059 dwarf_tag_name (die->tag));
5060 return;
5061 }
5062
5063 imported_cu = cu;
5064 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5065 imported_name = dwarf2_name (imported_die, imported_cu);
5066 if (imported_name == NULL)
5067 {
5068 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5069
5070 The import in the following code:
5071 namespace A
5072 {
5073 typedef int B;
5074 }
5075
5076 int main ()
5077 {
5078 using A::B;
5079 B b;
5080 return b;
5081 }
5082
5083 ...
5084 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5085 <52> DW_AT_decl_file : 1
5086 <53> DW_AT_decl_line : 6
5087 <54> DW_AT_import : <0x75>
5088 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5089 <59> DW_AT_name : B
5090 <5b> DW_AT_decl_file : 1
5091 <5c> DW_AT_decl_line : 2
5092 <5d> DW_AT_type : <0x6e>
5093 ...
5094 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5095 <76> DW_AT_byte_size : 4
5096 <77> DW_AT_encoding : 5 (signed)
5097
5098 imports the wrong die ( 0x75 instead of 0x58 ).
5099 This case will be ignored until the gcc bug is fixed. */
5100 return;
5101 }
5102
5103 /* Figure out the local name after import. */
5104 import_alias = dwarf2_name (die, cu);
5105
5106 /* Figure out where the statement is being imported to. */
5107 import_prefix = determine_prefix (die, cu);
5108
5109 /* Figure out what the scope of the imported die is and prepend it
5110 to the name of the imported die. */
5111 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5112
5113 if (imported_die->tag != DW_TAG_namespace
5114 && imported_die->tag != DW_TAG_module)
5115 {
5116 imported_declaration = imported_name;
5117 canonical_name = imported_name_prefix;
5118 }
5119 else if (strlen (imported_name_prefix) > 0)
5120 {
5121 temp = alloca (strlen (imported_name_prefix)
5122 + 2 + strlen (imported_name) + 1);
5123 strcpy (temp, imported_name_prefix);
5124 strcat (temp, "::");
5125 strcat (temp, imported_name);
5126 canonical_name = temp;
5127 }
5128 else
5129 canonical_name = imported_name;
5130
5131 cp_add_using_directive (import_prefix,
5132 canonical_name,
5133 import_alias,
5134 imported_declaration,
5135 &cu->objfile->objfile_obstack);
5136 }
5137
5138 static void
5139 initialize_cu_func_list (struct dwarf2_cu *cu)
5140 {
5141 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5142 }
5143
5144 /* Cleanup function for read_file_scope. */
5145
5146 static void
5147 free_cu_line_header (void *arg)
5148 {
5149 struct dwarf2_cu *cu = arg;
5150
5151 free_line_header (cu->line_header);
5152 cu->line_header = NULL;
5153 }
5154
5155 static void
5156 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5157 char **name, char **comp_dir)
5158 {
5159 struct attribute *attr;
5160
5161 *name = NULL;
5162 *comp_dir = NULL;
5163
5164 /* Find the filename. Do not use dwarf2_name here, since the filename
5165 is not a source language identifier. */
5166 attr = dwarf2_attr (die, DW_AT_name, cu);
5167 if (attr)
5168 {
5169 *name = DW_STRING (attr);
5170 }
5171
5172 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5173 if (attr)
5174 *comp_dir = DW_STRING (attr);
5175 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5176 {
5177 *comp_dir = ldirname (*name);
5178 if (*comp_dir != NULL)
5179 make_cleanup (xfree, *comp_dir);
5180 }
5181 if (*comp_dir != NULL)
5182 {
5183 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5184 directory, get rid of it. */
5185 char *cp = strchr (*comp_dir, ':');
5186
5187 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5188 *comp_dir = cp + 1;
5189 }
5190
5191 if (*name == NULL)
5192 *name = "<unknown>";
5193 }
5194
5195 /* Process DW_TAG_compile_unit. */
5196
5197 static void
5198 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5199 {
5200 struct objfile *objfile = cu->objfile;
5201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5203 CORE_ADDR highpc = ((CORE_ADDR) 0);
5204 struct attribute *attr;
5205 char *name = NULL;
5206 char *comp_dir = NULL;
5207 struct die_info *child_die;
5208 bfd *abfd = objfile->obfd;
5209 struct line_header *line_header = 0;
5210 CORE_ADDR baseaddr;
5211
5212 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5213
5214 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5215
5216 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5217 from finish_block. */
5218 if (lowpc == ((CORE_ADDR) -1))
5219 lowpc = highpc;
5220 lowpc += baseaddr;
5221 highpc += baseaddr;
5222
5223 find_file_and_directory (die, cu, &name, &comp_dir);
5224
5225 attr = dwarf2_attr (die, DW_AT_language, cu);
5226 if (attr)
5227 {
5228 set_cu_language (DW_UNSND (attr), cu);
5229 }
5230
5231 attr = dwarf2_attr (die, DW_AT_producer, cu);
5232 if (attr)
5233 cu->producer = DW_STRING (attr);
5234
5235 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5236 standardised yet. As a workaround for the language detection we fall
5237 back to the DW_AT_producer string. */
5238 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5239 cu->language = language_opencl;
5240
5241 /* We assume that we're processing GCC output. */
5242 processing_gcc_compilation = 2;
5243
5244 processing_has_namespace_info = 0;
5245
5246 start_symtab (name, comp_dir, lowpc);
5247 record_debugformat ("DWARF 2");
5248 record_producer (cu->producer);
5249
5250 initialize_cu_func_list (cu);
5251
5252 /* Decode line number information if present. We do this before
5253 processing child DIEs, so that the line header table is available
5254 for DW_AT_decl_file. */
5255 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5256 if (attr)
5257 {
5258 unsigned int line_offset = DW_UNSND (attr);
5259 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5260 if (line_header)
5261 {
5262 cu->line_header = line_header;
5263 make_cleanup (free_cu_line_header, cu);
5264 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5265 }
5266 }
5267
5268 /* Process all dies in compilation unit. */
5269 if (die->child != NULL)
5270 {
5271 child_die = die->child;
5272 while (child_die && child_die->tag)
5273 {
5274 process_die (child_die, cu);
5275 child_die = sibling_die (child_die);
5276 }
5277 }
5278
5279 /* Decode macro information, if present. Dwarf 2 macro information
5280 refers to information in the line number info statement program
5281 header, so we can only read it if we've read the header
5282 successfully. */
5283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5284 if (attr && line_header)
5285 {
5286 unsigned int macro_offset = DW_UNSND (attr);
5287
5288 dwarf_decode_macros (line_header, macro_offset,
5289 comp_dir, abfd, cu);
5290 }
5291 do_cleanups (back_to);
5292 }
5293
5294 /* Process DW_TAG_type_unit.
5295 For TUs we want to skip the first top level sibling if it's not the
5296 actual type being defined by this TU. In this case the first top
5297 level sibling is there to provide context only. */
5298
5299 static void
5300 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5301 {
5302 struct objfile *objfile = cu->objfile;
5303 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5304 CORE_ADDR lowpc;
5305 struct attribute *attr;
5306 char *name = NULL;
5307 char *comp_dir = NULL;
5308 struct die_info *child_die;
5309 bfd *abfd = objfile->obfd;
5310
5311 /* start_symtab needs a low pc, but we don't really have one.
5312 Do what read_file_scope would do in the absence of such info. */
5313 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5314
5315 /* Find the filename. Do not use dwarf2_name here, since the filename
5316 is not a source language identifier. */
5317 attr = dwarf2_attr (die, DW_AT_name, cu);
5318 if (attr)
5319 name = DW_STRING (attr);
5320
5321 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5322 if (attr)
5323 comp_dir = DW_STRING (attr);
5324 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5325 {
5326 comp_dir = ldirname (name);
5327 if (comp_dir != NULL)
5328 make_cleanup (xfree, comp_dir);
5329 }
5330
5331 if (name == NULL)
5332 name = "<unknown>";
5333
5334 attr = dwarf2_attr (die, DW_AT_language, cu);
5335 if (attr)
5336 set_cu_language (DW_UNSND (attr), cu);
5337
5338 /* This isn't technically needed today. It is done for symmetry
5339 with read_file_scope. */
5340 attr = dwarf2_attr (die, DW_AT_producer, cu);
5341 if (attr)
5342 cu->producer = DW_STRING (attr);
5343
5344 /* We assume that we're processing GCC output. */
5345 processing_gcc_compilation = 2;
5346
5347 processing_has_namespace_info = 0;
5348
5349 start_symtab (name, comp_dir, lowpc);
5350 record_debugformat ("DWARF 2");
5351 record_producer (cu->producer);
5352
5353 /* Process the dies in the type unit. */
5354 if (die->child == NULL)
5355 {
5356 dump_die_for_error (die);
5357 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5358 bfd_get_filename (abfd));
5359 }
5360
5361 child_die = die->child;
5362
5363 while (child_die && child_die->tag)
5364 {
5365 process_die (child_die, cu);
5366
5367 child_die = sibling_die (child_die);
5368 }
5369
5370 do_cleanups (back_to);
5371 }
5372
5373 static void
5374 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5375 struct dwarf2_cu *cu)
5376 {
5377 struct function_range *thisfn;
5378
5379 thisfn = (struct function_range *)
5380 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5381 thisfn->name = name;
5382 thisfn->lowpc = lowpc;
5383 thisfn->highpc = highpc;
5384 thisfn->seen_line = 0;
5385 thisfn->next = NULL;
5386
5387 if (cu->last_fn == NULL)
5388 cu->first_fn = thisfn;
5389 else
5390 cu->last_fn->next = thisfn;
5391
5392 cu->last_fn = thisfn;
5393 }
5394
5395 /* qsort helper for inherit_abstract_dies. */
5396
5397 static int
5398 unsigned_int_compar (const void *ap, const void *bp)
5399 {
5400 unsigned int a = *(unsigned int *) ap;
5401 unsigned int b = *(unsigned int *) bp;
5402
5403 return (a > b) - (b > a);
5404 }
5405
5406 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5407 Inherit only the children of the DW_AT_abstract_origin DIE not being
5408 already referenced by DW_AT_abstract_origin from the children of the
5409 current DIE. */
5410
5411 static void
5412 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5413 {
5414 struct die_info *child_die;
5415 unsigned die_children_count;
5416 /* CU offsets which were referenced by children of the current DIE. */
5417 unsigned *offsets;
5418 unsigned *offsets_end, *offsetp;
5419 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5420 struct die_info *origin_die;
5421 /* Iterator of the ORIGIN_DIE children. */
5422 struct die_info *origin_child_die;
5423 struct cleanup *cleanups;
5424 struct attribute *attr;
5425 struct dwarf2_cu *origin_cu;
5426 struct pending **origin_previous_list_in_scope;
5427
5428 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5429 if (!attr)
5430 return;
5431
5432 /* Note that following die references may follow to a die in a
5433 different cu. */
5434
5435 origin_cu = cu;
5436 origin_die = follow_die_ref (die, attr, &origin_cu);
5437
5438 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5439 symbols in. */
5440 origin_previous_list_in_scope = origin_cu->list_in_scope;
5441 origin_cu->list_in_scope = cu->list_in_scope;
5442
5443 if (die->tag != origin_die->tag
5444 && !(die->tag == DW_TAG_inlined_subroutine
5445 && origin_die->tag == DW_TAG_subprogram))
5446 complaint (&symfile_complaints,
5447 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5448 die->offset, origin_die->offset);
5449
5450 child_die = die->child;
5451 die_children_count = 0;
5452 while (child_die && child_die->tag)
5453 {
5454 child_die = sibling_die (child_die);
5455 die_children_count++;
5456 }
5457 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5458 cleanups = make_cleanup (xfree, offsets);
5459
5460 offsets_end = offsets;
5461 child_die = die->child;
5462 while (child_die && child_die->tag)
5463 {
5464 /* For each CHILD_DIE, find the corresponding child of
5465 ORIGIN_DIE. If there is more than one layer of
5466 DW_AT_abstract_origin, follow them all; there shouldn't be,
5467 but GCC versions at least through 4.4 generate this (GCC PR
5468 40573). */
5469 struct die_info *child_origin_die = child_die;
5470 struct dwarf2_cu *child_origin_cu = cu;
5471
5472 while (1)
5473 {
5474 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5475 child_origin_cu);
5476 if (attr == NULL)
5477 break;
5478 child_origin_die = follow_die_ref (child_origin_die, attr,
5479 &child_origin_cu);
5480 }
5481
5482 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5483 counterpart may exist. */
5484 if (child_origin_die != child_die)
5485 {
5486 if (child_die->tag != child_origin_die->tag
5487 && !(child_die->tag == DW_TAG_inlined_subroutine
5488 && child_origin_die->tag == DW_TAG_subprogram))
5489 complaint (&symfile_complaints,
5490 _("Child DIE 0x%x and its abstract origin 0x%x have "
5491 "different tags"), child_die->offset,
5492 child_origin_die->offset);
5493 if (child_origin_die->parent != origin_die)
5494 complaint (&symfile_complaints,
5495 _("Child DIE 0x%x and its abstract origin 0x%x have "
5496 "different parents"), child_die->offset,
5497 child_origin_die->offset);
5498 else
5499 *offsets_end++ = child_origin_die->offset;
5500 }
5501 child_die = sibling_die (child_die);
5502 }
5503 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5504 unsigned_int_compar);
5505 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5506 if (offsetp[-1] == *offsetp)
5507 complaint (&symfile_complaints,
5508 _("Multiple children of DIE 0x%x refer "
5509 "to DIE 0x%x as their abstract origin"),
5510 die->offset, *offsetp);
5511
5512 offsetp = offsets;
5513 origin_child_die = origin_die->child;
5514 while (origin_child_die && origin_child_die->tag)
5515 {
5516 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5517 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5518 offsetp++;
5519 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5520 {
5521 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5522 process_die (origin_child_die, origin_cu);
5523 }
5524 origin_child_die = sibling_die (origin_child_die);
5525 }
5526 origin_cu->list_in_scope = origin_previous_list_in_scope;
5527
5528 do_cleanups (cleanups);
5529 }
5530
5531 static void
5532 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5533 {
5534 struct objfile *objfile = cu->objfile;
5535 struct context_stack *new;
5536 CORE_ADDR lowpc;
5537 CORE_ADDR highpc;
5538 struct die_info *child_die;
5539 struct attribute *attr, *call_line, *call_file;
5540 char *name;
5541 CORE_ADDR baseaddr;
5542 struct block *block;
5543 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5544 VEC (symbolp) *template_args = NULL;
5545 struct template_symbol *templ_func = NULL;
5546
5547 if (inlined_func)
5548 {
5549 /* If we do not have call site information, we can't show the
5550 caller of this inlined function. That's too confusing, so
5551 only use the scope for local variables. */
5552 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5553 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5554 if (call_line == NULL || call_file == NULL)
5555 {
5556 read_lexical_block_scope (die, cu);
5557 return;
5558 }
5559 }
5560
5561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5562
5563 name = dwarf2_name (die, cu);
5564
5565 /* Ignore functions with missing or empty names. These are actually
5566 illegal according to the DWARF standard. */
5567 if (name == NULL)
5568 {
5569 complaint (&symfile_complaints,
5570 _("missing name for subprogram DIE at %d"), die->offset);
5571 return;
5572 }
5573
5574 /* Ignore functions with missing or invalid low and high pc attributes. */
5575 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5576 {
5577 attr = dwarf2_attr (die, DW_AT_external, cu);
5578 if (!attr || !DW_UNSND (attr))
5579 complaint (&symfile_complaints,
5580 _("cannot get low and high bounds "
5581 "for subprogram DIE at %d"),
5582 die->offset);
5583 return;
5584 }
5585
5586 lowpc += baseaddr;
5587 highpc += baseaddr;
5588
5589 /* Record the function range for dwarf_decode_lines. */
5590 add_to_cu_func_list (name, lowpc, highpc, cu);
5591
5592 /* If we have any template arguments, then we must allocate a
5593 different sort of symbol. */
5594 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5595 {
5596 if (child_die->tag == DW_TAG_template_type_param
5597 || child_die->tag == DW_TAG_template_value_param)
5598 {
5599 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5600 struct template_symbol);
5601 templ_func->base.is_cplus_template_function = 1;
5602 break;
5603 }
5604 }
5605
5606 new = push_context (0, lowpc);
5607 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5608 (struct symbol *) templ_func);
5609
5610 /* If there is a location expression for DW_AT_frame_base, record
5611 it. */
5612 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5613 if (attr)
5614 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5615 expression is being recorded directly in the function's symbol
5616 and not in a separate frame-base object. I guess this hack is
5617 to avoid adding some sort of frame-base adjunct/annex to the
5618 function's symbol :-(. The problem with doing this is that it
5619 results in a function symbol with a location expression that
5620 has nothing to do with the location of the function, ouch! The
5621 relationship should be: a function's symbol has-a frame base; a
5622 frame-base has-a location expression. */
5623 dwarf2_symbol_mark_computed (attr, new->name, cu);
5624
5625 cu->list_in_scope = &local_symbols;
5626
5627 if (die->child != NULL)
5628 {
5629 child_die = die->child;
5630 while (child_die && child_die->tag)
5631 {
5632 if (child_die->tag == DW_TAG_template_type_param
5633 || child_die->tag == DW_TAG_template_value_param)
5634 {
5635 struct symbol *arg = new_symbol (child_die, NULL, cu);
5636
5637 if (arg != NULL)
5638 VEC_safe_push (symbolp, template_args, arg);
5639 }
5640 else
5641 process_die (child_die, cu);
5642 child_die = sibling_die (child_die);
5643 }
5644 }
5645
5646 inherit_abstract_dies (die, cu);
5647
5648 /* If we have a DW_AT_specification, we might need to import using
5649 directives from the context of the specification DIE. See the
5650 comment in determine_prefix. */
5651 if (cu->language == language_cplus
5652 && dwarf2_attr (die, DW_AT_specification, cu))
5653 {
5654 struct dwarf2_cu *spec_cu = cu;
5655 struct die_info *spec_die = die_specification (die, &spec_cu);
5656
5657 while (spec_die)
5658 {
5659 child_die = spec_die->child;
5660 while (child_die && child_die->tag)
5661 {
5662 if (child_die->tag == DW_TAG_imported_module)
5663 process_die (child_die, spec_cu);
5664 child_die = sibling_die (child_die);
5665 }
5666
5667 /* In some cases, GCC generates specification DIEs that
5668 themselves contain DW_AT_specification attributes. */
5669 spec_die = die_specification (spec_die, &spec_cu);
5670 }
5671 }
5672
5673 new = pop_context ();
5674 /* Make a block for the local symbols within. */
5675 block = finish_block (new->name, &local_symbols, new->old_blocks,
5676 lowpc, highpc, objfile);
5677
5678 /* For C++, set the block's scope. */
5679 if (cu->language == language_cplus || cu->language == language_fortran)
5680 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5681 determine_prefix (die, cu),
5682 processing_has_namespace_info);
5683
5684 /* If we have address ranges, record them. */
5685 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5686
5687 /* Attach template arguments to function. */
5688 if (! VEC_empty (symbolp, template_args))
5689 {
5690 gdb_assert (templ_func != NULL);
5691
5692 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5693 templ_func->template_arguments
5694 = obstack_alloc (&objfile->objfile_obstack,
5695 (templ_func->n_template_arguments
5696 * sizeof (struct symbol *)));
5697 memcpy (templ_func->template_arguments,
5698 VEC_address (symbolp, template_args),
5699 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5700 VEC_free (symbolp, template_args);
5701 }
5702
5703 /* In C++, we can have functions nested inside functions (e.g., when
5704 a function declares a class that has methods). This means that
5705 when we finish processing a function scope, we may need to go
5706 back to building a containing block's symbol lists. */
5707 local_symbols = new->locals;
5708 param_symbols = new->params;
5709 using_directives = new->using_directives;
5710
5711 /* If we've finished processing a top-level function, subsequent
5712 symbols go in the file symbol list. */
5713 if (outermost_context_p ())
5714 cu->list_in_scope = &file_symbols;
5715 }
5716
5717 /* Process all the DIES contained within a lexical block scope. Start
5718 a new scope, process the dies, and then close the scope. */
5719
5720 static void
5721 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5722 {
5723 struct objfile *objfile = cu->objfile;
5724 struct context_stack *new;
5725 CORE_ADDR lowpc, highpc;
5726 struct die_info *child_die;
5727 CORE_ADDR baseaddr;
5728
5729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5730
5731 /* Ignore blocks with missing or invalid low and high pc attributes. */
5732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5733 as multiple lexical blocks? Handling children in a sane way would
5734 be nasty. Might be easier to properly extend generic blocks to
5735 describe ranges. */
5736 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5737 return;
5738 lowpc += baseaddr;
5739 highpc += baseaddr;
5740
5741 push_context (0, lowpc);
5742 if (die->child != NULL)
5743 {
5744 child_die = die->child;
5745 while (child_die && child_die->tag)
5746 {
5747 process_die (child_die, cu);
5748 child_die = sibling_die (child_die);
5749 }
5750 }
5751 new = pop_context ();
5752
5753 if (local_symbols != NULL || using_directives != NULL)
5754 {
5755 struct block *block
5756 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5757 highpc, objfile);
5758
5759 /* Note that recording ranges after traversing children, as we
5760 do here, means that recording a parent's ranges entails
5761 walking across all its children's ranges as they appear in
5762 the address map, which is quadratic behavior.
5763
5764 It would be nicer to record the parent's ranges before
5765 traversing its children, simply overriding whatever you find
5766 there. But since we don't even decide whether to create a
5767 block until after we've traversed its children, that's hard
5768 to do. */
5769 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5770 }
5771 local_symbols = new->locals;
5772 using_directives = new->using_directives;
5773 }
5774
5775 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5776 Return 1 if the attributes are present and valid, otherwise, return 0.
5777 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5778
5779 static int
5780 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5781 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5782 struct partial_symtab *ranges_pst)
5783 {
5784 struct objfile *objfile = cu->objfile;
5785 struct comp_unit_head *cu_header = &cu->header;
5786 bfd *obfd = objfile->obfd;
5787 unsigned int addr_size = cu_header->addr_size;
5788 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5789 /* Base address selection entry. */
5790 CORE_ADDR base;
5791 int found_base;
5792 unsigned int dummy;
5793 gdb_byte *buffer;
5794 CORE_ADDR marker;
5795 int low_set;
5796 CORE_ADDR low = 0;
5797 CORE_ADDR high = 0;
5798 CORE_ADDR baseaddr;
5799
5800 found_base = cu->base_known;
5801 base = cu->base_address;
5802
5803 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5804 if (offset >= dwarf2_per_objfile->ranges.size)
5805 {
5806 complaint (&symfile_complaints,
5807 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5808 offset);
5809 return 0;
5810 }
5811 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5812
5813 /* Read in the largest possible address. */
5814 marker = read_address (obfd, buffer, cu, &dummy);
5815 if ((marker & mask) == mask)
5816 {
5817 /* If we found the largest possible address, then
5818 read the base address. */
5819 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5820 buffer += 2 * addr_size;
5821 offset += 2 * addr_size;
5822 found_base = 1;
5823 }
5824
5825 low_set = 0;
5826
5827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5828
5829 while (1)
5830 {
5831 CORE_ADDR range_beginning, range_end;
5832
5833 range_beginning = read_address (obfd, buffer, cu, &dummy);
5834 buffer += addr_size;
5835 range_end = read_address (obfd, buffer, cu, &dummy);
5836 buffer += addr_size;
5837 offset += 2 * addr_size;
5838
5839 /* An end of list marker is a pair of zero addresses. */
5840 if (range_beginning == 0 && range_end == 0)
5841 /* Found the end of list entry. */
5842 break;
5843
5844 /* Each base address selection entry is a pair of 2 values.
5845 The first is the largest possible address, the second is
5846 the base address. Check for a base address here. */
5847 if ((range_beginning & mask) == mask)
5848 {
5849 /* If we found the largest possible address, then
5850 read the base address. */
5851 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5852 found_base = 1;
5853 continue;
5854 }
5855
5856 if (!found_base)
5857 {
5858 /* We have no valid base address for the ranges
5859 data. */
5860 complaint (&symfile_complaints,
5861 _("Invalid .debug_ranges data (no base address)"));
5862 return 0;
5863 }
5864
5865 range_beginning += base;
5866 range_end += base;
5867
5868 if (ranges_pst != NULL && range_beginning < range_end)
5869 addrmap_set_empty (objfile->psymtabs_addrmap,
5870 range_beginning + baseaddr,
5871 range_end - 1 + baseaddr,
5872 ranges_pst);
5873
5874 /* FIXME: This is recording everything as a low-high
5875 segment of consecutive addresses. We should have a
5876 data structure for discontiguous block ranges
5877 instead. */
5878 if (! low_set)
5879 {
5880 low = range_beginning;
5881 high = range_end;
5882 low_set = 1;
5883 }
5884 else
5885 {
5886 if (range_beginning < low)
5887 low = range_beginning;
5888 if (range_end > high)
5889 high = range_end;
5890 }
5891 }
5892
5893 if (! low_set)
5894 /* If the first entry is an end-of-list marker, the range
5895 describes an empty scope, i.e. no instructions. */
5896 return 0;
5897
5898 if (low_return)
5899 *low_return = low;
5900 if (high_return)
5901 *high_return = high;
5902 return 1;
5903 }
5904
5905 /* Get low and high pc attributes from a die. Return 1 if the attributes
5906 are present and valid, otherwise, return 0. Return -1 if the range is
5907 discontinuous, i.e. derived from DW_AT_ranges information. */
5908 static int
5909 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5910 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5911 struct partial_symtab *pst)
5912 {
5913 struct attribute *attr;
5914 CORE_ADDR low = 0;
5915 CORE_ADDR high = 0;
5916 int ret = 0;
5917
5918 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5919 if (attr)
5920 {
5921 high = DW_ADDR (attr);
5922 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5923 if (attr)
5924 low = DW_ADDR (attr);
5925 else
5926 /* Found high w/o low attribute. */
5927 return 0;
5928
5929 /* Found consecutive range of addresses. */
5930 ret = 1;
5931 }
5932 else
5933 {
5934 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5935 if (attr != NULL)
5936 {
5937 /* Value of the DW_AT_ranges attribute is the offset in the
5938 .debug_ranges section. */
5939 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5940 return 0;
5941 /* Found discontinuous range of addresses. */
5942 ret = -1;
5943 }
5944 }
5945
5946 if (high < low)
5947 return 0;
5948
5949 /* When using the GNU linker, .gnu.linkonce. sections are used to
5950 eliminate duplicate copies of functions and vtables and such.
5951 The linker will arbitrarily choose one and discard the others.
5952 The AT_*_pc values for such functions refer to local labels in
5953 these sections. If the section from that file was discarded, the
5954 labels are not in the output, so the relocs get a value of 0.
5955 If this is a discarded function, mark the pc bounds as invalid,
5956 so that GDB will ignore it. */
5957 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5958 return 0;
5959
5960 *lowpc = low;
5961 *highpc = high;
5962 return ret;
5963 }
5964
5965 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5966 its low and high PC addresses. Do nothing if these addresses could not
5967 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5968 and HIGHPC to the high address if greater than HIGHPC. */
5969
5970 static void
5971 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5973 struct dwarf2_cu *cu)
5974 {
5975 CORE_ADDR low, high;
5976 struct die_info *child = die->child;
5977
5978 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5979 {
5980 *lowpc = min (*lowpc, low);
5981 *highpc = max (*highpc, high);
5982 }
5983
5984 /* If the language does not allow nested subprograms (either inside
5985 subprograms or lexical blocks), we're done. */
5986 if (cu->language != language_ada)
5987 return;
5988
5989 /* Check all the children of the given DIE. If it contains nested
5990 subprograms, then check their pc bounds. Likewise, we need to
5991 check lexical blocks as well, as they may also contain subprogram
5992 definitions. */
5993 while (child && child->tag)
5994 {
5995 if (child->tag == DW_TAG_subprogram
5996 || child->tag == DW_TAG_lexical_block)
5997 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5998 child = sibling_die (child);
5999 }
6000 }
6001
6002 /* Get the low and high pc's represented by the scope DIE, and store
6003 them in *LOWPC and *HIGHPC. If the correct values can't be
6004 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6005
6006 static void
6007 get_scope_pc_bounds (struct die_info *die,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 struct dwarf2_cu *cu)
6010 {
6011 CORE_ADDR best_low = (CORE_ADDR) -1;
6012 CORE_ADDR best_high = (CORE_ADDR) 0;
6013 CORE_ADDR current_low, current_high;
6014
6015 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6016 {
6017 best_low = current_low;
6018 best_high = current_high;
6019 }
6020 else
6021 {
6022 struct die_info *child = die->child;
6023
6024 while (child && child->tag)
6025 {
6026 switch (child->tag) {
6027 case DW_TAG_subprogram:
6028 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6029 break;
6030 case DW_TAG_namespace:
6031 case DW_TAG_module:
6032 /* FIXME: carlton/2004-01-16: Should we do this for
6033 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6034 that current GCC's always emit the DIEs corresponding
6035 to definitions of methods of classes as children of a
6036 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6037 the DIEs giving the declarations, which could be
6038 anywhere). But I don't see any reason why the
6039 standards says that they have to be there. */
6040 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6041
6042 if (current_low != ((CORE_ADDR) -1))
6043 {
6044 best_low = min (best_low, current_low);
6045 best_high = max (best_high, current_high);
6046 }
6047 break;
6048 default:
6049 /* Ignore. */
6050 break;
6051 }
6052
6053 child = sibling_die (child);
6054 }
6055 }
6056
6057 *lowpc = best_low;
6058 *highpc = best_high;
6059 }
6060
6061 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6062 in DIE. */
6063 static void
6064 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6065 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6066 {
6067 struct attribute *attr;
6068
6069 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6070 if (attr)
6071 {
6072 CORE_ADDR high = DW_ADDR (attr);
6073
6074 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6075 if (attr)
6076 {
6077 CORE_ADDR low = DW_ADDR (attr);
6078
6079 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6080 }
6081 }
6082
6083 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6084 if (attr)
6085 {
6086 bfd *obfd = cu->objfile->obfd;
6087
6088 /* The value of the DW_AT_ranges attribute is the offset of the
6089 address range list in the .debug_ranges section. */
6090 unsigned long offset = DW_UNSND (attr);
6091 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6092
6093 /* For some target architectures, but not others, the
6094 read_address function sign-extends the addresses it returns.
6095 To recognize base address selection entries, we need a
6096 mask. */
6097 unsigned int addr_size = cu->header.addr_size;
6098 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6099
6100 /* The base address, to which the next pair is relative. Note
6101 that this 'base' is a DWARF concept: most entries in a range
6102 list are relative, to reduce the number of relocs against the
6103 debugging information. This is separate from this function's
6104 'baseaddr' argument, which GDB uses to relocate debugging
6105 information from a shared library based on the address at
6106 which the library was loaded. */
6107 CORE_ADDR base = cu->base_address;
6108 int base_known = cu->base_known;
6109
6110 gdb_assert (dwarf2_per_objfile->ranges.readin);
6111 if (offset >= dwarf2_per_objfile->ranges.size)
6112 {
6113 complaint (&symfile_complaints,
6114 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6115 offset);
6116 return;
6117 }
6118
6119 for (;;)
6120 {
6121 unsigned int bytes_read;
6122 CORE_ADDR start, end;
6123
6124 start = read_address (obfd, buffer, cu, &bytes_read);
6125 buffer += bytes_read;
6126 end = read_address (obfd, buffer, cu, &bytes_read);
6127 buffer += bytes_read;
6128
6129 /* Did we find the end of the range list? */
6130 if (start == 0 && end == 0)
6131 break;
6132
6133 /* Did we find a base address selection entry? */
6134 else if ((start & base_select_mask) == base_select_mask)
6135 {
6136 base = end;
6137 base_known = 1;
6138 }
6139
6140 /* We found an ordinary address range. */
6141 else
6142 {
6143 if (!base_known)
6144 {
6145 complaint (&symfile_complaints,
6146 _("Invalid .debug_ranges data "
6147 "(no base address)"));
6148 return;
6149 }
6150
6151 record_block_range (block,
6152 baseaddr + base + start,
6153 baseaddr + base + end - 1);
6154 }
6155 }
6156 }
6157 }
6158
6159 /* Add an aggregate field to the field list. */
6160
6161 static void
6162 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6163 struct dwarf2_cu *cu)
6164 {
6165 struct objfile *objfile = cu->objfile;
6166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6167 struct nextfield *new_field;
6168 struct attribute *attr;
6169 struct field *fp;
6170 char *fieldname = "";
6171
6172 /* Allocate a new field list entry and link it in. */
6173 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6174 make_cleanup (xfree, new_field);
6175 memset (new_field, 0, sizeof (struct nextfield));
6176
6177 if (die->tag == DW_TAG_inheritance)
6178 {
6179 new_field->next = fip->baseclasses;
6180 fip->baseclasses = new_field;
6181 }
6182 else
6183 {
6184 new_field->next = fip->fields;
6185 fip->fields = new_field;
6186 }
6187 fip->nfields++;
6188
6189 /* Handle accessibility and virtuality of field.
6190 The default accessibility for members is public, the default
6191 accessibility for inheritance is private. */
6192 if (die->tag != DW_TAG_inheritance)
6193 new_field->accessibility = DW_ACCESS_public;
6194 else
6195 new_field->accessibility = DW_ACCESS_private;
6196 new_field->virtuality = DW_VIRTUALITY_none;
6197
6198 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6199 if (attr)
6200 new_field->accessibility = DW_UNSND (attr);
6201 if (new_field->accessibility != DW_ACCESS_public)
6202 fip->non_public_fields = 1;
6203 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6204 if (attr)
6205 new_field->virtuality = DW_UNSND (attr);
6206
6207 fp = &new_field->field;
6208
6209 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6210 {
6211 /* Data member other than a C++ static data member. */
6212
6213 /* Get type of field. */
6214 fp->type = die_type (die, cu);
6215
6216 SET_FIELD_BITPOS (*fp, 0);
6217
6218 /* Get bit size of field (zero if none). */
6219 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6220 if (attr)
6221 {
6222 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6223 }
6224 else
6225 {
6226 FIELD_BITSIZE (*fp) = 0;
6227 }
6228
6229 /* Get bit offset of field. */
6230 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6231 if (attr)
6232 {
6233 int byte_offset = 0;
6234
6235 if (attr_form_is_section_offset (attr))
6236 dwarf2_complex_location_expr_complaint ();
6237 else if (attr_form_is_constant (attr))
6238 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6239 else if (attr_form_is_block (attr))
6240 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6241 else
6242 dwarf2_complex_location_expr_complaint ();
6243
6244 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6245 }
6246 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6247 if (attr)
6248 {
6249 if (gdbarch_bits_big_endian (gdbarch))
6250 {
6251 /* For big endian bits, the DW_AT_bit_offset gives the
6252 additional bit offset from the MSB of the containing
6253 anonymous object to the MSB of the field. We don't
6254 have to do anything special since we don't need to
6255 know the size of the anonymous object. */
6256 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6257 }
6258 else
6259 {
6260 /* For little endian bits, compute the bit offset to the
6261 MSB of the anonymous object, subtract off the number of
6262 bits from the MSB of the field to the MSB of the
6263 object, and then subtract off the number of bits of
6264 the field itself. The result is the bit offset of
6265 the LSB of the field. */
6266 int anonymous_size;
6267 int bit_offset = DW_UNSND (attr);
6268
6269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6270 if (attr)
6271 {
6272 /* The size of the anonymous object containing
6273 the bit field is explicit, so use the
6274 indicated size (in bytes). */
6275 anonymous_size = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 /* The size of the anonymous object containing
6280 the bit field must be inferred from the type
6281 attribute of the data member containing the
6282 bit field. */
6283 anonymous_size = TYPE_LENGTH (fp->type);
6284 }
6285 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6286 - bit_offset - FIELD_BITSIZE (*fp);
6287 }
6288 }
6289
6290 /* Get name of field. */
6291 fieldname = dwarf2_name (die, cu);
6292 if (fieldname == NULL)
6293 fieldname = "";
6294
6295 /* The name is already allocated along with this objfile, so we don't
6296 need to duplicate it for the type. */
6297 fp->name = fieldname;
6298
6299 /* Change accessibility for artificial fields (e.g. virtual table
6300 pointer or virtual base class pointer) to private. */
6301 if (dwarf2_attr (die, DW_AT_artificial, cu))
6302 {
6303 FIELD_ARTIFICIAL (*fp) = 1;
6304 new_field->accessibility = DW_ACCESS_private;
6305 fip->non_public_fields = 1;
6306 }
6307 }
6308 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6309 {
6310 /* C++ static member. */
6311
6312 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6313 is a declaration, but all versions of G++ as of this writing
6314 (so through at least 3.2.1) incorrectly generate
6315 DW_TAG_variable tags. */
6316
6317 char *physname;
6318
6319 /* Get name of field. */
6320 fieldname = dwarf2_name (die, cu);
6321 if (fieldname == NULL)
6322 return;
6323
6324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6325 if (attr
6326 /* Only create a symbol if this is an external value.
6327 new_symbol checks this and puts the value in the global symbol
6328 table, which we want. If it is not external, new_symbol
6329 will try to put the value in cu->list_in_scope which is wrong. */
6330 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6331 {
6332 /* A static const member, not much different than an enum as far as
6333 we're concerned, except that we can support more types. */
6334 new_symbol (die, NULL, cu);
6335 }
6336
6337 /* Get physical name. */
6338 physname = (char *) dwarf2_physname (fieldname, die, cu);
6339
6340 /* The name is already allocated along with this objfile, so we don't
6341 need to duplicate it for the type. */
6342 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6343 FIELD_TYPE (*fp) = die_type (die, cu);
6344 FIELD_NAME (*fp) = fieldname;
6345 }
6346 else if (die->tag == DW_TAG_inheritance)
6347 {
6348 /* C++ base class field. */
6349 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6350 if (attr)
6351 {
6352 int byte_offset = 0;
6353
6354 if (attr_form_is_section_offset (attr))
6355 dwarf2_complex_location_expr_complaint ();
6356 else if (attr_form_is_constant (attr))
6357 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6358 else if (attr_form_is_block (attr))
6359 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6360 else
6361 dwarf2_complex_location_expr_complaint ();
6362
6363 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6364 }
6365 FIELD_BITSIZE (*fp) = 0;
6366 FIELD_TYPE (*fp) = die_type (die, cu);
6367 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6368 fip->nbaseclasses++;
6369 }
6370 }
6371
6372 /* Add a typedef defined in the scope of the FIP's class. */
6373
6374 static void
6375 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6376 struct dwarf2_cu *cu)
6377 {
6378 struct objfile *objfile = cu->objfile;
6379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6380 struct typedef_field_list *new_field;
6381 struct attribute *attr;
6382 struct typedef_field *fp;
6383 char *fieldname = "";
6384
6385 /* Allocate a new field list entry and link it in. */
6386 new_field = xzalloc (sizeof (*new_field));
6387 make_cleanup (xfree, new_field);
6388
6389 gdb_assert (die->tag == DW_TAG_typedef);
6390
6391 fp = &new_field->field;
6392
6393 /* Get name of field. */
6394 fp->name = dwarf2_name (die, cu);
6395 if (fp->name == NULL)
6396 return;
6397
6398 fp->type = read_type_die (die, cu);
6399
6400 new_field->next = fip->typedef_field_list;
6401 fip->typedef_field_list = new_field;
6402 fip->typedef_field_list_count++;
6403 }
6404
6405 /* Create the vector of fields, and attach it to the type. */
6406
6407 static void
6408 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6409 struct dwarf2_cu *cu)
6410 {
6411 int nfields = fip->nfields;
6412
6413 /* Record the field count, allocate space for the array of fields,
6414 and create blank accessibility bitfields if necessary. */
6415 TYPE_NFIELDS (type) = nfields;
6416 TYPE_FIELDS (type) = (struct field *)
6417 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6418 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6419
6420 if (fip->non_public_fields && cu->language != language_ada)
6421 {
6422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6423
6424 TYPE_FIELD_PRIVATE_BITS (type) =
6425 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6426 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6427
6428 TYPE_FIELD_PROTECTED_BITS (type) =
6429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6430 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6431
6432 TYPE_FIELD_IGNORE_BITS (type) =
6433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6434 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6435 }
6436
6437 /* If the type has baseclasses, allocate and clear a bit vector for
6438 TYPE_FIELD_VIRTUAL_BITS. */
6439 if (fip->nbaseclasses && cu->language != language_ada)
6440 {
6441 int num_bytes = B_BYTES (fip->nbaseclasses);
6442 unsigned char *pointer;
6443
6444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6445 pointer = TYPE_ALLOC (type, num_bytes);
6446 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6447 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6448 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6449 }
6450
6451 /* Copy the saved-up fields into the field vector. Start from the head of
6452 the list, adding to the tail of the field array, so that they end up in
6453 the same order in the array in which they were added to the list. */
6454 while (nfields-- > 0)
6455 {
6456 struct nextfield *fieldp;
6457
6458 if (fip->fields)
6459 {
6460 fieldp = fip->fields;
6461 fip->fields = fieldp->next;
6462 }
6463 else
6464 {
6465 fieldp = fip->baseclasses;
6466 fip->baseclasses = fieldp->next;
6467 }
6468
6469 TYPE_FIELD (type, nfields) = fieldp->field;
6470 switch (fieldp->accessibility)
6471 {
6472 case DW_ACCESS_private:
6473 if (cu->language != language_ada)
6474 SET_TYPE_FIELD_PRIVATE (type, nfields);
6475 break;
6476
6477 case DW_ACCESS_protected:
6478 if (cu->language != language_ada)
6479 SET_TYPE_FIELD_PROTECTED (type, nfields);
6480 break;
6481
6482 case DW_ACCESS_public:
6483 break;
6484
6485 default:
6486 /* Unknown accessibility. Complain and treat it as public. */
6487 {
6488 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6489 fieldp->accessibility);
6490 }
6491 break;
6492 }
6493 if (nfields < fip->nbaseclasses)
6494 {
6495 switch (fieldp->virtuality)
6496 {
6497 case DW_VIRTUALITY_virtual:
6498 case DW_VIRTUALITY_pure_virtual:
6499 if (cu->language == language_ada)
6500 error ("unexpected virtuality in component of Ada type");
6501 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6502 break;
6503 }
6504 }
6505 }
6506 }
6507
6508 /* Add a member function to the proper fieldlist. */
6509
6510 static void
6511 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6512 struct type *type, struct dwarf2_cu *cu)
6513 {
6514 struct objfile *objfile = cu->objfile;
6515 struct attribute *attr;
6516 struct fnfieldlist *flp;
6517 int i;
6518 struct fn_field *fnp;
6519 char *fieldname;
6520 struct nextfnfield *new_fnfield;
6521 struct type *this_type;
6522
6523 if (cu->language == language_ada)
6524 error ("unexpected member function in Ada type");
6525
6526 /* Get name of member function. */
6527 fieldname = dwarf2_name (die, cu);
6528 if (fieldname == NULL)
6529 return;
6530
6531 /* Look up member function name in fieldlist. */
6532 for (i = 0; i < fip->nfnfields; i++)
6533 {
6534 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6535 break;
6536 }
6537
6538 /* Create new list element if necessary. */
6539 if (i < fip->nfnfields)
6540 flp = &fip->fnfieldlists[i];
6541 else
6542 {
6543 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6544 {
6545 fip->fnfieldlists = (struct fnfieldlist *)
6546 xrealloc (fip->fnfieldlists,
6547 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6548 * sizeof (struct fnfieldlist));
6549 if (fip->nfnfields == 0)
6550 make_cleanup (free_current_contents, &fip->fnfieldlists);
6551 }
6552 flp = &fip->fnfieldlists[fip->nfnfields];
6553 flp->name = fieldname;
6554 flp->length = 0;
6555 flp->head = NULL;
6556 i = fip->nfnfields++;
6557 }
6558
6559 /* Create a new member function field and chain it to the field list
6560 entry. */
6561 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6562 make_cleanup (xfree, new_fnfield);
6563 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6564 new_fnfield->next = flp->head;
6565 flp->head = new_fnfield;
6566 flp->length++;
6567
6568 /* Fill in the member function field info. */
6569 fnp = &new_fnfield->fnfield;
6570
6571 /* Delay processing of the physname until later. */
6572 if (cu->language == language_cplus || cu->language == language_java)
6573 {
6574 add_to_method_list (type, i, flp->length - 1, fieldname,
6575 die, cu);
6576 }
6577 else
6578 {
6579 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6580 fnp->physname = physname ? physname : "";
6581 }
6582
6583 fnp->type = alloc_type (objfile);
6584 this_type = read_type_die (die, cu);
6585 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6586 {
6587 int nparams = TYPE_NFIELDS (this_type);
6588
6589 /* TYPE is the domain of this method, and THIS_TYPE is the type
6590 of the method itself (TYPE_CODE_METHOD). */
6591 smash_to_method_type (fnp->type, type,
6592 TYPE_TARGET_TYPE (this_type),
6593 TYPE_FIELDS (this_type),
6594 TYPE_NFIELDS (this_type),
6595 TYPE_VARARGS (this_type));
6596
6597 /* Handle static member functions.
6598 Dwarf2 has no clean way to discern C++ static and non-static
6599 member functions. G++ helps GDB by marking the first
6600 parameter for non-static member functions (which is the this
6601 pointer) as artificial. We obtain this information from
6602 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6604 fnp->voffset = VOFFSET_STATIC;
6605 }
6606 else
6607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6608 dwarf2_full_name (fieldname, die, cu));
6609
6610 /* Get fcontext from DW_AT_containing_type if present. */
6611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6612 fnp->fcontext = die_containing_type (die, cu);
6613
6614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6615 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6616
6617 /* Get accessibility. */
6618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6619 if (attr)
6620 {
6621 switch (DW_UNSND (attr))
6622 {
6623 case DW_ACCESS_private:
6624 fnp->is_private = 1;
6625 break;
6626 case DW_ACCESS_protected:
6627 fnp->is_protected = 1;
6628 break;
6629 }
6630 }
6631
6632 /* Check for artificial methods. */
6633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6634 if (attr && DW_UNSND (attr) != 0)
6635 fnp->is_artificial = 1;
6636
6637 /* Get index in virtual function table if it is a virtual member
6638 function. For older versions of GCC, this is an offset in the
6639 appropriate virtual table, as specified by DW_AT_containing_type.
6640 For everyone else, it is an expression to be evaluated relative
6641 to the object address. */
6642
6643 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6644 if (attr)
6645 {
6646 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6647 {
6648 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6649 {
6650 /* Old-style GCC. */
6651 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6652 }
6653 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6654 || (DW_BLOCK (attr)->size > 1
6655 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6656 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6657 {
6658 struct dwarf_block blk;
6659 int offset;
6660
6661 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6662 ? 1 : 2);
6663 blk.size = DW_BLOCK (attr)->size - offset;
6664 blk.data = DW_BLOCK (attr)->data + offset;
6665 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6666 if ((fnp->voffset % cu->header.addr_size) != 0)
6667 dwarf2_complex_location_expr_complaint ();
6668 else
6669 fnp->voffset /= cu->header.addr_size;
6670 fnp->voffset += 2;
6671 }
6672 else
6673 dwarf2_complex_location_expr_complaint ();
6674
6675 if (!fnp->fcontext)
6676 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6677 }
6678 else if (attr_form_is_section_offset (attr))
6679 {
6680 dwarf2_complex_location_expr_complaint ();
6681 }
6682 else
6683 {
6684 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6685 fieldname);
6686 }
6687 }
6688 else
6689 {
6690 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6691 if (attr && DW_UNSND (attr))
6692 {
6693 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6694 complaint (&symfile_complaints,
6695 _("Member function \"%s\" (offset %d) is virtual "
6696 "but the vtable offset is not specified"),
6697 fieldname, die->offset);
6698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6699 TYPE_CPLUS_DYNAMIC (type) = 1;
6700 }
6701 }
6702 }
6703
6704 /* Create the vector of member function fields, and attach it to the type. */
6705
6706 static void
6707 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6708 struct dwarf2_cu *cu)
6709 {
6710 struct fnfieldlist *flp;
6711 int total_length = 0;
6712 int i;
6713
6714 if (cu->language == language_ada)
6715 error ("unexpected member functions in Ada type");
6716
6717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6718 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6719 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6720
6721 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6722 {
6723 struct nextfnfield *nfp = flp->head;
6724 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6725 int k;
6726
6727 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6728 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6729 fn_flp->fn_fields = (struct fn_field *)
6730 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6731 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6732 fn_flp->fn_fields[k] = nfp->fnfield;
6733
6734 total_length += flp->length;
6735 }
6736
6737 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6738 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6739 }
6740
6741 /* Returns non-zero if NAME is the name of a vtable member in CU's
6742 language, zero otherwise. */
6743 static int
6744 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6745 {
6746 static const char vptr[] = "_vptr";
6747 static const char vtable[] = "vtable";
6748
6749 /* Look for the C++ and Java forms of the vtable. */
6750 if ((cu->language == language_java
6751 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6752 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6753 && is_cplus_marker (name[sizeof (vptr) - 1])))
6754 return 1;
6755
6756 return 0;
6757 }
6758
6759 /* GCC outputs unnamed structures that are really pointers to member
6760 functions, with the ABI-specified layout. If TYPE describes
6761 such a structure, smash it into a member function type.
6762
6763 GCC shouldn't do this; it should just output pointer to member DIEs.
6764 This is GCC PR debug/28767. */
6765
6766 static void
6767 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6768 {
6769 struct type *pfn_type, *domain_type, *new_type;
6770
6771 /* Check for a structure with no name and two children. */
6772 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6773 return;
6774
6775 /* Check for __pfn and __delta members. */
6776 if (TYPE_FIELD_NAME (type, 0) == NULL
6777 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6778 || TYPE_FIELD_NAME (type, 1) == NULL
6779 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6780 return;
6781
6782 /* Find the type of the method. */
6783 pfn_type = TYPE_FIELD_TYPE (type, 0);
6784 if (pfn_type == NULL
6785 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6786 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6787 return;
6788
6789 /* Look for the "this" argument. */
6790 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6791 if (TYPE_NFIELDS (pfn_type) == 0
6792 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6793 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6794 return;
6795
6796 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6797 new_type = alloc_type (objfile);
6798 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6799 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6800 TYPE_VARARGS (pfn_type));
6801 smash_to_methodptr_type (type, new_type);
6802 }
6803
6804 /* Called when we find the DIE that starts a structure or union scope
6805 (definition) to create a type for the structure or union. Fill in
6806 the type's name and general properties; the members will not be
6807 processed until process_structure_type.
6808
6809 NOTE: we need to call these functions regardless of whether or not the
6810 DIE has a DW_AT_name attribute, since it might be an anonymous
6811 structure or union. This gets the type entered into our set of
6812 user defined types.
6813
6814 However, if the structure is incomplete (an opaque struct/union)
6815 then suppress creating a symbol table entry for it since gdb only
6816 wants to find the one with the complete definition. Note that if
6817 it is complete, we just call new_symbol, which does it's own
6818 checking about whether the struct/union is anonymous or not (and
6819 suppresses creating a symbol table entry itself). */
6820
6821 static struct type *
6822 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6823 {
6824 struct objfile *objfile = cu->objfile;
6825 struct type *type;
6826 struct attribute *attr;
6827 char *name;
6828
6829 /* If the definition of this type lives in .debug_types, read that type.
6830 Don't follow DW_AT_specification though, that will take us back up
6831 the chain and we want to go down. */
6832 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6833 if (attr)
6834 {
6835 struct dwarf2_cu *type_cu = cu;
6836 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6837
6838 /* We could just recurse on read_structure_type, but we need to call
6839 get_die_type to ensure only one type for this DIE is created.
6840 This is important, for example, because for c++ classes we need
6841 TYPE_NAME set which is only done by new_symbol. Blech. */
6842 type = read_type_die (type_die, type_cu);
6843
6844 /* TYPE_CU may not be the same as CU.
6845 Ensure TYPE is recorded in CU's type_hash table. */
6846 return set_die_type (die, type, cu);
6847 }
6848
6849 type = alloc_type (objfile);
6850 INIT_CPLUS_SPECIFIC (type);
6851
6852 name = dwarf2_name (die, cu);
6853 if (name != NULL)
6854 {
6855 if (cu->language == language_cplus
6856 || cu->language == language_java)
6857 {
6858 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6859
6860 /* dwarf2_full_name might have already finished building the DIE's
6861 type. If so, there is no need to continue. */
6862 if (get_die_type (die, cu) != NULL)
6863 return get_die_type (die, cu);
6864
6865 TYPE_TAG_NAME (type) = full_name;
6866 if (die->tag == DW_TAG_structure_type
6867 || die->tag == DW_TAG_class_type)
6868 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6869 }
6870 else
6871 {
6872 /* The name is already allocated along with this objfile, so
6873 we don't need to duplicate it for the type. */
6874 TYPE_TAG_NAME (type) = (char *) name;
6875 if (die->tag == DW_TAG_class_type)
6876 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6877 }
6878 }
6879
6880 if (die->tag == DW_TAG_structure_type)
6881 {
6882 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6883 }
6884 else if (die->tag == DW_TAG_union_type)
6885 {
6886 TYPE_CODE (type) = TYPE_CODE_UNION;
6887 }
6888 else
6889 {
6890 TYPE_CODE (type) = TYPE_CODE_CLASS;
6891 }
6892
6893 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6894 TYPE_DECLARED_CLASS (type) = 1;
6895
6896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6897 if (attr)
6898 {
6899 TYPE_LENGTH (type) = DW_UNSND (attr);
6900 }
6901 else
6902 {
6903 TYPE_LENGTH (type) = 0;
6904 }
6905
6906 TYPE_STUB_SUPPORTED (type) = 1;
6907 if (die_is_declaration (die, cu))
6908 TYPE_STUB (type) = 1;
6909 else if (attr == NULL && die->child == NULL
6910 && producer_is_realview (cu->producer))
6911 /* RealView does not output the required DW_AT_declaration
6912 on incomplete types. */
6913 TYPE_STUB (type) = 1;
6914
6915 /* We need to add the type field to the die immediately so we don't
6916 infinitely recurse when dealing with pointers to the structure
6917 type within the structure itself. */
6918 set_die_type (die, type, cu);
6919
6920 /* set_die_type should be already done. */
6921 set_descriptive_type (type, die, cu);
6922
6923 return type;
6924 }
6925
6926 /* Finish creating a structure or union type, including filling in
6927 its members and creating a symbol for it. */
6928
6929 static void
6930 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6931 {
6932 struct objfile *objfile = cu->objfile;
6933 struct die_info *child_die = die->child;
6934 struct type *type;
6935
6936 type = get_die_type (die, cu);
6937 if (type == NULL)
6938 type = read_structure_type (die, cu);
6939
6940 if (die->child != NULL && ! die_is_declaration (die, cu))
6941 {
6942 struct field_info fi;
6943 struct die_info *child_die;
6944 VEC (symbolp) *template_args = NULL;
6945 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6946
6947 memset (&fi, 0, sizeof (struct field_info));
6948
6949 child_die = die->child;
6950
6951 while (child_die && child_die->tag)
6952 {
6953 if (child_die->tag == DW_TAG_member
6954 || child_die->tag == DW_TAG_variable)
6955 {
6956 /* NOTE: carlton/2002-11-05: A C++ static data member
6957 should be a DW_TAG_member that is a declaration, but
6958 all versions of G++ as of this writing (so through at
6959 least 3.2.1) incorrectly generate DW_TAG_variable
6960 tags for them instead. */
6961 dwarf2_add_field (&fi, child_die, cu);
6962 }
6963 else if (child_die->tag == DW_TAG_subprogram)
6964 {
6965 /* C++ member function. */
6966 dwarf2_add_member_fn (&fi, child_die, type, cu);
6967 }
6968 else if (child_die->tag == DW_TAG_inheritance)
6969 {
6970 /* C++ base class field. */
6971 dwarf2_add_field (&fi, child_die, cu);
6972 }
6973 else if (child_die->tag == DW_TAG_typedef)
6974 dwarf2_add_typedef (&fi, child_die, cu);
6975 else if (child_die->tag == DW_TAG_template_type_param
6976 || child_die->tag == DW_TAG_template_value_param)
6977 {
6978 struct symbol *arg = new_symbol (child_die, NULL, cu);
6979
6980 if (arg != NULL)
6981 VEC_safe_push (symbolp, template_args, arg);
6982 }
6983
6984 child_die = sibling_die (child_die);
6985 }
6986
6987 /* Attach template arguments to type. */
6988 if (! VEC_empty (symbolp, template_args))
6989 {
6990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6991 TYPE_N_TEMPLATE_ARGUMENTS (type)
6992 = VEC_length (symbolp, template_args);
6993 TYPE_TEMPLATE_ARGUMENTS (type)
6994 = obstack_alloc (&objfile->objfile_obstack,
6995 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6996 * sizeof (struct symbol *)));
6997 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6998 VEC_address (symbolp, template_args),
6999 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7000 * sizeof (struct symbol *)));
7001 VEC_free (symbolp, template_args);
7002 }
7003
7004 /* Attach fields and member functions to the type. */
7005 if (fi.nfields)
7006 dwarf2_attach_fields_to_type (&fi, type, cu);
7007 if (fi.nfnfields)
7008 {
7009 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7010
7011 /* Get the type which refers to the base class (possibly this
7012 class itself) which contains the vtable pointer for the current
7013 class from the DW_AT_containing_type attribute. This use of
7014 DW_AT_containing_type is a GNU extension. */
7015
7016 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7017 {
7018 struct type *t = die_containing_type (die, cu);
7019
7020 TYPE_VPTR_BASETYPE (type) = t;
7021 if (type == t)
7022 {
7023 int i;
7024
7025 /* Our own class provides vtbl ptr. */
7026 for (i = TYPE_NFIELDS (t) - 1;
7027 i >= TYPE_N_BASECLASSES (t);
7028 --i)
7029 {
7030 char *fieldname = TYPE_FIELD_NAME (t, i);
7031
7032 if (is_vtable_name (fieldname, cu))
7033 {
7034 TYPE_VPTR_FIELDNO (type) = i;
7035 break;
7036 }
7037 }
7038
7039 /* Complain if virtual function table field not found. */
7040 if (i < TYPE_N_BASECLASSES (t))
7041 complaint (&symfile_complaints,
7042 _("virtual function table pointer "
7043 "not found when defining class '%s'"),
7044 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7045 "");
7046 }
7047 else
7048 {
7049 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7050 }
7051 }
7052 else if (cu->producer
7053 && strncmp (cu->producer,
7054 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7055 {
7056 /* The IBM XLC compiler does not provide direct indication
7057 of the containing type, but the vtable pointer is
7058 always named __vfp. */
7059
7060 int i;
7061
7062 for (i = TYPE_NFIELDS (type) - 1;
7063 i >= TYPE_N_BASECLASSES (type);
7064 --i)
7065 {
7066 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7067 {
7068 TYPE_VPTR_FIELDNO (type) = i;
7069 TYPE_VPTR_BASETYPE (type) = type;
7070 break;
7071 }
7072 }
7073 }
7074 }
7075
7076 /* Copy fi.typedef_field_list linked list elements content into the
7077 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7078 if (fi.typedef_field_list)
7079 {
7080 int i = fi.typedef_field_list_count;
7081
7082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7083 TYPE_TYPEDEF_FIELD_ARRAY (type)
7084 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7085 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7086
7087 /* Reverse the list order to keep the debug info elements order. */
7088 while (--i >= 0)
7089 {
7090 struct typedef_field *dest, *src;
7091
7092 dest = &TYPE_TYPEDEF_FIELD (type, i);
7093 src = &fi.typedef_field_list->field;
7094 fi.typedef_field_list = fi.typedef_field_list->next;
7095 *dest = *src;
7096 }
7097 }
7098
7099 do_cleanups (back_to);
7100 }
7101
7102 quirk_gcc_member_function_pointer (type, cu->objfile);
7103
7104 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7105 snapshots) has been known to create a die giving a declaration
7106 for a class that has, as a child, a die giving a definition for a
7107 nested class. So we have to process our children even if the
7108 current die is a declaration. Normally, of course, a declaration
7109 won't have any children at all. */
7110
7111 while (child_die != NULL && child_die->tag)
7112 {
7113 if (child_die->tag == DW_TAG_member
7114 || child_die->tag == DW_TAG_variable
7115 || child_die->tag == DW_TAG_inheritance
7116 || child_die->tag == DW_TAG_template_value_param
7117 || child_die->tag == DW_TAG_template_type_param)
7118 {
7119 /* Do nothing. */
7120 }
7121 else
7122 process_die (child_die, cu);
7123
7124 child_die = sibling_die (child_die);
7125 }
7126
7127 /* Do not consider external references. According to the DWARF standard,
7128 these DIEs are identified by the fact that they have no byte_size
7129 attribute, and a declaration attribute. */
7130 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7131 || !die_is_declaration (die, cu))
7132 new_symbol (die, type, cu);
7133 }
7134
7135 /* Given a DW_AT_enumeration_type die, set its type. We do not
7136 complete the type's fields yet, or create any symbols. */
7137
7138 static struct type *
7139 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7140 {
7141 struct objfile *objfile = cu->objfile;
7142 struct type *type;
7143 struct attribute *attr;
7144 const char *name;
7145
7146 /* If the definition of this type lives in .debug_types, read that type.
7147 Don't follow DW_AT_specification though, that will take us back up
7148 the chain and we want to go down. */
7149 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7150 if (attr)
7151 {
7152 struct dwarf2_cu *type_cu = cu;
7153 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7154
7155 type = read_type_die (type_die, type_cu);
7156
7157 /* TYPE_CU may not be the same as CU.
7158 Ensure TYPE is recorded in CU's type_hash table. */
7159 return set_die_type (die, type, cu);
7160 }
7161
7162 type = alloc_type (objfile);
7163
7164 TYPE_CODE (type) = TYPE_CODE_ENUM;
7165 name = dwarf2_full_name (NULL, die, cu);
7166 if (name != NULL)
7167 TYPE_TAG_NAME (type) = (char *) name;
7168
7169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7170 if (attr)
7171 {
7172 TYPE_LENGTH (type) = DW_UNSND (attr);
7173 }
7174 else
7175 {
7176 TYPE_LENGTH (type) = 0;
7177 }
7178
7179 /* The enumeration DIE can be incomplete. In Ada, any type can be
7180 declared as private in the package spec, and then defined only
7181 inside the package body. Such types are known as Taft Amendment
7182 Types. When another package uses such a type, an incomplete DIE
7183 may be generated by the compiler. */
7184 if (die_is_declaration (die, cu))
7185 TYPE_STUB (type) = 1;
7186
7187 return set_die_type (die, type, cu);
7188 }
7189
7190 /* Given a pointer to a die which begins an enumeration, process all
7191 the dies that define the members of the enumeration, and create the
7192 symbol for the enumeration type.
7193
7194 NOTE: We reverse the order of the element list. */
7195
7196 static void
7197 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7198 {
7199 struct type *this_type;
7200
7201 this_type = get_die_type (die, cu);
7202 if (this_type == NULL)
7203 this_type = read_enumeration_type (die, cu);
7204
7205 if (die->child != NULL)
7206 {
7207 struct die_info *child_die;
7208 struct symbol *sym;
7209 struct field *fields = NULL;
7210 int num_fields = 0;
7211 int unsigned_enum = 1;
7212 char *name;
7213
7214 child_die = die->child;
7215 while (child_die && child_die->tag)
7216 {
7217 if (child_die->tag != DW_TAG_enumerator)
7218 {
7219 process_die (child_die, cu);
7220 }
7221 else
7222 {
7223 name = dwarf2_name (child_die, cu);
7224 if (name)
7225 {
7226 sym = new_symbol (child_die, this_type, cu);
7227 if (SYMBOL_VALUE (sym) < 0)
7228 unsigned_enum = 0;
7229
7230 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7231 {
7232 fields = (struct field *)
7233 xrealloc (fields,
7234 (num_fields + DW_FIELD_ALLOC_CHUNK)
7235 * sizeof (struct field));
7236 }
7237
7238 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7239 FIELD_TYPE (fields[num_fields]) = NULL;
7240 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7241 FIELD_BITSIZE (fields[num_fields]) = 0;
7242
7243 num_fields++;
7244 }
7245 }
7246
7247 child_die = sibling_die (child_die);
7248 }
7249
7250 if (num_fields)
7251 {
7252 TYPE_NFIELDS (this_type) = num_fields;
7253 TYPE_FIELDS (this_type) = (struct field *)
7254 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7255 memcpy (TYPE_FIELDS (this_type), fields,
7256 sizeof (struct field) * num_fields);
7257 xfree (fields);
7258 }
7259 if (unsigned_enum)
7260 TYPE_UNSIGNED (this_type) = 1;
7261 }
7262
7263 new_symbol (die, this_type, cu);
7264 }
7265
7266 /* Extract all information from a DW_TAG_array_type DIE and put it in
7267 the DIE's type field. For now, this only handles one dimensional
7268 arrays. */
7269
7270 static struct type *
7271 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7272 {
7273 struct objfile *objfile = cu->objfile;
7274 struct die_info *child_die;
7275 struct type *type;
7276 struct type *element_type, *range_type, *index_type;
7277 struct type **range_types = NULL;
7278 struct attribute *attr;
7279 int ndim = 0;
7280 struct cleanup *back_to;
7281 char *name;
7282
7283 element_type = die_type (die, cu);
7284
7285 /* The die_type call above may have already set the type for this DIE. */
7286 type = get_die_type (die, cu);
7287 if (type)
7288 return type;
7289
7290 /* Irix 6.2 native cc creates array types without children for
7291 arrays with unspecified length. */
7292 if (die->child == NULL)
7293 {
7294 index_type = objfile_type (objfile)->builtin_int;
7295 range_type = create_range_type (NULL, index_type, 0, -1);
7296 type = create_array_type (NULL, element_type, range_type);
7297 return set_die_type (die, type, cu);
7298 }
7299
7300 back_to = make_cleanup (null_cleanup, NULL);
7301 child_die = die->child;
7302 while (child_die && child_die->tag)
7303 {
7304 if (child_die->tag == DW_TAG_subrange_type)
7305 {
7306 struct type *child_type = read_type_die (child_die, cu);
7307
7308 if (child_type != NULL)
7309 {
7310 /* The range type was succesfully read. Save it for the
7311 array type creation. */
7312 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7313 {
7314 range_types = (struct type **)
7315 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7316 * sizeof (struct type *));
7317 if (ndim == 0)
7318 make_cleanup (free_current_contents, &range_types);
7319 }
7320 range_types[ndim++] = child_type;
7321 }
7322 }
7323 child_die = sibling_die (child_die);
7324 }
7325
7326 /* Dwarf2 dimensions are output from left to right, create the
7327 necessary array types in backwards order. */
7328
7329 type = element_type;
7330
7331 if (read_array_order (die, cu) == DW_ORD_col_major)
7332 {
7333 int i = 0;
7334
7335 while (i < ndim)
7336 type = create_array_type (NULL, type, range_types[i++]);
7337 }
7338 else
7339 {
7340 while (ndim-- > 0)
7341 type = create_array_type (NULL, type, range_types[ndim]);
7342 }
7343
7344 /* Understand Dwarf2 support for vector types (like they occur on
7345 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7346 array type. This is not part of the Dwarf2/3 standard yet, but a
7347 custom vendor extension. The main difference between a regular
7348 array and the vector variant is that vectors are passed by value
7349 to functions. */
7350 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7351 if (attr)
7352 make_vector_type (type);
7353
7354 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7355 implementation may choose to implement triple vectors using this
7356 attribute. */
7357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7358 if (attr)
7359 {
7360 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7361 TYPE_LENGTH (type) = DW_UNSND (attr);
7362 else
7363 complaint (&symfile_complaints,
7364 _("DW_AT_byte_size for array type smaller "
7365 "than the total size of elements"));
7366 }
7367
7368 name = dwarf2_name (die, cu);
7369 if (name)
7370 TYPE_NAME (type) = name;
7371
7372 /* Install the type in the die. */
7373 set_die_type (die, type, cu);
7374
7375 /* set_die_type should be already done. */
7376 set_descriptive_type (type, die, cu);
7377
7378 do_cleanups (back_to);
7379
7380 return type;
7381 }
7382
7383 static enum dwarf_array_dim_ordering
7384 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7385 {
7386 struct attribute *attr;
7387
7388 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7389
7390 if (attr) return DW_SND (attr);
7391
7392 /* GNU F77 is a special case, as at 08/2004 array type info is the
7393 opposite order to the dwarf2 specification, but data is still
7394 laid out as per normal fortran.
7395
7396 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7397 version checking. */
7398
7399 if (cu->language == language_fortran
7400 && cu->producer && strstr (cu->producer, "GNU F77"))
7401 {
7402 return DW_ORD_row_major;
7403 }
7404
7405 switch (cu->language_defn->la_array_ordering)
7406 {
7407 case array_column_major:
7408 return DW_ORD_col_major;
7409 case array_row_major:
7410 default:
7411 return DW_ORD_row_major;
7412 };
7413 }
7414
7415 /* Extract all information from a DW_TAG_set_type DIE and put it in
7416 the DIE's type field. */
7417
7418 static struct type *
7419 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7420 {
7421 struct type *domain_type, *set_type;
7422 struct attribute *attr;
7423
7424 domain_type = die_type (die, cu);
7425
7426 /* The die_type call above may have already set the type for this DIE. */
7427 set_type = get_die_type (die, cu);
7428 if (set_type)
7429 return set_type;
7430
7431 set_type = create_set_type (NULL, domain_type);
7432
7433 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7434 if (attr)
7435 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7436
7437 return set_die_type (die, set_type, cu);
7438 }
7439
7440 /* First cut: install each common block member as a global variable. */
7441
7442 static void
7443 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7444 {
7445 struct die_info *child_die;
7446 struct attribute *attr;
7447 struct symbol *sym;
7448 CORE_ADDR base = (CORE_ADDR) 0;
7449
7450 attr = dwarf2_attr (die, DW_AT_location, cu);
7451 if (attr)
7452 {
7453 /* Support the .debug_loc offsets. */
7454 if (attr_form_is_block (attr))
7455 {
7456 base = decode_locdesc (DW_BLOCK (attr), cu);
7457 }
7458 else if (attr_form_is_section_offset (attr))
7459 {
7460 dwarf2_complex_location_expr_complaint ();
7461 }
7462 else
7463 {
7464 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7465 "common block member");
7466 }
7467 }
7468 if (die->child != NULL)
7469 {
7470 child_die = die->child;
7471 while (child_die && child_die->tag)
7472 {
7473 sym = new_symbol (child_die, NULL, cu);
7474 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7475 if (sym != NULL && attr != NULL)
7476 {
7477 CORE_ADDR byte_offset = 0;
7478
7479 if (attr_form_is_section_offset (attr))
7480 dwarf2_complex_location_expr_complaint ();
7481 else if (attr_form_is_constant (attr))
7482 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7483 else if (attr_form_is_block (attr))
7484 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7485 else
7486 dwarf2_complex_location_expr_complaint ();
7487
7488 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7489 add_symbol_to_list (sym, &global_symbols);
7490 }
7491 child_die = sibling_die (child_die);
7492 }
7493 }
7494 }
7495
7496 /* Create a type for a C++ namespace. */
7497
7498 static struct type *
7499 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7500 {
7501 struct objfile *objfile = cu->objfile;
7502 const char *previous_prefix, *name;
7503 int is_anonymous;
7504 struct type *type;
7505
7506 /* For extensions, reuse the type of the original namespace. */
7507 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7508 {
7509 struct die_info *ext_die;
7510 struct dwarf2_cu *ext_cu = cu;
7511
7512 ext_die = dwarf2_extension (die, &ext_cu);
7513 type = read_type_die (ext_die, ext_cu);
7514
7515 /* EXT_CU may not be the same as CU.
7516 Ensure TYPE is recorded in CU's type_hash table. */
7517 return set_die_type (die, type, cu);
7518 }
7519
7520 name = namespace_name (die, &is_anonymous, cu);
7521
7522 /* Now build the name of the current namespace. */
7523
7524 previous_prefix = determine_prefix (die, cu);
7525 if (previous_prefix[0] != '\0')
7526 name = typename_concat (&objfile->objfile_obstack,
7527 previous_prefix, name, 0, cu);
7528
7529 /* Create the type. */
7530 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7531 objfile);
7532 TYPE_NAME (type) = (char *) name;
7533 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7534
7535 return set_die_type (die, type, cu);
7536 }
7537
7538 /* Read a C++ namespace. */
7539
7540 static void
7541 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7542 {
7543 struct objfile *objfile = cu->objfile;
7544 const char *name;
7545 int is_anonymous;
7546
7547 /* Add a symbol associated to this if we haven't seen the namespace
7548 before. Also, add a using directive if it's an anonymous
7549 namespace. */
7550
7551 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7552 {
7553 struct type *type;
7554
7555 type = read_type_die (die, cu);
7556 new_symbol (die, type, cu);
7557
7558 name = namespace_name (die, &is_anonymous, cu);
7559 if (is_anonymous)
7560 {
7561 const char *previous_prefix = determine_prefix (die, cu);
7562
7563 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7564 NULL, &objfile->objfile_obstack);
7565 }
7566 }
7567
7568 if (die->child != NULL)
7569 {
7570 struct die_info *child_die = die->child;
7571
7572 while (child_die && child_die->tag)
7573 {
7574 process_die (child_die, cu);
7575 child_die = sibling_die (child_die);
7576 }
7577 }
7578 }
7579
7580 /* Read a Fortran module as type. This DIE can be only a declaration used for
7581 imported module. Still we need that type as local Fortran "use ... only"
7582 declaration imports depend on the created type in determine_prefix. */
7583
7584 static struct type *
7585 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7586 {
7587 struct objfile *objfile = cu->objfile;
7588 char *module_name;
7589 struct type *type;
7590
7591 module_name = dwarf2_name (die, cu);
7592 if (!module_name)
7593 complaint (&symfile_complaints,
7594 _("DW_TAG_module has no name, offset 0x%x"),
7595 die->offset);
7596 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7597
7598 /* determine_prefix uses TYPE_TAG_NAME. */
7599 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7600
7601 return set_die_type (die, type, cu);
7602 }
7603
7604 /* Read a Fortran module. */
7605
7606 static void
7607 read_module (struct die_info *die, struct dwarf2_cu *cu)
7608 {
7609 struct die_info *child_die = die->child;
7610
7611 while (child_die && child_die->tag)
7612 {
7613 process_die (child_die, cu);
7614 child_die = sibling_die (child_die);
7615 }
7616 }
7617
7618 /* Return the name of the namespace represented by DIE. Set
7619 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7620 namespace. */
7621
7622 static const char *
7623 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7624 {
7625 struct die_info *current_die;
7626 const char *name = NULL;
7627
7628 /* Loop through the extensions until we find a name. */
7629
7630 for (current_die = die;
7631 current_die != NULL;
7632 current_die = dwarf2_extension (die, &cu))
7633 {
7634 name = dwarf2_name (current_die, cu);
7635 if (name != NULL)
7636 break;
7637 }
7638
7639 /* Is it an anonymous namespace? */
7640
7641 *is_anonymous = (name == NULL);
7642 if (*is_anonymous)
7643 name = "(anonymous namespace)";
7644
7645 return name;
7646 }
7647
7648 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7649 the user defined type vector. */
7650
7651 static struct type *
7652 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7653 {
7654 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7655 struct comp_unit_head *cu_header = &cu->header;
7656 struct type *type;
7657 struct attribute *attr_byte_size;
7658 struct attribute *attr_address_class;
7659 int byte_size, addr_class;
7660 struct type *target_type;
7661
7662 target_type = die_type (die, cu);
7663
7664 /* The die_type call above may have already set the type for this DIE. */
7665 type = get_die_type (die, cu);
7666 if (type)
7667 return type;
7668
7669 type = lookup_pointer_type (target_type);
7670
7671 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7672 if (attr_byte_size)
7673 byte_size = DW_UNSND (attr_byte_size);
7674 else
7675 byte_size = cu_header->addr_size;
7676
7677 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7678 if (attr_address_class)
7679 addr_class = DW_UNSND (attr_address_class);
7680 else
7681 addr_class = DW_ADDR_none;
7682
7683 /* If the pointer size or address class is different than the
7684 default, create a type variant marked as such and set the
7685 length accordingly. */
7686 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7687 {
7688 if (gdbarch_address_class_type_flags_p (gdbarch))
7689 {
7690 int type_flags;
7691
7692 type_flags = gdbarch_address_class_type_flags
7693 (gdbarch, byte_size, addr_class);
7694 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7695 == 0);
7696 type = make_type_with_address_space (type, type_flags);
7697 }
7698 else if (TYPE_LENGTH (type) != byte_size)
7699 {
7700 complaint (&symfile_complaints,
7701 _("invalid pointer size %d"), byte_size);
7702 }
7703 else
7704 {
7705 /* Should we also complain about unhandled address classes? */
7706 }
7707 }
7708
7709 TYPE_LENGTH (type) = byte_size;
7710 return set_die_type (die, type, cu);
7711 }
7712
7713 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7714 the user defined type vector. */
7715
7716 static struct type *
7717 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7718 {
7719 struct type *type;
7720 struct type *to_type;
7721 struct type *domain;
7722
7723 to_type = die_type (die, cu);
7724 domain = die_containing_type (die, cu);
7725
7726 /* The calls above may have already set the type for this DIE. */
7727 type = get_die_type (die, cu);
7728 if (type)
7729 return type;
7730
7731 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7732 type = lookup_methodptr_type (to_type);
7733 else
7734 type = lookup_memberptr_type (to_type, domain);
7735
7736 return set_die_type (die, type, cu);
7737 }
7738
7739 /* Extract all information from a DW_TAG_reference_type DIE and add to
7740 the user defined type vector. */
7741
7742 static struct type *
7743 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7744 {
7745 struct comp_unit_head *cu_header = &cu->header;
7746 struct type *type, *target_type;
7747 struct attribute *attr;
7748
7749 target_type = die_type (die, cu);
7750
7751 /* The die_type call above may have already set the type for this DIE. */
7752 type = get_die_type (die, cu);
7753 if (type)
7754 return type;
7755
7756 type = lookup_reference_type (target_type);
7757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7758 if (attr)
7759 {
7760 TYPE_LENGTH (type) = DW_UNSND (attr);
7761 }
7762 else
7763 {
7764 TYPE_LENGTH (type) = cu_header->addr_size;
7765 }
7766 return set_die_type (die, type, cu);
7767 }
7768
7769 static struct type *
7770 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7771 {
7772 struct type *base_type, *cv_type;
7773
7774 base_type = die_type (die, cu);
7775
7776 /* The die_type call above may have already set the type for this DIE. */
7777 cv_type = get_die_type (die, cu);
7778 if (cv_type)
7779 return cv_type;
7780
7781 /* In case the const qualifier is applied to an array type, the element type
7782 is so qualified, not the array type (section 6.7.3 of C99). */
7783 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7784 {
7785 struct type *el_type, *inner_array;
7786
7787 base_type = copy_type (base_type);
7788 inner_array = base_type;
7789
7790 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7791 {
7792 TYPE_TARGET_TYPE (inner_array) =
7793 copy_type (TYPE_TARGET_TYPE (inner_array));
7794 inner_array = TYPE_TARGET_TYPE (inner_array);
7795 }
7796
7797 el_type = TYPE_TARGET_TYPE (inner_array);
7798 TYPE_TARGET_TYPE (inner_array) =
7799 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7800
7801 return set_die_type (die, base_type, cu);
7802 }
7803
7804 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7805 return set_die_type (die, cv_type, cu);
7806 }
7807
7808 static struct type *
7809 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7810 {
7811 struct type *base_type, *cv_type;
7812
7813 base_type = die_type (die, cu);
7814
7815 /* The die_type call above may have already set the type for this DIE. */
7816 cv_type = get_die_type (die, cu);
7817 if (cv_type)
7818 return cv_type;
7819
7820 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7821 return set_die_type (die, cv_type, cu);
7822 }
7823
7824 /* Extract all information from a DW_TAG_string_type DIE and add to
7825 the user defined type vector. It isn't really a user defined type,
7826 but it behaves like one, with other DIE's using an AT_user_def_type
7827 attribute to reference it. */
7828
7829 static struct type *
7830 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7831 {
7832 struct objfile *objfile = cu->objfile;
7833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7834 struct type *type, *range_type, *index_type, *char_type;
7835 struct attribute *attr;
7836 unsigned int length;
7837
7838 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7839 if (attr)
7840 {
7841 length = DW_UNSND (attr);
7842 }
7843 else
7844 {
7845 /* Check for the DW_AT_byte_size attribute. */
7846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7847 if (attr)
7848 {
7849 length = DW_UNSND (attr);
7850 }
7851 else
7852 {
7853 length = 1;
7854 }
7855 }
7856
7857 index_type = objfile_type (objfile)->builtin_int;
7858 range_type = create_range_type (NULL, index_type, 1, length);
7859 char_type = language_string_char_type (cu->language_defn, gdbarch);
7860 type = create_string_type (NULL, char_type, range_type);
7861
7862 return set_die_type (die, type, cu);
7863 }
7864
7865 /* Handle DIES due to C code like:
7866
7867 struct foo
7868 {
7869 int (*funcp)(int a, long l);
7870 int b;
7871 };
7872
7873 ('funcp' generates a DW_TAG_subroutine_type DIE). */
7874
7875 static struct type *
7876 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7877 {
7878 struct type *type; /* Type that this function returns. */
7879 struct type *ftype; /* Function that returns above type. */
7880 struct attribute *attr;
7881
7882 type = die_type (die, cu);
7883
7884 /* The die_type call above may have already set the type for this DIE. */
7885 ftype = get_die_type (die, cu);
7886 if (ftype)
7887 return ftype;
7888
7889 ftype = lookup_function_type (type);
7890
7891 /* All functions in C++, Pascal and Java have prototypes. */
7892 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7893 if ((attr && (DW_UNSND (attr) != 0))
7894 || cu->language == language_cplus
7895 || cu->language == language_java
7896 || cu->language == language_pascal)
7897 TYPE_PROTOTYPED (ftype) = 1;
7898 else if (producer_is_realview (cu->producer))
7899 /* RealView does not emit DW_AT_prototyped. We can not
7900 distinguish prototyped and unprototyped functions; default to
7901 prototyped, since that is more common in modern code (and
7902 RealView warns about unprototyped functions). */
7903 TYPE_PROTOTYPED (ftype) = 1;
7904
7905 /* Store the calling convention in the type if it's available in
7906 the subroutine die. Otherwise set the calling convention to
7907 the default value DW_CC_normal. */
7908 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7909 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7910
7911 /* We need to add the subroutine type to the die immediately so
7912 we don't infinitely recurse when dealing with parameters
7913 declared as the same subroutine type. */
7914 set_die_type (die, ftype, cu);
7915
7916 if (die->child != NULL)
7917 {
7918 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7919 struct die_info *child_die;
7920 int nparams, iparams;
7921
7922 /* Count the number of parameters.
7923 FIXME: GDB currently ignores vararg functions, but knows about
7924 vararg member functions. */
7925 nparams = 0;
7926 child_die = die->child;
7927 while (child_die && child_die->tag)
7928 {
7929 if (child_die->tag == DW_TAG_formal_parameter)
7930 nparams++;
7931 else if (child_die->tag == DW_TAG_unspecified_parameters)
7932 TYPE_VARARGS (ftype) = 1;
7933 child_die = sibling_die (child_die);
7934 }
7935
7936 /* Allocate storage for parameters and fill them in. */
7937 TYPE_NFIELDS (ftype) = nparams;
7938 TYPE_FIELDS (ftype) = (struct field *)
7939 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7940
7941 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7942 even if we error out during the parameters reading below. */
7943 for (iparams = 0; iparams < nparams; iparams++)
7944 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7945
7946 iparams = 0;
7947 child_die = die->child;
7948 while (child_die && child_die->tag)
7949 {
7950 if (child_die->tag == DW_TAG_formal_parameter)
7951 {
7952 struct type *arg_type;
7953
7954 /* DWARF version 2 has no clean way to discern C++
7955 static and non-static member functions. G++ helps
7956 GDB by marking the first parameter for non-static
7957 member functions (which is the this pointer) as
7958 artificial. We pass this information to
7959 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7960
7961 DWARF version 3 added DW_AT_object_pointer, which GCC
7962 4.5 does not yet generate. */
7963 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7964 if (attr)
7965 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7966 else
7967 {
7968 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7969
7970 /* GCC/43521: In java, the formal parameter
7971 "this" is sometimes not marked with DW_AT_artificial. */
7972 if (cu->language == language_java)
7973 {
7974 const char *name = dwarf2_name (child_die, cu);
7975
7976 if (name && !strcmp (name, "this"))
7977 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7978 }
7979 }
7980 arg_type = die_type (child_die, cu);
7981
7982 /* RealView does not mark THIS as const, which the testsuite
7983 expects. GCC marks THIS as const in method definitions,
7984 but not in the class specifications (GCC PR 43053). */
7985 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7986 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7987 {
7988 int is_this = 0;
7989 struct dwarf2_cu *arg_cu = cu;
7990 const char *name = dwarf2_name (child_die, cu);
7991
7992 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7993 if (attr)
7994 {
7995 /* If the compiler emits this, use it. */
7996 if (follow_die_ref (die, attr, &arg_cu) == child_die)
7997 is_this = 1;
7998 }
7999 else if (name && strcmp (name, "this") == 0)
8000 /* Function definitions will have the argument names. */
8001 is_this = 1;
8002 else if (name == NULL && iparams == 0)
8003 /* Declarations may not have the names, so like
8004 elsewhere in GDB, assume an artificial first
8005 argument is "this". */
8006 is_this = 1;
8007
8008 if (is_this)
8009 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8010 arg_type, 0);
8011 }
8012
8013 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8014 iparams++;
8015 }
8016 child_die = sibling_die (child_die);
8017 }
8018 }
8019
8020 return ftype;
8021 }
8022
8023 static struct type *
8024 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8025 {
8026 struct objfile *objfile = cu->objfile;
8027 const char *name = NULL;
8028 struct type *this_type;
8029
8030 name = dwarf2_full_name (NULL, die, cu);
8031 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8032 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8033 TYPE_NAME (this_type) = (char *) name;
8034 set_die_type (die, this_type, cu);
8035 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8036 return this_type;
8037 }
8038
8039 /* Find a representation of a given base type and install
8040 it in the TYPE field of the die. */
8041
8042 static struct type *
8043 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8044 {
8045 struct objfile *objfile = cu->objfile;
8046 struct type *type;
8047 struct attribute *attr;
8048 int encoding = 0, size = 0;
8049 char *name;
8050 enum type_code code = TYPE_CODE_INT;
8051 int type_flags = 0;
8052 struct type *target_type = NULL;
8053
8054 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8055 if (attr)
8056 {
8057 encoding = DW_UNSND (attr);
8058 }
8059 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8060 if (attr)
8061 {
8062 size = DW_UNSND (attr);
8063 }
8064 name = dwarf2_name (die, cu);
8065 if (!name)
8066 {
8067 complaint (&symfile_complaints,
8068 _("DW_AT_name missing from DW_TAG_base_type"));
8069 }
8070
8071 switch (encoding)
8072 {
8073 case DW_ATE_address:
8074 /* Turn DW_ATE_address into a void * pointer. */
8075 code = TYPE_CODE_PTR;
8076 type_flags |= TYPE_FLAG_UNSIGNED;
8077 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8078 break;
8079 case DW_ATE_boolean:
8080 code = TYPE_CODE_BOOL;
8081 type_flags |= TYPE_FLAG_UNSIGNED;
8082 break;
8083 case DW_ATE_complex_float:
8084 code = TYPE_CODE_COMPLEX;
8085 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8086 break;
8087 case DW_ATE_decimal_float:
8088 code = TYPE_CODE_DECFLOAT;
8089 break;
8090 case DW_ATE_float:
8091 code = TYPE_CODE_FLT;
8092 break;
8093 case DW_ATE_signed:
8094 break;
8095 case DW_ATE_unsigned:
8096 type_flags |= TYPE_FLAG_UNSIGNED;
8097 break;
8098 case DW_ATE_signed_char:
8099 if (cu->language == language_ada || cu->language == language_m2
8100 || cu->language == language_pascal)
8101 code = TYPE_CODE_CHAR;
8102 break;
8103 case DW_ATE_unsigned_char:
8104 if (cu->language == language_ada || cu->language == language_m2
8105 || cu->language == language_pascal)
8106 code = TYPE_CODE_CHAR;
8107 type_flags |= TYPE_FLAG_UNSIGNED;
8108 break;
8109 case DW_ATE_UTF:
8110 /* We just treat this as an integer and then recognize the
8111 type by name elsewhere. */
8112 break;
8113
8114 default:
8115 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8116 dwarf_type_encoding_name (encoding));
8117 break;
8118 }
8119
8120 type = init_type (code, size, type_flags, NULL, objfile);
8121 TYPE_NAME (type) = name;
8122 TYPE_TARGET_TYPE (type) = target_type;
8123
8124 if (name && strcmp (name, "char") == 0)
8125 TYPE_NOSIGN (type) = 1;
8126
8127 return set_die_type (die, type, cu);
8128 }
8129
8130 /* Read the given DW_AT_subrange DIE. */
8131
8132 static struct type *
8133 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8134 {
8135 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8136 struct type *base_type;
8137 struct type *range_type;
8138 struct attribute *attr;
8139 LONGEST low = 0;
8140 LONGEST high = -1;
8141 char *name;
8142 LONGEST negative_mask;
8143
8144 base_type = die_type (die, cu);
8145 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8146 check_typedef (base_type);
8147
8148 /* The die_type call above may have already set the type for this DIE. */
8149 range_type = get_die_type (die, cu);
8150 if (range_type)
8151 return range_type;
8152
8153 if (cu->language == language_fortran)
8154 {
8155 /* FORTRAN implies a lower bound of 1, if not given. */
8156 low = 1;
8157 }
8158
8159 /* FIXME: For variable sized arrays either of these could be
8160 a variable rather than a constant value. We'll allow it,
8161 but we don't know how to handle it. */
8162 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8163 if (attr)
8164 low = dwarf2_get_attr_constant_value (attr, 0);
8165
8166 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8167 if (attr)
8168 {
8169 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8170 {
8171 /* GCC encodes arrays with unspecified or dynamic length
8172 with a DW_FORM_block1 attribute or a reference attribute.
8173 FIXME: GDB does not yet know how to handle dynamic
8174 arrays properly, treat them as arrays with unspecified
8175 length for now.
8176
8177 FIXME: jimb/2003-09-22: GDB does not really know
8178 how to handle arrays of unspecified length
8179 either; we just represent them as zero-length
8180 arrays. Choose an appropriate upper bound given
8181 the lower bound we've computed above. */
8182 high = low - 1;
8183 }
8184 else
8185 high = dwarf2_get_attr_constant_value (attr, 1);
8186 }
8187 else
8188 {
8189 attr = dwarf2_attr (die, DW_AT_count, cu);
8190 if (attr)
8191 {
8192 int count = dwarf2_get_attr_constant_value (attr, 1);
8193 high = low + count - 1;
8194 }
8195 }
8196
8197 /* Dwarf-2 specifications explicitly allows to create subrange types
8198 without specifying a base type.
8199 In that case, the base type must be set to the type of
8200 the lower bound, upper bound or count, in that order, if any of these
8201 three attributes references an object that has a type.
8202 If no base type is found, the Dwarf-2 specifications say that
8203 a signed integer type of size equal to the size of an address should
8204 be used.
8205 For the following C code: `extern char gdb_int [];'
8206 GCC produces an empty range DIE.
8207 FIXME: muller/2010-05-28: Possible references to object for low bound,
8208 high bound or count are not yet handled by this code. */
8209 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8210 {
8211 struct objfile *objfile = cu->objfile;
8212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8213 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8214 struct type *int_type = objfile_type (objfile)->builtin_int;
8215
8216 /* Test "int", "long int", and "long long int" objfile types,
8217 and select the first one having a size above or equal to the
8218 architecture address size. */
8219 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8220 base_type = int_type;
8221 else
8222 {
8223 int_type = objfile_type (objfile)->builtin_long;
8224 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8225 base_type = int_type;
8226 else
8227 {
8228 int_type = objfile_type (objfile)->builtin_long_long;
8229 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8230 base_type = int_type;
8231 }
8232 }
8233 }
8234
8235 negative_mask =
8236 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8237 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8238 low |= negative_mask;
8239 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8240 high |= negative_mask;
8241
8242 range_type = create_range_type (NULL, base_type, low, high);
8243
8244 /* Mark arrays with dynamic length at least as an array of unspecified
8245 length. GDB could check the boundary but before it gets implemented at
8246 least allow accessing the array elements. */
8247 if (attr && attr->form == DW_FORM_block1)
8248 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8249
8250 name = dwarf2_name (die, cu);
8251 if (name)
8252 TYPE_NAME (range_type) = name;
8253
8254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8255 if (attr)
8256 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8257
8258 set_die_type (die, range_type, cu);
8259
8260 /* set_die_type should be already done. */
8261 set_descriptive_type (range_type, die, cu);
8262
8263 return range_type;
8264 }
8265
8266 static struct type *
8267 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8268 {
8269 struct type *type;
8270
8271 /* For now, we only support the C meaning of an unspecified type: void. */
8272
8273 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8274 TYPE_NAME (type) = dwarf2_name (die, cu);
8275
8276 return set_die_type (die, type, cu);
8277 }
8278
8279 /* Trivial hash function for die_info: the hash value of a DIE
8280 is its offset in .debug_info for this objfile. */
8281
8282 static hashval_t
8283 die_hash (const void *item)
8284 {
8285 const struct die_info *die = item;
8286
8287 return die->offset;
8288 }
8289
8290 /* Trivial comparison function for die_info structures: two DIEs
8291 are equal if they have the same offset. */
8292
8293 static int
8294 die_eq (const void *item_lhs, const void *item_rhs)
8295 {
8296 const struct die_info *die_lhs = item_lhs;
8297 const struct die_info *die_rhs = item_rhs;
8298
8299 return die_lhs->offset == die_rhs->offset;
8300 }
8301
8302 /* Read a whole compilation unit into a linked list of dies. */
8303
8304 static struct die_info *
8305 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8306 {
8307 struct die_reader_specs reader_specs;
8308 int read_abbrevs = 0;
8309 struct cleanup *back_to = NULL;
8310 struct die_info *die;
8311
8312 if (cu->dwarf2_abbrevs == NULL)
8313 {
8314 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8315 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8316 read_abbrevs = 1;
8317 }
8318
8319 gdb_assert (cu->die_hash == NULL);
8320 cu->die_hash
8321 = htab_create_alloc_ex (cu->header.length / 12,
8322 die_hash,
8323 die_eq,
8324 NULL,
8325 &cu->comp_unit_obstack,
8326 hashtab_obstack_allocate,
8327 dummy_obstack_deallocate);
8328
8329 init_cu_die_reader (&reader_specs, cu);
8330
8331 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8332
8333 if (read_abbrevs)
8334 do_cleanups (back_to);
8335
8336 return die;
8337 }
8338
8339 /* Main entry point for reading a DIE and all children.
8340 Read the DIE and dump it if requested. */
8341
8342 static struct die_info *
8343 read_die_and_children (const struct die_reader_specs *reader,
8344 gdb_byte *info_ptr,
8345 gdb_byte **new_info_ptr,
8346 struct die_info *parent)
8347 {
8348 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8349 new_info_ptr, parent);
8350
8351 if (dwarf2_die_debug)
8352 {
8353 fprintf_unfiltered (gdb_stdlog,
8354 "\nRead die from %s of %s:\n",
8355 reader->buffer == dwarf2_per_objfile->info.buffer
8356 ? ".debug_info"
8357 : reader->buffer == dwarf2_per_objfile->types.buffer
8358 ? ".debug_types"
8359 : "unknown section",
8360 reader->abfd->filename);
8361 dump_die (result, dwarf2_die_debug);
8362 }
8363
8364 return result;
8365 }
8366
8367 /* Read a single die and all its descendents. Set the die's sibling
8368 field to NULL; set other fields in the die correctly, and set all
8369 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8370 location of the info_ptr after reading all of those dies. PARENT
8371 is the parent of the die in question. */
8372
8373 static struct die_info *
8374 read_die_and_children_1 (const struct die_reader_specs *reader,
8375 gdb_byte *info_ptr,
8376 gdb_byte **new_info_ptr,
8377 struct die_info *parent)
8378 {
8379 struct die_info *die;
8380 gdb_byte *cur_ptr;
8381 int has_children;
8382
8383 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8384 if (die == NULL)
8385 {
8386 *new_info_ptr = cur_ptr;
8387 return NULL;
8388 }
8389 store_in_ref_table (die, reader->cu);
8390
8391 if (has_children)
8392 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8393 else
8394 {
8395 die->child = NULL;
8396 *new_info_ptr = cur_ptr;
8397 }
8398
8399 die->sibling = NULL;
8400 die->parent = parent;
8401 return die;
8402 }
8403
8404 /* Read a die, all of its descendents, and all of its siblings; set
8405 all of the fields of all of the dies correctly. Arguments are as
8406 in read_die_and_children. */
8407
8408 static struct die_info *
8409 read_die_and_siblings (const struct die_reader_specs *reader,
8410 gdb_byte *info_ptr,
8411 gdb_byte **new_info_ptr,
8412 struct die_info *parent)
8413 {
8414 struct die_info *first_die, *last_sibling;
8415 gdb_byte *cur_ptr;
8416
8417 cur_ptr = info_ptr;
8418 first_die = last_sibling = NULL;
8419
8420 while (1)
8421 {
8422 struct die_info *die
8423 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8424
8425 if (die == NULL)
8426 {
8427 *new_info_ptr = cur_ptr;
8428 return first_die;
8429 }
8430
8431 if (!first_die)
8432 first_die = die;
8433 else
8434 last_sibling->sibling = die;
8435
8436 last_sibling = die;
8437 }
8438 }
8439
8440 /* Read the die from the .debug_info section buffer. Set DIEP to
8441 point to a newly allocated die with its information, except for its
8442 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8443 whether the die has children or not. */
8444
8445 static gdb_byte *
8446 read_full_die (const struct die_reader_specs *reader,
8447 struct die_info **diep, gdb_byte *info_ptr,
8448 int *has_children)
8449 {
8450 unsigned int abbrev_number, bytes_read, i, offset;
8451 struct abbrev_info *abbrev;
8452 struct die_info *die;
8453 struct dwarf2_cu *cu = reader->cu;
8454 bfd *abfd = reader->abfd;
8455
8456 offset = info_ptr - reader->buffer;
8457 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8458 info_ptr += bytes_read;
8459 if (!abbrev_number)
8460 {
8461 *diep = NULL;
8462 *has_children = 0;
8463 return info_ptr;
8464 }
8465
8466 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8467 if (!abbrev)
8468 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8469 abbrev_number,
8470 bfd_get_filename (abfd));
8471
8472 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8473 die->offset = offset;
8474 die->tag = abbrev->tag;
8475 die->abbrev = abbrev_number;
8476
8477 die->num_attrs = abbrev->num_attrs;
8478
8479 for (i = 0; i < abbrev->num_attrs; ++i)
8480 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8481 abfd, info_ptr, cu);
8482
8483 *diep = die;
8484 *has_children = abbrev->has_children;
8485 return info_ptr;
8486 }
8487
8488 /* In DWARF version 2, the description of the debugging information is
8489 stored in a separate .debug_abbrev section. Before we read any
8490 dies from a section we read in all abbreviations and install them
8491 in a hash table. This function also sets flags in CU describing
8492 the data found in the abbrev table. */
8493
8494 static void
8495 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8496 {
8497 struct comp_unit_head *cu_header = &cu->header;
8498 gdb_byte *abbrev_ptr;
8499 struct abbrev_info *cur_abbrev;
8500 unsigned int abbrev_number, bytes_read, abbrev_name;
8501 unsigned int abbrev_form, hash_number;
8502 struct attr_abbrev *cur_attrs;
8503 unsigned int allocated_attrs;
8504
8505 /* Initialize dwarf2 abbrevs. */
8506 obstack_init (&cu->abbrev_obstack);
8507 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8508 (ABBREV_HASH_SIZE
8509 * sizeof (struct abbrev_info *)));
8510 memset (cu->dwarf2_abbrevs, 0,
8511 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8512
8513 dwarf2_read_section (dwarf2_per_objfile->objfile,
8514 &dwarf2_per_objfile->abbrev);
8515 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8516 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8517 abbrev_ptr += bytes_read;
8518
8519 allocated_attrs = ATTR_ALLOC_CHUNK;
8520 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8521
8522 /* Loop until we reach an abbrev number of 0. */
8523 while (abbrev_number)
8524 {
8525 cur_abbrev = dwarf_alloc_abbrev (cu);
8526
8527 /* read in abbrev header */
8528 cur_abbrev->number = abbrev_number;
8529 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8530 abbrev_ptr += bytes_read;
8531 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8532 abbrev_ptr += 1;
8533
8534 if (cur_abbrev->tag == DW_TAG_namespace)
8535 cu->has_namespace_info = 1;
8536
8537 /* now read in declarations */
8538 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8539 abbrev_ptr += bytes_read;
8540 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8541 abbrev_ptr += bytes_read;
8542 while (abbrev_name)
8543 {
8544 if (cur_abbrev->num_attrs == allocated_attrs)
8545 {
8546 allocated_attrs += ATTR_ALLOC_CHUNK;
8547 cur_attrs
8548 = xrealloc (cur_attrs, (allocated_attrs
8549 * sizeof (struct attr_abbrev)));
8550 }
8551
8552 /* Record whether this compilation unit might have
8553 inter-compilation-unit references. If we don't know what form
8554 this attribute will have, then it might potentially be a
8555 DW_FORM_ref_addr, so we conservatively expect inter-CU
8556 references. */
8557
8558 if (abbrev_form == DW_FORM_ref_addr
8559 || abbrev_form == DW_FORM_indirect)
8560 cu->has_form_ref_addr = 1;
8561
8562 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8563 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8564 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8565 abbrev_ptr += bytes_read;
8566 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8567 abbrev_ptr += bytes_read;
8568 }
8569
8570 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8571 (cur_abbrev->num_attrs
8572 * sizeof (struct attr_abbrev)));
8573 memcpy (cur_abbrev->attrs, cur_attrs,
8574 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8575
8576 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8577 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8578 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8579
8580 /* Get next abbreviation.
8581 Under Irix6 the abbreviations for a compilation unit are not
8582 always properly terminated with an abbrev number of 0.
8583 Exit loop if we encounter an abbreviation which we have
8584 already read (which means we are about to read the abbreviations
8585 for the next compile unit) or if the end of the abbreviation
8586 table is reached. */
8587 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8588 >= dwarf2_per_objfile->abbrev.size)
8589 break;
8590 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8591 abbrev_ptr += bytes_read;
8592 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8593 break;
8594 }
8595
8596 xfree (cur_attrs);
8597 }
8598
8599 /* Release the memory used by the abbrev table for a compilation unit. */
8600
8601 static void
8602 dwarf2_free_abbrev_table (void *ptr_to_cu)
8603 {
8604 struct dwarf2_cu *cu = ptr_to_cu;
8605
8606 obstack_free (&cu->abbrev_obstack, NULL);
8607 cu->dwarf2_abbrevs = NULL;
8608 }
8609
8610 /* Lookup an abbrev_info structure in the abbrev hash table. */
8611
8612 static struct abbrev_info *
8613 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8614 {
8615 unsigned int hash_number;
8616 struct abbrev_info *abbrev;
8617
8618 hash_number = number % ABBREV_HASH_SIZE;
8619 abbrev = cu->dwarf2_abbrevs[hash_number];
8620
8621 while (abbrev)
8622 {
8623 if (abbrev->number == number)
8624 return abbrev;
8625 else
8626 abbrev = abbrev->next;
8627 }
8628 return NULL;
8629 }
8630
8631 /* Returns nonzero if TAG represents a type that we might generate a partial
8632 symbol for. */
8633
8634 static int
8635 is_type_tag_for_partial (int tag)
8636 {
8637 switch (tag)
8638 {
8639 #if 0
8640 /* Some types that would be reasonable to generate partial symbols for,
8641 that we don't at present. */
8642 case DW_TAG_array_type:
8643 case DW_TAG_file_type:
8644 case DW_TAG_ptr_to_member_type:
8645 case DW_TAG_set_type:
8646 case DW_TAG_string_type:
8647 case DW_TAG_subroutine_type:
8648 #endif
8649 case DW_TAG_base_type:
8650 case DW_TAG_class_type:
8651 case DW_TAG_interface_type:
8652 case DW_TAG_enumeration_type:
8653 case DW_TAG_structure_type:
8654 case DW_TAG_subrange_type:
8655 case DW_TAG_typedef:
8656 case DW_TAG_union_type:
8657 return 1;
8658 default:
8659 return 0;
8660 }
8661 }
8662
8663 /* Load all DIEs that are interesting for partial symbols into memory. */
8664
8665 static struct partial_die_info *
8666 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8667 int building_psymtab, struct dwarf2_cu *cu)
8668 {
8669 struct partial_die_info *part_die;
8670 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8671 struct abbrev_info *abbrev;
8672 unsigned int bytes_read;
8673 unsigned int load_all = 0;
8674
8675 int nesting_level = 1;
8676
8677 parent_die = NULL;
8678 last_die = NULL;
8679
8680 if (cu->per_cu && cu->per_cu->load_all_dies)
8681 load_all = 1;
8682
8683 cu->partial_dies
8684 = htab_create_alloc_ex (cu->header.length / 12,
8685 partial_die_hash,
8686 partial_die_eq,
8687 NULL,
8688 &cu->comp_unit_obstack,
8689 hashtab_obstack_allocate,
8690 dummy_obstack_deallocate);
8691
8692 part_die = obstack_alloc (&cu->comp_unit_obstack,
8693 sizeof (struct partial_die_info));
8694
8695 while (1)
8696 {
8697 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8698
8699 /* A NULL abbrev means the end of a series of children. */
8700 if (abbrev == NULL)
8701 {
8702 if (--nesting_level == 0)
8703 {
8704 /* PART_DIE was probably the last thing allocated on the
8705 comp_unit_obstack, so we could call obstack_free
8706 here. We don't do that because the waste is small,
8707 and will be cleaned up when we're done with this
8708 compilation unit. This way, we're also more robust
8709 against other users of the comp_unit_obstack. */
8710 return first_die;
8711 }
8712 info_ptr += bytes_read;
8713 last_die = parent_die;
8714 parent_die = parent_die->die_parent;
8715 continue;
8716 }
8717
8718 /* Check for template arguments. We never save these; if
8719 they're seen, we just mark the parent, and go on our way. */
8720 if (parent_die != NULL
8721 && cu->language == language_cplus
8722 && (abbrev->tag == DW_TAG_template_type_param
8723 || abbrev->tag == DW_TAG_template_value_param))
8724 {
8725 parent_die->has_template_arguments = 1;
8726
8727 if (!load_all)
8728 {
8729 /* We don't need a partial DIE for the template argument. */
8730 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8731 cu);
8732 continue;
8733 }
8734 }
8735
8736 /* We only recurse into subprograms looking for template arguments.
8737 Skip their other children. */
8738 if (!load_all
8739 && cu->language == language_cplus
8740 && parent_die != NULL
8741 && parent_die->tag == DW_TAG_subprogram)
8742 {
8743 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8744 continue;
8745 }
8746
8747 /* Check whether this DIE is interesting enough to save. Normally
8748 we would not be interested in members here, but there may be
8749 later variables referencing them via DW_AT_specification (for
8750 static members). */
8751 if (!load_all
8752 && !is_type_tag_for_partial (abbrev->tag)
8753 && abbrev->tag != DW_TAG_constant
8754 && abbrev->tag != DW_TAG_enumerator
8755 && abbrev->tag != DW_TAG_subprogram
8756 && abbrev->tag != DW_TAG_lexical_block
8757 && abbrev->tag != DW_TAG_variable
8758 && abbrev->tag != DW_TAG_namespace
8759 && abbrev->tag != DW_TAG_module
8760 && abbrev->tag != DW_TAG_member)
8761 {
8762 /* Otherwise we skip to the next sibling, if any. */
8763 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8764 continue;
8765 }
8766
8767 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8768 buffer, info_ptr, cu);
8769
8770 /* This two-pass algorithm for processing partial symbols has a
8771 high cost in cache pressure. Thus, handle some simple cases
8772 here which cover the majority of C partial symbols. DIEs
8773 which neither have specification tags in them, nor could have
8774 specification tags elsewhere pointing at them, can simply be
8775 processed and discarded.
8776
8777 This segment is also optional; scan_partial_symbols and
8778 add_partial_symbol will handle these DIEs if we chain
8779 them in normally. When compilers which do not emit large
8780 quantities of duplicate debug information are more common,
8781 this code can probably be removed. */
8782
8783 /* Any complete simple types at the top level (pretty much all
8784 of them, for a language without namespaces), can be processed
8785 directly. */
8786 if (parent_die == NULL
8787 && part_die->has_specification == 0
8788 && part_die->is_declaration == 0
8789 && (part_die->tag == DW_TAG_typedef
8790 || part_die->tag == DW_TAG_base_type
8791 || part_die->tag == DW_TAG_subrange_type))
8792 {
8793 if (building_psymtab && part_die->name != NULL)
8794 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8795 VAR_DOMAIN, LOC_TYPEDEF,
8796 &cu->objfile->static_psymbols,
8797 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8798 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8799 continue;
8800 }
8801
8802 /* If we're at the second level, and we're an enumerator, and
8803 our parent has no specification (meaning possibly lives in a
8804 namespace elsewhere), then we can add the partial symbol now
8805 instead of queueing it. */
8806 if (part_die->tag == DW_TAG_enumerator
8807 && parent_die != NULL
8808 && parent_die->die_parent == NULL
8809 && parent_die->tag == DW_TAG_enumeration_type
8810 && parent_die->has_specification == 0)
8811 {
8812 if (part_die->name == NULL)
8813 complaint (&symfile_complaints,
8814 _("malformed enumerator DIE ignored"));
8815 else if (building_psymtab)
8816 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8817 VAR_DOMAIN, LOC_CONST,
8818 (cu->language == language_cplus
8819 || cu->language == language_java)
8820 ? &cu->objfile->global_psymbols
8821 : &cu->objfile->static_psymbols,
8822 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8823
8824 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8825 continue;
8826 }
8827
8828 /* We'll save this DIE so link it in. */
8829 part_die->die_parent = parent_die;
8830 part_die->die_sibling = NULL;
8831 part_die->die_child = NULL;
8832
8833 if (last_die && last_die == parent_die)
8834 last_die->die_child = part_die;
8835 else if (last_die)
8836 last_die->die_sibling = part_die;
8837
8838 last_die = part_die;
8839
8840 if (first_die == NULL)
8841 first_die = part_die;
8842
8843 /* Maybe add the DIE to the hash table. Not all DIEs that we
8844 find interesting need to be in the hash table, because we
8845 also have the parent/sibling/child chains; only those that we
8846 might refer to by offset later during partial symbol reading.
8847
8848 For now this means things that might have be the target of a
8849 DW_AT_specification, DW_AT_abstract_origin, or
8850 DW_AT_extension. DW_AT_extension will refer only to
8851 namespaces; DW_AT_abstract_origin refers to functions (and
8852 many things under the function DIE, but we do not recurse
8853 into function DIEs during partial symbol reading) and
8854 possibly variables as well; DW_AT_specification refers to
8855 declarations. Declarations ought to have the DW_AT_declaration
8856 flag. It happens that GCC forgets to put it in sometimes, but
8857 only for functions, not for types.
8858
8859 Adding more things than necessary to the hash table is harmless
8860 except for the performance cost. Adding too few will result in
8861 wasted time in find_partial_die, when we reread the compilation
8862 unit with load_all_dies set. */
8863
8864 if (load_all
8865 || abbrev->tag == DW_TAG_constant
8866 || abbrev->tag == DW_TAG_subprogram
8867 || abbrev->tag == DW_TAG_variable
8868 || abbrev->tag == DW_TAG_namespace
8869 || part_die->is_declaration)
8870 {
8871 void **slot;
8872
8873 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8874 part_die->offset, INSERT);
8875 *slot = part_die;
8876 }
8877
8878 part_die = obstack_alloc (&cu->comp_unit_obstack,
8879 sizeof (struct partial_die_info));
8880
8881 /* For some DIEs we want to follow their children (if any). For C
8882 we have no reason to follow the children of structures; for other
8883 languages we have to, so that we can get at method physnames
8884 to infer fully qualified class names, for DW_AT_specification,
8885 and for C++ template arguments. For C++, we also look one level
8886 inside functions to find template arguments (if the name of the
8887 function does not already contain the template arguments).
8888
8889 For Ada, we need to scan the children of subprograms and lexical
8890 blocks as well because Ada allows the definition of nested
8891 entities that could be interesting for the debugger, such as
8892 nested subprograms for instance. */
8893 if (last_die->has_children
8894 && (load_all
8895 || last_die->tag == DW_TAG_namespace
8896 || last_die->tag == DW_TAG_module
8897 || last_die->tag == DW_TAG_enumeration_type
8898 || (cu->language == language_cplus
8899 && last_die->tag == DW_TAG_subprogram
8900 && (last_die->name == NULL
8901 || strchr (last_die->name, '<') == NULL))
8902 || (cu->language != language_c
8903 && (last_die->tag == DW_TAG_class_type
8904 || last_die->tag == DW_TAG_interface_type
8905 || last_die->tag == DW_TAG_structure_type
8906 || last_die->tag == DW_TAG_union_type))
8907 || (cu->language == language_ada
8908 && (last_die->tag == DW_TAG_subprogram
8909 || last_die->tag == DW_TAG_lexical_block))))
8910 {
8911 nesting_level++;
8912 parent_die = last_die;
8913 continue;
8914 }
8915
8916 /* Otherwise we skip to the next sibling, if any. */
8917 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8918
8919 /* Back to the top, do it again. */
8920 }
8921 }
8922
8923 /* Read a minimal amount of information into the minimal die structure. */
8924
8925 static gdb_byte *
8926 read_partial_die (struct partial_die_info *part_die,
8927 struct abbrev_info *abbrev,
8928 unsigned int abbrev_len, bfd *abfd,
8929 gdb_byte *buffer, gdb_byte *info_ptr,
8930 struct dwarf2_cu *cu)
8931 {
8932 unsigned int i;
8933 struct attribute attr;
8934 int has_low_pc_attr = 0;
8935 int has_high_pc_attr = 0;
8936
8937 memset (part_die, 0, sizeof (struct partial_die_info));
8938
8939 part_die->offset = info_ptr - buffer;
8940
8941 info_ptr += abbrev_len;
8942
8943 if (abbrev == NULL)
8944 return info_ptr;
8945
8946 part_die->tag = abbrev->tag;
8947 part_die->has_children = abbrev->has_children;
8948
8949 for (i = 0; i < abbrev->num_attrs; ++i)
8950 {
8951 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8952
8953 /* Store the data if it is of an attribute we want to keep in a
8954 partial symbol table. */
8955 switch (attr.name)
8956 {
8957 case DW_AT_name:
8958 switch (part_die->tag)
8959 {
8960 case DW_TAG_compile_unit:
8961 case DW_TAG_type_unit:
8962 /* Compilation units have a DW_AT_name that is a filename, not
8963 a source language identifier. */
8964 case DW_TAG_enumeration_type:
8965 case DW_TAG_enumerator:
8966 /* These tags always have simple identifiers already; no need
8967 to canonicalize them. */
8968 part_die->name = DW_STRING (&attr);
8969 break;
8970 default:
8971 part_die->name
8972 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8973 &cu->objfile->objfile_obstack);
8974 break;
8975 }
8976 break;
8977 case DW_AT_linkage_name:
8978 case DW_AT_MIPS_linkage_name:
8979 /* Note that both forms of linkage name might appear. We
8980 assume they will be the same, and we only store the last
8981 one we see. */
8982 if (cu->language == language_ada)
8983 part_die->name = DW_STRING (&attr);
8984 part_die->linkage_name = DW_STRING (&attr);
8985 break;
8986 case DW_AT_low_pc:
8987 has_low_pc_attr = 1;
8988 part_die->lowpc = DW_ADDR (&attr);
8989 break;
8990 case DW_AT_high_pc:
8991 has_high_pc_attr = 1;
8992 part_die->highpc = DW_ADDR (&attr);
8993 break;
8994 case DW_AT_location:
8995 /* Support the .debug_loc offsets. */
8996 if (attr_form_is_block (&attr))
8997 {
8998 part_die->locdesc = DW_BLOCK (&attr);
8999 }
9000 else if (attr_form_is_section_offset (&attr))
9001 {
9002 dwarf2_complex_location_expr_complaint ();
9003 }
9004 else
9005 {
9006 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9007 "partial symbol information");
9008 }
9009 break;
9010 case DW_AT_external:
9011 part_die->is_external = DW_UNSND (&attr);
9012 break;
9013 case DW_AT_declaration:
9014 part_die->is_declaration = DW_UNSND (&attr);
9015 break;
9016 case DW_AT_type:
9017 part_die->has_type = 1;
9018 break;
9019 case DW_AT_abstract_origin:
9020 case DW_AT_specification:
9021 case DW_AT_extension:
9022 part_die->has_specification = 1;
9023 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9024 break;
9025 case DW_AT_sibling:
9026 /* Ignore absolute siblings, they might point outside of
9027 the current compile unit. */
9028 if (attr.form == DW_FORM_ref_addr)
9029 complaint (&symfile_complaints,
9030 _("ignoring absolute DW_AT_sibling"));
9031 else
9032 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9033 break;
9034 case DW_AT_byte_size:
9035 part_die->has_byte_size = 1;
9036 break;
9037 case DW_AT_calling_convention:
9038 /* DWARF doesn't provide a way to identify a program's source-level
9039 entry point. DW_AT_calling_convention attributes are only meant
9040 to describe functions' calling conventions.
9041
9042 However, because it's a necessary piece of information in
9043 Fortran, and because DW_CC_program is the only piece of debugging
9044 information whose definition refers to a 'main program' at all,
9045 several compilers have begun marking Fortran main programs with
9046 DW_CC_program --- even when those functions use the standard
9047 calling conventions.
9048
9049 So until DWARF specifies a way to provide this information and
9050 compilers pick up the new representation, we'll support this
9051 practice. */
9052 if (DW_UNSND (&attr) == DW_CC_program
9053 && cu->language == language_fortran)
9054 {
9055 set_main_name (part_die->name);
9056
9057 /* As this DIE has a static linkage the name would be difficult
9058 to look up later. */
9059 language_of_main = language_fortran;
9060 }
9061 break;
9062 default:
9063 break;
9064 }
9065 }
9066
9067 /* When using the GNU linker, .gnu.linkonce. sections are used to
9068 eliminate duplicate copies of functions and vtables and such.
9069 The linker will arbitrarily choose one and discard the others.
9070 The AT_*_pc values for such functions refer to local labels in
9071 these sections. If the section from that file was discarded, the
9072 labels are not in the output, so the relocs get a value of 0.
9073 If this is a discarded function, mark the pc bounds as invalid,
9074 so that GDB will ignore it. */
9075 if (has_low_pc_attr && has_high_pc_attr
9076 && part_die->lowpc < part_die->highpc
9077 && (part_die->lowpc != 0
9078 || dwarf2_per_objfile->has_section_at_zero))
9079 part_die->has_pc_info = 1;
9080
9081 return info_ptr;
9082 }
9083
9084 /* Find a cached partial DIE at OFFSET in CU. */
9085
9086 static struct partial_die_info *
9087 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9088 {
9089 struct partial_die_info *lookup_die = NULL;
9090 struct partial_die_info part_die;
9091
9092 part_die.offset = offset;
9093 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9094
9095 return lookup_die;
9096 }
9097
9098 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9099 except in the case of .debug_types DIEs which do not reference
9100 outside their CU (they do however referencing other types via
9101 DW_FORM_sig8). */
9102
9103 static struct partial_die_info *
9104 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9105 {
9106 struct dwarf2_per_cu_data *per_cu = NULL;
9107 struct partial_die_info *pd = NULL;
9108
9109 if (cu->per_cu->from_debug_types)
9110 {
9111 pd = find_partial_die_in_comp_unit (offset, cu);
9112 if (pd != NULL)
9113 return pd;
9114 goto not_found;
9115 }
9116
9117 if (offset_in_cu_p (&cu->header, offset))
9118 {
9119 pd = find_partial_die_in_comp_unit (offset, cu);
9120 if (pd != NULL)
9121 return pd;
9122 }
9123
9124 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9125
9126 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9127 load_partial_comp_unit (per_cu, cu->objfile);
9128
9129 per_cu->cu->last_used = 0;
9130 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9131
9132 if (pd == NULL && per_cu->load_all_dies == 0)
9133 {
9134 struct cleanup *back_to;
9135 struct partial_die_info comp_unit_die;
9136 struct abbrev_info *abbrev;
9137 unsigned int bytes_read;
9138 char *info_ptr;
9139
9140 per_cu->load_all_dies = 1;
9141
9142 /* Re-read the DIEs. */
9143 back_to = make_cleanup (null_cleanup, 0);
9144 if (per_cu->cu->dwarf2_abbrevs == NULL)
9145 {
9146 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9147 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9148 }
9149 info_ptr = (dwarf2_per_objfile->info.buffer
9150 + per_cu->cu->header.offset
9151 + per_cu->cu->header.first_die_offset);
9152 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9153 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9154 per_cu->cu->objfile->obfd,
9155 dwarf2_per_objfile->info.buffer, info_ptr,
9156 per_cu->cu);
9157 if (comp_unit_die.has_children)
9158 load_partial_dies (per_cu->cu->objfile->obfd,
9159 dwarf2_per_objfile->info.buffer, info_ptr,
9160 0, per_cu->cu);
9161 do_cleanups (back_to);
9162
9163 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9164 }
9165
9166 not_found:
9167
9168 if (pd == NULL)
9169 internal_error (__FILE__, __LINE__,
9170 _("could not find partial DIE 0x%x "
9171 "in cache [from module %s]\n"),
9172 offset, bfd_get_filename (cu->objfile->obfd));
9173 return pd;
9174 }
9175
9176 /* See if we can figure out if the class lives in a namespace. We do
9177 this by looking for a member function; its demangled name will
9178 contain namespace info, if there is any. */
9179
9180 static void
9181 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9182 struct dwarf2_cu *cu)
9183 {
9184 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9185 what template types look like, because the demangler
9186 frequently doesn't give the same name as the debug info. We
9187 could fix this by only using the demangled name to get the
9188 prefix (but see comment in read_structure_type). */
9189
9190 struct partial_die_info *real_pdi;
9191 struct partial_die_info *child_pdi;
9192
9193 /* If this DIE (this DIE's specification, if any) has a parent, then
9194 we should not do this. We'll prepend the parent's fully qualified
9195 name when we create the partial symbol. */
9196
9197 real_pdi = struct_pdi;
9198 while (real_pdi->has_specification)
9199 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9200
9201 if (real_pdi->die_parent != NULL)
9202 return;
9203
9204 for (child_pdi = struct_pdi->die_child;
9205 child_pdi != NULL;
9206 child_pdi = child_pdi->die_sibling)
9207 {
9208 if (child_pdi->tag == DW_TAG_subprogram
9209 && child_pdi->linkage_name != NULL)
9210 {
9211 char *actual_class_name
9212 = language_class_name_from_physname (cu->language_defn,
9213 child_pdi->linkage_name);
9214 if (actual_class_name != NULL)
9215 {
9216 struct_pdi->name
9217 = obsavestring (actual_class_name,
9218 strlen (actual_class_name),
9219 &cu->objfile->objfile_obstack);
9220 xfree (actual_class_name);
9221 }
9222 break;
9223 }
9224 }
9225 }
9226
9227 /* Adjust PART_DIE before generating a symbol for it. This function
9228 may set the is_external flag or change the DIE's name. */
9229
9230 static void
9231 fixup_partial_die (struct partial_die_info *part_die,
9232 struct dwarf2_cu *cu)
9233 {
9234 /* Once we've fixed up a die, there's no point in doing so again.
9235 This also avoids a memory leak if we were to call
9236 guess_partial_die_structure_name multiple times. */
9237 if (part_die->fixup_called)
9238 return;
9239
9240 /* If we found a reference attribute and the DIE has no name, try
9241 to find a name in the referred to DIE. */
9242
9243 if (part_die->name == NULL && part_die->has_specification)
9244 {
9245 struct partial_die_info *spec_die;
9246
9247 spec_die = find_partial_die (part_die->spec_offset, cu);
9248
9249 fixup_partial_die (spec_die, cu);
9250
9251 if (spec_die->name)
9252 {
9253 part_die->name = spec_die->name;
9254
9255 /* Copy DW_AT_external attribute if it is set. */
9256 if (spec_die->is_external)
9257 part_die->is_external = spec_die->is_external;
9258 }
9259 }
9260
9261 /* Set default names for some unnamed DIEs. */
9262
9263 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9264 part_die->name = "(anonymous namespace)";
9265
9266 /* If there is no parent die to provide a namespace, and there are
9267 children, see if we can determine the namespace from their linkage
9268 name.
9269 NOTE: We need to do this even if cu->has_namespace_info != 0.
9270 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9271 if (cu->language == language_cplus
9272 && dwarf2_per_objfile->types.asection != NULL
9273 && part_die->die_parent == NULL
9274 && part_die->has_children
9275 && (part_die->tag == DW_TAG_class_type
9276 || part_die->tag == DW_TAG_structure_type
9277 || part_die->tag == DW_TAG_union_type))
9278 guess_partial_die_structure_name (part_die, cu);
9279
9280 part_die->fixup_called = 1;
9281 }
9282
9283 /* Read an attribute value described by an attribute form. */
9284
9285 static gdb_byte *
9286 read_attribute_value (struct attribute *attr, unsigned form,
9287 bfd *abfd, gdb_byte *info_ptr,
9288 struct dwarf2_cu *cu)
9289 {
9290 struct comp_unit_head *cu_header = &cu->header;
9291 unsigned int bytes_read;
9292 struct dwarf_block *blk;
9293
9294 attr->form = form;
9295 switch (form)
9296 {
9297 case DW_FORM_ref_addr:
9298 if (cu->header.version == 2)
9299 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9300 else
9301 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9302 &cu->header, &bytes_read);
9303 info_ptr += bytes_read;
9304 break;
9305 case DW_FORM_addr:
9306 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9307 info_ptr += bytes_read;
9308 break;
9309 case DW_FORM_block2:
9310 blk = dwarf_alloc_block (cu);
9311 blk->size = read_2_bytes (abfd, info_ptr);
9312 info_ptr += 2;
9313 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9314 info_ptr += blk->size;
9315 DW_BLOCK (attr) = blk;
9316 break;
9317 case DW_FORM_block4:
9318 blk = dwarf_alloc_block (cu);
9319 blk->size = read_4_bytes (abfd, info_ptr);
9320 info_ptr += 4;
9321 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9322 info_ptr += blk->size;
9323 DW_BLOCK (attr) = blk;
9324 break;
9325 case DW_FORM_data2:
9326 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9327 info_ptr += 2;
9328 break;
9329 case DW_FORM_data4:
9330 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9331 info_ptr += 4;
9332 break;
9333 case DW_FORM_data8:
9334 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9335 info_ptr += 8;
9336 break;
9337 case DW_FORM_sec_offset:
9338 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9339 info_ptr += bytes_read;
9340 break;
9341 case DW_FORM_string:
9342 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9343 DW_STRING_IS_CANONICAL (attr) = 0;
9344 info_ptr += bytes_read;
9345 break;
9346 case DW_FORM_strp:
9347 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9348 &bytes_read);
9349 DW_STRING_IS_CANONICAL (attr) = 0;
9350 info_ptr += bytes_read;
9351 break;
9352 case DW_FORM_exprloc:
9353 case DW_FORM_block:
9354 blk = dwarf_alloc_block (cu);
9355 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9356 info_ptr += bytes_read;
9357 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9358 info_ptr += blk->size;
9359 DW_BLOCK (attr) = blk;
9360 break;
9361 case DW_FORM_block1:
9362 blk = dwarf_alloc_block (cu);
9363 blk->size = read_1_byte (abfd, info_ptr);
9364 info_ptr += 1;
9365 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9366 info_ptr += blk->size;
9367 DW_BLOCK (attr) = blk;
9368 break;
9369 case DW_FORM_data1:
9370 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9371 info_ptr += 1;
9372 break;
9373 case DW_FORM_flag:
9374 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9375 info_ptr += 1;
9376 break;
9377 case DW_FORM_flag_present:
9378 DW_UNSND (attr) = 1;
9379 break;
9380 case DW_FORM_sdata:
9381 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9382 info_ptr += bytes_read;
9383 break;
9384 case DW_FORM_udata:
9385 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9386 info_ptr += bytes_read;
9387 break;
9388 case DW_FORM_ref1:
9389 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9390 info_ptr += 1;
9391 break;
9392 case DW_FORM_ref2:
9393 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9394 info_ptr += 2;
9395 break;
9396 case DW_FORM_ref4:
9397 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9398 info_ptr += 4;
9399 break;
9400 case DW_FORM_ref8:
9401 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9402 info_ptr += 8;
9403 break;
9404 case DW_FORM_sig8:
9405 /* Convert the signature to something we can record in DW_UNSND
9406 for later lookup.
9407 NOTE: This is NULL if the type wasn't found. */
9408 DW_SIGNATURED_TYPE (attr) =
9409 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9410 info_ptr += 8;
9411 break;
9412 case DW_FORM_ref_udata:
9413 DW_ADDR (attr) = (cu->header.offset
9414 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9415 info_ptr += bytes_read;
9416 break;
9417 case DW_FORM_indirect:
9418 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9419 info_ptr += bytes_read;
9420 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9421 break;
9422 default:
9423 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9424 dwarf_form_name (form),
9425 bfd_get_filename (abfd));
9426 }
9427
9428 /* We have seen instances where the compiler tried to emit a byte
9429 size attribute of -1 which ended up being encoded as an unsigned
9430 0xffffffff. Although 0xffffffff is technically a valid size value,
9431 an object of this size seems pretty unlikely so we can relatively
9432 safely treat these cases as if the size attribute was invalid and
9433 treat them as zero by default. */
9434 if (attr->name == DW_AT_byte_size
9435 && form == DW_FORM_data4
9436 && DW_UNSND (attr) >= 0xffffffff)
9437 {
9438 complaint
9439 (&symfile_complaints,
9440 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9441 hex_string (DW_UNSND (attr)));
9442 DW_UNSND (attr) = 0;
9443 }
9444
9445 return info_ptr;
9446 }
9447
9448 /* Read an attribute described by an abbreviated attribute. */
9449
9450 static gdb_byte *
9451 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9452 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9453 {
9454 attr->name = abbrev->name;
9455 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9456 }
9457
9458 /* Read dwarf information from a buffer. */
9459
9460 static unsigned int
9461 read_1_byte (bfd *abfd, gdb_byte *buf)
9462 {
9463 return bfd_get_8 (abfd, buf);
9464 }
9465
9466 static int
9467 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9468 {
9469 return bfd_get_signed_8 (abfd, buf);
9470 }
9471
9472 static unsigned int
9473 read_2_bytes (bfd *abfd, gdb_byte *buf)
9474 {
9475 return bfd_get_16 (abfd, buf);
9476 }
9477
9478 static int
9479 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9480 {
9481 return bfd_get_signed_16 (abfd, buf);
9482 }
9483
9484 static unsigned int
9485 read_4_bytes (bfd *abfd, gdb_byte *buf)
9486 {
9487 return bfd_get_32 (abfd, buf);
9488 }
9489
9490 static int
9491 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9492 {
9493 return bfd_get_signed_32 (abfd, buf);
9494 }
9495
9496 static ULONGEST
9497 read_8_bytes (bfd *abfd, gdb_byte *buf)
9498 {
9499 return bfd_get_64 (abfd, buf);
9500 }
9501
9502 static CORE_ADDR
9503 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9504 unsigned int *bytes_read)
9505 {
9506 struct comp_unit_head *cu_header = &cu->header;
9507 CORE_ADDR retval = 0;
9508
9509 if (cu_header->signed_addr_p)
9510 {
9511 switch (cu_header->addr_size)
9512 {
9513 case 2:
9514 retval = bfd_get_signed_16 (abfd, buf);
9515 break;
9516 case 4:
9517 retval = bfd_get_signed_32 (abfd, buf);
9518 break;
9519 case 8:
9520 retval = bfd_get_signed_64 (abfd, buf);
9521 break;
9522 default:
9523 internal_error (__FILE__, __LINE__,
9524 _("read_address: bad switch, signed [in module %s]"),
9525 bfd_get_filename (abfd));
9526 }
9527 }
9528 else
9529 {
9530 switch (cu_header->addr_size)
9531 {
9532 case 2:
9533 retval = bfd_get_16 (abfd, buf);
9534 break;
9535 case 4:
9536 retval = bfd_get_32 (abfd, buf);
9537 break;
9538 case 8:
9539 retval = bfd_get_64 (abfd, buf);
9540 break;
9541 default:
9542 internal_error (__FILE__, __LINE__,
9543 _("read_address: bad switch, unsigned [in module %s]"),
9544 bfd_get_filename (abfd));
9545 }
9546 }
9547
9548 *bytes_read = cu_header->addr_size;
9549 return retval;
9550 }
9551
9552 /* Read the initial length from a section. The (draft) DWARF 3
9553 specification allows the initial length to take up either 4 bytes
9554 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9555 bytes describe the length and all offsets will be 8 bytes in length
9556 instead of 4.
9557
9558 An older, non-standard 64-bit format is also handled by this
9559 function. The older format in question stores the initial length
9560 as an 8-byte quantity without an escape value. Lengths greater
9561 than 2^32 aren't very common which means that the initial 4 bytes
9562 is almost always zero. Since a length value of zero doesn't make
9563 sense for the 32-bit format, this initial zero can be considered to
9564 be an escape value which indicates the presence of the older 64-bit
9565 format. As written, the code can't detect (old format) lengths
9566 greater than 4GB. If it becomes necessary to handle lengths
9567 somewhat larger than 4GB, we could allow other small values (such
9568 as the non-sensical values of 1, 2, and 3) to also be used as
9569 escape values indicating the presence of the old format.
9570
9571 The value returned via bytes_read should be used to increment the
9572 relevant pointer after calling read_initial_length().
9573
9574 [ Note: read_initial_length() and read_offset() are based on the
9575 document entitled "DWARF Debugging Information Format", revision
9576 3, draft 8, dated November 19, 2001. This document was obtained
9577 from:
9578
9579 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9580
9581 This document is only a draft and is subject to change. (So beware.)
9582
9583 Details regarding the older, non-standard 64-bit format were
9584 determined empirically by examining 64-bit ELF files produced by
9585 the SGI toolchain on an IRIX 6.5 machine.
9586
9587 - Kevin, July 16, 2002
9588 ] */
9589
9590 static LONGEST
9591 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9592 {
9593 LONGEST length = bfd_get_32 (abfd, buf);
9594
9595 if (length == 0xffffffff)
9596 {
9597 length = bfd_get_64 (abfd, buf + 4);
9598 *bytes_read = 12;
9599 }
9600 else if (length == 0)
9601 {
9602 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9603 length = bfd_get_64 (abfd, buf);
9604 *bytes_read = 8;
9605 }
9606 else
9607 {
9608 *bytes_read = 4;
9609 }
9610
9611 return length;
9612 }
9613
9614 /* Cover function for read_initial_length.
9615 Returns the length of the object at BUF, and stores the size of the
9616 initial length in *BYTES_READ and stores the size that offsets will be in
9617 *OFFSET_SIZE.
9618 If the initial length size is not equivalent to that specified in
9619 CU_HEADER then issue a complaint.
9620 This is useful when reading non-comp-unit headers. */
9621
9622 static LONGEST
9623 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9624 const struct comp_unit_head *cu_header,
9625 unsigned int *bytes_read,
9626 unsigned int *offset_size)
9627 {
9628 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9629
9630 gdb_assert (cu_header->initial_length_size == 4
9631 || cu_header->initial_length_size == 8
9632 || cu_header->initial_length_size == 12);
9633
9634 if (cu_header->initial_length_size != *bytes_read)
9635 complaint (&symfile_complaints,
9636 _("intermixed 32-bit and 64-bit DWARF sections"));
9637
9638 *offset_size = (*bytes_read == 4) ? 4 : 8;
9639 return length;
9640 }
9641
9642 /* Read an offset from the data stream. The size of the offset is
9643 given by cu_header->offset_size. */
9644
9645 static LONGEST
9646 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9647 unsigned int *bytes_read)
9648 {
9649 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9650
9651 *bytes_read = cu_header->offset_size;
9652 return offset;
9653 }
9654
9655 /* Read an offset from the data stream. */
9656
9657 static LONGEST
9658 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9659 {
9660 LONGEST retval = 0;
9661
9662 switch (offset_size)
9663 {
9664 case 4:
9665 retval = bfd_get_32 (abfd, buf);
9666 break;
9667 case 8:
9668 retval = bfd_get_64 (abfd, buf);
9669 break;
9670 default:
9671 internal_error (__FILE__, __LINE__,
9672 _("read_offset_1: bad switch [in module %s]"),
9673 bfd_get_filename (abfd));
9674 }
9675
9676 return retval;
9677 }
9678
9679 static gdb_byte *
9680 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9681 {
9682 /* If the size of a host char is 8 bits, we can return a pointer
9683 to the buffer, otherwise we have to copy the data to a buffer
9684 allocated on the temporary obstack. */
9685 gdb_assert (HOST_CHAR_BIT == 8);
9686 return buf;
9687 }
9688
9689 static char *
9690 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9691 {
9692 /* If the size of a host char is 8 bits, we can return a pointer
9693 to the string, otherwise we have to copy the string to a buffer
9694 allocated on the temporary obstack. */
9695 gdb_assert (HOST_CHAR_BIT == 8);
9696 if (*buf == '\0')
9697 {
9698 *bytes_read_ptr = 1;
9699 return NULL;
9700 }
9701 *bytes_read_ptr = strlen ((char *) buf) + 1;
9702 return (char *) buf;
9703 }
9704
9705 static char *
9706 read_indirect_string (bfd *abfd, gdb_byte *buf,
9707 const struct comp_unit_head *cu_header,
9708 unsigned int *bytes_read_ptr)
9709 {
9710 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9711
9712 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9713 if (dwarf2_per_objfile->str.buffer == NULL)
9714 {
9715 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9716 bfd_get_filename (abfd));
9717 return NULL;
9718 }
9719 if (str_offset >= dwarf2_per_objfile->str.size)
9720 {
9721 error (_("DW_FORM_strp pointing outside of "
9722 ".debug_str section [in module %s]"),
9723 bfd_get_filename (abfd));
9724 return NULL;
9725 }
9726 gdb_assert (HOST_CHAR_BIT == 8);
9727 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9728 return NULL;
9729 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9730 }
9731
9732 static unsigned long
9733 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9734 {
9735 unsigned long result;
9736 unsigned int num_read;
9737 int i, shift;
9738 unsigned char byte;
9739
9740 result = 0;
9741 shift = 0;
9742 num_read = 0;
9743 i = 0;
9744 while (1)
9745 {
9746 byte = bfd_get_8 (abfd, buf);
9747 buf++;
9748 num_read++;
9749 result |= ((unsigned long)(byte & 127) << shift);
9750 if ((byte & 128) == 0)
9751 {
9752 break;
9753 }
9754 shift += 7;
9755 }
9756 *bytes_read_ptr = num_read;
9757 return result;
9758 }
9759
9760 static long
9761 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9762 {
9763 long result;
9764 int i, shift, num_read;
9765 unsigned char byte;
9766
9767 result = 0;
9768 shift = 0;
9769 num_read = 0;
9770 i = 0;
9771 while (1)
9772 {
9773 byte = bfd_get_8 (abfd, buf);
9774 buf++;
9775 num_read++;
9776 result |= ((long)(byte & 127) << shift);
9777 shift += 7;
9778 if ((byte & 128) == 0)
9779 {
9780 break;
9781 }
9782 }
9783 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9784 result |= -(((long)1) << shift);
9785 *bytes_read_ptr = num_read;
9786 return result;
9787 }
9788
9789 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9790
9791 static gdb_byte *
9792 skip_leb128 (bfd *abfd, gdb_byte *buf)
9793 {
9794 int byte;
9795
9796 while (1)
9797 {
9798 byte = bfd_get_8 (abfd, buf);
9799 buf++;
9800 if ((byte & 128) == 0)
9801 return buf;
9802 }
9803 }
9804
9805 static void
9806 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9807 {
9808 switch (lang)
9809 {
9810 case DW_LANG_C89:
9811 case DW_LANG_C99:
9812 case DW_LANG_C:
9813 cu->language = language_c;
9814 break;
9815 case DW_LANG_C_plus_plus:
9816 cu->language = language_cplus;
9817 break;
9818 case DW_LANG_D:
9819 cu->language = language_d;
9820 break;
9821 case DW_LANG_Fortran77:
9822 case DW_LANG_Fortran90:
9823 case DW_LANG_Fortran95:
9824 cu->language = language_fortran;
9825 break;
9826 case DW_LANG_Mips_Assembler:
9827 cu->language = language_asm;
9828 break;
9829 case DW_LANG_Java:
9830 cu->language = language_java;
9831 break;
9832 case DW_LANG_Ada83:
9833 case DW_LANG_Ada95:
9834 cu->language = language_ada;
9835 break;
9836 case DW_LANG_Modula2:
9837 cu->language = language_m2;
9838 break;
9839 case DW_LANG_Pascal83:
9840 cu->language = language_pascal;
9841 break;
9842 case DW_LANG_ObjC:
9843 cu->language = language_objc;
9844 break;
9845 case DW_LANG_Cobol74:
9846 case DW_LANG_Cobol85:
9847 default:
9848 cu->language = language_minimal;
9849 break;
9850 }
9851 cu->language_defn = language_def (cu->language);
9852 }
9853
9854 /* Return the named attribute or NULL if not there. */
9855
9856 static struct attribute *
9857 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9858 {
9859 unsigned int i;
9860 struct attribute *spec = NULL;
9861
9862 for (i = 0; i < die->num_attrs; ++i)
9863 {
9864 if (die->attrs[i].name == name)
9865 return &die->attrs[i];
9866 if (die->attrs[i].name == DW_AT_specification
9867 || die->attrs[i].name == DW_AT_abstract_origin)
9868 spec = &die->attrs[i];
9869 }
9870
9871 if (spec)
9872 {
9873 die = follow_die_ref (die, spec, &cu);
9874 return dwarf2_attr (die, name, cu);
9875 }
9876
9877 return NULL;
9878 }
9879
9880 /* Return the named attribute or NULL if not there,
9881 but do not follow DW_AT_specification, etc.
9882 This is for use in contexts where we're reading .debug_types dies.
9883 Following DW_AT_specification, DW_AT_abstract_origin will take us
9884 back up the chain, and we want to go down. */
9885
9886 static struct attribute *
9887 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9888 struct dwarf2_cu *cu)
9889 {
9890 unsigned int i;
9891
9892 for (i = 0; i < die->num_attrs; ++i)
9893 if (die->attrs[i].name == name)
9894 return &die->attrs[i];
9895
9896 return NULL;
9897 }
9898
9899 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9900 and holds a non-zero value. This function should only be used for
9901 DW_FORM_flag or DW_FORM_flag_present attributes. */
9902
9903 static int
9904 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9905 {
9906 struct attribute *attr = dwarf2_attr (die, name, cu);
9907
9908 return (attr && DW_UNSND (attr));
9909 }
9910
9911 static int
9912 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9913 {
9914 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9915 which value is non-zero. However, we have to be careful with
9916 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9917 (via dwarf2_flag_true_p) follows this attribute. So we may
9918 end up accidently finding a declaration attribute that belongs
9919 to a different DIE referenced by the specification attribute,
9920 even though the given DIE does not have a declaration attribute. */
9921 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9922 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9923 }
9924
9925 /* Return the die giving the specification for DIE, if there is
9926 one. *SPEC_CU is the CU containing DIE on input, and the CU
9927 containing the return value on output. If there is no
9928 specification, but there is an abstract origin, that is
9929 returned. */
9930
9931 static struct die_info *
9932 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9933 {
9934 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9935 *spec_cu);
9936
9937 if (spec_attr == NULL)
9938 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9939
9940 if (spec_attr == NULL)
9941 return NULL;
9942 else
9943 return follow_die_ref (die, spec_attr, spec_cu);
9944 }
9945
9946 /* Free the line_header structure *LH, and any arrays and strings it
9947 refers to.
9948 NOTE: This is also used as a "cleanup" function. */
9949
9950 static void
9951 free_line_header (struct line_header *lh)
9952 {
9953 if (lh->standard_opcode_lengths)
9954 xfree (lh->standard_opcode_lengths);
9955
9956 /* Remember that all the lh->file_names[i].name pointers are
9957 pointers into debug_line_buffer, and don't need to be freed. */
9958 if (lh->file_names)
9959 xfree (lh->file_names);
9960
9961 /* Similarly for the include directory names. */
9962 if (lh->include_dirs)
9963 xfree (lh->include_dirs);
9964
9965 xfree (lh);
9966 }
9967
9968 /* Add an entry to LH's include directory table. */
9969
9970 static void
9971 add_include_dir (struct line_header *lh, char *include_dir)
9972 {
9973 /* Grow the array if necessary. */
9974 if (lh->include_dirs_size == 0)
9975 {
9976 lh->include_dirs_size = 1; /* for testing */
9977 lh->include_dirs = xmalloc (lh->include_dirs_size
9978 * sizeof (*lh->include_dirs));
9979 }
9980 else if (lh->num_include_dirs >= lh->include_dirs_size)
9981 {
9982 lh->include_dirs_size *= 2;
9983 lh->include_dirs = xrealloc (lh->include_dirs,
9984 (lh->include_dirs_size
9985 * sizeof (*lh->include_dirs)));
9986 }
9987
9988 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9989 }
9990
9991 /* Add an entry to LH's file name table. */
9992
9993 static void
9994 add_file_name (struct line_header *lh,
9995 char *name,
9996 unsigned int dir_index,
9997 unsigned int mod_time,
9998 unsigned int length)
9999 {
10000 struct file_entry *fe;
10001
10002 /* Grow the array if necessary. */
10003 if (lh->file_names_size == 0)
10004 {
10005 lh->file_names_size = 1; /* for testing */
10006 lh->file_names = xmalloc (lh->file_names_size
10007 * sizeof (*lh->file_names));
10008 }
10009 else if (lh->num_file_names >= lh->file_names_size)
10010 {
10011 lh->file_names_size *= 2;
10012 lh->file_names = xrealloc (lh->file_names,
10013 (lh->file_names_size
10014 * sizeof (*lh->file_names)));
10015 }
10016
10017 fe = &lh->file_names[lh->num_file_names++];
10018 fe->name = name;
10019 fe->dir_index = dir_index;
10020 fe->mod_time = mod_time;
10021 fe->length = length;
10022 fe->included_p = 0;
10023 fe->symtab = NULL;
10024 }
10025
10026 /* Read the statement program header starting at OFFSET in
10027 .debug_line, according to the endianness of ABFD. Return a pointer
10028 to a struct line_header, allocated using xmalloc.
10029
10030 NOTE: the strings in the include directory and file name tables of
10031 the returned object point into debug_line_buffer, and must not be
10032 freed. */
10033
10034 static struct line_header *
10035 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10036 struct dwarf2_cu *cu)
10037 {
10038 struct cleanup *back_to;
10039 struct line_header *lh;
10040 gdb_byte *line_ptr;
10041 unsigned int bytes_read, offset_size;
10042 int i;
10043 char *cur_dir, *cur_file;
10044
10045 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10046 if (dwarf2_per_objfile->line.buffer == NULL)
10047 {
10048 complaint (&symfile_complaints, _("missing .debug_line section"));
10049 return 0;
10050 }
10051
10052 /* Make sure that at least there's room for the total_length field.
10053 That could be 12 bytes long, but we're just going to fudge that. */
10054 if (offset + 4 >= dwarf2_per_objfile->line.size)
10055 {
10056 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10057 return 0;
10058 }
10059
10060 lh = xmalloc (sizeof (*lh));
10061 memset (lh, 0, sizeof (*lh));
10062 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10063 (void *) lh);
10064
10065 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10066
10067 /* Read in the header. */
10068 lh->total_length =
10069 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10070 &bytes_read, &offset_size);
10071 line_ptr += bytes_read;
10072 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10073 + dwarf2_per_objfile->line.size))
10074 {
10075 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10076 return 0;
10077 }
10078 lh->statement_program_end = line_ptr + lh->total_length;
10079 lh->version = read_2_bytes (abfd, line_ptr);
10080 line_ptr += 2;
10081 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10082 line_ptr += offset_size;
10083 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10084 line_ptr += 1;
10085 if (lh->version >= 4)
10086 {
10087 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10088 line_ptr += 1;
10089 }
10090 else
10091 lh->maximum_ops_per_instruction = 1;
10092
10093 if (lh->maximum_ops_per_instruction == 0)
10094 {
10095 lh->maximum_ops_per_instruction = 1;
10096 complaint (&symfile_complaints,
10097 _("invalid maximum_ops_per_instruction "
10098 "in `.debug_line' section"));
10099 }
10100
10101 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10102 line_ptr += 1;
10103 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10104 line_ptr += 1;
10105 lh->line_range = read_1_byte (abfd, line_ptr);
10106 line_ptr += 1;
10107 lh->opcode_base = read_1_byte (abfd, line_ptr);
10108 line_ptr += 1;
10109 lh->standard_opcode_lengths
10110 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10111
10112 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10113 for (i = 1; i < lh->opcode_base; ++i)
10114 {
10115 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10116 line_ptr += 1;
10117 }
10118
10119 /* Read directory table. */
10120 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10121 {
10122 line_ptr += bytes_read;
10123 add_include_dir (lh, cur_dir);
10124 }
10125 line_ptr += bytes_read;
10126
10127 /* Read file name table. */
10128 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10129 {
10130 unsigned int dir_index, mod_time, length;
10131
10132 line_ptr += bytes_read;
10133 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10134 line_ptr += bytes_read;
10135 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10136 line_ptr += bytes_read;
10137 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10138 line_ptr += bytes_read;
10139
10140 add_file_name (lh, cur_file, dir_index, mod_time, length);
10141 }
10142 line_ptr += bytes_read;
10143 lh->statement_program_start = line_ptr;
10144
10145 if (line_ptr > (dwarf2_per_objfile->line.buffer
10146 + dwarf2_per_objfile->line.size))
10147 complaint (&symfile_complaints,
10148 _("line number info header doesn't "
10149 "fit in `.debug_line' section"));
10150
10151 discard_cleanups (back_to);
10152 return lh;
10153 }
10154
10155 /* This function exists to work around a bug in certain compilers
10156 (particularly GCC 2.95), in which the first line number marker of a
10157 function does not show up until after the prologue, right before
10158 the second line number marker. This function shifts ADDRESS down
10159 to the beginning of the function if necessary, and is called on
10160 addresses passed to record_line. */
10161
10162 static CORE_ADDR
10163 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10164 {
10165 struct function_range *fn;
10166
10167 /* Find the function_range containing address. */
10168 if (!cu->first_fn)
10169 return address;
10170
10171 if (!cu->cached_fn)
10172 cu->cached_fn = cu->first_fn;
10173
10174 fn = cu->cached_fn;
10175 while (fn)
10176 if (fn->lowpc <= address && fn->highpc > address)
10177 goto found;
10178 else
10179 fn = fn->next;
10180
10181 fn = cu->first_fn;
10182 while (fn && fn != cu->cached_fn)
10183 if (fn->lowpc <= address && fn->highpc > address)
10184 goto found;
10185 else
10186 fn = fn->next;
10187
10188 return address;
10189
10190 found:
10191 if (fn->seen_line)
10192 return address;
10193 if (address != fn->lowpc)
10194 complaint (&symfile_complaints,
10195 _("misplaced first line number at 0x%lx for '%s'"),
10196 (unsigned long) address, fn->name);
10197 fn->seen_line = 1;
10198 return fn->lowpc;
10199 }
10200
10201 /* Subroutine of dwarf_decode_lines to simplify it.
10202 Return the file name of the psymtab for included file FILE_INDEX
10203 in line header LH of PST.
10204 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10205 If space for the result is malloc'd, it will be freed by a cleanup.
10206 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10207
10208 static char *
10209 psymtab_include_file_name (const struct line_header *lh, int file_index,
10210 const struct partial_symtab *pst,
10211 const char *comp_dir)
10212 {
10213 const struct file_entry fe = lh->file_names [file_index];
10214 char *include_name = fe.name;
10215 char *include_name_to_compare = include_name;
10216 char *dir_name = NULL;
10217 const char *pst_filename;
10218 char *copied_name = NULL;
10219 int file_is_pst;
10220
10221 if (fe.dir_index)
10222 dir_name = lh->include_dirs[fe.dir_index - 1];
10223
10224 if (!IS_ABSOLUTE_PATH (include_name)
10225 && (dir_name != NULL || comp_dir != NULL))
10226 {
10227 /* Avoid creating a duplicate psymtab for PST.
10228 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10229 Before we do the comparison, however, we need to account
10230 for DIR_NAME and COMP_DIR.
10231 First prepend dir_name (if non-NULL). If we still don't
10232 have an absolute path prepend comp_dir (if non-NULL).
10233 However, the directory we record in the include-file's
10234 psymtab does not contain COMP_DIR (to match the
10235 corresponding symtab(s)).
10236
10237 Example:
10238
10239 bash$ cd /tmp
10240 bash$ gcc -g ./hello.c
10241 include_name = "hello.c"
10242 dir_name = "."
10243 DW_AT_comp_dir = comp_dir = "/tmp"
10244 DW_AT_name = "./hello.c" */
10245
10246 if (dir_name != NULL)
10247 {
10248 include_name = concat (dir_name, SLASH_STRING,
10249 include_name, (char *)NULL);
10250 include_name_to_compare = include_name;
10251 make_cleanup (xfree, include_name);
10252 }
10253 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10254 {
10255 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10256 include_name, (char *)NULL);
10257 }
10258 }
10259
10260 pst_filename = pst->filename;
10261 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10262 {
10263 copied_name = concat (pst->dirname, SLASH_STRING,
10264 pst_filename, (char *)NULL);
10265 pst_filename = copied_name;
10266 }
10267
10268 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10269
10270 if (include_name_to_compare != include_name)
10271 xfree (include_name_to_compare);
10272 if (copied_name != NULL)
10273 xfree (copied_name);
10274
10275 if (file_is_pst)
10276 return NULL;
10277 return include_name;
10278 }
10279
10280 /* Decode the Line Number Program (LNP) for the given line_header
10281 structure and CU. The actual information extracted and the type
10282 of structures created from the LNP depends on the value of PST.
10283
10284 1. If PST is NULL, then this procedure uses the data from the program
10285 to create all necessary symbol tables, and their linetables.
10286
10287 2. If PST is not NULL, this procedure reads the program to determine
10288 the list of files included by the unit represented by PST, and
10289 builds all the associated partial symbol tables.
10290
10291 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10292 It is used for relative paths in the line table.
10293 NOTE: When processing partial symtabs (pst != NULL),
10294 comp_dir == pst->dirname.
10295
10296 NOTE: It is important that psymtabs have the same file name (via strcmp)
10297 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10298 symtab we don't use it in the name of the psymtabs we create.
10299 E.g. expand_line_sal requires this when finding psymtabs to expand.
10300 A good testcase for this is mb-inline.exp. */
10301
10302 static void
10303 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10304 struct dwarf2_cu *cu, struct partial_symtab *pst)
10305 {
10306 gdb_byte *line_ptr, *extended_end;
10307 gdb_byte *line_end;
10308 unsigned int bytes_read, extended_len;
10309 unsigned char op_code, extended_op, adj_opcode;
10310 CORE_ADDR baseaddr;
10311 struct objfile *objfile = cu->objfile;
10312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10313 const int decode_for_pst_p = (pst != NULL);
10314 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10315
10316 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10317
10318 line_ptr = lh->statement_program_start;
10319 line_end = lh->statement_program_end;
10320
10321 /* Read the statement sequences until there's nothing left. */
10322 while (line_ptr < line_end)
10323 {
10324 /* state machine registers */
10325 CORE_ADDR address = 0;
10326 unsigned int file = 1;
10327 unsigned int line = 1;
10328 unsigned int column = 0;
10329 int is_stmt = lh->default_is_stmt;
10330 int basic_block = 0;
10331 int end_sequence = 0;
10332 CORE_ADDR addr;
10333 unsigned char op_index = 0;
10334
10335 if (!decode_for_pst_p && lh->num_file_names >= file)
10336 {
10337 /* Start a subfile for the current file of the state machine. */
10338 /* lh->include_dirs and lh->file_names are 0-based, but the
10339 directory and file name numbers in the statement program
10340 are 1-based. */
10341 struct file_entry *fe = &lh->file_names[file - 1];
10342 char *dir = NULL;
10343
10344 if (fe->dir_index)
10345 dir = lh->include_dirs[fe->dir_index - 1];
10346
10347 dwarf2_start_subfile (fe->name, dir, comp_dir);
10348 }
10349
10350 /* Decode the table. */
10351 while (!end_sequence)
10352 {
10353 op_code = read_1_byte (abfd, line_ptr);
10354 line_ptr += 1;
10355 if (line_ptr > line_end)
10356 {
10357 dwarf2_debug_line_missing_end_sequence_complaint ();
10358 break;
10359 }
10360
10361 if (op_code >= lh->opcode_base)
10362 {
10363 /* Special operand. */
10364 adj_opcode = op_code - lh->opcode_base;
10365 address += (((op_index + (adj_opcode / lh->line_range))
10366 / lh->maximum_ops_per_instruction)
10367 * lh->minimum_instruction_length);
10368 op_index = ((op_index + (adj_opcode / lh->line_range))
10369 % lh->maximum_ops_per_instruction);
10370 line += lh->line_base + (adj_opcode % lh->line_range);
10371 if (lh->num_file_names < file || file == 0)
10372 dwarf2_debug_line_missing_file_complaint ();
10373 /* For now we ignore lines not starting on an
10374 instruction boundary. */
10375 else if (op_index == 0)
10376 {
10377 lh->file_names[file - 1].included_p = 1;
10378 if (!decode_for_pst_p && is_stmt)
10379 {
10380 if (last_subfile != current_subfile)
10381 {
10382 addr = gdbarch_addr_bits_remove (gdbarch, address);
10383 if (last_subfile)
10384 record_line (last_subfile, 0, addr);
10385 last_subfile = current_subfile;
10386 }
10387 /* Append row to matrix using current values. */
10388 addr = check_cu_functions (address, cu);
10389 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10390 record_line (current_subfile, line, addr);
10391 }
10392 }
10393 basic_block = 0;
10394 }
10395 else switch (op_code)
10396 {
10397 case DW_LNS_extended_op:
10398 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10399 &bytes_read);
10400 line_ptr += bytes_read;
10401 extended_end = line_ptr + extended_len;
10402 extended_op = read_1_byte (abfd, line_ptr);
10403 line_ptr += 1;
10404 switch (extended_op)
10405 {
10406 case DW_LNE_end_sequence:
10407 end_sequence = 1;
10408 break;
10409 case DW_LNE_set_address:
10410 address = read_address (abfd, line_ptr, cu, &bytes_read);
10411 op_index = 0;
10412 line_ptr += bytes_read;
10413 address += baseaddr;
10414 break;
10415 case DW_LNE_define_file:
10416 {
10417 char *cur_file;
10418 unsigned int dir_index, mod_time, length;
10419
10420 cur_file = read_direct_string (abfd, line_ptr,
10421 &bytes_read);
10422 line_ptr += bytes_read;
10423 dir_index =
10424 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10425 line_ptr += bytes_read;
10426 mod_time =
10427 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10428 line_ptr += bytes_read;
10429 length =
10430 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10431 line_ptr += bytes_read;
10432 add_file_name (lh, cur_file, dir_index, mod_time, length);
10433 }
10434 break;
10435 case DW_LNE_set_discriminator:
10436 /* The discriminator is not interesting to the debugger;
10437 just ignore it. */
10438 line_ptr = extended_end;
10439 break;
10440 default:
10441 complaint (&symfile_complaints,
10442 _("mangled .debug_line section"));
10443 return;
10444 }
10445 /* Make sure that we parsed the extended op correctly. If e.g.
10446 we expected a different address size than the producer used,
10447 we may have read the wrong number of bytes. */
10448 if (line_ptr != extended_end)
10449 {
10450 complaint (&symfile_complaints,
10451 _("mangled .debug_line section"));
10452 return;
10453 }
10454 break;
10455 case DW_LNS_copy:
10456 if (lh->num_file_names < file || file == 0)
10457 dwarf2_debug_line_missing_file_complaint ();
10458 else
10459 {
10460 lh->file_names[file - 1].included_p = 1;
10461 if (!decode_for_pst_p && is_stmt)
10462 {
10463 if (last_subfile != current_subfile)
10464 {
10465 addr = gdbarch_addr_bits_remove (gdbarch, address);
10466 if (last_subfile)
10467 record_line (last_subfile, 0, addr);
10468 last_subfile = current_subfile;
10469 }
10470 addr = check_cu_functions (address, cu);
10471 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10472 record_line (current_subfile, line, addr);
10473 }
10474 }
10475 basic_block = 0;
10476 break;
10477 case DW_LNS_advance_pc:
10478 {
10479 CORE_ADDR adjust
10480 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10481
10482 address += (((op_index + adjust)
10483 / lh->maximum_ops_per_instruction)
10484 * lh->minimum_instruction_length);
10485 op_index = ((op_index + adjust)
10486 % lh->maximum_ops_per_instruction);
10487 line_ptr += bytes_read;
10488 }
10489 break;
10490 case DW_LNS_advance_line:
10491 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10492 line_ptr += bytes_read;
10493 break;
10494 case DW_LNS_set_file:
10495 {
10496 /* The arrays lh->include_dirs and lh->file_names are
10497 0-based, but the directory and file name numbers in
10498 the statement program are 1-based. */
10499 struct file_entry *fe;
10500 char *dir = NULL;
10501
10502 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10503 line_ptr += bytes_read;
10504 if (lh->num_file_names < file || file == 0)
10505 dwarf2_debug_line_missing_file_complaint ();
10506 else
10507 {
10508 fe = &lh->file_names[file - 1];
10509 if (fe->dir_index)
10510 dir = lh->include_dirs[fe->dir_index - 1];
10511 if (!decode_for_pst_p)
10512 {
10513 last_subfile = current_subfile;
10514 dwarf2_start_subfile (fe->name, dir, comp_dir);
10515 }
10516 }
10517 }
10518 break;
10519 case DW_LNS_set_column:
10520 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10521 line_ptr += bytes_read;
10522 break;
10523 case DW_LNS_negate_stmt:
10524 is_stmt = (!is_stmt);
10525 break;
10526 case DW_LNS_set_basic_block:
10527 basic_block = 1;
10528 break;
10529 /* Add to the address register of the state machine the
10530 address increment value corresponding to special opcode
10531 255. I.e., this value is scaled by the minimum
10532 instruction length since special opcode 255 would have
10533 scaled the the increment. */
10534 case DW_LNS_const_add_pc:
10535 {
10536 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10537
10538 address += (((op_index + adjust)
10539 / lh->maximum_ops_per_instruction)
10540 * lh->minimum_instruction_length);
10541 op_index = ((op_index + adjust)
10542 % lh->maximum_ops_per_instruction);
10543 }
10544 break;
10545 case DW_LNS_fixed_advance_pc:
10546 address += read_2_bytes (abfd, line_ptr);
10547 op_index = 0;
10548 line_ptr += 2;
10549 break;
10550 default:
10551 {
10552 /* Unknown standard opcode, ignore it. */
10553 int i;
10554
10555 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10556 {
10557 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10558 line_ptr += bytes_read;
10559 }
10560 }
10561 }
10562 }
10563 if (lh->num_file_names < file || file == 0)
10564 dwarf2_debug_line_missing_file_complaint ();
10565 else
10566 {
10567 lh->file_names[file - 1].included_p = 1;
10568 if (!decode_for_pst_p)
10569 {
10570 addr = gdbarch_addr_bits_remove (gdbarch, address);
10571 record_line (current_subfile, 0, addr);
10572 }
10573 }
10574 }
10575
10576 if (decode_for_pst_p)
10577 {
10578 int file_index;
10579
10580 /* Now that we're done scanning the Line Header Program, we can
10581 create the psymtab of each included file. */
10582 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10583 if (lh->file_names[file_index].included_p == 1)
10584 {
10585 char *include_name =
10586 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10587 if (include_name != NULL)
10588 dwarf2_create_include_psymtab (include_name, pst, objfile);
10589 }
10590 }
10591 else
10592 {
10593 /* Make sure a symtab is created for every file, even files
10594 which contain only variables (i.e. no code with associated
10595 line numbers). */
10596
10597 int i;
10598 struct file_entry *fe;
10599
10600 for (i = 0; i < lh->num_file_names; i++)
10601 {
10602 char *dir = NULL;
10603
10604 fe = &lh->file_names[i];
10605 if (fe->dir_index)
10606 dir = lh->include_dirs[fe->dir_index - 1];
10607 dwarf2_start_subfile (fe->name, dir, comp_dir);
10608
10609 /* Skip the main file; we don't need it, and it must be
10610 allocated last, so that it will show up before the
10611 non-primary symtabs in the objfile's symtab list. */
10612 if (current_subfile == first_subfile)
10613 continue;
10614
10615 if (current_subfile->symtab == NULL)
10616 current_subfile->symtab = allocate_symtab (current_subfile->name,
10617 cu->objfile);
10618 fe->symtab = current_subfile->symtab;
10619 }
10620 }
10621 }
10622
10623 /* Start a subfile for DWARF. FILENAME is the name of the file and
10624 DIRNAME the name of the source directory which contains FILENAME
10625 or NULL if not known. COMP_DIR is the compilation directory for the
10626 linetable's compilation unit or NULL if not known.
10627 This routine tries to keep line numbers from identical absolute and
10628 relative file names in a common subfile.
10629
10630 Using the `list' example from the GDB testsuite, which resides in
10631 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10632 of /srcdir/list0.c yields the following debugging information for list0.c:
10633
10634 DW_AT_name: /srcdir/list0.c
10635 DW_AT_comp_dir: /compdir
10636 files.files[0].name: list0.h
10637 files.files[0].dir: /srcdir
10638 files.files[1].name: list0.c
10639 files.files[1].dir: /srcdir
10640
10641 The line number information for list0.c has to end up in a single
10642 subfile, so that `break /srcdir/list0.c:1' works as expected.
10643 start_subfile will ensure that this happens provided that we pass the
10644 concatenation of files.files[1].dir and files.files[1].name as the
10645 subfile's name. */
10646
10647 static void
10648 dwarf2_start_subfile (char *filename, const char *dirname,
10649 const char *comp_dir)
10650 {
10651 char *fullname;
10652
10653 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10654 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10655 second argument to start_subfile. To be consistent, we do the
10656 same here. In order not to lose the line information directory,
10657 we concatenate it to the filename when it makes sense.
10658 Note that the Dwarf3 standard says (speaking of filenames in line
10659 information): ``The directory index is ignored for file names
10660 that represent full path names''. Thus ignoring dirname in the
10661 `else' branch below isn't an issue. */
10662
10663 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10664 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10665 else
10666 fullname = filename;
10667
10668 start_subfile (fullname, comp_dir);
10669
10670 if (fullname != filename)
10671 xfree (fullname);
10672 }
10673
10674 static void
10675 var_decode_location (struct attribute *attr, struct symbol *sym,
10676 struct dwarf2_cu *cu)
10677 {
10678 struct objfile *objfile = cu->objfile;
10679 struct comp_unit_head *cu_header = &cu->header;
10680
10681 /* NOTE drow/2003-01-30: There used to be a comment and some special
10682 code here to turn a symbol with DW_AT_external and a
10683 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10684 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10685 with some versions of binutils) where shared libraries could have
10686 relocations against symbols in their debug information - the
10687 minimal symbol would have the right address, but the debug info
10688 would not. It's no longer necessary, because we will explicitly
10689 apply relocations when we read in the debug information now. */
10690
10691 /* A DW_AT_location attribute with no contents indicates that a
10692 variable has been optimized away. */
10693 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10694 {
10695 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10696 return;
10697 }
10698
10699 /* Handle one degenerate form of location expression specially, to
10700 preserve GDB's previous behavior when section offsets are
10701 specified. If this is just a DW_OP_addr then mark this symbol
10702 as LOC_STATIC. */
10703
10704 if (attr_form_is_block (attr)
10705 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10706 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10707 {
10708 unsigned int dummy;
10709
10710 SYMBOL_VALUE_ADDRESS (sym) =
10711 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10712 SYMBOL_CLASS (sym) = LOC_STATIC;
10713 fixup_symbol_section (sym, objfile);
10714 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10715 SYMBOL_SECTION (sym));
10716 return;
10717 }
10718
10719 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10720 expression evaluator, and use LOC_COMPUTED only when necessary
10721 (i.e. when the value of a register or memory location is
10722 referenced, or a thread-local block, etc.). Then again, it might
10723 not be worthwhile. I'm assuming that it isn't unless performance
10724 or memory numbers show me otherwise. */
10725
10726 dwarf2_symbol_mark_computed (attr, sym, cu);
10727 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10728 }
10729
10730 /* Given a pointer to a DWARF information entry, figure out if we need
10731 to make a symbol table entry for it, and if so, create a new entry
10732 and return a pointer to it.
10733 If TYPE is NULL, determine symbol type from the die, otherwise
10734 used the passed type.
10735 If SPACE is not NULL, use it to hold the new symbol. If it is
10736 NULL, allocate a new symbol on the objfile's obstack. */
10737
10738 static struct symbol *
10739 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10740 struct symbol *space)
10741 {
10742 struct objfile *objfile = cu->objfile;
10743 struct symbol *sym = NULL;
10744 char *name;
10745 struct attribute *attr = NULL;
10746 struct attribute *attr2 = NULL;
10747 CORE_ADDR baseaddr;
10748 struct pending **list_to_add = NULL;
10749
10750 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10751
10752 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10753
10754 name = dwarf2_name (die, cu);
10755 if (name)
10756 {
10757 const char *linkagename;
10758 int suppress_add = 0;
10759
10760 if (space)
10761 sym = space;
10762 else
10763 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10764 OBJSTAT (objfile, n_syms++);
10765
10766 /* Cache this symbol's name and the name's demangled form (if any). */
10767 SYMBOL_SET_LANGUAGE (sym, cu->language);
10768 linkagename = dwarf2_physname (name, die, cu);
10769 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10770
10771 /* Fortran does not have mangling standard and the mangling does differ
10772 between gfortran, iFort etc. */
10773 if (cu->language == language_fortran
10774 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10775 symbol_set_demangled_name (&(sym->ginfo),
10776 (char *) dwarf2_full_name (name, die, cu),
10777 NULL);
10778
10779 /* Default assumptions.
10780 Use the passed type or decode it from the die. */
10781 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10782 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10783 if (type != NULL)
10784 SYMBOL_TYPE (sym) = type;
10785 else
10786 SYMBOL_TYPE (sym) = die_type (die, cu);
10787 attr = dwarf2_attr (die,
10788 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10789 cu);
10790 if (attr)
10791 {
10792 SYMBOL_LINE (sym) = DW_UNSND (attr);
10793 }
10794
10795 attr = dwarf2_attr (die,
10796 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10797 cu);
10798 if (attr)
10799 {
10800 int file_index = DW_UNSND (attr);
10801
10802 if (cu->line_header == NULL
10803 || file_index > cu->line_header->num_file_names)
10804 complaint (&symfile_complaints,
10805 _("file index out of range"));
10806 else if (file_index > 0)
10807 {
10808 struct file_entry *fe;
10809
10810 fe = &cu->line_header->file_names[file_index - 1];
10811 SYMBOL_SYMTAB (sym) = fe->symtab;
10812 }
10813 }
10814
10815 switch (die->tag)
10816 {
10817 case DW_TAG_label:
10818 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10819 if (attr)
10820 {
10821 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10822 }
10823 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10824 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10825 SYMBOL_CLASS (sym) = LOC_LABEL;
10826 add_symbol_to_list (sym, cu->list_in_scope);
10827 break;
10828 case DW_TAG_subprogram:
10829 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10830 finish_block. */
10831 SYMBOL_CLASS (sym) = LOC_BLOCK;
10832 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10833 if ((attr2 && (DW_UNSND (attr2) != 0))
10834 || cu->language == language_ada)
10835 {
10836 /* Subprograms marked external are stored as a global symbol.
10837 Ada subprograms, whether marked external or not, are always
10838 stored as a global symbol, because we want to be able to
10839 access them globally. For instance, we want to be able
10840 to break on a nested subprogram without having to
10841 specify the context. */
10842 list_to_add = &global_symbols;
10843 }
10844 else
10845 {
10846 list_to_add = cu->list_in_scope;
10847 }
10848 break;
10849 case DW_TAG_inlined_subroutine:
10850 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10851 finish_block. */
10852 SYMBOL_CLASS (sym) = LOC_BLOCK;
10853 SYMBOL_INLINED (sym) = 1;
10854 /* Do not add the symbol to any lists. It will be found via
10855 BLOCK_FUNCTION from the blockvector. */
10856 break;
10857 case DW_TAG_template_value_param:
10858 suppress_add = 1;
10859 /* Fall through. */
10860 case DW_TAG_constant:
10861 case DW_TAG_variable:
10862 case DW_TAG_member:
10863 /* Compilation with minimal debug info may result in
10864 variables with missing type entries. Change the
10865 misleading `void' type to something sensible. */
10866 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10867 SYMBOL_TYPE (sym)
10868 = objfile_type (objfile)->nodebug_data_symbol;
10869
10870 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10871 /* In the case of DW_TAG_member, we should only be called for
10872 static const members. */
10873 if (die->tag == DW_TAG_member)
10874 {
10875 /* dwarf2_add_field uses die_is_declaration,
10876 so we do the same. */
10877 gdb_assert (die_is_declaration (die, cu));
10878 gdb_assert (attr);
10879 }
10880 if (attr)
10881 {
10882 dwarf2_const_value (attr, sym, cu);
10883 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10884 if (!suppress_add)
10885 {
10886 if (attr2 && (DW_UNSND (attr2) != 0))
10887 list_to_add = &global_symbols;
10888 else
10889 list_to_add = cu->list_in_scope;
10890 }
10891 break;
10892 }
10893 attr = dwarf2_attr (die, DW_AT_location, cu);
10894 if (attr)
10895 {
10896 var_decode_location (attr, sym, cu);
10897 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10898 if (SYMBOL_CLASS (sym) == LOC_STATIC
10899 && SYMBOL_VALUE_ADDRESS (sym) == 0
10900 && !dwarf2_per_objfile->has_section_at_zero)
10901 {
10902 /* When a static variable is eliminated by the linker,
10903 the corresponding debug information is not stripped
10904 out, but the variable address is set to null;
10905 do not add such variables into symbol table. */
10906 }
10907 else if (attr2 && (DW_UNSND (attr2) != 0))
10908 {
10909 /* Workaround gfortran PR debug/40040 - it uses
10910 DW_AT_location for variables in -fPIC libraries which may
10911 get overriden by other libraries/executable and get
10912 a different address. Resolve it by the minimal symbol
10913 which may come from inferior's executable using copy
10914 relocation. Make this workaround only for gfortran as for
10915 other compilers GDB cannot guess the minimal symbol
10916 Fortran mangling kind. */
10917 if (cu->language == language_fortran && die->parent
10918 && die->parent->tag == DW_TAG_module
10919 && cu->producer
10920 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10921 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10922
10923 /* A variable with DW_AT_external is never static,
10924 but it may be block-scoped. */
10925 list_to_add = (cu->list_in_scope == &file_symbols
10926 ? &global_symbols : cu->list_in_scope);
10927 }
10928 else
10929 list_to_add = cu->list_in_scope;
10930 }
10931 else
10932 {
10933 /* We do not know the address of this symbol.
10934 If it is an external symbol and we have type information
10935 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10936 The address of the variable will then be determined from
10937 the minimal symbol table whenever the variable is
10938 referenced. */
10939 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10940 if (attr2 && (DW_UNSND (attr2) != 0)
10941 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10942 {
10943 /* A variable with DW_AT_external is never static, but it
10944 may be block-scoped. */
10945 list_to_add = (cu->list_in_scope == &file_symbols
10946 ? &global_symbols : cu->list_in_scope);
10947
10948 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10949 }
10950 else if (!die_is_declaration (die, cu))
10951 {
10952 /* Use the default LOC_OPTIMIZED_OUT class. */
10953 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10954 if (!suppress_add)
10955 list_to_add = cu->list_in_scope;
10956 }
10957 }
10958 break;
10959 case DW_TAG_formal_parameter:
10960 /* If we are inside a function, mark this as an argument. If
10961 not, we might be looking at an argument to an inlined function
10962 when we do not have enough information to show inlined frames;
10963 pretend it's a local variable in that case so that the user can
10964 still see it. */
10965 if (context_stack_depth > 0
10966 && context_stack[context_stack_depth - 1].name != NULL)
10967 SYMBOL_IS_ARGUMENT (sym) = 1;
10968 attr = dwarf2_attr (die, DW_AT_location, cu);
10969 if (attr)
10970 {
10971 var_decode_location (attr, sym, cu);
10972 }
10973 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10974 if (attr)
10975 {
10976 dwarf2_const_value (attr, sym, cu);
10977 }
10978 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10979 if (attr && DW_UNSND (attr))
10980 {
10981 struct type *ref_type;
10982
10983 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10984 SYMBOL_TYPE (sym) = ref_type;
10985 }
10986
10987 list_to_add = cu->list_in_scope;
10988 break;
10989 case DW_TAG_unspecified_parameters:
10990 /* From varargs functions; gdb doesn't seem to have any
10991 interest in this information, so just ignore it for now.
10992 (FIXME?) */
10993 break;
10994 case DW_TAG_template_type_param:
10995 suppress_add = 1;
10996 /* Fall through. */
10997 case DW_TAG_class_type:
10998 case DW_TAG_interface_type:
10999 case DW_TAG_structure_type:
11000 case DW_TAG_union_type:
11001 case DW_TAG_set_type:
11002 case DW_TAG_enumeration_type:
11003 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11004 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11005
11006 {
11007 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11008 really ever be static objects: otherwise, if you try
11009 to, say, break of a class's method and you're in a file
11010 which doesn't mention that class, it won't work unless
11011 the check for all static symbols in lookup_symbol_aux
11012 saves you. See the OtherFileClass tests in
11013 gdb.c++/namespace.exp. */
11014
11015 if (!suppress_add)
11016 {
11017 list_to_add = (cu->list_in_scope == &file_symbols
11018 && (cu->language == language_cplus
11019 || cu->language == language_java)
11020 ? &global_symbols : cu->list_in_scope);
11021
11022 /* The semantics of C++ state that "struct foo {
11023 ... }" also defines a typedef for "foo". A Java
11024 class declaration also defines a typedef for the
11025 class. */
11026 if (cu->language == language_cplus
11027 || cu->language == language_java
11028 || cu->language == language_ada)
11029 {
11030 /* The symbol's name is already allocated along
11031 with this objfile, so we don't need to
11032 duplicate it for the type. */
11033 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11034 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11035 }
11036 }
11037 }
11038 break;
11039 case DW_TAG_typedef:
11040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11041 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11042 list_to_add = cu->list_in_scope;
11043 break;
11044 case DW_TAG_base_type:
11045 case DW_TAG_subrange_type:
11046 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11047 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11048 list_to_add = cu->list_in_scope;
11049 break;
11050 case DW_TAG_enumerator:
11051 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11052 if (attr)
11053 {
11054 dwarf2_const_value (attr, sym, cu);
11055 }
11056 {
11057 /* NOTE: carlton/2003-11-10: See comment above in the
11058 DW_TAG_class_type, etc. block. */
11059
11060 list_to_add = (cu->list_in_scope == &file_symbols
11061 && (cu->language == language_cplus
11062 || cu->language == language_java)
11063 ? &global_symbols : cu->list_in_scope);
11064 }
11065 break;
11066 case DW_TAG_namespace:
11067 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11068 list_to_add = &global_symbols;
11069 break;
11070 default:
11071 /* Not a tag we recognize. Hopefully we aren't processing
11072 trash data, but since we must specifically ignore things
11073 we don't recognize, there is nothing else we should do at
11074 this point. */
11075 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11076 dwarf_tag_name (die->tag));
11077 break;
11078 }
11079
11080 if (suppress_add)
11081 {
11082 sym->hash_next = objfile->template_symbols;
11083 objfile->template_symbols = sym;
11084 list_to_add = NULL;
11085 }
11086
11087 if (list_to_add != NULL)
11088 add_symbol_to_list (sym, list_to_add);
11089
11090 /* For the benefit of old versions of GCC, check for anonymous
11091 namespaces based on the demangled name. */
11092 if (!processing_has_namespace_info
11093 && cu->language == language_cplus)
11094 cp_scan_for_anonymous_namespaces (sym);
11095 }
11096 return (sym);
11097 }
11098
11099 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11100
11101 static struct symbol *
11102 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11103 {
11104 return new_symbol_full (die, type, cu, NULL);
11105 }
11106
11107 /* Given an attr with a DW_FORM_dataN value in host byte order,
11108 zero-extend it as appropriate for the symbol's type. The DWARF
11109 standard (v4) is not entirely clear about the meaning of using
11110 DW_FORM_dataN for a constant with a signed type, where the type is
11111 wider than the data. The conclusion of a discussion on the DWARF
11112 list was that this is unspecified. We choose to always zero-extend
11113 because that is the interpretation long in use by GCC. */
11114
11115 static gdb_byte *
11116 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11117 const char *name, struct obstack *obstack,
11118 struct dwarf2_cu *cu, long *value, int bits)
11119 {
11120 struct objfile *objfile = cu->objfile;
11121 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11122 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11123 LONGEST l = DW_UNSND (attr);
11124
11125 if (bits < sizeof (*value) * 8)
11126 {
11127 l &= ((LONGEST) 1 << bits) - 1;
11128 *value = l;
11129 }
11130 else if (bits == sizeof (*value) * 8)
11131 *value = l;
11132 else
11133 {
11134 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11135 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11136 return bytes;
11137 }
11138
11139 return NULL;
11140 }
11141
11142 /* Read a constant value from an attribute. Either set *VALUE, or if
11143 the value does not fit in *VALUE, set *BYTES - either already
11144 allocated on the objfile obstack, or newly allocated on OBSTACK,
11145 or, set *BATON, if we translated the constant to a location
11146 expression. */
11147
11148 static void
11149 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11150 const char *name, struct obstack *obstack,
11151 struct dwarf2_cu *cu,
11152 long *value, gdb_byte **bytes,
11153 struct dwarf2_locexpr_baton **baton)
11154 {
11155 struct objfile *objfile = cu->objfile;
11156 struct comp_unit_head *cu_header = &cu->header;
11157 struct dwarf_block *blk;
11158 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11159 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11160
11161 *value = 0;
11162 *bytes = NULL;
11163 *baton = NULL;
11164
11165 switch (attr->form)
11166 {
11167 case DW_FORM_addr:
11168 {
11169 gdb_byte *data;
11170
11171 if (TYPE_LENGTH (type) != cu_header->addr_size)
11172 dwarf2_const_value_length_mismatch_complaint (name,
11173 cu_header->addr_size,
11174 TYPE_LENGTH (type));
11175 /* Symbols of this form are reasonably rare, so we just
11176 piggyback on the existing location code rather than writing
11177 a new implementation of symbol_computed_ops. */
11178 *baton = obstack_alloc (&objfile->objfile_obstack,
11179 sizeof (struct dwarf2_locexpr_baton));
11180 (*baton)->per_cu = cu->per_cu;
11181 gdb_assert ((*baton)->per_cu);
11182
11183 (*baton)->size = 2 + cu_header->addr_size;
11184 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11185 (*baton)->data = data;
11186
11187 data[0] = DW_OP_addr;
11188 store_unsigned_integer (&data[1], cu_header->addr_size,
11189 byte_order, DW_ADDR (attr));
11190 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11191 }
11192 break;
11193 case DW_FORM_string:
11194 case DW_FORM_strp:
11195 /* DW_STRING is already allocated on the objfile obstack, point
11196 directly to it. */
11197 *bytes = (gdb_byte *) DW_STRING (attr);
11198 break;
11199 case DW_FORM_block1:
11200 case DW_FORM_block2:
11201 case DW_FORM_block4:
11202 case DW_FORM_block:
11203 case DW_FORM_exprloc:
11204 blk = DW_BLOCK (attr);
11205 if (TYPE_LENGTH (type) != blk->size)
11206 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11207 TYPE_LENGTH (type));
11208 *bytes = blk->data;
11209 break;
11210
11211 /* The DW_AT_const_value attributes are supposed to carry the
11212 symbol's value "represented as it would be on the target
11213 architecture." By the time we get here, it's already been
11214 converted to host endianness, so we just need to sign- or
11215 zero-extend it as appropriate. */
11216 case DW_FORM_data1:
11217 *bytes = dwarf2_const_value_data (attr, type, name,
11218 obstack, cu, value, 8);
11219 break;
11220 case DW_FORM_data2:
11221 *bytes = dwarf2_const_value_data (attr, type, name,
11222 obstack, cu, value, 16);
11223 break;
11224 case DW_FORM_data4:
11225 *bytes = dwarf2_const_value_data (attr, type, name,
11226 obstack, cu, value, 32);
11227 break;
11228 case DW_FORM_data8:
11229 *bytes = dwarf2_const_value_data (attr, type, name,
11230 obstack, cu, value, 64);
11231 break;
11232
11233 case DW_FORM_sdata:
11234 *value = DW_SND (attr);
11235 break;
11236
11237 case DW_FORM_udata:
11238 *value = DW_UNSND (attr);
11239 break;
11240
11241 default:
11242 complaint (&symfile_complaints,
11243 _("unsupported const value attribute form: '%s'"),
11244 dwarf_form_name (attr->form));
11245 *value = 0;
11246 break;
11247 }
11248 }
11249
11250
11251 /* Copy constant value from an attribute to a symbol. */
11252
11253 static void
11254 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11255 struct dwarf2_cu *cu)
11256 {
11257 struct objfile *objfile = cu->objfile;
11258 struct comp_unit_head *cu_header = &cu->header;
11259 long value;
11260 gdb_byte *bytes;
11261 struct dwarf2_locexpr_baton *baton;
11262
11263 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11264 SYMBOL_PRINT_NAME (sym),
11265 &objfile->objfile_obstack, cu,
11266 &value, &bytes, &baton);
11267
11268 if (baton != NULL)
11269 {
11270 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11271 SYMBOL_LOCATION_BATON (sym) = baton;
11272 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11273 }
11274 else if (bytes != NULL)
11275 {
11276 SYMBOL_VALUE_BYTES (sym) = bytes;
11277 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11278 }
11279 else
11280 {
11281 SYMBOL_VALUE (sym) = value;
11282 SYMBOL_CLASS (sym) = LOC_CONST;
11283 }
11284 }
11285
11286 /* Return the type of the die in question using its DW_AT_type attribute. */
11287
11288 static struct type *
11289 die_type (struct die_info *die, struct dwarf2_cu *cu)
11290 {
11291 struct attribute *type_attr;
11292
11293 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11294 if (!type_attr)
11295 {
11296 /* A missing DW_AT_type represents a void type. */
11297 return objfile_type (cu->objfile)->builtin_void;
11298 }
11299
11300 return lookup_die_type (die, type_attr, cu);
11301 }
11302
11303 /* True iff CU's producer generates GNAT Ada auxiliary information
11304 that allows to find parallel types through that information instead
11305 of having to do expensive parallel lookups by type name. */
11306
11307 static int
11308 need_gnat_info (struct dwarf2_cu *cu)
11309 {
11310 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11311 of GNAT produces this auxiliary information, without any indication
11312 that it is produced. Part of enhancing the FSF version of GNAT
11313 to produce that information will be to put in place an indicator
11314 that we can use in order to determine whether the descriptive type
11315 info is available or not. One suggestion that has been made is
11316 to use a new attribute, attached to the CU die. For now, assume
11317 that the descriptive type info is not available. */
11318 return 0;
11319 }
11320
11321 /* Return the auxiliary type of the die in question using its
11322 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11323 attribute is not present. */
11324
11325 static struct type *
11326 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11327 {
11328 struct attribute *type_attr;
11329
11330 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11331 if (!type_attr)
11332 return NULL;
11333
11334 return lookup_die_type (die, type_attr, cu);
11335 }
11336
11337 /* If DIE has a descriptive_type attribute, then set the TYPE's
11338 descriptive type accordingly. */
11339
11340 static void
11341 set_descriptive_type (struct type *type, struct die_info *die,
11342 struct dwarf2_cu *cu)
11343 {
11344 struct type *descriptive_type = die_descriptive_type (die, cu);
11345
11346 if (descriptive_type)
11347 {
11348 ALLOCATE_GNAT_AUX_TYPE (type);
11349 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11350 }
11351 }
11352
11353 /* Return the containing type of the die in question using its
11354 DW_AT_containing_type attribute. */
11355
11356 static struct type *
11357 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11358 {
11359 struct attribute *type_attr;
11360
11361 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11362 if (!type_attr)
11363 error (_("Dwarf Error: Problem turning containing type into gdb type "
11364 "[in module %s]"), cu->objfile->name);
11365
11366 return lookup_die_type (die, type_attr, cu);
11367 }
11368
11369 /* Look up the type of DIE in CU using its type attribute ATTR.
11370 If there is no type substitute an error marker. */
11371
11372 static struct type *
11373 lookup_die_type (struct die_info *die, struct attribute *attr,
11374 struct dwarf2_cu *cu)
11375 {
11376 struct type *this_type;
11377
11378 /* First see if we have it cached. */
11379
11380 if (is_ref_attr (attr))
11381 {
11382 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11383
11384 this_type = get_die_type_at_offset (offset, cu->per_cu);
11385 }
11386 else if (attr->form == DW_FORM_sig8)
11387 {
11388 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11389 struct dwarf2_cu *sig_cu;
11390 unsigned int offset;
11391
11392 /* sig_type will be NULL if the signatured type is missing from
11393 the debug info. */
11394 if (sig_type == NULL)
11395 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11396 "at 0x%x [in module %s]"),
11397 die->offset, cu->objfile->name);
11398
11399 gdb_assert (sig_type->per_cu.from_debug_types);
11400 offset = sig_type->offset + sig_type->type_offset;
11401 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11402 }
11403 else
11404 {
11405 dump_die_for_error (die);
11406 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11407 dwarf_attr_name (attr->name), cu->objfile->name);
11408 }
11409
11410 /* If not cached we need to read it in. */
11411
11412 if (this_type == NULL)
11413 {
11414 struct die_info *type_die;
11415 struct dwarf2_cu *type_cu = cu;
11416
11417 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11418 /* If the type is cached, we should have found it above. */
11419 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11420 this_type = read_type_die_1 (type_die, type_cu);
11421 }
11422
11423 /* If we still don't have a type use an error marker. */
11424
11425 if (this_type == NULL)
11426 {
11427 char *message, *saved;
11428
11429 /* read_type_die already issued a complaint. */
11430 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11431 cu->objfile->name,
11432 cu->header.offset,
11433 die->offset);
11434 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11435 message, strlen (message));
11436 xfree (message);
11437
11438 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11439 }
11440
11441 return this_type;
11442 }
11443
11444 /* Return the type in DIE, CU.
11445 Returns NULL for invalid types.
11446
11447 This first does a lookup in the appropriate type_hash table,
11448 and only reads the die in if necessary.
11449
11450 NOTE: This can be called when reading in partial or full symbols. */
11451
11452 static struct type *
11453 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11454 {
11455 struct type *this_type;
11456
11457 this_type = get_die_type (die, cu);
11458 if (this_type)
11459 return this_type;
11460
11461 return read_type_die_1 (die, cu);
11462 }
11463
11464 /* Read the type in DIE, CU.
11465 Returns NULL for invalid types. */
11466
11467 static struct type *
11468 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11469 {
11470 struct type *this_type = NULL;
11471
11472 switch (die->tag)
11473 {
11474 case DW_TAG_class_type:
11475 case DW_TAG_interface_type:
11476 case DW_TAG_structure_type:
11477 case DW_TAG_union_type:
11478 this_type = read_structure_type (die, cu);
11479 break;
11480 case DW_TAG_enumeration_type:
11481 this_type = read_enumeration_type (die, cu);
11482 break;
11483 case DW_TAG_subprogram:
11484 case DW_TAG_subroutine_type:
11485 case DW_TAG_inlined_subroutine:
11486 this_type = read_subroutine_type (die, cu);
11487 break;
11488 case DW_TAG_array_type:
11489 this_type = read_array_type (die, cu);
11490 break;
11491 case DW_TAG_set_type:
11492 this_type = read_set_type (die, cu);
11493 break;
11494 case DW_TAG_pointer_type:
11495 this_type = read_tag_pointer_type (die, cu);
11496 break;
11497 case DW_TAG_ptr_to_member_type:
11498 this_type = read_tag_ptr_to_member_type (die, cu);
11499 break;
11500 case DW_TAG_reference_type:
11501 this_type = read_tag_reference_type (die, cu);
11502 break;
11503 case DW_TAG_const_type:
11504 this_type = read_tag_const_type (die, cu);
11505 break;
11506 case DW_TAG_volatile_type:
11507 this_type = read_tag_volatile_type (die, cu);
11508 break;
11509 case DW_TAG_string_type:
11510 this_type = read_tag_string_type (die, cu);
11511 break;
11512 case DW_TAG_typedef:
11513 this_type = read_typedef (die, cu);
11514 break;
11515 case DW_TAG_subrange_type:
11516 this_type = read_subrange_type (die, cu);
11517 break;
11518 case DW_TAG_base_type:
11519 this_type = read_base_type (die, cu);
11520 break;
11521 case DW_TAG_unspecified_type:
11522 this_type = read_unspecified_type (die, cu);
11523 break;
11524 case DW_TAG_namespace:
11525 this_type = read_namespace_type (die, cu);
11526 break;
11527 case DW_TAG_module:
11528 this_type = read_module_type (die, cu);
11529 break;
11530 default:
11531 complaint (&symfile_complaints,
11532 _("unexpected tag in read_type_die: '%s'"),
11533 dwarf_tag_name (die->tag));
11534 break;
11535 }
11536
11537 return this_type;
11538 }
11539
11540 /* See if we can figure out if the class lives in a namespace. We do
11541 this by looking for a member function; its demangled name will
11542 contain namespace info, if there is any.
11543 Return the computed name or NULL.
11544 Space for the result is allocated on the objfile's obstack.
11545 This is the full-die version of guess_partial_die_structure_name.
11546 In this case we know DIE has no useful parent. */
11547
11548 static char *
11549 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11550 {
11551 struct die_info *spec_die;
11552 struct dwarf2_cu *spec_cu;
11553 struct die_info *child;
11554
11555 spec_cu = cu;
11556 spec_die = die_specification (die, &spec_cu);
11557 if (spec_die != NULL)
11558 {
11559 die = spec_die;
11560 cu = spec_cu;
11561 }
11562
11563 for (child = die->child;
11564 child != NULL;
11565 child = child->sibling)
11566 {
11567 if (child->tag == DW_TAG_subprogram)
11568 {
11569 struct attribute *attr;
11570
11571 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11572 if (attr == NULL)
11573 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11574 if (attr != NULL)
11575 {
11576 char *actual_name
11577 = language_class_name_from_physname (cu->language_defn,
11578 DW_STRING (attr));
11579 char *name = NULL;
11580
11581 if (actual_name != NULL)
11582 {
11583 char *die_name = dwarf2_name (die, cu);
11584
11585 if (die_name != NULL
11586 && strcmp (die_name, actual_name) != 0)
11587 {
11588 /* Strip off the class name from the full name.
11589 We want the prefix. */
11590 int die_name_len = strlen (die_name);
11591 int actual_name_len = strlen (actual_name);
11592
11593 /* Test for '::' as a sanity check. */
11594 if (actual_name_len > die_name_len + 2
11595 && actual_name[actual_name_len
11596 - die_name_len - 1] == ':')
11597 name =
11598 obsavestring (actual_name,
11599 actual_name_len - die_name_len - 2,
11600 &cu->objfile->objfile_obstack);
11601 }
11602 }
11603 xfree (actual_name);
11604 return name;
11605 }
11606 }
11607 }
11608
11609 return NULL;
11610 }
11611
11612 /* Return the name of the namespace/class that DIE is defined within,
11613 or "" if we can't tell. The caller should not xfree the result.
11614
11615 For example, if we're within the method foo() in the following
11616 code:
11617
11618 namespace N {
11619 class C {
11620 void foo () {
11621 }
11622 };
11623 }
11624
11625 then determine_prefix on foo's die will return "N::C". */
11626
11627 static char *
11628 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11629 {
11630 struct die_info *parent, *spec_die;
11631 struct dwarf2_cu *spec_cu;
11632 struct type *parent_type;
11633
11634 if (cu->language != language_cplus && cu->language != language_java
11635 && cu->language != language_fortran)
11636 return "";
11637
11638 /* We have to be careful in the presence of DW_AT_specification.
11639 For example, with GCC 3.4, given the code
11640
11641 namespace N {
11642 void foo() {
11643 // Definition of N::foo.
11644 }
11645 }
11646
11647 then we'll have a tree of DIEs like this:
11648
11649 1: DW_TAG_compile_unit
11650 2: DW_TAG_namespace // N
11651 3: DW_TAG_subprogram // declaration of N::foo
11652 4: DW_TAG_subprogram // definition of N::foo
11653 DW_AT_specification // refers to die #3
11654
11655 Thus, when processing die #4, we have to pretend that we're in
11656 the context of its DW_AT_specification, namely the contex of die
11657 #3. */
11658 spec_cu = cu;
11659 spec_die = die_specification (die, &spec_cu);
11660 if (spec_die == NULL)
11661 parent = die->parent;
11662 else
11663 {
11664 parent = spec_die->parent;
11665 cu = spec_cu;
11666 }
11667
11668 if (parent == NULL)
11669 return "";
11670 else if (parent->building_fullname)
11671 {
11672 const char *name;
11673 const char *parent_name;
11674
11675 /* It has been seen on RealView 2.2 built binaries,
11676 DW_TAG_template_type_param types actually _defined_ as
11677 children of the parent class:
11678
11679 enum E {};
11680 template class <class Enum> Class{};
11681 Class<enum E> class_e;
11682
11683 1: DW_TAG_class_type (Class)
11684 2: DW_TAG_enumeration_type (E)
11685 3: DW_TAG_enumerator (enum1:0)
11686 3: DW_TAG_enumerator (enum2:1)
11687 ...
11688 2: DW_TAG_template_type_param
11689 DW_AT_type DW_FORM_ref_udata (E)
11690
11691 Besides being broken debug info, it can put GDB into an
11692 infinite loop. Consider:
11693
11694 When we're building the full name for Class<E>, we'll start
11695 at Class, and go look over its template type parameters,
11696 finding E. We'll then try to build the full name of E, and
11697 reach here. We're now trying to build the full name of E,
11698 and look over the parent DIE for containing scope. In the
11699 broken case, if we followed the parent DIE of E, we'd again
11700 find Class, and once again go look at its template type
11701 arguments, etc., etc. Simply don't consider such parent die
11702 as source-level parent of this die (it can't be, the language
11703 doesn't allow it), and break the loop here. */
11704 name = dwarf2_name (die, cu);
11705 parent_name = dwarf2_name (parent, cu);
11706 complaint (&symfile_complaints,
11707 _("template param type '%s' defined within parent '%s'"),
11708 name ? name : "<unknown>",
11709 parent_name ? parent_name : "<unknown>");
11710 return "";
11711 }
11712 else
11713 switch (parent->tag)
11714 {
11715 case DW_TAG_namespace:
11716 parent_type = read_type_die (parent, cu);
11717 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11718 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11719 Work around this problem here. */
11720 if (cu->language == language_cplus
11721 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11722 return "";
11723 /* We give a name to even anonymous namespaces. */
11724 return TYPE_TAG_NAME (parent_type);
11725 case DW_TAG_class_type:
11726 case DW_TAG_interface_type:
11727 case DW_TAG_structure_type:
11728 case DW_TAG_union_type:
11729 case DW_TAG_module:
11730 parent_type = read_type_die (parent, cu);
11731 if (TYPE_TAG_NAME (parent_type) != NULL)
11732 return TYPE_TAG_NAME (parent_type);
11733 else
11734 /* An anonymous structure is only allowed non-static data
11735 members; no typedefs, no member functions, et cetera.
11736 So it does not need a prefix. */
11737 return "";
11738 case DW_TAG_compile_unit:
11739 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11740 if (cu->language == language_cplus
11741 && dwarf2_per_objfile->types.asection != NULL
11742 && die->child != NULL
11743 && (die->tag == DW_TAG_class_type
11744 || die->tag == DW_TAG_structure_type
11745 || die->tag == DW_TAG_union_type))
11746 {
11747 char *name = guess_full_die_structure_name (die, cu);
11748 if (name != NULL)
11749 return name;
11750 }
11751 return "";
11752 default:
11753 return determine_prefix (parent, cu);
11754 }
11755 }
11756
11757 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11758 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11759 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11760 an obconcat, otherwise allocate storage for the result. The CU argument is
11761 used to determine the language and hence, the appropriate separator. */
11762
11763 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11764
11765 static char *
11766 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11767 int physname, struct dwarf2_cu *cu)
11768 {
11769 const char *lead = "";
11770 const char *sep;
11771
11772 if (suffix == NULL || suffix[0] == '\0'
11773 || prefix == NULL || prefix[0] == '\0')
11774 sep = "";
11775 else if (cu->language == language_java)
11776 sep = ".";
11777 else if (cu->language == language_fortran && physname)
11778 {
11779 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11780 DW_AT_MIPS_linkage_name is preferred and used instead. */
11781
11782 lead = "__";
11783 sep = "_MOD_";
11784 }
11785 else
11786 sep = "::";
11787
11788 if (prefix == NULL)
11789 prefix = "";
11790 if (suffix == NULL)
11791 suffix = "";
11792
11793 if (obs == NULL)
11794 {
11795 char *retval
11796 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11797
11798 strcpy (retval, lead);
11799 strcat (retval, prefix);
11800 strcat (retval, sep);
11801 strcat (retval, suffix);
11802 return retval;
11803 }
11804 else
11805 {
11806 /* We have an obstack. */
11807 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11808 }
11809 }
11810
11811 /* Return sibling of die, NULL if no sibling. */
11812
11813 static struct die_info *
11814 sibling_die (struct die_info *die)
11815 {
11816 return die->sibling;
11817 }
11818
11819 /* Get name of a die, return NULL if not found. */
11820
11821 static char *
11822 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11823 struct obstack *obstack)
11824 {
11825 if (name && cu->language == language_cplus)
11826 {
11827 char *canon_name = cp_canonicalize_string (name);
11828
11829 if (canon_name != NULL)
11830 {
11831 if (strcmp (canon_name, name) != 0)
11832 name = obsavestring (canon_name, strlen (canon_name),
11833 obstack);
11834 xfree (canon_name);
11835 }
11836 }
11837
11838 return name;
11839 }
11840
11841 /* Get name of a die, return NULL if not found. */
11842
11843 static char *
11844 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11845 {
11846 struct attribute *attr;
11847
11848 attr = dwarf2_attr (die, DW_AT_name, cu);
11849 if (!attr || !DW_STRING (attr))
11850 return NULL;
11851
11852 switch (die->tag)
11853 {
11854 case DW_TAG_compile_unit:
11855 /* Compilation units have a DW_AT_name that is a filename, not
11856 a source language identifier. */
11857 case DW_TAG_enumeration_type:
11858 case DW_TAG_enumerator:
11859 /* These tags always have simple identifiers already; no need
11860 to canonicalize them. */
11861 return DW_STRING (attr);
11862
11863 case DW_TAG_subprogram:
11864 /* Java constructors will all be named "<init>", so return
11865 the class name when we see this special case. */
11866 if (cu->language == language_java
11867 && DW_STRING (attr) != NULL
11868 && strcmp (DW_STRING (attr), "<init>") == 0)
11869 {
11870 struct dwarf2_cu *spec_cu = cu;
11871 struct die_info *spec_die;
11872
11873 /* GCJ will output '<init>' for Java constructor names.
11874 For this special case, return the name of the parent class. */
11875
11876 /* GCJ may output suprogram DIEs with AT_specification set.
11877 If so, use the name of the specified DIE. */
11878 spec_die = die_specification (die, &spec_cu);
11879 if (spec_die != NULL)
11880 return dwarf2_name (spec_die, spec_cu);
11881
11882 do
11883 {
11884 die = die->parent;
11885 if (die->tag == DW_TAG_class_type)
11886 return dwarf2_name (die, cu);
11887 }
11888 while (die->tag != DW_TAG_compile_unit);
11889 }
11890 break;
11891
11892 case DW_TAG_class_type:
11893 case DW_TAG_interface_type:
11894 case DW_TAG_structure_type:
11895 case DW_TAG_union_type:
11896 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11897 structures or unions. These were of the form "._%d" in GCC 4.1,
11898 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11899 and GCC 4.4. We work around this problem by ignoring these. */
11900 if (strncmp (DW_STRING (attr), "._", 2) == 0
11901 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11902 return NULL;
11903 break;
11904
11905 default:
11906 break;
11907 }
11908
11909 if (!DW_STRING_IS_CANONICAL (attr))
11910 {
11911 DW_STRING (attr)
11912 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11913 &cu->objfile->objfile_obstack);
11914 DW_STRING_IS_CANONICAL (attr) = 1;
11915 }
11916 return DW_STRING (attr);
11917 }
11918
11919 /* Return the die that this die in an extension of, or NULL if there
11920 is none. *EXT_CU is the CU containing DIE on input, and the CU
11921 containing the return value on output. */
11922
11923 static struct die_info *
11924 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11925 {
11926 struct attribute *attr;
11927
11928 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11929 if (attr == NULL)
11930 return NULL;
11931
11932 return follow_die_ref (die, attr, ext_cu);
11933 }
11934
11935 /* Convert a DIE tag into its string name. */
11936
11937 static char *
11938 dwarf_tag_name (unsigned tag)
11939 {
11940 switch (tag)
11941 {
11942 case DW_TAG_padding:
11943 return "DW_TAG_padding";
11944 case DW_TAG_array_type:
11945 return "DW_TAG_array_type";
11946 case DW_TAG_class_type:
11947 return "DW_TAG_class_type";
11948 case DW_TAG_entry_point:
11949 return "DW_TAG_entry_point";
11950 case DW_TAG_enumeration_type:
11951 return "DW_TAG_enumeration_type";
11952 case DW_TAG_formal_parameter:
11953 return "DW_TAG_formal_parameter";
11954 case DW_TAG_imported_declaration:
11955 return "DW_TAG_imported_declaration";
11956 case DW_TAG_label:
11957 return "DW_TAG_label";
11958 case DW_TAG_lexical_block:
11959 return "DW_TAG_lexical_block";
11960 case DW_TAG_member:
11961 return "DW_TAG_member";
11962 case DW_TAG_pointer_type:
11963 return "DW_TAG_pointer_type";
11964 case DW_TAG_reference_type:
11965 return "DW_TAG_reference_type";
11966 case DW_TAG_compile_unit:
11967 return "DW_TAG_compile_unit";
11968 case DW_TAG_string_type:
11969 return "DW_TAG_string_type";
11970 case DW_TAG_structure_type:
11971 return "DW_TAG_structure_type";
11972 case DW_TAG_subroutine_type:
11973 return "DW_TAG_subroutine_type";
11974 case DW_TAG_typedef:
11975 return "DW_TAG_typedef";
11976 case DW_TAG_union_type:
11977 return "DW_TAG_union_type";
11978 case DW_TAG_unspecified_parameters:
11979 return "DW_TAG_unspecified_parameters";
11980 case DW_TAG_variant:
11981 return "DW_TAG_variant";
11982 case DW_TAG_common_block:
11983 return "DW_TAG_common_block";
11984 case DW_TAG_common_inclusion:
11985 return "DW_TAG_common_inclusion";
11986 case DW_TAG_inheritance:
11987 return "DW_TAG_inheritance";
11988 case DW_TAG_inlined_subroutine:
11989 return "DW_TAG_inlined_subroutine";
11990 case DW_TAG_module:
11991 return "DW_TAG_module";
11992 case DW_TAG_ptr_to_member_type:
11993 return "DW_TAG_ptr_to_member_type";
11994 case DW_TAG_set_type:
11995 return "DW_TAG_set_type";
11996 case DW_TAG_subrange_type:
11997 return "DW_TAG_subrange_type";
11998 case DW_TAG_with_stmt:
11999 return "DW_TAG_with_stmt";
12000 case DW_TAG_access_declaration:
12001 return "DW_TAG_access_declaration";
12002 case DW_TAG_base_type:
12003 return "DW_TAG_base_type";
12004 case DW_TAG_catch_block:
12005 return "DW_TAG_catch_block";
12006 case DW_TAG_const_type:
12007 return "DW_TAG_const_type";
12008 case DW_TAG_constant:
12009 return "DW_TAG_constant";
12010 case DW_TAG_enumerator:
12011 return "DW_TAG_enumerator";
12012 case DW_TAG_file_type:
12013 return "DW_TAG_file_type";
12014 case DW_TAG_friend:
12015 return "DW_TAG_friend";
12016 case DW_TAG_namelist:
12017 return "DW_TAG_namelist";
12018 case DW_TAG_namelist_item:
12019 return "DW_TAG_namelist_item";
12020 case DW_TAG_packed_type:
12021 return "DW_TAG_packed_type";
12022 case DW_TAG_subprogram:
12023 return "DW_TAG_subprogram";
12024 case DW_TAG_template_type_param:
12025 return "DW_TAG_template_type_param";
12026 case DW_TAG_template_value_param:
12027 return "DW_TAG_template_value_param";
12028 case DW_TAG_thrown_type:
12029 return "DW_TAG_thrown_type";
12030 case DW_TAG_try_block:
12031 return "DW_TAG_try_block";
12032 case DW_TAG_variant_part:
12033 return "DW_TAG_variant_part";
12034 case DW_TAG_variable:
12035 return "DW_TAG_variable";
12036 case DW_TAG_volatile_type:
12037 return "DW_TAG_volatile_type";
12038 case DW_TAG_dwarf_procedure:
12039 return "DW_TAG_dwarf_procedure";
12040 case DW_TAG_restrict_type:
12041 return "DW_TAG_restrict_type";
12042 case DW_TAG_interface_type:
12043 return "DW_TAG_interface_type";
12044 case DW_TAG_namespace:
12045 return "DW_TAG_namespace";
12046 case DW_TAG_imported_module:
12047 return "DW_TAG_imported_module";
12048 case DW_TAG_unspecified_type:
12049 return "DW_TAG_unspecified_type";
12050 case DW_TAG_partial_unit:
12051 return "DW_TAG_partial_unit";
12052 case DW_TAG_imported_unit:
12053 return "DW_TAG_imported_unit";
12054 case DW_TAG_condition:
12055 return "DW_TAG_condition";
12056 case DW_TAG_shared_type:
12057 return "DW_TAG_shared_type";
12058 case DW_TAG_type_unit:
12059 return "DW_TAG_type_unit";
12060 case DW_TAG_MIPS_loop:
12061 return "DW_TAG_MIPS_loop";
12062 case DW_TAG_HP_array_descriptor:
12063 return "DW_TAG_HP_array_descriptor";
12064 case DW_TAG_format_label:
12065 return "DW_TAG_format_label";
12066 case DW_TAG_function_template:
12067 return "DW_TAG_function_template";
12068 case DW_TAG_class_template:
12069 return "DW_TAG_class_template";
12070 case DW_TAG_GNU_BINCL:
12071 return "DW_TAG_GNU_BINCL";
12072 case DW_TAG_GNU_EINCL:
12073 return "DW_TAG_GNU_EINCL";
12074 case DW_TAG_upc_shared_type:
12075 return "DW_TAG_upc_shared_type";
12076 case DW_TAG_upc_strict_type:
12077 return "DW_TAG_upc_strict_type";
12078 case DW_TAG_upc_relaxed_type:
12079 return "DW_TAG_upc_relaxed_type";
12080 case DW_TAG_PGI_kanji_type:
12081 return "DW_TAG_PGI_kanji_type";
12082 case DW_TAG_PGI_interface_block:
12083 return "DW_TAG_PGI_interface_block";
12084 default:
12085 return "DW_TAG_<unknown>";
12086 }
12087 }
12088
12089 /* Convert a DWARF attribute code into its string name. */
12090
12091 static char *
12092 dwarf_attr_name (unsigned attr)
12093 {
12094 switch (attr)
12095 {
12096 case DW_AT_sibling:
12097 return "DW_AT_sibling";
12098 case DW_AT_location:
12099 return "DW_AT_location";
12100 case DW_AT_name:
12101 return "DW_AT_name";
12102 case DW_AT_ordering:
12103 return "DW_AT_ordering";
12104 case DW_AT_subscr_data:
12105 return "DW_AT_subscr_data";
12106 case DW_AT_byte_size:
12107 return "DW_AT_byte_size";
12108 case DW_AT_bit_offset:
12109 return "DW_AT_bit_offset";
12110 case DW_AT_bit_size:
12111 return "DW_AT_bit_size";
12112 case DW_AT_element_list:
12113 return "DW_AT_element_list";
12114 case DW_AT_stmt_list:
12115 return "DW_AT_stmt_list";
12116 case DW_AT_low_pc:
12117 return "DW_AT_low_pc";
12118 case DW_AT_high_pc:
12119 return "DW_AT_high_pc";
12120 case DW_AT_language:
12121 return "DW_AT_language";
12122 case DW_AT_member:
12123 return "DW_AT_member";
12124 case DW_AT_discr:
12125 return "DW_AT_discr";
12126 case DW_AT_discr_value:
12127 return "DW_AT_discr_value";
12128 case DW_AT_visibility:
12129 return "DW_AT_visibility";
12130 case DW_AT_import:
12131 return "DW_AT_import";
12132 case DW_AT_string_length:
12133 return "DW_AT_string_length";
12134 case DW_AT_common_reference:
12135 return "DW_AT_common_reference";
12136 case DW_AT_comp_dir:
12137 return "DW_AT_comp_dir";
12138 case DW_AT_const_value:
12139 return "DW_AT_const_value";
12140 case DW_AT_containing_type:
12141 return "DW_AT_containing_type";
12142 case DW_AT_default_value:
12143 return "DW_AT_default_value";
12144 case DW_AT_inline:
12145 return "DW_AT_inline";
12146 case DW_AT_is_optional:
12147 return "DW_AT_is_optional";
12148 case DW_AT_lower_bound:
12149 return "DW_AT_lower_bound";
12150 case DW_AT_producer:
12151 return "DW_AT_producer";
12152 case DW_AT_prototyped:
12153 return "DW_AT_prototyped";
12154 case DW_AT_return_addr:
12155 return "DW_AT_return_addr";
12156 case DW_AT_start_scope:
12157 return "DW_AT_start_scope";
12158 case DW_AT_bit_stride:
12159 return "DW_AT_bit_stride";
12160 case DW_AT_upper_bound:
12161 return "DW_AT_upper_bound";
12162 case DW_AT_abstract_origin:
12163 return "DW_AT_abstract_origin";
12164 case DW_AT_accessibility:
12165 return "DW_AT_accessibility";
12166 case DW_AT_address_class:
12167 return "DW_AT_address_class";
12168 case DW_AT_artificial:
12169 return "DW_AT_artificial";
12170 case DW_AT_base_types:
12171 return "DW_AT_base_types";
12172 case DW_AT_calling_convention:
12173 return "DW_AT_calling_convention";
12174 case DW_AT_count:
12175 return "DW_AT_count";
12176 case DW_AT_data_member_location:
12177 return "DW_AT_data_member_location";
12178 case DW_AT_decl_column:
12179 return "DW_AT_decl_column";
12180 case DW_AT_decl_file:
12181 return "DW_AT_decl_file";
12182 case DW_AT_decl_line:
12183 return "DW_AT_decl_line";
12184 case DW_AT_declaration:
12185 return "DW_AT_declaration";
12186 case DW_AT_discr_list:
12187 return "DW_AT_discr_list";
12188 case DW_AT_encoding:
12189 return "DW_AT_encoding";
12190 case DW_AT_external:
12191 return "DW_AT_external";
12192 case DW_AT_frame_base:
12193 return "DW_AT_frame_base";
12194 case DW_AT_friend:
12195 return "DW_AT_friend";
12196 case DW_AT_identifier_case:
12197 return "DW_AT_identifier_case";
12198 case DW_AT_macro_info:
12199 return "DW_AT_macro_info";
12200 case DW_AT_namelist_items:
12201 return "DW_AT_namelist_items";
12202 case DW_AT_priority:
12203 return "DW_AT_priority";
12204 case DW_AT_segment:
12205 return "DW_AT_segment";
12206 case DW_AT_specification:
12207 return "DW_AT_specification";
12208 case DW_AT_static_link:
12209 return "DW_AT_static_link";
12210 case DW_AT_type:
12211 return "DW_AT_type";
12212 case DW_AT_use_location:
12213 return "DW_AT_use_location";
12214 case DW_AT_variable_parameter:
12215 return "DW_AT_variable_parameter";
12216 case DW_AT_virtuality:
12217 return "DW_AT_virtuality";
12218 case DW_AT_vtable_elem_location:
12219 return "DW_AT_vtable_elem_location";
12220 /* DWARF 3 values. */
12221 case DW_AT_allocated:
12222 return "DW_AT_allocated";
12223 case DW_AT_associated:
12224 return "DW_AT_associated";
12225 case DW_AT_data_location:
12226 return "DW_AT_data_location";
12227 case DW_AT_byte_stride:
12228 return "DW_AT_byte_stride";
12229 case DW_AT_entry_pc:
12230 return "DW_AT_entry_pc";
12231 case DW_AT_use_UTF8:
12232 return "DW_AT_use_UTF8";
12233 case DW_AT_extension:
12234 return "DW_AT_extension";
12235 case DW_AT_ranges:
12236 return "DW_AT_ranges";
12237 case DW_AT_trampoline:
12238 return "DW_AT_trampoline";
12239 case DW_AT_call_column:
12240 return "DW_AT_call_column";
12241 case DW_AT_call_file:
12242 return "DW_AT_call_file";
12243 case DW_AT_call_line:
12244 return "DW_AT_call_line";
12245 case DW_AT_description:
12246 return "DW_AT_description";
12247 case DW_AT_binary_scale:
12248 return "DW_AT_binary_scale";
12249 case DW_AT_decimal_scale:
12250 return "DW_AT_decimal_scale";
12251 case DW_AT_small:
12252 return "DW_AT_small";
12253 case DW_AT_decimal_sign:
12254 return "DW_AT_decimal_sign";
12255 case DW_AT_digit_count:
12256 return "DW_AT_digit_count";
12257 case DW_AT_picture_string:
12258 return "DW_AT_picture_string";
12259 case DW_AT_mutable:
12260 return "DW_AT_mutable";
12261 case DW_AT_threads_scaled:
12262 return "DW_AT_threads_scaled";
12263 case DW_AT_explicit:
12264 return "DW_AT_explicit";
12265 case DW_AT_object_pointer:
12266 return "DW_AT_object_pointer";
12267 case DW_AT_endianity:
12268 return "DW_AT_endianity";
12269 case DW_AT_elemental:
12270 return "DW_AT_elemental";
12271 case DW_AT_pure:
12272 return "DW_AT_pure";
12273 case DW_AT_recursive:
12274 return "DW_AT_recursive";
12275 /* DWARF 4 values. */
12276 case DW_AT_signature:
12277 return "DW_AT_signature";
12278 case DW_AT_linkage_name:
12279 return "DW_AT_linkage_name";
12280 /* SGI/MIPS extensions. */
12281 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12282 case DW_AT_MIPS_fde:
12283 return "DW_AT_MIPS_fde";
12284 #endif
12285 case DW_AT_MIPS_loop_begin:
12286 return "DW_AT_MIPS_loop_begin";
12287 case DW_AT_MIPS_tail_loop_begin:
12288 return "DW_AT_MIPS_tail_loop_begin";
12289 case DW_AT_MIPS_epilog_begin:
12290 return "DW_AT_MIPS_epilog_begin";
12291 case DW_AT_MIPS_loop_unroll_factor:
12292 return "DW_AT_MIPS_loop_unroll_factor";
12293 case DW_AT_MIPS_software_pipeline_depth:
12294 return "DW_AT_MIPS_software_pipeline_depth";
12295 case DW_AT_MIPS_linkage_name:
12296 return "DW_AT_MIPS_linkage_name";
12297 case DW_AT_MIPS_stride:
12298 return "DW_AT_MIPS_stride";
12299 case DW_AT_MIPS_abstract_name:
12300 return "DW_AT_MIPS_abstract_name";
12301 case DW_AT_MIPS_clone_origin:
12302 return "DW_AT_MIPS_clone_origin";
12303 case DW_AT_MIPS_has_inlines:
12304 return "DW_AT_MIPS_has_inlines";
12305 /* HP extensions. */
12306 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12307 case DW_AT_HP_block_index:
12308 return "DW_AT_HP_block_index";
12309 #endif
12310 case DW_AT_HP_unmodifiable:
12311 return "DW_AT_HP_unmodifiable";
12312 case DW_AT_HP_actuals_stmt_list:
12313 return "DW_AT_HP_actuals_stmt_list";
12314 case DW_AT_HP_proc_per_section:
12315 return "DW_AT_HP_proc_per_section";
12316 case DW_AT_HP_raw_data_ptr:
12317 return "DW_AT_HP_raw_data_ptr";
12318 case DW_AT_HP_pass_by_reference:
12319 return "DW_AT_HP_pass_by_reference";
12320 case DW_AT_HP_opt_level:
12321 return "DW_AT_HP_opt_level";
12322 case DW_AT_HP_prof_version_id:
12323 return "DW_AT_HP_prof_version_id";
12324 case DW_AT_HP_opt_flags:
12325 return "DW_AT_HP_opt_flags";
12326 case DW_AT_HP_cold_region_low_pc:
12327 return "DW_AT_HP_cold_region_low_pc";
12328 case DW_AT_HP_cold_region_high_pc:
12329 return "DW_AT_HP_cold_region_high_pc";
12330 case DW_AT_HP_all_variables_modifiable:
12331 return "DW_AT_HP_all_variables_modifiable";
12332 case DW_AT_HP_linkage_name:
12333 return "DW_AT_HP_linkage_name";
12334 case DW_AT_HP_prof_flags:
12335 return "DW_AT_HP_prof_flags";
12336 /* GNU extensions. */
12337 case DW_AT_sf_names:
12338 return "DW_AT_sf_names";
12339 case DW_AT_src_info:
12340 return "DW_AT_src_info";
12341 case DW_AT_mac_info:
12342 return "DW_AT_mac_info";
12343 case DW_AT_src_coords:
12344 return "DW_AT_src_coords";
12345 case DW_AT_body_begin:
12346 return "DW_AT_body_begin";
12347 case DW_AT_body_end:
12348 return "DW_AT_body_end";
12349 case DW_AT_GNU_vector:
12350 return "DW_AT_GNU_vector";
12351 case DW_AT_GNU_odr_signature:
12352 return "DW_AT_GNU_odr_signature";
12353 /* VMS extensions. */
12354 case DW_AT_VMS_rtnbeg_pd_address:
12355 return "DW_AT_VMS_rtnbeg_pd_address";
12356 /* UPC extension. */
12357 case DW_AT_upc_threads_scaled:
12358 return "DW_AT_upc_threads_scaled";
12359 /* PGI (STMicroelectronics) extensions. */
12360 case DW_AT_PGI_lbase:
12361 return "DW_AT_PGI_lbase";
12362 case DW_AT_PGI_soffset:
12363 return "DW_AT_PGI_soffset";
12364 case DW_AT_PGI_lstride:
12365 return "DW_AT_PGI_lstride";
12366 default:
12367 return "DW_AT_<unknown>";
12368 }
12369 }
12370
12371 /* Convert a DWARF value form code into its string name. */
12372
12373 static char *
12374 dwarf_form_name (unsigned form)
12375 {
12376 switch (form)
12377 {
12378 case DW_FORM_addr:
12379 return "DW_FORM_addr";
12380 case DW_FORM_block2:
12381 return "DW_FORM_block2";
12382 case DW_FORM_block4:
12383 return "DW_FORM_block4";
12384 case DW_FORM_data2:
12385 return "DW_FORM_data2";
12386 case DW_FORM_data4:
12387 return "DW_FORM_data4";
12388 case DW_FORM_data8:
12389 return "DW_FORM_data8";
12390 case DW_FORM_string:
12391 return "DW_FORM_string";
12392 case DW_FORM_block:
12393 return "DW_FORM_block";
12394 case DW_FORM_block1:
12395 return "DW_FORM_block1";
12396 case DW_FORM_data1:
12397 return "DW_FORM_data1";
12398 case DW_FORM_flag:
12399 return "DW_FORM_flag";
12400 case DW_FORM_sdata:
12401 return "DW_FORM_sdata";
12402 case DW_FORM_strp:
12403 return "DW_FORM_strp";
12404 case DW_FORM_udata:
12405 return "DW_FORM_udata";
12406 case DW_FORM_ref_addr:
12407 return "DW_FORM_ref_addr";
12408 case DW_FORM_ref1:
12409 return "DW_FORM_ref1";
12410 case DW_FORM_ref2:
12411 return "DW_FORM_ref2";
12412 case DW_FORM_ref4:
12413 return "DW_FORM_ref4";
12414 case DW_FORM_ref8:
12415 return "DW_FORM_ref8";
12416 case DW_FORM_ref_udata:
12417 return "DW_FORM_ref_udata";
12418 case DW_FORM_indirect:
12419 return "DW_FORM_indirect";
12420 case DW_FORM_sec_offset:
12421 return "DW_FORM_sec_offset";
12422 case DW_FORM_exprloc:
12423 return "DW_FORM_exprloc";
12424 case DW_FORM_flag_present:
12425 return "DW_FORM_flag_present";
12426 case DW_FORM_sig8:
12427 return "DW_FORM_sig8";
12428 default:
12429 return "DW_FORM_<unknown>";
12430 }
12431 }
12432
12433 /* Convert a DWARF stack opcode into its string name. */
12434
12435 const char *
12436 dwarf_stack_op_name (unsigned op, int def)
12437 {
12438 switch (op)
12439 {
12440 case DW_OP_addr:
12441 return "DW_OP_addr";
12442 case DW_OP_deref:
12443 return "DW_OP_deref";
12444 case DW_OP_const1u:
12445 return "DW_OP_const1u";
12446 case DW_OP_const1s:
12447 return "DW_OP_const1s";
12448 case DW_OP_const2u:
12449 return "DW_OP_const2u";
12450 case DW_OP_const2s:
12451 return "DW_OP_const2s";
12452 case DW_OP_const4u:
12453 return "DW_OP_const4u";
12454 case DW_OP_const4s:
12455 return "DW_OP_const4s";
12456 case DW_OP_const8u:
12457 return "DW_OP_const8u";
12458 case DW_OP_const8s:
12459 return "DW_OP_const8s";
12460 case DW_OP_constu:
12461 return "DW_OP_constu";
12462 case DW_OP_consts:
12463 return "DW_OP_consts";
12464 case DW_OP_dup:
12465 return "DW_OP_dup";
12466 case DW_OP_drop:
12467 return "DW_OP_drop";
12468 case DW_OP_over:
12469 return "DW_OP_over";
12470 case DW_OP_pick:
12471 return "DW_OP_pick";
12472 case DW_OP_swap:
12473 return "DW_OP_swap";
12474 case DW_OP_rot:
12475 return "DW_OP_rot";
12476 case DW_OP_xderef:
12477 return "DW_OP_xderef";
12478 case DW_OP_abs:
12479 return "DW_OP_abs";
12480 case DW_OP_and:
12481 return "DW_OP_and";
12482 case DW_OP_div:
12483 return "DW_OP_div";
12484 case DW_OP_minus:
12485 return "DW_OP_minus";
12486 case DW_OP_mod:
12487 return "DW_OP_mod";
12488 case DW_OP_mul:
12489 return "DW_OP_mul";
12490 case DW_OP_neg:
12491 return "DW_OP_neg";
12492 case DW_OP_not:
12493 return "DW_OP_not";
12494 case DW_OP_or:
12495 return "DW_OP_or";
12496 case DW_OP_plus:
12497 return "DW_OP_plus";
12498 case DW_OP_plus_uconst:
12499 return "DW_OP_plus_uconst";
12500 case DW_OP_shl:
12501 return "DW_OP_shl";
12502 case DW_OP_shr:
12503 return "DW_OP_shr";
12504 case DW_OP_shra:
12505 return "DW_OP_shra";
12506 case DW_OP_xor:
12507 return "DW_OP_xor";
12508 case DW_OP_bra:
12509 return "DW_OP_bra";
12510 case DW_OP_eq:
12511 return "DW_OP_eq";
12512 case DW_OP_ge:
12513 return "DW_OP_ge";
12514 case DW_OP_gt:
12515 return "DW_OP_gt";
12516 case DW_OP_le:
12517 return "DW_OP_le";
12518 case DW_OP_lt:
12519 return "DW_OP_lt";
12520 case DW_OP_ne:
12521 return "DW_OP_ne";
12522 case DW_OP_skip:
12523 return "DW_OP_skip";
12524 case DW_OP_lit0:
12525 return "DW_OP_lit0";
12526 case DW_OP_lit1:
12527 return "DW_OP_lit1";
12528 case DW_OP_lit2:
12529 return "DW_OP_lit2";
12530 case DW_OP_lit3:
12531 return "DW_OP_lit3";
12532 case DW_OP_lit4:
12533 return "DW_OP_lit4";
12534 case DW_OP_lit5:
12535 return "DW_OP_lit5";
12536 case DW_OP_lit6:
12537 return "DW_OP_lit6";
12538 case DW_OP_lit7:
12539 return "DW_OP_lit7";
12540 case DW_OP_lit8:
12541 return "DW_OP_lit8";
12542 case DW_OP_lit9:
12543 return "DW_OP_lit9";
12544 case DW_OP_lit10:
12545 return "DW_OP_lit10";
12546 case DW_OP_lit11:
12547 return "DW_OP_lit11";
12548 case DW_OP_lit12:
12549 return "DW_OP_lit12";
12550 case DW_OP_lit13:
12551 return "DW_OP_lit13";
12552 case DW_OP_lit14:
12553 return "DW_OP_lit14";
12554 case DW_OP_lit15:
12555 return "DW_OP_lit15";
12556 case DW_OP_lit16:
12557 return "DW_OP_lit16";
12558 case DW_OP_lit17:
12559 return "DW_OP_lit17";
12560 case DW_OP_lit18:
12561 return "DW_OP_lit18";
12562 case DW_OP_lit19:
12563 return "DW_OP_lit19";
12564 case DW_OP_lit20:
12565 return "DW_OP_lit20";
12566 case DW_OP_lit21:
12567 return "DW_OP_lit21";
12568 case DW_OP_lit22:
12569 return "DW_OP_lit22";
12570 case DW_OP_lit23:
12571 return "DW_OP_lit23";
12572 case DW_OP_lit24:
12573 return "DW_OP_lit24";
12574 case DW_OP_lit25:
12575 return "DW_OP_lit25";
12576 case DW_OP_lit26:
12577 return "DW_OP_lit26";
12578 case DW_OP_lit27:
12579 return "DW_OP_lit27";
12580 case DW_OP_lit28:
12581 return "DW_OP_lit28";
12582 case DW_OP_lit29:
12583 return "DW_OP_lit29";
12584 case DW_OP_lit30:
12585 return "DW_OP_lit30";
12586 case DW_OP_lit31:
12587 return "DW_OP_lit31";
12588 case DW_OP_reg0:
12589 return "DW_OP_reg0";
12590 case DW_OP_reg1:
12591 return "DW_OP_reg1";
12592 case DW_OP_reg2:
12593 return "DW_OP_reg2";
12594 case DW_OP_reg3:
12595 return "DW_OP_reg3";
12596 case DW_OP_reg4:
12597 return "DW_OP_reg4";
12598 case DW_OP_reg5:
12599 return "DW_OP_reg5";
12600 case DW_OP_reg6:
12601 return "DW_OP_reg6";
12602 case DW_OP_reg7:
12603 return "DW_OP_reg7";
12604 case DW_OP_reg8:
12605 return "DW_OP_reg8";
12606 case DW_OP_reg9:
12607 return "DW_OP_reg9";
12608 case DW_OP_reg10:
12609 return "DW_OP_reg10";
12610 case DW_OP_reg11:
12611 return "DW_OP_reg11";
12612 case DW_OP_reg12:
12613 return "DW_OP_reg12";
12614 case DW_OP_reg13:
12615 return "DW_OP_reg13";
12616 case DW_OP_reg14:
12617 return "DW_OP_reg14";
12618 case DW_OP_reg15:
12619 return "DW_OP_reg15";
12620 case DW_OP_reg16:
12621 return "DW_OP_reg16";
12622 case DW_OP_reg17:
12623 return "DW_OP_reg17";
12624 case DW_OP_reg18:
12625 return "DW_OP_reg18";
12626 case DW_OP_reg19:
12627 return "DW_OP_reg19";
12628 case DW_OP_reg20:
12629 return "DW_OP_reg20";
12630 case DW_OP_reg21:
12631 return "DW_OP_reg21";
12632 case DW_OP_reg22:
12633 return "DW_OP_reg22";
12634 case DW_OP_reg23:
12635 return "DW_OP_reg23";
12636 case DW_OP_reg24:
12637 return "DW_OP_reg24";
12638 case DW_OP_reg25:
12639 return "DW_OP_reg25";
12640 case DW_OP_reg26:
12641 return "DW_OP_reg26";
12642 case DW_OP_reg27:
12643 return "DW_OP_reg27";
12644 case DW_OP_reg28:
12645 return "DW_OP_reg28";
12646 case DW_OP_reg29:
12647 return "DW_OP_reg29";
12648 case DW_OP_reg30:
12649 return "DW_OP_reg30";
12650 case DW_OP_reg31:
12651 return "DW_OP_reg31";
12652 case DW_OP_breg0:
12653 return "DW_OP_breg0";
12654 case DW_OP_breg1:
12655 return "DW_OP_breg1";
12656 case DW_OP_breg2:
12657 return "DW_OP_breg2";
12658 case DW_OP_breg3:
12659 return "DW_OP_breg3";
12660 case DW_OP_breg4:
12661 return "DW_OP_breg4";
12662 case DW_OP_breg5:
12663 return "DW_OP_breg5";
12664 case DW_OP_breg6:
12665 return "DW_OP_breg6";
12666 case DW_OP_breg7:
12667 return "DW_OP_breg7";
12668 case DW_OP_breg8:
12669 return "DW_OP_breg8";
12670 case DW_OP_breg9:
12671 return "DW_OP_breg9";
12672 case DW_OP_breg10:
12673 return "DW_OP_breg10";
12674 case DW_OP_breg11:
12675 return "DW_OP_breg11";
12676 case DW_OP_breg12:
12677 return "DW_OP_breg12";
12678 case DW_OP_breg13:
12679 return "DW_OP_breg13";
12680 case DW_OP_breg14:
12681 return "DW_OP_breg14";
12682 case DW_OP_breg15:
12683 return "DW_OP_breg15";
12684 case DW_OP_breg16:
12685 return "DW_OP_breg16";
12686 case DW_OP_breg17:
12687 return "DW_OP_breg17";
12688 case DW_OP_breg18:
12689 return "DW_OP_breg18";
12690 case DW_OP_breg19:
12691 return "DW_OP_breg19";
12692 case DW_OP_breg20:
12693 return "DW_OP_breg20";
12694 case DW_OP_breg21:
12695 return "DW_OP_breg21";
12696 case DW_OP_breg22:
12697 return "DW_OP_breg22";
12698 case DW_OP_breg23:
12699 return "DW_OP_breg23";
12700 case DW_OP_breg24:
12701 return "DW_OP_breg24";
12702 case DW_OP_breg25:
12703 return "DW_OP_breg25";
12704 case DW_OP_breg26:
12705 return "DW_OP_breg26";
12706 case DW_OP_breg27:
12707 return "DW_OP_breg27";
12708 case DW_OP_breg28:
12709 return "DW_OP_breg28";
12710 case DW_OP_breg29:
12711 return "DW_OP_breg29";
12712 case DW_OP_breg30:
12713 return "DW_OP_breg30";
12714 case DW_OP_breg31:
12715 return "DW_OP_breg31";
12716 case DW_OP_regx:
12717 return "DW_OP_regx";
12718 case DW_OP_fbreg:
12719 return "DW_OP_fbreg";
12720 case DW_OP_bregx:
12721 return "DW_OP_bregx";
12722 case DW_OP_piece:
12723 return "DW_OP_piece";
12724 case DW_OP_deref_size:
12725 return "DW_OP_deref_size";
12726 case DW_OP_xderef_size:
12727 return "DW_OP_xderef_size";
12728 case DW_OP_nop:
12729 return "DW_OP_nop";
12730 /* DWARF 3 extensions. */
12731 case DW_OP_push_object_address:
12732 return "DW_OP_push_object_address";
12733 case DW_OP_call2:
12734 return "DW_OP_call2";
12735 case DW_OP_call4:
12736 return "DW_OP_call4";
12737 case DW_OP_call_ref:
12738 return "DW_OP_call_ref";
12739 case DW_OP_form_tls_address:
12740 return "DW_OP_form_tls_address";
12741 case DW_OP_call_frame_cfa:
12742 return "DW_OP_call_frame_cfa";
12743 case DW_OP_bit_piece:
12744 return "DW_OP_bit_piece";
12745 /* DWARF 4 extensions. */
12746 case DW_OP_implicit_value:
12747 return "DW_OP_implicit_value";
12748 case DW_OP_stack_value:
12749 return "DW_OP_stack_value";
12750 /* GNU extensions. */
12751 case DW_OP_GNU_push_tls_address:
12752 return "DW_OP_GNU_push_tls_address";
12753 case DW_OP_GNU_uninit:
12754 return "DW_OP_GNU_uninit";
12755 case DW_OP_GNU_implicit_pointer:
12756 return "DW_OP_GNU_implicit_pointer";
12757 default:
12758 return def ? "OP_<unknown>" : NULL;
12759 }
12760 }
12761
12762 static char *
12763 dwarf_bool_name (unsigned mybool)
12764 {
12765 if (mybool)
12766 return "TRUE";
12767 else
12768 return "FALSE";
12769 }
12770
12771 /* Convert a DWARF type code into its string name. */
12772
12773 static char *
12774 dwarf_type_encoding_name (unsigned enc)
12775 {
12776 switch (enc)
12777 {
12778 case DW_ATE_void:
12779 return "DW_ATE_void";
12780 case DW_ATE_address:
12781 return "DW_ATE_address";
12782 case DW_ATE_boolean:
12783 return "DW_ATE_boolean";
12784 case DW_ATE_complex_float:
12785 return "DW_ATE_complex_float";
12786 case DW_ATE_float:
12787 return "DW_ATE_float";
12788 case DW_ATE_signed:
12789 return "DW_ATE_signed";
12790 case DW_ATE_signed_char:
12791 return "DW_ATE_signed_char";
12792 case DW_ATE_unsigned:
12793 return "DW_ATE_unsigned";
12794 case DW_ATE_unsigned_char:
12795 return "DW_ATE_unsigned_char";
12796 /* DWARF 3. */
12797 case DW_ATE_imaginary_float:
12798 return "DW_ATE_imaginary_float";
12799 case DW_ATE_packed_decimal:
12800 return "DW_ATE_packed_decimal";
12801 case DW_ATE_numeric_string:
12802 return "DW_ATE_numeric_string";
12803 case DW_ATE_edited:
12804 return "DW_ATE_edited";
12805 case DW_ATE_signed_fixed:
12806 return "DW_ATE_signed_fixed";
12807 case DW_ATE_unsigned_fixed:
12808 return "DW_ATE_unsigned_fixed";
12809 case DW_ATE_decimal_float:
12810 return "DW_ATE_decimal_float";
12811 /* DWARF 4. */
12812 case DW_ATE_UTF:
12813 return "DW_ATE_UTF";
12814 /* HP extensions. */
12815 case DW_ATE_HP_float80:
12816 return "DW_ATE_HP_float80";
12817 case DW_ATE_HP_complex_float80:
12818 return "DW_ATE_HP_complex_float80";
12819 case DW_ATE_HP_float128:
12820 return "DW_ATE_HP_float128";
12821 case DW_ATE_HP_complex_float128:
12822 return "DW_ATE_HP_complex_float128";
12823 case DW_ATE_HP_floathpintel:
12824 return "DW_ATE_HP_floathpintel";
12825 case DW_ATE_HP_imaginary_float80:
12826 return "DW_ATE_HP_imaginary_float80";
12827 case DW_ATE_HP_imaginary_float128:
12828 return "DW_ATE_HP_imaginary_float128";
12829 default:
12830 return "DW_ATE_<unknown>";
12831 }
12832 }
12833
12834 /* Convert a DWARF call frame info operation to its string name. */
12835
12836 #if 0
12837 static char *
12838 dwarf_cfi_name (unsigned cfi_opc)
12839 {
12840 switch (cfi_opc)
12841 {
12842 case DW_CFA_advance_loc:
12843 return "DW_CFA_advance_loc";
12844 case DW_CFA_offset:
12845 return "DW_CFA_offset";
12846 case DW_CFA_restore:
12847 return "DW_CFA_restore";
12848 case DW_CFA_nop:
12849 return "DW_CFA_nop";
12850 case DW_CFA_set_loc:
12851 return "DW_CFA_set_loc";
12852 case DW_CFA_advance_loc1:
12853 return "DW_CFA_advance_loc1";
12854 case DW_CFA_advance_loc2:
12855 return "DW_CFA_advance_loc2";
12856 case DW_CFA_advance_loc4:
12857 return "DW_CFA_advance_loc4";
12858 case DW_CFA_offset_extended:
12859 return "DW_CFA_offset_extended";
12860 case DW_CFA_restore_extended:
12861 return "DW_CFA_restore_extended";
12862 case DW_CFA_undefined:
12863 return "DW_CFA_undefined";
12864 case DW_CFA_same_value:
12865 return "DW_CFA_same_value";
12866 case DW_CFA_register:
12867 return "DW_CFA_register";
12868 case DW_CFA_remember_state:
12869 return "DW_CFA_remember_state";
12870 case DW_CFA_restore_state:
12871 return "DW_CFA_restore_state";
12872 case DW_CFA_def_cfa:
12873 return "DW_CFA_def_cfa";
12874 case DW_CFA_def_cfa_register:
12875 return "DW_CFA_def_cfa_register";
12876 case DW_CFA_def_cfa_offset:
12877 return "DW_CFA_def_cfa_offset";
12878 /* DWARF 3. */
12879 case DW_CFA_def_cfa_expression:
12880 return "DW_CFA_def_cfa_expression";
12881 case DW_CFA_expression:
12882 return "DW_CFA_expression";
12883 case DW_CFA_offset_extended_sf:
12884 return "DW_CFA_offset_extended_sf";
12885 case DW_CFA_def_cfa_sf:
12886 return "DW_CFA_def_cfa_sf";
12887 case DW_CFA_def_cfa_offset_sf:
12888 return "DW_CFA_def_cfa_offset_sf";
12889 case DW_CFA_val_offset:
12890 return "DW_CFA_val_offset";
12891 case DW_CFA_val_offset_sf:
12892 return "DW_CFA_val_offset_sf";
12893 case DW_CFA_val_expression:
12894 return "DW_CFA_val_expression";
12895 /* SGI/MIPS specific. */
12896 case DW_CFA_MIPS_advance_loc8:
12897 return "DW_CFA_MIPS_advance_loc8";
12898 /* GNU extensions. */
12899 case DW_CFA_GNU_window_save:
12900 return "DW_CFA_GNU_window_save";
12901 case DW_CFA_GNU_args_size:
12902 return "DW_CFA_GNU_args_size";
12903 case DW_CFA_GNU_negative_offset_extended:
12904 return "DW_CFA_GNU_negative_offset_extended";
12905 default:
12906 return "DW_CFA_<unknown>";
12907 }
12908 }
12909 #endif
12910
12911 static void
12912 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12913 {
12914 unsigned int i;
12915
12916 print_spaces (indent, f);
12917 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12918 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12919
12920 if (die->parent != NULL)
12921 {
12922 print_spaces (indent, f);
12923 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12924 die->parent->offset);
12925 }
12926
12927 print_spaces (indent, f);
12928 fprintf_unfiltered (f, " has children: %s\n",
12929 dwarf_bool_name (die->child != NULL));
12930
12931 print_spaces (indent, f);
12932 fprintf_unfiltered (f, " attributes:\n");
12933
12934 for (i = 0; i < die->num_attrs; ++i)
12935 {
12936 print_spaces (indent, f);
12937 fprintf_unfiltered (f, " %s (%s) ",
12938 dwarf_attr_name (die->attrs[i].name),
12939 dwarf_form_name (die->attrs[i].form));
12940
12941 switch (die->attrs[i].form)
12942 {
12943 case DW_FORM_ref_addr:
12944 case DW_FORM_addr:
12945 fprintf_unfiltered (f, "address: ");
12946 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12947 break;
12948 case DW_FORM_block2:
12949 case DW_FORM_block4:
12950 case DW_FORM_block:
12951 case DW_FORM_block1:
12952 fprintf_unfiltered (f, "block: size %d",
12953 DW_BLOCK (&die->attrs[i])->size);
12954 break;
12955 case DW_FORM_exprloc:
12956 fprintf_unfiltered (f, "expression: size %u",
12957 DW_BLOCK (&die->attrs[i])->size);
12958 break;
12959 case DW_FORM_ref1:
12960 case DW_FORM_ref2:
12961 case DW_FORM_ref4:
12962 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12963 (long) (DW_ADDR (&die->attrs[i])));
12964 break;
12965 case DW_FORM_data1:
12966 case DW_FORM_data2:
12967 case DW_FORM_data4:
12968 case DW_FORM_data8:
12969 case DW_FORM_udata:
12970 case DW_FORM_sdata:
12971 fprintf_unfiltered (f, "constant: %s",
12972 pulongest (DW_UNSND (&die->attrs[i])));
12973 break;
12974 case DW_FORM_sec_offset:
12975 fprintf_unfiltered (f, "section offset: %s",
12976 pulongest (DW_UNSND (&die->attrs[i])));
12977 break;
12978 case DW_FORM_sig8:
12979 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12980 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12981 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12982 else
12983 fprintf_unfiltered (f, "signatured type, offset: unknown");
12984 break;
12985 case DW_FORM_string:
12986 case DW_FORM_strp:
12987 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12988 DW_STRING (&die->attrs[i])
12989 ? DW_STRING (&die->attrs[i]) : "",
12990 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12991 break;
12992 case DW_FORM_flag:
12993 if (DW_UNSND (&die->attrs[i]))
12994 fprintf_unfiltered (f, "flag: TRUE");
12995 else
12996 fprintf_unfiltered (f, "flag: FALSE");
12997 break;
12998 case DW_FORM_flag_present:
12999 fprintf_unfiltered (f, "flag: TRUE");
13000 break;
13001 case DW_FORM_indirect:
13002 /* The reader will have reduced the indirect form to
13003 the "base form" so this form should not occur. */
13004 fprintf_unfiltered (f,
13005 "unexpected attribute form: DW_FORM_indirect");
13006 break;
13007 default:
13008 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13009 die->attrs[i].form);
13010 break;
13011 }
13012 fprintf_unfiltered (f, "\n");
13013 }
13014 }
13015
13016 static void
13017 dump_die_for_error (struct die_info *die)
13018 {
13019 dump_die_shallow (gdb_stderr, 0, die);
13020 }
13021
13022 static void
13023 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13024 {
13025 int indent = level * 4;
13026
13027 gdb_assert (die != NULL);
13028
13029 if (level >= max_level)
13030 return;
13031
13032 dump_die_shallow (f, indent, die);
13033
13034 if (die->child != NULL)
13035 {
13036 print_spaces (indent, f);
13037 fprintf_unfiltered (f, " Children:");
13038 if (level + 1 < max_level)
13039 {
13040 fprintf_unfiltered (f, "\n");
13041 dump_die_1 (f, level + 1, max_level, die->child);
13042 }
13043 else
13044 {
13045 fprintf_unfiltered (f,
13046 " [not printed, max nesting level reached]\n");
13047 }
13048 }
13049
13050 if (die->sibling != NULL && level > 0)
13051 {
13052 dump_die_1 (f, level, max_level, die->sibling);
13053 }
13054 }
13055
13056 /* This is called from the pdie macro in gdbinit.in.
13057 It's not static so gcc will keep a copy callable from gdb. */
13058
13059 void
13060 dump_die (struct die_info *die, int max_level)
13061 {
13062 dump_die_1 (gdb_stdlog, 0, max_level, die);
13063 }
13064
13065 static void
13066 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13067 {
13068 void **slot;
13069
13070 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13071
13072 *slot = die;
13073 }
13074
13075 static int
13076 is_ref_attr (struct attribute *attr)
13077 {
13078 switch (attr->form)
13079 {
13080 case DW_FORM_ref_addr:
13081 case DW_FORM_ref1:
13082 case DW_FORM_ref2:
13083 case DW_FORM_ref4:
13084 case DW_FORM_ref8:
13085 case DW_FORM_ref_udata:
13086 return 1;
13087 default:
13088 return 0;
13089 }
13090 }
13091
13092 static unsigned int
13093 dwarf2_get_ref_die_offset (struct attribute *attr)
13094 {
13095 if (is_ref_attr (attr))
13096 return DW_ADDR (attr);
13097
13098 complaint (&symfile_complaints,
13099 _("unsupported die ref attribute form: '%s'"),
13100 dwarf_form_name (attr->form));
13101 return 0;
13102 }
13103
13104 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13105 * the value held by the attribute is not constant. */
13106
13107 static LONGEST
13108 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13109 {
13110 if (attr->form == DW_FORM_sdata)
13111 return DW_SND (attr);
13112 else if (attr->form == DW_FORM_udata
13113 || attr->form == DW_FORM_data1
13114 || attr->form == DW_FORM_data2
13115 || attr->form == DW_FORM_data4
13116 || attr->form == DW_FORM_data8)
13117 return DW_UNSND (attr);
13118 else
13119 {
13120 complaint (&symfile_complaints,
13121 _("Attribute value is not a constant (%s)"),
13122 dwarf_form_name (attr->form));
13123 return default_value;
13124 }
13125 }
13126
13127 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13128 unit and add it to our queue.
13129 The result is non-zero if PER_CU was queued, otherwise the result is zero
13130 meaning either PER_CU is already queued or it is already loaded. */
13131
13132 static int
13133 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13134 struct dwarf2_per_cu_data *per_cu)
13135 {
13136 /* We may arrive here during partial symbol reading, if we need full
13137 DIEs to process an unusual case (e.g. template arguments). Do
13138 not queue PER_CU, just tell our caller to load its DIEs. */
13139 if (dwarf2_per_objfile->reading_partial_symbols)
13140 {
13141 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13142 return 1;
13143 return 0;
13144 }
13145
13146 /* Mark the dependence relation so that we don't flush PER_CU
13147 too early. */
13148 dwarf2_add_dependence (this_cu, per_cu);
13149
13150 /* If it's already on the queue, we have nothing to do. */
13151 if (per_cu->queued)
13152 return 0;
13153
13154 /* If the compilation unit is already loaded, just mark it as
13155 used. */
13156 if (per_cu->cu != NULL)
13157 {
13158 per_cu->cu->last_used = 0;
13159 return 0;
13160 }
13161
13162 /* Add it to the queue. */
13163 queue_comp_unit (per_cu, this_cu->objfile);
13164
13165 return 1;
13166 }
13167
13168 /* Follow reference or signature attribute ATTR of SRC_DIE.
13169 On entry *REF_CU is the CU of SRC_DIE.
13170 On exit *REF_CU is the CU of the result. */
13171
13172 static struct die_info *
13173 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13174 struct dwarf2_cu **ref_cu)
13175 {
13176 struct die_info *die;
13177
13178 if (is_ref_attr (attr))
13179 die = follow_die_ref (src_die, attr, ref_cu);
13180 else if (attr->form == DW_FORM_sig8)
13181 die = follow_die_sig (src_die, attr, ref_cu);
13182 else
13183 {
13184 dump_die_for_error (src_die);
13185 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13186 (*ref_cu)->objfile->name);
13187 }
13188
13189 return die;
13190 }
13191
13192 /* Follow reference OFFSET.
13193 On entry *REF_CU is the CU of the source die referencing OFFSET.
13194 On exit *REF_CU is the CU of the result.
13195 Returns NULL if OFFSET is invalid. */
13196
13197 static struct die_info *
13198 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13199 {
13200 struct die_info temp_die;
13201 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13202
13203 gdb_assert (cu->per_cu != NULL);
13204
13205 target_cu = cu;
13206
13207 if (cu->per_cu->from_debug_types)
13208 {
13209 /* .debug_types CUs cannot reference anything outside their CU.
13210 If they need to, they have to reference a signatured type via
13211 DW_FORM_sig8. */
13212 if (! offset_in_cu_p (&cu->header, offset))
13213 return NULL;
13214 }
13215 else if (! offset_in_cu_p (&cu->header, offset))
13216 {
13217 struct dwarf2_per_cu_data *per_cu;
13218
13219 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13220
13221 /* If necessary, add it to the queue and load its DIEs. */
13222 if (maybe_queue_comp_unit (cu, per_cu))
13223 load_full_comp_unit (per_cu, cu->objfile);
13224
13225 target_cu = per_cu->cu;
13226 }
13227 else if (cu->dies == NULL)
13228 {
13229 /* We're loading full DIEs during partial symbol reading. */
13230 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13231 load_full_comp_unit (cu->per_cu, cu->objfile);
13232 }
13233
13234 *ref_cu = target_cu;
13235 temp_die.offset = offset;
13236 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13237 }
13238
13239 /* Follow reference attribute ATTR of SRC_DIE.
13240 On entry *REF_CU is the CU of SRC_DIE.
13241 On exit *REF_CU is the CU of the result. */
13242
13243 static struct die_info *
13244 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13245 struct dwarf2_cu **ref_cu)
13246 {
13247 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13248 struct dwarf2_cu *cu = *ref_cu;
13249 struct die_info *die;
13250
13251 die = follow_die_offset (offset, ref_cu);
13252 if (!die)
13253 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13254 "at 0x%x [in module %s]"),
13255 offset, src_die->offset, cu->objfile->name);
13256
13257 return die;
13258 }
13259
13260 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13261 value is intended for DW_OP_call*. */
13262
13263 struct dwarf2_locexpr_baton
13264 dwarf2_fetch_die_location_block (unsigned int offset,
13265 struct dwarf2_per_cu_data *per_cu,
13266 CORE_ADDR (*get_frame_pc) (void *baton),
13267 void *baton)
13268 {
13269 struct dwarf2_cu *cu = per_cu->cu;
13270 struct die_info *die;
13271 struct attribute *attr;
13272 struct dwarf2_locexpr_baton retval;
13273
13274 dw2_setup (per_cu->objfile);
13275
13276 die = follow_die_offset (offset, &cu);
13277 if (!die)
13278 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13279 offset, per_cu->cu->objfile->name);
13280
13281 attr = dwarf2_attr (die, DW_AT_location, cu);
13282 if (!attr)
13283 {
13284 /* DWARF: "If there is no such attribute, then there is no effect.". */
13285
13286 retval.data = NULL;
13287 retval.size = 0;
13288 }
13289 else if (attr_form_is_section_offset (attr))
13290 {
13291 struct dwarf2_loclist_baton loclist_baton;
13292 CORE_ADDR pc = (*get_frame_pc) (baton);
13293 size_t size;
13294
13295 fill_in_loclist_baton (cu, &loclist_baton, attr);
13296
13297 retval.data = dwarf2_find_location_expression (&loclist_baton,
13298 &size, pc);
13299 retval.size = size;
13300 }
13301 else
13302 {
13303 if (!attr_form_is_block (attr))
13304 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13305 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13306 offset, per_cu->cu->objfile->name);
13307
13308 retval.data = DW_BLOCK (attr)->data;
13309 retval.size = DW_BLOCK (attr)->size;
13310 }
13311 retval.per_cu = cu->per_cu;
13312 return retval;
13313 }
13314
13315 /* Follow the signature attribute ATTR in SRC_DIE.
13316 On entry *REF_CU is the CU of SRC_DIE.
13317 On exit *REF_CU is the CU of the result. */
13318
13319 static struct die_info *
13320 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13321 struct dwarf2_cu **ref_cu)
13322 {
13323 struct objfile *objfile = (*ref_cu)->objfile;
13324 struct die_info temp_die;
13325 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13326 struct dwarf2_cu *sig_cu;
13327 struct die_info *die;
13328
13329 /* sig_type will be NULL if the signatured type is missing from
13330 the debug info. */
13331 if (sig_type == NULL)
13332 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13333 "at 0x%x [in module %s]"),
13334 src_die->offset, objfile->name);
13335
13336 /* If necessary, add it to the queue and load its DIEs. */
13337
13338 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13339 read_signatured_type (objfile, sig_type);
13340
13341 gdb_assert (sig_type->per_cu.cu != NULL);
13342
13343 sig_cu = sig_type->per_cu.cu;
13344 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13345 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13346 if (die)
13347 {
13348 *ref_cu = sig_cu;
13349 return die;
13350 }
13351
13352 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13353 "from DIE at 0x%x [in module %s]"),
13354 sig_type->type_offset, src_die->offset, objfile->name);
13355 }
13356
13357 /* Given an offset of a signatured type, return its signatured_type. */
13358
13359 static struct signatured_type *
13360 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13361 {
13362 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13363 unsigned int length, initial_length_size;
13364 unsigned int sig_offset;
13365 struct signatured_type find_entry, *type_sig;
13366
13367 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13368 sig_offset = (initial_length_size
13369 + 2 /*version*/
13370 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13371 + 1 /*address_size*/);
13372 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13373 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13374
13375 /* This is only used to lookup previously recorded types.
13376 If we didn't find it, it's our bug. */
13377 gdb_assert (type_sig != NULL);
13378 gdb_assert (offset == type_sig->offset);
13379
13380 return type_sig;
13381 }
13382
13383 /* Read in signatured type at OFFSET and build its CU and die(s). */
13384
13385 static void
13386 read_signatured_type_at_offset (struct objfile *objfile,
13387 unsigned int offset)
13388 {
13389 struct signatured_type *type_sig;
13390
13391 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13392
13393 /* We have the section offset, but we need the signature to do the
13394 hash table lookup. */
13395 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13396
13397 gdb_assert (type_sig->per_cu.cu == NULL);
13398
13399 read_signatured_type (objfile, type_sig);
13400
13401 gdb_assert (type_sig->per_cu.cu != NULL);
13402 }
13403
13404 /* Read in a signatured type and build its CU and DIEs. */
13405
13406 static void
13407 read_signatured_type (struct objfile *objfile,
13408 struct signatured_type *type_sig)
13409 {
13410 gdb_byte *types_ptr;
13411 struct die_reader_specs reader_specs;
13412 struct dwarf2_cu *cu;
13413 ULONGEST signature;
13414 struct cleanup *back_to, *free_cu_cleanup;
13415
13416 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13417 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13418
13419 gdb_assert (type_sig->per_cu.cu == NULL);
13420
13421 cu = xmalloc (sizeof (*cu));
13422 init_one_comp_unit (cu, objfile);
13423
13424 type_sig->per_cu.cu = cu;
13425 cu->per_cu = &type_sig->per_cu;
13426
13427 /* If an error occurs while loading, release our storage. */
13428 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13429
13430 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13431 types_ptr, objfile->obfd);
13432 gdb_assert (signature == type_sig->signature);
13433
13434 cu->die_hash
13435 = htab_create_alloc_ex (cu->header.length / 12,
13436 die_hash,
13437 die_eq,
13438 NULL,
13439 &cu->comp_unit_obstack,
13440 hashtab_obstack_allocate,
13441 dummy_obstack_deallocate);
13442
13443 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13444 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13445
13446 init_cu_die_reader (&reader_specs, cu);
13447
13448 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13449 NULL /*parent*/);
13450
13451 /* We try not to read any attributes in this function, because not
13452 all objfiles needed for references have been loaded yet, and symbol
13453 table processing isn't initialized. But we have to set the CU language,
13454 or we won't be able to build types correctly. */
13455 prepare_one_comp_unit (cu, cu->dies);
13456
13457 do_cleanups (back_to);
13458
13459 /* We've successfully allocated this compilation unit. Let our caller
13460 clean it up when finished with it. */
13461 discard_cleanups (free_cu_cleanup);
13462
13463 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13464 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13465 }
13466
13467 /* Decode simple location descriptions.
13468 Given a pointer to a dwarf block that defines a location, compute
13469 the location and return the value.
13470
13471 NOTE drow/2003-11-18: This function is called in two situations
13472 now: for the address of static or global variables (partial symbols
13473 only) and for offsets into structures which are expected to be
13474 (more or less) constant. The partial symbol case should go away,
13475 and only the constant case should remain. That will let this
13476 function complain more accurately. A few special modes are allowed
13477 without complaint for global variables (for instance, global
13478 register values and thread-local values).
13479
13480 A location description containing no operations indicates that the
13481 object is optimized out. The return value is 0 for that case.
13482 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13483 callers will only want a very basic result and this can become a
13484 complaint.
13485
13486 Note that stack[0] is unused except as a default error return. */
13487
13488 static CORE_ADDR
13489 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13490 {
13491 struct objfile *objfile = cu->objfile;
13492 int i;
13493 int size = blk->size;
13494 gdb_byte *data = blk->data;
13495 CORE_ADDR stack[64];
13496 int stacki;
13497 unsigned int bytes_read, unsnd;
13498 gdb_byte op;
13499
13500 i = 0;
13501 stacki = 0;
13502 stack[stacki] = 0;
13503 stack[++stacki] = 0;
13504
13505 while (i < size)
13506 {
13507 op = data[i++];
13508 switch (op)
13509 {
13510 case DW_OP_lit0:
13511 case DW_OP_lit1:
13512 case DW_OP_lit2:
13513 case DW_OP_lit3:
13514 case DW_OP_lit4:
13515 case DW_OP_lit5:
13516 case DW_OP_lit6:
13517 case DW_OP_lit7:
13518 case DW_OP_lit8:
13519 case DW_OP_lit9:
13520 case DW_OP_lit10:
13521 case DW_OP_lit11:
13522 case DW_OP_lit12:
13523 case DW_OP_lit13:
13524 case DW_OP_lit14:
13525 case DW_OP_lit15:
13526 case DW_OP_lit16:
13527 case DW_OP_lit17:
13528 case DW_OP_lit18:
13529 case DW_OP_lit19:
13530 case DW_OP_lit20:
13531 case DW_OP_lit21:
13532 case DW_OP_lit22:
13533 case DW_OP_lit23:
13534 case DW_OP_lit24:
13535 case DW_OP_lit25:
13536 case DW_OP_lit26:
13537 case DW_OP_lit27:
13538 case DW_OP_lit28:
13539 case DW_OP_lit29:
13540 case DW_OP_lit30:
13541 case DW_OP_lit31:
13542 stack[++stacki] = op - DW_OP_lit0;
13543 break;
13544
13545 case DW_OP_reg0:
13546 case DW_OP_reg1:
13547 case DW_OP_reg2:
13548 case DW_OP_reg3:
13549 case DW_OP_reg4:
13550 case DW_OP_reg5:
13551 case DW_OP_reg6:
13552 case DW_OP_reg7:
13553 case DW_OP_reg8:
13554 case DW_OP_reg9:
13555 case DW_OP_reg10:
13556 case DW_OP_reg11:
13557 case DW_OP_reg12:
13558 case DW_OP_reg13:
13559 case DW_OP_reg14:
13560 case DW_OP_reg15:
13561 case DW_OP_reg16:
13562 case DW_OP_reg17:
13563 case DW_OP_reg18:
13564 case DW_OP_reg19:
13565 case DW_OP_reg20:
13566 case DW_OP_reg21:
13567 case DW_OP_reg22:
13568 case DW_OP_reg23:
13569 case DW_OP_reg24:
13570 case DW_OP_reg25:
13571 case DW_OP_reg26:
13572 case DW_OP_reg27:
13573 case DW_OP_reg28:
13574 case DW_OP_reg29:
13575 case DW_OP_reg30:
13576 case DW_OP_reg31:
13577 stack[++stacki] = op - DW_OP_reg0;
13578 if (i < size)
13579 dwarf2_complex_location_expr_complaint ();
13580 break;
13581
13582 case DW_OP_regx:
13583 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13584 i += bytes_read;
13585 stack[++stacki] = unsnd;
13586 if (i < size)
13587 dwarf2_complex_location_expr_complaint ();
13588 break;
13589
13590 case DW_OP_addr:
13591 stack[++stacki] = read_address (objfile->obfd, &data[i],
13592 cu, &bytes_read);
13593 i += bytes_read;
13594 break;
13595
13596 case DW_OP_const1u:
13597 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13598 i += 1;
13599 break;
13600
13601 case DW_OP_const1s:
13602 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13603 i += 1;
13604 break;
13605
13606 case DW_OP_const2u:
13607 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13608 i += 2;
13609 break;
13610
13611 case DW_OP_const2s:
13612 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13613 i += 2;
13614 break;
13615
13616 case DW_OP_const4u:
13617 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13618 i += 4;
13619 break;
13620
13621 case DW_OP_const4s:
13622 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13623 i += 4;
13624 break;
13625
13626 case DW_OP_constu:
13627 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13628 &bytes_read);
13629 i += bytes_read;
13630 break;
13631
13632 case DW_OP_consts:
13633 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13634 i += bytes_read;
13635 break;
13636
13637 case DW_OP_dup:
13638 stack[stacki + 1] = stack[stacki];
13639 stacki++;
13640 break;
13641
13642 case DW_OP_plus:
13643 stack[stacki - 1] += stack[stacki];
13644 stacki--;
13645 break;
13646
13647 case DW_OP_plus_uconst:
13648 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13649 &bytes_read);
13650 i += bytes_read;
13651 break;
13652
13653 case DW_OP_minus:
13654 stack[stacki - 1] -= stack[stacki];
13655 stacki--;
13656 break;
13657
13658 case DW_OP_deref:
13659 /* If we're not the last op, then we definitely can't encode
13660 this using GDB's address_class enum. This is valid for partial
13661 global symbols, although the variable's address will be bogus
13662 in the psymtab. */
13663 if (i < size)
13664 dwarf2_complex_location_expr_complaint ();
13665 break;
13666
13667 case DW_OP_GNU_push_tls_address:
13668 /* The top of the stack has the offset from the beginning
13669 of the thread control block at which the variable is located. */
13670 /* Nothing should follow this operator, so the top of stack would
13671 be returned. */
13672 /* This is valid for partial global symbols, but the variable's
13673 address will be bogus in the psymtab. */
13674 if (i < size)
13675 dwarf2_complex_location_expr_complaint ();
13676 break;
13677
13678 case DW_OP_GNU_uninit:
13679 break;
13680
13681 default:
13682 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13683 dwarf_stack_op_name (op, 1));
13684 return (stack[stacki]);
13685 }
13686
13687 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13688 outside of the allocated space. Also enforce minimum>0. */
13689 if (stacki >= ARRAY_SIZE (stack) - 1)
13690 {
13691 complaint (&symfile_complaints,
13692 _("location description stack overflow"));
13693 return 0;
13694 }
13695
13696 if (stacki <= 0)
13697 {
13698 complaint (&symfile_complaints,
13699 _("location description stack underflow"));
13700 return 0;
13701 }
13702 }
13703 return (stack[stacki]);
13704 }
13705
13706 /* memory allocation interface */
13707
13708 static struct dwarf_block *
13709 dwarf_alloc_block (struct dwarf2_cu *cu)
13710 {
13711 struct dwarf_block *blk;
13712
13713 blk = (struct dwarf_block *)
13714 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13715 return (blk);
13716 }
13717
13718 static struct abbrev_info *
13719 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13720 {
13721 struct abbrev_info *abbrev;
13722
13723 abbrev = (struct abbrev_info *)
13724 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13725 memset (abbrev, 0, sizeof (struct abbrev_info));
13726 return (abbrev);
13727 }
13728
13729 static struct die_info *
13730 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13731 {
13732 struct die_info *die;
13733 size_t size = sizeof (struct die_info);
13734
13735 if (num_attrs > 1)
13736 size += (num_attrs - 1) * sizeof (struct attribute);
13737
13738 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13739 memset (die, 0, sizeof (struct die_info));
13740 return (die);
13741 }
13742
13743 \f
13744 /* Macro support. */
13745
13746 /* Return the full name of file number I in *LH's file name table.
13747 Use COMP_DIR as the name of the current directory of the
13748 compilation. The result is allocated using xmalloc; the caller is
13749 responsible for freeing it. */
13750 static char *
13751 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13752 {
13753 /* Is the file number a valid index into the line header's file name
13754 table? Remember that file numbers start with one, not zero. */
13755 if (1 <= file && file <= lh->num_file_names)
13756 {
13757 struct file_entry *fe = &lh->file_names[file - 1];
13758
13759 if (IS_ABSOLUTE_PATH (fe->name))
13760 return xstrdup (fe->name);
13761 else
13762 {
13763 const char *dir;
13764 int dir_len;
13765 char *full_name;
13766
13767 if (fe->dir_index)
13768 dir = lh->include_dirs[fe->dir_index - 1];
13769 else
13770 dir = comp_dir;
13771
13772 if (dir)
13773 {
13774 dir_len = strlen (dir);
13775 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13776 strcpy (full_name, dir);
13777 full_name[dir_len] = '/';
13778 strcpy (full_name + dir_len + 1, fe->name);
13779 return full_name;
13780 }
13781 else
13782 return xstrdup (fe->name);
13783 }
13784 }
13785 else
13786 {
13787 /* The compiler produced a bogus file number. We can at least
13788 record the macro definitions made in the file, even if we
13789 won't be able to find the file by name. */
13790 char fake_name[80];
13791
13792 sprintf (fake_name, "<bad macro file number %d>", file);
13793
13794 complaint (&symfile_complaints,
13795 _("bad file number in macro information (%d)"),
13796 file);
13797
13798 return xstrdup (fake_name);
13799 }
13800 }
13801
13802
13803 static struct macro_source_file *
13804 macro_start_file (int file, int line,
13805 struct macro_source_file *current_file,
13806 const char *comp_dir,
13807 struct line_header *lh, struct objfile *objfile)
13808 {
13809 /* The full name of this source file. */
13810 char *full_name = file_full_name (file, lh, comp_dir);
13811
13812 /* We don't create a macro table for this compilation unit
13813 at all until we actually get a filename. */
13814 if (! pending_macros)
13815 pending_macros = new_macro_table (&objfile->objfile_obstack,
13816 objfile->macro_cache);
13817
13818 if (! current_file)
13819 /* If we have no current file, then this must be the start_file
13820 directive for the compilation unit's main source file. */
13821 current_file = macro_set_main (pending_macros, full_name);
13822 else
13823 current_file = macro_include (current_file, line, full_name);
13824
13825 xfree (full_name);
13826
13827 return current_file;
13828 }
13829
13830
13831 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13832 followed by a null byte. */
13833 static char *
13834 copy_string (const char *buf, int len)
13835 {
13836 char *s = xmalloc (len + 1);
13837
13838 memcpy (s, buf, len);
13839 s[len] = '\0';
13840 return s;
13841 }
13842
13843
13844 static const char *
13845 consume_improper_spaces (const char *p, const char *body)
13846 {
13847 if (*p == ' ')
13848 {
13849 complaint (&symfile_complaints,
13850 _("macro definition contains spaces "
13851 "in formal argument list:\n`%s'"),
13852 body);
13853
13854 while (*p == ' ')
13855 p++;
13856 }
13857
13858 return p;
13859 }
13860
13861
13862 static void
13863 parse_macro_definition (struct macro_source_file *file, int line,
13864 const char *body)
13865 {
13866 const char *p;
13867
13868 /* The body string takes one of two forms. For object-like macro
13869 definitions, it should be:
13870
13871 <macro name> " " <definition>
13872
13873 For function-like macro definitions, it should be:
13874
13875 <macro name> "() " <definition>
13876 or
13877 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13878
13879 Spaces may appear only where explicitly indicated, and in the
13880 <definition>.
13881
13882 The Dwarf 2 spec says that an object-like macro's name is always
13883 followed by a space, but versions of GCC around March 2002 omit
13884 the space when the macro's definition is the empty string.
13885
13886 The Dwarf 2 spec says that there should be no spaces between the
13887 formal arguments in a function-like macro's formal argument list,
13888 but versions of GCC around March 2002 include spaces after the
13889 commas. */
13890
13891
13892 /* Find the extent of the macro name. The macro name is terminated
13893 by either a space or null character (for an object-like macro) or
13894 an opening paren (for a function-like macro). */
13895 for (p = body; *p; p++)
13896 if (*p == ' ' || *p == '(')
13897 break;
13898
13899 if (*p == ' ' || *p == '\0')
13900 {
13901 /* It's an object-like macro. */
13902 int name_len = p - body;
13903 char *name = copy_string (body, name_len);
13904 const char *replacement;
13905
13906 if (*p == ' ')
13907 replacement = body + name_len + 1;
13908 else
13909 {
13910 dwarf2_macro_malformed_definition_complaint (body);
13911 replacement = body + name_len;
13912 }
13913
13914 macro_define_object (file, line, name, replacement);
13915
13916 xfree (name);
13917 }
13918 else if (*p == '(')
13919 {
13920 /* It's a function-like macro. */
13921 char *name = copy_string (body, p - body);
13922 int argc = 0;
13923 int argv_size = 1;
13924 char **argv = xmalloc (argv_size * sizeof (*argv));
13925
13926 p++;
13927
13928 p = consume_improper_spaces (p, body);
13929
13930 /* Parse the formal argument list. */
13931 while (*p && *p != ')')
13932 {
13933 /* Find the extent of the current argument name. */
13934 const char *arg_start = p;
13935
13936 while (*p && *p != ',' && *p != ')' && *p != ' ')
13937 p++;
13938
13939 if (! *p || p == arg_start)
13940 dwarf2_macro_malformed_definition_complaint (body);
13941 else
13942 {
13943 /* Make sure argv has room for the new argument. */
13944 if (argc >= argv_size)
13945 {
13946 argv_size *= 2;
13947 argv = xrealloc (argv, argv_size * sizeof (*argv));
13948 }
13949
13950 argv[argc++] = copy_string (arg_start, p - arg_start);
13951 }
13952
13953 p = consume_improper_spaces (p, body);
13954
13955 /* Consume the comma, if present. */
13956 if (*p == ',')
13957 {
13958 p++;
13959
13960 p = consume_improper_spaces (p, body);
13961 }
13962 }
13963
13964 if (*p == ')')
13965 {
13966 p++;
13967
13968 if (*p == ' ')
13969 /* Perfectly formed definition, no complaints. */
13970 macro_define_function (file, line, name,
13971 argc, (const char **) argv,
13972 p + 1);
13973 else if (*p == '\0')
13974 {
13975 /* Complain, but do define it. */
13976 dwarf2_macro_malformed_definition_complaint (body);
13977 macro_define_function (file, line, name,
13978 argc, (const char **) argv,
13979 p);
13980 }
13981 else
13982 /* Just complain. */
13983 dwarf2_macro_malformed_definition_complaint (body);
13984 }
13985 else
13986 /* Just complain. */
13987 dwarf2_macro_malformed_definition_complaint (body);
13988
13989 xfree (name);
13990 {
13991 int i;
13992
13993 for (i = 0; i < argc; i++)
13994 xfree (argv[i]);
13995 }
13996 xfree (argv);
13997 }
13998 else
13999 dwarf2_macro_malformed_definition_complaint (body);
14000 }
14001
14002
14003 static void
14004 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14005 char *comp_dir, bfd *abfd,
14006 struct dwarf2_cu *cu)
14007 {
14008 gdb_byte *mac_ptr, *mac_end;
14009 struct macro_source_file *current_file = 0;
14010 enum dwarf_macinfo_record_type macinfo_type;
14011 int at_commandline;
14012
14013 dwarf2_read_section (dwarf2_per_objfile->objfile,
14014 &dwarf2_per_objfile->macinfo);
14015 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14016 {
14017 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14018 return;
14019 }
14020
14021 /* First pass: Find the name of the base filename.
14022 This filename is needed in order to process all macros whose definition
14023 (or undefinition) comes from the command line. These macros are defined
14024 before the first DW_MACINFO_start_file entry, and yet still need to be
14025 associated to the base file.
14026
14027 To determine the base file name, we scan the macro definitions until we
14028 reach the first DW_MACINFO_start_file entry. We then initialize
14029 CURRENT_FILE accordingly so that any macro definition found before the
14030 first DW_MACINFO_start_file can still be associated to the base file. */
14031
14032 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14033 mac_end = dwarf2_per_objfile->macinfo.buffer
14034 + dwarf2_per_objfile->macinfo.size;
14035
14036 do
14037 {
14038 /* Do we at least have room for a macinfo type byte? */
14039 if (mac_ptr >= mac_end)
14040 {
14041 /* Complaint is printed during the second pass as GDB will probably
14042 stop the first pass earlier upon finding
14043 DW_MACINFO_start_file. */
14044 break;
14045 }
14046
14047 macinfo_type = read_1_byte (abfd, mac_ptr);
14048 mac_ptr++;
14049
14050 switch (macinfo_type)
14051 {
14052 /* A zero macinfo type indicates the end of the macro
14053 information. */
14054 case 0:
14055 break;
14056
14057 case DW_MACINFO_define:
14058 case DW_MACINFO_undef:
14059 /* Only skip the data by MAC_PTR. */
14060 {
14061 unsigned int bytes_read;
14062
14063 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14064 mac_ptr += bytes_read;
14065 read_direct_string (abfd, mac_ptr, &bytes_read);
14066 mac_ptr += bytes_read;
14067 }
14068 break;
14069
14070 case DW_MACINFO_start_file:
14071 {
14072 unsigned int bytes_read;
14073 int line, file;
14074
14075 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14076 mac_ptr += bytes_read;
14077 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14078 mac_ptr += bytes_read;
14079
14080 current_file = macro_start_file (file, line, current_file,
14081 comp_dir, lh, cu->objfile);
14082 }
14083 break;
14084
14085 case DW_MACINFO_end_file:
14086 /* No data to skip by MAC_PTR. */
14087 break;
14088
14089 case DW_MACINFO_vendor_ext:
14090 /* Only skip the data by MAC_PTR. */
14091 {
14092 unsigned int bytes_read;
14093
14094 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14095 mac_ptr += bytes_read;
14096 read_direct_string (abfd, mac_ptr, &bytes_read);
14097 mac_ptr += bytes_read;
14098 }
14099 break;
14100
14101 default:
14102 break;
14103 }
14104 } while (macinfo_type != 0 && current_file == NULL);
14105
14106 /* Second pass: Process all entries.
14107
14108 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14109 command-line macro definitions/undefinitions. This flag is unset when we
14110 reach the first DW_MACINFO_start_file entry. */
14111
14112 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14113
14114 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14115 GDB is still reading the definitions from command line. First
14116 DW_MACINFO_start_file will need to be ignored as it was already executed
14117 to create CURRENT_FILE for the main source holding also the command line
14118 definitions. On first met DW_MACINFO_start_file this flag is reset to
14119 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14120
14121 at_commandline = 1;
14122
14123 do
14124 {
14125 /* Do we at least have room for a macinfo type byte? */
14126 if (mac_ptr >= mac_end)
14127 {
14128 dwarf2_macros_too_long_complaint ();
14129 break;
14130 }
14131
14132 macinfo_type = read_1_byte (abfd, mac_ptr);
14133 mac_ptr++;
14134
14135 switch (macinfo_type)
14136 {
14137 /* A zero macinfo type indicates the end of the macro
14138 information. */
14139 case 0:
14140 break;
14141
14142 case DW_MACINFO_define:
14143 case DW_MACINFO_undef:
14144 {
14145 unsigned int bytes_read;
14146 int line;
14147 char *body;
14148
14149 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14150 mac_ptr += bytes_read;
14151 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14152 mac_ptr += bytes_read;
14153
14154 if (! current_file)
14155 {
14156 /* DWARF violation as no main source is present. */
14157 complaint (&symfile_complaints,
14158 _("debug info with no main source gives macro %s "
14159 "on line %d: %s"),
14160 macinfo_type == DW_MACINFO_define ?
14161 _("definition") :
14162 macinfo_type == DW_MACINFO_undef ?
14163 _("undefinition") :
14164 _("something-or-other"), line, body);
14165 break;
14166 }
14167 if ((line == 0 && !at_commandline)
14168 || (line != 0 && at_commandline))
14169 complaint (&symfile_complaints,
14170 _("debug info gives %s macro %s with %s line %d: %s"),
14171 at_commandline ? _("command-line") : _("in-file"),
14172 macinfo_type == DW_MACINFO_define ?
14173 _("definition") :
14174 macinfo_type == DW_MACINFO_undef ?
14175 _("undefinition") :
14176 _("something-or-other"),
14177 line == 0 ? _("zero") : _("non-zero"), line, body);
14178
14179 if (macinfo_type == DW_MACINFO_define)
14180 parse_macro_definition (current_file, line, body);
14181 else if (macinfo_type == DW_MACINFO_undef)
14182 macro_undef (current_file, line, body);
14183 }
14184 break;
14185
14186 case DW_MACINFO_start_file:
14187 {
14188 unsigned int bytes_read;
14189 int line, file;
14190
14191 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14192 mac_ptr += bytes_read;
14193 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14194 mac_ptr += bytes_read;
14195
14196 if ((line == 0 && !at_commandline)
14197 || (line != 0 && at_commandline))
14198 complaint (&symfile_complaints,
14199 _("debug info gives source %d included "
14200 "from %s at %s line %d"),
14201 file, at_commandline ? _("command-line") : _("file"),
14202 line == 0 ? _("zero") : _("non-zero"), line);
14203
14204 if (at_commandline)
14205 {
14206 /* This DW_MACINFO_start_file was executed in the pass one. */
14207 at_commandline = 0;
14208 }
14209 else
14210 current_file = macro_start_file (file, line,
14211 current_file, comp_dir,
14212 lh, cu->objfile);
14213 }
14214 break;
14215
14216 case DW_MACINFO_end_file:
14217 if (! current_file)
14218 complaint (&symfile_complaints,
14219 _("macro debug info has an unmatched "
14220 "`close_file' directive"));
14221 else
14222 {
14223 current_file = current_file->included_by;
14224 if (! current_file)
14225 {
14226 enum dwarf_macinfo_record_type next_type;
14227
14228 /* GCC circa March 2002 doesn't produce the zero
14229 type byte marking the end of the compilation
14230 unit. Complain if it's not there, but exit no
14231 matter what. */
14232
14233 /* Do we at least have room for a macinfo type byte? */
14234 if (mac_ptr >= mac_end)
14235 {
14236 dwarf2_macros_too_long_complaint ();
14237 return;
14238 }
14239
14240 /* We don't increment mac_ptr here, so this is just
14241 a look-ahead. */
14242 next_type = read_1_byte (abfd, mac_ptr);
14243 if (next_type != 0)
14244 complaint (&symfile_complaints,
14245 _("no terminating 0-type entry for "
14246 "macros in `.debug_macinfo' section"));
14247
14248 return;
14249 }
14250 }
14251 break;
14252
14253 case DW_MACINFO_vendor_ext:
14254 {
14255 unsigned int bytes_read;
14256 int constant;
14257 char *string;
14258
14259 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14260 mac_ptr += bytes_read;
14261 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14262 mac_ptr += bytes_read;
14263
14264 /* We don't recognize any vendor extensions. */
14265 }
14266 break;
14267 }
14268 } while (macinfo_type != 0);
14269 }
14270
14271 /* Check if the attribute's form is a DW_FORM_block*
14272 if so return true else false. */
14273 static int
14274 attr_form_is_block (struct attribute *attr)
14275 {
14276 return (attr == NULL ? 0 :
14277 attr->form == DW_FORM_block1
14278 || attr->form == DW_FORM_block2
14279 || attr->form == DW_FORM_block4
14280 || attr->form == DW_FORM_block
14281 || attr->form == DW_FORM_exprloc);
14282 }
14283
14284 /* Return non-zero if ATTR's value is a section offset --- classes
14285 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14286 You may use DW_UNSND (attr) to retrieve such offsets.
14287
14288 Section 7.5.4, "Attribute Encodings", explains that no attribute
14289 may have a value that belongs to more than one of these classes; it
14290 would be ambiguous if we did, because we use the same forms for all
14291 of them. */
14292 static int
14293 attr_form_is_section_offset (struct attribute *attr)
14294 {
14295 return (attr->form == DW_FORM_data4
14296 || attr->form == DW_FORM_data8
14297 || attr->form == DW_FORM_sec_offset);
14298 }
14299
14300
14301 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14302 zero otherwise. When this function returns true, you can apply
14303 dwarf2_get_attr_constant_value to it.
14304
14305 However, note that for some attributes you must check
14306 attr_form_is_section_offset before using this test. DW_FORM_data4
14307 and DW_FORM_data8 are members of both the constant class, and of
14308 the classes that contain offsets into other debug sections
14309 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14310 that, if an attribute's can be either a constant or one of the
14311 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14312 taken as section offsets, not constants. */
14313 static int
14314 attr_form_is_constant (struct attribute *attr)
14315 {
14316 switch (attr->form)
14317 {
14318 case DW_FORM_sdata:
14319 case DW_FORM_udata:
14320 case DW_FORM_data1:
14321 case DW_FORM_data2:
14322 case DW_FORM_data4:
14323 case DW_FORM_data8:
14324 return 1;
14325 default:
14326 return 0;
14327 }
14328 }
14329
14330 /* A helper function that fills in a dwarf2_loclist_baton. */
14331
14332 static void
14333 fill_in_loclist_baton (struct dwarf2_cu *cu,
14334 struct dwarf2_loclist_baton *baton,
14335 struct attribute *attr)
14336 {
14337 dwarf2_read_section (dwarf2_per_objfile->objfile,
14338 &dwarf2_per_objfile->loc);
14339
14340 baton->per_cu = cu->per_cu;
14341 gdb_assert (baton->per_cu);
14342 /* We don't know how long the location list is, but make sure we
14343 don't run off the edge of the section. */
14344 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14345 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14346 baton->base_address = cu->base_address;
14347 }
14348
14349 static void
14350 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14351 struct dwarf2_cu *cu)
14352 {
14353 if (attr_form_is_section_offset (attr)
14354 /* ".debug_loc" may not exist at all, or the offset may be outside
14355 the section. If so, fall through to the complaint in the
14356 other branch. */
14357 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14358 {
14359 struct dwarf2_loclist_baton *baton;
14360
14361 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14362 sizeof (struct dwarf2_loclist_baton));
14363
14364 fill_in_loclist_baton (cu, baton, attr);
14365
14366 if (cu->base_known == 0)
14367 complaint (&symfile_complaints,
14368 _("Location list used without "
14369 "specifying the CU base address."));
14370
14371 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14372 SYMBOL_LOCATION_BATON (sym) = baton;
14373 }
14374 else
14375 {
14376 struct dwarf2_locexpr_baton *baton;
14377
14378 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14379 sizeof (struct dwarf2_locexpr_baton));
14380 baton->per_cu = cu->per_cu;
14381 gdb_assert (baton->per_cu);
14382
14383 if (attr_form_is_block (attr))
14384 {
14385 /* Note that we're just copying the block's data pointer
14386 here, not the actual data. We're still pointing into the
14387 info_buffer for SYM's objfile; right now we never release
14388 that buffer, but when we do clean up properly this may
14389 need to change. */
14390 baton->size = DW_BLOCK (attr)->size;
14391 baton->data = DW_BLOCK (attr)->data;
14392 }
14393 else
14394 {
14395 dwarf2_invalid_attrib_class_complaint ("location description",
14396 SYMBOL_NATURAL_NAME (sym));
14397 baton->size = 0;
14398 baton->data = NULL;
14399 }
14400
14401 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14402 SYMBOL_LOCATION_BATON (sym) = baton;
14403 }
14404 }
14405
14406 /* Return the OBJFILE associated with the compilation unit CU. If CU
14407 came from a separate debuginfo file, then the master objfile is
14408 returned. */
14409
14410 struct objfile *
14411 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14412 {
14413 struct objfile *objfile = per_cu->objfile;
14414
14415 /* Return the master objfile, so that we can report and look up the
14416 correct file containing this variable. */
14417 if (objfile->separate_debug_objfile_backlink)
14418 objfile = objfile->separate_debug_objfile_backlink;
14419
14420 return objfile;
14421 }
14422
14423 /* Return the address size given in the compilation unit header for CU. */
14424
14425 CORE_ADDR
14426 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14427 {
14428 if (per_cu->cu)
14429 return per_cu->cu->header.addr_size;
14430 else
14431 {
14432 /* If the CU is not currently read in, we re-read its header. */
14433 struct objfile *objfile = per_cu->objfile;
14434 struct dwarf2_per_objfile *per_objfile
14435 = objfile_data (objfile, dwarf2_objfile_data_key);
14436 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14437 struct comp_unit_head cu_header;
14438
14439 memset (&cu_header, 0, sizeof cu_header);
14440 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14441 return cu_header.addr_size;
14442 }
14443 }
14444
14445 /* Return the offset size given in the compilation unit header for CU. */
14446
14447 int
14448 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14449 {
14450 if (per_cu->cu)
14451 return per_cu->cu->header.offset_size;
14452 else
14453 {
14454 /* If the CU is not currently read in, we re-read its header. */
14455 struct objfile *objfile = per_cu->objfile;
14456 struct dwarf2_per_objfile *per_objfile
14457 = objfile_data (objfile, dwarf2_objfile_data_key);
14458 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14459 struct comp_unit_head cu_header;
14460
14461 memset (&cu_header, 0, sizeof cu_header);
14462 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14463 return cu_header.offset_size;
14464 }
14465 }
14466
14467 /* Return the text offset of the CU. The returned offset comes from
14468 this CU's objfile. If this objfile came from a separate debuginfo
14469 file, then the offset may be different from the corresponding
14470 offset in the parent objfile. */
14471
14472 CORE_ADDR
14473 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14474 {
14475 struct objfile *objfile = per_cu->objfile;
14476
14477 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14478 }
14479
14480 /* Locate the .debug_info compilation unit from CU's objfile which contains
14481 the DIE at OFFSET. Raises an error on failure. */
14482
14483 static struct dwarf2_per_cu_data *
14484 dwarf2_find_containing_comp_unit (unsigned int offset,
14485 struct objfile *objfile)
14486 {
14487 struct dwarf2_per_cu_data *this_cu;
14488 int low, high;
14489
14490 low = 0;
14491 high = dwarf2_per_objfile->n_comp_units - 1;
14492 while (high > low)
14493 {
14494 int mid = low + (high - low) / 2;
14495
14496 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14497 high = mid;
14498 else
14499 low = mid + 1;
14500 }
14501 gdb_assert (low == high);
14502 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14503 {
14504 if (low == 0)
14505 error (_("Dwarf Error: could not find partial DIE containing "
14506 "offset 0x%lx [in module %s]"),
14507 (long) offset, bfd_get_filename (objfile->obfd));
14508
14509 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14510 return dwarf2_per_objfile->all_comp_units[low-1];
14511 }
14512 else
14513 {
14514 this_cu = dwarf2_per_objfile->all_comp_units[low];
14515 if (low == dwarf2_per_objfile->n_comp_units - 1
14516 && offset >= this_cu->offset + this_cu->length)
14517 error (_("invalid dwarf2 offset %u"), offset);
14518 gdb_assert (offset < this_cu->offset + this_cu->length);
14519 return this_cu;
14520 }
14521 }
14522
14523 /* Locate the compilation unit from OBJFILE which is located at exactly
14524 OFFSET. Raises an error on failure. */
14525
14526 static struct dwarf2_per_cu_data *
14527 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14528 {
14529 struct dwarf2_per_cu_data *this_cu;
14530
14531 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14532 if (this_cu->offset != offset)
14533 error (_("no compilation unit with offset %u."), offset);
14534 return this_cu;
14535 }
14536
14537 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14538
14539 static void
14540 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14541 {
14542 memset (cu, 0, sizeof (*cu));
14543 cu->objfile = objfile;
14544 obstack_init (&cu->comp_unit_obstack);
14545 }
14546
14547 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14548
14549 static void
14550 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14551 {
14552 struct attribute *attr;
14553
14554 /* Set the language we're debugging. */
14555 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14556 if (attr)
14557 set_cu_language (DW_UNSND (attr), cu);
14558 else
14559 set_cu_language (language_minimal, cu);
14560 }
14561
14562 /* Release one cached compilation unit, CU. We unlink it from the tree
14563 of compilation units, but we don't remove it from the read_in_chain;
14564 the caller is responsible for that.
14565 NOTE: DATA is a void * because this function is also used as a
14566 cleanup routine. */
14567
14568 static void
14569 free_one_comp_unit (void *data)
14570 {
14571 struct dwarf2_cu *cu = data;
14572
14573 if (cu->per_cu != NULL)
14574 cu->per_cu->cu = NULL;
14575 cu->per_cu = NULL;
14576
14577 obstack_free (&cu->comp_unit_obstack, NULL);
14578
14579 xfree (cu);
14580 }
14581
14582 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14583 when we're finished with it. We can't free the pointer itself, but be
14584 sure to unlink it from the cache. Also release any associated storage
14585 and perform cache maintenance.
14586
14587 Only used during partial symbol parsing. */
14588
14589 static void
14590 free_stack_comp_unit (void *data)
14591 {
14592 struct dwarf2_cu *cu = data;
14593
14594 obstack_free (&cu->comp_unit_obstack, NULL);
14595 cu->partial_dies = NULL;
14596
14597 if (cu->per_cu != NULL)
14598 {
14599 /* This compilation unit is on the stack in our caller, so we
14600 should not xfree it. Just unlink it. */
14601 cu->per_cu->cu = NULL;
14602 cu->per_cu = NULL;
14603
14604 /* If we had a per-cu pointer, then we may have other compilation
14605 units loaded, so age them now. */
14606 age_cached_comp_units ();
14607 }
14608 }
14609
14610 /* Free all cached compilation units. */
14611
14612 static void
14613 free_cached_comp_units (void *data)
14614 {
14615 struct dwarf2_per_cu_data *per_cu, **last_chain;
14616
14617 per_cu = dwarf2_per_objfile->read_in_chain;
14618 last_chain = &dwarf2_per_objfile->read_in_chain;
14619 while (per_cu != NULL)
14620 {
14621 struct dwarf2_per_cu_data *next_cu;
14622
14623 next_cu = per_cu->cu->read_in_chain;
14624
14625 free_one_comp_unit (per_cu->cu);
14626 *last_chain = next_cu;
14627
14628 per_cu = next_cu;
14629 }
14630 }
14631
14632 /* Increase the age counter on each cached compilation unit, and free
14633 any that are too old. */
14634
14635 static void
14636 age_cached_comp_units (void)
14637 {
14638 struct dwarf2_per_cu_data *per_cu, **last_chain;
14639
14640 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14641 per_cu = dwarf2_per_objfile->read_in_chain;
14642 while (per_cu != NULL)
14643 {
14644 per_cu->cu->last_used ++;
14645 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14646 dwarf2_mark (per_cu->cu);
14647 per_cu = per_cu->cu->read_in_chain;
14648 }
14649
14650 per_cu = dwarf2_per_objfile->read_in_chain;
14651 last_chain = &dwarf2_per_objfile->read_in_chain;
14652 while (per_cu != NULL)
14653 {
14654 struct dwarf2_per_cu_data *next_cu;
14655
14656 next_cu = per_cu->cu->read_in_chain;
14657
14658 if (!per_cu->cu->mark)
14659 {
14660 free_one_comp_unit (per_cu->cu);
14661 *last_chain = next_cu;
14662 }
14663 else
14664 last_chain = &per_cu->cu->read_in_chain;
14665
14666 per_cu = next_cu;
14667 }
14668 }
14669
14670 /* Remove a single compilation unit from the cache. */
14671
14672 static void
14673 free_one_cached_comp_unit (void *target_cu)
14674 {
14675 struct dwarf2_per_cu_data *per_cu, **last_chain;
14676
14677 per_cu = dwarf2_per_objfile->read_in_chain;
14678 last_chain = &dwarf2_per_objfile->read_in_chain;
14679 while (per_cu != NULL)
14680 {
14681 struct dwarf2_per_cu_data *next_cu;
14682
14683 next_cu = per_cu->cu->read_in_chain;
14684
14685 if (per_cu->cu == target_cu)
14686 {
14687 free_one_comp_unit (per_cu->cu);
14688 *last_chain = next_cu;
14689 break;
14690 }
14691 else
14692 last_chain = &per_cu->cu->read_in_chain;
14693
14694 per_cu = next_cu;
14695 }
14696 }
14697
14698 /* Release all extra memory associated with OBJFILE. */
14699
14700 void
14701 dwarf2_free_objfile (struct objfile *objfile)
14702 {
14703 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14704
14705 if (dwarf2_per_objfile == NULL)
14706 return;
14707
14708 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14709 free_cached_comp_units (NULL);
14710
14711 if (dwarf2_per_objfile->quick_file_names_table)
14712 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14713
14714 /* Everything else should be on the objfile obstack. */
14715 }
14716
14717 /* A pair of DIE offset and GDB type pointer. We store these
14718 in a hash table separate from the DIEs, and preserve them
14719 when the DIEs are flushed out of cache. */
14720
14721 struct dwarf2_offset_and_type
14722 {
14723 unsigned int offset;
14724 struct type *type;
14725 };
14726
14727 /* Hash function for a dwarf2_offset_and_type. */
14728
14729 static hashval_t
14730 offset_and_type_hash (const void *item)
14731 {
14732 const struct dwarf2_offset_and_type *ofs = item;
14733
14734 return ofs->offset;
14735 }
14736
14737 /* Equality function for a dwarf2_offset_and_type. */
14738
14739 static int
14740 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14741 {
14742 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14743 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14744
14745 return ofs_lhs->offset == ofs_rhs->offset;
14746 }
14747
14748 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14749 table if necessary. For convenience, return TYPE.
14750
14751 The DIEs reading must have careful ordering to:
14752 * Not cause infite loops trying to read in DIEs as a prerequisite for
14753 reading current DIE.
14754 * Not trying to dereference contents of still incompletely read in types
14755 while reading in other DIEs.
14756 * Enable referencing still incompletely read in types just by a pointer to
14757 the type without accessing its fields.
14758
14759 Therefore caller should follow these rules:
14760 * Try to fetch any prerequisite types we may need to build this DIE type
14761 before building the type and calling set_die_type.
14762 * After building type call set_die_type for current DIE as soon as
14763 possible before fetching more types to complete the current type.
14764 * Make the type as complete as possible before fetching more types. */
14765
14766 static struct type *
14767 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14768 {
14769 struct dwarf2_offset_and_type **slot, ofs;
14770 struct objfile *objfile = cu->objfile;
14771 htab_t *type_hash_ptr;
14772
14773 /* For Ada types, make sure that the gnat-specific data is always
14774 initialized (if not already set). There are a few types where
14775 we should not be doing so, because the type-specific area is
14776 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14777 where the type-specific area is used to store the floatformat).
14778 But this is not a problem, because the gnat-specific information
14779 is actually not needed for these types. */
14780 if (need_gnat_info (cu)
14781 && TYPE_CODE (type) != TYPE_CODE_FUNC
14782 && TYPE_CODE (type) != TYPE_CODE_FLT
14783 && !HAVE_GNAT_AUX_INFO (type))
14784 INIT_GNAT_SPECIFIC (type);
14785
14786 if (cu->per_cu->from_debug_types)
14787 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14788 else
14789 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14790
14791 if (*type_hash_ptr == NULL)
14792 {
14793 *type_hash_ptr
14794 = htab_create_alloc_ex (127,
14795 offset_and_type_hash,
14796 offset_and_type_eq,
14797 NULL,
14798 &objfile->objfile_obstack,
14799 hashtab_obstack_allocate,
14800 dummy_obstack_deallocate);
14801 }
14802
14803 ofs.offset = die->offset;
14804 ofs.type = type;
14805 slot = (struct dwarf2_offset_and_type **)
14806 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14807 if (*slot)
14808 complaint (&symfile_complaints,
14809 _("A problem internal to GDB: DIE 0x%x has type already set"),
14810 die->offset);
14811 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14812 **slot = ofs;
14813 return type;
14814 }
14815
14816 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14817 table, or return NULL if the die does not have a saved type. */
14818
14819 static struct type *
14820 get_die_type_at_offset (unsigned int offset,
14821 struct dwarf2_per_cu_data *per_cu)
14822 {
14823 struct dwarf2_offset_and_type *slot, ofs;
14824 htab_t type_hash;
14825
14826 if (per_cu->from_debug_types)
14827 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14828 else
14829 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14830 if (type_hash == NULL)
14831 return NULL;
14832
14833 ofs.offset = offset;
14834 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14835 if (slot)
14836 return slot->type;
14837 else
14838 return NULL;
14839 }
14840
14841 /* Look up the type for DIE in the appropriate type_hash table,
14842 or return NULL if DIE does not have a saved type. */
14843
14844 static struct type *
14845 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14846 {
14847 return get_die_type_at_offset (die->offset, cu->per_cu);
14848 }
14849
14850 /* Add a dependence relationship from CU to REF_PER_CU. */
14851
14852 static void
14853 dwarf2_add_dependence (struct dwarf2_cu *cu,
14854 struct dwarf2_per_cu_data *ref_per_cu)
14855 {
14856 void **slot;
14857
14858 if (cu->dependencies == NULL)
14859 cu->dependencies
14860 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14861 NULL, &cu->comp_unit_obstack,
14862 hashtab_obstack_allocate,
14863 dummy_obstack_deallocate);
14864
14865 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14866 if (*slot == NULL)
14867 *slot = ref_per_cu;
14868 }
14869
14870 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14871 Set the mark field in every compilation unit in the
14872 cache that we must keep because we are keeping CU. */
14873
14874 static int
14875 dwarf2_mark_helper (void **slot, void *data)
14876 {
14877 struct dwarf2_per_cu_data *per_cu;
14878
14879 per_cu = (struct dwarf2_per_cu_data *) *slot;
14880 if (per_cu->cu->mark)
14881 return 1;
14882 per_cu->cu->mark = 1;
14883
14884 if (per_cu->cu->dependencies != NULL)
14885 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14886
14887 return 1;
14888 }
14889
14890 /* Set the mark field in CU and in every other compilation unit in the
14891 cache that we must keep because we are keeping CU. */
14892
14893 static void
14894 dwarf2_mark (struct dwarf2_cu *cu)
14895 {
14896 if (cu->mark)
14897 return;
14898 cu->mark = 1;
14899 if (cu->dependencies != NULL)
14900 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14901 }
14902
14903 static void
14904 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14905 {
14906 while (per_cu)
14907 {
14908 per_cu->cu->mark = 0;
14909 per_cu = per_cu->cu->read_in_chain;
14910 }
14911 }
14912
14913 /* Trivial hash function for partial_die_info: the hash value of a DIE
14914 is its offset in .debug_info for this objfile. */
14915
14916 static hashval_t
14917 partial_die_hash (const void *item)
14918 {
14919 const struct partial_die_info *part_die = item;
14920
14921 return part_die->offset;
14922 }
14923
14924 /* Trivial comparison function for partial_die_info structures: two DIEs
14925 are equal if they have the same offset. */
14926
14927 static int
14928 partial_die_eq (const void *item_lhs, const void *item_rhs)
14929 {
14930 const struct partial_die_info *part_die_lhs = item_lhs;
14931 const struct partial_die_info *part_die_rhs = item_rhs;
14932
14933 return part_die_lhs->offset == part_die_rhs->offset;
14934 }
14935
14936 static struct cmd_list_element *set_dwarf2_cmdlist;
14937 static struct cmd_list_element *show_dwarf2_cmdlist;
14938
14939 static void
14940 set_dwarf2_cmd (char *args, int from_tty)
14941 {
14942 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14943 }
14944
14945 static void
14946 show_dwarf2_cmd (char *args, int from_tty)
14947 {
14948 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14949 }
14950
14951 /* If section described by INFO was mmapped, munmap it now. */
14952
14953 static void
14954 munmap_section_buffer (struct dwarf2_section_info *info)
14955 {
14956 if (info->was_mmapped)
14957 {
14958 #ifdef HAVE_MMAP
14959 intptr_t begin = (intptr_t) info->buffer;
14960 intptr_t map_begin = begin & ~(pagesize - 1);
14961 size_t map_length = info->size + begin - map_begin;
14962
14963 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14964 #else
14965 /* Without HAVE_MMAP, we should never be here to begin with. */
14966 gdb_assert_not_reached ("no mmap support");
14967 #endif
14968 }
14969 }
14970
14971 /* munmap debug sections for OBJFILE, if necessary. */
14972
14973 static void
14974 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14975 {
14976 struct dwarf2_per_objfile *data = d;
14977
14978 /* This is sorted according to the order they're defined in to make it easier
14979 to keep in sync. */
14980 munmap_section_buffer (&data->info);
14981 munmap_section_buffer (&data->abbrev);
14982 munmap_section_buffer (&data->line);
14983 munmap_section_buffer (&data->loc);
14984 munmap_section_buffer (&data->macinfo);
14985 munmap_section_buffer (&data->str);
14986 munmap_section_buffer (&data->ranges);
14987 munmap_section_buffer (&data->types);
14988 munmap_section_buffer (&data->frame);
14989 munmap_section_buffer (&data->eh_frame);
14990 munmap_section_buffer (&data->gdb_index);
14991 }
14992
14993 \f
14994 /* The "save gdb-index" command. */
14995
14996 /* The contents of the hash table we create when building the string
14997 table. */
14998 struct strtab_entry
14999 {
15000 offset_type offset;
15001 const char *str;
15002 };
15003
15004 /* Hash function for a strtab_entry. */
15005
15006 static hashval_t
15007 hash_strtab_entry (const void *e)
15008 {
15009 const struct strtab_entry *entry = e;
15010 return mapped_index_string_hash (entry->str);
15011 }
15012
15013 /* Equality function for a strtab_entry. */
15014
15015 static int
15016 eq_strtab_entry (const void *a, const void *b)
15017 {
15018 const struct strtab_entry *ea = a;
15019 const struct strtab_entry *eb = b;
15020 return !strcmp (ea->str, eb->str);
15021 }
15022
15023 /* Create a strtab_entry hash table. */
15024
15025 static htab_t
15026 create_strtab (void)
15027 {
15028 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15029 xfree, xcalloc, xfree);
15030 }
15031
15032 /* Add a string to the constant pool. Return the string's offset in
15033 host order. */
15034
15035 static offset_type
15036 add_string (htab_t table, struct obstack *cpool, const char *str)
15037 {
15038 void **slot;
15039 struct strtab_entry entry;
15040 struct strtab_entry *result;
15041
15042 entry.str = str;
15043 slot = htab_find_slot (table, &entry, INSERT);
15044 if (*slot)
15045 result = *slot;
15046 else
15047 {
15048 result = XNEW (struct strtab_entry);
15049 result->offset = obstack_object_size (cpool);
15050 result->str = str;
15051 obstack_grow_str0 (cpool, str);
15052 *slot = result;
15053 }
15054 return result->offset;
15055 }
15056
15057 /* An entry in the symbol table. */
15058 struct symtab_index_entry
15059 {
15060 /* The name of the symbol. */
15061 const char *name;
15062 /* The offset of the name in the constant pool. */
15063 offset_type index_offset;
15064 /* A sorted vector of the indices of all the CUs that hold an object
15065 of this name. */
15066 VEC (offset_type) *cu_indices;
15067 };
15068
15069 /* The symbol table. This is a power-of-2-sized hash table. */
15070 struct mapped_symtab
15071 {
15072 offset_type n_elements;
15073 offset_type size;
15074 struct symtab_index_entry **data;
15075 };
15076
15077 /* Hash function for a symtab_index_entry. */
15078
15079 static hashval_t
15080 hash_symtab_entry (const void *e)
15081 {
15082 const struct symtab_index_entry *entry = e;
15083 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15084 sizeof (offset_type) * VEC_length (offset_type,
15085 entry->cu_indices),
15086 0);
15087 }
15088
15089 /* Equality function for a symtab_index_entry. */
15090
15091 static int
15092 eq_symtab_entry (const void *a, const void *b)
15093 {
15094 const struct symtab_index_entry *ea = a;
15095 const struct symtab_index_entry *eb = b;
15096 int len = VEC_length (offset_type, ea->cu_indices);
15097 if (len != VEC_length (offset_type, eb->cu_indices))
15098 return 0;
15099 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15100 VEC_address (offset_type, eb->cu_indices),
15101 sizeof (offset_type) * len);
15102 }
15103
15104 /* Destroy a symtab_index_entry. */
15105
15106 static void
15107 delete_symtab_entry (void *p)
15108 {
15109 struct symtab_index_entry *entry = p;
15110 VEC_free (offset_type, entry->cu_indices);
15111 xfree (entry);
15112 }
15113
15114 /* Create a hash table holding symtab_index_entry objects. */
15115
15116 static htab_t
15117 create_symbol_hash_table (void)
15118 {
15119 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15120 delete_symtab_entry, xcalloc, xfree);
15121 }
15122
15123 /* Create a new mapped symtab object. */
15124
15125 static struct mapped_symtab *
15126 create_mapped_symtab (void)
15127 {
15128 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15129 symtab->n_elements = 0;
15130 symtab->size = 1024;
15131 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15132 return symtab;
15133 }
15134
15135 /* Destroy a mapped_symtab. */
15136
15137 static void
15138 cleanup_mapped_symtab (void *p)
15139 {
15140 struct mapped_symtab *symtab = p;
15141 /* The contents of the array are freed when the other hash table is
15142 destroyed. */
15143 xfree (symtab->data);
15144 xfree (symtab);
15145 }
15146
15147 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15148 the slot. */
15149
15150 static struct symtab_index_entry **
15151 find_slot (struct mapped_symtab *symtab, const char *name)
15152 {
15153 offset_type index, step, hash = mapped_index_string_hash (name);
15154
15155 index = hash & (symtab->size - 1);
15156 step = ((hash * 17) & (symtab->size - 1)) | 1;
15157
15158 for (;;)
15159 {
15160 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15161 return &symtab->data[index];
15162 index = (index + step) & (symtab->size - 1);
15163 }
15164 }
15165
15166 /* Expand SYMTAB's hash table. */
15167
15168 static void
15169 hash_expand (struct mapped_symtab *symtab)
15170 {
15171 offset_type old_size = symtab->size;
15172 offset_type i;
15173 struct symtab_index_entry **old_entries = symtab->data;
15174
15175 symtab->size *= 2;
15176 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15177
15178 for (i = 0; i < old_size; ++i)
15179 {
15180 if (old_entries[i])
15181 {
15182 struct symtab_index_entry **slot = find_slot (symtab,
15183 old_entries[i]->name);
15184 *slot = old_entries[i];
15185 }
15186 }
15187
15188 xfree (old_entries);
15189 }
15190
15191 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15192 is the index of the CU in which the symbol appears. */
15193
15194 static void
15195 add_index_entry (struct mapped_symtab *symtab, const char *name,
15196 offset_type cu_index)
15197 {
15198 struct symtab_index_entry **slot;
15199
15200 ++symtab->n_elements;
15201 if (4 * symtab->n_elements / 3 >= symtab->size)
15202 hash_expand (symtab);
15203
15204 slot = find_slot (symtab, name);
15205 if (!*slot)
15206 {
15207 *slot = XNEW (struct symtab_index_entry);
15208 (*slot)->name = name;
15209 (*slot)->cu_indices = NULL;
15210 }
15211 /* Don't push an index twice. Due to how we add entries we only
15212 have to check the last one. */
15213 if (VEC_empty (offset_type, (*slot)->cu_indices)
15214 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15215 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15216 }
15217
15218 /* Add a vector of indices to the constant pool. */
15219
15220 static offset_type
15221 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15222 struct symtab_index_entry *entry)
15223 {
15224 void **slot;
15225
15226 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15227 if (!*slot)
15228 {
15229 offset_type len = VEC_length (offset_type, entry->cu_indices);
15230 offset_type val = MAYBE_SWAP (len);
15231 offset_type iter;
15232 int i;
15233
15234 *slot = entry;
15235 entry->index_offset = obstack_object_size (cpool);
15236
15237 obstack_grow (cpool, &val, sizeof (val));
15238 for (i = 0;
15239 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15240 ++i)
15241 {
15242 val = MAYBE_SWAP (iter);
15243 obstack_grow (cpool, &val, sizeof (val));
15244 }
15245 }
15246 else
15247 {
15248 struct symtab_index_entry *old_entry = *slot;
15249 entry->index_offset = old_entry->index_offset;
15250 entry = old_entry;
15251 }
15252 return entry->index_offset;
15253 }
15254
15255 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15256 constant pool entries going into the obstack CPOOL. */
15257
15258 static void
15259 write_hash_table (struct mapped_symtab *symtab,
15260 struct obstack *output, struct obstack *cpool)
15261 {
15262 offset_type i;
15263 htab_t symbol_hash_table;
15264 htab_t str_table;
15265
15266 symbol_hash_table = create_symbol_hash_table ();
15267 str_table = create_strtab ();
15268
15269 /* We add all the index vectors to the constant pool first, to
15270 ensure alignment is ok. */
15271 for (i = 0; i < symtab->size; ++i)
15272 {
15273 if (symtab->data[i])
15274 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15275 }
15276
15277 /* Now write out the hash table. */
15278 for (i = 0; i < symtab->size; ++i)
15279 {
15280 offset_type str_off, vec_off;
15281
15282 if (symtab->data[i])
15283 {
15284 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15285 vec_off = symtab->data[i]->index_offset;
15286 }
15287 else
15288 {
15289 /* While 0 is a valid constant pool index, it is not valid
15290 to have 0 for both offsets. */
15291 str_off = 0;
15292 vec_off = 0;
15293 }
15294
15295 str_off = MAYBE_SWAP (str_off);
15296 vec_off = MAYBE_SWAP (vec_off);
15297
15298 obstack_grow (output, &str_off, sizeof (str_off));
15299 obstack_grow (output, &vec_off, sizeof (vec_off));
15300 }
15301
15302 htab_delete (str_table);
15303 htab_delete (symbol_hash_table);
15304 }
15305
15306 /* Struct to map psymtab to CU index in the index file. */
15307 struct psymtab_cu_index_map
15308 {
15309 struct partial_symtab *psymtab;
15310 unsigned int cu_index;
15311 };
15312
15313 static hashval_t
15314 hash_psymtab_cu_index (const void *item)
15315 {
15316 const struct psymtab_cu_index_map *map = item;
15317
15318 return htab_hash_pointer (map->psymtab);
15319 }
15320
15321 static int
15322 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15323 {
15324 const struct psymtab_cu_index_map *lhs = item_lhs;
15325 const struct psymtab_cu_index_map *rhs = item_rhs;
15326
15327 return lhs->psymtab == rhs->psymtab;
15328 }
15329
15330 /* Helper struct for building the address table. */
15331 struct addrmap_index_data
15332 {
15333 struct objfile *objfile;
15334 struct obstack *addr_obstack;
15335 htab_t cu_index_htab;
15336
15337 /* Non-zero if the previous_* fields are valid.
15338 We can't write an entry until we see the next entry (since it is only then
15339 that we know the end of the entry). */
15340 int previous_valid;
15341 /* Index of the CU in the table of all CUs in the index file. */
15342 unsigned int previous_cu_index;
15343 /* Start address of the CU. */
15344 CORE_ADDR previous_cu_start;
15345 };
15346
15347 /* Write an address entry to OBSTACK. */
15348
15349 static void
15350 add_address_entry (struct objfile *objfile, struct obstack *obstack,
15351 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15352 {
15353 offset_type cu_index_to_write;
15354 char addr[8];
15355 CORE_ADDR baseaddr;
15356
15357 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15358
15359 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15360 obstack_grow (obstack, addr, 8);
15361 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15362 obstack_grow (obstack, addr, 8);
15363 cu_index_to_write = MAYBE_SWAP (cu_index);
15364 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15365 }
15366
15367 /* Worker function for traversing an addrmap to build the address table. */
15368
15369 static int
15370 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15371 {
15372 struct addrmap_index_data *data = datap;
15373 struct partial_symtab *pst = obj;
15374 offset_type cu_index;
15375 void **slot;
15376
15377 if (data->previous_valid)
15378 add_address_entry (data->objfile, data->addr_obstack,
15379 data->previous_cu_start, start_addr,
15380 data->previous_cu_index);
15381
15382 data->previous_cu_start = start_addr;
15383 if (pst != NULL)
15384 {
15385 struct psymtab_cu_index_map find_map, *map;
15386 find_map.psymtab = pst;
15387 map = htab_find (data->cu_index_htab, &find_map);
15388 gdb_assert (map != NULL);
15389 data->previous_cu_index = map->cu_index;
15390 data->previous_valid = 1;
15391 }
15392 else
15393 data->previous_valid = 0;
15394
15395 return 0;
15396 }
15397
15398 /* Write OBJFILE's address map to OBSTACK.
15399 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15400 in the index file. */
15401
15402 static void
15403 write_address_map (struct objfile *objfile, struct obstack *obstack,
15404 htab_t cu_index_htab)
15405 {
15406 struct addrmap_index_data addrmap_index_data;
15407
15408 /* When writing the address table, we have to cope with the fact that
15409 the addrmap iterator only provides the start of a region; we have to
15410 wait until the next invocation to get the start of the next region. */
15411
15412 addrmap_index_data.objfile = objfile;
15413 addrmap_index_data.addr_obstack = obstack;
15414 addrmap_index_data.cu_index_htab = cu_index_htab;
15415 addrmap_index_data.previous_valid = 0;
15416
15417 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15418 &addrmap_index_data);
15419
15420 /* It's highly unlikely the last entry (end address = 0xff...ff)
15421 is valid, but we should still handle it.
15422 The end address is recorded as the start of the next region, but that
15423 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15424 anyway. */
15425 if (addrmap_index_data.previous_valid)
15426 add_address_entry (objfile, obstack,
15427 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15428 addrmap_index_data.previous_cu_index);
15429 }
15430
15431 /* Add a list of partial symbols to SYMTAB. */
15432
15433 static void
15434 write_psymbols (struct mapped_symtab *symtab,
15435 htab_t psyms_seen,
15436 struct partial_symbol **psymp,
15437 int count,
15438 offset_type cu_index,
15439 int is_static)
15440 {
15441 for (; count-- > 0; ++psymp)
15442 {
15443 void **slot, *lookup;
15444
15445 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15446 error (_("Ada is not currently supported by the index"));
15447
15448 /* We only want to add a given psymbol once. However, we also
15449 want to account for whether it is global or static. So, we
15450 may add it twice, using slightly different values. */
15451 if (is_static)
15452 {
15453 uintptr_t val = 1 | (uintptr_t) *psymp;
15454
15455 lookup = (void *) val;
15456 }
15457 else
15458 lookup = *psymp;
15459
15460 /* Only add a given psymbol once. */
15461 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15462 if (!*slot)
15463 {
15464 *slot = lookup;
15465 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15466 }
15467 }
15468 }
15469
15470 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15471 exception if there is an error. */
15472
15473 static void
15474 write_obstack (FILE *file, struct obstack *obstack)
15475 {
15476 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15477 file)
15478 != obstack_object_size (obstack))
15479 error (_("couldn't data write to file"));
15480 }
15481
15482 /* Unlink a file if the argument is not NULL. */
15483
15484 static void
15485 unlink_if_set (void *p)
15486 {
15487 char **filename = p;
15488 if (*filename)
15489 unlink (*filename);
15490 }
15491
15492 /* A helper struct used when iterating over debug_types. */
15493 struct signatured_type_index_data
15494 {
15495 struct objfile *objfile;
15496 struct mapped_symtab *symtab;
15497 struct obstack *types_list;
15498 htab_t psyms_seen;
15499 int cu_index;
15500 };
15501
15502 /* A helper function that writes a single signatured_type to an
15503 obstack. */
15504
15505 static int
15506 write_one_signatured_type (void **slot, void *d)
15507 {
15508 struct signatured_type_index_data *info = d;
15509 struct signatured_type *entry = (struct signatured_type *) *slot;
15510 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15511 struct partial_symtab *psymtab = per_cu->v.psymtab;
15512 gdb_byte val[8];
15513
15514 write_psymbols (info->symtab,
15515 info->psyms_seen,
15516 info->objfile->global_psymbols.list
15517 + psymtab->globals_offset,
15518 psymtab->n_global_syms, info->cu_index,
15519 0);
15520 write_psymbols (info->symtab,
15521 info->psyms_seen,
15522 info->objfile->static_psymbols.list
15523 + psymtab->statics_offset,
15524 psymtab->n_static_syms, info->cu_index,
15525 1);
15526
15527 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15528 obstack_grow (info->types_list, val, 8);
15529 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15530 obstack_grow (info->types_list, val, 8);
15531 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15532 obstack_grow (info->types_list, val, 8);
15533
15534 ++info->cu_index;
15535
15536 return 1;
15537 }
15538
15539 /* A cleanup function for an htab_t. */
15540
15541 static void
15542 cleanup_htab (void *arg)
15543 {
15544 htab_delete (arg);
15545 }
15546
15547 /* Create an index file for OBJFILE in the directory DIR. */
15548
15549 static void
15550 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15551 {
15552 struct cleanup *cleanup;
15553 char *filename, *cleanup_filename;
15554 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15555 struct obstack cu_list, types_cu_list;
15556 int i;
15557 FILE *out_file;
15558 struct mapped_symtab *symtab;
15559 offset_type val, size_of_contents, total_len;
15560 struct stat st;
15561 char buf[8];
15562 htab_t psyms_seen;
15563 htab_t cu_index_htab;
15564 struct psymtab_cu_index_map *psymtab_cu_index_map;
15565
15566 if (!objfile->psymtabs)
15567 return;
15568 if (dwarf2_per_objfile->using_index)
15569 error (_("Cannot use an index to create the index"));
15570
15571 if (stat (objfile->name, &st) < 0)
15572 perror_with_name (objfile->name);
15573
15574 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15575 INDEX_SUFFIX, (char *) NULL);
15576 cleanup = make_cleanup (xfree, filename);
15577
15578 out_file = fopen (filename, "wb");
15579 if (!out_file)
15580 error (_("Can't open `%s' for writing"), filename);
15581
15582 cleanup_filename = filename;
15583 make_cleanup (unlink_if_set, &cleanup_filename);
15584
15585 symtab = create_mapped_symtab ();
15586 make_cleanup (cleanup_mapped_symtab, symtab);
15587
15588 obstack_init (&addr_obstack);
15589 make_cleanup_obstack_free (&addr_obstack);
15590
15591 obstack_init (&cu_list);
15592 make_cleanup_obstack_free (&cu_list);
15593
15594 obstack_init (&types_cu_list);
15595 make_cleanup_obstack_free (&types_cu_list);
15596
15597 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15598 NULL, xcalloc, xfree);
15599 make_cleanup (cleanup_htab, psyms_seen);
15600
15601 /* While we're scanning CU's create a table that maps a psymtab pointer
15602 (which is what addrmap records) to its index (which is what is recorded
15603 in the index file). This will later be needed to write the address
15604 table. */
15605 cu_index_htab = htab_create_alloc (100,
15606 hash_psymtab_cu_index,
15607 eq_psymtab_cu_index,
15608 NULL, xcalloc, xfree);
15609 make_cleanup (cleanup_htab, cu_index_htab);
15610 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15611 xmalloc (sizeof (struct psymtab_cu_index_map)
15612 * dwarf2_per_objfile->n_comp_units);
15613 make_cleanup (xfree, psymtab_cu_index_map);
15614
15615 /* The CU list is already sorted, so we don't need to do additional
15616 work here. Also, the debug_types entries do not appear in
15617 all_comp_units, but only in their own hash table. */
15618 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15619 {
15620 struct dwarf2_per_cu_data *per_cu
15621 = dwarf2_per_objfile->all_comp_units[i];
15622 struct partial_symtab *psymtab = per_cu->v.psymtab;
15623 gdb_byte val[8];
15624 struct psymtab_cu_index_map *map;
15625 void **slot;
15626
15627 write_psymbols (symtab,
15628 psyms_seen,
15629 objfile->global_psymbols.list + psymtab->globals_offset,
15630 psymtab->n_global_syms, i,
15631 0);
15632 write_psymbols (symtab,
15633 psyms_seen,
15634 objfile->static_psymbols.list + psymtab->statics_offset,
15635 psymtab->n_static_syms, i,
15636 1);
15637
15638 map = &psymtab_cu_index_map[i];
15639 map->psymtab = psymtab;
15640 map->cu_index = i;
15641 slot = htab_find_slot (cu_index_htab, map, INSERT);
15642 gdb_assert (slot != NULL);
15643 gdb_assert (*slot == NULL);
15644 *slot = map;
15645
15646 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15647 obstack_grow (&cu_list, val, 8);
15648 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15649 obstack_grow (&cu_list, val, 8);
15650 }
15651
15652 /* Dump the address map. */
15653 write_address_map (objfile, &addr_obstack, cu_index_htab);
15654
15655 /* Write out the .debug_type entries, if any. */
15656 if (dwarf2_per_objfile->signatured_types)
15657 {
15658 struct signatured_type_index_data sig_data;
15659
15660 sig_data.objfile = objfile;
15661 sig_data.symtab = symtab;
15662 sig_data.types_list = &types_cu_list;
15663 sig_data.psyms_seen = psyms_seen;
15664 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15665 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15666 write_one_signatured_type, &sig_data);
15667 }
15668
15669 obstack_init (&constant_pool);
15670 make_cleanup_obstack_free (&constant_pool);
15671 obstack_init (&symtab_obstack);
15672 make_cleanup_obstack_free (&symtab_obstack);
15673 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15674
15675 obstack_init (&contents);
15676 make_cleanup_obstack_free (&contents);
15677 size_of_contents = 6 * sizeof (offset_type);
15678 total_len = size_of_contents;
15679
15680 /* The version number. */
15681 val = MAYBE_SWAP (3);
15682 obstack_grow (&contents, &val, sizeof (val));
15683
15684 /* The offset of the CU list from the start of the file. */
15685 val = MAYBE_SWAP (total_len);
15686 obstack_grow (&contents, &val, sizeof (val));
15687 total_len += obstack_object_size (&cu_list);
15688
15689 /* The offset of the types CU list from the start of the file. */
15690 val = MAYBE_SWAP (total_len);
15691 obstack_grow (&contents, &val, sizeof (val));
15692 total_len += obstack_object_size (&types_cu_list);
15693
15694 /* The offset of the address table from the start of the file. */
15695 val = MAYBE_SWAP (total_len);
15696 obstack_grow (&contents, &val, sizeof (val));
15697 total_len += obstack_object_size (&addr_obstack);
15698
15699 /* The offset of the symbol table from the start of the file. */
15700 val = MAYBE_SWAP (total_len);
15701 obstack_grow (&contents, &val, sizeof (val));
15702 total_len += obstack_object_size (&symtab_obstack);
15703
15704 /* The offset of the constant pool from the start of the file. */
15705 val = MAYBE_SWAP (total_len);
15706 obstack_grow (&contents, &val, sizeof (val));
15707 total_len += obstack_object_size (&constant_pool);
15708
15709 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15710
15711 write_obstack (out_file, &contents);
15712 write_obstack (out_file, &cu_list);
15713 write_obstack (out_file, &types_cu_list);
15714 write_obstack (out_file, &addr_obstack);
15715 write_obstack (out_file, &symtab_obstack);
15716 write_obstack (out_file, &constant_pool);
15717
15718 fclose (out_file);
15719
15720 /* We want to keep the file, so we set cleanup_filename to NULL
15721 here. See unlink_if_set. */
15722 cleanup_filename = NULL;
15723
15724 do_cleanups (cleanup);
15725 }
15726
15727 /* The mapped index file format is designed to be directly mmap()able
15728 on any architecture. In most cases, a datum is represented using a
15729 little-endian 32-bit integer value, called an offset_type. Big
15730 endian machines must byte-swap the values before using them.
15731 Exceptions to this rule are noted. The data is laid out such that
15732 alignment is always respected.
15733
15734 A mapped index consists of several sections.
15735
15736 1. The file header. This is a sequence of values, of offset_type
15737 unless otherwise noted:
15738
15739 [0] The version number, currently 3. Versions 1 and 2 are
15740 obsolete.
15741 [1] The offset, from the start of the file, of the CU list.
15742 [2] The offset, from the start of the file, of the types CU list.
15743 Note that this section can be empty, in which case this offset will
15744 be equal to the next offset.
15745 [3] The offset, from the start of the file, of the address section.
15746 [4] The offset, from the start of the file, of the symbol table.
15747 [5] The offset, from the start of the file, of the constant pool.
15748
15749 2. The CU list. This is a sequence of pairs of 64-bit
15750 little-endian values, sorted by the CU offset. The first element
15751 in each pair is the offset of a CU in the .debug_info section. The
15752 second element in each pair is the length of that CU. References
15753 to a CU elsewhere in the map are done using a CU index, which is
15754 just the 0-based index into this table. Note that if there are
15755 type CUs, then conceptually CUs and type CUs form a single list for
15756 the purposes of CU indices.
15757
15758 3. The types CU list. This is a sequence of triplets of 64-bit
15759 little-endian values. In a triplet, the first value is the CU
15760 offset, the second value is the type offset in the CU, and the
15761 third value is the type signature. The types CU list is not
15762 sorted.
15763
15764 4. The address section. The address section consists of a sequence
15765 of address entries. Each address entry has three elements.
15766 [0] The low address. This is a 64-bit little-endian value.
15767 [1] The high address. This is a 64-bit little-endian value.
15768 Like DW_AT_high_pc, the value is one byte beyond the end.
15769 [2] The CU index. This is an offset_type value.
15770
15771 5. The symbol table. This is a hash table. The size of the hash
15772 table is always a power of 2. The initial hash and the step are
15773 currently defined by the `find_slot' function.
15774
15775 Each slot in the hash table consists of a pair of offset_type
15776 values. The first value is the offset of the symbol's name in the
15777 constant pool. The second value is the offset of the CU vector in
15778 the constant pool.
15779
15780 If both values are 0, then this slot in the hash table is empty.
15781 This is ok because while 0 is a valid constant pool index, it
15782 cannot be a valid index for both a string and a CU vector.
15783
15784 A string in the constant pool is stored as a \0-terminated string,
15785 as you'd expect.
15786
15787 A CU vector in the constant pool is a sequence of offset_type
15788 values. The first value is the number of CU indices in the vector.
15789 Each subsequent value is the index of a CU in the CU list. This
15790 element in the hash table is used to indicate which CUs define the
15791 symbol.
15792
15793 6. The constant pool. This is simply a bunch of bytes. It is
15794 organized so that alignment is correct: CU vectors are stored
15795 first, followed by strings. */
15796
15797 static void
15798 save_gdb_index_command (char *arg, int from_tty)
15799 {
15800 struct objfile *objfile;
15801
15802 if (!arg || !*arg)
15803 error (_("usage: save gdb-index DIRECTORY"));
15804
15805 ALL_OBJFILES (objfile)
15806 {
15807 struct stat st;
15808
15809 /* If the objfile does not correspond to an actual file, skip it. */
15810 if (stat (objfile->name, &st) < 0)
15811 continue;
15812
15813 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15814 if (dwarf2_per_objfile)
15815 {
15816 volatile struct gdb_exception except;
15817
15818 TRY_CATCH (except, RETURN_MASK_ERROR)
15819 {
15820 write_psymtabs_to_index (objfile, arg);
15821 }
15822 if (except.reason < 0)
15823 exception_fprintf (gdb_stderr, except,
15824 _("Error while writing index for `%s': "),
15825 objfile->name);
15826 }
15827 }
15828 }
15829
15830 \f
15831
15832 int dwarf2_always_disassemble;
15833
15834 static void
15835 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15836 struct cmd_list_element *c, const char *value)
15837 {
15838 fprintf_filtered (file,
15839 _("Whether to always disassemble "
15840 "DWARF expressions is %s.\n"),
15841 value);
15842 }
15843
15844 void _initialize_dwarf2_read (void);
15845
15846 void
15847 _initialize_dwarf2_read (void)
15848 {
15849 struct cmd_list_element *c;
15850
15851 dwarf2_objfile_data_key
15852 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15853
15854 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15855 Set DWARF 2 specific variables.\n\
15856 Configure DWARF 2 variables such as the cache size"),
15857 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15858 0/*allow-unknown*/, &maintenance_set_cmdlist);
15859
15860 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15861 Show DWARF 2 specific variables\n\
15862 Show DWARF 2 variables such as the cache size"),
15863 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15864 0/*allow-unknown*/, &maintenance_show_cmdlist);
15865
15866 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15867 &dwarf2_max_cache_age, _("\
15868 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15869 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15870 A higher limit means that cached compilation units will be stored\n\
15871 in memory longer, and more total memory will be used. Zero disables\n\
15872 caching, which can slow down startup."),
15873 NULL,
15874 show_dwarf2_max_cache_age,
15875 &set_dwarf2_cmdlist,
15876 &show_dwarf2_cmdlist);
15877
15878 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15879 &dwarf2_always_disassemble, _("\
15880 Set whether `info address' always disassembles DWARF expressions."), _("\
15881 Show whether `info address' always disassembles DWARF expressions."), _("\
15882 When enabled, DWARF expressions are always printed in an assembly-like\n\
15883 syntax. When disabled, expressions will be printed in a more\n\
15884 conversational style, when possible."),
15885 NULL,
15886 show_dwarf2_always_disassemble,
15887 &set_dwarf2_cmdlist,
15888 &show_dwarf2_cmdlist);
15889
15890 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15891 Set debugging of the dwarf2 DIE reader."), _("\
15892 Show debugging of the dwarf2 DIE reader."), _("\
15893 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15894 The value is the maximum depth to print."),
15895 NULL,
15896 NULL,
15897 &setdebuglist, &showdebuglist);
15898
15899 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15900 _("\
15901 Save a gdb-index file.\n\
15902 Usage: save gdb-index DIRECTORY"),
15903 &save_cmdlist);
15904 set_cmd_completer (c, filename_completer);
15905 }
This page took 0.47349 seconds and 4 git commands to generate.