Add support for the readnever concept
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "filename-seen-cache.h"
78 #include "producer.h"
79 #include <fcntl.h>
80 #include <sys/types.h>
81 #include <algorithm>
82 #include <unordered_set>
83 #include <unordered_map>
84 #include "selftest.h"
85
86 /* When == 1, print basic high level tracing messages.
87 When > 1, be more verbose.
88 This is in contrast to the low level DIE reading of dwarf_die_debug. */
89 static unsigned int dwarf_read_debug = 0;
90
91 /* When non-zero, dump DIEs after they are read in. */
92 static unsigned int dwarf_die_debug = 0;
93
94 /* When non-zero, dump line number entries as they are read in. */
95 static unsigned int dwarf_line_debug = 0;
96
97 /* When non-zero, cross-check physname against demangler. */
98 static int check_physname = 0;
99
100 /* When non-zero, do not reject deprecated .gdb_index sections. */
101 static int use_deprecated_index_sections = 0;
102
103 static const struct objfile_data *dwarf2_objfile_data_key;
104
105 /* The "aclass" indices for various kinds of computed DWARF symbols. */
106
107 static int dwarf2_locexpr_index;
108 static int dwarf2_loclist_index;
109 static int dwarf2_locexpr_block_index;
110 static int dwarf2_loclist_block_index;
111
112 /* A descriptor for dwarf sections.
113
114 S.ASECTION, SIZE are typically initialized when the objfile is first
115 scanned. BUFFER, READIN are filled in later when the section is read.
116 If the section contained compressed data then SIZE is updated to record
117 the uncompressed size of the section.
118
119 DWP file format V2 introduces a wrinkle that is easiest to handle by
120 creating the concept of virtual sections contained within a real section.
121 In DWP V2 the sections of the input DWO files are concatenated together
122 into one section, but section offsets are kept relative to the original
123 input section.
124 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
125 the real section this "virtual" section is contained in, and BUFFER,SIZE
126 describe the virtual section. */
127
128 struct dwarf2_section_info
129 {
130 union
131 {
132 /* If this is a real section, the bfd section. */
133 asection *section;
134 /* If this is a virtual section, pointer to the containing ("real")
135 section. */
136 struct dwarf2_section_info *containing_section;
137 } s;
138 /* Pointer to section data, only valid if readin. */
139 const gdb_byte *buffer;
140 /* The size of the section, real or virtual. */
141 bfd_size_type size;
142 /* If this is a virtual section, the offset in the real section.
143 Only valid if is_virtual. */
144 bfd_size_type virtual_offset;
145 /* True if we have tried to read this section. */
146 char readin;
147 /* True if this is a virtual section, False otherwise.
148 This specifies which of s.section and s.containing_section to use. */
149 char is_virtual;
150 };
151
152 typedef struct dwarf2_section_info dwarf2_section_info_def;
153 DEF_VEC_O (dwarf2_section_info_def);
154
155 /* All offsets in the index are of this type. It must be
156 architecture-independent. */
157 typedef uint32_t offset_type;
158
159 DEF_VEC_I (offset_type);
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((unsigned int) (value) <= 1); \
165 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
166 } while (0)
167
168 /* Ensure only legit values are used. */
169 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
170 do { \
171 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
172 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
173 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
177 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
178 do { \
179 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
180 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
181 } while (0)
182
183 #if WORDS_BIGENDIAN
184
185 /* Convert VALUE between big- and little-endian. */
186
187 static offset_type
188 byte_swap (offset_type value)
189 {
190 offset_type result;
191
192 result = (value & 0xff) << 24;
193 result |= (value & 0xff00) << 8;
194 result |= (value & 0xff0000) >> 8;
195 result |= (value & 0xff000000) >> 24;
196 return result;
197 }
198
199 #define MAYBE_SWAP(V) byte_swap (V)
200
201 #else
202 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
203 #endif /* WORDS_BIGENDIAN */
204
205 /* An index into a (C++) symbol name component in a symbol name as
206 recorded in the mapped_index's symbol table. For each C++ symbol
207 in the symbol table, we record one entry for the start of each
208 component in the symbol in a table of name components, and then
209 sort the table, in order to be able to binary search symbol names,
210 ignoring leading namespaces, both completion and regular look up.
211 For example, for symbol "A::B::C", we'll have an entry that points
212 to "A::B::C", another that points to "B::C", and another for "C".
213 Note that function symbols in GDB index have no parameter
214 information, just the function/method names. You can convert a
215 name_component to a "const char *" using the
216 'mapped_index::symbol_name_at(offset_type)' method. */
217
218 struct name_component
219 {
220 /* Offset in the symbol name where the component starts. Stored as
221 a (32-bit) offset instead of a pointer to save memory and improve
222 locality on 64-bit architectures. */
223 offset_type name_offset;
224
225 /* The symbol's index in the symbol and constant pool tables of a
226 mapped_index. */
227 offset_type idx;
228 };
229
230 /* A description of the mapped index. The file format is described in
231 a comment by the code that writes the index. */
232 struct mapped_index
233 {
234 /* Index data format version. */
235 int version;
236
237 /* The total length of the buffer. */
238 off_t total_size;
239
240 /* A pointer to the address table data. */
241 const gdb_byte *address_table;
242
243 /* Size of the address table data in bytes. */
244 offset_type address_table_size;
245
246 /* The symbol table, implemented as a hash table. */
247 const offset_type *symbol_table;
248
249 /* Size in slots, each slot is 2 offset_types. */
250 offset_type symbol_table_slots;
251
252 /* A pointer to the constant pool. */
253 const char *constant_pool;
254
255 /* The name_component table (a sorted vector). See name_component's
256 description above. */
257 std::vector<name_component> name_components;
258
259 /* How NAME_COMPONENTS is sorted. */
260 enum case_sensitivity name_components_casing;
261
262 /* Convenience method to get at the name of the symbol at IDX in the
263 symbol table. */
264 const char *symbol_name_at (offset_type idx) const
265 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx]); }
266
267 /* Build the symbol name component sorted vector, if we haven't
268 yet. */
269 void build_name_components ();
270
271 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
272 possible matches for LN_NO_PARAMS in the name component
273 vector. */
274 std::pair<std::vector<name_component>::const_iterator,
275 std::vector<name_component>::const_iterator>
276 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
277 };
278
279 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
280 DEF_VEC_P (dwarf2_per_cu_ptr);
281
282 struct tu_stats
283 {
284 int nr_uniq_abbrev_tables;
285 int nr_symtabs;
286 int nr_symtab_sharers;
287 int nr_stmt_less_type_units;
288 int nr_all_type_units_reallocs;
289 };
290
291 /* Collection of data recorded per objfile.
292 This hangs off of dwarf2_objfile_data_key. */
293
294 struct dwarf2_per_objfile
295 {
296 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
297 dwarf2 section names, or is NULL if the standard ELF names are
298 used. */
299 dwarf2_per_objfile (struct objfile *objfile,
300 const dwarf2_debug_sections *names);
301
302 ~dwarf2_per_objfile ();
303
304 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
305
306 /* Free all cached compilation units. */
307 void free_cached_comp_units ();
308 private:
309 /* This function is mapped across the sections and remembers the
310 offset and size of each of the debugging sections we are
311 interested in. */
312 void locate_sections (bfd *abfd, asection *sectp,
313 const dwarf2_debug_sections &names);
314
315 public:
316 dwarf2_section_info info {};
317 dwarf2_section_info abbrev {};
318 dwarf2_section_info line {};
319 dwarf2_section_info loc {};
320 dwarf2_section_info loclists {};
321 dwarf2_section_info macinfo {};
322 dwarf2_section_info macro {};
323 dwarf2_section_info str {};
324 dwarf2_section_info line_str {};
325 dwarf2_section_info ranges {};
326 dwarf2_section_info rnglists {};
327 dwarf2_section_info addr {};
328 dwarf2_section_info frame {};
329 dwarf2_section_info eh_frame {};
330 dwarf2_section_info gdb_index {};
331
332 VEC (dwarf2_section_info_def) *types = NULL;
333
334 /* Back link. */
335 struct objfile *objfile = NULL;
336
337 /* Table of all the compilation units. This is used to locate
338 the target compilation unit of a particular reference. */
339 struct dwarf2_per_cu_data **all_comp_units = NULL;
340
341 /* The number of compilation units in ALL_COMP_UNITS. */
342 int n_comp_units = 0;
343
344 /* The number of .debug_types-related CUs. */
345 int n_type_units = 0;
346
347 /* The number of elements allocated in all_type_units.
348 If there are skeleton-less TUs, we add them to all_type_units lazily. */
349 int n_allocated_type_units = 0;
350
351 /* The .debug_types-related CUs (TUs).
352 This is stored in malloc space because we may realloc it. */
353 struct signatured_type **all_type_units = NULL;
354
355 /* Table of struct type_unit_group objects.
356 The hash key is the DW_AT_stmt_list value. */
357 htab_t type_unit_groups {};
358
359 /* A table mapping .debug_types signatures to its signatured_type entry.
360 This is NULL if the .debug_types section hasn't been read in yet. */
361 htab_t signatured_types {};
362
363 /* Type unit statistics, to see how well the scaling improvements
364 are doing. */
365 struct tu_stats tu_stats {};
366
367 /* A chain of compilation units that are currently read in, so that
368 they can be freed later. */
369 dwarf2_per_cu_data *read_in_chain = NULL;
370
371 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
372 This is NULL if the table hasn't been allocated yet. */
373 htab_t dwo_files {};
374
375 /* True if we've checked for whether there is a DWP file. */
376 bool dwp_checked = false;
377
378 /* The DWP file if there is one, or NULL. */
379 struct dwp_file *dwp_file = NULL;
380
381 /* The shared '.dwz' file, if one exists. This is used when the
382 original data was compressed using 'dwz -m'. */
383 struct dwz_file *dwz_file = NULL;
384
385 /* A flag indicating whether this objfile has a section loaded at a
386 VMA of 0. */
387 bool has_section_at_zero = false;
388
389 /* True if we are using the mapped index,
390 or we are faking it for OBJF_READNOW's sake. */
391 bool using_index = false;
392
393 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
394 mapped_index *index_table = NULL;
395
396 /* When using index_table, this keeps track of all quick_file_names entries.
397 TUs typically share line table entries with a CU, so we maintain a
398 separate table of all line table entries to support the sharing.
399 Note that while there can be way more TUs than CUs, we've already
400 sorted all the TUs into "type unit groups", grouped by their
401 DW_AT_stmt_list value. Therefore the only sharing done here is with a
402 CU and its associated TU group if there is one. */
403 htab_t quick_file_names_table {};
404
405 /* Set during partial symbol reading, to prevent queueing of full
406 symbols. */
407 bool reading_partial_symbols = false;
408
409 /* Table mapping type DIEs to their struct type *.
410 This is NULL if not allocated yet.
411 The mapping is done via (CU/TU + DIE offset) -> type. */
412 htab_t die_type_hash {};
413
414 /* The CUs we recently read. */
415 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
416
417 /* Table containing line_header indexed by offset and offset_in_dwz. */
418 htab_t line_header_hash {};
419
420 /* Table containing all filenames. This is an optional because the
421 table is lazily constructed on first access. */
422 gdb::optional<filename_seen_cache> filenames_cache;
423 };
424
425 static struct dwarf2_per_objfile *dwarf2_per_objfile;
426
427 /* Default names of the debugging sections. */
428
429 /* Note that if the debugging section has been compressed, it might
430 have a name like .zdebug_info. */
431
432 static const struct dwarf2_debug_sections dwarf2_elf_names =
433 {
434 { ".debug_info", ".zdebug_info" },
435 { ".debug_abbrev", ".zdebug_abbrev" },
436 { ".debug_line", ".zdebug_line" },
437 { ".debug_loc", ".zdebug_loc" },
438 { ".debug_loclists", ".zdebug_loclists" },
439 { ".debug_macinfo", ".zdebug_macinfo" },
440 { ".debug_macro", ".zdebug_macro" },
441 { ".debug_str", ".zdebug_str" },
442 { ".debug_line_str", ".zdebug_line_str" },
443 { ".debug_ranges", ".zdebug_ranges" },
444 { ".debug_rnglists", ".zdebug_rnglists" },
445 { ".debug_types", ".zdebug_types" },
446 { ".debug_addr", ".zdebug_addr" },
447 { ".debug_frame", ".zdebug_frame" },
448 { ".eh_frame", NULL },
449 { ".gdb_index", ".zgdb_index" },
450 23
451 };
452
453 /* List of DWO/DWP sections. */
454
455 static const struct dwop_section_names
456 {
457 struct dwarf2_section_names abbrev_dwo;
458 struct dwarf2_section_names info_dwo;
459 struct dwarf2_section_names line_dwo;
460 struct dwarf2_section_names loc_dwo;
461 struct dwarf2_section_names loclists_dwo;
462 struct dwarf2_section_names macinfo_dwo;
463 struct dwarf2_section_names macro_dwo;
464 struct dwarf2_section_names str_dwo;
465 struct dwarf2_section_names str_offsets_dwo;
466 struct dwarf2_section_names types_dwo;
467 struct dwarf2_section_names cu_index;
468 struct dwarf2_section_names tu_index;
469 }
470 dwop_section_names =
471 {
472 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
473 { ".debug_info.dwo", ".zdebug_info.dwo" },
474 { ".debug_line.dwo", ".zdebug_line.dwo" },
475 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
476 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
477 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
478 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
479 { ".debug_str.dwo", ".zdebug_str.dwo" },
480 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
481 { ".debug_types.dwo", ".zdebug_types.dwo" },
482 { ".debug_cu_index", ".zdebug_cu_index" },
483 { ".debug_tu_index", ".zdebug_tu_index" },
484 };
485
486 /* local data types */
487
488 /* The data in a compilation unit header, after target2host
489 translation, looks like this. */
490 struct comp_unit_head
491 {
492 unsigned int length;
493 short version;
494 unsigned char addr_size;
495 unsigned char signed_addr_p;
496 sect_offset abbrev_sect_off;
497
498 /* Size of file offsets; either 4 or 8. */
499 unsigned int offset_size;
500
501 /* Size of the length field; either 4 or 12. */
502 unsigned int initial_length_size;
503
504 enum dwarf_unit_type unit_type;
505
506 /* Offset to the first byte of this compilation unit header in the
507 .debug_info section, for resolving relative reference dies. */
508 sect_offset sect_off;
509
510 /* Offset to first die in this cu from the start of the cu.
511 This will be the first byte following the compilation unit header. */
512 cu_offset first_die_cu_offset;
513
514 /* 64-bit signature of this type unit - it is valid only for
515 UNIT_TYPE DW_UT_type. */
516 ULONGEST signature;
517
518 /* For types, offset in the type's DIE of the type defined by this TU. */
519 cu_offset type_cu_offset_in_tu;
520 };
521
522 /* Type used for delaying computation of method physnames.
523 See comments for compute_delayed_physnames. */
524 struct delayed_method_info
525 {
526 /* The type to which the method is attached, i.e., its parent class. */
527 struct type *type;
528
529 /* The index of the method in the type's function fieldlists. */
530 int fnfield_index;
531
532 /* The index of the method in the fieldlist. */
533 int index;
534
535 /* The name of the DIE. */
536 const char *name;
537
538 /* The DIE associated with this method. */
539 struct die_info *die;
540 };
541
542 typedef struct delayed_method_info delayed_method_info;
543 DEF_VEC_O (delayed_method_info);
544
545 /* Internal state when decoding a particular compilation unit. */
546 struct dwarf2_cu
547 {
548 /* The objfile containing this compilation unit. */
549 struct objfile *objfile;
550
551 /* The header of the compilation unit. */
552 struct comp_unit_head header;
553
554 /* Base address of this compilation unit. */
555 CORE_ADDR base_address;
556
557 /* Non-zero if base_address has been set. */
558 int base_known;
559
560 /* The language we are debugging. */
561 enum language language;
562 const struct language_defn *language_defn;
563
564 const char *producer;
565
566 /* The generic symbol table building routines have separate lists for
567 file scope symbols and all all other scopes (local scopes). So
568 we need to select the right one to pass to add_symbol_to_list().
569 We do it by keeping a pointer to the correct list in list_in_scope.
570
571 FIXME: The original dwarf code just treated the file scope as the
572 first local scope, and all other local scopes as nested local
573 scopes, and worked fine. Check to see if we really need to
574 distinguish these in buildsym.c. */
575 struct pending **list_in_scope;
576
577 /* The abbrev table for this CU.
578 Normally this points to the abbrev table in the objfile.
579 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
580 struct abbrev_table *abbrev_table;
581
582 /* Hash table holding all the loaded partial DIEs
583 with partial_die->offset.SECT_OFF as hash. */
584 htab_t partial_dies;
585
586 /* Storage for things with the same lifetime as this read-in compilation
587 unit, including partial DIEs. */
588 struct obstack comp_unit_obstack;
589
590 /* When multiple dwarf2_cu structures are living in memory, this field
591 chains them all together, so that they can be released efficiently.
592 We will probably also want a generation counter so that most-recently-used
593 compilation units are cached... */
594 struct dwarf2_per_cu_data *read_in_chain;
595
596 /* Backlink to our per_cu entry. */
597 struct dwarf2_per_cu_data *per_cu;
598
599 /* How many compilation units ago was this CU last referenced? */
600 int last_used;
601
602 /* A hash table of DIE cu_offset for following references with
603 die_info->offset.sect_off as hash. */
604 htab_t die_hash;
605
606 /* Full DIEs if read in. */
607 struct die_info *dies;
608
609 /* A set of pointers to dwarf2_per_cu_data objects for compilation
610 units referenced by this one. Only set during full symbol processing;
611 partial symbol tables do not have dependencies. */
612 htab_t dependencies;
613
614 /* Header data from the line table, during full symbol processing. */
615 struct line_header *line_header;
616 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
617 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
618 this is the DW_TAG_compile_unit die for this CU. We'll hold on
619 to the line header as long as this DIE is being processed. See
620 process_die_scope. */
621 die_info *line_header_die_owner;
622
623 /* A list of methods which need to have physnames computed
624 after all type information has been read. */
625 VEC (delayed_method_info) *method_list;
626
627 /* To be copied to symtab->call_site_htab. */
628 htab_t call_site_htab;
629
630 /* Non-NULL if this CU came from a DWO file.
631 There is an invariant here that is important to remember:
632 Except for attributes copied from the top level DIE in the "main"
633 (or "stub") file in preparation for reading the DWO file
634 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
635 Either there isn't a DWO file (in which case this is NULL and the point
636 is moot), or there is and either we're not going to read it (in which
637 case this is NULL) or there is and we are reading it (in which case this
638 is non-NULL). */
639 struct dwo_unit *dwo_unit;
640
641 /* The DW_AT_addr_base attribute if present, zero otherwise
642 (zero is a valid value though).
643 Note this value comes from the Fission stub CU/TU's DIE. */
644 ULONGEST addr_base;
645
646 /* The DW_AT_ranges_base attribute if present, zero otherwise
647 (zero is a valid value though).
648 Note this value comes from the Fission stub CU/TU's DIE.
649 Also note that the value is zero in the non-DWO case so this value can
650 be used without needing to know whether DWO files are in use or not.
651 N.B. This does not apply to DW_AT_ranges appearing in
652 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
653 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
654 DW_AT_ranges_base *would* have to be applied, and we'd have to care
655 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
656 ULONGEST ranges_base;
657
658 /* Mark used when releasing cached dies. */
659 unsigned int mark : 1;
660
661 /* This CU references .debug_loc. See the symtab->locations_valid field.
662 This test is imperfect as there may exist optimized debug code not using
663 any location list and still facing inlining issues if handled as
664 unoptimized code. For a future better test see GCC PR other/32998. */
665 unsigned int has_loclist : 1;
666
667 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
668 if all the producer_is_* fields are valid. This information is cached
669 because profiling CU expansion showed excessive time spent in
670 producer_is_gxx_lt_4_6. */
671 unsigned int checked_producer : 1;
672 unsigned int producer_is_gxx_lt_4_6 : 1;
673 unsigned int producer_is_gcc_lt_4_3 : 1;
674 unsigned int producer_is_icc_lt_14 : 1;
675
676 /* When set, the file that we're processing is known to have
677 debugging info for C++ namespaces. GCC 3.3.x did not produce
678 this information, but later versions do. */
679
680 unsigned int processing_has_namespace_info : 1;
681 };
682
683 /* Persistent data held for a compilation unit, even when not
684 processing it. We put a pointer to this structure in the
685 read_symtab_private field of the psymtab. */
686
687 struct dwarf2_per_cu_data
688 {
689 /* The start offset and length of this compilation unit.
690 NOTE: Unlike comp_unit_head.length, this length includes
691 initial_length_size.
692 If the DIE refers to a DWO file, this is always of the original die,
693 not the DWO file. */
694 sect_offset sect_off;
695 unsigned int length;
696
697 /* DWARF standard version this data has been read from (such as 4 or 5). */
698 short dwarf_version;
699
700 /* Flag indicating this compilation unit will be read in before
701 any of the current compilation units are processed. */
702 unsigned int queued : 1;
703
704 /* This flag will be set when reading partial DIEs if we need to load
705 absolutely all DIEs for this compilation unit, instead of just the ones
706 we think are interesting. It gets set if we look for a DIE in the
707 hash table and don't find it. */
708 unsigned int load_all_dies : 1;
709
710 /* Non-zero if this CU is from .debug_types.
711 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
712 this is non-zero. */
713 unsigned int is_debug_types : 1;
714
715 /* Non-zero if this CU is from the .dwz file. */
716 unsigned int is_dwz : 1;
717
718 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
719 This flag is only valid if is_debug_types is true.
720 We can't read a CU directly from a DWO file: There are required
721 attributes in the stub. */
722 unsigned int reading_dwo_directly : 1;
723
724 /* Non-zero if the TU has been read.
725 This is used to assist the "Stay in DWO Optimization" for Fission:
726 When reading a DWO, it's faster to read TUs from the DWO instead of
727 fetching them from random other DWOs (due to comdat folding).
728 If the TU has already been read, the optimization is unnecessary
729 (and unwise - we don't want to change where gdb thinks the TU lives
730 "midflight").
731 This flag is only valid if is_debug_types is true. */
732 unsigned int tu_read : 1;
733
734 /* The section this CU/TU lives in.
735 If the DIE refers to a DWO file, this is always the original die,
736 not the DWO file. */
737 struct dwarf2_section_info *section;
738
739 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
740 of the CU cache it gets reset to NULL again. This is left as NULL for
741 dummy CUs (a CU header, but nothing else). */
742 struct dwarf2_cu *cu;
743
744 /* The corresponding objfile.
745 Normally we can get the objfile from dwarf2_per_objfile.
746 However we can enter this file with just a "per_cu" handle. */
747 struct objfile *objfile;
748
749 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
750 is active. Otherwise, the 'psymtab' field is active. */
751 union
752 {
753 /* The partial symbol table associated with this compilation unit,
754 or NULL for unread partial units. */
755 struct partial_symtab *psymtab;
756
757 /* Data needed by the "quick" functions. */
758 struct dwarf2_per_cu_quick_data *quick;
759 } v;
760
761 /* The CUs we import using DW_TAG_imported_unit. This is filled in
762 while reading psymtabs, used to compute the psymtab dependencies,
763 and then cleared. Then it is filled in again while reading full
764 symbols, and only deleted when the objfile is destroyed.
765
766 This is also used to work around a difference between the way gold
767 generates .gdb_index version <=7 and the way gdb does. Arguably this
768 is a gold bug. For symbols coming from TUs, gold records in the index
769 the CU that includes the TU instead of the TU itself. This breaks
770 dw2_lookup_symbol: It assumes that if the index says symbol X lives
771 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
772 will find X. Alas TUs live in their own symtab, so after expanding CU Y
773 we need to look in TU Z to find X. Fortunately, this is akin to
774 DW_TAG_imported_unit, so we just use the same mechanism: For
775 .gdb_index version <=7 this also records the TUs that the CU referred
776 to. Concurrently with this change gdb was modified to emit version 8
777 indices so we only pay a price for gold generated indices.
778 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
779 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
780 };
781
782 /* Entry in the signatured_types hash table. */
783
784 struct signatured_type
785 {
786 /* The "per_cu" object of this type.
787 This struct is used iff per_cu.is_debug_types.
788 N.B.: This is the first member so that it's easy to convert pointers
789 between them. */
790 struct dwarf2_per_cu_data per_cu;
791
792 /* The type's signature. */
793 ULONGEST signature;
794
795 /* Offset in the TU of the type's DIE, as read from the TU header.
796 If this TU is a DWO stub and the definition lives in a DWO file
797 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
798 cu_offset type_offset_in_tu;
799
800 /* Offset in the section of the type's DIE.
801 If the definition lives in a DWO file, this is the offset in the
802 .debug_types.dwo section.
803 The value is zero until the actual value is known.
804 Zero is otherwise not a valid section offset. */
805 sect_offset type_offset_in_section;
806
807 /* Type units are grouped by their DW_AT_stmt_list entry so that they
808 can share them. This points to the containing symtab. */
809 struct type_unit_group *type_unit_group;
810
811 /* The type.
812 The first time we encounter this type we fully read it in and install it
813 in the symbol tables. Subsequent times we only need the type. */
814 struct type *type;
815
816 /* Containing DWO unit.
817 This field is valid iff per_cu.reading_dwo_directly. */
818 struct dwo_unit *dwo_unit;
819 };
820
821 typedef struct signatured_type *sig_type_ptr;
822 DEF_VEC_P (sig_type_ptr);
823
824 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
825 This includes type_unit_group and quick_file_names. */
826
827 struct stmt_list_hash
828 {
829 /* The DWO unit this table is from or NULL if there is none. */
830 struct dwo_unit *dwo_unit;
831
832 /* Offset in .debug_line or .debug_line.dwo. */
833 sect_offset line_sect_off;
834 };
835
836 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
837 an object of this type. */
838
839 struct type_unit_group
840 {
841 /* dwarf2read.c's main "handle" on a TU symtab.
842 To simplify things we create an artificial CU that "includes" all the
843 type units using this stmt_list so that the rest of the code still has
844 a "per_cu" handle on the symtab.
845 This PER_CU is recognized by having no section. */
846 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
847 struct dwarf2_per_cu_data per_cu;
848
849 /* The TUs that share this DW_AT_stmt_list entry.
850 This is added to while parsing type units to build partial symtabs,
851 and is deleted afterwards and not used again. */
852 VEC (sig_type_ptr) *tus;
853
854 /* The compunit symtab.
855 Type units in a group needn't all be defined in the same source file,
856 so we create an essentially anonymous symtab as the compunit symtab. */
857 struct compunit_symtab *compunit_symtab;
858
859 /* The data used to construct the hash key. */
860 struct stmt_list_hash hash;
861
862 /* The number of symtabs from the line header.
863 The value here must match line_header.num_file_names. */
864 unsigned int num_symtabs;
865
866 /* The symbol tables for this TU (obtained from the files listed in
867 DW_AT_stmt_list).
868 WARNING: The order of entries here must match the order of entries
869 in the line header. After the first TU using this type_unit_group, the
870 line header for the subsequent TUs is recreated from this. This is done
871 because we need to use the same symtabs for each TU using the same
872 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
873 there's no guarantee the line header doesn't have duplicate entries. */
874 struct symtab **symtabs;
875 };
876
877 /* These sections are what may appear in a (real or virtual) DWO file. */
878
879 struct dwo_sections
880 {
881 struct dwarf2_section_info abbrev;
882 struct dwarf2_section_info line;
883 struct dwarf2_section_info loc;
884 struct dwarf2_section_info loclists;
885 struct dwarf2_section_info macinfo;
886 struct dwarf2_section_info macro;
887 struct dwarf2_section_info str;
888 struct dwarf2_section_info str_offsets;
889 /* In the case of a virtual DWO file, these two are unused. */
890 struct dwarf2_section_info info;
891 VEC (dwarf2_section_info_def) *types;
892 };
893
894 /* CUs/TUs in DWP/DWO files. */
895
896 struct dwo_unit
897 {
898 /* Backlink to the containing struct dwo_file. */
899 struct dwo_file *dwo_file;
900
901 /* The "id" that distinguishes this CU/TU.
902 .debug_info calls this "dwo_id", .debug_types calls this "signature".
903 Since signatures came first, we stick with it for consistency. */
904 ULONGEST signature;
905
906 /* The section this CU/TU lives in, in the DWO file. */
907 struct dwarf2_section_info *section;
908
909 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
910 sect_offset sect_off;
911 unsigned int length;
912
913 /* For types, offset in the type's DIE of the type defined by this TU. */
914 cu_offset type_offset_in_tu;
915 };
916
917 /* include/dwarf2.h defines the DWP section codes.
918 It defines a max value but it doesn't define a min value, which we
919 use for error checking, so provide one. */
920
921 enum dwp_v2_section_ids
922 {
923 DW_SECT_MIN = 1
924 };
925
926 /* Data for one DWO file.
927
928 This includes virtual DWO files (a virtual DWO file is a DWO file as it
929 appears in a DWP file). DWP files don't really have DWO files per se -
930 comdat folding of types "loses" the DWO file they came from, and from
931 a high level view DWP files appear to contain a mass of random types.
932 However, to maintain consistency with the non-DWP case we pretend DWP
933 files contain virtual DWO files, and we assign each TU with one virtual
934 DWO file (generally based on the line and abbrev section offsets -
935 a heuristic that seems to work in practice). */
936
937 struct dwo_file
938 {
939 /* The DW_AT_GNU_dwo_name attribute.
940 For virtual DWO files the name is constructed from the section offsets
941 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
942 from related CU+TUs. */
943 const char *dwo_name;
944
945 /* The DW_AT_comp_dir attribute. */
946 const char *comp_dir;
947
948 /* The bfd, when the file is open. Otherwise this is NULL.
949 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
950 bfd *dbfd;
951
952 /* The sections that make up this DWO file.
953 Remember that for virtual DWO files in DWP V2, these are virtual
954 sections (for lack of a better name). */
955 struct dwo_sections sections;
956
957 /* The CUs in the file.
958 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
959 an extension to handle LLVM's Link Time Optimization output (where
960 multiple source files may be compiled into a single object/dwo pair). */
961 htab_t cus;
962
963 /* Table of TUs in the file.
964 Each element is a struct dwo_unit. */
965 htab_t tus;
966 };
967
968 /* These sections are what may appear in a DWP file. */
969
970 struct dwp_sections
971 {
972 /* These are used by both DWP version 1 and 2. */
973 struct dwarf2_section_info str;
974 struct dwarf2_section_info cu_index;
975 struct dwarf2_section_info tu_index;
976
977 /* These are only used by DWP version 2 files.
978 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
979 sections are referenced by section number, and are not recorded here.
980 In DWP version 2 there is at most one copy of all these sections, each
981 section being (effectively) comprised of the concatenation of all of the
982 individual sections that exist in the version 1 format.
983 To keep the code simple we treat each of these concatenated pieces as a
984 section itself (a virtual section?). */
985 struct dwarf2_section_info abbrev;
986 struct dwarf2_section_info info;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info loc;
989 struct dwarf2_section_info macinfo;
990 struct dwarf2_section_info macro;
991 struct dwarf2_section_info str_offsets;
992 struct dwarf2_section_info types;
993 };
994
995 /* These sections are what may appear in a virtual DWO file in DWP version 1.
996 A virtual DWO file is a DWO file as it appears in a DWP file. */
997
998 struct virtual_v1_dwo_sections
999 {
1000 struct dwarf2_section_info abbrev;
1001 struct dwarf2_section_info line;
1002 struct dwarf2_section_info loc;
1003 struct dwarf2_section_info macinfo;
1004 struct dwarf2_section_info macro;
1005 struct dwarf2_section_info str_offsets;
1006 /* Each DWP hash table entry records one CU or one TU.
1007 That is recorded here, and copied to dwo_unit.section. */
1008 struct dwarf2_section_info info_or_types;
1009 };
1010
1011 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1012 In version 2, the sections of the DWO files are concatenated together
1013 and stored in one section of that name. Thus each ELF section contains
1014 several "virtual" sections. */
1015
1016 struct virtual_v2_dwo_sections
1017 {
1018 bfd_size_type abbrev_offset;
1019 bfd_size_type abbrev_size;
1020
1021 bfd_size_type line_offset;
1022 bfd_size_type line_size;
1023
1024 bfd_size_type loc_offset;
1025 bfd_size_type loc_size;
1026
1027 bfd_size_type macinfo_offset;
1028 bfd_size_type macinfo_size;
1029
1030 bfd_size_type macro_offset;
1031 bfd_size_type macro_size;
1032
1033 bfd_size_type str_offsets_offset;
1034 bfd_size_type str_offsets_size;
1035
1036 /* Each DWP hash table entry records one CU or one TU.
1037 That is recorded here, and copied to dwo_unit.section. */
1038 bfd_size_type info_or_types_offset;
1039 bfd_size_type info_or_types_size;
1040 };
1041
1042 /* Contents of DWP hash tables. */
1043
1044 struct dwp_hash_table
1045 {
1046 uint32_t version, nr_columns;
1047 uint32_t nr_units, nr_slots;
1048 const gdb_byte *hash_table, *unit_table;
1049 union
1050 {
1051 struct
1052 {
1053 const gdb_byte *indices;
1054 } v1;
1055 struct
1056 {
1057 /* This is indexed by column number and gives the id of the section
1058 in that column. */
1059 #define MAX_NR_V2_DWO_SECTIONS \
1060 (1 /* .debug_info or .debug_types */ \
1061 + 1 /* .debug_abbrev */ \
1062 + 1 /* .debug_line */ \
1063 + 1 /* .debug_loc */ \
1064 + 1 /* .debug_str_offsets */ \
1065 + 1 /* .debug_macro or .debug_macinfo */)
1066 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1067 const gdb_byte *offsets;
1068 const gdb_byte *sizes;
1069 } v2;
1070 } section_pool;
1071 };
1072
1073 /* Data for one DWP file. */
1074
1075 struct dwp_file
1076 {
1077 /* Name of the file. */
1078 const char *name;
1079
1080 /* File format version. */
1081 int version;
1082
1083 /* The bfd. */
1084 bfd *dbfd;
1085
1086 /* Section info for this file. */
1087 struct dwp_sections sections;
1088
1089 /* Table of CUs in the file. */
1090 const struct dwp_hash_table *cus;
1091
1092 /* Table of TUs in the file. */
1093 const struct dwp_hash_table *tus;
1094
1095 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1096 htab_t loaded_cus;
1097 htab_t loaded_tus;
1098
1099 /* Table to map ELF section numbers to their sections.
1100 This is only needed for the DWP V1 file format. */
1101 unsigned int num_sections;
1102 asection **elf_sections;
1103 };
1104
1105 /* This represents a '.dwz' file. */
1106
1107 struct dwz_file
1108 {
1109 /* A dwz file can only contain a few sections. */
1110 struct dwarf2_section_info abbrev;
1111 struct dwarf2_section_info info;
1112 struct dwarf2_section_info str;
1113 struct dwarf2_section_info line;
1114 struct dwarf2_section_info macro;
1115 struct dwarf2_section_info gdb_index;
1116
1117 /* The dwz's BFD. */
1118 bfd *dwz_bfd;
1119 };
1120
1121 /* Struct used to pass misc. parameters to read_die_and_children, et
1122 al. which are used for both .debug_info and .debug_types dies.
1123 All parameters here are unchanging for the life of the call. This
1124 struct exists to abstract away the constant parameters of die reading. */
1125
1126 struct die_reader_specs
1127 {
1128 /* The bfd of die_section. */
1129 bfd* abfd;
1130
1131 /* The CU of the DIE we are parsing. */
1132 struct dwarf2_cu *cu;
1133
1134 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1135 struct dwo_file *dwo_file;
1136
1137 /* The section the die comes from.
1138 This is either .debug_info or .debug_types, or the .dwo variants. */
1139 struct dwarf2_section_info *die_section;
1140
1141 /* die_section->buffer. */
1142 const gdb_byte *buffer;
1143
1144 /* The end of the buffer. */
1145 const gdb_byte *buffer_end;
1146
1147 /* The value of the DW_AT_comp_dir attribute. */
1148 const char *comp_dir;
1149 };
1150
1151 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1152 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1153 const gdb_byte *info_ptr,
1154 struct die_info *comp_unit_die,
1155 int has_children,
1156 void *data);
1157
1158 /* A 1-based directory index. This is a strong typedef to prevent
1159 accidentally using a directory index as a 0-based index into an
1160 array/vector. */
1161 enum class dir_index : unsigned int {};
1162
1163 /* Likewise, a 1-based file name index. */
1164 enum class file_name_index : unsigned int {};
1165
1166 struct file_entry
1167 {
1168 file_entry () = default;
1169
1170 file_entry (const char *name_, dir_index d_index_,
1171 unsigned int mod_time_, unsigned int length_)
1172 : name (name_),
1173 d_index (d_index_),
1174 mod_time (mod_time_),
1175 length (length_)
1176 {}
1177
1178 /* Return the include directory at D_INDEX stored in LH. Returns
1179 NULL if D_INDEX is out of bounds. */
1180 const char *include_dir (const line_header *lh) const;
1181
1182 /* The file name. Note this is an observing pointer. The memory is
1183 owned by debug_line_buffer. */
1184 const char *name {};
1185
1186 /* The directory index (1-based). */
1187 dir_index d_index {};
1188
1189 unsigned int mod_time {};
1190
1191 unsigned int length {};
1192
1193 /* True if referenced by the Line Number Program. */
1194 bool included_p {};
1195
1196 /* The associated symbol table, if any. */
1197 struct symtab *symtab {};
1198 };
1199
1200 /* The line number information for a compilation unit (found in the
1201 .debug_line section) begins with a "statement program header",
1202 which contains the following information. */
1203 struct line_header
1204 {
1205 line_header ()
1206 : offset_in_dwz {}
1207 {}
1208
1209 /* Add an entry to the include directory table. */
1210 void add_include_dir (const char *include_dir);
1211
1212 /* Add an entry to the file name table. */
1213 void add_file_name (const char *name, dir_index d_index,
1214 unsigned int mod_time, unsigned int length);
1215
1216 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1217 is out of bounds. */
1218 const char *include_dir_at (dir_index index) const
1219 {
1220 /* Convert directory index number (1-based) to vector index
1221 (0-based). */
1222 size_t vec_index = to_underlying (index) - 1;
1223
1224 if (vec_index >= include_dirs.size ())
1225 return NULL;
1226 return include_dirs[vec_index];
1227 }
1228
1229 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1230 is out of bounds. */
1231 file_entry *file_name_at (file_name_index index)
1232 {
1233 /* Convert file name index number (1-based) to vector index
1234 (0-based). */
1235 size_t vec_index = to_underlying (index) - 1;
1236
1237 if (vec_index >= file_names.size ())
1238 return NULL;
1239 return &file_names[vec_index];
1240 }
1241
1242 /* Const version of the above. */
1243 const file_entry *file_name_at (unsigned int index) const
1244 {
1245 if (index >= file_names.size ())
1246 return NULL;
1247 return &file_names[index];
1248 }
1249
1250 /* Offset of line number information in .debug_line section. */
1251 sect_offset sect_off {};
1252
1253 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1254 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1255
1256 unsigned int total_length {};
1257 unsigned short version {};
1258 unsigned int header_length {};
1259 unsigned char minimum_instruction_length {};
1260 unsigned char maximum_ops_per_instruction {};
1261 unsigned char default_is_stmt {};
1262 int line_base {};
1263 unsigned char line_range {};
1264 unsigned char opcode_base {};
1265
1266 /* standard_opcode_lengths[i] is the number of operands for the
1267 standard opcode whose value is i. This means that
1268 standard_opcode_lengths[0] is unused, and the last meaningful
1269 element is standard_opcode_lengths[opcode_base - 1]. */
1270 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1271
1272 /* The include_directories table. Note these are observing
1273 pointers. The memory is owned by debug_line_buffer. */
1274 std::vector<const char *> include_dirs;
1275
1276 /* The file_names table. */
1277 std::vector<file_entry> file_names;
1278
1279 /* The start and end of the statement program following this
1280 header. These point into dwarf2_per_objfile->line_buffer. */
1281 const gdb_byte *statement_program_start {}, *statement_program_end {};
1282 };
1283
1284 typedef std::unique_ptr<line_header> line_header_up;
1285
1286 const char *
1287 file_entry::include_dir (const line_header *lh) const
1288 {
1289 return lh->include_dir_at (d_index);
1290 }
1291
1292 /* When we construct a partial symbol table entry we only
1293 need this much information. */
1294 struct partial_die_info
1295 {
1296 /* Offset of this DIE. */
1297 sect_offset sect_off;
1298
1299 /* DWARF-2 tag for this DIE. */
1300 ENUM_BITFIELD(dwarf_tag) tag : 16;
1301
1302 /* Assorted flags describing the data found in this DIE. */
1303 unsigned int has_children : 1;
1304 unsigned int is_external : 1;
1305 unsigned int is_declaration : 1;
1306 unsigned int has_type : 1;
1307 unsigned int has_specification : 1;
1308 unsigned int has_pc_info : 1;
1309 unsigned int may_be_inlined : 1;
1310
1311 /* This DIE has been marked DW_AT_main_subprogram. */
1312 unsigned int main_subprogram : 1;
1313
1314 /* Flag set if the SCOPE field of this structure has been
1315 computed. */
1316 unsigned int scope_set : 1;
1317
1318 /* Flag set if the DIE has a byte_size attribute. */
1319 unsigned int has_byte_size : 1;
1320
1321 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1322 unsigned int has_const_value : 1;
1323
1324 /* Flag set if any of the DIE's children are template arguments. */
1325 unsigned int has_template_arguments : 1;
1326
1327 /* Flag set if fixup_partial_die has been called on this die. */
1328 unsigned int fixup_called : 1;
1329
1330 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1331 unsigned int is_dwz : 1;
1332
1333 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1334 unsigned int spec_is_dwz : 1;
1335
1336 /* The name of this DIE. Normally the value of DW_AT_name, but
1337 sometimes a default name for unnamed DIEs. */
1338 const char *name;
1339
1340 /* The linkage name, if present. */
1341 const char *linkage_name;
1342
1343 /* The scope to prepend to our children. This is generally
1344 allocated on the comp_unit_obstack, so will disappear
1345 when this compilation unit leaves the cache. */
1346 const char *scope;
1347
1348 /* Some data associated with the partial DIE. The tag determines
1349 which field is live. */
1350 union
1351 {
1352 /* The location description associated with this DIE, if any. */
1353 struct dwarf_block *locdesc;
1354 /* The offset of an import, for DW_TAG_imported_unit. */
1355 sect_offset sect_off;
1356 } d;
1357
1358 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1359 CORE_ADDR lowpc;
1360 CORE_ADDR highpc;
1361
1362 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1363 DW_AT_sibling, if any. */
1364 /* NOTE: This member isn't strictly necessary, read_partial_die could
1365 return DW_AT_sibling values to its caller load_partial_dies. */
1366 const gdb_byte *sibling;
1367
1368 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1369 DW_AT_specification (or DW_AT_abstract_origin or
1370 DW_AT_extension). */
1371 sect_offset spec_offset;
1372
1373 /* Pointers to this DIE's parent, first child, and next sibling,
1374 if any. */
1375 struct partial_die_info *die_parent, *die_child, *die_sibling;
1376 };
1377
1378 /* This data structure holds the information of an abbrev. */
1379 struct abbrev_info
1380 {
1381 unsigned int number; /* number identifying abbrev */
1382 enum dwarf_tag tag; /* dwarf tag */
1383 unsigned short has_children; /* boolean */
1384 unsigned short num_attrs; /* number of attributes */
1385 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1386 struct abbrev_info *next; /* next in chain */
1387 };
1388
1389 struct attr_abbrev
1390 {
1391 ENUM_BITFIELD(dwarf_attribute) name : 16;
1392 ENUM_BITFIELD(dwarf_form) form : 16;
1393
1394 /* It is valid only if FORM is DW_FORM_implicit_const. */
1395 LONGEST implicit_const;
1396 };
1397
1398 /* Size of abbrev_table.abbrev_hash_table. */
1399 #define ABBREV_HASH_SIZE 121
1400
1401 /* Top level data structure to contain an abbreviation table. */
1402
1403 struct abbrev_table
1404 {
1405 /* Where the abbrev table came from.
1406 This is used as a sanity check when the table is used. */
1407 sect_offset sect_off;
1408
1409 /* Storage for the abbrev table. */
1410 struct obstack abbrev_obstack;
1411
1412 /* Hash table of abbrevs.
1413 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1414 It could be statically allocated, but the previous code didn't so we
1415 don't either. */
1416 struct abbrev_info **abbrevs;
1417 };
1418
1419 /* Attributes have a name and a value. */
1420 struct attribute
1421 {
1422 ENUM_BITFIELD(dwarf_attribute) name : 16;
1423 ENUM_BITFIELD(dwarf_form) form : 15;
1424
1425 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1426 field should be in u.str (existing only for DW_STRING) but it is kept
1427 here for better struct attribute alignment. */
1428 unsigned int string_is_canonical : 1;
1429
1430 union
1431 {
1432 const char *str;
1433 struct dwarf_block *blk;
1434 ULONGEST unsnd;
1435 LONGEST snd;
1436 CORE_ADDR addr;
1437 ULONGEST signature;
1438 }
1439 u;
1440 };
1441
1442 /* This data structure holds a complete die structure. */
1443 struct die_info
1444 {
1445 /* DWARF-2 tag for this DIE. */
1446 ENUM_BITFIELD(dwarf_tag) tag : 16;
1447
1448 /* Number of attributes */
1449 unsigned char num_attrs;
1450
1451 /* True if we're presently building the full type name for the
1452 type derived from this DIE. */
1453 unsigned char building_fullname : 1;
1454
1455 /* True if this die is in process. PR 16581. */
1456 unsigned char in_process : 1;
1457
1458 /* Abbrev number */
1459 unsigned int abbrev;
1460
1461 /* Offset in .debug_info or .debug_types section. */
1462 sect_offset sect_off;
1463
1464 /* The dies in a compilation unit form an n-ary tree. PARENT
1465 points to this die's parent; CHILD points to the first child of
1466 this node; and all the children of a given node are chained
1467 together via their SIBLING fields. */
1468 struct die_info *child; /* Its first child, if any. */
1469 struct die_info *sibling; /* Its next sibling, if any. */
1470 struct die_info *parent; /* Its parent, if any. */
1471
1472 /* An array of attributes, with NUM_ATTRS elements. There may be
1473 zero, but it's not common and zero-sized arrays are not
1474 sufficiently portable C. */
1475 struct attribute attrs[1];
1476 };
1477
1478 /* Get at parts of an attribute structure. */
1479
1480 #define DW_STRING(attr) ((attr)->u.str)
1481 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1482 #define DW_UNSND(attr) ((attr)->u.unsnd)
1483 #define DW_BLOCK(attr) ((attr)->u.blk)
1484 #define DW_SND(attr) ((attr)->u.snd)
1485 #define DW_ADDR(attr) ((attr)->u.addr)
1486 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1487
1488 /* Blocks are a bunch of untyped bytes. */
1489 struct dwarf_block
1490 {
1491 size_t size;
1492
1493 /* Valid only if SIZE is not zero. */
1494 const gdb_byte *data;
1495 };
1496
1497 #ifndef ATTR_ALLOC_CHUNK
1498 #define ATTR_ALLOC_CHUNK 4
1499 #endif
1500
1501 /* Allocate fields for structs, unions and enums in this size. */
1502 #ifndef DW_FIELD_ALLOC_CHUNK
1503 #define DW_FIELD_ALLOC_CHUNK 4
1504 #endif
1505
1506 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1507 but this would require a corresponding change in unpack_field_as_long
1508 and friends. */
1509 static int bits_per_byte = 8;
1510
1511 struct nextfield
1512 {
1513 struct nextfield *next;
1514 int accessibility;
1515 int virtuality;
1516 struct field field;
1517 };
1518
1519 struct nextfnfield
1520 {
1521 struct nextfnfield *next;
1522 struct fn_field fnfield;
1523 };
1524
1525 struct fnfieldlist
1526 {
1527 const char *name;
1528 int length;
1529 struct nextfnfield *head;
1530 };
1531
1532 struct typedef_field_list
1533 {
1534 struct typedef_field field;
1535 struct typedef_field_list *next;
1536 };
1537
1538 /* The routines that read and process dies for a C struct or C++ class
1539 pass lists of data member fields and lists of member function fields
1540 in an instance of a field_info structure, as defined below. */
1541 struct field_info
1542 {
1543 /* List of data member and baseclasses fields. */
1544 struct nextfield *fields, *baseclasses;
1545
1546 /* Number of fields (including baseclasses). */
1547 int nfields;
1548
1549 /* Number of baseclasses. */
1550 int nbaseclasses;
1551
1552 /* Set if the accesibility of one of the fields is not public. */
1553 int non_public_fields;
1554
1555 /* Member function fieldlist array, contains name of possibly overloaded
1556 member function, number of overloaded member functions and a pointer
1557 to the head of the member function field chain. */
1558 struct fnfieldlist *fnfieldlists;
1559
1560 /* Number of entries in the fnfieldlists array. */
1561 int nfnfields;
1562
1563 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1564 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1565 struct typedef_field_list *typedef_field_list;
1566 unsigned typedef_field_list_count;
1567 };
1568
1569 /* One item on the queue of compilation units to read in full symbols
1570 for. */
1571 struct dwarf2_queue_item
1572 {
1573 struct dwarf2_per_cu_data *per_cu;
1574 enum language pretend_language;
1575 struct dwarf2_queue_item *next;
1576 };
1577
1578 /* The current queue. */
1579 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1580
1581 /* Loaded secondary compilation units are kept in memory until they
1582 have not been referenced for the processing of this many
1583 compilation units. Set this to zero to disable caching. Cache
1584 sizes of up to at least twenty will improve startup time for
1585 typical inter-CU-reference binaries, at an obvious memory cost. */
1586 static int dwarf_max_cache_age = 5;
1587 static void
1588 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1589 struct cmd_list_element *c, const char *value)
1590 {
1591 fprintf_filtered (file, _("The upper bound on the age of cached "
1592 "DWARF compilation units is %s.\n"),
1593 value);
1594 }
1595 \f
1596 /* local function prototypes */
1597
1598 static const char *get_section_name (const struct dwarf2_section_info *);
1599
1600 static const char *get_section_file_name (const struct dwarf2_section_info *);
1601
1602 static void dwarf2_find_base_address (struct die_info *die,
1603 struct dwarf2_cu *cu);
1604
1605 static struct partial_symtab *create_partial_symtab
1606 (struct dwarf2_per_cu_data *per_cu, const char *name);
1607
1608 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1609 const gdb_byte *info_ptr,
1610 struct die_info *type_unit_die,
1611 int has_children, void *data);
1612
1613 static void dwarf2_build_psymtabs_hard (struct objfile *);
1614
1615 static void scan_partial_symbols (struct partial_die_info *,
1616 CORE_ADDR *, CORE_ADDR *,
1617 int, struct dwarf2_cu *);
1618
1619 static void add_partial_symbol (struct partial_die_info *,
1620 struct dwarf2_cu *);
1621
1622 static void add_partial_namespace (struct partial_die_info *pdi,
1623 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1624 int set_addrmap, struct dwarf2_cu *cu);
1625
1626 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1627 CORE_ADDR *highpc, int set_addrmap,
1628 struct dwarf2_cu *cu);
1629
1630 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1631 struct dwarf2_cu *cu);
1632
1633 static void add_partial_subprogram (struct partial_die_info *pdi,
1634 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1635 int need_pc, struct dwarf2_cu *cu);
1636
1637 static void dwarf2_read_symtab (struct partial_symtab *,
1638 struct objfile *);
1639
1640 static void psymtab_to_symtab_1 (struct partial_symtab *);
1641
1642 static struct abbrev_info *abbrev_table_lookup_abbrev
1643 (const struct abbrev_table *, unsigned int);
1644
1645 static struct abbrev_table *abbrev_table_read_table
1646 (struct dwarf2_section_info *, sect_offset);
1647
1648 static void abbrev_table_free (struct abbrev_table *);
1649
1650 static void abbrev_table_free_cleanup (void *);
1651
1652 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1653 struct dwarf2_section_info *);
1654
1655 static void dwarf2_free_abbrev_table (void *);
1656
1657 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1658
1659 static struct partial_die_info *load_partial_dies
1660 (const struct die_reader_specs *, const gdb_byte *, int);
1661
1662 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1663 struct partial_die_info *,
1664 struct abbrev_info *,
1665 unsigned int,
1666 const gdb_byte *);
1667
1668 static struct partial_die_info *find_partial_die (sect_offset, int,
1669 struct dwarf2_cu *);
1670
1671 static void fixup_partial_die (struct partial_die_info *,
1672 struct dwarf2_cu *);
1673
1674 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1675 struct attribute *, struct attr_abbrev *,
1676 const gdb_byte *);
1677
1678 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1679
1680 static int read_1_signed_byte (bfd *, const gdb_byte *);
1681
1682 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1683
1684 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1685
1686 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1687
1688 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1689 unsigned int *);
1690
1691 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1692
1693 static LONGEST read_checked_initial_length_and_offset
1694 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1695 unsigned int *, unsigned int *);
1696
1697 static LONGEST read_offset (bfd *, const gdb_byte *,
1698 const struct comp_unit_head *,
1699 unsigned int *);
1700
1701 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1702
1703 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1704 sect_offset);
1705
1706 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1707
1708 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1709
1710 static const char *read_indirect_string (bfd *, const gdb_byte *,
1711 const struct comp_unit_head *,
1712 unsigned int *);
1713
1714 static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1715 const struct comp_unit_head *,
1716 unsigned int *);
1717
1718 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1719
1720 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1721
1722 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1723 const gdb_byte *,
1724 unsigned int *);
1725
1726 static const char *read_str_index (const struct die_reader_specs *reader,
1727 ULONGEST str_index);
1728
1729 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1730
1731 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1732 struct dwarf2_cu *);
1733
1734 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1735 unsigned int);
1736
1737 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1738 struct dwarf2_cu *cu);
1739
1740 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1741 struct dwarf2_cu *cu);
1742
1743 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1744
1745 static struct die_info *die_specification (struct die_info *die,
1746 struct dwarf2_cu **);
1747
1748 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1749 struct dwarf2_cu *cu);
1750
1751 static void dwarf_decode_lines (struct line_header *, const char *,
1752 struct dwarf2_cu *, struct partial_symtab *,
1753 CORE_ADDR, int decode_mapping);
1754
1755 static void dwarf2_start_subfile (const char *, const char *);
1756
1757 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1758 const char *, const char *,
1759 CORE_ADDR);
1760
1761 static struct symbol *new_symbol (struct die_info *, struct type *,
1762 struct dwarf2_cu *);
1763
1764 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1765 struct dwarf2_cu *, struct symbol *);
1766
1767 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1768 struct dwarf2_cu *);
1769
1770 static void dwarf2_const_value_attr (const struct attribute *attr,
1771 struct type *type,
1772 const char *name,
1773 struct obstack *obstack,
1774 struct dwarf2_cu *cu, LONGEST *value,
1775 const gdb_byte **bytes,
1776 struct dwarf2_locexpr_baton **baton);
1777
1778 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1779
1780 static int need_gnat_info (struct dwarf2_cu *);
1781
1782 static struct type *die_descriptive_type (struct die_info *,
1783 struct dwarf2_cu *);
1784
1785 static void set_descriptive_type (struct type *, struct die_info *,
1786 struct dwarf2_cu *);
1787
1788 static struct type *die_containing_type (struct die_info *,
1789 struct dwarf2_cu *);
1790
1791 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1792 struct dwarf2_cu *);
1793
1794 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1795
1796 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1797
1798 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1799
1800 static char *typename_concat (struct obstack *obs, const char *prefix,
1801 const char *suffix, int physname,
1802 struct dwarf2_cu *cu);
1803
1804 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1805
1806 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1807
1808 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1809
1810 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1811
1812 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1813
1814 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1815
1816 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1817 struct dwarf2_cu *, struct partial_symtab *);
1818
1819 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1820 values. Keep the items ordered with increasing constraints compliance. */
1821 enum pc_bounds_kind
1822 {
1823 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1824 PC_BOUNDS_NOT_PRESENT,
1825
1826 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1827 were present but they do not form a valid range of PC addresses. */
1828 PC_BOUNDS_INVALID,
1829
1830 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1831 PC_BOUNDS_RANGES,
1832
1833 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1834 PC_BOUNDS_HIGH_LOW,
1835 };
1836
1837 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1838 CORE_ADDR *, CORE_ADDR *,
1839 struct dwarf2_cu *,
1840 struct partial_symtab *);
1841
1842 static void get_scope_pc_bounds (struct die_info *,
1843 CORE_ADDR *, CORE_ADDR *,
1844 struct dwarf2_cu *);
1845
1846 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1847 CORE_ADDR, struct dwarf2_cu *);
1848
1849 static void dwarf2_add_field (struct field_info *, struct die_info *,
1850 struct dwarf2_cu *);
1851
1852 static void dwarf2_attach_fields_to_type (struct field_info *,
1853 struct type *, struct dwarf2_cu *);
1854
1855 static void dwarf2_add_member_fn (struct field_info *,
1856 struct die_info *, struct type *,
1857 struct dwarf2_cu *);
1858
1859 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1860 struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1864
1865 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1866
1867 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1868
1869 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1870
1871 static struct using_direct **using_directives (enum language);
1872
1873 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1874
1875 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1876
1877 static struct type *read_module_type (struct die_info *die,
1878 struct dwarf2_cu *cu);
1879
1880 static const char *namespace_name (struct die_info *die,
1881 int *is_anonymous, struct dwarf2_cu *);
1882
1883 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1884
1885 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1886
1887 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1888 struct dwarf2_cu *);
1889
1890 static struct die_info *read_die_and_siblings_1
1891 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1892 struct die_info *);
1893
1894 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1895 const gdb_byte *info_ptr,
1896 const gdb_byte **new_info_ptr,
1897 struct die_info *parent);
1898
1899 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1900 struct die_info **, const gdb_byte *,
1901 int *, int);
1902
1903 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1904 struct die_info **, const gdb_byte *,
1905 int *);
1906
1907 static void process_die (struct die_info *, struct dwarf2_cu *);
1908
1909 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1910 struct obstack *);
1911
1912 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1913
1914 static const char *dwarf2_full_name (const char *name,
1915 struct die_info *die,
1916 struct dwarf2_cu *cu);
1917
1918 static const char *dwarf2_physname (const char *name, struct die_info *die,
1919 struct dwarf2_cu *cu);
1920
1921 static struct die_info *dwarf2_extension (struct die_info *die,
1922 struct dwarf2_cu **);
1923
1924 static const char *dwarf_tag_name (unsigned int);
1925
1926 static const char *dwarf_attr_name (unsigned int);
1927
1928 static const char *dwarf_form_name (unsigned int);
1929
1930 static const char *dwarf_bool_name (unsigned int);
1931
1932 static const char *dwarf_type_encoding_name (unsigned int);
1933
1934 static struct die_info *sibling_die (struct die_info *);
1935
1936 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1937
1938 static void dump_die_for_error (struct die_info *);
1939
1940 static void dump_die_1 (struct ui_file *, int level, int max_level,
1941 struct die_info *);
1942
1943 /*static*/ void dump_die (struct die_info *, int max_level);
1944
1945 static void store_in_ref_table (struct die_info *,
1946 struct dwarf2_cu *);
1947
1948 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1949
1950 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1951
1952 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1953 const struct attribute *,
1954 struct dwarf2_cu **);
1955
1956 static struct die_info *follow_die_ref (struct die_info *,
1957 const struct attribute *,
1958 struct dwarf2_cu **);
1959
1960 static struct die_info *follow_die_sig (struct die_info *,
1961 const struct attribute *,
1962 struct dwarf2_cu **);
1963
1964 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1965 struct dwarf2_cu *);
1966
1967 static struct type *get_DW_AT_signature_type (struct die_info *,
1968 const struct attribute *,
1969 struct dwarf2_cu *);
1970
1971 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1972
1973 static void read_signatured_type (struct signatured_type *);
1974
1975 static int attr_to_dynamic_prop (const struct attribute *attr,
1976 struct die_info *die, struct dwarf2_cu *cu,
1977 struct dynamic_prop *prop);
1978
1979 /* memory allocation interface */
1980
1981 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1982
1983 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1984
1985 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1986
1987 static int attr_form_is_block (const struct attribute *);
1988
1989 static int attr_form_is_section_offset (const struct attribute *);
1990
1991 static int attr_form_is_constant (const struct attribute *);
1992
1993 static int attr_form_is_ref (const struct attribute *);
1994
1995 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1996 struct dwarf2_loclist_baton *baton,
1997 const struct attribute *attr);
1998
1999 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2000 struct symbol *sym,
2001 struct dwarf2_cu *cu,
2002 int is_block);
2003
2004 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2005 const gdb_byte *info_ptr,
2006 struct abbrev_info *abbrev);
2007
2008 static void free_stack_comp_unit (void *);
2009
2010 static hashval_t partial_die_hash (const void *item);
2011
2012 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2013
2014 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2015 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
2016
2017 static void init_one_comp_unit (struct dwarf2_cu *cu,
2018 struct dwarf2_per_cu_data *per_cu);
2019
2020 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2021 struct die_info *comp_unit_die,
2022 enum language pretend_language);
2023
2024 static void free_heap_comp_unit (void *);
2025
2026 static void free_cached_comp_units (void *);
2027
2028 static void age_cached_comp_units (void);
2029
2030 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2031
2032 static struct type *set_die_type (struct die_info *, struct type *,
2033 struct dwarf2_cu *);
2034
2035 static void create_all_comp_units (struct objfile *);
2036
2037 static int create_all_type_units (struct objfile *);
2038
2039 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2040 enum language);
2041
2042 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2043 enum language);
2044
2045 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2046 enum language);
2047
2048 static void dwarf2_add_dependence (struct dwarf2_cu *,
2049 struct dwarf2_per_cu_data *);
2050
2051 static void dwarf2_mark (struct dwarf2_cu *);
2052
2053 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2054
2055 static struct type *get_die_type_at_offset (sect_offset,
2056 struct dwarf2_per_cu_data *);
2057
2058 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2059
2060 static void dwarf2_release_queue (void *dummy);
2061
2062 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2063 enum language pretend_language);
2064
2065 static void process_queue (void);
2066
2067 /* The return type of find_file_and_directory. Note, the enclosed
2068 string pointers are only valid while this object is valid. */
2069
2070 struct file_and_directory
2071 {
2072 /* The filename. This is never NULL. */
2073 const char *name;
2074
2075 /* The compilation directory. NULL if not known. If we needed to
2076 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2077 points directly to the DW_AT_comp_dir string attribute owned by
2078 the obstack that owns the DIE. */
2079 const char *comp_dir;
2080
2081 /* If we needed to build a new string for comp_dir, this is what
2082 owns the storage. */
2083 std::string comp_dir_storage;
2084 };
2085
2086 static file_and_directory find_file_and_directory (struct die_info *die,
2087 struct dwarf2_cu *cu);
2088
2089 static char *file_full_name (int file, struct line_header *lh,
2090 const char *comp_dir);
2091
2092 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2093 enum class rcuh_kind { COMPILE, TYPE };
2094
2095 static const gdb_byte *read_and_check_comp_unit_head
2096 (struct comp_unit_head *header,
2097 struct dwarf2_section_info *section,
2098 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2099 rcuh_kind section_kind);
2100
2101 static void init_cutu_and_read_dies
2102 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2103 int use_existing_cu, int keep,
2104 die_reader_func_ftype *die_reader_func, void *data);
2105
2106 static void init_cutu_and_read_dies_simple
2107 (struct dwarf2_per_cu_data *this_cu,
2108 die_reader_func_ftype *die_reader_func, void *data);
2109
2110 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2111
2112 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2113
2114 static struct dwo_unit *lookup_dwo_unit_in_dwp
2115 (struct dwp_file *dwp_file, const char *comp_dir,
2116 ULONGEST signature, int is_debug_types);
2117
2118 static struct dwp_file *get_dwp_file (void);
2119
2120 static struct dwo_unit *lookup_dwo_comp_unit
2121 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2122
2123 static struct dwo_unit *lookup_dwo_type_unit
2124 (struct signatured_type *, const char *, const char *);
2125
2126 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2127
2128 static void free_dwo_file_cleanup (void *);
2129
2130 static void process_cu_includes (void);
2131
2132 static void check_producer (struct dwarf2_cu *cu);
2133
2134 static void free_line_header_voidp (void *arg);
2135 \f
2136 /* Various complaints about symbol reading that don't abort the process. */
2137
2138 static void
2139 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2140 {
2141 complaint (&symfile_complaints,
2142 _("statement list doesn't fit in .debug_line section"));
2143 }
2144
2145 static void
2146 dwarf2_debug_line_missing_file_complaint (void)
2147 {
2148 complaint (&symfile_complaints,
2149 _(".debug_line section has line data without a file"));
2150 }
2151
2152 static void
2153 dwarf2_debug_line_missing_end_sequence_complaint (void)
2154 {
2155 complaint (&symfile_complaints,
2156 _(".debug_line section has line "
2157 "program sequence without an end"));
2158 }
2159
2160 static void
2161 dwarf2_complex_location_expr_complaint (void)
2162 {
2163 complaint (&symfile_complaints, _("location expression too complex"));
2164 }
2165
2166 static void
2167 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2168 int arg3)
2169 {
2170 complaint (&symfile_complaints,
2171 _("const value length mismatch for '%s', got %d, expected %d"),
2172 arg1, arg2, arg3);
2173 }
2174
2175 static void
2176 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2177 {
2178 complaint (&symfile_complaints,
2179 _("debug info runs off end of %s section"
2180 " [in module %s]"),
2181 get_section_name (section),
2182 get_section_file_name (section));
2183 }
2184
2185 static void
2186 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2187 {
2188 complaint (&symfile_complaints,
2189 _("macro debug info contains a "
2190 "malformed macro definition:\n`%s'"),
2191 arg1);
2192 }
2193
2194 static void
2195 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2196 {
2197 complaint (&symfile_complaints,
2198 _("invalid attribute class or form for '%s' in '%s'"),
2199 arg1, arg2);
2200 }
2201
2202 /* Hash function for line_header_hash. */
2203
2204 static hashval_t
2205 line_header_hash (const struct line_header *ofs)
2206 {
2207 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2208 }
2209
2210 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2211
2212 static hashval_t
2213 line_header_hash_voidp (const void *item)
2214 {
2215 const struct line_header *ofs = (const struct line_header *) item;
2216
2217 return line_header_hash (ofs);
2218 }
2219
2220 /* Equality function for line_header_hash. */
2221
2222 static int
2223 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2224 {
2225 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2226 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2227
2228 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2229 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2230 }
2231
2232 \f
2233
2234 /* Read the given attribute value as an address, taking the attribute's
2235 form into account. */
2236
2237 static CORE_ADDR
2238 attr_value_as_address (struct attribute *attr)
2239 {
2240 CORE_ADDR addr;
2241
2242 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2243 {
2244 /* Aside from a few clearly defined exceptions, attributes that
2245 contain an address must always be in DW_FORM_addr form.
2246 Unfortunately, some compilers happen to be violating this
2247 requirement by encoding addresses using other forms, such
2248 as DW_FORM_data4 for example. For those broken compilers,
2249 we try to do our best, without any guarantee of success,
2250 to interpret the address correctly. It would also be nice
2251 to generate a complaint, but that would require us to maintain
2252 a list of legitimate cases where a non-address form is allowed,
2253 as well as update callers to pass in at least the CU's DWARF
2254 version. This is more overhead than what we're willing to
2255 expand for a pretty rare case. */
2256 addr = DW_UNSND (attr);
2257 }
2258 else
2259 addr = DW_ADDR (attr);
2260
2261 return addr;
2262 }
2263
2264 /* The suffix for an index file. */
2265 #define INDEX_SUFFIX ".gdb-index"
2266
2267 /* See declaration. */
2268
2269 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2270 const dwarf2_debug_sections *names)
2271 : objfile (objfile_)
2272 {
2273 if (names == NULL)
2274 names = &dwarf2_elf_names;
2275
2276 bfd *obfd = objfile->obfd;
2277
2278 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2279 locate_sections (obfd, sec, *names);
2280 }
2281
2282 dwarf2_per_objfile::~dwarf2_per_objfile ()
2283 {
2284 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2285 free_cached_comp_units ();
2286
2287 if (quick_file_names_table)
2288 htab_delete (quick_file_names_table);
2289
2290 if (line_header_hash)
2291 htab_delete (line_header_hash);
2292
2293 /* Everything else should be on the objfile obstack. */
2294 }
2295
2296 /* See declaration. */
2297
2298 void
2299 dwarf2_per_objfile::free_cached_comp_units ()
2300 {
2301 dwarf2_per_cu_data *per_cu = read_in_chain;
2302 dwarf2_per_cu_data **last_chain = &read_in_chain;
2303 while (per_cu != NULL)
2304 {
2305 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2306
2307 free_heap_comp_unit (per_cu->cu);
2308 *last_chain = next_cu;
2309 per_cu = next_cu;
2310 }
2311 }
2312
2313 /* Try to locate the sections we need for DWARF 2 debugging
2314 information and return true if we have enough to do something.
2315 NAMES points to the dwarf2 section names, or is NULL if the standard
2316 ELF names are used. */
2317
2318 int
2319 dwarf2_has_info (struct objfile *objfile,
2320 const struct dwarf2_debug_sections *names)
2321 {
2322 if (objfile->flags & OBJF_READNEVER)
2323 return 0;
2324
2325 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2326 objfile_data (objfile, dwarf2_objfile_data_key));
2327 if (!dwarf2_per_objfile)
2328 {
2329 /* Initialize per-objfile state. */
2330 struct dwarf2_per_objfile *data
2331 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2332
2333 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2334 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
2335 }
2336 return (!dwarf2_per_objfile->info.is_virtual
2337 && dwarf2_per_objfile->info.s.section != NULL
2338 && !dwarf2_per_objfile->abbrev.is_virtual
2339 && dwarf2_per_objfile->abbrev.s.section != NULL);
2340 }
2341
2342 /* Return the containing section of virtual section SECTION. */
2343
2344 static struct dwarf2_section_info *
2345 get_containing_section (const struct dwarf2_section_info *section)
2346 {
2347 gdb_assert (section->is_virtual);
2348 return section->s.containing_section;
2349 }
2350
2351 /* Return the bfd owner of SECTION. */
2352
2353 static struct bfd *
2354 get_section_bfd_owner (const struct dwarf2_section_info *section)
2355 {
2356 if (section->is_virtual)
2357 {
2358 section = get_containing_section (section);
2359 gdb_assert (!section->is_virtual);
2360 }
2361 return section->s.section->owner;
2362 }
2363
2364 /* Return the bfd section of SECTION.
2365 Returns NULL if the section is not present. */
2366
2367 static asection *
2368 get_section_bfd_section (const struct dwarf2_section_info *section)
2369 {
2370 if (section->is_virtual)
2371 {
2372 section = get_containing_section (section);
2373 gdb_assert (!section->is_virtual);
2374 }
2375 return section->s.section;
2376 }
2377
2378 /* Return the name of SECTION. */
2379
2380 static const char *
2381 get_section_name (const struct dwarf2_section_info *section)
2382 {
2383 asection *sectp = get_section_bfd_section (section);
2384
2385 gdb_assert (sectp != NULL);
2386 return bfd_section_name (get_section_bfd_owner (section), sectp);
2387 }
2388
2389 /* Return the name of the file SECTION is in. */
2390
2391 static const char *
2392 get_section_file_name (const struct dwarf2_section_info *section)
2393 {
2394 bfd *abfd = get_section_bfd_owner (section);
2395
2396 return bfd_get_filename (abfd);
2397 }
2398
2399 /* Return the id of SECTION.
2400 Returns 0 if SECTION doesn't exist. */
2401
2402 static int
2403 get_section_id (const struct dwarf2_section_info *section)
2404 {
2405 asection *sectp = get_section_bfd_section (section);
2406
2407 if (sectp == NULL)
2408 return 0;
2409 return sectp->id;
2410 }
2411
2412 /* Return the flags of SECTION.
2413 SECTION (or containing section if this is a virtual section) must exist. */
2414
2415 static int
2416 get_section_flags (const struct dwarf2_section_info *section)
2417 {
2418 asection *sectp = get_section_bfd_section (section);
2419
2420 gdb_assert (sectp != NULL);
2421 return bfd_get_section_flags (sectp->owner, sectp);
2422 }
2423
2424 /* When loading sections, we look either for uncompressed section or for
2425 compressed section names. */
2426
2427 static int
2428 section_is_p (const char *section_name,
2429 const struct dwarf2_section_names *names)
2430 {
2431 if (names->normal != NULL
2432 && strcmp (section_name, names->normal) == 0)
2433 return 1;
2434 if (names->compressed != NULL
2435 && strcmp (section_name, names->compressed) == 0)
2436 return 1;
2437 return 0;
2438 }
2439
2440 /* See declaration. */
2441
2442 void
2443 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2444 const dwarf2_debug_sections &names)
2445 {
2446 flagword aflag = bfd_get_section_flags (abfd, sectp);
2447
2448 if ((aflag & SEC_HAS_CONTENTS) == 0)
2449 {
2450 }
2451 else if (section_is_p (sectp->name, &names.info))
2452 {
2453 this->info.s.section = sectp;
2454 this->info.size = bfd_get_section_size (sectp);
2455 }
2456 else if (section_is_p (sectp->name, &names.abbrev))
2457 {
2458 this->abbrev.s.section = sectp;
2459 this->abbrev.size = bfd_get_section_size (sectp);
2460 }
2461 else if (section_is_p (sectp->name, &names.line))
2462 {
2463 this->line.s.section = sectp;
2464 this->line.size = bfd_get_section_size (sectp);
2465 }
2466 else if (section_is_p (sectp->name, &names.loc))
2467 {
2468 this->loc.s.section = sectp;
2469 this->loc.size = bfd_get_section_size (sectp);
2470 }
2471 else if (section_is_p (sectp->name, &names.loclists))
2472 {
2473 this->loclists.s.section = sectp;
2474 this->loclists.size = bfd_get_section_size (sectp);
2475 }
2476 else if (section_is_p (sectp->name, &names.macinfo))
2477 {
2478 this->macinfo.s.section = sectp;
2479 this->macinfo.size = bfd_get_section_size (sectp);
2480 }
2481 else if (section_is_p (sectp->name, &names.macro))
2482 {
2483 this->macro.s.section = sectp;
2484 this->macro.size = bfd_get_section_size (sectp);
2485 }
2486 else if (section_is_p (sectp->name, &names.str))
2487 {
2488 this->str.s.section = sectp;
2489 this->str.size = bfd_get_section_size (sectp);
2490 }
2491 else if (section_is_p (sectp->name, &names.line_str))
2492 {
2493 this->line_str.s.section = sectp;
2494 this->line_str.size = bfd_get_section_size (sectp);
2495 }
2496 else if (section_is_p (sectp->name, &names.addr))
2497 {
2498 this->addr.s.section = sectp;
2499 this->addr.size = bfd_get_section_size (sectp);
2500 }
2501 else if (section_is_p (sectp->name, &names.frame))
2502 {
2503 this->frame.s.section = sectp;
2504 this->frame.size = bfd_get_section_size (sectp);
2505 }
2506 else if (section_is_p (sectp->name, &names.eh_frame))
2507 {
2508 this->eh_frame.s.section = sectp;
2509 this->eh_frame.size = bfd_get_section_size (sectp);
2510 }
2511 else if (section_is_p (sectp->name, &names.ranges))
2512 {
2513 this->ranges.s.section = sectp;
2514 this->ranges.size = bfd_get_section_size (sectp);
2515 }
2516 else if (section_is_p (sectp->name, &names.rnglists))
2517 {
2518 this->rnglists.s.section = sectp;
2519 this->rnglists.size = bfd_get_section_size (sectp);
2520 }
2521 else if (section_is_p (sectp->name, &names.types))
2522 {
2523 struct dwarf2_section_info type_section;
2524
2525 memset (&type_section, 0, sizeof (type_section));
2526 type_section.s.section = sectp;
2527 type_section.size = bfd_get_section_size (sectp);
2528
2529 VEC_safe_push (dwarf2_section_info_def, this->types,
2530 &type_section);
2531 }
2532 else if (section_is_p (sectp->name, &names.gdb_index))
2533 {
2534 this->gdb_index.s.section = sectp;
2535 this->gdb_index.size = bfd_get_section_size (sectp);
2536 }
2537
2538 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2539 && bfd_section_vma (abfd, sectp) == 0)
2540 this->has_section_at_zero = true;
2541 }
2542
2543 /* A helper function that decides whether a section is empty,
2544 or not present. */
2545
2546 static int
2547 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2548 {
2549 if (section->is_virtual)
2550 return section->size == 0;
2551 return section->s.section == NULL || section->size == 0;
2552 }
2553
2554 /* Read the contents of the section INFO.
2555 OBJFILE is the main object file, but not necessarily the file where
2556 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2557 of the DWO file.
2558 If the section is compressed, uncompress it before returning. */
2559
2560 static void
2561 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2562 {
2563 asection *sectp;
2564 bfd *abfd;
2565 gdb_byte *buf, *retbuf;
2566
2567 if (info->readin)
2568 return;
2569 info->buffer = NULL;
2570 info->readin = 1;
2571
2572 if (dwarf2_section_empty_p (info))
2573 return;
2574
2575 sectp = get_section_bfd_section (info);
2576
2577 /* If this is a virtual section we need to read in the real one first. */
2578 if (info->is_virtual)
2579 {
2580 struct dwarf2_section_info *containing_section =
2581 get_containing_section (info);
2582
2583 gdb_assert (sectp != NULL);
2584 if ((sectp->flags & SEC_RELOC) != 0)
2585 {
2586 error (_("Dwarf Error: DWP format V2 with relocations is not"
2587 " supported in section %s [in module %s]"),
2588 get_section_name (info), get_section_file_name (info));
2589 }
2590 dwarf2_read_section (objfile, containing_section);
2591 /* Other code should have already caught virtual sections that don't
2592 fit. */
2593 gdb_assert (info->virtual_offset + info->size
2594 <= containing_section->size);
2595 /* If the real section is empty or there was a problem reading the
2596 section we shouldn't get here. */
2597 gdb_assert (containing_section->buffer != NULL);
2598 info->buffer = containing_section->buffer + info->virtual_offset;
2599 return;
2600 }
2601
2602 /* If the section has relocations, we must read it ourselves.
2603 Otherwise we attach it to the BFD. */
2604 if ((sectp->flags & SEC_RELOC) == 0)
2605 {
2606 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2607 return;
2608 }
2609
2610 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2611 info->buffer = buf;
2612
2613 /* When debugging .o files, we may need to apply relocations; see
2614 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2615 We never compress sections in .o files, so we only need to
2616 try this when the section is not compressed. */
2617 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2618 if (retbuf != NULL)
2619 {
2620 info->buffer = retbuf;
2621 return;
2622 }
2623
2624 abfd = get_section_bfd_owner (info);
2625 gdb_assert (abfd != NULL);
2626
2627 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2628 || bfd_bread (buf, info->size, abfd) != info->size)
2629 {
2630 error (_("Dwarf Error: Can't read DWARF data"
2631 " in section %s [in module %s]"),
2632 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2633 }
2634 }
2635
2636 /* A helper function that returns the size of a section in a safe way.
2637 If you are positive that the section has been read before using the
2638 size, then it is safe to refer to the dwarf2_section_info object's
2639 "size" field directly. In other cases, you must call this
2640 function, because for compressed sections the size field is not set
2641 correctly until the section has been read. */
2642
2643 static bfd_size_type
2644 dwarf2_section_size (struct objfile *objfile,
2645 struct dwarf2_section_info *info)
2646 {
2647 if (!info->readin)
2648 dwarf2_read_section (objfile, info);
2649 return info->size;
2650 }
2651
2652 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2653 SECTION_NAME. */
2654
2655 void
2656 dwarf2_get_section_info (struct objfile *objfile,
2657 enum dwarf2_section_enum sect,
2658 asection **sectp, const gdb_byte **bufp,
2659 bfd_size_type *sizep)
2660 {
2661 struct dwarf2_per_objfile *data
2662 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2663 dwarf2_objfile_data_key);
2664 struct dwarf2_section_info *info;
2665
2666 /* We may see an objfile without any DWARF, in which case we just
2667 return nothing. */
2668 if (data == NULL)
2669 {
2670 *sectp = NULL;
2671 *bufp = NULL;
2672 *sizep = 0;
2673 return;
2674 }
2675 switch (sect)
2676 {
2677 case DWARF2_DEBUG_FRAME:
2678 info = &data->frame;
2679 break;
2680 case DWARF2_EH_FRAME:
2681 info = &data->eh_frame;
2682 break;
2683 default:
2684 gdb_assert_not_reached ("unexpected section");
2685 }
2686
2687 dwarf2_read_section (objfile, info);
2688
2689 *sectp = get_section_bfd_section (info);
2690 *bufp = info->buffer;
2691 *sizep = info->size;
2692 }
2693
2694 /* A helper function to find the sections for a .dwz file. */
2695
2696 static void
2697 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2698 {
2699 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2700
2701 /* Note that we only support the standard ELF names, because .dwz
2702 is ELF-only (at the time of writing). */
2703 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2704 {
2705 dwz_file->abbrev.s.section = sectp;
2706 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2707 }
2708 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2709 {
2710 dwz_file->info.s.section = sectp;
2711 dwz_file->info.size = bfd_get_section_size (sectp);
2712 }
2713 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2714 {
2715 dwz_file->str.s.section = sectp;
2716 dwz_file->str.size = bfd_get_section_size (sectp);
2717 }
2718 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2719 {
2720 dwz_file->line.s.section = sectp;
2721 dwz_file->line.size = bfd_get_section_size (sectp);
2722 }
2723 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2724 {
2725 dwz_file->macro.s.section = sectp;
2726 dwz_file->macro.size = bfd_get_section_size (sectp);
2727 }
2728 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2729 {
2730 dwz_file->gdb_index.s.section = sectp;
2731 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2732 }
2733 }
2734
2735 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2736 there is no .gnu_debugaltlink section in the file. Error if there
2737 is such a section but the file cannot be found. */
2738
2739 static struct dwz_file *
2740 dwarf2_get_dwz_file (void)
2741 {
2742 const char *filename;
2743 struct dwz_file *result;
2744 bfd_size_type buildid_len_arg;
2745 size_t buildid_len;
2746 bfd_byte *buildid;
2747
2748 if (dwarf2_per_objfile->dwz_file != NULL)
2749 return dwarf2_per_objfile->dwz_file;
2750
2751 bfd_set_error (bfd_error_no_error);
2752 gdb::unique_xmalloc_ptr<char> data
2753 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2754 &buildid_len_arg, &buildid));
2755 if (data == NULL)
2756 {
2757 if (bfd_get_error () == bfd_error_no_error)
2758 return NULL;
2759 error (_("could not read '.gnu_debugaltlink' section: %s"),
2760 bfd_errmsg (bfd_get_error ()));
2761 }
2762
2763 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2764
2765 buildid_len = (size_t) buildid_len_arg;
2766
2767 filename = data.get ();
2768
2769 std::string abs_storage;
2770 if (!IS_ABSOLUTE_PATH (filename))
2771 {
2772 gdb::unique_xmalloc_ptr<char> abs
2773 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2774
2775 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2776 filename = abs_storage.c_str ();
2777 }
2778
2779 /* First try the file name given in the section. If that doesn't
2780 work, try to use the build-id instead. */
2781 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2782 if (dwz_bfd != NULL)
2783 {
2784 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2785 dwz_bfd.release ();
2786 }
2787
2788 if (dwz_bfd == NULL)
2789 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2790
2791 if (dwz_bfd == NULL)
2792 error (_("could not find '.gnu_debugaltlink' file for %s"),
2793 objfile_name (dwarf2_per_objfile->objfile));
2794
2795 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2796 struct dwz_file);
2797 result->dwz_bfd = dwz_bfd.release ();
2798
2799 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2800
2801 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2802 dwarf2_per_objfile->dwz_file = result;
2803 return result;
2804 }
2805 \f
2806 /* DWARF quick_symbols_functions support. */
2807
2808 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2809 unique line tables, so we maintain a separate table of all .debug_line
2810 derived entries to support the sharing.
2811 All the quick functions need is the list of file names. We discard the
2812 line_header when we're done and don't need to record it here. */
2813 struct quick_file_names
2814 {
2815 /* The data used to construct the hash key. */
2816 struct stmt_list_hash hash;
2817
2818 /* The number of entries in file_names, real_names. */
2819 unsigned int num_file_names;
2820
2821 /* The file names from the line table, after being run through
2822 file_full_name. */
2823 const char **file_names;
2824
2825 /* The file names from the line table after being run through
2826 gdb_realpath. These are computed lazily. */
2827 const char **real_names;
2828 };
2829
2830 /* When using the index (and thus not using psymtabs), each CU has an
2831 object of this type. This is used to hold information needed by
2832 the various "quick" methods. */
2833 struct dwarf2_per_cu_quick_data
2834 {
2835 /* The file table. This can be NULL if there was no file table
2836 or it's currently not read in.
2837 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2838 struct quick_file_names *file_names;
2839
2840 /* The corresponding symbol table. This is NULL if symbols for this
2841 CU have not yet been read. */
2842 struct compunit_symtab *compunit_symtab;
2843
2844 /* A temporary mark bit used when iterating over all CUs in
2845 expand_symtabs_matching. */
2846 unsigned int mark : 1;
2847
2848 /* True if we've tried to read the file table and found there isn't one.
2849 There will be no point in trying to read it again next time. */
2850 unsigned int no_file_data : 1;
2851 };
2852
2853 /* Utility hash function for a stmt_list_hash. */
2854
2855 static hashval_t
2856 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2857 {
2858 hashval_t v = 0;
2859
2860 if (stmt_list_hash->dwo_unit != NULL)
2861 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2862 v += to_underlying (stmt_list_hash->line_sect_off);
2863 return v;
2864 }
2865
2866 /* Utility equality function for a stmt_list_hash. */
2867
2868 static int
2869 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2870 const struct stmt_list_hash *rhs)
2871 {
2872 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2873 return 0;
2874 if (lhs->dwo_unit != NULL
2875 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2876 return 0;
2877
2878 return lhs->line_sect_off == rhs->line_sect_off;
2879 }
2880
2881 /* Hash function for a quick_file_names. */
2882
2883 static hashval_t
2884 hash_file_name_entry (const void *e)
2885 {
2886 const struct quick_file_names *file_data
2887 = (const struct quick_file_names *) e;
2888
2889 return hash_stmt_list_entry (&file_data->hash);
2890 }
2891
2892 /* Equality function for a quick_file_names. */
2893
2894 static int
2895 eq_file_name_entry (const void *a, const void *b)
2896 {
2897 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2898 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2899
2900 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2901 }
2902
2903 /* Delete function for a quick_file_names. */
2904
2905 static void
2906 delete_file_name_entry (void *e)
2907 {
2908 struct quick_file_names *file_data = (struct quick_file_names *) e;
2909 int i;
2910
2911 for (i = 0; i < file_data->num_file_names; ++i)
2912 {
2913 xfree ((void*) file_data->file_names[i]);
2914 if (file_data->real_names)
2915 xfree ((void*) file_data->real_names[i]);
2916 }
2917
2918 /* The space for the struct itself lives on objfile_obstack,
2919 so we don't free it here. */
2920 }
2921
2922 /* Create a quick_file_names hash table. */
2923
2924 static htab_t
2925 create_quick_file_names_table (unsigned int nr_initial_entries)
2926 {
2927 return htab_create_alloc (nr_initial_entries,
2928 hash_file_name_entry, eq_file_name_entry,
2929 delete_file_name_entry, xcalloc, xfree);
2930 }
2931
2932 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2933 have to be created afterwards. You should call age_cached_comp_units after
2934 processing PER_CU->CU. dw2_setup must have been already called. */
2935
2936 static void
2937 load_cu (struct dwarf2_per_cu_data *per_cu)
2938 {
2939 if (per_cu->is_debug_types)
2940 load_full_type_unit (per_cu);
2941 else
2942 load_full_comp_unit (per_cu, language_minimal);
2943
2944 if (per_cu->cu == NULL)
2945 return; /* Dummy CU. */
2946
2947 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2948 }
2949
2950 /* Read in the symbols for PER_CU. */
2951
2952 static void
2953 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2954 {
2955 struct cleanup *back_to;
2956
2957 /* Skip type_unit_groups, reading the type units they contain
2958 is handled elsewhere. */
2959 if (IS_TYPE_UNIT_GROUP (per_cu))
2960 return;
2961
2962 back_to = make_cleanup (dwarf2_release_queue, NULL);
2963
2964 if (dwarf2_per_objfile->using_index
2965 ? per_cu->v.quick->compunit_symtab == NULL
2966 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2967 {
2968 queue_comp_unit (per_cu, language_minimal);
2969 load_cu (per_cu);
2970
2971 /* If we just loaded a CU from a DWO, and we're working with an index
2972 that may badly handle TUs, load all the TUs in that DWO as well.
2973 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2974 if (!per_cu->is_debug_types
2975 && per_cu->cu != NULL
2976 && per_cu->cu->dwo_unit != NULL
2977 && dwarf2_per_objfile->index_table != NULL
2978 && dwarf2_per_objfile->index_table->version <= 7
2979 /* DWP files aren't supported yet. */
2980 && get_dwp_file () == NULL)
2981 queue_and_load_all_dwo_tus (per_cu);
2982 }
2983
2984 process_queue ();
2985
2986 /* Age the cache, releasing compilation units that have not
2987 been used recently. */
2988 age_cached_comp_units ();
2989
2990 do_cleanups (back_to);
2991 }
2992
2993 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2994 the objfile from which this CU came. Returns the resulting symbol
2995 table. */
2996
2997 static struct compunit_symtab *
2998 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2999 {
3000 gdb_assert (dwarf2_per_objfile->using_index);
3001 if (!per_cu->v.quick->compunit_symtab)
3002 {
3003 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
3004 scoped_restore decrementer = increment_reading_symtab ();
3005 dw2_do_instantiate_symtab (per_cu);
3006 process_cu_includes ();
3007 do_cleanups (back_to);
3008 }
3009
3010 return per_cu->v.quick->compunit_symtab;
3011 }
3012
3013 /* Return the CU/TU given its index.
3014
3015 This is intended for loops like:
3016
3017 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3018 + dwarf2_per_objfile->n_type_units); ++i)
3019 {
3020 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3021
3022 ...;
3023 }
3024 */
3025
3026 static struct dwarf2_per_cu_data *
3027 dw2_get_cutu (int index)
3028 {
3029 if (index >= dwarf2_per_objfile->n_comp_units)
3030 {
3031 index -= dwarf2_per_objfile->n_comp_units;
3032 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3033 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3034 }
3035
3036 return dwarf2_per_objfile->all_comp_units[index];
3037 }
3038
3039 /* Return the CU given its index.
3040 This differs from dw2_get_cutu in that it's for when you know INDEX
3041 refers to a CU. */
3042
3043 static struct dwarf2_per_cu_data *
3044 dw2_get_cu (int index)
3045 {
3046 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3047
3048 return dwarf2_per_objfile->all_comp_units[index];
3049 }
3050
3051 /* A helper for create_cus_from_index that handles a given list of
3052 CUs. */
3053
3054 static void
3055 create_cus_from_index_list (struct objfile *objfile,
3056 const gdb_byte *cu_list, offset_type n_elements,
3057 struct dwarf2_section_info *section,
3058 int is_dwz,
3059 int base_offset)
3060 {
3061 offset_type i;
3062
3063 for (i = 0; i < n_elements; i += 2)
3064 {
3065 gdb_static_assert (sizeof (ULONGEST) >= 8);
3066
3067 sect_offset sect_off
3068 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3069 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3070 cu_list += 2 * 8;
3071
3072 dwarf2_per_cu_data *the_cu
3073 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3074 struct dwarf2_per_cu_data);
3075 the_cu->sect_off = sect_off;
3076 the_cu->length = length;
3077 the_cu->objfile = objfile;
3078 the_cu->section = section;
3079 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3080 struct dwarf2_per_cu_quick_data);
3081 the_cu->is_dwz = is_dwz;
3082 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
3083 }
3084 }
3085
3086 /* Read the CU list from the mapped index, and use it to create all
3087 the CU objects for this objfile. */
3088
3089 static void
3090 create_cus_from_index (struct objfile *objfile,
3091 const gdb_byte *cu_list, offset_type cu_list_elements,
3092 const gdb_byte *dwz_list, offset_type dwz_elements)
3093 {
3094 struct dwz_file *dwz;
3095
3096 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3097 dwarf2_per_objfile->all_comp_units =
3098 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3099 dwarf2_per_objfile->n_comp_units);
3100
3101 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3102 &dwarf2_per_objfile->info, 0, 0);
3103
3104 if (dwz_elements == 0)
3105 return;
3106
3107 dwz = dwarf2_get_dwz_file ();
3108 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3109 cu_list_elements / 2);
3110 }
3111
3112 /* Create the signatured type hash table from the index. */
3113
3114 static void
3115 create_signatured_type_table_from_index (struct objfile *objfile,
3116 struct dwarf2_section_info *section,
3117 const gdb_byte *bytes,
3118 offset_type elements)
3119 {
3120 offset_type i;
3121 htab_t sig_types_hash;
3122
3123 dwarf2_per_objfile->n_type_units
3124 = dwarf2_per_objfile->n_allocated_type_units
3125 = elements / 3;
3126 dwarf2_per_objfile->all_type_units =
3127 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3128
3129 sig_types_hash = allocate_signatured_type_table (objfile);
3130
3131 for (i = 0; i < elements; i += 3)
3132 {
3133 struct signatured_type *sig_type;
3134 ULONGEST signature;
3135 void **slot;
3136 cu_offset type_offset_in_tu;
3137
3138 gdb_static_assert (sizeof (ULONGEST) >= 8);
3139 sect_offset sect_off
3140 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3141 type_offset_in_tu
3142 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3143 BFD_ENDIAN_LITTLE);
3144 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3145 bytes += 3 * 8;
3146
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = signature;
3150 sig_type->type_offset_in_tu = type_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.objfile = objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3158
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3160 *slot = sig_type;
3161
3162 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3163 }
3164
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3166 }
3167
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3170
3171 static void
3172 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3173 {
3174 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3175 const gdb_byte *iter, *end;
3176 struct addrmap *mutable_map;
3177 CORE_ADDR baseaddr;
3178
3179 auto_obstack temp_obstack;
3180
3181 mutable_map = addrmap_create_mutable (&temp_obstack);
3182
3183 iter = index->address_table;
3184 end = iter + index->address_table_size;
3185
3186 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3187
3188 while (iter < end)
3189 {
3190 ULONGEST hi, lo, cu_index;
3191 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3192 iter += 8;
3193 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3194 iter += 8;
3195 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3196 iter += 4;
3197
3198 if (lo > hi)
3199 {
3200 complaint (&symfile_complaints,
3201 _(".gdb_index address table has invalid range (%s - %s)"),
3202 hex_string (lo), hex_string (hi));
3203 continue;
3204 }
3205
3206 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3207 {
3208 complaint (&symfile_complaints,
3209 _(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3211 continue;
3212 }
3213
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3216 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
3217 }
3218
3219 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3220 &objfile->objfile_obstack);
3221 }
3222
3223 /* The hash function for strings in the mapped index. This is the same as
3224 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3225 implementation. This is necessary because the hash function is tied to the
3226 format of the mapped index file. The hash values do not have to match with
3227 SYMBOL_HASH_NEXT.
3228
3229 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3230
3231 static hashval_t
3232 mapped_index_string_hash (int index_version, const void *p)
3233 {
3234 const unsigned char *str = (const unsigned char *) p;
3235 hashval_t r = 0;
3236 unsigned char c;
3237
3238 while ((c = *str++) != 0)
3239 {
3240 if (index_version >= 5)
3241 c = tolower (c);
3242 r = r * 67 + c - 113;
3243 }
3244
3245 return r;
3246 }
3247
3248 /* Find a slot in the mapped index INDEX for the object named NAME.
3249 If NAME is found, set *VEC_OUT to point to the CU vector in the
3250 constant pool and return true. If NAME cannot be found, return
3251 false. */
3252
3253 static bool
3254 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3255 offset_type **vec_out)
3256 {
3257 offset_type hash;
3258 offset_type slot, step;
3259 int (*cmp) (const char *, const char *);
3260
3261 gdb::unique_xmalloc_ptr<char> without_params;
3262 if (current_language->la_language == language_cplus
3263 || current_language->la_language == language_fortran
3264 || current_language->la_language == language_d)
3265 {
3266 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3267 not contain any. */
3268
3269 if (strchr (name, '(') != NULL)
3270 {
3271 without_params = cp_remove_params (name);
3272
3273 if (without_params != NULL)
3274 name = without_params.get ();
3275 }
3276 }
3277
3278 /* Index version 4 did not support case insensitive searches. But the
3279 indices for case insensitive languages are built in lowercase, therefore
3280 simulate our NAME being searched is also lowercased. */
3281 hash = mapped_index_string_hash ((index->version == 4
3282 && case_sensitivity == case_sensitive_off
3283 ? 5 : index->version),
3284 name);
3285
3286 slot = hash & (index->symbol_table_slots - 1);
3287 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3288 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3289
3290 for (;;)
3291 {
3292 /* Convert a slot number to an offset into the table. */
3293 offset_type i = 2 * slot;
3294 const char *str;
3295 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3296 return false;
3297
3298 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3299 if (!cmp (name, str))
3300 {
3301 *vec_out = (offset_type *) (index->constant_pool
3302 + MAYBE_SWAP (index->symbol_table[i + 1]));
3303 return true;
3304 }
3305
3306 slot = (slot + step) & (index->symbol_table_slots - 1);
3307 }
3308 }
3309
3310 /* A helper function that reads the .gdb_index from SECTION and fills
3311 in MAP. FILENAME is the name of the file containing the section;
3312 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3313 ok to use deprecated sections.
3314
3315 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3316 out parameters that are filled in with information about the CU and
3317 TU lists in the section.
3318
3319 Returns 1 if all went well, 0 otherwise. */
3320
3321 static int
3322 read_index_from_section (struct objfile *objfile,
3323 const char *filename,
3324 int deprecated_ok,
3325 struct dwarf2_section_info *section,
3326 struct mapped_index *map,
3327 const gdb_byte **cu_list,
3328 offset_type *cu_list_elements,
3329 const gdb_byte **types_list,
3330 offset_type *types_list_elements)
3331 {
3332 const gdb_byte *addr;
3333 offset_type version;
3334 offset_type *metadata;
3335 int i;
3336
3337 if (dwarf2_section_empty_p (section))
3338 return 0;
3339
3340 /* Older elfutils strip versions could keep the section in the main
3341 executable while splitting it for the separate debug info file. */
3342 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3343 return 0;
3344
3345 dwarf2_read_section (objfile, section);
3346
3347 addr = section->buffer;
3348 /* Version check. */
3349 version = MAYBE_SWAP (*(offset_type *) addr);
3350 /* Versions earlier than 3 emitted every copy of a psymbol. This
3351 causes the index to behave very poorly for certain requests. Version 3
3352 contained incomplete addrmap. So, it seems better to just ignore such
3353 indices. */
3354 if (version < 4)
3355 {
3356 static int warning_printed = 0;
3357 if (!warning_printed)
3358 {
3359 warning (_("Skipping obsolete .gdb_index section in %s."),
3360 filename);
3361 warning_printed = 1;
3362 }
3363 return 0;
3364 }
3365 /* Index version 4 uses a different hash function than index version
3366 5 and later.
3367
3368 Versions earlier than 6 did not emit psymbols for inlined
3369 functions. Using these files will cause GDB not to be able to
3370 set breakpoints on inlined functions by name, so we ignore these
3371 indices unless the user has done
3372 "set use-deprecated-index-sections on". */
3373 if (version < 6 && !deprecated_ok)
3374 {
3375 static int warning_printed = 0;
3376 if (!warning_printed)
3377 {
3378 warning (_("\
3379 Skipping deprecated .gdb_index section in %s.\n\
3380 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3381 to use the section anyway."),
3382 filename);
3383 warning_printed = 1;
3384 }
3385 return 0;
3386 }
3387 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3388 of the TU (for symbols coming from TUs),
3389 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3390 Plus gold-generated indices can have duplicate entries for global symbols,
3391 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3392 These are just performance bugs, and we can't distinguish gdb-generated
3393 indices from gold-generated ones, so issue no warning here. */
3394
3395 /* Indexes with higher version than the one supported by GDB may be no
3396 longer backward compatible. */
3397 if (version > 8)
3398 return 0;
3399
3400 map->version = version;
3401 map->total_size = section->size;
3402
3403 metadata = (offset_type *) (addr + sizeof (offset_type));
3404
3405 i = 0;
3406 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3407 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3408 / 8);
3409 ++i;
3410
3411 *types_list = addr + MAYBE_SWAP (metadata[i]);
3412 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3413 - MAYBE_SWAP (metadata[i]))
3414 / 8);
3415 ++i;
3416
3417 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3418 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3419 - MAYBE_SWAP (metadata[i]));
3420 ++i;
3421
3422 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3423 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3424 - MAYBE_SWAP (metadata[i]))
3425 / (2 * sizeof (offset_type)));
3426 ++i;
3427
3428 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3429
3430 return 1;
3431 }
3432
3433
3434 /* Read the index file. If everything went ok, initialize the "quick"
3435 elements of all the CUs and return 1. Otherwise, return 0. */
3436
3437 static int
3438 dwarf2_read_index (struct objfile *objfile)
3439 {
3440 struct mapped_index local_map, *map;
3441 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3442 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3443 struct dwz_file *dwz;
3444
3445 if (!read_index_from_section (objfile, objfile_name (objfile),
3446 use_deprecated_index_sections,
3447 &dwarf2_per_objfile->gdb_index, &local_map,
3448 &cu_list, &cu_list_elements,
3449 &types_list, &types_list_elements))
3450 return 0;
3451
3452 /* Don't use the index if it's empty. */
3453 if (local_map.symbol_table_slots == 0)
3454 return 0;
3455
3456 /* If there is a .dwz file, read it so we can get its CU list as
3457 well. */
3458 dwz = dwarf2_get_dwz_file ();
3459 if (dwz != NULL)
3460 {
3461 struct mapped_index dwz_map;
3462 const gdb_byte *dwz_types_ignore;
3463 offset_type dwz_types_elements_ignore;
3464
3465 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3466 1,
3467 &dwz->gdb_index, &dwz_map,
3468 &dwz_list, &dwz_list_elements,
3469 &dwz_types_ignore,
3470 &dwz_types_elements_ignore))
3471 {
3472 warning (_("could not read '.gdb_index' section from %s; skipping"),
3473 bfd_get_filename (dwz->dwz_bfd));
3474 return 0;
3475 }
3476 }
3477
3478 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3479 dwz_list_elements);
3480
3481 if (types_list_elements)
3482 {
3483 struct dwarf2_section_info *section;
3484
3485 /* We can only handle a single .debug_types when we have an
3486 index. */
3487 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3488 return 0;
3489
3490 section = VEC_index (dwarf2_section_info_def,
3491 dwarf2_per_objfile->types, 0);
3492
3493 create_signatured_type_table_from_index (objfile, section, types_list,
3494 types_list_elements);
3495 }
3496
3497 create_addrmap_from_index (objfile, &local_map);
3498
3499 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3500 map = new (map) mapped_index ();
3501 *map = local_map;
3502
3503 dwarf2_per_objfile->index_table = map;
3504 dwarf2_per_objfile->using_index = 1;
3505 dwarf2_per_objfile->quick_file_names_table =
3506 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3507
3508 return 1;
3509 }
3510
3511 /* A helper for the "quick" functions which sets the global
3512 dwarf2_per_objfile according to OBJFILE. */
3513
3514 static void
3515 dw2_setup (struct objfile *objfile)
3516 {
3517 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3518 objfile_data (objfile, dwarf2_objfile_data_key));
3519 gdb_assert (dwarf2_per_objfile);
3520 }
3521
3522 /* die_reader_func for dw2_get_file_names. */
3523
3524 static void
3525 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3526 const gdb_byte *info_ptr,
3527 struct die_info *comp_unit_die,
3528 int has_children,
3529 void *data)
3530 {
3531 struct dwarf2_cu *cu = reader->cu;
3532 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3533 struct objfile *objfile = dwarf2_per_objfile->objfile;
3534 struct dwarf2_per_cu_data *lh_cu;
3535 struct attribute *attr;
3536 int i;
3537 void **slot;
3538 struct quick_file_names *qfn;
3539
3540 gdb_assert (! this_cu->is_debug_types);
3541
3542 /* Our callers never want to match partial units -- instead they
3543 will match the enclosing full CU. */
3544 if (comp_unit_die->tag == DW_TAG_partial_unit)
3545 {
3546 this_cu->v.quick->no_file_data = 1;
3547 return;
3548 }
3549
3550 lh_cu = this_cu;
3551 slot = NULL;
3552
3553 line_header_up lh;
3554 sect_offset line_offset {};
3555
3556 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3557 if (attr)
3558 {
3559 struct quick_file_names find_entry;
3560
3561 line_offset = (sect_offset) DW_UNSND (attr);
3562
3563 /* We may have already read in this line header (TU line header sharing).
3564 If we have we're done. */
3565 find_entry.hash.dwo_unit = cu->dwo_unit;
3566 find_entry.hash.line_sect_off = line_offset;
3567 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3568 &find_entry, INSERT);
3569 if (*slot != NULL)
3570 {
3571 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3572 return;
3573 }
3574
3575 lh = dwarf_decode_line_header (line_offset, cu);
3576 }
3577 if (lh == NULL)
3578 {
3579 lh_cu->v.quick->no_file_data = 1;
3580 return;
3581 }
3582
3583 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3584 qfn->hash.dwo_unit = cu->dwo_unit;
3585 qfn->hash.line_sect_off = line_offset;
3586 gdb_assert (slot != NULL);
3587 *slot = qfn;
3588
3589 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3590
3591 qfn->num_file_names = lh->file_names.size ();
3592 qfn->file_names =
3593 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3594 for (i = 0; i < lh->file_names.size (); ++i)
3595 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3596 qfn->real_names = NULL;
3597
3598 lh_cu->v.quick->file_names = qfn;
3599 }
3600
3601 /* A helper for the "quick" functions which attempts to read the line
3602 table for THIS_CU. */
3603
3604 static struct quick_file_names *
3605 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3606 {
3607 /* This should never be called for TUs. */
3608 gdb_assert (! this_cu->is_debug_types);
3609 /* Nor type unit groups. */
3610 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3611
3612 if (this_cu->v.quick->file_names != NULL)
3613 return this_cu->v.quick->file_names;
3614 /* If we know there is no line data, no point in looking again. */
3615 if (this_cu->v.quick->no_file_data)
3616 return NULL;
3617
3618 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3619
3620 if (this_cu->v.quick->no_file_data)
3621 return NULL;
3622 return this_cu->v.quick->file_names;
3623 }
3624
3625 /* A helper for the "quick" functions which computes and caches the
3626 real path for a given file name from the line table. */
3627
3628 static const char *
3629 dw2_get_real_path (struct objfile *objfile,
3630 struct quick_file_names *qfn, int index)
3631 {
3632 if (qfn->real_names == NULL)
3633 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3634 qfn->num_file_names, const char *);
3635
3636 if (qfn->real_names[index] == NULL)
3637 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3638
3639 return qfn->real_names[index];
3640 }
3641
3642 static struct symtab *
3643 dw2_find_last_source_symtab (struct objfile *objfile)
3644 {
3645 struct compunit_symtab *cust;
3646 int index;
3647
3648 dw2_setup (objfile);
3649 index = dwarf2_per_objfile->n_comp_units - 1;
3650 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3651 if (cust == NULL)
3652 return NULL;
3653 return compunit_primary_filetab (cust);
3654 }
3655
3656 /* Traversal function for dw2_forget_cached_source_info. */
3657
3658 static int
3659 dw2_free_cached_file_names (void **slot, void *info)
3660 {
3661 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3662
3663 if (file_data->real_names)
3664 {
3665 int i;
3666
3667 for (i = 0; i < file_data->num_file_names; ++i)
3668 {
3669 xfree ((void*) file_data->real_names[i]);
3670 file_data->real_names[i] = NULL;
3671 }
3672 }
3673
3674 return 1;
3675 }
3676
3677 static void
3678 dw2_forget_cached_source_info (struct objfile *objfile)
3679 {
3680 dw2_setup (objfile);
3681
3682 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3683 dw2_free_cached_file_names, NULL);
3684 }
3685
3686 /* Helper function for dw2_map_symtabs_matching_filename that expands
3687 the symtabs and calls the iterator. */
3688
3689 static int
3690 dw2_map_expand_apply (struct objfile *objfile,
3691 struct dwarf2_per_cu_data *per_cu,
3692 const char *name, const char *real_path,
3693 gdb::function_view<bool (symtab *)> callback)
3694 {
3695 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3696
3697 /* Don't visit already-expanded CUs. */
3698 if (per_cu->v.quick->compunit_symtab)
3699 return 0;
3700
3701 /* This may expand more than one symtab, and we want to iterate over
3702 all of them. */
3703 dw2_instantiate_symtab (per_cu);
3704
3705 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3706 last_made, callback);
3707 }
3708
3709 /* Implementation of the map_symtabs_matching_filename method. */
3710
3711 static bool
3712 dw2_map_symtabs_matching_filename
3713 (struct objfile *objfile, const char *name, const char *real_path,
3714 gdb::function_view<bool (symtab *)> callback)
3715 {
3716 int i;
3717 const char *name_basename = lbasename (name);
3718
3719 dw2_setup (objfile);
3720
3721 /* The rule is CUs specify all the files, including those used by
3722 any TU, so there's no need to scan TUs here. */
3723
3724 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3725 {
3726 int j;
3727 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3728 struct quick_file_names *file_data;
3729
3730 /* We only need to look at symtabs not already expanded. */
3731 if (per_cu->v.quick->compunit_symtab)
3732 continue;
3733
3734 file_data = dw2_get_file_names (per_cu);
3735 if (file_data == NULL)
3736 continue;
3737
3738 for (j = 0; j < file_data->num_file_names; ++j)
3739 {
3740 const char *this_name = file_data->file_names[j];
3741 const char *this_real_name;
3742
3743 if (compare_filenames_for_search (this_name, name))
3744 {
3745 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3746 callback))
3747 return true;
3748 continue;
3749 }
3750
3751 /* Before we invoke realpath, which can get expensive when many
3752 files are involved, do a quick comparison of the basenames. */
3753 if (! basenames_may_differ
3754 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3755 continue;
3756
3757 this_real_name = dw2_get_real_path (objfile, file_data, j);
3758 if (compare_filenames_for_search (this_real_name, name))
3759 {
3760 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3761 callback))
3762 return true;
3763 continue;
3764 }
3765
3766 if (real_path != NULL)
3767 {
3768 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3769 gdb_assert (IS_ABSOLUTE_PATH (name));
3770 if (this_real_name != NULL
3771 && FILENAME_CMP (real_path, this_real_name) == 0)
3772 {
3773 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3774 callback))
3775 return true;
3776 continue;
3777 }
3778 }
3779 }
3780 }
3781
3782 return false;
3783 }
3784
3785 /* Struct used to manage iterating over all CUs looking for a symbol. */
3786
3787 struct dw2_symtab_iterator
3788 {
3789 /* The internalized form of .gdb_index. */
3790 struct mapped_index *index;
3791 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3792 int want_specific_block;
3793 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3794 Unused if !WANT_SPECIFIC_BLOCK. */
3795 int block_index;
3796 /* The kind of symbol we're looking for. */
3797 domain_enum domain;
3798 /* The list of CUs from the index entry of the symbol,
3799 or NULL if not found. */
3800 offset_type *vec;
3801 /* The next element in VEC to look at. */
3802 int next;
3803 /* The number of elements in VEC, or zero if there is no match. */
3804 int length;
3805 /* Have we seen a global version of the symbol?
3806 If so we can ignore all further global instances.
3807 This is to work around gold/15646, inefficient gold-generated
3808 indices. */
3809 int global_seen;
3810 };
3811
3812 /* Initialize the index symtab iterator ITER.
3813 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3814 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3815
3816 static void
3817 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3818 struct mapped_index *index,
3819 int want_specific_block,
3820 int block_index,
3821 domain_enum domain,
3822 const char *name)
3823 {
3824 iter->index = index;
3825 iter->want_specific_block = want_specific_block;
3826 iter->block_index = block_index;
3827 iter->domain = domain;
3828 iter->next = 0;
3829 iter->global_seen = 0;
3830
3831 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3832 iter->length = MAYBE_SWAP (*iter->vec);
3833 else
3834 {
3835 iter->vec = NULL;
3836 iter->length = 0;
3837 }
3838 }
3839
3840 /* Return the next matching CU or NULL if there are no more. */
3841
3842 static struct dwarf2_per_cu_data *
3843 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3844 {
3845 for ( ; iter->next < iter->length; ++iter->next)
3846 {
3847 offset_type cu_index_and_attrs =
3848 MAYBE_SWAP (iter->vec[iter->next + 1]);
3849 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3850 struct dwarf2_per_cu_data *per_cu;
3851 int want_static = iter->block_index != GLOBAL_BLOCK;
3852 /* This value is only valid for index versions >= 7. */
3853 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3854 gdb_index_symbol_kind symbol_kind =
3855 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3856 /* Only check the symbol attributes if they're present.
3857 Indices prior to version 7 don't record them,
3858 and indices >= 7 may elide them for certain symbols
3859 (gold does this). */
3860 int attrs_valid =
3861 (iter->index->version >= 7
3862 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3863
3864 /* Don't crash on bad data. */
3865 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3866 + dwarf2_per_objfile->n_type_units))
3867 {
3868 complaint (&symfile_complaints,
3869 _(".gdb_index entry has bad CU index"
3870 " [in module %s]"),
3871 objfile_name (dwarf2_per_objfile->objfile));
3872 continue;
3873 }
3874
3875 per_cu = dw2_get_cutu (cu_index);
3876
3877 /* Skip if already read in. */
3878 if (per_cu->v.quick->compunit_symtab)
3879 continue;
3880
3881 /* Check static vs global. */
3882 if (attrs_valid)
3883 {
3884 if (iter->want_specific_block
3885 && want_static != is_static)
3886 continue;
3887 /* Work around gold/15646. */
3888 if (!is_static && iter->global_seen)
3889 continue;
3890 if (!is_static)
3891 iter->global_seen = 1;
3892 }
3893
3894 /* Only check the symbol's kind if it has one. */
3895 if (attrs_valid)
3896 {
3897 switch (iter->domain)
3898 {
3899 case VAR_DOMAIN:
3900 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3901 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3902 /* Some types are also in VAR_DOMAIN. */
3903 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3904 continue;
3905 break;
3906 case STRUCT_DOMAIN:
3907 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3908 continue;
3909 break;
3910 case LABEL_DOMAIN:
3911 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3912 continue;
3913 break;
3914 default:
3915 break;
3916 }
3917 }
3918
3919 ++iter->next;
3920 return per_cu;
3921 }
3922
3923 return NULL;
3924 }
3925
3926 static struct compunit_symtab *
3927 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3928 const char *name, domain_enum domain)
3929 {
3930 struct compunit_symtab *stab_best = NULL;
3931 struct mapped_index *index;
3932
3933 dw2_setup (objfile);
3934
3935 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3936
3937 index = dwarf2_per_objfile->index_table;
3938
3939 /* index is NULL if OBJF_READNOW. */
3940 if (index)
3941 {
3942 struct dw2_symtab_iterator iter;
3943 struct dwarf2_per_cu_data *per_cu;
3944
3945 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3946
3947 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3948 {
3949 struct symbol *sym, *with_opaque = NULL;
3950 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3951 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3952 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3953
3954 sym = block_find_symbol (block, name, domain,
3955 block_find_non_opaque_type_preferred,
3956 &with_opaque);
3957
3958 /* Some caution must be observed with overloaded functions
3959 and methods, since the index will not contain any overload
3960 information (but NAME might contain it). */
3961
3962 if (sym != NULL
3963 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3964 return stab;
3965 if (with_opaque != NULL
3966 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3967 stab_best = stab;
3968
3969 /* Keep looking through other CUs. */
3970 }
3971 }
3972
3973 return stab_best;
3974 }
3975
3976 static void
3977 dw2_print_stats (struct objfile *objfile)
3978 {
3979 int i, total, count;
3980
3981 dw2_setup (objfile);
3982 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3983 count = 0;
3984 for (i = 0; i < total; ++i)
3985 {
3986 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3987
3988 if (!per_cu->v.quick->compunit_symtab)
3989 ++count;
3990 }
3991 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3992 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3993 }
3994
3995 /* This dumps minimal information about the index.
3996 It is called via "mt print objfiles".
3997 One use is to verify .gdb_index has been loaded by the
3998 gdb.dwarf2/gdb-index.exp testcase. */
3999
4000 static void
4001 dw2_dump (struct objfile *objfile)
4002 {
4003 dw2_setup (objfile);
4004 gdb_assert (dwarf2_per_objfile->using_index);
4005 printf_filtered (".gdb_index:");
4006 if (dwarf2_per_objfile->index_table != NULL)
4007 {
4008 printf_filtered (" version %d\n",
4009 dwarf2_per_objfile->index_table->version);
4010 }
4011 else
4012 printf_filtered (" faked for \"readnow\"\n");
4013 printf_filtered ("\n");
4014 }
4015
4016 static void
4017 dw2_relocate (struct objfile *objfile,
4018 const struct section_offsets *new_offsets,
4019 const struct section_offsets *delta)
4020 {
4021 /* There's nothing to relocate here. */
4022 }
4023
4024 static void
4025 dw2_expand_symtabs_for_function (struct objfile *objfile,
4026 const char *func_name)
4027 {
4028 struct mapped_index *index;
4029
4030 dw2_setup (objfile);
4031
4032 index = dwarf2_per_objfile->index_table;
4033
4034 /* index is NULL if OBJF_READNOW. */
4035 if (index)
4036 {
4037 struct dw2_symtab_iterator iter;
4038 struct dwarf2_per_cu_data *per_cu;
4039
4040 /* Note: It doesn't matter what we pass for block_index here. */
4041 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4042 func_name);
4043
4044 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4045 dw2_instantiate_symtab (per_cu);
4046 }
4047 }
4048
4049 static void
4050 dw2_expand_all_symtabs (struct objfile *objfile)
4051 {
4052 int i;
4053
4054 dw2_setup (objfile);
4055
4056 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4057 + dwarf2_per_objfile->n_type_units); ++i)
4058 {
4059 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4060
4061 dw2_instantiate_symtab (per_cu);
4062 }
4063 }
4064
4065 static void
4066 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4067 const char *fullname)
4068 {
4069 int i;
4070
4071 dw2_setup (objfile);
4072
4073 /* We don't need to consider type units here.
4074 This is only called for examining code, e.g. expand_line_sal.
4075 There can be an order of magnitude (or more) more type units
4076 than comp units, and we avoid them if we can. */
4077
4078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4079 {
4080 int j;
4081 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4082 struct quick_file_names *file_data;
4083
4084 /* We only need to look at symtabs not already expanded. */
4085 if (per_cu->v.quick->compunit_symtab)
4086 continue;
4087
4088 file_data = dw2_get_file_names (per_cu);
4089 if (file_data == NULL)
4090 continue;
4091
4092 for (j = 0; j < file_data->num_file_names; ++j)
4093 {
4094 const char *this_fullname = file_data->file_names[j];
4095
4096 if (filename_cmp (this_fullname, fullname) == 0)
4097 {
4098 dw2_instantiate_symtab (per_cu);
4099 break;
4100 }
4101 }
4102 }
4103 }
4104
4105 static void
4106 dw2_map_matching_symbols (struct objfile *objfile,
4107 const char * name, domain_enum domain,
4108 int global,
4109 int (*callback) (struct block *,
4110 struct symbol *, void *),
4111 void *data, symbol_name_match_type match,
4112 symbol_compare_ftype *ordered_compare)
4113 {
4114 /* Currently unimplemented; used for Ada. The function can be called if the
4115 current language is Ada for a non-Ada objfile using GNU index. As Ada
4116 does not look for non-Ada symbols this function should just return. */
4117 }
4118
4119 /* Symbol name matcher for .gdb_index names.
4120
4121 Symbol names in .gdb_index have a few particularities:
4122
4123 - There's no indication of which is the language of each symbol.
4124
4125 Since each language has its own symbol name matching algorithm,
4126 and we don't know which language is the right one, we must match
4127 each symbol against all languages. This would be a potential
4128 performance problem if it were not mitigated by the
4129 mapped_index::name_components lookup table, which significantly
4130 reduces the number of times we need to call into this matcher,
4131 making it a non-issue.
4132
4133 - Symbol names in the index have no overload (parameter)
4134 information. I.e., in C++, "foo(int)" and "foo(long)" both
4135 appear as "foo" in the index, for example.
4136
4137 This means that the lookup names passed to the symbol name
4138 matcher functions must have no parameter information either
4139 because (e.g.) symbol search name "foo" does not match
4140 lookup-name "foo(int)" [while swapping search name for lookup
4141 name would match].
4142 */
4143 class gdb_index_symbol_name_matcher
4144 {
4145 public:
4146 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4147 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4148
4149 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4150 Returns true if any matcher matches. */
4151 bool matches (const char *symbol_name);
4152
4153 private:
4154 /* A reference to the lookup name we're matching against. */
4155 const lookup_name_info &m_lookup_name;
4156
4157 /* A vector holding all the different symbol name matchers, for all
4158 languages. */
4159 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4160 };
4161
4162 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4163 (const lookup_name_info &lookup_name)
4164 : m_lookup_name (lookup_name)
4165 {
4166 /* Prepare the vector of comparison functions upfront, to avoid
4167 doing the same work for each symbol. Care is taken to avoid
4168 matching with the same matcher more than once if/when multiple
4169 languages use the same matcher function. */
4170 auto &matchers = m_symbol_name_matcher_funcs;
4171 matchers.reserve (nr_languages);
4172
4173 matchers.push_back (default_symbol_name_matcher);
4174
4175 for (int i = 0; i < nr_languages; i++)
4176 {
4177 const language_defn *lang = language_def ((enum language) i);
4178 if (lang->la_get_symbol_name_matcher != NULL)
4179 {
4180 symbol_name_matcher_ftype *name_matcher
4181 = lang->la_get_symbol_name_matcher (m_lookup_name);
4182
4183 /* Don't insert the same comparison routine more than once.
4184 Note that we do this linear walk instead of a cheaper
4185 sorted insert, or use a std::set or something like that,
4186 because relative order of function addresses is not
4187 stable. This is not a problem in practice because the
4188 number of supported languages is low, and the cost here
4189 is tiny compared to the number of searches we'll do
4190 afterwards using this object. */
4191 if (std::find (matchers.begin (), matchers.end (), name_matcher)
4192 == matchers.end ())
4193 matchers.push_back (name_matcher);
4194 }
4195 }
4196 }
4197
4198 bool
4199 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4200 {
4201 for (auto matches_name : m_symbol_name_matcher_funcs)
4202 if (matches_name (symbol_name, m_lookup_name, NULL))
4203 return true;
4204
4205 return false;
4206 }
4207
4208 /* Starting from a search name, return the string that finds the upper
4209 bound of all strings that start with SEARCH_NAME in a sorted name
4210 list. Returns the empty string to indicate that the upper bound is
4211 the end of the list. */
4212
4213 static std::string
4214 make_sort_after_prefix_name (const char *search_name)
4215 {
4216 /* When looking to complete "func", we find the upper bound of all
4217 symbols that start with "func" by looking for where we'd insert
4218 the closest string that would follow "func" in lexicographical
4219 order. Usually, that's "func"-with-last-character-incremented,
4220 i.e. "fund". Mind non-ASCII characters, though. Usually those
4221 will be UTF-8 multi-byte sequences, but we can't be certain.
4222 Especially mind the 0xff character, which is a valid character in
4223 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4224 rule out compilers allowing it in identifiers. Note that
4225 conveniently, strcmp/strcasecmp are specified to compare
4226 characters interpreted as unsigned char. So what we do is treat
4227 the whole string as a base 256 number composed of a sequence of
4228 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4229 to 0, and carries 1 to the following more-significant position.
4230 If the very first character in SEARCH_NAME ends up incremented
4231 and carries/overflows, then the upper bound is the end of the
4232 list. The string after the empty string is also the empty
4233 string.
4234
4235 Some examples of this operation:
4236
4237 SEARCH_NAME => "+1" RESULT
4238
4239 "abc" => "abd"
4240 "ab\xff" => "ac"
4241 "\xff" "a" "\xff" => "\xff" "b"
4242 "\xff" => ""
4243 "\xff\xff" => ""
4244 "" => ""
4245
4246 Then, with these symbols for example:
4247
4248 func
4249 func1
4250 fund
4251
4252 completing "func" looks for symbols between "func" and
4253 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4254 which finds "func" and "func1", but not "fund".
4255
4256 And with:
4257
4258 funcÿ (Latin1 'ÿ' [0xff])
4259 funcÿ1
4260 fund
4261
4262 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4263 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4264
4265 And with:
4266
4267 ÿÿ (Latin1 'ÿ' [0xff])
4268 ÿÿ1
4269
4270 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4271 the end of the list.
4272 */
4273 std::string after = search_name;
4274 while (!after.empty () && (unsigned char) after.back () == 0xff)
4275 after.pop_back ();
4276 if (!after.empty ())
4277 after.back () = (unsigned char) after.back () + 1;
4278 return after;
4279 }
4280
4281 /* See declaration. */
4282
4283 std::pair<std::vector<name_component>::const_iterator,
4284 std::vector<name_component>::const_iterator>
4285 mapped_index::find_name_components_bounds
4286 (const lookup_name_info &lookup_name_without_params) const
4287 {
4288 auto *name_cmp
4289 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4290
4291 const char *cplus
4292 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4293
4294 /* Comparison function object for lower_bound that matches against a
4295 given symbol name. */
4296 auto lookup_compare_lower = [&] (const name_component &elem,
4297 const char *name)
4298 {
4299 const char *elem_qualified = this->symbol_name_at (elem.idx);
4300 const char *elem_name = elem_qualified + elem.name_offset;
4301 return name_cmp (elem_name, name) < 0;
4302 };
4303
4304 /* Comparison function object for upper_bound that matches against a
4305 given symbol name. */
4306 auto lookup_compare_upper = [&] (const char *name,
4307 const name_component &elem)
4308 {
4309 const char *elem_qualified = this->symbol_name_at (elem.idx);
4310 const char *elem_name = elem_qualified + elem.name_offset;
4311 return name_cmp (name, elem_name) < 0;
4312 };
4313
4314 auto begin = this->name_components.begin ();
4315 auto end = this->name_components.end ();
4316
4317 /* Find the lower bound. */
4318 auto lower = [&] ()
4319 {
4320 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4321 return begin;
4322 else
4323 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4324 } ();
4325
4326 /* Find the upper bound. */
4327 auto upper = [&] ()
4328 {
4329 if (lookup_name_without_params.completion_mode ())
4330 {
4331 /* In completion mode, we want UPPER to point past all
4332 symbols names that have the same prefix. I.e., with
4333 these symbols, and completing "func":
4334
4335 function << lower bound
4336 function1
4337 other_function << upper bound
4338
4339 We find the upper bound by looking for the insertion
4340 point of "func"-with-last-character-incremented,
4341 i.e. "fund". */
4342 std::string after = make_sort_after_prefix_name (cplus);
4343 if (after.empty ())
4344 return end;
4345 return std::lower_bound (lower, end, after.c_str (),
4346 lookup_compare_lower);
4347 }
4348 else
4349 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4350 } ();
4351
4352 return {lower, upper};
4353 }
4354
4355 /* See declaration. */
4356
4357 void
4358 mapped_index::build_name_components ()
4359 {
4360 if (!this->name_components.empty ())
4361 return;
4362
4363 this->name_components_casing = case_sensitivity;
4364 auto *name_cmp
4365 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4366
4367 /* The code below only knows how to break apart components of C++
4368 symbol names (and other languages that use '::' as
4369 namespace/module separator). If we add support for wild matching
4370 to some language that uses some other operator (E.g., Ada, Go and
4371 D use '.'), then we'll need to try splitting the symbol name
4372 according to that language too. Note that Ada does support wild
4373 matching, but doesn't currently support .gdb_index. */
4374 for (size_t iter = 0; iter < this->symbol_table_slots; ++iter)
4375 {
4376 offset_type idx = 2 * iter;
4377
4378 if (this->symbol_table[idx] == 0
4379 && this->symbol_table[idx + 1] == 0)
4380 continue;
4381
4382 const char *name = this->symbol_name_at (idx);
4383
4384 /* Add each name component to the name component table. */
4385 unsigned int previous_len = 0;
4386 for (unsigned int current_len = cp_find_first_component (name);
4387 name[current_len] != '\0';
4388 current_len += cp_find_first_component (name + current_len))
4389 {
4390 gdb_assert (name[current_len] == ':');
4391 this->name_components.push_back ({previous_len, idx});
4392 /* Skip the '::'. */
4393 current_len += 2;
4394 previous_len = current_len;
4395 }
4396 this->name_components.push_back ({previous_len, idx});
4397 }
4398
4399 /* Sort name_components elements by name. */
4400 auto name_comp_compare = [&] (const name_component &left,
4401 const name_component &right)
4402 {
4403 const char *left_qualified = this->symbol_name_at (left.idx);
4404 const char *right_qualified = this->symbol_name_at (right.idx);
4405
4406 const char *left_name = left_qualified + left.name_offset;
4407 const char *right_name = right_qualified + right.name_offset;
4408
4409 return name_cmp (left_name, right_name) < 0;
4410 };
4411
4412 std::sort (this->name_components.begin (),
4413 this->name_components.end (),
4414 name_comp_compare);
4415 }
4416
4417 /* Helper for dw2_expand_symtabs_matching that works with a
4418 mapped_index instead of the containing objfile. This is split to a
4419 separate function in order to be able to unit test the
4420 name_components matching using a mock mapped_index. For each
4421 symbol name that matches, calls MATCH_CALLBACK, passing it the
4422 symbol's index in the mapped_index symbol table. */
4423
4424 static void
4425 dw2_expand_symtabs_matching_symbol
4426 (mapped_index &index,
4427 const lookup_name_info &lookup_name_in,
4428 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4429 enum search_domain kind,
4430 gdb::function_view<void (offset_type)> match_callback)
4431 {
4432 lookup_name_info lookup_name_without_params
4433 = lookup_name_in.make_ignore_params ();
4434 gdb_index_symbol_name_matcher lookup_name_matcher
4435 (lookup_name_without_params);
4436
4437 /* Build the symbol name component sorted vector, if we haven't
4438 yet. */
4439 index.build_name_components ();
4440
4441 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4442
4443 /* Now for each symbol name in range, check to see if we have a name
4444 match, and if so, call the MATCH_CALLBACK callback. */
4445
4446 /* The same symbol may appear more than once in the range though.
4447 E.g., if we're looking for symbols that complete "w", and we have
4448 a symbol named "w1::w2", we'll find the two name components for
4449 that same symbol in the range. To be sure we only call the
4450 callback once per symbol, we first collect the symbol name
4451 indexes that matched in a temporary vector and ignore
4452 duplicates. */
4453 std::vector<offset_type> matches;
4454 matches.reserve (std::distance (bounds.first, bounds.second));
4455
4456 for (; bounds.first != bounds.second; ++bounds.first)
4457 {
4458 const char *qualified = index.symbol_name_at (bounds.first->idx);
4459
4460 if (!lookup_name_matcher.matches (qualified)
4461 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4462 continue;
4463
4464 matches.push_back (bounds.first->idx);
4465 }
4466
4467 std::sort (matches.begin (), matches.end ());
4468
4469 /* Finally call the callback, once per match. */
4470 ULONGEST prev = -1;
4471 for (offset_type idx : matches)
4472 {
4473 if (prev != idx)
4474 {
4475 match_callback (idx);
4476 prev = idx;
4477 }
4478 }
4479
4480 /* Above we use a type wider than idx's for 'prev', since 0 and
4481 (offset_type)-1 are both possible values. */
4482 static_assert (sizeof (prev) > sizeof (offset_type), "");
4483 }
4484
4485 #if GDB_SELF_TEST
4486
4487 namespace selftests { namespace dw2_expand_symtabs_matching {
4488
4489 /* A wrapper around mapped_index that builds a mock mapped_index, from
4490 the symbol list passed as parameter to the constructor. */
4491 class mock_mapped_index
4492 {
4493 public:
4494 template<size_t N>
4495 mock_mapped_index (const char *(&symbols)[N])
4496 : mock_mapped_index (symbols, N)
4497 {}
4498
4499 /* Access the built index. */
4500 mapped_index &index ()
4501 { return m_index; }
4502
4503 /* Disable copy. */
4504 mock_mapped_index(const mock_mapped_index &) = delete;
4505 void operator= (const mock_mapped_index &) = delete;
4506
4507 private:
4508 mock_mapped_index (const char **symbols, size_t symbols_size)
4509 {
4510 /* No string can live at offset zero. Add a dummy entry. */
4511 obstack_grow_str0 (&m_constant_pool, "");
4512
4513 for (size_t i = 0; i < symbols_size; i++)
4514 {
4515 const char *sym = symbols[i];
4516 size_t offset = obstack_object_size (&m_constant_pool);
4517 obstack_grow_str0 (&m_constant_pool, sym);
4518 m_symbol_table.push_back (offset);
4519 m_symbol_table.push_back (0);
4520 };
4521
4522 m_index.constant_pool = (const char *) obstack_base (&m_constant_pool);
4523 m_index.symbol_table = m_symbol_table.data ();
4524 m_index.symbol_table_slots = m_symbol_table.size () / 2;
4525 }
4526
4527 public:
4528 /* The built mapped_index. */
4529 mapped_index m_index{};
4530
4531 /* The storage that the built mapped_index uses for symbol and
4532 constant pool tables. */
4533 std::vector<offset_type> m_symbol_table;
4534 auto_obstack m_constant_pool;
4535 };
4536
4537 /* Convenience function that converts a NULL pointer to a "<null>"
4538 string, to pass to print routines. */
4539
4540 static const char *
4541 string_or_null (const char *str)
4542 {
4543 return str != NULL ? str : "<null>";
4544 }
4545
4546 /* Check if a lookup_name_info built from
4547 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4548 index. EXPECTED_LIST is the list of expected matches, in expected
4549 matching order. If no match expected, then an empty list is
4550 specified. Returns true on success. On failure prints a warning
4551 indicating the file:line that failed, and returns false. */
4552
4553 static bool
4554 check_match (const char *file, int line,
4555 mock_mapped_index &mock_index,
4556 const char *name, symbol_name_match_type match_type,
4557 bool completion_mode,
4558 std::initializer_list<const char *> expected_list)
4559 {
4560 lookup_name_info lookup_name (name, match_type, completion_mode);
4561
4562 bool matched = true;
4563
4564 auto mismatch = [&] (const char *expected_str,
4565 const char *got)
4566 {
4567 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4568 "expected=\"%s\", got=\"%s\"\n"),
4569 file, line,
4570 (match_type == symbol_name_match_type::FULL
4571 ? "FULL" : "WILD"),
4572 name, string_or_null (expected_str), string_or_null (got));
4573 matched = false;
4574 };
4575
4576 auto expected_it = expected_list.begin ();
4577 auto expected_end = expected_list.end ();
4578
4579 dw2_expand_symtabs_matching_symbol (mock_index.index (), lookup_name,
4580 NULL, ALL_DOMAIN,
4581 [&] (offset_type idx)
4582 {
4583 const char *matched_name = mock_index.index ().symbol_name_at (idx);
4584 const char *expected_str
4585 = expected_it == expected_end ? NULL : *expected_it++;
4586
4587 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4588 mismatch (expected_str, matched_name);
4589 });
4590
4591 const char *expected_str
4592 = expected_it == expected_end ? NULL : *expected_it++;
4593 if (expected_str != NULL)
4594 mismatch (expected_str, NULL);
4595
4596 return matched;
4597 }
4598
4599 /* The symbols added to the mock mapped_index for testing (in
4600 canonical form). */
4601 static const char *test_symbols[] = {
4602 "function",
4603 "std::bar",
4604 "std::zfunction",
4605 "std::zfunction2",
4606 "w1::w2",
4607 "ns::foo<char*>",
4608 "ns::foo<int>",
4609 "ns::foo<long>",
4610 "ns2::tmpl<int>::foo2",
4611 "(anonymous namespace)::A::B::C",
4612
4613 /* These are used to check that the increment-last-char in the
4614 matching algorithm for completion doesn't match "t1_fund" when
4615 completing "t1_func". */
4616 "t1_func",
4617 "t1_func1",
4618 "t1_fund",
4619 "t1_fund1",
4620
4621 /* A UTF-8 name with multi-byte sequences to make sure that
4622 cp-name-parser understands this as a single identifier ("função"
4623 is "function" in PT). */
4624 u8"u8função",
4625
4626 /* \377 (0xff) is Latin1 'ÿ'. */
4627 "yfunc\377",
4628
4629 /* \377 (0xff) is Latin1 'ÿ'. */
4630 "\377",
4631 "\377\377123",
4632
4633 /* A name with all sorts of complications. Starts with "z" to make
4634 it easier for the completion tests below. */
4635 #define Z_SYM_NAME \
4636 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4637 "::tuple<(anonymous namespace)::ui*, " \
4638 "std::default_delete<(anonymous namespace)::ui>, void>"
4639
4640 Z_SYM_NAME
4641 };
4642
4643 /* Returns true if the mapped_index::find_name_component_bounds method
4644 finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME, in
4645 completion mode. */
4646
4647 static bool
4648 check_find_bounds_finds (mapped_index &index,
4649 const char *search_name,
4650 gdb::array_view<const char *> expected_syms)
4651 {
4652 lookup_name_info lookup_name (search_name,
4653 symbol_name_match_type::FULL, true);
4654
4655 auto bounds = index.find_name_components_bounds (lookup_name);
4656
4657 size_t distance = std::distance (bounds.first, bounds.second);
4658 if (distance != expected_syms.size ())
4659 return false;
4660
4661 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4662 {
4663 auto nc_elem = bounds.first + exp_elem;
4664 const char *qualified = index.symbol_name_at (nc_elem->idx);
4665 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4666 return false;
4667 }
4668
4669 return true;
4670 }
4671
4672 /* Test the lower-level mapped_index::find_name_component_bounds
4673 method. */
4674
4675 static void
4676 test_mapped_index_find_name_component_bounds ()
4677 {
4678 mock_mapped_index mock_index (test_symbols);
4679
4680 mock_index.index ().build_name_components ();
4681
4682 /* Test the lower-level mapped_index::find_name_component_bounds
4683 method in completion mode. */
4684 {
4685 static const char *expected_syms[] = {
4686 "t1_func",
4687 "t1_func1",
4688 };
4689
4690 SELF_CHECK (check_find_bounds_finds (mock_index.index (),
4691 "t1_func", expected_syms));
4692 }
4693
4694 /* Check that the increment-last-char in the name matching algorithm
4695 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4696 {
4697 static const char *expected_syms1[] = {
4698 "\377",
4699 "\377\377123",
4700 };
4701 SELF_CHECK (check_find_bounds_finds (mock_index.index (),
4702 "\377", expected_syms1));
4703
4704 static const char *expected_syms2[] = {
4705 "\377\377123",
4706 };
4707 SELF_CHECK (check_find_bounds_finds (mock_index.index (),
4708 "\377\377", expected_syms2));
4709 }
4710 }
4711
4712 /* Test dw2_expand_symtabs_matching_symbol. */
4713
4714 static void
4715 test_dw2_expand_symtabs_matching_symbol ()
4716 {
4717 mock_mapped_index mock_index (test_symbols);
4718
4719 /* We let all tests run until the end even if some fails, for debug
4720 convenience. */
4721 bool any_mismatch = false;
4722
4723 /* Create the expected symbols list (an initializer_list). Needed
4724 because lists have commas, and we need to pass them to CHECK,
4725 which is a macro. */
4726 #define EXPECT(...) { __VA_ARGS__ }
4727
4728 /* Wrapper for check_match that passes down the current
4729 __FILE__/__LINE__. */
4730 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4731 any_mismatch |= !check_match (__FILE__, __LINE__, \
4732 mock_index, \
4733 NAME, MATCH_TYPE, COMPLETION_MODE, \
4734 EXPECTED_LIST)
4735
4736 /* Identity checks. */
4737 for (const char *sym : test_symbols)
4738 {
4739 /* Should be able to match all existing symbols. */
4740 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4741 EXPECT (sym));
4742
4743 /* Should be able to match all existing symbols with
4744 parameters. */
4745 std::string with_params = std::string (sym) + "(int)";
4746 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4747 EXPECT (sym));
4748
4749 /* Should be able to match all existing symbols with
4750 parameters and qualifiers. */
4751 with_params = std::string (sym) + " ( int ) const";
4752 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4753 EXPECT (sym));
4754
4755 /* This should really find sym, but cp-name-parser.y doesn't
4756 know about lvalue/rvalue qualifiers yet. */
4757 with_params = std::string (sym) + " ( int ) &&";
4758 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4759 {});
4760 }
4761
4762 /* Check that the name matching algorithm for completion doesn't get
4763 confused with Latin1 'ÿ' / 0xff. */
4764 {
4765 static const char str[] = "\377";
4766 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4767 EXPECT ("\377", "\377\377123"));
4768 }
4769
4770 /* Check that the increment-last-char in the matching algorithm for
4771 completion doesn't match "t1_fund" when completing "t1_func". */
4772 {
4773 static const char str[] = "t1_func";
4774 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4775 EXPECT ("t1_func", "t1_func1"));
4776 }
4777
4778 /* Check that completion mode works at each prefix of the expected
4779 symbol name. */
4780 {
4781 static const char str[] = "function(int)";
4782 size_t len = strlen (str);
4783 std::string lookup;
4784
4785 for (size_t i = 1; i < len; i++)
4786 {
4787 lookup.assign (str, i);
4788 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4789 EXPECT ("function"));
4790 }
4791 }
4792
4793 /* While "w" is a prefix of both components, the match function
4794 should still only be called once. */
4795 {
4796 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4797 EXPECT ("w1::w2"));
4798 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4799 EXPECT ("w1::w2"));
4800 }
4801
4802 /* Same, with a "complicated" symbol. */
4803 {
4804 static const char str[] = Z_SYM_NAME;
4805 size_t len = strlen (str);
4806 std::string lookup;
4807
4808 for (size_t i = 1; i < len; i++)
4809 {
4810 lookup.assign (str, i);
4811 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4812 EXPECT (Z_SYM_NAME));
4813 }
4814 }
4815
4816 /* In FULL mode, an incomplete symbol doesn't match. */
4817 {
4818 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4819 {});
4820 }
4821
4822 /* A complete symbol with parameters matches any overload, since the
4823 index has no overload info. */
4824 {
4825 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4826 EXPECT ("std::zfunction", "std::zfunction2"));
4827 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4828 EXPECT ("std::zfunction", "std::zfunction2"));
4829 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4830 EXPECT ("std::zfunction", "std::zfunction2"));
4831 }
4832
4833 /* Check that whitespace is ignored appropriately. A symbol with a
4834 template argument list. */
4835 {
4836 static const char expected[] = "ns::foo<int>";
4837 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4838 EXPECT (expected));
4839 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4840 EXPECT (expected));
4841 }
4842
4843 /* Check that whitespace is ignored appropriately. A symbol with a
4844 template argument list that includes a pointer. */
4845 {
4846 static const char expected[] = "ns::foo<char*>";
4847 /* Try both completion and non-completion modes. */
4848 static const bool completion_mode[2] = {false, true};
4849 for (size_t i = 0; i < 2; i++)
4850 {
4851 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4852 completion_mode[i], EXPECT (expected));
4853 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4854 completion_mode[i], EXPECT (expected));
4855
4856 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4857 completion_mode[i], EXPECT (expected));
4858 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4859 completion_mode[i], EXPECT (expected));
4860 }
4861 }
4862
4863 {
4864 /* Check method qualifiers are ignored. */
4865 static const char expected[] = "ns::foo<char*>";
4866 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4867 symbol_name_match_type::FULL, true, EXPECT (expected));
4868 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4869 symbol_name_match_type::FULL, true, EXPECT (expected));
4870 CHECK_MATCH ("foo < char * > ( int ) const",
4871 symbol_name_match_type::WILD, true, EXPECT (expected));
4872 CHECK_MATCH ("foo < char * > ( int ) &&",
4873 symbol_name_match_type::WILD, true, EXPECT (expected));
4874 }
4875
4876 /* Test lookup names that don't match anything. */
4877 {
4878 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4879 {});
4880
4881 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4882 {});
4883 }
4884
4885 /* Some wild matching tests, exercising "(anonymous namespace)",
4886 which should not be confused with a parameter list. */
4887 {
4888 static const char *syms[] = {
4889 "A::B::C",
4890 "B::C",
4891 "C",
4892 "A :: B :: C ( int )",
4893 "B :: C ( int )",
4894 "C ( int )",
4895 };
4896
4897 for (const char *s : syms)
4898 {
4899 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4900 EXPECT ("(anonymous namespace)::A::B::C"));
4901 }
4902 }
4903
4904 {
4905 static const char expected[] = "ns2::tmpl<int>::foo2";
4906 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4907 EXPECT (expected));
4908 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4909 EXPECT (expected));
4910 }
4911
4912 SELF_CHECK (!any_mismatch);
4913
4914 #undef EXPECT
4915 #undef CHECK_MATCH
4916 }
4917
4918 static void
4919 run_test ()
4920 {
4921 test_mapped_index_find_name_component_bounds ();
4922 test_dw2_expand_symtabs_matching_symbol ();
4923 }
4924
4925 }} // namespace selftests::dw2_expand_symtabs_matching
4926
4927 #endif /* GDB_SELF_TEST */
4928
4929 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4930 matched, to expand corresponding CUs that were marked. IDX is the
4931 index of the symbol name that matched. */
4932
4933 static void
4934 dw2_expand_marked_cus
4935 (mapped_index &index, offset_type idx,
4936 struct objfile *objfile,
4937 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4938 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4939 search_domain kind)
4940 {
4941 const char *name;
4942 offset_type *vec, vec_len, vec_idx;
4943 bool global_seen = false;
4944
4945 vec = (offset_type *) (index.constant_pool
4946 + MAYBE_SWAP (index.symbol_table[idx + 1]));
4947 vec_len = MAYBE_SWAP (vec[0]);
4948 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4949 {
4950 struct dwarf2_per_cu_data *per_cu;
4951 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4952 /* This value is only valid for index versions >= 7. */
4953 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4954 gdb_index_symbol_kind symbol_kind =
4955 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4956 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4957 /* Only check the symbol attributes if they're present.
4958 Indices prior to version 7 don't record them,
4959 and indices >= 7 may elide them for certain symbols
4960 (gold does this). */
4961 int attrs_valid =
4962 (index.version >= 7
4963 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4964
4965 /* Work around gold/15646. */
4966 if (attrs_valid)
4967 {
4968 if (!is_static && global_seen)
4969 continue;
4970 if (!is_static)
4971 global_seen = true;
4972 }
4973
4974 /* Only check the symbol's kind if it has one. */
4975 if (attrs_valid)
4976 {
4977 switch (kind)
4978 {
4979 case VARIABLES_DOMAIN:
4980 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4981 continue;
4982 break;
4983 case FUNCTIONS_DOMAIN:
4984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4985 continue;
4986 break;
4987 case TYPES_DOMAIN:
4988 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4989 continue;
4990 break;
4991 default:
4992 break;
4993 }
4994 }
4995
4996 /* Don't crash on bad data. */
4997 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4998 + dwarf2_per_objfile->n_type_units))
4999 {
5000 complaint (&symfile_complaints,
5001 _(".gdb_index entry has bad CU index"
5002 " [in module %s]"), objfile_name (objfile));
5003 continue;
5004 }
5005
5006 per_cu = dw2_get_cutu (cu_index);
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 int symtab_was_null =
5010 (per_cu->v.quick->compunit_symtab == NULL);
5011
5012 dw2_instantiate_symtab (per_cu);
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019 }
5020 }
5021
5022 static void
5023 dw2_expand_symtabs_matching
5024 (struct objfile *objfile,
5025 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5026 const lookup_name_info &lookup_name,
5027 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5028 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5029 enum search_domain kind)
5030 {
5031 int i;
5032 offset_type iter;
5033
5034 dw2_setup (objfile);
5035
5036 /* index_table is NULL if OBJF_READNOW. */
5037 if (!dwarf2_per_objfile->index_table)
5038 return;
5039
5040 if (file_matcher != NULL)
5041 {
5042 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5043 htab_eq_pointer,
5044 NULL, xcalloc, xfree));
5045 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5046 htab_eq_pointer,
5047 NULL, xcalloc, xfree));
5048
5049 /* The rule is CUs specify all the files, including those used by
5050 any TU, so there's no need to scan TUs here. */
5051
5052 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5053 {
5054 int j;
5055 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5056 struct quick_file_names *file_data;
5057 void **slot;
5058
5059 QUIT;
5060
5061 per_cu->v.quick->mark = 0;
5062
5063 /* We only need to look at symtabs not already expanded. */
5064 if (per_cu->v.quick->compunit_symtab)
5065 continue;
5066
5067 file_data = dw2_get_file_names (per_cu);
5068 if (file_data == NULL)
5069 continue;
5070
5071 if (htab_find (visited_not_found.get (), file_data) != NULL)
5072 continue;
5073 else if (htab_find (visited_found.get (), file_data) != NULL)
5074 {
5075 per_cu->v.quick->mark = 1;
5076 continue;
5077 }
5078
5079 for (j = 0; j < file_data->num_file_names; ++j)
5080 {
5081 const char *this_real_name;
5082
5083 if (file_matcher (file_data->file_names[j], false))
5084 {
5085 per_cu->v.quick->mark = 1;
5086 break;
5087 }
5088
5089 /* Before we invoke realpath, which can get expensive when many
5090 files are involved, do a quick comparison of the basenames. */
5091 if (!basenames_may_differ
5092 && !file_matcher (lbasename (file_data->file_names[j]),
5093 true))
5094 continue;
5095
5096 this_real_name = dw2_get_real_path (objfile, file_data, j);
5097 if (file_matcher (this_real_name, false))
5098 {
5099 per_cu->v.quick->mark = 1;
5100 break;
5101 }
5102 }
5103
5104 slot = htab_find_slot (per_cu->v.quick->mark
5105 ? visited_found.get ()
5106 : visited_not_found.get (),
5107 file_data, INSERT);
5108 *slot = file_data;
5109 }
5110 }
5111
5112 mapped_index &index = *dwarf2_per_objfile->index_table;
5113
5114 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5115 symbol_matcher,
5116 kind, [&] (offset_type idx)
5117 {
5118 dw2_expand_marked_cus (index, idx, objfile, file_matcher,
5119 expansion_notify, kind);
5120 });
5121 }
5122
5123 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5124 symtab. */
5125
5126 static struct compunit_symtab *
5127 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5128 CORE_ADDR pc)
5129 {
5130 int i;
5131
5132 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5133 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5134 return cust;
5135
5136 if (cust->includes == NULL)
5137 return NULL;
5138
5139 for (i = 0; cust->includes[i]; ++i)
5140 {
5141 struct compunit_symtab *s = cust->includes[i];
5142
5143 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5144 if (s != NULL)
5145 return s;
5146 }
5147
5148 return NULL;
5149 }
5150
5151 static struct compunit_symtab *
5152 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5153 struct bound_minimal_symbol msymbol,
5154 CORE_ADDR pc,
5155 struct obj_section *section,
5156 int warn_if_readin)
5157 {
5158 struct dwarf2_per_cu_data *data;
5159 struct compunit_symtab *result;
5160
5161 dw2_setup (objfile);
5162
5163 if (!objfile->psymtabs_addrmap)
5164 return NULL;
5165
5166 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5167 pc);
5168 if (!data)
5169 return NULL;
5170
5171 if (warn_if_readin && data->v.quick->compunit_symtab)
5172 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5173 paddress (get_objfile_arch (objfile), pc));
5174
5175 result
5176 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5177 pc);
5178 gdb_assert (result != NULL);
5179 return result;
5180 }
5181
5182 static void
5183 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5184 void *data, int need_fullname)
5185 {
5186 dw2_setup (objfile);
5187
5188 if (!dwarf2_per_objfile->filenames_cache)
5189 {
5190 dwarf2_per_objfile->filenames_cache.emplace ();
5191
5192 htab_up visited (htab_create_alloc (10,
5193 htab_hash_pointer, htab_eq_pointer,
5194 NULL, xcalloc, xfree));
5195
5196 /* The rule is CUs specify all the files, including those used
5197 by any TU, so there's no need to scan TUs here. We can
5198 ignore file names coming from already-expanded CUs. */
5199
5200 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5201 {
5202 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5203
5204 if (per_cu->v.quick->compunit_symtab)
5205 {
5206 void **slot = htab_find_slot (visited.get (),
5207 per_cu->v.quick->file_names,
5208 INSERT);
5209
5210 *slot = per_cu->v.quick->file_names;
5211 }
5212 }
5213
5214 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5215 {
5216 int j;
5217 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5218 struct quick_file_names *file_data;
5219 void **slot;
5220
5221 /* We only need to look at symtabs not already expanded. */
5222 if (per_cu->v.quick->compunit_symtab)
5223 continue;
5224
5225 file_data = dw2_get_file_names (per_cu);
5226 if (file_data == NULL)
5227 continue;
5228
5229 slot = htab_find_slot (visited.get (), file_data, INSERT);
5230 if (*slot)
5231 {
5232 /* Already visited. */
5233 continue;
5234 }
5235 *slot = file_data;
5236
5237 for (int j = 0; j < file_data->num_file_names; ++j)
5238 {
5239 const char *filename = file_data->file_names[j];
5240 dwarf2_per_objfile->filenames_cache->seen (filename);
5241 }
5242 }
5243 }
5244
5245 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5246 {
5247 gdb::unique_xmalloc_ptr<char> this_real_name;
5248
5249 if (need_fullname)
5250 this_real_name = gdb_realpath (filename);
5251 (*fun) (filename, this_real_name.get (), data);
5252 });
5253 }
5254
5255 static int
5256 dw2_has_symbols (struct objfile *objfile)
5257 {
5258 return 1;
5259 }
5260
5261 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5262 {
5263 dw2_has_symbols,
5264 dw2_find_last_source_symtab,
5265 dw2_forget_cached_source_info,
5266 dw2_map_symtabs_matching_filename,
5267 dw2_lookup_symbol,
5268 dw2_print_stats,
5269 dw2_dump,
5270 dw2_relocate,
5271 dw2_expand_symtabs_for_function,
5272 dw2_expand_all_symtabs,
5273 dw2_expand_symtabs_with_fullname,
5274 dw2_map_matching_symbols,
5275 dw2_expand_symtabs_matching,
5276 dw2_find_pc_sect_compunit_symtab,
5277 NULL,
5278 dw2_map_symbol_filenames
5279 };
5280
5281 /* Initialize for reading DWARF for this objfile. Return 0 if this
5282 file will use psymtabs, or 1 if using the GNU index. */
5283
5284 int
5285 dwarf2_initialize_objfile (struct objfile *objfile)
5286 {
5287 /* If we're about to read full symbols, don't bother with the
5288 indices. In this case we also don't care if some other debug
5289 format is making psymtabs, because they are all about to be
5290 expanded anyway. */
5291 if ((objfile->flags & OBJF_READNOW))
5292 {
5293 int i;
5294
5295 dwarf2_per_objfile->using_index = 1;
5296 create_all_comp_units (objfile);
5297 create_all_type_units (objfile);
5298 dwarf2_per_objfile->quick_file_names_table =
5299 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
5300
5301 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
5302 + dwarf2_per_objfile->n_type_units); ++i)
5303 {
5304 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
5305
5306 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5307 struct dwarf2_per_cu_quick_data);
5308 }
5309
5310 /* Return 1 so that gdb sees the "quick" functions. However,
5311 these functions will be no-ops because we will have expanded
5312 all symtabs. */
5313 return 1;
5314 }
5315
5316 if (dwarf2_read_index (objfile))
5317 return 1;
5318
5319 return 0;
5320 }
5321
5322 \f
5323
5324 /* Build a partial symbol table. */
5325
5326 void
5327 dwarf2_build_psymtabs (struct objfile *objfile)
5328 {
5329
5330 if (objfile->global_psymbols.capacity () == 0
5331 && objfile->static_psymbols.capacity () == 0)
5332 init_psymbol_list (objfile, 1024);
5333
5334 TRY
5335 {
5336 /* This isn't really ideal: all the data we allocate on the
5337 objfile's obstack is still uselessly kept around. However,
5338 freeing it seems unsafe. */
5339 psymtab_discarder psymtabs (objfile);
5340 dwarf2_build_psymtabs_hard (objfile);
5341 psymtabs.keep ();
5342 }
5343 CATCH (except, RETURN_MASK_ERROR)
5344 {
5345 exception_print (gdb_stderr, except);
5346 }
5347 END_CATCH
5348 }
5349
5350 /* Return the total length of the CU described by HEADER. */
5351
5352 static unsigned int
5353 get_cu_length (const struct comp_unit_head *header)
5354 {
5355 return header->initial_length_size + header->length;
5356 }
5357
5358 /* Return TRUE if SECT_OFF is within CU_HEADER. */
5359
5360 static inline bool
5361 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
5362 {
5363 sect_offset bottom = cu_header->sect_off;
5364 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
5365
5366 return sect_off >= bottom && sect_off < top;
5367 }
5368
5369 /* Find the base address of the compilation unit for range lists and
5370 location lists. It will normally be specified by DW_AT_low_pc.
5371 In DWARF-3 draft 4, the base address could be overridden by
5372 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5373 compilation units with discontinuous ranges. */
5374
5375 static void
5376 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5377 {
5378 struct attribute *attr;
5379
5380 cu->base_known = 0;
5381 cu->base_address = 0;
5382
5383 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5384 if (attr)
5385 {
5386 cu->base_address = attr_value_as_address (attr);
5387 cu->base_known = 1;
5388 }
5389 else
5390 {
5391 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5392 if (attr)
5393 {
5394 cu->base_address = attr_value_as_address (attr);
5395 cu->base_known = 1;
5396 }
5397 }
5398 }
5399
5400 /* Read in the comp unit header information from the debug_info at info_ptr.
5401 Use rcuh_kind::COMPILE as the default type if not known by the caller.
5402 NOTE: This leaves members offset, first_die_offset to be filled in
5403 by the caller. */
5404
5405 static const gdb_byte *
5406 read_comp_unit_head (struct comp_unit_head *cu_header,
5407 const gdb_byte *info_ptr,
5408 struct dwarf2_section_info *section,
5409 rcuh_kind section_kind)
5410 {
5411 int signed_addr;
5412 unsigned int bytes_read;
5413 const char *filename = get_section_file_name (section);
5414 bfd *abfd = get_section_bfd_owner (section);
5415
5416 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
5417 cu_header->initial_length_size = bytes_read;
5418 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
5419 info_ptr += bytes_read;
5420 cu_header->version = read_2_bytes (abfd, info_ptr);
5421 info_ptr += 2;
5422 if (cu_header->version < 5)
5423 switch (section_kind)
5424 {
5425 case rcuh_kind::COMPILE:
5426 cu_header->unit_type = DW_UT_compile;
5427 break;
5428 case rcuh_kind::TYPE:
5429 cu_header->unit_type = DW_UT_type;
5430 break;
5431 default:
5432 internal_error (__FILE__, __LINE__,
5433 _("read_comp_unit_head: invalid section_kind"));
5434 }
5435 else
5436 {
5437 cu_header->unit_type = static_cast<enum dwarf_unit_type>
5438 (read_1_byte (abfd, info_ptr));
5439 info_ptr += 1;
5440 switch (cu_header->unit_type)
5441 {
5442 case DW_UT_compile:
5443 if (section_kind != rcuh_kind::COMPILE)
5444 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5445 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
5446 filename);
5447 break;
5448 case DW_UT_type:
5449 section_kind = rcuh_kind::TYPE;
5450 break;
5451 default:
5452 error (_("Dwarf Error: wrong unit_type in compilation unit header "
5453 "(is %d, should be %d or %d) [in module %s]"),
5454 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
5455 }
5456
5457 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5458 info_ptr += 1;
5459 }
5460 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
5461 cu_header,
5462 &bytes_read);
5463 info_ptr += bytes_read;
5464 if (cu_header->version < 5)
5465 {
5466 cu_header->addr_size = read_1_byte (abfd, info_ptr);
5467 info_ptr += 1;
5468 }
5469 signed_addr = bfd_get_sign_extend_vma (abfd);
5470 if (signed_addr < 0)
5471 internal_error (__FILE__, __LINE__,
5472 _("read_comp_unit_head: dwarf from non elf file"));
5473 cu_header->signed_addr_p = signed_addr;
5474
5475 if (section_kind == rcuh_kind::TYPE)
5476 {
5477 LONGEST type_offset;
5478
5479 cu_header->signature = read_8_bytes (abfd, info_ptr);
5480 info_ptr += 8;
5481
5482 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
5483 info_ptr += bytes_read;
5484 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
5485 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
5486 error (_("Dwarf Error: Too big type_offset in compilation unit "
5487 "header (is %s) [in module %s]"), plongest (type_offset),
5488 filename);
5489 }
5490
5491 return info_ptr;
5492 }
5493
5494 /* Helper function that returns the proper abbrev section for
5495 THIS_CU. */
5496
5497 static struct dwarf2_section_info *
5498 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5499 {
5500 struct dwarf2_section_info *abbrev;
5501
5502 if (this_cu->is_dwz)
5503 abbrev = &dwarf2_get_dwz_file ()->abbrev;
5504 else
5505 abbrev = &dwarf2_per_objfile->abbrev;
5506
5507 return abbrev;
5508 }
5509
5510 /* Subroutine of read_and_check_comp_unit_head and
5511 read_and_check_type_unit_head to simplify them.
5512 Perform various error checking on the header. */
5513
5514 static void
5515 error_check_comp_unit_head (struct comp_unit_head *header,
5516 struct dwarf2_section_info *section,
5517 struct dwarf2_section_info *abbrev_section)
5518 {
5519 const char *filename = get_section_file_name (section);
5520
5521 if (header->version < 2 || header->version > 5)
5522 error (_("Dwarf Error: wrong version in compilation unit header "
5523 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
5524 filename);
5525
5526 if (to_underlying (header->abbrev_sect_off)
5527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
5528 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
5529 "(offset 0x%x + 6) [in module %s]"),
5530 to_underlying (header->abbrev_sect_off),
5531 to_underlying (header->sect_off),
5532 filename);
5533
5534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
5535 avoid potential 32-bit overflow. */
5536 if (((ULONGEST) header->sect_off + get_cu_length (header))
5537 > section->size)
5538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
5539 "(offset 0x%x + 0) [in module %s]"),
5540 header->length, to_underlying (header->sect_off),
5541 filename);
5542 }
5543
5544 /* Read in a CU/TU header and perform some basic error checking.
5545 The contents of the header are stored in HEADER.
5546 The result is a pointer to the start of the first DIE. */
5547
5548 static const gdb_byte *
5549 read_and_check_comp_unit_head (struct comp_unit_head *header,
5550 struct dwarf2_section_info *section,
5551 struct dwarf2_section_info *abbrev_section,
5552 const gdb_byte *info_ptr,
5553 rcuh_kind section_kind)
5554 {
5555 const gdb_byte *beg_of_comp_unit = info_ptr;
5556 bfd *abfd = get_section_bfd_owner (section);
5557
5558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
5559
5560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
5561
5562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
5563
5564 error_check_comp_unit_head (header, section, abbrev_section);
5565
5566 return info_ptr;
5567 }
5568
5569 /* Fetch the abbreviation table offset from a comp or type unit header. */
5570
5571 static sect_offset
5572 read_abbrev_offset (struct dwarf2_section_info *section,
5573 sect_offset sect_off)
5574 {
5575 bfd *abfd = get_section_bfd_owner (section);
5576 const gdb_byte *info_ptr;
5577 unsigned int initial_length_size, offset_size;
5578 uint16_t version;
5579
5580 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
5581 info_ptr = section->buffer + to_underlying (sect_off);
5582 read_initial_length (abfd, info_ptr, &initial_length_size);
5583 offset_size = initial_length_size == 4 ? 4 : 8;
5584 info_ptr += initial_length_size;
5585
5586 version = read_2_bytes (abfd, info_ptr);
5587 info_ptr += 2;
5588 if (version >= 5)
5589 {
5590 /* Skip unit type and address size. */
5591 info_ptr += 2;
5592 }
5593
5594 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
5595 }
5596
5597 /* Allocate a new partial symtab for file named NAME and mark this new
5598 partial symtab as being an include of PST. */
5599
5600 static void
5601 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
5602 struct objfile *objfile)
5603 {
5604 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
5605
5606 if (!IS_ABSOLUTE_PATH (subpst->filename))
5607 {
5608 /* It shares objfile->objfile_obstack. */
5609 subpst->dirname = pst->dirname;
5610 }
5611
5612 subpst->textlow = 0;
5613 subpst->texthigh = 0;
5614
5615 subpst->dependencies
5616 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
5617 subpst->dependencies[0] = pst;
5618 subpst->number_of_dependencies = 1;
5619
5620 subpst->globals_offset = 0;
5621 subpst->n_global_syms = 0;
5622 subpst->statics_offset = 0;
5623 subpst->n_static_syms = 0;
5624 subpst->compunit_symtab = NULL;
5625 subpst->read_symtab = pst->read_symtab;
5626 subpst->readin = 0;
5627
5628 /* No private part is necessary for include psymtabs. This property
5629 can be used to differentiate between such include psymtabs and
5630 the regular ones. */
5631 subpst->read_symtab_private = NULL;
5632 }
5633
5634 /* Read the Line Number Program data and extract the list of files
5635 included by the source file represented by PST. Build an include
5636 partial symtab for each of these included files. */
5637
5638 static void
5639 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5640 struct die_info *die,
5641 struct partial_symtab *pst)
5642 {
5643 line_header_up lh;
5644 struct attribute *attr;
5645
5646 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5647 if (attr)
5648 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5649 if (lh == NULL)
5650 return; /* No linetable, so no includes. */
5651
5652 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
5653 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
5654 }
5655
5656 static hashval_t
5657 hash_signatured_type (const void *item)
5658 {
5659 const struct signatured_type *sig_type
5660 = (const struct signatured_type *) item;
5661
5662 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5663 return sig_type->signature;
5664 }
5665
5666 static int
5667 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5668 {
5669 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5670 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5671
5672 return lhs->signature == rhs->signature;
5673 }
5674
5675 /* Allocate a hash table for signatured types. */
5676
5677 static htab_t
5678 allocate_signatured_type_table (struct objfile *objfile)
5679 {
5680 return htab_create_alloc_ex (41,
5681 hash_signatured_type,
5682 eq_signatured_type,
5683 NULL,
5684 &objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687 }
5688
5689 /* A helper function to add a signatured type CU to a table. */
5690
5691 static int
5692 add_signatured_type_cu_to_table (void **slot, void *datum)
5693 {
5694 struct signatured_type *sigt = (struct signatured_type *) *slot;
5695 struct signatured_type ***datap = (struct signatured_type ***) datum;
5696
5697 **datap = sigt;
5698 ++*datap;
5699
5700 return 1;
5701 }
5702
5703 /* A helper for create_debug_types_hash_table. Read types from SECTION
5704 and fill them into TYPES_HTAB. It will process only type units,
5705 therefore DW_UT_type. */
5706
5707 static void
5708 create_debug_type_hash_table (struct dwo_file *dwo_file,
5709 dwarf2_section_info *section, htab_t &types_htab,
5710 rcuh_kind section_kind)
5711 {
5712 struct objfile *objfile = dwarf2_per_objfile->objfile;
5713 struct dwarf2_section_info *abbrev_section;
5714 bfd *abfd;
5715 const gdb_byte *info_ptr, *end_ptr;
5716
5717 abbrev_section = (dwo_file != NULL
5718 ? &dwo_file->sections.abbrev
5719 : &dwarf2_per_objfile->abbrev);
5720
5721 if (dwarf_read_debug)
5722 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
5723 get_section_name (section),
5724 get_section_file_name (abbrev_section));
5725
5726 dwarf2_read_section (objfile, section);
5727 info_ptr = section->buffer;
5728
5729 if (info_ptr == NULL)
5730 return;
5731
5732 /* We can't set abfd until now because the section may be empty or
5733 not present, in which case the bfd is unknown. */
5734 abfd = get_section_bfd_owner (section);
5735
5736 /* We don't use init_cutu_and_read_dies_simple, or some such, here
5737 because we don't need to read any dies: the signature is in the
5738 header. */
5739
5740 end_ptr = info_ptr + section->size;
5741 while (info_ptr < end_ptr)
5742 {
5743 struct signatured_type *sig_type;
5744 struct dwo_unit *dwo_tu;
5745 void **slot;
5746 const gdb_byte *ptr = info_ptr;
5747 struct comp_unit_head header;
5748 unsigned int length;
5749
5750 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5751
5752 /* Initialize it due to a false compiler warning. */
5753 header.signature = -1;
5754 header.type_cu_offset_in_tu = (cu_offset) -1;
5755
5756 /* We need to read the type's signature in order to build the hash
5757 table, but we don't need anything else just yet. */
5758
5759 ptr = read_and_check_comp_unit_head (&header, section,
5760 abbrev_section, ptr, section_kind);
5761
5762 length = get_cu_length (&header);
5763
5764 /* Skip dummy type units. */
5765 if (ptr >= info_ptr + length
5766 || peek_abbrev_code (abfd, ptr) == 0
5767 || header.unit_type != DW_UT_type)
5768 {
5769 info_ptr += length;
5770 continue;
5771 }
5772
5773 if (types_htab == NULL)
5774 {
5775 if (dwo_file)
5776 types_htab = allocate_dwo_unit_table (objfile);
5777 else
5778 types_htab = allocate_signatured_type_table (objfile);
5779 }
5780
5781 if (dwo_file)
5782 {
5783 sig_type = NULL;
5784 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5785 struct dwo_unit);
5786 dwo_tu->dwo_file = dwo_file;
5787 dwo_tu->signature = header.signature;
5788 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5789 dwo_tu->section = section;
5790 dwo_tu->sect_off = sect_off;
5791 dwo_tu->length = length;
5792 }
5793 else
5794 {
5795 /* N.B.: type_offset is not usable if this type uses a DWO file.
5796 The real type_offset is in the DWO file. */
5797 dwo_tu = NULL;
5798 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct signatured_type);
5800 sig_type->signature = header.signature;
5801 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
5802 sig_type->per_cu.objfile = objfile;
5803 sig_type->per_cu.is_debug_types = 1;
5804 sig_type->per_cu.section = section;
5805 sig_type->per_cu.sect_off = sect_off;
5806 sig_type->per_cu.length = length;
5807 }
5808
5809 slot = htab_find_slot (types_htab,
5810 dwo_file ? (void*) dwo_tu : (void *) sig_type,
5811 INSERT);
5812 gdb_assert (slot != NULL);
5813 if (*slot != NULL)
5814 {
5815 sect_offset dup_sect_off;
5816
5817 if (dwo_file)
5818 {
5819 const struct dwo_unit *dup_tu
5820 = (const struct dwo_unit *) *slot;
5821
5822 dup_sect_off = dup_tu->sect_off;
5823 }
5824 else
5825 {
5826 const struct signatured_type *dup_tu
5827 = (const struct signatured_type *) *slot;
5828
5829 dup_sect_off = dup_tu->per_cu.sect_off;
5830 }
5831
5832 complaint (&symfile_complaints,
5833 _("debug type entry at offset 0x%x is duplicate to"
5834 " the entry at offset 0x%x, signature %s"),
5835 to_underlying (sect_off), to_underlying (dup_sect_off),
5836 hex_string (header.signature));
5837 }
5838 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
5839
5840 if (dwarf_read_debug > 1)
5841 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
5842 to_underlying (sect_off),
5843 hex_string (header.signature));
5844
5845 info_ptr += length;
5846 }
5847 }
5848
5849 /* Create the hash table of all entries in the .debug_types
5850 (or .debug_types.dwo) section(s).
5851 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
5852 otherwise it is NULL.
5853
5854 The result is a pointer to the hash table or NULL if there are no types.
5855
5856 Note: This function processes DWO files only, not DWP files. */
5857
5858 static void
5859 create_debug_types_hash_table (struct dwo_file *dwo_file,
5860 VEC (dwarf2_section_info_def) *types,
5861 htab_t &types_htab)
5862 {
5863 int ix;
5864 struct dwarf2_section_info *section;
5865
5866 if (VEC_empty (dwarf2_section_info_def, types))
5867 return;
5868
5869 for (ix = 0;
5870 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5871 ++ix)
5872 create_debug_type_hash_table (dwo_file, section, types_htab,
5873 rcuh_kind::TYPE);
5874 }
5875
5876 /* Create the hash table of all entries in the .debug_types section,
5877 and initialize all_type_units.
5878 The result is zero if there is an error (e.g. missing .debug_types section),
5879 otherwise non-zero. */
5880
5881 static int
5882 create_all_type_units (struct objfile *objfile)
5883 {
5884 htab_t types_htab = NULL;
5885 struct signatured_type **iter;
5886
5887 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5888 rcuh_kind::COMPILE);
5889 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
5890 if (types_htab == NULL)
5891 {
5892 dwarf2_per_objfile->signatured_types = NULL;
5893 return 0;
5894 }
5895
5896 dwarf2_per_objfile->signatured_types = types_htab;
5897
5898 dwarf2_per_objfile->n_type_units
5899 = dwarf2_per_objfile->n_allocated_type_units
5900 = htab_elements (types_htab);
5901 dwarf2_per_objfile->all_type_units =
5902 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
5903 iter = &dwarf2_per_objfile->all_type_units[0];
5904 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5905 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5906 == dwarf2_per_objfile->n_type_units);
5907
5908 return 1;
5909 }
5910
5911 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5912 If SLOT is non-NULL, it is the entry to use in the hash table.
5913 Otherwise we find one. */
5914
5915 static struct signatured_type *
5916 add_type_unit (ULONGEST sig, void **slot)
5917 {
5918 struct objfile *objfile = dwarf2_per_objfile->objfile;
5919 int n_type_units = dwarf2_per_objfile->n_type_units;
5920 struct signatured_type *sig_type;
5921
5922 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5923 ++n_type_units;
5924 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5925 {
5926 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5927 dwarf2_per_objfile->n_allocated_type_units = 1;
5928 dwarf2_per_objfile->n_allocated_type_units *= 2;
5929 dwarf2_per_objfile->all_type_units
5930 = XRESIZEVEC (struct signatured_type *,
5931 dwarf2_per_objfile->all_type_units,
5932 dwarf2_per_objfile->n_allocated_type_units);
5933 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5934 }
5935 dwarf2_per_objfile->n_type_units = n_type_units;
5936
5937 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5938 struct signatured_type);
5939 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5940 sig_type->signature = sig;
5941 sig_type->per_cu.is_debug_types = 1;
5942 if (dwarf2_per_objfile->using_index)
5943 {
5944 sig_type->per_cu.v.quick =
5945 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5946 struct dwarf2_per_cu_quick_data);
5947 }
5948
5949 if (slot == NULL)
5950 {
5951 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5952 sig_type, INSERT);
5953 }
5954 gdb_assert (*slot == NULL);
5955 *slot = sig_type;
5956 /* The rest of sig_type must be filled in by the caller. */
5957 return sig_type;
5958 }
5959
5960 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5961 Fill in SIG_ENTRY with DWO_ENTRY. */
5962
5963 static void
5964 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5965 struct signatured_type *sig_entry,
5966 struct dwo_unit *dwo_entry)
5967 {
5968 /* Make sure we're not clobbering something we don't expect to. */
5969 gdb_assert (! sig_entry->per_cu.queued);
5970 gdb_assert (sig_entry->per_cu.cu == NULL);
5971 if (dwarf2_per_objfile->using_index)
5972 {
5973 gdb_assert (sig_entry->per_cu.v.quick != NULL);
5974 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
5975 }
5976 else
5977 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
5978 gdb_assert (sig_entry->signature == dwo_entry->signature);
5979 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
5980 gdb_assert (sig_entry->type_unit_group == NULL);
5981 gdb_assert (sig_entry->dwo_unit == NULL);
5982
5983 sig_entry->per_cu.section = dwo_entry->section;
5984 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
5985 sig_entry->per_cu.length = dwo_entry->length;
5986 sig_entry->per_cu.reading_dwo_directly = 1;
5987 sig_entry->per_cu.objfile = objfile;
5988 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5989 sig_entry->dwo_unit = dwo_entry;
5990 }
5991
5992 /* Subroutine of lookup_signatured_type.
5993 If we haven't read the TU yet, create the signatured_type data structure
5994 for a TU to be read in directly from a DWO file, bypassing the stub.
5995 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5996 using .gdb_index, then when reading a CU we want to stay in the DWO file
5997 containing that CU. Otherwise we could end up reading several other DWO
5998 files (due to comdat folding) to process the transitive closure of all the
5999 mentioned TUs, and that can be slow. The current DWO file will have every
6000 type signature that it needs.
6001 We only do this for .gdb_index because in the psymtab case we already have
6002 to read all the DWOs to build the type unit groups. */
6003
6004 static struct signatured_type *
6005 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6006 {
6007 struct objfile *objfile = dwarf2_per_objfile->objfile;
6008 struct dwo_file *dwo_file;
6009 struct dwo_unit find_dwo_entry, *dwo_entry;
6010 struct signatured_type find_sig_entry, *sig_entry;
6011 void **slot;
6012
6013 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6014
6015 /* If TU skeletons have been removed then we may not have read in any
6016 TUs yet. */
6017 if (dwarf2_per_objfile->signatured_types == NULL)
6018 {
6019 dwarf2_per_objfile->signatured_types
6020 = allocate_signatured_type_table (objfile);
6021 }
6022
6023 /* We only ever need to read in one copy of a signatured type.
6024 Use the global signatured_types array to do our own comdat-folding
6025 of types. If this is the first time we're reading this TU, and
6026 the TU has an entry in .gdb_index, replace the recorded data from
6027 .gdb_index with this TU. */
6028
6029 find_sig_entry.signature = sig;
6030 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6031 &find_sig_entry, INSERT);
6032 sig_entry = (struct signatured_type *) *slot;
6033
6034 /* We can get here with the TU already read, *or* in the process of being
6035 read. Don't reassign the global entry to point to this DWO if that's
6036 the case. Also note that if the TU is already being read, it may not
6037 have come from a DWO, the program may be a mix of Fission-compiled
6038 code and non-Fission-compiled code. */
6039
6040 /* Have we already tried to read this TU?
6041 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6042 needn't exist in the global table yet). */
6043 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6044 return sig_entry;
6045
6046 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6047 dwo_unit of the TU itself. */
6048 dwo_file = cu->dwo_unit->dwo_file;
6049
6050 /* Ok, this is the first time we're reading this TU. */
6051 if (dwo_file->tus == NULL)
6052 return NULL;
6053 find_dwo_entry.signature = sig;
6054 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6055 if (dwo_entry == NULL)
6056 return NULL;
6057
6058 /* If the global table doesn't have an entry for this TU, add one. */
6059 if (sig_entry == NULL)
6060 sig_entry = add_type_unit (sig, slot);
6061
6062 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
6063 sig_entry->per_cu.tu_read = 1;
6064 return sig_entry;
6065 }
6066
6067 /* Subroutine of lookup_signatured_type.
6068 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6069 then try the DWP file. If the TU stub (skeleton) has been removed then
6070 it won't be in .gdb_index. */
6071
6072 static struct signatured_type *
6073 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6074 {
6075 struct objfile *objfile = dwarf2_per_objfile->objfile;
6076 struct dwp_file *dwp_file = get_dwp_file ();
6077 struct dwo_unit *dwo_entry;
6078 struct signatured_type find_sig_entry, *sig_entry;
6079 void **slot;
6080
6081 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6082 gdb_assert (dwp_file != NULL);
6083
6084 /* If TU skeletons have been removed then we may not have read in any
6085 TUs yet. */
6086 if (dwarf2_per_objfile->signatured_types == NULL)
6087 {
6088 dwarf2_per_objfile->signatured_types
6089 = allocate_signatured_type_table (objfile);
6090 }
6091
6092 find_sig_entry.signature = sig;
6093 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6094 &find_sig_entry, INSERT);
6095 sig_entry = (struct signatured_type *) *slot;
6096
6097 /* Have we already tried to read this TU?
6098 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6099 needn't exist in the global table yet). */
6100 if (sig_entry != NULL)
6101 return sig_entry;
6102
6103 if (dwp_file->tus == NULL)
6104 return NULL;
6105 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
6106 sig, 1 /* is_debug_types */);
6107 if (dwo_entry == NULL)
6108 return NULL;
6109
6110 sig_entry = add_type_unit (sig, slot);
6111 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
6112
6113 return sig_entry;
6114 }
6115
6116 /* Lookup a signature based type for DW_FORM_ref_sig8.
6117 Returns NULL if signature SIG is not present in the table.
6118 It is up to the caller to complain about this. */
6119
6120 static struct signatured_type *
6121 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6122 {
6123 if (cu->dwo_unit
6124 && dwarf2_per_objfile->using_index)
6125 {
6126 /* We're in a DWO/DWP file, and we're using .gdb_index.
6127 These cases require special processing. */
6128 if (get_dwp_file () == NULL)
6129 return lookup_dwo_signatured_type (cu, sig);
6130 else
6131 return lookup_dwp_signatured_type (cu, sig);
6132 }
6133 else
6134 {
6135 struct signatured_type find_entry, *entry;
6136
6137 if (dwarf2_per_objfile->signatured_types == NULL)
6138 return NULL;
6139 find_entry.signature = sig;
6140 entry = ((struct signatured_type *)
6141 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
6142 return entry;
6143 }
6144 }
6145 \f
6146 /* Low level DIE reading support. */
6147
6148 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6149
6150 static void
6151 init_cu_die_reader (struct die_reader_specs *reader,
6152 struct dwarf2_cu *cu,
6153 struct dwarf2_section_info *section,
6154 struct dwo_file *dwo_file)
6155 {
6156 gdb_assert (section->readin && section->buffer != NULL);
6157 reader->abfd = get_section_bfd_owner (section);
6158 reader->cu = cu;
6159 reader->dwo_file = dwo_file;
6160 reader->die_section = section;
6161 reader->buffer = section->buffer;
6162 reader->buffer_end = section->buffer + section->size;
6163 reader->comp_dir = NULL;
6164 }
6165
6166 /* Subroutine of init_cutu_and_read_dies to simplify it.
6167 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6168 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
6169 already.
6170
6171 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6172 from it to the DIE in the DWO. If NULL we are skipping the stub.
6173 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6174 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6175 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6176 STUB_COMP_DIR may be non-NULL.
6177 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
6178 are filled in with the info of the DIE from the DWO file.
6179 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
6180 provided an abbrev table to use.
6181 The result is non-zero if a valid (non-dummy) DIE was found. */
6182
6183 static int
6184 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6185 struct dwo_unit *dwo_unit,
6186 int abbrev_table_provided,
6187 struct die_info *stub_comp_unit_die,
6188 const char *stub_comp_dir,
6189 struct die_reader_specs *result_reader,
6190 const gdb_byte **result_info_ptr,
6191 struct die_info **result_comp_unit_die,
6192 int *result_has_children)
6193 {
6194 struct objfile *objfile = dwarf2_per_objfile->objfile;
6195 struct dwarf2_cu *cu = this_cu->cu;
6196 struct dwarf2_section_info *section;
6197 bfd *abfd;
6198 const gdb_byte *begin_info_ptr, *info_ptr;
6199 ULONGEST signature; /* Or dwo_id. */
6200 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6201 int i,num_extra_attrs;
6202 struct dwarf2_section_info *dwo_abbrev_section;
6203 struct attribute *attr;
6204 struct die_info *comp_unit_die;
6205
6206 /* At most one of these may be provided. */
6207 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6208
6209 /* These attributes aren't processed until later:
6210 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6211 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6212 referenced later. However, these attributes are found in the stub
6213 which we won't have later. In order to not impose this complication
6214 on the rest of the code, we read them here and copy them to the
6215 DWO CU/TU die. */
6216
6217 stmt_list = NULL;
6218 low_pc = NULL;
6219 high_pc = NULL;
6220 ranges = NULL;
6221 comp_dir = NULL;
6222
6223 if (stub_comp_unit_die != NULL)
6224 {
6225 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6226 DWO file. */
6227 if (! this_cu->is_debug_types)
6228 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6229 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6230 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6231 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6232 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6233
6234 /* There should be a DW_AT_addr_base attribute here (if needed).
6235 We need the value before we can process DW_FORM_GNU_addr_index. */
6236 cu->addr_base = 0;
6237 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
6238 if (attr)
6239 cu->addr_base = DW_UNSND (attr);
6240
6241 /* There should be a DW_AT_ranges_base attribute here (if needed).
6242 We need the value before we can process DW_AT_ranges. */
6243 cu->ranges_base = 0;
6244 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
6245 if (attr)
6246 cu->ranges_base = DW_UNSND (attr);
6247 }
6248 else if (stub_comp_dir != NULL)
6249 {
6250 /* Reconstruct the comp_dir attribute to simplify the code below. */
6251 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6252 comp_dir->name = DW_AT_comp_dir;
6253 comp_dir->form = DW_FORM_string;
6254 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6255 DW_STRING (comp_dir) = stub_comp_dir;
6256 }
6257
6258 /* Set up for reading the DWO CU/TU. */
6259 cu->dwo_unit = dwo_unit;
6260 section = dwo_unit->section;
6261 dwarf2_read_section (objfile, section);
6262 abfd = get_section_bfd_owner (section);
6263 begin_info_ptr = info_ptr = (section->buffer
6264 + to_underlying (dwo_unit->sect_off));
6265 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6266 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
6267
6268 if (this_cu->is_debug_types)
6269 {
6270 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6271
6272 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6273 dwo_abbrev_section,
6274 info_ptr, rcuh_kind::TYPE);
6275 /* This is not an assert because it can be caused by bad debug info. */
6276 if (sig_type->signature != cu->header.signature)
6277 {
6278 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6279 " TU at offset 0x%x [in module %s]"),
6280 hex_string (sig_type->signature),
6281 hex_string (cu->header.signature),
6282 to_underlying (dwo_unit->sect_off),
6283 bfd_get_filename (abfd));
6284 }
6285 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6286 /* For DWOs coming from DWP files, we don't know the CU length
6287 nor the type's offset in the TU until now. */
6288 dwo_unit->length = get_cu_length (&cu->header);
6289 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6290
6291 /* Establish the type offset that can be used to lookup the type.
6292 For DWO files, we don't know it until now. */
6293 sig_type->type_offset_in_section
6294 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6295 }
6296 else
6297 {
6298 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6299 dwo_abbrev_section,
6300 info_ptr, rcuh_kind::COMPILE);
6301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6302 /* For DWOs coming from DWP files, we don't know the CU length
6303 until now. */
6304 dwo_unit->length = get_cu_length (&cu->header);
6305 }
6306
6307 /* Replace the CU's original abbrev table with the DWO's.
6308 Reminder: We can't read the abbrev table until we've read the header. */
6309 if (abbrev_table_provided)
6310 {
6311 /* Don't free the provided abbrev table, the caller of
6312 init_cutu_and_read_dies owns it. */
6313 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6314 /* Ensure the DWO abbrev table gets freed. */
6315 make_cleanup (dwarf2_free_abbrev_table, cu);
6316 }
6317 else
6318 {
6319 dwarf2_free_abbrev_table (cu);
6320 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
6321 /* Leave any existing abbrev table cleanup as is. */
6322 }
6323
6324 /* Read in the die, but leave space to copy over the attributes
6325 from the stub. This has the benefit of simplifying the rest of
6326 the code - all the work to maintain the illusion of a single
6327 DW_TAG_{compile,type}_unit DIE is done here. */
6328 num_extra_attrs = ((stmt_list != NULL)
6329 + (low_pc != NULL)
6330 + (high_pc != NULL)
6331 + (ranges != NULL)
6332 + (comp_dir != NULL));
6333 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6334 result_has_children, num_extra_attrs);
6335
6336 /* Copy over the attributes from the stub to the DIE we just read in. */
6337 comp_unit_die = *result_comp_unit_die;
6338 i = comp_unit_die->num_attrs;
6339 if (stmt_list != NULL)
6340 comp_unit_die->attrs[i++] = *stmt_list;
6341 if (low_pc != NULL)
6342 comp_unit_die->attrs[i++] = *low_pc;
6343 if (high_pc != NULL)
6344 comp_unit_die->attrs[i++] = *high_pc;
6345 if (ranges != NULL)
6346 comp_unit_die->attrs[i++] = *ranges;
6347 if (comp_dir != NULL)
6348 comp_unit_die->attrs[i++] = *comp_dir;
6349 comp_unit_die->num_attrs += num_extra_attrs;
6350
6351 if (dwarf_die_debug)
6352 {
6353 fprintf_unfiltered (gdb_stdlog,
6354 "Read die from %s@0x%x of %s:\n",
6355 get_section_name (section),
6356 (unsigned) (begin_info_ptr - section->buffer),
6357 bfd_get_filename (abfd));
6358 dump_die (comp_unit_die, dwarf_die_debug);
6359 }
6360
6361 /* Save the comp_dir attribute. If there is no DWP file then we'll read
6362 TUs by skipping the stub and going directly to the entry in the DWO file.
6363 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
6364 to get it via circuitous means. Blech. */
6365 if (comp_dir != NULL)
6366 result_reader->comp_dir = DW_STRING (comp_dir);
6367
6368 /* Skip dummy compilation units. */
6369 if (info_ptr >= begin_info_ptr + dwo_unit->length
6370 || peek_abbrev_code (abfd, info_ptr) == 0)
6371 return 0;
6372
6373 *result_info_ptr = info_ptr;
6374 return 1;
6375 }
6376
6377 /* Subroutine of init_cutu_and_read_dies to simplify it.
6378 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6379 Returns NULL if the specified DWO unit cannot be found. */
6380
6381 static struct dwo_unit *
6382 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6383 struct die_info *comp_unit_die)
6384 {
6385 struct dwarf2_cu *cu = this_cu->cu;
6386 struct attribute *attr;
6387 ULONGEST signature;
6388 struct dwo_unit *dwo_unit;
6389 const char *comp_dir, *dwo_name;
6390
6391 gdb_assert (cu != NULL);
6392
6393 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6394 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6395 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6396
6397 if (this_cu->is_debug_types)
6398 {
6399 struct signatured_type *sig_type;
6400
6401 /* Since this_cu is the first member of struct signatured_type,
6402 we can go from a pointer to one to a pointer to the other. */
6403 sig_type = (struct signatured_type *) this_cu;
6404 signature = sig_type->signature;
6405 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6406 }
6407 else
6408 {
6409 struct attribute *attr;
6410
6411 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6412 if (! attr)
6413 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6414 " [in module %s]"),
6415 dwo_name, objfile_name (this_cu->objfile));
6416 signature = DW_UNSND (attr);
6417 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6418 signature);
6419 }
6420
6421 return dwo_unit;
6422 }
6423
6424 /* Subroutine of init_cutu_and_read_dies to simplify it.
6425 See it for a description of the parameters.
6426 Read a TU directly from a DWO file, bypassing the stub.
6427
6428 Note: This function could be a little bit simpler if we shared cleanups
6429 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
6430 to do, so we keep this function self-contained. Or we could move this
6431 into our caller, but it's complex enough already. */
6432
6433 static void
6434 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6435 int use_existing_cu, int keep,
6436 die_reader_func_ftype *die_reader_func,
6437 void *data)
6438 {
6439 struct dwarf2_cu *cu;
6440 struct signatured_type *sig_type;
6441 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6442 struct die_reader_specs reader;
6443 const gdb_byte *info_ptr;
6444 struct die_info *comp_unit_die;
6445 int has_children;
6446
6447 /* Verify we can do the following downcast, and that we have the
6448 data we need. */
6449 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6450 sig_type = (struct signatured_type *) this_cu;
6451 gdb_assert (sig_type->dwo_unit != NULL);
6452
6453 cleanups = make_cleanup (null_cleanup, NULL);
6454
6455 if (use_existing_cu && this_cu->cu != NULL)
6456 {
6457 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6458 cu = this_cu->cu;
6459 /* There's no need to do the rereading_dwo_cu handling that
6460 init_cutu_and_read_dies does since we don't read the stub. */
6461 }
6462 else
6463 {
6464 /* If !use_existing_cu, this_cu->cu must be NULL. */
6465 gdb_assert (this_cu->cu == NULL);
6466 cu = XNEW (struct dwarf2_cu);
6467 init_one_comp_unit (cu, this_cu);
6468 /* If an error occurs while loading, release our storage. */
6469 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6470 }
6471
6472 /* A future optimization, if needed, would be to use an existing
6473 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6474 could share abbrev tables. */
6475
6476 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6477 0 /* abbrev_table_provided */,
6478 NULL /* stub_comp_unit_die */,
6479 sig_type->dwo_unit->dwo_file->comp_dir,
6480 &reader, &info_ptr,
6481 &comp_unit_die, &has_children) == 0)
6482 {
6483 /* Dummy die. */
6484 do_cleanups (cleanups);
6485 return;
6486 }
6487
6488 /* All the "real" work is done here. */
6489 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6490
6491 /* This duplicates the code in init_cutu_and_read_dies,
6492 but the alternative is making the latter more complex.
6493 This function is only for the special case of using DWO files directly:
6494 no point in overly complicating the general case just to handle this. */
6495 if (free_cu_cleanup != NULL)
6496 {
6497 if (keep)
6498 {
6499 /* We've successfully allocated this compilation unit. Let our
6500 caller clean it up when finished with it. */
6501 discard_cleanups (free_cu_cleanup);
6502
6503 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6504 So we have to manually free the abbrev table. */
6505 dwarf2_free_abbrev_table (cu);
6506
6507 /* Link this CU into read_in_chain. */
6508 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6509 dwarf2_per_objfile->read_in_chain = this_cu;
6510 }
6511 else
6512 do_cleanups (free_cu_cleanup);
6513 }
6514
6515 do_cleanups (cleanups);
6516 }
6517
6518 /* Initialize a CU (or TU) and read its DIEs.
6519 If the CU defers to a DWO file, read the DWO file as well.
6520
6521 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6522 Otherwise the table specified in the comp unit header is read in and used.
6523 This is an optimization for when we already have the abbrev table.
6524
6525 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6526 Otherwise, a new CU is allocated with xmalloc.
6527
6528 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
6529 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
6530
6531 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6532 linker) then DIE_READER_FUNC will not get called. */
6533
6534 static void
6535 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
6536 struct abbrev_table *abbrev_table,
6537 int use_existing_cu, int keep,
6538 die_reader_func_ftype *die_reader_func,
6539 void *data)
6540 {
6541 struct objfile *objfile = dwarf2_per_objfile->objfile;
6542 struct dwarf2_section_info *section = this_cu->section;
6543 bfd *abfd = get_section_bfd_owner (section);
6544 struct dwarf2_cu *cu;
6545 const gdb_byte *begin_info_ptr, *info_ptr;
6546 struct die_reader_specs reader;
6547 struct die_info *comp_unit_die;
6548 int has_children;
6549 struct attribute *attr;
6550 struct cleanup *cleanups, *free_cu_cleanup = NULL;
6551 struct signatured_type *sig_type = NULL;
6552 struct dwarf2_section_info *abbrev_section;
6553 /* Non-zero if CU currently points to a DWO file and we need to
6554 reread it. When this happens we need to reread the skeleton die
6555 before we can reread the DWO file (this only applies to CUs, not TUs). */
6556 int rereading_dwo_cu = 0;
6557
6558 if (dwarf_die_debug)
6559 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6560 this_cu->is_debug_types ? "type" : "comp",
6561 to_underlying (this_cu->sect_off));
6562
6563 if (use_existing_cu)
6564 gdb_assert (keep);
6565
6566 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6567 file (instead of going through the stub), short-circuit all of this. */
6568 if (this_cu->reading_dwo_directly)
6569 {
6570 /* Narrow down the scope of possibilities to have to understand. */
6571 gdb_assert (this_cu->is_debug_types);
6572 gdb_assert (abbrev_table == NULL);
6573 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
6574 die_reader_func, data);
6575 return;
6576 }
6577
6578 cleanups = make_cleanup (null_cleanup, NULL);
6579
6580 /* This is cheap if the section is already read in. */
6581 dwarf2_read_section (objfile, section);
6582
6583 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6584
6585 abbrev_section = get_abbrev_section_for_cu (this_cu);
6586
6587 if (use_existing_cu && this_cu->cu != NULL)
6588 {
6589 cu = this_cu->cu;
6590 /* If this CU is from a DWO file we need to start over, we need to
6591 refetch the attributes from the skeleton CU.
6592 This could be optimized by retrieving those attributes from when we
6593 were here the first time: the previous comp_unit_die was stored in
6594 comp_unit_obstack. But there's no data yet that we need this
6595 optimization. */
6596 if (cu->dwo_unit != NULL)
6597 rereading_dwo_cu = 1;
6598 }
6599 else
6600 {
6601 /* If !use_existing_cu, this_cu->cu must be NULL. */
6602 gdb_assert (this_cu->cu == NULL);
6603 cu = XNEW (struct dwarf2_cu);
6604 init_one_comp_unit (cu, this_cu);
6605 /* If an error occurs while loading, release our storage. */
6606 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
6607 }
6608
6609 /* Get the header. */
6610 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6611 {
6612 /* We already have the header, there's no need to read it in again. */
6613 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6614 }
6615 else
6616 {
6617 if (this_cu->is_debug_types)
6618 {
6619 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6620 abbrev_section, info_ptr,
6621 rcuh_kind::TYPE);
6622
6623 /* Since per_cu is the first member of struct signatured_type,
6624 we can go from a pointer to one to a pointer to the other. */
6625 sig_type = (struct signatured_type *) this_cu;
6626 gdb_assert (sig_type->signature == cu->header.signature);
6627 gdb_assert (sig_type->type_offset_in_tu
6628 == cu->header.type_cu_offset_in_tu);
6629 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6630
6631 /* LENGTH has not been set yet for type units if we're
6632 using .gdb_index. */
6633 this_cu->length = get_cu_length (&cu->header);
6634
6635 /* Establish the type offset that can be used to lookup the type. */
6636 sig_type->type_offset_in_section =
6637 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6638
6639 this_cu->dwarf_version = cu->header.version;
6640 }
6641 else
6642 {
6643 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
6644 abbrev_section,
6645 info_ptr,
6646 rcuh_kind::COMPILE);
6647
6648 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6649 gdb_assert (this_cu->length == get_cu_length (&cu->header));
6650 this_cu->dwarf_version = cu->header.version;
6651 }
6652 }
6653
6654 /* Skip dummy compilation units. */
6655 if (info_ptr >= begin_info_ptr + this_cu->length
6656 || peek_abbrev_code (abfd, info_ptr) == 0)
6657 {
6658 do_cleanups (cleanups);
6659 return;
6660 }
6661
6662 /* If we don't have them yet, read the abbrevs for this compilation unit.
6663 And if we need to read them now, make sure they're freed when we're
6664 done. Note that it's important that if the CU had an abbrev table
6665 on entry we don't free it when we're done: Somewhere up the call stack
6666 it may be in use. */
6667 if (abbrev_table != NULL)
6668 {
6669 gdb_assert (cu->abbrev_table == NULL);
6670 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6671 cu->abbrev_table = abbrev_table;
6672 }
6673 else if (cu->abbrev_table == NULL)
6674 {
6675 dwarf2_read_abbrevs (cu, abbrev_section);
6676 make_cleanup (dwarf2_free_abbrev_table, cu);
6677 }
6678 else if (rereading_dwo_cu)
6679 {
6680 dwarf2_free_abbrev_table (cu);
6681 dwarf2_read_abbrevs (cu, abbrev_section);
6682 }
6683
6684 /* Read the top level CU/TU die. */
6685 init_cu_die_reader (&reader, cu, section, NULL);
6686 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6687
6688 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6689 from the DWO file.
6690 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6691 DWO CU, that this test will fail (the attribute will not be present). */
6692 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
6693 if (attr)
6694 {
6695 struct dwo_unit *dwo_unit;
6696 struct die_info *dwo_comp_unit_die;
6697
6698 if (has_children)
6699 {
6700 complaint (&symfile_complaints,
6701 _("compilation unit with DW_AT_GNU_dwo_name"
6702 " has children (offset 0x%x) [in module %s]"),
6703 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6704 }
6705 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6706 if (dwo_unit != NULL)
6707 {
6708 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6709 abbrev_table != NULL,
6710 comp_unit_die, NULL,
6711 &reader, &info_ptr,
6712 &dwo_comp_unit_die, &has_children) == 0)
6713 {
6714 /* Dummy die. */
6715 do_cleanups (cleanups);
6716 return;
6717 }
6718 comp_unit_die = dwo_comp_unit_die;
6719 }
6720 else
6721 {
6722 /* Yikes, we couldn't find the rest of the DIE, we only have
6723 the stub. A complaint has already been logged. There's
6724 not much more we can do except pass on the stub DIE to
6725 die_reader_func. We don't want to throw an error on bad
6726 debug info. */
6727 }
6728 }
6729
6730 /* All of the above is setup for this call. Yikes. */
6731 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6732
6733 /* Done, clean up. */
6734 if (free_cu_cleanup != NULL)
6735 {
6736 if (keep)
6737 {
6738 /* We've successfully allocated this compilation unit. Let our
6739 caller clean it up when finished with it. */
6740 discard_cleanups (free_cu_cleanup);
6741
6742 /* We can only discard free_cu_cleanup and all subsequent cleanups.
6743 So we have to manually free the abbrev table. */
6744 dwarf2_free_abbrev_table (cu);
6745
6746 /* Link this CU into read_in_chain. */
6747 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6748 dwarf2_per_objfile->read_in_chain = this_cu;
6749 }
6750 else
6751 do_cleanups (free_cu_cleanup);
6752 }
6753
6754 do_cleanups (cleanups);
6755 }
6756
6757 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
6758 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
6759 to have already done the lookup to find the DWO file).
6760
6761 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6762 THIS_CU->is_debug_types, but nothing else.
6763
6764 We fill in THIS_CU->length.
6765
6766 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
6767 linker) then DIE_READER_FUNC will not get called.
6768
6769 THIS_CU->cu is always freed when done.
6770 This is done in order to not leave THIS_CU->cu in a state where we have
6771 to care whether it refers to the "main" CU or the DWO CU. */
6772
6773 static void
6774 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
6775 struct dwo_file *dwo_file,
6776 die_reader_func_ftype *die_reader_func,
6777 void *data)
6778 {
6779 struct objfile *objfile = dwarf2_per_objfile->objfile;
6780 struct dwarf2_section_info *section = this_cu->section;
6781 bfd *abfd = get_section_bfd_owner (section);
6782 struct dwarf2_section_info *abbrev_section;
6783 struct dwarf2_cu cu;
6784 const gdb_byte *begin_info_ptr, *info_ptr;
6785 struct die_reader_specs reader;
6786 struct cleanup *cleanups;
6787 struct die_info *comp_unit_die;
6788 int has_children;
6789
6790 if (dwarf_die_debug)
6791 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
6792 this_cu->is_debug_types ? "type" : "comp",
6793 to_underlying (this_cu->sect_off));
6794
6795 gdb_assert (this_cu->cu == NULL);
6796
6797 abbrev_section = (dwo_file != NULL
6798 ? &dwo_file->sections.abbrev
6799 : get_abbrev_section_for_cu (this_cu));
6800
6801 /* This is cheap if the section is already read in. */
6802 dwarf2_read_section (objfile, section);
6803
6804 init_one_comp_unit (&cu, this_cu);
6805
6806 cleanups = make_cleanup (free_stack_comp_unit, &cu);
6807
6808 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6809 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
6810 abbrev_section, info_ptr,
6811 (this_cu->is_debug_types
6812 ? rcuh_kind::TYPE
6813 : rcuh_kind::COMPILE));
6814
6815 this_cu->length = get_cu_length (&cu.header);
6816
6817 /* Skip dummy compilation units. */
6818 if (info_ptr >= begin_info_ptr + this_cu->length
6819 || peek_abbrev_code (abfd, info_ptr) == 0)
6820 {
6821 do_cleanups (cleanups);
6822 return;
6823 }
6824
6825 dwarf2_read_abbrevs (&cu, abbrev_section);
6826 make_cleanup (dwarf2_free_abbrev_table, &cu);
6827
6828 init_cu_die_reader (&reader, &cu, section, dwo_file);
6829 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
6830
6831 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
6832
6833 do_cleanups (cleanups);
6834 }
6835
6836 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
6837 does not lookup the specified DWO file.
6838 This cannot be used to read DWO files.
6839
6840 THIS_CU->cu is always freed when done.
6841 This is done in order to not leave THIS_CU->cu in a state where we have
6842 to care whether it refers to the "main" CU or the DWO CU.
6843 We can revisit this if the data shows there's a performance issue. */
6844
6845 static void
6846 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
6847 die_reader_func_ftype *die_reader_func,
6848 void *data)
6849 {
6850 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
6851 }
6852 \f
6853 /* Type Unit Groups.
6854
6855 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6856 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6857 so that all types coming from the same compilation (.o file) are grouped
6858 together. A future step could be to put the types in the same symtab as
6859 the CU the types ultimately came from. */
6860
6861 static hashval_t
6862 hash_type_unit_group (const void *item)
6863 {
6864 const struct type_unit_group *tu_group
6865 = (const struct type_unit_group *) item;
6866
6867 return hash_stmt_list_entry (&tu_group->hash);
6868 }
6869
6870 static int
6871 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6872 {
6873 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6874 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6875
6876 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6877 }
6878
6879 /* Allocate a hash table for type unit groups. */
6880
6881 static htab_t
6882 allocate_type_unit_groups_table (void)
6883 {
6884 return htab_create_alloc_ex (3,
6885 hash_type_unit_group,
6886 eq_type_unit_group,
6887 NULL,
6888 &dwarf2_per_objfile->objfile->objfile_obstack,
6889 hashtab_obstack_allocate,
6890 dummy_obstack_deallocate);
6891 }
6892
6893 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6894 partial symtabs. We combine several TUs per psymtab to not let the size
6895 of any one psymtab grow too big. */
6896 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6897 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6898
6899 /* Helper routine for get_type_unit_group.
6900 Create the type_unit_group object used to hold one or more TUs. */
6901
6902 static struct type_unit_group *
6903 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6904 {
6905 struct objfile *objfile = dwarf2_per_objfile->objfile;
6906 struct dwarf2_per_cu_data *per_cu;
6907 struct type_unit_group *tu_group;
6908
6909 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6910 struct type_unit_group);
6911 per_cu = &tu_group->per_cu;
6912 per_cu->objfile = objfile;
6913
6914 if (dwarf2_per_objfile->using_index)
6915 {
6916 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6917 struct dwarf2_per_cu_quick_data);
6918 }
6919 else
6920 {
6921 unsigned int line_offset = to_underlying (line_offset_struct);
6922 struct partial_symtab *pst;
6923 char *name;
6924
6925 /* Give the symtab a useful name for debug purposes. */
6926 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6927 name = xstrprintf ("<type_units_%d>",
6928 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6929 else
6930 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6931
6932 pst = create_partial_symtab (per_cu, name);
6933 pst->anonymous = 1;
6934
6935 xfree (name);
6936 }
6937
6938 tu_group->hash.dwo_unit = cu->dwo_unit;
6939 tu_group->hash.line_sect_off = line_offset_struct;
6940
6941 return tu_group;
6942 }
6943
6944 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6945 STMT_LIST is a DW_AT_stmt_list attribute. */
6946
6947 static struct type_unit_group *
6948 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6949 {
6950 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6951 struct type_unit_group *tu_group;
6952 void **slot;
6953 unsigned int line_offset;
6954 struct type_unit_group type_unit_group_for_lookup;
6955
6956 if (dwarf2_per_objfile->type_unit_groups == NULL)
6957 {
6958 dwarf2_per_objfile->type_unit_groups =
6959 allocate_type_unit_groups_table ();
6960 }
6961
6962 /* Do we need to create a new group, or can we use an existing one? */
6963
6964 if (stmt_list)
6965 {
6966 line_offset = DW_UNSND (stmt_list);
6967 ++tu_stats->nr_symtab_sharers;
6968 }
6969 else
6970 {
6971 /* Ugh, no stmt_list. Rare, but we have to handle it.
6972 We can do various things here like create one group per TU or
6973 spread them over multiple groups to split up the expansion work.
6974 To avoid worst case scenarios (too many groups or too large groups)
6975 we, umm, group them in bunches. */
6976 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6977 | (tu_stats->nr_stmt_less_type_units
6978 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6979 ++tu_stats->nr_stmt_less_type_units;
6980 }
6981
6982 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6983 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6984 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6985 &type_unit_group_for_lookup, INSERT);
6986 if (*slot != NULL)
6987 {
6988 tu_group = (struct type_unit_group *) *slot;
6989 gdb_assert (tu_group != NULL);
6990 }
6991 else
6992 {
6993 sect_offset line_offset_struct = (sect_offset) line_offset;
6994 tu_group = create_type_unit_group (cu, line_offset_struct);
6995 *slot = tu_group;
6996 ++tu_stats->nr_symtabs;
6997 }
6998
6999 return tu_group;
7000 }
7001 \f
7002 /* Partial symbol tables. */
7003
7004 /* Create a psymtab named NAME and assign it to PER_CU.
7005
7006 The caller must fill in the following details:
7007 dirname, textlow, texthigh. */
7008
7009 static struct partial_symtab *
7010 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7011 {
7012 struct objfile *objfile = per_cu->objfile;
7013 struct partial_symtab *pst;
7014
7015 pst = start_psymtab_common (objfile, name, 0,
7016 objfile->global_psymbols,
7017 objfile->static_psymbols);
7018
7019 pst->psymtabs_addrmap_supported = 1;
7020
7021 /* This is the glue that links PST into GDB's symbol API. */
7022 pst->read_symtab_private = per_cu;
7023 pst->read_symtab = dwarf2_read_symtab;
7024 per_cu->v.psymtab = pst;
7025
7026 return pst;
7027 }
7028
7029 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7030 type. */
7031
7032 struct process_psymtab_comp_unit_data
7033 {
7034 /* True if we are reading a DW_TAG_partial_unit. */
7035
7036 int want_partial_unit;
7037
7038 /* The "pretend" language that is used if the CU doesn't declare a
7039 language. */
7040
7041 enum language pretend_language;
7042 };
7043
7044 /* die_reader_func for process_psymtab_comp_unit. */
7045
7046 static void
7047 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7048 const gdb_byte *info_ptr,
7049 struct die_info *comp_unit_die,
7050 int has_children,
7051 void *data)
7052 {
7053 struct dwarf2_cu *cu = reader->cu;
7054 struct objfile *objfile = cu->objfile;
7055 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7056 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7057 CORE_ADDR baseaddr;
7058 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7059 struct partial_symtab *pst;
7060 enum pc_bounds_kind cu_bounds_kind;
7061 const char *filename;
7062 struct process_psymtab_comp_unit_data *info
7063 = (struct process_psymtab_comp_unit_data *) data;
7064
7065 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7066 return;
7067
7068 gdb_assert (! per_cu->is_debug_types);
7069
7070 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7071
7072 cu->list_in_scope = &file_symbols;
7073
7074 /* Allocate a new partial symbol table structure. */
7075 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7076 if (filename == NULL)
7077 filename = "";
7078
7079 pst = create_partial_symtab (per_cu, filename);
7080
7081 /* This must be done before calling dwarf2_build_include_psymtabs. */
7082 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7083
7084 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7085
7086 dwarf2_find_base_address (comp_unit_die, cu);
7087
7088 /* Possibly set the default values of LOWPC and HIGHPC from
7089 `DW_AT_ranges'. */
7090 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7091 &best_highpc, cu, pst);
7092 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7093 /* Store the contiguous range if it is not empty; it can be empty for
7094 CUs with no code. */
7095 addrmap_set_empty (objfile->psymtabs_addrmap,
7096 gdbarch_adjust_dwarf2_addr (gdbarch,
7097 best_lowpc + baseaddr),
7098 gdbarch_adjust_dwarf2_addr (gdbarch,
7099 best_highpc + baseaddr) - 1,
7100 pst);
7101
7102 /* Check if comp unit has_children.
7103 If so, read the rest of the partial symbols from this comp unit.
7104 If not, there's no more debug_info for this comp unit. */
7105 if (has_children)
7106 {
7107 struct partial_die_info *first_die;
7108 CORE_ADDR lowpc, highpc;
7109
7110 lowpc = ((CORE_ADDR) -1);
7111 highpc = ((CORE_ADDR) 0);
7112
7113 first_die = load_partial_dies (reader, info_ptr, 1);
7114
7115 scan_partial_symbols (first_die, &lowpc, &highpc,
7116 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7117
7118 /* If we didn't find a lowpc, set it to highpc to avoid
7119 complaints from `maint check'. */
7120 if (lowpc == ((CORE_ADDR) -1))
7121 lowpc = highpc;
7122
7123 /* If the compilation unit didn't have an explicit address range,
7124 then use the information extracted from its child dies. */
7125 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7126 {
7127 best_lowpc = lowpc;
7128 best_highpc = highpc;
7129 }
7130 }
7131 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7132 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7133
7134 end_psymtab_common (objfile, pst);
7135
7136 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7137 {
7138 int i;
7139 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7140 struct dwarf2_per_cu_data *iter;
7141
7142 /* Fill in 'dependencies' here; we fill in 'users' in a
7143 post-pass. */
7144 pst->number_of_dependencies = len;
7145 pst->dependencies =
7146 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7147 for (i = 0;
7148 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
7149 i, iter);
7150 ++i)
7151 pst->dependencies[i] = iter->v.psymtab;
7152
7153 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7154 }
7155
7156 /* Get the list of files included in the current compilation unit,
7157 and build a psymtab for each of them. */
7158 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7159
7160 if (dwarf_read_debug)
7161 {
7162 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7163
7164 fprintf_unfiltered (gdb_stdlog,
7165 "Psymtab for %s unit @0x%x: %s - %s"
7166 ", %d global, %d static syms\n",
7167 per_cu->is_debug_types ? "type" : "comp",
7168 to_underlying (per_cu->sect_off),
7169 paddress (gdbarch, pst->textlow),
7170 paddress (gdbarch, pst->texthigh),
7171 pst->n_global_syms, pst->n_static_syms);
7172 }
7173 }
7174
7175 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7176 Process compilation unit THIS_CU for a psymtab. */
7177
7178 static void
7179 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7180 int want_partial_unit,
7181 enum language pretend_language)
7182 {
7183 /* If this compilation unit was already read in, free the
7184 cached copy in order to read it in again. This is
7185 necessary because we skipped some symbols when we first
7186 read in the compilation unit (see load_partial_dies).
7187 This problem could be avoided, but the benefit is unclear. */
7188 if (this_cu->cu != NULL)
7189 free_one_cached_comp_unit (this_cu);
7190
7191 if (this_cu->is_debug_types)
7192 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
7193 NULL);
7194 else
7195 {
7196 process_psymtab_comp_unit_data info;
7197 info.want_partial_unit = want_partial_unit;
7198 info.pretend_language = pretend_language;
7199 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
7200 process_psymtab_comp_unit_reader, &info);
7201 }
7202
7203 /* Age out any secondary CUs. */
7204 age_cached_comp_units ();
7205 }
7206
7207 /* Reader function for build_type_psymtabs. */
7208
7209 static void
7210 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7211 const gdb_byte *info_ptr,
7212 struct die_info *type_unit_die,
7213 int has_children,
7214 void *data)
7215 {
7216 struct objfile *objfile = dwarf2_per_objfile->objfile;
7217 struct dwarf2_cu *cu = reader->cu;
7218 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7219 struct signatured_type *sig_type;
7220 struct type_unit_group *tu_group;
7221 struct attribute *attr;
7222 struct partial_die_info *first_die;
7223 CORE_ADDR lowpc, highpc;
7224 struct partial_symtab *pst;
7225
7226 gdb_assert (data == NULL);
7227 gdb_assert (per_cu->is_debug_types);
7228 sig_type = (struct signatured_type *) per_cu;
7229
7230 if (! has_children)
7231 return;
7232
7233 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7234 tu_group = get_type_unit_group (cu, attr);
7235
7236 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
7237
7238 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7239 cu->list_in_scope = &file_symbols;
7240 pst = create_partial_symtab (per_cu, "");
7241 pst->anonymous = 1;
7242
7243 first_die = load_partial_dies (reader, info_ptr, 1);
7244
7245 lowpc = (CORE_ADDR) -1;
7246 highpc = (CORE_ADDR) 0;
7247 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7248
7249 end_psymtab_common (objfile, pst);
7250 }
7251
7252 /* Struct used to sort TUs by their abbreviation table offset. */
7253
7254 struct tu_abbrev_offset
7255 {
7256 struct signatured_type *sig_type;
7257 sect_offset abbrev_offset;
7258 };
7259
7260 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
7261
7262 static int
7263 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
7264 {
7265 const struct tu_abbrev_offset * const *a
7266 = (const struct tu_abbrev_offset * const*) ap;
7267 const struct tu_abbrev_offset * const *b
7268 = (const struct tu_abbrev_offset * const*) bp;
7269 sect_offset aoff = (*a)->abbrev_offset;
7270 sect_offset boff = (*b)->abbrev_offset;
7271
7272 return (aoff > boff) - (aoff < boff);
7273 }
7274
7275 /* Efficiently read all the type units.
7276 This does the bulk of the work for build_type_psymtabs.
7277
7278 The efficiency is because we sort TUs by the abbrev table they use and
7279 only read each abbrev table once. In one program there are 200K TUs
7280 sharing 8K abbrev tables.
7281
7282 The main purpose of this function is to support building the
7283 dwarf2_per_objfile->type_unit_groups table.
7284 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7285 can collapse the search space by grouping them by stmt_list.
7286 The savings can be significant, in the same program from above the 200K TUs
7287 share 8K stmt_list tables.
7288
7289 FUNC is expected to call get_type_unit_group, which will create the
7290 struct type_unit_group if necessary and add it to
7291 dwarf2_per_objfile->type_unit_groups. */
7292
7293 static void
7294 build_type_psymtabs_1 (void)
7295 {
7296 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7297 struct cleanup *cleanups;
7298 struct abbrev_table *abbrev_table;
7299 sect_offset abbrev_offset;
7300 struct tu_abbrev_offset *sorted_by_abbrev;
7301 int i;
7302
7303 /* It's up to the caller to not call us multiple times. */
7304 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7305
7306 if (dwarf2_per_objfile->n_type_units == 0)
7307 return;
7308
7309 /* TUs typically share abbrev tables, and there can be way more TUs than
7310 abbrev tables. Sort by abbrev table to reduce the number of times we
7311 read each abbrev table in.
7312 Alternatives are to punt or to maintain a cache of abbrev tables.
7313 This is simpler and efficient enough for now.
7314
7315 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7316 symtab to use). Typically TUs with the same abbrev offset have the same
7317 stmt_list value too so in practice this should work well.
7318
7319 The basic algorithm here is:
7320
7321 sort TUs by abbrev table
7322 for each TU with same abbrev table:
7323 read abbrev table if first user
7324 read TU top level DIE
7325 [IWBN if DWO skeletons had DW_AT_stmt_list]
7326 call FUNC */
7327
7328 if (dwarf_read_debug)
7329 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7330
7331 /* Sort in a separate table to maintain the order of all_type_units
7332 for .gdb_index: TU indices directly index all_type_units. */
7333 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
7334 dwarf2_per_objfile->n_type_units);
7335 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7336 {
7337 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
7338
7339 sorted_by_abbrev[i].sig_type = sig_type;
7340 sorted_by_abbrev[i].abbrev_offset =
7341 read_abbrev_offset (sig_type->per_cu.section,
7342 sig_type->per_cu.sect_off);
7343 }
7344 cleanups = make_cleanup (xfree, sorted_by_abbrev);
7345 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
7346 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
7347
7348 abbrev_offset = (sect_offset) ~(unsigned) 0;
7349 abbrev_table = NULL;
7350 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
7351
7352 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
7353 {
7354 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
7355
7356 /* Switch to the next abbrev table if necessary. */
7357 if (abbrev_table == NULL
7358 || tu->abbrev_offset != abbrev_offset)
7359 {
7360 if (abbrev_table != NULL)
7361 {
7362 abbrev_table_free (abbrev_table);
7363 /* Reset to NULL in case abbrev_table_read_table throws
7364 an error: abbrev_table_free_cleanup will get called. */
7365 abbrev_table = NULL;
7366 }
7367 abbrev_offset = tu->abbrev_offset;
7368 abbrev_table =
7369 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
7370 abbrev_offset);
7371 ++tu_stats->nr_uniq_abbrev_tables;
7372 }
7373
7374 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
7375 build_type_psymtabs_reader, NULL);
7376 }
7377
7378 do_cleanups (cleanups);
7379 }
7380
7381 /* Print collected type unit statistics. */
7382
7383 static void
7384 print_tu_stats (void)
7385 {
7386 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7387
7388 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7389 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
7390 dwarf2_per_objfile->n_type_units);
7391 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7392 tu_stats->nr_uniq_abbrev_tables);
7393 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7394 tu_stats->nr_symtabs);
7395 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7396 tu_stats->nr_symtab_sharers);
7397 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7398 tu_stats->nr_stmt_less_type_units);
7399 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7400 tu_stats->nr_all_type_units_reallocs);
7401 }
7402
7403 /* Traversal function for build_type_psymtabs. */
7404
7405 static int
7406 build_type_psymtab_dependencies (void **slot, void *info)
7407 {
7408 struct objfile *objfile = dwarf2_per_objfile->objfile;
7409 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7410 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7411 struct partial_symtab *pst = per_cu->v.psymtab;
7412 int len = VEC_length (sig_type_ptr, tu_group->tus);
7413 struct signatured_type *iter;
7414 int i;
7415
7416 gdb_assert (len > 0);
7417 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
7418
7419 pst->number_of_dependencies = len;
7420 pst->dependencies =
7421 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
7422 for (i = 0;
7423 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
7424 ++i)
7425 {
7426 gdb_assert (iter->per_cu.is_debug_types);
7427 pst->dependencies[i] = iter->per_cu.v.psymtab;
7428 iter->type_unit_group = tu_group;
7429 }
7430
7431 VEC_free (sig_type_ptr, tu_group->tus);
7432
7433 return 1;
7434 }
7435
7436 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7437 Build partial symbol tables for the .debug_types comp-units. */
7438
7439 static void
7440 build_type_psymtabs (struct objfile *objfile)
7441 {
7442 if (! create_all_type_units (objfile))
7443 return;
7444
7445 build_type_psymtabs_1 ();
7446 }
7447
7448 /* Traversal function for process_skeletonless_type_unit.
7449 Read a TU in a DWO file and build partial symbols for it. */
7450
7451 static int
7452 process_skeletonless_type_unit (void **slot, void *info)
7453 {
7454 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7455 struct objfile *objfile = (struct objfile *) info;
7456 struct signatured_type find_entry, *entry;
7457
7458 /* If this TU doesn't exist in the global table, add it and read it in. */
7459
7460 if (dwarf2_per_objfile->signatured_types == NULL)
7461 {
7462 dwarf2_per_objfile->signatured_types
7463 = allocate_signatured_type_table (objfile);
7464 }
7465
7466 find_entry.signature = dwo_unit->signature;
7467 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
7468 INSERT);
7469 /* If we've already seen this type there's nothing to do. What's happening
7470 is we're doing our own version of comdat-folding here. */
7471 if (*slot != NULL)
7472 return 1;
7473
7474 /* This does the job that create_all_type_units would have done for
7475 this TU. */
7476 entry = add_type_unit (dwo_unit->signature, slot);
7477 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
7478 *slot = entry;
7479
7480 /* This does the job that build_type_psymtabs_1 would have done. */
7481 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
7482 build_type_psymtabs_reader, NULL);
7483
7484 return 1;
7485 }
7486
7487 /* Traversal function for process_skeletonless_type_units. */
7488
7489 static int
7490 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7491 {
7492 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7493
7494 if (dwo_file->tus != NULL)
7495 {
7496 htab_traverse_noresize (dwo_file->tus,
7497 process_skeletonless_type_unit, info);
7498 }
7499
7500 return 1;
7501 }
7502
7503 /* Scan all TUs of DWO files, verifying we've processed them.
7504 This is needed in case a TU was emitted without its skeleton.
7505 Note: This can't be done until we know what all the DWO files are. */
7506
7507 static void
7508 process_skeletonless_type_units (struct objfile *objfile)
7509 {
7510 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7511 if (get_dwp_file () == NULL
7512 && dwarf2_per_objfile->dwo_files != NULL)
7513 {
7514 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
7515 process_dwo_file_for_skeletonless_type_units,
7516 objfile);
7517 }
7518 }
7519
7520 /* Compute the 'user' field for each psymtab in OBJFILE. */
7521
7522 static void
7523 set_partial_user (struct objfile *objfile)
7524 {
7525 int i;
7526
7527 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7528 {
7529 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7530 struct partial_symtab *pst = per_cu->v.psymtab;
7531 int j;
7532
7533 if (pst == NULL)
7534 continue;
7535
7536 for (j = 0; j < pst->number_of_dependencies; ++j)
7537 {
7538 /* Set the 'user' field only if it is not already set. */
7539 if (pst->dependencies[j]->user == NULL)
7540 pst->dependencies[j]->user = pst;
7541 }
7542 }
7543 }
7544
7545 /* Build the partial symbol table by doing a quick pass through the
7546 .debug_info and .debug_abbrev sections. */
7547
7548 static void
7549 dwarf2_build_psymtabs_hard (struct objfile *objfile)
7550 {
7551 struct cleanup *back_to;
7552 int i;
7553
7554 if (dwarf_read_debug)
7555 {
7556 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7557 objfile_name (objfile));
7558 }
7559
7560 dwarf2_per_objfile->reading_partial_symbols = 1;
7561
7562 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
7563
7564 /* Any cached compilation units will be linked by the per-objfile
7565 read_in_chain. Make sure to free them when we're done. */
7566 back_to = make_cleanup (free_cached_comp_units, NULL);
7567
7568 build_type_psymtabs (objfile);
7569
7570 create_all_comp_units (objfile);
7571
7572 /* Create a temporary address map on a temporary obstack. We later
7573 copy this to the final obstack. */
7574 auto_obstack temp_obstack;
7575
7576 scoped_restore save_psymtabs_addrmap
7577 = make_scoped_restore (&objfile->psymtabs_addrmap,
7578 addrmap_create_mutable (&temp_obstack));
7579
7580 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
7581 {
7582 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7583
7584 process_psymtab_comp_unit (per_cu, 0, language_minimal);
7585 }
7586
7587 /* This has to wait until we read the CUs, we need the list of DWOs. */
7588 process_skeletonless_type_units (objfile);
7589
7590 /* Now that all TUs have been processed we can fill in the dependencies. */
7591 if (dwarf2_per_objfile->type_unit_groups != NULL)
7592 {
7593 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
7594 build_type_psymtab_dependencies, NULL);
7595 }
7596
7597 if (dwarf_read_debug)
7598 print_tu_stats ();
7599
7600 set_partial_user (objfile);
7601
7602 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
7603 &objfile->objfile_obstack);
7604 /* At this point we want to keep the address map. */
7605 save_psymtabs_addrmap.release ();
7606
7607 do_cleanups (back_to);
7608
7609 if (dwarf_read_debug)
7610 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7611 objfile_name (objfile));
7612 }
7613
7614 /* die_reader_func for load_partial_comp_unit. */
7615
7616 static void
7617 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
7618 const gdb_byte *info_ptr,
7619 struct die_info *comp_unit_die,
7620 int has_children,
7621 void *data)
7622 {
7623 struct dwarf2_cu *cu = reader->cu;
7624
7625 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
7626
7627 /* Check if comp unit has_children.
7628 If so, read the rest of the partial symbols from this comp unit.
7629 If not, there's no more debug_info for this comp unit. */
7630 if (has_children)
7631 load_partial_dies (reader, info_ptr, 0);
7632 }
7633
7634 /* Load the partial DIEs for a secondary CU into memory.
7635 This is also used when rereading a primary CU with load_all_dies. */
7636
7637 static void
7638 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7639 {
7640 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7641 load_partial_comp_unit_reader, NULL);
7642 }
7643
7644 static void
7645 read_comp_units_from_section (struct objfile *objfile,
7646 struct dwarf2_section_info *section,
7647 struct dwarf2_section_info *abbrev_section,
7648 unsigned int is_dwz,
7649 int *n_allocated,
7650 int *n_comp_units,
7651 struct dwarf2_per_cu_data ***all_comp_units)
7652 {
7653 const gdb_byte *info_ptr;
7654 bfd *abfd = get_section_bfd_owner (section);
7655
7656 if (dwarf_read_debug)
7657 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7658 get_section_name (section),
7659 get_section_file_name (section));
7660
7661 dwarf2_read_section (objfile, section);
7662
7663 info_ptr = section->buffer;
7664
7665 while (info_ptr < section->buffer + section->size)
7666 {
7667 struct dwarf2_per_cu_data *this_cu;
7668
7669 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7670
7671 comp_unit_head cu_header;
7672 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
7673 info_ptr, rcuh_kind::COMPILE);
7674
7675 /* Save the compilation unit for later lookup. */
7676 if (cu_header.unit_type != DW_UT_type)
7677 {
7678 this_cu = XOBNEW (&objfile->objfile_obstack,
7679 struct dwarf2_per_cu_data);
7680 memset (this_cu, 0, sizeof (*this_cu));
7681 }
7682 else
7683 {
7684 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7685 struct signatured_type);
7686 memset (sig_type, 0, sizeof (*sig_type));
7687 sig_type->signature = cu_header.signature;
7688 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7689 this_cu = &sig_type->per_cu;
7690 }
7691 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7692 this_cu->sect_off = sect_off;
7693 this_cu->length = cu_header.length + cu_header.initial_length_size;
7694 this_cu->is_dwz = is_dwz;
7695 this_cu->objfile = objfile;
7696 this_cu->section = section;
7697
7698 if (*n_comp_units == *n_allocated)
7699 {
7700 *n_allocated *= 2;
7701 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
7702 *all_comp_units, *n_allocated);
7703 }
7704 (*all_comp_units)[*n_comp_units] = this_cu;
7705 ++*n_comp_units;
7706
7707 info_ptr = info_ptr + this_cu->length;
7708 }
7709 }
7710
7711 /* Create a list of all compilation units in OBJFILE.
7712 This is only done for -readnow and building partial symtabs. */
7713
7714 static void
7715 create_all_comp_units (struct objfile *objfile)
7716 {
7717 int n_allocated;
7718 int n_comp_units;
7719 struct dwarf2_per_cu_data **all_comp_units;
7720 struct dwz_file *dwz;
7721
7722 n_comp_units = 0;
7723 n_allocated = 10;
7724 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
7725
7726 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
7727 &dwarf2_per_objfile->abbrev, 0,
7728 &n_allocated, &n_comp_units, &all_comp_units);
7729
7730 dwz = dwarf2_get_dwz_file ();
7731 if (dwz != NULL)
7732 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
7733 &n_allocated, &n_comp_units,
7734 &all_comp_units);
7735
7736 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
7737 struct dwarf2_per_cu_data *,
7738 n_comp_units);
7739 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
7740 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
7741 xfree (all_comp_units);
7742 dwarf2_per_objfile->n_comp_units = n_comp_units;
7743 }
7744
7745 /* Process all loaded DIEs for compilation unit CU, starting at
7746 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7747 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7748 DW_AT_ranges). See the comments of add_partial_subprogram on how
7749 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7750
7751 static void
7752 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7753 CORE_ADDR *highpc, int set_addrmap,
7754 struct dwarf2_cu *cu)
7755 {
7756 struct partial_die_info *pdi;
7757
7758 /* Now, march along the PDI's, descending into ones which have
7759 interesting children but skipping the children of the other ones,
7760 until we reach the end of the compilation unit. */
7761
7762 pdi = first_die;
7763
7764 while (pdi != NULL)
7765 {
7766 fixup_partial_die (pdi, cu);
7767
7768 /* Anonymous namespaces or modules have no name but have interesting
7769 children, so we need to look at them. Ditto for anonymous
7770 enums. */
7771
7772 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7773 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7774 || pdi->tag == DW_TAG_imported_unit)
7775 {
7776 switch (pdi->tag)
7777 {
7778 case DW_TAG_subprogram:
7779 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7780 break;
7781 case DW_TAG_constant:
7782 case DW_TAG_variable:
7783 case DW_TAG_typedef:
7784 case DW_TAG_union_type:
7785 if (!pdi->is_declaration)
7786 {
7787 add_partial_symbol (pdi, cu);
7788 }
7789 break;
7790 case DW_TAG_class_type:
7791 case DW_TAG_interface_type:
7792 case DW_TAG_structure_type:
7793 if (!pdi->is_declaration)
7794 {
7795 add_partial_symbol (pdi, cu);
7796 }
7797 if (cu->language == language_rust && pdi->has_children)
7798 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7799 set_addrmap, cu);
7800 break;
7801 case DW_TAG_enumeration_type:
7802 if (!pdi->is_declaration)
7803 add_partial_enumeration (pdi, cu);
7804 break;
7805 case DW_TAG_base_type:
7806 case DW_TAG_subrange_type:
7807 /* File scope base type definitions are added to the partial
7808 symbol table. */
7809 add_partial_symbol (pdi, cu);
7810 break;
7811 case DW_TAG_namespace:
7812 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7813 break;
7814 case DW_TAG_module:
7815 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7816 break;
7817 case DW_TAG_imported_unit:
7818 {
7819 struct dwarf2_per_cu_data *per_cu;
7820
7821 /* For now we don't handle imported units in type units. */
7822 if (cu->per_cu->is_debug_types)
7823 {
7824 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7825 " supported in type units [in module %s]"),
7826 objfile_name (cu->objfile));
7827 }
7828
7829 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
7830 pdi->is_dwz,
7831 cu->objfile);
7832
7833 /* Go read the partial unit, if needed. */
7834 if (per_cu->v.psymtab == NULL)
7835 process_psymtab_comp_unit (per_cu, 1, cu->language);
7836
7837 VEC_safe_push (dwarf2_per_cu_ptr,
7838 cu->per_cu->imported_symtabs, per_cu);
7839 }
7840 break;
7841 case DW_TAG_imported_declaration:
7842 add_partial_symbol (pdi, cu);
7843 break;
7844 default:
7845 break;
7846 }
7847 }
7848
7849 /* If the die has a sibling, skip to the sibling. */
7850
7851 pdi = pdi->die_sibling;
7852 }
7853 }
7854
7855 /* Functions used to compute the fully scoped name of a partial DIE.
7856
7857 Normally, this is simple. For C++, the parent DIE's fully scoped
7858 name is concatenated with "::" and the partial DIE's name.
7859 Enumerators are an exception; they use the scope of their parent
7860 enumeration type, i.e. the name of the enumeration type is not
7861 prepended to the enumerator.
7862
7863 There are two complexities. One is DW_AT_specification; in this
7864 case "parent" means the parent of the target of the specification,
7865 instead of the direct parent of the DIE. The other is compilers
7866 which do not emit DW_TAG_namespace; in this case we try to guess
7867 the fully qualified name of structure types from their members'
7868 linkage names. This must be done using the DIE's children rather
7869 than the children of any DW_AT_specification target. We only need
7870 to do this for structures at the top level, i.e. if the target of
7871 any DW_AT_specification (if any; otherwise the DIE itself) does not
7872 have a parent. */
7873
7874 /* Compute the scope prefix associated with PDI's parent, in
7875 compilation unit CU. The result will be allocated on CU's
7876 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7877 field. NULL is returned if no prefix is necessary. */
7878 static const char *
7879 partial_die_parent_scope (struct partial_die_info *pdi,
7880 struct dwarf2_cu *cu)
7881 {
7882 const char *grandparent_scope;
7883 struct partial_die_info *parent, *real_pdi;
7884
7885 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7886 then this means the parent of the specification DIE. */
7887
7888 real_pdi = pdi;
7889 while (real_pdi->has_specification)
7890 real_pdi = find_partial_die (real_pdi->spec_offset,
7891 real_pdi->spec_is_dwz, cu);
7892
7893 parent = real_pdi->die_parent;
7894 if (parent == NULL)
7895 return NULL;
7896
7897 if (parent->scope_set)
7898 return parent->scope;
7899
7900 fixup_partial_die (parent, cu);
7901
7902 grandparent_scope = partial_die_parent_scope (parent, cu);
7903
7904 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7905 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7906 Work around this problem here. */
7907 if (cu->language == language_cplus
7908 && parent->tag == DW_TAG_namespace
7909 && strcmp (parent->name, "::") == 0
7910 && grandparent_scope == NULL)
7911 {
7912 parent->scope = NULL;
7913 parent->scope_set = 1;
7914 return NULL;
7915 }
7916
7917 if (pdi->tag == DW_TAG_enumerator)
7918 /* Enumerators should not get the name of the enumeration as a prefix. */
7919 parent->scope = grandparent_scope;
7920 else if (parent->tag == DW_TAG_namespace
7921 || parent->tag == DW_TAG_module
7922 || parent->tag == DW_TAG_structure_type
7923 || parent->tag == DW_TAG_class_type
7924 || parent->tag == DW_TAG_interface_type
7925 || parent->tag == DW_TAG_union_type
7926 || parent->tag == DW_TAG_enumeration_type)
7927 {
7928 if (grandparent_scope == NULL)
7929 parent->scope = parent->name;
7930 else
7931 parent->scope = typename_concat (&cu->comp_unit_obstack,
7932 grandparent_scope,
7933 parent->name, 0, cu);
7934 }
7935 else
7936 {
7937 /* FIXME drow/2004-04-01: What should we be doing with
7938 function-local names? For partial symbols, we should probably be
7939 ignoring them. */
7940 complaint (&symfile_complaints,
7941 _("unhandled containing DIE tag %d for DIE at %d"),
7942 parent->tag, to_underlying (pdi->sect_off));
7943 parent->scope = grandparent_scope;
7944 }
7945
7946 parent->scope_set = 1;
7947 return parent->scope;
7948 }
7949
7950 /* Return the fully scoped name associated with PDI, from compilation unit
7951 CU. The result will be allocated with malloc. */
7952
7953 static char *
7954 partial_die_full_name (struct partial_die_info *pdi,
7955 struct dwarf2_cu *cu)
7956 {
7957 const char *parent_scope;
7958
7959 /* If this is a template instantiation, we can not work out the
7960 template arguments from partial DIEs. So, unfortunately, we have
7961 to go through the full DIEs. At least any work we do building
7962 types here will be reused if full symbols are loaded later. */
7963 if (pdi->has_template_arguments)
7964 {
7965 fixup_partial_die (pdi, cu);
7966
7967 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7968 {
7969 struct die_info *die;
7970 struct attribute attr;
7971 struct dwarf2_cu *ref_cu = cu;
7972
7973 /* DW_FORM_ref_addr is using section offset. */
7974 attr.name = (enum dwarf_attribute) 0;
7975 attr.form = DW_FORM_ref_addr;
7976 attr.u.unsnd = to_underlying (pdi->sect_off);
7977 die = follow_die_ref (NULL, &attr, &ref_cu);
7978
7979 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7980 }
7981 }
7982
7983 parent_scope = partial_die_parent_scope (pdi, cu);
7984 if (parent_scope == NULL)
7985 return NULL;
7986 else
7987 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
7988 }
7989
7990 static void
7991 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7992 {
7993 struct objfile *objfile = cu->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 CORE_ADDR addr = 0;
7996 const char *actual_name = NULL;
7997 CORE_ADDR baseaddr;
7998 char *built_actual_name;
7999
8000 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8001
8002 built_actual_name = partial_die_full_name (pdi, cu);
8003 if (built_actual_name != NULL)
8004 actual_name = built_actual_name;
8005
8006 if (actual_name == NULL)
8007 actual_name = pdi->name;
8008
8009 switch (pdi->tag)
8010 {
8011 case DW_TAG_subprogram:
8012 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8013 if (pdi->is_external || cu->language == language_ada)
8014 {
8015 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8016 of the global scope. But in Ada, we want to be able to access
8017 nested procedures globally. So all Ada subprograms are stored
8018 in the global scope. */
8019 add_psymbol_to_list (actual_name, strlen (actual_name),
8020 built_actual_name != NULL,
8021 VAR_DOMAIN, LOC_BLOCK,
8022 &objfile->global_psymbols,
8023 addr, cu->language, objfile);
8024 }
8025 else
8026 {
8027 add_psymbol_to_list (actual_name, strlen (actual_name),
8028 built_actual_name != NULL,
8029 VAR_DOMAIN, LOC_BLOCK,
8030 &objfile->static_psymbols,
8031 addr, cu->language, objfile);
8032 }
8033
8034 if (pdi->main_subprogram && actual_name != NULL)
8035 set_objfile_main_name (objfile, actual_name, cu->language);
8036 break;
8037 case DW_TAG_constant:
8038 {
8039 std::vector<partial_symbol *> *list;
8040
8041 if (pdi->is_external)
8042 list = &objfile->global_psymbols;
8043 else
8044 list = &objfile->static_psymbols;
8045 add_psymbol_to_list (actual_name, strlen (actual_name),
8046 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8047 list, 0, cu->language, objfile);
8048 }
8049 break;
8050 case DW_TAG_variable:
8051 if (pdi->d.locdesc)
8052 addr = decode_locdesc (pdi->d.locdesc, cu);
8053
8054 if (pdi->d.locdesc
8055 && addr == 0
8056 && !dwarf2_per_objfile->has_section_at_zero)
8057 {
8058 /* A global or static variable may also have been stripped
8059 out by the linker if unused, in which case its address
8060 will be nullified; do not add such variables into partial
8061 symbol table then. */
8062 }
8063 else if (pdi->is_external)
8064 {
8065 /* Global Variable.
8066 Don't enter into the minimal symbol tables as there is
8067 a minimal symbol table entry from the ELF symbols already.
8068 Enter into partial symbol table if it has a location
8069 descriptor or a type.
8070 If the location descriptor is missing, new_symbol will create
8071 a LOC_UNRESOLVED symbol, the address of the variable will then
8072 be determined from the minimal symbol table whenever the variable
8073 is referenced.
8074 The address for the partial symbol table entry is not
8075 used by GDB, but it comes in handy for debugging partial symbol
8076 table building. */
8077
8078 if (pdi->d.locdesc || pdi->has_type)
8079 add_psymbol_to_list (actual_name, strlen (actual_name),
8080 built_actual_name != NULL,
8081 VAR_DOMAIN, LOC_STATIC,
8082 &objfile->global_psymbols,
8083 addr + baseaddr,
8084 cu->language, objfile);
8085 }
8086 else
8087 {
8088 int has_loc = pdi->d.locdesc != NULL;
8089
8090 /* Static Variable. Skip symbols whose value we cannot know (those
8091 without location descriptors or constant values). */
8092 if (!has_loc && !pdi->has_const_value)
8093 {
8094 xfree (built_actual_name);
8095 return;
8096 }
8097
8098 add_psymbol_to_list (actual_name, strlen (actual_name),
8099 built_actual_name != NULL,
8100 VAR_DOMAIN, LOC_STATIC,
8101 &objfile->static_psymbols,
8102 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8103 cu->language, objfile);
8104 }
8105 break;
8106 case DW_TAG_typedef:
8107 case DW_TAG_base_type:
8108 case DW_TAG_subrange_type:
8109 add_psymbol_to_list (actual_name, strlen (actual_name),
8110 built_actual_name != NULL,
8111 VAR_DOMAIN, LOC_TYPEDEF,
8112 &objfile->static_psymbols,
8113 0, cu->language, objfile);
8114 break;
8115 case DW_TAG_imported_declaration:
8116 case DW_TAG_namespace:
8117 add_psymbol_to_list (actual_name, strlen (actual_name),
8118 built_actual_name != NULL,
8119 VAR_DOMAIN, LOC_TYPEDEF,
8120 &objfile->global_psymbols,
8121 0, cu->language, objfile);
8122 break;
8123 case DW_TAG_module:
8124 add_psymbol_to_list (actual_name, strlen (actual_name),
8125 built_actual_name != NULL,
8126 MODULE_DOMAIN, LOC_TYPEDEF,
8127 &objfile->global_psymbols,
8128 0, cu->language, objfile);
8129 break;
8130 case DW_TAG_class_type:
8131 case DW_TAG_interface_type:
8132 case DW_TAG_structure_type:
8133 case DW_TAG_union_type:
8134 case DW_TAG_enumeration_type:
8135 /* Skip external references. The DWARF standard says in the section
8136 about "Structure, Union, and Class Type Entries": "An incomplete
8137 structure, union or class type is represented by a structure,
8138 union or class entry that does not have a byte size attribute
8139 and that has a DW_AT_declaration attribute." */
8140 if (!pdi->has_byte_size && pdi->is_declaration)
8141 {
8142 xfree (built_actual_name);
8143 return;
8144 }
8145
8146 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8147 static vs. global. */
8148 add_psymbol_to_list (actual_name, strlen (actual_name),
8149 built_actual_name != NULL,
8150 STRUCT_DOMAIN, LOC_TYPEDEF,
8151 cu->language == language_cplus
8152 ? &objfile->global_psymbols
8153 : &objfile->static_psymbols,
8154 0, cu->language, objfile);
8155
8156 break;
8157 case DW_TAG_enumerator:
8158 add_psymbol_to_list (actual_name, strlen (actual_name),
8159 built_actual_name != NULL,
8160 VAR_DOMAIN, LOC_CONST,
8161 cu->language == language_cplus
8162 ? &objfile->global_psymbols
8163 : &objfile->static_psymbols,
8164 0, cu->language, objfile);
8165 break;
8166 default:
8167 break;
8168 }
8169
8170 xfree (built_actual_name);
8171 }
8172
8173 /* Read a partial die corresponding to a namespace; also, add a symbol
8174 corresponding to that namespace to the symbol table. NAMESPACE is
8175 the name of the enclosing namespace. */
8176
8177 static void
8178 add_partial_namespace (struct partial_die_info *pdi,
8179 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8180 int set_addrmap, struct dwarf2_cu *cu)
8181 {
8182 /* Add a symbol for the namespace. */
8183
8184 add_partial_symbol (pdi, cu);
8185
8186 /* Now scan partial symbols in that namespace. */
8187
8188 if (pdi->has_children)
8189 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8190 }
8191
8192 /* Read a partial die corresponding to a Fortran module. */
8193
8194 static void
8195 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8196 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8197 {
8198 /* Add a symbol for the namespace. */
8199
8200 add_partial_symbol (pdi, cu);
8201
8202 /* Now scan partial symbols in that module. */
8203
8204 if (pdi->has_children)
8205 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8206 }
8207
8208 /* Read a partial die corresponding to a subprogram and create a partial
8209 symbol for that subprogram. When the CU language allows it, this
8210 routine also defines a partial symbol for each nested subprogram
8211 that this subprogram contains. If SET_ADDRMAP is true, record the
8212 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
8213 and highest PC values found in PDI.
8214
8215 PDI may also be a lexical block, in which case we simply search
8216 recursively for subprograms defined inside that lexical block.
8217 Again, this is only performed when the CU language allows this
8218 type of definitions. */
8219
8220 static void
8221 add_partial_subprogram (struct partial_die_info *pdi,
8222 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8223 int set_addrmap, struct dwarf2_cu *cu)
8224 {
8225 if (pdi->tag == DW_TAG_subprogram)
8226 {
8227 if (pdi->has_pc_info)
8228 {
8229 if (pdi->lowpc < *lowpc)
8230 *lowpc = pdi->lowpc;
8231 if (pdi->highpc > *highpc)
8232 *highpc = pdi->highpc;
8233 if (set_addrmap)
8234 {
8235 struct objfile *objfile = cu->objfile;
8236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8237 CORE_ADDR baseaddr;
8238 CORE_ADDR highpc;
8239 CORE_ADDR lowpc;
8240
8241 baseaddr = ANOFFSET (objfile->section_offsets,
8242 SECT_OFF_TEXT (objfile));
8243 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
8244 pdi->lowpc + baseaddr);
8245 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
8246 pdi->highpc + baseaddr);
8247 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
8248 cu->per_cu->v.psymtab);
8249 }
8250 }
8251
8252 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8253 {
8254 if (!pdi->is_declaration)
8255 /* Ignore subprogram DIEs that do not have a name, they are
8256 illegal. Do not emit a complaint at this point, we will
8257 do so when we convert this psymtab into a symtab. */
8258 if (pdi->name)
8259 add_partial_symbol (pdi, cu);
8260 }
8261 }
8262
8263 if (! pdi->has_children)
8264 return;
8265
8266 if (cu->language == language_ada)
8267 {
8268 pdi = pdi->die_child;
8269 while (pdi != NULL)
8270 {
8271 fixup_partial_die (pdi, cu);
8272 if (pdi->tag == DW_TAG_subprogram
8273 || pdi->tag == DW_TAG_lexical_block)
8274 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8275 pdi = pdi->die_sibling;
8276 }
8277 }
8278 }
8279
8280 /* Read a partial die corresponding to an enumeration type. */
8281
8282 static void
8283 add_partial_enumeration (struct partial_die_info *enum_pdi,
8284 struct dwarf2_cu *cu)
8285 {
8286 struct partial_die_info *pdi;
8287
8288 if (enum_pdi->name != NULL)
8289 add_partial_symbol (enum_pdi, cu);
8290
8291 pdi = enum_pdi->die_child;
8292 while (pdi)
8293 {
8294 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8295 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
8296 else
8297 add_partial_symbol (pdi, cu);
8298 pdi = pdi->die_sibling;
8299 }
8300 }
8301
8302 /* Return the initial uleb128 in the die at INFO_PTR. */
8303
8304 static unsigned int
8305 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8306 {
8307 unsigned int bytes_read;
8308
8309 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8310 }
8311
8312 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
8313 Return the corresponding abbrev, or NULL if the number is zero (indicating
8314 an empty DIE). In either case *BYTES_READ will be set to the length of
8315 the initial number. */
8316
8317 static struct abbrev_info *
8318 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
8319 struct dwarf2_cu *cu)
8320 {
8321 bfd *abfd = cu->objfile->obfd;
8322 unsigned int abbrev_number;
8323 struct abbrev_info *abbrev;
8324
8325 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8326
8327 if (abbrev_number == 0)
8328 return NULL;
8329
8330 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
8331 if (!abbrev)
8332 {
8333 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8334 " at offset 0x%x [in module %s]"),
8335 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8336 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
8337 }
8338
8339 return abbrev;
8340 }
8341
8342 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8343 Returns a pointer to the end of a series of DIEs, terminated by an empty
8344 DIE. Any children of the skipped DIEs will also be skipped. */
8345
8346 static const gdb_byte *
8347 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8348 {
8349 struct dwarf2_cu *cu = reader->cu;
8350 struct abbrev_info *abbrev;
8351 unsigned int bytes_read;
8352
8353 while (1)
8354 {
8355 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8356 if (abbrev == NULL)
8357 return info_ptr + bytes_read;
8358 else
8359 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8360 }
8361 }
8362
8363 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8364 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8365 abbrev corresponding to that skipped uleb128 should be passed in
8366 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8367 children. */
8368
8369 static const gdb_byte *
8370 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8371 struct abbrev_info *abbrev)
8372 {
8373 unsigned int bytes_read;
8374 struct attribute attr;
8375 bfd *abfd = reader->abfd;
8376 struct dwarf2_cu *cu = reader->cu;
8377 const gdb_byte *buffer = reader->buffer;
8378 const gdb_byte *buffer_end = reader->buffer_end;
8379 unsigned int form, i;
8380
8381 for (i = 0; i < abbrev->num_attrs; i++)
8382 {
8383 /* The only abbrev we care about is DW_AT_sibling. */
8384 if (abbrev->attrs[i].name == DW_AT_sibling)
8385 {
8386 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8387 if (attr.form == DW_FORM_ref_addr)
8388 complaint (&symfile_complaints,
8389 _("ignoring absolute DW_AT_sibling"));
8390 else
8391 {
8392 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8393 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8394
8395 if (sibling_ptr < info_ptr)
8396 complaint (&symfile_complaints,
8397 _("DW_AT_sibling points backwards"));
8398 else if (sibling_ptr > reader->buffer_end)
8399 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8400 else
8401 return sibling_ptr;
8402 }
8403 }
8404
8405 /* If it isn't DW_AT_sibling, skip this attribute. */
8406 form = abbrev->attrs[i].form;
8407 skip_attribute:
8408 switch (form)
8409 {
8410 case DW_FORM_ref_addr:
8411 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8412 and later it is offset sized. */
8413 if (cu->header.version == 2)
8414 info_ptr += cu->header.addr_size;
8415 else
8416 info_ptr += cu->header.offset_size;
8417 break;
8418 case DW_FORM_GNU_ref_alt:
8419 info_ptr += cu->header.offset_size;
8420 break;
8421 case DW_FORM_addr:
8422 info_ptr += cu->header.addr_size;
8423 break;
8424 case DW_FORM_data1:
8425 case DW_FORM_ref1:
8426 case DW_FORM_flag:
8427 info_ptr += 1;
8428 break;
8429 case DW_FORM_flag_present:
8430 case DW_FORM_implicit_const:
8431 break;
8432 case DW_FORM_data2:
8433 case DW_FORM_ref2:
8434 info_ptr += 2;
8435 break;
8436 case DW_FORM_data4:
8437 case DW_FORM_ref4:
8438 info_ptr += 4;
8439 break;
8440 case DW_FORM_data8:
8441 case DW_FORM_ref8:
8442 case DW_FORM_ref_sig8:
8443 info_ptr += 8;
8444 break;
8445 case DW_FORM_data16:
8446 info_ptr += 16;
8447 break;
8448 case DW_FORM_string:
8449 read_direct_string (abfd, info_ptr, &bytes_read);
8450 info_ptr += bytes_read;
8451 break;
8452 case DW_FORM_sec_offset:
8453 case DW_FORM_strp:
8454 case DW_FORM_GNU_strp_alt:
8455 info_ptr += cu->header.offset_size;
8456 break;
8457 case DW_FORM_exprloc:
8458 case DW_FORM_block:
8459 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8460 info_ptr += bytes_read;
8461 break;
8462 case DW_FORM_block1:
8463 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8464 break;
8465 case DW_FORM_block2:
8466 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8467 break;
8468 case DW_FORM_block4:
8469 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8470 break;
8471 case DW_FORM_sdata:
8472 case DW_FORM_udata:
8473 case DW_FORM_ref_udata:
8474 case DW_FORM_GNU_addr_index:
8475 case DW_FORM_GNU_str_index:
8476 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8477 break;
8478 case DW_FORM_indirect:
8479 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8480 info_ptr += bytes_read;
8481 /* We need to continue parsing from here, so just go back to
8482 the top. */
8483 goto skip_attribute;
8484
8485 default:
8486 error (_("Dwarf Error: Cannot handle %s "
8487 "in DWARF reader [in module %s]"),
8488 dwarf_form_name (form),
8489 bfd_get_filename (abfd));
8490 }
8491 }
8492
8493 if (abbrev->has_children)
8494 return skip_children (reader, info_ptr);
8495 else
8496 return info_ptr;
8497 }
8498
8499 /* Locate ORIG_PDI's sibling.
8500 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8501
8502 static const gdb_byte *
8503 locate_pdi_sibling (const struct die_reader_specs *reader,
8504 struct partial_die_info *orig_pdi,
8505 const gdb_byte *info_ptr)
8506 {
8507 /* Do we know the sibling already? */
8508
8509 if (orig_pdi->sibling)
8510 return orig_pdi->sibling;
8511
8512 /* Are there any children to deal with? */
8513
8514 if (!orig_pdi->has_children)
8515 return info_ptr;
8516
8517 /* Skip the children the long way. */
8518
8519 return skip_children (reader, info_ptr);
8520 }
8521
8522 /* Expand this partial symbol table into a full symbol table. SELF is
8523 not NULL. */
8524
8525 static void
8526 dwarf2_read_symtab (struct partial_symtab *self,
8527 struct objfile *objfile)
8528 {
8529 if (self->readin)
8530 {
8531 warning (_("bug: psymtab for %s is already read in."),
8532 self->filename);
8533 }
8534 else
8535 {
8536 if (info_verbose)
8537 {
8538 printf_filtered (_("Reading in symbols for %s..."),
8539 self->filename);
8540 gdb_flush (gdb_stdout);
8541 }
8542
8543 /* Restore our global data. */
8544 dwarf2_per_objfile
8545 = (struct dwarf2_per_objfile *) objfile_data (objfile,
8546 dwarf2_objfile_data_key);
8547
8548 /* If this psymtab is constructed from a debug-only objfile, the
8549 has_section_at_zero flag will not necessarily be correct. We
8550 can get the correct value for this flag by looking at the data
8551 associated with the (presumably stripped) associated objfile. */
8552 if (objfile->separate_debug_objfile_backlink)
8553 {
8554 struct dwarf2_per_objfile *dpo_backlink
8555 = ((struct dwarf2_per_objfile *)
8556 objfile_data (objfile->separate_debug_objfile_backlink,
8557 dwarf2_objfile_data_key));
8558
8559 dwarf2_per_objfile->has_section_at_zero
8560 = dpo_backlink->has_section_at_zero;
8561 }
8562
8563 dwarf2_per_objfile->reading_partial_symbols = 0;
8564
8565 psymtab_to_symtab_1 (self);
8566
8567 /* Finish up the debug error message. */
8568 if (info_verbose)
8569 printf_filtered (_("done.\n"));
8570 }
8571
8572 process_cu_includes ();
8573 }
8574 \f
8575 /* Reading in full CUs. */
8576
8577 /* Add PER_CU to the queue. */
8578
8579 static void
8580 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8581 enum language pretend_language)
8582 {
8583 struct dwarf2_queue_item *item;
8584
8585 per_cu->queued = 1;
8586 item = XNEW (struct dwarf2_queue_item);
8587 item->per_cu = per_cu;
8588 item->pretend_language = pretend_language;
8589 item->next = NULL;
8590
8591 if (dwarf2_queue == NULL)
8592 dwarf2_queue = item;
8593 else
8594 dwarf2_queue_tail->next = item;
8595
8596 dwarf2_queue_tail = item;
8597 }
8598
8599 /* If PER_CU is not yet queued, add it to the queue.
8600 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8601 dependency.
8602 The result is non-zero if PER_CU was queued, otherwise the result is zero
8603 meaning either PER_CU is already queued or it is already loaded.
8604
8605 N.B. There is an invariant here that if a CU is queued then it is loaded.
8606 The caller is required to load PER_CU if we return non-zero. */
8607
8608 static int
8609 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8610 struct dwarf2_per_cu_data *per_cu,
8611 enum language pretend_language)
8612 {
8613 /* We may arrive here during partial symbol reading, if we need full
8614 DIEs to process an unusual case (e.g. template arguments). Do
8615 not queue PER_CU, just tell our caller to load its DIEs. */
8616 if (dwarf2_per_objfile->reading_partial_symbols)
8617 {
8618 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8619 return 1;
8620 return 0;
8621 }
8622
8623 /* Mark the dependence relation so that we don't flush PER_CU
8624 too early. */
8625 if (dependent_cu != NULL)
8626 dwarf2_add_dependence (dependent_cu, per_cu);
8627
8628 /* If it's already on the queue, we have nothing to do. */
8629 if (per_cu->queued)
8630 return 0;
8631
8632 /* If the compilation unit is already loaded, just mark it as
8633 used. */
8634 if (per_cu->cu != NULL)
8635 {
8636 per_cu->cu->last_used = 0;
8637 return 0;
8638 }
8639
8640 /* Add it to the queue. */
8641 queue_comp_unit (per_cu, pretend_language);
8642
8643 return 1;
8644 }
8645
8646 /* Process the queue. */
8647
8648 static void
8649 process_queue (void)
8650 {
8651 struct dwarf2_queue_item *item, *next_item;
8652
8653 if (dwarf_read_debug)
8654 {
8655 fprintf_unfiltered (gdb_stdlog,
8656 "Expanding one or more symtabs of objfile %s ...\n",
8657 objfile_name (dwarf2_per_objfile->objfile));
8658 }
8659
8660 /* The queue starts out with one item, but following a DIE reference
8661 may load a new CU, adding it to the end of the queue. */
8662 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
8663 {
8664 if ((dwarf2_per_objfile->using_index
8665 ? !item->per_cu->v.quick->compunit_symtab
8666 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
8667 /* Skip dummy CUs. */
8668 && item->per_cu->cu != NULL)
8669 {
8670 struct dwarf2_per_cu_data *per_cu = item->per_cu;
8671 unsigned int debug_print_threshold;
8672 char buf[100];
8673
8674 if (per_cu->is_debug_types)
8675 {
8676 struct signatured_type *sig_type =
8677 (struct signatured_type *) per_cu;
8678
8679 sprintf (buf, "TU %s at offset 0x%x",
8680 hex_string (sig_type->signature),
8681 to_underlying (per_cu->sect_off));
8682 /* There can be 100s of TUs.
8683 Only print them in verbose mode. */
8684 debug_print_threshold = 2;
8685 }
8686 else
8687 {
8688 sprintf (buf, "CU at offset 0x%x",
8689 to_underlying (per_cu->sect_off));
8690 debug_print_threshold = 1;
8691 }
8692
8693 if (dwarf_read_debug >= debug_print_threshold)
8694 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8695
8696 if (per_cu->is_debug_types)
8697 process_full_type_unit (per_cu, item->pretend_language);
8698 else
8699 process_full_comp_unit (per_cu, item->pretend_language);
8700
8701 if (dwarf_read_debug >= debug_print_threshold)
8702 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8703 }
8704
8705 item->per_cu->queued = 0;
8706 next_item = item->next;
8707 xfree (item);
8708 }
8709
8710 dwarf2_queue_tail = NULL;
8711
8712 if (dwarf_read_debug)
8713 {
8714 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8715 objfile_name (dwarf2_per_objfile->objfile));
8716 }
8717 }
8718
8719 /* Free all allocated queue entries. This function only releases anything if
8720 an error was thrown; if the queue was processed then it would have been
8721 freed as we went along. */
8722
8723 static void
8724 dwarf2_release_queue (void *dummy)
8725 {
8726 struct dwarf2_queue_item *item, *last;
8727
8728 item = dwarf2_queue;
8729 while (item)
8730 {
8731 /* Anything still marked queued is likely to be in an
8732 inconsistent state, so discard it. */
8733 if (item->per_cu->queued)
8734 {
8735 if (item->per_cu->cu != NULL)
8736 free_one_cached_comp_unit (item->per_cu);
8737 item->per_cu->queued = 0;
8738 }
8739
8740 last = item;
8741 item = item->next;
8742 xfree (last);
8743 }
8744
8745 dwarf2_queue = dwarf2_queue_tail = NULL;
8746 }
8747
8748 /* Read in full symbols for PST, and anything it depends on. */
8749
8750 static void
8751 psymtab_to_symtab_1 (struct partial_symtab *pst)
8752 {
8753 struct dwarf2_per_cu_data *per_cu;
8754 int i;
8755
8756 if (pst->readin)
8757 return;
8758
8759 for (i = 0; i < pst->number_of_dependencies; i++)
8760 if (!pst->dependencies[i]->readin
8761 && pst->dependencies[i]->user == NULL)
8762 {
8763 /* Inform about additional files that need to be read in. */
8764 if (info_verbose)
8765 {
8766 /* FIXME: i18n: Need to make this a single string. */
8767 fputs_filtered (" ", gdb_stdout);
8768 wrap_here ("");
8769 fputs_filtered ("and ", gdb_stdout);
8770 wrap_here ("");
8771 printf_filtered ("%s...", pst->dependencies[i]->filename);
8772 wrap_here (""); /* Flush output. */
8773 gdb_flush (gdb_stdout);
8774 }
8775 psymtab_to_symtab_1 (pst->dependencies[i]);
8776 }
8777
8778 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
8779
8780 if (per_cu == NULL)
8781 {
8782 /* It's an include file, no symbols to read for it.
8783 Everything is in the parent symtab. */
8784 pst->readin = 1;
8785 return;
8786 }
8787
8788 dw2_do_instantiate_symtab (per_cu);
8789 }
8790
8791 /* Trivial hash function for die_info: the hash value of a DIE
8792 is its offset in .debug_info for this objfile. */
8793
8794 static hashval_t
8795 die_hash (const void *item)
8796 {
8797 const struct die_info *die = (const struct die_info *) item;
8798
8799 return to_underlying (die->sect_off);
8800 }
8801
8802 /* Trivial comparison function for die_info structures: two DIEs
8803 are equal if they have the same offset. */
8804
8805 static int
8806 die_eq (const void *item_lhs, const void *item_rhs)
8807 {
8808 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8809 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8810
8811 return die_lhs->sect_off == die_rhs->sect_off;
8812 }
8813
8814 /* die_reader_func for load_full_comp_unit.
8815 This is identical to read_signatured_type_reader,
8816 but is kept separate for now. */
8817
8818 static void
8819 load_full_comp_unit_reader (const struct die_reader_specs *reader,
8820 const gdb_byte *info_ptr,
8821 struct die_info *comp_unit_die,
8822 int has_children,
8823 void *data)
8824 {
8825 struct dwarf2_cu *cu = reader->cu;
8826 enum language *language_ptr = (enum language *) data;
8827
8828 gdb_assert (cu->die_hash == NULL);
8829 cu->die_hash =
8830 htab_create_alloc_ex (cu->header.length / 12,
8831 die_hash,
8832 die_eq,
8833 NULL,
8834 &cu->comp_unit_obstack,
8835 hashtab_obstack_allocate,
8836 dummy_obstack_deallocate);
8837
8838 if (has_children)
8839 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
8840 &info_ptr, comp_unit_die);
8841 cu->dies = comp_unit_die;
8842 /* comp_unit_die is not stored in die_hash, no need. */
8843
8844 /* We try not to read any attributes in this function, because not
8845 all CUs needed for references have been loaded yet, and symbol
8846 table processing isn't initialized. But we have to set the CU language,
8847 or we won't be able to build types correctly.
8848 Similarly, if we do not read the producer, we can not apply
8849 producer-specific interpretation. */
8850 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
8851 }
8852
8853 /* Load the DIEs associated with PER_CU into memory. */
8854
8855 static void
8856 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8857 enum language pretend_language)
8858 {
8859 gdb_assert (! this_cu->is_debug_types);
8860
8861 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8862 load_full_comp_unit_reader, &pretend_language);
8863 }
8864
8865 /* Add a DIE to the delayed physname list. */
8866
8867 static void
8868 add_to_method_list (struct type *type, int fnfield_index, int index,
8869 const char *name, struct die_info *die,
8870 struct dwarf2_cu *cu)
8871 {
8872 struct delayed_method_info mi;
8873 mi.type = type;
8874 mi.fnfield_index = fnfield_index;
8875 mi.index = index;
8876 mi.name = name;
8877 mi.die = die;
8878 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8879 }
8880
8881 /* A cleanup for freeing the delayed method list. */
8882
8883 static void
8884 free_delayed_list (void *ptr)
8885 {
8886 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8887 if (cu->method_list != NULL)
8888 {
8889 VEC_free (delayed_method_info, cu->method_list);
8890 cu->method_list = NULL;
8891 }
8892 }
8893
8894 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8895 "const" / "volatile". If so, decrements LEN by the length of the
8896 modifier and return true. Otherwise return false. */
8897
8898 template<size_t N>
8899 static bool
8900 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8901 {
8902 size_t mod_len = sizeof (mod) - 1;
8903 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8904 {
8905 len -= mod_len;
8906 return true;
8907 }
8908 return false;
8909 }
8910
8911 /* Compute the physnames of any methods on the CU's method list.
8912
8913 The computation of method physnames is delayed in order to avoid the
8914 (bad) condition that one of the method's formal parameters is of an as yet
8915 incomplete type. */
8916
8917 static void
8918 compute_delayed_physnames (struct dwarf2_cu *cu)
8919 {
8920 int i;
8921 struct delayed_method_info *mi;
8922
8923 /* Only C++ delays computing physnames. */
8924 if (VEC_empty (delayed_method_info, cu->method_list))
8925 return;
8926 gdb_assert (cu->language == language_cplus);
8927
8928 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8929 {
8930 const char *physname;
8931 struct fn_fieldlist *fn_flp
8932 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
8933 physname = dwarf2_physname (mi->name, mi->die, cu);
8934 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8935 = physname ? physname : "";
8936
8937 /* Since there's no tag to indicate whether a method is a
8938 const/volatile overload, extract that information out of the
8939 demangled name. */
8940 if (physname != NULL)
8941 {
8942 size_t len = strlen (physname);
8943
8944 while (1)
8945 {
8946 if (physname[len] == ')') /* shortcut */
8947 break;
8948 else if (check_modifier (physname, len, " const"))
8949 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi->index) = 1;
8950 else if (check_modifier (physname, len, " volatile"))
8951 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi->index) = 1;
8952 else
8953 break;
8954 }
8955 }
8956 }
8957 }
8958
8959 /* Go objects should be embedded in a DW_TAG_module DIE,
8960 and it's not clear if/how imported objects will appear.
8961 To keep Go support simple until that's worked out,
8962 go back through what we've read and create something usable.
8963 We could do this while processing each DIE, and feels kinda cleaner,
8964 but that way is more invasive.
8965 This is to, for example, allow the user to type "p var" or "b main"
8966 without having to specify the package name, and allow lookups
8967 of module.object to work in contexts that use the expression
8968 parser. */
8969
8970 static void
8971 fixup_go_packaging (struct dwarf2_cu *cu)
8972 {
8973 char *package_name = NULL;
8974 struct pending *list;
8975 int i;
8976
8977 for (list = global_symbols; list != NULL; list = list->next)
8978 {
8979 for (i = 0; i < list->nsyms; ++i)
8980 {
8981 struct symbol *sym = list->symbol[i];
8982
8983 if (SYMBOL_LANGUAGE (sym) == language_go
8984 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8985 {
8986 char *this_package_name = go_symbol_package_name (sym);
8987
8988 if (this_package_name == NULL)
8989 continue;
8990 if (package_name == NULL)
8991 package_name = this_package_name;
8992 else
8993 {
8994 if (strcmp (package_name, this_package_name) != 0)
8995 complaint (&symfile_complaints,
8996 _("Symtab %s has objects from two different Go packages: %s and %s"),
8997 (symbol_symtab (sym) != NULL
8998 ? symtab_to_filename_for_display
8999 (symbol_symtab (sym))
9000 : objfile_name (cu->objfile)),
9001 this_package_name, package_name);
9002 xfree (this_package_name);
9003 }
9004 }
9005 }
9006 }
9007
9008 if (package_name != NULL)
9009 {
9010 struct objfile *objfile = cu->objfile;
9011 const char *saved_package_name
9012 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9013 package_name,
9014 strlen (package_name));
9015 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9016 saved_package_name);
9017 struct symbol *sym;
9018
9019 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9020
9021 sym = allocate_symbol (objfile);
9022 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9023 SYMBOL_SET_NAMES (sym, saved_package_name,
9024 strlen (saved_package_name), 0, objfile);
9025 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9026 e.g., "main" finds the "main" module and not C's main(). */
9027 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9028 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9029 SYMBOL_TYPE (sym) = type;
9030
9031 add_symbol_to_list (sym, &global_symbols);
9032
9033 xfree (package_name);
9034 }
9035 }
9036
9037 /* Return the symtab for PER_CU. This works properly regardless of
9038 whether we're using the index or psymtabs. */
9039
9040 static struct compunit_symtab *
9041 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9042 {
9043 return (dwarf2_per_objfile->using_index
9044 ? per_cu->v.quick->compunit_symtab
9045 : per_cu->v.psymtab->compunit_symtab);
9046 }
9047
9048 /* A helper function for computing the list of all symbol tables
9049 included by PER_CU. */
9050
9051 static void
9052 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
9053 htab_t all_children, htab_t all_type_symtabs,
9054 struct dwarf2_per_cu_data *per_cu,
9055 struct compunit_symtab *immediate_parent)
9056 {
9057 void **slot;
9058 int ix;
9059 struct compunit_symtab *cust;
9060 struct dwarf2_per_cu_data *iter;
9061
9062 slot = htab_find_slot (all_children, per_cu, INSERT);
9063 if (*slot != NULL)
9064 {
9065 /* This inclusion and its children have been processed. */
9066 return;
9067 }
9068
9069 *slot = per_cu;
9070 /* Only add a CU if it has a symbol table. */
9071 cust = get_compunit_symtab (per_cu);
9072 if (cust != NULL)
9073 {
9074 /* If this is a type unit only add its symbol table if we haven't
9075 seen it yet (type unit per_cu's can share symtabs). */
9076 if (per_cu->is_debug_types)
9077 {
9078 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9079 if (*slot == NULL)
9080 {
9081 *slot = cust;
9082 VEC_safe_push (compunit_symtab_ptr, *result, cust);
9083 if (cust->user == NULL)
9084 cust->user = immediate_parent;
9085 }
9086 }
9087 else
9088 {
9089 VEC_safe_push (compunit_symtab_ptr, *result, cust);
9090 if (cust->user == NULL)
9091 cust->user = immediate_parent;
9092 }
9093 }
9094
9095 for (ix = 0;
9096 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
9097 ++ix)
9098 {
9099 recursively_compute_inclusions (result, all_children,
9100 all_type_symtabs, iter, cust);
9101 }
9102 }
9103
9104 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9105 PER_CU. */
9106
9107 static void
9108 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9109 {
9110 gdb_assert (! per_cu->is_debug_types);
9111
9112 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
9113 {
9114 int ix, len;
9115 struct dwarf2_per_cu_data *per_cu_iter;
9116 struct compunit_symtab *compunit_symtab_iter;
9117 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
9118 htab_t all_children, all_type_symtabs;
9119 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9120
9121 /* If we don't have a symtab, we can just skip this case. */
9122 if (cust == NULL)
9123 return;
9124
9125 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9126 NULL, xcalloc, xfree);
9127 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9128 NULL, xcalloc, xfree);
9129
9130 for (ix = 0;
9131 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
9132 ix, per_cu_iter);
9133 ++ix)
9134 {
9135 recursively_compute_inclusions (&result_symtabs, all_children,
9136 all_type_symtabs, per_cu_iter,
9137 cust);
9138 }
9139
9140 /* Now we have a transitive closure of all the included symtabs. */
9141 len = VEC_length (compunit_symtab_ptr, result_symtabs);
9142 cust->includes
9143 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
9144 struct compunit_symtab *, len + 1);
9145 for (ix = 0;
9146 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
9147 compunit_symtab_iter);
9148 ++ix)
9149 cust->includes[ix] = compunit_symtab_iter;
9150 cust->includes[len] = NULL;
9151
9152 VEC_free (compunit_symtab_ptr, result_symtabs);
9153 htab_delete (all_children);
9154 htab_delete (all_type_symtabs);
9155 }
9156 }
9157
9158 /* Compute the 'includes' field for the symtabs of all the CUs we just
9159 read. */
9160
9161 static void
9162 process_cu_includes (void)
9163 {
9164 int ix;
9165 struct dwarf2_per_cu_data *iter;
9166
9167 for (ix = 0;
9168 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
9169 ix, iter);
9170 ++ix)
9171 {
9172 if (! iter->is_debug_types)
9173 compute_compunit_symtab_includes (iter);
9174 }
9175
9176 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
9177 }
9178
9179 /* Generate full symbol information for PER_CU, whose DIEs have
9180 already been loaded into memory. */
9181
9182 static void
9183 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9184 enum language pretend_language)
9185 {
9186 struct dwarf2_cu *cu = per_cu->cu;
9187 struct objfile *objfile = per_cu->objfile;
9188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9189 CORE_ADDR lowpc, highpc;
9190 struct compunit_symtab *cust;
9191 struct cleanup *delayed_list_cleanup;
9192 CORE_ADDR baseaddr;
9193 struct block *static_block;
9194 CORE_ADDR addr;
9195
9196 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9197
9198 buildsym_init ();
9199 scoped_free_pendings free_pending;
9200 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
9201
9202 cu->list_in_scope = &file_symbols;
9203
9204 cu->language = pretend_language;
9205 cu->language_defn = language_def (cu->language);
9206
9207 /* Do line number decoding in read_file_scope () */
9208 process_die (cu->dies, cu);
9209
9210 /* For now fudge the Go package. */
9211 if (cu->language == language_go)
9212 fixup_go_packaging (cu);
9213
9214 /* Now that we have processed all the DIEs in the CU, all the types
9215 should be complete, and it should now be safe to compute all of the
9216 physnames. */
9217 compute_delayed_physnames (cu);
9218 do_cleanups (delayed_list_cleanup);
9219
9220 /* Some compilers don't define a DW_AT_high_pc attribute for the
9221 compilation unit. If the DW_AT_high_pc is missing, synthesize
9222 it, by scanning the DIE's below the compilation unit. */
9223 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9224
9225 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9226 static_block = end_symtab_get_static_block (addr, 0, 1);
9227
9228 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9229 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9230 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9231 addrmap to help ensure it has an accurate map of pc values belonging to
9232 this comp unit. */
9233 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9234
9235 cust = end_symtab_from_static_block (static_block,
9236 SECT_OFF_TEXT (objfile), 0);
9237
9238 if (cust != NULL)
9239 {
9240 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9241
9242 /* Set symtab language to language from DW_AT_language. If the
9243 compilation is from a C file generated by language preprocessors, do
9244 not set the language if it was already deduced by start_subfile. */
9245 if (!(cu->language == language_c
9246 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9247 COMPUNIT_FILETABS (cust)->language = cu->language;
9248
9249 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9250 produce DW_AT_location with location lists but it can be possibly
9251 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9252 there were bugs in prologue debug info, fixed later in GCC-4.5
9253 by "unwind info for epilogues" patch (which is not directly related).
9254
9255 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9256 needed, it would be wrong due to missing DW_AT_producer there.
9257
9258 Still one can confuse GDB by using non-standard GCC compilation
9259 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9260 */
9261 if (cu->has_loclist && gcc_4_minor >= 5)
9262 cust->locations_valid = 1;
9263
9264 if (gcc_4_minor >= 5)
9265 cust->epilogue_unwind_valid = 1;
9266
9267 cust->call_site_htab = cu->call_site_htab;
9268 }
9269
9270 if (dwarf2_per_objfile->using_index)
9271 per_cu->v.quick->compunit_symtab = cust;
9272 else
9273 {
9274 struct partial_symtab *pst = per_cu->v.psymtab;
9275 pst->compunit_symtab = cust;
9276 pst->readin = 1;
9277 }
9278
9279 /* Push it for inclusion processing later. */
9280 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
9281 }
9282
9283 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9284 already been loaded into memory. */
9285
9286 static void
9287 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9288 enum language pretend_language)
9289 {
9290 struct dwarf2_cu *cu = per_cu->cu;
9291 struct objfile *objfile = per_cu->objfile;
9292 struct compunit_symtab *cust;
9293 struct cleanup *delayed_list_cleanup;
9294 struct signatured_type *sig_type;
9295
9296 gdb_assert (per_cu->is_debug_types);
9297 sig_type = (struct signatured_type *) per_cu;
9298
9299 buildsym_init ();
9300 scoped_free_pendings free_pending;
9301 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
9302
9303 cu->list_in_scope = &file_symbols;
9304
9305 cu->language = pretend_language;
9306 cu->language_defn = language_def (cu->language);
9307
9308 /* The symbol tables are set up in read_type_unit_scope. */
9309 process_die (cu->dies, cu);
9310
9311 /* For now fudge the Go package. */
9312 if (cu->language == language_go)
9313 fixup_go_packaging (cu);
9314
9315 /* Now that we have processed all the DIEs in the CU, all the types
9316 should be complete, and it should now be safe to compute all of the
9317 physnames. */
9318 compute_delayed_physnames (cu);
9319 do_cleanups (delayed_list_cleanup);
9320
9321 /* TUs share symbol tables.
9322 If this is the first TU to use this symtab, complete the construction
9323 of it with end_expandable_symtab. Otherwise, complete the addition of
9324 this TU's symbols to the existing symtab. */
9325 if (sig_type->type_unit_group->compunit_symtab == NULL)
9326 {
9327 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9328 sig_type->type_unit_group->compunit_symtab = cust;
9329
9330 if (cust != NULL)
9331 {
9332 /* Set symtab language to language from DW_AT_language. If the
9333 compilation is from a C file generated by language preprocessors,
9334 do not set the language if it was already deduced by
9335 start_subfile. */
9336 if (!(cu->language == language_c
9337 && COMPUNIT_FILETABS (cust)->language != language_c))
9338 COMPUNIT_FILETABS (cust)->language = cu->language;
9339 }
9340 }
9341 else
9342 {
9343 augment_type_symtab ();
9344 cust = sig_type->type_unit_group->compunit_symtab;
9345 }
9346
9347 if (dwarf2_per_objfile->using_index)
9348 per_cu->v.quick->compunit_symtab = cust;
9349 else
9350 {
9351 struct partial_symtab *pst = per_cu->v.psymtab;
9352 pst->compunit_symtab = cust;
9353 pst->readin = 1;
9354 }
9355 }
9356
9357 /* Process an imported unit DIE. */
9358
9359 static void
9360 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9361 {
9362 struct attribute *attr;
9363
9364 /* For now we don't handle imported units in type units. */
9365 if (cu->per_cu->is_debug_types)
9366 {
9367 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9368 " supported in type units [in module %s]"),
9369 objfile_name (cu->objfile));
9370 }
9371
9372 attr = dwarf2_attr (die, DW_AT_import, cu);
9373 if (attr != NULL)
9374 {
9375 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
9376 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9377 dwarf2_per_cu_data *per_cu
9378 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
9379
9380 /* If necessary, add it to the queue and load its DIEs. */
9381 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9382 load_full_comp_unit (per_cu, cu->language);
9383
9384 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
9385 per_cu);
9386 }
9387 }
9388
9389 /* RAII object that represents a process_die scope: i.e.,
9390 starts/finishes processing a DIE. */
9391 class process_die_scope
9392 {
9393 public:
9394 process_die_scope (die_info *die, dwarf2_cu *cu)
9395 : m_die (die), m_cu (cu)
9396 {
9397 /* We should only be processing DIEs not already in process. */
9398 gdb_assert (!m_die->in_process);
9399 m_die->in_process = true;
9400 }
9401
9402 ~process_die_scope ()
9403 {
9404 m_die->in_process = false;
9405
9406 /* If we're done processing the DIE for the CU that owns the line
9407 header, we don't need the line header anymore. */
9408 if (m_cu->line_header_die_owner == m_die)
9409 {
9410 delete m_cu->line_header;
9411 m_cu->line_header = NULL;
9412 m_cu->line_header_die_owner = NULL;
9413 }
9414 }
9415
9416 private:
9417 die_info *m_die;
9418 dwarf2_cu *m_cu;
9419 };
9420
9421 /* Process a die and its children. */
9422
9423 static void
9424 process_die (struct die_info *die, struct dwarf2_cu *cu)
9425 {
9426 process_die_scope scope (die, cu);
9427
9428 switch (die->tag)
9429 {
9430 case DW_TAG_padding:
9431 break;
9432 case DW_TAG_compile_unit:
9433 case DW_TAG_partial_unit:
9434 read_file_scope (die, cu);
9435 break;
9436 case DW_TAG_type_unit:
9437 read_type_unit_scope (die, cu);
9438 break;
9439 case DW_TAG_subprogram:
9440 case DW_TAG_inlined_subroutine:
9441 read_func_scope (die, cu);
9442 break;
9443 case DW_TAG_lexical_block:
9444 case DW_TAG_try_block:
9445 case DW_TAG_catch_block:
9446 read_lexical_block_scope (die, cu);
9447 break;
9448 case DW_TAG_call_site:
9449 case DW_TAG_GNU_call_site:
9450 read_call_site_scope (die, cu);
9451 break;
9452 case DW_TAG_class_type:
9453 case DW_TAG_interface_type:
9454 case DW_TAG_structure_type:
9455 case DW_TAG_union_type:
9456 process_structure_scope (die, cu);
9457 break;
9458 case DW_TAG_enumeration_type:
9459 process_enumeration_scope (die, cu);
9460 break;
9461
9462 /* These dies have a type, but processing them does not create
9463 a symbol or recurse to process the children. Therefore we can
9464 read them on-demand through read_type_die. */
9465 case DW_TAG_subroutine_type:
9466 case DW_TAG_set_type:
9467 case DW_TAG_array_type:
9468 case DW_TAG_pointer_type:
9469 case DW_TAG_ptr_to_member_type:
9470 case DW_TAG_reference_type:
9471 case DW_TAG_rvalue_reference_type:
9472 case DW_TAG_string_type:
9473 break;
9474
9475 case DW_TAG_base_type:
9476 case DW_TAG_subrange_type:
9477 case DW_TAG_typedef:
9478 /* Add a typedef symbol for the type definition, if it has a
9479 DW_AT_name. */
9480 new_symbol (die, read_type_die (die, cu), cu);
9481 break;
9482 case DW_TAG_common_block:
9483 read_common_block (die, cu);
9484 break;
9485 case DW_TAG_common_inclusion:
9486 break;
9487 case DW_TAG_namespace:
9488 cu->processing_has_namespace_info = 1;
9489 read_namespace (die, cu);
9490 break;
9491 case DW_TAG_module:
9492 cu->processing_has_namespace_info = 1;
9493 read_module (die, cu);
9494 break;
9495 case DW_TAG_imported_declaration:
9496 cu->processing_has_namespace_info = 1;
9497 if (read_namespace_alias (die, cu))
9498 break;
9499 /* The declaration is not a global namespace alias: fall through. */
9500 case DW_TAG_imported_module:
9501 cu->processing_has_namespace_info = 1;
9502 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9503 || cu->language != language_fortran))
9504 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
9505 dwarf_tag_name (die->tag));
9506 read_import_statement (die, cu);
9507 break;
9508
9509 case DW_TAG_imported_unit:
9510 process_imported_unit_die (die, cu);
9511 break;
9512
9513 case DW_TAG_variable:
9514 read_variable (die, cu);
9515 break;
9516
9517 default:
9518 new_symbol (die, NULL, cu);
9519 break;
9520 }
9521 }
9522 \f
9523 /* DWARF name computation. */
9524
9525 /* A helper function for dwarf2_compute_name which determines whether DIE
9526 needs to have the name of the scope prepended to the name listed in the
9527 die. */
9528
9529 static int
9530 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9531 {
9532 struct attribute *attr;
9533
9534 switch (die->tag)
9535 {
9536 case DW_TAG_namespace:
9537 case DW_TAG_typedef:
9538 case DW_TAG_class_type:
9539 case DW_TAG_interface_type:
9540 case DW_TAG_structure_type:
9541 case DW_TAG_union_type:
9542 case DW_TAG_enumeration_type:
9543 case DW_TAG_enumerator:
9544 case DW_TAG_subprogram:
9545 case DW_TAG_inlined_subroutine:
9546 case DW_TAG_member:
9547 case DW_TAG_imported_declaration:
9548 return 1;
9549
9550 case DW_TAG_variable:
9551 case DW_TAG_constant:
9552 /* We only need to prefix "globally" visible variables. These include
9553 any variable marked with DW_AT_external or any variable that
9554 lives in a namespace. [Variables in anonymous namespaces
9555 require prefixing, but they are not DW_AT_external.] */
9556
9557 if (dwarf2_attr (die, DW_AT_specification, cu))
9558 {
9559 struct dwarf2_cu *spec_cu = cu;
9560
9561 return die_needs_namespace (die_specification (die, &spec_cu),
9562 spec_cu);
9563 }
9564
9565 attr = dwarf2_attr (die, DW_AT_external, cu);
9566 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9567 && die->parent->tag != DW_TAG_module)
9568 return 0;
9569 /* A variable in a lexical block of some kind does not need a
9570 namespace, even though in C++ such variables may be external
9571 and have a mangled name. */
9572 if (die->parent->tag == DW_TAG_lexical_block
9573 || die->parent->tag == DW_TAG_try_block
9574 || die->parent->tag == DW_TAG_catch_block
9575 || die->parent->tag == DW_TAG_subprogram)
9576 return 0;
9577 return 1;
9578
9579 default:
9580 return 0;
9581 }
9582 }
9583
9584 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9585 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9586 defined for the given DIE. */
9587
9588 static struct attribute *
9589 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9590 {
9591 struct attribute *attr;
9592
9593 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9594 if (attr == NULL)
9595 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9596
9597 return attr;
9598 }
9599
9600 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9601 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9602 defined for the given DIE. */
9603
9604 static const char *
9605 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9606 {
9607 const char *linkage_name;
9608
9609 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9610 if (linkage_name == NULL)
9611 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9612
9613 return linkage_name;
9614 }
9615
9616 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9617 compute the physname for the object, which include a method's:
9618 - formal parameters (C++),
9619 - receiver type (Go),
9620
9621 The term "physname" is a bit confusing.
9622 For C++, for example, it is the demangled name.
9623 For Go, for example, it's the mangled name.
9624
9625 For Ada, return the DIE's linkage name rather than the fully qualified
9626 name. PHYSNAME is ignored..
9627
9628 The result is allocated on the objfile_obstack and canonicalized. */
9629
9630 static const char *
9631 dwarf2_compute_name (const char *name,
9632 struct die_info *die, struct dwarf2_cu *cu,
9633 int physname)
9634 {
9635 struct objfile *objfile = cu->objfile;
9636
9637 if (name == NULL)
9638 name = dwarf2_name (die, cu);
9639
9640 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9641 but otherwise compute it by typename_concat inside GDB.
9642 FIXME: Actually this is not really true, or at least not always true.
9643 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
9644 Fortran names because there is no mangling standard. So new_symbol_full
9645 will set the demangled name to the result of dwarf2_full_name, and it is
9646 the demangled name that GDB uses if it exists. */
9647 if (cu->language == language_ada
9648 || (cu->language == language_fortran && physname))
9649 {
9650 /* For Ada unit, we prefer the linkage name over the name, as
9651 the former contains the exported name, which the user expects
9652 to be able to reference. Ideally, we want the user to be able
9653 to reference this entity using either natural or linkage name,
9654 but we haven't started looking at this enhancement yet. */
9655 const char *linkage_name = dw2_linkage_name (die, cu);
9656
9657 if (linkage_name != NULL)
9658 return linkage_name;
9659 }
9660
9661 /* These are the only languages we know how to qualify names in. */
9662 if (name != NULL
9663 && (cu->language == language_cplus
9664 || cu->language == language_fortran || cu->language == language_d
9665 || cu->language == language_rust))
9666 {
9667 if (die_needs_namespace (die, cu))
9668 {
9669 long length;
9670 const char *prefix;
9671 const char *canonical_name = NULL;
9672
9673 string_file buf;
9674
9675 prefix = determine_prefix (die, cu);
9676 if (*prefix != '\0')
9677 {
9678 char *prefixed_name = typename_concat (NULL, prefix, name,
9679 physname, cu);
9680
9681 buf.puts (prefixed_name);
9682 xfree (prefixed_name);
9683 }
9684 else
9685 buf.puts (name);
9686
9687 /* Template parameters may be specified in the DIE's DW_AT_name, or
9688 as children with DW_TAG_template_type_param or
9689 DW_TAG_value_type_param. If the latter, add them to the name
9690 here. If the name already has template parameters, then
9691 skip this step; some versions of GCC emit both, and
9692 it is more efficient to use the pre-computed name.
9693
9694 Something to keep in mind about this process: it is very
9695 unlikely, or in some cases downright impossible, to produce
9696 something that will match the mangled name of a function.
9697 If the definition of the function has the same debug info,
9698 we should be able to match up with it anyway. But fallbacks
9699 using the minimal symbol, for instance to find a method
9700 implemented in a stripped copy of libstdc++, will not work.
9701 If we do not have debug info for the definition, we will have to
9702 match them up some other way.
9703
9704 When we do name matching there is a related problem with function
9705 templates; two instantiated function templates are allowed to
9706 differ only by their return types, which we do not add here. */
9707
9708 if (cu->language == language_cplus && strchr (name, '<') == NULL)
9709 {
9710 struct attribute *attr;
9711 struct die_info *child;
9712 int first = 1;
9713
9714 die->building_fullname = 1;
9715
9716 for (child = die->child; child != NULL; child = child->sibling)
9717 {
9718 struct type *type;
9719 LONGEST value;
9720 const gdb_byte *bytes;
9721 struct dwarf2_locexpr_baton *baton;
9722 struct value *v;
9723
9724 if (child->tag != DW_TAG_template_type_param
9725 && child->tag != DW_TAG_template_value_param)
9726 continue;
9727
9728 if (first)
9729 {
9730 buf.puts ("<");
9731 first = 0;
9732 }
9733 else
9734 buf.puts (", ");
9735
9736 attr = dwarf2_attr (child, DW_AT_type, cu);
9737 if (attr == NULL)
9738 {
9739 complaint (&symfile_complaints,
9740 _("template parameter missing DW_AT_type"));
9741 buf.puts ("UNKNOWN_TYPE");
9742 continue;
9743 }
9744 type = die_type (child, cu);
9745
9746 if (child->tag == DW_TAG_template_type_param)
9747 {
9748 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
9749 continue;
9750 }
9751
9752 attr = dwarf2_attr (child, DW_AT_const_value, cu);
9753 if (attr == NULL)
9754 {
9755 complaint (&symfile_complaints,
9756 _("template parameter missing "
9757 "DW_AT_const_value"));
9758 buf.puts ("UNKNOWN_VALUE");
9759 continue;
9760 }
9761
9762 dwarf2_const_value_attr (attr, type, name,
9763 &cu->comp_unit_obstack, cu,
9764 &value, &bytes, &baton);
9765
9766 if (TYPE_NOSIGN (type))
9767 /* GDB prints characters as NUMBER 'CHAR'. If that's
9768 changed, this can use value_print instead. */
9769 c_printchar (value, type, &buf);
9770 else
9771 {
9772 struct value_print_options opts;
9773
9774 if (baton != NULL)
9775 v = dwarf2_evaluate_loc_desc (type, NULL,
9776 baton->data,
9777 baton->size,
9778 baton->per_cu);
9779 else if (bytes != NULL)
9780 {
9781 v = allocate_value (type);
9782 memcpy (value_contents_writeable (v), bytes,
9783 TYPE_LENGTH (type));
9784 }
9785 else
9786 v = value_from_longest (type, value);
9787
9788 /* Specify decimal so that we do not depend on
9789 the radix. */
9790 get_formatted_print_options (&opts, 'd');
9791 opts.raw = 1;
9792 value_print (v, &buf, &opts);
9793 release_value (v);
9794 value_free (v);
9795 }
9796 }
9797
9798 die->building_fullname = 0;
9799
9800 if (!first)
9801 {
9802 /* Close the argument list, with a space if necessary
9803 (nested templates). */
9804 if (!buf.empty () && buf.string ().back () == '>')
9805 buf.puts (" >");
9806 else
9807 buf.puts (">");
9808 }
9809 }
9810
9811 /* For C++ methods, append formal parameter type
9812 information, if PHYSNAME. */
9813
9814 if (physname && die->tag == DW_TAG_subprogram
9815 && cu->language == language_cplus)
9816 {
9817 struct type *type = read_type_die (die, cu);
9818
9819 c_type_print_args (type, &buf, 1, cu->language,
9820 &type_print_raw_options);
9821
9822 if (cu->language == language_cplus)
9823 {
9824 /* Assume that an artificial first parameter is
9825 "this", but do not crash if it is not. RealView
9826 marks unnamed (and thus unused) parameters as
9827 artificial; there is no way to differentiate
9828 the two cases. */
9829 if (TYPE_NFIELDS (type) > 0
9830 && TYPE_FIELD_ARTIFICIAL (type, 0)
9831 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
9832 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
9833 0))))
9834 buf.puts (" const");
9835 }
9836 }
9837
9838 const std::string &intermediate_name = buf.string ();
9839
9840 if (cu->language == language_cplus)
9841 canonical_name
9842 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
9843 &objfile->per_bfd->storage_obstack);
9844
9845 /* If we only computed INTERMEDIATE_NAME, or if
9846 INTERMEDIATE_NAME is already canonical, then we need to
9847 copy it to the appropriate obstack. */
9848 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
9849 name = ((const char *)
9850 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9851 intermediate_name.c_str (),
9852 intermediate_name.length ()));
9853 else
9854 name = canonical_name;
9855 }
9856 }
9857
9858 return name;
9859 }
9860
9861 /* Return the fully qualified name of DIE, based on its DW_AT_name.
9862 If scope qualifiers are appropriate they will be added. The result
9863 will be allocated on the storage_obstack, or NULL if the DIE does
9864 not have a name. NAME may either be from a previous call to
9865 dwarf2_name or NULL.
9866
9867 The output string will be canonicalized (if C++). */
9868
9869 static const char *
9870 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9871 {
9872 return dwarf2_compute_name (name, die, cu, 0);
9873 }
9874
9875 /* Construct a physname for the given DIE in CU. NAME may either be
9876 from a previous call to dwarf2_name or NULL. The result will be
9877 allocated on the objfile_objstack or NULL if the DIE does not have a
9878 name.
9879
9880 The output string will be canonicalized (if C++). */
9881
9882 static const char *
9883 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
9884 {
9885 struct objfile *objfile = cu->objfile;
9886 const char *retval, *mangled = NULL, *canon = NULL;
9887 int need_copy = 1;
9888
9889 /* In this case dwarf2_compute_name is just a shortcut not building anything
9890 on its own. */
9891 if (!die_needs_namespace (die, cu))
9892 return dwarf2_compute_name (name, die, cu, 1);
9893
9894 mangled = dw2_linkage_name (die, cu);
9895
9896 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9897 See https://github.com/rust-lang/rust/issues/32925. */
9898 if (cu->language == language_rust && mangled != NULL
9899 && strchr (mangled, '{') != NULL)
9900 mangled = NULL;
9901
9902 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
9903 has computed. */
9904 gdb::unique_xmalloc_ptr<char> demangled;
9905 if (mangled != NULL)
9906 {
9907 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
9908 type. It is easier for GDB users to search for such functions as
9909 `name(params)' than `long name(params)'. In such case the minimal
9910 symbol names do not match the full symbol names but for template
9911 functions there is never a need to look up their definition from their
9912 declaration so the only disadvantage remains the minimal symbol
9913 variant `long name(params)' does not have the proper inferior type.
9914 */
9915
9916 if (cu->language == language_go)
9917 {
9918 /* This is a lie, but we already lie to the caller new_symbol_full.
9919 new_symbol_full assumes we return the mangled name.
9920 This just undoes that lie until things are cleaned up. */
9921 }
9922 else
9923 {
9924 demangled.reset (gdb_demangle (mangled,
9925 (DMGL_PARAMS | DMGL_ANSI
9926 | DMGL_RET_DROP)));
9927 }
9928 if (demangled)
9929 canon = demangled.get ();
9930 else
9931 {
9932 canon = mangled;
9933 need_copy = 0;
9934 }
9935 }
9936
9937 if (canon == NULL || check_physname)
9938 {
9939 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9940
9941 if (canon != NULL && strcmp (physname, canon) != 0)
9942 {
9943 /* It may not mean a bug in GDB. The compiler could also
9944 compute DW_AT_linkage_name incorrectly. But in such case
9945 GDB would need to be bug-to-bug compatible. */
9946
9947 complaint (&symfile_complaints,
9948 _("Computed physname <%s> does not match demangled <%s> "
9949 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9950 physname, canon, mangled, to_underlying (die->sect_off),
9951 objfile_name (objfile));
9952
9953 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9954 is available here - over computed PHYSNAME. It is safer
9955 against both buggy GDB and buggy compilers. */
9956
9957 retval = canon;
9958 }
9959 else
9960 {
9961 retval = physname;
9962 need_copy = 0;
9963 }
9964 }
9965 else
9966 retval = canon;
9967
9968 if (need_copy)
9969 retval = ((const char *)
9970 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9971 retval, strlen (retval)));
9972
9973 return retval;
9974 }
9975
9976 /* Inspect DIE in CU for a namespace alias. If one exists, record
9977 a new symbol for it.
9978
9979 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9980
9981 static int
9982 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9983 {
9984 struct attribute *attr;
9985
9986 /* If the die does not have a name, this is not a namespace
9987 alias. */
9988 attr = dwarf2_attr (die, DW_AT_name, cu);
9989 if (attr != NULL)
9990 {
9991 int num;
9992 struct die_info *d = die;
9993 struct dwarf2_cu *imported_cu = cu;
9994
9995 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9996 keep inspecting DIEs until we hit the underlying import. */
9997 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
9998 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9999 {
10000 attr = dwarf2_attr (d, DW_AT_import, cu);
10001 if (attr == NULL)
10002 break;
10003
10004 d = follow_die_ref (d, attr, &imported_cu);
10005 if (d->tag != DW_TAG_imported_declaration)
10006 break;
10007 }
10008
10009 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10010 {
10011 complaint (&symfile_complaints,
10012 _("DIE at 0x%x has too many recursively imported "
10013 "declarations"), to_underlying (d->sect_off));
10014 return 0;
10015 }
10016
10017 if (attr != NULL)
10018 {
10019 struct type *type;
10020 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10021
10022 type = get_die_type_at_offset (sect_off, cu->per_cu);
10023 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10024 {
10025 /* This declaration is a global namespace alias. Add
10026 a symbol for it whose type is the aliased namespace. */
10027 new_symbol (die, type, cu);
10028 return 1;
10029 }
10030 }
10031 }
10032
10033 return 0;
10034 }
10035
10036 /* Return the using directives repository (global or local?) to use in the
10037 current context for LANGUAGE.
10038
10039 For Ada, imported declarations can materialize renamings, which *may* be
10040 global. However it is impossible (for now?) in DWARF to distinguish
10041 "external" imported declarations and "static" ones. As all imported
10042 declarations seem to be static in all other languages, make them all CU-wide
10043 global only in Ada. */
10044
10045 static struct using_direct **
10046 using_directives (enum language language)
10047 {
10048 if (language == language_ada && context_stack_depth == 0)
10049 return &global_using_directives;
10050 else
10051 return &local_using_directives;
10052 }
10053
10054 /* Read the import statement specified by the given die and record it. */
10055
10056 static void
10057 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10058 {
10059 struct objfile *objfile = cu->objfile;
10060 struct attribute *import_attr;
10061 struct die_info *imported_die, *child_die;
10062 struct dwarf2_cu *imported_cu;
10063 const char *imported_name;
10064 const char *imported_name_prefix;
10065 const char *canonical_name;
10066 const char *import_alias;
10067 const char *imported_declaration = NULL;
10068 const char *import_prefix;
10069 std::vector<const char *> excludes;
10070
10071 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10072 if (import_attr == NULL)
10073 {
10074 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
10075 dwarf_tag_name (die->tag));
10076 return;
10077 }
10078
10079 imported_cu = cu;
10080 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10081 imported_name = dwarf2_name (imported_die, imported_cu);
10082 if (imported_name == NULL)
10083 {
10084 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10085
10086 The import in the following code:
10087 namespace A
10088 {
10089 typedef int B;
10090 }
10091
10092 int main ()
10093 {
10094 using A::B;
10095 B b;
10096 return b;
10097 }
10098
10099 ...
10100 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10101 <52> DW_AT_decl_file : 1
10102 <53> DW_AT_decl_line : 6
10103 <54> DW_AT_import : <0x75>
10104 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10105 <59> DW_AT_name : B
10106 <5b> DW_AT_decl_file : 1
10107 <5c> DW_AT_decl_line : 2
10108 <5d> DW_AT_type : <0x6e>
10109 ...
10110 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10111 <76> DW_AT_byte_size : 4
10112 <77> DW_AT_encoding : 5 (signed)
10113
10114 imports the wrong die ( 0x75 instead of 0x58 ).
10115 This case will be ignored until the gcc bug is fixed. */
10116 return;
10117 }
10118
10119 /* Figure out the local name after import. */
10120 import_alias = dwarf2_name (die, cu);
10121
10122 /* Figure out where the statement is being imported to. */
10123 import_prefix = determine_prefix (die, cu);
10124
10125 /* Figure out what the scope of the imported die is and prepend it
10126 to the name of the imported die. */
10127 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10128
10129 if (imported_die->tag != DW_TAG_namespace
10130 && imported_die->tag != DW_TAG_module)
10131 {
10132 imported_declaration = imported_name;
10133 canonical_name = imported_name_prefix;
10134 }
10135 else if (strlen (imported_name_prefix) > 0)
10136 canonical_name = obconcat (&objfile->objfile_obstack,
10137 imported_name_prefix,
10138 (cu->language == language_d ? "." : "::"),
10139 imported_name, (char *) NULL);
10140 else
10141 canonical_name = imported_name;
10142
10143 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10144 for (child_die = die->child; child_die && child_die->tag;
10145 child_die = sibling_die (child_die))
10146 {
10147 /* DWARF-4: A Fortran use statement with a “rename list” may be
10148 represented by an imported module entry with an import attribute
10149 referring to the module and owned entries corresponding to those
10150 entities that are renamed as part of being imported. */
10151
10152 if (child_die->tag != DW_TAG_imported_declaration)
10153 {
10154 complaint (&symfile_complaints,
10155 _("child DW_TAG_imported_declaration expected "
10156 "- DIE at 0x%x [in module %s]"),
10157 to_underlying (child_die->sect_off), objfile_name (objfile));
10158 continue;
10159 }
10160
10161 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10162 if (import_attr == NULL)
10163 {
10164 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
10165 dwarf_tag_name (child_die->tag));
10166 continue;
10167 }
10168
10169 imported_cu = cu;
10170 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10171 &imported_cu);
10172 imported_name = dwarf2_name (imported_die, imported_cu);
10173 if (imported_name == NULL)
10174 {
10175 complaint (&symfile_complaints,
10176 _("child DW_TAG_imported_declaration has unknown "
10177 "imported name - DIE at 0x%x [in module %s]"),
10178 to_underlying (child_die->sect_off), objfile_name (objfile));
10179 continue;
10180 }
10181
10182 excludes.push_back (imported_name);
10183
10184 process_die (child_die, cu);
10185 }
10186
10187 add_using_directive (using_directives (cu->language),
10188 import_prefix,
10189 canonical_name,
10190 import_alias,
10191 imported_declaration,
10192 excludes,
10193 0,
10194 &objfile->objfile_obstack);
10195 }
10196
10197 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10198 types, but gives them a size of zero. Starting with version 14,
10199 ICC is compatible with GCC. */
10200
10201 static int
10202 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10203 {
10204 if (!cu->checked_producer)
10205 check_producer (cu);
10206
10207 return cu->producer_is_icc_lt_14;
10208 }
10209
10210 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10211 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10212 this, it was first present in GCC release 4.3.0. */
10213
10214 static int
10215 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10216 {
10217 if (!cu->checked_producer)
10218 check_producer (cu);
10219
10220 return cu->producer_is_gcc_lt_4_3;
10221 }
10222
10223 static file_and_directory
10224 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10225 {
10226 file_and_directory res;
10227
10228 /* Find the filename. Do not use dwarf2_name here, since the filename
10229 is not a source language identifier. */
10230 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10231 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10232
10233 if (res.comp_dir == NULL
10234 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10235 && IS_ABSOLUTE_PATH (res.name))
10236 {
10237 res.comp_dir_storage = ldirname (res.name);
10238 if (!res.comp_dir_storage.empty ())
10239 res.comp_dir = res.comp_dir_storage.c_str ();
10240 }
10241 if (res.comp_dir != NULL)
10242 {
10243 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10244 directory, get rid of it. */
10245 const char *cp = strchr (res.comp_dir, ':');
10246
10247 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10248 res.comp_dir = cp + 1;
10249 }
10250
10251 if (res.name == NULL)
10252 res.name = "<unknown>";
10253
10254 return res;
10255 }
10256
10257 /* Handle DW_AT_stmt_list for a compilation unit.
10258 DIE is the DW_TAG_compile_unit die for CU.
10259 COMP_DIR is the compilation directory. LOWPC is passed to
10260 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10261
10262 static void
10263 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10264 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10265 {
10266 struct objfile *objfile = dwarf2_per_objfile->objfile;
10267 struct attribute *attr;
10268 struct line_header line_header_local;
10269 hashval_t line_header_local_hash;
10270 unsigned u;
10271 void **slot;
10272 int decode_mapping;
10273
10274 gdb_assert (! cu->per_cu->is_debug_types);
10275
10276 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10277 if (attr == NULL)
10278 return;
10279
10280 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10281
10282 /* The line header hash table is only created if needed (it exists to
10283 prevent redundant reading of the line table for partial_units).
10284 If we're given a partial_unit, we'll need it. If we're given a
10285 compile_unit, then use the line header hash table if it's already
10286 created, but don't create one just yet. */
10287
10288 if (dwarf2_per_objfile->line_header_hash == NULL
10289 && die->tag == DW_TAG_partial_unit)
10290 {
10291 dwarf2_per_objfile->line_header_hash
10292 = htab_create_alloc_ex (127, line_header_hash_voidp,
10293 line_header_eq_voidp,
10294 free_line_header_voidp,
10295 &objfile->objfile_obstack,
10296 hashtab_obstack_allocate,
10297 dummy_obstack_deallocate);
10298 }
10299
10300 line_header_local.sect_off = line_offset;
10301 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10302 line_header_local_hash = line_header_hash (&line_header_local);
10303 if (dwarf2_per_objfile->line_header_hash != NULL)
10304 {
10305 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10306 &line_header_local,
10307 line_header_local_hash, NO_INSERT);
10308
10309 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10310 is not present in *SLOT (since if there is something in *SLOT then
10311 it will be for a partial_unit). */
10312 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10313 {
10314 gdb_assert (*slot != NULL);
10315 cu->line_header = (struct line_header *) *slot;
10316 return;
10317 }
10318 }
10319
10320 /* dwarf_decode_line_header does not yet provide sufficient information.
10321 We always have to call also dwarf_decode_lines for it. */
10322 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10323 if (lh == NULL)
10324 return;
10325
10326 cu->line_header = lh.release ();
10327 cu->line_header_die_owner = die;
10328
10329 if (dwarf2_per_objfile->line_header_hash == NULL)
10330 slot = NULL;
10331 else
10332 {
10333 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
10334 &line_header_local,
10335 line_header_local_hash, INSERT);
10336 gdb_assert (slot != NULL);
10337 }
10338 if (slot != NULL && *slot == NULL)
10339 {
10340 /* This newly decoded line number information unit will be owned
10341 by line_header_hash hash table. */
10342 *slot = cu->line_header;
10343 cu->line_header_die_owner = NULL;
10344 }
10345 else
10346 {
10347 /* We cannot free any current entry in (*slot) as that struct line_header
10348 may be already used by multiple CUs. Create only temporary decoded
10349 line_header for this CU - it may happen at most once for each line
10350 number information unit. And if we're not using line_header_hash
10351 then this is what we want as well. */
10352 gdb_assert (die->tag != DW_TAG_partial_unit);
10353 }
10354 decode_mapping = (die->tag != DW_TAG_partial_unit);
10355 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10356 decode_mapping);
10357
10358 }
10359
10360 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10361
10362 static void
10363 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10364 {
10365 struct objfile *objfile = dwarf2_per_objfile->objfile;
10366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10367 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10368 CORE_ADDR highpc = ((CORE_ADDR) 0);
10369 struct attribute *attr;
10370 struct die_info *child_die;
10371 CORE_ADDR baseaddr;
10372
10373 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10374
10375 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10376
10377 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10378 from finish_block. */
10379 if (lowpc == ((CORE_ADDR) -1))
10380 lowpc = highpc;
10381 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10382
10383 file_and_directory fnd = find_file_and_directory (die, cu);
10384
10385 prepare_one_comp_unit (cu, die, cu->language);
10386
10387 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10388 standardised yet. As a workaround for the language detection we fall
10389 back to the DW_AT_producer string. */
10390 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10391 cu->language = language_opencl;
10392
10393 /* Similar hack for Go. */
10394 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10395 set_cu_language (DW_LANG_Go, cu);
10396
10397 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
10398
10399 /* Decode line number information if present. We do this before
10400 processing child DIEs, so that the line header table is available
10401 for DW_AT_decl_file. */
10402 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10403
10404 /* Process all dies in compilation unit. */
10405 if (die->child != NULL)
10406 {
10407 child_die = die->child;
10408 while (child_die && child_die->tag)
10409 {
10410 process_die (child_die, cu);
10411 child_die = sibling_die (child_die);
10412 }
10413 }
10414
10415 /* Decode macro information, if present. Dwarf 2 macro information
10416 refers to information in the line number info statement program
10417 header, so we can only read it if we've read the header
10418 successfully. */
10419 attr = dwarf2_attr (die, DW_AT_macros, cu);
10420 if (attr == NULL)
10421 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10422 if (attr && cu->line_header)
10423 {
10424 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10425 complaint (&symfile_complaints,
10426 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10427
10428 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10429 }
10430 else
10431 {
10432 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10433 if (attr && cu->line_header)
10434 {
10435 unsigned int macro_offset = DW_UNSND (attr);
10436
10437 dwarf_decode_macros (cu, macro_offset, 0);
10438 }
10439 }
10440 }
10441
10442 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
10443 Create the set of symtabs used by this TU, or if this TU is sharing
10444 symtabs with another TU and the symtabs have already been created
10445 then restore those symtabs in the line header.
10446 We don't need the pc/line-number mapping for type units. */
10447
10448 static void
10449 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
10450 {
10451 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
10452 struct type_unit_group *tu_group;
10453 int first_time;
10454 struct attribute *attr;
10455 unsigned int i;
10456 struct signatured_type *sig_type;
10457
10458 gdb_assert (per_cu->is_debug_types);
10459 sig_type = (struct signatured_type *) per_cu;
10460
10461 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10462
10463 /* If we're using .gdb_index (includes -readnow) then
10464 per_cu->type_unit_group may not have been set up yet. */
10465 if (sig_type->type_unit_group == NULL)
10466 sig_type->type_unit_group = get_type_unit_group (cu, attr);
10467 tu_group = sig_type->type_unit_group;
10468
10469 /* If we've already processed this stmt_list there's no real need to
10470 do it again, we could fake it and just recreate the part we need
10471 (file name,index -> symtab mapping). If data shows this optimization
10472 is useful we can do it then. */
10473 first_time = tu_group->compunit_symtab == NULL;
10474
10475 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10476 debug info. */
10477 line_header_up lh;
10478 if (attr != NULL)
10479 {
10480 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10481 lh = dwarf_decode_line_header (line_offset, cu);
10482 }
10483 if (lh == NULL)
10484 {
10485 if (first_time)
10486 dwarf2_start_symtab (cu, "", NULL, 0);
10487 else
10488 {
10489 gdb_assert (tu_group->symtabs == NULL);
10490 restart_symtab (tu_group->compunit_symtab, "", 0);
10491 }
10492 return;
10493 }
10494
10495 cu->line_header = lh.release ();
10496 cu->line_header_die_owner = die;
10497
10498 if (first_time)
10499 {
10500 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
10501
10502 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10503 still initializing it, and our caller (a few levels up)
10504 process_full_type_unit still needs to know if this is the first
10505 time. */
10506
10507 tu_group->num_symtabs = cu->line_header->file_names.size ();
10508 tu_group->symtabs = XNEWVEC (struct symtab *,
10509 cu->line_header->file_names.size ());
10510
10511 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10512 {
10513 file_entry &fe = cu->line_header->file_names[i];
10514
10515 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
10516
10517 if (current_subfile->symtab == NULL)
10518 {
10519 /* NOTE: start_subfile will recognize when it's been
10520 passed a file it has already seen. So we can't
10521 assume there's a simple mapping from
10522 cu->line_header->file_names to subfiles, plus
10523 cu->line_header->file_names may contain dups. */
10524 current_subfile->symtab
10525 = allocate_symtab (cust, current_subfile->name);
10526 }
10527
10528 fe.symtab = current_subfile->symtab;
10529 tu_group->symtabs[i] = fe.symtab;
10530 }
10531 }
10532 else
10533 {
10534 restart_symtab (tu_group->compunit_symtab, "", 0);
10535
10536 for (i = 0; i < cu->line_header->file_names.size (); ++i)
10537 {
10538 file_entry &fe = cu->line_header->file_names[i];
10539
10540 fe.symtab = tu_group->symtabs[i];
10541 }
10542 }
10543
10544 /* The main symtab is allocated last. Type units don't have DW_AT_name
10545 so they don't have a "real" (so to speak) symtab anyway.
10546 There is later code that will assign the main symtab to all symbols
10547 that don't have one. We need to handle the case of a symbol with a
10548 missing symtab (DW_AT_decl_file) anyway. */
10549 }
10550
10551 /* Process DW_TAG_type_unit.
10552 For TUs we want to skip the first top level sibling if it's not the
10553 actual type being defined by this TU. In this case the first top
10554 level sibling is there to provide context only. */
10555
10556 static void
10557 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10558 {
10559 struct die_info *child_die;
10560
10561 prepare_one_comp_unit (cu, die, language_minimal);
10562
10563 /* Initialize (or reinitialize) the machinery for building symtabs.
10564 We do this before processing child DIEs, so that the line header table
10565 is available for DW_AT_decl_file. */
10566 setup_type_unit_groups (die, cu);
10567
10568 if (die->child != NULL)
10569 {
10570 child_die = die->child;
10571 while (child_die && child_die->tag)
10572 {
10573 process_die (child_die, cu);
10574 child_die = sibling_die (child_die);
10575 }
10576 }
10577 }
10578 \f
10579 /* DWO/DWP files.
10580
10581 http://gcc.gnu.org/wiki/DebugFission
10582 http://gcc.gnu.org/wiki/DebugFissionDWP
10583
10584 To simplify handling of both DWO files ("object" files with the DWARF info)
10585 and DWP files (a file with the DWOs packaged up into one file), we treat
10586 DWP files as having a collection of virtual DWO files. */
10587
10588 static hashval_t
10589 hash_dwo_file (const void *item)
10590 {
10591 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10592 hashval_t hash;
10593
10594 hash = htab_hash_string (dwo_file->dwo_name);
10595 if (dwo_file->comp_dir != NULL)
10596 hash += htab_hash_string (dwo_file->comp_dir);
10597 return hash;
10598 }
10599
10600 static int
10601 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10602 {
10603 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10604 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10605
10606 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10607 return 0;
10608 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10609 return lhs->comp_dir == rhs->comp_dir;
10610 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10611 }
10612
10613 /* Allocate a hash table for DWO files. */
10614
10615 static htab_t
10616 allocate_dwo_file_hash_table (void)
10617 {
10618 struct objfile *objfile = dwarf2_per_objfile->objfile;
10619
10620 return htab_create_alloc_ex (41,
10621 hash_dwo_file,
10622 eq_dwo_file,
10623 NULL,
10624 &objfile->objfile_obstack,
10625 hashtab_obstack_allocate,
10626 dummy_obstack_deallocate);
10627 }
10628
10629 /* Lookup DWO file DWO_NAME. */
10630
10631 static void **
10632 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
10633 {
10634 struct dwo_file find_entry;
10635 void **slot;
10636
10637 if (dwarf2_per_objfile->dwo_files == NULL)
10638 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
10639
10640 memset (&find_entry, 0, sizeof (find_entry));
10641 find_entry.dwo_name = dwo_name;
10642 find_entry.comp_dir = comp_dir;
10643 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
10644
10645 return slot;
10646 }
10647
10648 static hashval_t
10649 hash_dwo_unit (const void *item)
10650 {
10651 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10652
10653 /* This drops the top 32 bits of the id, but is ok for a hash. */
10654 return dwo_unit->signature;
10655 }
10656
10657 static int
10658 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10659 {
10660 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10661 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10662
10663 /* The signature is assumed to be unique within the DWO file.
10664 So while object file CU dwo_id's always have the value zero,
10665 that's OK, assuming each object file DWO file has only one CU,
10666 and that's the rule for now. */
10667 return lhs->signature == rhs->signature;
10668 }
10669
10670 /* Allocate a hash table for DWO CUs,TUs.
10671 There is one of these tables for each of CUs,TUs for each DWO file. */
10672
10673 static htab_t
10674 allocate_dwo_unit_table (struct objfile *objfile)
10675 {
10676 /* Start out with a pretty small number.
10677 Generally DWO files contain only one CU and maybe some TUs. */
10678 return htab_create_alloc_ex (3,
10679 hash_dwo_unit,
10680 eq_dwo_unit,
10681 NULL,
10682 &objfile->objfile_obstack,
10683 hashtab_obstack_allocate,
10684 dummy_obstack_deallocate);
10685 }
10686
10687 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
10688
10689 struct create_dwo_cu_data
10690 {
10691 struct dwo_file *dwo_file;
10692 struct dwo_unit dwo_unit;
10693 };
10694
10695 /* die_reader_func for create_dwo_cu. */
10696
10697 static void
10698 create_dwo_cu_reader (const struct die_reader_specs *reader,
10699 const gdb_byte *info_ptr,
10700 struct die_info *comp_unit_die,
10701 int has_children,
10702 void *datap)
10703 {
10704 struct dwarf2_cu *cu = reader->cu;
10705 sect_offset sect_off = cu->per_cu->sect_off;
10706 struct dwarf2_section_info *section = cu->per_cu->section;
10707 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
10708 struct dwo_file *dwo_file = data->dwo_file;
10709 struct dwo_unit *dwo_unit = &data->dwo_unit;
10710 struct attribute *attr;
10711
10712 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
10713 if (attr == NULL)
10714 {
10715 complaint (&symfile_complaints,
10716 _("Dwarf Error: debug entry at offset 0x%x is missing"
10717 " its dwo_id [in module %s]"),
10718 to_underlying (sect_off), dwo_file->dwo_name);
10719 return;
10720 }
10721
10722 dwo_unit->dwo_file = dwo_file;
10723 dwo_unit->signature = DW_UNSND (attr);
10724 dwo_unit->section = section;
10725 dwo_unit->sect_off = sect_off;
10726 dwo_unit->length = cu->per_cu->length;
10727
10728 if (dwarf_read_debug)
10729 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
10730 to_underlying (sect_off),
10731 hex_string (dwo_unit->signature));
10732 }
10733
10734 /* Create the dwo_units for the CUs in a DWO_FILE.
10735 Note: This function processes DWO files only, not DWP files. */
10736
10737 static void
10738 create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
10739 htab_t &cus_htab)
10740 {
10741 struct objfile *objfile = dwarf2_per_objfile->objfile;
10742 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
10743 const gdb_byte *info_ptr, *end_ptr;
10744
10745 dwarf2_read_section (objfile, &section);
10746 info_ptr = section.buffer;
10747
10748 if (info_ptr == NULL)
10749 return;
10750
10751 if (dwarf_read_debug)
10752 {
10753 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
10754 get_section_name (&section),
10755 get_section_file_name (&section));
10756 }
10757
10758 end_ptr = info_ptr + section.size;
10759 while (info_ptr < end_ptr)
10760 {
10761 struct dwarf2_per_cu_data per_cu;
10762 struct create_dwo_cu_data create_dwo_cu_data;
10763 struct dwo_unit *dwo_unit;
10764 void **slot;
10765 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
10766
10767 memset (&create_dwo_cu_data.dwo_unit, 0,
10768 sizeof (create_dwo_cu_data.dwo_unit));
10769 memset (&per_cu, 0, sizeof (per_cu));
10770 per_cu.objfile = objfile;
10771 per_cu.is_debug_types = 0;
10772 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
10773 per_cu.section = &section;
10774 create_dwo_cu_data.dwo_file = &dwo_file;
10775
10776 init_cutu_and_read_dies_no_follow (
10777 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
10778 info_ptr += per_cu.length;
10779
10780 // If the unit could not be parsed, skip it.
10781 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
10782 continue;
10783
10784 if (cus_htab == NULL)
10785 cus_htab = allocate_dwo_unit_table (objfile);
10786
10787 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10788 *dwo_unit = create_dwo_cu_data.dwo_unit;
10789 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
10790 gdb_assert (slot != NULL);
10791 if (*slot != NULL)
10792 {
10793 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
10794 sect_offset dup_sect_off = dup_cu->sect_off;
10795
10796 complaint (&symfile_complaints,
10797 _("debug cu entry at offset 0x%x is duplicate to"
10798 " the entry at offset 0x%x, signature %s"),
10799 to_underlying (sect_off), to_underlying (dup_sect_off),
10800 hex_string (dwo_unit->signature));
10801 }
10802 *slot = (void *)dwo_unit;
10803 }
10804 }
10805
10806 /* DWP file .debug_{cu,tu}_index section format:
10807 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
10808
10809 DWP Version 1:
10810
10811 Both index sections have the same format, and serve to map a 64-bit
10812 signature to a set of section numbers. Each section begins with a header,
10813 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
10814 indexes, and a pool of 32-bit section numbers. The index sections will be
10815 aligned at 8-byte boundaries in the file.
10816
10817 The index section header consists of:
10818
10819 V, 32 bit version number
10820 -, 32 bits unused
10821 N, 32 bit number of compilation units or type units in the index
10822 M, 32 bit number of slots in the hash table
10823
10824 Numbers are recorded using the byte order of the application binary.
10825
10826 The hash table begins at offset 16 in the section, and consists of an array
10827 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
10828 order of the application binary). Unused slots in the hash table are 0.
10829 (We rely on the extreme unlikeliness of a signature being exactly 0.)
10830
10831 The parallel table begins immediately after the hash table
10832 (at offset 16 + 8 * M from the beginning of the section), and consists of an
10833 array of 32-bit indexes (using the byte order of the application binary),
10834 corresponding 1-1 with slots in the hash table. Each entry in the parallel
10835 table contains a 32-bit index into the pool of section numbers. For unused
10836 hash table slots, the corresponding entry in the parallel table will be 0.
10837
10838 The pool of section numbers begins immediately following the hash table
10839 (at offset 16 + 12 * M from the beginning of the section). The pool of
10840 section numbers consists of an array of 32-bit words (using the byte order
10841 of the application binary). Each item in the array is indexed starting
10842 from 0. The hash table entry provides the index of the first section
10843 number in the set. Additional section numbers in the set follow, and the
10844 set is terminated by a 0 entry (section number 0 is not used in ELF).
10845
10846 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
10847 section must be the first entry in the set, and the .debug_abbrev.dwo must
10848 be the second entry. Other members of the set may follow in any order.
10849
10850 ---
10851
10852 DWP Version 2:
10853
10854 DWP Version 2 combines all the .debug_info, etc. sections into one,
10855 and the entries in the index tables are now offsets into these sections.
10856 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
10857 section.
10858
10859 Index Section Contents:
10860 Header
10861 Hash Table of Signatures dwp_hash_table.hash_table
10862 Parallel Table of Indices dwp_hash_table.unit_table
10863 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
10864 Table of Section Sizes dwp_hash_table.v2.sizes
10865
10866 The index section header consists of:
10867
10868 V, 32 bit version number
10869 L, 32 bit number of columns in the table of section offsets
10870 N, 32 bit number of compilation units or type units in the index
10871 M, 32 bit number of slots in the hash table
10872
10873 Numbers are recorded using the byte order of the application binary.
10874
10875 The hash table has the same format as version 1.
10876 The parallel table of indices has the same format as version 1,
10877 except that the entries are origin-1 indices into the table of sections
10878 offsets and the table of section sizes.
10879
10880 The table of offsets begins immediately following the parallel table
10881 (at offset 16 + 12 * M from the beginning of the section). The table is
10882 a two-dimensional array of 32-bit words (using the byte order of the
10883 application binary), with L columns and N+1 rows, in row-major order.
10884 Each row in the array is indexed starting from 0. The first row provides
10885 a key to the remaining rows: each column in this row provides an identifier
10886 for a debug section, and the offsets in the same column of subsequent rows
10887 refer to that section. The section identifiers are:
10888
10889 DW_SECT_INFO 1 .debug_info.dwo
10890 DW_SECT_TYPES 2 .debug_types.dwo
10891 DW_SECT_ABBREV 3 .debug_abbrev.dwo
10892 DW_SECT_LINE 4 .debug_line.dwo
10893 DW_SECT_LOC 5 .debug_loc.dwo
10894 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
10895 DW_SECT_MACINFO 7 .debug_macinfo.dwo
10896 DW_SECT_MACRO 8 .debug_macro.dwo
10897
10898 The offsets provided by the CU and TU index sections are the base offsets
10899 for the contributions made by each CU or TU to the corresponding section
10900 in the package file. Each CU and TU header contains an abbrev_offset
10901 field, used to find the abbreviations table for that CU or TU within the
10902 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
10903 be interpreted as relative to the base offset given in the index section.
10904 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
10905 should be interpreted as relative to the base offset for .debug_line.dwo,
10906 and offsets into other debug sections obtained from DWARF attributes should
10907 also be interpreted as relative to the corresponding base offset.
10908
10909 The table of sizes begins immediately following the table of offsets.
10910 Like the table of offsets, it is a two-dimensional array of 32-bit words,
10911 with L columns and N rows, in row-major order. Each row in the array is
10912 indexed starting from 1 (row 0 is shared by the two tables).
10913
10914 ---
10915
10916 Hash table lookup is handled the same in version 1 and 2:
10917
10918 We assume that N and M will not exceed 2^32 - 1.
10919 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10920
10921 Given a 64-bit compilation unit signature or a type signature S, an entry
10922 in the hash table is located as follows:
10923
10924 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10925 the low-order k bits all set to 1.
10926
10927 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
10928
10929 3) If the hash table entry at index H matches the signature, use that
10930 entry. If the hash table entry at index H is unused (all zeroes),
10931 terminate the search: the signature is not present in the table.
10932
10933 4) Let H = (H + H') modulo M. Repeat at Step 3.
10934
10935 Because M > N and H' and M are relatively prime, the search is guaranteed
10936 to stop at an unused slot or find the match. */
10937
10938 /* Create a hash table to map DWO IDs to their CU/TU entry in
10939 .debug_{info,types}.dwo in DWP_FILE.
10940 Returns NULL if there isn't one.
10941 Note: This function processes DWP files only, not DWO files. */
10942
10943 static struct dwp_hash_table *
10944 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10945 {
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
10947 bfd *dbfd = dwp_file->dbfd;
10948 const gdb_byte *index_ptr, *index_end;
10949 struct dwarf2_section_info *index;
10950 uint32_t version, nr_columns, nr_units, nr_slots;
10951 struct dwp_hash_table *htab;
10952
10953 if (is_debug_types)
10954 index = &dwp_file->sections.tu_index;
10955 else
10956 index = &dwp_file->sections.cu_index;
10957
10958 if (dwarf2_section_empty_p (index))
10959 return NULL;
10960 dwarf2_read_section (objfile, index);
10961
10962 index_ptr = index->buffer;
10963 index_end = index_ptr + index->size;
10964
10965 version = read_4_bytes (dbfd, index_ptr);
10966 index_ptr += 4;
10967 if (version == 2)
10968 nr_columns = read_4_bytes (dbfd, index_ptr);
10969 else
10970 nr_columns = 0;
10971 index_ptr += 4;
10972 nr_units = read_4_bytes (dbfd, index_ptr);
10973 index_ptr += 4;
10974 nr_slots = read_4_bytes (dbfd, index_ptr);
10975 index_ptr += 4;
10976
10977 if (version != 1 && version != 2)
10978 {
10979 error (_("Dwarf Error: unsupported DWP file version (%s)"
10980 " [in module %s]"),
10981 pulongest (version), dwp_file->name);
10982 }
10983 if (nr_slots != (nr_slots & -nr_slots))
10984 {
10985 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
10986 " is not power of 2 [in module %s]"),
10987 pulongest (nr_slots), dwp_file->name);
10988 }
10989
10990 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
10991 htab->version = version;
10992 htab->nr_columns = nr_columns;
10993 htab->nr_units = nr_units;
10994 htab->nr_slots = nr_slots;
10995 htab->hash_table = index_ptr;
10996 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
10997
10998 /* Exit early if the table is empty. */
10999 if (nr_slots == 0 || nr_units == 0
11000 || (version == 2 && nr_columns == 0))
11001 {
11002 /* All must be zero. */
11003 if (nr_slots != 0 || nr_units != 0
11004 || (version == 2 && nr_columns != 0))
11005 {
11006 complaint (&symfile_complaints,
11007 _("Empty DWP but nr_slots,nr_units,nr_columns not"
11008 " all zero [in modules %s]"),
11009 dwp_file->name);
11010 }
11011 return htab;
11012 }
11013
11014 if (version == 1)
11015 {
11016 htab->section_pool.v1.indices =
11017 htab->unit_table + sizeof (uint32_t) * nr_slots;
11018 /* It's harder to decide whether the section is too small in v1.
11019 V1 is deprecated anyway so we punt. */
11020 }
11021 else
11022 {
11023 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11024 int *ids = htab->section_pool.v2.section_ids;
11025 /* Reverse map for error checking. */
11026 int ids_seen[DW_SECT_MAX + 1];
11027 int i;
11028
11029 if (nr_columns < 2)
11030 {
11031 error (_("Dwarf Error: bad DWP hash table, too few columns"
11032 " in section table [in module %s]"),
11033 dwp_file->name);
11034 }
11035 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11036 {
11037 error (_("Dwarf Error: bad DWP hash table, too many columns"
11038 " in section table [in module %s]"),
11039 dwp_file->name);
11040 }
11041 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
11042 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
11043 for (i = 0; i < nr_columns; ++i)
11044 {
11045 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11046
11047 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11048 {
11049 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11050 " in section table [in module %s]"),
11051 id, dwp_file->name);
11052 }
11053 if (ids_seen[id] != -1)
11054 {
11055 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11056 " id %d in section table [in module %s]"),
11057 id, dwp_file->name);
11058 }
11059 ids_seen[id] = i;
11060 ids[i] = id;
11061 }
11062 /* Must have exactly one info or types section. */
11063 if (((ids_seen[DW_SECT_INFO] != -1)
11064 + (ids_seen[DW_SECT_TYPES] != -1))
11065 != 1)
11066 {
11067 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11068 " DWO info/types section [in module %s]"),
11069 dwp_file->name);
11070 }
11071 /* Must have an abbrev section. */
11072 if (ids_seen[DW_SECT_ABBREV] == -1)
11073 {
11074 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11075 " section [in module %s]"),
11076 dwp_file->name);
11077 }
11078 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11079 htab->section_pool.v2.sizes =
11080 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11081 * nr_units * nr_columns);
11082 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11083 * nr_units * nr_columns))
11084 > index_end)
11085 {
11086 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11087 " [in module %s]"),
11088 dwp_file->name);
11089 }
11090 }
11091
11092 return htab;
11093 }
11094
11095 /* Update SECTIONS with the data from SECTP.
11096
11097 This function is like the other "locate" section routines that are
11098 passed to bfd_map_over_sections, but in this context the sections to
11099 read comes from the DWP V1 hash table, not the full ELF section table.
11100
11101 The result is non-zero for success, or zero if an error was found. */
11102
11103 static int
11104 locate_v1_virtual_dwo_sections (asection *sectp,
11105 struct virtual_v1_dwo_sections *sections)
11106 {
11107 const struct dwop_section_names *names = &dwop_section_names;
11108
11109 if (section_is_p (sectp->name, &names->abbrev_dwo))
11110 {
11111 /* There can be only one. */
11112 if (sections->abbrev.s.section != NULL)
11113 return 0;
11114 sections->abbrev.s.section = sectp;
11115 sections->abbrev.size = bfd_get_section_size (sectp);
11116 }
11117 else if (section_is_p (sectp->name, &names->info_dwo)
11118 || section_is_p (sectp->name, &names->types_dwo))
11119 {
11120 /* There can be only one. */
11121 if (sections->info_or_types.s.section != NULL)
11122 return 0;
11123 sections->info_or_types.s.section = sectp;
11124 sections->info_or_types.size = bfd_get_section_size (sectp);
11125 }
11126 else if (section_is_p (sectp->name, &names->line_dwo))
11127 {
11128 /* There can be only one. */
11129 if (sections->line.s.section != NULL)
11130 return 0;
11131 sections->line.s.section = sectp;
11132 sections->line.size = bfd_get_section_size (sectp);
11133 }
11134 else if (section_is_p (sectp->name, &names->loc_dwo))
11135 {
11136 /* There can be only one. */
11137 if (sections->loc.s.section != NULL)
11138 return 0;
11139 sections->loc.s.section = sectp;
11140 sections->loc.size = bfd_get_section_size (sectp);
11141 }
11142 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11143 {
11144 /* There can be only one. */
11145 if (sections->macinfo.s.section != NULL)
11146 return 0;
11147 sections->macinfo.s.section = sectp;
11148 sections->macinfo.size = bfd_get_section_size (sectp);
11149 }
11150 else if (section_is_p (sectp->name, &names->macro_dwo))
11151 {
11152 /* There can be only one. */
11153 if (sections->macro.s.section != NULL)
11154 return 0;
11155 sections->macro.s.section = sectp;
11156 sections->macro.size = bfd_get_section_size (sectp);
11157 }
11158 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11159 {
11160 /* There can be only one. */
11161 if (sections->str_offsets.s.section != NULL)
11162 return 0;
11163 sections->str_offsets.s.section = sectp;
11164 sections->str_offsets.size = bfd_get_section_size (sectp);
11165 }
11166 else
11167 {
11168 /* No other kind of section is valid. */
11169 return 0;
11170 }
11171
11172 return 1;
11173 }
11174
11175 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11176 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11177 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11178 This is for DWP version 1 files. */
11179
11180 static struct dwo_unit *
11181 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
11182 uint32_t unit_index,
11183 const char *comp_dir,
11184 ULONGEST signature, int is_debug_types)
11185 {
11186 struct objfile *objfile = dwarf2_per_objfile->objfile;
11187 const struct dwp_hash_table *dwp_htab =
11188 is_debug_types ? dwp_file->tus : dwp_file->cus;
11189 bfd *dbfd = dwp_file->dbfd;
11190 const char *kind = is_debug_types ? "TU" : "CU";
11191 struct dwo_file *dwo_file;
11192 struct dwo_unit *dwo_unit;
11193 struct virtual_v1_dwo_sections sections;
11194 void **dwo_file_slot;
11195 int i;
11196
11197 gdb_assert (dwp_file->version == 1);
11198
11199 if (dwarf_read_debug)
11200 {
11201 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11202 kind,
11203 pulongest (unit_index), hex_string (signature),
11204 dwp_file->name);
11205 }
11206
11207 /* Fetch the sections of this DWO unit.
11208 Put a limit on the number of sections we look for so that bad data
11209 doesn't cause us to loop forever. */
11210
11211 #define MAX_NR_V1_DWO_SECTIONS \
11212 (1 /* .debug_info or .debug_types */ \
11213 + 1 /* .debug_abbrev */ \
11214 + 1 /* .debug_line */ \
11215 + 1 /* .debug_loc */ \
11216 + 1 /* .debug_str_offsets */ \
11217 + 1 /* .debug_macro or .debug_macinfo */ \
11218 + 1 /* trailing zero */)
11219
11220 memset (&sections, 0, sizeof (sections));
11221
11222 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11223 {
11224 asection *sectp;
11225 uint32_t section_nr =
11226 read_4_bytes (dbfd,
11227 dwp_htab->section_pool.v1.indices
11228 + (unit_index + i) * sizeof (uint32_t));
11229
11230 if (section_nr == 0)
11231 break;
11232 if (section_nr >= dwp_file->num_sections)
11233 {
11234 error (_("Dwarf Error: bad DWP hash table, section number too large"
11235 " [in module %s]"),
11236 dwp_file->name);
11237 }
11238
11239 sectp = dwp_file->elf_sections[section_nr];
11240 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11241 {
11242 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11243 " [in module %s]"),
11244 dwp_file->name);
11245 }
11246 }
11247
11248 if (i < 2
11249 || dwarf2_section_empty_p (&sections.info_or_types)
11250 || dwarf2_section_empty_p (&sections.abbrev))
11251 {
11252 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11253 " [in module %s]"),
11254 dwp_file->name);
11255 }
11256 if (i == MAX_NR_V1_DWO_SECTIONS)
11257 {
11258 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11259 " [in module %s]"),
11260 dwp_file->name);
11261 }
11262
11263 /* It's easier for the rest of the code if we fake a struct dwo_file and
11264 have dwo_unit "live" in that. At least for now.
11265
11266 The DWP file can be made up of a random collection of CUs and TUs.
11267 However, for each CU + set of TUs that came from the same original DWO
11268 file, we can combine them back into a virtual DWO file to save space
11269 (fewer struct dwo_file objects to allocate). Remember that for really
11270 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11271
11272 std::string virtual_dwo_name =
11273 string_printf ("virtual-dwo/%d-%d-%d-%d",
11274 get_section_id (&sections.abbrev),
11275 get_section_id (&sections.line),
11276 get_section_id (&sections.loc),
11277 get_section_id (&sections.str_offsets));
11278 /* Can we use an existing virtual DWO file? */
11279 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11280 /* Create one if necessary. */
11281 if (*dwo_file_slot == NULL)
11282 {
11283 if (dwarf_read_debug)
11284 {
11285 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11286 virtual_dwo_name.c_str ());
11287 }
11288 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11289 dwo_file->dwo_name
11290 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11291 virtual_dwo_name.c_str (),
11292 virtual_dwo_name.size ());
11293 dwo_file->comp_dir = comp_dir;
11294 dwo_file->sections.abbrev = sections.abbrev;
11295 dwo_file->sections.line = sections.line;
11296 dwo_file->sections.loc = sections.loc;
11297 dwo_file->sections.macinfo = sections.macinfo;
11298 dwo_file->sections.macro = sections.macro;
11299 dwo_file->sections.str_offsets = sections.str_offsets;
11300 /* The "str" section is global to the entire DWP file. */
11301 dwo_file->sections.str = dwp_file->sections.str;
11302 /* The info or types section is assigned below to dwo_unit,
11303 there's no need to record it in dwo_file.
11304 Also, we can't simply record type sections in dwo_file because
11305 we record a pointer into the vector in dwo_unit. As we collect more
11306 types we'll grow the vector and eventually have to reallocate space
11307 for it, invalidating all copies of pointers into the previous
11308 contents. */
11309 *dwo_file_slot = dwo_file;
11310 }
11311 else
11312 {
11313 if (dwarf_read_debug)
11314 {
11315 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11316 virtual_dwo_name.c_str ());
11317 }
11318 dwo_file = (struct dwo_file *) *dwo_file_slot;
11319 }
11320
11321 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11322 dwo_unit->dwo_file = dwo_file;
11323 dwo_unit->signature = signature;
11324 dwo_unit->section =
11325 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11326 *dwo_unit->section = sections.info_or_types;
11327 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11328
11329 return dwo_unit;
11330 }
11331
11332 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11333 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11334 piece within that section used by a TU/CU, return a virtual section
11335 of just that piece. */
11336
11337 static struct dwarf2_section_info
11338 create_dwp_v2_section (struct dwarf2_section_info *section,
11339 bfd_size_type offset, bfd_size_type size)
11340 {
11341 struct dwarf2_section_info result;
11342 asection *sectp;
11343
11344 gdb_assert (section != NULL);
11345 gdb_assert (!section->is_virtual);
11346
11347 memset (&result, 0, sizeof (result));
11348 result.s.containing_section = section;
11349 result.is_virtual = 1;
11350
11351 if (size == 0)
11352 return result;
11353
11354 sectp = get_section_bfd_section (section);
11355
11356 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11357 bounds of the real section. This is a pretty-rare event, so just
11358 flag an error (easier) instead of a warning and trying to cope. */
11359 if (sectp == NULL
11360 || offset + size > bfd_get_section_size (sectp))
11361 {
11362 bfd *abfd = sectp->owner;
11363
11364 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11365 " in section %s [in module %s]"),
11366 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
11367 objfile_name (dwarf2_per_objfile->objfile));
11368 }
11369
11370 result.virtual_offset = offset;
11371 result.size = size;
11372 return result;
11373 }
11374
11375 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11376 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11377 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11378 This is for DWP version 2 files. */
11379
11380 static struct dwo_unit *
11381 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
11382 uint32_t unit_index,
11383 const char *comp_dir,
11384 ULONGEST signature, int is_debug_types)
11385 {
11386 struct objfile *objfile = dwarf2_per_objfile->objfile;
11387 const struct dwp_hash_table *dwp_htab =
11388 is_debug_types ? dwp_file->tus : dwp_file->cus;
11389 bfd *dbfd = dwp_file->dbfd;
11390 const char *kind = is_debug_types ? "TU" : "CU";
11391 struct dwo_file *dwo_file;
11392 struct dwo_unit *dwo_unit;
11393 struct virtual_v2_dwo_sections sections;
11394 void **dwo_file_slot;
11395 int i;
11396
11397 gdb_assert (dwp_file->version == 2);
11398
11399 if (dwarf_read_debug)
11400 {
11401 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11402 kind,
11403 pulongest (unit_index), hex_string (signature),
11404 dwp_file->name);
11405 }
11406
11407 /* Fetch the section offsets of this DWO unit. */
11408
11409 memset (&sections, 0, sizeof (sections));
11410
11411 for (i = 0; i < dwp_htab->nr_columns; ++i)
11412 {
11413 uint32_t offset = read_4_bytes (dbfd,
11414 dwp_htab->section_pool.v2.offsets
11415 + (((unit_index - 1) * dwp_htab->nr_columns
11416 + i)
11417 * sizeof (uint32_t)));
11418 uint32_t size = read_4_bytes (dbfd,
11419 dwp_htab->section_pool.v2.sizes
11420 + (((unit_index - 1) * dwp_htab->nr_columns
11421 + i)
11422 * sizeof (uint32_t)));
11423
11424 switch (dwp_htab->section_pool.v2.section_ids[i])
11425 {
11426 case DW_SECT_INFO:
11427 case DW_SECT_TYPES:
11428 sections.info_or_types_offset = offset;
11429 sections.info_or_types_size = size;
11430 break;
11431 case DW_SECT_ABBREV:
11432 sections.abbrev_offset = offset;
11433 sections.abbrev_size = size;
11434 break;
11435 case DW_SECT_LINE:
11436 sections.line_offset = offset;
11437 sections.line_size = size;
11438 break;
11439 case DW_SECT_LOC:
11440 sections.loc_offset = offset;
11441 sections.loc_size = size;
11442 break;
11443 case DW_SECT_STR_OFFSETS:
11444 sections.str_offsets_offset = offset;
11445 sections.str_offsets_size = size;
11446 break;
11447 case DW_SECT_MACINFO:
11448 sections.macinfo_offset = offset;
11449 sections.macinfo_size = size;
11450 break;
11451 case DW_SECT_MACRO:
11452 sections.macro_offset = offset;
11453 sections.macro_size = size;
11454 break;
11455 }
11456 }
11457
11458 /* It's easier for the rest of the code if we fake a struct dwo_file and
11459 have dwo_unit "live" in that. At least for now.
11460
11461 The DWP file can be made up of a random collection of CUs and TUs.
11462 However, for each CU + set of TUs that came from the same original DWO
11463 file, we can combine them back into a virtual DWO file to save space
11464 (fewer struct dwo_file objects to allocate). Remember that for really
11465 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11466
11467 std::string virtual_dwo_name =
11468 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11469 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11470 (long) (sections.line_size ? sections.line_offset : 0),
11471 (long) (sections.loc_size ? sections.loc_offset : 0),
11472 (long) (sections.str_offsets_size
11473 ? sections.str_offsets_offset : 0));
11474 /* Can we use an existing virtual DWO file? */
11475 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name.c_str (), comp_dir);
11476 /* Create one if necessary. */
11477 if (*dwo_file_slot == NULL)
11478 {
11479 if (dwarf_read_debug)
11480 {
11481 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11482 virtual_dwo_name.c_str ());
11483 }
11484 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11485 dwo_file->dwo_name
11486 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
11487 virtual_dwo_name.c_str (),
11488 virtual_dwo_name.size ());
11489 dwo_file->comp_dir = comp_dir;
11490 dwo_file->sections.abbrev =
11491 create_dwp_v2_section (&dwp_file->sections.abbrev,
11492 sections.abbrev_offset, sections.abbrev_size);
11493 dwo_file->sections.line =
11494 create_dwp_v2_section (&dwp_file->sections.line,
11495 sections.line_offset, sections.line_size);
11496 dwo_file->sections.loc =
11497 create_dwp_v2_section (&dwp_file->sections.loc,
11498 sections.loc_offset, sections.loc_size);
11499 dwo_file->sections.macinfo =
11500 create_dwp_v2_section (&dwp_file->sections.macinfo,
11501 sections.macinfo_offset, sections.macinfo_size);
11502 dwo_file->sections.macro =
11503 create_dwp_v2_section (&dwp_file->sections.macro,
11504 sections.macro_offset, sections.macro_size);
11505 dwo_file->sections.str_offsets =
11506 create_dwp_v2_section (&dwp_file->sections.str_offsets,
11507 sections.str_offsets_offset,
11508 sections.str_offsets_size);
11509 /* The "str" section is global to the entire DWP file. */
11510 dwo_file->sections.str = dwp_file->sections.str;
11511 /* The info or types section is assigned below to dwo_unit,
11512 there's no need to record it in dwo_file.
11513 Also, we can't simply record type sections in dwo_file because
11514 we record a pointer into the vector in dwo_unit. As we collect more
11515 types we'll grow the vector and eventually have to reallocate space
11516 for it, invalidating all copies of pointers into the previous
11517 contents. */
11518 *dwo_file_slot = dwo_file;
11519 }
11520 else
11521 {
11522 if (dwarf_read_debug)
11523 {
11524 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11525 virtual_dwo_name.c_str ());
11526 }
11527 dwo_file = (struct dwo_file *) *dwo_file_slot;
11528 }
11529
11530 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11531 dwo_unit->dwo_file = dwo_file;
11532 dwo_unit->signature = signature;
11533 dwo_unit->section =
11534 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11535 *dwo_unit->section = create_dwp_v2_section (is_debug_types
11536 ? &dwp_file->sections.types
11537 : &dwp_file->sections.info,
11538 sections.info_or_types_offset,
11539 sections.info_or_types_size);
11540 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11541
11542 return dwo_unit;
11543 }
11544
11545 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11546 Returns NULL if the signature isn't found. */
11547
11548 static struct dwo_unit *
11549 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
11550 ULONGEST signature, int is_debug_types)
11551 {
11552 const struct dwp_hash_table *dwp_htab =
11553 is_debug_types ? dwp_file->tus : dwp_file->cus;
11554 bfd *dbfd = dwp_file->dbfd;
11555 uint32_t mask = dwp_htab->nr_slots - 1;
11556 uint32_t hash = signature & mask;
11557 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11558 unsigned int i;
11559 void **slot;
11560 struct dwo_unit find_dwo_cu;
11561
11562 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11563 find_dwo_cu.signature = signature;
11564 slot = htab_find_slot (is_debug_types
11565 ? dwp_file->loaded_tus
11566 : dwp_file->loaded_cus,
11567 &find_dwo_cu, INSERT);
11568
11569 if (*slot != NULL)
11570 return (struct dwo_unit *) *slot;
11571
11572 /* Use a for loop so that we don't loop forever on bad debug info. */
11573 for (i = 0; i < dwp_htab->nr_slots; ++i)
11574 {
11575 ULONGEST signature_in_table;
11576
11577 signature_in_table =
11578 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11579 if (signature_in_table == signature)
11580 {
11581 uint32_t unit_index =
11582 read_4_bytes (dbfd,
11583 dwp_htab->unit_table + hash * sizeof (uint32_t));
11584
11585 if (dwp_file->version == 1)
11586 {
11587 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
11588 comp_dir, signature,
11589 is_debug_types);
11590 }
11591 else
11592 {
11593 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
11594 comp_dir, signature,
11595 is_debug_types);
11596 }
11597 return (struct dwo_unit *) *slot;
11598 }
11599 if (signature_in_table == 0)
11600 return NULL;
11601 hash = (hash + hash2) & mask;
11602 }
11603
11604 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11605 " [in module %s]"),
11606 dwp_file->name);
11607 }
11608
11609 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11610 Open the file specified by FILE_NAME and hand it off to BFD for
11611 preliminary analysis. Return a newly initialized bfd *, which
11612 includes a canonicalized copy of FILE_NAME.
11613 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
11614 SEARCH_CWD is true if the current directory is to be searched.
11615 It will be searched before debug-file-directory.
11616 If successful, the file is added to the bfd include table of the
11617 objfile's bfd (see gdb_bfd_record_inclusion).
11618 If unable to find/open the file, return NULL.
11619 NOTE: This function is derived from symfile_bfd_open. */
11620
11621 static gdb_bfd_ref_ptr
11622 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
11623 {
11624 int desc, flags;
11625 char *absolute_name;
11626 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
11627 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
11628 to debug_file_directory. */
11629 char *search_path;
11630 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
11631
11632 if (search_cwd)
11633 {
11634 if (*debug_file_directory != '\0')
11635 search_path = concat (".", dirname_separator_string,
11636 debug_file_directory, (char *) NULL);
11637 else
11638 search_path = xstrdup (".");
11639 }
11640 else
11641 search_path = xstrdup (debug_file_directory);
11642
11643 flags = OPF_RETURN_REALPATH;
11644 if (is_dwp)
11645 flags |= OPF_SEARCH_IN_PATH;
11646 desc = openp (search_path, flags, file_name,
11647 O_RDONLY | O_BINARY, &absolute_name);
11648 xfree (search_path);
11649 if (desc < 0)
11650 return NULL;
11651
11652 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
11653 xfree (absolute_name);
11654 if (sym_bfd == NULL)
11655 return NULL;
11656 bfd_set_cacheable (sym_bfd.get (), 1);
11657
11658 if (!bfd_check_format (sym_bfd.get (), bfd_object))
11659 return NULL;
11660
11661 /* Success. Record the bfd as having been included by the objfile's bfd.
11662 This is important because things like demangled_names_hash lives in the
11663 objfile's per_bfd space and may have references to things like symbol
11664 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
11665 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
11666
11667 return sym_bfd;
11668 }
11669
11670 /* Try to open DWO file FILE_NAME.
11671 COMP_DIR is the DW_AT_comp_dir attribute.
11672 The result is the bfd handle of the file.
11673 If there is a problem finding or opening the file, return NULL.
11674 Upon success, the canonicalized path of the file is stored in the bfd,
11675 same as symfile_bfd_open. */
11676
11677 static gdb_bfd_ref_ptr
11678 open_dwo_file (const char *file_name, const char *comp_dir)
11679 {
11680 if (IS_ABSOLUTE_PATH (file_name))
11681 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
11682
11683 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
11684
11685 if (comp_dir != NULL)
11686 {
11687 char *path_to_try = concat (comp_dir, SLASH_STRING,
11688 file_name, (char *) NULL);
11689
11690 /* NOTE: If comp_dir is a relative path, this will also try the
11691 search path, which seems useful. */
11692 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
11693 1 /*search_cwd*/));
11694 xfree (path_to_try);
11695 if (abfd != NULL)
11696 return abfd;
11697 }
11698
11699 /* That didn't work, try debug-file-directory, which, despite its name,
11700 is a list of paths. */
11701
11702 if (*debug_file_directory == '\0')
11703 return NULL;
11704
11705 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
11706 }
11707
11708 /* This function is mapped across the sections and remembers the offset and
11709 size of each of the DWO debugging sections we are interested in. */
11710
11711 static void
11712 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
11713 {
11714 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
11715 const struct dwop_section_names *names = &dwop_section_names;
11716
11717 if (section_is_p (sectp->name, &names->abbrev_dwo))
11718 {
11719 dwo_sections->abbrev.s.section = sectp;
11720 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
11721 }
11722 else if (section_is_p (sectp->name, &names->info_dwo))
11723 {
11724 dwo_sections->info.s.section = sectp;
11725 dwo_sections->info.size = bfd_get_section_size (sectp);
11726 }
11727 else if (section_is_p (sectp->name, &names->line_dwo))
11728 {
11729 dwo_sections->line.s.section = sectp;
11730 dwo_sections->line.size = bfd_get_section_size (sectp);
11731 }
11732 else if (section_is_p (sectp->name, &names->loc_dwo))
11733 {
11734 dwo_sections->loc.s.section = sectp;
11735 dwo_sections->loc.size = bfd_get_section_size (sectp);
11736 }
11737 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11738 {
11739 dwo_sections->macinfo.s.section = sectp;
11740 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
11741 }
11742 else if (section_is_p (sectp->name, &names->macro_dwo))
11743 {
11744 dwo_sections->macro.s.section = sectp;
11745 dwo_sections->macro.size = bfd_get_section_size (sectp);
11746 }
11747 else if (section_is_p (sectp->name, &names->str_dwo))
11748 {
11749 dwo_sections->str.s.section = sectp;
11750 dwo_sections->str.size = bfd_get_section_size (sectp);
11751 }
11752 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11753 {
11754 dwo_sections->str_offsets.s.section = sectp;
11755 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
11756 }
11757 else if (section_is_p (sectp->name, &names->types_dwo))
11758 {
11759 struct dwarf2_section_info type_section;
11760
11761 memset (&type_section, 0, sizeof (type_section));
11762 type_section.s.section = sectp;
11763 type_section.size = bfd_get_section_size (sectp);
11764 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
11765 &type_section);
11766 }
11767 }
11768
11769 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
11770 by PER_CU. This is for the non-DWP case.
11771 The result is NULL if DWO_NAME can't be found. */
11772
11773 static struct dwo_file *
11774 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
11775 const char *dwo_name, const char *comp_dir)
11776 {
11777 struct objfile *objfile = dwarf2_per_objfile->objfile;
11778 struct dwo_file *dwo_file;
11779 struct cleanup *cleanups;
11780
11781 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
11782 if (dbfd == NULL)
11783 {
11784 if (dwarf_read_debug)
11785 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
11786 return NULL;
11787 }
11788 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
11789 dwo_file->dwo_name = dwo_name;
11790 dwo_file->comp_dir = comp_dir;
11791 dwo_file->dbfd = dbfd.release ();
11792
11793 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
11794
11795 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
11796 &dwo_file->sections);
11797
11798 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
11799
11800 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
11801 dwo_file->tus);
11802
11803 discard_cleanups (cleanups);
11804
11805 if (dwarf_read_debug)
11806 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
11807
11808 return dwo_file;
11809 }
11810
11811 /* This function is mapped across the sections and remembers the offset and
11812 size of each of the DWP debugging sections common to version 1 and 2 that
11813 we are interested in. */
11814
11815 static void
11816 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
11817 void *dwp_file_ptr)
11818 {
11819 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11820 const struct dwop_section_names *names = &dwop_section_names;
11821 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11822
11823 /* Record the ELF section number for later lookup: this is what the
11824 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11825 gdb_assert (elf_section_nr < dwp_file->num_sections);
11826 dwp_file->elf_sections[elf_section_nr] = sectp;
11827
11828 /* Look for specific sections that we need. */
11829 if (section_is_p (sectp->name, &names->str_dwo))
11830 {
11831 dwp_file->sections.str.s.section = sectp;
11832 dwp_file->sections.str.size = bfd_get_section_size (sectp);
11833 }
11834 else if (section_is_p (sectp->name, &names->cu_index))
11835 {
11836 dwp_file->sections.cu_index.s.section = sectp;
11837 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
11838 }
11839 else if (section_is_p (sectp->name, &names->tu_index))
11840 {
11841 dwp_file->sections.tu_index.s.section = sectp;
11842 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
11843 }
11844 }
11845
11846 /* This function is mapped across the sections and remembers the offset and
11847 size of each of the DWP version 2 debugging sections that we are interested
11848 in. This is split into a separate function because we don't know if we
11849 have version 1 or 2 until we parse the cu_index/tu_index sections. */
11850
11851 static void
11852 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
11853 {
11854 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
11855 const struct dwop_section_names *names = &dwop_section_names;
11856 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
11857
11858 /* Record the ELF section number for later lookup: this is what the
11859 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
11860 gdb_assert (elf_section_nr < dwp_file->num_sections);
11861 dwp_file->elf_sections[elf_section_nr] = sectp;
11862
11863 /* Look for specific sections that we need. */
11864 if (section_is_p (sectp->name, &names->abbrev_dwo))
11865 {
11866 dwp_file->sections.abbrev.s.section = sectp;
11867 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
11868 }
11869 else if (section_is_p (sectp->name, &names->info_dwo))
11870 {
11871 dwp_file->sections.info.s.section = sectp;
11872 dwp_file->sections.info.size = bfd_get_section_size (sectp);
11873 }
11874 else if (section_is_p (sectp->name, &names->line_dwo))
11875 {
11876 dwp_file->sections.line.s.section = sectp;
11877 dwp_file->sections.line.size = bfd_get_section_size (sectp);
11878 }
11879 else if (section_is_p (sectp->name, &names->loc_dwo))
11880 {
11881 dwp_file->sections.loc.s.section = sectp;
11882 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
11883 }
11884 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11885 {
11886 dwp_file->sections.macinfo.s.section = sectp;
11887 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
11888 }
11889 else if (section_is_p (sectp->name, &names->macro_dwo))
11890 {
11891 dwp_file->sections.macro.s.section = sectp;
11892 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
11893 }
11894 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11895 {
11896 dwp_file->sections.str_offsets.s.section = sectp;
11897 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
11898 }
11899 else if (section_is_p (sectp->name, &names->types_dwo))
11900 {
11901 dwp_file->sections.types.s.section = sectp;
11902 dwp_file->sections.types.size = bfd_get_section_size (sectp);
11903 }
11904 }
11905
11906 /* Hash function for dwp_file loaded CUs/TUs. */
11907
11908 static hashval_t
11909 hash_dwp_loaded_cutus (const void *item)
11910 {
11911 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11912
11913 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11914 return dwo_unit->signature;
11915 }
11916
11917 /* Equality function for dwp_file loaded CUs/TUs. */
11918
11919 static int
11920 eq_dwp_loaded_cutus (const void *a, const void *b)
11921 {
11922 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11923 const struct dwo_unit *dub = (const struct dwo_unit *) b;
11924
11925 return dua->signature == dub->signature;
11926 }
11927
11928 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
11929
11930 static htab_t
11931 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11932 {
11933 return htab_create_alloc_ex (3,
11934 hash_dwp_loaded_cutus,
11935 eq_dwp_loaded_cutus,
11936 NULL,
11937 &objfile->objfile_obstack,
11938 hashtab_obstack_allocate,
11939 dummy_obstack_deallocate);
11940 }
11941
11942 /* Try to open DWP file FILE_NAME.
11943 The result is the bfd handle of the file.
11944 If there is a problem finding or opening the file, return NULL.
11945 Upon success, the canonicalized path of the file is stored in the bfd,
11946 same as symfile_bfd_open. */
11947
11948 static gdb_bfd_ref_ptr
11949 open_dwp_file (const char *file_name)
11950 {
11951 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11952 1 /*search_cwd*/));
11953 if (abfd != NULL)
11954 return abfd;
11955
11956 /* Work around upstream bug 15652.
11957 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11958 [Whether that's a "bug" is debatable, but it is getting in our way.]
11959 We have no real idea where the dwp file is, because gdb's realpath-ing
11960 of the executable's path may have discarded the needed info.
11961 [IWBN if the dwp file name was recorded in the executable, akin to
11962 .gnu_debuglink, but that doesn't exist yet.]
11963 Strip the directory from FILE_NAME and search again. */
11964 if (*debug_file_directory != '\0')
11965 {
11966 /* Don't implicitly search the current directory here.
11967 If the user wants to search "." to handle this case,
11968 it must be added to debug-file-directory. */
11969 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11970 0 /*search_cwd*/);
11971 }
11972
11973 return NULL;
11974 }
11975
11976 /* Initialize the use of the DWP file for the current objfile.
11977 By convention the name of the DWP file is ${objfile}.dwp.
11978 The result is NULL if it can't be found. */
11979
11980 static struct dwp_file *
11981 open_and_init_dwp_file (void)
11982 {
11983 struct objfile *objfile = dwarf2_per_objfile->objfile;
11984 struct dwp_file *dwp_file;
11985
11986 /* Try to find first .dwp for the binary file before any symbolic links
11987 resolving. */
11988
11989 /* If the objfile is a debug file, find the name of the real binary
11990 file and get the name of dwp file from there. */
11991 std::string dwp_name;
11992 if (objfile->separate_debug_objfile_backlink != NULL)
11993 {
11994 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11995 const char *backlink_basename = lbasename (backlink->original_name);
11996
11997 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
11998 }
11999 else
12000 dwp_name = objfile->original_name;
12001
12002 dwp_name += ".dwp";
12003
12004 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
12005 if (dbfd == NULL
12006 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12007 {
12008 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12009 dwp_name = objfile_name (objfile);
12010 dwp_name += ".dwp";
12011 dbfd = open_dwp_file (dwp_name.c_str ());
12012 }
12013
12014 if (dbfd == NULL)
12015 {
12016 if (dwarf_read_debug)
12017 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12018 return NULL;
12019 }
12020 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
12021 dwp_file->name = bfd_get_filename (dbfd.get ());
12022 dwp_file->dbfd = dbfd.release ();
12023
12024 /* +1: section 0 is unused */
12025 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
12026 dwp_file->elf_sections =
12027 OBSTACK_CALLOC (&objfile->objfile_obstack,
12028 dwp_file->num_sections, asection *);
12029
12030 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
12031 dwp_file);
12032
12033 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
12034
12035 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
12036
12037 /* The DWP file version is stored in the hash table. Oh well. */
12038 if (dwp_file->cus && dwp_file->tus
12039 && dwp_file->cus->version != dwp_file->tus->version)
12040 {
12041 /* Technically speaking, we should try to limp along, but this is
12042 pretty bizarre. We use pulongest here because that's the established
12043 portability solution (e.g, we cannot use %u for uint32_t). */
12044 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12045 " TU version %s [in DWP file %s]"),
12046 pulongest (dwp_file->cus->version),
12047 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12048 }
12049
12050 if (dwp_file->cus)
12051 dwp_file->version = dwp_file->cus->version;
12052 else if (dwp_file->tus)
12053 dwp_file->version = dwp_file->tus->version;
12054 else
12055 dwp_file->version = 2;
12056
12057 if (dwp_file->version == 2)
12058 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
12059 dwp_file);
12060
12061 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
12062 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
12063
12064 if (dwarf_read_debug)
12065 {
12066 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12067 fprintf_unfiltered (gdb_stdlog,
12068 " %s CUs, %s TUs\n",
12069 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12070 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12071 }
12072
12073 return dwp_file;
12074 }
12075
12076 /* Wrapper around open_and_init_dwp_file, only open it once. */
12077
12078 static struct dwp_file *
12079 get_dwp_file (void)
12080 {
12081 if (! dwarf2_per_objfile->dwp_checked)
12082 {
12083 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
12084 dwarf2_per_objfile->dwp_checked = 1;
12085 }
12086 return dwarf2_per_objfile->dwp_file;
12087 }
12088
12089 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12090 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12091 or in the DWP file for the objfile, referenced by THIS_UNIT.
12092 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12093 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12094
12095 This is called, for example, when wanting to read a variable with a
12096 complex location. Therefore we don't want to do file i/o for every call.
12097 Therefore we don't want to look for a DWO file on every call.
12098 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12099 then we check if we've already seen DWO_NAME, and only THEN do we check
12100 for a DWO file.
12101
12102 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12103 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12104
12105 static struct dwo_unit *
12106 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12107 const char *dwo_name, const char *comp_dir,
12108 ULONGEST signature, int is_debug_types)
12109 {
12110 struct objfile *objfile = dwarf2_per_objfile->objfile;
12111 const char *kind = is_debug_types ? "TU" : "CU";
12112 void **dwo_file_slot;
12113 struct dwo_file *dwo_file;
12114 struct dwp_file *dwp_file;
12115
12116 /* First see if there's a DWP file.
12117 If we have a DWP file but didn't find the DWO inside it, don't
12118 look for the original DWO file. It makes gdb behave differently
12119 depending on whether one is debugging in the build tree. */
12120
12121 dwp_file = get_dwp_file ();
12122 if (dwp_file != NULL)
12123 {
12124 const struct dwp_hash_table *dwp_htab =
12125 is_debug_types ? dwp_file->tus : dwp_file->cus;
12126
12127 if (dwp_htab != NULL)
12128 {
12129 struct dwo_unit *dwo_cutu =
12130 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
12131 signature, is_debug_types);
12132
12133 if (dwo_cutu != NULL)
12134 {
12135 if (dwarf_read_debug)
12136 {
12137 fprintf_unfiltered (gdb_stdlog,
12138 "Virtual DWO %s %s found: @%s\n",
12139 kind, hex_string (signature),
12140 host_address_to_string (dwo_cutu));
12141 }
12142 return dwo_cutu;
12143 }
12144 }
12145 }
12146 else
12147 {
12148 /* No DWP file, look for the DWO file. */
12149
12150 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
12151 if (*dwo_file_slot == NULL)
12152 {
12153 /* Read in the file and build a table of the CUs/TUs it contains. */
12154 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12155 }
12156 /* NOTE: This will be NULL if unable to open the file. */
12157 dwo_file = (struct dwo_file *) *dwo_file_slot;
12158
12159 if (dwo_file != NULL)
12160 {
12161 struct dwo_unit *dwo_cutu = NULL;
12162
12163 if (is_debug_types && dwo_file->tus)
12164 {
12165 struct dwo_unit find_dwo_cutu;
12166
12167 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12168 find_dwo_cutu.signature = signature;
12169 dwo_cutu
12170 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
12171 }
12172 else if (!is_debug_types && dwo_file->cus)
12173 {
12174 struct dwo_unit find_dwo_cutu;
12175
12176 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12177 find_dwo_cutu.signature = signature;
12178 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
12179 &find_dwo_cutu);
12180 }
12181
12182 if (dwo_cutu != NULL)
12183 {
12184 if (dwarf_read_debug)
12185 {
12186 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12187 kind, dwo_name, hex_string (signature),
12188 host_address_to_string (dwo_cutu));
12189 }
12190 return dwo_cutu;
12191 }
12192 }
12193 }
12194
12195 /* We didn't find it. This could mean a dwo_id mismatch, or
12196 someone deleted the DWO/DWP file, or the search path isn't set up
12197 correctly to find the file. */
12198
12199 if (dwarf_read_debug)
12200 {
12201 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12202 kind, dwo_name, hex_string (signature));
12203 }
12204
12205 /* This is a warning and not a complaint because it can be caused by
12206 pilot error (e.g., user accidentally deleting the DWO). */
12207 {
12208 /* Print the name of the DWP file if we looked there, helps the user
12209 better diagnose the problem. */
12210 std::string dwp_text;
12211
12212 if (dwp_file != NULL)
12213 dwp_text = string_printf (" [in DWP file %s]",
12214 lbasename (dwp_file->name));
12215
12216 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
12217 " [in module %s]"),
12218 kind, dwo_name, hex_string (signature),
12219 dwp_text.c_str (),
12220 this_unit->is_debug_types ? "TU" : "CU",
12221 to_underlying (this_unit->sect_off), objfile_name (objfile));
12222 }
12223 return NULL;
12224 }
12225
12226 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12227 See lookup_dwo_cutu_unit for details. */
12228
12229 static struct dwo_unit *
12230 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12231 const char *dwo_name, const char *comp_dir,
12232 ULONGEST signature)
12233 {
12234 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12235 }
12236
12237 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12238 See lookup_dwo_cutu_unit for details. */
12239
12240 static struct dwo_unit *
12241 lookup_dwo_type_unit (struct signatured_type *this_tu,
12242 const char *dwo_name, const char *comp_dir)
12243 {
12244 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12245 }
12246
12247 /* Traversal function for queue_and_load_all_dwo_tus. */
12248
12249 static int
12250 queue_and_load_dwo_tu (void **slot, void *info)
12251 {
12252 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12253 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12254 ULONGEST signature = dwo_unit->signature;
12255 struct signatured_type *sig_type =
12256 lookup_dwo_signatured_type (per_cu->cu, signature);
12257
12258 if (sig_type != NULL)
12259 {
12260 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12261
12262 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12263 a real dependency of PER_CU on SIG_TYPE. That is detected later
12264 while processing PER_CU. */
12265 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12266 load_full_type_unit (sig_cu);
12267 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
12268 }
12269
12270 return 1;
12271 }
12272
12273 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12274 The DWO may have the only definition of the type, though it may not be
12275 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12276 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12277
12278 static void
12279 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12280 {
12281 struct dwo_unit *dwo_unit;
12282 struct dwo_file *dwo_file;
12283
12284 gdb_assert (!per_cu->is_debug_types);
12285 gdb_assert (get_dwp_file () == NULL);
12286 gdb_assert (per_cu->cu != NULL);
12287
12288 dwo_unit = per_cu->cu->dwo_unit;
12289 gdb_assert (dwo_unit != NULL);
12290
12291 dwo_file = dwo_unit->dwo_file;
12292 if (dwo_file->tus != NULL)
12293 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
12294 }
12295
12296 /* Free all resources associated with DWO_FILE.
12297 Close the DWO file and munmap the sections.
12298 All memory should be on the objfile obstack. */
12299
12300 static void
12301 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
12302 {
12303
12304 /* Note: dbfd is NULL for virtual DWO files. */
12305 gdb_bfd_unref (dwo_file->dbfd);
12306
12307 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
12308 }
12309
12310 /* Wrapper for free_dwo_file for use in cleanups. */
12311
12312 static void
12313 free_dwo_file_cleanup (void *arg)
12314 {
12315 struct dwo_file *dwo_file = (struct dwo_file *) arg;
12316 struct objfile *objfile = dwarf2_per_objfile->objfile;
12317
12318 free_dwo_file (dwo_file, objfile);
12319 }
12320
12321 /* Traversal function for free_dwo_files. */
12322
12323 static int
12324 free_dwo_file_from_slot (void **slot, void *info)
12325 {
12326 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
12327 struct objfile *objfile = (struct objfile *) info;
12328
12329 free_dwo_file (dwo_file, objfile);
12330
12331 return 1;
12332 }
12333
12334 /* Free all resources associated with DWO_FILES. */
12335
12336 static void
12337 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
12338 {
12339 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
12340 }
12341 \f
12342 /* Read in various DIEs. */
12343
12344 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12345 Inherit only the children of the DW_AT_abstract_origin DIE not being
12346 already referenced by DW_AT_abstract_origin from the children of the
12347 current DIE. */
12348
12349 static void
12350 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12351 {
12352 struct die_info *child_die;
12353 sect_offset *offsetp;
12354 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12355 struct die_info *origin_die;
12356 /* Iterator of the ORIGIN_DIE children. */
12357 struct die_info *origin_child_die;
12358 struct attribute *attr;
12359 struct dwarf2_cu *origin_cu;
12360 struct pending **origin_previous_list_in_scope;
12361
12362 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12363 if (!attr)
12364 return;
12365
12366 /* Note that following die references may follow to a die in a
12367 different cu. */
12368
12369 origin_cu = cu;
12370 origin_die = follow_die_ref (die, attr, &origin_cu);
12371
12372 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12373 symbols in. */
12374 origin_previous_list_in_scope = origin_cu->list_in_scope;
12375 origin_cu->list_in_scope = cu->list_in_scope;
12376
12377 if (die->tag != origin_die->tag
12378 && !(die->tag == DW_TAG_inlined_subroutine
12379 && origin_die->tag == DW_TAG_subprogram))
12380 complaint (&symfile_complaints,
12381 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
12382 to_underlying (die->sect_off),
12383 to_underlying (origin_die->sect_off));
12384
12385 std::vector<sect_offset> offsets;
12386
12387 for (child_die = die->child;
12388 child_die && child_die->tag;
12389 child_die = sibling_die (child_die))
12390 {
12391 struct die_info *child_origin_die;
12392 struct dwarf2_cu *child_origin_cu;
12393
12394 /* We are trying to process concrete instance entries:
12395 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12396 it's not relevant to our analysis here. i.e. detecting DIEs that are
12397 present in the abstract instance but not referenced in the concrete
12398 one. */
12399 if (child_die->tag == DW_TAG_call_site
12400 || child_die->tag == DW_TAG_GNU_call_site)
12401 continue;
12402
12403 /* For each CHILD_DIE, find the corresponding child of
12404 ORIGIN_DIE. If there is more than one layer of
12405 DW_AT_abstract_origin, follow them all; there shouldn't be,
12406 but GCC versions at least through 4.4 generate this (GCC PR
12407 40573). */
12408 child_origin_die = child_die;
12409 child_origin_cu = cu;
12410 while (1)
12411 {
12412 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12413 child_origin_cu);
12414 if (attr == NULL)
12415 break;
12416 child_origin_die = follow_die_ref (child_origin_die, attr,
12417 &child_origin_cu);
12418 }
12419
12420 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12421 counterpart may exist. */
12422 if (child_origin_die != child_die)
12423 {
12424 if (child_die->tag != child_origin_die->tag
12425 && !(child_die->tag == DW_TAG_inlined_subroutine
12426 && child_origin_die->tag == DW_TAG_subprogram))
12427 complaint (&symfile_complaints,
12428 _("Child DIE 0x%x and its abstract origin 0x%x have "
12429 "different tags"),
12430 to_underlying (child_die->sect_off),
12431 to_underlying (child_origin_die->sect_off));
12432 if (child_origin_die->parent != origin_die)
12433 complaint (&symfile_complaints,
12434 _("Child DIE 0x%x and its abstract origin 0x%x have "
12435 "different parents"),
12436 to_underlying (child_die->sect_off),
12437 to_underlying (child_origin_die->sect_off));
12438 else
12439 offsets.push_back (child_origin_die->sect_off);
12440 }
12441 }
12442 std::sort (offsets.begin (), offsets.end ());
12443 sect_offset *offsets_end = offsets.data () + offsets.size ();
12444 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12445 if (offsetp[-1] == *offsetp)
12446 complaint (&symfile_complaints,
12447 _("Multiple children of DIE 0x%x refer "
12448 "to DIE 0x%x as their abstract origin"),
12449 to_underlying (die->sect_off), to_underlying (*offsetp));
12450
12451 offsetp = offsets.data ();
12452 origin_child_die = origin_die->child;
12453 while (origin_child_die && origin_child_die->tag)
12454 {
12455 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12456 while (offsetp < offsets_end
12457 && *offsetp < origin_child_die->sect_off)
12458 offsetp++;
12459 if (offsetp >= offsets_end
12460 || *offsetp > origin_child_die->sect_off)
12461 {
12462 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12463 Check whether we're already processing ORIGIN_CHILD_DIE.
12464 This can happen with mutually referenced abstract_origins.
12465 PR 16581. */
12466 if (!origin_child_die->in_process)
12467 process_die (origin_child_die, origin_cu);
12468 }
12469 origin_child_die = sibling_die (origin_child_die);
12470 }
12471 origin_cu->list_in_scope = origin_previous_list_in_scope;
12472 }
12473
12474 static void
12475 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12476 {
12477 struct objfile *objfile = cu->objfile;
12478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12479 struct context_stack *newobj;
12480 CORE_ADDR lowpc;
12481 CORE_ADDR highpc;
12482 struct die_info *child_die;
12483 struct attribute *attr, *call_line, *call_file;
12484 const char *name;
12485 CORE_ADDR baseaddr;
12486 struct block *block;
12487 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12488 std::vector<struct symbol *> template_args;
12489 struct template_symbol *templ_func = NULL;
12490
12491 if (inlined_func)
12492 {
12493 /* If we do not have call site information, we can't show the
12494 caller of this inlined function. That's too confusing, so
12495 only use the scope for local variables. */
12496 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12497 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12498 if (call_line == NULL || call_file == NULL)
12499 {
12500 read_lexical_block_scope (die, cu);
12501 return;
12502 }
12503 }
12504
12505 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12506
12507 name = dwarf2_name (die, cu);
12508
12509 /* Ignore functions with missing or empty names. These are actually
12510 illegal according to the DWARF standard. */
12511 if (name == NULL)
12512 {
12513 complaint (&symfile_complaints,
12514 _("missing name for subprogram DIE at %d"),
12515 to_underlying (die->sect_off));
12516 return;
12517 }
12518
12519 /* Ignore functions with missing or invalid low and high pc attributes. */
12520 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12521 <= PC_BOUNDS_INVALID)
12522 {
12523 attr = dwarf2_attr (die, DW_AT_external, cu);
12524 if (!attr || !DW_UNSND (attr))
12525 complaint (&symfile_complaints,
12526 _("cannot get low and high bounds "
12527 "for subprogram DIE at %d"),
12528 to_underlying (die->sect_off));
12529 return;
12530 }
12531
12532 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12533 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12534
12535 /* If we have any template arguments, then we must allocate a
12536 different sort of symbol. */
12537 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
12538 {
12539 if (child_die->tag == DW_TAG_template_type_param
12540 || child_die->tag == DW_TAG_template_value_param)
12541 {
12542 templ_func = allocate_template_symbol (objfile);
12543 templ_func->subclass = SYMBOL_TEMPLATE;
12544 break;
12545 }
12546 }
12547
12548 newobj = push_context (0, lowpc);
12549 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
12550 (struct symbol *) templ_func);
12551
12552 /* If there is a location expression for DW_AT_frame_base, record
12553 it. */
12554 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12555 if (attr)
12556 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12557
12558 /* If there is a location for the static link, record it. */
12559 newobj->static_link = NULL;
12560 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12561 if (attr)
12562 {
12563 newobj->static_link
12564 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12565 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
12566 }
12567
12568 cu->list_in_scope = &local_symbols;
12569
12570 if (die->child != NULL)
12571 {
12572 child_die = die->child;
12573 while (child_die && child_die->tag)
12574 {
12575 if (child_die->tag == DW_TAG_template_type_param
12576 || child_die->tag == DW_TAG_template_value_param)
12577 {
12578 struct symbol *arg = new_symbol (child_die, NULL, cu);
12579
12580 if (arg != NULL)
12581 template_args.push_back (arg);
12582 }
12583 else
12584 process_die (child_die, cu);
12585 child_die = sibling_die (child_die);
12586 }
12587 }
12588
12589 inherit_abstract_dies (die, cu);
12590
12591 /* If we have a DW_AT_specification, we might need to import using
12592 directives from the context of the specification DIE. See the
12593 comment in determine_prefix. */
12594 if (cu->language == language_cplus
12595 && dwarf2_attr (die, DW_AT_specification, cu))
12596 {
12597 struct dwarf2_cu *spec_cu = cu;
12598 struct die_info *spec_die = die_specification (die, &spec_cu);
12599
12600 while (spec_die)
12601 {
12602 child_die = spec_die->child;
12603 while (child_die && child_die->tag)
12604 {
12605 if (child_die->tag == DW_TAG_imported_module)
12606 process_die (child_die, spec_cu);
12607 child_die = sibling_die (child_die);
12608 }
12609
12610 /* In some cases, GCC generates specification DIEs that
12611 themselves contain DW_AT_specification attributes. */
12612 spec_die = die_specification (spec_die, &spec_cu);
12613 }
12614 }
12615
12616 newobj = pop_context ();
12617 /* Make a block for the local symbols within. */
12618 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
12619 newobj->static_link, lowpc, highpc);
12620
12621 /* For C++, set the block's scope. */
12622 if ((cu->language == language_cplus
12623 || cu->language == language_fortran
12624 || cu->language == language_d
12625 || cu->language == language_rust)
12626 && cu->processing_has_namespace_info)
12627 block_set_scope (block, determine_prefix (die, cu),
12628 &objfile->objfile_obstack);
12629
12630 /* If we have address ranges, record them. */
12631 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12632
12633 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
12634
12635 /* Attach template arguments to function. */
12636 if (!template_args.empty ())
12637 {
12638 gdb_assert (templ_func != NULL);
12639
12640 templ_func->n_template_arguments = template_args.size ();
12641 templ_func->template_arguments
12642 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
12643 templ_func->n_template_arguments);
12644 memcpy (templ_func->template_arguments,
12645 template_args.data (),
12646 (templ_func->n_template_arguments * sizeof (struct symbol *)));
12647 }
12648
12649 /* In C++, we can have functions nested inside functions (e.g., when
12650 a function declares a class that has methods). This means that
12651 when we finish processing a function scope, we may need to go
12652 back to building a containing block's symbol lists. */
12653 local_symbols = newobj->locals;
12654 local_using_directives = newobj->local_using_directives;
12655
12656 /* If we've finished processing a top-level function, subsequent
12657 symbols go in the file symbol list. */
12658 if (outermost_context_p ())
12659 cu->list_in_scope = &file_symbols;
12660 }
12661
12662 /* Process all the DIES contained within a lexical block scope. Start
12663 a new scope, process the dies, and then close the scope. */
12664
12665 static void
12666 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
12667 {
12668 struct objfile *objfile = cu->objfile;
12669 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12670 struct context_stack *newobj;
12671 CORE_ADDR lowpc, highpc;
12672 struct die_info *child_die;
12673 CORE_ADDR baseaddr;
12674
12675 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12676
12677 /* Ignore blocks with missing or invalid low and high pc attributes. */
12678 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
12679 as multiple lexical blocks? Handling children in a sane way would
12680 be nasty. Might be easier to properly extend generic blocks to
12681 describe ranges. */
12682 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
12683 {
12684 case PC_BOUNDS_NOT_PRESENT:
12685 /* DW_TAG_lexical_block has no attributes, process its children as if
12686 there was no wrapping by that DW_TAG_lexical_block.
12687 GCC does no longer produces such DWARF since GCC r224161. */
12688 for (child_die = die->child;
12689 child_die != NULL && child_die->tag;
12690 child_die = sibling_die (child_die))
12691 process_die (child_die, cu);
12692 return;
12693 case PC_BOUNDS_INVALID:
12694 return;
12695 }
12696 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12697 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12698
12699 push_context (0, lowpc);
12700 if (die->child != NULL)
12701 {
12702 child_die = die->child;
12703 while (child_die && child_die->tag)
12704 {
12705 process_die (child_die, cu);
12706 child_die = sibling_die (child_die);
12707 }
12708 }
12709 inherit_abstract_dies (die, cu);
12710 newobj = pop_context ();
12711
12712 if (local_symbols != NULL || local_using_directives != NULL)
12713 {
12714 struct block *block
12715 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
12716 newobj->start_addr, highpc);
12717
12718 /* Note that recording ranges after traversing children, as we
12719 do here, means that recording a parent's ranges entails
12720 walking across all its children's ranges as they appear in
12721 the address map, which is quadratic behavior.
12722
12723 It would be nicer to record the parent's ranges before
12724 traversing its children, simply overriding whatever you find
12725 there. But since we don't even decide whether to create a
12726 block until after we've traversed its children, that's hard
12727 to do. */
12728 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12729 }
12730 local_symbols = newobj->locals;
12731 local_using_directives = newobj->local_using_directives;
12732 }
12733
12734 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
12735
12736 static void
12737 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
12738 {
12739 struct objfile *objfile = cu->objfile;
12740 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12741 CORE_ADDR pc, baseaddr;
12742 struct attribute *attr;
12743 struct call_site *call_site, call_site_local;
12744 void **slot;
12745 int nparams;
12746 struct die_info *child_die;
12747
12748 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12749
12750 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
12751 if (attr == NULL)
12752 {
12753 /* This was a pre-DWARF-5 GNU extension alias
12754 for DW_AT_call_return_pc. */
12755 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12756 }
12757 if (!attr)
12758 {
12759 complaint (&symfile_complaints,
12760 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
12761 "DIE 0x%x [in module %s]"),
12762 to_underlying (die->sect_off), objfile_name (objfile));
12763 return;
12764 }
12765 pc = attr_value_as_address (attr) + baseaddr;
12766 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
12767
12768 if (cu->call_site_htab == NULL)
12769 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
12770 NULL, &objfile->objfile_obstack,
12771 hashtab_obstack_allocate, NULL);
12772 call_site_local.pc = pc;
12773 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
12774 if (*slot != NULL)
12775 {
12776 complaint (&symfile_complaints,
12777 _("Duplicate PC %s for DW_TAG_call_site "
12778 "DIE 0x%x [in module %s]"),
12779 paddress (gdbarch, pc), to_underlying (die->sect_off),
12780 objfile_name (objfile));
12781 return;
12782 }
12783
12784 /* Count parameters at the caller. */
12785
12786 nparams = 0;
12787 for (child_die = die->child; child_die && child_die->tag;
12788 child_die = sibling_die (child_die))
12789 {
12790 if (child_die->tag != DW_TAG_call_site_parameter
12791 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12792 {
12793 complaint (&symfile_complaints,
12794 _("Tag %d is not DW_TAG_call_site_parameter in "
12795 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12796 child_die->tag, to_underlying (child_die->sect_off),
12797 objfile_name (objfile));
12798 continue;
12799 }
12800
12801 nparams++;
12802 }
12803
12804 call_site
12805 = ((struct call_site *)
12806 obstack_alloc (&objfile->objfile_obstack,
12807 sizeof (*call_site)
12808 + (sizeof (*call_site->parameter) * (nparams - 1))));
12809 *slot = call_site;
12810 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
12811 call_site->pc = pc;
12812
12813 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
12814 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
12815 {
12816 struct die_info *func_die;
12817
12818 /* Skip also over DW_TAG_inlined_subroutine. */
12819 for (func_die = die->parent;
12820 func_die && func_die->tag != DW_TAG_subprogram
12821 && func_die->tag != DW_TAG_subroutine_type;
12822 func_die = func_die->parent);
12823
12824 /* DW_AT_call_all_calls is a superset
12825 of DW_AT_call_all_tail_calls. */
12826 if (func_die
12827 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
12828 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
12829 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
12830 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
12831 {
12832 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
12833 not complete. But keep CALL_SITE for look ups via call_site_htab,
12834 both the initial caller containing the real return address PC and
12835 the final callee containing the current PC of a chain of tail
12836 calls do not need to have the tail call list complete. But any
12837 function candidate for a virtual tail call frame searched via
12838 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
12839 determined unambiguously. */
12840 }
12841 else
12842 {
12843 struct type *func_type = NULL;
12844
12845 if (func_die)
12846 func_type = get_die_type (func_die, cu);
12847 if (func_type != NULL)
12848 {
12849 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
12850
12851 /* Enlist this call site to the function. */
12852 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
12853 TYPE_TAIL_CALL_LIST (func_type) = call_site;
12854 }
12855 else
12856 complaint (&symfile_complaints,
12857 _("Cannot find function owning DW_TAG_call_site "
12858 "DIE 0x%x [in module %s]"),
12859 to_underlying (die->sect_off), objfile_name (objfile));
12860 }
12861 }
12862
12863 attr = dwarf2_attr (die, DW_AT_call_target, cu);
12864 if (attr == NULL)
12865 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
12866 if (attr == NULL)
12867 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
12868 if (attr == NULL)
12869 {
12870 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
12871 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12872 }
12873 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
12874 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
12875 /* Keep NULL DWARF_BLOCK. */;
12876 else if (attr_form_is_block (attr))
12877 {
12878 struct dwarf2_locexpr_baton *dlbaton;
12879
12880 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
12881 dlbaton->data = DW_BLOCK (attr)->data;
12882 dlbaton->size = DW_BLOCK (attr)->size;
12883 dlbaton->per_cu = cu->per_cu;
12884
12885 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12886 }
12887 else if (attr_form_is_ref (attr))
12888 {
12889 struct dwarf2_cu *target_cu = cu;
12890 struct die_info *target_die;
12891
12892 target_die = follow_die_ref (die, attr, &target_cu);
12893 gdb_assert (target_cu->objfile == objfile);
12894 if (die_is_declaration (target_die, target_cu))
12895 {
12896 const char *target_physname;
12897
12898 /* Prefer the mangled name; otherwise compute the demangled one. */
12899 target_physname = dw2_linkage_name (target_die, target_cu);
12900 if (target_physname == NULL)
12901 target_physname = dwarf2_physname (NULL, target_die, target_cu);
12902 if (target_physname == NULL)
12903 complaint (&symfile_complaints,
12904 _("DW_AT_call_target target DIE has invalid "
12905 "physname, for referencing DIE 0x%x [in module %s]"),
12906 to_underlying (die->sect_off), objfile_name (objfile));
12907 else
12908 SET_FIELD_PHYSNAME (call_site->target, target_physname);
12909 }
12910 else
12911 {
12912 CORE_ADDR lowpc;
12913
12914 /* DW_AT_entry_pc should be preferred. */
12915 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
12916 <= PC_BOUNDS_INVALID)
12917 complaint (&symfile_complaints,
12918 _("DW_AT_call_target target DIE has invalid "
12919 "low pc, for referencing DIE 0x%x [in module %s]"),
12920 to_underlying (die->sect_off), objfile_name (objfile));
12921 else
12922 {
12923 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12924 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12925 }
12926 }
12927 }
12928 else
12929 complaint (&symfile_complaints,
12930 _("DW_TAG_call_site DW_AT_call_target is neither "
12931 "block nor reference, for DIE 0x%x [in module %s]"),
12932 to_underlying (die->sect_off), objfile_name (objfile));
12933
12934 call_site->per_cu = cu->per_cu;
12935
12936 for (child_die = die->child;
12937 child_die && child_die->tag;
12938 child_die = sibling_die (child_die))
12939 {
12940 struct call_site_parameter *parameter;
12941 struct attribute *loc, *origin;
12942
12943 if (child_die->tag != DW_TAG_call_site_parameter
12944 && child_die->tag != DW_TAG_GNU_call_site_parameter)
12945 {
12946 /* Already printed the complaint above. */
12947 continue;
12948 }
12949
12950 gdb_assert (call_site->parameter_count < nparams);
12951 parameter = &call_site->parameter[call_site->parameter_count];
12952
12953 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12954 specifies DW_TAG_formal_parameter. Value of the data assumed for the
12955 register is contained in DW_AT_call_value. */
12956
12957 loc = dwarf2_attr (child_die, DW_AT_location, cu);
12958 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12959 if (origin == NULL)
12960 {
12961 /* This was a pre-DWARF-5 GNU extension alias
12962 for DW_AT_call_parameter. */
12963 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12964 }
12965 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
12966 {
12967 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
12968
12969 sect_offset sect_off
12970 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12971 if (!offset_in_cu_p (&cu->header, sect_off))
12972 {
12973 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12974 binding can be done only inside one CU. Such referenced DIE
12975 therefore cannot be even moved to DW_TAG_partial_unit. */
12976 complaint (&symfile_complaints,
12977 _("DW_AT_call_parameter offset is not in CU for "
12978 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12979 to_underlying (child_die->sect_off),
12980 objfile_name (objfile));
12981 continue;
12982 }
12983 parameter->u.param_cu_off
12984 = (cu_offset) (sect_off - cu->header.sect_off);
12985 }
12986 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
12987 {
12988 complaint (&symfile_complaints,
12989 _("No DW_FORM_block* DW_AT_location for "
12990 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
12991 to_underlying (child_die->sect_off), objfile_name (objfile));
12992 continue;
12993 }
12994 else
12995 {
12996 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12997 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12998 if (parameter->u.dwarf_reg != -1)
12999 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13000 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13001 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13002 &parameter->u.fb_offset))
13003 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13004 else
13005 {
13006 complaint (&symfile_complaints,
13007 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
13008 "for DW_FORM_block* DW_AT_location is supported for "
13009 "DW_TAG_call_site child DIE 0x%x "
13010 "[in module %s]"),
13011 to_underlying (child_die->sect_off),
13012 objfile_name (objfile));
13013 continue;
13014 }
13015 }
13016
13017 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13018 if (attr == NULL)
13019 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13020 if (!attr_form_is_block (attr))
13021 {
13022 complaint (&symfile_complaints,
13023 _("No DW_FORM_block* DW_AT_call_value for "
13024 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
13025 to_underlying (child_die->sect_off),
13026 objfile_name (objfile));
13027 continue;
13028 }
13029 parameter->value = DW_BLOCK (attr)->data;
13030 parameter->value_size = DW_BLOCK (attr)->size;
13031
13032 /* Parameters are not pre-cleared by memset above. */
13033 parameter->data_value = NULL;
13034 parameter->data_value_size = 0;
13035 call_site->parameter_count++;
13036
13037 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13038 if (attr == NULL)
13039 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13040 if (attr)
13041 {
13042 if (!attr_form_is_block (attr))
13043 complaint (&symfile_complaints,
13044 _("No DW_FORM_block* DW_AT_call_data_value for "
13045 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
13046 to_underlying (child_die->sect_off),
13047 objfile_name (objfile));
13048 else
13049 {
13050 parameter->data_value = DW_BLOCK (attr)->data;
13051 parameter->data_value_size = DW_BLOCK (attr)->size;
13052 }
13053 }
13054 }
13055 }
13056
13057 /* Helper function for read_variable. If DIE represents a virtual
13058 table, then return the type of the concrete object that is
13059 associated with the virtual table. Otherwise, return NULL. */
13060
13061 static struct type *
13062 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13063 {
13064 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13065 if (attr == NULL)
13066 return NULL;
13067
13068 /* Find the type DIE. */
13069 struct die_info *type_die = NULL;
13070 struct dwarf2_cu *type_cu = cu;
13071
13072 if (attr_form_is_ref (attr))
13073 type_die = follow_die_ref (die, attr, &type_cu);
13074 if (type_die == NULL)
13075 return NULL;
13076
13077 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13078 return NULL;
13079 return die_containing_type (type_die, type_cu);
13080 }
13081
13082 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13083
13084 static void
13085 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13086 {
13087 struct rust_vtable_symbol *storage = NULL;
13088
13089 if (cu->language == language_rust)
13090 {
13091 struct type *containing_type = rust_containing_type (die, cu);
13092
13093 if (containing_type != NULL)
13094 {
13095 struct objfile *objfile = cu->objfile;
13096
13097 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
13098 struct rust_vtable_symbol);
13099 initialize_objfile_symbol (storage);
13100 storage->concrete_type = containing_type;
13101 storage->subclass = SYMBOL_RUST_VTABLE;
13102 }
13103 }
13104
13105 new_symbol_full (die, NULL, cu, storage);
13106 }
13107
13108 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13109 reading .debug_rnglists.
13110 Callback's type should be:
13111 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13112 Return true if the attributes are present and valid, otherwise,
13113 return false. */
13114
13115 template <typename Callback>
13116 static bool
13117 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13118 Callback &&callback)
13119 {
13120 struct objfile *objfile = cu->objfile;
13121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13122 struct comp_unit_head *cu_header = &cu->header;
13123 bfd *obfd = objfile->obfd;
13124 unsigned int addr_size = cu_header->addr_size;
13125 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13126 /* Base address selection entry. */
13127 CORE_ADDR base;
13128 int found_base;
13129 unsigned int dummy;
13130 const gdb_byte *buffer;
13131 CORE_ADDR low = 0;
13132 CORE_ADDR high = 0;
13133 CORE_ADDR baseaddr;
13134 bool overflow = false;
13135
13136 found_base = cu->base_known;
13137 base = cu->base_address;
13138
13139 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
13140 if (offset >= dwarf2_per_objfile->rnglists.size)
13141 {
13142 complaint (&symfile_complaints,
13143 _("Offset %d out of bounds for DW_AT_ranges attribute"),
13144 offset);
13145 return false;
13146 }
13147 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13148
13149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13150
13151 while (1)
13152 {
13153 /* Initialize it due to a false compiler warning. */
13154 CORE_ADDR range_beginning = 0, range_end = 0;
13155 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13156 + dwarf2_per_objfile->rnglists.size);
13157 unsigned int bytes_read;
13158
13159 if (buffer == buf_end)
13160 {
13161 overflow = true;
13162 break;
13163 }
13164 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13165 switch (rlet)
13166 {
13167 case DW_RLE_end_of_list:
13168 break;
13169 case DW_RLE_base_address:
13170 if (buffer + cu->header.addr_size > buf_end)
13171 {
13172 overflow = true;
13173 break;
13174 }
13175 base = read_address (obfd, buffer, cu, &bytes_read);
13176 found_base = 1;
13177 buffer += bytes_read;
13178 break;
13179 case DW_RLE_start_length:
13180 if (buffer + cu->header.addr_size > buf_end)
13181 {
13182 overflow = true;
13183 break;
13184 }
13185 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13186 buffer += bytes_read;
13187 range_end = (range_beginning
13188 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13189 buffer += bytes_read;
13190 if (buffer > buf_end)
13191 {
13192 overflow = true;
13193 break;
13194 }
13195 break;
13196 case DW_RLE_offset_pair:
13197 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13198 buffer += bytes_read;
13199 if (buffer > buf_end)
13200 {
13201 overflow = true;
13202 break;
13203 }
13204 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13205 buffer += bytes_read;
13206 if (buffer > buf_end)
13207 {
13208 overflow = true;
13209 break;
13210 }
13211 break;
13212 case DW_RLE_start_end:
13213 if (buffer + 2 * cu->header.addr_size > buf_end)
13214 {
13215 overflow = true;
13216 break;
13217 }
13218 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13219 buffer += bytes_read;
13220 range_end = read_address (obfd, buffer, cu, &bytes_read);
13221 buffer += bytes_read;
13222 break;
13223 default:
13224 complaint (&symfile_complaints,
13225 _("Invalid .debug_rnglists data (no base address)"));
13226 return false;
13227 }
13228 if (rlet == DW_RLE_end_of_list || overflow)
13229 break;
13230 if (rlet == DW_RLE_base_address)
13231 continue;
13232
13233 if (!found_base)
13234 {
13235 /* We have no valid base address for the ranges
13236 data. */
13237 complaint (&symfile_complaints,
13238 _("Invalid .debug_rnglists data (no base address)"));
13239 return false;
13240 }
13241
13242 if (range_beginning > range_end)
13243 {
13244 /* Inverted range entries are invalid. */
13245 complaint (&symfile_complaints,
13246 _("Invalid .debug_rnglists data (inverted range)"));
13247 return false;
13248 }
13249
13250 /* Empty range entries have no effect. */
13251 if (range_beginning == range_end)
13252 continue;
13253
13254 range_beginning += base;
13255 range_end += base;
13256
13257 /* A not-uncommon case of bad debug info.
13258 Don't pollute the addrmap with bad data. */
13259 if (range_beginning + baseaddr == 0
13260 && !dwarf2_per_objfile->has_section_at_zero)
13261 {
13262 complaint (&symfile_complaints,
13263 _(".debug_rnglists entry has start address of zero"
13264 " [in module %s]"), objfile_name (objfile));
13265 continue;
13266 }
13267
13268 callback (range_beginning, range_end);
13269 }
13270
13271 if (overflow)
13272 {
13273 complaint (&symfile_complaints,
13274 _("Offset %d is not terminated "
13275 "for DW_AT_ranges attribute"),
13276 offset);
13277 return false;
13278 }
13279
13280 return true;
13281 }
13282
13283 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13284 Callback's type should be:
13285 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13286 Return 1 if the attributes are present and valid, otherwise, return 0. */
13287
13288 template <typename Callback>
13289 static int
13290 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13291 Callback &&callback)
13292 {
13293 struct objfile *objfile = cu->objfile;
13294 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13295 struct comp_unit_head *cu_header = &cu->header;
13296 bfd *obfd = objfile->obfd;
13297 unsigned int addr_size = cu_header->addr_size;
13298 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13299 /* Base address selection entry. */
13300 CORE_ADDR base;
13301 int found_base;
13302 unsigned int dummy;
13303 const gdb_byte *buffer;
13304 CORE_ADDR baseaddr;
13305
13306 if (cu_header->version >= 5)
13307 return dwarf2_rnglists_process (offset, cu, callback);
13308
13309 found_base = cu->base_known;
13310 base = cu->base_address;
13311
13312 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
13313 if (offset >= dwarf2_per_objfile->ranges.size)
13314 {
13315 complaint (&symfile_complaints,
13316 _("Offset %d out of bounds for DW_AT_ranges attribute"),
13317 offset);
13318 return 0;
13319 }
13320 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13321
13322 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13323
13324 while (1)
13325 {
13326 CORE_ADDR range_beginning, range_end;
13327
13328 range_beginning = read_address (obfd, buffer, cu, &dummy);
13329 buffer += addr_size;
13330 range_end = read_address (obfd, buffer, cu, &dummy);
13331 buffer += addr_size;
13332 offset += 2 * addr_size;
13333
13334 /* An end of list marker is a pair of zero addresses. */
13335 if (range_beginning == 0 && range_end == 0)
13336 /* Found the end of list entry. */
13337 break;
13338
13339 /* Each base address selection entry is a pair of 2 values.
13340 The first is the largest possible address, the second is
13341 the base address. Check for a base address here. */
13342 if ((range_beginning & mask) == mask)
13343 {
13344 /* If we found the largest possible address, then we already
13345 have the base address in range_end. */
13346 base = range_end;
13347 found_base = 1;
13348 continue;
13349 }
13350
13351 if (!found_base)
13352 {
13353 /* We have no valid base address for the ranges
13354 data. */
13355 complaint (&symfile_complaints,
13356 _("Invalid .debug_ranges data (no base address)"));
13357 return 0;
13358 }
13359
13360 if (range_beginning > range_end)
13361 {
13362 /* Inverted range entries are invalid. */
13363 complaint (&symfile_complaints,
13364 _("Invalid .debug_ranges data (inverted range)"));
13365 return 0;
13366 }
13367
13368 /* Empty range entries have no effect. */
13369 if (range_beginning == range_end)
13370 continue;
13371
13372 range_beginning += base;
13373 range_end += base;
13374
13375 /* A not-uncommon case of bad debug info.
13376 Don't pollute the addrmap with bad data. */
13377 if (range_beginning + baseaddr == 0
13378 && !dwarf2_per_objfile->has_section_at_zero)
13379 {
13380 complaint (&symfile_complaints,
13381 _(".debug_ranges entry has start address of zero"
13382 " [in module %s]"), objfile_name (objfile));
13383 continue;
13384 }
13385
13386 callback (range_beginning, range_end);
13387 }
13388
13389 return 1;
13390 }
13391
13392 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13393 Return 1 if the attributes are present and valid, otherwise, return 0.
13394 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13395
13396 static int
13397 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13398 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13399 struct partial_symtab *ranges_pst)
13400 {
13401 struct objfile *objfile = cu->objfile;
13402 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13403 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
13404 SECT_OFF_TEXT (objfile));
13405 int low_set = 0;
13406 CORE_ADDR low = 0;
13407 CORE_ADDR high = 0;
13408 int retval;
13409
13410 retval = dwarf2_ranges_process (offset, cu,
13411 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13412 {
13413 if (ranges_pst != NULL)
13414 {
13415 CORE_ADDR lowpc;
13416 CORE_ADDR highpc;
13417
13418 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13419 range_beginning + baseaddr);
13420 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
13421 range_end + baseaddr);
13422 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
13423 ranges_pst);
13424 }
13425
13426 /* FIXME: This is recording everything as a low-high
13427 segment of consecutive addresses. We should have a
13428 data structure for discontiguous block ranges
13429 instead. */
13430 if (! low_set)
13431 {
13432 low = range_beginning;
13433 high = range_end;
13434 low_set = 1;
13435 }
13436 else
13437 {
13438 if (range_beginning < low)
13439 low = range_beginning;
13440 if (range_end > high)
13441 high = range_end;
13442 }
13443 });
13444 if (!retval)
13445 return 0;
13446
13447 if (! low_set)
13448 /* If the first entry is an end-of-list marker, the range
13449 describes an empty scope, i.e. no instructions. */
13450 return 0;
13451
13452 if (low_return)
13453 *low_return = low;
13454 if (high_return)
13455 *high_return = high;
13456 return 1;
13457 }
13458
13459 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13460 definition for the return value. *LOWPC and *HIGHPC are set iff
13461 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13462
13463 static enum pc_bounds_kind
13464 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13465 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13466 struct partial_symtab *pst)
13467 {
13468 struct attribute *attr;
13469 struct attribute *attr_high;
13470 CORE_ADDR low = 0;
13471 CORE_ADDR high = 0;
13472 enum pc_bounds_kind ret;
13473
13474 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13475 if (attr_high)
13476 {
13477 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13478 if (attr)
13479 {
13480 low = attr_value_as_address (attr);
13481 high = attr_value_as_address (attr_high);
13482 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13483 high += low;
13484 }
13485 else
13486 /* Found high w/o low attribute. */
13487 return PC_BOUNDS_INVALID;
13488
13489 /* Found consecutive range of addresses. */
13490 ret = PC_BOUNDS_HIGH_LOW;
13491 }
13492 else
13493 {
13494 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13495 if (attr != NULL)
13496 {
13497 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13498 We take advantage of the fact that DW_AT_ranges does not appear
13499 in DW_TAG_compile_unit of DWO files. */
13500 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13501 unsigned int ranges_offset = (DW_UNSND (attr)
13502 + (need_ranges_base
13503 ? cu->ranges_base
13504 : 0));
13505
13506 /* Value of the DW_AT_ranges attribute is the offset in the
13507 .debug_ranges section. */
13508 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13509 return PC_BOUNDS_INVALID;
13510 /* Found discontinuous range of addresses. */
13511 ret = PC_BOUNDS_RANGES;
13512 }
13513 else
13514 return PC_BOUNDS_NOT_PRESENT;
13515 }
13516
13517 /* read_partial_die has also the strict LOW < HIGH requirement. */
13518 if (high <= low)
13519 return PC_BOUNDS_INVALID;
13520
13521 /* When using the GNU linker, .gnu.linkonce. sections are used to
13522 eliminate duplicate copies of functions and vtables and such.
13523 The linker will arbitrarily choose one and discard the others.
13524 The AT_*_pc values for such functions refer to local labels in
13525 these sections. If the section from that file was discarded, the
13526 labels are not in the output, so the relocs get a value of 0.
13527 If this is a discarded function, mark the pc bounds as invalid,
13528 so that GDB will ignore it. */
13529 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13530 return PC_BOUNDS_INVALID;
13531
13532 *lowpc = low;
13533 if (highpc)
13534 *highpc = high;
13535 return ret;
13536 }
13537
13538 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13539 its low and high PC addresses. Do nothing if these addresses could not
13540 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13541 and HIGHPC to the high address if greater than HIGHPC. */
13542
13543 static void
13544 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13545 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13546 struct dwarf2_cu *cu)
13547 {
13548 CORE_ADDR low, high;
13549 struct die_info *child = die->child;
13550
13551 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13552 {
13553 *lowpc = std::min (*lowpc, low);
13554 *highpc = std::max (*highpc, high);
13555 }
13556
13557 /* If the language does not allow nested subprograms (either inside
13558 subprograms or lexical blocks), we're done. */
13559 if (cu->language != language_ada)
13560 return;
13561
13562 /* Check all the children of the given DIE. If it contains nested
13563 subprograms, then check their pc bounds. Likewise, we need to
13564 check lexical blocks as well, as they may also contain subprogram
13565 definitions. */
13566 while (child && child->tag)
13567 {
13568 if (child->tag == DW_TAG_subprogram
13569 || child->tag == DW_TAG_lexical_block)
13570 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13571 child = sibling_die (child);
13572 }
13573 }
13574
13575 /* Get the low and high pc's represented by the scope DIE, and store
13576 them in *LOWPC and *HIGHPC. If the correct values can't be
13577 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13578
13579 static void
13580 get_scope_pc_bounds (struct die_info *die,
13581 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13582 struct dwarf2_cu *cu)
13583 {
13584 CORE_ADDR best_low = (CORE_ADDR) -1;
13585 CORE_ADDR best_high = (CORE_ADDR) 0;
13586 CORE_ADDR current_low, current_high;
13587
13588 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13589 >= PC_BOUNDS_RANGES)
13590 {
13591 best_low = current_low;
13592 best_high = current_high;
13593 }
13594 else
13595 {
13596 struct die_info *child = die->child;
13597
13598 while (child && child->tag)
13599 {
13600 switch (child->tag) {
13601 case DW_TAG_subprogram:
13602 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13603 break;
13604 case DW_TAG_namespace:
13605 case DW_TAG_module:
13606 /* FIXME: carlton/2004-01-16: Should we do this for
13607 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13608 that current GCC's always emit the DIEs corresponding
13609 to definitions of methods of classes as children of a
13610 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13611 the DIEs giving the declarations, which could be
13612 anywhere). But I don't see any reason why the
13613 standards says that they have to be there. */
13614 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13615
13616 if (current_low != ((CORE_ADDR) -1))
13617 {
13618 best_low = std::min (best_low, current_low);
13619 best_high = std::max (best_high, current_high);
13620 }
13621 break;
13622 default:
13623 /* Ignore. */
13624 break;
13625 }
13626
13627 child = sibling_die (child);
13628 }
13629 }
13630
13631 *lowpc = best_low;
13632 *highpc = best_high;
13633 }
13634
13635 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13636 in DIE. */
13637
13638 static void
13639 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13640 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13641 {
13642 struct objfile *objfile = cu->objfile;
13643 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13644 struct attribute *attr;
13645 struct attribute *attr_high;
13646
13647 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13648 if (attr_high)
13649 {
13650 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13651 if (attr)
13652 {
13653 CORE_ADDR low = attr_value_as_address (attr);
13654 CORE_ADDR high = attr_value_as_address (attr_high);
13655
13656 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
13657 high += low;
13658
13659 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
13660 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
13661 record_block_range (block, low, high - 1);
13662 }
13663 }
13664
13665 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13666 if (attr)
13667 {
13668 bfd *obfd = objfile->obfd;
13669 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
13670 We take advantage of the fact that DW_AT_ranges does not appear
13671 in DW_TAG_compile_unit of DWO files. */
13672 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13673
13674 /* The value of the DW_AT_ranges attribute is the offset of the
13675 address range list in the .debug_ranges section. */
13676 unsigned long offset = (DW_UNSND (attr)
13677 + (need_ranges_base ? cu->ranges_base : 0));
13678 const gdb_byte *buffer;
13679
13680 /* For some target architectures, but not others, the
13681 read_address function sign-extends the addresses it returns.
13682 To recognize base address selection entries, we need a
13683 mask. */
13684 unsigned int addr_size = cu->header.addr_size;
13685 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13686
13687 /* The base address, to which the next pair is relative. Note
13688 that this 'base' is a DWARF concept: most entries in a range
13689 list are relative, to reduce the number of relocs against the
13690 debugging information. This is separate from this function's
13691 'baseaddr' argument, which GDB uses to relocate debugging
13692 information from a shared library based on the address at
13693 which the library was loaded. */
13694 CORE_ADDR base = cu->base_address;
13695 int base_known = cu->base_known;
13696
13697 dwarf2_ranges_process (offset, cu,
13698 [&] (CORE_ADDR start, CORE_ADDR end)
13699 {
13700 start += baseaddr;
13701 end += baseaddr;
13702 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
13703 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
13704 record_block_range (block, start, end - 1);
13705 });
13706 }
13707 }
13708
13709 /* Check whether the producer field indicates either of GCC < 4.6, or the
13710 Intel C/C++ compiler, and cache the result in CU. */
13711
13712 static void
13713 check_producer (struct dwarf2_cu *cu)
13714 {
13715 int major, minor;
13716
13717 if (cu->producer == NULL)
13718 {
13719 /* For unknown compilers expect their behavior is DWARF version
13720 compliant.
13721
13722 GCC started to support .debug_types sections by -gdwarf-4 since
13723 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
13724 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
13725 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
13726 interpreted incorrectly by GDB now - GCC PR debug/48229. */
13727 }
13728 else if (producer_is_gcc (cu->producer, &major, &minor))
13729 {
13730 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
13731 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
13732 }
13733 else if (producer_is_icc (cu->producer, &major, &minor))
13734 cu->producer_is_icc_lt_14 = major < 14;
13735 else
13736 {
13737 /* For other non-GCC compilers, expect their behavior is DWARF version
13738 compliant. */
13739 }
13740
13741 cu->checked_producer = 1;
13742 }
13743
13744 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
13745 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
13746 during 4.6.0 experimental. */
13747
13748 static int
13749 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
13750 {
13751 if (!cu->checked_producer)
13752 check_producer (cu);
13753
13754 return cu->producer_is_gxx_lt_4_6;
13755 }
13756
13757 /* Return the default accessibility type if it is not overriden by
13758 DW_AT_accessibility. */
13759
13760 static enum dwarf_access_attribute
13761 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
13762 {
13763 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
13764 {
13765 /* The default DWARF 2 accessibility for members is public, the default
13766 accessibility for inheritance is private. */
13767
13768 if (die->tag != DW_TAG_inheritance)
13769 return DW_ACCESS_public;
13770 else
13771 return DW_ACCESS_private;
13772 }
13773 else
13774 {
13775 /* DWARF 3+ defines the default accessibility a different way. The same
13776 rules apply now for DW_TAG_inheritance as for the members and it only
13777 depends on the container kind. */
13778
13779 if (die->parent->tag == DW_TAG_class_type)
13780 return DW_ACCESS_private;
13781 else
13782 return DW_ACCESS_public;
13783 }
13784 }
13785
13786 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
13787 offset. If the attribute was not found return 0, otherwise return
13788 1. If it was found but could not properly be handled, set *OFFSET
13789 to 0. */
13790
13791 static int
13792 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
13793 LONGEST *offset)
13794 {
13795 struct attribute *attr;
13796
13797 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
13798 if (attr != NULL)
13799 {
13800 *offset = 0;
13801
13802 /* Note that we do not check for a section offset first here.
13803 This is because DW_AT_data_member_location is new in DWARF 4,
13804 so if we see it, we can assume that a constant form is really
13805 a constant and not a section offset. */
13806 if (attr_form_is_constant (attr))
13807 *offset = dwarf2_get_attr_constant_value (attr, 0);
13808 else if (attr_form_is_section_offset (attr))
13809 dwarf2_complex_location_expr_complaint ();
13810 else if (attr_form_is_block (attr))
13811 *offset = decode_locdesc (DW_BLOCK (attr), cu);
13812 else
13813 dwarf2_complex_location_expr_complaint ();
13814
13815 return 1;
13816 }
13817
13818 return 0;
13819 }
13820
13821 /* Add an aggregate field to the field list. */
13822
13823 static void
13824 dwarf2_add_field (struct field_info *fip, struct die_info *die,
13825 struct dwarf2_cu *cu)
13826 {
13827 struct objfile *objfile = cu->objfile;
13828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13829 struct nextfield *new_field;
13830 struct attribute *attr;
13831 struct field *fp;
13832 const char *fieldname = "";
13833
13834 /* Allocate a new field list entry and link it in. */
13835 new_field = XNEW (struct nextfield);
13836 make_cleanup (xfree, new_field);
13837 memset (new_field, 0, sizeof (struct nextfield));
13838
13839 if (die->tag == DW_TAG_inheritance)
13840 {
13841 new_field->next = fip->baseclasses;
13842 fip->baseclasses = new_field;
13843 }
13844 else
13845 {
13846 new_field->next = fip->fields;
13847 fip->fields = new_field;
13848 }
13849 fip->nfields++;
13850
13851 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
13852 if (attr)
13853 new_field->accessibility = DW_UNSND (attr);
13854 else
13855 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
13856 if (new_field->accessibility != DW_ACCESS_public)
13857 fip->non_public_fields = 1;
13858
13859 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13860 if (attr)
13861 new_field->virtuality = DW_UNSND (attr);
13862 else
13863 new_field->virtuality = DW_VIRTUALITY_none;
13864
13865 fp = &new_field->field;
13866
13867 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
13868 {
13869 LONGEST offset;
13870
13871 /* Data member other than a C++ static data member. */
13872
13873 /* Get type of field. */
13874 fp->type = die_type (die, cu);
13875
13876 SET_FIELD_BITPOS (*fp, 0);
13877
13878 /* Get bit size of field (zero if none). */
13879 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
13880 if (attr)
13881 {
13882 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
13883 }
13884 else
13885 {
13886 FIELD_BITSIZE (*fp) = 0;
13887 }
13888
13889 /* Get bit offset of field. */
13890 if (handle_data_member_location (die, cu, &offset))
13891 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
13892 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
13893 if (attr)
13894 {
13895 if (gdbarch_bits_big_endian (gdbarch))
13896 {
13897 /* For big endian bits, the DW_AT_bit_offset gives the
13898 additional bit offset from the MSB of the containing
13899 anonymous object to the MSB of the field. We don't
13900 have to do anything special since we don't need to
13901 know the size of the anonymous object. */
13902 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
13903 }
13904 else
13905 {
13906 /* For little endian bits, compute the bit offset to the
13907 MSB of the anonymous object, subtract off the number of
13908 bits from the MSB of the field to the MSB of the
13909 object, and then subtract off the number of bits of
13910 the field itself. The result is the bit offset of
13911 the LSB of the field. */
13912 int anonymous_size;
13913 int bit_offset = DW_UNSND (attr);
13914
13915 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13916 if (attr)
13917 {
13918 /* The size of the anonymous object containing
13919 the bit field is explicit, so use the
13920 indicated size (in bytes). */
13921 anonymous_size = DW_UNSND (attr);
13922 }
13923 else
13924 {
13925 /* The size of the anonymous object containing
13926 the bit field must be inferred from the type
13927 attribute of the data member containing the
13928 bit field. */
13929 anonymous_size = TYPE_LENGTH (fp->type);
13930 }
13931 SET_FIELD_BITPOS (*fp,
13932 (FIELD_BITPOS (*fp)
13933 + anonymous_size * bits_per_byte
13934 - bit_offset - FIELD_BITSIZE (*fp)));
13935 }
13936 }
13937 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13938 if (attr != NULL)
13939 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13940 + dwarf2_get_attr_constant_value (attr, 0)));
13941
13942 /* Get name of field. */
13943 fieldname = dwarf2_name (die, cu);
13944 if (fieldname == NULL)
13945 fieldname = "";
13946
13947 /* The name is already allocated along with this objfile, so we don't
13948 need to duplicate it for the type. */
13949 fp->name = fieldname;
13950
13951 /* Change accessibility for artificial fields (e.g. virtual table
13952 pointer or virtual base class pointer) to private. */
13953 if (dwarf2_attr (die, DW_AT_artificial, cu))
13954 {
13955 FIELD_ARTIFICIAL (*fp) = 1;
13956 new_field->accessibility = DW_ACCESS_private;
13957 fip->non_public_fields = 1;
13958 }
13959 }
13960 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
13961 {
13962 /* C++ static member. */
13963
13964 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13965 is a declaration, but all versions of G++ as of this writing
13966 (so through at least 3.2.1) incorrectly generate
13967 DW_TAG_variable tags. */
13968
13969 const char *physname;
13970
13971 /* Get name of field. */
13972 fieldname = dwarf2_name (die, cu);
13973 if (fieldname == NULL)
13974 return;
13975
13976 attr = dwarf2_attr (die, DW_AT_const_value, cu);
13977 if (attr
13978 /* Only create a symbol if this is an external value.
13979 new_symbol checks this and puts the value in the global symbol
13980 table, which we want. If it is not external, new_symbol
13981 will try to put the value in cu->list_in_scope which is wrong. */
13982 && dwarf2_flag_true_p (die, DW_AT_external, cu))
13983 {
13984 /* A static const member, not much different than an enum as far as
13985 we're concerned, except that we can support more types. */
13986 new_symbol (die, NULL, cu);
13987 }
13988
13989 /* Get physical name. */
13990 physname = dwarf2_physname (fieldname, die, cu);
13991
13992 /* The name is already allocated along with this objfile, so we don't
13993 need to duplicate it for the type. */
13994 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
13995 FIELD_TYPE (*fp) = die_type (die, cu);
13996 FIELD_NAME (*fp) = fieldname;
13997 }
13998 else if (die->tag == DW_TAG_inheritance)
13999 {
14000 LONGEST offset;
14001
14002 /* C++ base class field. */
14003 if (handle_data_member_location (die, cu, &offset))
14004 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14005 FIELD_BITSIZE (*fp) = 0;
14006 FIELD_TYPE (*fp) = die_type (die, cu);
14007 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
14008 fip->nbaseclasses++;
14009 }
14010 }
14011
14012 /* Add a typedef defined in the scope of the FIP's class. */
14013
14014 static void
14015 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
14016 struct dwarf2_cu *cu)
14017 {
14018 struct typedef_field_list *new_field;
14019 struct typedef_field *fp;
14020
14021 /* Allocate a new field list entry and link it in. */
14022 new_field = XCNEW (struct typedef_field_list);
14023 make_cleanup (xfree, new_field);
14024
14025 gdb_assert (die->tag == DW_TAG_typedef);
14026
14027 fp = &new_field->field;
14028
14029 /* Get name of field. */
14030 fp->name = dwarf2_name (die, cu);
14031 if (fp->name == NULL)
14032 return;
14033
14034 fp->type = read_type_die (die, cu);
14035
14036 /* Save accessibility. */
14037 enum dwarf_access_attribute accessibility;
14038 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14039 if (attr != NULL)
14040 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14041 else
14042 accessibility = dwarf2_default_access_attribute (die, cu);
14043 switch (accessibility)
14044 {
14045 case DW_ACCESS_public:
14046 /* The assumed value if neither private nor protected. */
14047 break;
14048 case DW_ACCESS_private:
14049 fp->is_private = 1;
14050 break;
14051 case DW_ACCESS_protected:
14052 fp->is_protected = 1;
14053 break;
14054 default:
14055 complaint (&symfile_complaints,
14056 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14057 }
14058
14059 new_field->next = fip->typedef_field_list;
14060 fip->typedef_field_list = new_field;
14061 fip->typedef_field_list_count++;
14062 }
14063
14064 /* Create the vector of fields, and attach it to the type. */
14065
14066 static void
14067 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14068 struct dwarf2_cu *cu)
14069 {
14070 int nfields = fip->nfields;
14071
14072 /* Record the field count, allocate space for the array of fields,
14073 and create blank accessibility bitfields if necessary. */
14074 TYPE_NFIELDS (type) = nfields;
14075 TYPE_FIELDS (type) = (struct field *)
14076 TYPE_ALLOC (type, sizeof (struct field) * nfields);
14077 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
14078
14079 if (fip->non_public_fields && cu->language != language_ada)
14080 {
14081 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14082
14083 TYPE_FIELD_PRIVATE_BITS (type) =
14084 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14085 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14086
14087 TYPE_FIELD_PROTECTED_BITS (type) =
14088 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14089 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14090
14091 TYPE_FIELD_IGNORE_BITS (type) =
14092 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14093 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14094 }
14095
14096 /* If the type has baseclasses, allocate and clear a bit vector for
14097 TYPE_FIELD_VIRTUAL_BITS. */
14098 if (fip->nbaseclasses && cu->language != language_ada)
14099 {
14100 int num_bytes = B_BYTES (fip->nbaseclasses);
14101 unsigned char *pointer;
14102
14103 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14104 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14105 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14106 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
14107 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
14108 }
14109
14110 /* Copy the saved-up fields into the field vector. Start from the head of
14111 the list, adding to the tail of the field array, so that they end up in
14112 the same order in the array in which they were added to the list. */
14113 while (nfields-- > 0)
14114 {
14115 struct nextfield *fieldp;
14116
14117 if (fip->fields)
14118 {
14119 fieldp = fip->fields;
14120 fip->fields = fieldp->next;
14121 }
14122 else
14123 {
14124 fieldp = fip->baseclasses;
14125 fip->baseclasses = fieldp->next;
14126 }
14127
14128 TYPE_FIELD (type, nfields) = fieldp->field;
14129 switch (fieldp->accessibility)
14130 {
14131 case DW_ACCESS_private:
14132 if (cu->language != language_ada)
14133 SET_TYPE_FIELD_PRIVATE (type, nfields);
14134 break;
14135
14136 case DW_ACCESS_protected:
14137 if (cu->language != language_ada)
14138 SET_TYPE_FIELD_PROTECTED (type, nfields);
14139 break;
14140
14141 case DW_ACCESS_public:
14142 break;
14143
14144 default:
14145 /* Unknown accessibility. Complain and treat it as public. */
14146 {
14147 complaint (&symfile_complaints, _("unsupported accessibility %d"),
14148 fieldp->accessibility);
14149 }
14150 break;
14151 }
14152 if (nfields < fip->nbaseclasses)
14153 {
14154 switch (fieldp->virtuality)
14155 {
14156 case DW_VIRTUALITY_virtual:
14157 case DW_VIRTUALITY_pure_virtual:
14158 if (cu->language == language_ada)
14159 error (_("unexpected virtuality in component of Ada type"));
14160 SET_TYPE_FIELD_VIRTUAL (type, nfields);
14161 break;
14162 }
14163 }
14164 }
14165 }
14166
14167 /* Return true if this member function is a constructor, false
14168 otherwise. */
14169
14170 static int
14171 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14172 {
14173 const char *fieldname;
14174 const char *type_name;
14175 int len;
14176
14177 if (die->parent == NULL)
14178 return 0;
14179
14180 if (die->parent->tag != DW_TAG_structure_type
14181 && die->parent->tag != DW_TAG_union_type
14182 && die->parent->tag != DW_TAG_class_type)
14183 return 0;
14184
14185 fieldname = dwarf2_name (die, cu);
14186 type_name = dwarf2_name (die->parent, cu);
14187 if (fieldname == NULL || type_name == NULL)
14188 return 0;
14189
14190 len = strlen (fieldname);
14191 return (strncmp (fieldname, type_name, len) == 0
14192 && (type_name[len] == '\0' || type_name[len] == '<'));
14193 }
14194
14195 /* Add a member function to the proper fieldlist. */
14196
14197 static void
14198 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14199 struct type *type, struct dwarf2_cu *cu)
14200 {
14201 struct objfile *objfile = cu->objfile;
14202 struct attribute *attr;
14203 struct fnfieldlist *flp;
14204 int i;
14205 struct fn_field *fnp;
14206 const char *fieldname;
14207 struct nextfnfield *new_fnfield;
14208 struct type *this_type;
14209 enum dwarf_access_attribute accessibility;
14210
14211 if (cu->language == language_ada)
14212 error (_("unexpected member function in Ada type"));
14213
14214 /* Get name of member function. */
14215 fieldname = dwarf2_name (die, cu);
14216 if (fieldname == NULL)
14217 return;
14218
14219 /* Look up member function name in fieldlist. */
14220 for (i = 0; i < fip->nfnfields; i++)
14221 {
14222 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14223 break;
14224 }
14225
14226 /* Create new list element if necessary. */
14227 if (i < fip->nfnfields)
14228 flp = &fip->fnfieldlists[i];
14229 else
14230 {
14231 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
14232 {
14233 fip->fnfieldlists = (struct fnfieldlist *)
14234 xrealloc (fip->fnfieldlists,
14235 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
14236 * sizeof (struct fnfieldlist));
14237 if (fip->nfnfields == 0)
14238 make_cleanup (free_current_contents, &fip->fnfieldlists);
14239 }
14240 flp = &fip->fnfieldlists[fip->nfnfields];
14241 flp->name = fieldname;
14242 flp->length = 0;
14243 flp->head = NULL;
14244 i = fip->nfnfields++;
14245 }
14246
14247 /* Create a new member function field and chain it to the field list
14248 entry. */
14249 new_fnfield = XNEW (struct nextfnfield);
14250 make_cleanup (xfree, new_fnfield);
14251 memset (new_fnfield, 0, sizeof (struct nextfnfield));
14252 new_fnfield->next = flp->head;
14253 flp->head = new_fnfield;
14254 flp->length++;
14255
14256 /* Fill in the member function field info. */
14257 fnp = &new_fnfield->fnfield;
14258
14259 /* Delay processing of the physname until later. */
14260 if (cu->language == language_cplus)
14261 {
14262 add_to_method_list (type, i, flp->length - 1, fieldname,
14263 die, cu);
14264 }
14265 else
14266 {
14267 const char *physname = dwarf2_physname (fieldname, die, cu);
14268 fnp->physname = physname ? physname : "";
14269 }
14270
14271 fnp->type = alloc_type (objfile);
14272 this_type = read_type_die (die, cu);
14273 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14274 {
14275 int nparams = TYPE_NFIELDS (this_type);
14276
14277 /* TYPE is the domain of this method, and THIS_TYPE is the type
14278 of the method itself (TYPE_CODE_METHOD). */
14279 smash_to_method_type (fnp->type, type,
14280 TYPE_TARGET_TYPE (this_type),
14281 TYPE_FIELDS (this_type),
14282 TYPE_NFIELDS (this_type),
14283 TYPE_VARARGS (this_type));
14284
14285 /* Handle static member functions.
14286 Dwarf2 has no clean way to discern C++ static and non-static
14287 member functions. G++ helps GDB by marking the first
14288 parameter for non-static member functions (which is the this
14289 pointer) as artificial. We obtain this information from
14290 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14291 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14292 fnp->voffset = VOFFSET_STATIC;
14293 }
14294 else
14295 complaint (&symfile_complaints, _("member function type missing for '%s'"),
14296 dwarf2_full_name (fieldname, die, cu));
14297
14298 /* Get fcontext from DW_AT_containing_type if present. */
14299 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14300 fnp->fcontext = die_containing_type (die, cu);
14301
14302 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14303 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14304
14305 /* Get accessibility. */
14306 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14307 if (attr)
14308 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14309 else
14310 accessibility = dwarf2_default_access_attribute (die, cu);
14311 switch (accessibility)
14312 {
14313 case DW_ACCESS_private:
14314 fnp->is_private = 1;
14315 break;
14316 case DW_ACCESS_protected:
14317 fnp->is_protected = 1;
14318 break;
14319 }
14320
14321 /* Check for artificial methods. */
14322 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14323 if (attr && DW_UNSND (attr) != 0)
14324 fnp->is_artificial = 1;
14325
14326 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14327
14328 /* Get index in virtual function table if it is a virtual member
14329 function. For older versions of GCC, this is an offset in the
14330 appropriate virtual table, as specified by DW_AT_containing_type.
14331 For everyone else, it is an expression to be evaluated relative
14332 to the object address. */
14333
14334 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14335 if (attr)
14336 {
14337 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
14338 {
14339 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14340 {
14341 /* Old-style GCC. */
14342 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14343 }
14344 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14345 || (DW_BLOCK (attr)->size > 1
14346 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14347 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14348 {
14349 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14350 if ((fnp->voffset % cu->header.addr_size) != 0)
14351 dwarf2_complex_location_expr_complaint ();
14352 else
14353 fnp->voffset /= cu->header.addr_size;
14354 fnp->voffset += 2;
14355 }
14356 else
14357 dwarf2_complex_location_expr_complaint ();
14358
14359 if (!fnp->fcontext)
14360 {
14361 /* If there is no `this' field and no DW_AT_containing_type,
14362 we cannot actually find a base class context for the
14363 vtable! */
14364 if (TYPE_NFIELDS (this_type) == 0
14365 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14366 {
14367 complaint (&symfile_complaints,
14368 _("cannot determine context for virtual member "
14369 "function \"%s\" (offset %d)"),
14370 fieldname, to_underlying (die->sect_off));
14371 }
14372 else
14373 {
14374 fnp->fcontext
14375 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14376 }
14377 }
14378 }
14379 else if (attr_form_is_section_offset (attr))
14380 {
14381 dwarf2_complex_location_expr_complaint ();
14382 }
14383 else
14384 {
14385 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14386 fieldname);
14387 }
14388 }
14389 else
14390 {
14391 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14392 if (attr && DW_UNSND (attr))
14393 {
14394 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14395 complaint (&symfile_complaints,
14396 _("Member function \"%s\" (offset %d) is virtual "
14397 "but the vtable offset is not specified"),
14398 fieldname, to_underlying (die->sect_off));
14399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14400 TYPE_CPLUS_DYNAMIC (type) = 1;
14401 }
14402 }
14403 }
14404
14405 /* Create the vector of member function fields, and attach it to the type. */
14406
14407 static void
14408 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14409 struct dwarf2_cu *cu)
14410 {
14411 struct fnfieldlist *flp;
14412 int i;
14413
14414 if (cu->language == language_ada)
14415 error (_("unexpected member functions in Ada type"));
14416
14417 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14418 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14419 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
14420
14421 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
14422 {
14423 struct nextfnfield *nfp = flp->head;
14424 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14425 int k;
14426
14427 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
14428 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
14429 fn_flp->fn_fields = (struct fn_field *)
14430 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
14431 for (k = flp->length; (k--, nfp); nfp = nfp->next)
14432 fn_flp->fn_fields[k] = nfp->fnfield;
14433 }
14434
14435 TYPE_NFN_FIELDS (type) = fip->nfnfields;
14436 }
14437
14438 /* Returns non-zero if NAME is the name of a vtable member in CU's
14439 language, zero otherwise. */
14440 static int
14441 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14442 {
14443 static const char vptr[] = "_vptr";
14444 static const char vtable[] = "vtable";
14445
14446 /* Look for the C++ form of the vtable. */
14447 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14448 return 1;
14449
14450 return 0;
14451 }
14452
14453 /* GCC outputs unnamed structures that are really pointers to member
14454 functions, with the ABI-specified layout. If TYPE describes
14455 such a structure, smash it into a member function type.
14456
14457 GCC shouldn't do this; it should just output pointer to member DIEs.
14458 This is GCC PR debug/28767. */
14459
14460 static void
14461 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14462 {
14463 struct type *pfn_type, *self_type, *new_type;
14464
14465 /* Check for a structure with no name and two children. */
14466 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14467 return;
14468
14469 /* Check for __pfn and __delta members. */
14470 if (TYPE_FIELD_NAME (type, 0) == NULL
14471 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14472 || TYPE_FIELD_NAME (type, 1) == NULL
14473 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14474 return;
14475
14476 /* Find the type of the method. */
14477 pfn_type = TYPE_FIELD_TYPE (type, 0);
14478 if (pfn_type == NULL
14479 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14480 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14481 return;
14482
14483 /* Look for the "this" argument. */
14484 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14485 if (TYPE_NFIELDS (pfn_type) == 0
14486 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14487 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14488 return;
14489
14490 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14491 new_type = alloc_type (objfile);
14492 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14493 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14494 TYPE_VARARGS (pfn_type));
14495 smash_to_methodptr_type (type, new_type);
14496 }
14497
14498
14499 /* Called when we find the DIE that starts a structure or union scope
14500 (definition) to create a type for the structure or union. Fill in
14501 the type's name and general properties; the members will not be
14502 processed until process_structure_scope. A symbol table entry for
14503 the type will also not be done until process_structure_scope (assuming
14504 the type has a name).
14505
14506 NOTE: we need to call these functions regardless of whether or not the
14507 DIE has a DW_AT_name attribute, since it might be an anonymous
14508 structure or union. This gets the type entered into our set of
14509 user defined types. */
14510
14511 static struct type *
14512 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
14513 {
14514 struct objfile *objfile = cu->objfile;
14515 struct type *type;
14516 struct attribute *attr;
14517 const char *name;
14518
14519 /* If the definition of this type lives in .debug_types, read that type.
14520 Don't follow DW_AT_specification though, that will take us back up
14521 the chain and we want to go down. */
14522 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14523 if (attr)
14524 {
14525 type = get_DW_AT_signature_type (die, attr, cu);
14526
14527 /* The type's CU may not be the same as CU.
14528 Ensure TYPE is recorded with CU in die_type_hash. */
14529 return set_die_type (die, type, cu);
14530 }
14531
14532 type = alloc_type (objfile);
14533 INIT_CPLUS_SPECIFIC (type);
14534
14535 name = dwarf2_name (die, cu);
14536 if (name != NULL)
14537 {
14538 if (cu->language == language_cplus
14539 || cu->language == language_d
14540 || cu->language == language_rust)
14541 {
14542 const char *full_name = dwarf2_full_name (name, die, cu);
14543
14544 /* dwarf2_full_name might have already finished building the DIE's
14545 type. If so, there is no need to continue. */
14546 if (get_die_type (die, cu) != NULL)
14547 return get_die_type (die, cu);
14548
14549 TYPE_TAG_NAME (type) = full_name;
14550 if (die->tag == DW_TAG_structure_type
14551 || die->tag == DW_TAG_class_type)
14552 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14553 }
14554 else
14555 {
14556 /* The name is already allocated along with this objfile, so
14557 we don't need to duplicate it for the type. */
14558 TYPE_TAG_NAME (type) = name;
14559 if (die->tag == DW_TAG_class_type)
14560 TYPE_NAME (type) = TYPE_TAG_NAME (type);
14561 }
14562 }
14563
14564 if (die->tag == DW_TAG_structure_type)
14565 {
14566 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14567 }
14568 else if (die->tag == DW_TAG_union_type)
14569 {
14570 TYPE_CODE (type) = TYPE_CODE_UNION;
14571 }
14572 else
14573 {
14574 TYPE_CODE (type) = TYPE_CODE_STRUCT;
14575 }
14576
14577 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
14578 TYPE_DECLARED_CLASS (type) = 1;
14579
14580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14581 if (attr)
14582 {
14583 if (attr_form_is_constant (attr))
14584 TYPE_LENGTH (type) = DW_UNSND (attr);
14585 else
14586 {
14587 /* For the moment, dynamic type sizes are not supported
14588 by GDB's struct type. The actual size is determined
14589 on-demand when resolving the type of a given object,
14590 so set the type's length to zero for now. Otherwise,
14591 we record an expression as the length, and that expression
14592 could lead to a very large value, which could eventually
14593 lead to us trying to allocate that much memory when creating
14594 a value of that type. */
14595 TYPE_LENGTH (type) = 0;
14596 }
14597 }
14598 else
14599 {
14600 TYPE_LENGTH (type) = 0;
14601 }
14602
14603 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
14604 {
14605 /* ICC<14 does not output the required DW_AT_declaration on
14606 incomplete types, but gives them a size of zero. */
14607 TYPE_STUB (type) = 1;
14608 }
14609 else
14610 TYPE_STUB_SUPPORTED (type) = 1;
14611
14612 if (die_is_declaration (die, cu))
14613 TYPE_STUB (type) = 1;
14614 else if (attr == NULL && die->child == NULL
14615 && producer_is_realview (cu->producer))
14616 /* RealView does not output the required DW_AT_declaration
14617 on incomplete types. */
14618 TYPE_STUB (type) = 1;
14619
14620 /* We need to add the type field to the die immediately so we don't
14621 infinitely recurse when dealing with pointers to the structure
14622 type within the structure itself. */
14623 set_die_type (die, type, cu);
14624
14625 /* set_die_type should be already done. */
14626 set_descriptive_type (type, die, cu);
14627
14628 return type;
14629 }
14630
14631 /* Finish creating a structure or union type, including filling in
14632 its members and creating a symbol for it. */
14633
14634 static void
14635 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
14636 {
14637 struct objfile *objfile = cu->objfile;
14638 struct die_info *child_die;
14639 struct type *type;
14640
14641 type = get_die_type (die, cu);
14642 if (type == NULL)
14643 type = read_structure_type (die, cu);
14644
14645 if (die->child != NULL && ! die_is_declaration (die, cu))
14646 {
14647 struct field_info fi;
14648 std::vector<struct symbol *> template_args;
14649 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
14650
14651 memset (&fi, 0, sizeof (struct field_info));
14652
14653 child_die = die->child;
14654
14655 while (child_die && child_die->tag)
14656 {
14657 if (child_die->tag == DW_TAG_member
14658 || child_die->tag == DW_TAG_variable)
14659 {
14660 /* NOTE: carlton/2002-11-05: A C++ static data member
14661 should be a DW_TAG_member that is a declaration, but
14662 all versions of G++ as of this writing (so through at
14663 least 3.2.1) incorrectly generate DW_TAG_variable
14664 tags for them instead. */
14665 dwarf2_add_field (&fi, child_die, cu);
14666 }
14667 else if (child_die->tag == DW_TAG_subprogram)
14668 {
14669 /* Rust doesn't have member functions in the C++ sense.
14670 However, it does emit ordinary functions as children
14671 of a struct DIE. */
14672 if (cu->language == language_rust)
14673 read_func_scope (child_die, cu);
14674 else
14675 {
14676 /* C++ member function. */
14677 dwarf2_add_member_fn (&fi, child_die, type, cu);
14678 }
14679 }
14680 else if (child_die->tag == DW_TAG_inheritance)
14681 {
14682 /* C++ base class field. */
14683 dwarf2_add_field (&fi, child_die, cu);
14684 }
14685 else if (child_die->tag == DW_TAG_typedef)
14686 dwarf2_add_typedef (&fi, child_die, cu);
14687 else if (child_die->tag == DW_TAG_template_type_param
14688 || child_die->tag == DW_TAG_template_value_param)
14689 {
14690 struct symbol *arg = new_symbol (child_die, NULL, cu);
14691
14692 if (arg != NULL)
14693 template_args.push_back (arg);
14694 }
14695
14696 child_die = sibling_die (child_die);
14697 }
14698
14699 /* Attach template arguments to type. */
14700 if (!template_args.empty ())
14701 {
14702 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14703 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
14704 TYPE_TEMPLATE_ARGUMENTS (type)
14705 = XOBNEWVEC (&objfile->objfile_obstack,
14706 struct symbol *,
14707 TYPE_N_TEMPLATE_ARGUMENTS (type));
14708 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
14709 template_args.data (),
14710 (TYPE_N_TEMPLATE_ARGUMENTS (type)
14711 * sizeof (struct symbol *)));
14712 }
14713
14714 /* Attach fields and member functions to the type. */
14715 if (fi.nfields)
14716 dwarf2_attach_fields_to_type (&fi, type, cu);
14717 if (fi.nfnfields)
14718 {
14719 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
14720
14721 /* Get the type which refers to the base class (possibly this
14722 class itself) which contains the vtable pointer for the current
14723 class from the DW_AT_containing_type attribute. This use of
14724 DW_AT_containing_type is a GNU extension. */
14725
14726 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14727 {
14728 struct type *t = die_containing_type (die, cu);
14729
14730 set_type_vptr_basetype (type, t);
14731 if (type == t)
14732 {
14733 int i;
14734
14735 /* Our own class provides vtbl ptr. */
14736 for (i = TYPE_NFIELDS (t) - 1;
14737 i >= TYPE_N_BASECLASSES (t);
14738 --i)
14739 {
14740 const char *fieldname = TYPE_FIELD_NAME (t, i);
14741
14742 if (is_vtable_name (fieldname, cu))
14743 {
14744 set_type_vptr_fieldno (type, i);
14745 break;
14746 }
14747 }
14748
14749 /* Complain if virtual function table field not found. */
14750 if (i < TYPE_N_BASECLASSES (t))
14751 complaint (&symfile_complaints,
14752 _("virtual function table pointer "
14753 "not found when defining class '%s'"),
14754 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
14755 "");
14756 }
14757 else
14758 {
14759 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
14760 }
14761 }
14762 else if (cu->producer
14763 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
14764 {
14765 /* The IBM XLC compiler does not provide direct indication
14766 of the containing type, but the vtable pointer is
14767 always named __vfp. */
14768
14769 int i;
14770
14771 for (i = TYPE_NFIELDS (type) - 1;
14772 i >= TYPE_N_BASECLASSES (type);
14773 --i)
14774 {
14775 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
14776 {
14777 set_type_vptr_fieldno (type, i);
14778 set_type_vptr_basetype (type, type);
14779 break;
14780 }
14781 }
14782 }
14783 }
14784
14785 /* Copy fi.typedef_field_list linked list elements content into the
14786 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
14787 if (fi.typedef_field_list)
14788 {
14789 int i = fi.typedef_field_list_count;
14790
14791 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14792 TYPE_TYPEDEF_FIELD_ARRAY (type)
14793 = ((struct typedef_field *)
14794 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
14795 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
14796
14797 /* Reverse the list order to keep the debug info elements order. */
14798 while (--i >= 0)
14799 {
14800 struct typedef_field *dest, *src;
14801
14802 dest = &TYPE_TYPEDEF_FIELD (type, i);
14803 src = &fi.typedef_field_list->field;
14804 fi.typedef_field_list = fi.typedef_field_list->next;
14805 *dest = *src;
14806 }
14807 }
14808
14809 do_cleanups (back_to);
14810 }
14811
14812 quirk_gcc_member_function_pointer (type, objfile);
14813
14814 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
14815 snapshots) has been known to create a die giving a declaration
14816 for a class that has, as a child, a die giving a definition for a
14817 nested class. So we have to process our children even if the
14818 current die is a declaration. Normally, of course, a declaration
14819 won't have any children at all. */
14820
14821 child_die = die->child;
14822
14823 while (child_die != NULL && child_die->tag)
14824 {
14825 if (child_die->tag == DW_TAG_member
14826 || child_die->tag == DW_TAG_variable
14827 || child_die->tag == DW_TAG_inheritance
14828 || child_die->tag == DW_TAG_template_value_param
14829 || child_die->tag == DW_TAG_template_type_param)
14830 {
14831 /* Do nothing. */
14832 }
14833 else
14834 process_die (child_die, cu);
14835
14836 child_die = sibling_die (child_die);
14837 }
14838
14839 /* Do not consider external references. According to the DWARF standard,
14840 these DIEs are identified by the fact that they have no byte_size
14841 attribute, and a declaration attribute. */
14842 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
14843 || !die_is_declaration (die, cu))
14844 new_symbol (die, type, cu);
14845 }
14846
14847 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
14848 update TYPE using some information only available in DIE's children. */
14849
14850 static void
14851 update_enumeration_type_from_children (struct die_info *die,
14852 struct type *type,
14853 struct dwarf2_cu *cu)
14854 {
14855 struct die_info *child_die;
14856 int unsigned_enum = 1;
14857 int flag_enum = 1;
14858 ULONGEST mask = 0;
14859
14860 auto_obstack obstack;
14861
14862 for (child_die = die->child;
14863 child_die != NULL && child_die->tag;
14864 child_die = sibling_die (child_die))
14865 {
14866 struct attribute *attr;
14867 LONGEST value;
14868 const gdb_byte *bytes;
14869 struct dwarf2_locexpr_baton *baton;
14870 const char *name;
14871
14872 if (child_die->tag != DW_TAG_enumerator)
14873 continue;
14874
14875 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
14876 if (attr == NULL)
14877 continue;
14878
14879 name = dwarf2_name (child_die, cu);
14880 if (name == NULL)
14881 name = "<anonymous enumerator>";
14882
14883 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
14884 &value, &bytes, &baton);
14885 if (value < 0)
14886 {
14887 unsigned_enum = 0;
14888 flag_enum = 0;
14889 }
14890 else if ((mask & value) != 0)
14891 flag_enum = 0;
14892 else
14893 mask |= value;
14894
14895 /* If we already know that the enum type is neither unsigned, nor
14896 a flag type, no need to look at the rest of the enumerates. */
14897 if (!unsigned_enum && !flag_enum)
14898 break;
14899 }
14900
14901 if (unsigned_enum)
14902 TYPE_UNSIGNED (type) = 1;
14903 if (flag_enum)
14904 TYPE_FLAG_ENUM (type) = 1;
14905 }
14906
14907 /* Given a DW_AT_enumeration_type die, set its type. We do not
14908 complete the type's fields yet, or create any symbols. */
14909
14910 static struct type *
14911 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
14912 {
14913 struct objfile *objfile = cu->objfile;
14914 struct type *type;
14915 struct attribute *attr;
14916 const char *name;
14917
14918 /* If the definition of this type lives in .debug_types, read that type.
14919 Don't follow DW_AT_specification though, that will take us back up
14920 the chain and we want to go down. */
14921 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
14922 if (attr)
14923 {
14924 type = get_DW_AT_signature_type (die, attr, cu);
14925
14926 /* The type's CU may not be the same as CU.
14927 Ensure TYPE is recorded with CU in die_type_hash. */
14928 return set_die_type (die, type, cu);
14929 }
14930
14931 type = alloc_type (objfile);
14932
14933 TYPE_CODE (type) = TYPE_CODE_ENUM;
14934 name = dwarf2_full_name (NULL, die, cu);
14935 if (name != NULL)
14936 TYPE_TAG_NAME (type) = name;
14937
14938 attr = dwarf2_attr (die, DW_AT_type, cu);
14939 if (attr != NULL)
14940 {
14941 struct type *underlying_type = die_type (die, cu);
14942
14943 TYPE_TARGET_TYPE (type) = underlying_type;
14944 }
14945
14946 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14947 if (attr)
14948 {
14949 TYPE_LENGTH (type) = DW_UNSND (attr);
14950 }
14951 else
14952 {
14953 TYPE_LENGTH (type) = 0;
14954 }
14955
14956 /* The enumeration DIE can be incomplete. In Ada, any type can be
14957 declared as private in the package spec, and then defined only
14958 inside the package body. Such types are known as Taft Amendment
14959 Types. When another package uses such a type, an incomplete DIE
14960 may be generated by the compiler. */
14961 if (die_is_declaration (die, cu))
14962 TYPE_STUB (type) = 1;
14963
14964 /* Finish the creation of this type by using the enum's children.
14965 We must call this even when the underlying type has been provided
14966 so that we can determine if we're looking at a "flag" enum. */
14967 update_enumeration_type_from_children (die, type, cu);
14968
14969 /* If this type has an underlying type that is not a stub, then we
14970 may use its attributes. We always use the "unsigned" attribute
14971 in this situation, because ordinarily we guess whether the type
14972 is unsigned -- but the guess can be wrong and the underlying type
14973 can tell us the reality. However, we defer to a local size
14974 attribute if one exists, because this lets the compiler override
14975 the underlying type if needed. */
14976 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14977 {
14978 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14979 if (TYPE_LENGTH (type) == 0)
14980 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14981 }
14982
14983 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14984
14985 return set_die_type (die, type, cu);
14986 }
14987
14988 /* Given a pointer to a die which begins an enumeration, process all
14989 the dies that define the members of the enumeration, and create the
14990 symbol for the enumeration type.
14991
14992 NOTE: We reverse the order of the element list. */
14993
14994 static void
14995 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14996 {
14997 struct type *this_type;
14998
14999 this_type = get_die_type (die, cu);
15000 if (this_type == NULL)
15001 this_type = read_enumeration_type (die, cu);
15002
15003 if (die->child != NULL)
15004 {
15005 struct die_info *child_die;
15006 struct symbol *sym;
15007 struct field *fields = NULL;
15008 int num_fields = 0;
15009 const char *name;
15010
15011 child_die = die->child;
15012 while (child_die && child_die->tag)
15013 {
15014 if (child_die->tag != DW_TAG_enumerator)
15015 {
15016 process_die (child_die, cu);
15017 }
15018 else
15019 {
15020 name = dwarf2_name (child_die, cu);
15021 if (name)
15022 {
15023 sym = new_symbol (child_die, this_type, cu);
15024
15025 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
15026 {
15027 fields = (struct field *)
15028 xrealloc (fields,
15029 (num_fields + DW_FIELD_ALLOC_CHUNK)
15030 * sizeof (struct field));
15031 }
15032
15033 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
15034 FIELD_TYPE (fields[num_fields]) = NULL;
15035 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
15036 FIELD_BITSIZE (fields[num_fields]) = 0;
15037
15038 num_fields++;
15039 }
15040 }
15041
15042 child_die = sibling_die (child_die);
15043 }
15044
15045 if (num_fields)
15046 {
15047 TYPE_NFIELDS (this_type) = num_fields;
15048 TYPE_FIELDS (this_type) = (struct field *)
15049 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
15050 memcpy (TYPE_FIELDS (this_type), fields,
15051 sizeof (struct field) * num_fields);
15052 xfree (fields);
15053 }
15054 }
15055
15056 /* If we are reading an enum from a .debug_types unit, and the enum
15057 is a declaration, and the enum is not the signatured type in the
15058 unit, then we do not want to add a symbol for it. Adding a
15059 symbol would in some cases obscure the true definition of the
15060 enum, giving users an incomplete type when the definition is
15061 actually available. Note that we do not want to do this for all
15062 enums which are just declarations, because C++0x allows forward
15063 enum declarations. */
15064 if (cu->per_cu->is_debug_types
15065 && die_is_declaration (die, cu))
15066 {
15067 struct signatured_type *sig_type;
15068
15069 sig_type = (struct signatured_type *) cu->per_cu;
15070 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15071 if (sig_type->type_offset_in_section != die->sect_off)
15072 return;
15073 }
15074
15075 new_symbol (die, this_type, cu);
15076 }
15077
15078 /* Extract all information from a DW_TAG_array_type DIE and put it in
15079 the DIE's type field. For now, this only handles one dimensional
15080 arrays. */
15081
15082 static struct type *
15083 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15084 {
15085 struct objfile *objfile = cu->objfile;
15086 struct die_info *child_die;
15087 struct type *type;
15088 struct type *element_type, *range_type, *index_type;
15089 struct attribute *attr;
15090 const char *name;
15091 unsigned int bit_stride = 0;
15092
15093 element_type = die_type (die, cu);
15094
15095 /* The die_type call above may have already set the type for this DIE. */
15096 type = get_die_type (die, cu);
15097 if (type)
15098 return type;
15099
15100 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15101 if (attr != NULL)
15102 bit_stride = DW_UNSND (attr) * 8;
15103
15104 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15105 if (attr != NULL)
15106 bit_stride = DW_UNSND (attr);
15107
15108 /* Irix 6.2 native cc creates array types without children for
15109 arrays with unspecified length. */
15110 if (die->child == NULL)
15111 {
15112 index_type = objfile_type (objfile)->builtin_int;
15113 range_type = create_static_range_type (NULL, index_type, 0, -1);
15114 type = create_array_type_with_stride (NULL, element_type, range_type,
15115 bit_stride);
15116 return set_die_type (die, type, cu);
15117 }
15118
15119 std::vector<struct type *> range_types;
15120 child_die = die->child;
15121 while (child_die && child_die->tag)
15122 {
15123 if (child_die->tag == DW_TAG_subrange_type)
15124 {
15125 struct type *child_type = read_type_die (child_die, cu);
15126
15127 if (child_type != NULL)
15128 {
15129 /* The range type was succesfully read. Save it for the
15130 array type creation. */
15131 range_types.push_back (child_type);
15132 }
15133 }
15134 child_die = sibling_die (child_die);
15135 }
15136
15137 /* Dwarf2 dimensions are output from left to right, create the
15138 necessary array types in backwards order. */
15139
15140 type = element_type;
15141
15142 if (read_array_order (die, cu) == DW_ORD_col_major)
15143 {
15144 int i = 0;
15145
15146 while (i < range_types.size ())
15147 type = create_array_type_with_stride (NULL, type, range_types[i++],
15148 bit_stride);
15149 }
15150 else
15151 {
15152 size_t ndim = range_types.size ();
15153 while (ndim-- > 0)
15154 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15155 bit_stride);
15156 }
15157
15158 /* Understand Dwarf2 support for vector types (like they occur on
15159 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15160 array type. This is not part of the Dwarf2/3 standard yet, but a
15161 custom vendor extension. The main difference between a regular
15162 array and the vector variant is that vectors are passed by value
15163 to functions. */
15164 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15165 if (attr)
15166 make_vector_type (type);
15167
15168 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15169 implementation may choose to implement triple vectors using this
15170 attribute. */
15171 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15172 if (attr)
15173 {
15174 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15175 TYPE_LENGTH (type) = DW_UNSND (attr);
15176 else
15177 complaint (&symfile_complaints,
15178 _("DW_AT_byte_size for array type smaller "
15179 "than the total size of elements"));
15180 }
15181
15182 name = dwarf2_name (die, cu);
15183 if (name)
15184 TYPE_NAME (type) = name;
15185
15186 /* Install the type in the die. */
15187 set_die_type (die, type, cu);
15188
15189 /* set_die_type should be already done. */
15190 set_descriptive_type (type, die, cu);
15191
15192 return type;
15193 }
15194
15195 static enum dwarf_array_dim_ordering
15196 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15197 {
15198 struct attribute *attr;
15199
15200 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15201
15202 if (attr)
15203 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15204
15205 /* GNU F77 is a special case, as at 08/2004 array type info is the
15206 opposite order to the dwarf2 specification, but data is still
15207 laid out as per normal fortran.
15208
15209 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15210 version checking. */
15211
15212 if (cu->language == language_fortran
15213 && cu->producer && strstr (cu->producer, "GNU F77"))
15214 {
15215 return DW_ORD_row_major;
15216 }
15217
15218 switch (cu->language_defn->la_array_ordering)
15219 {
15220 case array_column_major:
15221 return DW_ORD_col_major;
15222 case array_row_major:
15223 default:
15224 return DW_ORD_row_major;
15225 };
15226 }
15227
15228 /* Extract all information from a DW_TAG_set_type DIE and put it in
15229 the DIE's type field. */
15230
15231 static struct type *
15232 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15233 {
15234 struct type *domain_type, *set_type;
15235 struct attribute *attr;
15236
15237 domain_type = die_type (die, cu);
15238
15239 /* The die_type call above may have already set the type for this DIE. */
15240 set_type = get_die_type (die, cu);
15241 if (set_type)
15242 return set_type;
15243
15244 set_type = create_set_type (NULL, domain_type);
15245
15246 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15247 if (attr)
15248 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15249
15250 return set_die_type (die, set_type, cu);
15251 }
15252
15253 /* A helper for read_common_block that creates a locexpr baton.
15254 SYM is the symbol which we are marking as computed.
15255 COMMON_DIE is the DIE for the common block.
15256 COMMON_LOC is the location expression attribute for the common
15257 block itself.
15258 MEMBER_LOC is the location expression attribute for the particular
15259 member of the common block that we are processing.
15260 CU is the CU from which the above come. */
15261
15262 static void
15263 mark_common_block_symbol_computed (struct symbol *sym,
15264 struct die_info *common_die,
15265 struct attribute *common_loc,
15266 struct attribute *member_loc,
15267 struct dwarf2_cu *cu)
15268 {
15269 struct objfile *objfile = dwarf2_per_objfile->objfile;
15270 struct dwarf2_locexpr_baton *baton;
15271 gdb_byte *ptr;
15272 unsigned int cu_off;
15273 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
15274 LONGEST offset = 0;
15275
15276 gdb_assert (common_loc && member_loc);
15277 gdb_assert (attr_form_is_block (common_loc));
15278 gdb_assert (attr_form_is_block (member_loc)
15279 || attr_form_is_constant (member_loc));
15280
15281 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15282 baton->per_cu = cu->per_cu;
15283 gdb_assert (baton->per_cu);
15284
15285 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15286
15287 if (attr_form_is_constant (member_loc))
15288 {
15289 offset = dwarf2_get_attr_constant_value (member_loc, 0);
15290 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15291 }
15292 else
15293 baton->size += DW_BLOCK (member_loc)->size;
15294
15295 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15296 baton->data = ptr;
15297
15298 *ptr++ = DW_OP_call4;
15299 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15300 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15301 ptr += 4;
15302
15303 if (attr_form_is_constant (member_loc))
15304 {
15305 *ptr++ = DW_OP_addr;
15306 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15307 ptr += cu->header.addr_size;
15308 }
15309 else
15310 {
15311 /* We have to copy the data here, because DW_OP_call4 will only
15312 use a DW_AT_location attribute. */
15313 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15314 ptr += DW_BLOCK (member_loc)->size;
15315 }
15316
15317 *ptr++ = DW_OP_plus;
15318 gdb_assert (ptr - baton->data == baton->size);
15319
15320 SYMBOL_LOCATION_BATON (sym) = baton;
15321 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
15322 }
15323
15324 /* Create appropriate locally-scoped variables for all the
15325 DW_TAG_common_block entries. Also create a struct common_block
15326 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
15327 is used to sepate the common blocks name namespace from regular
15328 variable names. */
15329
15330 static void
15331 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
15332 {
15333 struct attribute *attr;
15334
15335 attr = dwarf2_attr (die, DW_AT_location, cu);
15336 if (attr)
15337 {
15338 /* Support the .debug_loc offsets. */
15339 if (attr_form_is_block (attr))
15340 {
15341 /* Ok. */
15342 }
15343 else if (attr_form_is_section_offset (attr))
15344 {
15345 dwarf2_complex_location_expr_complaint ();
15346 attr = NULL;
15347 }
15348 else
15349 {
15350 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15351 "common block member");
15352 attr = NULL;
15353 }
15354 }
15355
15356 if (die->child != NULL)
15357 {
15358 struct objfile *objfile = cu->objfile;
15359 struct die_info *child_die;
15360 size_t n_entries = 0, size;
15361 struct common_block *common_block;
15362 struct symbol *sym;
15363
15364 for (child_die = die->child;
15365 child_die && child_die->tag;
15366 child_die = sibling_die (child_die))
15367 ++n_entries;
15368
15369 size = (sizeof (struct common_block)
15370 + (n_entries - 1) * sizeof (struct symbol *));
15371 common_block
15372 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
15373 size);
15374 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
15375 common_block->n_entries = 0;
15376
15377 for (child_die = die->child;
15378 child_die && child_die->tag;
15379 child_die = sibling_die (child_die))
15380 {
15381 /* Create the symbol in the DW_TAG_common_block block in the current
15382 symbol scope. */
15383 sym = new_symbol (child_die, NULL, cu);
15384 if (sym != NULL)
15385 {
15386 struct attribute *member_loc;
15387
15388 common_block->contents[common_block->n_entries++] = sym;
15389
15390 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
15391 cu);
15392 if (member_loc)
15393 {
15394 /* GDB has handled this for a long time, but it is
15395 not specified by DWARF. It seems to have been
15396 emitted by gfortran at least as recently as:
15397 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
15398 complaint (&symfile_complaints,
15399 _("Variable in common block has "
15400 "DW_AT_data_member_location "
15401 "- DIE at 0x%x [in module %s]"),
15402 to_underlying (child_die->sect_off),
15403 objfile_name (cu->objfile));
15404
15405 if (attr_form_is_section_offset (member_loc))
15406 dwarf2_complex_location_expr_complaint ();
15407 else if (attr_form_is_constant (member_loc)
15408 || attr_form_is_block (member_loc))
15409 {
15410 if (attr)
15411 mark_common_block_symbol_computed (sym, die, attr,
15412 member_loc, cu);
15413 }
15414 else
15415 dwarf2_complex_location_expr_complaint ();
15416 }
15417 }
15418 }
15419
15420 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
15421 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
15422 }
15423 }
15424
15425 /* Create a type for a C++ namespace. */
15426
15427 static struct type *
15428 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
15429 {
15430 struct objfile *objfile = cu->objfile;
15431 const char *previous_prefix, *name;
15432 int is_anonymous;
15433 struct type *type;
15434
15435 /* For extensions, reuse the type of the original namespace. */
15436 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
15437 {
15438 struct die_info *ext_die;
15439 struct dwarf2_cu *ext_cu = cu;
15440
15441 ext_die = dwarf2_extension (die, &ext_cu);
15442 type = read_type_die (ext_die, ext_cu);
15443
15444 /* EXT_CU may not be the same as CU.
15445 Ensure TYPE is recorded with CU in die_type_hash. */
15446 return set_die_type (die, type, cu);
15447 }
15448
15449 name = namespace_name (die, &is_anonymous, cu);
15450
15451 /* Now build the name of the current namespace. */
15452
15453 previous_prefix = determine_prefix (die, cu);
15454 if (previous_prefix[0] != '\0')
15455 name = typename_concat (&objfile->objfile_obstack,
15456 previous_prefix, name, 0, cu);
15457
15458 /* Create the type. */
15459 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
15460 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15461
15462 return set_die_type (die, type, cu);
15463 }
15464
15465 /* Read a namespace scope. */
15466
15467 static void
15468 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
15469 {
15470 struct objfile *objfile = cu->objfile;
15471 int is_anonymous;
15472
15473 /* Add a symbol associated to this if we haven't seen the namespace
15474 before. Also, add a using directive if it's an anonymous
15475 namespace. */
15476
15477 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
15478 {
15479 struct type *type;
15480
15481 type = read_type_die (die, cu);
15482 new_symbol (die, type, cu);
15483
15484 namespace_name (die, &is_anonymous, cu);
15485 if (is_anonymous)
15486 {
15487 const char *previous_prefix = determine_prefix (die, cu);
15488
15489 std::vector<const char *> excludes;
15490 add_using_directive (using_directives (cu->language),
15491 previous_prefix, TYPE_NAME (type), NULL,
15492 NULL, excludes, 0, &objfile->objfile_obstack);
15493 }
15494 }
15495
15496 if (die->child != NULL)
15497 {
15498 struct die_info *child_die = die->child;
15499
15500 while (child_die && child_die->tag)
15501 {
15502 process_die (child_die, cu);
15503 child_die = sibling_die (child_die);
15504 }
15505 }
15506 }
15507
15508 /* Read a Fortran module as type. This DIE can be only a declaration used for
15509 imported module. Still we need that type as local Fortran "use ... only"
15510 declaration imports depend on the created type in determine_prefix. */
15511
15512 static struct type *
15513 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
15514 {
15515 struct objfile *objfile = cu->objfile;
15516 const char *module_name;
15517 struct type *type;
15518
15519 module_name = dwarf2_name (die, cu);
15520 if (!module_name)
15521 complaint (&symfile_complaints,
15522 _("DW_TAG_module has no name, offset 0x%x"),
15523 to_underlying (die->sect_off));
15524 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
15525
15526 /* determine_prefix uses TYPE_TAG_NAME. */
15527 TYPE_TAG_NAME (type) = TYPE_NAME (type);
15528
15529 return set_die_type (die, type, cu);
15530 }
15531
15532 /* Read a Fortran module. */
15533
15534 static void
15535 read_module (struct die_info *die, struct dwarf2_cu *cu)
15536 {
15537 struct die_info *child_die = die->child;
15538 struct type *type;
15539
15540 type = read_type_die (die, cu);
15541 new_symbol (die, type, cu);
15542
15543 while (child_die && child_die->tag)
15544 {
15545 process_die (child_die, cu);
15546 child_die = sibling_die (child_die);
15547 }
15548 }
15549
15550 /* Return the name of the namespace represented by DIE. Set
15551 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
15552 namespace. */
15553
15554 static const char *
15555 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
15556 {
15557 struct die_info *current_die;
15558 const char *name = NULL;
15559
15560 /* Loop through the extensions until we find a name. */
15561
15562 for (current_die = die;
15563 current_die != NULL;
15564 current_die = dwarf2_extension (die, &cu))
15565 {
15566 /* We don't use dwarf2_name here so that we can detect the absence
15567 of a name -> anonymous namespace. */
15568 name = dwarf2_string_attr (die, DW_AT_name, cu);
15569
15570 if (name != NULL)
15571 break;
15572 }
15573
15574 /* Is it an anonymous namespace? */
15575
15576 *is_anonymous = (name == NULL);
15577 if (*is_anonymous)
15578 name = CP_ANONYMOUS_NAMESPACE_STR;
15579
15580 return name;
15581 }
15582
15583 /* Extract all information from a DW_TAG_pointer_type DIE and add to
15584 the user defined type vector. */
15585
15586 static struct type *
15587 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
15588 {
15589 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
15590 struct comp_unit_head *cu_header = &cu->header;
15591 struct type *type;
15592 struct attribute *attr_byte_size;
15593 struct attribute *attr_address_class;
15594 int byte_size, addr_class;
15595 struct type *target_type;
15596
15597 target_type = die_type (die, cu);
15598
15599 /* The die_type call above may have already set the type for this DIE. */
15600 type = get_die_type (die, cu);
15601 if (type)
15602 return type;
15603
15604 type = lookup_pointer_type (target_type);
15605
15606 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
15607 if (attr_byte_size)
15608 byte_size = DW_UNSND (attr_byte_size);
15609 else
15610 byte_size = cu_header->addr_size;
15611
15612 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
15613 if (attr_address_class)
15614 addr_class = DW_UNSND (attr_address_class);
15615 else
15616 addr_class = DW_ADDR_none;
15617
15618 /* If the pointer size or address class is different than the
15619 default, create a type variant marked as such and set the
15620 length accordingly. */
15621 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
15622 {
15623 if (gdbarch_address_class_type_flags_p (gdbarch))
15624 {
15625 int type_flags;
15626
15627 type_flags = gdbarch_address_class_type_flags
15628 (gdbarch, byte_size, addr_class);
15629 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
15630 == 0);
15631 type = make_type_with_address_space (type, type_flags);
15632 }
15633 else if (TYPE_LENGTH (type) != byte_size)
15634 {
15635 complaint (&symfile_complaints,
15636 _("invalid pointer size %d"), byte_size);
15637 }
15638 else
15639 {
15640 /* Should we also complain about unhandled address classes? */
15641 }
15642 }
15643
15644 TYPE_LENGTH (type) = byte_size;
15645 return set_die_type (die, type, cu);
15646 }
15647
15648 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
15649 the user defined type vector. */
15650
15651 static struct type *
15652 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
15653 {
15654 struct type *type;
15655 struct type *to_type;
15656 struct type *domain;
15657
15658 to_type = die_type (die, cu);
15659 domain = die_containing_type (die, cu);
15660
15661 /* The calls above may have already set the type for this DIE. */
15662 type = get_die_type (die, cu);
15663 if (type)
15664 return type;
15665
15666 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
15667 type = lookup_methodptr_type (to_type);
15668 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
15669 {
15670 struct type *new_type = alloc_type (cu->objfile);
15671
15672 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
15673 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
15674 TYPE_VARARGS (to_type));
15675 type = lookup_methodptr_type (new_type);
15676 }
15677 else
15678 type = lookup_memberptr_type (to_type, domain);
15679
15680 return set_die_type (die, type, cu);
15681 }
15682
15683 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
15684 the user defined type vector. */
15685
15686 static struct type *
15687 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
15688 enum type_code refcode)
15689 {
15690 struct comp_unit_head *cu_header = &cu->header;
15691 struct type *type, *target_type;
15692 struct attribute *attr;
15693
15694 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
15695
15696 target_type = die_type (die, cu);
15697
15698 /* The die_type call above may have already set the type for this DIE. */
15699 type = get_die_type (die, cu);
15700 if (type)
15701 return type;
15702
15703 type = lookup_reference_type (target_type, refcode);
15704 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15705 if (attr)
15706 {
15707 TYPE_LENGTH (type) = DW_UNSND (attr);
15708 }
15709 else
15710 {
15711 TYPE_LENGTH (type) = cu_header->addr_size;
15712 }
15713 return set_die_type (die, type, cu);
15714 }
15715
15716 /* Add the given cv-qualifiers to the element type of the array. GCC
15717 outputs DWARF type qualifiers that apply to an array, not the
15718 element type. But GDB relies on the array element type to carry
15719 the cv-qualifiers. This mimics section 6.7.3 of the C99
15720 specification. */
15721
15722 static struct type *
15723 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
15724 struct type *base_type, int cnst, int voltl)
15725 {
15726 struct type *el_type, *inner_array;
15727
15728 base_type = copy_type (base_type);
15729 inner_array = base_type;
15730
15731 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
15732 {
15733 TYPE_TARGET_TYPE (inner_array) =
15734 copy_type (TYPE_TARGET_TYPE (inner_array));
15735 inner_array = TYPE_TARGET_TYPE (inner_array);
15736 }
15737
15738 el_type = TYPE_TARGET_TYPE (inner_array);
15739 cnst |= TYPE_CONST (el_type);
15740 voltl |= TYPE_VOLATILE (el_type);
15741 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
15742
15743 return set_die_type (die, base_type, cu);
15744 }
15745
15746 static struct type *
15747 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
15748 {
15749 struct type *base_type, *cv_type;
15750
15751 base_type = die_type (die, cu);
15752
15753 /* The die_type call above may have already set the type for this DIE. */
15754 cv_type = get_die_type (die, cu);
15755 if (cv_type)
15756 return cv_type;
15757
15758 /* In case the const qualifier is applied to an array type, the element type
15759 is so qualified, not the array type (section 6.7.3 of C99). */
15760 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15761 return add_array_cv_type (die, cu, base_type, 1, 0);
15762
15763 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
15764 return set_die_type (die, cv_type, cu);
15765 }
15766
15767 static struct type *
15768 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
15769 {
15770 struct type *base_type, *cv_type;
15771
15772 base_type = die_type (die, cu);
15773
15774 /* The die_type call above may have already set the type for this DIE. */
15775 cv_type = get_die_type (die, cu);
15776 if (cv_type)
15777 return cv_type;
15778
15779 /* In case the volatile qualifier is applied to an array type, the
15780 element type is so qualified, not the array type (section 6.7.3
15781 of C99). */
15782 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
15783 return add_array_cv_type (die, cu, base_type, 0, 1);
15784
15785 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
15786 return set_die_type (die, cv_type, cu);
15787 }
15788
15789 /* Handle DW_TAG_restrict_type. */
15790
15791 static struct type *
15792 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
15793 {
15794 struct type *base_type, *cv_type;
15795
15796 base_type = die_type (die, cu);
15797
15798 /* The die_type call above may have already set the type for this DIE. */
15799 cv_type = get_die_type (die, cu);
15800 if (cv_type)
15801 return cv_type;
15802
15803 cv_type = make_restrict_type (base_type);
15804 return set_die_type (die, cv_type, cu);
15805 }
15806
15807 /* Handle DW_TAG_atomic_type. */
15808
15809 static struct type *
15810 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
15811 {
15812 struct type *base_type, *cv_type;
15813
15814 base_type = die_type (die, cu);
15815
15816 /* The die_type call above may have already set the type for this DIE. */
15817 cv_type = get_die_type (die, cu);
15818 if (cv_type)
15819 return cv_type;
15820
15821 cv_type = make_atomic_type (base_type);
15822 return set_die_type (die, cv_type, cu);
15823 }
15824
15825 /* Extract all information from a DW_TAG_string_type DIE and add to
15826 the user defined type vector. It isn't really a user defined type,
15827 but it behaves like one, with other DIE's using an AT_user_def_type
15828 attribute to reference it. */
15829
15830 static struct type *
15831 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
15832 {
15833 struct objfile *objfile = cu->objfile;
15834 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15835 struct type *type, *range_type, *index_type, *char_type;
15836 struct attribute *attr;
15837 unsigned int length;
15838
15839 attr = dwarf2_attr (die, DW_AT_string_length, cu);
15840 if (attr)
15841 {
15842 length = DW_UNSND (attr);
15843 }
15844 else
15845 {
15846 /* Check for the DW_AT_byte_size attribute. */
15847 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15848 if (attr)
15849 {
15850 length = DW_UNSND (attr);
15851 }
15852 else
15853 {
15854 length = 1;
15855 }
15856 }
15857
15858 index_type = objfile_type (objfile)->builtin_int;
15859 range_type = create_static_range_type (NULL, index_type, 1, length);
15860 char_type = language_string_char_type (cu->language_defn, gdbarch);
15861 type = create_string_type (NULL, char_type, range_type);
15862
15863 return set_die_type (die, type, cu);
15864 }
15865
15866 /* Assuming that DIE corresponds to a function, returns nonzero
15867 if the function is prototyped. */
15868
15869 static int
15870 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
15871 {
15872 struct attribute *attr;
15873
15874 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
15875 if (attr && (DW_UNSND (attr) != 0))
15876 return 1;
15877
15878 /* The DWARF standard implies that the DW_AT_prototyped attribute
15879 is only meaninful for C, but the concept also extends to other
15880 languages that allow unprototyped functions (Eg: Objective C).
15881 For all other languages, assume that functions are always
15882 prototyped. */
15883 if (cu->language != language_c
15884 && cu->language != language_objc
15885 && cu->language != language_opencl)
15886 return 1;
15887
15888 /* RealView does not emit DW_AT_prototyped. We can not distinguish
15889 prototyped and unprototyped functions; default to prototyped,
15890 since that is more common in modern code (and RealView warns
15891 about unprototyped functions). */
15892 if (producer_is_realview (cu->producer))
15893 return 1;
15894
15895 return 0;
15896 }
15897
15898 /* Handle DIES due to C code like:
15899
15900 struct foo
15901 {
15902 int (*funcp)(int a, long l);
15903 int b;
15904 };
15905
15906 ('funcp' generates a DW_TAG_subroutine_type DIE). */
15907
15908 static struct type *
15909 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
15910 {
15911 struct objfile *objfile = cu->objfile;
15912 struct type *type; /* Type that this function returns. */
15913 struct type *ftype; /* Function that returns above type. */
15914 struct attribute *attr;
15915
15916 type = die_type (die, cu);
15917
15918 /* The die_type call above may have already set the type for this DIE. */
15919 ftype = get_die_type (die, cu);
15920 if (ftype)
15921 return ftype;
15922
15923 ftype = lookup_function_type (type);
15924
15925 if (prototyped_function_p (die, cu))
15926 TYPE_PROTOTYPED (ftype) = 1;
15927
15928 /* Store the calling convention in the type if it's available in
15929 the subroutine die. Otherwise set the calling convention to
15930 the default value DW_CC_normal. */
15931 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15932 if (attr)
15933 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15934 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15935 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15936 else
15937 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
15938
15939 /* Record whether the function returns normally to its caller or not
15940 if the DWARF producer set that information. */
15941 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15942 if (attr && (DW_UNSND (attr) != 0))
15943 TYPE_NO_RETURN (ftype) = 1;
15944
15945 /* We need to add the subroutine type to the die immediately so
15946 we don't infinitely recurse when dealing with parameters
15947 declared as the same subroutine type. */
15948 set_die_type (die, ftype, cu);
15949
15950 if (die->child != NULL)
15951 {
15952 struct type *void_type = objfile_type (objfile)->builtin_void;
15953 struct die_info *child_die;
15954 int nparams, iparams;
15955
15956 /* Count the number of parameters.
15957 FIXME: GDB currently ignores vararg functions, but knows about
15958 vararg member functions. */
15959 nparams = 0;
15960 child_die = die->child;
15961 while (child_die && child_die->tag)
15962 {
15963 if (child_die->tag == DW_TAG_formal_parameter)
15964 nparams++;
15965 else if (child_die->tag == DW_TAG_unspecified_parameters)
15966 TYPE_VARARGS (ftype) = 1;
15967 child_die = sibling_die (child_die);
15968 }
15969
15970 /* Allocate storage for parameters and fill them in. */
15971 TYPE_NFIELDS (ftype) = nparams;
15972 TYPE_FIELDS (ftype) = (struct field *)
15973 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
15974
15975 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15976 even if we error out during the parameters reading below. */
15977 for (iparams = 0; iparams < nparams; iparams++)
15978 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15979
15980 iparams = 0;
15981 child_die = die->child;
15982 while (child_die && child_die->tag)
15983 {
15984 if (child_die->tag == DW_TAG_formal_parameter)
15985 {
15986 struct type *arg_type;
15987
15988 /* DWARF version 2 has no clean way to discern C++
15989 static and non-static member functions. G++ helps
15990 GDB by marking the first parameter for non-static
15991 member functions (which is the this pointer) as
15992 artificial. We pass this information to
15993 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15994
15995 DWARF version 3 added DW_AT_object_pointer, which GCC
15996 4.5 does not yet generate. */
15997 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
15998 if (attr)
15999 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16000 else
16001 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16002 arg_type = die_type (child_die, cu);
16003
16004 /* RealView does not mark THIS as const, which the testsuite
16005 expects. GCC marks THIS as const in method definitions,
16006 but not in the class specifications (GCC PR 43053). */
16007 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16008 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16009 {
16010 int is_this = 0;
16011 struct dwarf2_cu *arg_cu = cu;
16012 const char *name = dwarf2_name (child_die, cu);
16013
16014 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16015 if (attr)
16016 {
16017 /* If the compiler emits this, use it. */
16018 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16019 is_this = 1;
16020 }
16021 else if (name && strcmp (name, "this") == 0)
16022 /* Function definitions will have the argument names. */
16023 is_this = 1;
16024 else if (name == NULL && iparams == 0)
16025 /* Declarations may not have the names, so like
16026 elsewhere in GDB, assume an artificial first
16027 argument is "this". */
16028 is_this = 1;
16029
16030 if (is_this)
16031 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16032 arg_type, 0);
16033 }
16034
16035 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16036 iparams++;
16037 }
16038 child_die = sibling_die (child_die);
16039 }
16040 }
16041
16042 return ftype;
16043 }
16044
16045 static struct type *
16046 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16047 {
16048 struct objfile *objfile = cu->objfile;
16049 const char *name = NULL;
16050 struct type *this_type, *target_type;
16051
16052 name = dwarf2_full_name (NULL, die, cu);
16053 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16054 TYPE_TARGET_STUB (this_type) = 1;
16055 set_die_type (die, this_type, cu);
16056 target_type = die_type (die, cu);
16057 if (target_type != this_type)
16058 TYPE_TARGET_TYPE (this_type) = target_type;
16059 else
16060 {
16061 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16062 spec and cause infinite loops in GDB. */
16063 complaint (&symfile_complaints,
16064 _("Self-referential DW_TAG_typedef "
16065 "- DIE at 0x%x [in module %s]"),
16066 to_underlying (die->sect_off), objfile_name (objfile));
16067 TYPE_TARGET_TYPE (this_type) = NULL;
16068 }
16069 return this_type;
16070 }
16071
16072 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16073 (which may be different from NAME) to the architecture back-end to allow
16074 it to guess the correct format if necessary. */
16075
16076 static struct type *
16077 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16078 const char *name_hint)
16079 {
16080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16081 const struct floatformat **format;
16082 struct type *type;
16083
16084 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16085 if (format)
16086 type = init_float_type (objfile, bits, name, format);
16087 else
16088 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16089
16090 return type;
16091 }
16092
16093 /* Find a representation of a given base type and install
16094 it in the TYPE field of the die. */
16095
16096 static struct type *
16097 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16098 {
16099 struct objfile *objfile = cu->objfile;
16100 struct type *type;
16101 struct attribute *attr;
16102 int encoding = 0, bits = 0;
16103 const char *name;
16104
16105 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16106 if (attr)
16107 {
16108 encoding = DW_UNSND (attr);
16109 }
16110 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16111 if (attr)
16112 {
16113 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16114 }
16115 name = dwarf2_name (die, cu);
16116 if (!name)
16117 {
16118 complaint (&symfile_complaints,
16119 _("DW_AT_name missing from DW_TAG_base_type"));
16120 }
16121
16122 switch (encoding)
16123 {
16124 case DW_ATE_address:
16125 /* Turn DW_ATE_address into a void * pointer. */
16126 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16127 type = init_pointer_type (objfile, bits, name, type);
16128 break;
16129 case DW_ATE_boolean:
16130 type = init_boolean_type (objfile, bits, 1, name);
16131 break;
16132 case DW_ATE_complex_float:
16133 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
16134 type = init_complex_type (objfile, name, type);
16135 break;
16136 case DW_ATE_decimal_float:
16137 type = init_decfloat_type (objfile, bits, name);
16138 break;
16139 case DW_ATE_float:
16140 type = dwarf2_init_float_type (objfile, bits, name, name);
16141 break;
16142 case DW_ATE_signed:
16143 type = init_integer_type (objfile, bits, 0, name);
16144 break;
16145 case DW_ATE_unsigned:
16146 if (cu->language == language_fortran
16147 && name
16148 && startswith (name, "character("))
16149 type = init_character_type (objfile, bits, 1, name);
16150 else
16151 type = init_integer_type (objfile, bits, 1, name);
16152 break;
16153 case DW_ATE_signed_char:
16154 if (cu->language == language_ada || cu->language == language_m2
16155 || cu->language == language_pascal
16156 || cu->language == language_fortran)
16157 type = init_character_type (objfile, bits, 0, name);
16158 else
16159 type = init_integer_type (objfile, bits, 0, name);
16160 break;
16161 case DW_ATE_unsigned_char:
16162 if (cu->language == language_ada || cu->language == language_m2
16163 || cu->language == language_pascal
16164 || cu->language == language_fortran
16165 || cu->language == language_rust)
16166 type = init_character_type (objfile, bits, 1, name);
16167 else
16168 type = init_integer_type (objfile, bits, 1, name);
16169 break;
16170 case DW_ATE_UTF:
16171 {
16172 gdbarch *arch = get_objfile_arch (objfile);
16173
16174 if (bits == 16)
16175 type = builtin_type (arch)->builtin_char16;
16176 else if (bits == 32)
16177 type = builtin_type (arch)->builtin_char32;
16178 else
16179 {
16180 complaint (&symfile_complaints,
16181 _("unsupported DW_ATE_UTF bit size: '%d'"),
16182 bits);
16183 type = init_integer_type (objfile, bits, 1, name);
16184 }
16185 return set_die_type (die, type, cu);
16186 }
16187 break;
16188
16189 default:
16190 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
16191 dwarf_type_encoding_name (encoding));
16192 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16193 break;
16194 }
16195
16196 if (name && strcmp (name, "char") == 0)
16197 TYPE_NOSIGN (type) = 1;
16198
16199 return set_die_type (die, type, cu);
16200 }
16201
16202 /* Parse dwarf attribute if it's a block, reference or constant and put the
16203 resulting value of the attribute into struct bound_prop.
16204 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
16205
16206 static int
16207 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
16208 struct dwarf2_cu *cu, struct dynamic_prop *prop)
16209 {
16210 struct dwarf2_property_baton *baton;
16211 struct obstack *obstack = &cu->objfile->objfile_obstack;
16212
16213 if (attr == NULL || prop == NULL)
16214 return 0;
16215
16216 if (attr_form_is_block (attr))
16217 {
16218 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16219 baton->referenced_type = NULL;
16220 baton->locexpr.per_cu = cu->per_cu;
16221 baton->locexpr.size = DW_BLOCK (attr)->size;
16222 baton->locexpr.data = DW_BLOCK (attr)->data;
16223 prop->data.baton = baton;
16224 prop->kind = PROP_LOCEXPR;
16225 gdb_assert (prop->data.baton != NULL);
16226 }
16227 else if (attr_form_is_ref (attr))
16228 {
16229 struct dwarf2_cu *target_cu = cu;
16230 struct die_info *target_die;
16231 struct attribute *target_attr;
16232
16233 target_die = follow_die_ref (die, attr, &target_cu);
16234 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
16235 if (target_attr == NULL)
16236 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
16237 target_cu);
16238 if (target_attr == NULL)
16239 return 0;
16240
16241 switch (target_attr->name)
16242 {
16243 case DW_AT_location:
16244 if (attr_form_is_section_offset (target_attr))
16245 {
16246 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16247 baton->referenced_type = die_type (target_die, target_cu);
16248 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
16249 prop->data.baton = baton;
16250 prop->kind = PROP_LOCLIST;
16251 gdb_assert (prop->data.baton != NULL);
16252 }
16253 else if (attr_form_is_block (target_attr))
16254 {
16255 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16256 baton->referenced_type = die_type (target_die, target_cu);
16257 baton->locexpr.per_cu = cu->per_cu;
16258 baton->locexpr.size = DW_BLOCK (target_attr)->size;
16259 baton->locexpr.data = DW_BLOCK (target_attr)->data;
16260 prop->data.baton = baton;
16261 prop->kind = PROP_LOCEXPR;
16262 gdb_assert (prop->data.baton != NULL);
16263 }
16264 else
16265 {
16266 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16267 "dynamic property");
16268 return 0;
16269 }
16270 break;
16271 case DW_AT_data_member_location:
16272 {
16273 LONGEST offset;
16274
16275 if (!handle_data_member_location (target_die, target_cu,
16276 &offset))
16277 return 0;
16278
16279 baton = XOBNEW (obstack, struct dwarf2_property_baton);
16280 baton->referenced_type = read_type_die (target_die->parent,
16281 target_cu);
16282 baton->offset_info.offset = offset;
16283 baton->offset_info.type = die_type (target_die, target_cu);
16284 prop->data.baton = baton;
16285 prop->kind = PROP_ADDR_OFFSET;
16286 break;
16287 }
16288 }
16289 }
16290 else if (attr_form_is_constant (attr))
16291 {
16292 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
16293 prop->kind = PROP_CONST;
16294 }
16295 else
16296 {
16297 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
16298 dwarf2_name (die, cu));
16299 return 0;
16300 }
16301
16302 return 1;
16303 }
16304
16305 /* Read the given DW_AT_subrange DIE. */
16306
16307 static struct type *
16308 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
16309 {
16310 struct type *base_type, *orig_base_type;
16311 struct type *range_type;
16312 struct attribute *attr;
16313 struct dynamic_prop low, high;
16314 int low_default_is_valid;
16315 int high_bound_is_count = 0;
16316 const char *name;
16317 LONGEST negative_mask;
16318
16319 orig_base_type = die_type (die, cu);
16320 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
16321 whereas the real type might be. So, we use ORIG_BASE_TYPE when
16322 creating the range type, but we use the result of check_typedef
16323 when examining properties of the type. */
16324 base_type = check_typedef (orig_base_type);
16325
16326 /* The die_type call above may have already set the type for this DIE. */
16327 range_type = get_die_type (die, cu);
16328 if (range_type)
16329 return range_type;
16330
16331 low.kind = PROP_CONST;
16332 high.kind = PROP_CONST;
16333 high.data.const_val = 0;
16334
16335 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
16336 omitting DW_AT_lower_bound. */
16337 switch (cu->language)
16338 {
16339 case language_c:
16340 case language_cplus:
16341 low.data.const_val = 0;
16342 low_default_is_valid = 1;
16343 break;
16344 case language_fortran:
16345 low.data.const_val = 1;
16346 low_default_is_valid = 1;
16347 break;
16348 case language_d:
16349 case language_objc:
16350 case language_rust:
16351 low.data.const_val = 0;
16352 low_default_is_valid = (cu->header.version >= 4);
16353 break;
16354 case language_ada:
16355 case language_m2:
16356 case language_pascal:
16357 low.data.const_val = 1;
16358 low_default_is_valid = (cu->header.version >= 4);
16359 break;
16360 default:
16361 low.data.const_val = 0;
16362 low_default_is_valid = 0;
16363 break;
16364 }
16365
16366 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
16367 if (attr)
16368 attr_to_dynamic_prop (attr, die, cu, &low);
16369 else if (!low_default_is_valid)
16370 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
16371 "- DIE at 0x%x [in module %s]"),
16372 to_underlying (die->sect_off), objfile_name (cu->objfile));
16373
16374 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
16375 if (!attr_to_dynamic_prop (attr, die, cu, &high))
16376 {
16377 attr = dwarf2_attr (die, DW_AT_count, cu);
16378 if (attr_to_dynamic_prop (attr, die, cu, &high))
16379 {
16380 /* If bounds are constant do the final calculation here. */
16381 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
16382 high.data.const_val = low.data.const_val + high.data.const_val - 1;
16383 else
16384 high_bound_is_count = 1;
16385 }
16386 }
16387
16388 /* Dwarf-2 specifications explicitly allows to create subrange types
16389 without specifying a base type.
16390 In that case, the base type must be set to the type of
16391 the lower bound, upper bound or count, in that order, if any of these
16392 three attributes references an object that has a type.
16393 If no base type is found, the Dwarf-2 specifications say that
16394 a signed integer type of size equal to the size of an address should
16395 be used.
16396 For the following C code: `extern char gdb_int [];'
16397 GCC produces an empty range DIE.
16398 FIXME: muller/2010-05-28: Possible references to object for low bound,
16399 high bound or count are not yet handled by this code. */
16400 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
16401 {
16402 struct objfile *objfile = cu->objfile;
16403 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16404 int addr_size = gdbarch_addr_bit (gdbarch) /8;
16405 struct type *int_type = objfile_type (objfile)->builtin_int;
16406
16407 /* Test "int", "long int", and "long long int" objfile types,
16408 and select the first one having a size above or equal to the
16409 architecture address size. */
16410 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16411 base_type = int_type;
16412 else
16413 {
16414 int_type = objfile_type (objfile)->builtin_long;
16415 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16416 base_type = int_type;
16417 else
16418 {
16419 int_type = objfile_type (objfile)->builtin_long_long;
16420 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
16421 base_type = int_type;
16422 }
16423 }
16424 }
16425
16426 /* Normally, the DWARF producers are expected to use a signed
16427 constant form (Eg. DW_FORM_sdata) to express negative bounds.
16428 But this is unfortunately not always the case, as witnessed
16429 with GCC, for instance, where the ambiguous DW_FORM_dataN form
16430 is used instead. To work around that ambiguity, we treat
16431 the bounds as signed, and thus sign-extend their values, when
16432 the base type is signed. */
16433 negative_mask =
16434 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
16435 if (low.kind == PROP_CONST
16436 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
16437 low.data.const_val |= negative_mask;
16438 if (high.kind == PROP_CONST
16439 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
16440 high.data.const_val |= negative_mask;
16441
16442 range_type = create_range_type (NULL, orig_base_type, &low, &high);
16443
16444 if (high_bound_is_count)
16445 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
16446
16447 /* Ada expects an empty array on no boundary attributes. */
16448 if (attr == NULL && cu->language != language_ada)
16449 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
16450
16451 name = dwarf2_name (die, cu);
16452 if (name)
16453 TYPE_NAME (range_type) = name;
16454
16455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16456 if (attr)
16457 TYPE_LENGTH (range_type) = DW_UNSND (attr);
16458
16459 set_die_type (die, range_type, cu);
16460
16461 /* set_die_type should be already done. */
16462 set_descriptive_type (range_type, die, cu);
16463
16464 return range_type;
16465 }
16466
16467 static struct type *
16468 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
16469 {
16470 struct type *type;
16471
16472 /* For now, we only support the C meaning of an unspecified type: void. */
16473
16474 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
16475 TYPE_NAME (type) = dwarf2_name (die, cu);
16476
16477 return set_die_type (die, type, cu);
16478 }
16479
16480 /* Read a single die and all its descendents. Set the die's sibling
16481 field to NULL; set other fields in the die correctly, and set all
16482 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
16483 location of the info_ptr after reading all of those dies. PARENT
16484 is the parent of the die in question. */
16485
16486 static struct die_info *
16487 read_die_and_children (const struct die_reader_specs *reader,
16488 const gdb_byte *info_ptr,
16489 const gdb_byte **new_info_ptr,
16490 struct die_info *parent)
16491 {
16492 struct die_info *die;
16493 const gdb_byte *cur_ptr;
16494 int has_children;
16495
16496 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
16497 if (die == NULL)
16498 {
16499 *new_info_ptr = cur_ptr;
16500 return NULL;
16501 }
16502 store_in_ref_table (die, reader->cu);
16503
16504 if (has_children)
16505 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
16506 else
16507 {
16508 die->child = NULL;
16509 *new_info_ptr = cur_ptr;
16510 }
16511
16512 die->sibling = NULL;
16513 die->parent = parent;
16514 return die;
16515 }
16516
16517 /* Read a die, all of its descendents, and all of its siblings; set
16518 all of the fields of all of the dies correctly. Arguments are as
16519 in read_die_and_children. */
16520
16521 static struct die_info *
16522 read_die_and_siblings_1 (const struct die_reader_specs *reader,
16523 const gdb_byte *info_ptr,
16524 const gdb_byte **new_info_ptr,
16525 struct die_info *parent)
16526 {
16527 struct die_info *first_die, *last_sibling;
16528 const gdb_byte *cur_ptr;
16529
16530 cur_ptr = info_ptr;
16531 first_die = last_sibling = NULL;
16532
16533 while (1)
16534 {
16535 struct die_info *die
16536 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
16537
16538 if (die == NULL)
16539 {
16540 *new_info_ptr = cur_ptr;
16541 return first_die;
16542 }
16543
16544 if (!first_die)
16545 first_die = die;
16546 else
16547 last_sibling->sibling = die;
16548
16549 last_sibling = die;
16550 }
16551 }
16552
16553 /* Read a die, all of its descendents, and all of its siblings; set
16554 all of the fields of all of the dies correctly. Arguments are as
16555 in read_die_and_children.
16556 This the main entry point for reading a DIE and all its children. */
16557
16558 static struct die_info *
16559 read_die_and_siblings (const struct die_reader_specs *reader,
16560 const gdb_byte *info_ptr,
16561 const gdb_byte **new_info_ptr,
16562 struct die_info *parent)
16563 {
16564 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
16565 new_info_ptr, parent);
16566
16567 if (dwarf_die_debug)
16568 {
16569 fprintf_unfiltered (gdb_stdlog,
16570 "Read die from %s@0x%x of %s:\n",
16571 get_section_name (reader->die_section),
16572 (unsigned) (info_ptr - reader->die_section->buffer),
16573 bfd_get_filename (reader->abfd));
16574 dump_die (die, dwarf_die_debug);
16575 }
16576
16577 return die;
16578 }
16579
16580 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
16581 attributes.
16582 The caller is responsible for filling in the extra attributes
16583 and updating (*DIEP)->num_attrs.
16584 Set DIEP to point to a newly allocated die with its information,
16585 except for its child, sibling, and parent fields.
16586 Set HAS_CHILDREN to tell whether the die has children or not. */
16587
16588 static const gdb_byte *
16589 read_full_die_1 (const struct die_reader_specs *reader,
16590 struct die_info **diep, const gdb_byte *info_ptr,
16591 int *has_children, int num_extra_attrs)
16592 {
16593 unsigned int abbrev_number, bytes_read, i;
16594 struct abbrev_info *abbrev;
16595 struct die_info *die;
16596 struct dwarf2_cu *cu = reader->cu;
16597 bfd *abfd = reader->abfd;
16598
16599 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
16600 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16601 info_ptr += bytes_read;
16602 if (!abbrev_number)
16603 {
16604 *diep = NULL;
16605 *has_children = 0;
16606 return info_ptr;
16607 }
16608
16609 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
16610 if (!abbrev)
16611 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
16612 abbrev_number,
16613 bfd_get_filename (abfd));
16614
16615 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
16616 die->sect_off = sect_off;
16617 die->tag = abbrev->tag;
16618 die->abbrev = abbrev_number;
16619
16620 /* Make the result usable.
16621 The caller needs to update num_attrs after adding the extra
16622 attributes. */
16623 die->num_attrs = abbrev->num_attrs;
16624
16625 for (i = 0; i < abbrev->num_attrs; ++i)
16626 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
16627 info_ptr);
16628
16629 *diep = die;
16630 *has_children = abbrev->has_children;
16631 return info_ptr;
16632 }
16633
16634 /* Read a die and all its attributes.
16635 Set DIEP to point to a newly allocated die with its information,
16636 except for its child, sibling, and parent fields.
16637 Set HAS_CHILDREN to tell whether the die has children or not. */
16638
16639 static const gdb_byte *
16640 read_full_die (const struct die_reader_specs *reader,
16641 struct die_info **diep, const gdb_byte *info_ptr,
16642 int *has_children)
16643 {
16644 const gdb_byte *result;
16645
16646 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
16647
16648 if (dwarf_die_debug)
16649 {
16650 fprintf_unfiltered (gdb_stdlog,
16651 "Read die from %s@0x%x of %s:\n",
16652 get_section_name (reader->die_section),
16653 (unsigned) (info_ptr - reader->die_section->buffer),
16654 bfd_get_filename (reader->abfd));
16655 dump_die (*diep, dwarf_die_debug);
16656 }
16657
16658 return result;
16659 }
16660 \f
16661 /* Abbreviation tables.
16662
16663 In DWARF version 2, the description of the debugging information is
16664 stored in a separate .debug_abbrev section. Before we read any
16665 dies from a section we read in all abbreviations and install them
16666 in a hash table. */
16667
16668 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
16669
16670 static struct abbrev_info *
16671 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
16672 {
16673 struct abbrev_info *abbrev;
16674
16675 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
16676 memset (abbrev, 0, sizeof (struct abbrev_info));
16677
16678 return abbrev;
16679 }
16680
16681 /* Add an abbreviation to the table. */
16682
16683 static void
16684 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
16685 unsigned int abbrev_number,
16686 struct abbrev_info *abbrev)
16687 {
16688 unsigned int hash_number;
16689
16690 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16691 abbrev->next = abbrev_table->abbrevs[hash_number];
16692 abbrev_table->abbrevs[hash_number] = abbrev;
16693 }
16694
16695 /* Look up an abbrev in the table.
16696 Returns NULL if the abbrev is not found. */
16697
16698 static struct abbrev_info *
16699 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
16700 unsigned int abbrev_number)
16701 {
16702 unsigned int hash_number;
16703 struct abbrev_info *abbrev;
16704
16705 hash_number = abbrev_number % ABBREV_HASH_SIZE;
16706 abbrev = abbrev_table->abbrevs[hash_number];
16707
16708 while (abbrev)
16709 {
16710 if (abbrev->number == abbrev_number)
16711 return abbrev;
16712 abbrev = abbrev->next;
16713 }
16714 return NULL;
16715 }
16716
16717 /* Read in an abbrev table. */
16718
16719 static struct abbrev_table *
16720 abbrev_table_read_table (struct dwarf2_section_info *section,
16721 sect_offset sect_off)
16722 {
16723 struct objfile *objfile = dwarf2_per_objfile->objfile;
16724 bfd *abfd = get_section_bfd_owner (section);
16725 struct abbrev_table *abbrev_table;
16726 const gdb_byte *abbrev_ptr;
16727 struct abbrev_info *cur_abbrev;
16728 unsigned int abbrev_number, bytes_read, abbrev_name;
16729 unsigned int abbrev_form;
16730 struct attr_abbrev *cur_attrs;
16731 unsigned int allocated_attrs;
16732
16733 abbrev_table = XNEW (struct abbrev_table);
16734 abbrev_table->sect_off = sect_off;
16735 obstack_init (&abbrev_table->abbrev_obstack);
16736 abbrev_table->abbrevs =
16737 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
16738 ABBREV_HASH_SIZE);
16739 memset (abbrev_table->abbrevs, 0,
16740 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
16741
16742 dwarf2_read_section (objfile, section);
16743 abbrev_ptr = section->buffer + to_underlying (sect_off);
16744 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16745 abbrev_ptr += bytes_read;
16746
16747 allocated_attrs = ATTR_ALLOC_CHUNK;
16748 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
16749
16750 /* Loop until we reach an abbrev number of 0. */
16751 while (abbrev_number)
16752 {
16753 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
16754
16755 /* read in abbrev header */
16756 cur_abbrev->number = abbrev_number;
16757 cur_abbrev->tag
16758 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16759 abbrev_ptr += bytes_read;
16760 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
16761 abbrev_ptr += 1;
16762
16763 /* now read in declarations */
16764 for (;;)
16765 {
16766 LONGEST implicit_const;
16767
16768 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16769 abbrev_ptr += bytes_read;
16770 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16771 abbrev_ptr += bytes_read;
16772 if (abbrev_form == DW_FORM_implicit_const)
16773 {
16774 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
16775 &bytes_read);
16776 abbrev_ptr += bytes_read;
16777 }
16778 else
16779 {
16780 /* Initialize it due to a false compiler warning. */
16781 implicit_const = -1;
16782 }
16783
16784 if (abbrev_name == 0)
16785 break;
16786
16787 if (cur_abbrev->num_attrs == allocated_attrs)
16788 {
16789 allocated_attrs += ATTR_ALLOC_CHUNK;
16790 cur_attrs
16791 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
16792 }
16793
16794 cur_attrs[cur_abbrev->num_attrs].name
16795 = (enum dwarf_attribute) abbrev_name;
16796 cur_attrs[cur_abbrev->num_attrs].form
16797 = (enum dwarf_form) abbrev_form;
16798 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
16799 ++cur_abbrev->num_attrs;
16800 }
16801
16802 cur_abbrev->attrs =
16803 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
16804 cur_abbrev->num_attrs);
16805 memcpy (cur_abbrev->attrs, cur_attrs,
16806 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
16807
16808 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
16809
16810 /* Get next abbreviation.
16811 Under Irix6 the abbreviations for a compilation unit are not
16812 always properly terminated with an abbrev number of 0.
16813 Exit loop if we encounter an abbreviation which we have
16814 already read (which means we are about to read the abbreviations
16815 for the next compile unit) or if the end of the abbreviation
16816 table is reached. */
16817 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
16818 break;
16819 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
16820 abbrev_ptr += bytes_read;
16821 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
16822 break;
16823 }
16824
16825 xfree (cur_attrs);
16826 return abbrev_table;
16827 }
16828
16829 /* Free the resources held by ABBREV_TABLE. */
16830
16831 static void
16832 abbrev_table_free (struct abbrev_table *abbrev_table)
16833 {
16834 obstack_free (&abbrev_table->abbrev_obstack, NULL);
16835 xfree (abbrev_table);
16836 }
16837
16838 /* Same as abbrev_table_free but as a cleanup.
16839 We pass in a pointer to the pointer to the table so that we can
16840 set the pointer to NULL when we're done. It also simplifies
16841 build_type_psymtabs_1. */
16842
16843 static void
16844 abbrev_table_free_cleanup (void *table_ptr)
16845 {
16846 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
16847
16848 if (*abbrev_table_ptr != NULL)
16849 abbrev_table_free (*abbrev_table_ptr);
16850 *abbrev_table_ptr = NULL;
16851 }
16852
16853 /* Read the abbrev table for CU from ABBREV_SECTION. */
16854
16855 static void
16856 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
16857 struct dwarf2_section_info *abbrev_section)
16858 {
16859 cu->abbrev_table =
16860 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
16861 }
16862
16863 /* Release the memory used by the abbrev table for a compilation unit. */
16864
16865 static void
16866 dwarf2_free_abbrev_table (void *ptr_to_cu)
16867 {
16868 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
16869
16870 if (cu->abbrev_table != NULL)
16871 abbrev_table_free (cu->abbrev_table);
16872 /* Set this to NULL so that we SEGV if we try to read it later,
16873 and also because free_comp_unit verifies this is NULL. */
16874 cu->abbrev_table = NULL;
16875 }
16876 \f
16877 /* Returns nonzero if TAG represents a type that we might generate a partial
16878 symbol for. */
16879
16880 static int
16881 is_type_tag_for_partial (int tag)
16882 {
16883 switch (tag)
16884 {
16885 #if 0
16886 /* Some types that would be reasonable to generate partial symbols for,
16887 that we don't at present. */
16888 case DW_TAG_array_type:
16889 case DW_TAG_file_type:
16890 case DW_TAG_ptr_to_member_type:
16891 case DW_TAG_set_type:
16892 case DW_TAG_string_type:
16893 case DW_TAG_subroutine_type:
16894 #endif
16895 case DW_TAG_base_type:
16896 case DW_TAG_class_type:
16897 case DW_TAG_interface_type:
16898 case DW_TAG_enumeration_type:
16899 case DW_TAG_structure_type:
16900 case DW_TAG_subrange_type:
16901 case DW_TAG_typedef:
16902 case DW_TAG_union_type:
16903 return 1;
16904 default:
16905 return 0;
16906 }
16907 }
16908
16909 /* Load all DIEs that are interesting for partial symbols into memory. */
16910
16911 static struct partial_die_info *
16912 load_partial_dies (const struct die_reader_specs *reader,
16913 const gdb_byte *info_ptr, int building_psymtab)
16914 {
16915 struct dwarf2_cu *cu = reader->cu;
16916 struct objfile *objfile = cu->objfile;
16917 struct partial_die_info *part_die;
16918 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
16919 struct abbrev_info *abbrev;
16920 unsigned int bytes_read;
16921 unsigned int load_all = 0;
16922 int nesting_level = 1;
16923
16924 parent_die = NULL;
16925 last_die = NULL;
16926
16927 gdb_assert (cu->per_cu != NULL);
16928 if (cu->per_cu->load_all_dies)
16929 load_all = 1;
16930
16931 cu->partial_dies
16932 = htab_create_alloc_ex (cu->header.length / 12,
16933 partial_die_hash,
16934 partial_die_eq,
16935 NULL,
16936 &cu->comp_unit_obstack,
16937 hashtab_obstack_allocate,
16938 dummy_obstack_deallocate);
16939
16940 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
16941
16942 while (1)
16943 {
16944 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16945
16946 /* A NULL abbrev means the end of a series of children. */
16947 if (abbrev == NULL)
16948 {
16949 if (--nesting_level == 0)
16950 {
16951 /* PART_DIE was probably the last thing allocated on the
16952 comp_unit_obstack, so we could call obstack_free
16953 here. We don't do that because the waste is small,
16954 and will be cleaned up when we're done with this
16955 compilation unit. This way, we're also more robust
16956 against other users of the comp_unit_obstack. */
16957 return first_die;
16958 }
16959 info_ptr += bytes_read;
16960 last_die = parent_die;
16961 parent_die = parent_die->die_parent;
16962 continue;
16963 }
16964
16965 /* Check for template arguments. We never save these; if
16966 they're seen, we just mark the parent, and go on our way. */
16967 if (parent_die != NULL
16968 && cu->language == language_cplus
16969 && (abbrev->tag == DW_TAG_template_type_param
16970 || abbrev->tag == DW_TAG_template_value_param))
16971 {
16972 parent_die->has_template_arguments = 1;
16973
16974 if (!load_all)
16975 {
16976 /* We don't need a partial DIE for the template argument. */
16977 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16978 continue;
16979 }
16980 }
16981
16982 /* We only recurse into c++ subprograms looking for template arguments.
16983 Skip their other children. */
16984 if (!load_all
16985 && cu->language == language_cplus
16986 && parent_die != NULL
16987 && parent_die->tag == DW_TAG_subprogram)
16988 {
16989 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
16990 continue;
16991 }
16992
16993 /* Check whether this DIE is interesting enough to save. Normally
16994 we would not be interested in members here, but there may be
16995 later variables referencing them via DW_AT_specification (for
16996 static members). */
16997 if (!load_all
16998 && !is_type_tag_for_partial (abbrev->tag)
16999 && abbrev->tag != DW_TAG_constant
17000 && abbrev->tag != DW_TAG_enumerator
17001 && abbrev->tag != DW_TAG_subprogram
17002 && abbrev->tag != DW_TAG_lexical_block
17003 && abbrev->tag != DW_TAG_variable
17004 && abbrev->tag != DW_TAG_namespace
17005 && abbrev->tag != DW_TAG_module
17006 && abbrev->tag != DW_TAG_member
17007 && abbrev->tag != DW_TAG_imported_unit
17008 && abbrev->tag != DW_TAG_imported_declaration)
17009 {
17010 /* Otherwise we skip to the next sibling, if any. */
17011 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17012 continue;
17013 }
17014
17015 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
17016 info_ptr);
17017
17018 /* This two-pass algorithm for processing partial symbols has a
17019 high cost in cache pressure. Thus, handle some simple cases
17020 here which cover the majority of C partial symbols. DIEs
17021 which neither have specification tags in them, nor could have
17022 specification tags elsewhere pointing at them, can simply be
17023 processed and discarded.
17024
17025 This segment is also optional; scan_partial_symbols and
17026 add_partial_symbol will handle these DIEs if we chain
17027 them in normally. When compilers which do not emit large
17028 quantities of duplicate debug information are more common,
17029 this code can probably be removed. */
17030
17031 /* Any complete simple types at the top level (pretty much all
17032 of them, for a language without namespaces), can be processed
17033 directly. */
17034 if (parent_die == NULL
17035 && part_die->has_specification == 0
17036 && part_die->is_declaration == 0
17037 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
17038 || part_die->tag == DW_TAG_base_type
17039 || part_die->tag == DW_TAG_subrange_type))
17040 {
17041 if (building_psymtab && part_die->name != NULL)
17042 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
17043 VAR_DOMAIN, LOC_TYPEDEF,
17044 &objfile->static_psymbols,
17045 0, cu->language, objfile);
17046 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
17047 continue;
17048 }
17049
17050 /* The exception for DW_TAG_typedef with has_children above is
17051 a workaround of GCC PR debug/47510. In the case of this complaint
17052 type_name_no_tag_or_error will error on such types later.
17053
17054 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17055 it could not find the child DIEs referenced later, this is checked
17056 above. In correct DWARF DW_TAG_typedef should have no children. */
17057
17058 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
17059 complaint (&symfile_complaints,
17060 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17061 "- DIE at 0x%x [in module %s]"),
17062 to_underlying (part_die->sect_off), objfile_name (objfile));
17063
17064 /* If we're at the second level, and we're an enumerator, and
17065 our parent has no specification (meaning possibly lives in a
17066 namespace elsewhere), then we can add the partial symbol now
17067 instead of queueing it. */
17068 if (part_die->tag == DW_TAG_enumerator
17069 && parent_die != NULL
17070 && parent_die->die_parent == NULL
17071 && parent_die->tag == DW_TAG_enumeration_type
17072 && parent_die->has_specification == 0)
17073 {
17074 if (part_die->name == NULL)
17075 complaint (&symfile_complaints,
17076 _("malformed enumerator DIE ignored"));
17077 else if (building_psymtab)
17078 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
17079 VAR_DOMAIN, LOC_CONST,
17080 cu->language == language_cplus
17081 ? &objfile->global_psymbols
17082 : &objfile->static_psymbols,
17083 0, cu->language, objfile);
17084
17085 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
17086 continue;
17087 }
17088
17089 /* We'll save this DIE so link it in. */
17090 part_die->die_parent = parent_die;
17091 part_die->die_sibling = NULL;
17092 part_die->die_child = NULL;
17093
17094 if (last_die && last_die == parent_die)
17095 last_die->die_child = part_die;
17096 else if (last_die)
17097 last_die->die_sibling = part_die;
17098
17099 last_die = part_die;
17100
17101 if (first_die == NULL)
17102 first_die = part_die;
17103
17104 /* Maybe add the DIE to the hash table. Not all DIEs that we
17105 find interesting need to be in the hash table, because we
17106 also have the parent/sibling/child chains; only those that we
17107 might refer to by offset later during partial symbol reading.
17108
17109 For now this means things that might have be the target of a
17110 DW_AT_specification, DW_AT_abstract_origin, or
17111 DW_AT_extension. DW_AT_extension will refer only to
17112 namespaces; DW_AT_abstract_origin refers to functions (and
17113 many things under the function DIE, but we do not recurse
17114 into function DIEs during partial symbol reading) and
17115 possibly variables as well; DW_AT_specification refers to
17116 declarations. Declarations ought to have the DW_AT_declaration
17117 flag. It happens that GCC forgets to put it in sometimes, but
17118 only for functions, not for types.
17119
17120 Adding more things than necessary to the hash table is harmless
17121 except for the performance cost. Adding too few will result in
17122 wasted time in find_partial_die, when we reread the compilation
17123 unit with load_all_dies set. */
17124
17125 if (load_all
17126 || abbrev->tag == DW_TAG_constant
17127 || abbrev->tag == DW_TAG_subprogram
17128 || abbrev->tag == DW_TAG_variable
17129 || abbrev->tag == DW_TAG_namespace
17130 || part_die->is_declaration)
17131 {
17132 void **slot;
17133
17134 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17135 to_underlying (part_die->sect_off),
17136 INSERT);
17137 *slot = part_die;
17138 }
17139
17140 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
17141
17142 /* For some DIEs we want to follow their children (if any). For C
17143 we have no reason to follow the children of structures; for other
17144 languages we have to, so that we can get at method physnames
17145 to infer fully qualified class names, for DW_AT_specification,
17146 and for C++ template arguments. For C++, we also look one level
17147 inside functions to find template arguments (if the name of the
17148 function does not already contain the template arguments).
17149
17150 For Ada, we need to scan the children of subprograms and lexical
17151 blocks as well because Ada allows the definition of nested
17152 entities that could be interesting for the debugger, such as
17153 nested subprograms for instance. */
17154 if (last_die->has_children
17155 && (load_all
17156 || last_die->tag == DW_TAG_namespace
17157 || last_die->tag == DW_TAG_module
17158 || last_die->tag == DW_TAG_enumeration_type
17159 || (cu->language == language_cplus
17160 && last_die->tag == DW_TAG_subprogram
17161 && (last_die->name == NULL
17162 || strchr (last_die->name, '<') == NULL))
17163 || (cu->language != language_c
17164 && (last_die->tag == DW_TAG_class_type
17165 || last_die->tag == DW_TAG_interface_type
17166 || last_die->tag == DW_TAG_structure_type
17167 || last_die->tag == DW_TAG_union_type))
17168 || (cu->language == language_ada
17169 && (last_die->tag == DW_TAG_subprogram
17170 || last_die->tag == DW_TAG_lexical_block))))
17171 {
17172 nesting_level++;
17173 parent_die = last_die;
17174 continue;
17175 }
17176
17177 /* Otherwise we skip to the next sibling, if any. */
17178 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17179
17180 /* Back to the top, do it again. */
17181 }
17182 }
17183
17184 /* Read a minimal amount of information into the minimal die structure. */
17185
17186 static const gdb_byte *
17187 read_partial_die (const struct die_reader_specs *reader,
17188 struct partial_die_info *part_die,
17189 struct abbrev_info *abbrev, unsigned int abbrev_len,
17190 const gdb_byte *info_ptr)
17191 {
17192 struct dwarf2_cu *cu = reader->cu;
17193 struct objfile *objfile = cu->objfile;
17194 const gdb_byte *buffer = reader->buffer;
17195 unsigned int i;
17196 struct attribute attr;
17197 int has_low_pc_attr = 0;
17198 int has_high_pc_attr = 0;
17199 int high_pc_relative = 0;
17200
17201 memset (part_die, 0, sizeof (struct partial_die_info));
17202
17203 part_die->sect_off = (sect_offset) (info_ptr - buffer);
17204
17205 info_ptr += abbrev_len;
17206
17207 if (abbrev == NULL)
17208 return info_ptr;
17209
17210 part_die->tag = abbrev->tag;
17211 part_die->has_children = abbrev->has_children;
17212
17213 for (i = 0; i < abbrev->num_attrs; ++i)
17214 {
17215 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
17216
17217 /* Store the data if it is of an attribute we want to keep in a
17218 partial symbol table. */
17219 switch (attr.name)
17220 {
17221 case DW_AT_name:
17222 switch (part_die->tag)
17223 {
17224 case DW_TAG_compile_unit:
17225 case DW_TAG_partial_unit:
17226 case DW_TAG_type_unit:
17227 /* Compilation units have a DW_AT_name that is a filename, not
17228 a source language identifier. */
17229 case DW_TAG_enumeration_type:
17230 case DW_TAG_enumerator:
17231 /* These tags always have simple identifiers already; no need
17232 to canonicalize them. */
17233 part_die->name = DW_STRING (&attr);
17234 break;
17235 default:
17236 part_die->name
17237 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
17238 &objfile->per_bfd->storage_obstack);
17239 break;
17240 }
17241 break;
17242 case DW_AT_linkage_name:
17243 case DW_AT_MIPS_linkage_name:
17244 /* Note that both forms of linkage name might appear. We
17245 assume they will be the same, and we only store the last
17246 one we see. */
17247 if (cu->language == language_ada)
17248 part_die->name = DW_STRING (&attr);
17249 part_die->linkage_name = DW_STRING (&attr);
17250 break;
17251 case DW_AT_low_pc:
17252 has_low_pc_attr = 1;
17253 part_die->lowpc = attr_value_as_address (&attr);
17254 break;
17255 case DW_AT_high_pc:
17256 has_high_pc_attr = 1;
17257 part_die->highpc = attr_value_as_address (&attr);
17258 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
17259 high_pc_relative = 1;
17260 break;
17261 case DW_AT_location:
17262 /* Support the .debug_loc offsets. */
17263 if (attr_form_is_block (&attr))
17264 {
17265 part_die->d.locdesc = DW_BLOCK (&attr);
17266 }
17267 else if (attr_form_is_section_offset (&attr))
17268 {
17269 dwarf2_complex_location_expr_complaint ();
17270 }
17271 else
17272 {
17273 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17274 "partial symbol information");
17275 }
17276 break;
17277 case DW_AT_external:
17278 part_die->is_external = DW_UNSND (&attr);
17279 break;
17280 case DW_AT_declaration:
17281 part_die->is_declaration = DW_UNSND (&attr);
17282 break;
17283 case DW_AT_type:
17284 part_die->has_type = 1;
17285 break;
17286 case DW_AT_abstract_origin:
17287 case DW_AT_specification:
17288 case DW_AT_extension:
17289 part_die->has_specification = 1;
17290 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
17291 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17292 || cu->per_cu->is_dwz);
17293 break;
17294 case DW_AT_sibling:
17295 /* Ignore absolute siblings, they might point outside of
17296 the current compile unit. */
17297 if (attr.form == DW_FORM_ref_addr)
17298 complaint (&symfile_complaints,
17299 _("ignoring absolute DW_AT_sibling"));
17300 else
17301 {
17302 sect_offset off = dwarf2_get_ref_die_offset (&attr);
17303 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
17304
17305 if (sibling_ptr < info_ptr)
17306 complaint (&symfile_complaints,
17307 _("DW_AT_sibling points backwards"));
17308 else if (sibling_ptr > reader->buffer_end)
17309 dwarf2_section_buffer_overflow_complaint (reader->die_section);
17310 else
17311 part_die->sibling = sibling_ptr;
17312 }
17313 break;
17314 case DW_AT_byte_size:
17315 part_die->has_byte_size = 1;
17316 break;
17317 case DW_AT_const_value:
17318 part_die->has_const_value = 1;
17319 break;
17320 case DW_AT_calling_convention:
17321 /* DWARF doesn't provide a way to identify a program's source-level
17322 entry point. DW_AT_calling_convention attributes are only meant
17323 to describe functions' calling conventions.
17324
17325 However, because it's a necessary piece of information in
17326 Fortran, and before DWARF 4 DW_CC_program was the only
17327 piece of debugging information whose definition refers to
17328 a 'main program' at all, several compilers marked Fortran
17329 main programs with DW_CC_program --- even when those
17330 functions use the standard calling conventions.
17331
17332 Although DWARF now specifies a way to provide this
17333 information, we support this practice for backward
17334 compatibility. */
17335 if (DW_UNSND (&attr) == DW_CC_program
17336 && cu->language == language_fortran)
17337 part_die->main_subprogram = 1;
17338 break;
17339 case DW_AT_inline:
17340 if (DW_UNSND (&attr) == DW_INL_inlined
17341 || DW_UNSND (&attr) == DW_INL_declared_inlined)
17342 part_die->may_be_inlined = 1;
17343 break;
17344
17345 case DW_AT_import:
17346 if (part_die->tag == DW_TAG_imported_unit)
17347 {
17348 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
17349 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
17350 || cu->per_cu->is_dwz);
17351 }
17352 break;
17353
17354 case DW_AT_main_subprogram:
17355 part_die->main_subprogram = DW_UNSND (&attr);
17356 break;
17357
17358 default:
17359 break;
17360 }
17361 }
17362
17363 if (high_pc_relative)
17364 part_die->highpc += part_die->lowpc;
17365
17366 if (has_low_pc_attr && has_high_pc_attr)
17367 {
17368 /* When using the GNU linker, .gnu.linkonce. sections are used to
17369 eliminate duplicate copies of functions and vtables and such.
17370 The linker will arbitrarily choose one and discard the others.
17371 The AT_*_pc values for such functions refer to local labels in
17372 these sections. If the section from that file was discarded, the
17373 labels are not in the output, so the relocs get a value of 0.
17374 If this is a discarded function, mark the pc bounds as invalid,
17375 so that GDB will ignore it. */
17376 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
17377 {
17378 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17379
17380 complaint (&symfile_complaints,
17381 _("DW_AT_low_pc %s is zero "
17382 "for DIE at 0x%x [in module %s]"),
17383 paddress (gdbarch, part_die->lowpc),
17384 to_underlying (part_die->sect_off), objfile_name (objfile));
17385 }
17386 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
17387 else if (part_die->lowpc >= part_die->highpc)
17388 {
17389 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17390
17391 complaint (&symfile_complaints,
17392 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
17393 "for DIE at 0x%x [in module %s]"),
17394 paddress (gdbarch, part_die->lowpc),
17395 paddress (gdbarch, part_die->highpc),
17396 to_underlying (part_die->sect_off),
17397 objfile_name (objfile));
17398 }
17399 else
17400 part_die->has_pc_info = 1;
17401 }
17402
17403 return info_ptr;
17404 }
17405
17406 /* Find a cached partial DIE at OFFSET in CU. */
17407
17408 static struct partial_die_info *
17409 find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
17410 {
17411 struct partial_die_info *lookup_die = NULL;
17412 struct partial_die_info part_die;
17413
17414 part_die.sect_off = sect_off;
17415 lookup_die = ((struct partial_die_info *)
17416 htab_find_with_hash (cu->partial_dies, &part_die,
17417 to_underlying (sect_off)));
17418
17419 return lookup_die;
17420 }
17421
17422 /* Find a partial DIE at OFFSET, which may or may not be in CU,
17423 except in the case of .debug_types DIEs which do not reference
17424 outside their CU (they do however referencing other types via
17425 DW_FORM_ref_sig8). */
17426
17427 static struct partial_die_info *
17428 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
17429 {
17430 struct objfile *objfile = cu->objfile;
17431 struct dwarf2_per_cu_data *per_cu = NULL;
17432 struct partial_die_info *pd = NULL;
17433
17434 if (offset_in_dwz == cu->per_cu->is_dwz
17435 && offset_in_cu_p (&cu->header, sect_off))
17436 {
17437 pd = find_partial_die_in_comp_unit (sect_off, cu);
17438 if (pd != NULL)
17439 return pd;
17440 /* We missed recording what we needed.
17441 Load all dies and try again. */
17442 per_cu = cu->per_cu;
17443 }
17444 else
17445 {
17446 /* TUs don't reference other CUs/TUs (except via type signatures). */
17447 if (cu->per_cu->is_debug_types)
17448 {
17449 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
17450 " external reference to offset 0x%x [in module %s].\n"),
17451 to_underlying (cu->header.sect_off), to_underlying (sect_off),
17452 bfd_get_filename (objfile->obfd));
17453 }
17454 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
17455 objfile);
17456
17457 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
17458 load_partial_comp_unit (per_cu);
17459
17460 per_cu->cu->last_used = 0;
17461 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17462 }
17463
17464 /* If we didn't find it, and not all dies have been loaded,
17465 load them all and try again. */
17466
17467 if (pd == NULL && per_cu->load_all_dies == 0)
17468 {
17469 per_cu->load_all_dies = 1;
17470
17471 /* This is nasty. When we reread the DIEs, somewhere up the call chain
17472 THIS_CU->cu may already be in use. So we can't just free it and
17473 replace its DIEs with the ones we read in. Instead, we leave those
17474 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
17475 and clobber THIS_CU->cu->partial_dies with the hash table for the new
17476 set. */
17477 load_partial_comp_unit (per_cu);
17478
17479 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
17480 }
17481
17482 if (pd == NULL)
17483 internal_error (__FILE__, __LINE__,
17484 _("could not find partial DIE 0x%x "
17485 "in cache [from module %s]\n"),
17486 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
17487 return pd;
17488 }
17489
17490 /* See if we can figure out if the class lives in a namespace. We do
17491 this by looking for a member function; its demangled name will
17492 contain namespace info, if there is any. */
17493
17494 static void
17495 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
17496 struct dwarf2_cu *cu)
17497 {
17498 /* NOTE: carlton/2003-10-07: Getting the info this way changes
17499 what template types look like, because the demangler
17500 frequently doesn't give the same name as the debug info. We
17501 could fix this by only using the demangled name to get the
17502 prefix (but see comment in read_structure_type). */
17503
17504 struct partial_die_info *real_pdi;
17505 struct partial_die_info *child_pdi;
17506
17507 /* If this DIE (this DIE's specification, if any) has a parent, then
17508 we should not do this. We'll prepend the parent's fully qualified
17509 name when we create the partial symbol. */
17510
17511 real_pdi = struct_pdi;
17512 while (real_pdi->has_specification)
17513 real_pdi = find_partial_die (real_pdi->spec_offset,
17514 real_pdi->spec_is_dwz, cu);
17515
17516 if (real_pdi->die_parent != NULL)
17517 return;
17518
17519 for (child_pdi = struct_pdi->die_child;
17520 child_pdi != NULL;
17521 child_pdi = child_pdi->die_sibling)
17522 {
17523 if (child_pdi->tag == DW_TAG_subprogram
17524 && child_pdi->linkage_name != NULL)
17525 {
17526 char *actual_class_name
17527 = language_class_name_from_physname (cu->language_defn,
17528 child_pdi->linkage_name);
17529 if (actual_class_name != NULL)
17530 {
17531 struct_pdi->name
17532 = ((const char *)
17533 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17534 actual_class_name,
17535 strlen (actual_class_name)));
17536 xfree (actual_class_name);
17537 }
17538 break;
17539 }
17540 }
17541 }
17542
17543 /* Adjust PART_DIE before generating a symbol for it. This function
17544 may set the is_external flag or change the DIE's name. */
17545
17546 static void
17547 fixup_partial_die (struct partial_die_info *part_die,
17548 struct dwarf2_cu *cu)
17549 {
17550 /* Once we've fixed up a die, there's no point in doing so again.
17551 This also avoids a memory leak if we were to call
17552 guess_partial_die_structure_name multiple times. */
17553 if (part_die->fixup_called)
17554 return;
17555
17556 /* If we found a reference attribute and the DIE has no name, try
17557 to find a name in the referred to DIE. */
17558
17559 if (part_die->name == NULL && part_die->has_specification)
17560 {
17561 struct partial_die_info *spec_die;
17562
17563 spec_die = find_partial_die (part_die->spec_offset,
17564 part_die->spec_is_dwz, cu);
17565
17566 fixup_partial_die (spec_die, cu);
17567
17568 if (spec_die->name)
17569 {
17570 part_die->name = spec_die->name;
17571
17572 /* Copy DW_AT_external attribute if it is set. */
17573 if (spec_die->is_external)
17574 part_die->is_external = spec_die->is_external;
17575 }
17576 }
17577
17578 /* Set default names for some unnamed DIEs. */
17579
17580 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
17581 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
17582
17583 /* If there is no parent die to provide a namespace, and there are
17584 children, see if we can determine the namespace from their linkage
17585 name. */
17586 if (cu->language == language_cplus
17587 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
17588 && part_die->die_parent == NULL
17589 && part_die->has_children
17590 && (part_die->tag == DW_TAG_class_type
17591 || part_die->tag == DW_TAG_structure_type
17592 || part_die->tag == DW_TAG_union_type))
17593 guess_partial_die_structure_name (part_die, cu);
17594
17595 /* GCC might emit a nameless struct or union that has a linkage
17596 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
17597 if (part_die->name == NULL
17598 && (part_die->tag == DW_TAG_class_type
17599 || part_die->tag == DW_TAG_interface_type
17600 || part_die->tag == DW_TAG_structure_type
17601 || part_die->tag == DW_TAG_union_type)
17602 && part_die->linkage_name != NULL)
17603 {
17604 char *demangled;
17605
17606 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
17607 if (demangled)
17608 {
17609 const char *base;
17610
17611 /* Strip any leading namespaces/classes, keep only the base name.
17612 DW_AT_name for named DIEs does not contain the prefixes. */
17613 base = strrchr (demangled, ':');
17614 if (base && base > demangled && base[-1] == ':')
17615 base++;
17616 else
17617 base = demangled;
17618
17619 part_die->name
17620 = ((const char *)
17621 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
17622 base, strlen (base)));
17623 xfree (demangled);
17624 }
17625 }
17626
17627 part_die->fixup_called = 1;
17628 }
17629
17630 /* Read an attribute value described by an attribute form. */
17631
17632 static const gdb_byte *
17633 read_attribute_value (const struct die_reader_specs *reader,
17634 struct attribute *attr, unsigned form,
17635 LONGEST implicit_const, const gdb_byte *info_ptr)
17636 {
17637 struct dwarf2_cu *cu = reader->cu;
17638 struct objfile *objfile = cu->objfile;
17639 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17640 bfd *abfd = reader->abfd;
17641 struct comp_unit_head *cu_header = &cu->header;
17642 unsigned int bytes_read;
17643 struct dwarf_block *blk;
17644
17645 attr->form = (enum dwarf_form) form;
17646 switch (form)
17647 {
17648 case DW_FORM_ref_addr:
17649 if (cu->header.version == 2)
17650 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17651 else
17652 DW_UNSND (attr) = read_offset (abfd, info_ptr,
17653 &cu->header, &bytes_read);
17654 info_ptr += bytes_read;
17655 break;
17656 case DW_FORM_GNU_ref_alt:
17657 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17658 info_ptr += bytes_read;
17659 break;
17660 case DW_FORM_addr:
17661 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
17662 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
17663 info_ptr += bytes_read;
17664 break;
17665 case DW_FORM_block2:
17666 blk = dwarf_alloc_block (cu);
17667 blk->size = read_2_bytes (abfd, info_ptr);
17668 info_ptr += 2;
17669 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17670 info_ptr += blk->size;
17671 DW_BLOCK (attr) = blk;
17672 break;
17673 case DW_FORM_block4:
17674 blk = dwarf_alloc_block (cu);
17675 blk->size = read_4_bytes (abfd, info_ptr);
17676 info_ptr += 4;
17677 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17678 info_ptr += blk->size;
17679 DW_BLOCK (attr) = blk;
17680 break;
17681 case DW_FORM_data2:
17682 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
17683 info_ptr += 2;
17684 break;
17685 case DW_FORM_data4:
17686 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
17687 info_ptr += 4;
17688 break;
17689 case DW_FORM_data8:
17690 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
17691 info_ptr += 8;
17692 break;
17693 case DW_FORM_data16:
17694 blk = dwarf_alloc_block (cu);
17695 blk->size = 16;
17696 blk->data = read_n_bytes (abfd, info_ptr, 16);
17697 info_ptr += 16;
17698 DW_BLOCK (attr) = blk;
17699 break;
17700 case DW_FORM_sec_offset:
17701 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
17702 info_ptr += bytes_read;
17703 break;
17704 case DW_FORM_string:
17705 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
17706 DW_STRING_IS_CANONICAL (attr) = 0;
17707 info_ptr += bytes_read;
17708 break;
17709 case DW_FORM_strp:
17710 if (!cu->per_cu->is_dwz)
17711 {
17712 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
17713 &bytes_read);
17714 DW_STRING_IS_CANONICAL (attr) = 0;
17715 info_ptr += bytes_read;
17716 break;
17717 }
17718 /* FALLTHROUGH */
17719 case DW_FORM_line_strp:
17720 if (!cu->per_cu->is_dwz)
17721 {
17722 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
17723 cu_header, &bytes_read);
17724 DW_STRING_IS_CANONICAL (attr) = 0;
17725 info_ptr += bytes_read;
17726 break;
17727 }
17728 /* FALLTHROUGH */
17729 case DW_FORM_GNU_strp_alt:
17730 {
17731 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17732 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
17733 &bytes_read);
17734
17735 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
17736 DW_STRING_IS_CANONICAL (attr) = 0;
17737 info_ptr += bytes_read;
17738 }
17739 break;
17740 case DW_FORM_exprloc:
17741 case DW_FORM_block:
17742 blk = dwarf_alloc_block (cu);
17743 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17744 info_ptr += bytes_read;
17745 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17746 info_ptr += blk->size;
17747 DW_BLOCK (attr) = blk;
17748 break;
17749 case DW_FORM_block1:
17750 blk = dwarf_alloc_block (cu);
17751 blk->size = read_1_byte (abfd, info_ptr);
17752 info_ptr += 1;
17753 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
17754 info_ptr += blk->size;
17755 DW_BLOCK (attr) = blk;
17756 break;
17757 case DW_FORM_data1:
17758 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17759 info_ptr += 1;
17760 break;
17761 case DW_FORM_flag:
17762 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
17763 info_ptr += 1;
17764 break;
17765 case DW_FORM_flag_present:
17766 DW_UNSND (attr) = 1;
17767 break;
17768 case DW_FORM_sdata:
17769 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17770 info_ptr += bytes_read;
17771 break;
17772 case DW_FORM_udata:
17773 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17774 info_ptr += bytes_read;
17775 break;
17776 case DW_FORM_ref1:
17777 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17778 + read_1_byte (abfd, info_ptr));
17779 info_ptr += 1;
17780 break;
17781 case DW_FORM_ref2:
17782 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17783 + read_2_bytes (abfd, info_ptr));
17784 info_ptr += 2;
17785 break;
17786 case DW_FORM_ref4:
17787 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17788 + read_4_bytes (abfd, info_ptr));
17789 info_ptr += 4;
17790 break;
17791 case DW_FORM_ref8:
17792 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17793 + read_8_bytes (abfd, info_ptr));
17794 info_ptr += 8;
17795 break;
17796 case DW_FORM_ref_sig8:
17797 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
17798 info_ptr += 8;
17799 break;
17800 case DW_FORM_ref_udata:
17801 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
17802 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
17803 info_ptr += bytes_read;
17804 break;
17805 case DW_FORM_indirect:
17806 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17807 info_ptr += bytes_read;
17808 if (form == DW_FORM_implicit_const)
17809 {
17810 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
17811 info_ptr += bytes_read;
17812 }
17813 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
17814 info_ptr);
17815 break;
17816 case DW_FORM_implicit_const:
17817 DW_SND (attr) = implicit_const;
17818 break;
17819 case DW_FORM_GNU_addr_index:
17820 if (reader->dwo_file == NULL)
17821 {
17822 /* For now flag a hard error.
17823 Later we can turn this into a complaint. */
17824 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17825 dwarf_form_name (form),
17826 bfd_get_filename (abfd));
17827 }
17828 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
17829 info_ptr += bytes_read;
17830 break;
17831 case DW_FORM_GNU_str_index:
17832 if (reader->dwo_file == NULL)
17833 {
17834 /* For now flag a hard error.
17835 Later we can turn this into a complaint if warranted. */
17836 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
17837 dwarf_form_name (form),
17838 bfd_get_filename (abfd));
17839 }
17840 {
17841 ULONGEST str_index =
17842 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17843
17844 DW_STRING (attr) = read_str_index (reader, str_index);
17845 DW_STRING_IS_CANONICAL (attr) = 0;
17846 info_ptr += bytes_read;
17847 }
17848 break;
17849 default:
17850 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
17851 dwarf_form_name (form),
17852 bfd_get_filename (abfd));
17853 }
17854
17855 /* Super hack. */
17856 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
17857 attr->form = DW_FORM_GNU_ref_alt;
17858
17859 /* We have seen instances where the compiler tried to emit a byte
17860 size attribute of -1 which ended up being encoded as an unsigned
17861 0xffffffff. Although 0xffffffff is technically a valid size value,
17862 an object of this size seems pretty unlikely so we can relatively
17863 safely treat these cases as if the size attribute was invalid and
17864 treat them as zero by default. */
17865 if (attr->name == DW_AT_byte_size
17866 && form == DW_FORM_data4
17867 && DW_UNSND (attr) >= 0xffffffff)
17868 {
17869 complaint
17870 (&symfile_complaints,
17871 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
17872 hex_string (DW_UNSND (attr)));
17873 DW_UNSND (attr) = 0;
17874 }
17875
17876 return info_ptr;
17877 }
17878
17879 /* Read an attribute described by an abbreviated attribute. */
17880
17881 static const gdb_byte *
17882 read_attribute (const struct die_reader_specs *reader,
17883 struct attribute *attr, struct attr_abbrev *abbrev,
17884 const gdb_byte *info_ptr)
17885 {
17886 attr->name = abbrev->name;
17887 return read_attribute_value (reader, attr, abbrev->form,
17888 abbrev->implicit_const, info_ptr);
17889 }
17890
17891 /* Read dwarf information from a buffer. */
17892
17893 static unsigned int
17894 read_1_byte (bfd *abfd, const gdb_byte *buf)
17895 {
17896 return bfd_get_8 (abfd, buf);
17897 }
17898
17899 static int
17900 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
17901 {
17902 return bfd_get_signed_8 (abfd, buf);
17903 }
17904
17905 static unsigned int
17906 read_2_bytes (bfd *abfd, const gdb_byte *buf)
17907 {
17908 return bfd_get_16 (abfd, buf);
17909 }
17910
17911 static int
17912 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
17913 {
17914 return bfd_get_signed_16 (abfd, buf);
17915 }
17916
17917 static unsigned int
17918 read_4_bytes (bfd *abfd, const gdb_byte *buf)
17919 {
17920 return bfd_get_32 (abfd, buf);
17921 }
17922
17923 static int
17924 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
17925 {
17926 return bfd_get_signed_32 (abfd, buf);
17927 }
17928
17929 static ULONGEST
17930 read_8_bytes (bfd *abfd, const gdb_byte *buf)
17931 {
17932 return bfd_get_64 (abfd, buf);
17933 }
17934
17935 static CORE_ADDR
17936 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
17937 unsigned int *bytes_read)
17938 {
17939 struct comp_unit_head *cu_header = &cu->header;
17940 CORE_ADDR retval = 0;
17941
17942 if (cu_header->signed_addr_p)
17943 {
17944 switch (cu_header->addr_size)
17945 {
17946 case 2:
17947 retval = bfd_get_signed_16 (abfd, buf);
17948 break;
17949 case 4:
17950 retval = bfd_get_signed_32 (abfd, buf);
17951 break;
17952 case 8:
17953 retval = bfd_get_signed_64 (abfd, buf);
17954 break;
17955 default:
17956 internal_error (__FILE__, __LINE__,
17957 _("read_address: bad switch, signed [in module %s]"),
17958 bfd_get_filename (abfd));
17959 }
17960 }
17961 else
17962 {
17963 switch (cu_header->addr_size)
17964 {
17965 case 2:
17966 retval = bfd_get_16 (abfd, buf);
17967 break;
17968 case 4:
17969 retval = bfd_get_32 (abfd, buf);
17970 break;
17971 case 8:
17972 retval = bfd_get_64 (abfd, buf);
17973 break;
17974 default:
17975 internal_error (__FILE__, __LINE__,
17976 _("read_address: bad switch, "
17977 "unsigned [in module %s]"),
17978 bfd_get_filename (abfd));
17979 }
17980 }
17981
17982 *bytes_read = cu_header->addr_size;
17983 return retval;
17984 }
17985
17986 /* Read the initial length from a section. The (draft) DWARF 3
17987 specification allows the initial length to take up either 4 bytes
17988 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17989 bytes describe the length and all offsets will be 8 bytes in length
17990 instead of 4.
17991
17992 An older, non-standard 64-bit format is also handled by this
17993 function. The older format in question stores the initial length
17994 as an 8-byte quantity without an escape value. Lengths greater
17995 than 2^32 aren't very common which means that the initial 4 bytes
17996 is almost always zero. Since a length value of zero doesn't make
17997 sense for the 32-bit format, this initial zero can be considered to
17998 be an escape value which indicates the presence of the older 64-bit
17999 format. As written, the code can't detect (old format) lengths
18000 greater than 4GB. If it becomes necessary to handle lengths
18001 somewhat larger than 4GB, we could allow other small values (such
18002 as the non-sensical values of 1, 2, and 3) to also be used as
18003 escape values indicating the presence of the old format.
18004
18005 The value returned via bytes_read should be used to increment the
18006 relevant pointer after calling read_initial_length().
18007
18008 [ Note: read_initial_length() and read_offset() are based on the
18009 document entitled "DWARF Debugging Information Format", revision
18010 3, draft 8, dated November 19, 2001. This document was obtained
18011 from:
18012
18013 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
18014
18015 This document is only a draft and is subject to change. (So beware.)
18016
18017 Details regarding the older, non-standard 64-bit format were
18018 determined empirically by examining 64-bit ELF files produced by
18019 the SGI toolchain on an IRIX 6.5 machine.
18020
18021 - Kevin, July 16, 2002
18022 ] */
18023
18024 static LONGEST
18025 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
18026 {
18027 LONGEST length = bfd_get_32 (abfd, buf);
18028
18029 if (length == 0xffffffff)
18030 {
18031 length = bfd_get_64 (abfd, buf + 4);
18032 *bytes_read = 12;
18033 }
18034 else if (length == 0)
18035 {
18036 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
18037 length = bfd_get_64 (abfd, buf);
18038 *bytes_read = 8;
18039 }
18040 else
18041 {
18042 *bytes_read = 4;
18043 }
18044
18045 return length;
18046 }
18047
18048 /* Cover function for read_initial_length.
18049 Returns the length of the object at BUF, and stores the size of the
18050 initial length in *BYTES_READ and stores the size that offsets will be in
18051 *OFFSET_SIZE.
18052 If the initial length size is not equivalent to that specified in
18053 CU_HEADER then issue a complaint.
18054 This is useful when reading non-comp-unit headers. */
18055
18056 static LONGEST
18057 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
18058 const struct comp_unit_head *cu_header,
18059 unsigned int *bytes_read,
18060 unsigned int *offset_size)
18061 {
18062 LONGEST length = read_initial_length (abfd, buf, bytes_read);
18063
18064 gdb_assert (cu_header->initial_length_size == 4
18065 || cu_header->initial_length_size == 8
18066 || cu_header->initial_length_size == 12);
18067
18068 if (cu_header->initial_length_size != *bytes_read)
18069 complaint (&symfile_complaints,
18070 _("intermixed 32-bit and 64-bit DWARF sections"));
18071
18072 *offset_size = (*bytes_read == 4) ? 4 : 8;
18073 return length;
18074 }
18075
18076 /* Read an offset from the data stream. The size of the offset is
18077 given by cu_header->offset_size. */
18078
18079 static LONGEST
18080 read_offset (bfd *abfd, const gdb_byte *buf,
18081 const struct comp_unit_head *cu_header,
18082 unsigned int *bytes_read)
18083 {
18084 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
18085
18086 *bytes_read = cu_header->offset_size;
18087 return offset;
18088 }
18089
18090 /* Read an offset from the data stream. */
18091
18092 static LONGEST
18093 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
18094 {
18095 LONGEST retval = 0;
18096
18097 switch (offset_size)
18098 {
18099 case 4:
18100 retval = bfd_get_32 (abfd, buf);
18101 break;
18102 case 8:
18103 retval = bfd_get_64 (abfd, buf);
18104 break;
18105 default:
18106 internal_error (__FILE__, __LINE__,
18107 _("read_offset_1: bad switch [in module %s]"),
18108 bfd_get_filename (abfd));
18109 }
18110
18111 return retval;
18112 }
18113
18114 static const gdb_byte *
18115 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
18116 {
18117 /* If the size of a host char is 8 bits, we can return a pointer
18118 to the buffer, otherwise we have to copy the data to a buffer
18119 allocated on the temporary obstack. */
18120 gdb_assert (HOST_CHAR_BIT == 8);
18121 return buf;
18122 }
18123
18124 static const char *
18125 read_direct_string (bfd *abfd, const gdb_byte *buf,
18126 unsigned int *bytes_read_ptr)
18127 {
18128 /* If the size of a host char is 8 bits, we can return a pointer
18129 to the string, otherwise we have to copy the string to a buffer
18130 allocated on the temporary obstack. */
18131 gdb_assert (HOST_CHAR_BIT == 8);
18132 if (*buf == '\0')
18133 {
18134 *bytes_read_ptr = 1;
18135 return NULL;
18136 }
18137 *bytes_read_ptr = strlen ((const char *) buf) + 1;
18138 return (const char *) buf;
18139 }
18140
18141 /* Return pointer to string at section SECT offset STR_OFFSET with error
18142 reporting strings FORM_NAME and SECT_NAME. */
18143
18144 static const char *
18145 read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
18146 struct dwarf2_section_info *sect,
18147 const char *form_name,
18148 const char *sect_name)
18149 {
18150 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
18151 if (sect->buffer == NULL)
18152 error (_("%s used without %s section [in module %s]"),
18153 form_name, sect_name, bfd_get_filename (abfd));
18154 if (str_offset >= sect->size)
18155 error (_("%s pointing outside of %s section [in module %s]"),
18156 form_name, sect_name, bfd_get_filename (abfd));
18157 gdb_assert (HOST_CHAR_BIT == 8);
18158 if (sect->buffer[str_offset] == '\0')
18159 return NULL;
18160 return (const char *) (sect->buffer + str_offset);
18161 }
18162
18163 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18164
18165 static const char *
18166 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
18167 {
18168 return read_indirect_string_at_offset_from (abfd, str_offset,
18169 &dwarf2_per_objfile->str,
18170 "DW_FORM_strp", ".debug_str");
18171 }
18172
18173 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
18174
18175 static const char *
18176 read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
18177 {
18178 return read_indirect_string_at_offset_from (abfd, str_offset,
18179 &dwarf2_per_objfile->line_str,
18180 "DW_FORM_line_strp",
18181 ".debug_line_str");
18182 }
18183
18184 /* Read a string at offset STR_OFFSET in the .debug_str section from
18185 the .dwz file DWZ. Throw an error if the offset is too large. If
18186 the string consists of a single NUL byte, return NULL; otherwise
18187 return a pointer to the string. */
18188
18189 static const char *
18190 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
18191 {
18192 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
18193
18194 if (dwz->str.buffer == NULL)
18195 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
18196 "section [in module %s]"),
18197 bfd_get_filename (dwz->dwz_bfd));
18198 if (str_offset >= dwz->str.size)
18199 error (_("DW_FORM_GNU_strp_alt pointing outside of "
18200 ".debug_str section [in module %s]"),
18201 bfd_get_filename (dwz->dwz_bfd));
18202 gdb_assert (HOST_CHAR_BIT == 8);
18203 if (dwz->str.buffer[str_offset] == '\0')
18204 return NULL;
18205 return (const char *) (dwz->str.buffer + str_offset);
18206 }
18207
18208 /* Return pointer to string at .debug_str offset as read from BUF.
18209 BUF is assumed to be in a compilation unit described by CU_HEADER.
18210 Return *BYTES_READ_PTR count of bytes read from BUF. */
18211
18212 static const char *
18213 read_indirect_string (bfd *abfd, const gdb_byte *buf,
18214 const struct comp_unit_head *cu_header,
18215 unsigned int *bytes_read_ptr)
18216 {
18217 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
18218
18219 return read_indirect_string_at_offset (abfd, str_offset);
18220 }
18221
18222 /* Return pointer to string at .debug_line_str offset as read from BUF.
18223 BUF is assumed to be in a compilation unit described by CU_HEADER.
18224 Return *BYTES_READ_PTR count of bytes read from BUF. */
18225
18226 static const char *
18227 read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
18228 const struct comp_unit_head *cu_header,
18229 unsigned int *bytes_read_ptr)
18230 {
18231 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
18232
18233 return read_indirect_line_string_at_offset (abfd, str_offset);
18234 }
18235
18236 ULONGEST
18237 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
18238 unsigned int *bytes_read_ptr)
18239 {
18240 ULONGEST result;
18241 unsigned int num_read;
18242 int shift;
18243 unsigned char byte;
18244
18245 result = 0;
18246 shift = 0;
18247 num_read = 0;
18248 while (1)
18249 {
18250 byte = bfd_get_8 (abfd, buf);
18251 buf++;
18252 num_read++;
18253 result |= ((ULONGEST) (byte & 127) << shift);
18254 if ((byte & 128) == 0)
18255 {
18256 break;
18257 }
18258 shift += 7;
18259 }
18260 *bytes_read_ptr = num_read;
18261 return result;
18262 }
18263
18264 static LONGEST
18265 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
18266 unsigned int *bytes_read_ptr)
18267 {
18268 LONGEST result;
18269 int shift, num_read;
18270 unsigned char byte;
18271
18272 result = 0;
18273 shift = 0;
18274 num_read = 0;
18275 while (1)
18276 {
18277 byte = bfd_get_8 (abfd, buf);
18278 buf++;
18279 num_read++;
18280 result |= ((LONGEST) (byte & 127) << shift);
18281 shift += 7;
18282 if ((byte & 128) == 0)
18283 {
18284 break;
18285 }
18286 }
18287 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
18288 result |= -(((LONGEST) 1) << shift);
18289 *bytes_read_ptr = num_read;
18290 return result;
18291 }
18292
18293 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18294 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
18295 ADDR_SIZE is the size of addresses from the CU header. */
18296
18297 static CORE_ADDR
18298 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
18299 {
18300 struct objfile *objfile = dwarf2_per_objfile->objfile;
18301 bfd *abfd = objfile->obfd;
18302 const gdb_byte *info_ptr;
18303
18304 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
18305 if (dwarf2_per_objfile->addr.buffer == NULL)
18306 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18307 objfile_name (objfile));
18308 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
18309 error (_("DW_FORM_addr_index pointing outside of "
18310 ".debug_addr section [in module %s]"),
18311 objfile_name (objfile));
18312 info_ptr = (dwarf2_per_objfile->addr.buffer
18313 + addr_base + addr_index * addr_size);
18314 if (addr_size == 4)
18315 return bfd_get_32 (abfd, info_ptr);
18316 else
18317 return bfd_get_64 (abfd, info_ptr);
18318 }
18319
18320 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18321
18322 static CORE_ADDR
18323 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18324 {
18325 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
18326 }
18327
18328 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18329
18330 static CORE_ADDR
18331 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18332 unsigned int *bytes_read)
18333 {
18334 bfd *abfd = cu->objfile->obfd;
18335 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18336
18337 return read_addr_index (cu, addr_index);
18338 }
18339
18340 /* Data structure to pass results from dwarf2_read_addr_index_reader
18341 back to dwarf2_read_addr_index. */
18342
18343 struct dwarf2_read_addr_index_data
18344 {
18345 ULONGEST addr_base;
18346 int addr_size;
18347 };
18348
18349 /* die_reader_func for dwarf2_read_addr_index. */
18350
18351 static void
18352 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
18353 const gdb_byte *info_ptr,
18354 struct die_info *comp_unit_die,
18355 int has_children,
18356 void *data)
18357 {
18358 struct dwarf2_cu *cu = reader->cu;
18359 struct dwarf2_read_addr_index_data *aidata =
18360 (struct dwarf2_read_addr_index_data *) data;
18361
18362 aidata->addr_base = cu->addr_base;
18363 aidata->addr_size = cu->header.addr_size;
18364 }
18365
18366 /* Given an index in .debug_addr, fetch the value.
18367 NOTE: This can be called during dwarf expression evaluation,
18368 long after the debug information has been read, and thus per_cu->cu
18369 may no longer exist. */
18370
18371 CORE_ADDR
18372 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
18373 unsigned int addr_index)
18374 {
18375 struct objfile *objfile = per_cu->objfile;
18376 struct dwarf2_cu *cu = per_cu->cu;
18377 ULONGEST addr_base;
18378 int addr_size;
18379
18380 /* This is intended to be called from outside this file. */
18381 dw2_setup (objfile);
18382
18383 /* We need addr_base and addr_size.
18384 If we don't have PER_CU->cu, we have to get it.
18385 Nasty, but the alternative is storing the needed info in PER_CU,
18386 which at this point doesn't seem justified: it's not clear how frequently
18387 it would get used and it would increase the size of every PER_CU.
18388 Entry points like dwarf2_per_cu_addr_size do a similar thing
18389 so we're not in uncharted territory here.
18390 Alas we need to be a bit more complicated as addr_base is contained
18391 in the DIE.
18392
18393 We don't need to read the entire CU(/TU).
18394 We just need the header and top level die.
18395
18396 IWBN to use the aging mechanism to let us lazily later discard the CU.
18397 For now we skip this optimization. */
18398
18399 if (cu != NULL)
18400 {
18401 addr_base = cu->addr_base;
18402 addr_size = cu->header.addr_size;
18403 }
18404 else
18405 {
18406 struct dwarf2_read_addr_index_data aidata;
18407
18408 /* Note: We can't use init_cutu_and_read_dies_simple here,
18409 we need addr_base. */
18410 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
18411 dwarf2_read_addr_index_reader, &aidata);
18412 addr_base = aidata.addr_base;
18413 addr_size = aidata.addr_size;
18414 }
18415
18416 return read_addr_index_1 (addr_index, addr_base, addr_size);
18417 }
18418
18419 /* Given a DW_FORM_GNU_str_index, fetch the string.
18420 This is only used by the Fission support. */
18421
18422 static const char *
18423 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
18424 {
18425 struct objfile *objfile = dwarf2_per_objfile->objfile;
18426 const char *objf_name = objfile_name (objfile);
18427 bfd *abfd = objfile->obfd;
18428 struct dwarf2_cu *cu = reader->cu;
18429 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
18430 struct dwarf2_section_info *str_offsets_section =
18431 &reader->dwo_file->sections.str_offsets;
18432 const gdb_byte *info_ptr;
18433 ULONGEST str_offset;
18434 static const char form_name[] = "DW_FORM_GNU_str_index";
18435
18436 dwarf2_read_section (objfile, str_section);
18437 dwarf2_read_section (objfile, str_offsets_section);
18438 if (str_section->buffer == NULL)
18439 error (_("%s used without .debug_str.dwo section"
18440 " in CU at offset 0x%x [in module %s]"),
18441 form_name, to_underlying (cu->header.sect_off), objf_name);
18442 if (str_offsets_section->buffer == NULL)
18443 error (_("%s used without .debug_str_offsets.dwo section"
18444 " in CU at offset 0x%x [in module %s]"),
18445 form_name, to_underlying (cu->header.sect_off), objf_name);
18446 if (str_index * cu->header.offset_size >= str_offsets_section->size)
18447 error (_("%s pointing outside of .debug_str_offsets.dwo"
18448 " section in CU at offset 0x%x [in module %s]"),
18449 form_name, to_underlying (cu->header.sect_off), objf_name);
18450 info_ptr = (str_offsets_section->buffer
18451 + str_index * cu->header.offset_size);
18452 if (cu->header.offset_size == 4)
18453 str_offset = bfd_get_32 (abfd, info_ptr);
18454 else
18455 str_offset = bfd_get_64 (abfd, info_ptr);
18456 if (str_offset >= str_section->size)
18457 error (_("Offset from %s pointing outside of"
18458 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
18459 form_name, to_underlying (cu->header.sect_off), objf_name);
18460 return (const char *) (str_section->buffer + str_offset);
18461 }
18462
18463 /* Return the length of an LEB128 number in BUF. */
18464
18465 static int
18466 leb128_size (const gdb_byte *buf)
18467 {
18468 const gdb_byte *begin = buf;
18469 gdb_byte byte;
18470
18471 while (1)
18472 {
18473 byte = *buf++;
18474 if ((byte & 128) == 0)
18475 return buf - begin;
18476 }
18477 }
18478
18479 static void
18480 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
18481 {
18482 switch (lang)
18483 {
18484 case DW_LANG_C89:
18485 case DW_LANG_C99:
18486 case DW_LANG_C11:
18487 case DW_LANG_C:
18488 case DW_LANG_UPC:
18489 cu->language = language_c;
18490 break;
18491 case DW_LANG_Java:
18492 case DW_LANG_C_plus_plus:
18493 case DW_LANG_C_plus_plus_11:
18494 case DW_LANG_C_plus_plus_14:
18495 cu->language = language_cplus;
18496 break;
18497 case DW_LANG_D:
18498 cu->language = language_d;
18499 break;
18500 case DW_LANG_Fortran77:
18501 case DW_LANG_Fortran90:
18502 case DW_LANG_Fortran95:
18503 case DW_LANG_Fortran03:
18504 case DW_LANG_Fortran08:
18505 cu->language = language_fortran;
18506 break;
18507 case DW_LANG_Go:
18508 cu->language = language_go;
18509 break;
18510 case DW_LANG_Mips_Assembler:
18511 cu->language = language_asm;
18512 break;
18513 case DW_LANG_Ada83:
18514 case DW_LANG_Ada95:
18515 cu->language = language_ada;
18516 break;
18517 case DW_LANG_Modula2:
18518 cu->language = language_m2;
18519 break;
18520 case DW_LANG_Pascal83:
18521 cu->language = language_pascal;
18522 break;
18523 case DW_LANG_ObjC:
18524 cu->language = language_objc;
18525 break;
18526 case DW_LANG_Rust:
18527 case DW_LANG_Rust_old:
18528 cu->language = language_rust;
18529 break;
18530 case DW_LANG_Cobol74:
18531 case DW_LANG_Cobol85:
18532 default:
18533 cu->language = language_minimal;
18534 break;
18535 }
18536 cu->language_defn = language_def (cu->language);
18537 }
18538
18539 /* Return the named attribute or NULL if not there. */
18540
18541 static struct attribute *
18542 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18543 {
18544 for (;;)
18545 {
18546 unsigned int i;
18547 struct attribute *spec = NULL;
18548
18549 for (i = 0; i < die->num_attrs; ++i)
18550 {
18551 if (die->attrs[i].name == name)
18552 return &die->attrs[i];
18553 if (die->attrs[i].name == DW_AT_specification
18554 || die->attrs[i].name == DW_AT_abstract_origin)
18555 spec = &die->attrs[i];
18556 }
18557
18558 if (!spec)
18559 break;
18560
18561 die = follow_die_ref (die, spec, &cu);
18562 }
18563
18564 return NULL;
18565 }
18566
18567 /* Return the named attribute or NULL if not there,
18568 but do not follow DW_AT_specification, etc.
18569 This is for use in contexts where we're reading .debug_types dies.
18570 Following DW_AT_specification, DW_AT_abstract_origin will take us
18571 back up the chain, and we want to go down. */
18572
18573 static struct attribute *
18574 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
18575 {
18576 unsigned int i;
18577
18578 for (i = 0; i < die->num_attrs; ++i)
18579 if (die->attrs[i].name == name)
18580 return &die->attrs[i];
18581
18582 return NULL;
18583 }
18584
18585 /* Return the string associated with a string-typed attribute, or NULL if it
18586 is either not found or is of an incorrect type. */
18587
18588 static const char *
18589 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
18590 {
18591 struct attribute *attr;
18592 const char *str = NULL;
18593
18594 attr = dwarf2_attr (die, name, cu);
18595
18596 if (attr != NULL)
18597 {
18598 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
18599 || attr->form == DW_FORM_string
18600 || attr->form == DW_FORM_GNU_str_index
18601 || attr->form == DW_FORM_GNU_strp_alt)
18602 str = DW_STRING (attr);
18603 else
18604 complaint (&symfile_complaints,
18605 _("string type expected for attribute %s for "
18606 "DIE at 0x%x in module %s"),
18607 dwarf_attr_name (name), to_underlying (die->sect_off),
18608 objfile_name (cu->objfile));
18609 }
18610
18611 return str;
18612 }
18613
18614 /* Return non-zero iff the attribute NAME is defined for the given DIE,
18615 and holds a non-zero value. This function should only be used for
18616 DW_FORM_flag or DW_FORM_flag_present attributes. */
18617
18618 static int
18619 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
18620 {
18621 struct attribute *attr = dwarf2_attr (die, name, cu);
18622
18623 return (attr && DW_UNSND (attr));
18624 }
18625
18626 static int
18627 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
18628 {
18629 /* A DIE is a declaration if it has a DW_AT_declaration attribute
18630 which value is non-zero. However, we have to be careful with
18631 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
18632 (via dwarf2_flag_true_p) follows this attribute. So we may
18633 end up accidently finding a declaration attribute that belongs
18634 to a different DIE referenced by the specification attribute,
18635 even though the given DIE does not have a declaration attribute. */
18636 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
18637 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
18638 }
18639
18640 /* Return the die giving the specification for DIE, if there is
18641 one. *SPEC_CU is the CU containing DIE on input, and the CU
18642 containing the return value on output. If there is no
18643 specification, but there is an abstract origin, that is
18644 returned. */
18645
18646 static struct die_info *
18647 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
18648 {
18649 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
18650 *spec_cu);
18651
18652 if (spec_attr == NULL)
18653 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
18654
18655 if (spec_attr == NULL)
18656 return NULL;
18657 else
18658 return follow_die_ref (die, spec_attr, spec_cu);
18659 }
18660
18661 /* Stub for free_line_header to match void * callback types. */
18662
18663 static void
18664 free_line_header_voidp (void *arg)
18665 {
18666 struct line_header *lh = (struct line_header *) arg;
18667
18668 delete lh;
18669 }
18670
18671 void
18672 line_header::add_include_dir (const char *include_dir)
18673 {
18674 if (dwarf_line_debug >= 2)
18675 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
18676 include_dirs.size () + 1, include_dir);
18677
18678 include_dirs.push_back (include_dir);
18679 }
18680
18681 void
18682 line_header::add_file_name (const char *name,
18683 dir_index d_index,
18684 unsigned int mod_time,
18685 unsigned int length)
18686 {
18687 if (dwarf_line_debug >= 2)
18688 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
18689 (unsigned) file_names.size () + 1, name);
18690
18691 file_names.emplace_back (name, d_index, mod_time, length);
18692 }
18693
18694 /* A convenience function to find the proper .debug_line section for a CU. */
18695
18696 static struct dwarf2_section_info *
18697 get_debug_line_section (struct dwarf2_cu *cu)
18698 {
18699 struct dwarf2_section_info *section;
18700
18701 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
18702 DWO file. */
18703 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18704 section = &cu->dwo_unit->dwo_file->sections.line;
18705 else if (cu->per_cu->is_dwz)
18706 {
18707 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18708
18709 section = &dwz->line;
18710 }
18711 else
18712 section = &dwarf2_per_objfile->line;
18713
18714 return section;
18715 }
18716
18717 /* Read directory or file name entry format, starting with byte of
18718 format count entries, ULEB128 pairs of entry formats, ULEB128 of
18719 entries count and the entries themselves in the described entry
18720 format. */
18721
18722 static void
18723 read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
18724 struct line_header *lh,
18725 const struct comp_unit_head *cu_header,
18726 void (*callback) (struct line_header *lh,
18727 const char *name,
18728 dir_index d_index,
18729 unsigned int mod_time,
18730 unsigned int length))
18731 {
18732 gdb_byte format_count, formati;
18733 ULONGEST data_count, datai;
18734 const gdb_byte *buf = *bufp;
18735 const gdb_byte *format_header_data;
18736 int i;
18737 unsigned int bytes_read;
18738
18739 format_count = read_1_byte (abfd, buf);
18740 buf += 1;
18741 format_header_data = buf;
18742 for (formati = 0; formati < format_count; formati++)
18743 {
18744 read_unsigned_leb128 (abfd, buf, &bytes_read);
18745 buf += bytes_read;
18746 read_unsigned_leb128 (abfd, buf, &bytes_read);
18747 buf += bytes_read;
18748 }
18749
18750 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
18751 buf += bytes_read;
18752 for (datai = 0; datai < data_count; datai++)
18753 {
18754 const gdb_byte *format = format_header_data;
18755 struct file_entry fe;
18756
18757 for (formati = 0; formati < format_count; formati++)
18758 {
18759 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
18760 format += bytes_read;
18761
18762 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
18763 format += bytes_read;
18764
18765 gdb::optional<const char *> string;
18766 gdb::optional<unsigned int> uint;
18767
18768 switch (form)
18769 {
18770 case DW_FORM_string:
18771 string.emplace (read_direct_string (abfd, buf, &bytes_read));
18772 buf += bytes_read;
18773 break;
18774
18775 case DW_FORM_line_strp:
18776 string.emplace (read_indirect_line_string (abfd, buf,
18777 cu_header,
18778 &bytes_read));
18779 buf += bytes_read;
18780 break;
18781
18782 case DW_FORM_data1:
18783 uint.emplace (read_1_byte (abfd, buf));
18784 buf += 1;
18785 break;
18786
18787 case DW_FORM_data2:
18788 uint.emplace (read_2_bytes (abfd, buf));
18789 buf += 2;
18790 break;
18791
18792 case DW_FORM_data4:
18793 uint.emplace (read_4_bytes (abfd, buf));
18794 buf += 4;
18795 break;
18796
18797 case DW_FORM_data8:
18798 uint.emplace (read_8_bytes (abfd, buf));
18799 buf += 8;
18800 break;
18801
18802 case DW_FORM_udata:
18803 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
18804 buf += bytes_read;
18805 break;
18806
18807 case DW_FORM_block:
18808 /* It is valid only for DW_LNCT_timestamp which is ignored by
18809 current GDB. */
18810 break;
18811 }
18812
18813 switch (content_type)
18814 {
18815 case DW_LNCT_path:
18816 if (string.has_value ())
18817 fe.name = *string;
18818 break;
18819 case DW_LNCT_directory_index:
18820 if (uint.has_value ())
18821 fe.d_index = (dir_index) *uint;
18822 break;
18823 case DW_LNCT_timestamp:
18824 if (uint.has_value ())
18825 fe.mod_time = *uint;
18826 break;
18827 case DW_LNCT_size:
18828 if (uint.has_value ())
18829 fe.length = *uint;
18830 break;
18831 case DW_LNCT_MD5:
18832 break;
18833 default:
18834 complaint (&symfile_complaints,
18835 _("Unknown format content type %s"),
18836 pulongest (content_type));
18837 }
18838 }
18839
18840 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
18841 }
18842
18843 *bufp = buf;
18844 }
18845
18846 /* Read the statement program header starting at OFFSET in
18847 .debug_line, or .debug_line.dwo. Return a pointer
18848 to a struct line_header, allocated using xmalloc.
18849 Returns NULL if there is a problem reading the header, e.g., if it
18850 has a version we don't understand.
18851
18852 NOTE: the strings in the include directory and file name tables of
18853 the returned object point into the dwarf line section buffer,
18854 and must not be freed. */
18855
18856 static line_header_up
18857 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
18858 {
18859 const gdb_byte *line_ptr;
18860 unsigned int bytes_read, offset_size;
18861 int i;
18862 const char *cur_dir, *cur_file;
18863 struct dwarf2_section_info *section;
18864 bfd *abfd;
18865
18866 section = get_debug_line_section (cu);
18867 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
18868 if (section->buffer == NULL)
18869 {
18870 if (cu->dwo_unit && cu->per_cu->is_debug_types)
18871 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
18872 else
18873 complaint (&symfile_complaints, _("missing .debug_line section"));
18874 return 0;
18875 }
18876
18877 /* We can't do this until we know the section is non-empty.
18878 Only then do we know we have such a section. */
18879 abfd = get_section_bfd_owner (section);
18880
18881 /* Make sure that at least there's room for the total_length field.
18882 That could be 12 bytes long, but we're just going to fudge that. */
18883 if (to_underlying (sect_off) + 4 >= section->size)
18884 {
18885 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18886 return 0;
18887 }
18888
18889 line_header_up lh (new line_header ());
18890
18891 lh->sect_off = sect_off;
18892 lh->offset_in_dwz = cu->per_cu->is_dwz;
18893
18894 line_ptr = section->buffer + to_underlying (sect_off);
18895
18896 /* Read in the header. */
18897 lh->total_length =
18898 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
18899 &bytes_read, &offset_size);
18900 line_ptr += bytes_read;
18901 if (line_ptr + lh->total_length > (section->buffer + section->size))
18902 {
18903 dwarf2_statement_list_fits_in_line_number_section_complaint ();
18904 return 0;
18905 }
18906 lh->statement_program_end = line_ptr + lh->total_length;
18907 lh->version = read_2_bytes (abfd, line_ptr);
18908 line_ptr += 2;
18909 if (lh->version > 5)
18910 {
18911 /* This is a version we don't understand. The format could have
18912 changed in ways we don't handle properly so just punt. */
18913 complaint (&symfile_complaints,
18914 _("unsupported version in .debug_line section"));
18915 return NULL;
18916 }
18917 if (lh->version >= 5)
18918 {
18919 gdb_byte segment_selector_size;
18920
18921 /* Skip address size. */
18922 read_1_byte (abfd, line_ptr);
18923 line_ptr += 1;
18924
18925 segment_selector_size = read_1_byte (abfd, line_ptr);
18926 line_ptr += 1;
18927 if (segment_selector_size != 0)
18928 {
18929 complaint (&symfile_complaints,
18930 _("unsupported segment selector size %u "
18931 "in .debug_line section"),
18932 segment_selector_size);
18933 return NULL;
18934 }
18935 }
18936 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18937 line_ptr += offset_size;
18938 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18939 line_ptr += 1;
18940 if (lh->version >= 4)
18941 {
18942 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18943 line_ptr += 1;
18944 }
18945 else
18946 lh->maximum_ops_per_instruction = 1;
18947
18948 if (lh->maximum_ops_per_instruction == 0)
18949 {
18950 lh->maximum_ops_per_instruction = 1;
18951 complaint (&symfile_complaints,
18952 _("invalid maximum_ops_per_instruction "
18953 "in `.debug_line' section"));
18954 }
18955
18956 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18957 line_ptr += 1;
18958 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18959 line_ptr += 1;
18960 lh->line_range = read_1_byte (abfd, line_ptr);
18961 line_ptr += 1;
18962 lh->opcode_base = read_1_byte (abfd, line_ptr);
18963 line_ptr += 1;
18964 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
18965
18966 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18967 for (i = 1; i < lh->opcode_base; ++i)
18968 {
18969 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18970 line_ptr += 1;
18971 }
18972
18973 if (lh->version >= 5)
18974 {
18975 /* Read directory table. */
18976 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18977 [] (struct line_header *lh, const char *name,
18978 dir_index d_index, unsigned int mod_time,
18979 unsigned int length)
18980 {
18981 lh->add_include_dir (name);
18982 });
18983
18984 /* Read file name table. */
18985 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18986 [] (struct line_header *lh, const char *name,
18987 dir_index d_index, unsigned int mod_time,
18988 unsigned int length)
18989 {
18990 lh->add_file_name (name, d_index, mod_time, length);
18991 });
18992 }
18993 else
18994 {
18995 /* Read directory table. */
18996 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18997 {
18998 line_ptr += bytes_read;
18999 lh->add_include_dir (cur_dir);
19000 }
19001 line_ptr += bytes_read;
19002
19003 /* Read file name table. */
19004 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
19005 {
19006 unsigned int mod_time, length;
19007 dir_index d_index;
19008
19009 line_ptr += bytes_read;
19010 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19011 line_ptr += bytes_read;
19012 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19013 line_ptr += bytes_read;
19014 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19015 line_ptr += bytes_read;
19016
19017 lh->add_file_name (cur_file, d_index, mod_time, length);
19018 }
19019 line_ptr += bytes_read;
19020 }
19021 lh->statement_program_start = line_ptr;
19022
19023 if (line_ptr > (section->buffer + section->size))
19024 complaint (&symfile_complaints,
19025 _("line number info header doesn't "
19026 "fit in `.debug_line' section"));
19027
19028 return lh;
19029 }
19030
19031 /* Subroutine of dwarf_decode_lines to simplify it.
19032 Return the file name of the psymtab for included file FILE_INDEX
19033 in line header LH of PST.
19034 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19035 If space for the result is malloc'd, it will be freed by a cleanup.
19036 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
19037
19038 The function creates dangling cleanup registration. */
19039
19040 static const char *
19041 psymtab_include_file_name (const struct line_header *lh, int file_index,
19042 const struct partial_symtab *pst,
19043 const char *comp_dir)
19044 {
19045 const file_entry &fe = lh->file_names[file_index];
19046 const char *include_name = fe.name;
19047 const char *include_name_to_compare = include_name;
19048 const char *pst_filename;
19049 char *copied_name = NULL;
19050 int file_is_pst;
19051
19052 const char *dir_name = fe.include_dir (lh);
19053
19054 if (!IS_ABSOLUTE_PATH (include_name)
19055 && (dir_name != NULL || comp_dir != NULL))
19056 {
19057 /* Avoid creating a duplicate psymtab for PST.
19058 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19059 Before we do the comparison, however, we need to account
19060 for DIR_NAME and COMP_DIR.
19061 First prepend dir_name (if non-NULL). If we still don't
19062 have an absolute path prepend comp_dir (if non-NULL).
19063 However, the directory we record in the include-file's
19064 psymtab does not contain COMP_DIR (to match the
19065 corresponding symtab(s)).
19066
19067 Example:
19068
19069 bash$ cd /tmp
19070 bash$ gcc -g ./hello.c
19071 include_name = "hello.c"
19072 dir_name = "."
19073 DW_AT_comp_dir = comp_dir = "/tmp"
19074 DW_AT_name = "./hello.c"
19075
19076 */
19077
19078 if (dir_name != NULL)
19079 {
19080 char *tem = concat (dir_name, SLASH_STRING,
19081 include_name, (char *)NULL);
19082
19083 make_cleanup (xfree, tem);
19084 include_name = tem;
19085 include_name_to_compare = include_name;
19086 }
19087 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19088 {
19089 char *tem = concat (comp_dir, SLASH_STRING,
19090 include_name, (char *)NULL);
19091
19092 make_cleanup (xfree, tem);
19093 include_name_to_compare = tem;
19094 }
19095 }
19096
19097 pst_filename = pst->filename;
19098 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19099 {
19100 copied_name = concat (pst->dirname, SLASH_STRING,
19101 pst_filename, (char *)NULL);
19102 pst_filename = copied_name;
19103 }
19104
19105 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19106
19107 if (copied_name != NULL)
19108 xfree (copied_name);
19109
19110 if (file_is_pst)
19111 return NULL;
19112 return include_name;
19113 }
19114
19115 /* State machine to track the state of the line number program. */
19116
19117 class lnp_state_machine
19118 {
19119 public:
19120 /* Initialize a machine state for the start of a line number
19121 program. */
19122 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
19123
19124 file_entry *current_file ()
19125 {
19126 /* lh->file_names is 0-based, but the file name numbers in the
19127 statement program are 1-based. */
19128 return m_line_header->file_name_at (m_file);
19129 }
19130
19131 /* Record the line in the state machine. END_SEQUENCE is true if
19132 we're processing the end of a sequence. */
19133 void record_line (bool end_sequence);
19134
19135 /* Check address and if invalid nop-out the rest of the lines in this
19136 sequence. */
19137 void check_line_address (struct dwarf2_cu *cu,
19138 const gdb_byte *line_ptr,
19139 CORE_ADDR lowpc, CORE_ADDR address);
19140
19141 void handle_set_discriminator (unsigned int discriminator)
19142 {
19143 m_discriminator = discriminator;
19144 m_line_has_non_zero_discriminator |= discriminator != 0;
19145 }
19146
19147 /* Handle DW_LNE_set_address. */
19148 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19149 {
19150 m_op_index = 0;
19151 address += baseaddr;
19152 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19153 }
19154
19155 /* Handle DW_LNS_advance_pc. */
19156 void handle_advance_pc (CORE_ADDR adjust);
19157
19158 /* Handle a special opcode. */
19159 void handle_special_opcode (unsigned char op_code);
19160
19161 /* Handle DW_LNS_advance_line. */
19162 void handle_advance_line (int line_delta)
19163 {
19164 advance_line (line_delta);
19165 }
19166
19167 /* Handle DW_LNS_set_file. */
19168 void handle_set_file (file_name_index file);
19169
19170 /* Handle DW_LNS_negate_stmt. */
19171 void handle_negate_stmt ()
19172 {
19173 m_is_stmt = !m_is_stmt;
19174 }
19175
19176 /* Handle DW_LNS_const_add_pc. */
19177 void handle_const_add_pc ();
19178
19179 /* Handle DW_LNS_fixed_advance_pc. */
19180 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19181 {
19182 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19183 m_op_index = 0;
19184 }
19185
19186 /* Handle DW_LNS_copy. */
19187 void handle_copy ()
19188 {
19189 record_line (false);
19190 m_discriminator = 0;
19191 }
19192
19193 /* Handle DW_LNE_end_sequence. */
19194 void handle_end_sequence ()
19195 {
19196 m_record_line_callback = ::record_line;
19197 }
19198
19199 private:
19200 /* Advance the line by LINE_DELTA. */
19201 void advance_line (int line_delta)
19202 {
19203 m_line += line_delta;
19204
19205 if (line_delta != 0)
19206 m_line_has_non_zero_discriminator = m_discriminator != 0;
19207 }
19208
19209 gdbarch *m_gdbarch;
19210
19211 /* True if we're recording lines.
19212 Otherwise we're building partial symtabs and are just interested in
19213 finding include files mentioned by the line number program. */
19214 bool m_record_lines_p;
19215
19216 /* The line number header. */
19217 line_header *m_line_header;
19218
19219 /* These are part of the standard DWARF line number state machine,
19220 and initialized according to the DWARF spec. */
19221
19222 unsigned char m_op_index = 0;
19223 /* The line table index (1-based) of the current file. */
19224 file_name_index m_file = (file_name_index) 1;
19225 unsigned int m_line = 1;
19226
19227 /* These are initialized in the constructor. */
19228
19229 CORE_ADDR m_address;
19230 bool m_is_stmt;
19231 unsigned int m_discriminator;
19232
19233 /* Additional bits of state we need to track. */
19234
19235 /* The last file that we called dwarf2_start_subfile for.
19236 This is only used for TLLs. */
19237 unsigned int m_last_file = 0;
19238 /* The last file a line number was recorded for. */
19239 struct subfile *m_last_subfile = NULL;
19240
19241 /* The function to call to record a line. */
19242 record_line_ftype *m_record_line_callback = NULL;
19243
19244 /* The last line number that was recorded, used to coalesce
19245 consecutive entries for the same line. This can happen, for
19246 example, when discriminators are present. PR 17276. */
19247 unsigned int m_last_line = 0;
19248 bool m_line_has_non_zero_discriminator = false;
19249 };
19250
19251 void
19252 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19253 {
19254 CORE_ADDR addr_adj = (((m_op_index + adjust)
19255 / m_line_header->maximum_ops_per_instruction)
19256 * m_line_header->minimum_instruction_length);
19257 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19258 m_op_index = ((m_op_index + adjust)
19259 % m_line_header->maximum_ops_per_instruction);
19260 }
19261
19262 void
19263 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19264 {
19265 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19266 CORE_ADDR addr_adj = (((m_op_index
19267 + (adj_opcode / m_line_header->line_range))
19268 / m_line_header->maximum_ops_per_instruction)
19269 * m_line_header->minimum_instruction_length);
19270 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19271 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
19272 % m_line_header->maximum_ops_per_instruction);
19273
19274 int line_delta = (m_line_header->line_base
19275 + (adj_opcode % m_line_header->line_range));
19276 advance_line (line_delta);
19277 record_line (false);
19278 m_discriminator = 0;
19279 }
19280
19281 void
19282 lnp_state_machine::handle_set_file (file_name_index file)
19283 {
19284 m_file = file;
19285
19286 const file_entry *fe = current_file ();
19287 if (fe == NULL)
19288 dwarf2_debug_line_missing_file_complaint ();
19289 else if (m_record_lines_p)
19290 {
19291 const char *dir = fe->include_dir (m_line_header);
19292
19293 m_last_subfile = current_subfile;
19294 m_line_has_non_zero_discriminator = m_discriminator != 0;
19295 dwarf2_start_subfile (fe->name, dir);
19296 }
19297 }
19298
19299 void
19300 lnp_state_machine::handle_const_add_pc ()
19301 {
19302 CORE_ADDR adjust
19303 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19304
19305 CORE_ADDR addr_adj
19306 = (((m_op_index + adjust)
19307 / m_line_header->maximum_ops_per_instruction)
19308 * m_line_header->minimum_instruction_length);
19309
19310 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19311 m_op_index = ((m_op_index + adjust)
19312 % m_line_header->maximum_ops_per_instruction);
19313 }
19314
19315 /* Ignore this record_line request. */
19316
19317 static void
19318 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
19319 {
19320 return;
19321 }
19322
19323 /* Return non-zero if we should add LINE to the line number table.
19324 LINE is the line to add, LAST_LINE is the last line that was added,
19325 LAST_SUBFILE is the subfile for LAST_LINE.
19326 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19327 had a non-zero discriminator.
19328
19329 We have to be careful in the presence of discriminators.
19330 E.g., for this line:
19331
19332 for (i = 0; i < 100000; i++);
19333
19334 clang can emit four line number entries for that one line,
19335 each with a different discriminator.
19336 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19337
19338 However, we want gdb to coalesce all four entries into one.
19339 Otherwise the user could stepi into the middle of the line and
19340 gdb would get confused about whether the pc really was in the
19341 middle of the line.
19342
19343 Things are further complicated by the fact that two consecutive
19344 line number entries for the same line is a heuristic used by gcc
19345 to denote the end of the prologue. So we can't just discard duplicate
19346 entries, we have to be selective about it. The heuristic we use is
19347 that we only collapse consecutive entries for the same line if at least
19348 one of those entries has a non-zero discriminator. PR 17276.
19349
19350 Note: Addresses in the line number state machine can never go backwards
19351 within one sequence, thus this coalescing is ok. */
19352
19353 static int
19354 dwarf_record_line_p (unsigned int line, unsigned int last_line,
19355 int line_has_non_zero_discriminator,
19356 struct subfile *last_subfile)
19357 {
19358 if (current_subfile != last_subfile)
19359 return 1;
19360 if (line != last_line)
19361 return 1;
19362 /* Same line for the same file that we've seen already.
19363 As a last check, for pr 17276, only record the line if the line
19364 has never had a non-zero discriminator. */
19365 if (!line_has_non_zero_discriminator)
19366 return 1;
19367 return 0;
19368 }
19369
19370 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
19371 in the line table of subfile SUBFILE. */
19372
19373 static void
19374 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19375 unsigned int line, CORE_ADDR address,
19376 record_line_ftype p_record_line)
19377 {
19378 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19379
19380 if (dwarf_line_debug)
19381 {
19382 fprintf_unfiltered (gdb_stdlog,
19383 "Recording line %u, file %s, address %s\n",
19384 line, lbasename (subfile->name),
19385 paddress (gdbarch, address));
19386 }
19387
19388 (*p_record_line) (subfile, line, addr);
19389 }
19390
19391 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19392 Mark the end of a set of line number records.
19393 The arguments are the same as for dwarf_record_line_1.
19394 If SUBFILE is NULL the request is ignored. */
19395
19396 static void
19397 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19398 CORE_ADDR address, record_line_ftype p_record_line)
19399 {
19400 if (subfile == NULL)
19401 return;
19402
19403 if (dwarf_line_debug)
19404 {
19405 fprintf_unfiltered (gdb_stdlog,
19406 "Finishing current line, file %s, address %s\n",
19407 lbasename (subfile->name),
19408 paddress (gdbarch, address));
19409 }
19410
19411 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
19412 }
19413
19414 void
19415 lnp_state_machine::record_line (bool end_sequence)
19416 {
19417 if (dwarf_line_debug)
19418 {
19419 fprintf_unfiltered (gdb_stdlog,
19420 "Processing actual line %u: file %u,"
19421 " address %s, is_stmt %u, discrim %u\n",
19422 m_line, to_underlying (m_file),
19423 paddress (m_gdbarch, m_address),
19424 m_is_stmt, m_discriminator);
19425 }
19426
19427 file_entry *fe = current_file ();
19428
19429 if (fe == NULL)
19430 dwarf2_debug_line_missing_file_complaint ();
19431 /* For now we ignore lines not starting on an instruction boundary.
19432 But not when processing end_sequence for compatibility with the
19433 previous version of the code. */
19434 else if (m_op_index == 0 || end_sequence)
19435 {
19436 fe->included_p = 1;
19437 if (m_record_lines_p && m_is_stmt)
19438 {
19439 if (m_last_subfile != current_subfile || end_sequence)
19440 {
19441 dwarf_finish_line (m_gdbarch, m_last_subfile,
19442 m_address, m_record_line_callback);
19443 }
19444
19445 if (!end_sequence)
19446 {
19447 if (dwarf_record_line_p (m_line, m_last_line,
19448 m_line_has_non_zero_discriminator,
19449 m_last_subfile))
19450 {
19451 dwarf_record_line_1 (m_gdbarch, current_subfile,
19452 m_line, m_address,
19453 m_record_line_callback);
19454 }
19455 m_last_subfile = current_subfile;
19456 m_last_line = m_line;
19457 }
19458 }
19459 }
19460 }
19461
19462 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
19463 bool record_lines_p)
19464 {
19465 m_gdbarch = arch;
19466 m_record_lines_p = record_lines_p;
19467 m_line_header = lh;
19468
19469 m_record_line_callback = ::record_line;
19470
19471 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
19472 was a line entry for it so that the backend has a chance to adjust it
19473 and also record it in case it needs it. This is currently used by MIPS
19474 code, cf. `mips_adjust_dwarf2_line'. */
19475 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
19476 m_is_stmt = lh->default_is_stmt;
19477 m_discriminator = 0;
19478 }
19479
19480 void
19481 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
19482 const gdb_byte *line_ptr,
19483 CORE_ADDR lowpc, CORE_ADDR address)
19484 {
19485 /* If address < lowpc then it's not a usable value, it's outside the
19486 pc range of the CU. However, we restrict the test to only address
19487 values of zero to preserve GDB's previous behaviour which is to
19488 handle the specific case of a function being GC'd by the linker. */
19489
19490 if (address == 0 && address < lowpc)
19491 {
19492 /* This line table is for a function which has been
19493 GCd by the linker. Ignore it. PR gdb/12528 */
19494
19495 struct objfile *objfile = cu->objfile;
19496 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
19497
19498 complaint (&symfile_complaints,
19499 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
19500 line_offset, objfile_name (objfile));
19501 m_record_line_callback = noop_record_line;
19502 /* Note: record_line_callback is left as noop_record_line until
19503 we see DW_LNE_end_sequence. */
19504 }
19505 }
19506
19507 /* Subroutine of dwarf_decode_lines to simplify it.
19508 Process the line number information in LH.
19509 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
19510 program in order to set included_p for every referenced header. */
19511
19512 static void
19513 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
19514 const int decode_for_pst_p, CORE_ADDR lowpc)
19515 {
19516 const gdb_byte *line_ptr, *extended_end;
19517 const gdb_byte *line_end;
19518 unsigned int bytes_read, extended_len;
19519 unsigned char op_code, extended_op;
19520 CORE_ADDR baseaddr;
19521 struct objfile *objfile = cu->objfile;
19522 bfd *abfd = objfile->obfd;
19523 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19524 /* True if we're recording line info (as opposed to building partial
19525 symtabs and just interested in finding include files mentioned by
19526 the line number program). */
19527 bool record_lines_p = !decode_for_pst_p;
19528
19529 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19530
19531 line_ptr = lh->statement_program_start;
19532 line_end = lh->statement_program_end;
19533
19534 /* Read the statement sequences until there's nothing left. */
19535 while (line_ptr < line_end)
19536 {
19537 /* The DWARF line number program state machine. Reset the state
19538 machine at the start of each sequence. */
19539 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
19540 bool end_sequence = false;
19541
19542 if (record_lines_p)
19543 {
19544 /* Start a subfile for the current file of the state
19545 machine. */
19546 const file_entry *fe = state_machine.current_file ();
19547
19548 if (fe != NULL)
19549 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
19550 }
19551
19552 /* Decode the table. */
19553 while (line_ptr < line_end && !end_sequence)
19554 {
19555 op_code = read_1_byte (abfd, line_ptr);
19556 line_ptr += 1;
19557
19558 if (op_code >= lh->opcode_base)
19559 {
19560 /* Special opcode. */
19561 state_machine.handle_special_opcode (op_code);
19562 }
19563 else switch (op_code)
19564 {
19565 case DW_LNS_extended_op:
19566 extended_len = read_unsigned_leb128 (abfd, line_ptr,
19567 &bytes_read);
19568 line_ptr += bytes_read;
19569 extended_end = line_ptr + extended_len;
19570 extended_op = read_1_byte (abfd, line_ptr);
19571 line_ptr += 1;
19572 switch (extended_op)
19573 {
19574 case DW_LNE_end_sequence:
19575 state_machine.handle_end_sequence ();
19576 end_sequence = true;
19577 break;
19578 case DW_LNE_set_address:
19579 {
19580 CORE_ADDR address
19581 = read_address (abfd, line_ptr, cu, &bytes_read);
19582 line_ptr += bytes_read;
19583
19584 state_machine.check_line_address (cu, line_ptr,
19585 lowpc, address);
19586 state_machine.handle_set_address (baseaddr, address);
19587 }
19588 break;
19589 case DW_LNE_define_file:
19590 {
19591 const char *cur_file;
19592 unsigned int mod_time, length;
19593 dir_index dindex;
19594
19595 cur_file = read_direct_string (abfd, line_ptr,
19596 &bytes_read);
19597 line_ptr += bytes_read;
19598 dindex = (dir_index)
19599 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19600 line_ptr += bytes_read;
19601 mod_time =
19602 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19603 line_ptr += bytes_read;
19604 length =
19605 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19606 line_ptr += bytes_read;
19607 lh->add_file_name (cur_file, dindex, mod_time, length);
19608 }
19609 break;
19610 case DW_LNE_set_discriminator:
19611 {
19612 /* The discriminator is not interesting to the
19613 debugger; just ignore it. We still need to
19614 check its value though:
19615 if there are consecutive entries for the same
19616 (non-prologue) line we want to coalesce them.
19617 PR 17276. */
19618 unsigned int discr
19619 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19620 line_ptr += bytes_read;
19621
19622 state_machine.handle_set_discriminator (discr);
19623 }
19624 break;
19625 default:
19626 complaint (&symfile_complaints,
19627 _("mangled .debug_line section"));
19628 return;
19629 }
19630 /* Make sure that we parsed the extended op correctly. If e.g.
19631 we expected a different address size than the producer used,
19632 we may have read the wrong number of bytes. */
19633 if (line_ptr != extended_end)
19634 {
19635 complaint (&symfile_complaints,
19636 _("mangled .debug_line section"));
19637 return;
19638 }
19639 break;
19640 case DW_LNS_copy:
19641 state_machine.handle_copy ();
19642 break;
19643 case DW_LNS_advance_pc:
19644 {
19645 CORE_ADDR adjust
19646 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19647 line_ptr += bytes_read;
19648
19649 state_machine.handle_advance_pc (adjust);
19650 }
19651 break;
19652 case DW_LNS_advance_line:
19653 {
19654 int line_delta
19655 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19656 line_ptr += bytes_read;
19657
19658 state_machine.handle_advance_line (line_delta);
19659 }
19660 break;
19661 case DW_LNS_set_file:
19662 {
19663 file_name_index file
19664 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19665 &bytes_read);
19666 line_ptr += bytes_read;
19667
19668 state_machine.handle_set_file (file);
19669 }
19670 break;
19671 case DW_LNS_set_column:
19672 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19673 line_ptr += bytes_read;
19674 break;
19675 case DW_LNS_negate_stmt:
19676 state_machine.handle_negate_stmt ();
19677 break;
19678 case DW_LNS_set_basic_block:
19679 break;
19680 /* Add to the address register of the state machine the
19681 address increment value corresponding to special opcode
19682 255. I.e., this value is scaled by the minimum
19683 instruction length since special opcode 255 would have
19684 scaled the increment. */
19685 case DW_LNS_const_add_pc:
19686 state_machine.handle_const_add_pc ();
19687 break;
19688 case DW_LNS_fixed_advance_pc:
19689 {
19690 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
19691 line_ptr += 2;
19692
19693 state_machine.handle_fixed_advance_pc (addr_adj);
19694 }
19695 break;
19696 default:
19697 {
19698 /* Unknown standard opcode, ignore it. */
19699 int i;
19700
19701 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
19702 {
19703 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19704 line_ptr += bytes_read;
19705 }
19706 }
19707 }
19708 }
19709
19710 if (!end_sequence)
19711 dwarf2_debug_line_missing_end_sequence_complaint ();
19712
19713 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
19714 in which case we still finish recording the last line). */
19715 state_machine.record_line (true);
19716 }
19717 }
19718
19719 /* Decode the Line Number Program (LNP) for the given line_header
19720 structure and CU. The actual information extracted and the type
19721 of structures created from the LNP depends on the value of PST.
19722
19723 1. If PST is NULL, then this procedure uses the data from the program
19724 to create all necessary symbol tables, and their linetables.
19725
19726 2. If PST is not NULL, this procedure reads the program to determine
19727 the list of files included by the unit represented by PST, and
19728 builds all the associated partial symbol tables.
19729
19730 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19731 It is used for relative paths in the line table.
19732 NOTE: When processing partial symtabs (pst != NULL),
19733 comp_dir == pst->dirname.
19734
19735 NOTE: It is important that psymtabs have the same file name (via strcmp)
19736 as the corresponding symtab. Since COMP_DIR is not used in the name of the
19737 symtab we don't use it in the name of the psymtabs we create.
19738 E.g. expand_line_sal requires this when finding psymtabs to expand.
19739 A good testcase for this is mb-inline.exp.
19740
19741 LOWPC is the lowest address in CU (or 0 if not known).
19742
19743 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
19744 for its PC<->lines mapping information. Otherwise only the filename
19745 table is read in. */
19746
19747 static void
19748 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
19749 struct dwarf2_cu *cu, struct partial_symtab *pst,
19750 CORE_ADDR lowpc, int decode_mapping)
19751 {
19752 struct objfile *objfile = cu->objfile;
19753 const int decode_for_pst_p = (pst != NULL);
19754
19755 if (decode_mapping)
19756 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
19757
19758 if (decode_for_pst_p)
19759 {
19760 int file_index;
19761
19762 /* Now that we're done scanning the Line Header Program, we can
19763 create the psymtab of each included file. */
19764 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
19765 if (lh->file_names[file_index].included_p == 1)
19766 {
19767 const char *include_name =
19768 psymtab_include_file_name (lh, file_index, pst, comp_dir);
19769 if (include_name != NULL)
19770 dwarf2_create_include_psymtab (include_name, pst, objfile);
19771 }
19772 }
19773 else
19774 {
19775 /* Make sure a symtab is created for every file, even files
19776 which contain only variables (i.e. no code with associated
19777 line numbers). */
19778 struct compunit_symtab *cust = buildsym_compunit_symtab ();
19779 int i;
19780
19781 for (i = 0; i < lh->file_names.size (); i++)
19782 {
19783 file_entry &fe = lh->file_names[i];
19784
19785 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
19786
19787 if (current_subfile->symtab == NULL)
19788 {
19789 current_subfile->symtab
19790 = allocate_symtab (cust, current_subfile->name);
19791 }
19792 fe.symtab = current_subfile->symtab;
19793 }
19794 }
19795 }
19796
19797 /* Start a subfile for DWARF. FILENAME is the name of the file and
19798 DIRNAME the name of the source directory which contains FILENAME
19799 or NULL if not known.
19800 This routine tries to keep line numbers from identical absolute and
19801 relative file names in a common subfile.
19802
19803 Using the `list' example from the GDB testsuite, which resides in
19804 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
19805 of /srcdir/list0.c yields the following debugging information for list0.c:
19806
19807 DW_AT_name: /srcdir/list0.c
19808 DW_AT_comp_dir: /compdir
19809 files.files[0].name: list0.h
19810 files.files[0].dir: /srcdir
19811 files.files[1].name: list0.c
19812 files.files[1].dir: /srcdir
19813
19814 The line number information for list0.c has to end up in a single
19815 subfile, so that `break /srcdir/list0.c:1' works as expected.
19816 start_subfile will ensure that this happens provided that we pass the
19817 concatenation of files.files[1].dir and files.files[1].name as the
19818 subfile's name. */
19819
19820 static void
19821 dwarf2_start_subfile (const char *filename, const char *dirname)
19822 {
19823 char *copy = NULL;
19824
19825 /* In order not to lose the line information directory,
19826 we concatenate it to the filename when it makes sense.
19827 Note that the Dwarf3 standard says (speaking of filenames in line
19828 information): ``The directory index is ignored for file names
19829 that represent full path names''. Thus ignoring dirname in the
19830 `else' branch below isn't an issue. */
19831
19832 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
19833 {
19834 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
19835 filename = copy;
19836 }
19837
19838 start_subfile (filename);
19839
19840 if (copy != NULL)
19841 xfree (copy);
19842 }
19843
19844 /* Start a symtab for DWARF.
19845 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
19846
19847 static struct compunit_symtab *
19848 dwarf2_start_symtab (struct dwarf2_cu *cu,
19849 const char *name, const char *comp_dir, CORE_ADDR low_pc)
19850 {
19851 struct compunit_symtab *cust
19852 = start_symtab (cu->objfile, name, comp_dir, low_pc, cu->language);
19853
19854 record_debugformat ("DWARF 2");
19855 record_producer (cu->producer);
19856
19857 /* We assume that we're processing GCC output. */
19858 processing_gcc_compilation = 2;
19859
19860 cu->processing_has_namespace_info = 0;
19861
19862 return cust;
19863 }
19864
19865 static void
19866 var_decode_location (struct attribute *attr, struct symbol *sym,
19867 struct dwarf2_cu *cu)
19868 {
19869 struct objfile *objfile = cu->objfile;
19870 struct comp_unit_head *cu_header = &cu->header;
19871
19872 /* NOTE drow/2003-01-30: There used to be a comment and some special
19873 code here to turn a symbol with DW_AT_external and a
19874 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
19875 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
19876 with some versions of binutils) where shared libraries could have
19877 relocations against symbols in their debug information - the
19878 minimal symbol would have the right address, but the debug info
19879 would not. It's no longer necessary, because we will explicitly
19880 apply relocations when we read in the debug information now. */
19881
19882 /* A DW_AT_location attribute with no contents indicates that a
19883 variable has been optimized away. */
19884 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
19885 {
19886 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19887 return;
19888 }
19889
19890 /* Handle one degenerate form of location expression specially, to
19891 preserve GDB's previous behavior when section offsets are
19892 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
19893 then mark this symbol as LOC_STATIC. */
19894
19895 if (attr_form_is_block (attr)
19896 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
19897 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
19898 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
19899 && (DW_BLOCK (attr)->size
19900 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
19901 {
19902 unsigned int dummy;
19903
19904 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
19905 SYMBOL_VALUE_ADDRESS (sym) =
19906 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
19907 else
19908 SYMBOL_VALUE_ADDRESS (sym) =
19909 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
19910 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
19911 fixup_symbol_section (sym, objfile);
19912 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
19913 SYMBOL_SECTION (sym));
19914 return;
19915 }
19916
19917 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
19918 expression evaluator, and use LOC_COMPUTED only when necessary
19919 (i.e. when the value of a register or memory location is
19920 referenced, or a thread-local block, etc.). Then again, it might
19921 not be worthwhile. I'm assuming that it isn't unless performance
19922 or memory numbers show me otherwise. */
19923
19924 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
19925
19926 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
19927 cu->has_loclist = 1;
19928 }
19929
19930 /* Given a pointer to a DWARF information entry, figure out if we need
19931 to make a symbol table entry for it, and if so, create a new entry
19932 and return a pointer to it.
19933 If TYPE is NULL, determine symbol type from the die, otherwise
19934 used the passed type.
19935 If SPACE is not NULL, use it to hold the new symbol. If it is
19936 NULL, allocate a new symbol on the objfile's obstack. */
19937
19938 static struct symbol *
19939 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19940 struct symbol *space)
19941 {
19942 struct objfile *objfile = cu->objfile;
19943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19944 struct symbol *sym = NULL;
19945 const char *name;
19946 struct attribute *attr = NULL;
19947 struct attribute *attr2 = NULL;
19948 CORE_ADDR baseaddr;
19949 struct pending **list_to_add = NULL;
19950
19951 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
19952
19953 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19954
19955 name = dwarf2_name (die, cu);
19956 if (name)
19957 {
19958 const char *linkagename;
19959 int suppress_add = 0;
19960
19961 if (space)
19962 sym = space;
19963 else
19964 sym = allocate_symbol (objfile);
19965 OBJSTAT (objfile, n_syms++);
19966
19967 /* Cache this symbol's name and the name's demangled form (if any). */
19968 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
19969 linkagename = dwarf2_physname (name, die, cu);
19970 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
19971
19972 /* Fortran does not have mangling standard and the mangling does differ
19973 between gfortran, iFort etc. */
19974 if (cu->language == language_fortran
19975 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
19976 symbol_set_demangled_name (&(sym->ginfo),
19977 dwarf2_full_name (name, die, cu),
19978 NULL);
19979
19980 /* Default assumptions.
19981 Use the passed type or decode it from the die. */
19982 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
19983 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
19984 if (type != NULL)
19985 SYMBOL_TYPE (sym) = type;
19986 else
19987 SYMBOL_TYPE (sym) = die_type (die, cu);
19988 attr = dwarf2_attr (die,
19989 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19990 cu);
19991 if (attr)
19992 {
19993 SYMBOL_LINE (sym) = DW_UNSND (attr);
19994 }
19995
19996 attr = dwarf2_attr (die,
19997 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19998 cu);
19999 if (attr)
20000 {
20001 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20002 struct file_entry *fe;
20003
20004 if (cu->line_header != NULL)
20005 fe = cu->line_header->file_name_at (file_index);
20006 else
20007 fe = NULL;
20008
20009 if (fe == NULL)
20010 complaint (&symfile_complaints,
20011 _("file index out of range"));
20012 else
20013 symbol_set_symtab (sym, fe->symtab);
20014 }
20015
20016 switch (die->tag)
20017 {
20018 case DW_TAG_label:
20019 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20020 if (attr)
20021 {
20022 CORE_ADDR addr;
20023
20024 addr = attr_value_as_address (attr);
20025 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20026 SYMBOL_VALUE_ADDRESS (sym) = addr;
20027 }
20028 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20029 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20030 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20031 add_symbol_to_list (sym, cu->list_in_scope);
20032 break;
20033 case DW_TAG_subprogram:
20034 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20035 finish_block. */
20036 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20037 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20038 if ((attr2 && (DW_UNSND (attr2) != 0))
20039 || cu->language == language_ada)
20040 {
20041 /* Subprograms marked external are stored as a global symbol.
20042 Ada subprograms, whether marked external or not, are always
20043 stored as a global symbol, because we want to be able to
20044 access them globally. For instance, we want to be able
20045 to break on a nested subprogram without having to
20046 specify the context. */
20047 list_to_add = &global_symbols;
20048 }
20049 else
20050 {
20051 list_to_add = cu->list_in_scope;
20052 }
20053 break;
20054 case DW_TAG_inlined_subroutine:
20055 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20056 finish_block. */
20057 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20058 SYMBOL_INLINED (sym) = 1;
20059 list_to_add = cu->list_in_scope;
20060 break;
20061 case DW_TAG_template_value_param:
20062 suppress_add = 1;
20063 /* Fall through. */
20064 case DW_TAG_constant:
20065 case DW_TAG_variable:
20066 case DW_TAG_member:
20067 /* Compilation with minimal debug info may result in
20068 variables with missing type entries. Change the
20069 misleading `void' type to something sensible. */
20070 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20071 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20072
20073 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20074 /* In the case of DW_TAG_member, we should only be called for
20075 static const members. */
20076 if (die->tag == DW_TAG_member)
20077 {
20078 /* dwarf2_add_field uses die_is_declaration,
20079 so we do the same. */
20080 gdb_assert (die_is_declaration (die, cu));
20081 gdb_assert (attr);
20082 }
20083 if (attr)
20084 {
20085 dwarf2_const_value (attr, sym, cu);
20086 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20087 if (!suppress_add)
20088 {
20089 if (attr2 && (DW_UNSND (attr2) != 0))
20090 list_to_add = &global_symbols;
20091 else
20092 list_to_add = cu->list_in_scope;
20093 }
20094 break;
20095 }
20096 attr = dwarf2_attr (die, DW_AT_location, cu);
20097 if (attr)
20098 {
20099 var_decode_location (attr, sym, cu);
20100 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20101
20102 /* Fortran explicitly imports any global symbols to the local
20103 scope by DW_TAG_common_block. */
20104 if (cu->language == language_fortran && die->parent
20105 && die->parent->tag == DW_TAG_common_block)
20106 attr2 = NULL;
20107
20108 if (SYMBOL_CLASS (sym) == LOC_STATIC
20109 && SYMBOL_VALUE_ADDRESS (sym) == 0
20110 && !dwarf2_per_objfile->has_section_at_zero)
20111 {
20112 /* When a static variable is eliminated by the linker,
20113 the corresponding debug information is not stripped
20114 out, but the variable address is set to null;
20115 do not add such variables into symbol table. */
20116 }
20117 else if (attr2 && (DW_UNSND (attr2) != 0))
20118 {
20119 /* Workaround gfortran PR debug/40040 - it uses
20120 DW_AT_location for variables in -fPIC libraries which may
20121 get overriden by other libraries/executable and get
20122 a different address. Resolve it by the minimal symbol
20123 which may come from inferior's executable using copy
20124 relocation. Make this workaround only for gfortran as for
20125 other compilers GDB cannot guess the minimal symbol
20126 Fortran mangling kind. */
20127 if (cu->language == language_fortran && die->parent
20128 && die->parent->tag == DW_TAG_module
20129 && cu->producer
20130 && startswith (cu->producer, "GNU Fortran"))
20131 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20132
20133 /* A variable with DW_AT_external is never static,
20134 but it may be block-scoped. */
20135 list_to_add = (cu->list_in_scope == &file_symbols
20136 ? &global_symbols : cu->list_in_scope);
20137 }
20138 else
20139 list_to_add = cu->list_in_scope;
20140 }
20141 else
20142 {
20143 /* We do not know the address of this symbol.
20144 If it is an external symbol and we have type information
20145 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20146 The address of the variable will then be determined from
20147 the minimal symbol table whenever the variable is
20148 referenced. */
20149 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20150
20151 /* Fortran explicitly imports any global symbols to the local
20152 scope by DW_TAG_common_block. */
20153 if (cu->language == language_fortran && die->parent
20154 && die->parent->tag == DW_TAG_common_block)
20155 {
20156 /* SYMBOL_CLASS doesn't matter here because
20157 read_common_block is going to reset it. */
20158 if (!suppress_add)
20159 list_to_add = cu->list_in_scope;
20160 }
20161 else if (attr2 && (DW_UNSND (attr2) != 0)
20162 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20163 {
20164 /* A variable with DW_AT_external is never static, but it
20165 may be block-scoped. */
20166 list_to_add = (cu->list_in_scope == &file_symbols
20167 ? &global_symbols : cu->list_in_scope);
20168
20169 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20170 }
20171 else if (!die_is_declaration (die, cu))
20172 {
20173 /* Use the default LOC_OPTIMIZED_OUT class. */
20174 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20175 if (!suppress_add)
20176 list_to_add = cu->list_in_scope;
20177 }
20178 }
20179 break;
20180 case DW_TAG_formal_parameter:
20181 /* If we are inside a function, mark this as an argument. If
20182 not, we might be looking at an argument to an inlined function
20183 when we do not have enough information to show inlined frames;
20184 pretend it's a local variable in that case so that the user can
20185 still see it. */
20186 if (context_stack_depth > 0
20187 && context_stack[context_stack_depth - 1].name != NULL)
20188 SYMBOL_IS_ARGUMENT (sym) = 1;
20189 attr = dwarf2_attr (die, DW_AT_location, cu);
20190 if (attr)
20191 {
20192 var_decode_location (attr, sym, cu);
20193 }
20194 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20195 if (attr)
20196 {
20197 dwarf2_const_value (attr, sym, cu);
20198 }
20199
20200 list_to_add = cu->list_in_scope;
20201 break;
20202 case DW_TAG_unspecified_parameters:
20203 /* From varargs functions; gdb doesn't seem to have any
20204 interest in this information, so just ignore it for now.
20205 (FIXME?) */
20206 break;
20207 case DW_TAG_template_type_param:
20208 suppress_add = 1;
20209 /* Fall through. */
20210 case DW_TAG_class_type:
20211 case DW_TAG_interface_type:
20212 case DW_TAG_structure_type:
20213 case DW_TAG_union_type:
20214 case DW_TAG_set_type:
20215 case DW_TAG_enumeration_type:
20216 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20217 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20218
20219 {
20220 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20221 really ever be static objects: otherwise, if you try
20222 to, say, break of a class's method and you're in a file
20223 which doesn't mention that class, it won't work unless
20224 the check for all static symbols in lookup_symbol_aux
20225 saves you. See the OtherFileClass tests in
20226 gdb.c++/namespace.exp. */
20227
20228 if (!suppress_add)
20229 {
20230 list_to_add = (cu->list_in_scope == &file_symbols
20231 && cu->language == language_cplus
20232 ? &global_symbols : cu->list_in_scope);
20233
20234 /* The semantics of C++ state that "struct foo {
20235 ... }" also defines a typedef for "foo". */
20236 if (cu->language == language_cplus
20237 || cu->language == language_ada
20238 || cu->language == language_d
20239 || cu->language == language_rust)
20240 {
20241 /* The symbol's name is already allocated along
20242 with this objfile, so we don't need to
20243 duplicate it for the type. */
20244 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20245 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
20246 }
20247 }
20248 }
20249 break;
20250 case DW_TAG_typedef:
20251 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20252 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20253 list_to_add = cu->list_in_scope;
20254 break;
20255 case DW_TAG_base_type:
20256 case DW_TAG_subrange_type:
20257 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20258 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20259 list_to_add = cu->list_in_scope;
20260 break;
20261 case DW_TAG_enumerator:
20262 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20263 if (attr)
20264 {
20265 dwarf2_const_value (attr, sym, cu);
20266 }
20267 {
20268 /* NOTE: carlton/2003-11-10: See comment above in the
20269 DW_TAG_class_type, etc. block. */
20270
20271 list_to_add = (cu->list_in_scope == &file_symbols
20272 && cu->language == language_cplus
20273 ? &global_symbols : cu->list_in_scope);
20274 }
20275 break;
20276 case DW_TAG_imported_declaration:
20277 case DW_TAG_namespace:
20278 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20279 list_to_add = &global_symbols;
20280 break;
20281 case DW_TAG_module:
20282 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20283 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20284 list_to_add = &global_symbols;
20285 break;
20286 case DW_TAG_common_block:
20287 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20288 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20289 add_symbol_to_list (sym, cu->list_in_scope);
20290 break;
20291 default:
20292 /* Not a tag we recognize. Hopefully we aren't processing
20293 trash data, but since we must specifically ignore things
20294 we don't recognize, there is nothing else we should do at
20295 this point. */
20296 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
20297 dwarf_tag_name (die->tag));
20298 break;
20299 }
20300
20301 if (suppress_add)
20302 {
20303 sym->hash_next = objfile->template_symbols;
20304 objfile->template_symbols = sym;
20305 list_to_add = NULL;
20306 }
20307
20308 if (list_to_add != NULL)
20309 add_symbol_to_list (sym, list_to_add);
20310
20311 /* For the benefit of old versions of GCC, check for anonymous
20312 namespaces based on the demangled name. */
20313 if (!cu->processing_has_namespace_info
20314 && cu->language == language_cplus)
20315 cp_scan_for_anonymous_namespaces (sym, objfile);
20316 }
20317 return (sym);
20318 }
20319
20320 /* A wrapper for new_symbol_full that always allocates a new symbol. */
20321
20322 static struct symbol *
20323 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
20324 {
20325 return new_symbol_full (die, type, cu, NULL);
20326 }
20327
20328 /* Given an attr with a DW_FORM_dataN value in host byte order,
20329 zero-extend it as appropriate for the symbol's type. The DWARF
20330 standard (v4) is not entirely clear about the meaning of using
20331 DW_FORM_dataN for a constant with a signed type, where the type is
20332 wider than the data. The conclusion of a discussion on the DWARF
20333 list was that this is unspecified. We choose to always zero-extend
20334 because that is the interpretation long in use by GCC. */
20335
20336 static gdb_byte *
20337 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20338 struct dwarf2_cu *cu, LONGEST *value, int bits)
20339 {
20340 struct objfile *objfile = cu->objfile;
20341 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20342 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20343 LONGEST l = DW_UNSND (attr);
20344
20345 if (bits < sizeof (*value) * 8)
20346 {
20347 l &= ((LONGEST) 1 << bits) - 1;
20348 *value = l;
20349 }
20350 else if (bits == sizeof (*value) * 8)
20351 *value = l;
20352 else
20353 {
20354 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20355 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20356 return bytes;
20357 }
20358
20359 return NULL;
20360 }
20361
20362 /* Read a constant value from an attribute. Either set *VALUE, or if
20363 the value does not fit in *VALUE, set *BYTES - either already
20364 allocated on the objfile obstack, or newly allocated on OBSTACK,
20365 or, set *BATON, if we translated the constant to a location
20366 expression. */
20367
20368 static void
20369 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20370 const char *name, struct obstack *obstack,
20371 struct dwarf2_cu *cu,
20372 LONGEST *value, const gdb_byte **bytes,
20373 struct dwarf2_locexpr_baton **baton)
20374 {
20375 struct objfile *objfile = cu->objfile;
20376 struct comp_unit_head *cu_header = &cu->header;
20377 struct dwarf_block *blk;
20378 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20379 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20380
20381 *value = 0;
20382 *bytes = NULL;
20383 *baton = NULL;
20384
20385 switch (attr->form)
20386 {
20387 case DW_FORM_addr:
20388 case DW_FORM_GNU_addr_index:
20389 {
20390 gdb_byte *data;
20391
20392 if (TYPE_LENGTH (type) != cu_header->addr_size)
20393 dwarf2_const_value_length_mismatch_complaint (name,
20394 cu_header->addr_size,
20395 TYPE_LENGTH (type));
20396 /* Symbols of this form are reasonably rare, so we just
20397 piggyback on the existing location code rather than writing
20398 a new implementation of symbol_computed_ops. */
20399 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20400 (*baton)->per_cu = cu->per_cu;
20401 gdb_assert ((*baton)->per_cu);
20402
20403 (*baton)->size = 2 + cu_header->addr_size;
20404 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20405 (*baton)->data = data;
20406
20407 data[0] = DW_OP_addr;
20408 store_unsigned_integer (&data[1], cu_header->addr_size,
20409 byte_order, DW_ADDR (attr));
20410 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20411 }
20412 break;
20413 case DW_FORM_string:
20414 case DW_FORM_strp:
20415 case DW_FORM_GNU_str_index:
20416 case DW_FORM_GNU_strp_alt:
20417 /* DW_STRING is already allocated on the objfile obstack, point
20418 directly to it. */
20419 *bytes = (const gdb_byte *) DW_STRING (attr);
20420 break;
20421 case DW_FORM_block1:
20422 case DW_FORM_block2:
20423 case DW_FORM_block4:
20424 case DW_FORM_block:
20425 case DW_FORM_exprloc:
20426 case DW_FORM_data16:
20427 blk = DW_BLOCK (attr);
20428 if (TYPE_LENGTH (type) != blk->size)
20429 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20430 TYPE_LENGTH (type));
20431 *bytes = blk->data;
20432 break;
20433
20434 /* The DW_AT_const_value attributes are supposed to carry the
20435 symbol's value "represented as it would be on the target
20436 architecture." By the time we get here, it's already been
20437 converted to host endianness, so we just need to sign- or
20438 zero-extend it as appropriate. */
20439 case DW_FORM_data1:
20440 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20441 break;
20442 case DW_FORM_data2:
20443 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20444 break;
20445 case DW_FORM_data4:
20446 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20447 break;
20448 case DW_FORM_data8:
20449 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20450 break;
20451
20452 case DW_FORM_sdata:
20453 case DW_FORM_implicit_const:
20454 *value = DW_SND (attr);
20455 break;
20456
20457 case DW_FORM_udata:
20458 *value = DW_UNSND (attr);
20459 break;
20460
20461 default:
20462 complaint (&symfile_complaints,
20463 _("unsupported const value attribute form: '%s'"),
20464 dwarf_form_name (attr->form));
20465 *value = 0;
20466 break;
20467 }
20468 }
20469
20470
20471 /* Copy constant value from an attribute to a symbol. */
20472
20473 static void
20474 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
20475 struct dwarf2_cu *cu)
20476 {
20477 struct objfile *objfile = cu->objfile;
20478 LONGEST value;
20479 const gdb_byte *bytes;
20480 struct dwarf2_locexpr_baton *baton;
20481
20482 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
20483 SYMBOL_PRINT_NAME (sym),
20484 &objfile->objfile_obstack, cu,
20485 &value, &bytes, &baton);
20486
20487 if (baton != NULL)
20488 {
20489 SYMBOL_LOCATION_BATON (sym) = baton;
20490 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
20491 }
20492 else if (bytes != NULL)
20493 {
20494 SYMBOL_VALUE_BYTES (sym) = bytes;
20495 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
20496 }
20497 else
20498 {
20499 SYMBOL_VALUE (sym) = value;
20500 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
20501 }
20502 }
20503
20504 /* Return the type of the die in question using its DW_AT_type attribute. */
20505
20506 static struct type *
20507 die_type (struct die_info *die, struct dwarf2_cu *cu)
20508 {
20509 struct attribute *type_attr;
20510
20511 type_attr = dwarf2_attr (die, DW_AT_type, cu);
20512 if (!type_attr)
20513 {
20514 /* A missing DW_AT_type represents a void type. */
20515 return objfile_type (cu->objfile)->builtin_void;
20516 }
20517
20518 return lookup_die_type (die, type_attr, cu);
20519 }
20520
20521 /* True iff CU's producer generates GNAT Ada auxiliary information
20522 that allows to find parallel types through that information instead
20523 of having to do expensive parallel lookups by type name. */
20524
20525 static int
20526 need_gnat_info (struct dwarf2_cu *cu)
20527 {
20528 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
20529 of GNAT produces this auxiliary information, without any indication
20530 that it is produced. Part of enhancing the FSF version of GNAT
20531 to produce that information will be to put in place an indicator
20532 that we can use in order to determine whether the descriptive type
20533 info is available or not. One suggestion that has been made is
20534 to use a new attribute, attached to the CU die. For now, assume
20535 that the descriptive type info is not available. */
20536 return 0;
20537 }
20538
20539 /* Return the auxiliary type of the die in question using its
20540 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
20541 attribute is not present. */
20542
20543 static struct type *
20544 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
20545 {
20546 struct attribute *type_attr;
20547
20548 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
20549 if (!type_attr)
20550 return NULL;
20551
20552 return lookup_die_type (die, type_attr, cu);
20553 }
20554
20555 /* If DIE has a descriptive_type attribute, then set the TYPE's
20556 descriptive type accordingly. */
20557
20558 static void
20559 set_descriptive_type (struct type *type, struct die_info *die,
20560 struct dwarf2_cu *cu)
20561 {
20562 struct type *descriptive_type = die_descriptive_type (die, cu);
20563
20564 if (descriptive_type)
20565 {
20566 ALLOCATE_GNAT_AUX_TYPE (type);
20567 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
20568 }
20569 }
20570
20571 /* Return the containing type of the die in question using its
20572 DW_AT_containing_type attribute. */
20573
20574 static struct type *
20575 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
20576 {
20577 struct attribute *type_attr;
20578
20579 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
20580 if (!type_attr)
20581 error (_("Dwarf Error: Problem turning containing type into gdb type "
20582 "[in module %s]"), objfile_name (cu->objfile));
20583
20584 return lookup_die_type (die, type_attr, cu);
20585 }
20586
20587 /* Return an error marker type to use for the ill formed type in DIE/CU. */
20588
20589 static struct type *
20590 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
20591 {
20592 struct objfile *objfile = dwarf2_per_objfile->objfile;
20593 char *message, *saved;
20594
20595 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
20596 objfile_name (objfile),
20597 to_underlying (cu->header.sect_off),
20598 to_underlying (die->sect_off));
20599 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
20600 message, strlen (message));
20601 xfree (message);
20602
20603 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20604 }
20605
20606 /* Look up the type of DIE in CU using its type attribute ATTR.
20607 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20608 DW_AT_containing_type.
20609 If there is no type substitute an error marker. */
20610
20611 static struct type *
20612 lookup_die_type (struct die_info *die, const struct attribute *attr,
20613 struct dwarf2_cu *cu)
20614 {
20615 struct objfile *objfile = cu->objfile;
20616 struct type *this_type;
20617
20618 gdb_assert (attr->name == DW_AT_type
20619 || attr->name == DW_AT_GNAT_descriptive_type
20620 || attr->name == DW_AT_containing_type);
20621
20622 /* First see if we have it cached. */
20623
20624 if (attr->form == DW_FORM_GNU_ref_alt)
20625 {
20626 struct dwarf2_per_cu_data *per_cu;
20627 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20628
20629 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
20630 this_type = get_die_type_at_offset (sect_off, per_cu);
20631 }
20632 else if (attr_form_is_ref (attr))
20633 {
20634 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
20635
20636 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20637 }
20638 else if (attr->form == DW_FORM_ref_sig8)
20639 {
20640 ULONGEST signature = DW_SIGNATURE (attr);
20641
20642 return get_signatured_type (die, signature, cu);
20643 }
20644 else
20645 {
20646 complaint (&symfile_complaints,
20647 _("Dwarf Error: Bad type attribute %s in DIE"
20648 " at 0x%x [in module %s]"),
20649 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
20650 objfile_name (objfile));
20651 return build_error_marker_type (cu, die);
20652 }
20653
20654 /* If not cached we need to read it in. */
20655
20656 if (this_type == NULL)
20657 {
20658 struct die_info *type_die = NULL;
20659 struct dwarf2_cu *type_cu = cu;
20660
20661 if (attr_form_is_ref (attr))
20662 type_die = follow_die_ref (die, attr, &type_cu);
20663 if (type_die == NULL)
20664 return build_error_marker_type (cu, die);
20665 /* If we find the type now, it's probably because the type came
20666 from an inter-CU reference and the type's CU got expanded before
20667 ours. */
20668 this_type = read_type_die (type_die, type_cu);
20669 }
20670
20671 /* If we still don't have a type use an error marker. */
20672
20673 if (this_type == NULL)
20674 return build_error_marker_type (cu, die);
20675
20676 return this_type;
20677 }
20678
20679 /* Return the type in DIE, CU.
20680 Returns NULL for invalid types.
20681
20682 This first does a lookup in die_type_hash,
20683 and only reads the die in if necessary.
20684
20685 NOTE: This can be called when reading in partial or full symbols. */
20686
20687 static struct type *
20688 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
20689 {
20690 struct type *this_type;
20691
20692 this_type = get_die_type (die, cu);
20693 if (this_type)
20694 return this_type;
20695
20696 return read_type_die_1 (die, cu);
20697 }
20698
20699 /* Read the type in DIE, CU.
20700 Returns NULL for invalid types. */
20701
20702 static struct type *
20703 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
20704 {
20705 struct type *this_type = NULL;
20706
20707 switch (die->tag)
20708 {
20709 case DW_TAG_class_type:
20710 case DW_TAG_interface_type:
20711 case DW_TAG_structure_type:
20712 case DW_TAG_union_type:
20713 this_type = read_structure_type (die, cu);
20714 break;
20715 case DW_TAG_enumeration_type:
20716 this_type = read_enumeration_type (die, cu);
20717 break;
20718 case DW_TAG_subprogram:
20719 case DW_TAG_subroutine_type:
20720 case DW_TAG_inlined_subroutine:
20721 this_type = read_subroutine_type (die, cu);
20722 break;
20723 case DW_TAG_array_type:
20724 this_type = read_array_type (die, cu);
20725 break;
20726 case DW_TAG_set_type:
20727 this_type = read_set_type (die, cu);
20728 break;
20729 case DW_TAG_pointer_type:
20730 this_type = read_tag_pointer_type (die, cu);
20731 break;
20732 case DW_TAG_ptr_to_member_type:
20733 this_type = read_tag_ptr_to_member_type (die, cu);
20734 break;
20735 case DW_TAG_reference_type:
20736 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
20737 break;
20738 case DW_TAG_rvalue_reference_type:
20739 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
20740 break;
20741 case DW_TAG_const_type:
20742 this_type = read_tag_const_type (die, cu);
20743 break;
20744 case DW_TAG_volatile_type:
20745 this_type = read_tag_volatile_type (die, cu);
20746 break;
20747 case DW_TAG_restrict_type:
20748 this_type = read_tag_restrict_type (die, cu);
20749 break;
20750 case DW_TAG_string_type:
20751 this_type = read_tag_string_type (die, cu);
20752 break;
20753 case DW_TAG_typedef:
20754 this_type = read_typedef (die, cu);
20755 break;
20756 case DW_TAG_subrange_type:
20757 this_type = read_subrange_type (die, cu);
20758 break;
20759 case DW_TAG_base_type:
20760 this_type = read_base_type (die, cu);
20761 break;
20762 case DW_TAG_unspecified_type:
20763 this_type = read_unspecified_type (die, cu);
20764 break;
20765 case DW_TAG_namespace:
20766 this_type = read_namespace_type (die, cu);
20767 break;
20768 case DW_TAG_module:
20769 this_type = read_module_type (die, cu);
20770 break;
20771 case DW_TAG_atomic_type:
20772 this_type = read_tag_atomic_type (die, cu);
20773 break;
20774 default:
20775 complaint (&symfile_complaints,
20776 _("unexpected tag in read_type_die: '%s'"),
20777 dwarf_tag_name (die->tag));
20778 break;
20779 }
20780
20781 return this_type;
20782 }
20783
20784 /* See if we can figure out if the class lives in a namespace. We do
20785 this by looking for a member function; its demangled name will
20786 contain namespace info, if there is any.
20787 Return the computed name or NULL.
20788 Space for the result is allocated on the objfile's obstack.
20789 This is the full-die version of guess_partial_die_structure_name.
20790 In this case we know DIE has no useful parent. */
20791
20792 static char *
20793 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
20794 {
20795 struct die_info *spec_die;
20796 struct dwarf2_cu *spec_cu;
20797 struct die_info *child;
20798
20799 spec_cu = cu;
20800 spec_die = die_specification (die, &spec_cu);
20801 if (spec_die != NULL)
20802 {
20803 die = spec_die;
20804 cu = spec_cu;
20805 }
20806
20807 for (child = die->child;
20808 child != NULL;
20809 child = child->sibling)
20810 {
20811 if (child->tag == DW_TAG_subprogram)
20812 {
20813 const char *linkage_name = dw2_linkage_name (child, cu);
20814
20815 if (linkage_name != NULL)
20816 {
20817 char *actual_name
20818 = language_class_name_from_physname (cu->language_defn,
20819 linkage_name);
20820 char *name = NULL;
20821
20822 if (actual_name != NULL)
20823 {
20824 const char *die_name = dwarf2_name (die, cu);
20825
20826 if (die_name != NULL
20827 && strcmp (die_name, actual_name) != 0)
20828 {
20829 /* Strip off the class name from the full name.
20830 We want the prefix. */
20831 int die_name_len = strlen (die_name);
20832 int actual_name_len = strlen (actual_name);
20833
20834 /* Test for '::' as a sanity check. */
20835 if (actual_name_len > die_name_len + 2
20836 && actual_name[actual_name_len
20837 - die_name_len - 1] == ':')
20838 name = (char *) obstack_copy0 (
20839 &cu->objfile->per_bfd->storage_obstack,
20840 actual_name, actual_name_len - die_name_len - 2);
20841 }
20842 }
20843 xfree (actual_name);
20844 return name;
20845 }
20846 }
20847 }
20848
20849 return NULL;
20850 }
20851
20852 /* GCC might emit a nameless typedef that has a linkage name. Determine the
20853 prefix part in such case. See
20854 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20855
20856 static const char *
20857 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
20858 {
20859 struct attribute *attr;
20860 const char *base;
20861
20862 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
20863 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
20864 return NULL;
20865
20866 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
20867 return NULL;
20868
20869 attr = dw2_linkage_name_attr (die, cu);
20870 if (attr == NULL || DW_STRING (attr) == NULL)
20871 return NULL;
20872
20873 /* dwarf2_name had to be already called. */
20874 gdb_assert (DW_STRING_IS_CANONICAL (attr));
20875
20876 /* Strip the base name, keep any leading namespaces/classes. */
20877 base = strrchr (DW_STRING (attr), ':');
20878 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
20879 return "";
20880
20881 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20882 DW_STRING (attr),
20883 &base[-1] - DW_STRING (attr));
20884 }
20885
20886 /* Return the name of the namespace/class that DIE is defined within,
20887 or "" if we can't tell. The caller should not xfree the result.
20888
20889 For example, if we're within the method foo() in the following
20890 code:
20891
20892 namespace N {
20893 class C {
20894 void foo () {
20895 }
20896 };
20897 }
20898
20899 then determine_prefix on foo's die will return "N::C". */
20900
20901 static const char *
20902 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
20903 {
20904 struct die_info *parent, *spec_die;
20905 struct dwarf2_cu *spec_cu;
20906 struct type *parent_type;
20907 const char *retval;
20908
20909 if (cu->language != language_cplus
20910 && cu->language != language_fortran && cu->language != language_d
20911 && cu->language != language_rust)
20912 return "";
20913
20914 retval = anonymous_struct_prefix (die, cu);
20915 if (retval)
20916 return retval;
20917
20918 /* We have to be careful in the presence of DW_AT_specification.
20919 For example, with GCC 3.4, given the code
20920
20921 namespace N {
20922 void foo() {
20923 // Definition of N::foo.
20924 }
20925 }
20926
20927 then we'll have a tree of DIEs like this:
20928
20929 1: DW_TAG_compile_unit
20930 2: DW_TAG_namespace // N
20931 3: DW_TAG_subprogram // declaration of N::foo
20932 4: DW_TAG_subprogram // definition of N::foo
20933 DW_AT_specification // refers to die #3
20934
20935 Thus, when processing die #4, we have to pretend that we're in
20936 the context of its DW_AT_specification, namely the contex of die
20937 #3. */
20938 spec_cu = cu;
20939 spec_die = die_specification (die, &spec_cu);
20940 if (spec_die == NULL)
20941 parent = die->parent;
20942 else
20943 {
20944 parent = spec_die->parent;
20945 cu = spec_cu;
20946 }
20947
20948 if (parent == NULL)
20949 return "";
20950 else if (parent->building_fullname)
20951 {
20952 const char *name;
20953 const char *parent_name;
20954
20955 /* It has been seen on RealView 2.2 built binaries,
20956 DW_TAG_template_type_param types actually _defined_ as
20957 children of the parent class:
20958
20959 enum E {};
20960 template class <class Enum> Class{};
20961 Class<enum E> class_e;
20962
20963 1: DW_TAG_class_type (Class)
20964 2: DW_TAG_enumeration_type (E)
20965 3: DW_TAG_enumerator (enum1:0)
20966 3: DW_TAG_enumerator (enum2:1)
20967 ...
20968 2: DW_TAG_template_type_param
20969 DW_AT_type DW_FORM_ref_udata (E)
20970
20971 Besides being broken debug info, it can put GDB into an
20972 infinite loop. Consider:
20973
20974 When we're building the full name for Class<E>, we'll start
20975 at Class, and go look over its template type parameters,
20976 finding E. We'll then try to build the full name of E, and
20977 reach here. We're now trying to build the full name of E,
20978 and look over the parent DIE for containing scope. In the
20979 broken case, if we followed the parent DIE of E, we'd again
20980 find Class, and once again go look at its template type
20981 arguments, etc., etc. Simply don't consider such parent die
20982 as source-level parent of this die (it can't be, the language
20983 doesn't allow it), and break the loop here. */
20984 name = dwarf2_name (die, cu);
20985 parent_name = dwarf2_name (parent, cu);
20986 complaint (&symfile_complaints,
20987 _("template param type '%s' defined within parent '%s'"),
20988 name ? name : "<unknown>",
20989 parent_name ? parent_name : "<unknown>");
20990 return "";
20991 }
20992 else
20993 switch (parent->tag)
20994 {
20995 case DW_TAG_namespace:
20996 parent_type = read_type_die (parent, cu);
20997 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20998 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20999 Work around this problem here. */
21000 if (cu->language == language_cplus
21001 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
21002 return "";
21003 /* We give a name to even anonymous namespaces. */
21004 return TYPE_TAG_NAME (parent_type);
21005 case DW_TAG_class_type:
21006 case DW_TAG_interface_type:
21007 case DW_TAG_structure_type:
21008 case DW_TAG_union_type:
21009 case DW_TAG_module:
21010 parent_type = read_type_die (parent, cu);
21011 if (TYPE_TAG_NAME (parent_type) != NULL)
21012 return TYPE_TAG_NAME (parent_type);
21013 else
21014 /* An anonymous structure is only allowed non-static data
21015 members; no typedefs, no member functions, et cetera.
21016 So it does not need a prefix. */
21017 return "";
21018 case DW_TAG_compile_unit:
21019 case DW_TAG_partial_unit:
21020 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21021 if (cu->language == language_cplus
21022 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
21023 && die->child != NULL
21024 && (die->tag == DW_TAG_class_type
21025 || die->tag == DW_TAG_structure_type
21026 || die->tag == DW_TAG_union_type))
21027 {
21028 char *name = guess_full_die_structure_name (die, cu);
21029 if (name != NULL)
21030 return name;
21031 }
21032 return "";
21033 case DW_TAG_enumeration_type:
21034 parent_type = read_type_die (parent, cu);
21035 if (TYPE_DECLARED_CLASS (parent_type))
21036 {
21037 if (TYPE_TAG_NAME (parent_type) != NULL)
21038 return TYPE_TAG_NAME (parent_type);
21039 return "";
21040 }
21041 /* Fall through. */
21042 default:
21043 return determine_prefix (parent, cu);
21044 }
21045 }
21046
21047 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21048 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21049 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21050 an obconcat, otherwise allocate storage for the result. The CU argument is
21051 used to determine the language and hence, the appropriate separator. */
21052
21053 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21054
21055 static char *
21056 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21057 int physname, struct dwarf2_cu *cu)
21058 {
21059 const char *lead = "";
21060 const char *sep;
21061
21062 if (suffix == NULL || suffix[0] == '\0'
21063 || prefix == NULL || prefix[0] == '\0')
21064 sep = "";
21065 else if (cu->language == language_d)
21066 {
21067 /* For D, the 'main' function could be defined in any module, but it
21068 should never be prefixed. */
21069 if (strcmp (suffix, "D main") == 0)
21070 {
21071 prefix = "";
21072 sep = "";
21073 }
21074 else
21075 sep = ".";
21076 }
21077 else if (cu->language == language_fortran && physname)
21078 {
21079 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21080 DW_AT_MIPS_linkage_name is preferred and used instead. */
21081
21082 lead = "__";
21083 sep = "_MOD_";
21084 }
21085 else
21086 sep = "::";
21087
21088 if (prefix == NULL)
21089 prefix = "";
21090 if (suffix == NULL)
21091 suffix = "";
21092
21093 if (obs == NULL)
21094 {
21095 char *retval
21096 = ((char *)
21097 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21098
21099 strcpy (retval, lead);
21100 strcat (retval, prefix);
21101 strcat (retval, sep);
21102 strcat (retval, suffix);
21103 return retval;
21104 }
21105 else
21106 {
21107 /* We have an obstack. */
21108 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21109 }
21110 }
21111
21112 /* Return sibling of die, NULL if no sibling. */
21113
21114 static struct die_info *
21115 sibling_die (struct die_info *die)
21116 {
21117 return die->sibling;
21118 }
21119
21120 /* Get name of a die, return NULL if not found. */
21121
21122 static const char *
21123 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21124 struct obstack *obstack)
21125 {
21126 if (name && cu->language == language_cplus)
21127 {
21128 std::string canon_name = cp_canonicalize_string (name);
21129
21130 if (!canon_name.empty ())
21131 {
21132 if (canon_name != name)
21133 name = (const char *) obstack_copy0 (obstack,
21134 canon_name.c_str (),
21135 canon_name.length ());
21136 }
21137 }
21138
21139 return name;
21140 }
21141
21142 /* Get name of a die, return NULL if not found.
21143 Anonymous namespaces are converted to their magic string. */
21144
21145 static const char *
21146 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21147 {
21148 struct attribute *attr;
21149
21150 attr = dwarf2_attr (die, DW_AT_name, cu);
21151 if ((!attr || !DW_STRING (attr))
21152 && die->tag != DW_TAG_namespace
21153 && die->tag != DW_TAG_class_type
21154 && die->tag != DW_TAG_interface_type
21155 && die->tag != DW_TAG_structure_type
21156 && die->tag != DW_TAG_union_type)
21157 return NULL;
21158
21159 switch (die->tag)
21160 {
21161 case DW_TAG_compile_unit:
21162 case DW_TAG_partial_unit:
21163 /* Compilation units have a DW_AT_name that is a filename, not
21164 a source language identifier. */
21165 case DW_TAG_enumeration_type:
21166 case DW_TAG_enumerator:
21167 /* These tags always have simple identifiers already; no need
21168 to canonicalize them. */
21169 return DW_STRING (attr);
21170
21171 case DW_TAG_namespace:
21172 if (attr != NULL && DW_STRING (attr) != NULL)
21173 return DW_STRING (attr);
21174 return CP_ANONYMOUS_NAMESPACE_STR;
21175
21176 case DW_TAG_class_type:
21177 case DW_TAG_interface_type:
21178 case DW_TAG_structure_type:
21179 case DW_TAG_union_type:
21180 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21181 structures or unions. These were of the form "._%d" in GCC 4.1,
21182 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21183 and GCC 4.4. We work around this problem by ignoring these. */
21184 if (attr && DW_STRING (attr)
21185 && (startswith (DW_STRING (attr), "._")
21186 || startswith (DW_STRING (attr), "<anonymous")))
21187 return NULL;
21188
21189 /* GCC might emit a nameless typedef that has a linkage name. See
21190 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21191 if (!attr || DW_STRING (attr) == NULL)
21192 {
21193 char *demangled = NULL;
21194
21195 attr = dw2_linkage_name_attr (die, cu);
21196 if (attr == NULL || DW_STRING (attr) == NULL)
21197 return NULL;
21198
21199 /* Avoid demangling DW_STRING (attr) the second time on a second
21200 call for the same DIE. */
21201 if (!DW_STRING_IS_CANONICAL (attr))
21202 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
21203
21204 if (demangled)
21205 {
21206 const char *base;
21207
21208 /* FIXME: we already did this for the partial symbol... */
21209 DW_STRING (attr)
21210 = ((const char *)
21211 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
21212 demangled, strlen (demangled)));
21213 DW_STRING_IS_CANONICAL (attr) = 1;
21214 xfree (demangled);
21215
21216 /* Strip any leading namespaces/classes, keep only the base name.
21217 DW_AT_name for named DIEs does not contain the prefixes. */
21218 base = strrchr (DW_STRING (attr), ':');
21219 if (base && base > DW_STRING (attr) && base[-1] == ':')
21220 return &base[1];
21221 else
21222 return DW_STRING (attr);
21223 }
21224 }
21225 break;
21226
21227 default:
21228 break;
21229 }
21230
21231 if (!DW_STRING_IS_CANONICAL (attr))
21232 {
21233 DW_STRING (attr)
21234 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21235 &cu->objfile->per_bfd->storage_obstack);
21236 DW_STRING_IS_CANONICAL (attr) = 1;
21237 }
21238 return DW_STRING (attr);
21239 }
21240
21241 /* Return the die that this die in an extension of, or NULL if there
21242 is none. *EXT_CU is the CU containing DIE on input, and the CU
21243 containing the return value on output. */
21244
21245 static struct die_info *
21246 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21247 {
21248 struct attribute *attr;
21249
21250 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21251 if (attr == NULL)
21252 return NULL;
21253
21254 return follow_die_ref (die, attr, ext_cu);
21255 }
21256
21257 /* Convert a DIE tag into its string name. */
21258
21259 static const char *
21260 dwarf_tag_name (unsigned tag)
21261 {
21262 const char *name = get_DW_TAG_name (tag);
21263
21264 if (name == NULL)
21265 return "DW_TAG_<unknown>";
21266
21267 return name;
21268 }
21269
21270 /* Convert a DWARF attribute code into its string name. */
21271
21272 static const char *
21273 dwarf_attr_name (unsigned attr)
21274 {
21275 const char *name;
21276
21277 #ifdef MIPS /* collides with DW_AT_HP_block_index */
21278 if (attr == DW_AT_MIPS_fde)
21279 return "DW_AT_MIPS_fde";
21280 #else
21281 if (attr == DW_AT_HP_block_index)
21282 return "DW_AT_HP_block_index";
21283 #endif
21284
21285 name = get_DW_AT_name (attr);
21286
21287 if (name == NULL)
21288 return "DW_AT_<unknown>";
21289
21290 return name;
21291 }
21292
21293 /* Convert a DWARF value form code into its string name. */
21294
21295 static const char *
21296 dwarf_form_name (unsigned form)
21297 {
21298 const char *name = get_DW_FORM_name (form);
21299
21300 if (name == NULL)
21301 return "DW_FORM_<unknown>";
21302
21303 return name;
21304 }
21305
21306 static const char *
21307 dwarf_bool_name (unsigned mybool)
21308 {
21309 if (mybool)
21310 return "TRUE";
21311 else
21312 return "FALSE";
21313 }
21314
21315 /* Convert a DWARF type code into its string name. */
21316
21317 static const char *
21318 dwarf_type_encoding_name (unsigned enc)
21319 {
21320 const char *name = get_DW_ATE_name (enc);
21321
21322 if (name == NULL)
21323 return "DW_ATE_<unknown>";
21324
21325 return name;
21326 }
21327
21328 static void
21329 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21330 {
21331 unsigned int i;
21332
21333 print_spaces (indent, f);
21334 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
21335 dwarf_tag_name (die->tag), die->abbrev,
21336 to_underlying (die->sect_off));
21337
21338 if (die->parent != NULL)
21339 {
21340 print_spaces (indent, f);
21341 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
21342 to_underlying (die->parent->sect_off));
21343 }
21344
21345 print_spaces (indent, f);
21346 fprintf_unfiltered (f, " has children: %s\n",
21347 dwarf_bool_name (die->child != NULL));
21348
21349 print_spaces (indent, f);
21350 fprintf_unfiltered (f, " attributes:\n");
21351
21352 for (i = 0; i < die->num_attrs; ++i)
21353 {
21354 print_spaces (indent, f);
21355 fprintf_unfiltered (f, " %s (%s) ",
21356 dwarf_attr_name (die->attrs[i].name),
21357 dwarf_form_name (die->attrs[i].form));
21358
21359 switch (die->attrs[i].form)
21360 {
21361 case DW_FORM_addr:
21362 case DW_FORM_GNU_addr_index:
21363 fprintf_unfiltered (f, "address: ");
21364 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21365 break;
21366 case DW_FORM_block2:
21367 case DW_FORM_block4:
21368 case DW_FORM_block:
21369 case DW_FORM_block1:
21370 fprintf_unfiltered (f, "block: size %s",
21371 pulongest (DW_BLOCK (&die->attrs[i])->size));
21372 break;
21373 case DW_FORM_exprloc:
21374 fprintf_unfiltered (f, "expression: size %s",
21375 pulongest (DW_BLOCK (&die->attrs[i])->size));
21376 break;
21377 case DW_FORM_data16:
21378 fprintf_unfiltered (f, "constant of 16 bytes");
21379 break;
21380 case DW_FORM_ref_addr:
21381 fprintf_unfiltered (f, "ref address: ");
21382 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21383 break;
21384 case DW_FORM_GNU_ref_alt:
21385 fprintf_unfiltered (f, "alt ref address: ");
21386 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21387 break;
21388 case DW_FORM_ref1:
21389 case DW_FORM_ref2:
21390 case DW_FORM_ref4:
21391 case DW_FORM_ref8:
21392 case DW_FORM_ref_udata:
21393 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21394 (long) (DW_UNSND (&die->attrs[i])));
21395 break;
21396 case DW_FORM_data1:
21397 case DW_FORM_data2:
21398 case DW_FORM_data4:
21399 case DW_FORM_data8:
21400 case DW_FORM_udata:
21401 case DW_FORM_sdata:
21402 fprintf_unfiltered (f, "constant: %s",
21403 pulongest (DW_UNSND (&die->attrs[i])));
21404 break;
21405 case DW_FORM_sec_offset:
21406 fprintf_unfiltered (f, "section offset: %s",
21407 pulongest (DW_UNSND (&die->attrs[i])));
21408 break;
21409 case DW_FORM_ref_sig8:
21410 fprintf_unfiltered (f, "signature: %s",
21411 hex_string (DW_SIGNATURE (&die->attrs[i])));
21412 break;
21413 case DW_FORM_string:
21414 case DW_FORM_strp:
21415 case DW_FORM_line_strp:
21416 case DW_FORM_GNU_str_index:
21417 case DW_FORM_GNU_strp_alt:
21418 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21419 DW_STRING (&die->attrs[i])
21420 ? DW_STRING (&die->attrs[i]) : "",
21421 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21422 break;
21423 case DW_FORM_flag:
21424 if (DW_UNSND (&die->attrs[i]))
21425 fprintf_unfiltered (f, "flag: TRUE");
21426 else
21427 fprintf_unfiltered (f, "flag: FALSE");
21428 break;
21429 case DW_FORM_flag_present:
21430 fprintf_unfiltered (f, "flag: TRUE");
21431 break;
21432 case DW_FORM_indirect:
21433 /* The reader will have reduced the indirect form to
21434 the "base form" so this form should not occur. */
21435 fprintf_unfiltered (f,
21436 "unexpected attribute form: DW_FORM_indirect");
21437 break;
21438 case DW_FORM_implicit_const:
21439 fprintf_unfiltered (f, "constant: %s",
21440 plongest (DW_SND (&die->attrs[i])));
21441 break;
21442 default:
21443 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21444 die->attrs[i].form);
21445 break;
21446 }
21447 fprintf_unfiltered (f, "\n");
21448 }
21449 }
21450
21451 static void
21452 dump_die_for_error (struct die_info *die)
21453 {
21454 dump_die_shallow (gdb_stderr, 0, die);
21455 }
21456
21457 static void
21458 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21459 {
21460 int indent = level * 4;
21461
21462 gdb_assert (die != NULL);
21463
21464 if (level >= max_level)
21465 return;
21466
21467 dump_die_shallow (f, indent, die);
21468
21469 if (die->child != NULL)
21470 {
21471 print_spaces (indent, f);
21472 fprintf_unfiltered (f, " Children:");
21473 if (level + 1 < max_level)
21474 {
21475 fprintf_unfiltered (f, "\n");
21476 dump_die_1 (f, level + 1, max_level, die->child);
21477 }
21478 else
21479 {
21480 fprintf_unfiltered (f,
21481 " [not printed, max nesting level reached]\n");
21482 }
21483 }
21484
21485 if (die->sibling != NULL && level > 0)
21486 {
21487 dump_die_1 (f, level, max_level, die->sibling);
21488 }
21489 }
21490
21491 /* This is called from the pdie macro in gdbinit.in.
21492 It's not static so gcc will keep a copy callable from gdb. */
21493
21494 void
21495 dump_die (struct die_info *die, int max_level)
21496 {
21497 dump_die_1 (gdb_stdlog, 0, max_level, die);
21498 }
21499
21500 static void
21501 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
21502 {
21503 void **slot;
21504
21505 slot = htab_find_slot_with_hash (cu->die_hash, die,
21506 to_underlying (die->sect_off),
21507 INSERT);
21508
21509 *slot = die;
21510 }
21511
21512 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
21513 required kind. */
21514
21515 static sect_offset
21516 dwarf2_get_ref_die_offset (const struct attribute *attr)
21517 {
21518 if (attr_form_is_ref (attr))
21519 return (sect_offset) DW_UNSND (attr);
21520
21521 complaint (&symfile_complaints,
21522 _("unsupported die ref attribute form: '%s'"),
21523 dwarf_form_name (attr->form));
21524 return {};
21525 }
21526
21527 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
21528 * the value held by the attribute is not constant. */
21529
21530 static LONGEST
21531 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
21532 {
21533 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
21534 return DW_SND (attr);
21535 else if (attr->form == DW_FORM_udata
21536 || attr->form == DW_FORM_data1
21537 || attr->form == DW_FORM_data2
21538 || attr->form == DW_FORM_data4
21539 || attr->form == DW_FORM_data8)
21540 return DW_UNSND (attr);
21541 else
21542 {
21543 /* For DW_FORM_data16 see attr_form_is_constant. */
21544 complaint (&symfile_complaints,
21545 _("Attribute value is not a constant (%s)"),
21546 dwarf_form_name (attr->form));
21547 return default_value;
21548 }
21549 }
21550
21551 /* Follow reference or signature attribute ATTR of SRC_DIE.
21552 On entry *REF_CU is the CU of SRC_DIE.
21553 On exit *REF_CU is the CU of the result. */
21554
21555 static struct die_info *
21556 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
21557 struct dwarf2_cu **ref_cu)
21558 {
21559 struct die_info *die;
21560
21561 if (attr_form_is_ref (attr))
21562 die = follow_die_ref (src_die, attr, ref_cu);
21563 else if (attr->form == DW_FORM_ref_sig8)
21564 die = follow_die_sig (src_die, attr, ref_cu);
21565 else
21566 {
21567 dump_die_for_error (src_die);
21568 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
21569 objfile_name ((*ref_cu)->objfile));
21570 }
21571
21572 return die;
21573 }
21574
21575 /* Follow reference OFFSET.
21576 On entry *REF_CU is the CU of the source die referencing OFFSET.
21577 On exit *REF_CU is the CU of the result.
21578 Returns NULL if OFFSET is invalid. */
21579
21580 static struct die_info *
21581 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
21582 struct dwarf2_cu **ref_cu)
21583 {
21584 struct die_info temp_die;
21585 struct dwarf2_cu *target_cu, *cu = *ref_cu;
21586
21587 gdb_assert (cu->per_cu != NULL);
21588
21589 target_cu = cu;
21590
21591 if (cu->per_cu->is_debug_types)
21592 {
21593 /* .debug_types CUs cannot reference anything outside their CU.
21594 If they need to, they have to reference a signatured type via
21595 DW_FORM_ref_sig8. */
21596 if (!offset_in_cu_p (&cu->header, sect_off))
21597 return NULL;
21598 }
21599 else if (offset_in_dwz != cu->per_cu->is_dwz
21600 || !offset_in_cu_p (&cu->header, sect_off))
21601 {
21602 struct dwarf2_per_cu_data *per_cu;
21603
21604 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21605 cu->objfile);
21606
21607 /* If necessary, add it to the queue and load its DIEs. */
21608 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21609 load_full_comp_unit (per_cu, cu->language);
21610
21611 target_cu = per_cu->cu;
21612 }
21613 else if (cu->dies == NULL)
21614 {
21615 /* We're loading full DIEs during partial symbol reading. */
21616 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21617 load_full_comp_unit (cu->per_cu, language_minimal);
21618 }
21619
21620 *ref_cu = target_cu;
21621 temp_die.sect_off = sect_off;
21622 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21623 &temp_die,
21624 to_underlying (sect_off));
21625 }
21626
21627 /* Follow reference attribute ATTR of SRC_DIE.
21628 On entry *REF_CU is the CU of SRC_DIE.
21629 On exit *REF_CU is the CU of the result. */
21630
21631 static struct die_info *
21632 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21633 struct dwarf2_cu **ref_cu)
21634 {
21635 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21636 struct dwarf2_cu *cu = *ref_cu;
21637 struct die_info *die;
21638
21639 die = follow_die_offset (sect_off,
21640 (attr->form == DW_FORM_GNU_ref_alt
21641 || cu->per_cu->is_dwz),
21642 ref_cu);
21643 if (!die)
21644 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
21645 "at 0x%x [in module %s]"),
21646 to_underlying (sect_off), to_underlying (src_die->sect_off),
21647 objfile_name (cu->objfile));
21648
21649 return die;
21650 }
21651
21652 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
21653 Returned value is intended for DW_OP_call*. Returned
21654 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
21655
21656 struct dwarf2_locexpr_baton
21657 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21658 struct dwarf2_per_cu_data *per_cu,
21659 CORE_ADDR (*get_frame_pc) (void *baton),
21660 void *baton)
21661 {
21662 struct dwarf2_cu *cu;
21663 struct die_info *die;
21664 struct attribute *attr;
21665 struct dwarf2_locexpr_baton retval;
21666
21667 dw2_setup (per_cu->objfile);
21668
21669 if (per_cu->cu == NULL)
21670 load_cu (per_cu);
21671 cu = per_cu->cu;
21672 if (cu == NULL)
21673 {
21674 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21675 Instead just throw an error, not much else we can do. */
21676 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21677 to_underlying (sect_off), objfile_name (per_cu->objfile));
21678 }
21679
21680 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21681 if (!die)
21682 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21683 to_underlying (sect_off), objfile_name (per_cu->objfile));
21684
21685 attr = dwarf2_attr (die, DW_AT_location, cu);
21686 if (!attr)
21687 {
21688 /* DWARF: "If there is no such attribute, then there is no effect.".
21689 DATA is ignored if SIZE is 0. */
21690
21691 retval.data = NULL;
21692 retval.size = 0;
21693 }
21694 else if (attr_form_is_section_offset (attr))
21695 {
21696 struct dwarf2_loclist_baton loclist_baton;
21697 CORE_ADDR pc = (*get_frame_pc) (baton);
21698 size_t size;
21699
21700 fill_in_loclist_baton (cu, &loclist_baton, attr);
21701
21702 retval.data = dwarf2_find_location_expression (&loclist_baton,
21703 &size, pc);
21704 retval.size = size;
21705 }
21706 else
21707 {
21708 if (!attr_form_is_block (attr))
21709 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
21710 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21711 to_underlying (sect_off), objfile_name (per_cu->objfile));
21712
21713 retval.data = DW_BLOCK (attr)->data;
21714 retval.size = DW_BLOCK (attr)->size;
21715 }
21716 retval.per_cu = cu->per_cu;
21717
21718 age_cached_comp_units ();
21719
21720 return retval;
21721 }
21722
21723 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
21724 offset. */
21725
21726 struct dwarf2_locexpr_baton
21727 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21728 struct dwarf2_per_cu_data *per_cu,
21729 CORE_ADDR (*get_frame_pc) (void *baton),
21730 void *baton)
21731 {
21732 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21733
21734 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21735 }
21736
21737 /* Write a constant of a given type as target-ordered bytes into
21738 OBSTACK. */
21739
21740 static const gdb_byte *
21741 write_constant_as_bytes (struct obstack *obstack,
21742 enum bfd_endian byte_order,
21743 struct type *type,
21744 ULONGEST value,
21745 LONGEST *len)
21746 {
21747 gdb_byte *result;
21748
21749 *len = TYPE_LENGTH (type);
21750 result = (gdb_byte *) obstack_alloc (obstack, *len);
21751 store_unsigned_integer (result, *len, byte_order, value);
21752
21753 return result;
21754 }
21755
21756 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
21757 pointer to the constant bytes and set LEN to the length of the
21758 data. If memory is needed, allocate it on OBSTACK. If the DIE
21759 does not have a DW_AT_const_value, return NULL. */
21760
21761 const gdb_byte *
21762 dwarf2_fetch_constant_bytes (sect_offset sect_off,
21763 struct dwarf2_per_cu_data *per_cu,
21764 struct obstack *obstack,
21765 LONGEST *len)
21766 {
21767 struct dwarf2_cu *cu;
21768 struct die_info *die;
21769 struct attribute *attr;
21770 const gdb_byte *result = NULL;
21771 struct type *type;
21772 LONGEST value;
21773 enum bfd_endian byte_order;
21774
21775 dw2_setup (per_cu->objfile);
21776
21777 if (per_cu->cu == NULL)
21778 load_cu (per_cu);
21779 cu = per_cu->cu;
21780 if (cu == NULL)
21781 {
21782 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21783 Instead just throw an error, not much else we can do. */
21784 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
21785 to_underlying (sect_off), objfile_name (per_cu->objfile));
21786 }
21787
21788 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21789 if (!die)
21790 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
21791 to_underlying (sect_off), objfile_name (per_cu->objfile));
21792
21793
21794 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21795 if (attr == NULL)
21796 return NULL;
21797
21798 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
21799 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21800
21801 switch (attr->form)
21802 {
21803 case DW_FORM_addr:
21804 case DW_FORM_GNU_addr_index:
21805 {
21806 gdb_byte *tem;
21807
21808 *len = cu->header.addr_size;
21809 tem = (gdb_byte *) obstack_alloc (obstack, *len);
21810 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
21811 result = tem;
21812 }
21813 break;
21814 case DW_FORM_string:
21815 case DW_FORM_strp:
21816 case DW_FORM_GNU_str_index:
21817 case DW_FORM_GNU_strp_alt:
21818 /* DW_STRING is already allocated on the objfile obstack, point
21819 directly to it. */
21820 result = (const gdb_byte *) DW_STRING (attr);
21821 *len = strlen (DW_STRING (attr));
21822 break;
21823 case DW_FORM_block1:
21824 case DW_FORM_block2:
21825 case DW_FORM_block4:
21826 case DW_FORM_block:
21827 case DW_FORM_exprloc:
21828 case DW_FORM_data16:
21829 result = DW_BLOCK (attr)->data;
21830 *len = DW_BLOCK (attr)->size;
21831 break;
21832
21833 /* The DW_AT_const_value attributes are supposed to carry the
21834 symbol's value "represented as it would be on the target
21835 architecture." By the time we get here, it's already been
21836 converted to host endianness, so we just need to sign- or
21837 zero-extend it as appropriate. */
21838 case DW_FORM_data1:
21839 type = die_type (die, cu);
21840 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
21841 if (result == NULL)
21842 result = write_constant_as_bytes (obstack, byte_order,
21843 type, value, len);
21844 break;
21845 case DW_FORM_data2:
21846 type = die_type (die, cu);
21847 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
21848 if (result == NULL)
21849 result = write_constant_as_bytes (obstack, byte_order,
21850 type, value, len);
21851 break;
21852 case DW_FORM_data4:
21853 type = die_type (die, cu);
21854 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
21855 if (result == NULL)
21856 result = write_constant_as_bytes (obstack, byte_order,
21857 type, value, len);
21858 break;
21859 case DW_FORM_data8:
21860 type = die_type (die, cu);
21861 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
21862 if (result == NULL)
21863 result = write_constant_as_bytes (obstack, byte_order,
21864 type, value, len);
21865 break;
21866
21867 case DW_FORM_sdata:
21868 case DW_FORM_implicit_const:
21869 type = die_type (die, cu);
21870 result = write_constant_as_bytes (obstack, byte_order,
21871 type, DW_SND (attr), len);
21872 break;
21873
21874 case DW_FORM_udata:
21875 type = die_type (die, cu);
21876 result = write_constant_as_bytes (obstack, byte_order,
21877 type, DW_UNSND (attr), len);
21878 break;
21879
21880 default:
21881 complaint (&symfile_complaints,
21882 _("unsupported const value attribute form: '%s'"),
21883 dwarf_form_name (attr->form));
21884 break;
21885 }
21886
21887 return result;
21888 }
21889
21890 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
21891 valid type for this die is found. */
21892
21893 struct type *
21894 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
21895 struct dwarf2_per_cu_data *per_cu)
21896 {
21897 struct dwarf2_cu *cu;
21898 struct die_info *die;
21899
21900 dw2_setup (per_cu->objfile);
21901
21902 if (per_cu->cu == NULL)
21903 load_cu (per_cu);
21904 cu = per_cu->cu;
21905 if (!cu)
21906 return NULL;
21907
21908 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21909 if (!die)
21910 return NULL;
21911
21912 return die_type (die, cu);
21913 }
21914
21915 /* Return the type of the DIE at DIE_OFFSET in the CU named by
21916 PER_CU. */
21917
21918 struct type *
21919 dwarf2_get_die_type (cu_offset die_offset,
21920 struct dwarf2_per_cu_data *per_cu)
21921 {
21922 dw2_setup (per_cu->objfile);
21923
21924 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
21925 return get_die_type_at_offset (die_offset_sect, per_cu);
21926 }
21927
21928 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
21929 On entry *REF_CU is the CU of SRC_DIE.
21930 On exit *REF_CU is the CU of the result.
21931 Returns NULL if the referenced DIE isn't found. */
21932
21933 static struct die_info *
21934 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21935 struct dwarf2_cu **ref_cu)
21936 {
21937 struct die_info temp_die;
21938 struct dwarf2_cu *sig_cu;
21939 struct die_info *die;
21940
21941 /* While it might be nice to assert sig_type->type == NULL here,
21942 we can get here for DW_AT_imported_declaration where we need
21943 the DIE not the type. */
21944
21945 /* If necessary, add it to the queue and load its DIEs. */
21946
21947 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
21948 read_signatured_type (sig_type);
21949
21950 sig_cu = sig_type->per_cu.cu;
21951 gdb_assert (sig_cu != NULL);
21952 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21953 temp_die.sect_off = sig_type->type_offset_in_section;
21954 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
21955 to_underlying (temp_die.sect_off));
21956 if (die)
21957 {
21958 /* For .gdb_index version 7 keep track of included TUs.
21959 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21960 if (dwarf2_per_objfile->index_table != NULL
21961 && dwarf2_per_objfile->index_table->version <= 7)
21962 {
21963 VEC_safe_push (dwarf2_per_cu_ptr,
21964 (*ref_cu)->per_cu->imported_symtabs,
21965 sig_cu->per_cu);
21966 }
21967
21968 *ref_cu = sig_cu;
21969 return die;
21970 }
21971
21972 return NULL;
21973 }
21974
21975 /* Follow signatured type referenced by ATTR in SRC_DIE.
21976 On entry *REF_CU is the CU of SRC_DIE.
21977 On exit *REF_CU is the CU of the result.
21978 The result is the DIE of the type.
21979 If the referenced type cannot be found an error is thrown. */
21980
21981 static struct die_info *
21982 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
21983 struct dwarf2_cu **ref_cu)
21984 {
21985 ULONGEST signature = DW_SIGNATURE (attr);
21986 struct signatured_type *sig_type;
21987 struct die_info *die;
21988
21989 gdb_assert (attr->form == DW_FORM_ref_sig8);
21990
21991 sig_type = lookup_signatured_type (*ref_cu, signature);
21992 /* sig_type will be NULL if the signatured type is missing from
21993 the debug info. */
21994 if (sig_type == NULL)
21995 {
21996 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21997 " from DIE at 0x%x [in module %s]"),
21998 hex_string (signature), to_underlying (src_die->sect_off),
21999 objfile_name ((*ref_cu)->objfile));
22000 }
22001
22002 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22003 if (die == NULL)
22004 {
22005 dump_die_for_error (src_die);
22006 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22007 " from DIE at 0x%x [in module %s]"),
22008 hex_string (signature), to_underlying (src_die->sect_off),
22009 objfile_name ((*ref_cu)->objfile));
22010 }
22011
22012 return die;
22013 }
22014
22015 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22016 reading in and processing the type unit if necessary. */
22017
22018 static struct type *
22019 get_signatured_type (struct die_info *die, ULONGEST signature,
22020 struct dwarf2_cu *cu)
22021 {
22022 struct signatured_type *sig_type;
22023 struct dwarf2_cu *type_cu;
22024 struct die_info *type_die;
22025 struct type *type;
22026
22027 sig_type = lookup_signatured_type (cu, signature);
22028 /* sig_type will be NULL if the signatured type is missing from
22029 the debug info. */
22030 if (sig_type == NULL)
22031 {
22032 complaint (&symfile_complaints,
22033 _("Dwarf Error: Cannot find signatured DIE %s referenced"
22034 " from DIE at 0x%x [in module %s]"),
22035 hex_string (signature), to_underlying (die->sect_off),
22036 objfile_name (dwarf2_per_objfile->objfile));
22037 return build_error_marker_type (cu, die);
22038 }
22039
22040 /* If we already know the type we're done. */
22041 if (sig_type->type != NULL)
22042 return sig_type->type;
22043
22044 type_cu = cu;
22045 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22046 if (type_die != NULL)
22047 {
22048 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22049 is created. This is important, for example, because for c++ classes
22050 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22051 type = read_type_die (type_die, type_cu);
22052 if (type == NULL)
22053 {
22054 complaint (&symfile_complaints,
22055 _("Dwarf Error: Cannot build signatured type %s"
22056 " referenced from DIE at 0x%x [in module %s]"),
22057 hex_string (signature), to_underlying (die->sect_off),
22058 objfile_name (dwarf2_per_objfile->objfile));
22059 type = build_error_marker_type (cu, die);
22060 }
22061 }
22062 else
22063 {
22064 complaint (&symfile_complaints,
22065 _("Dwarf Error: Problem reading signatured DIE %s referenced"
22066 " from DIE at 0x%x [in module %s]"),
22067 hex_string (signature), to_underlying (die->sect_off),
22068 objfile_name (dwarf2_per_objfile->objfile));
22069 type = build_error_marker_type (cu, die);
22070 }
22071 sig_type->type = type;
22072
22073 return type;
22074 }
22075
22076 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22077 reading in and processing the type unit if necessary. */
22078
22079 static struct type *
22080 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22081 struct dwarf2_cu *cu) /* ARI: editCase function */
22082 {
22083 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22084 if (attr_form_is_ref (attr))
22085 {
22086 struct dwarf2_cu *type_cu = cu;
22087 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22088
22089 return read_type_die (type_die, type_cu);
22090 }
22091 else if (attr->form == DW_FORM_ref_sig8)
22092 {
22093 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22094 }
22095 else
22096 {
22097 complaint (&symfile_complaints,
22098 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22099 " at 0x%x [in module %s]"),
22100 dwarf_form_name (attr->form), to_underlying (die->sect_off),
22101 objfile_name (dwarf2_per_objfile->objfile));
22102 return build_error_marker_type (cu, die);
22103 }
22104 }
22105
22106 /* Load the DIEs associated with type unit PER_CU into memory. */
22107
22108 static void
22109 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22110 {
22111 struct signatured_type *sig_type;
22112
22113 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22114 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
22115
22116 /* We have the per_cu, but we need the signatured_type.
22117 Fortunately this is an easy translation. */
22118 gdb_assert (per_cu->is_debug_types);
22119 sig_type = (struct signatured_type *) per_cu;
22120
22121 gdb_assert (per_cu->cu == NULL);
22122
22123 read_signatured_type (sig_type);
22124
22125 gdb_assert (per_cu->cu != NULL);
22126 }
22127
22128 /* die_reader_func for read_signatured_type.
22129 This is identical to load_full_comp_unit_reader,
22130 but is kept separate for now. */
22131
22132 static void
22133 read_signatured_type_reader (const struct die_reader_specs *reader,
22134 const gdb_byte *info_ptr,
22135 struct die_info *comp_unit_die,
22136 int has_children,
22137 void *data)
22138 {
22139 struct dwarf2_cu *cu = reader->cu;
22140
22141 gdb_assert (cu->die_hash == NULL);
22142 cu->die_hash =
22143 htab_create_alloc_ex (cu->header.length / 12,
22144 die_hash,
22145 die_eq,
22146 NULL,
22147 &cu->comp_unit_obstack,
22148 hashtab_obstack_allocate,
22149 dummy_obstack_deallocate);
22150
22151 if (has_children)
22152 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
22153 &info_ptr, comp_unit_die);
22154 cu->dies = comp_unit_die;
22155 /* comp_unit_die is not stored in die_hash, no need. */
22156
22157 /* We try not to read any attributes in this function, because not
22158 all CUs needed for references have been loaded yet, and symbol
22159 table processing isn't initialized. But we have to set the CU language,
22160 or we won't be able to build types correctly.
22161 Similarly, if we do not read the producer, we can not apply
22162 producer-specific interpretation. */
22163 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22164 }
22165
22166 /* Read in a signatured type and build its CU and DIEs.
22167 If the type is a stub for the real type in a DWO file,
22168 read in the real type from the DWO file as well. */
22169
22170 static void
22171 read_signatured_type (struct signatured_type *sig_type)
22172 {
22173 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22174
22175 gdb_assert (per_cu->is_debug_types);
22176 gdb_assert (per_cu->cu == NULL);
22177
22178 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
22179 read_signatured_type_reader, NULL);
22180 sig_type->per_cu.tu_read = 1;
22181 }
22182
22183 /* Decode simple location descriptions.
22184 Given a pointer to a dwarf block that defines a location, compute
22185 the location and return the value.
22186
22187 NOTE drow/2003-11-18: This function is called in two situations
22188 now: for the address of static or global variables (partial symbols
22189 only) and for offsets into structures which are expected to be
22190 (more or less) constant. The partial symbol case should go away,
22191 and only the constant case should remain. That will let this
22192 function complain more accurately. A few special modes are allowed
22193 without complaint for global variables (for instance, global
22194 register values and thread-local values).
22195
22196 A location description containing no operations indicates that the
22197 object is optimized out. The return value is 0 for that case.
22198 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22199 callers will only want a very basic result and this can become a
22200 complaint.
22201
22202 Note that stack[0] is unused except as a default error return. */
22203
22204 static CORE_ADDR
22205 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22206 {
22207 struct objfile *objfile = cu->objfile;
22208 size_t i;
22209 size_t size = blk->size;
22210 const gdb_byte *data = blk->data;
22211 CORE_ADDR stack[64];
22212 int stacki;
22213 unsigned int bytes_read, unsnd;
22214 gdb_byte op;
22215
22216 i = 0;
22217 stacki = 0;
22218 stack[stacki] = 0;
22219 stack[++stacki] = 0;
22220
22221 while (i < size)
22222 {
22223 op = data[i++];
22224 switch (op)
22225 {
22226 case DW_OP_lit0:
22227 case DW_OP_lit1:
22228 case DW_OP_lit2:
22229 case DW_OP_lit3:
22230 case DW_OP_lit4:
22231 case DW_OP_lit5:
22232 case DW_OP_lit6:
22233 case DW_OP_lit7:
22234 case DW_OP_lit8:
22235 case DW_OP_lit9:
22236 case DW_OP_lit10:
22237 case DW_OP_lit11:
22238 case DW_OP_lit12:
22239 case DW_OP_lit13:
22240 case DW_OP_lit14:
22241 case DW_OP_lit15:
22242 case DW_OP_lit16:
22243 case DW_OP_lit17:
22244 case DW_OP_lit18:
22245 case DW_OP_lit19:
22246 case DW_OP_lit20:
22247 case DW_OP_lit21:
22248 case DW_OP_lit22:
22249 case DW_OP_lit23:
22250 case DW_OP_lit24:
22251 case DW_OP_lit25:
22252 case DW_OP_lit26:
22253 case DW_OP_lit27:
22254 case DW_OP_lit28:
22255 case DW_OP_lit29:
22256 case DW_OP_lit30:
22257 case DW_OP_lit31:
22258 stack[++stacki] = op - DW_OP_lit0;
22259 break;
22260
22261 case DW_OP_reg0:
22262 case DW_OP_reg1:
22263 case DW_OP_reg2:
22264 case DW_OP_reg3:
22265 case DW_OP_reg4:
22266 case DW_OP_reg5:
22267 case DW_OP_reg6:
22268 case DW_OP_reg7:
22269 case DW_OP_reg8:
22270 case DW_OP_reg9:
22271 case DW_OP_reg10:
22272 case DW_OP_reg11:
22273 case DW_OP_reg12:
22274 case DW_OP_reg13:
22275 case DW_OP_reg14:
22276 case DW_OP_reg15:
22277 case DW_OP_reg16:
22278 case DW_OP_reg17:
22279 case DW_OP_reg18:
22280 case DW_OP_reg19:
22281 case DW_OP_reg20:
22282 case DW_OP_reg21:
22283 case DW_OP_reg22:
22284 case DW_OP_reg23:
22285 case DW_OP_reg24:
22286 case DW_OP_reg25:
22287 case DW_OP_reg26:
22288 case DW_OP_reg27:
22289 case DW_OP_reg28:
22290 case DW_OP_reg29:
22291 case DW_OP_reg30:
22292 case DW_OP_reg31:
22293 stack[++stacki] = op - DW_OP_reg0;
22294 if (i < size)
22295 dwarf2_complex_location_expr_complaint ();
22296 break;
22297
22298 case DW_OP_regx:
22299 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22300 i += bytes_read;
22301 stack[++stacki] = unsnd;
22302 if (i < size)
22303 dwarf2_complex_location_expr_complaint ();
22304 break;
22305
22306 case DW_OP_addr:
22307 stack[++stacki] = read_address (objfile->obfd, &data[i],
22308 cu, &bytes_read);
22309 i += bytes_read;
22310 break;
22311
22312 case DW_OP_const1u:
22313 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22314 i += 1;
22315 break;
22316
22317 case DW_OP_const1s:
22318 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22319 i += 1;
22320 break;
22321
22322 case DW_OP_const2u:
22323 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22324 i += 2;
22325 break;
22326
22327 case DW_OP_const2s:
22328 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22329 i += 2;
22330 break;
22331
22332 case DW_OP_const4u:
22333 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22334 i += 4;
22335 break;
22336
22337 case DW_OP_const4s:
22338 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22339 i += 4;
22340 break;
22341
22342 case DW_OP_const8u:
22343 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22344 i += 8;
22345 break;
22346
22347 case DW_OP_constu:
22348 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22349 &bytes_read);
22350 i += bytes_read;
22351 break;
22352
22353 case DW_OP_consts:
22354 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22355 i += bytes_read;
22356 break;
22357
22358 case DW_OP_dup:
22359 stack[stacki + 1] = stack[stacki];
22360 stacki++;
22361 break;
22362
22363 case DW_OP_plus:
22364 stack[stacki - 1] += stack[stacki];
22365 stacki--;
22366 break;
22367
22368 case DW_OP_plus_uconst:
22369 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22370 &bytes_read);
22371 i += bytes_read;
22372 break;
22373
22374 case DW_OP_minus:
22375 stack[stacki - 1] -= stack[stacki];
22376 stacki--;
22377 break;
22378
22379 case DW_OP_deref:
22380 /* If we're not the last op, then we definitely can't encode
22381 this using GDB's address_class enum. This is valid for partial
22382 global symbols, although the variable's address will be bogus
22383 in the psymtab. */
22384 if (i < size)
22385 dwarf2_complex_location_expr_complaint ();
22386 break;
22387
22388 case DW_OP_GNU_push_tls_address:
22389 case DW_OP_form_tls_address:
22390 /* The top of the stack has the offset from the beginning
22391 of the thread control block at which the variable is located. */
22392 /* Nothing should follow this operator, so the top of stack would
22393 be returned. */
22394 /* This is valid for partial global symbols, but the variable's
22395 address will be bogus in the psymtab. Make it always at least
22396 non-zero to not look as a variable garbage collected by linker
22397 which have DW_OP_addr 0. */
22398 if (i < size)
22399 dwarf2_complex_location_expr_complaint ();
22400 stack[stacki]++;
22401 break;
22402
22403 case DW_OP_GNU_uninit:
22404 break;
22405
22406 case DW_OP_GNU_addr_index:
22407 case DW_OP_GNU_const_index:
22408 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22409 &bytes_read);
22410 i += bytes_read;
22411 break;
22412
22413 default:
22414 {
22415 const char *name = get_DW_OP_name (op);
22416
22417 if (name)
22418 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
22419 name);
22420 else
22421 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
22422 op);
22423 }
22424
22425 return (stack[stacki]);
22426 }
22427
22428 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22429 outside of the allocated space. Also enforce minimum>0. */
22430 if (stacki >= ARRAY_SIZE (stack) - 1)
22431 {
22432 complaint (&symfile_complaints,
22433 _("location description stack overflow"));
22434 return 0;
22435 }
22436
22437 if (stacki <= 0)
22438 {
22439 complaint (&symfile_complaints,
22440 _("location description stack underflow"));
22441 return 0;
22442 }
22443 }
22444 return (stack[stacki]);
22445 }
22446
22447 /* memory allocation interface */
22448
22449 static struct dwarf_block *
22450 dwarf_alloc_block (struct dwarf2_cu *cu)
22451 {
22452 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22453 }
22454
22455 static struct die_info *
22456 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22457 {
22458 struct die_info *die;
22459 size_t size = sizeof (struct die_info);
22460
22461 if (num_attrs > 1)
22462 size += (num_attrs - 1) * sizeof (struct attribute);
22463
22464 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
22465 memset (die, 0, sizeof (struct die_info));
22466 return (die);
22467 }
22468
22469 \f
22470 /* Macro support. */
22471
22472 /* Return file name relative to the compilation directory of file number I in
22473 *LH's file name table. The result is allocated using xmalloc; the caller is
22474 responsible for freeing it. */
22475
22476 static char *
22477 file_file_name (int file, struct line_header *lh)
22478 {
22479 /* Is the file number a valid index into the line header's file name
22480 table? Remember that file numbers start with one, not zero. */
22481 if (1 <= file && file <= lh->file_names.size ())
22482 {
22483 const file_entry &fe = lh->file_names[file - 1];
22484
22485 if (!IS_ABSOLUTE_PATH (fe.name))
22486 {
22487 const char *dir = fe.include_dir (lh);
22488 if (dir != NULL)
22489 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
22490 }
22491 return xstrdup (fe.name);
22492 }
22493 else
22494 {
22495 /* The compiler produced a bogus file number. We can at least
22496 record the macro definitions made in the file, even if we
22497 won't be able to find the file by name. */
22498 char fake_name[80];
22499
22500 xsnprintf (fake_name, sizeof (fake_name),
22501 "<bad macro file number %d>", file);
22502
22503 complaint (&symfile_complaints,
22504 _("bad file number in macro information (%d)"),
22505 file);
22506
22507 return xstrdup (fake_name);
22508 }
22509 }
22510
22511 /* Return the full name of file number I in *LH's file name table.
22512 Use COMP_DIR as the name of the current directory of the
22513 compilation. The result is allocated using xmalloc; the caller is
22514 responsible for freeing it. */
22515 static char *
22516 file_full_name (int file, struct line_header *lh, const char *comp_dir)
22517 {
22518 /* Is the file number a valid index into the line header's file name
22519 table? Remember that file numbers start with one, not zero. */
22520 if (1 <= file && file <= lh->file_names.size ())
22521 {
22522 char *relative = file_file_name (file, lh);
22523
22524 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
22525 return relative;
22526 return reconcat (relative, comp_dir, SLASH_STRING,
22527 relative, (char *) NULL);
22528 }
22529 else
22530 return file_file_name (file, lh);
22531 }
22532
22533
22534 static struct macro_source_file *
22535 macro_start_file (int file, int line,
22536 struct macro_source_file *current_file,
22537 struct line_header *lh)
22538 {
22539 /* File name relative to the compilation directory of this source file. */
22540 char *file_name = file_file_name (file, lh);
22541
22542 if (! current_file)
22543 {
22544 /* Note: We don't create a macro table for this compilation unit
22545 at all until we actually get a filename. */
22546 struct macro_table *macro_table = get_macro_table ();
22547
22548 /* If we have no current file, then this must be the start_file
22549 directive for the compilation unit's main source file. */
22550 current_file = macro_set_main (macro_table, file_name);
22551 macro_define_special (macro_table);
22552 }
22553 else
22554 current_file = macro_include (current_file, line, file_name);
22555
22556 xfree (file_name);
22557
22558 return current_file;
22559 }
22560
22561 static const char *
22562 consume_improper_spaces (const char *p, const char *body)
22563 {
22564 if (*p == ' ')
22565 {
22566 complaint (&symfile_complaints,
22567 _("macro definition contains spaces "
22568 "in formal argument list:\n`%s'"),
22569 body);
22570
22571 while (*p == ' ')
22572 p++;
22573 }
22574
22575 return p;
22576 }
22577
22578
22579 static void
22580 parse_macro_definition (struct macro_source_file *file, int line,
22581 const char *body)
22582 {
22583 const char *p;
22584
22585 /* The body string takes one of two forms. For object-like macro
22586 definitions, it should be:
22587
22588 <macro name> " " <definition>
22589
22590 For function-like macro definitions, it should be:
22591
22592 <macro name> "() " <definition>
22593 or
22594 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
22595
22596 Spaces may appear only where explicitly indicated, and in the
22597 <definition>.
22598
22599 The Dwarf 2 spec says that an object-like macro's name is always
22600 followed by a space, but versions of GCC around March 2002 omit
22601 the space when the macro's definition is the empty string.
22602
22603 The Dwarf 2 spec says that there should be no spaces between the
22604 formal arguments in a function-like macro's formal argument list,
22605 but versions of GCC around March 2002 include spaces after the
22606 commas. */
22607
22608
22609 /* Find the extent of the macro name. The macro name is terminated
22610 by either a space or null character (for an object-like macro) or
22611 an opening paren (for a function-like macro). */
22612 for (p = body; *p; p++)
22613 if (*p == ' ' || *p == '(')
22614 break;
22615
22616 if (*p == ' ' || *p == '\0')
22617 {
22618 /* It's an object-like macro. */
22619 int name_len = p - body;
22620 char *name = savestring (body, name_len);
22621 const char *replacement;
22622
22623 if (*p == ' ')
22624 replacement = body + name_len + 1;
22625 else
22626 {
22627 dwarf2_macro_malformed_definition_complaint (body);
22628 replacement = body + name_len;
22629 }
22630
22631 macro_define_object (file, line, name, replacement);
22632
22633 xfree (name);
22634 }
22635 else if (*p == '(')
22636 {
22637 /* It's a function-like macro. */
22638 char *name = savestring (body, p - body);
22639 int argc = 0;
22640 int argv_size = 1;
22641 char **argv = XNEWVEC (char *, argv_size);
22642
22643 p++;
22644
22645 p = consume_improper_spaces (p, body);
22646
22647 /* Parse the formal argument list. */
22648 while (*p && *p != ')')
22649 {
22650 /* Find the extent of the current argument name. */
22651 const char *arg_start = p;
22652
22653 while (*p && *p != ',' && *p != ')' && *p != ' ')
22654 p++;
22655
22656 if (! *p || p == arg_start)
22657 dwarf2_macro_malformed_definition_complaint (body);
22658 else
22659 {
22660 /* Make sure argv has room for the new argument. */
22661 if (argc >= argv_size)
22662 {
22663 argv_size *= 2;
22664 argv = XRESIZEVEC (char *, argv, argv_size);
22665 }
22666
22667 argv[argc++] = savestring (arg_start, p - arg_start);
22668 }
22669
22670 p = consume_improper_spaces (p, body);
22671
22672 /* Consume the comma, if present. */
22673 if (*p == ',')
22674 {
22675 p++;
22676
22677 p = consume_improper_spaces (p, body);
22678 }
22679 }
22680
22681 if (*p == ')')
22682 {
22683 p++;
22684
22685 if (*p == ' ')
22686 /* Perfectly formed definition, no complaints. */
22687 macro_define_function (file, line, name,
22688 argc, (const char **) argv,
22689 p + 1);
22690 else if (*p == '\0')
22691 {
22692 /* Complain, but do define it. */
22693 dwarf2_macro_malformed_definition_complaint (body);
22694 macro_define_function (file, line, name,
22695 argc, (const char **) argv,
22696 p);
22697 }
22698 else
22699 /* Just complain. */
22700 dwarf2_macro_malformed_definition_complaint (body);
22701 }
22702 else
22703 /* Just complain. */
22704 dwarf2_macro_malformed_definition_complaint (body);
22705
22706 xfree (name);
22707 {
22708 int i;
22709
22710 for (i = 0; i < argc; i++)
22711 xfree (argv[i]);
22712 }
22713 xfree (argv);
22714 }
22715 else
22716 dwarf2_macro_malformed_definition_complaint (body);
22717 }
22718
22719 /* Skip some bytes from BYTES according to the form given in FORM.
22720 Returns the new pointer. */
22721
22722 static const gdb_byte *
22723 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
22724 enum dwarf_form form,
22725 unsigned int offset_size,
22726 struct dwarf2_section_info *section)
22727 {
22728 unsigned int bytes_read;
22729
22730 switch (form)
22731 {
22732 case DW_FORM_data1:
22733 case DW_FORM_flag:
22734 ++bytes;
22735 break;
22736
22737 case DW_FORM_data2:
22738 bytes += 2;
22739 break;
22740
22741 case DW_FORM_data4:
22742 bytes += 4;
22743 break;
22744
22745 case DW_FORM_data8:
22746 bytes += 8;
22747 break;
22748
22749 case DW_FORM_data16:
22750 bytes += 16;
22751 break;
22752
22753 case DW_FORM_string:
22754 read_direct_string (abfd, bytes, &bytes_read);
22755 bytes += bytes_read;
22756 break;
22757
22758 case DW_FORM_sec_offset:
22759 case DW_FORM_strp:
22760 case DW_FORM_GNU_strp_alt:
22761 bytes += offset_size;
22762 break;
22763
22764 case DW_FORM_block:
22765 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
22766 bytes += bytes_read;
22767 break;
22768
22769 case DW_FORM_block1:
22770 bytes += 1 + read_1_byte (abfd, bytes);
22771 break;
22772 case DW_FORM_block2:
22773 bytes += 2 + read_2_bytes (abfd, bytes);
22774 break;
22775 case DW_FORM_block4:
22776 bytes += 4 + read_4_bytes (abfd, bytes);
22777 break;
22778
22779 case DW_FORM_sdata:
22780 case DW_FORM_udata:
22781 case DW_FORM_GNU_addr_index:
22782 case DW_FORM_GNU_str_index:
22783 bytes = gdb_skip_leb128 (bytes, buffer_end);
22784 if (bytes == NULL)
22785 {
22786 dwarf2_section_buffer_overflow_complaint (section);
22787 return NULL;
22788 }
22789 break;
22790
22791 case DW_FORM_implicit_const:
22792 break;
22793
22794 default:
22795 {
22796 complain:
22797 complaint (&symfile_complaints,
22798 _("invalid form 0x%x in `%s'"),
22799 form, get_section_name (section));
22800 return NULL;
22801 }
22802 }
22803
22804 return bytes;
22805 }
22806
22807 /* A helper for dwarf_decode_macros that handles skipping an unknown
22808 opcode. Returns an updated pointer to the macro data buffer; or,
22809 on error, issues a complaint and returns NULL. */
22810
22811 static const gdb_byte *
22812 skip_unknown_opcode (unsigned int opcode,
22813 const gdb_byte **opcode_definitions,
22814 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22815 bfd *abfd,
22816 unsigned int offset_size,
22817 struct dwarf2_section_info *section)
22818 {
22819 unsigned int bytes_read, i;
22820 unsigned long arg;
22821 const gdb_byte *defn;
22822
22823 if (opcode_definitions[opcode] == NULL)
22824 {
22825 complaint (&symfile_complaints,
22826 _("unrecognized DW_MACFINO opcode 0x%x"),
22827 opcode);
22828 return NULL;
22829 }
22830
22831 defn = opcode_definitions[opcode];
22832 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
22833 defn += bytes_read;
22834
22835 for (i = 0; i < arg; ++i)
22836 {
22837 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
22838 (enum dwarf_form) defn[i], offset_size,
22839 section);
22840 if (mac_ptr == NULL)
22841 {
22842 /* skip_form_bytes already issued the complaint. */
22843 return NULL;
22844 }
22845 }
22846
22847 return mac_ptr;
22848 }
22849
22850 /* A helper function which parses the header of a macro section.
22851 If the macro section is the extended (for now called "GNU") type,
22852 then this updates *OFFSET_SIZE. Returns a pointer to just after
22853 the header, or issues a complaint and returns NULL on error. */
22854
22855 static const gdb_byte *
22856 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
22857 bfd *abfd,
22858 const gdb_byte *mac_ptr,
22859 unsigned int *offset_size,
22860 int section_is_gnu)
22861 {
22862 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
22863
22864 if (section_is_gnu)
22865 {
22866 unsigned int version, flags;
22867
22868 version = read_2_bytes (abfd, mac_ptr);
22869 if (version != 4 && version != 5)
22870 {
22871 complaint (&symfile_complaints,
22872 _("unrecognized version `%d' in .debug_macro section"),
22873 version);
22874 return NULL;
22875 }
22876 mac_ptr += 2;
22877
22878 flags = read_1_byte (abfd, mac_ptr);
22879 ++mac_ptr;
22880 *offset_size = (flags & 1) ? 8 : 4;
22881
22882 if ((flags & 2) != 0)
22883 /* We don't need the line table offset. */
22884 mac_ptr += *offset_size;
22885
22886 /* Vendor opcode descriptions. */
22887 if ((flags & 4) != 0)
22888 {
22889 unsigned int i, count;
22890
22891 count = read_1_byte (abfd, mac_ptr);
22892 ++mac_ptr;
22893 for (i = 0; i < count; ++i)
22894 {
22895 unsigned int opcode, bytes_read;
22896 unsigned long arg;
22897
22898 opcode = read_1_byte (abfd, mac_ptr);
22899 ++mac_ptr;
22900 opcode_definitions[opcode] = mac_ptr;
22901 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22902 mac_ptr += bytes_read;
22903 mac_ptr += arg;
22904 }
22905 }
22906 }
22907
22908 return mac_ptr;
22909 }
22910
22911 /* A helper for dwarf_decode_macros that handles the GNU extensions,
22912 including DW_MACRO_import. */
22913
22914 static void
22915 dwarf_decode_macro_bytes (bfd *abfd,
22916 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
22917 struct macro_source_file *current_file,
22918 struct line_header *lh,
22919 struct dwarf2_section_info *section,
22920 int section_is_gnu, int section_is_dwz,
22921 unsigned int offset_size,
22922 htab_t include_hash)
22923 {
22924 struct objfile *objfile = dwarf2_per_objfile->objfile;
22925 enum dwarf_macro_record_type macinfo_type;
22926 int at_commandline;
22927 const gdb_byte *opcode_definitions[256];
22928
22929 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22930 &offset_size, section_is_gnu);
22931 if (mac_ptr == NULL)
22932 {
22933 /* We already issued a complaint. */
22934 return;
22935 }
22936
22937 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22938 GDB is still reading the definitions from command line. First
22939 DW_MACINFO_start_file will need to be ignored as it was already executed
22940 to create CURRENT_FILE for the main source holding also the command line
22941 definitions. On first met DW_MACINFO_start_file this flag is reset to
22942 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22943
22944 at_commandline = 1;
22945
22946 do
22947 {
22948 /* Do we at least have room for a macinfo type byte? */
22949 if (mac_ptr >= mac_end)
22950 {
22951 dwarf2_section_buffer_overflow_complaint (section);
22952 break;
22953 }
22954
22955 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
22956 mac_ptr++;
22957
22958 /* Note that we rely on the fact that the corresponding GNU and
22959 DWARF constants are the same. */
22960 switch (macinfo_type)
22961 {
22962 /* A zero macinfo type indicates the end of the macro
22963 information. */
22964 case 0:
22965 break;
22966
22967 case DW_MACRO_define:
22968 case DW_MACRO_undef:
22969 case DW_MACRO_define_strp:
22970 case DW_MACRO_undef_strp:
22971 case DW_MACRO_define_sup:
22972 case DW_MACRO_undef_sup:
22973 {
22974 unsigned int bytes_read;
22975 int line;
22976 const char *body;
22977 int is_define;
22978
22979 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22980 mac_ptr += bytes_read;
22981
22982 if (macinfo_type == DW_MACRO_define
22983 || macinfo_type == DW_MACRO_undef)
22984 {
22985 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22986 mac_ptr += bytes_read;
22987 }
22988 else
22989 {
22990 LONGEST str_offset;
22991
22992 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22993 mac_ptr += offset_size;
22994
22995 if (macinfo_type == DW_MACRO_define_sup
22996 || macinfo_type == DW_MACRO_undef_sup
22997 || section_is_dwz)
22998 {
22999 struct dwz_file *dwz = dwarf2_get_dwz_file ();
23000
23001 body = read_indirect_string_from_dwz (dwz, str_offset);
23002 }
23003 else
23004 body = read_indirect_string_at_offset (abfd, str_offset);
23005 }
23006
23007 is_define = (macinfo_type == DW_MACRO_define
23008 || macinfo_type == DW_MACRO_define_strp
23009 || macinfo_type == DW_MACRO_define_sup);
23010 if (! current_file)
23011 {
23012 /* DWARF violation as no main source is present. */
23013 complaint (&symfile_complaints,
23014 _("debug info with no main source gives macro %s "
23015 "on line %d: %s"),
23016 is_define ? _("definition") : _("undefinition"),
23017 line, body);
23018 break;
23019 }
23020 if ((line == 0 && !at_commandline)
23021 || (line != 0 && at_commandline))
23022 complaint (&symfile_complaints,
23023 _("debug info gives %s macro %s with %s line %d: %s"),
23024 at_commandline ? _("command-line") : _("in-file"),
23025 is_define ? _("definition") : _("undefinition"),
23026 line == 0 ? _("zero") : _("non-zero"), line, body);
23027
23028 if (is_define)
23029 parse_macro_definition (current_file, line, body);
23030 else
23031 {
23032 gdb_assert (macinfo_type == DW_MACRO_undef
23033 || macinfo_type == DW_MACRO_undef_strp
23034 || macinfo_type == DW_MACRO_undef_sup);
23035 macro_undef (current_file, line, body);
23036 }
23037 }
23038 break;
23039
23040 case DW_MACRO_start_file:
23041 {
23042 unsigned int bytes_read;
23043 int line, file;
23044
23045 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23046 mac_ptr += bytes_read;
23047 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23048 mac_ptr += bytes_read;
23049
23050 if ((line == 0 && !at_commandline)
23051 || (line != 0 && at_commandline))
23052 complaint (&symfile_complaints,
23053 _("debug info gives source %d included "
23054 "from %s at %s line %d"),
23055 file, at_commandline ? _("command-line") : _("file"),
23056 line == 0 ? _("zero") : _("non-zero"), line);
23057
23058 if (at_commandline)
23059 {
23060 /* This DW_MACRO_start_file was executed in the
23061 pass one. */
23062 at_commandline = 0;
23063 }
23064 else
23065 current_file = macro_start_file (file, line, current_file, lh);
23066 }
23067 break;
23068
23069 case DW_MACRO_end_file:
23070 if (! current_file)
23071 complaint (&symfile_complaints,
23072 _("macro debug info has an unmatched "
23073 "`close_file' directive"));
23074 else
23075 {
23076 current_file = current_file->included_by;
23077 if (! current_file)
23078 {
23079 enum dwarf_macro_record_type next_type;
23080
23081 /* GCC circa March 2002 doesn't produce the zero
23082 type byte marking the end of the compilation
23083 unit. Complain if it's not there, but exit no
23084 matter what. */
23085
23086 /* Do we at least have room for a macinfo type byte? */
23087 if (mac_ptr >= mac_end)
23088 {
23089 dwarf2_section_buffer_overflow_complaint (section);
23090 return;
23091 }
23092
23093 /* We don't increment mac_ptr here, so this is just
23094 a look-ahead. */
23095 next_type
23096 = (enum dwarf_macro_record_type) read_1_byte (abfd,
23097 mac_ptr);
23098 if (next_type != 0)
23099 complaint (&symfile_complaints,
23100 _("no terminating 0-type entry for "
23101 "macros in `.debug_macinfo' section"));
23102
23103 return;
23104 }
23105 }
23106 break;
23107
23108 case DW_MACRO_import:
23109 case DW_MACRO_import_sup:
23110 {
23111 LONGEST offset;
23112 void **slot;
23113 bfd *include_bfd = abfd;
23114 struct dwarf2_section_info *include_section = section;
23115 const gdb_byte *include_mac_end = mac_end;
23116 int is_dwz = section_is_dwz;
23117 const gdb_byte *new_mac_ptr;
23118
23119 offset = read_offset_1 (abfd, mac_ptr, offset_size);
23120 mac_ptr += offset_size;
23121
23122 if (macinfo_type == DW_MACRO_import_sup)
23123 {
23124 struct dwz_file *dwz = dwarf2_get_dwz_file ();
23125
23126 dwarf2_read_section (objfile, &dwz->macro);
23127
23128 include_section = &dwz->macro;
23129 include_bfd = get_section_bfd_owner (include_section);
23130 include_mac_end = dwz->macro.buffer + dwz->macro.size;
23131 is_dwz = 1;
23132 }
23133
23134 new_mac_ptr = include_section->buffer + offset;
23135 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
23136
23137 if (*slot != NULL)
23138 {
23139 /* This has actually happened; see
23140 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
23141 complaint (&symfile_complaints,
23142 _("recursive DW_MACRO_import in "
23143 ".debug_macro section"));
23144 }
23145 else
23146 {
23147 *slot = (void *) new_mac_ptr;
23148
23149 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
23150 include_mac_end, current_file, lh,
23151 section, section_is_gnu, is_dwz,
23152 offset_size, include_hash);
23153
23154 htab_remove_elt (include_hash, (void *) new_mac_ptr);
23155 }
23156 }
23157 break;
23158
23159 case DW_MACINFO_vendor_ext:
23160 if (!section_is_gnu)
23161 {
23162 unsigned int bytes_read;
23163
23164 /* This reads the constant, but since we don't recognize
23165 any vendor extensions, we ignore it. */
23166 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23167 mac_ptr += bytes_read;
23168 read_direct_string (abfd, mac_ptr, &bytes_read);
23169 mac_ptr += bytes_read;
23170
23171 /* We don't recognize any vendor extensions. */
23172 break;
23173 }
23174 /* FALLTHROUGH */
23175
23176 default:
23177 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23178 mac_ptr, mac_end, abfd, offset_size,
23179 section);
23180 if (mac_ptr == NULL)
23181 return;
23182 break;
23183 }
23184 } while (macinfo_type != 0);
23185 }
23186
23187 static void
23188 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23189 int section_is_gnu)
23190 {
23191 struct objfile *objfile = dwarf2_per_objfile->objfile;
23192 struct line_header *lh = cu->line_header;
23193 bfd *abfd;
23194 const gdb_byte *mac_ptr, *mac_end;
23195 struct macro_source_file *current_file = 0;
23196 enum dwarf_macro_record_type macinfo_type;
23197 unsigned int offset_size = cu->header.offset_size;
23198 const gdb_byte *opcode_definitions[256];
23199 void **slot;
23200 struct dwarf2_section_info *section;
23201 const char *section_name;
23202
23203 if (cu->dwo_unit != NULL)
23204 {
23205 if (section_is_gnu)
23206 {
23207 section = &cu->dwo_unit->dwo_file->sections.macro;
23208 section_name = ".debug_macro.dwo";
23209 }
23210 else
23211 {
23212 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23213 section_name = ".debug_macinfo.dwo";
23214 }
23215 }
23216 else
23217 {
23218 if (section_is_gnu)
23219 {
23220 section = &dwarf2_per_objfile->macro;
23221 section_name = ".debug_macro";
23222 }
23223 else
23224 {
23225 section = &dwarf2_per_objfile->macinfo;
23226 section_name = ".debug_macinfo";
23227 }
23228 }
23229
23230 dwarf2_read_section (objfile, section);
23231 if (section->buffer == NULL)
23232 {
23233 complaint (&symfile_complaints, _("missing %s section"), section_name);
23234 return;
23235 }
23236 abfd = get_section_bfd_owner (section);
23237
23238 /* First pass: Find the name of the base filename.
23239 This filename is needed in order to process all macros whose definition
23240 (or undefinition) comes from the command line. These macros are defined
23241 before the first DW_MACINFO_start_file entry, and yet still need to be
23242 associated to the base file.
23243
23244 To determine the base file name, we scan the macro definitions until we
23245 reach the first DW_MACINFO_start_file entry. We then initialize
23246 CURRENT_FILE accordingly so that any macro definition found before the
23247 first DW_MACINFO_start_file can still be associated to the base file. */
23248
23249 mac_ptr = section->buffer + offset;
23250 mac_end = section->buffer + section->size;
23251
23252 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
23253 &offset_size, section_is_gnu);
23254 if (mac_ptr == NULL)
23255 {
23256 /* We already issued a complaint. */
23257 return;
23258 }
23259
23260 do
23261 {
23262 /* Do we at least have room for a macinfo type byte? */
23263 if (mac_ptr >= mac_end)
23264 {
23265 /* Complaint is printed during the second pass as GDB will probably
23266 stop the first pass earlier upon finding
23267 DW_MACINFO_start_file. */
23268 break;
23269 }
23270
23271 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
23272 mac_ptr++;
23273
23274 /* Note that we rely on the fact that the corresponding GNU and
23275 DWARF constants are the same. */
23276 switch (macinfo_type)
23277 {
23278 /* A zero macinfo type indicates the end of the macro
23279 information. */
23280 case 0:
23281 break;
23282
23283 case DW_MACRO_define:
23284 case DW_MACRO_undef:
23285 /* Only skip the data by MAC_PTR. */
23286 {
23287 unsigned int bytes_read;
23288
23289 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23290 mac_ptr += bytes_read;
23291 read_direct_string (abfd, mac_ptr, &bytes_read);
23292 mac_ptr += bytes_read;
23293 }
23294 break;
23295
23296 case DW_MACRO_start_file:
23297 {
23298 unsigned int bytes_read;
23299 int line, file;
23300
23301 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23302 mac_ptr += bytes_read;
23303 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23304 mac_ptr += bytes_read;
23305
23306 current_file = macro_start_file (file, line, current_file, lh);
23307 }
23308 break;
23309
23310 case DW_MACRO_end_file:
23311 /* No data to skip by MAC_PTR. */
23312 break;
23313
23314 case DW_MACRO_define_strp:
23315 case DW_MACRO_undef_strp:
23316 case DW_MACRO_define_sup:
23317 case DW_MACRO_undef_sup:
23318 {
23319 unsigned int bytes_read;
23320
23321 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23322 mac_ptr += bytes_read;
23323 mac_ptr += offset_size;
23324 }
23325 break;
23326
23327 case DW_MACRO_import:
23328 case DW_MACRO_import_sup:
23329 /* Note that, according to the spec, a transparent include
23330 chain cannot call DW_MACRO_start_file. So, we can just
23331 skip this opcode. */
23332 mac_ptr += offset_size;
23333 break;
23334
23335 case DW_MACINFO_vendor_ext:
23336 /* Only skip the data by MAC_PTR. */
23337 if (!section_is_gnu)
23338 {
23339 unsigned int bytes_read;
23340
23341 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
23342 mac_ptr += bytes_read;
23343 read_direct_string (abfd, mac_ptr, &bytes_read);
23344 mac_ptr += bytes_read;
23345 }
23346 /* FALLTHROUGH */
23347
23348 default:
23349 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
23350 mac_ptr, mac_end, abfd, offset_size,
23351 section);
23352 if (mac_ptr == NULL)
23353 return;
23354 break;
23355 }
23356 } while (macinfo_type != 0 && current_file == NULL);
23357
23358 /* Second pass: Process all entries.
23359
23360 Use the AT_COMMAND_LINE flag to determine whether we are still processing
23361 command-line macro definitions/undefinitions. This flag is unset when we
23362 reach the first DW_MACINFO_start_file entry. */
23363
23364 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
23365 htab_eq_pointer,
23366 NULL, xcalloc, xfree));
23367 mac_ptr = section->buffer + offset;
23368 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
23369 *slot = (void *) mac_ptr;
23370 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
23371 current_file, lh, section,
23372 section_is_gnu, 0, offset_size,
23373 include_hash.get ());
23374 }
23375
23376 /* Check if the attribute's form is a DW_FORM_block*
23377 if so return true else false. */
23378
23379 static int
23380 attr_form_is_block (const struct attribute *attr)
23381 {
23382 return (attr == NULL ? 0 :
23383 attr->form == DW_FORM_block1
23384 || attr->form == DW_FORM_block2
23385 || attr->form == DW_FORM_block4
23386 || attr->form == DW_FORM_block
23387 || attr->form == DW_FORM_exprloc);
23388 }
23389
23390 /* Return non-zero if ATTR's value is a section offset --- classes
23391 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
23392 You may use DW_UNSND (attr) to retrieve such offsets.
23393
23394 Section 7.5.4, "Attribute Encodings", explains that no attribute
23395 may have a value that belongs to more than one of these classes; it
23396 would be ambiguous if we did, because we use the same forms for all
23397 of them. */
23398
23399 static int
23400 attr_form_is_section_offset (const struct attribute *attr)
23401 {
23402 return (attr->form == DW_FORM_data4
23403 || attr->form == DW_FORM_data8
23404 || attr->form == DW_FORM_sec_offset);
23405 }
23406
23407 /* Return non-zero if ATTR's value falls in the 'constant' class, or
23408 zero otherwise. When this function returns true, you can apply
23409 dwarf2_get_attr_constant_value to it.
23410
23411 However, note that for some attributes you must check
23412 attr_form_is_section_offset before using this test. DW_FORM_data4
23413 and DW_FORM_data8 are members of both the constant class, and of
23414 the classes that contain offsets into other debug sections
23415 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
23416 that, if an attribute's can be either a constant or one of the
23417 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
23418 taken as section offsets, not constants.
23419
23420 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
23421 cannot handle that. */
23422
23423 static int
23424 attr_form_is_constant (const struct attribute *attr)
23425 {
23426 switch (attr->form)
23427 {
23428 case DW_FORM_sdata:
23429 case DW_FORM_udata:
23430 case DW_FORM_data1:
23431 case DW_FORM_data2:
23432 case DW_FORM_data4:
23433 case DW_FORM_data8:
23434 case DW_FORM_implicit_const:
23435 return 1;
23436 default:
23437 return 0;
23438 }
23439 }
23440
23441
23442 /* DW_ADDR is always stored already as sect_offset; despite for the forms
23443 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
23444
23445 static int
23446 attr_form_is_ref (const struct attribute *attr)
23447 {
23448 switch (attr->form)
23449 {
23450 case DW_FORM_ref_addr:
23451 case DW_FORM_ref1:
23452 case DW_FORM_ref2:
23453 case DW_FORM_ref4:
23454 case DW_FORM_ref8:
23455 case DW_FORM_ref_udata:
23456 case DW_FORM_GNU_ref_alt:
23457 return 1;
23458 default:
23459 return 0;
23460 }
23461 }
23462
23463 /* Return the .debug_loc section to use for CU.
23464 For DWO files use .debug_loc.dwo. */
23465
23466 static struct dwarf2_section_info *
23467 cu_debug_loc_section (struct dwarf2_cu *cu)
23468 {
23469 if (cu->dwo_unit)
23470 {
23471 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23472
23473 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23474 }
23475 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23476 : &dwarf2_per_objfile->loc);
23477 }
23478
23479 /* A helper function that fills in a dwarf2_loclist_baton. */
23480
23481 static void
23482 fill_in_loclist_baton (struct dwarf2_cu *cu,
23483 struct dwarf2_loclist_baton *baton,
23484 const struct attribute *attr)
23485 {
23486 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23487
23488 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
23489
23490 baton->per_cu = cu->per_cu;
23491 gdb_assert (baton->per_cu);
23492 /* We don't know how long the location list is, but make sure we
23493 don't run off the edge of the section. */
23494 baton->size = section->size - DW_UNSND (attr);
23495 baton->data = section->buffer + DW_UNSND (attr);
23496 baton->base_address = cu->base_address;
23497 baton->from_dwo = cu->dwo_unit != NULL;
23498 }
23499
23500 static void
23501 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23502 struct dwarf2_cu *cu, int is_block)
23503 {
23504 struct objfile *objfile = dwarf2_per_objfile->objfile;
23505 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23506
23507 if (attr_form_is_section_offset (attr)
23508 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23509 the section. If so, fall through to the complaint in the
23510 other branch. */
23511 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
23512 {
23513 struct dwarf2_loclist_baton *baton;
23514
23515 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23516
23517 fill_in_loclist_baton (cu, baton, attr);
23518
23519 if (cu->base_known == 0)
23520 complaint (&symfile_complaints,
23521 _("Location list used without "
23522 "specifying the CU base address."));
23523
23524 SYMBOL_ACLASS_INDEX (sym) = (is_block
23525 ? dwarf2_loclist_block_index
23526 : dwarf2_loclist_index);
23527 SYMBOL_LOCATION_BATON (sym) = baton;
23528 }
23529 else
23530 {
23531 struct dwarf2_locexpr_baton *baton;
23532
23533 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23534 baton->per_cu = cu->per_cu;
23535 gdb_assert (baton->per_cu);
23536
23537 if (attr_form_is_block (attr))
23538 {
23539 /* Note that we're just copying the block's data pointer
23540 here, not the actual data. We're still pointing into the
23541 info_buffer for SYM's objfile; right now we never release
23542 that buffer, but when we do clean up properly this may
23543 need to change. */
23544 baton->size = DW_BLOCK (attr)->size;
23545 baton->data = DW_BLOCK (attr)->data;
23546 }
23547 else
23548 {
23549 dwarf2_invalid_attrib_class_complaint ("location description",
23550 SYMBOL_NATURAL_NAME (sym));
23551 baton->size = 0;
23552 }
23553
23554 SYMBOL_ACLASS_INDEX (sym) = (is_block
23555 ? dwarf2_locexpr_block_index
23556 : dwarf2_locexpr_index);
23557 SYMBOL_LOCATION_BATON (sym) = baton;
23558 }
23559 }
23560
23561 /* Return the OBJFILE associated with the compilation unit CU. If CU
23562 came from a separate debuginfo file, then the master objfile is
23563 returned. */
23564
23565 struct objfile *
23566 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
23567 {
23568 struct objfile *objfile = per_cu->objfile;
23569
23570 /* Return the master objfile, so that we can report and look up the
23571 correct file containing this variable. */
23572 if (objfile->separate_debug_objfile_backlink)
23573 objfile = objfile->separate_debug_objfile_backlink;
23574
23575 return objfile;
23576 }
23577
23578 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23579 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23580 CU_HEADERP first. */
23581
23582 static const struct comp_unit_head *
23583 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23584 struct dwarf2_per_cu_data *per_cu)
23585 {
23586 const gdb_byte *info_ptr;
23587
23588 if (per_cu->cu)
23589 return &per_cu->cu->header;
23590
23591 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23592
23593 memset (cu_headerp, 0, sizeof (*cu_headerp));
23594 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23595 rcuh_kind::COMPILE);
23596
23597 return cu_headerp;
23598 }
23599
23600 /* Return the address size given in the compilation unit header for CU. */
23601
23602 int
23603 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
23604 {
23605 struct comp_unit_head cu_header_local;
23606 const struct comp_unit_head *cu_headerp;
23607
23608 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23609
23610 return cu_headerp->addr_size;
23611 }
23612
23613 /* Return the offset size given in the compilation unit header for CU. */
23614
23615 int
23616 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
23617 {
23618 struct comp_unit_head cu_header_local;
23619 const struct comp_unit_head *cu_headerp;
23620
23621 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23622
23623 return cu_headerp->offset_size;
23624 }
23625
23626 /* See its dwarf2loc.h declaration. */
23627
23628 int
23629 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
23630 {
23631 struct comp_unit_head cu_header_local;
23632 const struct comp_unit_head *cu_headerp;
23633
23634 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
23635
23636 if (cu_headerp->version == 2)
23637 return cu_headerp->addr_size;
23638 else
23639 return cu_headerp->offset_size;
23640 }
23641
23642 /* Return the text offset of the CU. The returned offset comes from
23643 this CU's objfile. If this objfile came from a separate debuginfo
23644 file, then the offset may be different from the corresponding
23645 offset in the parent objfile. */
23646
23647 CORE_ADDR
23648 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
23649 {
23650 struct objfile *objfile = per_cu->objfile;
23651
23652 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23653 }
23654
23655 /* Return DWARF version number of PER_CU. */
23656
23657 short
23658 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
23659 {
23660 return per_cu->dwarf_version;
23661 }
23662
23663 /* Locate the .debug_info compilation unit from CU's objfile which contains
23664 the DIE at OFFSET. Raises an error on failure. */
23665
23666 static struct dwarf2_per_cu_data *
23667 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23668 unsigned int offset_in_dwz,
23669 struct objfile *objfile)
23670 {
23671 struct dwarf2_per_cu_data *this_cu;
23672 int low, high;
23673 const sect_offset *cu_off;
23674
23675 low = 0;
23676 high = dwarf2_per_objfile->n_comp_units - 1;
23677 while (high > low)
23678 {
23679 struct dwarf2_per_cu_data *mid_cu;
23680 int mid = low + (high - low) / 2;
23681
23682 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
23683 cu_off = &mid_cu->sect_off;
23684 if (mid_cu->is_dwz > offset_in_dwz
23685 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
23686 high = mid;
23687 else
23688 low = mid + 1;
23689 }
23690 gdb_assert (low == high);
23691 this_cu = dwarf2_per_objfile->all_comp_units[low];
23692 cu_off = &this_cu->sect_off;
23693 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
23694 {
23695 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23696 error (_("Dwarf Error: could not find partial DIE containing "
23697 "offset 0x%x [in module %s]"),
23698 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
23699
23700 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23701 <= sect_off);
23702 return dwarf2_per_objfile->all_comp_units[low-1];
23703 }
23704 else
23705 {
23706 this_cu = dwarf2_per_objfile->all_comp_units[low];
23707 if (low == dwarf2_per_objfile->n_comp_units - 1
23708 && sect_off >= this_cu->sect_off + this_cu->length)
23709 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
23710 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23711 return this_cu;
23712 }
23713 }
23714
23715 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23716
23717 static void
23718 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
23719 {
23720 memset (cu, 0, sizeof (*cu));
23721 per_cu->cu = cu;
23722 cu->per_cu = per_cu;
23723 cu->objfile = per_cu->objfile;
23724 obstack_init (&cu->comp_unit_obstack);
23725 }
23726
23727 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23728
23729 static void
23730 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23731 enum language pretend_language)
23732 {
23733 struct attribute *attr;
23734
23735 /* Set the language we're debugging. */
23736 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23737 if (attr)
23738 set_cu_language (DW_UNSND (attr), cu);
23739 else
23740 {
23741 cu->language = pretend_language;
23742 cu->language_defn = language_def (cu->language);
23743 }
23744
23745 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23746 }
23747
23748 /* Release one cached compilation unit, CU. We unlink it from the tree
23749 of compilation units, but we don't remove it from the read_in_chain;
23750 the caller is responsible for that.
23751 NOTE: DATA is a void * because this function is also used as a
23752 cleanup routine. */
23753
23754 static void
23755 free_heap_comp_unit (void *data)
23756 {
23757 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23758
23759 gdb_assert (cu->per_cu != NULL);
23760 cu->per_cu->cu = NULL;
23761 cu->per_cu = NULL;
23762
23763 obstack_free (&cu->comp_unit_obstack, NULL);
23764
23765 xfree (cu);
23766 }
23767
23768 /* This cleanup function is passed the address of a dwarf2_cu on the stack
23769 when we're finished with it. We can't free the pointer itself, but be
23770 sure to unlink it from the cache. Also release any associated storage. */
23771
23772 static void
23773 free_stack_comp_unit (void *data)
23774 {
23775 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
23776
23777 gdb_assert (cu->per_cu != NULL);
23778 cu->per_cu->cu = NULL;
23779 cu->per_cu = NULL;
23780
23781 obstack_free (&cu->comp_unit_obstack, NULL);
23782 cu->partial_dies = NULL;
23783 }
23784
23785 /* Free all cached compilation units. */
23786
23787 static void
23788 free_cached_comp_units (void *data)
23789 {
23790 dwarf2_per_objfile->free_cached_comp_units ();
23791 }
23792
23793 /* Increase the age counter on each cached compilation unit, and free
23794 any that are too old. */
23795
23796 static void
23797 age_cached_comp_units (void)
23798 {
23799 struct dwarf2_per_cu_data *per_cu, **last_chain;
23800
23801 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23802 per_cu = dwarf2_per_objfile->read_in_chain;
23803 while (per_cu != NULL)
23804 {
23805 per_cu->cu->last_used ++;
23806 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23807 dwarf2_mark (per_cu->cu);
23808 per_cu = per_cu->cu->read_in_chain;
23809 }
23810
23811 per_cu = dwarf2_per_objfile->read_in_chain;
23812 last_chain = &dwarf2_per_objfile->read_in_chain;
23813 while (per_cu != NULL)
23814 {
23815 struct dwarf2_per_cu_data *next_cu;
23816
23817 next_cu = per_cu->cu->read_in_chain;
23818
23819 if (!per_cu->cu->mark)
23820 {
23821 free_heap_comp_unit (per_cu->cu);
23822 *last_chain = next_cu;
23823 }
23824 else
23825 last_chain = &per_cu->cu->read_in_chain;
23826
23827 per_cu = next_cu;
23828 }
23829 }
23830
23831 /* Remove a single compilation unit from the cache. */
23832
23833 static void
23834 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23835 {
23836 struct dwarf2_per_cu_data *per_cu, **last_chain;
23837
23838 per_cu = dwarf2_per_objfile->read_in_chain;
23839 last_chain = &dwarf2_per_objfile->read_in_chain;
23840 while (per_cu != NULL)
23841 {
23842 struct dwarf2_per_cu_data *next_cu;
23843
23844 next_cu = per_cu->cu->read_in_chain;
23845
23846 if (per_cu == target_per_cu)
23847 {
23848 free_heap_comp_unit (per_cu->cu);
23849 per_cu->cu = NULL;
23850 *last_chain = next_cu;
23851 break;
23852 }
23853 else
23854 last_chain = &per_cu->cu->read_in_chain;
23855
23856 per_cu = next_cu;
23857 }
23858 }
23859
23860 /* Release all extra memory associated with OBJFILE. */
23861
23862 void
23863 dwarf2_free_objfile (struct objfile *objfile)
23864 {
23865 dwarf2_per_objfile
23866 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23867 dwarf2_objfile_data_key);
23868
23869 if (dwarf2_per_objfile == NULL)
23870 return;
23871
23872 dwarf2_per_objfile->~dwarf2_per_objfile ();
23873 }
23874
23875 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23876 We store these in a hash table separate from the DIEs, and preserve them
23877 when the DIEs are flushed out of cache.
23878
23879 The CU "per_cu" pointer is needed because offset alone is not enough to
23880 uniquely identify the type. A file may have multiple .debug_types sections,
23881 or the type may come from a DWO file. Furthermore, while it's more logical
23882 to use per_cu->section+offset, with Fission the section with the data is in
23883 the DWO file but we don't know that section at the point we need it.
23884 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23885 because we can enter the lookup routine, get_die_type_at_offset, from
23886 outside this file, and thus won't necessarily have PER_CU->cu.
23887 Fortunately, PER_CU is stable for the life of the objfile. */
23888
23889 struct dwarf2_per_cu_offset_and_type
23890 {
23891 const struct dwarf2_per_cu_data *per_cu;
23892 sect_offset sect_off;
23893 struct type *type;
23894 };
23895
23896 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23897
23898 static hashval_t
23899 per_cu_offset_and_type_hash (const void *item)
23900 {
23901 const struct dwarf2_per_cu_offset_and_type *ofs
23902 = (const struct dwarf2_per_cu_offset_and_type *) item;
23903
23904 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23905 }
23906
23907 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23908
23909 static int
23910 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23911 {
23912 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23913 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23914 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23915 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23916
23917 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23918 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23919 }
23920
23921 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23922 table if necessary. For convenience, return TYPE.
23923
23924 The DIEs reading must have careful ordering to:
23925 * Not cause infite loops trying to read in DIEs as a prerequisite for
23926 reading current DIE.
23927 * Not trying to dereference contents of still incompletely read in types
23928 while reading in other DIEs.
23929 * Enable referencing still incompletely read in types just by a pointer to
23930 the type without accessing its fields.
23931
23932 Therefore caller should follow these rules:
23933 * Try to fetch any prerequisite types we may need to build this DIE type
23934 before building the type and calling set_die_type.
23935 * After building type call set_die_type for current DIE as soon as
23936 possible before fetching more types to complete the current type.
23937 * Make the type as complete as possible before fetching more types. */
23938
23939 static struct type *
23940 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23941 {
23942 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23943 struct objfile *objfile = cu->objfile;
23944 struct attribute *attr;
23945 struct dynamic_prop prop;
23946
23947 /* For Ada types, make sure that the gnat-specific data is always
23948 initialized (if not already set). There are a few types where
23949 we should not be doing so, because the type-specific area is
23950 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23951 where the type-specific area is used to store the floatformat).
23952 But this is not a problem, because the gnat-specific information
23953 is actually not needed for these types. */
23954 if (need_gnat_info (cu)
23955 && TYPE_CODE (type) != TYPE_CODE_FUNC
23956 && TYPE_CODE (type) != TYPE_CODE_FLT
23957 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23958 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23959 && TYPE_CODE (type) != TYPE_CODE_METHOD
23960 && !HAVE_GNAT_AUX_INFO (type))
23961 INIT_GNAT_SPECIFIC (type);
23962
23963 /* Read DW_AT_allocated and set in type. */
23964 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23965 if (attr_form_is_block (attr))
23966 {
23967 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23968 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23969 }
23970 else if (attr != NULL)
23971 {
23972 complaint (&symfile_complaints,
23973 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23974 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23975 to_underlying (die->sect_off));
23976 }
23977
23978 /* Read DW_AT_associated and set in type. */
23979 attr = dwarf2_attr (die, DW_AT_associated, cu);
23980 if (attr_form_is_block (attr))
23981 {
23982 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23983 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23984 }
23985 else if (attr != NULL)
23986 {
23987 complaint (&symfile_complaints,
23988 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23989 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23990 to_underlying (die->sect_off));
23991 }
23992
23993 /* Read DW_AT_data_location and set in type. */
23994 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23995 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23996 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
23997
23998 if (dwarf2_per_objfile->die_type_hash == NULL)
23999 {
24000 dwarf2_per_objfile->die_type_hash =
24001 htab_create_alloc_ex (127,
24002 per_cu_offset_and_type_hash,
24003 per_cu_offset_and_type_eq,
24004 NULL,
24005 &objfile->objfile_obstack,
24006 hashtab_obstack_allocate,
24007 dummy_obstack_deallocate);
24008 }
24009
24010 ofs.per_cu = cu->per_cu;
24011 ofs.sect_off = die->sect_off;
24012 ofs.type = type;
24013 slot = (struct dwarf2_per_cu_offset_and_type **)
24014 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
24015 if (*slot)
24016 complaint (&symfile_complaints,
24017 _("A problem internal to GDB: DIE 0x%x has type already set"),
24018 to_underlying (die->sect_off));
24019 *slot = XOBNEW (&objfile->objfile_obstack,
24020 struct dwarf2_per_cu_offset_and_type);
24021 **slot = ofs;
24022 return type;
24023 }
24024
24025 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24026 or return NULL if the die does not have a saved type. */
24027
24028 static struct type *
24029 get_die_type_at_offset (sect_offset sect_off,
24030 struct dwarf2_per_cu_data *per_cu)
24031 {
24032 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24033
24034 if (dwarf2_per_objfile->die_type_hash == NULL)
24035 return NULL;
24036
24037 ofs.per_cu = per_cu;
24038 ofs.sect_off = sect_off;
24039 slot = ((struct dwarf2_per_cu_offset_and_type *)
24040 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
24041 if (slot)
24042 return slot->type;
24043 else
24044 return NULL;
24045 }
24046
24047 /* Look up the type for DIE in CU in die_type_hash,
24048 or return NULL if DIE does not have a saved type. */
24049
24050 static struct type *
24051 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24052 {
24053 return get_die_type_at_offset (die->sect_off, cu->per_cu);
24054 }
24055
24056 /* Add a dependence relationship from CU to REF_PER_CU. */
24057
24058 static void
24059 dwarf2_add_dependence (struct dwarf2_cu *cu,
24060 struct dwarf2_per_cu_data *ref_per_cu)
24061 {
24062 void **slot;
24063
24064 if (cu->dependencies == NULL)
24065 cu->dependencies
24066 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
24067 NULL, &cu->comp_unit_obstack,
24068 hashtab_obstack_allocate,
24069 dummy_obstack_deallocate);
24070
24071 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
24072 if (*slot == NULL)
24073 *slot = ref_per_cu;
24074 }
24075
24076 /* Subroutine of dwarf2_mark to pass to htab_traverse.
24077 Set the mark field in every compilation unit in the
24078 cache that we must keep because we are keeping CU. */
24079
24080 static int
24081 dwarf2_mark_helper (void **slot, void *data)
24082 {
24083 struct dwarf2_per_cu_data *per_cu;
24084
24085 per_cu = (struct dwarf2_per_cu_data *) *slot;
24086
24087 /* cu->dependencies references may not yet have been ever read if QUIT aborts
24088 reading of the chain. As such dependencies remain valid it is not much
24089 useful to track and undo them during QUIT cleanups. */
24090 if (per_cu->cu == NULL)
24091 return 1;
24092
24093 if (per_cu->cu->mark)
24094 return 1;
24095 per_cu->cu->mark = 1;
24096
24097 if (per_cu->cu->dependencies != NULL)
24098 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
24099
24100 return 1;
24101 }
24102
24103 /* Set the mark field in CU and in every other compilation unit in the
24104 cache that we must keep because we are keeping CU. */
24105
24106 static void
24107 dwarf2_mark (struct dwarf2_cu *cu)
24108 {
24109 if (cu->mark)
24110 return;
24111 cu->mark = 1;
24112 if (cu->dependencies != NULL)
24113 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
24114 }
24115
24116 static void
24117 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
24118 {
24119 while (per_cu)
24120 {
24121 per_cu->cu->mark = 0;
24122 per_cu = per_cu->cu->read_in_chain;
24123 }
24124 }
24125
24126 /* Trivial hash function for partial_die_info: the hash value of a DIE
24127 is its offset in .debug_info for this objfile. */
24128
24129 static hashval_t
24130 partial_die_hash (const void *item)
24131 {
24132 const struct partial_die_info *part_die
24133 = (const struct partial_die_info *) item;
24134
24135 return to_underlying (part_die->sect_off);
24136 }
24137
24138 /* Trivial comparison function for partial_die_info structures: two DIEs
24139 are equal if they have the same offset. */
24140
24141 static int
24142 partial_die_eq (const void *item_lhs, const void *item_rhs)
24143 {
24144 const struct partial_die_info *part_die_lhs
24145 = (const struct partial_die_info *) item_lhs;
24146 const struct partial_die_info *part_die_rhs
24147 = (const struct partial_die_info *) item_rhs;
24148
24149 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24150 }
24151
24152 static struct cmd_list_element *set_dwarf_cmdlist;
24153 static struct cmd_list_element *show_dwarf_cmdlist;
24154
24155 static void
24156 set_dwarf_cmd (const char *args, int from_tty)
24157 {
24158 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
24159 gdb_stdout);
24160 }
24161
24162 static void
24163 show_dwarf_cmd (const char *args, int from_tty)
24164 {
24165 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
24166 }
24167
24168 /* Free data associated with OBJFILE, if necessary. */
24169
24170 static void
24171 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
24172 {
24173 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
24174 int ix;
24175
24176 /* Make sure we don't accidentally use dwarf2_per_objfile while
24177 cleaning up. */
24178 dwarf2_per_objfile = NULL;
24179
24180 for (ix = 0; ix < data->n_comp_units; ++ix)
24181 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
24182
24183 for (ix = 0; ix < data->n_type_units; ++ix)
24184 VEC_free (dwarf2_per_cu_ptr,
24185 data->all_type_units[ix]->per_cu.imported_symtabs);
24186 xfree (data->all_type_units);
24187
24188 VEC_free (dwarf2_section_info_def, data->types);
24189
24190 if (data->dwo_files)
24191 free_dwo_files (data->dwo_files, objfile);
24192 if (data->dwp_file)
24193 gdb_bfd_unref (data->dwp_file->dbfd);
24194
24195 if (data->dwz_file && data->dwz_file->dwz_bfd)
24196 gdb_bfd_unref (data->dwz_file->dwz_bfd);
24197
24198 if (data->index_table != NULL)
24199 data->index_table->~mapped_index ();
24200 }
24201
24202 \f
24203 /* The "save gdb-index" command. */
24204
24205 /* In-memory buffer to prepare data to be written later to a file. */
24206 class data_buf
24207 {
24208 public:
24209 /* Copy DATA to the end of the buffer. */
24210 template<typename T>
24211 void append_data (const T &data)
24212 {
24213 std::copy (reinterpret_cast<const gdb_byte *> (&data),
24214 reinterpret_cast<const gdb_byte *> (&data + 1),
24215 grow (sizeof (data)));
24216 }
24217
24218 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
24219 terminating zero is appended too. */
24220 void append_cstr0 (const char *cstr)
24221 {
24222 const size_t size = strlen (cstr) + 1;
24223 std::copy (cstr, cstr + size, grow (size));
24224 }
24225
24226 /* Accept a host-format integer in VAL and append it to the buffer
24227 as a target-format integer which is LEN bytes long. */
24228 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
24229 {
24230 ::store_unsigned_integer (grow (len), len, byte_order, val);
24231 }
24232
24233 /* Return the size of the buffer. */
24234 size_t size () const
24235 {
24236 return m_vec.size ();
24237 }
24238
24239 /* Write the buffer to FILE. */
24240 void file_write (FILE *file) const
24241 {
24242 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
24243 error (_("couldn't write data to file"));
24244 }
24245
24246 private:
24247 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
24248 the start of the new block. */
24249 gdb_byte *grow (size_t size)
24250 {
24251 m_vec.resize (m_vec.size () + size);
24252 return &*m_vec.end () - size;
24253 }
24254
24255 gdb::byte_vector m_vec;
24256 };
24257
24258 /* An entry in the symbol table. */
24259 struct symtab_index_entry
24260 {
24261 /* The name of the symbol. */
24262 const char *name;
24263 /* The offset of the name in the constant pool. */
24264 offset_type index_offset;
24265 /* A sorted vector of the indices of all the CUs that hold an object
24266 of this name. */
24267 std::vector<offset_type> cu_indices;
24268 };
24269
24270 /* The symbol table. This is a power-of-2-sized hash table. */
24271 struct mapped_symtab
24272 {
24273 mapped_symtab ()
24274 {
24275 data.resize (1024);
24276 }
24277
24278 offset_type n_elements = 0;
24279 std::vector<symtab_index_entry> data;
24280 };
24281
24282 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
24283 the slot.
24284
24285 Function is used only during write_hash_table so no index format backward
24286 compatibility is needed. */
24287
24288 static symtab_index_entry &
24289 find_slot (struct mapped_symtab *symtab, const char *name)
24290 {
24291 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
24292
24293 index = hash & (symtab->data.size () - 1);
24294 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
24295
24296 for (;;)
24297 {
24298 if (symtab->data[index].name == NULL
24299 || strcmp (name, symtab->data[index].name) == 0)
24300 return symtab->data[index];
24301 index = (index + step) & (symtab->data.size () - 1);
24302 }
24303 }
24304
24305 /* Expand SYMTAB's hash table. */
24306
24307 static void
24308 hash_expand (struct mapped_symtab *symtab)
24309 {
24310 auto old_entries = std::move (symtab->data);
24311
24312 symtab->data.clear ();
24313 symtab->data.resize (old_entries.size () * 2);
24314
24315 for (auto &it : old_entries)
24316 if (it.name != NULL)
24317 {
24318 auto &ref = find_slot (symtab, it.name);
24319 ref = std::move (it);
24320 }
24321 }
24322
24323 /* Add an entry to SYMTAB. NAME is the name of the symbol.
24324 CU_INDEX is the index of the CU in which the symbol appears.
24325 IS_STATIC is one if the symbol is static, otherwise zero (global). */
24326
24327 static void
24328 add_index_entry (struct mapped_symtab *symtab, const char *name,
24329 int is_static, gdb_index_symbol_kind kind,
24330 offset_type cu_index)
24331 {
24332 offset_type cu_index_and_attrs;
24333
24334 ++symtab->n_elements;
24335 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
24336 hash_expand (symtab);
24337
24338 symtab_index_entry &slot = find_slot (symtab, name);
24339 if (slot.name == NULL)
24340 {
24341 slot.name = name;
24342 /* index_offset is set later. */
24343 }
24344
24345 cu_index_and_attrs = 0;
24346 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
24347 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
24348 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
24349
24350 /* We don't want to record an index value twice as we want to avoid the
24351 duplication.
24352 We process all global symbols and then all static symbols
24353 (which would allow us to avoid the duplication by only having to check
24354 the last entry pushed), but a symbol could have multiple kinds in one CU.
24355 To keep things simple we don't worry about the duplication here and
24356 sort and uniqufy the list after we've processed all symbols. */
24357 slot.cu_indices.push_back (cu_index_and_attrs);
24358 }
24359
24360 /* Sort and remove duplicates of all symbols' cu_indices lists. */
24361
24362 static void
24363 uniquify_cu_indices (struct mapped_symtab *symtab)
24364 {
24365 for (auto &entry : symtab->data)
24366 {
24367 if (entry.name != NULL && !entry.cu_indices.empty ())
24368 {
24369 auto &cu_indices = entry.cu_indices;
24370 std::sort (cu_indices.begin (), cu_indices.end ());
24371 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
24372 cu_indices.erase (from, cu_indices.end ());
24373 }
24374 }
24375 }
24376
24377 /* A form of 'const char *' suitable for container keys. Only the
24378 pointer is stored. The strings themselves are compared, not the
24379 pointers. */
24380 class c_str_view
24381 {
24382 public:
24383 c_str_view (const char *cstr)
24384 : m_cstr (cstr)
24385 {}
24386
24387 bool operator== (const c_str_view &other) const
24388 {
24389 return strcmp (m_cstr, other.m_cstr) == 0;
24390 }
24391
24392 private:
24393 friend class c_str_view_hasher;
24394 const char *const m_cstr;
24395 };
24396
24397 /* A std::unordered_map::hasher for c_str_view that uses the right
24398 hash function for strings in a mapped index. */
24399 class c_str_view_hasher
24400 {
24401 public:
24402 size_t operator () (const c_str_view &x) const
24403 {
24404 return mapped_index_string_hash (INT_MAX, x.m_cstr);
24405 }
24406 };
24407
24408 /* A std::unordered_map::hasher for std::vector<>. */
24409 template<typename T>
24410 class vector_hasher
24411 {
24412 public:
24413 size_t operator () (const std::vector<T> &key) const
24414 {
24415 return iterative_hash (key.data (),
24416 sizeof (key.front ()) * key.size (), 0);
24417 }
24418 };
24419
24420 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
24421 constant pool entries going into the data buffer CPOOL. */
24422
24423 static void
24424 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
24425 {
24426 {
24427 /* Elements are sorted vectors of the indices of all the CUs that
24428 hold an object of this name. */
24429 std::unordered_map<std::vector<offset_type>, offset_type,
24430 vector_hasher<offset_type>>
24431 symbol_hash_table;
24432
24433 /* We add all the index vectors to the constant pool first, to
24434 ensure alignment is ok. */
24435 for (symtab_index_entry &entry : symtab->data)
24436 {
24437 if (entry.name == NULL)
24438 continue;
24439 gdb_assert (entry.index_offset == 0);
24440
24441 /* Finding before inserting is faster than always trying to
24442 insert, because inserting always allocates a node, does the
24443 lookup, and then destroys the new node if another node
24444 already had the same key. C++17 try_emplace will avoid
24445 this. */
24446 const auto found
24447 = symbol_hash_table.find (entry.cu_indices);
24448 if (found != symbol_hash_table.end ())
24449 {
24450 entry.index_offset = found->second;
24451 continue;
24452 }
24453
24454 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
24455 entry.index_offset = cpool.size ();
24456 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
24457 for (const auto index : entry.cu_indices)
24458 cpool.append_data (MAYBE_SWAP (index));
24459 }
24460 }
24461
24462 /* Now write out the hash table. */
24463 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
24464 for (const auto &entry : symtab->data)
24465 {
24466 offset_type str_off, vec_off;
24467
24468 if (entry.name != NULL)
24469 {
24470 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
24471 if (insertpair.second)
24472 cpool.append_cstr0 (entry.name);
24473 str_off = insertpair.first->second;
24474 vec_off = entry.index_offset;
24475 }
24476 else
24477 {
24478 /* While 0 is a valid constant pool index, it is not valid
24479 to have 0 for both offsets. */
24480 str_off = 0;
24481 vec_off = 0;
24482 }
24483
24484 output.append_data (MAYBE_SWAP (str_off));
24485 output.append_data (MAYBE_SWAP (vec_off));
24486 }
24487 }
24488
24489 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
24490
24491 /* Helper struct for building the address table. */
24492 struct addrmap_index_data
24493 {
24494 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
24495 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
24496 {}
24497
24498 struct objfile *objfile;
24499 data_buf &addr_vec;
24500 psym_index_map &cu_index_htab;
24501
24502 /* Non-zero if the previous_* fields are valid.
24503 We can't write an entry until we see the next entry (since it is only then
24504 that we know the end of the entry). */
24505 int previous_valid;
24506 /* Index of the CU in the table of all CUs in the index file. */
24507 unsigned int previous_cu_index;
24508 /* Start address of the CU. */
24509 CORE_ADDR previous_cu_start;
24510 };
24511
24512 /* Write an address entry to ADDR_VEC. */
24513
24514 static void
24515 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
24516 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
24517 {
24518 CORE_ADDR baseaddr;
24519
24520 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24521
24522 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
24523 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
24524 addr_vec.append_data (MAYBE_SWAP (cu_index));
24525 }
24526
24527 /* Worker function for traversing an addrmap to build the address table. */
24528
24529 static int
24530 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
24531 {
24532 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
24533 struct partial_symtab *pst = (struct partial_symtab *) obj;
24534
24535 if (data->previous_valid)
24536 add_address_entry (data->objfile, data->addr_vec,
24537 data->previous_cu_start, start_addr,
24538 data->previous_cu_index);
24539
24540 data->previous_cu_start = start_addr;
24541 if (pst != NULL)
24542 {
24543 const auto it = data->cu_index_htab.find (pst);
24544 gdb_assert (it != data->cu_index_htab.cend ());
24545 data->previous_cu_index = it->second;
24546 data->previous_valid = 1;
24547 }
24548 else
24549 data->previous_valid = 0;
24550
24551 return 0;
24552 }
24553
24554 /* Write OBJFILE's address map to ADDR_VEC.
24555 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
24556 in the index file. */
24557
24558 static void
24559 write_address_map (struct objfile *objfile, data_buf &addr_vec,
24560 psym_index_map &cu_index_htab)
24561 {
24562 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
24563
24564 /* When writing the address table, we have to cope with the fact that
24565 the addrmap iterator only provides the start of a region; we have to
24566 wait until the next invocation to get the start of the next region. */
24567
24568 addrmap_index_data.objfile = objfile;
24569 addrmap_index_data.previous_valid = 0;
24570
24571 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
24572 &addrmap_index_data);
24573
24574 /* It's highly unlikely the last entry (end address = 0xff...ff)
24575 is valid, but we should still handle it.
24576 The end address is recorded as the start of the next region, but that
24577 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
24578 anyway. */
24579 if (addrmap_index_data.previous_valid)
24580 add_address_entry (objfile, addr_vec,
24581 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
24582 addrmap_index_data.previous_cu_index);
24583 }
24584
24585 /* Return the symbol kind of PSYM. */
24586
24587 static gdb_index_symbol_kind
24588 symbol_kind (struct partial_symbol *psym)
24589 {
24590 domain_enum domain = PSYMBOL_DOMAIN (psym);
24591 enum address_class aclass = PSYMBOL_CLASS (psym);
24592
24593 switch (domain)
24594 {
24595 case VAR_DOMAIN:
24596 switch (aclass)
24597 {
24598 case LOC_BLOCK:
24599 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
24600 case LOC_TYPEDEF:
24601 return GDB_INDEX_SYMBOL_KIND_TYPE;
24602 case LOC_COMPUTED:
24603 case LOC_CONST_BYTES:
24604 case LOC_OPTIMIZED_OUT:
24605 case LOC_STATIC:
24606 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24607 case LOC_CONST:
24608 /* Note: It's currently impossible to recognize psyms as enum values
24609 short of reading the type info. For now punt. */
24610 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
24611 default:
24612 /* There are other LOC_FOO values that one might want to classify
24613 as variables, but dwarf2read.c doesn't currently use them. */
24614 return GDB_INDEX_SYMBOL_KIND_OTHER;
24615 }
24616 case STRUCT_DOMAIN:
24617 return GDB_INDEX_SYMBOL_KIND_TYPE;
24618 default:
24619 return GDB_INDEX_SYMBOL_KIND_OTHER;
24620 }
24621 }
24622
24623 /* Add a list of partial symbols to SYMTAB. */
24624
24625 static void
24626 write_psymbols (struct mapped_symtab *symtab,
24627 std::unordered_set<partial_symbol *> &psyms_seen,
24628 struct partial_symbol **psymp,
24629 int count,
24630 offset_type cu_index,
24631 int is_static)
24632 {
24633 for (; count-- > 0; ++psymp)
24634 {
24635 struct partial_symbol *psym = *psymp;
24636
24637 if (SYMBOL_LANGUAGE (psym) == language_ada)
24638 error (_("Ada is not currently supported by the index"));
24639
24640 /* Only add a given psymbol once. */
24641 if (psyms_seen.insert (psym).second)
24642 {
24643 gdb_index_symbol_kind kind = symbol_kind (psym);
24644
24645 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
24646 is_static, kind, cu_index);
24647 }
24648 }
24649 }
24650
24651 /* A helper struct used when iterating over debug_types. */
24652 struct signatured_type_index_data
24653 {
24654 signatured_type_index_data (data_buf &types_list_,
24655 std::unordered_set<partial_symbol *> &psyms_seen_)
24656 : types_list (types_list_), psyms_seen (psyms_seen_)
24657 {}
24658
24659 struct objfile *objfile;
24660 struct mapped_symtab *symtab;
24661 data_buf &types_list;
24662 std::unordered_set<partial_symbol *> &psyms_seen;
24663 int cu_index;
24664 };
24665
24666 /* A helper function that writes a single signatured_type to an
24667 obstack. */
24668
24669 static int
24670 write_one_signatured_type (void **slot, void *d)
24671 {
24672 struct signatured_type_index_data *info
24673 = (struct signatured_type_index_data *) d;
24674 struct signatured_type *entry = (struct signatured_type *) *slot;
24675 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
24676
24677 write_psymbols (info->symtab,
24678 info->psyms_seen,
24679 &info->objfile->global_psymbols[psymtab->globals_offset],
24680 psymtab->n_global_syms, info->cu_index,
24681 0);
24682 write_psymbols (info->symtab,
24683 info->psyms_seen,
24684 &info->objfile->static_psymbols[psymtab->statics_offset],
24685 psymtab->n_static_syms, info->cu_index,
24686 1);
24687
24688 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24689 to_underlying (entry->per_cu.sect_off));
24690 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
24691 to_underlying (entry->type_offset_in_tu));
24692 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
24693
24694 ++info->cu_index;
24695
24696 return 1;
24697 }
24698
24699 /* Recurse into all "included" dependencies and count their symbols as
24700 if they appeared in this psymtab. */
24701
24702 static void
24703 recursively_count_psymbols (struct partial_symtab *psymtab,
24704 size_t &psyms_seen)
24705 {
24706 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
24707 if (psymtab->dependencies[i]->user != NULL)
24708 recursively_count_psymbols (psymtab->dependencies[i],
24709 psyms_seen);
24710
24711 psyms_seen += psymtab->n_global_syms;
24712 psyms_seen += psymtab->n_static_syms;
24713 }
24714
24715 /* Recurse into all "included" dependencies and write their symbols as
24716 if they appeared in this psymtab. */
24717
24718 static void
24719 recursively_write_psymbols (struct objfile *objfile,
24720 struct partial_symtab *psymtab,
24721 struct mapped_symtab *symtab,
24722 std::unordered_set<partial_symbol *> &psyms_seen,
24723 offset_type cu_index)
24724 {
24725 int i;
24726
24727 for (i = 0; i < psymtab->number_of_dependencies; ++i)
24728 if (psymtab->dependencies[i]->user != NULL)
24729 recursively_write_psymbols (objfile, psymtab->dependencies[i],
24730 symtab, psyms_seen, cu_index);
24731
24732 write_psymbols (symtab,
24733 psyms_seen,
24734 &objfile->global_psymbols[psymtab->globals_offset],
24735 psymtab->n_global_syms, cu_index,
24736 0);
24737 write_psymbols (symtab,
24738 psyms_seen,
24739 &objfile->static_psymbols[psymtab->statics_offset],
24740 psymtab->n_static_syms, cu_index,
24741 1);
24742 }
24743
24744 /* Create an index file for OBJFILE in the directory DIR. */
24745
24746 static void
24747 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
24748 {
24749 if (dwarf2_per_objfile->using_index)
24750 error (_("Cannot use an index to create the index"));
24751
24752 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
24753 error (_("Cannot make an index when the file has multiple .debug_types sections"));
24754
24755 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
24756 return;
24757
24758 struct stat st;
24759 if (stat (objfile_name (objfile), &st) < 0)
24760 perror_with_name (objfile_name (objfile));
24761
24762 std::string filename (std::string (dir) + SLASH_STRING
24763 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
24764
24765 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
24766 if (!out_file)
24767 error (_("Can't open `%s' for writing"), filename.c_str ());
24768
24769 /* Order matters here; we want FILE to be closed before FILENAME is
24770 unlinked, because on MS-Windows one cannot delete a file that is
24771 still open. (Don't call anything here that might throw until
24772 file_closer is created.) */
24773 gdb::unlinker unlink_file (filename.c_str ());
24774 gdb_file_up close_out_file (out_file);
24775
24776 mapped_symtab symtab;
24777 data_buf cu_list;
24778
24779 /* While we're scanning CU's create a table that maps a psymtab pointer
24780 (which is what addrmap records) to its index (which is what is recorded
24781 in the index file). This will later be needed to write the address
24782 table. */
24783 psym_index_map cu_index_htab;
24784 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
24785
24786 /* The CU list is already sorted, so we don't need to do additional
24787 work here. Also, the debug_types entries do not appear in
24788 all_comp_units, but only in their own hash table. */
24789
24790 /* The psyms_seen set is potentially going to be largish (~40k
24791 elements when indexing a -g3 build of GDB itself). Estimate the
24792 number of elements in order to avoid too many rehashes, which
24793 require rebuilding buckets and thus many trips to
24794 malloc/free. */
24795 size_t psyms_count = 0;
24796 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24797 {
24798 struct dwarf2_per_cu_data *per_cu
24799 = dwarf2_per_objfile->all_comp_units[i];
24800 struct partial_symtab *psymtab = per_cu->v.psymtab;
24801
24802 if (psymtab != NULL && psymtab->user == NULL)
24803 recursively_count_psymbols (psymtab, psyms_count);
24804 }
24805 /* Generating an index for gdb itself shows a ratio of
24806 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
24807 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
24808 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24809 {
24810 struct dwarf2_per_cu_data *per_cu
24811 = dwarf2_per_objfile->all_comp_units[i];
24812 struct partial_symtab *psymtab = per_cu->v.psymtab;
24813
24814 /* CU of a shared file from 'dwz -m' may be unused by this main file.
24815 It may be referenced from a local scope but in such case it does not
24816 need to be present in .gdb_index. */
24817 if (psymtab == NULL)
24818 continue;
24819
24820 if (psymtab->user == NULL)
24821 recursively_write_psymbols (objfile, psymtab, &symtab,
24822 psyms_seen, i);
24823
24824 const auto insertpair = cu_index_htab.emplace (psymtab, i);
24825 gdb_assert (insertpair.second);
24826
24827 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
24828 to_underlying (per_cu->sect_off));
24829 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
24830 }
24831
24832 /* Dump the address map. */
24833 data_buf addr_vec;
24834 write_address_map (objfile, addr_vec, cu_index_htab);
24835
24836 /* Write out the .debug_type entries, if any. */
24837 data_buf types_cu_list;
24838 if (dwarf2_per_objfile->signatured_types)
24839 {
24840 signatured_type_index_data sig_data (types_cu_list,
24841 psyms_seen);
24842
24843 sig_data.objfile = objfile;
24844 sig_data.symtab = &symtab;
24845 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
24846 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
24847 write_one_signatured_type, &sig_data);
24848 }
24849
24850 /* Now that we've processed all symbols we can shrink their cu_indices
24851 lists. */
24852 uniquify_cu_indices (&symtab);
24853
24854 data_buf symtab_vec, constant_pool;
24855 write_hash_table (&symtab, symtab_vec, constant_pool);
24856
24857 data_buf contents;
24858 const offset_type size_of_contents = 6 * sizeof (offset_type);
24859 offset_type total_len = size_of_contents;
24860
24861 /* The version number. */
24862 contents.append_data (MAYBE_SWAP (8));
24863
24864 /* The offset of the CU list from the start of the file. */
24865 contents.append_data (MAYBE_SWAP (total_len));
24866 total_len += cu_list.size ();
24867
24868 /* The offset of the types CU list from the start of the file. */
24869 contents.append_data (MAYBE_SWAP (total_len));
24870 total_len += types_cu_list.size ();
24871
24872 /* The offset of the address table from the start of the file. */
24873 contents.append_data (MAYBE_SWAP (total_len));
24874 total_len += addr_vec.size ();
24875
24876 /* The offset of the symbol table from the start of the file. */
24877 contents.append_data (MAYBE_SWAP (total_len));
24878 total_len += symtab_vec.size ();
24879
24880 /* The offset of the constant pool from the start of the file. */
24881 contents.append_data (MAYBE_SWAP (total_len));
24882 total_len += constant_pool.size ();
24883
24884 gdb_assert (contents.size () == size_of_contents);
24885
24886 contents.file_write (out_file);
24887 cu_list.file_write (out_file);
24888 types_cu_list.file_write (out_file);
24889 addr_vec.file_write (out_file);
24890 symtab_vec.file_write (out_file);
24891 constant_pool.file_write (out_file);
24892
24893 /* We want to keep the file. */
24894 unlink_file.keep ();
24895 }
24896
24897 /* Implementation of the `save gdb-index' command.
24898
24899 Note that the file format used by this command is documented in the
24900 GDB manual. Any changes here must be documented there. */
24901
24902 static void
24903 save_gdb_index_command (const char *arg, int from_tty)
24904 {
24905 struct objfile *objfile;
24906
24907 if (!arg || !*arg)
24908 error (_("usage: save gdb-index DIRECTORY"));
24909
24910 ALL_OBJFILES (objfile)
24911 {
24912 struct stat st;
24913
24914 /* If the objfile does not correspond to an actual file, skip it. */
24915 if (stat (objfile_name (objfile), &st) < 0)
24916 continue;
24917
24918 dwarf2_per_objfile
24919 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24920 dwarf2_objfile_data_key);
24921 if (dwarf2_per_objfile)
24922 {
24923
24924 TRY
24925 {
24926 write_psymtabs_to_index (objfile, arg);
24927 }
24928 CATCH (except, RETURN_MASK_ERROR)
24929 {
24930 exception_fprintf (gdb_stderr, except,
24931 _("Error while writing index for `%s': "),
24932 objfile_name (objfile));
24933 }
24934 END_CATCH
24935 }
24936 }
24937 }
24938
24939 \f
24940
24941 int dwarf_always_disassemble;
24942
24943 static void
24944 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24945 struct cmd_list_element *c, const char *value)
24946 {
24947 fprintf_filtered (file,
24948 _("Whether to always disassemble "
24949 "DWARF expressions is %s.\n"),
24950 value);
24951 }
24952
24953 static void
24954 show_check_physname (struct ui_file *file, int from_tty,
24955 struct cmd_list_element *c, const char *value)
24956 {
24957 fprintf_filtered (file,
24958 _("Whether to check \"physname\" is %s.\n"),
24959 value);
24960 }
24961
24962 void
24963 _initialize_dwarf2_read (void)
24964 {
24965 struct cmd_list_element *c;
24966
24967 dwarf2_objfile_data_key
24968 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
24969
24970 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24971 Set DWARF specific variables.\n\
24972 Configure DWARF variables such as the cache size"),
24973 &set_dwarf_cmdlist, "maintenance set dwarf ",
24974 0/*allow-unknown*/, &maintenance_set_cmdlist);
24975
24976 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24977 Show DWARF specific variables\n\
24978 Show DWARF variables such as the cache size"),
24979 &show_dwarf_cmdlist, "maintenance show dwarf ",
24980 0/*allow-unknown*/, &maintenance_show_cmdlist);
24981
24982 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24983 &dwarf_max_cache_age, _("\
24984 Set the upper bound on the age of cached DWARF compilation units."), _("\
24985 Show the upper bound on the age of cached DWARF compilation units."), _("\
24986 A higher limit means that cached compilation units will be stored\n\
24987 in memory longer, and more total memory will be used. Zero disables\n\
24988 caching, which can slow down startup."),
24989 NULL,
24990 show_dwarf_max_cache_age,
24991 &set_dwarf_cmdlist,
24992 &show_dwarf_cmdlist);
24993
24994 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
24995 &dwarf_always_disassemble, _("\
24996 Set whether `info address' always disassembles DWARF expressions."), _("\
24997 Show whether `info address' always disassembles DWARF expressions."), _("\
24998 When enabled, DWARF expressions are always printed in an assembly-like\n\
24999 syntax. When disabled, expressions will be printed in a more\n\
25000 conversational style, when possible."),
25001 NULL,
25002 show_dwarf_always_disassemble,
25003 &set_dwarf_cmdlist,
25004 &show_dwarf_cmdlist);
25005
25006 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25007 Set debugging of the DWARF reader."), _("\
25008 Show debugging of the DWARF reader."), _("\
25009 When enabled (non-zero), debugging messages are printed during DWARF\n\
25010 reading and symtab expansion. A value of 1 (one) provides basic\n\
25011 information. A value greater than 1 provides more verbose information."),
25012 NULL,
25013 NULL,
25014 &setdebuglist, &showdebuglist);
25015
25016 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25017 Set debugging of the DWARF DIE reader."), _("\
25018 Show debugging of the DWARF DIE reader."), _("\
25019 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25020 The value is the maximum depth to print."),
25021 NULL,
25022 NULL,
25023 &setdebuglist, &showdebuglist);
25024
25025 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25026 Set debugging of the dwarf line reader."), _("\
25027 Show debugging of the dwarf line reader."), _("\
25028 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25029 A value of 1 (one) provides basic information.\n\
25030 A value greater than 1 provides more verbose information."),
25031 NULL,
25032 NULL,
25033 &setdebuglist, &showdebuglist);
25034
25035 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25036 Set cross-checking of \"physname\" code against demangler."), _("\
25037 Show cross-checking of \"physname\" code against demangler."), _("\
25038 When enabled, GDB's internal \"physname\" code is checked against\n\
25039 the demangler."),
25040 NULL, show_check_physname,
25041 &setdebuglist, &showdebuglist);
25042
25043 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25044 no_class, &use_deprecated_index_sections, _("\
25045 Set whether to use deprecated gdb_index sections."), _("\
25046 Show whether to use deprecated gdb_index sections."), _("\
25047 When enabled, deprecated .gdb_index sections are used anyway.\n\
25048 Normally they are ignored either because of a missing feature or\n\
25049 performance issue.\n\
25050 Warning: This option must be enabled before gdb reads the file."),
25051 NULL,
25052 NULL,
25053 &setlist, &showlist);
25054
25055 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
25056 _("\
25057 Save a gdb-index file.\n\
25058 Usage: save gdb-index DIRECTORY"),
25059 &save_cmdlist);
25060 set_cmd_completer (c, filename_completer);
25061
25062 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25063 &dwarf2_locexpr_funcs);
25064 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25065 &dwarf2_loclist_funcs);
25066
25067 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25068 &dwarf2_block_frame_base_locexpr_funcs);
25069 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25070 &dwarf2_block_frame_base_loclist_funcs);
25071
25072 #if GDB_SELF_TEST
25073 selftests::register_test ("dw2_expand_symtabs_matching",
25074 selftests::dw2_expand_symtabs_matching::run_test);
25075 #endif
25076 }
This page took 0.778459 seconds and 4 git commands to generate.