8a6684883cd7ba1936ab93c73f4dd239112c08e6
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75 #include <algorithm>
76
77 typedef struct symbol *symbolp;
78 DEF_VEC_P (symbolp);
79
80 /* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83 static unsigned int dwarf_read_debug = 0;
84
85 /* When non-zero, dump DIEs after they are read in. */
86 static unsigned int dwarf_die_debug = 0;
87
88 /* When non-zero, dump line number entries as they are read in. */
89 static unsigned int dwarf_line_debug = 0;
90
91 /* When non-zero, cross-check physname against demangler. */
92 static int check_physname = 0;
93
94 /* When non-zero, do not reject deprecated .gdb_index sections. */
95 static int use_deprecated_index_sections = 0;
96
97 static const struct objfile_data *dwarf2_objfile_data_key;
98
99 /* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101 static int dwarf2_locexpr_index;
102 static int dwarf2_loclist_index;
103 static int dwarf2_locexpr_block_index;
104 static int dwarf2_loclist_block_index;
105
106 /* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
122 struct dwarf2_section_info
123 {
124 union
125 {
126 /* If this is a real section, the bfd section. */
127 asection *section;
128 /* If this is a virtual section, pointer to the containing ("real")
129 section. */
130 struct dwarf2_section_info *containing_section;
131 } s;
132 /* Pointer to section data, only valid if readin. */
133 const gdb_byte *buffer;
134 /* The size of the section, real or virtual. */
135 bfd_size_type size;
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
139 /* True if we have tried to read this section. */
140 char readin;
141 /* True if this is a virtual section, False otherwise.
142 This specifies which of s.section and s.containing_section to use. */
143 char is_virtual;
144 };
145
146 typedef struct dwarf2_section_info dwarf2_section_info_def;
147 DEF_VEC_O (dwarf2_section_info_def);
148
149 /* All offsets in the index are of this type. It must be
150 architecture-independent. */
151 typedef uint32_t offset_type;
152
153 DEF_VEC_I (offset_type);
154
155 /* Ensure only legit values are used. */
156 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162 /* Ensure only legit values are used. */
163 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
171 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index
180 {
181 /* Index data format version. */
182 int version;
183
184 /* The total length of the buffer. */
185 off_t total_size;
186
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
189
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
192
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
195
196 /* Size in slots, each slot is 2 offset_types. */
197 offset_type symbol_table_slots;
198
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201 };
202
203 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204 DEF_VEC_P (dwarf2_per_cu_ptr);
205
206 struct tu_stats
207 {
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213 };
214
215 /* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
218 struct dwarf2_per_objfile
219 {
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
225 struct dwarf2_section_info macro;
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
228 struct dwarf2_section_info addr;
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
231 struct dwarf2_section_info gdb_index;
232
233 VEC (dwarf2_section_info_def) *types;
234
235 /* Back link. */
236 struct objfile *objfile;
237
238 /* Table of all the compilation units. This is used to locate
239 the target compilation unit of a particular reference. */
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
245 /* The number of .debug_types-related CUs. */
246 int n_type_units;
247
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
254 struct signatured_type **all_type_units;
255
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
259
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
266 struct tu_stats tu_stats;
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
289
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
292 unsigned char using_index;
293
294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
295 struct mapped_index *index_table;
296
297 /* When using index_table, this keeps track of all quick_file_names entries.
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
304 htab_t quick_file_names_table;
305
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
309
310 /* Table mapping type DIEs to their struct type *.
311 This is NULL if not allocated yet.
312 The mapping is done via (CU/TU + DIE offset) -> type. */
313 htab_t die_type_hash;
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
320 };
321
322 static struct dwarf2_per_objfile *dwarf2_per_objfile;
323
324 /* Default names of the debugging sections. */
325
326 /* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
329 static const struct dwarf2_debug_sections dwarf2_elf_names =
330 {
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
336 { ".debug_macro", ".zdebug_macro" },
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
340 { ".debug_addr", ".zdebug_addr" },
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
343 { ".gdb_index", ".zgdb_index" },
344 23
345 };
346
347 /* List of DWO/DWP sections. */
348
349 static const struct dwop_section_names
350 {
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
362 }
363 dwop_section_names =
364 {
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
376 };
377
378 /* local data types */
379
380 /* The data in a compilation unit header, after target2host
381 translation, looks like this. */
382 struct comp_unit_head
383 {
384 unsigned int length;
385 short version;
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
388 sect_offset abbrev_offset;
389
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
392
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
395
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
398 sect_offset offset;
399
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
402 cu_offset first_die_offset;
403 };
404
405 /* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407 struct delayed_method_info
408 {
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423 };
424
425 typedef struct delayed_method_info delayed_method_info;
426 DEF_VEC_O (delayed_method_info);
427
428 /* Internal state when decoding a particular compilation unit. */
429 struct dwarf2_cu
430 {
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
434 /* The header of the compilation unit. */
435 struct comp_unit_head header;
436
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
447 const char *producer;
448
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
464
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
479 /* Backlink to our per_cu entry. */
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
487 htab_t die_hash;
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE. */
521 ULONGEST addr_base;
522
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
525 Note this value comes from the Fission stub CU/TU's DIE.
526 Also note that the value is zero in the non-DWO case so this value can
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
533 ULONGEST ranges_base;
534
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 unsigned int has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
550 unsigned int producer_is_gcc_lt_4_3 : 1;
551 unsigned int producer_is_icc : 1;
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
558 };
559
560 /* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
562 read_symtab_private field of the psymtab. */
563
564 struct dwarf2_per_cu_data
565 {
566 /* The start offset and length of this compilation unit.
567 NOTE: Unlike comp_unit_head.length, this length includes
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
571 sect_offset offset;
572 unsigned int length;
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
576 unsigned int queued : 1;
577
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
587 unsigned int is_debug_types : 1;
588
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
611 struct dwarf2_section_info *section;
612
613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
616 struct dwarf2_cu *cu;
617
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
621 struct objfile *objfile;
622
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
628 or NULL for unread partial units. */
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
634
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
654 };
655
656 /* Entry in the signatured_types hash table. */
657
658 struct signatured_type
659 {
660 /* The "per_cu" object of this type.
661 This struct is used iff per_cu.is_debug_types.
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
666 /* The type's signature. */
667 ULONGEST signature;
668
669 /* Offset in the TU of the type's DIE, as read from the TU header.
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
693 };
694
695 typedef struct signatured_type *sig_type_ptr;
696 DEF_VEC_P (sig_type_ptr);
697
698 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701 struct stmt_list_hash
702 {
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708 };
709
710 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713 struct type_unit_group
714 {
715 /* dwarf2read.c's main "handle" on a TU symtab.
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
720 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
721 struct dwarf2_per_cu_data per_cu;
722
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
727
728 /* The compunit symtab.
729 Type units in a group needn't all be defined in the same source file,
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
732
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749 };
750
751 /* These sections are what may appear in a (real or virtual) DWO file. */
752
753 struct dwo_sections
754 {
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
764 VEC (dwarf2_section_info_def) *types;
765 };
766
767 /* CUs/TUs in DWP/DWO files. */
768
769 struct dwo_unit
770 {
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
780 struct dwarf2_section_info *section;
781
782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788 };
789
790 /* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794 enum dwp_v2_section_ids
795 {
796 DW_SECT_MIN = 1
797 };
798
799 /* Data for one DWO file.
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
809
810 struct dwo_file
811 {
812 /* The DW_AT_GNU_dwo_name attribute.
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
820
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
824
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
828 struct dwo_sections sections;
829
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840 };
841
842 /* These sections are what may appear in a DWP file. */
843
844 struct dwp_sections
845 {
846 /* These are used by both DWP version 1 and 2. */
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
867 };
868
869 /* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
871
872 struct virtual_v1_dwo_sections
873 {
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
881 That is recorded here, and copied to dwo_unit.section. */
882 struct dwarf2_section_info info_or_types;
883 };
884
885 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890 struct virtual_v2_dwo_sections
891 {
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914 };
915
916 /* Contents of DWP hash tables. */
917
918 struct dwp_hash_table
919 {
920 uint32_t version, nr_columns;
921 uint32_t nr_units, nr_slots;
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933 #define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
945 };
946
947 /* Data for one DWP file. */
948
949 struct dwp_file
950 {
951 /* Name of the file. */
952 const char *name;
953
954 /* File format version. */
955 int version;
956
957 /* The bfd. */
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
963 /* Table of CUs in the file. */
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
972
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
975 unsigned int num_sections;
976 asection **elf_sections;
977 };
978
979 /* This represents a '.dwz' file. */
980
981 struct dwz_file
982 {
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
989 struct dwarf2_section_info gdb_index;
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993 };
994
995 /* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
998 struct exists to abstract away the constant parameters of die reading. */
999
1000 struct die_reader_specs
1001 {
1002 /* The bfd of die_section. */
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1009 struct dwo_file *dwo_file;
1010
1011 /* The section the die comes from.
1012 This is either .debug_info or .debug_types, or the .dwo variants. */
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
1016 const gdb_byte *buffer;
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
1023 };
1024
1025 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1026 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1027 const gdb_byte *info_ptr,
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
1032 struct file_entry
1033 {
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
1042 };
1043
1044 /* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047 struct line_header
1048 {
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
1059 unsigned char maximum_ops_per_instruction;
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
1076 const char **include_dirs;
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
1082 struct file_entry *file_names;
1083
1084 /* The start and end of the statement program following this
1085 header. These point into dwarf2_per_objfile->line_buffer. */
1086 const gdb_byte *statement_program_start, *statement_program_end;
1087 };
1088
1089 /* When we construct a partial symbol table entry we only
1090 need this much information. */
1091 struct partial_die_info
1092 {
1093 /* Offset of this DIE. */
1094 sect_offset offset;
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
1106 unsigned int may_be_inlined : 1;
1107
1108 /* This DIE has been marked DW_AT_main_subprogram. */
1109 unsigned int main_subprogram : 1;
1110
1111 /* Flag set if the SCOPE field of this structure has been
1112 computed. */
1113 unsigned int scope_set : 1;
1114
1115 /* Flag set if the DIE has a byte_size attribute. */
1116 unsigned int has_byte_size : 1;
1117
1118 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1119 unsigned int has_const_value : 1;
1120
1121 /* Flag set if any of the DIE's children are template arguments. */
1122 unsigned int has_template_arguments : 1;
1123
1124 /* Flag set if fixup_partial_die has been called on this die. */
1125 unsigned int fixup_called : 1;
1126
1127 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1128 unsigned int is_dwz : 1;
1129
1130 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1131 unsigned int spec_is_dwz : 1;
1132
1133 /* The name of this DIE. Normally the value of DW_AT_name, but
1134 sometimes a default name for unnamed DIEs. */
1135 const char *name;
1136
1137 /* The linkage name, if present. */
1138 const char *linkage_name;
1139
1140 /* The scope to prepend to our children. This is generally
1141 allocated on the comp_unit_obstack, so will disappear
1142 when this compilation unit leaves the cache. */
1143 const char *scope;
1144
1145 /* Some data associated with the partial DIE. The tag determines
1146 which field is live. */
1147 union
1148 {
1149 /* The location description associated with this DIE, if any. */
1150 struct dwarf_block *locdesc;
1151 /* The offset of an import, for DW_TAG_imported_unit. */
1152 sect_offset offset;
1153 } d;
1154
1155 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1156 CORE_ADDR lowpc;
1157 CORE_ADDR highpc;
1158
1159 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1160 DW_AT_sibling, if any. */
1161 /* NOTE: This member isn't strictly necessary, read_partial_die could
1162 return DW_AT_sibling values to its caller load_partial_dies. */
1163 const gdb_byte *sibling;
1164
1165 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1166 DW_AT_specification (or DW_AT_abstract_origin or
1167 DW_AT_extension). */
1168 sect_offset spec_offset;
1169
1170 /* Pointers to this DIE's parent, first child, and next sibling,
1171 if any. */
1172 struct partial_die_info *die_parent, *die_child, *die_sibling;
1173 };
1174
1175 /* This data structure holds the information of an abbrev. */
1176 struct abbrev_info
1177 {
1178 unsigned int number; /* number identifying abbrev */
1179 enum dwarf_tag tag; /* dwarf tag */
1180 unsigned short has_children; /* boolean */
1181 unsigned short num_attrs; /* number of attributes */
1182 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1183 struct abbrev_info *next; /* next in chain */
1184 };
1185
1186 struct attr_abbrev
1187 {
1188 ENUM_BITFIELD(dwarf_attribute) name : 16;
1189 ENUM_BITFIELD(dwarf_form) form : 16;
1190 };
1191
1192 /* Size of abbrev_table.abbrev_hash_table. */
1193 #define ABBREV_HASH_SIZE 121
1194
1195 /* Top level data structure to contain an abbreviation table. */
1196
1197 struct abbrev_table
1198 {
1199 /* Where the abbrev table came from.
1200 This is used as a sanity check when the table is used. */
1201 sect_offset offset;
1202
1203 /* Storage for the abbrev table. */
1204 struct obstack abbrev_obstack;
1205
1206 /* Hash table of abbrevs.
1207 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1208 It could be statically allocated, but the previous code didn't so we
1209 don't either. */
1210 struct abbrev_info **abbrevs;
1211 };
1212
1213 /* Attributes have a name and a value. */
1214 struct attribute
1215 {
1216 ENUM_BITFIELD(dwarf_attribute) name : 16;
1217 ENUM_BITFIELD(dwarf_form) form : 15;
1218
1219 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1220 field should be in u.str (existing only for DW_STRING) but it is kept
1221 here for better struct attribute alignment. */
1222 unsigned int string_is_canonical : 1;
1223
1224 union
1225 {
1226 const char *str;
1227 struct dwarf_block *blk;
1228 ULONGEST unsnd;
1229 LONGEST snd;
1230 CORE_ADDR addr;
1231 ULONGEST signature;
1232 }
1233 u;
1234 };
1235
1236 /* This data structure holds a complete die structure. */
1237 struct die_info
1238 {
1239 /* DWARF-2 tag for this DIE. */
1240 ENUM_BITFIELD(dwarf_tag) tag : 16;
1241
1242 /* Number of attributes */
1243 unsigned char num_attrs;
1244
1245 /* True if we're presently building the full type name for the
1246 type derived from this DIE. */
1247 unsigned char building_fullname : 1;
1248
1249 /* True if this die is in process. PR 16581. */
1250 unsigned char in_process : 1;
1251
1252 /* Abbrev number */
1253 unsigned int abbrev;
1254
1255 /* Offset in .debug_info or .debug_types section. */
1256 sect_offset offset;
1257
1258 /* The dies in a compilation unit form an n-ary tree. PARENT
1259 points to this die's parent; CHILD points to the first child of
1260 this node; and all the children of a given node are chained
1261 together via their SIBLING fields. */
1262 struct die_info *child; /* Its first child, if any. */
1263 struct die_info *sibling; /* Its next sibling, if any. */
1264 struct die_info *parent; /* Its parent, if any. */
1265
1266 /* An array of attributes, with NUM_ATTRS elements. There may be
1267 zero, but it's not common and zero-sized arrays are not
1268 sufficiently portable C. */
1269 struct attribute attrs[1];
1270 };
1271
1272 /* Get at parts of an attribute structure. */
1273
1274 #define DW_STRING(attr) ((attr)->u.str)
1275 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1276 #define DW_UNSND(attr) ((attr)->u.unsnd)
1277 #define DW_BLOCK(attr) ((attr)->u.blk)
1278 #define DW_SND(attr) ((attr)->u.snd)
1279 #define DW_ADDR(attr) ((attr)->u.addr)
1280 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1281
1282 /* Blocks are a bunch of untyped bytes. */
1283 struct dwarf_block
1284 {
1285 size_t size;
1286
1287 /* Valid only if SIZE is not zero. */
1288 const gdb_byte *data;
1289 };
1290
1291 #ifndef ATTR_ALLOC_CHUNK
1292 #define ATTR_ALLOC_CHUNK 4
1293 #endif
1294
1295 /* Allocate fields for structs, unions and enums in this size. */
1296 #ifndef DW_FIELD_ALLOC_CHUNK
1297 #define DW_FIELD_ALLOC_CHUNK 4
1298 #endif
1299
1300 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1301 but this would require a corresponding change in unpack_field_as_long
1302 and friends. */
1303 static int bits_per_byte = 8;
1304
1305 struct nextfield
1306 {
1307 struct nextfield *next;
1308 int accessibility;
1309 int virtuality;
1310 struct field field;
1311 };
1312
1313 struct nextfnfield
1314 {
1315 struct nextfnfield *next;
1316 struct fn_field fnfield;
1317 };
1318
1319 struct fnfieldlist
1320 {
1321 const char *name;
1322 int length;
1323 struct nextfnfield *head;
1324 };
1325
1326 struct typedef_field_list
1327 {
1328 struct typedef_field field;
1329 struct typedef_field_list *next;
1330 };
1331
1332 /* The routines that read and process dies for a C struct or C++ class
1333 pass lists of data member fields and lists of member function fields
1334 in an instance of a field_info structure, as defined below. */
1335 struct field_info
1336 {
1337 /* List of data member and baseclasses fields. */
1338 struct nextfield *fields, *baseclasses;
1339
1340 /* Number of fields (including baseclasses). */
1341 int nfields;
1342
1343 /* Number of baseclasses. */
1344 int nbaseclasses;
1345
1346 /* Set if the accesibility of one of the fields is not public. */
1347 int non_public_fields;
1348
1349 /* Member function fields array, entries are allocated in the order they
1350 are encountered in the object file. */
1351 struct nextfnfield *fnfields;
1352
1353 /* Member function fieldlist array, contains name of possibly overloaded
1354 member function, number of overloaded member functions and a pointer
1355 to the head of the member function field chain. */
1356 struct fnfieldlist *fnfieldlists;
1357
1358 /* Number of entries in the fnfieldlists array. */
1359 int nfnfields;
1360
1361 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1362 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1363 struct typedef_field_list *typedef_field_list;
1364 unsigned typedef_field_list_count;
1365 };
1366
1367 /* One item on the queue of compilation units to read in full symbols
1368 for. */
1369 struct dwarf2_queue_item
1370 {
1371 struct dwarf2_per_cu_data *per_cu;
1372 enum language pretend_language;
1373 struct dwarf2_queue_item *next;
1374 };
1375
1376 /* The current queue. */
1377 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1378
1379 /* Loaded secondary compilation units are kept in memory until they
1380 have not been referenced for the processing of this many
1381 compilation units. Set this to zero to disable caching. Cache
1382 sizes of up to at least twenty will improve startup time for
1383 typical inter-CU-reference binaries, at an obvious memory cost. */
1384 static int dwarf_max_cache_age = 5;
1385 static void
1386 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1387 struct cmd_list_element *c, const char *value)
1388 {
1389 fprintf_filtered (file, _("The upper bound on the age of cached "
1390 "DWARF compilation units is %s.\n"),
1391 value);
1392 }
1393 \f
1394 /* local function prototypes */
1395
1396 static const char *get_section_name (const struct dwarf2_section_info *);
1397
1398 static const char *get_section_file_name (const struct dwarf2_section_info *);
1399
1400 static void dwarf2_locate_sections (bfd *, asection *, void *);
1401
1402 static void dwarf2_find_base_address (struct die_info *die,
1403 struct dwarf2_cu *cu);
1404
1405 static struct partial_symtab *create_partial_symtab
1406 (struct dwarf2_per_cu_data *per_cu, const char *name);
1407
1408 static void dwarf2_build_psymtabs_hard (struct objfile *);
1409
1410 static void scan_partial_symbols (struct partial_die_info *,
1411 CORE_ADDR *, CORE_ADDR *,
1412 int, struct dwarf2_cu *);
1413
1414 static void add_partial_symbol (struct partial_die_info *,
1415 struct dwarf2_cu *);
1416
1417 static void add_partial_namespace (struct partial_die_info *pdi,
1418 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1419 int set_addrmap, struct dwarf2_cu *cu);
1420
1421 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1422 CORE_ADDR *highpc, int set_addrmap,
1423 struct dwarf2_cu *cu);
1424
1425 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1426 struct dwarf2_cu *cu);
1427
1428 static void add_partial_subprogram (struct partial_die_info *pdi,
1429 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1430 int need_pc, struct dwarf2_cu *cu);
1431
1432 static void dwarf2_read_symtab (struct partial_symtab *,
1433 struct objfile *);
1434
1435 static void psymtab_to_symtab_1 (struct partial_symtab *);
1436
1437 static struct abbrev_info *abbrev_table_lookup_abbrev
1438 (const struct abbrev_table *, unsigned int);
1439
1440 static struct abbrev_table *abbrev_table_read_table
1441 (struct dwarf2_section_info *, sect_offset);
1442
1443 static void abbrev_table_free (struct abbrev_table *);
1444
1445 static void abbrev_table_free_cleanup (void *);
1446
1447 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1448 struct dwarf2_section_info *);
1449
1450 static void dwarf2_free_abbrev_table (void *);
1451
1452 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1453
1454 static struct partial_die_info *load_partial_dies
1455 (const struct die_reader_specs *, const gdb_byte *, int);
1456
1457 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1458 struct partial_die_info *,
1459 struct abbrev_info *,
1460 unsigned int,
1461 const gdb_byte *);
1462
1463 static struct partial_die_info *find_partial_die (sect_offset, int,
1464 struct dwarf2_cu *);
1465
1466 static void fixup_partial_die (struct partial_die_info *,
1467 struct dwarf2_cu *);
1468
1469 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1470 struct attribute *, struct attr_abbrev *,
1471 const gdb_byte *);
1472
1473 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1474
1475 static int read_1_signed_byte (bfd *, const gdb_byte *);
1476
1477 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1478
1479 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1480
1481 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1482
1483 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1484 unsigned int *);
1485
1486 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_checked_initial_length_and_offset
1489 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1490 unsigned int *, unsigned int *);
1491
1492 static LONGEST read_offset (bfd *, const gdb_byte *,
1493 const struct comp_unit_head *,
1494 unsigned int *);
1495
1496 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1497
1498 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1499 sect_offset);
1500
1501 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1502
1503 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static const char *read_indirect_string (bfd *, const gdb_byte *,
1506 const struct comp_unit_head *,
1507 unsigned int *);
1508
1509 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1510
1511 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1512
1513 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1514
1515 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1516 const gdb_byte *,
1517 unsigned int *);
1518
1519 static const char *read_str_index (const struct die_reader_specs *reader,
1520 ULONGEST str_index);
1521
1522 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1523
1524 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1525 struct dwarf2_cu *);
1526
1527 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1528 unsigned int);
1529
1530 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1531 struct dwarf2_cu *cu);
1532
1533 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1534 struct dwarf2_cu *cu);
1535
1536 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1537
1538 static struct die_info *die_specification (struct die_info *die,
1539 struct dwarf2_cu **);
1540
1541 static void free_line_header (struct line_header *lh);
1542
1543 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1544 struct dwarf2_cu *cu);
1545
1546 static void dwarf_decode_lines (struct line_header *, const char *,
1547 struct dwarf2_cu *, struct partial_symtab *,
1548 CORE_ADDR, int decode_mapping);
1549
1550 static void dwarf2_start_subfile (const char *, const char *);
1551
1552 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1553 const char *, const char *,
1554 CORE_ADDR);
1555
1556 static struct symbol *new_symbol (struct die_info *, struct type *,
1557 struct dwarf2_cu *);
1558
1559 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1560 struct dwarf2_cu *, struct symbol *);
1561
1562 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1563 struct dwarf2_cu *);
1564
1565 static void dwarf2_const_value_attr (const struct attribute *attr,
1566 struct type *type,
1567 const char *name,
1568 struct obstack *obstack,
1569 struct dwarf2_cu *cu, LONGEST *value,
1570 const gdb_byte **bytes,
1571 struct dwarf2_locexpr_baton **baton);
1572
1573 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1574
1575 static int need_gnat_info (struct dwarf2_cu *);
1576
1577 static struct type *die_descriptive_type (struct die_info *,
1578 struct dwarf2_cu *);
1579
1580 static void set_descriptive_type (struct type *, struct die_info *,
1581 struct dwarf2_cu *);
1582
1583 static struct type *die_containing_type (struct die_info *,
1584 struct dwarf2_cu *);
1585
1586 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1587 struct dwarf2_cu *);
1588
1589 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1590
1591 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1592
1593 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1594
1595 static char *typename_concat (struct obstack *obs, const char *prefix,
1596 const char *suffix, int physname,
1597 struct dwarf2_cu *cu);
1598
1599 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1600
1601 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1602
1603 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1604
1605 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1606
1607 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1608
1609 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1610 struct dwarf2_cu *, struct partial_symtab *);
1611
1612 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1613 values. Keep the items ordered with increasing constraints compliance. */
1614 enum pc_bounds_kind
1615 {
1616 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1617 PC_BOUNDS_NOT_PRESENT,
1618
1619 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1620 were present but they do not form a valid range of PC addresses. */
1621 PC_BOUNDS_INVALID,
1622
1623 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1624 PC_BOUNDS_RANGES,
1625
1626 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1627 PC_BOUNDS_HIGH_LOW,
1628 };
1629
1630 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1631 CORE_ADDR *, CORE_ADDR *,
1632 struct dwarf2_cu *,
1633 struct partial_symtab *);
1634
1635 static void get_scope_pc_bounds (struct die_info *,
1636 CORE_ADDR *, CORE_ADDR *,
1637 struct dwarf2_cu *);
1638
1639 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1640 CORE_ADDR, struct dwarf2_cu *);
1641
1642 static void dwarf2_add_field (struct field_info *, struct die_info *,
1643 struct dwarf2_cu *);
1644
1645 static void dwarf2_attach_fields_to_type (struct field_info *,
1646 struct type *, struct dwarf2_cu *);
1647
1648 static void dwarf2_add_member_fn (struct field_info *,
1649 struct die_info *, struct type *,
1650 struct dwarf2_cu *);
1651
1652 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1653 struct type *,
1654 struct dwarf2_cu *);
1655
1656 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1657
1658 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1659
1660 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1661
1662 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1663
1664 static struct using_direct **using_directives (enum language);
1665
1666 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1667
1668 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1669
1670 static struct type *read_module_type (struct die_info *die,
1671 struct dwarf2_cu *cu);
1672
1673 static const char *namespace_name (struct die_info *die,
1674 int *is_anonymous, struct dwarf2_cu *);
1675
1676 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1677
1678 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1679
1680 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1681 struct dwarf2_cu *);
1682
1683 static struct die_info *read_die_and_siblings_1
1684 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1685 struct die_info *);
1686
1687 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1688 const gdb_byte *info_ptr,
1689 const gdb_byte **new_info_ptr,
1690 struct die_info *parent);
1691
1692 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1693 struct die_info **, const gdb_byte *,
1694 int *, int);
1695
1696 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1697 struct die_info **, const gdb_byte *,
1698 int *);
1699
1700 static void process_die (struct die_info *, struct dwarf2_cu *);
1701
1702 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1703 struct obstack *);
1704
1705 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1706
1707 static const char *dwarf2_full_name (const char *name,
1708 struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
1711 static const char *dwarf2_physname (const char *name, struct die_info *die,
1712 struct dwarf2_cu *cu);
1713
1714 static struct die_info *dwarf2_extension (struct die_info *die,
1715 struct dwarf2_cu **);
1716
1717 static const char *dwarf_tag_name (unsigned int);
1718
1719 static const char *dwarf_attr_name (unsigned int);
1720
1721 static const char *dwarf_form_name (unsigned int);
1722
1723 static char *dwarf_bool_name (unsigned int);
1724
1725 static const char *dwarf_type_encoding_name (unsigned int);
1726
1727 static struct die_info *sibling_die (struct die_info *);
1728
1729 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1730
1731 static void dump_die_for_error (struct die_info *);
1732
1733 static void dump_die_1 (struct ui_file *, int level, int max_level,
1734 struct die_info *);
1735
1736 /*static*/ void dump_die (struct die_info *, int max_level);
1737
1738 static void store_in_ref_table (struct die_info *,
1739 struct dwarf2_cu *);
1740
1741 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1742
1743 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1744
1745 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1746 const struct attribute *,
1747 struct dwarf2_cu **);
1748
1749 static struct die_info *follow_die_ref (struct die_info *,
1750 const struct attribute *,
1751 struct dwarf2_cu **);
1752
1753 static struct die_info *follow_die_sig (struct die_info *,
1754 const struct attribute *,
1755 struct dwarf2_cu **);
1756
1757 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1758 struct dwarf2_cu *);
1759
1760 static struct type *get_DW_AT_signature_type (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu *);
1763
1764 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1765
1766 static void read_signatured_type (struct signatured_type *);
1767
1768 static int attr_to_dynamic_prop (const struct attribute *attr,
1769 struct die_info *die, struct dwarf2_cu *cu,
1770 struct dynamic_prop *prop);
1771
1772 /* memory allocation interface */
1773
1774 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1775
1776 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1777
1778 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1779
1780 static int attr_form_is_block (const struct attribute *);
1781
1782 static int attr_form_is_section_offset (const struct attribute *);
1783
1784 static int attr_form_is_constant (const struct attribute *);
1785
1786 static int attr_form_is_ref (const struct attribute *);
1787
1788 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1789 struct dwarf2_loclist_baton *baton,
1790 const struct attribute *attr);
1791
1792 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1793 struct symbol *sym,
1794 struct dwarf2_cu *cu,
1795 int is_block);
1796
1797 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1798 const gdb_byte *info_ptr,
1799 struct abbrev_info *abbrev);
1800
1801 static void free_stack_comp_unit (void *);
1802
1803 static hashval_t partial_die_hash (const void *item);
1804
1805 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1806
1807 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1808 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1809
1810 static void init_one_comp_unit (struct dwarf2_cu *cu,
1811 struct dwarf2_per_cu_data *per_cu);
1812
1813 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1814 struct die_info *comp_unit_die,
1815 enum language pretend_language);
1816
1817 static void free_heap_comp_unit (void *);
1818
1819 static void free_cached_comp_units (void *);
1820
1821 static void age_cached_comp_units (void);
1822
1823 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1824
1825 static struct type *set_die_type (struct die_info *, struct type *,
1826 struct dwarf2_cu *);
1827
1828 static void create_all_comp_units (struct objfile *);
1829
1830 static int create_all_type_units (struct objfile *);
1831
1832 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
1834
1835 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void dwarf2_add_dependence (struct dwarf2_cu *,
1842 struct dwarf2_per_cu_data *);
1843
1844 static void dwarf2_mark (struct dwarf2_cu *);
1845
1846 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1847
1848 static struct type *get_die_type_at_offset (sect_offset,
1849 struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1852
1853 static void dwarf2_release_queue (void *dummy);
1854
1855 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1856 enum language pretend_language);
1857
1858 static void process_queue (void);
1859
1860 static void find_file_and_directory (struct die_info *die,
1861 struct dwarf2_cu *cu,
1862 const char **name, const char **comp_dir);
1863
1864 static char *file_full_name (int file, struct line_header *lh,
1865 const char *comp_dir);
1866
1867 static const gdb_byte *read_and_check_comp_unit_head
1868 (struct comp_unit_head *header,
1869 struct dwarf2_section_info *section,
1870 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1871 int is_debug_types_section);
1872
1873 static void init_cutu_and_read_dies
1874 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1875 int use_existing_cu, int keep,
1876 die_reader_func_ftype *die_reader_func, void *data);
1877
1878 static void init_cutu_and_read_dies_simple
1879 (struct dwarf2_per_cu_data *this_cu,
1880 die_reader_func_ftype *die_reader_func, void *data);
1881
1882 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1883
1884 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1885
1886 static struct dwo_unit *lookup_dwo_unit_in_dwp
1887 (struct dwp_file *dwp_file, const char *comp_dir,
1888 ULONGEST signature, int is_debug_types);
1889
1890 static struct dwp_file *get_dwp_file (void);
1891
1892 static struct dwo_unit *lookup_dwo_comp_unit
1893 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1894
1895 static struct dwo_unit *lookup_dwo_type_unit
1896 (struct signatured_type *, const char *, const char *);
1897
1898 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1899
1900 static void free_dwo_file_cleanup (void *);
1901
1902 static void process_cu_includes (void);
1903
1904 static void check_producer (struct dwarf2_cu *cu);
1905
1906 static void free_line_header_voidp (void *arg);
1907 \f
1908 /* Various complaints about symbol reading that don't abort the process. */
1909
1910 static void
1911 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1912 {
1913 complaint (&symfile_complaints,
1914 _("statement list doesn't fit in .debug_line section"));
1915 }
1916
1917 static void
1918 dwarf2_debug_line_missing_file_complaint (void)
1919 {
1920 complaint (&symfile_complaints,
1921 _(".debug_line section has line data without a file"));
1922 }
1923
1924 static void
1925 dwarf2_debug_line_missing_end_sequence_complaint (void)
1926 {
1927 complaint (&symfile_complaints,
1928 _(".debug_line section has line "
1929 "program sequence without an end"));
1930 }
1931
1932 static void
1933 dwarf2_complex_location_expr_complaint (void)
1934 {
1935 complaint (&symfile_complaints, _("location expression too complex"));
1936 }
1937
1938 static void
1939 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1940 int arg3)
1941 {
1942 complaint (&symfile_complaints,
1943 _("const value length mismatch for '%s', got %d, expected %d"),
1944 arg1, arg2, arg3);
1945 }
1946
1947 static void
1948 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1949 {
1950 complaint (&symfile_complaints,
1951 _("debug info runs off end of %s section"
1952 " [in module %s]"),
1953 get_section_name (section),
1954 get_section_file_name (section));
1955 }
1956
1957 static void
1958 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1959 {
1960 complaint (&symfile_complaints,
1961 _("macro debug info contains a "
1962 "malformed macro definition:\n`%s'"),
1963 arg1);
1964 }
1965
1966 static void
1967 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1968 {
1969 complaint (&symfile_complaints,
1970 _("invalid attribute class or form for '%s' in '%s'"),
1971 arg1, arg2);
1972 }
1973
1974 /* Hash function for line_header_hash. */
1975
1976 static hashval_t
1977 line_header_hash (const struct line_header *ofs)
1978 {
1979 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1980 }
1981
1982 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1983
1984 static hashval_t
1985 line_header_hash_voidp (const void *item)
1986 {
1987 const struct line_header *ofs = (const struct line_header *) item;
1988
1989 return line_header_hash (ofs);
1990 }
1991
1992 /* Equality function for line_header_hash. */
1993
1994 static int
1995 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1996 {
1997 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1998 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1999
2000 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
2001 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2002 }
2003
2004 \f
2005 #if WORDS_BIGENDIAN
2006
2007 /* Convert VALUE between big- and little-endian. */
2008 static offset_type
2009 byte_swap (offset_type value)
2010 {
2011 offset_type result;
2012
2013 result = (value & 0xff) << 24;
2014 result |= (value & 0xff00) << 8;
2015 result |= (value & 0xff0000) >> 8;
2016 result |= (value & 0xff000000) >> 24;
2017 return result;
2018 }
2019
2020 #define MAYBE_SWAP(V) byte_swap (V)
2021
2022 #else
2023 #define MAYBE_SWAP(V) (V)
2024 #endif /* WORDS_BIGENDIAN */
2025
2026 /* Read the given attribute value as an address, taking the attribute's
2027 form into account. */
2028
2029 static CORE_ADDR
2030 attr_value_as_address (struct attribute *attr)
2031 {
2032 CORE_ADDR addr;
2033
2034 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2035 {
2036 /* Aside from a few clearly defined exceptions, attributes that
2037 contain an address must always be in DW_FORM_addr form.
2038 Unfortunately, some compilers happen to be violating this
2039 requirement by encoding addresses using other forms, such
2040 as DW_FORM_data4 for example. For those broken compilers,
2041 we try to do our best, without any guarantee of success,
2042 to interpret the address correctly. It would also be nice
2043 to generate a complaint, but that would require us to maintain
2044 a list of legitimate cases where a non-address form is allowed,
2045 as well as update callers to pass in at least the CU's DWARF
2046 version. This is more overhead than what we're willing to
2047 expand for a pretty rare case. */
2048 addr = DW_UNSND (attr);
2049 }
2050 else
2051 addr = DW_ADDR (attr);
2052
2053 return addr;
2054 }
2055
2056 /* The suffix for an index file. */
2057 #define INDEX_SUFFIX ".gdb-index"
2058
2059 /* Try to locate the sections we need for DWARF 2 debugging
2060 information and return true if we have enough to do something.
2061 NAMES points to the dwarf2 section names, or is NULL if the standard
2062 ELF names are used. */
2063
2064 int
2065 dwarf2_has_info (struct objfile *objfile,
2066 const struct dwarf2_debug_sections *names)
2067 {
2068 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2069 objfile_data (objfile, dwarf2_objfile_data_key));
2070 if (!dwarf2_per_objfile)
2071 {
2072 /* Initialize per-objfile state. */
2073 struct dwarf2_per_objfile *data
2074 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
2075
2076 memset (data, 0, sizeof (*data));
2077 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2078 dwarf2_per_objfile = data;
2079
2080 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2081 (void *) names);
2082 dwarf2_per_objfile->objfile = objfile;
2083 }
2084 return (!dwarf2_per_objfile->info.is_virtual
2085 && dwarf2_per_objfile->info.s.section != NULL
2086 && !dwarf2_per_objfile->abbrev.is_virtual
2087 && dwarf2_per_objfile->abbrev.s.section != NULL);
2088 }
2089
2090 /* Return the containing section of virtual section SECTION. */
2091
2092 static struct dwarf2_section_info *
2093 get_containing_section (const struct dwarf2_section_info *section)
2094 {
2095 gdb_assert (section->is_virtual);
2096 return section->s.containing_section;
2097 }
2098
2099 /* Return the bfd owner of SECTION. */
2100
2101 static struct bfd *
2102 get_section_bfd_owner (const struct dwarf2_section_info *section)
2103 {
2104 if (section->is_virtual)
2105 {
2106 section = get_containing_section (section);
2107 gdb_assert (!section->is_virtual);
2108 }
2109 return section->s.section->owner;
2110 }
2111
2112 /* Return the bfd section of SECTION.
2113 Returns NULL if the section is not present. */
2114
2115 static asection *
2116 get_section_bfd_section (const struct dwarf2_section_info *section)
2117 {
2118 if (section->is_virtual)
2119 {
2120 section = get_containing_section (section);
2121 gdb_assert (!section->is_virtual);
2122 }
2123 return section->s.section;
2124 }
2125
2126 /* Return the name of SECTION. */
2127
2128 static const char *
2129 get_section_name (const struct dwarf2_section_info *section)
2130 {
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 gdb_assert (sectp != NULL);
2134 return bfd_section_name (get_section_bfd_owner (section), sectp);
2135 }
2136
2137 /* Return the name of the file SECTION is in. */
2138
2139 static const char *
2140 get_section_file_name (const struct dwarf2_section_info *section)
2141 {
2142 bfd *abfd = get_section_bfd_owner (section);
2143
2144 return bfd_get_filename (abfd);
2145 }
2146
2147 /* Return the id of SECTION.
2148 Returns 0 if SECTION doesn't exist. */
2149
2150 static int
2151 get_section_id (const struct dwarf2_section_info *section)
2152 {
2153 asection *sectp = get_section_bfd_section (section);
2154
2155 if (sectp == NULL)
2156 return 0;
2157 return sectp->id;
2158 }
2159
2160 /* Return the flags of SECTION.
2161 SECTION (or containing section if this is a virtual section) must exist. */
2162
2163 static int
2164 get_section_flags (const struct dwarf2_section_info *section)
2165 {
2166 asection *sectp = get_section_bfd_section (section);
2167
2168 gdb_assert (sectp != NULL);
2169 return bfd_get_section_flags (sectp->owner, sectp);
2170 }
2171
2172 /* When loading sections, we look either for uncompressed section or for
2173 compressed section names. */
2174
2175 static int
2176 section_is_p (const char *section_name,
2177 const struct dwarf2_section_names *names)
2178 {
2179 if (names->normal != NULL
2180 && strcmp (section_name, names->normal) == 0)
2181 return 1;
2182 if (names->compressed != NULL
2183 && strcmp (section_name, names->compressed) == 0)
2184 return 1;
2185 return 0;
2186 }
2187
2188 /* This function is mapped across the sections and remembers the
2189 offset and size of each of the debugging sections we are interested
2190 in. */
2191
2192 static void
2193 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2194 {
2195 const struct dwarf2_debug_sections *names;
2196 flagword aflag = bfd_get_section_flags (abfd, sectp);
2197
2198 if (vnames == NULL)
2199 names = &dwarf2_elf_names;
2200 else
2201 names = (const struct dwarf2_debug_sections *) vnames;
2202
2203 if ((aflag & SEC_HAS_CONTENTS) == 0)
2204 {
2205 }
2206 else if (section_is_p (sectp->name, &names->info))
2207 {
2208 dwarf2_per_objfile->info.s.section = sectp;
2209 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2210 }
2211 else if (section_is_p (sectp->name, &names->abbrev))
2212 {
2213 dwarf2_per_objfile->abbrev.s.section = sectp;
2214 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2215 }
2216 else if (section_is_p (sectp->name, &names->line))
2217 {
2218 dwarf2_per_objfile->line.s.section = sectp;
2219 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2220 }
2221 else if (section_is_p (sectp->name, &names->loc))
2222 {
2223 dwarf2_per_objfile->loc.s.section = sectp;
2224 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2225 }
2226 else if (section_is_p (sectp->name, &names->macinfo))
2227 {
2228 dwarf2_per_objfile->macinfo.s.section = sectp;
2229 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2230 }
2231 else if (section_is_p (sectp->name, &names->macro))
2232 {
2233 dwarf2_per_objfile->macro.s.section = sectp;
2234 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2235 }
2236 else if (section_is_p (sectp->name, &names->str))
2237 {
2238 dwarf2_per_objfile->str.s.section = sectp;
2239 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2240 }
2241 else if (section_is_p (sectp->name, &names->addr))
2242 {
2243 dwarf2_per_objfile->addr.s.section = sectp;
2244 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2245 }
2246 else if (section_is_p (sectp->name, &names->frame))
2247 {
2248 dwarf2_per_objfile->frame.s.section = sectp;
2249 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2250 }
2251 else if (section_is_p (sectp->name, &names->eh_frame))
2252 {
2253 dwarf2_per_objfile->eh_frame.s.section = sectp;
2254 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2255 }
2256 else if (section_is_p (sectp->name, &names->ranges))
2257 {
2258 dwarf2_per_objfile->ranges.s.section = sectp;
2259 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2260 }
2261 else if (section_is_p (sectp->name, &names->types))
2262 {
2263 struct dwarf2_section_info type_section;
2264
2265 memset (&type_section, 0, sizeof (type_section));
2266 type_section.s.section = sectp;
2267 type_section.size = bfd_get_section_size (sectp);
2268
2269 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2270 &type_section);
2271 }
2272 else if (section_is_p (sectp->name, &names->gdb_index))
2273 {
2274 dwarf2_per_objfile->gdb_index.s.section = sectp;
2275 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2276 }
2277
2278 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2279 && bfd_section_vma (abfd, sectp) == 0)
2280 dwarf2_per_objfile->has_section_at_zero = 1;
2281 }
2282
2283 /* A helper function that decides whether a section is empty,
2284 or not present. */
2285
2286 static int
2287 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2288 {
2289 if (section->is_virtual)
2290 return section->size == 0;
2291 return section->s.section == NULL || section->size == 0;
2292 }
2293
2294 /* Read the contents of the section INFO.
2295 OBJFILE is the main object file, but not necessarily the file where
2296 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2297 of the DWO file.
2298 If the section is compressed, uncompress it before returning. */
2299
2300 static void
2301 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2302 {
2303 asection *sectp;
2304 bfd *abfd;
2305 gdb_byte *buf, *retbuf;
2306
2307 if (info->readin)
2308 return;
2309 info->buffer = NULL;
2310 info->readin = 1;
2311
2312 if (dwarf2_section_empty_p (info))
2313 return;
2314
2315 sectp = get_section_bfd_section (info);
2316
2317 /* If this is a virtual section we need to read in the real one first. */
2318 if (info->is_virtual)
2319 {
2320 struct dwarf2_section_info *containing_section =
2321 get_containing_section (info);
2322
2323 gdb_assert (sectp != NULL);
2324 if ((sectp->flags & SEC_RELOC) != 0)
2325 {
2326 error (_("Dwarf Error: DWP format V2 with relocations is not"
2327 " supported in section %s [in module %s]"),
2328 get_section_name (info), get_section_file_name (info));
2329 }
2330 dwarf2_read_section (objfile, containing_section);
2331 /* Other code should have already caught virtual sections that don't
2332 fit. */
2333 gdb_assert (info->virtual_offset + info->size
2334 <= containing_section->size);
2335 /* If the real section is empty or there was a problem reading the
2336 section we shouldn't get here. */
2337 gdb_assert (containing_section->buffer != NULL);
2338 info->buffer = containing_section->buffer + info->virtual_offset;
2339 return;
2340 }
2341
2342 /* If the section has relocations, we must read it ourselves.
2343 Otherwise we attach it to the BFD. */
2344 if ((sectp->flags & SEC_RELOC) == 0)
2345 {
2346 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2347 return;
2348 }
2349
2350 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2351 info->buffer = buf;
2352
2353 /* When debugging .o files, we may need to apply relocations; see
2354 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2355 We never compress sections in .o files, so we only need to
2356 try this when the section is not compressed. */
2357 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2358 if (retbuf != NULL)
2359 {
2360 info->buffer = retbuf;
2361 return;
2362 }
2363
2364 abfd = get_section_bfd_owner (info);
2365 gdb_assert (abfd != NULL);
2366
2367 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2368 || bfd_bread (buf, info->size, abfd) != info->size)
2369 {
2370 error (_("Dwarf Error: Can't read DWARF data"
2371 " in section %s [in module %s]"),
2372 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2373 }
2374 }
2375
2376 /* A helper function that returns the size of a section in a safe way.
2377 If you are positive that the section has been read before using the
2378 size, then it is safe to refer to the dwarf2_section_info object's
2379 "size" field directly. In other cases, you must call this
2380 function, because for compressed sections the size field is not set
2381 correctly until the section has been read. */
2382
2383 static bfd_size_type
2384 dwarf2_section_size (struct objfile *objfile,
2385 struct dwarf2_section_info *info)
2386 {
2387 if (!info->readin)
2388 dwarf2_read_section (objfile, info);
2389 return info->size;
2390 }
2391
2392 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2393 SECTION_NAME. */
2394
2395 void
2396 dwarf2_get_section_info (struct objfile *objfile,
2397 enum dwarf2_section_enum sect,
2398 asection **sectp, const gdb_byte **bufp,
2399 bfd_size_type *sizep)
2400 {
2401 struct dwarf2_per_objfile *data
2402 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2403 dwarf2_objfile_data_key);
2404 struct dwarf2_section_info *info;
2405
2406 /* We may see an objfile without any DWARF, in which case we just
2407 return nothing. */
2408 if (data == NULL)
2409 {
2410 *sectp = NULL;
2411 *bufp = NULL;
2412 *sizep = 0;
2413 return;
2414 }
2415 switch (sect)
2416 {
2417 case DWARF2_DEBUG_FRAME:
2418 info = &data->frame;
2419 break;
2420 case DWARF2_EH_FRAME:
2421 info = &data->eh_frame;
2422 break;
2423 default:
2424 gdb_assert_not_reached ("unexpected section");
2425 }
2426
2427 dwarf2_read_section (objfile, info);
2428
2429 *sectp = get_section_bfd_section (info);
2430 *bufp = info->buffer;
2431 *sizep = info->size;
2432 }
2433
2434 /* A helper function to find the sections for a .dwz file. */
2435
2436 static void
2437 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2438 {
2439 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2440
2441 /* Note that we only support the standard ELF names, because .dwz
2442 is ELF-only (at the time of writing). */
2443 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2444 {
2445 dwz_file->abbrev.s.section = sectp;
2446 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2449 {
2450 dwz_file->info.s.section = sectp;
2451 dwz_file->info.size = bfd_get_section_size (sectp);
2452 }
2453 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2454 {
2455 dwz_file->str.s.section = sectp;
2456 dwz_file->str.size = bfd_get_section_size (sectp);
2457 }
2458 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2459 {
2460 dwz_file->line.s.section = sectp;
2461 dwz_file->line.size = bfd_get_section_size (sectp);
2462 }
2463 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2464 {
2465 dwz_file->macro.s.section = sectp;
2466 dwz_file->macro.size = bfd_get_section_size (sectp);
2467 }
2468 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2469 {
2470 dwz_file->gdb_index.s.section = sectp;
2471 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2472 }
2473 }
2474
2475 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2476 there is no .gnu_debugaltlink section in the file. Error if there
2477 is such a section but the file cannot be found. */
2478
2479 static struct dwz_file *
2480 dwarf2_get_dwz_file (void)
2481 {
2482 char *data;
2483 struct cleanup *cleanup;
2484 const char *filename;
2485 struct dwz_file *result;
2486 bfd_size_type buildid_len_arg;
2487 size_t buildid_len;
2488 bfd_byte *buildid;
2489
2490 if (dwarf2_per_objfile->dwz_file != NULL)
2491 return dwarf2_per_objfile->dwz_file;
2492
2493 bfd_set_error (bfd_error_no_error);
2494 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2495 &buildid_len_arg, &buildid);
2496 if (data == NULL)
2497 {
2498 if (bfd_get_error () == bfd_error_no_error)
2499 return NULL;
2500 error (_("could not read '.gnu_debugaltlink' section: %s"),
2501 bfd_errmsg (bfd_get_error ()));
2502 }
2503 cleanup = make_cleanup (xfree, data);
2504 make_cleanup (xfree, buildid);
2505
2506 buildid_len = (size_t) buildid_len_arg;
2507
2508 filename = (const char *) data;
2509 if (!IS_ABSOLUTE_PATH (filename))
2510 {
2511 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2512 char *rel;
2513
2514 make_cleanup (xfree, abs);
2515 abs = ldirname (abs);
2516 make_cleanup (xfree, abs);
2517
2518 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2519 make_cleanup (xfree, rel);
2520 filename = rel;
2521 }
2522
2523 /* First try the file name given in the section. If that doesn't
2524 work, try to use the build-id instead. */
2525 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2526 if (dwz_bfd != NULL)
2527 {
2528 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2529 dwz_bfd.release ();
2530 }
2531
2532 if (dwz_bfd == NULL)
2533 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2534
2535 if (dwz_bfd == NULL)
2536 error (_("could not find '.gnu_debugaltlink' file for %s"),
2537 objfile_name (dwarf2_per_objfile->objfile));
2538
2539 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2540 struct dwz_file);
2541 result->dwz_bfd = dwz_bfd.release ();
2542
2543 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2544
2545 do_cleanups (cleanup);
2546
2547 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2548 dwarf2_per_objfile->dwz_file = result;
2549 return result;
2550 }
2551 \f
2552 /* DWARF quick_symbols_functions support. */
2553
2554 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2555 unique line tables, so we maintain a separate table of all .debug_line
2556 derived entries to support the sharing.
2557 All the quick functions need is the list of file names. We discard the
2558 line_header when we're done and don't need to record it here. */
2559 struct quick_file_names
2560 {
2561 /* The data used to construct the hash key. */
2562 struct stmt_list_hash hash;
2563
2564 /* The number of entries in file_names, real_names. */
2565 unsigned int num_file_names;
2566
2567 /* The file names from the line table, after being run through
2568 file_full_name. */
2569 const char **file_names;
2570
2571 /* The file names from the line table after being run through
2572 gdb_realpath. These are computed lazily. */
2573 const char **real_names;
2574 };
2575
2576 /* When using the index (and thus not using psymtabs), each CU has an
2577 object of this type. This is used to hold information needed by
2578 the various "quick" methods. */
2579 struct dwarf2_per_cu_quick_data
2580 {
2581 /* The file table. This can be NULL if there was no file table
2582 or it's currently not read in.
2583 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2584 struct quick_file_names *file_names;
2585
2586 /* The corresponding symbol table. This is NULL if symbols for this
2587 CU have not yet been read. */
2588 struct compunit_symtab *compunit_symtab;
2589
2590 /* A temporary mark bit used when iterating over all CUs in
2591 expand_symtabs_matching. */
2592 unsigned int mark : 1;
2593
2594 /* True if we've tried to read the file table and found there isn't one.
2595 There will be no point in trying to read it again next time. */
2596 unsigned int no_file_data : 1;
2597 };
2598
2599 /* Utility hash function for a stmt_list_hash. */
2600
2601 static hashval_t
2602 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2603 {
2604 hashval_t v = 0;
2605
2606 if (stmt_list_hash->dwo_unit != NULL)
2607 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2608 v += stmt_list_hash->line_offset.sect_off;
2609 return v;
2610 }
2611
2612 /* Utility equality function for a stmt_list_hash. */
2613
2614 static int
2615 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2616 const struct stmt_list_hash *rhs)
2617 {
2618 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2619 return 0;
2620 if (lhs->dwo_unit != NULL
2621 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2622 return 0;
2623
2624 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2625 }
2626
2627 /* Hash function for a quick_file_names. */
2628
2629 static hashval_t
2630 hash_file_name_entry (const void *e)
2631 {
2632 const struct quick_file_names *file_data
2633 = (const struct quick_file_names *) e;
2634
2635 return hash_stmt_list_entry (&file_data->hash);
2636 }
2637
2638 /* Equality function for a quick_file_names. */
2639
2640 static int
2641 eq_file_name_entry (const void *a, const void *b)
2642 {
2643 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2644 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2645
2646 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2647 }
2648
2649 /* Delete function for a quick_file_names. */
2650
2651 static void
2652 delete_file_name_entry (void *e)
2653 {
2654 struct quick_file_names *file_data = (struct quick_file_names *) e;
2655 int i;
2656
2657 for (i = 0; i < file_data->num_file_names; ++i)
2658 {
2659 xfree ((void*) file_data->file_names[i]);
2660 if (file_data->real_names)
2661 xfree ((void*) file_data->real_names[i]);
2662 }
2663
2664 /* The space for the struct itself lives on objfile_obstack,
2665 so we don't free it here. */
2666 }
2667
2668 /* Create a quick_file_names hash table. */
2669
2670 static htab_t
2671 create_quick_file_names_table (unsigned int nr_initial_entries)
2672 {
2673 return htab_create_alloc (nr_initial_entries,
2674 hash_file_name_entry, eq_file_name_entry,
2675 delete_file_name_entry, xcalloc, xfree);
2676 }
2677
2678 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2679 have to be created afterwards. You should call age_cached_comp_units after
2680 processing PER_CU->CU. dw2_setup must have been already called. */
2681
2682 static void
2683 load_cu (struct dwarf2_per_cu_data *per_cu)
2684 {
2685 if (per_cu->is_debug_types)
2686 load_full_type_unit (per_cu);
2687 else
2688 load_full_comp_unit (per_cu, language_minimal);
2689
2690 if (per_cu->cu == NULL)
2691 return; /* Dummy CU. */
2692
2693 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2694 }
2695
2696 /* Read in the symbols for PER_CU. */
2697
2698 static void
2699 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2700 {
2701 struct cleanup *back_to;
2702
2703 /* Skip type_unit_groups, reading the type units they contain
2704 is handled elsewhere. */
2705 if (IS_TYPE_UNIT_GROUP (per_cu))
2706 return;
2707
2708 back_to = make_cleanup (dwarf2_release_queue, NULL);
2709
2710 if (dwarf2_per_objfile->using_index
2711 ? per_cu->v.quick->compunit_symtab == NULL
2712 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2713 {
2714 queue_comp_unit (per_cu, language_minimal);
2715 load_cu (per_cu);
2716
2717 /* If we just loaded a CU from a DWO, and we're working with an index
2718 that may badly handle TUs, load all the TUs in that DWO as well.
2719 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2720 if (!per_cu->is_debug_types
2721 && per_cu->cu != NULL
2722 && per_cu->cu->dwo_unit != NULL
2723 && dwarf2_per_objfile->index_table != NULL
2724 && dwarf2_per_objfile->index_table->version <= 7
2725 /* DWP files aren't supported yet. */
2726 && get_dwp_file () == NULL)
2727 queue_and_load_all_dwo_tus (per_cu);
2728 }
2729
2730 process_queue ();
2731
2732 /* Age the cache, releasing compilation units that have not
2733 been used recently. */
2734 age_cached_comp_units ();
2735
2736 do_cleanups (back_to);
2737 }
2738
2739 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2740 the objfile from which this CU came. Returns the resulting symbol
2741 table. */
2742
2743 static struct compunit_symtab *
2744 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2745 {
2746 gdb_assert (dwarf2_per_objfile->using_index);
2747 if (!per_cu->v.quick->compunit_symtab)
2748 {
2749 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2750 increment_reading_symtab ();
2751 dw2_do_instantiate_symtab (per_cu);
2752 process_cu_includes ();
2753 do_cleanups (back_to);
2754 }
2755
2756 return per_cu->v.quick->compunit_symtab;
2757 }
2758
2759 /* Return the CU/TU given its index.
2760
2761 This is intended for loops like:
2762
2763 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2764 + dwarf2_per_objfile->n_type_units); ++i)
2765 {
2766 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2767
2768 ...;
2769 }
2770 */
2771
2772 static struct dwarf2_per_cu_data *
2773 dw2_get_cutu (int index)
2774 {
2775 if (index >= dwarf2_per_objfile->n_comp_units)
2776 {
2777 index -= dwarf2_per_objfile->n_comp_units;
2778 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2779 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2780 }
2781
2782 return dwarf2_per_objfile->all_comp_units[index];
2783 }
2784
2785 /* Return the CU given its index.
2786 This differs from dw2_get_cutu in that it's for when you know INDEX
2787 refers to a CU. */
2788
2789 static struct dwarf2_per_cu_data *
2790 dw2_get_cu (int index)
2791 {
2792 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2793
2794 return dwarf2_per_objfile->all_comp_units[index];
2795 }
2796
2797 /* A helper for create_cus_from_index that handles a given list of
2798 CUs. */
2799
2800 static void
2801 create_cus_from_index_list (struct objfile *objfile,
2802 const gdb_byte *cu_list, offset_type n_elements,
2803 struct dwarf2_section_info *section,
2804 int is_dwz,
2805 int base_offset)
2806 {
2807 offset_type i;
2808
2809 for (i = 0; i < n_elements; i += 2)
2810 {
2811 struct dwarf2_per_cu_data *the_cu;
2812 ULONGEST offset, length;
2813
2814 gdb_static_assert (sizeof (ULONGEST) >= 8);
2815 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2816 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2817 cu_list += 2 * 8;
2818
2819 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2820 struct dwarf2_per_cu_data);
2821 the_cu->offset.sect_off = offset;
2822 the_cu->length = length;
2823 the_cu->objfile = objfile;
2824 the_cu->section = section;
2825 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2826 struct dwarf2_per_cu_quick_data);
2827 the_cu->is_dwz = is_dwz;
2828 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2829 }
2830 }
2831
2832 /* Read the CU list from the mapped index, and use it to create all
2833 the CU objects for this objfile. */
2834
2835 static void
2836 create_cus_from_index (struct objfile *objfile,
2837 const gdb_byte *cu_list, offset_type cu_list_elements,
2838 const gdb_byte *dwz_list, offset_type dwz_elements)
2839 {
2840 struct dwz_file *dwz;
2841
2842 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2843 dwarf2_per_objfile->all_comp_units =
2844 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2845 dwarf2_per_objfile->n_comp_units);
2846
2847 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2848 &dwarf2_per_objfile->info, 0, 0);
2849
2850 if (dwz_elements == 0)
2851 return;
2852
2853 dwz = dwarf2_get_dwz_file ();
2854 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2855 cu_list_elements / 2);
2856 }
2857
2858 /* Create the signatured type hash table from the index. */
2859
2860 static void
2861 create_signatured_type_table_from_index (struct objfile *objfile,
2862 struct dwarf2_section_info *section,
2863 const gdb_byte *bytes,
2864 offset_type elements)
2865 {
2866 offset_type i;
2867 htab_t sig_types_hash;
2868
2869 dwarf2_per_objfile->n_type_units
2870 = dwarf2_per_objfile->n_allocated_type_units
2871 = elements / 3;
2872 dwarf2_per_objfile->all_type_units =
2873 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
2874
2875 sig_types_hash = allocate_signatured_type_table (objfile);
2876
2877 for (i = 0; i < elements; i += 3)
2878 {
2879 struct signatured_type *sig_type;
2880 ULONGEST offset, type_offset_in_tu, signature;
2881 void **slot;
2882
2883 gdb_static_assert (sizeof (ULONGEST) >= 8);
2884 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2885 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2886 BFD_ENDIAN_LITTLE);
2887 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2888 bytes += 3 * 8;
2889
2890 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2891 struct signatured_type);
2892 sig_type->signature = signature;
2893 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2894 sig_type->per_cu.is_debug_types = 1;
2895 sig_type->per_cu.section = section;
2896 sig_type->per_cu.offset.sect_off = offset;
2897 sig_type->per_cu.objfile = objfile;
2898 sig_type->per_cu.v.quick
2899 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2900 struct dwarf2_per_cu_quick_data);
2901
2902 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2903 *slot = sig_type;
2904
2905 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2906 }
2907
2908 dwarf2_per_objfile->signatured_types = sig_types_hash;
2909 }
2910
2911 /* Read the address map data from the mapped index, and use it to
2912 populate the objfile's psymtabs_addrmap. */
2913
2914 static void
2915 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2916 {
2917 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2918 const gdb_byte *iter, *end;
2919 struct obstack temp_obstack;
2920 struct addrmap *mutable_map;
2921 struct cleanup *cleanup;
2922 CORE_ADDR baseaddr;
2923
2924 obstack_init (&temp_obstack);
2925 cleanup = make_cleanup_obstack_free (&temp_obstack);
2926 mutable_map = addrmap_create_mutable (&temp_obstack);
2927
2928 iter = index->address_table;
2929 end = iter + index->address_table_size;
2930
2931 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2932
2933 while (iter < end)
2934 {
2935 ULONGEST hi, lo, cu_index;
2936 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2937 iter += 8;
2938 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2939 iter += 8;
2940 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2941 iter += 4;
2942
2943 if (lo > hi)
2944 {
2945 complaint (&symfile_complaints,
2946 _(".gdb_index address table has invalid range (%s - %s)"),
2947 hex_string (lo), hex_string (hi));
2948 continue;
2949 }
2950
2951 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2952 {
2953 complaint (&symfile_complaints,
2954 _(".gdb_index address table has invalid CU number %u"),
2955 (unsigned) cu_index);
2956 continue;
2957 }
2958
2959 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2960 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2961 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2962 }
2963
2964 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2965 &objfile->objfile_obstack);
2966 do_cleanups (cleanup);
2967 }
2968
2969 /* The hash function for strings in the mapped index. This is the same as
2970 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2971 implementation. This is necessary because the hash function is tied to the
2972 format of the mapped index file. The hash values do not have to match with
2973 SYMBOL_HASH_NEXT.
2974
2975 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2976
2977 static hashval_t
2978 mapped_index_string_hash (int index_version, const void *p)
2979 {
2980 const unsigned char *str = (const unsigned char *) p;
2981 hashval_t r = 0;
2982 unsigned char c;
2983
2984 while ((c = *str++) != 0)
2985 {
2986 if (index_version >= 5)
2987 c = tolower (c);
2988 r = r * 67 + c - 113;
2989 }
2990
2991 return r;
2992 }
2993
2994 /* Find a slot in the mapped index INDEX for the object named NAME.
2995 If NAME is found, set *VEC_OUT to point to the CU vector in the
2996 constant pool and return 1. If NAME cannot be found, return 0. */
2997
2998 static int
2999 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3000 offset_type **vec_out)
3001 {
3002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3003 offset_type hash;
3004 offset_type slot, step;
3005 int (*cmp) (const char *, const char *);
3006
3007 if (current_language->la_language == language_cplus
3008 || current_language->la_language == language_fortran
3009 || current_language->la_language == language_d)
3010 {
3011 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3012 not contain any. */
3013
3014 if (strchr (name, '(') != NULL)
3015 {
3016 char *without_params = cp_remove_params (name);
3017
3018 if (without_params != NULL)
3019 {
3020 make_cleanup (xfree, without_params);
3021 name = without_params;
3022 }
3023 }
3024 }
3025
3026 /* Index version 4 did not support case insensitive searches. But the
3027 indices for case insensitive languages are built in lowercase, therefore
3028 simulate our NAME being searched is also lowercased. */
3029 hash = mapped_index_string_hash ((index->version == 4
3030 && case_sensitivity == case_sensitive_off
3031 ? 5 : index->version),
3032 name);
3033
3034 slot = hash & (index->symbol_table_slots - 1);
3035 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3036 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3037
3038 for (;;)
3039 {
3040 /* Convert a slot number to an offset into the table. */
3041 offset_type i = 2 * slot;
3042 const char *str;
3043 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3044 {
3045 do_cleanups (back_to);
3046 return 0;
3047 }
3048
3049 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3050 if (!cmp (name, str))
3051 {
3052 *vec_out = (offset_type *) (index->constant_pool
3053 + MAYBE_SWAP (index->symbol_table[i + 1]));
3054 do_cleanups (back_to);
3055 return 1;
3056 }
3057
3058 slot = (slot + step) & (index->symbol_table_slots - 1);
3059 }
3060 }
3061
3062 /* A helper function that reads the .gdb_index from SECTION and fills
3063 in MAP. FILENAME is the name of the file containing the section;
3064 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3065 ok to use deprecated sections.
3066
3067 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3068 out parameters that are filled in with information about the CU and
3069 TU lists in the section.
3070
3071 Returns 1 if all went well, 0 otherwise. */
3072
3073 static int
3074 read_index_from_section (struct objfile *objfile,
3075 const char *filename,
3076 int deprecated_ok,
3077 struct dwarf2_section_info *section,
3078 struct mapped_index *map,
3079 const gdb_byte **cu_list,
3080 offset_type *cu_list_elements,
3081 const gdb_byte **types_list,
3082 offset_type *types_list_elements)
3083 {
3084 const gdb_byte *addr;
3085 offset_type version;
3086 offset_type *metadata;
3087 int i;
3088
3089 if (dwarf2_section_empty_p (section))
3090 return 0;
3091
3092 /* Older elfutils strip versions could keep the section in the main
3093 executable while splitting it for the separate debug info file. */
3094 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3095 return 0;
3096
3097 dwarf2_read_section (objfile, section);
3098
3099 addr = section->buffer;
3100 /* Version check. */
3101 version = MAYBE_SWAP (*(offset_type *) addr);
3102 /* Versions earlier than 3 emitted every copy of a psymbol. This
3103 causes the index to behave very poorly for certain requests. Version 3
3104 contained incomplete addrmap. So, it seems better to just ignore such
3105 indices. */
3106 if (version < 4)
3107 {
3108 static int warning_printed = 0;
3109 if (!warning_printed)
3110 {
3111 warning (_("Skipping obsolete .gdb_index section in %s."),
3112 filename);
3113 warning_printed = 1;
3114 }
3115 return 0;
3116 }
3117 /* Index version 4 uses a different hash function than index version
3118 5 and later.
3119
3120 Versions earlier than 6 did not emit psymbols for inlined
3121 functions. Using these files will cause GDB not to be able to
3122 set breakpoints on inlined functions by name, so we ignore these
3123 indices unless the user has done
3124 "set use-deprecated-index-sections on". */
3125 if (version < 6 && !deprecated_ok)
3126 {
3127 static int warning_printed = 0;
3128 if (!warning_printed)
3129 {
3130 warning (_("\
3131 Skipping deprecated .gdb_index section in %s.\n\
3132 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3133 to use the section anyway."),
3134 filename);
3135 warning_printed = 1;
3136 }
3137 return 0;
3138 }
3139 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3140 of the TU (for symbols coming from TUs),
3141 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3142 Plus gold-generated indices can have duplicate entries for global symbols,
3143 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3144 These are just performance bugs, and we can't distinguish gdb-generated
3145 indices from gold-generated ones, so issue no warning here. */
3146
3147 /* Indexes with higher version than the one supported by GDB may be no
3148 longer backward compatible. */
3149 if (version > 8)
3150 return 0;
3151
3152 map->version = version;
3153 map->total_size = section->size;
3154
3155 metadata = (offset_type *) (addr + sizeof (offset_type));
3156
3157 i = 0;
3158 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3159 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3160 / 8);
3161 ++i;
3162
3163 *types_list = addr + MAYBE_SWAP (metadata[i]);
3164 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3165 - MAYBE_SWAP (metadata[i]))
3166 / 8);
3167 ++i;
3168
3169 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3170 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3171 - MAYBE_SWAP (metadata[i]));
3172 ++i;
3173
3174 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3175 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3176 - MAYBE_SWAP (metadata[i]))
3177 / (2 * sizeof (offset_type)));
3178 ++i;
3179
3180 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3181
3182 return 1;
3183 }
3184
3185
3186 /* Read the index file. If everything went ok, initialize the "quick"
3187 elements of all the CUs and return 1. Otherwise, return 0. */
3188
3189 static int
3190 dwarf2_read_index (struct objfile *objfile)
3191 {
3192 struct mapped_index local_map, *map;
3193 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3194 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3195 struct dwz_file *dwz;
3196
3197 if (!read_index_from_section (objfile, objfile_name (objfile),
3198 use_deprecated_index_sections,
3199 &dwarf2_per_objfile->gdb_index, &local_map,
3200 &cu_list, &cu_list_elements,
3201 &types_list, &types_list_elements))
3202 return 0;
3203
3204 /* Don't use the index if it's empty. */
3205 if (local_map.symbol_table_slots == 0)
3206 return 0;
3207
3208 /* If there is a .dwz file, read it so we can get its CU list as
3209 well. */
3210 dwz = dwarf2_get_dwz_file ();
3211 if (dwz != NULL)
3212 {
3213 struct mapped_index dwz_map;
3214 const gdb_byte *dwz_types_ignore;
3215 offset_type dwz_types_elements_ignore;
3216
3217 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3218 1,
3219 &dwz->gdb_index, &dwz_map,
3220 &dwz_list, &dwz_list_elements,
3221 &dwz_types_ignore,
3222 &dwz_types_elements_ignore))
3223 {
3224 warning (_("could not read '.gdb_index' section from %s; skipping"),
3225 bfd_get_filename (dwz->dwz_bfd));
3226 return 0;
3227 }
3228 }
3229
3230 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3231 dwz_list_elements);
3232
3233 if (types_list_elements)
3234 {
3235 struct dwarf2_section_info *section;
3236
3237 /* We can only handle a single .debug_types when we have an
3238 index. */
3239 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3240 return 0;
3241
3242 section = VEC_index (dwarf2_section_info_def,
3243 dwarf2_per_objfile->types, 0);
3244
3245 create_signatured_type_table_from_index (objfile, section, types_list,
3246 types_list_elements);
3247 }
3248
3249 create_addrmap_from_index (objfile, &local_map);
3250
3251 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3252 *map = local_map;
3253
3254 dwarf2_per_objfile->index_table = map;
3255 dwarf2_per_objfile->using_index = 1;
3256 dwarf2_per_objfile->quick_file_names_table =
3257 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3258
3259 return 1;
3260 }
3261
3262 /* A helper for the "quick" functions which sets the global
3263 dwarf2_per_objfile according to OBJFILE. */
3264
3265 static void
3266 dw2_setup (struct objfile *objfile)
3267 {
3268 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3269 objfile_data (objfile, dwarf2_objfile_data_key));
3270 gdb_assert (dwarf2_per_objfile);
3271 }
3272
3273 /* die_reader_func for dw2_get_file_names. */
3274
3275 static void
3276 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3277 const gdb_byte *info_ptr,
3278 struct die_info *comp_unit_die,
3279 int has_children,
3280 void *data)
3281 {
3282 struct dwarf2_cu *cu = reader->cu;
3283 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3284 struct objfile *objfile = dwarf2_per_objfile->objfile;
3285 struct dwarf2_per_cu_data *lh_cu;
3286 struct line_header *lh;
3287 struct attribute *attr;
3288 int i;
3289 const char *name, *comp_dir;
3290 void **slot;
3291 struct quick_file_names *qfn;
3292 unsigned int line_offset;
3293
3294 gdb_assert (! this_cu->is_debug_types);
3295
3296 /* Our callers never want to match partial units -- instead they
3297 will match the enclosing full CU. */
3298 if (comp_unit_die->tag == DW_TAG_partial_unit)
3299 {
3300 this_cu->v.quick->no_file_data = 1;
3301 return;
3302 }
3303
3304 lh_cu = this_cu;
3305 lh = NULL;
3306 slot = NULL;
3307 line_offset = 0;
3308
3309 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3310 if (attr)
3311 {
3312 struct quick_file_names find_entry;
3313
3314 line_offset = DW_UNSND (attr);
3315
3316 /* We may have already read in this line header (TU line header sharing).
3317 If we have we're done. */
3318 find_entry.hash.dwo_unit = cu->dwo_unit;
3319 find_entry.hash.line_offset.sect_off = line_offset;
3320 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3321 &find_entry, INSERT);
3322 if (*slot != NULL)
3323 {
3324 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3325 return;
3326 }
3327
3328 lh = dwarf_decode_line_header (line_offset, cu);
3329 }
3330 if (lh == NULL)
3331 {
3332 lh_cu->v.quick->no_file_data = 1;
3333 return;
3334 }
3335
3336 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3337 qfn->hash.dwo_unit = cu->dwo_unit;
3338 qfn->hash.line_offset.sect_off = line_offset;
3339 gdb_assert (slot != NULL);
3340 *slot = qfn;
3341
3342 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3343
3344 qfn->num_file_names = lh->num_file_names;
3345 qfn->file_names =
3346 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
3347 for (i = 0; i < lh->num_file_names; ++i)
3348 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3349 qfn->real_names = NULL;
3350
3351 free_line_header (lh);
3352
3353 lh_cu->v.quick->file_names = qfn;
3354 }
3355
3356 /* A helper for the "quick" functions which attempts to read the line
3357 table for THIS_CU. */
3358
3359 static struct quick_file_names *
3360 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3361 {
3362 /* This should never be called for TUs. */
3363 gdb_assert (! this_cu->is_debug_types);
3364 /* Nor type unit groups. */
3365 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3366
3367 if (this_cu->v.quick->file_names != NULL)
3368 return this_cu->v.quick->file_names;
3369 /* If we know there is no line data, no point in looking again. */
3370 if (this_cu->v.quick->no_file_data)
3371 return NULL;
3372
3373 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3374
3375 if (this_cu->v.quick->no_file_data)
3376 return NULL;
3377 return this_cu->v.quick->file_names;
3378 }
3379
3380 /* A helper for the "quick" functions which computes and caches the
3381 real path for a given file name from the line table. */
3382
3383 static const char *
3384 dw2_get_real_path (struct objfile *objfile,
3385 struct quick_file_names *qfn, int index)
3386 {
3387 if (qfn->real_names == NULL)
3388 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3389 qfn->num_file_names, const char *);
3390
3391 if (qfn->real_names[index] == NULL)
3392 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3393
3394 return qfn->real_names[index];
3395 }
3396
3397 static struct symtab *
3398 dw2_find_last_source_symtab (struct objfile *objfile)
3399 {
3400 struct compunit_symtab *cust;
3401 int index;
3402
3403 dw2_setup (objfile);
3404 index = dwarf2_per_objfile->n_comp_units - 1;
3405 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3406 if (cust == NULL)
3407 return NULL;
3408 return compunit_primary_filetab (cust);
3409 }
3410
3411 /* Traversal function for dw2_forget_cached_source_info. */
3412
3413 static int
3414 dw2_free_cached_file_names (void **slot, void *info)
3415 {
3416 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3417
3418 if (file_data->real_names)
3419 {
3420 int i;
3421
3422 for (i = 0; i < file_data->num_file_names; ++i)
3423 {
3424 xfree ((void*) file_data->real_names[i]);
3425 file_data->real_names[i] = NULL;
3426 }
3427 }
3428
3429 return 1;
3430 }
3431
3432 static void
3433 dw2_forget_cached_source_info (struct objfile *objfile)
3434 {
3435 dw2_setup (objfile);
3436
3437 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3438 dw2_free_cached_file_names, NULL);
3439 }
3440
3441 /* Helper function for dw2_map_symtabs_matching_filename that expands
3442 the symtabs and calls the iterator. */
3443
3444 static int
3445 dw2_map_expand_apply (struct objfile *objfile,
3446 struct dwarf2_per_cu_data *per_cu,
3447 const char *name, const char *real_path,
3448 int (*callback) (struct symtab *, void *),
3449 void *data)
3450 {
3451 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3452
3453 /* Don't visit already-expanded CUs. */
3454 if (per_cu->v.quick->compunit_symtab)
3455 return 0;
3456
3457 /* This may expand more than one symtab, and we want to iterate over
3458 all of them. */
3459 dw2_instantiate_symtab (per_cu);
3460
3461 return iterate_over_some_symtabs (name, real_path, callback, data,
3462 objfile->compunit_symtabs, last_made);
3463 }
3464
3465 /* Implementation of the map_symtabs_matching_filename method. */
3466
3467 static int
3468 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3469 const char *real_path,
3470 int (*callback) (struct symtab *, void *),
3471 void *data)
3472 {
3473 int i;
3474 const char *name_basename = lbasename (name);
3475
3476 dw2_setup (objfile);
3477
3478 /* The rule is CUs specify all the files, including those used by
3479 any TU, so there's no need to scan TUs here. */
3480
3481 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3482 {
3483 int j;
3484 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3485 struct quick_file_names *file_data;
3486
3487 /* We only need to look at symtabs not already expanded. */
3488 if (per_cu->v.quick->compunit_symtab)
3489 continue;
3490
3491 file_data = dw2_get_file_names (per_cu);
3492 if (file_data == NULL)
3493 continue;
3494
3495 for (j = 0; j < file_data->num_file_names; ++j)
3496 {
3497 const char *this_name = file_data->file_names[j];
3498 const char *this_real_name;
3499
3500 if (compare_filenames_for_search (this_name, name))
3501 {
3502 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3503 callback, data))
3504 return 1;
3505 continue;
3506 }
3507
3508 /* Before we invoke realpath, which can get expensive when many
3509 files are involved, do a quick comparison of the basenames. */
3510 if (! basenames_may_differ
3511 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3512 continue;
3513
3514 this_real_name = dw2_get_real_path (objfile, file_data, j);
3515 if (compare_filenames_for_search (this_real_name, name))
3516 {
3517 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3518 callback, data))
3519 return 1;
3520 continue;
3521 }
3522
3523 if (real_path != NULL)
3524 {
3525 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3526 gdb_assert (IS_ABSOLUTE_PATH (name));
3527 if (this_real_name != NULL
3528 && FILENAME_CMP (real_path, this_real_name) == 0)
3529 {
3530 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3531 callback, data))
3532 return 1;
3533 continue;
3534 }
3535 }
3536 }
3537 }
3538
3539 return 0;
3540 }
3541
3542 /* Struct used to manage iterating over all CUs looking for a symbol. */
3543
3544 struct dw2_symtab_iterator
3545 {
3546 /* The internalized form of .gdb_index. */
3547 struct mapped_index *index;
3548 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3549 int want_specific_block;
3550 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3551 Unused if !WANT_SPECIFIC_BLOCK. */
3552 int block_index;
3553 /* The kind of symbol we're looking for. */
3554 domain_enum domain;
3555 /* The list of CUs from the index entry of the symbol,
3556 or NULL if not found. */
3557 offset_type *vec;
3558 /* The next element in VEC to look at. */
3559 int next;
3560 /* The number of elements in VEC, or zero if there is no match. */
3561 int length;
3562 /* Have we seen a global version of the symbol?
3563 If so we can ignore all further global instances.
3564 This is to work around gold/15646, inefficient gold-generated
3565 indices. */
3566 int global_seen;
3567 };
3568
3569 /* Initialize the index symtab iterator ITER.
3570 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3571 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3572
3573 static void
3574 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3575 struct mapped_index *index,
3576 int want_specific_block,
3577 int block_index,
3578 domain_enum domain,
3579 const char *name)
3580 {
3581 iter->index = index;
3582 iter->want_specific_block = want_specific_block;
3583 iter->block_index = block_index;
3584 iter->domain = domain;
3585 iter->next = 0;
3586 iter->global_seen = 0;
3587
3588 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3589 iter->length = MAYBE_SWAP (*iter->vec);
3590 else
3591 {
3592 iter->vec = NULL;
3593 iter->length = 0;
3594 }
3595 }
3596
3597 /* Return the next matching CU or NULL if there are no more. */
3598
3599 static struct dwarf2_per_cu_data *
3600 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3601 {
3602 for ( ; iter->next < iter->length; ++iter->next)
3603 {
3604 offset_type cu_index_and_attrs =
3605 MAYBE_SWAP (iter->vec[iter->next + 1]);
3606 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3607 struct dwarf2_per_cu_data *per_cu;
3608 int want_static = iter->block_index != GLOBAL_BLOCK;
3609 /* This value is only valid for index versions >= 7. */
3610 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3611 gdb_index_symbol_kind symbol_kind =
3612 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3613 /* Only check the symbol attributes if they're present.
3614 Indices prior to version 7 don't record them,
3615 and indices >= 7 may elide them for certain symbols
3616 (gold does this). */
3617 int attrs_valid =
3618 (iter->index->version >= 7
3619 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3620
3621 /* Don't crash on bad data. */
3622 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3623 + dwarf2_per_objfile->n_type_units))
3624 {
3625 complaint (&symfile_complaints,
3626 _(".gdb_index entry has bad CU index"
3627 " [in module %s]"),
3628 objfile_name (dwarf2_per_objfile->objfile));
3629 continue;
3630 }
3631
3632 per_cu = dw2_get_cutu (cu_index);
3633
3634 /* Skip if already read in. */
3635 if (per_cu->v.quick->compunit_symtab)
3636 continue;
3637
3638 /* Check static vs global. */
3639 if (attrs_valid)
3640 {
3641 if (iter->want_specific_block
3642 && want_static != is_static)
3643 continue;
3644 /* Work around gold/15646. */
3645 if (!is_static && iter->global_seen)
3646 continue;
3647 if (!is_static)
3648 iter->global_seen = 1;
3649 }
3650
3651 /* Only check the symbol's kind if it has one. */
3652 if (attrs_valid)
3653 {
3654 switch (iter->domain)
3655 {
3656 case VAR_DOMAIN:
3657 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3658 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3659 /* Some types are also in VAR_DOMAIN. */
3660 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3661 continue;
3662 break;
3663 case STRUCT_DOMAIN:
3664 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3665 continue;
3666 break;
3667 case LABEL_DOMAIN:
3668 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3669 continue;
3670 break;
3671 default:
3672 break;
3673 }
3674 }
3675
3676 ++iter->next;
3677 return per_cu;
3678 }
3679
3680 return NULL;
3681 }
3682
3683 static struct compunit_symtab *
3684 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3685 const char *name, domain_enum domain)
3686 {
3687 struct compunit_symtab *stab_best = NULL;
3688 struct mapped_index *index;
3689
3690 dw2_setup (objfile);
3691
3692 index = dwarf2_per_objfile->index_table;
3693
3694 /* index is NULL if OBJF_READNOW. */
3695 if (index)
3696 {
3697 struct dw2_symtab_iterator iter;
3698 struct dwarf2_per_cu_data *per_cu;
3699
3700 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3701
3702 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3703 {
3704 struct symbol *sym, *with_opaque = NULL;
3705 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3706 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3707 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3708
3709 sym = block_find_symbol (block, name, domain,
3710 block_find_non_opaque_type_preferred,
3711 &with_opaque);
3712
3713 /* Some caution must be observed with overloaded functions
3714 and methods, since the index will not contain any overload
3715 information (but NAME might contain it). */
3716
3717 if (sym != NULL
3718 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3719 return stab;
3720 if (with_opaque != NULL
3721 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3722 stab_best = stab;
3723
3724 /* Keep looking through other CUs. */
3725 }
3726 }
3727
3728 return stab_best;
3729 }
3730
3731 static void
3732 dw2_print_stats (struct objfile *objfile)
3733 {
3734 int i, total, count;
3735
3736 dw2_setup (objfile);
3737 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3738 count = 0;
3739 for (i = 0; i < total; ++i)
3740 {
3741 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3742
3743 if (!per_cu->v.quick->compunit_symtab)
3744 ++count;
3745 }
3746 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3747 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3748 }
3749
3750 /* This dumps minimal information about the index.
3751 It is called via "mt print objfiles".
3752 One use is to verify .gdb_index has been loaded by the
3753 gdb.dwarf2/gdb-index.exp testcase. */
3754
3755 static void
3756 dw2_dump (struct objfile *objfile)
3757 {
3758 dw2_setup (objfile);
3759 gdb_assert (dwarf2_per_objfile->using_index);
3760 printf_filtered (".gdb_index:");
3761 if (dwarf2_per_objfile->index_table != NULL)
3762 {
3763 printf_filtered (" version %d\n",
3764 dwarf2_per_objfile->index_table->version);
3765 }
3766 else
3767 printf_filtered (" faked for \"readnow\"\n");
3768 printf_filtered ("\n");
3769 }
3770
3771 static void
3772 dw2_relocate (struct objfile *objfile,
3773 const struct section_offsets *new_offsets,
3774 const struct section_offsets *delta)
3775 {
3776 /* There's nothing to relocate here. */
3777 }
3778
3779 static void
3780 dw2_expand_symtabs_for_function (struct objfile *objfile,
3781 const char *func_name)
3782 {
3783 struct mapped_index *index;
3784
3785 dw2_setup (objfile);
3786
3787 index = dwarf2_per_objfile->index_table;
3788
3789 /* index is NULL if OBJF_READNOW. */
3790 if (index)
3791 {
3792 struct dw2_symtab_iterator iter;
3793 struct dwarf2_per_cu_data *per_cu;
3794
3795 /* Note: It doesn't matter what we pass for block_index here. */
3796 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3797 func_name);
3798
3799 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3800 dw2_instantiate_symtab (per_cu);
3801 }
3802 }
3803
3804 static void
3805 dw2_expand_all_symtabs (struct objfile *objfile)
3806 {
3807 int i;
3808
3809 dw2_setup (objfile);
3810
3811 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3812 + dwarf2_per_objfile->n_type_units); ++i)
3813 {
3814 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3815
3816 dw2_instantiate_symtab (per_cu);
3817 }
3818 }
3819
3820 static void
3821 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3822 const char *fullname)
3823 {
3824 int i;
3825
3826 dw2_setup (objfile);
3827
3828 /* We don't need to consider type units here.
3829 This is only called for examining code, e.g. expand_line_sal.
3830 There can be an order of magnitude (or more) more type units
3831 than comp units, and we avoid them if we can. */
3832
3833 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3834 {
3835 int j;
3836 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3837 struct quick_file_names *file_data;
3838
3839 /* We only need to look at symtabs not already expanded. */
3840 if (per_cu->v.quick->compunit_symtab)
3841 continue;
3842
3843 file_data = dw2_get_file_names (per_cu);
3844 if (file_data == NULL)
3845 continue;
3846
3847 for (j = 0; j < file_data->num_file_names; ++j)
3848 {
3849 const char *this_fullname = file_data->file_names[j];
3850
3851 if (filename_cmp (this_fullname, fullname) == 0)
3852 {
3853 dw2_instantiate_symtab (per_cu);
3854 break;
3855 }
3856 }
3857 }
3858 }
3859
3860 static void
3861 dw2_map_matching_symbols (struct objfile *objfile,
3862 const char * name, domain_enum domain,
3863 int global,
3864 int (*callback) (struct block *,
3865 struct symbol *, void *),
3866 void *data, symbol_compare_ftype *match,
3867 symbol_compare_ftype *ordered_compare)
3868 {
3869 /* Currently unimplemented; used for Ada. The function can be called if the
3870 current language is Ada for a non-Ada objfile using GNU index. As Ada
3871 does not look for non-Ada symbols this function should just return. */
3872 }
3873
3874 static void
3875 dw2_expand_symtabs_matching
3876 (struct objfile *objfile,
3877 expand_symtabs_file_matcher_ftype *file_matcher,
3878 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3879 expand_symtabs_exp_notify_ftype *expansion_notify,
3880 enum search_domain kind,
3881 void *data)
3882 {
3883 int i;
3884 offset_type iter;
3885 struct mapped_index *index;
3886
3887 dw2_setup (objfile);
3888
3889 /* index_table is NULL if OBJF_READNOW. */
3890 if (!dwarf2_per_objfile->index_table)
3891 return;
3892 index = dwarf2_per_objfile->index_table;
3893
3894 if (file_matcher != NULL)
3895 {
3896 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
3897 htab_eq_pointer,
3898 NULL, xcalloc, xfree));
3899 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
3900 htab_eq_pointer,
3901 NULL, xcalloc, xfree));
3902
3903 /* The rule is CUs specify all the files, including those used by
3904 any TU, so there's no need to scan TUs here. */
3905
3906 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3907 {
3908 int j;
3909 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3910 struct quick_file_names *file_data;
3911 void **slot;
3912
3913 QUIT;
3914
3915 per_cu->v.quick->mark = 0;
3916
3917 /* We only need to look at symtabs not already expanded. */
3918 if (per_cu->v.quick->compunit_symtab)
3919 continue;
3920
3921 file_data = dw2_get_file_names (per_cu);
3922 if (file_data == NULL)
3923 continue;
3924
3925 if (htab_find (visited_not_found.get (), file_data) != NULL)
3926 continue;
3927 else if (htab_find (visited_found.get (), file_data) != NULL)
3928 {
3929 per_cu->v.quick->mark = 1;
3930 continue;
3931 }
3932
3933 for (j = 0; j < file_data->num_file_names; ++j)
3934 {
3935 const char *this_real_name;
3936
3937 if (file_matcher (file_data->file_names[j], data, 0))
3938 {
3939 per_cu->v.quick->mark = 1;
3940 break;
3941 }
3942
3943 /* Before we invoke realpath, which can get expensive when many
3944 files are involved, do a quick comparison of the basenames. */
3945 if (!basenames_may_differ
3946 && !file_matcher (lbasename (file_data->file_names[j]),
3947 data, 1))
3948 continue;
3949
3950 this_real_name = dw2_get_real_path (objfile, file_data, j);
3951 if (file_matcher (this_real_name, data, 0))
3952 {
3953 per_cu->v.quick->mark = 1;
3954 break;
3955 }
3956 }
3957
3958 slot = htab_find_slot (per_cu->v.quick->mark
3959 ? visited_found.get ()
3960 : visited_not_found.get (),
3961 file_data, INSERT);
3962 *slot = file_data;
3963 }
3964 }
3965
3966 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3967 {
3968 offset_type idx = 2 * iter;
3969 const char *name;
3970 offset_type *vec, vec_len, vec_idx;
3971 int global_seen = 0;
3972
3973 QUIT;
3974
3975 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3976 continue;
3977
3978 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3979
3980 if (! (*symbol_matcher) (name, data))
3981 continue;
3982
3983 /* The name was matched, now expand corresponding CUs that were
3984 marked. */
3985 vec = (offset_type *) (index->constant_pool
3986 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3987 vec_len = MAYBE_SWAP (vec[0]);
3988 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3989 {
3990 struct dwarf2_per_cu_data *per_cu;
3991 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3992 /* This value is only valid for index versions >= 7. */
3993 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3994 gdb_index_symbol_kind symbol_kind =
3995 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3996 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4001 int attrs_valid =
4002 (index->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4004
4005 /* Work around gold/15646. */
4006 if (attrs_valid)
4007 {
4008 if (!is_static && global_seen)
4009 continue;
4010 if (!is_static)
4011 global_seen = 1;
4012 }
4013
4014 /* Only check the symbol's kind if it has one. */
4015 if (attrs_valid)
4016 {
4017 switch (kind)
4018 {
4019 case VARIABLES_DOMAIN:
4020 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4021 continue;
4022 break;
4023 case FUNCTIONS_DOMAIN:
4024 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4025 continue;
4026 break;
4027 case TYPES_DOMAIN:
4028 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4029 continue;
4030 break;
4031 default:
4032 break;
4033 }
4034 }
4035
4036 /* Don't crash on bad data. */
4037 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4038 + dwarf2_per_objfile->n_type_units))
4039 {
4040 complaint (&symfile_complaints,
4041 _(".gdb_index entry has bad CU index"
4042 " [in module %s]"), objfile_name (objfile));
4043 continue;
4044 }
4045
4046 per_cu = dw2_get_cutu (cu_index);
4047 if (file_matcher == NULL || per_cu->v.quick->mark)
4048 {
4049 int symtab_was_null =
4050 (per_cu->v.quick->compunit_symtab == NULL);
4051
4052 dw2_instantiate_symtab (per_cu);
4053
4054 if (expansion_notify != NULL
4055 && symtab_was_null
4056 && per_cu->v.quick->compunit_symtab != NULL)
4057 {
4058 expansion_notify (per_cu->v.quick->compunit_symtab,
4059 data);
4060 }
4061 }
4062 }
4063 }
4064 }
4065
4066 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4067 symtab. */
4068
4069 static struct compunit_symtab *
4070 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4071 CORE_ADDR pc)
4072 {
4073 int i;
4074
4075 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4076 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4077 return cust;
4078
4079 if (cust->includes == NULL)
4080 return NULL;
4081
4082 for (i = 0; cust->includes[i]; ++i)
4083 {
4084 struct compunit_symtab *s = cust->includes[i];
4085
4086 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4087 if (s != NULL)
4088 return s;
4089 }
4090
4091 return NULL;
4092 }
4093
4094 static struct compunit_symtab *
4095 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4096 struct bound_minimal_symbol msymbol,
4097 CORE_ADDR pc,
4098 struct obj_section *section,
4099 int warn_if_readin)
4100 {
4101 struct dwarf2_per_cu_data *data;
4102 struct compunit_symtab *result;
4103
4104 dw2_setup (objfile);
4105
4106 if (!objfile->psymtabs_addrmap)
4107 return NULL;
4108
4109 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4110 pc);
4111 if (!data)
4112 return NULL;
4113
4114 if (warn_if_readin && data->v.quick->compunit_symtab)
4115 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4116 paddress (get_objfile_arch (objfile), pc));
4117
4118 result
4119 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4120 pc);
4121 gdb_assert (result != NULL);
4122 return result;
4123 }
4124
4125 static void
4126 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4127 void *data, int need_fullname)
4128 {
4129 int i;
4130 htab_up visited (htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4131 NULL, xcalloc, xfree));
4132
4133 dw2_setup (objfile);
4134
4135 /* The rule is CUs specify all the files, including those used by
4136 any TU, so there's no need to scan TUs here.
4137 We can ignore file names coming from already-expanded CUs. */
4138
4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4140 {
4141 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4142
4143 if (per_cu->v.quick->compunit_symtab)
4144 {
4145 void **slot = htab_find_slot (visited.get (),
4146 per_cu->v.quick->file_names,
4147 INSERT);
4148
4149 *slot = per_cu->v.quick->file_names;
4150 }
4151 }
4152
4153 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4154 {
4155 int j;
4156 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4157 struct quick_file_names *file_data;
4158 void **slot;
4159
4160 /* We only need to look at symtabs not already expanded. */
4161 if (per_cu->v.quick->compunit_symtab)
4162 continue;
4163
4164 file_data = dw2_get_file_names (per_cu);
4165 if (file_data == NULL)
4166 continue;
4167
4168 slot = htab_find_slot (visited.get (), file_data, INSERT);
4169 if (*slot)
4170 {
4171 /* Already visited. */
4172 continue;
4173 }
4174 *slot = file_data;
4175
4176 for (j = 0; j < file_data->num_file_names; ++j)
4177 {
4178 const char *this_real_name;
4179
4180 if (need_fullname)
4181 this_real_name = dw2_get_real_path (objfile, file_data, j);
4182 else
4183 this_real_name = NULL;
4184 (*fun) (file_data->file_names[j], this_real_name, data);
4185 }
4186 }
4187 }
4188
4189 static int
4190 dw2_has_symbols (struct objfile *objfile)
4191 {
4192 return 1;
4193 }
4194
4195 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4196 {
4197 dw2_has_symbols,
4198 dw2_find_last_source_symtab,
4199 dw2_forget_cached_source_info,
4200 dw2_map_symtabs_matching_filename,
4201 dw2_lookup_symbol,
4202 dw2_print_stats,
4203 dw2_dump,
4204 dw2_relocate,
4205 dw2_expand_symtabs_for_function,
4206 dw2_expand_all_symtabs,
4207 dw2_expand_symtabs_with_fullname,
4208 dw2_map_matching_symbols,
4209 dw2_expand_symtabs_matching,
4210 dw2_find_pc_sect_compunit_symtab,
4211 dw2_map_symbol_filenames
4212 };
4213
4214 /* Initialize for reading DWARF for this objfile. Return 0 if this
4215 file will use psymtabs, or 1 if using the GNU index. */
4216
4217 int
4218 dwarf2_initialize_objfile (struct objfile *objfile)
4219 {
4220 /* If we're about to read full symbols, don't bother with the
4221 indices. In this case we also don't care if some other debug
4222 format is making psymtabs, because they are all about to be
4223 expanded anyway. */
4224 if ((objfile->flags & OBJF_READNOW))
4225 {
4226 int i;
4227
4228 dwarf2_per_objfile->using_index = 1;
4229 create_all_comp_units (objfile);
4230 create_all_type_units (objfile);
4231 dwarf2_per_objfile->quick_file_names_table =
4232 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4233
4234 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4235 + dwarf2_per_objfile->n_type_units); ++i)
4236 {
4237 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4238
4239 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4240 struct dwarf2_per_cu_quick_data);
4241 }
4242
4243 /* Return 1 so that gdb sees the "quick" functions. However,
4244 these functions will be no-ops because we will have expanded
4245 all symtabs. */
4246 return 1;
4247 }
4248
4249 if (dwarf2_read_index (objfile))
4250 return 1;
4251
4252 return 0;
4253 }
4254
4255 \f
4256
4257 /* Build a partial symbol table. */
4258
4259 void
4260 dwarf2_build_psymtabs (struct objfile *objfile)
4261 {
4262
4263 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4264 {
4265 init_psymbol_list (objfile, 1024);
4266 }
4267
4268 TRY
4269 {
4270 /* This isn't really ideal: all the data we allocate on the
4271 objfile's obstack is still uselessly kept around. However,
4272 freeing it seems unsafe. */
4273 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4274
4275 dwarf2_build_psymtabs_hard (objfile);
4276 discard_cleanups (cleanups);
4277 }
4278 CATCH (except, RETURN_MASK_ERROR)
4279 {
4280 exception_print (gdb_stderr, except);
4281 }
4282 END_CATCH
4283 }
4284
4285 /* Return the total length of the CU described by HEADER. */
4286
4287 static unsigned int
4288 get_cu_length (const struct comp_unit_head *header)
4289 {
4290 return header->initial_length_size + header->length;
4291 }
4292
4293 /* Return TRUE if OFFSET is within CU_HEADER. */
4294
4295 static inline int
4296 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4297 {
4298 sect_offset bottom = { cu_header->offset.sect_off };
4299 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4300
4301 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4302 }
4303
4304 /* Find the base address of the compilation unit for range lists and
4305 location lists. It will normally be specified by DW_AT_low_pc.
4306 In DWARF-3 draft 4, the base address could be overridden by
4307 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4308 compilation units with discontinuous ranges. */
4309
4310 static void
4311 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4312 {
4313 struct attribute *attr;
4314
4315 cu->base_known = 0;
4316 cu->base_address = 0;
4317
4318 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4319 if (attr)
4320 {
4321 cu->base_address = attr_value_as_address (attr);
4322 cu->base_known = 1;
4323 }
4324 else
4325 {
4326 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4327 if (attr)
4328 {
4329 cu->base_address = attr_value_as_address (attr);
4330 cu->base_known = 1;
4331 }
4332 }
4333 }
4334
4335 /* Read in the comp unit header information from the debug_info at info_ptr.
4336 NOTE: This leaves members offset, first_die_offset to be filled in
4337 by the caller. */
4338
4339 static const gdb_byte *
4340 read_comp_unit_head (struct comp_unit_head *cu_header,
4341 const gdb_byte *info_ptr, bfd *abfd)
4342 {
4343 int signed_addr;
4344 unsigned int bytes_read;
4345
4346 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4347 cu_header->initial_length_size = bytes_read;
4348 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4349 info_ptr += bytes_read;
4350 cu_header->version = read_2_bytes (abfd, info_ptr);
4351 info_ptr += 2;
4352 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4353 &bytes_read);
4354 info_ptr += bytes_read;
4355 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4356 info_ptr += 1;
4357 signed_addr = bfd_get_sign_extend_vma (abfd);
4358 if (signed_addr < 0)
4359 internal_error (__FILE__, __LINE__,
4360 _("read_comp_unit_head: dwarf from non elf file"));
4361 cu_header->signed_addr_p = signed_addr;
4362
4363 return info_ptr;
4364 }
4365
4366 /* Helper function that returns the proper abbrev section for
4367 THIS_CU. */
4368
4369 static struct dwarf2_section_info *
4370 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4371 {
4372 struct dwarf2_section_info *abbrev;
4373
4374 if (this_cu->is_dwz)
4375 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4376 else
4377 abbrev = &dwarf2_per_objfile->abbrev;
4378
4379 return abbrev;
4380 }
4381
4382 /* Subroutine of read_and_check_comp_unit_head and
4383 read_and_check_type_unit_head to simplify them.
4384 Perform various error checking on the header. */
4385
4386 static void
4387 error_check_comp_unit_head (struct comp_unit_head *header,
4388 struct dwarf2_section_info *section,
4389 struct dwarf2_section_info *abbrev_section)
4390 {
4391 const char *filename = get_section_file_name (section);
4392
4393 if (header->version != 2 && header->version != 3 && header->version != 4)
4394 error (_("Dwarf Error: wrong version in compilation unit header "
4395 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4396 filename);
4397
4398 if (header->abbrev_offset.sect_off
4399 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4400 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4401 "(offset 0x%lx + 6) [in module %s]"),
4402 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4403 filename);
4404
4405 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4406 avoid potential 32-bit overflow. */
4407 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4408 > section->size)
4409 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4410 "(offset 0x%lx + 0) [in module %s]"),
4411 (long) header->length, (long) header->offset.sect_off,
4412 filename);
4413 }
4414
4415 /* Read in a CU/TU header and perform some basic error checking.
4416 The contents of the header are stored in HEADER.
4417 The result is a pointer to the start of the first DIE. */
4418
4419 static const gdb_byte *
4420 read_and_check_comp_unit_head (struct comp_unit_head *header,
4421 struct dwarf2_section_info *section,
4422 struct dwarf2_section_info *abbrev_section,
4423 const gdb_byte *info_ptr,
4424 int is_debug_types_section)
4425 {
4426 const gdb_byte *beg_of_comp_unit = info_ptr;
4427 bfd *abfd = get_section_bfd_owner (section);
4428
4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4430
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4432
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
4435 if (is_debug_types_section)
4436 info_ptr += 8 /*signature*/ + header->offset_size;
4437
4438 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4439
4440 error_check_comp_unit_head (header, section, abbrev_section);
4441
4442 return info_ptr;
4443 }
4444
4445 /* Read in the types comp unit header information from .debug_types entry at
4446 types_ptr. The result is a pointer to one past the end of the header. */
4447
4448 static const gdb_byte *
4449 read_and_check_type_unit_head (struct comp_unit_head *header,
4450 struct dwarf2_section_info *section,
4451 struct dwarf2_section_info *abbrev_section,
4452 const gdb_byte *info_ptr,
4453 ULONGEST *signature,
4454 cu_offset *type_offset_in_tu)
4455 {
4456 const gdb_byte *beg_of_comp_unit = info_ptr;
4457 bfd *abfd = get_section_bfd_owner (section);
4458
4459 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4460
4461 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4462
4463 /* If we're reading a type unit, skip over the signature and
4464 type_offset fields. */
4465 if (signature != NULL)
4466 *signature = read_8_bytes (abfd, info_ptr);
4467 info_ptr += 8;
4468 if (type_offset_in_tu != NULL)
4469 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4470 header->offset_size);
4471 info_ptr += header->offset_size;
4472
4473 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4474
4475 error_check_comp_unit_head (header, section, abbrev_section);
4476
4477 return info_ptr;
4478 }
4479
4480 /* Fetch the abbreviation table offset from a comp or type unit header. */
4481
4482 static sect_offset
4483 read_abbrev_offset (struct dwarf2_section_info *section,
4484 sect_offset offset)
4485 {
4486 bfd *abfd = get_section_bfd_owner (section);
4487 const gdb_byte *info_ptr;
4488 unsigned int initial_length_size, offset_size;
4489 sect_offset abbrev_offset;
4490
4491 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4492 info_ptr = section->buffer + offset.sect_off;
4493 read_initial_length (abfd, info_ptr, &initial_length_size);
4494 offset_size = initial_length_size == 4 ? 4 : 8;
4495 info_ptr += initial_length_size + 2 /*version*/;
4496 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4497 return abbrev_offset;
4498 }
4499
4500 /* Allocate a new partial symtab for file named NAME and mark this new
4501 partial symtab as being an include of PST. */
4502
4503 static void
4504 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4505 struct objfile *objfile)
4506 {
4507 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4508
4509 if (!IS_ABSOLUTE_PATH (subpst->filename))
4510 {
4511 /* It shares objfile->objfile_obstack. */
4512 subpst->dirname = pst->dirname;
4513 }
4514
4515 subpst->textlow = 0;
4516 subpst->texthigh = 0;
4517
4518 subpst->dependencies
4519 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
4520 subpst->dependencies[0] = pst;
4521 subpst->number_of_dependencies = 1;
4522
4523 subpst->globals_offset = 0;
4524 subpst->n_global_syms = 0;
4525 subpst->statics_offset = 0;
4526 subpst->n_static_syms = 0;
4527 subpst->compunit_symtab = NULL;
4528 subpst->read_symtab = pst->read_symtab;
4529 subpst->readin = 0;
4530
4531 /* No private part is necessary for include psymtabs. This property
4532 can be used to differentiate between such include psymtabs and
4533 the regular ones. */
4534 subpst->read_symtab_private = NULL;
4535 }
4536
4537 /* Read the Line Number Program data and extract the list of files
4538 included by the source file represented by PST. Build an include
4539 partial symtab for each of these included files. */
4540
4541 static void
4542 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4543 struct die_info *die,
4544 struct partial_symtab *pst)
4545 {
4546 struct line_header *lh = NULL;
4547 struct attribute *attr;
4548
4549 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4550 if (attr)
4551 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4552 if (lh == NULL)
4553 return; /* No linetable, so no includes. */
4554
4555 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4556 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4557
4558 free_line_header (lh);
4559 }
4560
4561 static hashval_t
4562 hash_signatured_type (const void *item)
4563 {
4564 const struct signatured_type *sig_type
4565 = (const struct signatured_type *) item;
4566
4567 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4568 return sig_type->signature;
4569 }
4570
4571 static int
4572 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4573 {
4574 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4575 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
4576
4577 return lhs->signature == rhs->signature;
4578 }
4579
4580 /* Allocate a hash table for signatured types. */
4581
4582 static htab_t
4583 allocate_signatured_type_table (struct objfile *objfile)
4584 {
4585 return htab_create_alloc_ex (41,
4586 hash_signatured_type,
4587 eq_signatured_type,
4588 NULL,
4589 &objfile->objfile_obstack,
4590 hashtab_obstack_allocate,
4591 dummy_obstack_deallocate);
4592 }
4593
4594 /* A helper function to add a signatured type CU to a table. */
4595
4596 static int
4597 add_signatured_type_cu_to_table (void **slot, void *datum)
4598 {
4599 struct signatured_type *sigt = (struct signatured_type *) *slot;
4600 struct signatured_type ***datap = (struct signatured_type ***) datum;
4601
4602 **datap = sigt;
4603 ++*datap;
4604
4605 return 1;
4606 }
4607
4608 /* Create the hash table of all entries in the .debug_types
4609 (or .debug_types.dwo) section(s).
4610 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4611 otherwise it is NULL.
4612
4613 The result is a pointer to the hash table or NULL if there are no types.
4614
4615 Note: This function processes DWO files only, not DWP files. */
4616
4617 static htab_t
4618 create_debug_types_hash_table (struct dwo_file *dwo_file,
4619 VEC (dwarf2_section_info_def) *types)
4620 {
4621 struct objfile *objfile = dwarf2_per_objfile->objfile;
4622 htab_t types_htab = NULL;
4623 int ix;
4624 struct dwarf2_section_info *section;
4625 struct dwarf2_section_info *abbrev_section;
4626
4627 if (VEC_empty (dwarf2_section_info_def, types))
4628 return NULL;
4629
4630 abbrev_section = (dwo_file != NULL
4631 ? &dwo_file->sections.abbrev
4632 : &dwarf2_per_objfile->abbrev);
4633
4634 if (dwarf_read_debug)
4635 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4636 dwo_file ? ".dwo" : "",
4637 get_section_file_name (abbrev_section));
4638
4639 for (ix = 0;
4640 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4641 ++ix)
4642 {
4643 bfd *abfd;
4644 const gdb_byte *info_ptr, *end_ptr;
4645
4646 dwarf2_read_section (objfile, section);
4647 info_ptr = section->buffer;
4648
4649 if (info_ptr == NULL)
4650 continue;
4651
4652 /* We can't set abfd until now because the section may be empty or
4653 not present, in which case the bfd is unknown. */
4654 abfd = get_section_bfd_owner (section);
4655
4656 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4657 because we don't need to read any dies: the signature is in the
4658 header. */
4659
4660 end_ptr = info_ptr + section->size;
4661 while (info_ptr < end_ptr)
4662 {
4663 sect_offset offset;
4664 cu_offset type_offset_in_tu;
4665 ULONGEST signature;
4666 struct signatured_type *sig_type;
4667 struct dwo_unit *dwo_tu;
4668 void **slot;
4669 const gdb_byte *ptr = info_ptr;
4670 struct comp_unit_head header;
4671 unsigned int length;
4672
4673 offset.sect_off = ptr - section->buffer;
4674
4675 /* We need to read the type's signature in order to build the hash
4676 table, but we don't need anything else just yet. */
4677
4678 ptr = read_and_check_type_unit_head (&header, section,
4679 abbrev_section, ptr,
4680 &signature, &type_offset_in_tu);
4681
4682 length = get_cu_length (&header);
4683
4684 /* Skip dummy type units. */
4685 if (ptr >= info_ptr + length
4686 || peek_abbrev_code (abfd, ptr) == 0)
4687 {
4688 info_ptr += length;
4689 continue;
4690 }
4691
4692 if (types_htab == NULL)
4693 {
4694 if (dwo_file)
4695 types_htab = allocate_dwo_unit_table (objfile);
4696 else
4697 types_htab = allocate_signatured_type_table (objfile);
4698 }
4699
4700 if (dwo_file)
4701 {
4702 sig_type = NULL;
4703 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4704 struct dwo_unit);
4705 dwo_tu->dwo_file = dwo_file;
4706 dwo_tu->signature = signature;
4707 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4708 dwo_tu->section = section;
4709 dwo_tu->offset = offset;
4710 dwo_tu->length = length;
4711 }
4712 else
4713 {
4714 /* N.B.: type_offset is not usable if this type uses a DWO file.
4715 The real type_offset is in the DWO file. */
4716 dwo_tu = NULL;
4717 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4718 struct signatured_type);
4719 sig_type->signature = signature;
4720 sig_type->type_offset_in_tu = type_offset_in_tu;
4721 sig_type->per_cu.objfile = objfile;
4722 sig_type->per_cu.is_debug_types = 1;
4723 sig_type->per_cu.section = section;
4724 sig_type->per_cu.offset = offset;
4725 sig_type->per_cu.length = length;
4726 }
4727
4728 slot = htab_find_slot (types_htab,
4729 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4730 INSERT);
4731 gdb_assert (slot != NULL);
4732 if (*slot != NULL)
4733 {
4734 sect_offset dup_offset;
4735
4736 if (dwo_file)
4737 {
4738 const struct dwo_unit *dup_tu
4739 = (const struct dwo_unit *) *slot;
4740
4741 dup_offset = dup_tu->offset;
4742 }
4743 else
4744 {
4745 const struct signatured_type *dup_tu
4746 = (const struct signatured_type *) *slot;
4747
4748 dup_offset = dup_tu->per_cu.offset;
4749 }
4750
4751 complaint (&symfile_complaints,
4752 _("debug type entry at offset 0x%x is duplicate to"
4753 " the entry at offset 0x%x, signature %s"),
4754 offset.sect_off, dup_offset.sect_off,
4755 hex_string (signature));
4756 }
4757 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4758
4759 if (dwarf_read_debug > 1)
4760 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4761 offset.sect_off,
4762 hex_string (signature));
4763
4764 info_ptr += length;
4765 }
4766 }
4767
4768 return types_htab;
4769 }
4770
4771 /* Create the hash table of all entries in the .debug_types section,
4772 and initialize all_type_units.
4773 The result is zero if there is an error (e.g. missing .debug_types section),
4774 otherwise non-zero. */
4775
4776 static int
4777 create_all_type_units (struct objfile *objfile)
4778 {
4779 htab_t types_htab;
4780 struct signatured_type **iter;
4781
4782 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4783 if (types_htab == NULL)
4784 {
4785 dwarf2_per_objfile->signatured_types = NULL;
4786 return 0;
4787 }
4788
4789 dwarf2_per_objfile->signatured_types = types_htab;
4790
4791 dwarf2_per_objfile->n_type_units
4792 = dwarf2_per_objfile->n_allocated_type_units
4793 = htab_elements (types_htab);
4794 dwarf2_per_objfile->all_type_units =
4795 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
4796 iter = &dwarf2_per_objfile->all_type_units[0];
4797 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4798 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4799 == dwarf2_per_objfile->n_type_units);
4800
4801 return 1;
4802 }
4803
4804 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4805 If SLOT is non-NULL, it is the entry to use in the hash table.
4806 Otherwise we find one. */
4807
4808 static struct signatured_type *
4809 add_type_unit (ULONGEST sig, void **slot)
4810 {
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814
4815 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4816 ++n_type_units;
4817 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4818 {
4819 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4820 dwarf2_per_objfile->n_allocated_type_units = 1;
4821 dwarf2_per_objfile->n_allocated_type_units *= 2;
4822 dwarf2_per_objfile->all_type_units
4823 = XRESIZEVEC (struct signatured_type *,
4824 dwarf2_per_objfile->all_type_units,
4825 dwarf2_per_objfile->n_allocated_type_units);
4826 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4827 }
4828 dwarf2_per_objfile->n_type_units = n_type_units;
4829
4830 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4831 struct signatured_type);
4832 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4833 sig_type->signature = sig;
4834 sig_type->per_cu.is_debug_types = 1;
4835 if (dwarf2_per_objfile->using_index)
4836 {
4837 sig_type->per_cu.v.quick =
4838 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4839 struct dwarf2_per_cu_quick_data);
4840 }
4841
4842 if (slot == NULL)
4843 {
4844 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4845 sig_type, INSERT);
4846 }
4847 gdb_assert (*slot == NULL);
4848 *slot = sig_type;
4849 /* The rest of sig_type must be filled in by the caller. */
4850 return sig_type;
4851 }
4852
4853 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4854 Fill in SIG_ENTRY with DWO_ENTRY. */
4855
4856 static void
4857 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4858 struct signatured_type *sig_entry,
4859 struct dwo_unit *dwo_entry)
4860 {
4861 /* Make sure we're not clobbering something we don't expect to. */
4862 gdb_assert (! sig_entry->per_cu.queued);
4863 gdb_assert (sig_entry->per_cu.cu == NULL);
4864 if (dwarf2_per_objfile->using_index)
4865 {
4866 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4867 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4868 }
4869 else
4870 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4871 gdb_assert (sig_entry->signature == dwo_entry->signature);
4872 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4873 gdb_assert (sig_entry->type_unit_group == NULL);
4874 gdb_assert (sig_entry->dwo_unit == NULL);
4875
4876 sig_entry->per_cu.section = dwo_entry->section;
4877 sig_entry->per_cu.offset = dwo_entry->offset;
4878 sig_entry->per_cu.length = dwo_entry->length;
4879 sig_entry->per_cu.reading_dwo_directly = 1;
4880 sig_entry->per_cu.objfile = objfile;
4881 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4882 sig_entry->dwo_unit = dwo_entry;
4883 }
4884
4885 /* Subroutine of lookup_signatured_type.
4886 If we haven't read the TU yet, create the signatured_type data structure
4887 for a TU to be read in directly from a DWO file, bypassing the stub.
4888 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4889 using .gdb_index, then when reading a CU we want to stay in the DWO file
4890 containing that CU. Otherwise we could end up reading several other DWO
4891 files (due to comdat folding) to process the transitive closure of all the
4892 mentioned TUs, and that can be slow. The current DWO file will have every
4893 type signature that it needs.
4894 We only do this for .gdb_index because in the psymtab case we already have
4895 to read all the DWOs to build the type unit groups. */
4896
4897 static struct signatured_type *
4898 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4899 {
4900 struct objfile *objfile = dwarf2_per_objfile->objfile;
4901 struct dwo_file *dwo_file;
4902 struct dwo_unit find_dwo_entry, *dwo_entry;
4903 struct signatured_type find_sig_entry, *sig_entry;
4904 void **slot;
4905
4906 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4907
4908 /* If TU skeletons have been removed then we may not have read in any
4909 TUs yet. */
4910 if (dwarf2_per_objfile->signatured_types == NULL)
4911 {
4912 dwarf2_per_objfile->signatured_types
4913 = allocate_signatured_type_table (objfile);
4914 }
4915
4916 /* We only ever need to read in one copy of a signatured type.
4917 Use the global signatured_types array to do our own comdat-folding
4918 of types. If this is the first time we're reading this TU, and
4919 the TU has an entry in .gdb_index, replace the recorded data from
4920 .gdb_index with this TU. */
4921
4922 find_sig_entry.signature = sig;
4923 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4924 &find_sig_entry, INSERT);
4925 sig_entry = (struct signatured_type *) *slot;
4926
4927 /* We can get here with the TU already read, *or* in the process of being
4928 read. Don't reassign the global entry to point to this DWO if that's
4929 the case. Also note that if the TU is already being read, it may not
4930 have come from a DWO, the program may be a mix of Fission-compiled
4931 code and non-Fission-compiled code. */
4932
4933 /* Have we already tried to read this TU?
4934 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4935 needn't exist in the global table yet). */
4936 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4937 return sig_entry;
4938
4939 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4940 dwo_unit of the TU itself. */
4941 dwo_file = cu->dwo_unit->dwo_file;
4942
4943 /* Ok, this is the first time we're reading this TU. */
4944 if (dwo_file->tus == NULL)
4945 return NULL;
4946 find_dwo_entry.signature = sig;
4947 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
4948 if (dwo_entry == NULL)
4949 return NULL;
4950
4951 /* If the global table doesn't have an entry for this TU, add one. */
4952 if (sig_entry == NULL)
4953 sig_entry = add_type_unit (sig, slot);
4954
4955 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4956 sig_entry->per_cu.tu_read = 1;
4957 return sig_entry;
4958 }
4959
4960 /* Subroutine of lookup_signatured_type.
4961 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4962 then try the DWP file. If the TU stub (skeleton) has been removed then
4963 it won't be in .gdb_index. */
4964
4965 static struct signatured_type *
4966 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4967 {
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwp_file *dwp_file = get_dwp_file ();
4970 struct dwo_unit *dwo_entry;
4971 struct signatured_type find_sig_entry, *sig_entry;
4972 void **slot;
4973
4974 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4975 gdb_assert (dwp_file != NULL);
4976
4977 /* If TU skeletons have been removed then we may not have read in any
4978 TUs yet. */
4979 if (dwarf2_per_objfile->signatured_types == NULL)
4980 {
4981 dwarf2_per_objfile->signatured_types
4982 = allocate_signatured_type_table (objfile);
4983 }
4984
4985 find_sig_entry.signature = sig;
4986 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4987 &find_sig_entry, INSERT);
4988 sig_entry = (struct signatured_type *) *slot;
4989
4990 /* Have we already tried to read this TU?
4991 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4992 needn't exist in the global table yet). */
4993 if (sig_entry != NULL)
4994 return sig_entry;
4995
4996 if (dwp_file->tus == NULL)
4997 return NULL;
4998 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4999 sig, 1 /* is_debug_types */);
5000 if (dwo_entry == NULL)
5001 return NULL;
5002
5003 sig_entry = add_type_unit (sig, slot);
5004 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5005
5006 return sig_entry;
5007 }
5008
5009 /* Lookup a signature based type for DW_FORM_ref_sig8.
5010 Returns NULL if signature SIG is not present in the table.
5011 It is up to the caller to complain about this. */
5012
5013 static struct signatured_type *
5014 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5015 {
5016 if (cu->dwo_unit
5017 && dwarf2_per_objfile->using_index)
5018 {
5019 /* We're in a DWO/DWP file, and we're using .gdb_index.
5020 These cases require special processing. */
5021 if (get_dwp_file () == NULL)
5022 return lookup_dwo_signatured_type (cu, sig);
5023 else
5024 return lookup_dwp_signatured_type (cu, sig);
5025 }
5026 else
5027 {
5028 struct signatured_type find_entry, *entry;
5029
5030 if (dwarf2_per_objfile->signatured_types == NULL)
5031 return NULL;
5032 find_entry.signature = sig;
5033 entry = ((struct signatured_type *)
5034 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
5035 return entry;
5036 }
5037 }
5038 \f
5039 /* Low level DIE reading support. */
5040
5041 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5042
5043 static void
5044 init_cu_die_reader (struct die_reader_specs *reader,
5045 struct dwarf2_cu *cu,
5046 struct dwarf2_section_info *section,
5047 struct dwo_file *dwo_file)
5048 {
5049 gdb_assert (section->readin && section->buffer != NULL);
5050 reader->abfd = get_section_bfd_owner (section);
5051 reader->cu = cu;
5052 reader->dwo_file = dwo_file;
5053 reader->die_section = section;
5054 reader->buffer = section->buffer;
5055 reader->buffer_end = section->buffer + section->size;
5056 reader->comp_dir = NULL;
5057 }
5058
5059 /* Subroutine of init_cutu_and_read_dies to simplify it.
5060 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5061 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5062 already.
5063
5064 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5065 from it to the DIE in the DWO. If NULL we are skipping the stub.
5066 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5067 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5068 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5069 STUB_COMP_DIR may be non-NULL.
5070 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5071 are filled in with the info of the DIE from the DWO file.
5072 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5073 provided an abbrev table to use.
5074 The result is non-zero if a valid (non-dummy) DIE was found. */
5075
5076 static int
5077 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5078 struct dwo_unit *dwo_unit,
5079 int abbrev_table_provided,
5080 struct die_info *stub_comp_unit_die,
5081 const char *stub_comp_dir,
5082 struct die_reader_specs *result_reader,
5083 const gdb_byte **result_info_ptr,
5084 struct die_info **result_comp_unit_die,
5085 int *result_has_children)
5086 {
5087 struct objfile *objfile = dwarf2_per_objfile->objfile;
5088 struct dwarf2_cu *cu = this_cu->cu;
5089 struct dwarf2_section_info *section;
5090 bfd *abfd;
5091 const gdb_byte *begin_info_ptr, *info_ptr;
5092 ULONGEST signature; /* Or dwo_id. */
5093 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5094 int i,num_extra_attrs;
5095 struct dwarf2_section_info *dwo_abbrev_section;
5096 struct attribute *attr;
5097 struct die_info *comp_unit_die;
5098
5099 /* At most one of these may be provided. */
5100 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5101
5102 /* These attributes aren't processed until later:
5103 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5104 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5105 referenced later. However, these attributes are found in the stub
5106 which we won't have later. In order to not impose this complication
5107 on the rest of the code, we read them here and copy them to the
5108 DWO CU/TU die. */
5109
5110 stmt_list = NULL;
5111 low_pc = NULL;
5112 high_pc = NULL;
5113 ranges = NULL;
5114 comp_dir = NULL;
5115
5116 if (stub_comp_unit_die != NULL)
5117 {
5118 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5119 DWO file. */
5120 if (! this_cu->is_debug_types)
5121 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5122 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5123 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5124 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5125 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5126
5127 /* There should be a DW_AT_addr_base attribute here (if needed).
5128 We need the value before we can process DW_FORM_GNU_addr_index. */
5129 cu->addr_base = 0;
5130 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5131 if (attr)
5132 cu->addr_base = DW_UNSND (attr);
5133
5134 /* There should be a DW_AT_ranges_base attribute here (if needed).
5135 We need the value before we can process DW_AT_ranges. */
5136 cu->ranges_base = 0;
5137 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5138 if (attr)
5139 cu->ranges_base = DW_UNSND (attr);
5140 }
5141 else if (stub_comp_dir != NULL)
5142 {
5143 /* Reconstruct the comp_dir attribute to simplify the code below. */
5144 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
5145 comp_dir->name = DW_AT_comp_dir;
5146 comp_dir->form = DW_FORM_string;
5147 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5148 DW_STRING (comp_dir) = stub_comp_dir;
5149 }
5150
5151 /* Set up for reading the DWO CU/TU. */
5152 cu->dwo_unit = dwo_unit;
5153 section = dwo_unit->section;
5154 dwarf2_read_section (objfile, section);
5155 abfd = get_section_bfd_owner (section);
5156 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5157 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5158 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5159
5160 if (this_cu->is_debug_types)
5161 {
5162 ULONGEST header_signature;
5163 cu_offset type_offset_in_tu;
5164 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5165
5166 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5167 dwo_abbrev_section,
5168 info_ptr,
5169 &header_signature,
5170 &type_offset_in_tu);
5171 /* This is not an assert because it can be caused by bad debug info. */
5172 if (sig_type->signature != header_signature)
5173 {
5174 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5175 " TU at offset 0x%x [in module %s]"),
5176 hex_string (sig_type->signature),
5177 hex_string (header_signature),
5178 dwo_unit->offset.sect_off,
5179 bfd_get_filename (abfd));
5180 }
5181 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5182 /* For DWOs coming from DWP files, we don't know the CU length
5183 nor the type's offset in the TU until now. */
5184 dwo_unit->length = get_cu_length (&cu->header);
5185 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5186
5187 /* Establish the type offset that can be used to lookup the type.
5188 For DWO files, we don't know it until now. */
5189 sig_type->type_offset_in_section.sect_off =
5190 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5191 }
5192 else
5193 {
5194 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5195 dwo_abbrev_section,
5196 info_ptr, 0);
5197 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5198 /* For DWOs coming from DWP files, we don't know the CU length
5199 until now. */
5200 dwo_unit->length = get_cu_length (&cu->header);
5201 }
5202
5203 /* Replace the CU's original abbrev table with the DWO's.
5204 Reminder: We can't read the abbrev table until we've read the header. */
5205 if (abbrev_table_provided)
5206 {
5207 /* Don't free the provided abbrev table, the caller of
5208 init_cutu_and_read_dies owns it. */
5209 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5210 /* Ensure the DWO abbrev table gets freed. */
5211 make_cleanup (dwarf2_free_abbrev_table, cu);
5212 }
5213 else
5214 {
5215 dwarf2_free_abbrev_table (cu);
5216 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5217 /* Leave any existing abbrev table cleanup as is. */
5218 }
5219
5220 /* Read in the die, but leave space to copy over the attributes
5221 from the stub. This has the benefit of simplifying the rest of
5222 the code - all the work to maintain the illusion of a single
5223 DW_TAG_{compile,type}_unit DIE is done here. */
5224 num_extra_attrs = ((stmt_list != NULL)
5225 + (low_pc != NULL)
5226 + (high_pc != NULL)
5227 + (ranges != NULL)
5228 + (comp_dir != NULL));
5229 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5230 result_has_children, num_extra_attrs);
5231
5232 /* Copy over the attributes from the stub to the DIE we just read in. */
5233 comp_unit_die = *result_comp_unit_die;
5234 i = comp_unit_die->num_attrs;
5235 if (stmt_list != NULL)
5236 comp_unit_die->attrs[i++] = *stmt_list;
5237 if (low_pc != NULL)
5238 comp_unit_die->attrs[i++] = *low_pc;
5239 if (high_pc != NULL)
5240 comp_unit_die->attrs[i++] = *high_pc;
5241 if (ranges != NULL)
5242 comp_unit_die->attrs[i++] = *ranges;
5243 if (comp_dir != NULL)
5244 comp_unit_die->attrs[i++] = *comp_dir;
5245 comp_unit_die->num_attrs += num_extra_attrs;
5246
5247 if (dwarf_die_debug)
5248 {
5249 fprintf_unfiltered (gdb_stdlog,
5250 "Read die from %s@0x%x of %s:\n",
5251 get_section_name (section),
5252 (unsigned) (begin_info_ptr - section->buffer),
5253 bfd_get_filename (abfd));
5254 dump_die (comp_unit_die, dwarf_die_debug);
5255 }
5256
5257 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5258 TUs by skipping the stub and going directly to the entry in the DWO file.
5259 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5260 to get it via circuitous means. Blech. */
5261 if (comp_dir != NULL)
5262 result_reader->comp_dir = DW_STRING (comp_dir);
5263
5264 /* Skip dummy compilation units. */
5265 if (info_ptr >= begin_info_ptr + dwo_unit->length
5266 || peek_abbrev_code (abfd, info_ptr) == 0)
5267 return 0;
5268
5269 *result_info_ptr = info_ptr;
5270 return 1;
5271 }
5272
5273 /* Subroutine of init_cutu_and_read_dies to simplify it.
5274 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5275 Returns NULL if the specified DWO unit cannot be found. */
5276
5277 static struct dwo_unit *
5278 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5279 struct die_info *comp_unit_die)
5280 {
5281 struct dwarf2_cu *cu = this_cu->cu;
5282 struct attribute *attr;
5283 ULONGEST signature;
5284 struct dwo_unit *dwo_unit;
5285 const char *comp_dir, *dwo_name;
5286
5287 gdb_assert (cu != NULL);
5288
5289 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5290 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5291 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5292
5293 if (this_cu->is_debug_types)
5294 {
5295 struct signatured_type *sig_type;
5296
5297 /* Since this_cu is the first member of struct signatured_type,
5298 we can go from a pointer to one to a pointer to the other. */
5299 sig_type = (struct signatured_type *) this_cu;
5300 signature = sig_type->signature;
5301 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5302 }
5303 else
5304 {
5305 struct attribute *attr;
5306
5307 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5308 if (! attr)
5309 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5310 " [in module %s]"),
5311 dwo_name, objfile_name (this_cu->objfile));
5312 signature = DW_UNSND (attr);
5313 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5314 signature);
5315 }
5316
5317 return dwo_unit;
5318 }
5319
5320 /* Subroutine of init_cutu_and_read_dies to simplify it.
5321 See it for a description of the parameters.
5322 Read a TU directly from a DWO file, bypassing the stub.
5323
5324 Note: This function could be a little bit simpler if we shared cleanups
5325 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5326 to do, so we keep this function self-contained. Or we could move this
5327 into our caller, but it's complex enough already. */
5328
5329 static void
5330 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5331 int use_existing_cu, int keep,
5332 die_reader_func_ftype *die_reader_func,
5333 void *data)
5334 {
5335 struct dwarf2_cu *cu;
5336 struct signatured_type *sig_type;
5337 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5338 struct die_reader_specs reader;
5339 const gdb_byte *info_ptr;
5340 struct die_info *comp_unit_die;
5341 int has_children;
5342
5343 /* Verify we can do the following downcast, and that we have the
5344 data we need. */
5345 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5346 sig_type = (struct signatured_type *) this_cu;
5347 gdb_assert (sig_type->dwo_unit != NULL);
5348
5349 cleanups = make_cleanup (null_cleanup, NULL);
5350
5351 if (use_existing_cu && this_cu->cu != NULL)
5352 {
5353 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5354 cu = this_cu->cu;
5355 /* There's no need to do the rereading_dwo_cu handling that
5356 init_cutu_and_read_dies does since we don't read the stub. */
5357 }
5358 else
5359 {
5360 /* If !use_existing_cu, this_cu->cu must be NULL. */
5361 gdb_assert (this_cu->cu == NULL);
5362 cu = XNEW (struct dwarf2_cu);
5363 init_one_comp_unit (cu, this_cu);
5364 /* If an error occurs while loading, release our storage. */
5365 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5366 }
5367
5368 /* A future optimization, if needed, would be to use an existing
5369 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5370 could share abbrev tables. */
5371
5372 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5373 0 /* abbrev_table_provided */,
5374 NULL /* stub_comp_unit_die */,
5375 sig_type->dwo_unit->dwo_file->comp_dir,
5376 &reader, &info_ptr,
5377 &comp_unit_die, &has_children) == 0)
5378 {
5379 /* Dummy die. */
5380 do_cleanups (cleanups);
5381 return;
5382 }
5383
5384 /* All the "real" work is done here. */
5385 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5386
5387 /* This duplicates the code in init_cutu_and_read_dies,
5388 but the alternative is making the latter more complex.
5389 This function is only for the special case of using DWO files directly:
5390 no point in overly complicating the general case just to handle this. */
5391 if (free_cu_cleanup != NULL)
5392 {
5393 if (keep)
5394 {
5395 /* We've successfully allocated this compilation unit. Let our
5396 caller clean it up when finished with it. */
5397 discard_cleanups (free_cu_cleanup);
5398
5399 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5400 So we have to manually free the abbrev table. */
5401 dwarf2_free_abbrev_table (cu);
5402
5403 /* Link this CU into read_in_chain. */
5404 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5405 dwarf2_per_objfile->read_in_chain = this_cu;
5406 }
5407 else
5408 do_cleanups (free_cu_cleanup);
5409 }
5410
5411 do_cleanups (cleanups);
5412 }
5413
5414 /* Initialize a CU (or TU) and read its DIEs.
5415 If the CU defers to a DWO file, read the DWO file as well.
5416
5417 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5418 Otherwise the table specified in the comp unit header is read in and used.
5419 This is an optimization for when we already have the abbrev table.
5420
5421 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5422 Otherwise, a new CU is allocated with xmalloc.
5423
5424 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5425 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5426
5427 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5428 linker) then DIE_READER_FUNC will not get called. */
5429
5430 static void
5431 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5432 struct abbrev_table *abbrev_table,
5433 int use_existing_cu, int keep,
5434 die_reader_func_ftype *die_reader_func,
5435 void *data)
5436 {
5437 struct objfile *objfile = dwarf2_per_objfile->objfile;
5438 struct dwarf2_section_info *section = this_cu->section;
5439 bfd *abfd = get_section_bfd_owner (section);
5440 struct dwarf2_cu *cu;
5441 const gdb_byte *begin_info_ptr, *info_ptr;
5442 struct die_reader_specs reader;
5443 struct die_info *comp_unit_die;
5444 int has_children;
5445 struct attribute *attr;
5446 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5447 struct signatured_type *sig_type = NULL;
5448 struct dwarf2_section_info *abbrev_section;
5449 /* Non-zero if CU currently points to a DWO file and we need to
5450 reread it. When this happens we need to reread the skeleton die
5451 before we can reread the DWO file (this only applies to CUs, not TUs). */
5452 int rereading_dwo_cu = 0;
5453
5454 if (dwarf_die_debug)
5455 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5456 this_cu->is_debug_types ? "type" : "comp",
5457 this_cu->offset.sect_off);
5458
5459 if (use_existing_cu)
5460 gdb_assert (keep);
5461
5462 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5463 file (instead of going through the stub), short-circuit all of this. */
5464 if (this_cu->reading_dwo_directly)
5465 {
5466 /* Narrow down the scope of possibilities to have to understand. */
5467 gdb_assert (this_cu->is_debug_types);
5468 gdb_assert (abbrev_table == NULL);
5469 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5470 die_reader_func, data);
5471 return;
5472 }
5473
5474 cleanups = make_cleanup (null_cleanup, NULL);
5475
5476 /* This is cheap if the section is already read in. */
5477 dwarf2_read_section (objfile, section);
5478
5479 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5480
5481 abbrev_section = get_abbrev_section_for_cu (this_cu);
5482
5483 if (use_existing_cu && this_cu->cu != NULL)
5484 {
5485 cu = this_cu->cu;
5486 /* If this CU is from a DWO file we need to start over, we need to
5487 refetch the attributes from the skeleton CU.
5488 This could be optimized by retrieving those attributes from when we
5489 were here the first time: the previous comp_unit_die was stored in
5490 comp_unit_obstack. But there's no data yet that we need this
5491 optimization. */
5492 if (cu->dwo_unit != NULL)
5493 rereading_dwo_cu = 1;
5494 }
5495 else
5496 {
5497 /* If !use_existing_cu, this_cu->cu must be NULL. */
5498 gdb_assert (this_cu->cu == NULL);
5499 cu = XNEW (struct dwarf2_cu);
5500 init_one_comp_unit (cu, this_cu);
5501 /* If an error occurs while loading, release our storage. */
5502 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5503 }
5504
5505 /* Get the header. */
5506 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5507 {
5508 /* We already have the header, there's no need to read it in again. */
5509 info_ptr += cu->header.first_die_offset.cu_off;
5510 }
5511 else
5512 {
5513 if (this_cu->is_debug_types)
5514 {
5515 ULONGEST signature;
5516 cu_offset type_offset_in_tu;
5517
5518 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5519 abbrev_section, info_ptr,
5520 &signature,
5521 &type_offset_in_tu);
5522
5523 /* Since per_cu is the first member of struct signatured_type,
5524 we can go from a pointer to one to a pointer to the other. */
5525 sig_type = (struct signatured_type *) this_cu;
5526 gdb_assert (sig_type->signature == signature);
5527 gdb_assert (sig_type->type_offset_in_tu.cu_off
5528 == type_offset_in_tu.cu_off);
5529 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5530
5531 /* LENGTH has not been set yet for type units if we're
5532 using .gdb_index. */
5533 this_cu->length = get_cu_length (&cu->header);
5534
5535 /* Establish the type offset that can be used to lookup the type. */
5536 sig_type->type_offset_in_section.sect_off =
5537 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5538 }
5539 else
5540 {
5541 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5542 abbrev_section,
5543 info_ptr, 0);
5544
5545 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5546 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5547 }
5548 }
5549
5550 /* Skip dummy compilation units. */
5551 if (info_ptr >= begin_info_ptr + this_cu->length
5552 || peek_abbrev_code (abfd, info_ptr) == 0)
5553 {
5554 do_cleanups (cleanups);
5555 return;
5556 }
5557
5558 /* If we don't have them yet, read the abbrevs for this compilation unit.
5559 And if we need to read them now, make sure they're freed when we're
5560 done. Note that it's important that if the CU had an abbrev table
5561 on entry we don't free it when we're done: Somewhere up the call stack
5562 it may be in use. */
5563 if (abbrev_table != NULL)
5564 {
5565 gdb_assert (cu->abbrev_table == NULL);
5566 gdb_assert (cu->header.abbrev_offset.sect_off
5567 == abbrev_table->offset.sect_off);
5568 cu->abbrev_table = abbrev_table;
5569 }
5570 else if (cu->abbrev_table == NULL)
5571 {
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 make_cleanup (dwarf2_free_abbrev_table, cu);
5574 }
5575 else if (rereading_dwo_cu)
5576 {
5577 dwarf2_free_abbrev_table (cu);
5578 dwarf2_read_abbrevs (cu, abbrev_section);
5579 }
5580
5581 /* Read the top level CU/TU die. */
5582 init_cu_die_reader (&reader, cu, section, NULL);
5583 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5584
5585 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5586 from the DWO file.
5587 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5588 DWO CU, that this test will fail (the attribute will not be present). */
5589 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5590 if (attr)
5591 {
5592 struct dwo_unit *dwo_unit;
5593 struct die_info *dwo_comp_unit_die;
5594
5595 if (has_children)
5596 {
5597 complaint (&symfile_complaints,
5598 _("compilation unit with DW_AT_GNU_dwo_name"
5599 " has children (offset 0x%x) [in module %s]"),
5600 this_cu->offset.sect_off, bfd_get_filename (abfd));
5601 }
5602 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5603 if (dwo_unit != NULL)
5604 {
5605 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5606 abbrev_table != NULL,
5607 comp_unit_die, NULL,
5608 &reader, &info_ptr,
5609 &dwo_comp_unit_die, &has_children) == 0)
5610 {
5611 /* Dummy die. */
5612 do_cleanups (cleanups);
5613 return;
5614 }
5615 comp_unit_die = dwo_comp_unit_die;
5616 }
5617 else
5618 {
5619 /* Yikes, we couldn't find the rest of the DIE, we only have
5620 the stub. A complaint has already been logged. There's
5621 not much more we can do except pass on the stub DIE to
5622 die_reader_func. We don't want to throw an error on bad
5623 debug info. */
5624 }
5625 }
5626
5627 /* All of the above is setup for this call. Yikes. */
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 /* Done, clean up. */
5631 if (free_cu_cleanup != NULL)
5632 {
5633 if (keep)
5634 {
5635 /* We've successfully allocated this compilation unit. Let our
5636 caller clean it up when finished with it. */
5637 discard_cleanups (free_cu_cleanup);
5638
5639 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5640 So we have to manually free the abbrev table. */
5641 dwarf2_free_abbrev_table (cu);
5642
5643 /* Link this CU into read_in_chain. */
5644 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5645 dwarf2_per_objfile->read_in_chain = this_cu;
5646 }
5647 else
5648 do_cleanups (free_cu_cleanup);
5649 }
5650
5651 do_cleanups (cleanups);
5652 }
5653
5654 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5655 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5656 to have already done the lookup to find the DWO file).
5657
5658 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5659 THIS_CU->is_debug_types, but nothing else.
5660
5661 We fill in THIS_CU->length.
5662
5663 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5664 linker) then DIE_READER_FUNC will not get called.
5665
5666 THIS_CU->cu is always freed when done.
5667 This is done in order to not leave THIS_CU->cu in a state where we have
5668 to care whether it refers to the "main" CU or the DWO CU. */
5669
5670 static void
5671 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5672 struct dwo_file *dwo_file,
5673 die_reader_func_ftype *die_reader_func,
5674 void *data)
5675 {
5676 struct objfile *objfile = dwarf2_per_objfile->objfile;
5677 struct dwarf2_section_info *section = this_cu->section;
5678 bfd *abfd = get_section_bfd_owner (section);
5679 struct dwarf2_section_info *abbrev_section;
5680 struct dwarf2_cu cu;
5681 const gdb_byte *begin_info_ptr, *info_ptr;
5682 struct die_reader_specs reader;
5683 struct cleanup *cleanups;
5684 struct die_info *comp_unit_die;
5685 int has_children;
5686
5687 if (dwarf_die_debug)
5688 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5689 this_cu->is_debug_types ? "type" : "comp",
5690 this_cu->offset.sect_off);
5691
5692 gdb_assert (this_cu->cu == NULL);
5693
5694 abbrev_section = (dwo_file != NULL
5695 ? &dwo_file->sections.abbrev
5696 : get_abbrev_section_for_cu (this_cu));
5697
5698 /* This is cheap if the section is already read in. */
5699 dwarf2_read_section (objfile, section);
5700
5701 init_one_comp_unit (&cu, this_cu);
5702
5703 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5704
5705 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5706 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5707 abbrev_section, info_ptr,
5708 this_cu->is_debug_types);
5709
5710 this_cu->length = get_cu_length (&cu.header);
5711
5712 /* Skip dummy compilation units. */
5713 if (info_ptr >= begin_info_ptr + this_cu->length
5714 || peek_abbrev_code (abfd, info_ptr) == 0)
5715 {
5716 do_cleanups (cleanups);
5717 return;
5718 }
5719
5720 dwarf2_read_abbrevs (&cu, abbrev_section);
5721 make_cleanup (dwarf2_free_abbrev_table, &cu);
5722
5723 init_cu_die_reader (&reader, &cu, section, dwo_file);
5724 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5725
5726 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5727
5728 do_cleanups (cleanups);
5729 }
5730
5731 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5732 does not lookup the specified DWO file.
5733 This cannot be used to read DWO files.
5734
5735 THIS_CU->cu is always freed when done.
5736 This is done in order to not leave THIS_CU->cu in a state where we have
5737 to care whether it refers to the "main" CU or the DWO CU.
5738 We can revisit this if the data shows there's a performance issue. */
5739
5740 static void
5741 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5742 die_reader_func_ftype *die_reader_func,
5743 void *data)
5744 {
5745 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5746 }
5747 \f
5748 /* Type Unit Groups.
5749
5750 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5751 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5752 so that all types coming from the same compilation (.o file) are grouped
5753 together. A future step could be to put the types in the same symtab as
5754 the CU the types ultimately came from. */
5755
5756 static hashval_t
5757 hash_type_unit_group (const void *item)
5758 {
5759 const struct type_unit_group *tu_group
5760 = (const struct type_unit_group *) item;
5761
5762 return hash_stmt_list_entry (&tu_group->hash);
5763 }
5764
5765 static int
5766 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5767 {
5768 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5769 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
5770
5771 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5772 }
5773
5774 /* Allocate a hash table for type unit groups. */
5775
5776 static htab_t
5777 allocate_type_unit_groups_table (void)
5778 {
5779 return htab_create_alloc_ex (3,
5780 hash_type_unit_group,
5781 eq_type_unit_group,
5782 NULL,
5783 &dwarf2_per_objfile->objfile->objfile_obstack,
5784 hashtab_obstack_allocate,
5785 dummy_obstack_deallocate);
5786 }
5787
5788 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5789 partial symtabs. We combine several TUs per psymtab to not let the size
5790 of any one psymtab grow too big. */
5791 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5792 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5793
5794 /* Helper routine for get_type_unit_group.
5795 Create the type_unit_group object used to hold one or more TUs. */
5796
5797 static struct type_unit_group *
5798 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5799 {
5800 struct objfile *objfile = dwarf2_per_objfile->objfile;
5801 struct dwarf2_per_cu_data *per_cu;
5802 struct type_unit_group *tu_group;
5803
5804 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5805 struct type_unit_group);
5806 per_cu = &tu_group->per_cu;
5807 per_cu->objfile = objfile;
5808
5809 if (dwarf2_per_objfile->using_index)
5810 {
5811 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5812 struct dwarf2_per_cu_quick_data);
5813 }
5814 else
5815 {
5816 unsigned int line_offset = line_offset_struct.sect_off;
5817 struct partial_symtab *pst;
5818 char *name;
5819
5820 /* Give the symtab a useful name for debug purposes. */
5821 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5822 name = xstrprintf ("<type_units_%d>",
5823 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5824 else
5825 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5826
5827 pst = create_partial_symtab (per_cu, name);
5828 pst->anonymous = 1;
5829
5830 xfree (name);
5831 }
5832
5833 tu_group->hash.dwo_unit = cu->dwo_unit;
5834 tu_group->hash.line_offset = line_offset_struct;
5835
5836 return tu_group;
5837 }
5838
5839 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5840 STMT_LIST is a DW_AT_stmt_list attribute. */
5841
5842 static struct type_unit_group *
5843 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5844 {
5845 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5846 struct type_unit_group *tu_group;
5847 void **slot;
5848 unsigned int line_offset;
5849 struct type_unit_group type_unit_group_for_lookup;
5850
5851 if (dwarf2_per_objfile->type_unit_groups == NULL)
5852 {
5853 dwarf2_per_objfile->type_unit_groups =
5854 allocate_type_unit_groups_table ();
5855 }
5856
5857 /* Do we need to create a new group, or can we use an existing one? */
5858
5859 if (stmt_list)
5860 {
5861 line_offset = DW_UNSND (stmt_list);
5862 ++tu_stats->nr_symtab_sharers;
5863 }
5864 else
5865 {
5866 /* Ugh, no stmt_list. Rare, but we have to handle it.
5867 We can do various things here like create one group per TU or
5868 spread them over multiple groups to split up the expansion work.
5869 To avoid worst case scenarios (too many groups or too large groups)
5870 we, umm, group them in bunches. */
5871 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5872 | (tu_stats->nr_stmt_less_type_units
5873 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5874 ++tu_stats->nr_stmt_less_type_units;
5875 }
5876
5877 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5878 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5879 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5880 &type_unit_group_for_lookup, INSERT);
5881 if (*slot != NULL)
5882 {
5883 tu_group = (struct type_unit_group *) *slot;
5884 gdb_assert (tu_group != NULL);
5885 }
5886 else
5887 {
5888 sect_offset line_offset_struct;
5889
5890 line_offset_struct.sect_off = line_offset;
5891 tu_group = create_type_unit_group (cu, line_offset_struct);
5892 *slot = tu_group;
5893 ++tu_stats->nr_symtabs;
5894 }
5895
5896 return tu_group;
5897 }
5898 \f
5899 /* Partial symbol tables. */
5900
5901 /* Create a psymtab named NAME and assign it to PER_CU.
5902
5903 The caller must fill in the following details:
5904 dirname, textlow, texthigh. */
5905
5906 static struct partial_symtab *
5907 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5908 {
5909 struct objfile *objfile = per_cu->objfile;
5910 struct partial_symtab *pst;
5911
5912 pst = start_psymtab_common (objfile, name, 0,
5913 objfile->global_psymbols.next,
5914 objfile->static_psymbols.next);
5915
5916 pst->psymtabs_addrmap_supported = 1;
5917
5918 /* This is the glue that links PST into GDB's symbol API. */
5919 pst->read_symtab_private = per_cu;
5920 pst->read_symtab = dwarf2_read_symtab;
5921 per_cu->v.psymtab = pst;
5922
5923 return pst;
5924 }
5925
5926 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5927 type. */
5928
5929 struct process_psymtab_comp_unit_data
5930 {
5931 /* True if we are reading a DW_TAG_partial_unit. */
5932
5933 int want_partial_unit;
5934
5935 /* The "pretend" language that is used if the CU doesn't declare a
5936 language. */
5937
5938 enum language pretend_language;
5939 };
5940
5941 /* die_reader_func for process_psymtab_comp_unit. */
5942
5943 static void
5944 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5945 const gdb_byte *info_ptr,
5946 struct die_info *comp_unit_die,
5947 int has_children,
5948 void *data)
5949 {
5950 struct dwarf2_cu *cu = reader->cu;
5951 struct objfile *objfile = cu->objfile;
5952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5953 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5954 CORE_ADDR baseaddr;
5955 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5956 struct partial_symtab *pst;
5957 enum pc_bounds_kind cu_bounds_kind;
5958 const char *filename;
5959 struct process_psymtab_comp_unit_data *info
5960 = (struct process_psymtab_comp_unit_data *) data;
5961
5962 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5963 return;
5964
5965 gdb_assert (! per_cu->is_debug_types);
5966
5967 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5968
5969 cu->list_in_scope = &file_symbols;
5970
5971 /* Allocate a new partial symbol table structure. */
5972 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5973 if (filename == NULL)
5974 filename = "";
5975
5976 pst = create_partial_symtab (per_cu, filename);
5977
5978 /* This must be done before calling dwarf2_build_include_psymtabs. */
5979 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
5980
5981 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5982
5983 dwarf2_find_base_address (comp_unit_die, cu);
5984
5985 /* Possibly set the default values of LOWPC and HIGHPC from
5986 `DW_AT_ranges'. */
5987 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5988 &best_highpc, cu, pst);
5989 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
5990 /* Store the contiguous range if it is not empty; it can be empty for
5991 CUs with no code. */
5992 addrmap_set_empty (objfile->psymtabs_addrmap,
5993 gdbarch_adjust_dwarf2_addr (gdbarch,
5994 best_lowpc + baseaddr),
5995 gdbarch_adjust_dwarf2_addr (gdbarch,
5996 best_highpc + baseaddr) - 1,
5997 pst);
5998
5999 /* Check if comp unit has_children.
6000 If so, read the rest of the partial symbols from this comp unit.
6001 If not, there's no more debug_info for this comp unit. */
6002 if (has_children)
6003 {
6004 struct partial_die_info *first_die;
6005 CORE_ADDR lowpc, highpc;
6006
6007 lowpc = ((CORE_ADDR) -1);
6008 highpc = ((CORE_ADDR) 0);
6009
6010 first_die = load_partial_dies (reader, info_ptr, 1);
6011
6012 scan_partial_symbols (first_die, &lowpc, &highpc,
6013 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
6014
6015 /* If we didn't find a lowpc, set it to highpc to avoid
6016 complaints from `maint check'. */
6017 if (lowpc == ((CORE_ADDR) -1))
6018 lowpc = highpc;
6019
6020 /* If the compilation unit didn't have an explicit address range,
6021 then use the information extracted from its child dies. */
6022 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
6023 {
6024 best_lowpc = lowpc;
6025 best_highpc = highpc;
6026 }
6027 }
6028 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6029 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6030
6031 end_psymtab_common (objfile, pst);
6032
6033 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6034 {
6035 int i;
6036 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6037 struct dwarf2_per_cu_data *iter;
6038
6039 /* Fill in 'dependencies' here; we fill in 'users' in a
6040 post-pass. */
6041 pst->number_of_dependencies = len;
6042 pst->dependencies =
6043 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6044 for (i = 0;
6045 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6046 i, iter);
6047 ++i)
6048 pst->dependencies[i] = iter->v.psymtab;
6049
6050 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6051 }
6052
6053 /* Get the list of files included in the current compilation unit,
6054 and build a psymtab for each of them. */
6055 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6056
6057 if (dwarf_read_debug)
6058 {
6059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6060
6061 fprintf_unfiltered (gdb_stdlog,
6062 "Psymtab for %s unit @0x%x: %s - %s"
6063 ", %d global, %d static syms\n",
6064 per_cu->is_debug_types ? "type" : "comp",
6065 per_cu->offset.sect_off,
6066 paddress (gdbarch, pst->textlow),
6067 paddress (gdbarch, pst->texthigh),
6068 pst->n_global_syms, pst->n_static_syms);
6069 }
6070 }
6071
6072 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6073 Process compilation unit THIS_CU for a psymtab. */
6074
6075 static void
6076 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6077 int want_partial_unit,
6078 enum language pretend_language)
6079 {
6080 struct process_psymtab_comp_unit_data info;
6081
6082 /* If this compilation unit was already read in, free the
6083 cached copy in order to read it in again. This is
6084 necessary because we skipped some symbols when we first
6085 read in the compilation unit (see load_partial_dies).
6086 This problem could be avoided, but the benefit is unclear. */
6087 if (this_cu->cu != NULL)
6088 free_one_cached_comp_unit (this_cu);
6089
6090 gdb_assert (! this_cu->is_debug_types);
6091 info.want_partial_unit = want_partial_unit;
6092 info.pretend_language = pretend_language;
6093 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6094 process_psymtab_comp_unit_reader,
6095 &info);
6096
6097 /* Age out any secondary CUs. */
6098 age_cached_comp_units ();
6099 }
6100
6101 /* Reader function for build_type_psymtabs. */
6102
6103 static void
6104 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6105 const gdb_byte *info_ptr,
6106 struct die_info *type_unit_die,
6107 int has_children,
6108 void *data)
6109 {
6110 struct objfile *objfile = dwarf2_per_objfile->objfile;
6111 struct dwarf2_cu *cu = reader->cu;
6112 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6113 struct signatured_type *sig_type;
6114 struct type_unit_group *tu_group;
6115 struct attribute *attr;
6116 struct partial_die_info *first_die;
6117 CORE_ADDR lowpc, highpc;
6118 struct partial_symtab *pst;
6119
6120 gdb_assert (data == NULL);
6121 gdb_assert (per_cu->is_debug_types);
6122 sig_type = (struct signatured_type *) per_cu;
6123
6124 if (! has_children)
6125 return;
6126
6127 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6128 tu_group = get_type_unit_group (cu, attr);
6129
6130 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6131
6132 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6133 cu->list_in_scope = &file_symbols;
6134 pst = create_partial_symtab (per_cu, "");
6135 pst->anonymous = 1;
6136
6137 first_die = load_partial_dies (reader, info_ptr, 1);
6138
6139 lowpc = (CORE_ADDR) -1;
6140 highpc = (CORE_ADDR) 0;
6141 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6142
6143 end_psymtab_common (objfile, pst);
6144 }
6145
6146 /* Struct used to sort TUs by their abbreviation table offset. */
6147
6148 struct tu_abbrev_offset
6149 {
6150 struct signatured_type *sig_type;
6151 sect_offset abbrev_offset;
6152 };
6153
6154 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6155
6156 static int
6157 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6158 {
6159 const struct tu_abbrev_offset * const *a
6160 = (const struct tu_abbrev_offset * const*) ap;
6161 const struct tu_abbrev_offset * const *b
6162 = (const struct tu_abbrev_offset * const*) bp;
6163 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6164 unsigned int boff = (*b)->abbrev_offset.sect_off;
6165
6166 return (aoff > boff) - (aoff < boff);
6167 }
6168
6169 /* Efficiently read all the type units.
6170 This does the bulk of the work for build_type_psymtabs.
6171
6172 The efficiency is because we sort TUs by the abbrev table they use and
6173 only read each abbrev table once. In one program there are 200K TUs
6174 sharing 8K abbrev tables.
6175
6176 The main purpose of this function is to support building the
6177 dwarf2_per_objfile->type_unit_groups table.
6178 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6179 can collapse the search space by grouping them by stmt_list.
6180 The savings can be significant, in the same program from above the 200K TUs
6181 share 8K stmt_list tables.
6182
6183 FUNC is expected to call get_type_unit_group, which will create the
6184 struct type_unit_group if necessary and add it to
6185 dwarf2_per_objfile->type_unit_groups. */
6186
6187 static void
6188 build_type_psymtabs_1 (void)
6189 {
6190 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6191 struct cleanup *cleanups;
6192 struct abbrev_table *abbrev_table;
6193 sect_offset abbrev_offset;
6194 struct tu_abbrev_offset *sorted_by_abbrev;
6195 int i;
6196
6197 /* It's up to the caller to not call us multiple times. */
6198 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6199
6200 if (dwarf2_per_objfile->n_type_units == 0)
6201 return;
6202
6203 /* TUs typically share abbrev tables, and there can be way more TUs than
6204 abbrev tables. Sort by abbrev table to reduce the number of times we
6205 read each abbrev table in.
6206 Alternatives are to punt or to maintain a cache of abbrev tables.
6207 This is simpler and efficient enough for now.
6208
6209 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6210 symtab to use). Typically TUs with the same abbrev offset have the same
6211 stmt_list value too so in practice this should work well.
6212
6213 The basic algorithm here is:
6214
6215 sort TUs by abbrev table
6216 for each TU with same abbrev table:
6217 read abbrev table if first user
6218 read TU top level DIE
6219 [IWBN if DWO skeletons had DW_AT_stmt_list]
6220 call FUNC */
6221
6222 if (dwarf_read_debug)
6223 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6224
6225 /* Sort in a separate table to maintain the order of all_type_units
6226 for .gdb_index: TU indices directly index all_type_units. */
6227 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6228 dwarf2_per_objfile->n_type_units);
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6232
6233 sorted_by_abbrev[i].sig_type = sig_type;
6234 sorted_by_abbrev[i].abbrev_offset =
6235 read_abbrev_offset (sig_type->per_cu.section,
6236 sig_type->per_cu.offset);
6237 }
6238 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6239 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6240 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6241
6242 abbrev_offset.sect_off = ~(unsigned) 0;
6243 abbrev_table = NULL;
6244 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6245
6246 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6247 {
6248 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6249
6250 /* Switch to the next abbrev table if necessary. */
6251 if (abbrev_table == NULL
6252 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6253 {
6254 if (abbrev_table != NULL)
6255 {
6256 abbrev_table_free (abbrev_table);
6257 /* Reset to NULL in case abbrev_table_read_table throws
6258 an error: abbrev_table_free_cleanup will get called. */
6259 abbrev_table = NULL;
6260 }
6261 abbrev_offset = tu->abbrev_offset;
6262 abbrev_table =
6263 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6264 abbrev_offset);
6265 ++tu_stats->nr_uniq_abbrev_tables;
6266 }
6267
6268 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6269 build_type_psymtabs_reader, NULL);
6270 }
6271
6272 do_cleanups (cleanups);
6273 }
6274
6275 /* Print collected type unit statistics. */
6276
6277 static void
6278 print_tu_stats (void)
6279 {
6280 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6281
6282 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6283 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6284 dwarf2_per_objfile->n_type_units);
6285 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6286 tu_stats->nr_uniq_abbrev_tables);
6287 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6288 tu_stats->nr_symtabs);
6289 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6290 tu_stats->nr_symtab_sharers);
6291 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6292 tu_stats->nr_stmt_less_type_units);
6293 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6294 tu_stats->nr_all_type_units_reallocs);
6295 }
6296
6297 /* Traversal function for build_type_psymtabs. */
6298
6299 static int
6300 build_type_psymtab_dependencies (void **slot, void *info)
6301 {
6302 struct objfile *objfile = dwarf2_per_objfile->objfile;
6303 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6304 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6305 struct partial_symtab *pst = per_cu->v.psymtab;
6306 int len = VEC_length (sig_type_ptr, tu_group->tus);
6307 struct signatured_type *iter;
6308 int i;
6309
6310 gdb_assert (len > 0);
6311 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6312
6313 pst->number_of_dependencies = len;
6314 pst->dependencies =
6315 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
6316 for (i = 0;
6317 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6318 ++i)
6319 {
6320 gdb_assert (iter->per_cu.is_debug_types);
6321 pst->dependencies[i] = iter->per_cu.v.psymtab;
6322 iter->type_unit_group = tu_group;
6323 }
6324
6325 VEC_free (sig_type_ptr, tu_group->tus);
6326
6327 return 1;
6328 }
6329
6330 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6331 Build partial symbol tables for the .debug_types comp-units. */
6332
6333 static void
6334 build_type_psymtabs (struct objfile *objfile)
6335 {
6336 if (! create_all_type_units (objfile))
6337 return;
6338
6339 build_type_psymtabs_1 ();
6340 }
6341
6342 /* Traversal function for process_skeletonless_type_unit.
6343 Read a TU in a DWO file and build partial symbols for it. */
6344
6345 static int
6346 process_skeletonless_type_unit (void **slot, void *info)
6347 {
6348 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6349 struct objfile *objfile = (struct objfile *) info;
6350 struct signatured_type find_entry, *entry;
6351
6352 /* If this TU doesn't exist in the global table, add it and read it in. */
6353
6354 if (dwarf2_per_objfile->signatured_types == NULL)
6355 {
6356 dwarf2_per_objfile->signatured_types
6357 = allocate_signatured_type_table (objfile);
6358 }
6359
6360 find_entry.signature = dwo_unit->signature;
6361 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6362 INSERT);
6363 /* If we've already seen this type there's nothing to do. What's happening
6364 is we're doing our own version of comdat-folding here. */
6365 if (*slot != NULL)
6366 return 1;
6367
6368 /* This does the job that create_all_type_units would have done for
6369 this TU. */
6370 entry = add_type_unit (dwo_unit->signature, slot);
6371 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6372 *slot = entry;
6373
6374 /* This does the job that build_type_psymtabs_1 would have done. */
6375 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6376 build_type_psymtabs_reader, NULL);
6377
6378 return 1;
6379 }
6380
6381 /* Traversal function for process_skeletonless_type_units. */
6382
6383 static int
6384 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6385 {
6386 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6387
6388 if (dwo_file->tus != NULL)
6389 {
6390 htab_traverse_noresize (dwo_file->tus,
6391 process_skeletonless_type_unit, info);
6392 }
6393
6394 return 1;
6395 }
6396
6397 /* Scan all TUs of DWO files, verifying we've processed them.
6398 This is needed in case a TU was emitted without its skeleton.
6399 Note: This can't be done until we know what all the DWO files are. */
6400
6401 static void
6402 process_skeletonless_type_units (struct objfile *objfile)
6403 {
6404 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6405 if (get_dwp_file () == NULL
6406 && dwarf2_per_objfile->dwo_files != NULL)
6407 {
6408 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6409 process_dwo_file_for_skeletonless_type_units,
6410 objfile);
6411 }
6412 }
6413
6414 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6415
6416 static void
6417 psymtabs_addrmap_cleanup (void *o)
6418 {
6419 struct objfile *objfile = (struct objfile *) o;
6420
6421 objfile->psymtabs_addrmap = NULL;
6422 }
6423
6424 /* Compute the 'user' field for each psymtab in OBJFILE. */
6425
6426 static void
6427 set_partial_user (struct objfile *objfile)
6428 {
6429 int i;
6430
6431 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6432 {
6433 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6434 struct partial_symtab *pst = per_cu->v.psymtab;
6435 int j;
6436
6437 if (pst == NULL)
6438 continue;
6439
6440 for (j = 0; j < pst->number_of_dependencies; ++j)
6441 {
6442 /* Set the 'user' field only if it is not already set. */
6443 if (pst->dependencies[j]->user == NULL)
6444 pst->dependencies[j]->user = pst;
6445 }
6446 }
6447 }
6448
6449 /* Build the partial symbol table by doing a quick pass through the
6450 .debug_info and .debug_abbrev sections. */
6451
6452 static void
6453 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6454 {
6455 struct cleanup *back_to, *addrmap_cleanup;
6456 struct obstack temp_obstack;
6457 int i;
6458
6459 if (dwarf_read_debug)
6460 {
6461 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6462 objfile_name (objfile));
6463 }
6464
6465 dwarf2_per_objfile->reading_partial_symbols = 1;
6466
6467 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6468
6469 /* Any cached compilation units will be linked by the per-objfile
6470 read_in_chain. Make sure to free them when we're done. */
6471 back_to = make_cleanup (free_cached_comp_units, NULL);
6472
6473 build_type_psymtabs (objfile);
6474
6475 create_all_comp_units (objfile);
6476
6477 /* Create a temporary address map on a temporary obstack. We later
6478 copy this to the final obstack. */
6479 obstack_init (&temp_obstack);
6480 make_cleanup_obstack_free (&temp_obstack);
6481 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6482 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6483
6484 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6485 {
6486 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6487
6488 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6489 }
6490
6491 /* This has to wait until we read the CUs, we need the list of DWOs. */
6492 process_skeletonless_type_units (objfile);
6493
6494 /* Now that all TUs have been processed we can fill in the dependencies. */
6495 if (dwarf2_per_objfile->type_unit_groups != NULL)
6496 {
6497 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6498 build_type_psymtab_dependencies, NULL);
6499 }
6500
6501 if (dwarf_read_debug)
6502 print_tu_stats ();
6503
6504 set_partial_user (objfile);
6505
6506 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6507 &objfile->objfile_obstack);
6508 discard_cleanups (addrmap_cleanup);
6509
6510 do_cleanups (back_to);
6511
6512 if (dwarf_read_debug)
6513 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6514 objfile_name (objfile));
6515 }
6516
6517 /* die_reader_func for load_partial_comp_unit. */
6518
6519 static void
6520 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6521 const gdb_byte *info_ptr,
6522 struct die_info *comp_unit_die,
6523 int has_children,
6524 void *data)
6525 {
6526 struct dwarf2_cu *cu = reader->cu;
6527
6528 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6529
6530 /* Check if comp unit has_children.
6531 If so, read the rest of the partial symbols from this comp unit.
6532 If not, there's no more debug_info for this comp unit. */
6533 if (has_children)
6534 load_partial_dies (reader, info_ptr, 0);
6535 }
6536
6537 /* Load the partial DIEs for a secondary CU into memory.
6538 This is also used when rereading a primary CU with load_all_dies. */
6539
6540 static void
6541 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6542 {
6543 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6544 load_partial_comp_unit_reader, NULL);
6545 }
6546
6547 static void
6548 read_comp_units_from_section (struct objfile *objfile,
6549 struct dwarf2_section_info *section,
6550 unsigned int is_dwz,
6551 int *n_allocated,
6552 int *n_comp_units,
6553 struct dwarf2_per_cu_data ***all_comp_units)
6554 {
6555 const gdb_byte *info_ptr;
6556 bfd *abfd = get_section_bfd_owner (section);
6557
6558 if (dwarf_read_debug)
6559 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6560 get_section_name (section),
6561 get_section_file_name (section));
6562
6563 dwarf2_read_section (objfile, section);
6564
6565 info_ptr = section->buffer;
6566
6567 while (info_ptr < section->buffer + section->size)
6568 {
6569 unsigned int length, initial_length_size;
6570 struct dwarf2_per_cu_data *this_cu;
6571 sect_offset offset;
6572
6573 offset.sect_off = info_ptr - section->buffer;
6574
6575 /* Read just enough information to find out where the next
6576 compilation unit is. */
6577 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6578
6579 /* Save the compilation unit for later lookup. */
6580 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
6581 memset (this_cu, 0, sizeof (*this_cu));
6582 this_cu->offset = offset;
6583 this_cu->length = length + initial_length_size;
6584 this_cu->is_dwz = is_dwz;
6585 this_cu->objfile = objfile;
6586 this_cu->section = section;
6587
6588 if (*n_comp_units == *n_allocated)
6589 {
6590 *n_allocated *= 2;
6591 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6592 *all_comp_units, *n_allocated);
6593 }
6594 (*all_comp_units)[*n_comp_units] = this_cu;
6595 ++*n_comp_units;
6596
6597 info_ptr = info_ptr + this_cu->length;
6598 }
6599 }
6600
6601 /* Create a list of all compilation units in OBJFILE.
6602 This is only done for -readnow and building partial symtabs. */
6603
6604 static void
6605 create_all_comp_units (struct objfile *objfile)
6606 {
6607 int n_allocated;
6608 int n_comp_units;
6609 struct dwarf2_per_cu_data **all_comp_units;
6610 struct dwz_file *dwz;
6611
6612 n_comp_units = 0;
6613 n_allocated = 10;
6614 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
6615
6616 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6617 &n_allocated, &n_comp_units, &all_comp_units);
6618
6619 dwz = dwarf2_get_dwz_file ();
6620 if (dwz != NULL)
6621 read_comp_units_from_section (objfile, &dwz->info, 1,
6622 &n_allocated, &n_comp_units,
6623 &all_comp_units);
6624
6625 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6626 struct dwarf2_per_cu_data *,
6627 n_comp_units);
6628 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6629 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6630 xfree (all_comp_units);
6631 dwarf2_per_objfile->n_comp_units = n_comp_units;
6632 }
6633
6634 /* Process all loaded DIEs for compilation unit CU, starting at
6635 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6636 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6637 DW_AT_ranges). See the comments of add_partial_subprogram on how
6638 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6639
6640 static void
6641 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6642 CORE_ADDR *highpc, int set_addrmap,
6643 struct dwarf2_cu *cu)
6644 {
6645 struct partial_die_info *pdi;
6646
6647 /* Now, march along the PDI's, descending into ones which have
6648 interesting children but skipping the children of the other ones,
6649 until we reach the end of the compilation unit. */
6650
6651 pdi = first_die;
6652
6653 while (pdi != NULL)
6654 {
6655 fixup_partial_die (pdi, cu);
6656
6657 /* Anonymous namespaces or modules have no name but have interesting
6658 children, so we need to look at them. Ditto for anonymous
6659 enums. */
6660
6661 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6662 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6663 || pdi->tag == DW_TAG_imported_unit)
6664 {
6665 switch (pdi->tag)
6666 {
6667 case DW_TAG_subprogram:
6668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6669 break;
6670 case DW_TAG_constant:
6671 case DW_TAG_variable:
6672 case DW_TAG_typedef:
6673 case DW_TAG_union_type:
6674 if (!pdi->is_declaration)
6675 {
6676 add_partial_symbol (pdi, cu);
6677 }
6678 break;
6679 case DW_TAG_class_type:
6680 case DW_TAG_interface_type:
6681 case DW_TAG_structure_type:
6682 if (!pdi->is_declaration)
6683 {
6684 add_partial_symbol (pdi, cu);
6685 }
6686 if (cu->language == language_rust && pdi->has_children)
6687 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6688 set_addrmap, cu);
6689 break;
6690 case DW_TAG_enumeration_type:
6691 if (!pdi->is_declaration)
6692 add_partial_enumeration (pdi, cu);
6693 break;
6694 case DW_TAG_base_type:
6695 case DW_TAG_subrange_type:
6696 /* File scope base type definitions are added to the partial
6697 symbol table. */
6698 add_partial_symbol (pdi, cu);
6699 break;
6700 case DW_TAG_namespace:
6701 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6702 break;
6703 case DW_TAG_module:
6704 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6705 break;
6706 case DW_TAG_imported_unit:
6707 {
6708 struct dwarf2_per_cu_data *per_cu;
6709
6710 /* For now we don't handle imported units in type units. */
6711 if (cu->per_cu->is_debug_types)
6712 {
6713 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6714 " supported in type units [in module %s]"),
6715 objfile_name (cu->objfile));
6716 }
6717
6718 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6719 pdi->is_dwz,
6720 cu->objfile);
6721
6722 /* Go read the partial unit, if needed. */
6723 if (per_cu->v.psymtab == NULL)
6724 process_psymtab_comp_unit (per_cu, 1, cu->language);
6725
6726 VEC_safe_push (dwarf2_per_cu_ptr,
6727 cu->per_cu->imported_symtabs, per_cu);
6728 }
6729 break;
6730 case DW_TAG_imported_declaration:
6731 add_partial_symbol (pdi, cu);
6732 break;
6733 default:
6734 break;
6735 }
6736 }
6737
6738 /* If the die has a sibling, skip to the sibling. */
6739
6740 pdi = pdi->die_sibling;
6741 }
6742 }
6743
6744 /* Functions used to compute the fully scoped name of a partial DIE.
6745
6746 Normally, this is simple. For C++, the parent DIE's fully scoped
6747 name is concatenated with "::" and the partial DIE's name.
6748 Enumerators are an exception; they use the scope of their parent
6749 enumeration type, i.e. the name of the enumeration type is not
6750 prepended to the enumerator.
6751
6752 There are two complexities. One is DW_AT_specification; in this
6753 case "parent" means the parent of the target of the specification,
6754 instead of the direct parent of the DIE. The other is compilers
6755 which do not emit DW_TAG_namespace; in this case we try to guess
6756 the fully qualified name of structure types from their members'
6757 linkage names. This must be done using the DIE's children rather
6758 than the children of any DW_AT_specification target. We only need
6759 to do this for structures at the top level, i.e. if the target of
6760 any DW_AT_specification (if any; otherwise the DIE itself) does not
6761 have a parent. */
6762
6763 /* Compute the scope prefix associated with PDI's parent, in
6764 compilation unit CU. The result will be allocated on CU's
6765 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6766 field. NULL is returned if no prefix is necessary. */
6767 static const char *
6768 partial_die_parent_scope (struct partial_die_info *pdi,
6769 struct dwarf2_cu *cu)
6770 {
6771 const char *grandparent_scope;
6772 struct partial_die_info *parent, *real_pdi;
6773
6774 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6775 then this means the parent of the specification DIE. */
6776
6777 real_pdi = pdi;
6778 while (real_pdi->has_specification)
6779 real_pdi = find_partial_die (real_pdi->spec_offset,
6780 real_pdi->spec_is_dwz, cu);
6781
6782 parent = real_pdi->die_parent;
6783 if (parent == NULL)
6784 return NULL;
6785
6786 if (parent->scope_set)
6787 return parent->scope;
6788
6789 fixup_partial_die (parent, cu);
6790
6791 grandparent_scope = partial_die_parent_scope (parent, cu);
6792
6793 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6794 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6795 Work around this problem here. */
6796 if (cu->language == language_cplus
6797 && parent->tag == DW_TAG_namespace
6798 && strcmp (parent->name, "::") == 0
6799 && grandparent_scope == NULL)
6800 {
6801 parent->scope = NULL;
6802 parent->scope_set = 1;
6803 return NULL;
6804 }
6805
6806 if (pdi->tag == DW_TAG_enumerator)
6807 /* Enumerators should not get the name of the enumeration as a prefix. */
6808 parent->scope = grandparent_scope;
6809 else if (parent->tag == DW_TAG_namespace
6810 || parent->tag == DW_TAG_module
6811 || parent->tag == DW_TAG_structure_type
6812 || parent->tag == DW_TAG_class_type
6813 || parent->tag == DW_TAG_interface_type
6814 || parent->tag == DW_TAG_union_type
6815 || parent->tag == DW_TAG_enumeration_type)
6816 {
6817 if (grandparent_scope == NULL)
6818 parent->scope = parent->name;
6819 else
6820 parent->scope = typename_concat (&cu->comp_unit_obstack,
6821 grandparent_scope,
6822 parent->name, 0, cu);
6823 }
6824 else
6825 {
6826 /* FIXME drow/2004-04-01: What should we be doing with
6827 function-local names? For partial symbols, we should probably be
6828 ignoring them. */
6829 complaint (&symfile_complaints,
6830 _("unhandled containing DIE tag %d for DIE at %d"),
6831 parent->tag, pdi->offset.sect_off);
6832 parent->scope = grandparent_scope;
6833 }
6834
6835 parent->scope_set = 1;
6836 return parent->scope;
6837 }
6838
6839 /* Return the fully scoped name associated with PDI, from compilation unit
6840 CU. The result will be allocated with malloc. */
6841
6842 static char *
6843 partial_die_full_name (struct partial_die_info *pdi,
6844 struct dwarf2_cu *cu)
6845 {
6846 const char *parent_scope;
6847
6848 /* If this is a template instantiation, we can not work out the
6849 template arguments from partial DIEs. So, unfortunately, we have
6850 to go through the full DIEs. At least any work we do building
6851 types here will be reused if full symbols are loaded later. */
6852 if (pdi->has_template_arguments)
6853 {
6854 fixup_partial_die (pdi, cu);
6855
6856 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6857 {
6858 struct die_info *die;
6859 struct attribute attr;
6860 struct dwarf2_cu *ref_cu = cu;
6861
6862 /* DW_FORM_ref_addr is using section offset. */
6863 attr.name = (enum dwarf_attribute) 0;
6864 attr.form = DW_FORM_ref_addr;
6865 attr.u.unsnd = pdi->offset.sect_off;
6866 die = follow_die_ref (NULL, &attr, &ref_cu);
6867
6868 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6869 }
6870 }
6871
6872 parent_scope = partial_die_parent_scope (pdi, cu);
6873 if (parent_scope == NULL)
6874 return NULL;
6875 else
6876 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6877 }
6878
6879 static void
6880 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6881 {
6882 struct objfile *objfile = cu->objfile;
6883 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6884 CORE_ADDR addr = 0;
6885 const char *actual_name = NULL;
6886 CORE_ADDR baseaddr;
6887 char *built_actual_name;
6888
6889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6890
6891 built_actual_name = partial_die_full_name (pdi, cu);
6892 if (built_actual_name != NULL)
6893 actual_name = built_actual_name;
6894
6895 if (actual_name == NULL)
6896 actual_name = pdi->name;
6897
6898 switch (pdi->tag)
6899 {
6900 case DW_TAG_subprogram:
6901 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6902 if (pdi->is_external || cu->language == language_ada)
6903 {
6904 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6905 of the global scope. But in Ada, we want to be able to access
6906 nested procedures globally. So all Ada subprograms are stored
6907 in the global scope. */
6908 add_psymbol_to_list (actual_name, strlen (actual_name),
6909 built_actual_name != NULL,
6910 VAR_DOMAIN, LOC_BLOCK,
6911 &objfile->global_psymbols,
6912 addr, cu->language, objfile);
6913 }
6914 else
6915 {
6916 add_psymbol_to_list (actual_name, strlen (actual_name),
6917 built_actual_name != NULL,
6918 VAR_DOMAIN, LOC_BLOCK,
6919 &objfile->static_psymbols,
6920 addr, cu->language, objfile);
6921 }
6922
6923 if (pdi->main_subprogram && actual_name != NULL)
6924 set_objfile_main_name (objfile, actual_name, cu->language);
6925 break;
6926 case DW_TAG_constant:
6927 {
6928 struct psymbol_allocation_list *list;
6929
6930 if (pdi->is_external)
6931 list = &objfile->global_psymbols;
6932 else
6933 list = &objfile->static_psymbols;
6934 add_psymbol_to_list (actual_name, strlen (actual_name),
6935 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6936 list, 0, cu->language, objfile);
6937 }
6938 break;
6939 case DW_TAG_variable:
6940 if (pdi->d.locdesc)
6941 addr = decode_locdesc (pdi->d.locdesc, cu);
6942
6943 if (pdi->d.locdesc
6944 && addr == 0
6945 && !dwarf2_per_objfile->has_section_at_zero)
6946 {
6947 /* A global or static variable may also have been stripped
6948 out by the linker if unused, in which case its address
6949 will be nullified; do not add such variables into partial
6950 symbol table then. */
6951 }
6952 else if (pdi->is_external)
6953 {
6954 /* Global Variable.
6955 Don't enter into the minimal symbol tables as there is
6956 a minimal symbol table entry from the ELF symbols already.
6957 Enter into partial symbol table if it has a location
6958 descriptor or a type.
6959 If the location descriptor is missing, new_symbol will create
6960 a LOC_UNRESOLVED symbol, the address of the variable will then
6961 be determined from the minimal symbol table whenever the variable
6962 is referenced.
6963 The address for the partial symbol table entry is not
6964 used by GDB, but it comes in handy for debugging partial symbol
6965 table building. */
6966
6967 if (pdi->d.locdesc || pdi->has_type)
6968 add_psymbol_to_list (actual_name, strlen (actual_name),
6969 built_actual_name != NULL,
6970 VAR_DOMAIN, LOC_STATIC,
6971 &objfile->global_psymbols,
6972 addr + baseaddr,
6973 cu->language, objfile);
6974 }
6975 else
6976 {
6977 int has_loc = pdi->d.locdesc != NULL;
6978
6979 /* Static Variable. Skip symbols whose value we cannot know (those
6980 without location descriptors or constant values). */
6981 if (!has_loc && !pdi->has_const_value)
6982 {
6983 xfree (built_actual_name);
6984 return;
6985 }
6986
6987 add_psymbol_to_list (actual_name, strlen (actual_name),
6988 built_actual_name != NULL,
6989 VAR_DOMAIN, LOC_STATIC,
6990 &objfile->static_psymbols,
6991 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6992 cu->language, objfile);
6993 }
6994 break;
6995 case DW_TAG_typedef:
6996 case DW_TAG_base_type:
6997 case DW_TAG_subrange_type:
6998 add_psymbol_to_list (actual_name, strlen (actual_name),
6999 built_actual_name != NULL,
7000 VAR_DOMAIN, LOC_TYPEDEF,
7001 &objfile->static_psymbols,
7002 0, cu->language, objfile);
7003 break;
7004 case DW_TAG_imported_declaration:
7005 case DW_TAG_namespace:
7006 add_psymbol_to_list (actual_name, strlen (actual_name),
7007 built_actual_name != NULL,
7008 VAR_DOMAIN, LOC_TYPEDEF,
7009 &objfile->global_psymbols,
7010 0, cu->language, objfile);
7011 break;
7012 case DW_TAG_module:
7013 add_psymbol_to_list (actual_name, strlen (actual_name),
7014 built_actual_name != NULL,
7015 MODULE_DOMAIN, LOC_TYPEDEF,
7016 &objfile->global_psymbols,
7017 0, cu->language, objfile);
7018 break;
7019 case DW_TAG_class_type:
7020 case DW_TAG_interface_type:
7021 case DW_TAG_structure_type:
7022 case DW_TAG_union_type:
7023 case DW_TAG_enumeration_type:
7024 /* Skip external references. The DWARF standard says in the section
7025 about "Structure, Union, and Class Type Entries": "An incomplete
7026 structure, union or class type is represented by a structure,
7027 union or class entry that does not have a byte size attribute
7028 and that has a DW_AT_declaration attribute." */
7029 if (!pdi->has_byte_size && pdi->is_declaration)
7030 {
7031 xfree (built_actual_name);
7032 return;
7033 }
7034
7035 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7036 static vs. global. */
7037 add_psymbol_to_list (actual_name, strlen (actual_name),
7038 built_actual_name != NULL,
7039 STRUCT_DOMAIN, LOC_TYPEDEF,
7040 cu->language == language_cplus
7041 ? &objfile->global_psymbols
7042 : &objfile->static_psymbols,
7043 0, cu->language, objfile);
7044
7045 break;
7046 case DW_TAG_enumerator:
7047 add_psymbol_to_list (actual_name, strlen (actual_name),
7048 built_actual_name != NULL,
7049 VAR_DOMAIN, LOC_CONST,
7050 cu->language == language_cplus
7051 ? &objfile->global_psymbols
7052 : &objfile->static_psymbols,
7053 0, cu->language, objfile);
7054 break;
7055 default:
7056 break;
7057 }
7058
7059 xfree (built_actual_name);
7060 }
7061
7062 /* Read a partial die corresponding to a namespace; also, add a symbol
7063 corresponding to that namespace to the symbol table. NAMESPACE is
7064 the name of the enclosing namespace. */
7065
7066 static void
7067 add_partial_namespace (struct partial_die_info *pdi,
7068 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7069 int set_addrmap, struct dwarf2_cu *cu)
7070 {
7071 /* Add a symbol for the namespace. */
7072
7073 add_partial_symbol (pdi, cu);
7074
7075 /* Now scan partial symbols in that namespace. */
7076
7077 if (pdi->has_children)
7078 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7079 }
7080
7081 /* Read a partial die corresponding to a Fortran module. */
7082
7083 static void
7084 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7085 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7086 {
7087 /* Add a symbol for the namespace. */
7088
7089 add_partial_symbol (pdi, cu);
7090
7091 /* Now scan partial symbols in that module. */
7092
7093 if (pdi->has_children)
7094 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7095 }
7096
7097 /* Read a partial die corresponding to a subprogram and create a partial
7098 symbol for that subprogram. When the CU language allows it, this
7099 routine also defines a partial symbol for each nested subprogram
7100 that this subprogram contains. If SET_ADDRMAP is true, record the
7101 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7102 and highest PC values found in PDI.
7103
7104 PDI may also be a lexical block, in which case we simply search
7105 recursively for subprograms defined inside that lexical block.
7106 Again, this is only performed when the CU language allows this
7107 type of definitions. */
7108
7109 static void
7110 add_partial_subprogram (struct partial_die_info *pdi,
7111 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7112 int set_addrmap, struct dwarf2_cu *cu)
7113 {
7114 if (pdi->tag == DW_TAG_subprogram)
7115 {
7116 if (pdi->has_pc_info)
7117 {
7118 if (pdi->lowpc < *lowpc)
7119 *lowpc = pdi->lowpc;
7120 if (pdi->highpc > *highpc)
7121 *highpc = pdi->highpc;
7122 if (set_addrmap)
7123 {
7124 struct objfile *objfile = cu->objfile;
7125 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7126 CORE_ADDR baseaddr;
7127 CORE_ADDR highpc;
7128 CORE_ADDR lowpc;
7129
7130 baseaddr = ANOFFSET (objfile->section_offsets,
7131 SECT_OFF_TEXT (objfile));
7132 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7133 pdi->lowpc + baseaddr);
7134 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7135 pdi->highpc + baseaddr);
7136 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7137 cu->per_cu->v.psymtab);
7138 }
7139 }
7140
7141 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7142 {
7143 if (!pdi->is_declaration)
7144 /* Ignore subprogram DIEs that do not have a name, they are
7145 illegal. Do not emit a complaint at this point, we will
7146 do so when we convert this psymtab into a symtab. */
7147 if (pdi->name)
7148 add_partial_symbol (pdi, cu);
7149 }
7150 }
7151
7152 if (! pdi->has_children)
7153 return;
7154
7155 if (cu->language == language_ada)
7156 {
7157 pdi = pdi->die_child;
7158 while (pdi != NULL)
7159 {
7160 fixup_partial_die (pdi, cu);
7161 if (pdi->tag == DW_TAG_subprogram
7162 || pdi->tag == DW_TAG_lexical_block)
7163 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7164 pdi = pdi->die_sibling;
7165 }
7166 }
7167 }
7168
7169 /* Read a partial die corresponding to an enumeration type. */
7170
7171 static void
7172 add_partial_enumeration (struct partial_die_info *enum_pdi,
7173 struct dwarf2_cu *cu)
7174 {
7175 struct partial_die_info *pdi;
7176
7177 if (enum_pdi->name != NULL)
7178 add_partial_symbol (enum_pdi, cu);
7179
7180 pdi = enum_pdi->die_child;
7181 while (pdi)
7182 {
7183 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7184 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7185 else
7186 add_partial_symbol (pdi, cu);
7187 pdi = pdi->die_sibling;
7188 }
7189 }
7190
7191 /* Return the initial uleb128 in the die at INFO_PTR. */
7192
7193 static unsigned int
7194 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7195 {
7196 unsigned int bytes_read;
7197
7198 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7199 }
7200
7201 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7202 Return the corresponding abbrev, or NULL if the number is zero (indicating
7203 an empty DIE). In either case *BYTES_READ will be set to the length of
7204 the initial number. */
7205
7206 static struct abbrev_info *
7207 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7208 struct dwarf2_cu *cu)
7209 {
7210 bfd *abfd = cu->objfile->obfd;
7211 unsigned int abbrev_number;
7212 struct abbrev_info *abbrev;
7213
7214 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7215
7216 if (abbrev_number == 0)
7217 return NULL;
7218
7219 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7220 if (!abbrev)
7221 {
7222 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7223 " at offset 0x%x [in module %s]"),
7224 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7225 cu->header.offset.sect_off, bfd_get_filename (abfd));
7226 }
7227
7228 return abbrev;
7229 }
7230
7231 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7232 Returns a pointer to the end of a series of DIEs, terminated by an empty
7233 DIE. Any children of the skipped DIEs will also be skipped. */
7234
7235 static const gdb_byte *
7236 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7237 {
7238 struct dwarf2_cu *cu = reader->cu;
7239 struct abbrev_info *abbrev;
7240 unsigned int bytes_read;
7241
7242 while (1)
7243 {
7244 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7245 if (abbrev == NULL)
7246 return info_ptr + bytes_read;
7247 else
7248 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7249 }
7250 }
7251
7252 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7253 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7254 abbrev corresponding to that skipped uleb128 should be passed in
7255 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7256 children. */
7257
7258 static const gdb_byte *
7259 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7260 struct abbrev_info *abbrev)
7261 {
7262 unsigned int bytes_read;
7263 struct attribute attr;
7264 bfd *abfd = reader->abfd;
7265 struct dwarf2_cu *cu = reader->cu;
7266 const gdb_byte *buffer = reader->buffer;
7267 const gdb_byte *buffer_end = reader->buffer_end;
7268 unsigned int form, i;
7269
7270 for (i = 0; i < abbrev->num_attrs; i++)
7271 {
7272 /* The only abbrev we care about is DW_AT_sibling. */
7273 if (abbrev->attrs[i].name == DW_AT_sibling)
7274 {
7275 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7276 if (attr.form == DW_FORM_ref_addr)
7277 complaint (&symfile_complaints,
7278 _("ignoring absolute DW_AT_sibling"));
7279 else
7280 {
7281 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7282 const gdb_byte *sibling_ptr = buffer + off;
7283
7284 if (sibling_ptr < info_ptr)
7285 complaint (&symfile_complaints,
7286 _("DW_AT_sibling points backwards"));
7287 else if (sibling_ptr > reader->buffer_end)
7288 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7289 else
7290 return sibling_ptr;
7291 }
7292 }
7293
7294 /* If it isn't DW_AT_sibling, skip this attribute. */
7295 form = abbrev->attrs[i].form;
7296 skip_attribute:
7297 switch (form)
7298 {
7299 case DW_FORM_ref_addr:
7300 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7301 and later it is offset sized. */
7302 if (cu->header.version == 2)
7303 info_ptr += cu->header.addr_size;
7304 else
7305 info_ptr += cu->header.offset_size;
7306 break;
7307 case DW_FORM_GNU_ref_alt:
7308 info_ptr += cu->header.offset_size;
7309 break;
7310 case DW_FORM_addr:
7311 info_ptr += cu->header.addr_size;
7312 break;
7313 case DW_FORM_data1:
7314 case DW_FORM_ref1:
7315 case DW_FORM_flag:
7316 info_ptr += 1;
7317 break;
7318 case DW_FORM_flag_present:
7319 break;
7320 case DW_FORM_data2:
7321 case DW_FORM_ref2:
7322 info_ptr += 2;
7323 break;
7324 case DW_FORM_data4:
7325 case DW_FORM_ref4:
7326 info_ptr += 4;
7327 break;
7328 case DW_FORM_data8:
7329 case DW_FORM_ref8:
7330 case DW_FORM_ref_sig8:
7331 info_ptr += 8;
7332 break;
7333 case DW_FORM_string:
7334 read_direct_string (abfd, info_ptr, &bytes_read);
7335 info_ptr += bytes_read;
7336 break;
7337 case DW_FORM_sec_offset:
7338 case DW_FORM_strp:
7339 case DW_FORM_GNU_strp_alt:
7340 info_ptr += cu->header.offset_size;
7341 break;
7342 case DW_FORM_exprloc:
7343 case DW_FORM_block:
7344 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7345 info_ptr += bytes_read;
7346 break;
7347 case DW_FORM_block1:
7348 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7349 break;
7350 case DW_FORM_block2:
7351 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7352 break;
7353 case DW_FORM_block4:
7354 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7355 break;
7356 case DW_FORM_sdata:
7357 case DW_FORM_udata:
7358 case DW_FORM_ref_udata:
7359 case DW_FORM_GNU_addr_index:
7360 case DW_FORM_GNU_str_index:
7361 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7362 break;
7363 case DW_FORM_indirect:
7364 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7365 info_ptr += bytes_read;
7366 /* We need to continue parsing from here, so just go back to
7367 the top. */
7368 goto skip_attribute;
7369
7370 default:
7371 error (_("Dwarf Error: Cannot handle %s "
7372 "in DWARF reader [in module %s]"),
7373 dwarf_form_name (form),
7374 bfd_get_filename (abfd));
7375 }
7376 }
7377
7378 if (abbrev->has_children)
7379 return skip_children (reader, info_ptr);
7380 else
7381 return info_ptr;
7382 }
7383
7384 /* Locate ORIG_PDI's sibling.
7385 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7386
7387 static const gdb_byte *
7388 locate_pdi_sibling (const struct die_reader_specs *reader,
7389 struct partial_die_info *orig_pdi,
7390 const gdb_byte *info_ptr)
7391 {
7392 /* Do we know the sibling already? */
7393
7394 if (orig_pdi->sibling)
7395 return orig_pdi->sibling;
7396
7397 /* Are there any children to deal with? */
7398
7399 if (!orig_pdi->has_children)
7400 return info_ptr;
7401
7402 /* Skip the children the long way. */
7403
7404 return skip_children (reader, info_ptr);
7405 }
7406
7407 /* Expand this partial symbol table into a full symbol table. SELF is
7408 not NULL. */
7409
7410 static void
7411 dwarf2_read_symtab (struct partial_symtab *self,
7412 struct objfile *objfile)
7413 {
7414 if (self->readin)
7415 {
7416 warning (_("bug: psymtab for %s is already read in."),
7417 self->filename);
7418 }
7419 else
7420 {
7421 if (info_verbose)
7422 {
7423 printf_filtered (_("Reading in symbols for %s..."),
7424 self->filename);
7425 gdb_flush (gdb_stdout);
7426 }
7427
7428 /* Restore our global data. */
7429 dwarf2_per_objfile
7430 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7431 dwarf2_objfile_data_key);
7432
7433 /* If this psymtab is constructed from a debug-only objfile, the
7434 has_section_at_zero flag will not necessarily be correct. We
7435 can get the correct value for this flag by looking at the data
7436 associated with the (presumably stripped) associated objfile. */
7437 if (objfile->separate_debug_objfile_backlink)
7438 {
7439 struct dwarf2_per_objfile *dpo_backlink
7440 = ((struct dwarf2_per_objfile *)
7441 objfile_data (objfile->separate_debug_objfile_backlink,
7442 dwarf2_objfile_data_key));
7443
7444 dwarf2_per_objfile->has_section_at_zero
7445 = dpo_backlink->has_section_at_zero;
7446 }
7447
7448 dwarf2_per_objfile->reading_partial_symbols = 0;
7449
7450 psymtab_to_symtab_1 (self);
7451
7452 /* Finish up the debug error message. */
7453 if (info_verbose)
7454 printf_filtered (_("done.\n"));
7455 }
7456
7457 process_cu_includes ();
7458 }
7459 \f
7460 /* Reading in full CUs. */
7461
7462 /* Add PER_CU to the queue. */
7463
7464 static void
7465 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7466 enum language pretend_language)
7467 {
7468 struct dwarf2_queue_item *item;
7469
7470 per_cu->queued = 1;
7471 item = XNEW (struct dwarf2_queue_item);
7472 item->per_cu = per_cu;
7473 item->pretend_language = pretend_language;
7474 item->next = NULL;
7475
7476 if (dwarf2_queue == NULL)
7477 dwarf2_queue = item;
7478 else
7479 dwarf2_queue_tail->next = item;
7480
7481 dwarf2_queue_tail = item;
7482 }
7483
7484 /* If PER_CU is not yet queued, add it to the queue.
7485 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7486 dependency.
7487 The result is non-zero if PER_CU was queued, otherwise the result is zero
7488 meaning either PER_CU is already queued or it is already loaded.
7489
7490 N.B. There is an invariant here that if a CU is queued then it is loaded.
7491 The caller is required to load PER_CU if we return non-zero. */
7492
7493 static int
7494 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7495 struct dwarf2_per_cu_data *per_cu,
7496 enum language pretend_language)
7497 {
7498 /* We may arrive here during partial symbol reading, if we need full
7499 DIEs to process an unusual case (e.g. template arguments). Do
7500 not queue PER_CU, just tell our caller to load its DIEs. */
7501 if (dwarf2_per_objfile->reading_partial_symbols)
7502 {
7503 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7504 return 1;
7505 return 0;
7506 }
7507
7508 /* Mark the dependence relation so that we don't flush PER_CU
7509 too early. */
7510 if (dependent_cu != NULL)
7511 dwarf2_add_dependence (dependent_cu, per_cu);
7512
7513 /* If it's already on the queue, we have nothing to do. */
7514 if (per_cu->queued)
7515 return 0;
7516
7517 /* If the compilation unit is already loaded, just mark it as
7518 used. */
7519 if (per_cu->cu != NULL)
7520 {
7521 per_cu->cu->last_used = 0;
7522 return 0;
7523 }
7524
7525 /* Add it to the queue. */
7526 queue_comp_unit (per_cu, pretend_language);
7527
7528 return 1;
7529 }
7530
7531 /* Process the queue. */
7532
7533 static void
7534 process_queue (void)
7535 {
7536 struct dwarf2_queue_item *item, *next_item;
7537
7538 if (dwarf_read_debug)
7539 {
7540 fprintf_unfiltered (gdb_stdlog,
7541 "Expanding one or more symtabs of objfile %s ...\n",
7542 objfile_name (dwarf2_per_objfile->objfile));
7543 }
7544
7545 /* The queue starts out with one item, but following a DIE reference
7546 may load a new CU, adding it to the end of the queue. */
7547 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7548 {
7549 if ((dwarf2_per_objfile->using_index
7550 ? !item->per_cu->v.quick->compunit_symtab
7551 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7552 /* Skip dummy CUs. */
7553 && item->per_cu->cu != NULL)
7554 {
7555 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7556 unsigned int debug_print_threshold;
7557 char buf[100];
7558
7559 if (per_cu->is_debug_types)
7560 {
7561 struct signatured_type *sig_type =
7562 (struct signatured_type *) per_cu;
7563
7564 sprintf (buf, "TU %s at offset 0x%x",
7565 hex_string (sig_type->signature),
7566 per_cu->offset.sect_off);
7567 /* There can be 100s of TUs.
7568 Only print them in verbose mode. */
7569 debug_print_threshold = 2;
7570 }
7571 else
7572 {
7573 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7574 debug_print_threshold = 1;
7575 }
7576
7577 if (dwarf_read_debug >= debug_print_threshold)
7578 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7579
7580 if (per_cu->is_debug_types)
7581 process_full_type_unit (per_cu, item->pretend_language);
7582 else
7583 process_full_comp_unit (per_cu, item->pretend_language);
7584
7585 if (dwarf_read_debug >= debug_print_threshold)
7586 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7587 }
7588
7589 item->per_cu->queued = 0;
7590 next_item = item->next;
7591 xfree (item);
7592 }
7593
7594 dwarf2_queue_tail = NULL;
7595
7596 if (dwarf_read_debug)
7597 {
7598 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7599 objfile_name (dwarf2_per_objfile->objfile));
7600 }
7601 }
7602
7603 /* Free all allocated queue entries. This function only releases anything if
7604 an error was thrown; if the queue was processed then it would have been
7605 freed as we went along. */
7606
7607 static void
7608 dwarf2_release_queue (void *dummy)
7609 {
7610 struct dwarf2_queue_item *item, *last;
7611
7612 item = dwarf2_queue;
7613 while (item)
7614 {
7615 /* Anything still marked queued is likely to be in an
7616 inconsistent state, so discard it. */
7617 if (item->per_cu->queued)
7618 {
7619 if (item->per_cu->cu != NULL)
7620 free_one_cached_comp_unit (item->per_cu);
7621 item->per_cu->queued = 0;
7622 }
7623
7624 last = item;
7625 item = item->next;
7626 xfree (last);
7627 }
7628
7629 dwarf2_queue = dwarf2_queue_tail = NULL;
7630 }
7631
7632 /* Read in full symbols for PST, and anything it depends on. */
7633
7634 static void
7635 psymtab_to_symtab_1 (struct partial_symtab *pst)
7636 {
7637 struct dwarf2_per_cu_data *per_cu;
7638 int i;
7639
7640 if (pst->readin)
7641 return;
7642
7643 for (i = 0; i < pst->number_of_dependencies; i++)
7644 if (!pst->dependencies[i]->readin
7645 && pst->dependencies[i]->user == NULL)
7646 {
7647 /* Inform about additional files that need to be read in. */
7648 if (info_verbose)
7649 {
7650 /* FIXME: i18n: Need to make this a single string. */
7651 fputs_filtered (" ", gdb_stdout);
7652 wrap_here ("");
7653 fputs_filtered ("and ", gdb_stdout);
7654 wrap_here ("");
7655 printf_filtered ("%s...", pst->dependencies[i]->filename);
7656 wrap_here (""); /* Flush output. */
7657 gdb_flush (gdb_stdout);
7658 }
7659 psymtab_to_symtab_1 (pst->dependencies[i]);
7660 }
7661
7662 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
7663
7664 if (per_cu == NULL)
7665 {
7666 /* It's an include file, no symbols to read for it.
7667 Everything is in the parent symtab. */
7668 pst->readin = 1;
7669 return;
7670 }
7671
7672 dw2_do_instantiate_symtab (per_cu);
7673 }
7674
7675 /* Trivial hash function for die_info: the hash value of a DIE
7676 is its offset in .debug_info for this objfile. */
7677
7678 static hashval_t
7679 die_hash (const void *item)
7680 {
7681 const struct die_info *die = (const struct die_info *) item;
7682
7683 return die->offset.sect_off;
7684 }
7685
7686 /* Trivial comparison function for die_info structures: two DIEs
7687 are equal if they have the same offset. */
7688
7689 static int
7690 die_eq (const void *item_lhs, const void *item_rhs)
7691 {
7692 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7693 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
7694
7695 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7696 }
7697
7698 /* die_reader_func for load_full_comp_unit.
7699 This is identical to read_signatured_type_reader,
7700 but is kept separate for now. */
7701
7702 static void
7703 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7704 const gdb_byte *info_ptr,
7705 struct die_info *comp_unit_die,
7706 int has_children,
7707 void *data)
7708 {
7709 struct dwarf2_cu *cu = reader->cu;
7710 enum language *language_ptr = (enum language *) data;
7711
7712 gdb_assert (cu->die_hash == NULL);
7713 cu->die_hash =
7714 htab_create_alloc_ex (cu->header.length / 12,
7715 die_hash,
7716 die_eq,
7717 NULL,
7718 &cu->comp_unit_obstack,
7719 hashtab_obstack_allocate,
7720 dummy_obstack_deallocate);
7721
7722 if (has_children)
7723 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7724 &info_ptr, comp_unit_die);
7725 cu->dies = comp_unit_die;
7726 /* comp_unit_die is not stored in die_hash, no need. */
7727
7728 /* We try not to read any attributes in this function, because not
7729 all CUs needed for references have been loaded yet, and symbol
7730 table processing isn't initialized. But we have to set the CU language,
7731 or we won't be able to build types correctly.
7732 Similarly, if we do not read the producer, we can not apply
7733 producer-specific interpretation. */
7734 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7735 }
7736
7737 /* Load the DIEs associated with PER_CU into memory. */
7738
7739 static void
7740 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7741 enum language pretend_language)
7742 {
7743 gdb_assert (! this_cu->is_debug_types);
7744
7745 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7746 load_full_comp_unit_reader, &pretend_language);
7747 }
7748
7749 /* Add a DIE to the delayed physname list. */
7750
7751 static void
7752 add_to_method_list (struct type *type, int fnfield_index, int index,
7753 const char *name, struct die_info *die,
7754 struct dwarf2_cu *cu)
7755 {
7756 struct delayed_method_info mi;
7757 mi.type = type;
7758 mi.fnfield_index = fnfield_index;
7759 mi.index = index;
7760 mi.name = name;
7761 mi.die = die;
7762 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7763 }
7764
7765 /* A cleanup for freeing the delayed method list. */
7766
7767 static void
7768 free_delayed_list (void *ptr)
7769 {
7770 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7771 if (cu->method_list != NULL)
7772 {
7773 VEC_free (delayed_method_info, cu->method_list);
7774 cu->method_list = NULL;
7775 }
7776 }
7777
7778 /* Compute the physnames of any methods on the CU's method list.
7779
7780 The computation of method physnames is delayed in order to avoid the
7781 (bad) condition that one of the method's formal parameters is of an as yet
7782 incomplete type. */
7783
7784 static void
7785 compute_delayed_physnames (struct dwarf2_cu *cu)
7786 {
7787 int i;
7788 struct delayed_method_info *mi;
7789 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7790 {
7791 const char *physname;
7792 struct fn_fieldlist *fn_flp
7793 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7794 physname = dwarf2_physname (mi->name, mi->die, cu);
7795 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7796 = physname ? physname : "";
7797 }
7798 }
7799
7800 /* Go objects should be embedded in a DW_TAG_module DIE,
7801 and it's not clear if/how imported objects will appear.
7802 To keep Go support simple until that's worked out,
7803 go back through what we've read and create something usable.
7804 We could do this while processing each DIE, and feels kinda cleaner,
7805 but that way is more invasive.
7806 This is to, for example, allow the user to type "p var" or "b main"
7807 without having to specify the package name, and allow lookups
7808 of module.object to work in contexts that use the expression
7809 parser. */
7810
7811 static void
7812 fixup_go_packaging (struct dwarf2_cu *cu)
7813 {
7814 char *package_name = NULL;
7815 struct pending *list;
7816 int i;
7817
7818 for (list = global_symbols; list != NULL; list = list->next)
7819 {
7820 for (i = 0; i < list->nsyms; ++i)
7821 {
7822 struct symbol *sym = list->symbol[i];
7823
7824 if (SYMBOL_LANGUAGE (sym) == language_go
7825 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7826 {
7827 char *this_package_name = go_symbol_package_name (sym);
7828
7829 if (this_package_name == NULL)
7830 continue;
7831 if (package_name == NULL)
7832 package_name = this_package_name;
7833 else
7834 {
7835 if (strcmp (package_name, this_package_name) != 0)
7836 complaint (&symfile_complaints,
7837 _("Symtab %s has objects from two different Go packages: %s and %s"),
7838 (symbol_symtab (sym) != NULL
7839 ? symtab_to_filename_for_display
7840 (symbol_symtab (sym))
7841 : objfile_name (cu->objfile)),
7842 this_package_name, package_name);
7843 xfree (this_package_name);
7844 }
7845 }
7846 }
7847 }
7848
7849 if (package_name != NULL)
7850 {
7851 struct objfile *objfile = cu->objfile;
7852 const char *saved_package_name
7853 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7854 package_name,
7855 strlen (package_name));
7856 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7857 saved_package_name);
7858 struct symbol *sym;
7859
7860 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7861
7862 sym = allocate_symbol (objfile);
7863 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7864 SYMBOL_SET_NAMES (sym, saved_package_name,
7865 strlen (saved_package_name), 0, objfile);
7866 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7867 e.g., "main" finds the "main" module and not C's main(). */
7868 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7869 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7870 SYMBOL_TYPE (sym) = type;
7871
7872 add_symbol_to_list (sym, &global_symbols);
7873
7874 xfree (package_name);
7875 }
7876 }
7877
7878 /* Return the symtab for PER_CU. This works properly regardless of
7879 whether we're using the index or psymtabs. */
7880
7881 static struct compunit_symtab *
7882 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7883 {
7884 return (dwarf2_per_objfile->using_index
7885 ? per_cu->v.quick->compunit_symtab
7886 : per_cu->v.psymtab->compunit_symtab);
7887 }
7888
7889 /* A helper function for computing the list of all symbol tables
7890 included by PER_CU. */
7891
7892 static void
7893 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7894 htab_t all_children, htab_t all_type_symtabs,
7895 struct dwarf2_per_cu_data *per_cu,
7896 struct compunit_symtab *immediate_parent)
7897 {
7898 void **slot;
7899 int ix;
7900 struct compunit_symtab *cust;
7901 struct dwarf2_per_cu_data *iter;
7902
7903 slot = htab_find_slot (all_children, per_cu, INSERT);
7904 if (*slot != NULL)
7905 {
7906 /* This inclusion and its children have been processed. */
7907 return;
7908 }
7909
7910 *slot = per_cu;
7911 /* Only add a CU if it has a symbol table. */
7912 cust = get_compunit_symtab (per_cu);
7913 if (cust != NULL)
7914 {
7915 /* If this is a type unit only add its symbol table if we haven't
7916 seen it yet (type unit per_cu's can share symtabs). */
7917 if (per_cu->is_debug_types)
7918 {
7919 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7920 if (*slot == NULL)
7921 {
7922 *slot = cust;
7923 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7924 if (cust->user == NULL)
7925 cust->user = immediate_parent;
7926 }
7927 }
7928 else
7929 {
7930 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7931 if (cust->user == NULL)
7932 cust->user = immediate_parent;
7933 }
7934 }
7935
7936 for (ix = 0;
7937 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7938 ++ix)
7939 {
7940 recursively_compute_inclusions (result, all_children,
7941 all_type_symtabs, iter, cust);
7942 }
7943 }
7944
7945 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7946 PER_CU. */
7947
7948 static void
7949 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7950 {
7951 gdb_assert (! per_cu->is_debug_types);
7952
7953 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7954 {
7955 int ix, len;
7956 struct dwarf2_per_cu_data *per_cu_iter;
7957 struct compunit_symtab *compunit_symtab_iter;
7958 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7959 htab_t all_children, all_type_symtabs;
7960 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7961
7962 /* If we don't have a symtab, we can just skip this case. */
7963 if (cust == NULL)
7964 return;
7965
7966 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7967 NULL, xcalloc, xfree);
7968 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7969 NULL, xcalloc, xfree);
7970
7971 for (ix = 0;
7972 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7973 ix, per_cu_iter);
7974 ++ix)
7975 {
7976 recursively_compute_inclusions (&result_symtabs, all_children,
7977 all_type_symtabs, per_cu_iter,
7978 cust);
7979 }
7980
7981 /* Now we have a transitive closure of all the included symtabs. */
7982 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7983 cust->includes
7984 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7985 struct compunit_symtab *, len + 1);
7986 for (ix = 0;
7987 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7988 compunit_symtab_iter);
7989 ++ix)
7990 cust->includes[ix] = compunit_symtab_iter;
7991 cust->includes[len] = NULL;
7992
7993 VEC_free (compunit_symtab_ptr, result_symtabs);
7994 htab_delete (all_children);
7995 htab_delete (all_type_symtabs);
7996 }
7997 }
7998
7999 /* Compute the 'includes' field for the symtabs of all the CUs we just
8000 read. */
8001
8002 static void
8003 process_cu_includes (void)
8004 {
8005 int ix;
8006 struct dwarf2_per_cu_data *iter;
8007
8008 for (ix = 0;
8009 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8010 ix, iter);
8011 ++ix)
8012 {
8013 if (! iter->is_debug_types)
8014 compute_compunit_symtab_includes (iter);
8015 }
8016
8017 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8018 }
8019
8020 /* Generate full symbol information for PER_CU, whose DIEs have
8021 already been loaded into memory. */
8022
8023 static void
8024 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8025 enum language pretend_language)
8026 {
8027 struct dwarf2_cu *cu = per_cu->cu;
8028 struct objfile *objfile = per_cu->objfile;
8029 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8030 CORE_ADDR lowpc, highpc;
8031 struct compunit_symtab *cust;
8032 struct cleanup *back_to, *delayed_list_cleanup;
8033 CORE_ADDR baseaddr;
8034 struct block *static_block;
8035 CORE_ADDR addr;
8036
8037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8038
8039 buildsym_init ();
8040 back_to = make_cleanup (really_free_pendings, NULL);
8041 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8042
8043 cu->list_in_scope = &file_symbols;
8044
8045 cu->language = pretend_language;
8046 cu->language_defn = language_def (cu->language);
8047
8048 /* Do line number decoding in read_file_scope () */
8049 process_die (cu->dies, cu);
8050
8051 /* For now fudge the Go package. */
8052 if (cu->language == language_go)
8053 fixup_go_packaging (cu);
8054
8055 /* Now that we have processed all the DIEs in the CU, all the types
8056 should be complete, and it should now be safe to compute all of the
8057 physnames. */
8058 compute_delayed_physnames (cu);
8059 do_cleanups (delayed_list_cleanup);
8060
8061 /* Some compilers don't define a DW_AT_high_pc attribute for the
8062 compilation unit. If the DW_AT_high_pc is missing, synthesize
8063 it, by scanning the DIE's below the compilation unit. */
8064 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8065
8066 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8067 static_block = end_symtab_get_static_block (addr, 0, 1);
8068
8069 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8070 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8071 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8072 addrmap to help ensure it has an accurate map of pc values belonging to
8073 this comp unit. */
8074 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8075
8076 cust = end_symtab_from_static_block (static_block,
8077 SECT_OFF_TEXT (objfile), 0);
8078
8079 if (cust != NULL)
8080 {
8081 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8082
8083 /* Set symtab language to language from DW_AT_language. If the
8084 compilation is from a C file generated by language preprocessors, do
8085 not set the language if it was already deduced by start_subfile. */
8086 if (!(cu->language == language_c
8087 && COMPUNIT_FILETABS (cust)->language != language_unknown))
8088 COMPUNIT_FILETABS (cust)->language = cu->language;
8089
8090 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8091 produce DW_AT_location with location lists but it can be possibly
8092 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8093 there were bugs in prologue debug info, fixed later in GCC-4.5
8094 by "unwind info for epilogues" patch (which is not directly related).
8095
8096 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8097 needed, it would be wrong due to missing DW_AT_producer there.
8098
8099 Still one can confuse GDB by using non-standard GCC compilation
8100 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8101 */
8102 if (cu->has_loclist && gcc_4_minor >= 5)
8103 cust->locations_valid = 1;
8104
8105 if (gcc_4_minor >= 5)
8106 cust->epilogue_unwind_valid = 1;
8107
8108 cust->call_site_htab = cu->call_site_htab;
8109 }
8110
8111 if (dwarf2_per_objfile->using_index)
8112 per_cu->v.quick->compunit_symtab = cust;
8113 else
8114 {
8115 struct partial_symtab *pst = per_cu->v.psymtab;
8116 pst->compunit_symtab = cust;
8117 pst->readin = 1;
8118 }
8119
8120 /* Push it for inclusion processing later. */
8121 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8122
8123 do_cleanups (back_to);
8124 }
8125
8126 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8127 already been loaded into memory. */
8128
8129 static void
8130 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8131 enum language pretend_language)
8132 {
8133 struct dwarf2_cu *cu = per_cu->cu;
8134 struct objfile *objfile = per_cu->objfile;
8135 struct compunit_symtab *cust;
8136 struct cleanup *back_to, *delayed_list_cleanup;
8137 struct signatured_type *sig_type;
8138
8139 gdb_assert (per_cu->is_debug_types);
8140 sig_type = (struct signatured_type *) per_cu;
8141
8142 buildsym_init ();
8143 back_to = make_cleanup (really_free_pendings, NULL);
8144 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8145
8146 cu->list_in_scope = &file_symbols;
8147
8148 cu->language = pretend_language;
8149 cu->language_defn = language_def (cu->language);
8150
8151 /* The symbol tables are set up in read_type_unit_scope. */
8152 process_die (cu->dies, cu);
8153
8154 /* For now fudge the Go package. */
8155 if (cu->language == language_go)
8156 fixup_go_packaging (cu);
8157
8158 /* Now that we have processed all the DIEs in the CU, all the types
8159 should be complete, and it should now be safe to compute all of the
8160 physnames. */
8161 compute_delayed_physnames (cu);
8162 do_cleanups (delayed_list_cleanup);
8163
8164 /* TUs share symbol tables.
8165 If this is the first TU to use this symtab, complete the construction
8166 of it with end_expandable_symtab. Otherwise, complete the addition of
8167 this TU's symbols to the existing symtab. */
8168 if (sig_type->type_unit_group->compunit_symtab == NULL)
8169 {
8170 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8171 sig_type->type_unit_group->compunit_symtab = cust;
8172
8173 if (cust != NULL)
8174 {
8175 /* Set symtab language to language from DW_AT_language. If the
8176 compilation is from a C file generated by language preprocessors,
8177 do not set the language if it was already deduced by
8178 start_subfile. */
8179 if (!(cu->language == language_c
8180 && COMPUNIT_FILETABS (cust)->language != language_c))
8181 COMPUNIT_FILETABS (cust)->language = cu->language;
8182 }
8183 }
8184 else
8185 {
8186 augment_type_symtab ();
8187 cust = sig_type->type_unit_group->compunit_symtab;
8188 }
8189
8190 if (dwarf2_per_objfile->using_index)
8191 per_cu->v.quick->compunit_symtab = cust;
8192 else
8193 {
8194 struct partial_symtab *pst = per_cu->v.psymtab;
8195 pst->compunit_symtab = cust;
8196 pst->readin = 1;
8197 }
8198
8199 do_cleanups (back_to);
8200 }
8201
8202 /* Process an imported unit DIE. */
8203
8204 static void
8205 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8206 {
8207 struct attribute *attr;
8208
8209 /* For now we don't handle imported units in type units. */
8210 if (cu->per_cu->is_debug_types)
8211 {
8212 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8213 " supported in type units [in module %s]"),
8214 objfile_name (cu->objfile));
8215 }
8216
8217 attr = dwarf2_attr (die, DW_AT_import, cu);
8218 if (attr != NULL)
8219 {
8220 struct dwarf2_per_cu_data *per_cu;
8221 sect_offset offset;
8222 int is_dwz;
8223
8224 offset = dwarf2_get_ref_die_offset (attr);
8225 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8226 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8227
8228 /* If necessary, add it to the queue and load its DIEs. */
8229 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8230 load_full_comp_unit (per_cu, cu->language);
8231
8232 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8233 per_cu);
8234 }
8235 }
8236
8237 /* Reset the in_process bit of a die. */
8238
8239 static void
8240 reset_die_in_process (void *arg)
8241 {
8242 struct die_info *die = (struct die_info *) arg;
8243
8244 die->in_process = 0;
8245 }
8246
8247 /* Process a die and its children. */
8248
8249 static void
8250 process_die (struct die_info *die, struct dwarf2_cu *cu)
8251 {
8252 struct cleanup *in_process;
8253
8254 /* We should only be processing those not already in process. */
8255 gdb_assert (!die->in_process);
8256
8257 die->in_process = 1;
8258 in_process = make_cleanup (reset_die_in_process,die);
8259
8260 switch (die->tag)
8261 {
8262 case DW_TAG_padding:
8263 break;
8264 case DW_TAG_compile_unit:
8265 case DW_TAG_partial_unit:
8266 read_file_scope (die, cu);
8267 break;
8268 case DW_TAG_type_unit:
8269 read_type_unit_scope (die, cu);
8270 break;
8271 case DW_TAG_subprogram:
8272 case DW_TAG_inlined_subroutine:
8273 read_func_scope (die, cu);
8274 break;
8275 case DW_TAG_lexical_block:
8276 case DW_TAG_try_block:
8277 case DW_TAG_catch_block:
8278 read_lexical_block_scope (die, cu);
8279 break;
8280 case DW_TAG_GNU_call_site:
8281 read_call_site_scope (die, cu);
8282 break;
8283 case DW_TAG_class_type:
8284 case DW_TAG_interface_type:
8285 case DW_TAG_structure_type:
8286 case DW_TAG_union_type:
8287 process_structure_scope (die, cu);
8288 break;
8289 case DW_TAG_enumeration_type:
8290 process_enumeration_scope (die, cu);
8291 break;
8292
8293 /* These dies have a type, but processing them does not create
8294 a symbol or recurse to process the children. Therefore we can
8295 read them on-demand through read_type_die. */
8296 case DW_TAG_subroutine_type:
8297 case DW_TAG_set_type:
8298 case DW_TAG_array_type:
8299 case DW_TAG_pointer_type:
8300 case DW_TAG_ptr_to_member_type:
8301 case DW_TAG_reference_type:
8302 case DW_TAG_string_type:
8303 break;
8304
8305 case DW_TAG_base_type:
8306 case DW_TAG_subrange_type:
8307 case DW_TAG_typedef:
8308 /* Add a typedef symbol for the type definition, if it has a
8309 DW_AT_name. */
8310 new_symbol (die, read_type_die (die, cu), cu);
8311 break;
8312 case DW_TAG_common_block:
8313 read_common_block (die, cu);
8314 break;
8315 case DW_TAG_common_inclusion:
8316 break;
8317 case DW_TAG_namespace:
8318 cu->processing_has_namespace_info = 1;
8319 read_namespace (die, cu);
8320 break;
8321 case DW_TAG_module:
8322 cu->processing_has_namespace_info = 1;
8323 read_module (die, cu);
8324 break;
8325 case DW_TAG_imported_declaration:
8326 cu->processing_has_namespace_info = 1;
8327 if (read_namespace_alias (die, cu))
8328 break;
8329 /* The declaration is not a global namespace alias: fall through. */
8330 case DW_TAG_imported_module:
8331 cu->processing_has_namespace_info = 1;
8332 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8333 || cu->language != language_fortran))
8334 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8335 dwarf_tag_name (die->tag));
8336 read_import_statement (die, cu);
8337 break;
8338
8339 case DW_TAG_imported_unit:
8340 process_imported_unit_die (die, cu);
8341 break;
8342
8343 default:
8344 new_symbol (die, NULL, cu);
8345 break;
8346 }
8347
8348 do_cleanups (in_process);
8349 }
8350 \f
8351 /* DWARF name computation. */
8352
8353 /* A helper function for dwarf2_compute_name which determines whether DIE
8354 needs to have the name of the scope prepended to the name listed in the
8355 die. */
8356
8357 static int
8358 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8359 {
8360 struct attribute *attr;
8361
8362 switch (die->tag)
8363 {
8364 case DW_TAG_namespace:
8365 case DW_TAG_typedef:
8366 case DW_TAG_class_type:
8367 case DW_TAG_interface_type:
8368 case DW_TAG_structure_type:
8369 case DW_TAG_union_type:
8370 case DW_TAG_enumeration_type:
8371 case DW_TAG_enumerator:
8372 case DW_TAG_subprogram:
8373 case DW_TAG_inlined_subroutine:
8374 case DW_TAG_member:
8375 case DW_TAG_imported_declaration:
8376 return 1;
8377
8378 case DW_TAG_variable:
8379 case DW_TAG_constant:
8380 /* We only need to prefix "globally" visible variables. These include
8381 any variable marked with DW_AT_external or any variable that
8382 lives in a namespace. [Variables in anonymous namespaces
8383 require prefixing, but they are not DW_AT_external.] */
8384
8385 if (dwarf2_attr (die, DW_AT_specification, cu))
8386 {
8387 struct dwarf2_cu *spec_cu = cu;
8388
8389 return die_needs_namespace (die_specification (die, &spec_cu),
8390 spec_cu);
8391 }
8392
8393 attr = dwarf2_attr (die, DW_AT_external, cu);
8394 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8395 && die->parent->tag != DW_TAG_module)
8396 return 0;
8397 /* A variable in a lexical block of some kind does not need a
8398 namespace, even though in C++ such variables may be external
8399 and have a mangled name. */
8400 if (die->parent->tag == DW_TAG_lexical_block
8401 || die->parent->tag == DW_TAG_try_block
8402 || die->parent->tag == DW_TAG_catch_block
8403 || die->parent->tag == DW_TAG_subprogram)
8404 return 0;
8405 return 1;
8406
8407 default:
8408 return 0;
8409 }
8410 }
8411
8412 /* Retrieve the last character from a mem_file. */
8413
8414 static void
8415 do_ui_file_peek_last (void *object, const char *buffer, long length)
8416 {
8417 char *last_char_p = (char *) object;
8418
8419 if (length > 0)
8420 *last_char_p = buffer[length - 1];
8421 }
8422
8423 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8424 compute the physname for the object, which include a method's:
8425 - formal parameters (C++),
8426 - receiver type (Go),
8427
8428 The term "physname" is a bit confusing.
8429 For C++, for example, it is the demangled name.
8430 For Go, for example, it's the mangled name.
8431
8432 For Ada, return the DIE's linkage name rather than the fully qualified
8433 name. PHYSNAME is ignored..
8434
8435 The result is allocated on the objfile_obstack and canonicalized. */
8436
8437 static const char *
8438 dwarf2_compute_name (const char *name,
8439 struct die_info *die, struct dwarf2_cu *cu,
8440 int physname)
8441 {
8442 struct objfile *objfile = cu->objfile;
8443
8444 if (name == NULL)
8445 name = dwarf2_name (die, cu);
8446
8447 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8448 but otherwise compute it by typename_concat inside GDB.
8449 FIXME: Actually this is not really true, or at least not always true.
8450 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8451 Fortran names because there is no mangling standard. So new_symbol_full
8452 will set the demangled name to the result of dwarf2_full_name, and it is
8453 the demangled name that GDB uses if it exists. */
8454 if (cu->language == language_ada
8455 || (cu->language == language_fortran && physname))
8456 {
8457 /* For Ada unit, we prefer the linkage name over the name, as
8458 the former contains the exported name, which the user expects
8459 to be able to reference. Ideally, we want the user to be able
8460 to reference this entity using either natural or linkage name,
8461 but we haven't started looking at this enhancement yet. */
8462 const char *linkage_name;
8463
8464 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8465 if (linkage_name == NULL)
8466 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8467 if (linkage_name != NULL)
8468 return linkage_name;
8469 }
8470
8471 /* These are the only languages we know how to qualify names in. */
8472 if (name != NULL
8473 && (cu->language == language_cplus
8474 || cu->language == language_fortran || cu->language == language_d
8475 || cu->language == language_rust))
8476 {
8477 if (die_needs_namespace (die, cu))
8478 {
8479 long length;
8480 const char *prefix;
8481 struct ui_file *buf;
8482 const char *canonical_name = NULL;
8483
8484 prefix = determine_prefix (die, cu);
8485 buf = mem_fileopen ();
8486 if (*prefix != '\0')
8487 {
8488 char *prefixed_name = typename_concat (NULL, prefix, name,
8489 physname, cu);
8490
8491 fputs_unfiltered (prefixed_name, buf);
8492 xfree (prefixed_name);
8493 }
8494 else
8495 fputs_unfiltered (name, buf);
8496
8497 /* Template parameters may be specified in the DIE's DW_AT_name, or
8498 as children with DW_TAG_template_type_param or
8499 DW_TAG_value_type_param. If the latter, add them to the name
8500 here. If the name already has template parameters, then
8501 skip this step; some versions of GCC emit both, and
8502 it is more efficient to use the pre-computed name.
8503
8504 Something to keep in mind about this process: it is very
8505 unlikely, or in some cases downright impossible, to produce
8506 something that will match the mangled name of a function.
8507 If the definition of the function has the same debug info,
8508 we should be able to match up with it anyway. But fallbacks
8509 using the minimal symbol, for instance to find a method
8510 implemented in a stripped copy of libstdc++, will not work.
8511 If we do not have debug info for the definition, we will have to
8512 match them up some other way.
8513
8514 When we do name matching there is a related problem with function
8515 templates; two instantiated function templates are allowed to
8516 differ only by their return types, which we do not add here. */
8517
8518 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8519 {
8520 struct attribute *attr;
8521 struct die_info *child;
8522 int first = 1;
8523
8524 die->building_fullname = 1;
8525
8526 for (child = die->child; child != NULL; child = child->sibling)
8527 {
8528 struct type *type;
8529 LONGEST value;
8530 const gdb_byte *bytes;
8531 struct dwarf2_locexpr_baton *baton;
8532 struct value *v;
8533
8534 if (child->tag != DW_TAG_template_type_param
8535 && child->tag != DW_TAG_template_value_param)
8536 continue;
8537
8538 if (first)
8539 {
8540 fputs_unfiltered ("<", buf);
8541 first = 0;
8542 }
8543 else
8544 fputs_unfiltered (", ", buf);
8545
8546 attr = dwarf2_attr (child, DW_AT_type, cu);
8547 if (attr == NULL)
8548 {
8549 complaint (&symfile_complaints,
8550 _("template parameter missing DW_AT_type"));
8551 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8552 continue;
8553 }
8554 type = die_type (child, cu);
8555
8556 if (child->tag == DW_TAG_template_type_param)
8557 {
8558 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8559 continue;
8560 }
8561
8562 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8563 if (attr == NULL)
8564 {
8565 complaint (&symfile_complaints,
8566 _("template parameter missing "
8567 "DW_AT_const_value"));
8568 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8569 continue;
8570 }
8571
8572 dwarf2_const_value_attr (attr, type, name,
8573 &cu->comp_unit_obstack, cu,
8574 &value, &bytes, &baton);
8575
8576 if (TYPE_NOSIGN (type))
8577 /* GDB prints characters as NUMBER 'CHAR'. If that's
8578 changed, this can use value_print instead. */
8579 c_printchar (value, type, buf);
8580 else
8581 {
8582 struct value_print_options opts;
8583
8584 if (baton != NULL)
8585 v = dwarf2_evaluate_loc_desc (type, NULL,
8586 baton->data,
8587 baton->size,
8588 baton->per_cu);
8589 else if (bytes != NULL)
8590 {
8591 v = allocate_value (type);
8592 memcpy (value_contents_writeable (v), bytes,
8593 TYPE_LENGTH (type));
8594 }
8595 else
8596 v = value_from_longest (type, value);
8597
8598 /* Specify decimal so that we do not depend on
8599 the radix. */
8600 get_formatted_print_options (&opts, 'd');
8601 opts.raw = 1;
8602 value_print (v, buf, &opts);
8603 release_value (v);
8604 value_free (v);
8605 }
8606 }
8607
8608 die->building_fullname = 0;
8609
8610 if (!first)
8611 {
8612 /* Close the argument list, with a space if necessary
8613 (nested templates). */
8614 char last_char = '\0';
8615 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8616 if (last_char == '>')
8617 fputs_unfiltered (" >", buf);
8618 else
8619 fputs_unfiltered (">", buf);
8620 }
8621 }
8622
8623 /* For C++ methods, append formal parameter type
8624 information, if PHYSNAME. */
8625
8626 if (physname && die->tag == DW_TAG_subprogram
8627 && cu->language == language_cplus)
8628 {
8629 struct type *type = read_type_die (die, cu);
8630
8631 c_type_print_args (type, buf, 1, cu->language,
8632 &type_print_raw_options);
8633
8634 if (cu->language == language_cplus)
8635 {
8636 /* Assume that an artificial first parameter is
8637 "this", but do not crash if it is not. RealView
8638 marks unnamed (and thus unused) parameters as
8639 artificial; there is no way to differentiate
8640 the two cases. */
8641 if (TYPE_NFIELDS (type) > 0
8642 && TYPE_FIELD_ARTIFICIAL (type, 0)
8643 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8644 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8645 0))))
8646 fputs_unfiltered (" const", buf);
8647 }
8648 }
8649
8650 std::string intermediate_name = ui_file_as_string (buf);
8651 ui_file_delete (buf);
8652
8653 if (cu->language == language_cplus)
8654 canonical_name
8655 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
8656 &objfile->per_bfd->storage_obstack);
8657
8658 /* If we only computed INTERMEDIATE_NAME, or if
8659 INTERMEDIATE_NAME is already canonical, then we need to
8660 copy it to the appropriate obstack. */
8661 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
8662 name = ((const char *)
8663 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8664 intermediate_name.c_str (),
8665 intermediate_name.length ()));
8666 else
8667 name = canonical_name;
8668 }
8669 }
8670
8671 return name;
8672 }
8673
8674 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8675 If scope qualifiers are appropriate they will be added. The result
8676 will be allocated on the storage_obstack, or NULL if the DIE does
8677 not have a name. NAME may either be from a previous call to
8678 dwarf2_name or NULL.
8679
8680 The output string will be canonicalized (if C++). */
8681
8682 static const char *
8683 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8684 {
8685 return dwarf2_compute_name (name, die, cu, 0);
8686 }
8687
8688 /* Construct a physname for the given DIE in CU. NAME may either be
8689 from a previous call to dwarf2_name or NULL. The result will be
8690 allocated on the objfile_objstack or NULL if the DIE does not have a
8691 name.
8692
8693 The output string will be canonicalized (if C++). */
8694
8695 static const char *
8696 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8697 {
8698 struct objfile *objfile = cu->objfile;
8699 const char *retval, *mangled = NULL, *canon = NULL;
8700 struct cleanup *back_to;
8701 int need_copy = 1;
8702
8703 /* In this case dwarf2_compute_name is just a shortcut not building anything
8704 on its own. */
8705 if (!die_needs_namespace (die, cu))
8706 return dwarf2_compute_name (name, die, cu, 1);
8707
8708 back_to = make_cleanup (null_cleanup, NULL);
8709
8710 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8711 if (mangled == NULL)
8712 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8713
8714 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8715 See https://github.com/rust-lang/rust/issues/32925. */
8716 if (cu->language == language_rust && mangled != NULL
8717 && strchr (mangled, '{') != NULL)
8718 mangled = NULL;
8719
8720 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8721 has computed. */
8722 if (mangled != NULL)
8723 {
8724 char *demangled;
8725
8726 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8727 type. It is easier for GDB users to search for such functions as
8728 `name(params)' than `long name(params)'. In such case the minimal
8729 symbol names do not match the full symbol names but for template
8730 functions there is never a need to look up their definition from their
8731 declaration so the only disadvantage remains the minimal symbol
8732 variant `long name(params)' does not have the proper inferior type.
8733 */
8734
8735 if (cu->language == language_go)
8736 {
8737 /* This is a lie, but we already lie to the caller new_symbol_full.
8738 new_symbol_full assumes we return the mangled name.
8739 This just undoes that lie until things are cleaned up. */
8740 demangled = NULL;
8741 }
8742 else
8743 {
8744 demangled = gdb_demangle (mangled,
8745 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
8746 }
8747 if (demangled)
8748 {
8749 make_cleanup (xfree, demangled);
8750 canon = demangled;
8751 }
8752 else
8753 {
8754 canon = mangled;
8755 need_copy = 0;
8756 }
8757 }
8758
8759 if (canon == NULL || check_physname)
8760 {
8761 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8762
8763 if (canon != NULL && strcmp (physname, canon) != 0)
8764 {
8765 /* It may not mean a bug in GDB. The compiler could also
8766 compute DW_AT_linkage_name incorrectly. But in such case
8767 GDB would need to be bug-to-bug compatible. */
8768
8769 complaint (&symfile_complaints,
8770 _("Computed physname <%s> does not match demangled <%s> "
8771 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8772 physname, canon, mangled, die->offset.sect_off,
8773 objfile_name (objfile));
8774
8775 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8776 is available here - over computed PHYSNAME. It is safer
8777 against both buggy GDB and buggy compilers. */
8778
8779 retval = canon;
8780 }
8781 else
8782 {
8783 retval = physname;
8784 need_copy = 0;
8785 }
8786 }
8787 else
8788 retval = canon;
8789
8790 if (need_copy)
8791 retval = ((const char *)
8792 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8793 retval, strlen (retval)));
8794
8795 do_cleanups (back_to);
8796 return retval;
8797 }
8798
8799 /* Inspect DIE in CU for a namespace alias. If one exists, record
8800 a new symbol for it.
8801
8802 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8803
8804 static int
8805 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8806 {
8807 struct attribute *attr;
8808
8809 /* If the die does not have a name, this is not a namespace
8810 alias. */
8811 attr = dwarf2_attr (die, DW_AT_name, cu);
8812 if (attr != NULL)
8813 {
8814 int num;
8815 struct die_info *d = die;
8816 struct dwarf2_cu *imported_cu = cu;
8817
8818 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8819 keep inspecting DIEs until we hit the underlying import. */
8820 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8821 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8822 {
8823 attr = dwarf2_attr (d, DW_AT_import, cu);
8824 if (attr == NULL)
8825 break;
8826
8827 d = follow_die_ref (d, attr, &imported_cu);
8828 if (d->tag != DW_TAG_imported_declaration)
8829 break;
8830 }
8831
8832 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8833 {
8834 complaint (&symfile_complaints,
8835 _("DIE at 0x%x has too many recursively imported "
8836 "declarations"), d->offset.sect_off);
8837 return 0;
8838 }
8839
8840 if (attr != NULL)
8841 {
8842 struct type *type;
8843 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8844
8845 type = get_die_type_at_offset (offset, cu->per_cu);
8846 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8847 {
8848 /* This declaration is a global namespace alias. Add
8849 a symbol for it whose type is the aliased namespace. */
8850 new_symbol (die, type, cu);
8851 return 1;
8852 }
8853 }
8854 }
8855
8856 return 0;
8857 }
8858
8859 /* Return the using directives repository (global or local?) to use in the
8860 current context for LANGUAGE.
8861
8862 For Ada, imported declarations can materialize renamings, which *may* be
8863 global. However it is impossible (for now?) in DWARF to distinguish
8864 "external" imported declarations and "static" ones. As all imported
8865 declarations seem to be static in all other languages, make them all CU-wide
8866 global only in Ada. */
8867
8868 static struct using_direct **
8869 using_directives (enum language language)
8870 {
8871 if (language == language_ada && context_stack_depth == 0)
8872 return &global_using_directives;
8873 else
8874 return &local_using_directives;
8875 }
8876
8877 /* Read the import statement specified by the given die and record it. */
8878
8879 static void
8880 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8881 {
8882 struct objfile *objfile = cu->objfile;
8883 struct attribute *import_attr;
8884 struct die_info *imported_die, *child_die;
8885 struct dwarf2_cu *imported_cu;
8886 const char *imported_name;
8887 const char *imported_name_prefix;
8888 const char *canonical_name;
8889 const char *import_alias;
8890 const char *imported_declaration = NULL;
8891 const char *import_prefix;
8892 VEC (const_char_ptr) *excludes = NULL;
8893 struct cleanup *cleanups;
8894
8895 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8896 if (import_attr == NULL)
8897 {
8898 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8899 dwarf_tag_name (die->tag));
8900 return;
8901 }
8902
8903 imported_cu = cu;
8904 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8905 imported_name = dwarf2_name (imported_die, imported_cu);
8906 if (imported_name == NULL)
8907 {
8908 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8909
8910 The import in the following code:
8911 namespace A
8912 {
8913 typedef int B;
8914 }
8915
8916 int main ()
8917 {
8918 using A::B;
8919 B b;
8920 return b;
8921 }
8922
8923 ...
8924 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8925 <52> DW_AT_decl_file : 1
8926 <53> DW_AT_decl_line : 6
8927 <54> DW_AT_import : <0x75>
8928 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8929 <59> DW_AT_name : B
8930 <5b> DW_AT_decl_file : 1
8931 <5c> DW_AT_decl_line : 2
8932 <5d> DW_AT_type : <0x6e>
8933 ...
8934 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8935 <76> DW_AT_byte_size : 4
8936 <77> DW_AT_encoding : 5 (signed)
8937
8938 imports the wrong die ( 0x75 instead of 0x58 ).
8939 This case will be ignored until the gcc bug is fixed. */
8940 return;
8941 }
8942
8943 /* Figure out the local name after import. */
8944 import_alias = dwarf2_name (die, cu);
8945
8946 /* Figure out where the statement is being imported to. */
8947 import_prefix = determine_prefix (die, cu);
8948
8949 /* Figure out what the scope of the imported die is and prepend it
8950 to the name of the imported die. */
8951 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8952
8953 if (imported_die->tag != DW_TAG_namespace
8954 && imported_die->tag != DW_TAG_module)
8955 {
8956 imported_declaration = imported_name;
8957 canonical_name = imported_name_prefix;
8958 }
8959 else if (strlen (imported_name_prefix) > 0)
8960 canonical_name = obconcat (&objfile->objfile_obstack,
8961 imported_name_prefix,
8962 (cu->language == language_d ? "." : "::"),
8963 imported_name, (char *) NULL);
8964 else
8965 canonical_name = imported_name;
8966
8967 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8968
8969 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8970 for (child_die = die->child; child_die && child_die->tag;
8971 child_die = sibling_die (child_die))
8972 {
8973 /* DWARF-4: A Fortran use statement with a “rename list” may be
8974 represented by an imported module entry with an import attribute
8975 referring to the module and owned entries corresponding to those
8976 entities that are renamed as part of being imported. */
8977
8978 if (child_die->tag != DW_TAG_imported_declaration)
8979 {
8980 complaint (&symfile_complaints,
8981 _("child DW_TAG_imported_declaration expected "
8982 "- DIE at 0x%x [in module %s]"),
8983 child_die->offset.sect_off, objfile_name (objfile));
8984 continue;
8985 }
8986
8987 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8988 if (import_attr == NULL)
8989 {
8990 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8991 dwarf_tag_name (child_die->tag));
8992 continue;
8993 }
8994
8995 imported_cu = cu;
8996 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8997 &imported_cu);
8998 imported_name = dwarf2_name (imported_die, imported_cu);
8999 if (imported_name == NULL)
9000 {
9001 complaint (&symfile_complaints,
9002 _("child DW_TAG_imported_declaration has unknown "
9003 "imported name - DIE at 0x%x [in module %s]"),
9004 child_die->offset.sect_off, objfile_name (objfile));
9005 continue;
9006 }
9007
9008 VEC_safe_push (const_char_ptr, excludes, imported_name);
9009
9010 process_die (child_die, cu);
9011 }
9012
9013 add_using_directive (using_directives (cu->language),
9014 import_prefix,
9015 canonical_name,
9016 import_alias,
9017 imported_declaration,
9018 excludes,
9019 0,
9020 &objfile->objfile_obstack);
9021
9022 do_cleanups (cleanups);
9023 }
9024
9025 /* Cleanup function for handle_DW_AT_stmt_list. */
9026
9027 static void
9028 free_cu_line_header (void *arg)
9029 {
9030 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
9031
9032 free_line_header (cu->line_header);
9033 cu->line_header = NULL;
9034 }
9035
9036 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9037 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9038 this, it was first present in GCC release 4.3.0. */
9039
9040 static int
9041 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9042 {
9043 if (!cu->checked_producer)
9044 check_producer (cu);
9045
9046 return cu->producer_is_gcc_lt_4_3;
9047 }
9048
9049 static void
9050 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9051 const char **name, const char **comp_dir)
9052 {
9053 /* Find the filename. Do not use dwarf2_name here, since the filename
9054 is not a source language identifier. */
9055 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9056 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9057
9058 if (*comp_dir == NULL
9059 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9060 && IS_ABSOLUTE_PATH (*name))
9061 {
9062 char *d = ldirname (*name);
9063
9064 *comp_dir = d;
9065 if (d != NULL)
9066 make_cleanup (xfree, d);
9067 }
9068 if (*comp_dir != NULL)
9069 {
9070 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9071 directory, get rid of it. */
9072 const char *cp = strchr (*comp_dir, ':');
9073
9074 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9075 *comp_dir = cp + 1;
9076 }
9077
9078 if (*name == NULL)
9079 *name = "<unknown>";
9080 }
9081
9082 /* Handle DW_AT_stmt_list for a compilation unit.
9083 DIE is the DW_TAG_compile_unit die for CU.
9084 COMP_DIR is the compilation directory. LOWPC is passed to
9085 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9086
9087 static void
9088 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9089 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9090 {
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct attribute *attr;
9093 unsigned int line_offset;
9094 struct line_header line_header_local;
9095 hashval_t line_header_local_hash;
9096 unsigned u;
9097 void **slot;
9098 int decode_mapping;
9099
9100 gdb_assert (! cu->per_cu->is_debug_types);
9101
9102 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9103 if (attr == NULL)
9104 return;
9105
9106 line_offset = DW_UNSND (attr);
9107
9108 /* The line header hash table is only created if needed (it exists to
9109 prevent redundant reading of the line table for partial_units).
9110 If we're given a partial_unit, we'll need it. If we're given a
9111 compile_unit, then use the line header hash table if it's already
9112 created, but don't create one just yet. */
9113
9114 if (dwarf2_per_objfile->line_header_hash == NULL
9115 && die->tag == DW_TAG_partial_unit)
9116 {
9117 dwarf2_per_objfile->line_header_hash
9118 = htab_create_alloc_ex (127, line_header_hash_voidp,
9119 line_header_eq_voidp,
9120 free_line_header_voidp,
9121 &objfile->objfile_obstack,
9122 hashtab_obstack_allocate,
9123 dummy_obstack_deallocate);
9124 }
9125
9126 line_header_local.offset.sect_off = line_offset;
9127 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9128 line_header_local_hash = line_header_hash (&line_header_local);
9129 if (dwarf2_per_objfile->line_header_hash != NULL)
9130 {
9131 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9132 &line_header_local,
9133 line_header_local_hash, NO_INSERT);
9134
9135 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9136 is not present in *SLOT (since if there is something in *SLOT then
9137 it will be for a partial_unit). */
9138 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9139 {
9140 gdb_assert (*slot != NULL);
9141 cu->line_header = (struct line_header *) *slot;
9142 return;
9143 }
9144 }
9145
9146 /* dwarf_decode_line_header does not yet provide sufficient information.
9147 We always have to call also dwarf_decode_lines for it. */
9148 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9149 if (cu->line_header == NULL)
9150 return;
9151
9152 if (dwarf2_per_objfile->line_header_hash == NULL)
9153 slot = NULL;
9154 else
9155 {
9156 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9157 &line_header_local,
9158 line_header_local_hash, INSERT);
9159 gdb_assert (slot != NULL);
9160 }
9161 if (slot != NULL && *slot == NULL)
9162 {
9163 /* This newly decoded line number information unit will be owned
9164 by line_header_hash hash table. */
9165 *slot = cu->line_header;
9166 }
9167 else
9168 {
9169 /* We cannot free any current entry in (*slot) as that struct line_header
9170 may be already used by multiple CUs. Create only temporary decoded
9171 line_header for this CU - it may happen at most once for each line
9172 number information unit. And if we're not using line_header_hash
9173 then this is what we want as well. */
9174 gdb_assert (die->tag != DW_TAG_partial_unit);
9175 make_cleanup (free_cu_line_header, cu);
9176 }
9177 decode_mapping = (die->tag != DW_TAG_partial_unit);
9178 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9179 decode_mapping);
9180 }
9181
9182 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9183
9184 static void
9185 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9186 {
9187 struct objfile *objfile = dwarf2_per_objfile->objfile;
9188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9189 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9190 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9191 CORE_ADDR highpc = ((CORE_ADDR) 0);
9192 struct attribute *attr;
9193 const char *name = NULL;
9194 const char *comp_dir = NULL;
9195 struct die_info *child_die;
9196 CORE_ADDR baseaddr;
9197
9198 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9199
9200 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9201
9202 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9203 from finish_block. */
9204 if (lowpc == ((CORE_ADDR) -1))
9205 lowpc = highpc;
9206 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9207
9208 find_file_and_directory (die, cu, &name, &comp_dir);
9209
9210 prepare_one_comp_unit (cu, die, cu->language);
9211
9212 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9213 standardised yet. As a workaround for the language detection we fall
9214 back to the DW_AT_producer string. */
9215 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9216 cu->language = language_opencl;
9217
9218 /* Similar hack for Go. */
9219 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9220 set_cu_language (DW_LANG_Go, cu);
9221
9222 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9223
9224 /* Decode line number information if present. We do this before
9225 processing child DIEs, so that the line header table is available
9226 for DW_AT_decl_file. */
9227 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9228
9229 /* Process all dies in compilation unit. */
9230 if (die->child != NULL)
9231 {
9232 child_die = die->child;
9233 while (child_die && child_die->tag)
9234 {
9235 process_die (child_die, cu);
9236 child_die = sibling_die (child_die);
9237 }
9238 }
9239
9240 /* Decode macro information, if present. Dwarf 2 macro information
9241 refers to information in the line number info statement program
9242 header, so we can only read it if we've read the header
9243 successfully. */
9244 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9245 if (attr && cu->line_header)
9246 {
9247 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9248 complaint (&symfile_complaints,
9249 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9250
9251 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9252 }
9253 else
9254 {
9255 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9256 if (attr && cu->line_header)
9257 {
9258 unsigned int macro_offset = DW_UNSND (attr);
9259
9260 dwarf_decode_macros (cu, macro_offset, 0);
9261 }
9262 }
9263
9264 do_cleanups (back_to);
9265 }
9266
9267 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9268 Create the set of symtabs used by this TU, or if this TU is sharing
9269 symtabs with another TU and the symtabs have already been created
9270 then restore those symtabs in the line header.
9271 We don't need the pc/line-number mapping for type units. */
9272
9273 static void
9274 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9275 {
9276 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9277 struct type_unit_group *tu_group;
9278 int first_time;
9279 struct line_header *lh;
9280 struct attribute *attr;
9281 unsigned int i, line_offset;
9282 struct signatured_type *sig_type;
9283
9284 gdb_assert (per_cu->is_debug_types);
9285 sig_type = (struct signatured_type *) per_cu;
9286
9287 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9288
9289 /* If we're using .gdb_index (includes -readnow) then
9290 per_cu->type_unit_group may not have been set up yet. */
9291 if (sig_type->type_unit_group == NULL)
9292 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9293 tu_group = sig_type->type_unit_group;
9294
9295 /* If we've already processed this stmt_list there's no real need to
9296 do it again, we could fake it and just recreate the part we need
9297 (file name,index -> symtab mapping). If data shows this optimization
9298 is useful we can do it then. */
9299 first_time = tu_group->compunit_symtab == NULL;
9300
9301 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9302 debug info. */
9303 lh = NULL;
9304 if (attr != NULL)
9305 {
9306 line_offset = DW_UNSND (attr);
9307 lh = dwarf_decode_line_header (line_offset, cu);
9308 }
9309 if (lh == NULL)
9310 {
9311 if (first_time)
9312 dwarf2_start_symtab (cu, "", NULL, 0);
9313 else
9314 {
9315 gdb_assert (tu_group->symtabs == NULL);
9316 restart_symtab (tu_group->compunit_symtab, "", 0);
9317 }
9318 return;
9319 }
9320
9321 cu->line_header = lh;
9322 make_cleanup (free_cu_line_header, cu);
9323
9324 if (first_time)
9325 {
9326 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9327
9328 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9329 still initializing it, and our caller (a few levels up)
9330 process_full_type_unit still needs to know if this is the first
9331 time. */
9332
9333 tu_group->num_symtabs = lh->num_file_names;
9334 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9335
9336 for (i = 0; i < lh->num_file_names; ++i)
9337 {
9338 const char *dir = NULL;
9339 struct file_entry *fe = &lh->file_names[i];
9340
9341 if (fe->dir_index && lh->include_dirs != NULL)
9342 dir = lh->include_dirs[fe->dir_index - 1];
9343 dwarf2_start_subfile (fe->name, dir);
9344
9345 if (current_subfile->symtab == NULL)
9346 {
9347 /* NOTE: start_subfile will recognize when it's been passed
9348 a file it has already seen. So we can't assume there's a
9349 simple mapping from lh->file_names to subfiles, plus
9350 lh->file_names may contain dups. */
9351 current_subfile->symtab
9352 = allocate_symtab (cust, current_subfile->name);
9353 }
9354
9355 fe->symtab = current_subfile->symtab;
9356 tu_group->symtabs[i] = fe->symtab;
9357 }
9358 }
9359 else
9360 {
9361 restart_symtab (tu_group->compunit_symtab, "", 0);
9362
9363 for (i = 0; i < lh->num_file_names; ++i)
9364 {
9365 struct file_entry *fe = &lh->file_names[i];
9366
9367 fe->symtab = tu_group->symtabs[i];
9368 }
9369 }
9370
9371 /* The main symtab is allocated last. Type units don't have DW_AT_name
9372 so they don't have a "real" (so to speak) symtab anyway.
9373 There is later code that will assign the main symtab to all symbols
9374 that don't have one. We need to handle the case of a symbol with a
9375 missing symtab (DW_AT_decl_file) anyway. */
9376 }
9377
9378 /* Process DW_TAG_type_unit.
9379 For TUs we want to skip the first top level sibling if it's not the
9380 actual type being defined by this TU. In this case the first top
9381 level sibling is there to provide context only. */
9382
9383 static void
9384 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9385 {
9386 struct die_info *child_die;
9387
9388 prepare_one_comp_unit (cu, die, language_minimal);
9389
9390 /* Initialize (or reinitialize) the machinery for building symtabs.
9391 We do this before processing child DIEs, so that the line header table
9392 is available for DW_AT_decl_file. */
9393 setup_type_unit_groups (die, cu);
9394
9395 if (die->child != NULL)
9396 {
9397 child_die = die->child;
9398 while (child_die && child_die->tag)
9399 {
9400 process_die (child_die, cu);
9401 child_die = sibling_die (child_die);
9402 }
9403 }
9404 }
9405 \f
9406 /* DWO/DWP files.
9407
9408 http://gcc.gnu.org/wiki/DebugFission
9409 http://gcc.gnu.org/wiki/DebugFissionDWP
9410
9411 To simplify handling of both DWO files ("object" files with the DWARF info)
9412 and DWP files (a file with the DWOs packaged up into one file), we treat
9413 DWP files as having a collection of virtual DWO files. */
9414
9415 static hashval_t
9416 hash_dwo_file (const void *item)
9417 {
9418 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
9419 hashval_t hash;
9420
9421 hash = htab_hash_string (dwo_file->dwo_name);
9422 if (dwo_file->comp_dir != NULL)
9423 hash += htab_hash_string (dwo_file->comp_dir);
9424 return hash;
9425 }
9426
9427 static int
9428 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9429 {
9430 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9431 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
9432
9433 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9434 return 0;
9435 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9436 return lhs->comp_dir == rhs->comp_dir;
9437 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9438 }
9439
9440 /* Allocate a hash table for DWO files. */
9441
9442 static htab_t
9443 allocate_dwo_file_hash_table (void)
9444 {
9445 struct objfile *objfile = dwarf2_per_objfile->objfile;
9446
9447 return htab_create_alloc_ex (41,
9448 hash_dwo_file,
9449 eq_dwo_file,
9450 NULL,
9451 &objfile->objfile_obstack,
9452 hashtab_obstack_allocate,
9453 dummy_obstack_deallocate);
9454 }
9455
9456 /* Lookup DWO file DWO_NAME. */
9457
9458 static void **
9459 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9460 {
9461 struct dwo_file find_entry;
9462 void **slot;
9463
9464 if (dwarf2_per_objfile->dwo_files == NULL)
9465 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9466
9467 memset (&find_entry, 0, sizeof (find_entry));
9468 find_entry.dwo_name = dwo_name;
9469 find_entry.comp_dir = comp_dir;
9470 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9471
9472 return slot;
9473 }
9474
9475 static hashval_t
9476 hash_dwo_unit (const void *item)
9477 {
9478 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
9479
9480 /* This drops the top 32 bits of the id, but is ok for a hash. */
9481 return dwo_unit->signature;
9482 }
9483
9484 static int
9485 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9486 {
9487 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9488 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
9489
9490 /* The signature is assumed to be unique within the DWO file.
9491 So while object file CU dwo_id's always have the value zero,
9492 that's OK, assuming each object file DWO file has only one CU,
9493 and that's the rule for now. */
9494 return lhs->signature == rhs->signature;
9495 }
9496
9497 /* Allocate a hash table for DWO CUs,TUs.
9498 There is one of these tables for each of CUs,TUs for each DWO file. */
9499
9500 static htab_t
9501 allocate_dwo_unit_table (struct objfile *objfile)
9502 {
9503 /* Start out with a pretty small number.
9504 Generally DWO files contain only one CU and maybe some TUs. */
9505 return htab_create_alloc_ex (3,
9506 hash_dwo_unit,
9507 eq_dwo_unit,
9508 NULL,
9509 &objfile->objfile_obstack,
9510 hashtab_obstack_allocate,
9511 dummy_obstack_deallocate);
9512 }
9513
9514 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9515
9516 struct create_dwo_cu_data
9517 {
9518 struct dwo_file *dwo_file;
9519 struct dwo_unit dwo_unit;
9520 };
9521
9522 /* die_reader_func for create_dwo_cu. */
9523
9524 static void
9525 create_dwo_cu_reader (const struct die_reader_specs *reader,
9526 const gdb_byte *info_ptr,
9527 struct die_info *comp_unit_die,
9528 int has_children,
9529 void *datap)
9530 {
9531 struct dwarf2_cu *cu = reader->cu;
9532 sect_offset offset = cu->per_cu->offset;
9533 struct dwarf2_section_info *section = cu->per_cu->section;
9534 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
9535 struct dwo_file *dwo_file = data->dwo_file;
9536 struct dwo_unit *dwo_unit = &data->dwo_unit;
9537 struct attribute *attr;
9538
9539 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9540 if (attr == NULL)
9541 {
9542 complaint (&symfile_complaints,
9543 _("Dwarf Error: debug entry at offset 0x%x is missing"
9544 " its dwo_id [in module %s]"),
9545 offset.sect_off, dwo_file->dwo_name);
9546 return;
9547 }
9548
9549 dwo_unit->dwo_file = dwo_file;
9550 dwo_unit->signature = DW_UNSND (attr);
9551 dwo_unit->section = section;
9552 dwo_unit->offset = offset;
9553 dwo_unit->length = cu->per_cu->length;
9554
9555 if (dwarf_read_debug)
9556 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9557 offset.sect_off, hex_string (dwo_unit->signature));
9558 }
9559
9560 /* Create the dwo_unit for the lone CU in DWO_FILE.
9561 Note: This function processes DWO files only, not DWP files. */
9562
9563 static struct dwo_unit *
9564 create_dwo_cu (struct dwo_file *dwo_file)
9565 {
9566 struct objfile *objfile = dwarf2_per_objfile->objfile;
9567 struct dwarf2_section_info *section = &dwo_file->sections.info;
9568 const gdb_byte *info_ptr, *end_ptr;
9569 struct create_dwo_cu_data create_dwo_cu_data;
9570 struct dwo_unit *dwo_unit;
9571
9572 dwarf2_read_section (objfile, section);
9573 info_ptr = section->buffer;
9574
9575 if (info_ptr == NULL)
9576 return NULL;
9577
9578 if (dwarf_read_debug)
9579 {
9580 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9581 get_section_name (section),
9582 get_section_file_name (section));
9583 }
9584
9585 create_dwo_cu_data.dwo_file = dwo_file;
9586 dwo_unit = NULL;
9587
9588 end_ptr = info_ptr + section->size;
9589 while (info_ptr < end_ptr)
9590 {
9591 struct dwarf2_per_cu_data per_cu;
9592
9593 memset (&create_dwo_cu_data.dwo_unit, 0,
9594 sizeof (create_dwo_cu_data.dwo_unit));
9595 memset (&per_cu, 0, sizeof (per_cu));
9596 per_cu.objfile = objfile;
9597 per_cu.is_debug_types = 0;
9598 per_cu.offset.sect_off = info_ptr - section->buffer;
9599 per_cu.section = section;
9600
9601 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9602 create_dwo_cu_reader,
9603 &create_dwo_cu_data);
9604
9605 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9606 {
9607 /* If we've already found one, complain. We only support one
9608 because having more than one requires hacking the dwo_name of
9609 each to match, which is highly unlikely to happen. */
9610 if (dwo_unit != NULL)
9611 {
9612 complaint (&symfile_complaints,
9613 _("Multiple CUs in DWO file %s [in module %s]"),
9614 dwo_file->dwo_name, objfile_name (objfile));
9615 break;
9616 }
9617
9618 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9619 *dwo_unit = create_dwo_cu_data.dwo_unit;
9620 }
9621
9622 info_ptr += per_cu.length;
9623 }
9624
9625 return dwo_unit;
9626 }
9627
9628 /* DWP file .debug_{cu,tu}_index section format:
9629 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9630
9631 DWP Version 1:
9632
9633 Both index sections have the same format, and serve to map a 64-bit
9634 signature to a set of section numbers. Each section begins with a header,
9635 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9636 indexes, and a pool of 32-bit section numbers. The index sections will be
9637 aligned at 8-byte boundaries in the file.
9638
9639 The index section header consists of:
9640
9641 V, 32 bit version number
9642 -, 32 bits unused
9643 N, 32 bit number of compilation units or type units in the index
9644 M, 32 bit number of slots in the hash table
9645
9646 Numbers are recorded using the byte order of the application binary.
9647
9648 The hash table begins at offset 16 in the section, and consists of an array
9649 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9650 order of the application binary). Unused slots in the hash table are 0.
9651 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9652
9653 The parallel table begins immediately after the hash table
9654 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9655 array of 32-bit indexes (using the byte order of the application binary),
9656 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9657 table contains a 32-bit index into the pool of section numbers. For unused
9658 hash table slots, the corresponding entry in the parallel table will be 0.
9659
9660 The pool of section numbers begins immediately following the hash table
9661 (at offset 16 + 12 * M from the beginning of the section). The pool of
9662 section numbers consists of an array of 32-bit words (using the byte order
9663 of the application binary). Each item in the array is indexed starting
9664 from 0. The hash table entry provides the index of the first section
9665 number in the set. Additional section numbers in the set follow, and the
9666 set is terminated by a 0 entry (section number 0 is not used in ELF).
9667
9668 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9669 section must be the first entry in the set, and the .debug_abbrev.dwo must
9670 be the second entry. Other members of the set may follow in any order.
9671
9672 ---
9673
9674 DWP Version 2:
9675
9676 DWP Version 2 combines all the .debug_info, etc. sections into one,
9677 and the entries in the index tables are now offsets into these sections.
9678 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9679 section.
9680
9681 Index Section Contents:
9682 Header
9683 Hash Table of Signatures dwp_hash_table.hash_table
9684 Parallel Table of Indices dwp_hash_table.unit_table
9685 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9686 Table of Section Sizes dwp_hash_table.v2.sizes
9687
9688 The index section header consists of:
9689
9690 V, 32 bit version number
9691 L, 32 bit number of columns in the table of section offsets
9692 N, 32 bit number of compilation units or type units in the index
9693 M, 32 bit number of slots in the hash table
9694
9695 Numbers are recorded using the byte order of the application binary.
9696
9697 The hash table has the same format as version 1.
9698 The parallel table of indices has the same format as version 1,
9699 except that the entries are origin-1 indices into the table of sections
9700 offsets and the table of section sizes.
9701
9702 The table of offsets begins immediately following the parallel table
9703 (at offset 16 + 12 * M from the beginning of the section). The table is
9704 a two-dimensional array of 32-bit words (using the byte order of the
9705 application binary), with L columns and N+1 rows, in row-major order.
9706 Each row in the array is indexed starting from 0. The first row provides
9707 a key to the remaining rows: each column in this row provides an identifier
9708 for a debug section, and the offsets in the same column of subsequent rows
9709 refer to that section. The section identifiers are:
9710
9711 DW_SECT_INFO 1 .debug_info.dwo
9712 DW_SECT_TYPES 2 .debug_types.dwo
9713 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9714 DW_SECT_LINE 4 .debug_line.dwo
9715 DW_SECT_LOC 5 .debug_loc.dwo
9716 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9717 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9718 DW_SECT_MACRO 8 .debug_macro.dwo
9719
9720 The offsets provided by the CU and TU index sections are the base offsets
9721 for the contributions made by each CU or TU to the corresponding section
9722 in the package file. Each CU and TU header contains an abbrev_offset
9723 field, used to find the abbreviations table for that CU or TU within the
9724 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9725 be interpreted as relative to the base offset given in the index section.
9726 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9727 should be interpreted as relative to the base offset for .debug_line.dwo,
9728 and offsets into other debug sections obtained from DWARF attributes should
9729 also be interpreted as relative to the corresponding base offset.
9730
9731 The table of sizes begins immediately following the table of offsets.
9732 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9733 with L columns and N rows, in row-major order. Each row in the array is
9734 indexed starting from 1 (row 0 is shared by the two tables).
9735
9736 ---
9737
9738 Hash table lookup is handled the same in version 1 and 2:
9739
9740 We assume that N and M will not exceed 2^32 - 1.
9741 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9742
9743 Given a 64-bit compilation unit signature or a type signature S, an entry
9744 in the hash table is located as follows:
9745
9746 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9747 the low-order k bits all set to 1.
9748
9749 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9750
9751 3) If the hash table entry at index H matches the signature, use that
9752 entry. If the hash table entry at index H is unused (all zeroes),
9753 terminate the search: the signature is not present in the table.
9754
9755 4) Let H = (H + H') modulo M. Repeat at Step 3.
9756
9757 Because M > N and H' and M are relatively prime, the search is guaranteed
9758 to stop at an unused slot or find the match. */
9759
9760 /* Create a hash table to map DWO IDs to their CU/TU entry in
9761 .debug_{info,types}.dwo in DWP_FILE.
9762 Returns NULL if there isn't one.
9763 Note: This function processes DWP files only, not DWO files. */
9764
9765 static struct dwp_hash_table *
9766 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9767 {
9768 struct objfile *objfile = dwarf2_per_objfile->objfile;
9769 bfd *dbfd = dwp_file->dbfd;
9770 const gdb_byte *index_ptr, *index_end;
9771 struct dwarf2_section_info *index;
9772 uint32_t version, nr_columns, nr_units, nr_slots;
9773 struct dwp_hash_table *htab;
9774
9775 if (is_debug_types)
9776 index = &dwp_file->sections.tu_index;
9777 else
9778 index = &dwp_file->sections.cu_index;
9779
9780 if (dwarf2_section_empty_p (index))
9781 return NULL;
9782 dwarf2_read_section (objfile, index);
9783
9784 index_ptr = index->buffer;
9785 index_end = index_ptr + index->size;
9786
9787 version = read_4_bytes (dbfd, index_ptr);
9788 index_ptr += 4;
9789 if (version == 2)
9790 nr_columns = read_4_bytes (dbfd, index_ptr);
9791 else
9792 nr_columns = 0;
9793 index_ptr += 4;
9794 nr_units = read_4_bytes (dbfd, index_ptr);
9795 index_ptr += 4;
9796 nr_slots = read_4_bytes (dbfd, index_ptr);
9797 index_ptr += 4;
9798
9799 if (version != 1 && version != 2)
9800 {
9801 error (_("Dwarf Error: unsupported DWP file version (%s)"
9802 " [in module %s]"),
9803 pulongest (version), dwp_file->name);
9804 }
9805 if (nr_slots != (nr_slots & -nr_slots))
9806 {
9807 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9808 " is not power of 2 [in module %s]"),
9809 pulongest (nr_slots), dwp_file->name);
9810 }
9811
9812 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9813 htab->version = version;
9814 htab->nr_columns = nr_columns;
9815 htab->nr_units = nr_units;
9816 htab->nr_slots = nr_slots;
9817 htab->hash_table = index_ptr;
9818 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9819
9820 /* Exit early if the table is empty. */
9821 if (nr_slots == 0 || nr_units == 0
9822 || (version == 2 && nr_columns == 0))
9823 {
9824 /* All must be zero. */
9825 if (nr_slots != 0 || nr_units != 0
9826 || (version == 2 && nr_columns != 0))
9827 {
9828 complaint (&symfile_complaints,
9829 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9830 " all zero [in modules %s]"),
9831 dwp_file->name);
9832 }
9833 return htab;
9834 }
9835
9836 if (version == 1)
9837 {
9838 htab->section_pool.v1.indices =
9839 htab->unit_table + sizeof (uint32_t) * nr_slots;
9840 /* It's harder to decide whether the section is too small in v1.
9841 V1 is deprecated anyway so we punt. */
9842 }
9843 else
9844 {
9845 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9846 int *ids = htab->section_pool.v2.section_ids;
9847 /* Reverse map for error checking. */
9848 int ids_seen[DW_SECT_MAX + 1];
9849 int i;
9850
9851 if (nr_columns < 2)
9852 {
9853 error (_("Dwarf Error: bad DWP hash table, too few columns"
9854 " in section table [in module %s]"),
9855 dwp_file->name);
9856 }
9857 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9858 {
9859 error (_("Dwarf Error: bad DWP hash table, too many columns"
9860 " in section table [in module %s]"),
9861 dwp_file->name);
9862 }
9863 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9864 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9865 for (i = 0; i < nr_columns; ++i)
9866 {
9867 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9868
9869 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9870 {
9871 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9872 " in section table [in module %s]"),
9873 id, dwp_file->name);
9874 }
9875 if (ids_seen[id] != -1)
9876 {
9877 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9878 " id %d in section table [in module %s]"),
9879 id, dwp_file->name);
9880 }
9881 ids_seen[id] = i;
9882 ids[i] = id;
9883 }
9884 /* Must have exactly one info or types section. */
9885 if (((ids_seen[DW_SECT_INFO] != -1)
9886 + (ids_seen[DW_SECT_TYPES] != -1))
9887 != 1)
9888 {
9889 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9890 " DWO info/types section [in module %s]"),
9891 dwp_file->name);
9892 }
9893 /* Must have an abbrev section. */
9894 if (ids_seen[DW_SECT_ABBREV] == -1)
9895 {
9896 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9897 " section [in module %s]"),
9898 dwp_file->name);
9899 }
9900 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9901 htab->section_pool.v2.sizes =
9902 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9903 * nr_units * nr_columns);
9904 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9905 * nr_units * nr_columns))
9906 > index_end)
9907 {
9908 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912 }
9913
9914 return htab;
9915 }
9916
9917 /* Update SECTIONS with the data from SECTP.
9918
9919 This function is like the other "locate" section routines that are
9920 passed to bfd_map_over_sections, but in this context the sections to
9921 read comes from the DWP V1 hash table, not the full ELF section table.
9922
9923 The result is non-zero for success, or zero if an error was found. */
9924
9925 static int
9926 locate_v1_virtual_dwo_sections (asection *sectp,
9927 struct virtual_v1_dwo_sections *sections)
9928 {
9929 const struct dwop_section_names *names = &dwop_section_names;
9930
9931 if (section_is_p (sectp->name, &names->abbrev_dwo))
9932 {
9933 /* There can be only one. */
9934 if (sections->abbrev.s.section != NULL)
9935 return 0;
9936 sections->abbrev.s.section = sectp;
9937 sections->abbrev.size = bfd_get_section_size (sectp);
9938 }
9939 else if (section_is_p (sectp->name, &names->info_dwo)
9940 || section_is_p (sectp->name, &names->types_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->info_or_types.s.section != NULL)
9944 return 0;
9945 sections->info_or_types.s.section = sectp;
9946 sections->info_or_types.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->line_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->line.s.section != NULL)
9952 return 0;
9953 sections->line.s.section = sectp;
9954 sections->line.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->loc_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->loc.s.section != NULL)
9960 return 0;
9961 sections->loc.s.section = sectp;
9962 sections->loc.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->macinfo.s.section != NULL)
9968 return 0;
9969 sections->macinfo.s.section = sectp;
9970 sections->macinfo.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->macro_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->macro.s.section != NULL)
9976 return 0;
9977 sections->macro.s.section = sectp;
9978 sections->macro.size = bfd_get_section_size (sectp);
9979 }
9980 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9981 {
9982 /* There can be only one. */
9983 if (sections->str_offsets.s.section != NULL)
9984 return 0;
9985 sections->str_offsets.s.section = sectp;
9986 sections->str_offsets.size = bfd_get_section_size (sectp);
9987 }
9988 else
9989 {
9990 /* No other kind of section is valid. */
9991 return 0;
9992 }
9993
9994 return 1;
9995 }
9996
9997 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9998 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9999 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10000 This is for DWP version 1 files. */
10001
10002 static struct dwo_unit *
10003 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10004 uint32_t unit_index,
10005 const char *comp_dir,
10006 ULONGEST signature, int is_debug_types)
10007 {
10008 struct objfile *objfile = dwarf2_per_objfile->objfile;
10009 const struct dwp_hash_table *dwp_htab =
10010 is_debug_types ? dwp_file->tus : dwp_file->cus;
10011 bfd *dbfd = dwp_file->dbfd;
10012 const char *kind = is_debug_types ? "TU" : "CU";
10013 struct dwo_file *dwo_file;
10014 struct dwo_unit *dwo_unit;
10015 struct virtual_v1_dwo_sections sections;
10016 void **dwo_file_slot;
10017 char *virtual_dwo_name;
10018 struct cleanup *cleanups;
10019 int i;
10020
10021 gdb_assert (dwp_file->version == 1);
10022
10023 if (dwarf_read_debug)
10024 {
10025 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10026 kind,
10027 pulongest (unit_index), hex_string (signature),
10028 dwp_file->name);
10029 }
10030
10031 /* Fetch the sections of this DWO unit.
10032 Put a limit on the number of sections we look for so that bad data
10033 doesn't cause us to loop forever. */
10034
10035 #define MAX_NR_V1_DWO_SECTIONS \
10036 (1 /* .debug_info or .debug_types */ \
10037 + 1 /* .debug_abbrev */ \
10038 + 1 /* .debug_line */ \
10039 + 1 /* .debug_loc */ \
10040 + 1 /* .debug_str_offsets */ \
10041 + 1 /* .debug_macro or .debug_macinfo */ \
10042 + 1 /* trailing zero */)
10043
10044 memset (&sections, 0, sizeof (sections));
10045 cleanups = make_cleanup (null_cleanup, 0);
10046
10047 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10048 {
10049 asection *sectp;
10050 uint32_t section_nr =
10051 read_4_bytes (dbfd,
10052 dwp_htab->section_pool.v1.indices
10053 + (unit_index + i) * sizeof (uint32_t));
10054
10055 if (section_nr == 0)
10056 break;
10057 if (section_nr >= dwp_file->num_sections)
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, section number too large"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063
10064 sectp = dwp_file->elf_sections[section_nr];
10065 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071 }
10072
10073 if (i < 2
10074 || dwarf2_section_empty_p (&sections.info_or_types)
10075 || dwarf2_section_empty_p (&sections.abbrev))
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081 if (i == MAX_NR_V1_DWO_SECTIONS)
10082 {
10083 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10084 " [in module %s]"),
10085 dwp_file->name);
10086 }
10087
10088 /* It's easier for the rest of the code if we fake a struct dwo_file and
10089 have dwo_unit "live" in that. At least for now.
10090
10091 The DWP file can be made up of a random collection of CUs and TUs.
10092 However, for each CU + set of TUs that came from the same original DWO
10093 file, we can combine them back into a virtual DWO file to save space
10094 (fewer struct dwo_file objects to allocate). Remember that for really
10095 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10096
10097 virtual_dwo_name =
10098 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10099 get_section_id (&sections.abbrev),
10100 get_section_id (&sections.line),
10101 get_section_id (&sections.loc),
10102 get_section_id (&sections.str_offsets));
10103 make_cleanup (xfree, virtual_dwo_name);
10104 /* Can we use an existing virtual DWO file? */
10105 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10106 /* Create one if necessary. */
10107 if (*dwo_file_slot == NULL)
10108 {
10109 if (dwarf_read_debug)
10110 {
10111 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10112 virtual_dwo_name);
10113 }
10114 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10115 dwo_file->dwo_name
10116 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10117 virtual_dwo_name,
10118 strlen (virtual_dwo_name));
10119 dwo_file->comp_dir = comp_dir;
10120 dwo_file->sections.abbrev = sections.abbrev;
10121 dwo_file->sections.line = sections.line;
10122 dwo_file->sections.loc = sections.loc;
10123 dwo_file->sections.macinfo = sections.macinfo;
10124 dwo_file->sections.macro = sections.macro;
10125 dwo_file->sections.str_offsets = sections.str_offsets;
10126 /* The "str" section is global to the entire DWP file. */
10127 dwo_file->sections.str = dwp_file->sections.str;
10128 /* The info or types section is assigned below to dwo_unit,
10129 there's no need to record it in dwo_file.
10130 Also, we can't simply record type sections in dwo_file because
10131 we record a pointer into the vector in dwo_unit. As we collect more
10132 types we'll grow the vector and eventually have to reallocate space
10133 for it, invalidating all copies of pointers into the previous
10134 contents. */
10135 *dwo_file_slot = dwo_file;
10136 }
10137 else
10138 {
10139 if (dwarf_read_debug)
10140 {
10141 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10142 virtual_dwo_name);
10143 }
10144 dwo_file = (struct dwo_file *) *dwo_file_slot;
10145 }
10146 do_cleanups (cleanups);
10147
10148 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10149 dwo_unit->dwo_file = dwo_file;
10150 dwo_unit->signature = signature;
10151 dwo_unit->section =
10152 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10153 *dwo_unit->section = sections.info_or_types;
10154 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10155
10156 return dwo_unit;
10157 }
10158
10159 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10160 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10161 piece within that section used by a TU/CU, return a virtual section
10162 of just that piece. */
10163
10164 static struct dwarf2_section_info
10165 create_dwp_v2_section (struct dwarf2_section_info *section,
10166 bfd_size_type offset, bfd_size_type size)
10167 {
10168 struct dwarf2_section_info result;
10169 asection *sectp;
10170
10171 gdb_assert (section != NULL);
10172 gdb_assert (!section->is_virtual);
10173
10174 memset (&result, 0, sizeof (result));
10175 result.s.containing_section = section;
10176 result.is_virtual = 1;
10177
10178 if (size == 0)
10179 return result;
10180
10181 sectp = get_section_bfd_section (section);
10182
10183 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10184 bounds of the real section. This is a pretty-rare event, so just
10185 flag an error (easier) instead of a warning and trying to cope. */
10186 if (sectp == NULL
10187 || offset + size > bfd_get_section_size (sectp))
10188 {
10189 bfd *abfd = sectp->owner;
10190
10191 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10192 " in section %s [in module %s]"),
10193 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10194 objfile_name (dwarf2_per_objfile->objfile));
10195 }
10196
10197 result.virtual_offset = offset;
10198 result.size = size;
10199 return result;
10200 }
10201
10202 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10203 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10204 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10205 This is for DWP version 2 files. */
10206
10207 static struct dwo_unit *
10208 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10209 uint32_t unit_index,
10210 const char *comp_dir,
10211 ULONGEST signature, int is_debug_types)
10212 {
10213 struct objfile *objfile = dwarf2_per_objfile->objfile;
10214 const struct dwp_hash_table *dwp_htab =
10215 is_debug_types ? dwp_file->tus : dwp_file->cus;
10216 bfd *dbfd = dwp_file->dbfd;
10217 const char *kind = is_debug_types ? "TU" : "CU";
10218 struct dwo_file *dwo_file;
10219 struct dwo_unit *dwo_unit;
10220 struct virtual_v2_dwo_sections sections;
10221 void **dwo_file_slot;
10222 char *virtual_dwo_name;
10223 struct cleanup *cleanups;
10224 int i;
10225
10226 gdb_assert (dwp_file->version == 2);
10227
10228 if (dwarf_read_debug)
10229 {
10230 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10231 kind,
10232 pulongest (unit_index), hex_string (signature),
10233 dwp_file->name);
10234 }
10235
10236 /* Fetch the section offsets of this DWO unit. */
10237
10238 memset (&sections, 0, sizeof (sections));
10239 cleanups = make_cleanup (null_cleanup, 0);
10240
10241 for (i = 0; i < dwp_htab->nr_columns; ++i)
10242 {
10243 uint32_t offset = read_4_bytes (dbfd,
10244 dwp_htab->section_pool.v2.offsets
10245 + (((unit_index - 1) * dwp_htab->nr_columns
10246 + i)
10247 * sizeof (uint32_t)));
10248 uint32_t size = read_4_bytes (dbfd,
10249 dwp_htab->section_pool.v2.sizes
10250 + (((unit_index - 1) * dwp_htab->nr_columns
10251 + i)
10252 * sizeof (uint32_t)));
10253
10254 switch (dwp_htab->section_pool.v2.section_ids[i])
10255 {
10256 case DW_SECT_INFO:
10257 case DW_SECT_TYPES:
10258 sections.info_or_types_offset = offset;
10259 sections.info_or_types_size = size;
10260 break;
10261 case DW_SECT_ABBREV:
10262 sections.abbrev_offset = offset;
10263 sections.abbrev_size = size;
10264 break;
10265 case DW_SECT_LINE:
10266 sections.line_offset = offset;
10267 sections.line_size = size;
10268 break;
10269 case DW_SECT_LOC:
10270 sections.loc_offset = offset;
10271 sections.loc_size = size;
10272 break;
10273 case DW_SECT_STR_OFFSETS:
10274 sections.str_offsets_offset = offset;
10275 sections.str_offsets_size = size;
10276 break;
10277 case DW_SECT_MACINFO:
10278 sections.macinfo_offset = offset;
10279 sections.macinfo_size = size;
10280 break;
10281 case DW_SECT_MACRO:
10282 sections.macro_offset = offset;
10283 sections.macro_size = size;
10284 break;
10285 }
10286 }
10287
10288 /* It's easier for the rest of the code if we fake a struct dwo_file and
10289 have dwo_unit "live" in that. At least for now.
10290
10291 The DWP file can be made up of a random collection of CUs and TUs.
10292 However, for each CU + set of TUs that came from the same original DWO
10293 file, we can combine them back into a virtual DWO file to save space
10294 (fewer struct dwo_file objects to allocate). Remember that for really
10295 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10296
10297 virtual_dwo_name =
10298 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10299 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10300 (long) (sections.line_size ? sections.line_offset : 0),
10301 (long) (sections.loc_size ? sections.loc_offset : 0),
10302 (long) (sections.str_offsets_size
10303 ? sections.str_offsets_offset : 0));
10304 make_cleanup (xfree, virtual_dwo_name);
10305 /* Can we use an existing virtual DWO file? */
10306 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10307 /* Create one if necessary. */
10308 if (*dwo_file_slot == NULL)
10309 {
10310 if (dwarf_read_debug)
10311 {
10312 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10313 virtual_dwo_name);
10314 }
10315 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10316 dwo_file->dwo_name
10317 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10318 virtual_dwo_name,
10319 strlen (virtual_dwo_name));
10320 dwo_file->comp_dir = comp_dir;
10321 dwo_file->sections.abbrev =
10322 create_dwp_v2_section (&dwp_file->sections.abbrev,
10323 sections.abbrev_offset, sections.abbrev_size);
10324 dwo_file->sections.line =
10325 create_dwp_v2_section (&dwp_file->sections.line,
10326 sections.line_offset, sections.line_size);
10327 dwo_file->sections.loc =
10328 create_dwp_v2_section (&dwp_file->sections.loc,
10329 sections.loc_offset, sections.loc_size);
10330 dwo_file->sections.macinfo =
10331 create_dwp_v2_section (&dwp_file->sections.macinfo,
10332 sections.macinfo_offset, sections.macinfo_size);
10333 dwo_file->sections.macro =
10334 create_dwp_v2_section (&dwp_file->sections.macro,
10335 sections.macro_offset, sections.macro_size);
10336 dwo_file->sections.str_offsets =
10337 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10338 sections.str_offsets_offset,
10339 sections.str_offsets_size);
10340 /* The "str" section is global to the entire DWP file. */
10341 dwo_file->sections.str = dwp_file->sections.str;
10342 /* The info or types section is assigned below to dwo_unit,
10343 there's no need to record it in dwo_file.
10344 Also, we can't simply record type sections in dwo_file because
10345 we record a pointer into the vector in dwo_unit. As we collect more
10346 types we'll grow the vector and eventually have to reallocate space
10347 for it, invalidating all copies of pointers into the previous
10348 contents. */
10349 *dwo_file_slot = dwo_file;
10350 }
10351 else
10352 {
10353 if (dwarf_read_debug)
10354 {
10355 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10356 virtual_dwo_name);
10357 }
10358 dwo_file = (struct dwo_file *) *dwo_file_slot;
10359 }
10360 do_cleanups (cleanups);
10361
10362 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10363 dwo_unit->dwo_file = dwo_file;
10364 dwo_unit->signature = signature;
10365 dwo_unit->section =
10366 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
10367 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10368 ? &dwp_file->sections.types
10369 : &dwp_file->sections.info,
10370 sections.info_or_types_offset,
10371 sections.info_or_types_size);
10372 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10373
10374 return dwo_unit;
10375 }
10376
10377 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10378 Returns NULL if the signature isn't found. */
10379
10380 static struct dwo_unit *
10381 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10382 ULONGEST signature, int is_debug_types)
10383 {
10384 const struct dwp_hash_table *dwp_htab =
10385 is_debug_types ? dwp_file->tus : dwp_file->cus;
10386 bfd *dbfd = dwp_file->dbfd;
10387 uint32_t mask = dwp_htab->nr_slots - 1;
10388 uint32_t hash = signature & mask;
10389 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10390 unsigned int i;
10391 void **slot;
10392 struct dwo_unit find_dwo_cu;
10393
10394 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10395 find_dwo_cu.signature = signature;
10396 slot = htab_find_slot (is_debug_types
10397 ? dwp_file->loaded_tus
10398 : dwp_file->loaded_cus,
10399 &find_dwo_cu, INSERT);
10400
10401 if (*slot != NULL)
10402 return (struct dwo_unit *) *slot;
10403
10404 /* Use a for loop so that we don't loop forever on bad debug info. */
10405 for (i = 0; i < dwp_htab->nr_slots; ++i)
10406 {
10407 ULONGEST signature_in_table;
10408
10409 signature_in_table =
10410 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10411 if (signature_in_table == signature)
10412 {
10413 uint32_t unit_index =
10414 read_4_bytes (dbfd,
10415 dwp_htab->unit_table + hash * sizeof (uint32_t));
10416
10417 if (dwp_file->version == 1)
10418 {
10419 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10420 comp_dir, signature,
10421 is_debug_types);
10422 }
10423 else
10424 {
10425 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10426 comp_dir, signature,
10427 is_debug_types);
10428 }
10429 return (struct dwo_unit *) *slot;
10430 }
10431 if (signature_in_table == 0)
10432 return NULL;
10433 hash = (hash + hash2) & mask;
10434 }
10435
10436 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10437 " [in module %s]"),
10438 dwp_file->name);
10439 }
10440
10441 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10442 Open the file specified by FILE_NAME and hand it off to BFD for
10443 preliminary analysis. Return a newly initialized bfd *, which
10444 includes a canonicalized copy of FILE_NAME.
10445 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10446 SEARCH_CWD is true if the current directory is to be searched.
10447 It will be searched before debug-file-directory.
10448 If successful, the file is added to the bfd include table of the
10449 objfile's bfd (see gdb_bfd_record_inclusion).
10450 If unable to find/open the file, return NULL.
10451 NOTE: This function is derived from symfile_bfd_open. */
10452
10453 static gdb_bfd_ref_ptr
10454 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10455 {
10456 int desc, flags;
10457 char *absolute_name;
10458 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10459 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10460 to debug_file_directory. */
10461 char *search_path;
10462 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10463
10464 if (search_cwd)
10465 {
10466 if (*debug_file_directory != '\0')
10467 search_path = concat (".", dirname_separator_string,
10468 debug_file_directory, (char *) NULL);
10469 else
10470 search_path = xstrdup (".");
10471 }
10472 else
10473 search_path = xstrdup (debug_file_directory);
10474
10475 flags = OPF_RETURN_REALPATH;
10476 if (is_dwp)
10477 flags |= OPF_SEARCH_IN_PATH;
10478 desc = openp (search_path, flags, file_name,
10479 O_RDONLY | O_BINARY, &absolute_name);
10480 xfree (search_path);
10481 if (desc < 0)
10482 return NULL;
10483
10484 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
10485 xfree (absolute_name);
10486 if (sym_bfd == NULL)
10487 return NULL;
10488 bfd_set_cacheable (sym_bfd.get (), 1);
10489
10490 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10491 return NULL;
10492
10493 /* Success. Record the bfd as having been included by the objfile's bfd.
10494 This is important because things like demangled_names_hash lives in the
10495 objfile's per_bfd space and may have references to things like symbol
10496 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10497 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
10498
10499 return sym_bfd;
10500 }
10501
10502 /* Try to open DWO file FILE_NAME.
10503 COMP_DIR is the DW_AT_comp_dir attribute.
10504 The result is the bfd handle of the file.
10505 If there is a problem finding or opening the file, return NULL.
10506 Upon success, the canonicalized path of the file is stored in the bfd,
10507 same as symfile_bfd_open. */
10508
10509 static gdb_bfd_ref_ptr
10510 open_dwo_file (const char *file_name, const char *comp_dir)
10511 {
10512 if (IS_ABSOLUTE_PATH (file_name))
10513 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10514
10515 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10516
10517 if (comp_dir != NULL)
10518 {
10519 char *path_to_try = concat (comp_dir, SLASH_STRING,
10520 file_name, (char *) NULL);
10521
10522 /* NOTE: If comp_dir is a relative path, this will also try the
10523 search path, which seems useful. */
10524 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10525 1 /*search_cwd*/));
10526 xfree (path_to_try);
10527 if (abfd != NULL)
10528 return abfd;
10529 }
10530
10531 /* That didn't work, try debug-file-directory, which, despite its name,
10532 is a list of paths. */
10533
10534 if (*debug_file_directory == '\0')
10535 return NULL;
10536
10537 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10538 }
10539
10540 /* This function is mapped across the sections and remembers the offset and
10541 size of each of the DWO debugging sections we are interested in. */
10542
10543 static void
10544 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10545 {
10546 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
10547 const struct dwop_section_names *names = &dwop_section_names;
10548
10549 if (section_is_p (sectp->name, &names->abbrev_dwo))
10550 {
10551 dwo_sections->abbrev.s.section = sectp;
10552 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->info_dwo))
10555 {
10556 dwo_sections->info.s.section = sectp;
10557 dwo_sections->info.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->line_dwo))
10560 {
10561 dwo_sections->line.s.section = sectp;
10562 dwo_sections->line.size = bfd_get_section_size (sectp);
10563 }
10564 else if (section_is_p (sectp->name, &names->loc_dwo))
10565 {
10566 dwo_sections->loc.s.section = sectp;
10567 dwo_sections->loc.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10570 {
10571 dwo_sections->macinfo.s.section = sectp;
10572 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->macro_dwo))
10575 {
10576 dwo_sections->macro.s.section = sectp;
10577 dwo_sections->macro.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->str_dwo))
10580 {
10581 dwo_sections->str.s.section = sectp;
10582 dwo_sections->str.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10585 {
10586 dwo_sections->str_offsets.s.section = sectp;
10587 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->types_dwo))
10590 {
10591 struct dwarf2_section_info type_section;
10592
10593 memset (&type_section, 0, sizeof (type_section));
10594 type_section.s.section = sectp;
10595 type_section.size = bfd_get_section_size (sectp);
10596 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10597 &type_section);
10598 }
10599 }
10600
10601 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10602 by PER_CU. This is for the non-DWP case.
10603 The result is NULL if DWO_NAME can't be found. */
10604
10605 static struct dwo_file *
10606 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10607 const char *dwo_name, const char *comp_dir)
10608 {
10609 struct objfile *objfile = dwarf2_per_objfile->objfile;
10610 struct dwo_file *dwo_file;
10611 struct cleanup *cleanups;
10612
10613 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
10614 if (dbfd == NULL)
10615 {
10616 if (dwarf_read_debug)
10617 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10618 return NULL;
10619 }
10620 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10621 dwo_file->dwo_name = dwo_name;
10622 dwo_file->comp_dir = comp_dir;
10623 dwo_file->dbfd = dbfd.release ();
10624
10625 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10626
10627 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10628 &dwo_file->sections);
10629
10630 dwo_file->cu = create_dwo_cu (dwo_file);
10631
10632 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10633 dwo_file->sections.types);
10634
10635 discard_cleanups (cleanups);
10636
10637 if (dwarf_read_debug)
10638 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10639
10640 return dwo_file;
10641 }
10642
10643 /* This function is mapped across the sections and remembers the offset and
10644 size of each of the DWP debugging sections common to version 1 and 2 that
10645 we are interested in. */
10646
10647 static void
10648 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10649 void *dwp_file_ptr)
10650 {
10651 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10652 const struct dwop_section_names *names = &dwop_section_names;
10653 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10654
10655 /* Record the ELF section number for later lookup: this is what the
10656 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10657 gdb_assert (elf_section_nr < dwp_file->num_sections);
10658 dwp_file->elf_sections[elf_section_nr] = sectp;
10659
10660 /* Look for specific sections that we need. */
10661 if (section_is_p (sectp->name, &names->str_dwo))
10662 {
10663 dwp_file->sections.str.s.section = sectp;
10664 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10665 }
10666 else if (section_is_p (sectp->name, &names->cu_index))
10667 {
10668 dwp_file->sections.cu_index.s.section = sectp;
10669 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10670 }
10671 else if (section_is_p (sectp->name, &names->tu_index))
10672 {
10673 dwp_file->sections.tu_index.s.section = sectp;
10674 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10675 }
10676 }
10677
10678 /* This function is mapped across the sections and remembers the offset and
10679 size of each of the DWP version 2 debugging sections that we are interested
10680 in. This is split into a separate function because we don't know if we
10681 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10682
10683 static void
10684 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10685 {
10686 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
10687 const struct dwop_section_names *names = &dwop_section_names;
10688 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10689
10690 /* Record the ELF section number for later lookup: this is what the
10691 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10692 gdb_assert (elf_section_nr < dwp_file->num_sections);
10693 dwp_file->elf_sections[elf_section_nr] = sectp;
10694
10695 /* Look for specific sections that we need. */
10696 if (section_is_p (sectp->name, &names->abbrev_dwo))
10697 {
10698 dwp_file->sections.abbrev.s.section = sectp;
10699 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10700 }
10701 else if (section_is_p (sectp->name, &names->info_dwo))
10702 {
10703 dwp_file->sections.info.s.section = sectp;
10704 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10705 }
10706 else if (section_is_p (sectp->name, &names->line_dwo))
10707 {
10708 dwp_file->sections.line.s.section = sectp;
10709 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10710 }
10711 else if (section_is_p (sectp->name, &names->loc_dwo))
10712 {
10713 dwp_file->sections.loc.s.section = sectp;
10714 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10715 }
10716 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10717 {
10718 dwp_file->sections.macinfo.s.section = sectp;
10719 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->macro_dwo))
10722 {
10723 dwp_file->sections.macro.s.section = sectp;
10724 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10727 {
10728 dwp_file->sections.str_offsets.s.section = sectp;
10729 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->types_dwo))
10732 {
10733 dwp_file->sections.types.s.section = sectp;
10734 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10735 }
10736 }
10737
10738 /* Hash function for dwp_file loaded CUs/TUs. */
10739
10740 static hashval_t
10741 hash_dwp_loaded_cutus (const void *item)
10742 {
10743 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10744
10745 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10746 return dwo_unit->signature;
10747 }
10748
10749 /* Equality function for dwp_file loaded CUs/TUs. */
10750
10751 static int
10752 eq_dwp_loaded_cutus (const void *a, const void *b)
10753 {
10754 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10755 const struct dwo_unit *dub = (const struct dwo_unit *) b;
10756
10757 return dua->signature == dub->signature;
10758 }
10759
10760 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10761
10762 static htab_t
10763 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10764 {
10765 return htab_create_alloc_ex (3,
10766 hash_dwp_loaded_cutus,
10767 eq_dwp_loaded_cutus,
10768 NULL,
10769 &objfile->objfile_obstack,
10770 hashtab_obstack_allocate,
10771 dummy_obstack_deallocate);
10772 }
10773
10774 /* Try to open DWP file FILE_NAME.
10775 The result is the bfd handle of the file.
10776 If there is a problem finding or opening the file, return NULL.
10777 Upon success, the canonicalized path of the file is stored in the bfd,
10778 same as symfile_bfd_open. */
10779
10780 static gdb_bfd_ref_ptr
10781 open_dwp_file (const char *file_name)
10782 {
10783 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
10784 1 /*search_cwd*/));
10785 if (abfd != NULL)
10786 return abfd;
10787
10788 /* Work around upstream bug 15652.
10789 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10790 [Whether that's a "bug" is debatable, but it is getting in our way.]
10791 We have no real idea where the dwp file is, because gdb's realpath-ing
10792 of the executable's path may have discarded the needed info.
10793 [IWBN if the dwp file name was recorded in the executable, akin to
10794 .gnu_debuglink, but that doesn't exist yet.]
10795 Strip the directory from FILE_NAME and search again. */
10796 if (*debug_file_directory != '\0')
10797 {
10798 /* Don't implicitly search the current directory here.
10799 If the user wants to search "." to handle this case,
10800 it must be added to debug-file-directory. */
10801 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10802 0 /*search_cwd*/);
10803 }
10804
10805 return NULL;
10806 }
10807
10808 /* Initialize the use of the DWP file for the current objfile.
10809 By convention the name of the DWP file is ${objfile}.dwp.
10810 The result is NULL if it can't be found. */
10811
10812 static struct dwp_file *
10813 open_and_init_dwp_file (void)
10814 {
10815 struct objfile *objfile = dwarf2_per_objfile->objfile;
10816 struct dwp_file *dwp_file;
10817 char *dwp_name;
10818 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
10819
10820 /* Try to find first .dwp for the binary file before any symbolic links
10821 resolving. */
10822
10823 /* If the objfile is a debug file, find the name of the real binary
10824 file and get the name of dwp file from there. */
10825 if (objfile->separate_debug_objfile_backlink != NULL)
10826 {
10827 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10828 const char *backlink_basename = lbasename (backlink->original_name);
10829 char *debug_dirname = ldirname (objfile->original_name);
10830
10831 make_cleanup (xfree, debug_dirname);
10832 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10833 SLASH_STRING, backlink_basename);
10834 }
10835 else
10836 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10837 make_cleanup (xfree, dwp_name);
10838
10839 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name));
10840 if (dbfd == NULL
10841 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10842 {
10843 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10845 make_cleanup (xfree, dwp_name);
10846 dbfd = open_dwp_file (dwp_name);
10847 }
10848
10849 if (dbfd == NULL)
10850 {
10851 if (dwarf_read_debug)
10852 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10853 do_cleanups (cleanups);
10854 return NULL;
10855 }
10856 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10857 dwp_file->name = bfd_get_filename (dbfd.get ());
10858 dwp_file->dbfd = dbfd.release ();
10859 do_cleanups (cleanups);
10860
10861 /* +1: section 0 is unused */
10862 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
10863 dwp_file->elf_sections =
10864 OBSTACK_CALLOC (&objfile->objfile_obstack,
10865 dwp_file->num_sections, asection *);
10866
10867 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
10868 dwp_file);
10869
10870 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10871
10872 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10873
10874 /* The DWP file version is stored in the hash table. Oh well. */
10875 if (dwp_file->cus->version != dwp_file->tus->version)
10876 {
10877 /* Technically speaking, we should try to limp along, but this is
10878 pretty bizarre. We use pulongest here because that's the established
10879 portability solution (e.g, we cannot use %u for uint32_t). */
10880 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10881 " TU version %s [in DWP file %s]"),
10882 pulongest (dwp_file->cus->version),
10883 pulongest (dwp_file->tus->version), dwp_name);
10884 }
10885 dwp_file->version = dwp_file->cus->version;
10886
10887 if (dwp_file->version == 2)
10888 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
10889 dwp_file);
10890
10891 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10892 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10893
10894 if (dwarf_read_debug)
10895 {
10896 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10897 fprintf_unfiltered (gdb_stdlog,
10898 " %s CUs, %s TUs\n",
10899 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10900 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10901 }
10902
10903 return dwp_file;
10904 }
10905
10906 /* Wrapper around open_and_init_dwp_file, only open it once. */
10907
10908 static struct dwp_file *
10909 get_dwp_file (void)
10910 {
10911 if (! dwarf2_per_objfile->dwp_checked)
10912 {
10913 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10914 dwarf2_per_objfile->dwp_checked = 1;
10915 }
10916 return dwarf2_per_objfile->dwp_file;
10917 }
10918
10919 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10920 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10921 or in the DWP file for the objfile, referenced by THIS_UNIT.
10922 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10923 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10924
10925 This is called, for example, when wanting to read a variable with a
10926 complex location. Therefore we don't want to do file i/o for every call.
10927 Therefore we don't want to look for a DWO file on every call.
10928 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10929 then we check if we've already seen DWO_NAME, and only THEN do we check
10930 for a DWO file.
10931
10932 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10933 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10934
10935 static struct dwo_unit *
10936 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10937 const char *dwo_name, const char *comp_dir,
10938 ULONGEST signature, int is_debug_types)
10939 {
10940 struct objfile *objfile = dwarf2_per_objfile->objfile;
10941 const char *kind = is_debug_types ? "TU" : "CU";
10942 void **dwo_file_slot;
10943 struct dwo_file *dwo_file;
10944 struct dwp_file *dwp_file;
10945
10946 /* First see if there's a DWP file.
10947 If we have a DWP file but didn't find the DWO inside it, don't
10948 look for the original DWO file. It makes gdb behave differently
10949 depending on whether one is debugging in the build tree. */
10950
10951 dwp_file = get_dwp_file ();
10952 if (dwp_file != NULL)
10953 {
10954 const struct dwp_hash_table *dwp_htab =
10955 is_debug_types ? dwp_file->tus : dwp_file->cus;
10956
10957 if (dwp_htab != NULL)
10958 {
10959 struct dwo_unit *dwo_cutu =
10960 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10961 signature, is_debug_types);
10962
10963 if (dwo_cutu != NULL)
10964 {
10965 if (dwarf_read_debug)
10966 {
10967 fprintf_unfiltered (gdb_stdlog,
10968 "Virtual DWO %s %s found: @%s\n",
10969 kind, hex_string (signature),
10970 host_address_to_string (dwo_cutu));
10971 }
10972 return dwo_cutu;
10973 }
10974 }
10975 }
10976 else
10977 {
10978 /* No DWP file, look for the DWO file. */
10979
10980 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10981 if (*dwo_file_slot == NULL)
10982 {
10983 /* Read in the file and build a table of the CUs/TUs it contains. */
10984 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10985 }
10986 /* NOTE: This will be NULL if unable to open the file. */
10987 dwo_file = (struct dwo_file *) *dwo_file_slot;
10988
10989 if (dwo_file != NULL)
10990 {
10991 struct dwo_unit *dwo_cutu = NULL;
10992
10993 if (is_debug_types && dwo_file->tus)
10994 {
10995 struct dwo_unit find_dwo_cutu;
10996
10997 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10998 find_dwo_cutu.signature = signature;
10999 dwo_cutu
11000 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
11001 }
11002 else if (!is_debug_types && dwo_file->cu)
11003 {
11004 if (signature == dwo_file->cu->signature)
11005 dwo_cutu = dwo_file->cu;
11006 }
11007
11008 if (dwo_cutu != NULL)
11009 {
11010 if (dwarf_read_debug)
11011 {
11012 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11013 kind, dwo_name, hex_string (signature),
11014 host_address_to_string (dwo_cutu));
11015 }
11016 return dwo_cutu;
11017 }
11018 }
11019 }
11020
11021 /* We didn't find it. This could mean a dwo_id mismatch, or
11022 someone deleted the DWO/DWP file, or the search path isn't set up
11023 correctly to find the file. */
11024
11025 if (dwarf_read_debug)
11026 {
11027 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11028 kind, dwo_name, hex_string (signature));
11029 }
11030
11031 /* This is a warning and not a complaint because it can be caused by
11032 pilot error (e.g., user accidentally deleting the DWO). */
11033 {
11034 /* Print the name of the DWP file if we looked there, helps the user
11035 better diagnose the problem. */
11036 char *dwp_text = NULL;
11037 struct cleanup *cleanups;
11038
11039 if (dwp_file != NULL)
11040 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11041 cleanups = make_cleanup (xfree, dwp_text);
11042
11043 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11044 " [in module %s]"),
11045 kind, dwo_name, hex_string (signature),
11046 dwp_text != NULL ? dwp_text : "",
11047 this_unit->is_debug_types ? "TU" : "CU",
11048 this_unit->offset.sect_off, objfile_name (objfile));
11049
11050 do_cleanups (cleanups);
11051 }
11052 return NULL;
11053 }
11054
11055 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11056 See lookup_dwo_cutu_unit for details. */
11057
11058 static struct dwo_unit *
11059 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11060 const char *dwo_name, const char *comp_dir,
11061 ULONGEST signature)
11062 {
11063 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11064 }
11065
11066 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11067 See lookup_dwo_cutu_unit for details. */
11068
11069 static struct dwo_unit *
11070 lookup_dwo_type_unit (struct signatured_type *this_tu,
11071 const char *dwo_name, const char *comp_dir)
11072 {
11073 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11074 }
11075
11076 /* Traversal function for queue_and_load_all_dwo_tus. */
11077
11078 static int
11079 queue_and_load_dwo_tu (void **slot, void *info)
11080 {
11081 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11082 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11083 ULONGEST signature = dwo_unit->signature;
11084 struct signatured_type *sig_type =
11085 lookup_dwo_signatured_type (per_cu->cu, signature);
11086
11087 if (sig_type != NULL)
11088 {
11089 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11090
11091 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11092 a real dependency of PER_CU on SIG_TYPE. That is detected later
11093 while processing PER_CU. */
11094 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11095 load_full_type_unit (sig_cu);
11096 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11097 }
11098
11099 return 1;
11100 }
11101
11102 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11103 The DWO may have the only definition of the type, though it may not be
11104 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11105 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11106
11107 static void
11108 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11109 {
11110 struct dwo_unit *dwo_unit;
11111 struct dwo_file *dwo_file;
11112
11113 gdb_assert (!per_cu->is_debug_types);
11114 gdb_assert (get_dwp_file () == NULL);
11115 gdb_assert (per_cu->cu != NULL);
11116
11117 dwo_unit = per_cu->cu->dwo_unit;
11118 gdb_assert (dwo_unit != NULL);
11119
11120 dwo_file = dwo_unit->dwo_file;
11121 if (dwo_file->tus != NULL)
11122 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11123 }
11124
11125 /* Free all resources associated with DWO_FILE.
11126 Close the DWO file and munmap the sections.
11127 All memory should be on the objfile obstack. */
11128
11129 static void
11130 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11131 {
11132
11133 /* Note: dbfd is NULL for virtual DWO files. */
11134 gdb_bfd_unref (dwo_file->dbfd);
11135
11136 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11137 }
11138
11139 /* Wrapper for free_dwo_file for use in cleanups. */
11140
11141 static void
11142 free_dwo_file_cleanup (void *arg)
11143 {
11144 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11145 struct objfile *objfile = dwarf2_per_objfile->objfile;
11146
11147 free_dwo_file (dwo_file, objfile);
11148 }
11149
11150 /* Traversal function for free_dwo_files. */
11151
11152 static int
11153 free_dwo_file_from_slot (void **slot, void *info)
11154 {
11155 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11156 struct objfile *objfile = (struct objfile *) info;
11157
11158 free_dwo_file (dwo_file, objfile);
11159
11160 return 1;
11161 }
11162
11163 /* Free all resources associated with DWO_FILES. */
11164
11165 static void
11166 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11167 {
11168 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11169 }
11170 \f
11171 /* Read in various DIEs. */
11172
11173 /* qsort helper for inherit_abstract_dies. */
11174
11175 static int
11176 unsigned_int_compar (const void *ap, const void *bp)
11177 {
11178 unsigned int a = *(unsigned int *) ap;
11179 unsigned int b = *(unsigned int *) bp;
11180
11181 return (a > b) - (b > a);
11182 }
11183
11184 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11185 Inherit only the children of the DW_AT_abstract_origin DIE not being
11186 already referenced by DW_AT_abstract_origin from the children of the
11187 current DIE. */
11188
11189 static void
11190 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11191 {
11192 struct die_info *child_die;
11193 unsigned die_children_count;
11194 /* CU offsets which were referenced by children of the current DIE. */
11195 sect_offset *offsets;
11196 sect_offset *offsets_end, *offsetp;
11197 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11198 struct die_info *origin_die;
11199 /* Iterator of the ORIGIN_DIE children. */
11200 struct die_info *origin_child_die;
11201 struct cleanup *cleanups;
11202 struct attribute *attr;
11203 struct dwarf2_cu *origin_cu;
11204 struct pending **origin_previous_list_in_scope;
11205
11206 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11207 if (!attr)
11208 return;
11209
11210 /* Note that following die references may follow to a die in a
11211 different cu. */
11212
11213 origin_cu = cu;
11214 origin_die = follow_die_ref (die, attr, &origin_cu);
11215
11216 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11217 symbols in. */
11218 origin_previous_list_in_scope = origin_cu->list_in_scope;
11219 origin_cu->list_in_scope = cu->list_in_scope;
11220
11221 if (die->tag != origin_die->tag
11222 && !(die->tag == DW_TAG_inlined_subroutine
11223 && origin_die->tag == DW_TAG_subprogram))
11224 complaint (&symfile_complaints,
11225 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11226 die->offset.sect_off, origin_die->offset.sect_off);
11227
11228 child_die = die->child;
11229 die_children_count = 0;
11230 while (child_die && child_die->tag)
11231 {
11232 child_die = sibling_die (child_die);
11233 die_children_count++;
11234 }
11235 offsets = XNEWVEC (sect_offset, die_children_count);
11236 cleanups = make_cleanup (xfree, offsets);
11237
11238 offsets_end = offsets;
11239 for (child_die = die->child;
11240 child_die && child_die->tag;
11241 child_die = sibling_die (child_die))
11242 {
11243 struct die_info *child_origin_die;
11244 struct dwarf2_cu *child_origin_cu;
11245
11246 /* We are trying to process concrete instance entries:
11247 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11248 it's not relevant to our analysis here. i.e. detecting DIEs that are
11249 present in the abstract instance but not referenced in the concrete
11250 one. */
11251 if (child_die->tag == DW_TAG_GNU_call_site)
11252 continue;
11253
11254 /* For each CHILD_DIE, find the corresponding child of
11255 ORIGIN_DIE. If there is more than one layer of
11256 DW_AT_abstract_origin, follow them all; there shouldn't be,
11257 but GCC versions at least through 4.4 generate this (GCC PR
11258 40573). */
11259 child_origin_die = child_die;
11260 child_origin_cu = cu;
11261 while (1)
11262 {
11263 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11264 child_origin_cu);
11265 if (attr == NULL)
11266 break;
11267 child_origin_die = follow_die_ref (child_origin_die, attr,
11268 &child_origin_cu);
11269 }
11270
11271 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11272 counterpart may exist. */
11273 if (child_origin_die != child_die)
11274 {
11275 if (child_die->tag != child_origin_die->tag
11276 && !(child_die->tag == DW_TAG_inlined_subroutine
11277 && child_origin_die->tag == DW_TAG_subprogram))
11278 complaint (&symfile_complaints,
11279 _("Child DIE 0x%x and its abstract origin 0x%x have "
11280 "different tags"), child_die->offset.sect_off,
11281 child_origin_die->offset.sect_off);
11282 if (child_origin_die->parent != origin_die)
11283 complaint (&symfile_complaints,
11284 _("Child DIE 0x%x and its abstract origin 0x%x have "
11285 "different parents"), child_die->offset.sect_off,
11286 child_origin_die->offset.sect_off);
11287 else
11288 *offsets_end++ = child_origin_die->offset;
11289 }
11290 }
11291 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11292 unsigned_int_compar);
11293 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11294 if (offsetp[-1].sect_off == offsetp->sect_off)
11295 complaint (&symfile_complaints,
11296 _("Multiple children of DIE 0x%x refer "
11297 "to DIE 0x%x as their abstract origin"),
11298 die->offset.sect_off, offsetp->sect_off);
11299
11300 offsetp = offsets;
11301 origin_child_die = origin_die->child;
11302 while (origin_child_die && origin_child_die->tag)
11303 {
11304 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11305 while (offsetp < offsets_end
11306 && offsetp->sect_off < origin_child_die->offset.sect_off)
11307 offsetp++;
11308 if (offsetp >= offsets_end
11309 || offsetp->sect_off > origin_child_die->offset.sect_off)
11310 {
11311 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11312 Check whether we're already processing ORIGIN_CHILD_DIE.
11313 This can happen with mutually referenced abstract_origins.
11314 PR 16581. */
11315 if (!origin_child_die->in_process)
11316 process_die (origin_child_die, origin_cu);
11317 }
11318 origin_child_die = sibling_die (origin_child_die);
11319 }
11320 origin_cu->list_in_scope = origin_previous_list_in_scope;
11321
11322 do_cleanups (cleanups);
11323 }
11324
11325 static void
11326 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11327 {
11328 struct objfile *objfile = cu->objfile;
11329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11330 struct context_stack *newobj;
11331 CORE_ADDR lowpc;
11332 CORE_ADDR highpc;
11333 struct die_info *child_die;
11334 struct attribute *attr, *call_line, *call_file;
11335 const char *name;
11336 CORE_ADDR baseaddr;
11337 struct block *block;
11338 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11339 VEC (symbolp) *template_args = NULL;
11340 struct template_symbol *templ_func = NULL;
11341
11342 if (inlined_func)
11343 {
11344 /* If we do not have call site information, we can't show the
11345 caller of this inlined function. That's too confusing, so
11346 only use the scope for local variables. */
11347 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11348 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11349 if (call_line == NULL || call_file == NULL)
11350 {
11351 read_lexical_block_scope (die, cu);
11352 return;
11353 }
11354 }
11355
11356 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11357
11358 name = dwarf2_name (die, cu);
11359
11360 /* Ignore functions with missing or empty names. These are actually
11361 illegal according to the DWARF standard. */
11362 if (name == NULL)
11363 {
11364 complaint (&symfile_complaints,
11365 _("missing name for subprogram DIE at %d"),
11366 die->offset.sect_off);
11367 return;
11368 }
11369
11370 /* Ignore functions with missing or invalid low and high pc attributes. */
11371 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
11372 <= PC_BOUNDS_INVALID)
11373 {
11374 attr = dwarf2_attr (die, DW_AT_external, cu);
11375 if (!attr || !DW_UNSND (attr))
11376 complaint (&symfile_complaints,
11377 _("cannot get low and high bounds "
11378 "for subprogram DIE at %d"),
11379 die->offset.sect_off);
11380 return;
11381 }
11382
11383 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11384 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11385
11386 /* If we have any template arguments, then we must allocate a
11387 different sort of symbol. */
11388 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11389 {
11390 if (child_die->tag == DW_TAG_template_type_param
11391 || child_die->tag == DW_TAG_template_value_param)
11392 {
11393 templ_func = allocate_template_symbol (objfile);
11394 templ_func->base.is_cplus_template_function = 1;
11395 break;
11396 }
11397 }
11398
11399 newobj = push_context (0, lowpc);
11400 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11401 (struct symbol *) templ_func);
11402
11403 /* If there is a location expression for DW_AT_frame_base, record
11404 it. */
11405 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11406 if (attr)
11407 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11408
11409 /* If there is a location for the static link, record it. */
11410 newobj->static_link = NULL;
11411 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11412 if (attr)
11413 {
11414 newobj->static_link
11415 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
11416 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11417 }
11418
11419 cu->list_in_scope = &local_symbols;
11420
11421 if (die->child != NULL)
11422 {
11423 child_die = die->child;
11424 while (child_die && child_die->tag)
11425 {
11426 if (child_die->tag == DW_TAG_template_type_param
11427 || child_die->tag == DW_TAG_template_value_param)
11428 {
11429 struct symbol *arg = new_symbol (child_die, NULL, cu);
11430
11431 if (arg != NULL)
11432 VEC_safe_push (symbolp, template_args, arg);
11433 }
11434 else
11435 process_die (child_die, cu);
11436 child_die = sibling_die (child_die);
11437 }
11438 }
11439
11440 inherit_abstract_dies (die, cu);
11441
11442 /* If we have a DW_AT_specification, we might need to import using
11443 directives from the context of the specification DIE. See the
11444 comment in determine_prefix. */
11445 if (cu->language == language_cplus
11446 && dwarf2_attr (die, DW_AT_specification, cu))
11447 {
11448 struct dwarf2_cu *spec_cu = cu;
11449 struct die_info *spec_die = die_specification (die, &spec_cu);
11450
11451 while (spec_die)
11452 {
11453 child_die = spec_die->child;
11454 while (child_die && child_die->tag)
11455 {
11456 if (child_die->tag == DW_TAG_imported_module)
11457 process_die (child_die, spec_cu);
11458 child_die = sibling_die (child_die);
11459 }
11460
11461 /* In some cases, GCC generates specification DIEs that
11462 themselves contain DW_AT_specification attributes. */
11463 spec_die = die_specification (spec_die, &spec_cu);
11464 }
11465 }
11466
11467 newobj = pop_context ();
11468 /* Make a block for the local symbols within. */
11469 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11470 newobj->static_link, lowpc, highpc);
11471
11472 /* For C++, set the block's scope. */
11473 if ((cu->language == language_cplus
11474 || cu->language == language_fortran
11475 || cu->language == language_d
11476 || cu->language == language_rust)
11477 && cu->processing_has_namespace_info)
11478 block_set_scope (block, determine_prefix (die, cu),
11479 &objfile->objfile_obstack);
11480
11481 /* If we have address ranges, record them. */
11482 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11483
11484 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11485
11486 /* Attach template arguments to function. */
11487 if (! VEC_empty (symbolp, template_args))
11488 {
11489 gdb_assert (templ_func != NULL);
11490
11491 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11492 templ_func->template_arguments
11493 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11494 templ_func->n_template_arguments);
11495 memcpy (templ_func->template_arguments,
11496 VEC_address (symbolp, template_args),
11497 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11498 VEC_free (symbolp, template_args);
11499 }
11500
11501 /* In C++, we can have functions nested inside functions (e.g., when
11502 a function declares a class that has methods). This means that
11503 when we finish processing a function scope, we may need to go
11504 back to building a containing block's symbol lists. */
11505 local_symbols = newobj->locals;
11506 local_using_directives = newobj->local_using_directives;
11507
11508 /* If we've finished processing a top-level function, subsequent
11509 symbols go in the file symbol list. */
11510 if (outermost_context_p ())
11511 cu->list_in_scope = &file_symbols;
11512 }
11513
11514 /* Process all the DIES contained within a lexical block scope. Start
11515 a new scope, process the dies, and then close the scope. */
11516
11517 static void
11518 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11519 {
11520 struct objfile *objfile = cu->objfile;
11521 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11522 struct context_stack *newobj;
11523 CORE_ADDR lowpc, highpc;
11524 struct die_info *child_die;
11525 CORE_ADDR baseaddr;
11526
11527 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11528
11529 /* Ignore blocks with missing or invalid low and high pc attributes. */
11530 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11531 as multiple lexical blocks? Handling children in a sane way would
11532 be nasty. Might be easier to properly extend generic blocks to
11533 describe ranges. */
11534 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11535 {
11536 case PC_BOUNDS_NOT_PRESENT:
11537 /* DW_TAG_lexical_block has no attributes, process its children as if
11538 there was no wrapping by that DW_TAG_lexical_block.
11539 GCC does no longer produces such DWARF since GCC r224161. */
11540 for (child_die = die->child;
11541 child_die != NULL && child_die->tag;
11542 child_die = sibling_die (child_die))
11543 process_die (child_die, cu);
11544 return;
11545 case PC_BOUNDS_INVALID:
11546 return;
11547 }
11548 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11549 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11550
11551 push_context (0, lowpc);
11552 if (die->child != NULL)
11553 {
11554 child_die = die->child;
11555 while (child_die && child_die->tag)
11556 {
11557 process_die (child_die, cu);
11558 child_die = sibling_die (child_die);
11559 }
11560 }
11561 inherit_abstract_dies (die, cu);
11562 newobj = pop_context ();
11563
11564 if (local_symbols != NULL || local_using_directives != NULL)
11565 {
11566 struct block *block
11567 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
11568 newobj->start_addr, highpc);
11569
11570 /* Note that recording ranges after traversing children, as we
11571 do here, means that recording a parent's ranges entails
11572 walking across all its children's ranges as they appear in
11573 the address map, which is quadratic behavior.
11574
11575 It would be nicer to record the parent's ranges before
11576 traversing its children, simply overriding whatever you find
11577 there. But since we don't even decide whether to create a
11578 block until after we've traversed its children, that's hard
11579 to do. */
11580 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11581 }
11582 local_symbols = newobj->locals;
11583 local_using_directives = newobj->local_using_directives;
11584 }
11585
11586 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11587
11588 static void
11589 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11590 {
11591 struct objfile *objfile = cu->objfile;
11592 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11593 CORE_ADDR pc, baseaddr;
11594 struct attribute *attr;
11595 struct call_site *call_site, call_site_local;
11596 void **slot;
11597 int nparams;
11598 struct die_info *child_die;
11599
11600 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11601
11602 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11603 if (!attr)
11604 {
11605 complaint (&symfile_complaints,
11606 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11607 "DIE 0x%x [in module %s]"),
11608 die->offset.sect_off, objfile_name (objfile));
11609 return;
11610 }
11611 pc = attr_value_as_address (attr) + baseaddr;
11612 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11613
11614 if (cu->call_site_htab == NULL)
11615 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11616 NULL, &objfile->objfile_obstack,
11617 hashtab_obstack_allocate, NULL);
11618 call_site_local.pc = pc;
11619 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11620 if (*slot != NULL)
11621 {
11622 complaint (&symfile_complaints,
11623 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11624 "DIE 0x%x [in module %s]"),
11625 paddress (gdbarch, pc), die->offset.sect_off,
11626 objfile_name (objfile));
11627 return;
11628 }
11629
11630 /* Count parameters at the caller. */
11631
11632 nparams = 0;
11633 for (child_die = die->child; child_die && child_die->tag;
11634 child_die = sibling_die (child_die))
11635 {
11636 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11637 {
11638 complaint (&symfile_complaints,
11639 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11641 child_die->tag, child_die->offset.sect_off,
11642 objfile_name (objfile));
11643 continue;
11644 }
11645
11646 nparams++;
11647 }
11648
11649 call_site
11650 = ((struct call_site *)
11651 obstack_alloc (&objfile->objfile_obstack,
11652 sizeof (*call_site)
11653 + (sizeof (*call_site->parameter) * (nparams - 1))));
11654 *slot = call_site;
11655 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11656 call_site->pc = pc;
11657
11658 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11659 {
11660 struct die_info *func_die;
11661
11662 /* Skip also over DW_TAG_inlined_subroutine. */
11663 for (func_die = die->parent;
11664 func_die && func_die->tag != DW_TAG_subprogram
11665 && func_die->tag != DW_TAG_subroutine_type;
11666 func_die = func_die->parent);
11667
11668 /* DW_AT_GNU_all_call_sites is a superset
11669 of DW_AT_GNU_all_tail_call_sites. */
11670 if (func_die
11671 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11672 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11673 {
11674 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11675 not complete. But keep CALL_SITE for look ups via call_site_htab,
11676 both the initial caller containing the real return address PC and
11677 the final callee containing the current PC of a chain of tail
11678 calls do not need to have the tail call list complete. But any
11679 function candidate for a virtual tail call frame searched via
11680 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11681 determined unambiguously. */
11682 }
11683 else
11684 {
11685 struct type *func_type = NULL;
11686
11687 if (func_die)
11688 func_type = get_die_type (func_die, cu);
11689 if (func_type != NULL)
11690 {
11691 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11692
11693 /* Enlist this call site to the function. */
11694 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11695 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11696 }
11697 else
11698 complaint (&symfile_complaints,
11699 _("Cannot find function owning DW_TAG_GNU_call_site "
11700 "DIE 0x%x [in module %s]"),
11701 die->offset.sect_off, objfile_name (objfile));
11702 }
11703 }
11704
11705 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11706 if (attr == NULL)
11707 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11708 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11709 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11710 /* Keep NULL DWARF_BLOCK. */;
11711 else if (attr_form_is_block (attr))
11712 {
11713 struct dwarf2_locexpr_baton *dlbaton;
11714
11715 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
11716 dlbaton->data = DW_BLOCK (attr)->data;
11717 dlbaton->size = DW_BLOCK (attr)->size;
11718 dlbaton->per_cu = cu->per_cu;
11719
11720 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11721 }
11722 else if (attr_form_is_ref (attr))
11723 {
11724 struct dwarf2_cu *target_cu = cu;
11725 struct die_info *target_die;
11726
11727 target_die = follow_die_ref (die, attr, &target_cu);
11728 gdb_assert (target_cu->objfile == objfile);
11729 if (die_is_declaration (target_die, target_cu))
11730 {
11731 const char *target_physname;
11732
11733 /* Prefer the mangled name; otherwise compute the demangled one. */
11734 target_physname = dwarf2_string_attr (target_die,
11735 DW_AT_linkage_name,
11736 target_cu);
11737 if (target_physname == NULL)
11738 target_physname = dwarf2_string_attr (target_die,
11739 DW_AT_MIPS_linkage_name,
11740 target_cu);
11741 if (target_physname == NULL)
11742 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11743 if (target_physname == NULL)
11744 complaint (&symfile_complaints,
11745 _("DW_AT_GNU_call_site_target target DIE has invalid "
11746 "physname, for referencing DIE 0x%x [in module %s]"),
11747 die->offset.sect_off, objfile_name (objfile));
11748 else
11749 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11750 }
11751 else
11752 {
11753 CORE_ADDR lowpc;
11754
11755 /* DW_AT_entry_pc should be preferred. */
11756 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
11757 <= PC_BOUNDS_INVALID)
11758 complaint (&symfile_complaints,
11759 _("DW_AT_GNU_call_site_target target DIE has invalid "
11760 "low pc, for referencing DIE 0x%x [in module %s]"),
11761 die->offset.sect_off, objfile_name (objfile));
11762 else
11763 {
11764 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11765 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11766 }
11767 }
11768 }
11769 else
11770 complaint (&symfile_complaints,
11771 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11772 "block nor reference, for DIE 0x%x [in module %s]"),
11773 die->offset.sect_off, objfile_name (objfile));
11774
11775 call_site->per_cu = cu->per_cu;
11776
11777 for (child_die = die->child;
11778 child_die && child_die->tag;
11779 child_die = sibling_die (child_die))
11780 {
11781 struct call_site_parameter *parameter;
11782 struct attribute *loc, *origin;
11783
11784 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11785 {
11786 /* Already printed the complaint above. */
11787 continue;
11788 }
11789
11790 gdb_assert (call_site->parameter_count < nparams);
11791 parameter = &call_site->parameter[call_site->parameter_count];
11792
11793 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11794 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11795 register is contained in DW_AT_GNU_call_site_value. */
11796
11797 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11798 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11799 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11800 {
11801 sect_offset offset;
11802
11803 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11804 offset = dwarf2_get_ref_die_offset (origin);
11805 if (!offset_in_cu_p (&cu->header, offset))
11806 {
11807 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11808 binding can be done only inside one CU. Such referenced DIE
11809 therefore cannot be even moved to DW_TAG_partial_unit. */
11810 complaint (&symfile_complaints,
11811 _("DW_AT_abstract_origin offset is not in CU for "
11812 "DW_TAG_GNU_call_site child DIE 0x%x "
11813 "[in module %s]"),
11814 child_die->offset.sect_off, objfile_name (objfile));
11815 continue;
11816 }
11817 parameter->u.param_offset.cu_off = (offset.sect_off
11818 - cu->header.offset.sect_off);
11819 }
11820 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11821 {
11822 complaint (&symfile_complaints,
11823 _("No DW_FORM_block* DW_AT_location for "
11824 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11825 child_die->offset.sect_off, objfile_name (objfile));
11826 continue;
11827 }
11828 else
11829 {
11830 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11831 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11832 if (parameter->u.dwarf_reg != -1)
11833 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11834 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11835 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11836 &parameter->u.fb_offset))
11837 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11838 else
11839 {
11840 complaint (&symfile_complaints,
11841 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11842 "for DW_FORM_block* DW_AT_location is supported for "
11843 "DW_TAG_GNU_call_site child DIE 0x%x "
11844 "[in module %s]"),
11845 child_die->offset.sect_off, objfile_name (objfile));
11846 continue;
11847 }
11848 }
11849
11850 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11851 if (!attr_form_is_block (attr))
11852 {
11853 complaint (&symfile_complaints,
11854 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11855 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11856 child_die->offset.sect_off, objfile_name (objfile));
11857 continue;
11858 }
11859 parameter->value = DW_BLOCK (attr)->data;
11860 parameter->value_size = DW_BLOCK (attr)->size;
11861
11862 /* Parameters are not pre-cleared by memset above. */
11863 parameter->data_value = NULL;
11864 parameter->data_value_size = 0;
11865 call_site->parameter_count++;
11866
11867 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11868 if (attr)
11869 {
11870 if (!attr_form_is_block (attr))
11871 complaint (&symfile_complaints,
11872 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11873 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11874 child_die->offset.sect_off, objfile_name (objfile));
11875 else
11876 {
11877 parameter->data_value = DW_BLOCK (attr)->data;
11878 parameter->data_value_size = DW_BLOCK (attr)->size;
11879 }
11880 }
11881 }
11882 }
11883
11884 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11885 Return 1 if the attributes are present and valid, otherwise, return 0.
11886 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11887
11888 static int
11889 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11890 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11891 struct partial_symtab *ranges_pst)
11892 {
11893 struct objfile *objfile = cu->objfile;
11894 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11895 struct comp_unit_head *cu_header = &cu->header;
11896 bfd *obfd = objfile->obfd;
11897 unsigned int addr_size = cu_header->addr_size;
11898 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11899 /* Base address selection entry. */
11900 CORE_ADDR base;
11901 int found_base;
11902 unsigned int dummy;
11903 const gdb_byte *buffer;
11904 int low_set;
11905 CORE_ADDR low = 0;
11906 CORE_ADDR high = 0;
11907 CORE_ADDR baseaddr;
11908
11909 found_base = cu->base_known;
11910 base = cu->base_address;
11911
11912 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11913 if (offset >= dwarf2_per_objfile->ranges.size)
11914 {
11915 complaint (&symfile_complaints,
11916 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11917 offset);
11918 return 0;
11919 }
11920 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11921
11922 low_set = 0;
11923
11924 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11925
11926 while (1)
11927 {
11928 CORE_ADDR range_beginning, range_end;
11929
11930 range_beginning = read_address (obfd, buffer, cu, &dummy);
11931 buffer += addr_size;
11932 range_end = read_address (obfd, buffer, cu, &dummy);
11933 buffer += addr_size;
11934 offset += 2 * addr_size;
11935
11936 /* An end of list marker is a pair of zero addresses. */
11937 if (range_beginning == 0 && range_end == 0)
11938 /* Found the end of list entry. */
11939 break;
11940
11941 /* Each base address selection entry is a pair of 2 values.
11942 The first is the largest possible address, the second is
11943 the base address. Check for a base address here. */
11944 if ((range_beginning & mask) == mask)
11945 {
11946 /* If we found the largest possible address, then we already
11947 have the base address in range_end. */
11948 base = range_end;
11949 found_base = 1;
11950 continue;
11951 }
11952
11953 if (!found_base)
11954 {
11955 /* We have no valid base address for the ranges
11956 data. */
11957 complaint (&symfile_complaints,
11958 _("Invalid .debug_ranges data (no base address)"));
11959 return 0;
11960 }
11961
11962 if (range_beginning > range_end)
11963 {
11964 /* Inverted range entries are invalid. */
11965 complaint (&symfile_complaints,
11966 _("Invalid .debug_ranges data (inverted range)"));
11967 return 0;
11968 }
11969
11970 /* Empty range entries have no effect. */
11971 if (range_beginning == range_end)
11972 continue;
11973
11974 range_beginning += base;
11975 range_end += base;
11976
11977 /* A not-uncommon case of bad debug info.
11978 Don't pollute the addrmap with bad data. */
11979 if (range_beginning + baseaddr == 0
11980 && !dwarf2_per_objfile->has_section_at_zero)
11981 {
11982 complaint (&symfile_complaints,
11983 _(".debug_ranges entry has start address of zero"
11984 " [in module %s]"), objfile_name (objfile));
11985 continue;
11986 }
11987
11988 if (ranges_pst != NULL)
11989 {
11990 CORE_ADDR lowpc;
11991 CORE_ADDR highpc;
11992
11993 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11994 range_beginning + baseaddr);
11995 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11996 range_end + baseaddr);
11997 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11998 ranges_pst);
11999 }
12000
12001 /* FIXME: This is recording everything as a low-high
12002 segment of consecutive addresses. We should have a
12003 data structure for discontiguous block ranges
12004 instead. */
12005 if (! low_set)
12006 {
12007 low = range_beginning;
12008 high = range_end;
12009 low_set = 1;
12010 }
12011 else
12012 {
12013 if (range_beginning < low)
12014 low = range_beginning;
12015 if (range_end > high)
12016 high = range_end;
12017 }
12018 }
12019
12020 if (! low_set)
12021 /* If the first entry is an end-of-list marker, the range
12022 describes an empty scope, i.e. no instructions. */
12023 return 0;
12024
12025 if (low_return)
12026 *low_return = low;
12027 if (high_return)
12028 *high_return = high;
12029 return 1;
12030 }
12031
12032 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
12033 definition for the return value. *LOWPC and *HIGHPC are set iff
12034 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
12035
12036 static enum pc_bounds_kind
12037 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12038 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12039 struct partial_symtab *pst)
12040 {
12041 struct attribute *attr;
12042 struct attribute *attr_high;
12043 CORE_ADDR low = 0;
12044 CORE_ADDR high = 0;
12045 enum pc_bounds_kind ret;
12046
12047 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12048 if (attr_high)
12049 {
12050 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12051 if (attr)
12052 {
12053 low = attr_value_as_address (attr);
12054 high = attr_value_as_address (attr_high);
12055 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12056 high += low;
12057 }
12058 else
12059 /* Found high w/o low attribute. */
12060 return PC_BOUNDS_INVALID;
12061
12062 /* Found consecutive range of addresses. */
12063 ret = PC_BOUNDS_HIGH_LOW;
12064 }
12065 else
12066 {
12067 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12068 if (attr != NULL)
12069 {
12070 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12071 We take advantage of the fact that DW_AT_ranges does not appear
12072 in DW_TAG_compile_unit of DWO files. */
12073 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12074 unsigned int ranges_offset = (DW_UNSND (attr)
12075 + (need_ranges_base
12076 ? cu->ranges_base
12077 : 0));
12078
12079 /* Value of the DW_AT_ranges attribute is the offset in the
12080 .debug_ranges section. */
12081 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12082 return PC_BOUNDS_INVALID;
12083 /* Found discontinuous range of addresses. */
12084 ret = PC_BOUNDS_RANGES;
12085 }
12086 else
12087 return PC_BOUNDS_NOT_PRESENT;
12088 }
12089
12090 /* read_partial_die has also the strict LOW < HIGH requirement. */
12091 if (high <= low)
12092 return PC_BOUNDS_INVALID;
12093
12094 /* When using the GNU linker, .gnu.linkonce. sections are used to
12095 eliminate duplicate copies of functions and vtables and such.
12096 The linker will arbitrarily choose one and discard the others.
12097 The AT_*_pc values for such functions refer to local labels in
12098 these sections. If the section from that file was discarded, the
12099 labels are not in the output, so the relocs get a value of 0.
12100 If this is a discarded function, mark the pc bounds as invalid,
12101 so that GDB will ignore it. */
12102 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12103 return PC_BOUNDS_INVALID;
12104
12105 *lowpc = low;
12106 if (highpc)
12107 *highpc = high;
12108 return ret;
12109 }
12110
12111 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12112 its low and high PC addresses. Do nothing if these addresses could not
12113 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12114 and HIGHPC to the high address if greater than HIGHPC. */
12115
12116 static void
12117 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12119 struct dwarf2_cu *cu)
12120 {
12121 CORE_ADDR low, high;
12122 struct die_info *child = die->child;
12123
12124 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
12125 {
12126 *lowpc = std::min (*lowpc, low);
12127 *highpc = std::max (*highpc, high);
12128 }
12129
12130 /* If the language does not allow nested subprograms (either inside
12131 subprograms or lexical blocks), we're done. */
12132 if (cu->language != language_ada)
12133 return;
12134
12135 /* Check all the children of the given DIE. If it contains nested
12136 subprograms, then check their pc bounds. Likewise, we need to
12137 check lexical blocks as well, as they may also contain subprogram
12138 definitions. */
12139 while (child && child->tag)
12140 {
12141 if (child->tag == DW_TAG_subprogram
12142 || child->tag == DW_TAG_lexical_block)
12143 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12144 child = sibling_die (child);
12145 }
12146 }
12147
12148 /* Get the low and high pc's represented by the scope DIE, and store
12149 them in *LOWPC and *HIGHPC. If the correct values can't be
12150 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12151
12152 static void
12153 get_scope_pc_bounds (struct die_info *die,
12154 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12155 struct dwarf2_cu *cu)
12156 {
12157 CORE_ADDR best_low = (CORE_ADDR) -1;
12158 CORE_ADDR best_high = (CORE_ADDR) 0;
12159 CORE_ADDR current_low, current_high;
12160
12161 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
12162 >= PC_BOUNDS_RANGES)
12163 {
12164 best_low = current_low;
12165 best_high = current_high;
12166 }
12167 else
12168 {
12169 struct die_info *child = die->child;
12170
12171 while (child && child->tag)
12172 {
12173 switch (child->tag) {
12174 case DW_TAG_subprogram:
12175 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12176 break;
12177 case DW_TAG_namespace:
12178 case DW_TAG_module:
12179 /* FIXME: carlton/2004-01-16: Should we do this for
12180 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12181 that current GCC's always emit the DIEs corresponding
12182 to definitions of methods of classes as children of a
12183 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12184 the DIEs giving the declarations, which could be
12185 anywhere). But I don't see any reason why the
12186 standards says that they have to be there. */
12187 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12188
12189 if (current_low != ((CORE_ADDR) -1))
12190 {
12191 best_low = std::min (best_low, current_low);
12192 best_high = std::max (best_high, current_high);
12193 }
12194 break;
12195 default:
12196 /* Ignore. */
12197 break;
12198 }
12199
12200 child = sibling_die (child);
12201 }
12202 }
12203
12204 *lowpc = best_low;
12205 *highpc = best_high;
12206 }
12207
12208 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12209 in DIE. */
12210
12211 static void
12212 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12213 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12214 {
12215 struct objfile *objfile = cu->objfile;
12216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12217 struct attribute *attr;
12218 struct attribute *attr_high;
12219
12220 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12221 if (attr_high)
12222 {
12223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12224 if (attr)
12225 {
12226 CORE_ADDR low = attr_value_as_address (attr);
12227 CORE_ADDR high = attr_value_as_address (attr_high);
12228
12229 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12230 high += low;
12231
12232 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12233 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12234 record_block_range (block, low, high - 1);
12235 }
12236 }
12237
12238 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12239 if (attr)
12240 {
12241 bfd *obfd = objfile->obfd;
12242 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12243 We take advantage of the fact that DW_AT_ranges does not appear
12244 in DW_TAG_compile_unit of DWO files. */
12245 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12246
12247 /* The value of the DW_AT_ranges attribute is the offset of the
12248 address range list in the .debug_ranges section. */
12249 unsigned long offset = (DW_UNSND (attr)
12250 + (need_ranges_base ? cu->ranges_base : 0));
12251 const gdb_byte *buffer;
12252
12253 /* For some target architectures, but not others, the
12254 read_address function sign-extends the addresses it returns.
12255 To recognize base address selection entries, we need a
12256 mask. */
12257 unsigned int addr_size = cu->header.addr_size;
12258 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12259
12260 /* The base address, to which the next pair is relative. Note
12261 that this 'base' is a DWARF concept: most entries in a range
12262 list are relative, to reduce the number of relocs against the
12263 debugging information. This is separate from this function's
12264 'baseaddr' argument, which GDB uses to relocate debugging
12265 information from a shared library based on the address at
12266 which the library was loaded. */
12267 CORE_ADDR base = cu->base_address;
12268 int base_known = cu->base_known;
12269
12270 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12271 if (offset >= dwarf2_per_objfile->ranges.size)
12272 {
12273 complaint (&symfile_complaints,
12274 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12275 offset);
12276 return;
12277 }
12278 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12279
12280 for (;;)
12281 {
12282 unsigned int bytes_read;
12283 CORE_ADDR start, end;
12284
12285 start = read_address (obfd, buffer, cu, &bytes_read);
12286 buffer += bytes_read;
12287 end = read_address (obfd, buffer, cu, &bytes_read);
12288 buffer += bytes_read;
12289
12290 /* Did we find the end of the range list? */
12291 if (start == 0 && end == 0)
12292 break;
12293
12294 /* Did we find a base address selection entry? */
12295 else if ((start & base_select_mask) == base_select_mask)
12296 {
12297 base = end;
12298 base_known = 1;
12299 }
12300
12301 /* We found an ordinary address range. */
12302 else
12303 {
12304 if (!base_known)
12305 {
12306 complaint (&symfile_complaints,
12307 _("Invalid .debug_ranges data "
12308 "(no base address)"));
12309 return;
12310 }
12311
12312 if (start > end)
12313 {
12314 /* Inverted range entries are invalid. */
12315 complaint (&symfile_complaints,
12316 _("Invalid .debug_ranges data "
12317 "(inverted range)"));
12318 return;
12319 }
12320
12321 /* Empty range entries have no effect. */
12322 if (start == end)
12323 continue;
12324
12325 start += base + baseaddr;
12326 end += base + baseaddr;
12327
12328 /* A not-uncommon case of bad debug info.
12329 Don't pollute the addrmap with bad data. */
12330 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12331 {
12332 complaint (&symfile_complaints,
12333 _(".debug_ranges entry has start address of zero"
12334 " [in module %s]"), objfile_name (objfile));
12335 continue;
12336 }
12337
12338 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12339 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12340 record_block_range (block, start, end - 1);
12341 }
12342 }
12343 }
12344 }
12345
12346 /* Check whether the producer field indicates either of GCC < 4.6, or the
12347 Intel C/C++ compiler, and cache the result in CU. */
12348
12349 static void
12350 check_producer (struct dwarf2_cu *cu)
12351 {
12352 int major, minor;
12353
12354 if (cu->producer == NULL)
12355 {
12356 /* For unknown compilers expect their behavior is DWARF version
12357 compliant.
12358
12359 GCC started to support .debug_types sections by -gdwarf-4 since
12360 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12361 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12362 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12363 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12364 }
12365 else if (producer_is_gcc (cu->producer, &major, &minor))
12366 {
12367 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12368 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12369 }
12370 else if (startswith (cu->producer, "Intel(R) C"))
12371 cu->producer_is_icc = 1;
12372 else
12373 {
12374 /* For other non-GCC compilers, expect their behavior is DWARF version
12375 compliant. */
12376 }
12377
12378 cu->checked_producer = 1;
12379 }
12380
12381 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12382 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12383 during 4.6.0 experimental. */
12384
12385 static int
12386 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12387 {
12388 if (!cu->checked_producer)
12389 check_producer (cu);
12390
12391 return cu->producer_is_gxx_lt_4_6;
12392 }
12393
12394 /* Return the default accessibility type if it is not overriden by
12395 DW_AT_accessibility. */
12396
12397 static enum dwarf_access_attribute
12398 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12399 {
12400 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12401 {
12402 /* The default DWARF 2 accessibility for members is public, the default
12403 accessibility for inheritance is private. */
12404
12405 if (die->tag != DW_TAG_inheritance)
12406 return DW_ACCESS_public;
12407 else
12408 return DW_ACCESS_private;
12409 }
12410 else
12411 {
12412 /* DWARF 3+ defines the default accessibility a different way. The same
12413 rules apply now for DW_TAG_inheritance as for the members and it only
12414 depends on the container kind. */
12415
12416 if (die->parent->tag == DW_TAG_class_type)
12417 return DW_ACCESS_private;
12418 else
12419 return DW_ACCESS_public;
12420 }
12421 }
12422
12423 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12424 offset. If the attribute was not found return 0, otherwise return
12425 1. If it was found but could not properly be handled, set *OFFSET
12426 to 0. */
12427
12428 static int
12429 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12430 LONGEST *offset)
12431 {
12432 struct attribute *attr;
12433
12434 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12435 if (attr != NULL)
12436 {
12437 *offset = 0;
12438
12439 /* Note that we do not check for a section offset first here.
12440 This is because DW_AT_data_member_location is new in DWARF 4,
12441 so if we see it, we can assume that a constant form is really
12442 a constant and not a section offset. */
12443 if (attr_form_is_constant (attr))
12444 *offset = dwarf2_get_attr_constant_value (attr, 0);
12445 else if (attr_form_is_section_offset (attr))
12446 dwarf2_complex_location_expr_complaint ();
12447 else if (attr_form_is_block (attr))
12448 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12449 else
12450 dwarf2_complex_location_expr_complaint ();
12451
12452 return 1;
12453 }
12454
12455 return 0;
12456 }
12457
12458 /* Add an aggregate field to the field list. */
12459
12460 static void
12461 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12462 struct dwarf2_cu *cu)
12463 {
12464 struct objfile *objfile = cu->objfile;
12465 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12466 struct nextfield *new_field;
12467 struct attribute *attr;
12468 struct field *fp;
12469 const char *fieldname = "";
12470
12471 /* Allocate a new field list entry and link it in. */
12472 new_field = XNEW (struct nextfield);
12473 make_cleanup (xfree, new_field);
12474 memset (new_field, 0, sizeof (struct nextfield));
12475
12476 if (die->tag == DW_TAG_inheritance)
12477 {
12478 new_field->next = fip->baseclasses;
12479 fip->baseclasses = new_field;
12480 }
12481 else
12482 {
12483 new_field->next = fip->fields;
12484 fip->fields = new_field;
12485 }
12486 fip->nfields++;
12487
12488 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12489 if (attr)
12490 new_field->accessibility = DW_UNSND (attr);
12491 else
12492 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12493 if (new_field->accessibility != DW_ACCESS_public)
12494 fip->non_public_fields = 1;
12495
12496 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12497 if (attr)
12498 new_field->virtuality = DW_UNSND (attr);
12499 else
12500 new_field->virtuality = DW_VIRTUALITY_none;
12501
12502 fp = &new_field->field;
12503
12504 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12505 {
12506 LONGEST offset;
12507
12508 /* Data member other than a C++ static data member. */
12509
12510 /* Get type of field. */
12511 fp->type = die_type (die, cu);
12512
12513 SET_FIELD_BITPOS (*fp, 0);
12514
12515 /* Get bit size of field (zero if none). */
12516 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12517 if (attr)
12518 {
12519 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12520 }
12521 else
12522 {
12523 FIELD_BITSIZE (*fp) = 0;
12524 }
12525
12526 /* Get bit offset of field. */
12527 if (handle_data_member_location (die, cu, &offset))
12528 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12529 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12530 if (attr)
12531 {
12532 if (gdbarch_bits_big_endian (gdbarch))
12533 {
12534 /* For big endian bits, the DW_AT_bit_offset gives the
12535 additional bit offset from the MSB of the containing
12536 anonymous object to the MSB of the field. We don't
12537 have to do anything special since we don't need to
12538 know the size of the anonymous object. */
12539 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12540 }
12541 else
12542 {
12543 /* For little endian bits, compute the bit offset to the
12544 MSB of the anonymous object, subtract off the number of
12545 bits from the MSB of the field to the MSB of the
12546 object, and then subtract off the number of bits of
12547 the field itself. The result is the bit offset of
12548 the LSB of the field. */
12549 int anonymous_size;
12550 int bit_offset = DW_UNSND (attr);
12551
12552 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12553 if (attr)
12554 {
12555 /* The size of the anonymous object containing
12556 the bit field is explicit, so use the
12557 indicated size (in bytes). */
12558 anonymous_size = DW_UNSND (attr);
12559 }
12560 else
12561 {
12562 /* The size of the anonymous object containing
12563 the bit field must be inferred from the type
12564 attribute of the data member containing the
12565 bit field. */
12566 anonymous_size = TYPE_LENGTH (fp->type);
12567 }
12568 SET_FIELD_BITPOS (*fp,
12569 (FIELD_BITPOS (*fp)
12570 + anonymous_size * bits_per_byte
12571 - bit_offset - FIELD_BITSIZE (*fp)));
12572 }
12573 }
12574 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
12575 if (attr != NULL)
12576 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
12577 + dwarf2_get_attr_constant_value (attr, 0)));
12578
12579 /* Get name of field. */
12580 fieldname = dwarf2_name (die, cu);
12581 if (fieldname == NULL)
12582 fieldname = "";
12583
12584 /* The name is already allocated along with this objfile, so we don't
12585 need to duplicate it for the type. */
12586 fp->name = fieldname;
12587
12588 /* Change accessibility for artificial fields (e.g. virtual table
12589 pointer or virtual base class pointer) to private. */
12590 if (dwarf2_attr (die, DW_AT_artificial, cu))
12591 {
12592 FIELD_ARTIFICIAL (*fp) = 1;
12593 new_field->accessibility = DW_ACCESS_private;
12594 fip->non_public_fields = 1;
12595 }
12596 }
12597 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12598 {
12599 /* C++ static member. */
12600
12601 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12602 is a declaration, but all versions of G++ as of this writing
12603 (so through at least 3.2.1) incorrectly generate
12604 DW_TAG_variable tags. */
12605
12606 const char *physname;
12607
12608 /* Get name of field. */
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 return;
12612
12613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12614 if (attr
12615 /* Only create a symbol if this is an external value.
12616 new_symbol checks this and puts the value in the global symbol
12617 table, which we want. If it is not external, new_symbol
12618 will try to put the value in cu->list_in_scope which is wrong. */
12619 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12620 {
12621 /* A static const member, not much different than an enum as far as
12622 we're concerned, except that we can support more types. */
12623 new_symbol (die, NULL, cu);
12624 }
12625
12626 /* Get physical name. */
12627 physname = dwarf2_physname (fieldname, die, cu);
12628
12629 /* The name is already allocated along with this objfile, so we don't
12630 need to duplicate it for the type. */
12631 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12632 FIELD_TYPE (*fp) = die_type (die, cu);
12633 FIELD_NAME (*fp) = fieldname;
12634 }
12635 else if (die->tag == DW_TAG_inheritance)
12636 {
12637 LONGEST offset;
12638
12639 /* C++ base class field. */
12640 if (handle_data_member_location (die, cu, &offset))
12641 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12642 FIELD_BITSIZE (*fp) = 0;
12643 FIELD_TYPE (*fp) = die_type (die, cu);
12644 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12645 fip->nbaseclasses++;
12646 }
12647 }
12648
12649 /* Add a typedef defined in the scope of the FIP's class. */
12650
12651 static void
12652 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12653 struct dwarf2_cu *cu)
12654 {
12655 struct typedef_field_list *new_field;
12656 struct typedef_field *fp;
12657
12658 /* Allocate a new field list entry and link it in. */
12659 new_field = XCNEW (struct typedef_field_list);
12660 make_cleanup (xfree, new_field);
12661
12662 gdb_assert (die->tag == DW_TAG_typedef);
12663
12664 fp = &new_field->field;
12665
12666 /* Get name of field. */
12667 fp->name = dwarf2_name (die, cu);
12668 if (fp->name == NULL)
12669 return;
12670
12671 fp->type = read_type_die (die, cu);
12672
12673 new_field->next = fip->typedef_field_list;
12674 fip->typedef_field_list = new_field;
12675 fip->typedef_field_list_count++;
12676 }
12677
12678 /* Create the vector of fields, and attach it to the type. */
12679
12680 static void
12681 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12682 struct dwarf2_cu *cu)
12683 {
12684 int nfields = fip->nfields;
12685
12686 /* Record the field count, allocate space for the array of fields,
12687 and create blank accessibility bitfields if necessary. */
12688 TYPE_NFIELDS (type) = nfields;
12689 TYPE_FIELDS (type) = (struct field *)
12690 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12691 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12692
12693 if (fip->non_public_fields && cu->language != language_ada)
12694 {
12695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12696
12697 TYPE_FIELD_PRIVATE_BITS (type) =
12698 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12699 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12700
12701 TYPE_FIELD_PROTECTED_BITS (type) =
12702 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12703 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12704
12705 TYPE_FIELD_IGNORE_BITS (type) =
12706 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12707 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12708 }
12709
12710 /* If the type has baseclasses, allocate and clear a bit vector for
12711 TYPE_FIELD_VIRTUAL_BITS. */
12712 if (fip->nbaseclasses && cu->language != language_ada)
12713 {
12714 int num_bytes = B_BYTES (fip->nbaseclasses);
12715 unsigned char *pointer;
12716
12717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12718 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
12719 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12720 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12721 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12722 }
12723
12724 /* Copy the saved-up fields into the field vector. Start from the head of
12725 the list, adding to the tail of the field array, so that they end up in
12726 the same order in the array in which they were added to the list. */
12727 while (nfields-- > 0)
12728 {
12729 struct nextfield *fieldp;
12730
12731 if (fip->fields)
12732 {
12733 fieldp = fip->fields;
12734 fip->fields = fieldp->next;
12735 }
12736 else
12737 {
12738 fieldp = fip->baseclasses;
12739 fip->baseclasses = fieldp->next;
12740 }
12741
12742 TYPE_FIELD (type, nfields) = fieldp->field;
12743 switch (fieldp->accessibility)
12744 {
12745 case DW_ACCESS_private:
12746 if (cu->language != language_ada)
12747 SET_TYPE_FIELD_PRIVATE (type, nfields);
12748 break;
12749
12750 case DW_ACCESS_protected:
12751 if (cu->language != language_ada)
12752 SET_TYPE_FIELD_PROTECTED (type, nfields);
12753 break;
12754
12755 case DW_ACCESS_public:
12756 break;
12757
12758 default:
12759 /* Unknown accessibility. Complain and treat it as public. */
12760 {
12761 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12762 fieldp->accessibility);
12763 }
12764 break;
12765 }
12766 if (nfields < fip->nbaseclasses)
12767 {
12768 switch (fieldp->virtuality)
12769 {
12770 case DW_VIRTUALITY_virtual:
12771 case DW_VIRTUALITY_pure_virtual:
12772 if (cu->language == language_ada)
12773 error (_("unexpected virtuality in component of Ada type"));
12774 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12775 break;
12776 }
12777 }
12778 }
12779 }
12780
12781 /* Return true if this member function is a constructor, false
12782 otherwise. */
12783
12784 static int
12785 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12786 {
12787 const char *fieldname;
12788 const char *type_name;
12789 int len;
12790
12791 if (die->parent == NULL)
12792 return 0;
12793
12794 if (die->parent->tag != DW_TAG_structure_type
12795 && die->parent->tag != DW_TAG_union_type
12796 && die->parent->tag != DW_TAG_class_type)
12797 return 0;
12798
12799 fieldname = dwarf2_name (die, cu);
12800 type_name = dwarf2_name (die->parent, cu);
12801 if (fieldname == NULL || type_name == NULL)
12802 return 0;
12803
12804 len = strlen (fieldname);
12805 return (strncmp (fieldname, type_name, len) == 0
12806 && (type_name[len] == '\0' || type_name[len] == '<'));
12807 }
12808
12809 /* Add a member function to the proper fieldlist. */
12810
12811 static void
12812 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12813 struct type *type, struct dwarf2_cu *cu)
12814 {
12815 struct objfile *objfile = cu->objfile;
12816 struct attribute *attr;
12817 struct fnfieldlist *flp;
12818 int i;
12819 struct fn_field *fnp;
12820 const char *fieldname;
12821 struct nextfnfield *new_fnfield;
12822 struct type *this_type;
12823 enum dwarf_access_attribute accessibility;
12824
12825 if (cu->language == language_ada)
12826 error (_("unexpected member function in Ada type"));
12827
12828 /* Get name of member function. */
12829 fieldname = dwarf2_name (die, cu);
12830 if (fieldname == NULL)
12831 return;
12832
12833 /* Look up member function name in fieldlist. */
12834 for (i = 0; i < fip->nfnfields; i++)
12835 {
12836 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12837 break;
12838 }
12839
12840 /* Create new list element if necessary. */
12841 if (i < fip->nfnfields)
12842 flp = &fip->fnfieldlists[i];
12843 else
12844 {
12845 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12846 {
12847 fip->fnfieldlists = (struct fnfieldlist *)
12848 xrealloc (fip->fnfieldlists,
12849 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12850 * sizeof (struct fnfieldlist));
12851 if (fip->nfnfields == 0)
12852 make_cleanup (free_current_contents, &fip->fnfieldlists);
12853 }
12854 flp = &fip->fnfieldlists[fip->nfnfields];
12855 flp->name = fieldname;
12856 flp->length = 0;
12857 flp->head = NULL;
12858 i = fip->nfnfields++;
12859 }
12860
12861 /* Create a new member function field and chain it to the field list
12862 entry. */
12863 new_fnfield = XNEW (struct nextfnfield);
12864 make_cleanup (xfree, new_fnfield);
12865 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12866 new_fnfield->next = flp->head;
12867 flp->head = new_fnfield;
12868 flp->length++;
12869
12870 /* Fill in the member function field info. */
12871 fnp = &new_fnfield->fnfield;
12872
12873 /* Delay processing of the physname until later. */
12874 if (cu->language == language_cplus)
12875 {
12876 add_to_method_list (type, i, flp->length - 1, fieldname,
12877 die, cu);
12878 }
12879 else
12880 {
12881 const char *physname = dwarf2_physname (fieldname, die, cu);
12882 fnp->physname = physname ? physname : "";
12883 }
12884
12885 fnp->type = alloc_type (objfile);
12886 this_type = read_type_die (die, cu);
12887 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12888 {
12889 int nparams = TYPE_NFIELDS (this_type);
12890
12891 /* TYPE is the domain of this method, and THIS_TYPE is the type
12892 of the method itself (TYPE_CODE_METHOD). */
12893 smash_to_method_type (fnp->type, type,
12894 TYPE_TARGET_TYPE (this_type),
12895 TYPE_FIELDS (this_type),
12896 TYPE_NFIELDS (this_type),
12897 TYPE_VARARGS (this_type));
12898
12899 /* Handle static member functions.
12900 Dwarf2 has no clean way to discern C++ static and non-static
12901 member functions. G++ helps GDB by marking the first
12902 parameter for non-static member functions (which is the this
12903 pointer) as artificial. We obtain this information from
12904 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12905 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12906 fnp->voffset = VOFFSET_STATIC;
12907 }
12908 else
12909 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12910 dwarf2_full_name (fieldname, die, cu));
12911
12912 /* Get fcontext from DW_AT_containing_type if present. */
12913 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12914 fnp->fcontext = die_containing_type (die, cu);
12915
12916 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12917 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12918
12919 /* Get accessibility. */
12920 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12921 if (attr)
12922 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
12923 else
12924 accessibility = dwarf2_default_access_attribute (die, cu);
12925 switch (accessibility)
12926 {
12927 case DW_ACCESS_private:
12928 fnp->is_private = 1;
12929 break;
12930 case DW_ACCESS_protected:
12931 fnp->is_protected = 1;
12932 break;
12933 }
12934
12935 /* Check for artificial methods. */
12936 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12937 if (attr && DW_UNSND (attr) != 0)
12938 fnp->is_artificial = 1;
12939
12940 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12941
12942 /* Get index in virtual function table if it is a virtual member
12943 function. For older versions of GCC, this is an offset in the
12944 appropriate virtual table, as specified by DW_AT_containing_type.
12945 For everyone else, it is an expression to be evaluated relative
12946 to the object address. */
12947
12948 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12949 if (attr)
12950 {
12951 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12952 {
12953 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12954 {
12955 /* Old-style GCC. */
12956 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12957 }
12958 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12959 || (DW_BLOCK (attr)->size > 1
12960 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12961 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12962 {
12963 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12964 if ((fnp->voffset % cu->header.addr_size) != 0)
12965 dwarf2_complex_location_expr_complaint ();
12966 else
12967 fnp->voffset /= cu->header.addr_size;
12968 fnp->voffset += 2;
12969 }
12970 else
12971 dwarf2_complex_location_expr_complaint ();
12972
12973 if (!fnp->fcontext)
12974 {
12975 /* If there is no `this' field and no DW_AT_containing_type,
12976 we cannot actually find a base class context for the
12977 vtable! */
12978 if (TYPE_NFIELDS (this_type) == 0
12979 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12980 {
12981 complaint (&symfile_complaints,
12982 _("cannot determine context for virtual member "
12983 "function \"%s\" (offset %d)"),
12984 fieldname, die->offset.sect_off);
12985 }
12986 else
12987 {
12988 fnp->fcontext
12989 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12990 }
12991 }
12992 }
12993 else if (attr_form_is_section_offset (attr))
12994 {
12995 dwarf2_complex_location_expr_complaint ();
12996 }
12997 else
12998 {
12999 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13000 fieldname);
13001 }
13002 }
13003 else
13004 {
13005 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13006 if (attr && DW_UNSND (attr))
13007 {
13008 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13009 complaint (&symfile_complaints,
13010 _("Member function \"%s\" (offset %d) is virtual "
13011 "but the vtable offset is not specified"),
13012 fieldname, die->offset.sect_off);
13013 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13014 TYPE_CPLUS_DYNAMIC (type) = 1;
13015 }
13016 }
13017 }
13018
13019 /* Create the vector of member function fields, and attach it to the type. */
13020
13021 static void
13022 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
13023 struct dwarf2_cu *cu)
13024 {
13025 struct fnfieldlist *flp;
13026 int i;
13027
13028 if (cu->language == language_ada)
13029 error (_("unexpected member functions in Ada type"));
13030
13031 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13032 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13033 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13034
13035 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13036 {
13037 struct nextfnfield *nfp = flp->head;
13038 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13039 int k;
13040
13041 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13042 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13043 fn_flp->fn_fields = (struct fn_field *)
13044 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13045 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13046 fn_flp->fn_fields[k] = nfp->fnfield;
13047 }
13048
13049 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13050 }
13051
13052 /* Returns non-zero if NAME is the name of a vtable member in CU's
13053 language, zero otherwise. */
13054 static int
13055 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13056 {
13057 static const char vptr[] = "_vptr";
13058 static const char vtable[] = "vtable";
13059
13060 /* Look for the C++ form of the vtable. */
13061 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
13062 return 1;
13063
13064 return 0;
13065 }
13066
13067 /* GCC outputs unnamed structures that are really pointers to member
13068 functions, with the ABI-specified layout. If TYPE describes
13069 such a structure, smash it into a member function type.
13070
13071 GCC shouldn't do this; it should just output pointer to member DIEs.
13072 This is GCC PR debug/28767. */
13073
13074 static void
13075 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13076 {
13077 struct type *pfn_type, *self_type, *new_type;
13078
13079 /* Check for a structure with no name and two children. */
13080 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13081 return;
13082
13083 /* Check for __pfn and __delta members. */
13084 if (TYPE_FIELD_NAME (type, 0) == NULL
13085 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13086 || TYPE_FIELD_NAME (type, 1) == NULL
13087 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13088 return;
13089
13090 /* Find the type of the method. */
13091 pfn_type = TYPE_FIELD_TYPE (type, 0);
13092 if (pfn_type == NULL
13093 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13094 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13095 return;
13096
13097 /* Look for the "this" argument. */
13098 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13099 if (TYPE_NFIELDS (pfn_type) == 0
13100 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13101 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13102 return;
13103
13104 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13105 new_type = alloc_type (objfile);
13106 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13107 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13108 TYPE_VARARGS (pfn_type));
13109 smash_to_methodptr_type (type, new_type);
13110 }
13111
13112 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13113 (icc). */
13114
13115 static int
13116 producer_is_icc (struct dwarf2_cu *cu)
13117 {
13118 if (!cu->checked_producer)
13119 check_producer (cu);
13120
13121 return cu->producer_is_icc;
13122 }
13123
13124 /* Called when we find the DIE that starts a structure or union scope
13125 (definition) to create a type for the structure or union. Fill in
13126 the type's name and general properties; the members will not be
13127 processed until process_structure_scope. A symbol table entry for
13128 the type will also not be done until process_structure_scope (assuming
13129 the type has a name).
13130
13131 NOTE: we need to call these functions regardless of whether or not the
13132 DIE has a DW_AT_name attribute, since it might be an anonymous
13133 structure or union. This gets the type entered into our set of
13134 user defined types. */
13135
13136 static struct type *
13137 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13138 {
13139 struct objfile *objfile = cu->objfile;
13140 struct type *type;
13141 struct attribute *attr;
13142 const char *name;
13143
13144 /* If the definition of this type lives in .debug_types, read that type.
13145 Don't follow DW_AT_specification though, that will take us back up
13146 the chain and we want to go down. */
13147 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13148 if (attr)
13149 {
13150 type = get_DW_AT_signature_type (die, attr, cu);
13151
13152 /* The type's CU may not be the same as CU.
13153 Ensure TYPE is recorded with CU in die_type_hash. */
13154 return set_die_type (die, type, cu);
13155 }
13156
13157 type = alloc_type (objfile);
13158 INIT_CPLUS_SPECIFIC (type);
13159
13160 name = dwarf2_name (die, cu);
13161 if (name != NULL)
13162 {
13163 if (cu->language == language_cplus
13164 || cu->language == language_d
13165 || cu->language == language_rust)
13166 {
13167 const char *full_name = dwarf2_full_name (name, die, cu);
13168
13169 /* dwarf2_full_name might have already finished building the DIE's
13170 type. If so, there is no need to continue. */
13171 if (get_die_type (die, cu) != NULL)
13172 return get_die_type (die, cu);
13173
13174 TYPE_TAG_NAME (type) = full_name;
13175 if (die->tag == DW_TAG_structure_type
13176 || die->tag == DW_TAG_class_type)
13177 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13178 }
13179 else
13180 {
13181 /* The name is already allocated along with this objfile, so
13182 we don't need to duplicate it for the type. */
13183 TYPE_TAG_NAME (type) = name;
13184 if (die->tag == DW_TAG_class_type)
13185 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13186 }
13187 }
13188
13189 if (die->tag == DW_TAG_structure_type)
13190 {
13191 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13192 }
13193 else if (die->tag == DW_TAG_union_type)
13194 {
13195 TYPE_CODE (type) = TYPE_CODE_UNION;
13196 }
13197 else
13198 {
13199 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13200 }
13201
13202 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13203 TYPE_DECLARED_CLASS (type) = 1;
13204
13205 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13206 if (attr)
13207 {
13208 if (attr_form_is_constant (attr))
13209 TYPE_LENGTH (type) = DW_UNSND (attr);
13210 else
13211 {
13212 /* For the moment, dynamic type sizes are not supported
13213 by GDB's struct type. The actual size is determined
13214 on-demand when resolving the type of a given object,
13215 so set the type's length to zero for now. Otherwise,
13216 we record an expression as the length, and that expression
13217 could lead to a very large value, which could eventually
13218 lead to us trying to allocate that much memory when creating
13219 a value of that type. */
13220 TYPE_LENGTH (type) = 0;
13221 }
13222 }
13223 else
13224 {
13225 TYPE_LENGTH (type) = 0;
13226 }
13227
13228 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13229 {
13230 /* ICC does not output the required DW_AT_declaration
13231 on incomplete types, but gives them a size of zero. */
13232 TYPE_STUB (type) = 1;
13233 }
13234 else
13235 TYPE_STUB_SUPPORTED (type) = 1;
13236
13237 if (die_is_declaration (die, cu))
13238 TYPE_STUB (type) = 1;
13239 else if (attr == NULL && die->child == NULL
13240 && producer_is_realview (cu->producer))
13241 /* RealView does not output the required DW_AT_declaration
13242 on incomplete types. */
13243 TYPE_STUB (type) = 1;
13244
13245 /* We need to add the type field to the die immediately so we don't
13246 infinitely recurse when dealing with pointers to the structure
13247 type within the structure itself. */
13248 set_die_type (die, type, cu);
13249
13250 /* set_die_type should be already done. */
13251 set_descriptive_type (type, die, cu);
13252
13253 return type;
13254 }
13255
13256 /* Finish creating a structure or union type, including filling in
13257 its members and creating a symbol for it. */
13258
13259 static void
13260 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13261 {
13262 struct objfile *objfile = cu->objfile;
13263 struct die_info *child_die;
13264 struct type *type;
13265
13266 type = get_die_type (die, cu);
13267 if (type == NULL)
13268 type = read_structure_type (die, cu);
13269
13270 if (die->child != NULL && ! die_is_declaration (die, cu))
13271 {
13272 struct field_info fi;
13273 VEC (symbolp) *template_args = NULL;
13274 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13275
13276 memset (&fi, 0, sizeof (struct field_info));
13277
13278 child_die = die->child;
13279
13280 while (child_die && child_die->tag)
13281 {
13282 if (child_die->tag == DW_TAG_member
13283 || child_die->tag == DW_TAG_variable)
13284 {
13285 /* NOTE: carlton/2002-11-05: A C++ static data member
13286 should be a DW_TAG_member that is a declaration, but
13287 all versions of G++ as of this writing (so through at
13288 least 3.2.1) incorrectly generate DW_TAG_variable
13289 tags for them instead. */
13290 dwarf2_add_field (&fi, child_die, cu);
13291 }
13292 else if (child_die->tag == DW_TAG_subprogram)
13293 {
13294 /* Rust doesn't have member functions in the C++ sense.
13295 However, it does emit ordinary functions as children
13296 of a struct DIE. */
13297 if (cu->language == language_rust)
13298 read_func_scope (child_die, cu);
13299 else
13300 {
13301 /* C++ member function. */
13302 dwarf2_add_member_fn (&fi, child_die, type, cu);
13303 }
13304 }
13305 else if (child_die->tag == DW_TAG_inheritance)
13306 {
13307 /* C++ base class field. */
13308 dwarf2_add_field (&fi, child_die, cu);
13309 }
13310 else if (child_die->tag == DW_TAG_typedef)
13311 dwarf2_add_typedef (&fi, child_die, cu);
13312 else if (child_die->tag == DW_TAG_template_type_param
13313 || child_die->tag == DW_TAG_template_value_param)
13314 {
13315 struct symbol *arg = new_symbol (child_die, NULL, cu);
13316
13317 if (arg != NULL)
13318 VEC_safe_push (symbolp, template_args, arg);
13319 }
13320
13321 child_die = sibling_die (child_die);
13322 }
13323
13324 /* Attach template arguments to type. */
13325 if (! VEC_empty (symbolp, template_args))
13326 {
13327 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13328 TYPE_N_TEMPLATE_ARGUMENTS (type)
13329 = VEC_length (symbolp, template_args);
13330 TYPE_TEMPLATE_ARGUMENTS (type)
13331 = XOBNEWVEC (&objfile->objfile_obstack,
13332 struct symbol *,
13333 TYPE_N_TEMPLATE_ARGUMENTS (type));
13334 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13335 VEC_address (symbolp, template_args),
13336 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13337 * sizeof (struct symbol *)));
13338 VEC_free (symbolp, template_args);
13339 }
13340
13341 /* Attach fields and member functions to the type. */
13342 if (fi.nfields)
13343 dwarf2_attach_fields_to_type (&fi, type, cu);
13344 if (fi.nfnfields)
13345 {
13346 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13347
13348 /* Get the type which refers to the base class (possibly this
13349 class itself) which contains the vtable pointer for the current
13350 class from the DW_AT_containing_type attribute. This use of
13351 DW_AT_containing_type is a GNU extension. */
13352
13353 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13354 {
13355 struct type *t = die_containing_type (die, cu);
13356
13357 set_type_vptr_basetype (type, t);
13358 if (type == t)
13359 {
13360 int i;
13361
13362 /* Our own class provides vtbl ptr. */
13363 for (i = TYPE_NFIELDS (t) - 1;
13364 i >= TYPE_N_BASECLASSES (t);
13365 --i)
13366 {
13367 const char *fieldname = TYPE_FIELD_NAME (t, i);
13368
13369 if (is_vtable_name (fieldname, cu))
13370 {
13371 set_type_vptr_fieldno (type, i);
13372 break;
13373 }
13374 }
13375
13376 /* Complain if virtual function table field not found. */
13377 if (i < TYPE_N_BASECLASSES (t))
13378 complaint (&symfile_complaints,
13379 _("virtual function table pointer "
13380 "not found when defining class '%s'"),
13381 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13382 "");
13383 }
13384 else
13385 {
13386 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13387 }
13388 }
13389 else if (cu->producer
13390 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13391 {
13392 /* The IBM XLC compiler does not provide direct indication
13393 of the containing type, but the vtable pointer is
13394 always named __vfp. */
13395
13396 int i;
13397
13398 for (i = TYPE_NFIELDS (type) - 1;
13399 i >= TYPE_N_BASECLASSES (type);
13400 --i)
13401 {
13402 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13403 {
13404 set_type_vptr_fieldno (type, i);
13405 set_type_vptr_basetype (type, type);
13406 break;
13407 }
13408 }
13409 }
13410 }
13411
13412 /* Copy fi.typedef_field_list linked list elements content into the
13413 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13414 if (fi.typedef_field_list)
13415 {
13416 int i = fi.typedef_field_list_count;
13417
13418 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13419 TYPE_TYPEDEF_FIELD_ARRAY (type)
13420 = ((struct typedef_field *)
13421 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
13422 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13423
13424 /* Reverse the list order to keep the debug info elements order. */
13425 while (--i >= 0)
13426 {
13427 struct typedef_field *dest, *src;
13428
13429 dest = &TYPE_TYPEDEF_FIELD (type, i);
13430 src = &fi.typedef_field_list->field;
13431 fi.typedef_field_list = fi.typedef_field_list->next;
13432 *dest = *src;
13433 }
13434 }
13435
13436 do_cleanups (back_to);
13437 }
13438
13439 quirk_gcc_member_function_pointer (type, objfile);
13440
13441 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13442 snapshots) has been known to create a die giving a declaration
13443 for a class that has, as a child, a die giving a definition for a
13444 nested class. So we have to process our children even if the
13445 current die is a declaration. Normally, of course, a declaration
13446 won't have any children at all. */
13447
13448 child_die = die->child;
13449
13450 while (child_die != NULL && child_die->tag)
13451 {
13452 if (child_die->tag == DW_TAG_member
13453 || child_die->tag == DW_TAG_variable
13454 || child_die->tag == DW_TAG_inheritance
13455 || child_die->tag == DW_TAG_template_value_param
13456 || child_die->tag == DW_TAG_template_type_param)
13457 {
13458 /* Do nothing. */
13459 }
13460 else
13461 process_die (child_die, cu);
13462
13463 child_die = sibling_die (child_die);
13464 }
13465
13466 /* Do not consider external references. According to the DWARF standard,
13467 these DIEs are identified by the fact that they have no byte_size
13468 attribute, and a declaration attribute. */
13469 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13470 || !die_is_declaration (die, cu))
13471 new_symbol (die, type, cu);
13472 }
13473
13474 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13475 update TYPE using some information only available in DIE's children. */
13476
13477 static void
13478 update_enumeration_type_from_children (struct die_info *die,
13479 struct type *type,
13480 struct dwarf2_cu *cu)
13481 {
13482 struct obstack obstack;
13483 struct die_info *child_die;
13484 int unsigned_enum = 1;
13485 int flag_enum = 1;
13486 ULONGEST mask = 0;
13487 struct cleanup *old_chain;
13488
13489 obstack_init (&obstack);
13490 old_chain = make_cleanup_obstack_free (&obstack);
13491
13492 for (child_die = die->child;
13493 child_die != NULL && child_die->tag;
13494 child_die = sibling_die (child_die))
13495 {
13496 struct attribute *attr;
13497 LONGEST value;
13498 const gdb_byte *bytes;
13499 struct dwarf2_locexpr_baton *baton;
13500 const char *name;
13501
13502 if (child_die->tag != DW_TAG_enumerator)
13503 continue;
13504
13505 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13506 if (attr == NULL)
13507 continue;
13508
13509 name = dwarf2_name (child_die, cu);
13510 if (name == NULL)
13511 name = "<anonymous enumerator>";
13512
13513 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13514 &value, &bytes, &baton);
13515 if (value < 0)
13516 {
13517 unsigned_enum = 0;
13518 flag_enum = 0;
13519 }
13520 else if ((mask & value) != 0)
13521 flag_enum = 0;
13522 else
13523 mask |= value;
13524
13525 /* If we already know that the enum type is neither unsigned, nor
13526 a flag type, no need to look at the rest of the enumerates. */
13527 if (!unsigned_enum && !flag_enum)
13528 break;
13529 }
13530
13531 if (unsigned_enum)
13532 TYPE_UNSIGNED (type) = 1;
13533 if (flag_enum)
13534 TYPE_FLAG_ENUM (type) = 1;
13535
13536 do_cleanups (old_chain);
13537 }
13538
13539 /* Given a DW_AT_enumeration_type die, set its type. We do not
13540 complete the type's fields yet, or create any symbols. */
13541
13542 static struct type *
13543 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13544 {
13545 struct objfile *objfile = cu->objfile;
13546 struct type *type;
13547 struct attribute *attr;
13548 const char *name;
13549
13550 /* If the definition of this type lives in .debug_types, read that type.
13551 Don't follow DW_AT_specification though, that will take us back up
13552 the chain and we want to go down. */
13553 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13554 if (attr)
13555 {
13556 type = get_DW_AT_signature_type (die, attr, cu);
13557
13558 /* The type's CU may not be the same as CU.
13559 Ensure TYPE is recorded with CU in die_type_hash. */
13560 return set_die_type (die, type, cu);
13561 }
13562
13563 type = alloc_type (objfile);
13564
13565 TYPE_CODE (type) = TYPE_CODE_ENUM;
13566 name = dwarf2_full_name (NULL, die, cu);
13567 if (name != NULL)
13568 TYPE_TAG_NAME (type) = name;
13569
13570 attr = dwarf2_attr (die, DW_AT_type, cu);
13571 if (attr != NULL)
13572 {
13573 struct type *underlying_type = die_type (die, cu);
13574
13575 TYPE_TARGET_TYPE (type) = underlying_type;
13576 }
13577
13578 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13579 if (attr)
13580 {
13581 TYPE_LENGTH (type) = DW_UNSND (attr);
13582 }
13583 else
13584 {
13585 TYPE_LENGTH (type) = 0;
13586 }
13587
13588 /* The enumeration DIE can be incomplete. In Ada, any type can be
13589 declared as private in the package spec, and then defined only
13590 inside the package body. Such types are known as Taft Amendment
13591 Types. When another package uses such a type, an incomplete DIE
13592 may be generated by the compiler. */
13593 if (die_is_declaration (die, cu))
13594 TYPE_STUB (type) = 1;
13595
13596 /* Finish the creation of this type by using the enum's children.
13597 We must call this even when the underlying type has been provided
13598 so that we can determine if we're looking at a "flag" enum. */
13599 update_enumeration_type_from_children (die, type, cu);
13600
13601 /* If this type has an underlying type that is not a stub, then we
13602 may use its attributes. We always use the "unsigned" attribute
13603 in this situation, because ordinarily we guess whether the type
13604 is unsigned -- but the guess can be wrong and the underlying type
13605 can tell us the reality. However, we defer to a local size
13606 attribute if one exists, because this lets the compiler override
13607 the underlying type if needed. */
13608 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13609 {
13610 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13611 if (TYPE_LENGTH (type) == 0)
13612 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13613 }
13614
13615 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13616
13617 return set_die_type (die, type, cu);
13618 }
13619
13620 /* Given a pointer to a die which begins an enumeration, process all
13621 the dies that define the members of the enumeration, and create the
13622 symbol for the enumeration type.
13623
13624 NOTE: We reverse the order of the element list. */
13625
13626 static void
13627 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13628 {
13629 struct type *this_type;
13630
13631 this_type = get_die_type (die, cu);
13632 if (this_type == NULL)
13633 this_type = read_enumeration_type (die, cu);
13634
13635 if (die->child != NULL)
13636 {
13637 struct die_info *child_die;
13638 struct symbol *sym;
13639 struct field *fields = NULL;
13640 int num_fields = 0;
13641 const char *name;
13642
13643 child_die = die->child;
13644 while (child_die && child_die->tag)
13645 {
13646 if (child_die->tag != DW_TAG_enumerator)
13647 {
13648 process_die (child_die, cu);
13649 }
13650 else
13651 {
13652 name = dwarf2_name (child_die, cu);
13653 if (name)
13654 {
13655 sym = new_symbol (child_die, this_type, cu);
13656
13657 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13658 {
13659 fields = (struct field *)
13660 xrealloc (fields,
13661 (num_fields + DW_FIELD_ALLOC_CHUNK)
13662 * sizeof (struct field));
13663 }
13664
13665 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13666 FIELD_TYPE (fields[num_fields]) = NULL;
13667 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13668 FIELD_BITSIZE (fields[num_fields]) = 0;
13669
13670 num_fields++;
13671 }
13672 }
13673
13674 child_die = sibling_die (child_die);
13675 }
13676
13677 if (num_fields)
13678 {
13679 TYPE_NFIELDS (this_type) = num_fields;
13680 TYPE_FIELDS (this_type) = (struct field *)
13681 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13682 memcpy (TYPE_FIELDS (this_type), fields,
13683 sizeof (struct field) * num_fields);
13684 xfree (fields);
13685 }
13686 }
13687
13688 /* If we are reading an enum from a .debug_types unit, and the enum
13689 is a declaration, and the enum is not the signatured type in the
13690 unit, then we do not want to add a symbol for it. Adding a
13691 symbol would in some cases obscure the true definition of the
13692 enum, giving users an incomplete type when the definition is
13693 actually available. Note that we do not want to do this for all
13694 enums which are just declarations, because C++0x allows forward
13695 enum declarations. */
13696 if (cu->per_cu->is_debug_types
13697 && die_is_declaration (die, cu))
13698 {
13699 struct signatured_type *sig_type;
13700
13701 sig_type = (struct signatured_type *) cu->per_cu;
13702 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13703 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13704 return;
13705 }
13706
13707 new_symbol (die, this_type, cu);
13708 }
13709
13710 /* Extract all information from a DW_TAG_array_type DIE and put it in
13711 the DIE's type field. For now, this only handles one dimensional
13712 arrays. */
13713
13714 static struct type *
13715 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13716 {
13717 struct objfile *objfile = cu->objfile;
13718 struct die_info *child_die;
13719 struct type *type;
13720 struct type *element_type, *range_type, *index_type;
13721 struct type **range_types = NULL;
13722 struct attribute *attr;
13723 int ndim = 0;
13724 struct cleanup *back_to;
13725 const char *name;
13726 unsigned int bit_stride = 0;
13727
13728 element_type = die_type (die, cu);
13729
13730 /* The die_type call above may have already set the type for this DIE. */
13731 type = get_die_type (die, cu);
13732 if (type)
13733 return type;
13734
13735 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13736 if (attr != NULL)
13737 bit_stride = DW_UNSND (attr) * 8;
13738
13739 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13740 if (attr != NULL)
13741 bit_stride = DW_UNSND (attr);
13742
13743 /* Irix 6.2 native cc creates array types without children for
13744 arrays with unspecified length. */
13745 if (die->child == NULL)
13746 {
13747 index_type = objfile_type (objfile)->builtin_int;
13748 range_type = create_static_range_type (NULL, index_type, 0, -1);
13749 type = create_array_type_with_stride (NULL, element_type, range_type,
13750 bit_stride);
13751 return set_die_type (die, type, cu);
13752 }
13753
13754 back_to = make_cleanup (null_cleanup, NULL);
13755 child_die = die->child;
13756 while (child_die && child_die->tag)
13757 {
13758 if (child_die->tag == DW_TAG_subrange_type)
13759 {
13760 struct type *child_type = read_type_die (child_die, cu);
13761
13762 if (child_type != NULL)
13763 {
13764 /* The range type was succesfully read. Save it for the
13765 array type creation. */
13766 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13767 {
13768 range_types = (struct type **)
13769 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13770 * sizeof (struct type *));
13771 if (ndim == 0)
13772 make_cleanup (free_current_contents, &range_types);
13773 }
13774 range_types[ndim++] = child_type;
13775 }
13776 }
13777 child_die = sibling_die (child_die);
13778 }
13779
13780 /* Dwarf2 dimensions are output from left to right, create the
13781 necessary array types in backwards order. */
13782
13783 type = element_type;
13784
13785 if (read_array_order (die, cu) == DW_ORD_col_major)
13786 {
13787 int i = 0;
13788
13789 while (i < ndim)
13790 type = create_array_type_with_stride (NULL, type, range_types[i++],
13791 bit_stride);
13792 }
13793 else
13794 {
13795 while (ndim-- > 0)
13796 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13797 bit_stride);
13798 }
13799
13800 /* Understand Dwarf2 support for vector types (like they occur on
13801 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13802 array type. This is not part of the Dwarf2/3 standard yet, but a
13803 custom vendor extension. The main difference between a regular
13804 array and the vector variant is that vectors are passed by value
13805 to functions. */
13806 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13807 if (attr)
13808 make_vector_type (type);
13809
13810 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13811 implementation may choose to implement triple vectors using this
13812 attribute. */
13813 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13814 if (attr)
13815 {
13816 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13817 TYPE_LENGTH (type) = DW_UNSND (attr);
13818 else
13819 complaint (&symfile_complaints,
13820 _("DW_AT_byte_size for array type smaller "
13821 "than the total size of elements"));
13822 }
13823
13824 name = dwarf2_name (die, cu);
13825 if (name)
13826 TYPE_NAME (type) = name;
13827
13828 /* Install the type in the die. */
13829 set_die_type (die, type, cu);
13830
13831 /* set_die_type should be already done. */
13832 set_descriptive_type (type, die, cu);
13833
13834 do_cleanups (back_to);
13835
13836 return type;
13837 }
13838
13839 static enum dwarf_array_dim_ordering
13840 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13841 {
13842 struct attribute *attr;
13843
13844 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13845
13846 if (attr)
13847 return (enum dwarf_array_dim_ordering) DW_SND (attr);
13848
13849 /* GNU F77 is a special case, as at 08/2004 array type info is the
13850 opposite order to the dwarf2 specification, but data is still
13851 laid out as per normal fortran.
13852
13853 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13854 version checking. */
13855
13856 if (cu->language == language_fortran
13857 && cu->producer && strstr (cu->producer, "GNU F77"))
13858 {
13859 return DW_ORD_row_major;
13860 }
13861
13862 switch (cu->language_defn->la_array_ordering)
13863 {
13864 case array_column_major:
13865 return DW_ORD_col_major;
13866 case array_row_major:
13867 default:
13868 return DW_ORD_row_major;
13869 };
13870 }
13871
13872 /* Extract all information from a DW_TAG_set_type DIE and put it in
13873 the DIE's type field. */
13874
13875 static struct type *
13876 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13877 {
13878 struct type *domain_type, *set_type;
13879 struct attribute *attr;
13880
13881 domain_type = die_type (die, cu);
13882
13883 /* The die_type call above may have already set the type for this DIE. */
13884 set_type = get_die_type (die, cu);
13885 if (set_type)
13886 return set_type;
13887
13888 set_type = create_set_type (NULL, domain_type);
13889
13890 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13891 if (attr)
13892 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13893
13894 return set_die_type (die, set_type, cu);
13895 }
13896
13897 /* A helper for read_common_block that creates a locexpr baton.
13898 SYM is the symbol which we are marking as computed.
13899 COMMON_DIE is the DIE for the common block.
13900 COMMON_LOC is the location expression attribute for the common
13901 block itself.
13902 MEMBER_LOC is the location expression attribute for the particular
13903 member of the common block that we are processing.
13904 CU is the CU from which the above come. */
13905
13906 static void
13907 mark_common_block_symbol_computed (struct symbol *sym,
13908 struct die_info *common_die,
13909 struct attribute *common_loc,
13910 struct attribute *member_loc,
13911 struct dwarf2_cu *cu)
13912 {
13913 struct objfile *objfile = dwarf2_per_objfile->objfile;
13914 struct dwarf2_locexpr_baton *baton;
13915 gdb_byte *ptr;
13916 unsigned int cu_off;
13917 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13918 LONGEST offset = 0;
13919
13920 gdb_assert (common_loc && member_loc);
13921 gdb_assert (attr_form_is_block (common_loc));
13922 gdb_assert (attr_form_is_block (member_loc)
13923 || attr_form_is_constant (member_loc));
13924
13925 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13926 baton->per_cu = cu->per_cu;
13927 gdb_assert (baton->per_cu);
13928
13929 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13930
13931 if (attr_form_is_constant (member_loc))
13932 {
13933 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13934 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13935 }
13936 else
13937 baton->size += DW_BLOCK (member_loc)->size;
13938
13939 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
13940 baton->data = ptr;
13941
13942 *ptr++ = DW_OP_call4;
13943 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13944 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13945 ptr += 4;
13946
13947 if (attr_form_is_constant (member_loc))
13948 {
13949 *ptr++ = DW_OP_addr;
13950 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13951 ptr += cu->header.addr_size;
13952 }
13953 else
13954 {
13955 /* We have to copy the data here, because DW_OP_call4 will only
13956 use a DW_AT_location attribute. */
13957 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13958 ptr += DW_BLOCK (member_loc)->size;
13959 }
13960
13961 *ptr++ = DW_OP_plus;
13962 gdb_assert (ptr - baton->data == baton->size);
13963
13964 SYMBOL_LOCATION_BATON (sym) = baton;
13965 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13966 }
13967
13968 /* Create appropriate locally-scoped variables for all the
13969 DW_TAG_common_block entries. Also create a struct common_block
13970 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13971 is used to sepate the common blocks name namespace from regular
13972 variable names. */
13973
13974 static void
13975 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13976 {
13977 struct attribute *attr;
13978
13979 attr = dwarf2_attr (die, DW_AT_location, cu);
13980 if (attr)
13981 {
13982 /* Support the .debug_loc offsets. */
13983 if (attr_form_is_block (attr))
13984 {
13985 /* Ok. */
13986 }
13987 else if (attr_form_is_section_offset (attr))
13988 {
13989 dwarf2_complex_location_expr_complaint ();
13990 attr = NULL;
13991 }
13992 else
13993 {
13994 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13995 "common block member");
13996 attr = NULL;
13997 }
13998 }
13999
14000 if (die->child != NULL)
14001 {
14002 struct objfile *objfile = cu->objfile;
14003 struct die_info *child_die;
14004 size_t n_entries = 0, size;
14005 struct common_block *common_block;
14006 struct symbol *sym;
14007
14008 for (child_die = die->child;
14009 child_die && child_die->tag;
14010 child_die = sibling_die (child_die))
14011 ++n_entries;
14012
14013 size = (sizeof (struct common_block)
14014 + (n_entries - 1) * sizeof (struct symbol *));
14015 common_block
14016 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14017 size);
14018 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14019 common_block->n_entries = 0;
14020
14021 for (child_die = die->child;
14022 child_die && child_die->tag;
14023 child_die = sibling_die (child_die))
14024 {
14025 /* Create the symbol in the DW_TAG_common_block block in the current
14026 symbol scope. */
14027 sym = new_symbol (child_die, NULL, cu);
14028 if (sym != NULL)
14029 {
14030 struct attribute *member_loc;
14031
14032 common_block->contents[common_block->n_entries++] = sym;
14033
14034 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14035 cu);
14036 if (member_loc)
14037 {
14038 /* GDB has handled this for a long time, but it is
14039 not specified by DWARF. It seems to have been
14040 emitted by gfortran at least as recently as:
14041 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14042 complaint (&symfile_complaints,
14043 _("Variable in common block has "
14044 "DW_AT_data_member_location "
14045 "- DIE at 0x%x [in module %s]"),
14046 child_die->offset.sect_off,
14047 objfile_name (cu->objfile));
14048
14049 if (attr_form_is_section_offset (member_loc))
14050 dwarf2_complex_location_expr_complaint ();
14051 else if (attr_form_is_constant (member_loc)
14052 || attr_form_is_block (member_loc))
14053 {
14054 if (attr)
14055 mark_common_block_symbol_computed (sym, die, attr,
14056 member_loc, cu);
14057 }
14058 else
14059 dwarf2_complex_location_expr_complaint ();
14060 }
14061 }
14062 }
14063
14064 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14065 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14066 }
14067 }
14068
14069 /* Create a type for a C++ namespace. */
14070
14071 static struct type *
14072 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14073 {
14074 struct objfile *objfile = cu->objfile;
14075 const char *previous_prefix, *name;
14076 int is_anonymous;
14077 struct type *type;
14078
14079 /* For extensions, reuse the type of the original namespace. */
14080 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14081 {
14082 struct die_info *ext_die;
14083 struct dwarf2_cu *ext_cu = cu;
14084
14085 ext_die = dwarf2_extension (die, &ext_cu);
14086 type = read_type_die (ext_die, ext_cu);
14087
14088 /* EXT_CU may not be the same as CU.
14089 Ensure TYPE is recorded with CU in die_type_hash. */
14090 return set_die_type (die, type, cu);
14091 }
14092
14093 name = namespace_name (die, &is_anonymous, cu);
14094
14095 /* Now build the name of the current namespace. */
14096
14097 previous_prefix = determine_prefix (die, cu);
14098 if (previous_prefix[0] != '\0')
14099 name = typename_concat (&objfile->objfile_obstack,
14100 previous_prefix, name, 0, cu);
14101
14102 /* Create the type. */
14103 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
14104 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14105
14106 return set_die_type (die, type, cu);
14107 }
14108
14109 /* Read a namespace scope. */
14110
14111 static void
14112 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14113 {
14114 struct objfile *objfile = cu->objfile;
14115 int is_anonymous;
14116
14117 /* Add a symbol associated to this if we haven't seen the namespace
14118 before. Also, add a using directive if it's an anonymous
14119 namespace. */
14120
14121 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14122 {
14123 struct type *type;
14124
14125 type = read_type_die (die, cu);
14126 new_symbol (die, type, cu);
14127
14128 namespace_name (die, &is_anonymous, cu);
14129 if (is_anonymous)
14130 {
14131 const char *previous_prefix = determine_prefix (die, cu);
14132
14133 add_using_directive (using_directives (cu->language),
14134 previous_prefix, TYPE_NAME (type), NULL,
14135 NULL, NULL, 0, &objfile->objfile_obstack);
14136 }
14137 }
14138
14139 if (die->child != NULL)
14140 {
14141 struct die_info *child_die = die->child;
14142
14143 while (child_die && child_die->tag)
14144 {
14145 process_die (child_die, cu);
14146 child_die = sibling_die (child_die);
14147 }
14148 }
14149 }
14150
14151 /* Read a Fortran module as type. This DIE can be only a declaration used for
14152 imported module. Still we need that type as local Fortran "use ... only"
14153 declaration imports depend on the created type in determine_prefix. */
14154
14155 static struct type *
14156 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14157 {
14158 struct objfile *objfile = cu->objfile;
14159 const char *module_name;
14160 struct type *type;
14161
14162 module_name = dwarf2_name (die, cu);
14163 if (!module_name)
14164 complaint (&symfile_complaints,
14165 _("DW_TAG_module has no name, offset 0x%x"),
14166 die->offset.sect_off);
14167 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
14168
14169 /* determine_prefix uses TYPE_TAG_NAME. */
14170 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14171
14172 return set_die_type (die, type, cu);
14173 }
14174
14175 /* Read a Fortran module. */
14176
14177 static void
14178 read_module (struct die_info *die, struct dwarf2_cu *cu)
14179 {
14180 struct die_info *child_die = die->child;
14181 struct type *type;
14182
14183 type = read_type_die (die, cu);
14184 new_symbol (die, type, cu);
14185
14186 while (child_die && child_die->tag)
14187 {
14188 process_die (child_die, cu);
14189 child_die = sibling_die (child_die);
14190 }
14191 }
14192
14193 /* Return the name of the namespace represented by DIE. Set
14194 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14195 namespace. */
14196
14197 static const char *
14198 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14199 {
14200 struct die_info *current_die;
14201 const char *name = NULL;
14202
14203 /* Loop through the extensions until we find a name. */
14204
14205 for (current_die = die;
14206 current_die != NULL;
14207 current_die = dwarf2_extension (die, &cu))
14208 {
14209 /* We don't use dwarf2_name here so that we can detect the absence
14210 of a name -> anonymous namespace. */
14211 name = dwarf2_string_attr (die, DW_AT_name, cu);
14212
14213 if (name != NULL)
14214 break;
14215 }
14216
14217 /* Is it an anonymous namespace? */
14218
14219 *is_anonymous = (name == NULL);
14220 if (*is_anonymous)
14221 name = CP_ANONYMOUS_NAMESPACE_STR;
14222
14223 return name;
14224 }
14225
14226 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14227 the user defined type vector. */
14228
14229 static struct type *
14230 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14231 {
14232 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14233 struct comp_unit_head *cu_header = &cu->header;
14234 struct type *type;
14235 struct attribute *attr_byte_size;
14236 struct attribute *attr_address_class;
14237 int byte_size, addr_class;
14238 struct type *target_type;
14239
14240 target_type = die_type (die, cu);
14241
14242 /* The die_type call above may have already set the type for this DIE. */
14243 type = get_die_type (die, cu);
14244 if (type)
14245 return type;
14246
14247 type = lookup_pointer_type (target_type);
14248
14249 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14250 if (attr_byte_size)
14251 byte_size = DW_UNSND (attr_byte_size);
14252 else
14253 byte_size = cu_header->addr_size;
14254
14255 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14256 if (attr_address_class)
14257 addr_class = DW_UNSND (attr_address_class);
14258 else
14259 addr_class = DW_ADDR_none;
14260
14261 /* If the pointer size or address class is different than the
14262 default, create a type variant marked as such and set the
14263 length accordingly. */
14264 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14265 {
14266 if (gdbarch_address_class_type_flags_p (gdbarch))
14267 {
14268 int type_flags;
14269
14270 type_flags = gdbarch_address_class_type_flags
14271 (gdbarch, byte_size, addr_class);
14272 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14273 == 0);
14274 type = make_type_with_address_space (type, type_flags);
14275 }
14276 else if (TYPE_LENGTH (type) != byte_size)
14277 {
14278 complaint (&symfile_complaints,
14279 _("invalid pointer size %d"), byte_size);
14280 }
14281 else
14282 {
14283 /* Should we also complain about unhandled address classes? */
14284 }
14285 }
14286
14287 TYPE_LENGTH (type) = byte_size;
14288 return set_die_type (die, type, cu);
14289 }
14290
14291 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14292 the user defined type vector. */
14293
14294 static struct type *
14295 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14296 {
14297 struct type *type;
14298 struct type *to_type;
14299 struct type *domain;
14300
14301 to_type = die_type (die, cu);
14302 domain = die_containing_type (die, cu);
14303
14304 /* The calls above may have already set the type for this DIE. */
14305 type = get_die_type (die, cu);
14306 if (type)
14307 return type;
14308
14309 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14310 type = lookup_methodptr_type (to_type);
14311 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14312 {
14313 struct type *new_type = alloc_type (cu->objfile);
14314
14315 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14316 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14317 TYPE_VARARGS (to_type));
14318 type = lookup_methodptr_type (new_type);
14319 }
14320 else
14321 type = lookup_memberptr_type (to_type, domain);
14322
14323 return set_die_type (die, type, cu);
14324 }
14325
14326 /* Extract all information from a DW_TAG_reference_type DIE and add to
14327 the user defined type vector. */
14328
14329 static struct type *
14330 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14331 {
14332 struct comp_unit_head *cu_header = &cu->header;
14333 struct type *type, *target_type;
14334 struct attribute *attr;
14335
14336 target_type = die_type (die, cu);
14337
14338 /* The die_type call above may have already set the type for this DIE. */
14339 type = get_die_type (die, cu);
14340 if (type)
14341 return type;
14342
14343 type = lookup_reference_type (target_type);
14344 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14345 if (attr)
14346 {
14347 TYPE_LENGTH (type) = DW_UNSND (attr);
14348 }
14349 else
14350 {
14351 TYPE_LENGTH (type) = cu_header->addr_size;
14352 }
14353 return set_die_type (die, type, cu);
14354 }
14355
14356 /* Add the given cv-qualifiers to the element type of the array. GCC
14357 outputs DWARF type qualifiers that apply to an array, not the
14358 element type. But GDB relies on the array element type to carry
14359 the cv-qualifiers. This mimics section 6.7.3 of the C99
14360 specification. */
14361
14362 static struct type *
14363 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14364 struct type *base_type, int cnst, int voltl)
14365 {
14366 struct type *el_type, *inner_array;
14367
14368 base_type = copy_type (base_type);
14369 inner_array = base_type;
14370
14371 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14372 {
14373 TYPE_TARGET_TYPE (inner_array) =
14374 copy_type (TYPE_TARGET_TYPE (inner_array));
14375 inner_array = TYPE_TARGET_TYPE (inner_array);
14376 }
14377
14378 el_type = TYPE_TARGET_TYPE (inner_array);
14379 cnst |= TYPE_CONST (el_type);
14380 voltl |= TYPE_VOLATILE (el_type);
14381 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14382
14383 return set_die_type (die, base_type, cu);
14384 }
14385
14386 static struct type *
14387 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14388 {
14389 struct type *base_type, *cv_type;
14390
14391 base_type = die_type (die, cu);
14392
14393 /* The die_type call above may have already set the type for this DIE. */
14394 cv_type = get_die_type (die, cu);
14395 if (cv_type)
14396 return cv_type;
14397
14398 /* In case the const qualifier is applied to an array type, the element type
14399 is so qualified, not the array type (section 6.7.3 of C99). */
14400 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14401 return add_array_cv_type (die, cu, base_type, 1, 0);
14402
14403 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14404 return set_die_type (die, cv_type, cu);
14405 }
14406
14407 static struct type *
14408 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14409 {
14410 struct type *base_type, *cv_type;
14411
14412 base_type = die_type (die, cu);
14413
14414 /* The die_type call above may have already set the type for this DIE. */
14415 cv_type = get_die_type (die, cu);
14416 if (cv_type)
14417 return cv_type;
14418
14419 /* In case the volatile qualifier is applied to an array type, the
14420 element type is so qualified, not the array type (section 6.7.3
14421 of C99). */
14422 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14423 return add_array_cv_type (die, cu, base_type, 0, 1);
14424
14425 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14426 return set_die_type (die, cv_type, cu);
14427 }
14428
14429 /* Handle DW_TAG_restrict_type. */
14430
14431 static struct type *
14432 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14433 {
14434 struct type *base_type, *cv_type;
14435
14436 base_type = die_type (die, cu);
14437
14438 /* The die_type call above may have already set the type for this DIE. */
14439 cv_type = get_die_type (die, cu);
14440 if (cv_type)
14441 return cv_type;
14442
14443 cv_type = make_restrict_type (base_type);
14444 return set_die_type (die, cv_type, cu);
14445 }
14446
14447 /* Handle DW_TAG_atomic_type. */
14448
14449 static struct type *
14450 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14451 {
14452 struct type *base_type, *cv_type;
14453
14454 base_type = die_type (die, cu);
14455
14456 /* The die_type call above may have already set the type for this DIE. */
14457 cv_type = get_die_type (die, cu);
14458 if (cv_type)
14459 return cv_type;
14460
14461 cv_type = make_atomic_type (base_type);
14462 return set_die_type (die, cv_type, cu);
14463 }
14464
14465 /* Extract all information from a DW_TAG_string_type DIE and add to
14466 the user defined type vector. It isn't really a user defined type,
14467 but it behaves like one, with other DIE's using an AT_user_def_type
14468 attribute to reference it. */
14469
14470 static struct type *
14471 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14472 {
14473 struct objfile *objfile = cu->objfile;
14474 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14475 struct type *type, *range_type, *index_type, *char_type;
14476 struct attribute *attr;
14477 unsigned int length;
14478
14479 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14480 if (attr)
14481 {
14482 length = DW_UNSND (attr);
14483 }
14484 else
14485 {
14486 /* Check for the DW_AT_byte_size attribute. */
14487 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14488 if (attr)
14489 {
14490 length = DW_UNSND (attr);
14491 }
14492 else
14493 {
14494 length = 1;
14495 }
14496 }
14497
14498 index_type = objfile_type (objfile)->builtin_int;
14499 range_type = create_static_range_type (NULL, index_type, 1, length);
14500 char_type = language_string_char_type (cu->language_defn, gdbarch);
14501 type = create_string_type (NULL, char_type, range_type);
14502
14503 return set_die_type (die, type, cu);
14504 }
14505
14506 /* Assuming that DIE corresponds to a function, returns nonzero
14507 if the function is prototyped. */
14508
14509 static int
14510 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14511 {
14512 struct attribute *attr;
14513
14514 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14515 if (attr && (DW_UNSND (attr) != 0))
14516 return 1;
14517
14518 /* The DWARF standard implies that the DW_AT_prototyped attribute
14519 is only meaninful for C, but the concept also extends to other
14520 languages that allow unprototyped functions (Eg: Objective C).
14521 For all other languages, assume that functions are always
14522 prototyped. */
14523 if (cu->language != language_c
14524 && cu->language != language_objc
14525 && cu->language != language_opencl)
14526 return 1;
14527
14528 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14529 prototyped and unprototyped functions; default to prototyped,
14530 since that is more common in modern code (and RealView warns
14531 about unprototyped functions). */
14532 if (producer_is_realview (cu->producer))
14533 return 1;
14534
14535 return 0;
14536 }
14537
14538 /* Handle DIES due to C code like:
14539
14540 struct foo
14541 {
14542 int (*funcp)(int a, long l);
14543 int b;
14544 };
14545
14546 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14547
14548 static struct type *
14549 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14550 {
14551 struct objfile *objfile = cu->objfile;
14552 struct type *type; /* Type that this function returns. */
14553 struct type *ftype; /* Function that returns above type. */
14554 struct attribute *attr;
14555
14556 type = die_type (die, cu);
14557
14558 /* The die_type call above may have already set the type for this DIE. */
14559 ftype = get_die_type (die, cu);
14560 if (ftype)
14561 return ftype;
14562
14563 ftype = lookup_function_type (type);
14564
14565 if (prototyped_function_p (die, cu))
14566 TYPE_PROTOTYPED (ftype) = 1;
14567
14568 /* Store the calling convention in the type if it's available in
14569 the subroutine die. Otherwise set the calling convention to
14570 the default value DW_CC_normal. */
14571 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14572 if (attr)
14573 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14574 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14575 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14576 else
14577 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14578
14579 /* Record whether the function returns normally to its caller or not
14580 if the DWARF producer set that information. */
14581 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14582 if (attr && (DW_UNSND (attr) != 0))
14583 TYPE_NO_RETURN (ftype) = 1;
14584
14585 /* We need to add the subroutine type to the die immediately so
14586 we don't infinitely recurse when dealing with parameters
14587 declared as the same subroutine type. */
14588 set_die_type (die, ftype, cu);
14589
14590 if (die->child != NULL)
14591 {
14592 struct type *void_type = objfile_type (objfile)->builtin_void;
14593 struct die_info *child_die;
14594 int nparams, iparams;
14595
14596 /* Count the number of parameters.
14597 FIXME: GDB currently ignores vararg functions, but knows about
14598 vararg member functions. */
14599 nparams = 0;
14600 child_die = die->child;
14601 while (child_die && child_die->tag)
14602 {
14603 if (child_die->tag == DW_TAG_formal_parameter)
14604 nparams++;
14605 else if (child_die->tag == DW_TAG_unspecified_parameters)
14606 TYPE_VARARGS (ftype) = 1;
14607 child_die = sibling_die (child_die);
14608 }
14609
14610 /* Allocate storage for parameters and fill them in. */
14611 TYPE_NFIELDS (ftype) = nparams;
14612 TYPE_FIELDS (ftype) = (struct field *)
14613 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14614
14615 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14616 even if we error out during the parameters reading below. */
14617 for (iparams = 0; iparams < nparams; iparams++)
14618 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14619
14620 iparams = 0;
14621 child_die = die->child;
14622 while (child_die && child_die->tag)
14623 {
14624 if (child_die->tag == DW_TAG_formal_parameter)
14625 {
14626 struct type *arg_type;
14627
14628 /* DWARF version 2 has no clean way to discern C++
14629 static and non-static member functions. G++ helps
14630 GDB by marking the first parameter for non-static
14631 member functions (which is the this pointer) as
14632 artificial. We pass this information to
14633 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14634
14635 DWARF version 3 added DW_AT_object_pointer, which GCC
14636 4.5 does not yet generate. */
14637 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14638 if (attr)
14639 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14640 else
14641 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14642 arg_type = die_type (child_die, cu);
14643
14644 /* RealView does not mark THIS as const, which the testsuite
14645 expects. GCC marks THIS as const in method definitions,
14646 but not in the class specifications (GCC PR 43053). */
14647 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14648 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14649 {
14650 int is_this = 0;
14651 struct dwarf2_cu *arg_cu = cu;
14652 const char *name = dwarf2_name (child_die, cu);
14653
14654 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14655 if (attr)
14656 {
14657 /* If the compiler emits this, use it. */
14658 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14659 is_this = 1;
14660 }
14661 else if (name && strcmp (name, "this") == 0)
14662 /* Function definitions will have the argument names. */
14663 is_this = 1;
14664 else if (name == NULL && iparams == 0)
14665 /* Declarations may not have the names, so like
14666 elsewhere in GDB, assume an artificial first
14667 argument is "this". */
14668 is_this = 1;
14669
14670 if (is_this)
14671 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14672 arg_type, 0);
14673 }
14674
14675 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14676 iparams++;
14677 }
14678 child_die = sibling_die (child_die);
14679 }
14680 }
14681
14682 return ftype;
14683 }
14684
14685 static struct type *
14686 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14687 {
14688 struct objfile *objfile = cu->objfile;
14689 const char *name = NULL;
14690 struct type *this_type, *target_type;
14691
14692 name = dwarf2_full_name (NULL, die, cu);
14693 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14694 TYPE_TARGET_STUB (this_type) = 1;
14695 set_die_type (die, this_type, cu);
14696 target_type = die_type (die, cu);
14697 if (target_type != this_type)
14698 TYPE_TARGET_TYPE (this_type) = target_type;
14699 else
14700 {
14701 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14702 spec and cause infinite loops in GDB. */
14703 complaint (&symfile_complaints,
14704 _("Self-referential DW_TAG_typedef "
14705 "- DIE at 0x%x [in module %s]"),
14706 die->offset.sect_off, objfile_name (objfile));
14707 TYPE_TARGET_TYPE (this_type) = NULL;
14708 }
14709 return this_type;
14710 }
14711
14712 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
14713 (which may be different from NAME) to the architecture back-end to allow
14714 it to guess the correct format if necessary. */
14715
14716 static struct type *
14717 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
14718 const char *name_hint)
14719 {
14720 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14721 const struct floatformat **format;
14722 struct type *type;
14723
14724 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
14725 if (format)
14726 type = init_float_type (objfile, bits, name, format);
14727 else
14728 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
14729
14730 return type;
14731 }
14732
14733 /* Find a representation of a given base type and install
14734 it in the TYPE field of the die. */
14735
14736 static struct type *
14737 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14738 {
14739 struct objfile *objfile = cu->objfile;
14740 struct type *type;
14741 struct attribute *attr;
14742 int encoding = 0, bits = 0;
14743 const char *name;
14744
14745 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14746 if (attr)
14747 {
14748 encoding = DW_UNSND (attr);
14749 }
14750 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14751 if (attr)
14752 {
14753 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
14754 }
14755 name = dwarf2_name (die, cu);
14756 if (!name)
14757 {
14758 complaint (&symfile_complaints,
14759 _("DW_AT_name missing from DW_TAG_base_type"));
14760 }
14761
14762 switch (encoding)
14763 {
14764 case DW_ATE_address:
14765 /* Turn DW_ATE_address into a void * pointer. */
14766 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14767 type = init_pointer_type (objfile, bits, name, type);
14768 break;
14769 case DW_ATE_boolean:
14770 type = init_boolean_type (objfile, bits, 1, name);
14771 break;
14772 case DW_ATE_complex_float:
14773 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
14774 type = init_complex_type (objfile, name, type);
14775 break;
14776 case DW_ATE_decimal_float:
14777 type = init_decfloat_type (objfile, bits, name);
14778 break;
14779 case DW_ATE_float:
14780 type = dwarf2_init_float_type (objfile, bits, name, name);
14781 break;
14782 case DW_ATE_signed:
14783 type = init_integer_type (objfile, bits, 0, name);
14784 break;
14785 case DW_ATE_unsigned:
14786 if (cu->language == language_fortran
14787 && name
14788 && startswith (name, "character("))
14789 type = init_character_type (objfile, bits, 1, name);
14790 else
14791 type = init_integer_type (objfile, bits, 1, name);
14792 break;
14793 case DW_ATE_signed_char:
14794 if (cu->language == language_ada || cu->language == language_m2
14795 || cu->language == language_pascal
14796 || cu->language == language_fortran)
14797 type = init_character_type (objfile, bits, 0, name);
14798 else
14799 type = init_integer_type (objfile, bits, 0, name);
14800 break;
14801 case DW_ATE_unsigned_char:
14802 if (cu->language == language_ada || cu->language == language_m2
14803 || cu->language == language_pascal
14804 || cu->language == language_fortran
14805 || cu->language == language_rust)
14806 type = init_character_type (objfile, bits, 1, name);
14807 else
14808 type = init_integer_type (objfile, bits, 1, name);
14809 break;
14810 case DW_ATE_UTF:
14811 /* We just treat this as an integer and then recognize the
14812 type by name elsewhere. */
14813 type = init_integer_type (objfile, bits, 0, name);
14814 break;
14815
14816 default:
14817 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14818 dwarf_type_encoding_name (encoding));
14819 type = init_type (objfile, TYPE_CODE_ERROR,
14820 bits / TARGET_CHAR_BIT, name);
14821 break;
14822 }
14823
14824 if (name && strcmp (name, "char") == 0)
14825 TYPE_NOSIGN (type) = 1;
14826
14827 return set_die_type (die, type, cu);
14828 }
14829
14830 /* Parse dwarf attribute if it's a block, reference or constant and put the
14831 resulting value of the attribute into struct bound_prop.
14832 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14833
14834 static int
14835 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14836 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14837 {
14838 struct dwarf2_property_baton *baton;
14839 struct obstack *obstack = &cu->objfile->objfile_obstack;
14840
14841 if (attr == NULL || prop == NULL)
14842 return 0;
14843
14844 if (attr_form_is_block (attr))
14845 {
14846 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14847 baton->referenced_type = NULL;
14848 baton->locexpr.per_cu = cu->per_cu;
14849 baton->locexpr.size = DW_BLOCK (attr)->size;
14850 baton->locexpr.data = DW_BLOCK (attr)->data;
14851 prop->data.baton = baton;
14852 prop->kind = PROP_LOCEXPR;
14853 gdb_assert (prop->data.baton != NULL);
14854 }
14855 else if (attr_form_is_ref (attr))
14856 {
14857 struct dwarf2_cu *target_cu = cu;
14858 struct die_info *target_die;
14859 struct attribute *target_attr;
14860
14861 target_die = follow_die_ref (die, attr, &target_cu);
14862 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14863 if (target_attr == NULL)
14864 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14865 target_cu);
14866 if (target_attr == NULL)
14867 return 0;
14868
14869 switch (target_attr->name)
14870 {
14871 case DW_AT_location:
14872 if (attr_form_is_section_offset (target_attr))
14873 {
14874 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14875 baton->referenced_type = die_type (target_die, target_cu);
14876 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14877 prop->data.baton = baton;
14878 prop->kind = PROP_LOCLIST;
14879 gdb_assert (prop->data.baton != NULL);
14880 }
14881 else if (attr_form_is_block (target_attr))
14882 {
14883 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14884 baton->referenced_type = die_type (target_die, target_cu);
14885 baton->locexpr.per_cu = cu->per_cu;
14886 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14887 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14888 prop->data.baton = baton;
14889 prop->kind = PROP_LOCEXPR;
14890 gdb_assert (prop->data.baton != NULL);
14891 }
14892 else
14893 {
14894 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14895 "dynamic property");
14896 return 0;
14897 }
14898 break;
14899 case DW_AT_data_member_location:
14900 {
14901 LONGEST offset;
14902
14903 if (!handle_data_member_location (target_die, target_cu,
14904 &offset))
14905 return 0;
14906
14907 baton = XOBNEW (obstack, struct dwarf2_property_baton);
14908 baton->referenced_type = read_type_die (target_die->parent,
14909 target_cu);
14910 baton->offset_info.offset = offset;
14911 baton->offset_info.type = die_type (target_die, target_cu);
14912 prop->data.baton = baton;
14913 prop->kind = PROP_ADDR_OFFSET;
14914 break;
14915 }
14916 }
14917 }
14918 else if (attr_form_is_constant (attr))
14919 {
14920 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14921 prop->kind = PROP_CONST;
14922 }
14923 else
14924 {
14925 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14926 dwarf2_name (die, cu));
14927 return 0;
14928 }
14929
14930 return 1;
14931 }
14932
14933 /* Read the given DW_AT_subrange DIE. */
14934
14935 static struct type *
14936 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14937 {
14938 struct type *base_type, *orig_base_type;
14939 struct type *range_type;
14940 struct attribute *attr;
14941 struct dynamic_prop low, high;
14942 int low_default_is_valid;
14943 int high_bound_is_count = 0;
14944 const char *name;
14945 LONGEST negative_mask;
14946
14947 orig_base_type = die_type (die, cu);
14948 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14949 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14950 creating the range type, but we use the result of check_typedef
14951 when examining properties of the type. */
14952 base_type = check_typedef (orig_base_type);
14953
14954 /* The die_type call above may have already set the type for this DIE. */
14955 range_type = get_die_type (die, cu);
14956 if (range_type)
14957 return range_type;
14958
14959 low.kind = PROP_CONST;
14960 high.kind = PROP_CONST;
14961 high.data.const_val = 0;
14962
14963 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14964 omitting DW_AT_lower_bound. */
14965 switch (cu->language)
14966 {
14967 case language_c:
14968 case language_cplus:
14969 low.data.const_val = 0;
14970 low_default_is_valid = 1;
14971 break;
14972 case language_fortran:
14973 low.data.const_val = 1;
14974 low_default_is_valid = 1;
14975 break;
14976 case language_d:
14977 case language_objc:
14978 case language_rust:
14979 low.data.const_val = 0;
14980 low_default_is_valid = (cu->header.version >= 4);
14981 break;
14982 case language_ada:
14983 case language_m2:
14984 case language_pascal:
14985 low.data.const_val = 1;
14986 low_default_is_valid = (cu->header.version >= 4);
14987 break;
14988 default:
14989 low.data.const_val = 0;
14990 low_default_is_valid = 0;
14991 break;
14992 }
14993
14994 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14995 if (attr)
14996 attr_to_dynamic_prop (attr, die, cu, &low);
14997 else if (!low_default_is_valid)
14998 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14999 "- DIE at 0x%x [in module %s]"),
15000 die->offset.sect_off, objfile_name (cu->objfile));
15001
15002 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
15003 if (!attr_to_dynamic_prop (attr, die, cu, &high))
15004 {
15005 attr = dwarf2_attr (die, DW_AT_count, cu);
15006 if (attr_to_dynamic_prop (attr, die, cu, &high))
15007 {
15008 /* If bounds are constant do the final calculation here. */
15009 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15010 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15011 else
15012 high_bound_is_count = 1;
15013 }
15014 }
15015
15016 /* Dwarf-2 specifications explicitly allows to create subrange types
15017 without specifying a base type.
15018 In that case, the base type must be set to the type of
15019 the lower bound, upper bound or count, in that order, if any of these
15020 three attributes references an object that has a type.
15021 If no base type is found, the Dwarf-2 specifications say that
15022 a signed integer type of size equal to the size of an address should
15023 be used.
15024 For the following C code: `extern char gdb_int [];'
15025 GCC produces an empty range DIE.
15026 FIXME: muller/2010-05-28: Possible references to object for low bound,
15027 high bound or count are not yet handled by this code. */
15028 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15029 {
15030 struct objfile *objfile = cu->objfile;
15031 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15032 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15033 struct type *int_type = objfile_type (objfile)->builtin_int;
15034
15035 /* Test "int", "long int", and "long long int" objfile types,
15036 and select the first one having a size above or equal to the
15037 architecture address size. */
15038 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15039 base_type = int_type;
15040 else
15041 {
15042 int_type = objfile_type (objfile)->builtin_long;
15043 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15044 base_type = int_type;
15045 else
15046 {
15047 int_type = objfile_type (objfile)->builtin_long_long;
15048 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15049 base_type = int_type;
15050 }
15051 }
15052 }
15053
15054 /* Normally, the DWARF producers are expected to use a signed
15055 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15056 But this is unfortunately not always the case, as witnessed
15057 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15058 is used instead. To work around that ambiguity, we treat
15059 the bounds as signed, and thus sign-extend their values, when
15060 the base type is signed. */
15061 negative_mask =
15062 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
15063 if (low.kind == PROP_CONST
15064 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15065 low.data.const_val |= negative_mask;
15066 if (high.kind == PROP_CONST
15067 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15068 high.data.const_val |= negative_mask;
15069
15070 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15071
15072 if (high_bound_is_count)
15073 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15074
15075 /* Ada expects an empty array on no boundary attributes. */
15076 if (attr == NULL && cu->language != language_ada)
15077 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15078
15079 name = dwarf2_name (die, cu);
15080 if (name)
15081 TYPE_NAME (range_type) = name;
15082
15083 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15084 if (attr)
15085 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15086
15087 set_die_type (die, range_type, cu);
15088
15089 /* set_die_type should be already done. */
15090 set_descriptive_type (range_type, die, cu);
15091
15092 return range_type;
15093 }
15094
15095 static struct type *
15096 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15097 {
15098 struct type *type;
15099
15100 /* For now, we only support the C meaning of an unspecified type: void. */
15101
15102 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
15103 TYPE_NAME (type) = dwarf2_name (die, cu);
15104
15105 return set_die_type (die, type, cu);
15106 }
15107
15108 /* Read a single die and all its descendents. Set the die's sibling
15109 field to NULL; set other fields in the die correctly, and set all
15110 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15111 location of the info_ptr after reading all of those dies. PARENT
15112 is the parent of the die in question. */
15113
15114 static struct die_info *
15115 read_die_and_children (const struct die_reader_specs *reader,
15116 const gdb_byte *info_ptr,
15117 const gdb_byte **new_info_ptr,
15118 struct die_info *parent)
15119 {
15120 struct die_info *die;
15121 const gdb_byte *cur_ptr;
15122 int has_children;
15123
15124 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15125 if (die == NULL)
15126 {
15127 *new_info_ptr = cur_ptr;
15128 return NULL;
15129 }
15130 store_in_ref_table (die, reader->cu);
15131
15132 if (has_children)
15133 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15134 else
15135 {
15136 die->child = NULL;
15137 *new_info_ptr = cur_ptr;
15138 }
15139
15140 die->sibling = NULL;
15141 die->parent = parent;
15142 return die;
15143 }
15144
15145 /* Read a die, all of its descendents, and all of its siblings; set
15146 all of the fields of all of the dies correctly. Arguments are as
15147 in read_die_and_children. */
15148
15149 static struct die_info *
15150 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15151 const gdb_byte *info_ptr,
15152 const gdb_byte **new_info_ptr,
15153 struct die_info *parent)
15154 {
15155 struct die_info *first_die, *last_sibling;
15156 const gdb_byte *cur_ptr;
15157
15158 cur_ptr = info_ptr;
15159 first_die = last_sibling = NULL;
15160
15161 while (1)
15162 {
15163 struct die_info *die
15164 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15165
15166 if (die == NULL)
15167 {
15168 *new_info_ptr = cur_ptr;
15169 return first_die;
15170 }
15171
15172 if (!first_die)
15173 first_die = die;
15174 else
15175 last_sibling->sibling = die;
15176
15177 last_sibling = die;
15178 }
15179 }
15180
15181 /* Read a die, all of its descendents, and all of its siblings; set
15182 all of the fields of all of the dies correctly. Arguments are as
15183 in read_die_and_children.
15184 This the main entry point for reading a DIE and all its children. */
15185
15186 static struct die_info *
15187 read_die_and_siblings (const struct die_reader_specs *reader,
15188 const gdb_byte *info_ptr,
15189 const gdb_byte **new_info_ptr,
15190 struct die_info *parent)
15191 {
15192 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15193 new_info_ptr, parent);
15194
15195 if (dwarf_die_debug)
15196 {
15197 fprintf_unfiltered (gdb_stdlog,
15198 "Read die from %s@0x%x of %s:\n",
15199 get_section_name (reader->die_section),
15200 (unsigned) (info_ptr - reader->die_section->buffer),
15201 bfd_get_filename (reader->abfd));
15202 dump_die (die, dwarf_die_debug);
15203 }
15204
15205 return die;
15206 }
15207
15208 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15209 attributes.
15210 The caller is responsible for filling in the extra attributes
15211 and updating (*DIEP)->num_attrs.
15212 Set DIEP to point to a newly allocated die with its information,
15213 except for its child, sibling, and parent fields.
15214 Set HAS_CHILDREN to tell whether the die has children or not. */
15215
15216 static const gdb_byte *
15217 read_full_die_1 (const struct die_reader_specs *reader,
15218 struct die_info **diep, const gdb_byte *info_ptr,
15219 int *has_children, int num_extra_attrs)
15220 {
15221 unsigned int abbrev_number, bytes_read, i;
15222 sect_offset offset;
15223 struct abbrev_info *abbrev;
15224 struct die_info *die;
15225 struct dwarf2_cu *cu = reader->cu;
15226 bfd *abfd = reader->abfd;
15227
15228 offset.sect_off = info_ptr - reader->buffer;
15229 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15230 info_ptr += bytes_read;
15231 if (!abbrev_number)
15232 {
15233 *diep = NULL;
15234 *has_children = 0;
15235 return info_ptr;
15236 }
15237
15238 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15239 if (!abbrev)
15240 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15241 abbrev_number,
15242 bfd_get_filename (abfd));
15243
15244 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15245 die->offset = offset;
15246 die->tag = abbrev->tag;
15247 die->abbrev = abbrev_number;
15248
15249 /* Make the result usable.
15250 The caller needs to update num_attrs after adding the extra
15251 attributes. */
15252 die->num_attrs = abbrev->num_attrs;
15253
15254 for (i = 0; i < abbrev->num_attrs; ++i)
15255 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15256 info_ptr);
15257
15258 *diep = die;
15259 *has_children = abbrev->has_children;
15260 return info_ptr;
15261 }
15262
15263 /* Read a die and all its attributes.
15264 Set DIEP to point to a newly allocated die with its information,
15265 except for its child, sibling, and parent fields.
15266 Set HAS_CHILDREN to tell whether the die has children or not. */
15267
15268 static const gdb_byte *
15269 read_full_die (const struct die_reader_specs *reader,
15270 struct die_info **diep, const gdb_byte *info_ptr,
15271 int *has_children)
15272 {
15273 const gdb_byte *result;
15274
15275 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15276
15277 if (dwarf_die_debug)
15278 {
15279 fprintf_unfiltered (gdb_stdlog,
15280 "Read die from %s@0x%x of %s:\n",
15281 get_section_name (reader->die_section),
15282 (unsigned) (info_ptr - reader->die_section->buffer),
15283 bfd_get_filename (reader->abfd));
15284 dump_die (*diep, dwarf_die_debug);
15285 }
15286
15287 return result;
15288 }
15289 \f
15290 /* Abbreviation tables.
15291
15292 In DWARF version 2, the description of the debugging information is
15293 stored in a separate .debug_abbrev section. Before we read any
15294 dies from a section we read in all abbreviations and install them
15295 in a hash table. */
15296
15297 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15298
15299 static struct abbrev_info *
15300 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15301 {
15302 struct abbrev_info *abbrev;
15303
15304 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
15305 memset (abbrev, 0, sizeof (struct abbrev_info));
15306
15307 return abbrev;
15308 }
15309
15310 /* Add an abbreviation to the table. */
15311
15312 static void
15313 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15314 unsigned int abbrev_number,
15315 struct abbrev_info *abbrev)
15316 {
15317 unsigned int hash_number;
15318
15319 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15320 abbrev->next = abbrev_table->abbrevs[hash_number];
15321 abbrev_table->abbrevs[hash_number] = abbrev;
15322 }
15323
15324 /* Look up an abbrev in the table.
15325 Returns NULL if the abbrev is not found. */
15326
15327 static struct abbrev_info *
15328 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15329 unsigned int abbrev_number)
15330 {
15331 unsigned int hash_number;
15332 struct abbrev_info *abbrev;
15333
15334 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15335 abbrev = abbrev_table->abbrevs[hash_number];
15336
15337 while (abbrev)
15338 {
15339 if (abbrev->number == abbrev_number)
15340 return abbrev;
15341 abbrev = abbrev->next;
15342 }
15343 return NULL;
15344 }
15345
15346 /* Read in an abbrev table. */
15347
15348 static struct abbrev_table *
15349 abbrev_table_read_table (struct dwarf2_section_info *section,
15350 sect_offset offset)
15351 {
15352 struct objfile *objfile = dwarf2_per_objfile->objfile;
15353 bfd *abfd = get_section_bfd_owner (section);
15354 struct abbrev_table *abbrev_table;
15355 const gdb_byte *abbrev_ptr;
15356 struct abbrev_info *cur_abbrev;
15357 unsigned int abbrev_number, bytes_read, abbrev_name;
15358 unsigned int abbrev_form;
15359 struct attr_abbrev *cur_attrs;
15360 unsigned int allocated_attrs;
15361
15362 abbrev_table = XNEW (struct abbrev_table);
15363 abbrev_table->offset = offset;
15364 obstack_init (&abbrev_table->abbrev_obstack);
15365 abbrev_table->abbrevs =
15366 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15367 ABBREV_HASH_SIZE);
15368 memset (abbrev_table->abbrevs, 0,
15369 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15370
15371 dwarf2_read_section (objfile, section);
15372 abbrev_ptr = section->buffer + offset.sect_off;
15373 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15374 abbrev_ptr += bytes_read;
15375
15376 allocated_attrs = ATTR_ALLOC_CHUNK;
15377 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
15378
15379 /* Loop until we reach an abbrev number of 0. */
15380 while (abbrev_number)
15381 {
15382 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15383
15384 /* read in abbrev header */
15385 cur_abbrev->number = abbrev_number;
15386 cur_abbrev->tag
15387 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15388 abbrev_ptr += bytes_read;
15389 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15390 abbrev_ptr += 1;
15391
15392 /* now read in declarations */
15393 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15394 abbrev_ptr += bytes_read;
15395 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15396 abbrev_ptr += bytes_read;
15397 while (abbrev_name)
15398 {
15399 if (cur_abbrev->num_attrs == allocated_attrs)
15400 {
15401 allocated_attrs += ATTR_ALLOC_CHUNK;
15402 cur_attrs
15403 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
15404 }
15405
15406 cur_attrs[cur_abbrev->num_attrs].name
15407 = (enum dwarf_attribute) abbrev_name;
15408 cur_attrs[cur_abbrev->num_attrs++].form
15409 = (enum dwarf_form) abbrev_form;
15410 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15411 abbrev_ptr += bytes_read;
15412 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15413 abbrev_ptr += bytes_read;
15414 }
15415
15416 cur_abbrev->attrs =
15417 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15418 cur_abbrev->num_attrs);
15419 memcpy (cur_abbrev->attrs, cur_attrs,
15420 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15421
15422 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15423
15424 /* Get next abbreviation.
15425 Under Irix6 the abbreviations for a compilation unit are not
15426 always properly terminated with an abbrev number of 0.
15427 Exit loop if we encounter an abbreviation which we have
15428 already read (which means we are about to read the abbreviations
15429 for the next compile unit) or if the end of the abbreviation
15430 table is reached. */
15431 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15432 break;
15433 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15434 abbrev_ptr += bytes_read;
15435 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15436 break;
15437 }
15438
15439 xfree (cur_attrs);
15440 return abbrev_table;
15441 }
15442
15443 /* Free the resources held by ABBREV_TABLE. */
15444
15445 static void
15446 abbrev_table_free (struct abbrev_table *abbrev_table)
15447 {
15448 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15449 xfree (abbrev_table);
15450 }
15451
15452 /* Same as abbrev_table_free but as a cleanup.
15453 We pass in a pointer to the pointer to the table so that we can
15454 set the pointer to NULL when we're done. It also simplifies
15455 build_type_psymtabs_1. */
15456
15457 static void
15458 abbrev_table_free_cleanup (void *table_ptr)
15459 {
15460 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
15461
15462 if (*abbrev_table_ptr != NULL)
15463 abbrev_table_free (*abbrev_table_ptr);
15464 *abbrev_table_ptr = NULL;
15465 }
15466
15467 /* Read the abbrev table for CU from ABBREV_SECTION. */
15468
15469 static void
15470 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15471 struct dwarf2_section_info *abbrev_section)
15472 {
15473 cu->abbrev_table =
15474 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15475 }
15476
15477 /* Release the memory used by the abbrev table for a compilation unit. */
15478
15479 static void
15480 dwarf2_free_abbrev_table (void *ptr_to_cu)
15481 {
15482 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
15483
15484 if (cu->abbrev_table != NULL)
15485 abbrev_table_free (cu->abbrev_table);
15486 /* Set this to NULL so that we SEGV if we try to read it later,
15487 and also because free_comp_unit verifies this is NULL. */
15488 cu->abbrev_table = NULL;
15489 }
15490 \f
15491 /* Returns nonzero if TAG represents a type that we might generate a partial
15492 symbol for. */
15493
15494 static int
15495 is_type_tag_for_partial (int tag)
15496 {
15497 switch (tag)
15498 {
15499 #if 0
15500 /* Some types that would be reasonable to generate partial symbols for,
15501 that we don't at present. */
15502 case DW_TAG_array_type:
15503 case DW_TAG_file_type:
15504 case DW_TAG_ptr_to_member_type:
15505 case DW_TAG_set_type:
15506 case DW_TAG_string_type:
15507 case DW_TAG_subroutine_type:
15508 #endif
15509 case DW_TAG_base_type:
15510 case DW_TAG_class_type:
15511 case DW_TAG_interface_type:
15512 case DW_TAG_enumeration_type:
15513 case DW_TAG_structure_type:
15514 case DW_TAG_subrange_type:
15515 case DW_TAG_typedef:
15516 case DW_TAG_union_type:
15517 return 1;
15518 default:
15519 return 0;
15520 }
15521 }
15522
15523 /* Load all DIEs that are interesting for partial symbols into memory. */
15524
15525 static struct partial_die_info *
15526 load_partial_dies (const struct die_reader_specs *reader,
15527 const gdb_byte *info_ptr, int building_psymtab)
15528 {
15529 struct dwarf2_cu *cu = reader->cu;
15530 struct objfile *objfile = cu->objfile;
15531 struct partial_die_info *part_die;
15532 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15533 struct abbrev_info *abbrev;
15534 unsigned int bytes_read;
15535 unsigned int load_all = 0;
15536 int nesting_level = 1;
15537
15538 parent_die = NULL;
15539 last_die = NULL;
15540
15541 gdb_assert (cu->per_cu != NULL);
15542 if (cu->per_cu->load_all_dies)
15543 load_all = 1;
15544
15545 cu->partial_dies
15546 = htab_create_alloc_ex (cu->header.length / 12,
15547 partial_die_hash,
15548 partial_die_eq,
15549 NULL,
15550 &cu->comp_unit_obstack,
15551 hashtab_obstack_allocate,
15552 dummy_obstack_deallocate);
15553
15554 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15555
15556 while (1)
15557 {
15558 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15559
15560 /* A NULL abbrev means the end of a series of children. */
15561 if (abbrev == NULL)
15562 {
15563 if (--nesting_level == 0)
15564 {
15565 /* PART_DIE was probably the last thing allocated on the
15566 comp_unit_obstack, so we could call obstack_free
15567 here. We don't do that because the waste is small,
15568 and will be cleaned up when we're done with this
15569 compilation unit. This way, we're also more robust
15570 against other users of the comp_unit_obstack. */
15571 return first_die;
15572 }
15573 info_ptr += bytes_read;
15574 last_die = parent_die;
15575 parent_die = parent_die->die_parent;
15576 continue;
15577 }
15578
15579 /* Check for template arguments. We never save these; if
15580 they're seen, we just mark the parent, and go on our way. */
15581 if (parent_die != NULL
15582 && cu->language == language_cplus
15583 && (abbrev->tag == DW_TAG_template_type_param
15584 || abbrev->tag == DW_TAG_template_value_param))
15585 {
15586 parent_die->has_template_arguments = 1;
15587
15588 if (!load_all)
15589 {
15590 /* We don't need a partial DIE for the template argument. */
15591 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15592 continue;
15593 }
15594 }
15595
15596 /* We only recurse into c++ subprograms looking for template arguments.
15597 Skip their other children. */
15598 if (!load_all
15599 && cu->language == language_cplus
15600 && parent_die != NULL
15601 && parent_die->tag == DW_TAG_subprogram)
15602 {
15603 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15604 continue;
15605 }
15606
15607 /* Check whether this DIE is interesting enough to save. Normally
15608 we would not be interested in members here, but there may be
15609 later variables referencing them via DW_AT_specification (for
15610 static members). */
15611 if (!load_all
15612 && !is_type_tag_for_partial (abbrev->tag)
15613 && abbrev->tag != DW_TAG_constant
15614 && abbrev->tag != DW_TAG_enumerator
15615 && abbrev->tag != DW_TAG_subprogram
15616 && abbrev->tag != DW_TAG_lexical_block
15617 && abbrev->tag != DW_TAG_variable
15618 && abbrev->tag != DW_TAG_namespace
15619 && abbrev->tag != DW_TAG_module
15620 && abbrev->tag != DW_TAG_member
15621 && abbrev->tag != DW_TAG_imported_unit
15622 && abbrev->tag != DW_TAG_imported_declaration)
15623 {
15624 /* Otherwise we skip to the next sibling, if any. */
15625 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15626 continue;
15627 }
15628
15629 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15630 info_ptr);
15631
15632 /* This two-pass algorithm for processing partial symbols has a
15633 high cost in cache pressure. Thus, handle some simple cases
15634 here which cover the majority of C partial symbols. DIEs
15635 which neither have specification tags in them, nor could have
15636 specification tags elsewhere pointing at them, can simply be
15637 processed and discarded.
15638
15639 This segment is also optional; scan_partial_symbols and
15640 add_partial_symbol will handle these DIEs if we chain
15641 them in normally. When compilers which do not emit large
15642 quantities of duplicate debug information are more common,
15643 this code can probably be removed. */
15644
15645 /* Any complete simple types at the top level (pretty much all
15646 of them, for a language without namespaces), can be processed
15647 directly. */
15648 if (parent_die == NULL
15649 && part_die->has_specification == 0
15650 && part_die->is_declaration == 0
15651 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15652 || part_die->tag == DW_TAG_base_type
15653 || part_die->tag == DW_TAG_subrange_type))
15654 {
15655 if (building_psymtab && part_die->name != NULL)
15656 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15657 VAR_DOMAIN, LOC_TYPEDEF,
15658 &objfile->static_psymbols,
15659 0, cu->language, objfile);
15660 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15661 continue;
15662 }
15663
15664 /* The exception for DW_TAG_typedef with has_children above is
15665 a workaround of GCC PR debug/47510. In the case of this complaint
15666 type_name_no_tag_or_error will error on such types later.
15667
15668 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15669 it could not find the child DIEs referenced later, this is checked
15670 above. In correct DWARF DW_TAG_typedef should have no children. */
15671
15672 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15673 complaint (&symfile_complaints,
15674 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15675 "- DIE at 0x%x [in module %s]"),
15676 part_die->offset.sect_off, objfile_name (objfile));
15677
15678 /* If we're at the second level, and we're an enumerator, and
15679 our parent has no specification (meaning possibly lives in a
15680 namespace elsewhere), then we can add the partial symbol now
15681 instead of queueing it. */
15682 if (part_die->tag == DW_TAG_enumerator
15683 && parent_die != NULL
15684 && parent_die->die_parent == NULL
15685 && parent_die->tag == DW_TAG_enumeration_type
15686 && parent_die->has_specification == 0)
15687 {
15688 if (part_die->name == NULL)
15689 complaint (&symfile_complaints,
15690 _("malformed enumerator DIE ignored"));
15691 else if (building_psymtab)
15692 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15693 VAR_DOMAIN, LOC_CONST,
15694 cu->language == language_cplus
15695 ? &objfile->global_psymbols
15696 : &objfile->static_psymbols,
15697 0, cu->language, objfile);
15698
15699 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15700 continue;
15701 }
15702
15703 /* We'll save this DIE so link it in. */
15704 part_die->die_parent = parent_die;
15705 part_die->die_sibling = NULL;
15706 part_die->die_child = NULL;
15707
15708 if (last_die && last_die == parent_die)
15709 last_die->die_child = part_die;
15710 else if (last_die)
15711 last_die->die_sibling = part_die;
15712
15713 last_die = part_die;
15714
15715 if (first_die == NULL)
15716 first_die = part_die;
15717
15718 /* Maybe add the DIE to the hash table. Not all DIEs that we
15719 find interesting need to be in the hash table, because we
15720 also have the parent/sibling/child chains; only those that we
15721 might refer to by offset later during partial symbol reading.
15722
15723 For now this means things that might have be the target of a
15724 DW_AT_specification, DW_AT_abstract_origin, or
15725 DW_AT_extension. DW_AT_extension will refer only to
15726 namespaces; DW_AT_abstract_origin refers to functions (and
15727 many things under the function DIE, but we do not recurse
15728 into function DIEs during partial symbol reading) and
15729 possibly variables as well; DW_AT_specification refers to
15730 declarations. Declarations ought to have the DW_AT_declaration
15731 flag. It happens that GCC forgets to put it in sometimes, but
15732 only for functions, not for types.
15733
15734 Adding more things than necessary to the hash table is harmless
15735 except for the performance cost. Adding too few will result in
15736 wasted time in find_partial_die, when we reread the compilation
15737 unit with load_all_dies set. */
15738
15739 if (load_all
15740 || abbrev->tag == DW_TAG_constant
15741 || abbrev->tag == DW_TAG_subprogram
15742 || abbrev->tag == DW_TAG_variable
15743 || abbrev->tag == DW_TAG_namespace
15744 || part_die->is_declaration)
15745 {
15746 void **slot;
15747
15748 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15749 part_die->offset.sect_off, INSERT);
15750 *slot = part_die;
15751 }
15752
15753 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
15754
15755 /* For some DIEs we want to follow their children (if any). For C
15756 we have no reason to follow the children of structures; for other
15757 languages we have to, so that we can get at method physnames
15758 to infer fully qualified class names, for DW_AT_specification,
15759 and for C++ template arguments. For C++, we also look one level
15760 inside functions to find template arguments (if the name of the
15761 function does not already contain the template arguments).
15762
15763 For Ada, we need to scan the children of subprograms and lexical
15764 blocks as well because Ada allows the definition of nested
15765 entities that could be interesting for the debugger, such as
15766 nested subprograms for instance. */
15767 if (last_die->has_children
15768 && (load_all
15769 || last_die->tag == DW_TAG_namespace
15770 || last_die->tag == DW_TAG_module
15771 || last_die->tag == DW_TAG_enumeration_type
15772 || (cu->language == language_cplus
15773 && last_die->tag == DW_TAG_subprogram
15774 && (last_die->name == NULL
15775 || strchr (last_die->name, '<') == NULL))
15776 || (cu->language != language_c
15777 && (last_die->tag == DW_TAG_class_type
15778 || last_die->tag == DW_TAG_interface_type
15779 || last_die->tag == DW_TAG_structure_type
15780 || last_die->tag == DW_TAG_union_type))
15781 || (cu->language == language_ada
15782 && (last_die->tag == DW_TAG_subprogram
15783 || last_die->tag == DW_TAG_lexical_block))))
15784 {
15785 nesting_level++;
15786 parent_die = last_die;
15787 continue;
15788 }
15789
15790 /* Otherwise we skip to the next sibling, if any. */
15791 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15792
15793 /* Back to the top, do it again. */
15794 }
15795 }
15796
15797 /* Read a minimal amount of information into the minimal die structure. */
15798
15799 static const gdb_byte *
15800 read_partial_die (const struct die_reader_specs *reader,
15801 struct partial_die_info *part_die,
15802 struct abbrev_info *abbrev, unsigned int abbrev_len,
15803 const gdb_byte *info_ptr)
15804 {
15805 struct dwarf2_cu *cu = reader->cu;
15806 struct objfile *objfile = cu->objfile;
15807 const gdb_byte *buffer = reader->buffer;
15808 unsigned int i;
15809 struct attribute attr;
15810 int has_low_pc_attr = 0;
15811 int has_high_pc_attr = 0;
15812 int high_pc_relative = 0;
15813
15814 memset (part_die, 0, sizeof (struct partial_die_info));
15815
15816 part_die->offset.sect_off = info_ptr - buffer;
15817
15818 info_ptr += abbrev_len;
15819
15820 if (abbrev == NULL)
15821 return info_ptr;
15822
15823 part_die->tag = abbrev->tag;
15824 part_die->has_children = abbrev->has_children;
15825
15826 for (i = 0; i < abbrev->num_attrs; ++i)
15827 {
15828 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15829
15830 /* Store the data if it is of an attribute we want to keep in a
15831 partial symbol table. */
15832 switch (attr.name)
15833 {
15834 case DW_AT_name:
15835 switch (part_die->tag)
15836 {
15837 case DW_TAG_compile_unit:
15838 case DW_TAG_partial_unit:
15839 case DW_TAG_type_unit:
15840 /* Compilation units have a DW_AT_name that is a filename, not
15841 a source language identifier. */
15842 case DW_TAG_enumeration_type:
15843 case DW_TAG_enumerator:
15844 /* These tags always have simple identifiers already; no need
15845 to canonicalize them. */
15846 part_die->name = DW_STRING (&attr);
15847 break;
15848 default:
15849 part_die->name
15850 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15851 &objfile->per_bfd->storage_obstack);
15852 break;
15853 }
15854 break;
15855 case DW_AT_linkage_name:
15856 case DW_AT_MIPS_linkage_name:
15857 /* Note that both forms of linkage name might appear. We
15858 assume they will be the same, and we only store the last
15859 one we see. */
15860 if (cu->language == language_ada)
15861 part_die->name = DW_STRING (&attr);
15862 part_die->linkage_name = DW_STRING (&attr);
15863 break;
15864 case DW_AT_low_pc:
15865 has_low_pc_attr = 1;
15866 part_die->lowpc = attr_value_as_address (&attr);
15867 break;
15868 case DW_AT_high_pc:
15869 has_high_pc_attr = 1;
15870 part_die->highpc = attr_value_as_address (&attr);
15871 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15872 high_pc_relative = 1;
15873 break;
15874 case DW_AT_location:
15875 /* Support the .debug_loc offsets. */
15876 if (attr_form_is_block (&attr))
15877 {
15878 part_die->d.locdesc = DW_BLOCK (&attr);
15879 }
15880 else if (attr_form_is_section_offset (&attr))
15881 {
15882 dwarf2_complex_location_expr_complaint ();
15883 }
15884 else
15885 {
15886 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15887 "partial symbol information");
15888 }
15889 break;
15890 case DW_AT_external:
15891 part_die->is_external = DW_UNSND (&attr);
15892 break;
15893 case DW_AT_declaration:
15894 part_die->is_declaration = DW_UNSND (&attr);
15895 break;
15896 case DW_AT_type:
15897 part_die->has_type = 1;
15898 break;
15899 case DW_AT_abstract_origin:
15900 case DW_AT_specification:
15901 case DW_AT_extension:
15902 part_die->has_specification = 1;
15903 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15904 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15905 || cu->per_cu->is_dwz);
15906 break;
15907 case DW_AT_sibling:
15908 /* Ignore absolute siblings, they might point outside of
15909 the current compile unit. */
15910 if (attr.form == DW_FORM_ref_addr)
15911 complaint (&symfile_complaints,
15912 _("ignoring absolute DW_AT_sibling"));
15913 else
15914 {
15915 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15916 const gdb_byte *sibling_ptr = buffer + off;
15917
15918 if (sibling_ptr < info_ptr)
15919 complaint (&symfile_complaints,
15920 _("DW_AT_sibling points backwards"));
15921 else if (sibling_ptr > reader->buffer_end)
15922 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15923 else
15924 part_die->sibling = sibling_ptr;
15925 }
15926 break;
15927 case DW_AT_byte_size:
15928 part_die->has_byte_size = 1;
15929 break;
15930 case DW_AT_const_value:
15931 part_die->has_const_value = 1;
15932 break;
15933 case DW_AT_calling_convention:
15934 /* DWARF doesn't provide a way to identify a program's source-level
15935 entry point. DW_AT_calling_convention attributes are only meant
15936 to describe functions' calling conventions.
15937
15938 However, because it's a necessary piece of information in
15939 Fortran, and before DWARF 4 DW_CC_program was the only
15940 piece of debugging information whose definition refers to
15941 a 'main program' at all, several compilers marked Fortran
15942 main programs with DW_CC_program --- even when those
15943 functions use the standard calling conventions.
15944
15945 Although DWARF now specifies a way to provide this
15946 information, we support this practice for backward
15947 compatibility. */
15948 if (DW_UNSND (&attr) == DW_CC_program
15949 && cu->language == language_fortran)
15950 part_die->main_subprogram = 1;
15951 break;
15952 case DW_AT_inline:
15953 if (DW_UNSND (&attr) == DW_INL_inlined
15954 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15955 part_die->may_be_inlined = 1;
15956 break;
15957
15958 case DW_AT_import:
15959 if (part_die->tag == DW_TAG_imported_unit)
15960 {
15961 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15962 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15963 || cu->per_cu->is_dwz);
15964 }
15965 break;
15966
15967 case DW_AT_main_subprogram:
15968 part_die->main_subprogram = DW_UNSND (&attr);
15969 break;
15970
15971 default:
15972 break;
15973 }
15974 }
15975
15976 if (high_pc_relative)
15977 part_die->highpc += part_die->lowpc;
15978
15979 if (has_low_pc_attr && has_high_pc_attr)
15980 {
15981 /* When using the GNU linker, .gnu.linkonce. sections are used to
15982 eliminate duplicate copies of functions and vtables and such.
15983 The linker will arbitrarily choose one and discard the others.
15984 The AT_*_pc values for such functions refer to local labels in
15985 these sections. If the section from that file was discarded, the
15986 labels are not in the output, so the relocs get a value of 0.
15987 If this is a discarded function, mark the pc bounds as invalid,
15988 so that GDB will ignore it. */
15989 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15990 {
15991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15992
15993 complaint (&symfile_complaints,
15994 _("DW_AT_low_pc %s is zero "
15995 "for DIE at 0x%x [in module %s]"),
15996 paddress (gdbarch, part_die->lowpc),
15997 part_die->offset.sect_off, objfile_name (objfile));
15998 }
15999 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16000 else if (part_die->lowpc >= part_die->highpc)
16001 {
16002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16003
16004 complaint (&symfile_complaints,
16005 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16006 "for DIE at 0x%x [in module %s]"),
16007 paddress (gdbarch, part_die->lowpc),
16008 paddress (gdbarch, part_die->highpc),
16009 part_die->offset.sect_off, objfile_name (objfile));
16010 }
16011 else
16012 part_die->has_pc_info = 1;
16013 }
16014
16015 return info_ptr;
16016 }
16017
16018 /* Find a cached partial DIE at OFFSET in CU. */
16019
16020 static struct partial_die_info *
16021 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
16022 {
16023 struct partial_die_info *lookup_die = NULL;
16024 struct partial_die_info part_die;
16025
16026 part_die.offset = offset;
16027 lookup_die = ((struct partial_die_info *)
16028 htab_find_with_hash (cu->partial_dies, &part_die,
16029 offset.sect_off));
16030
16031 return lookup_die;
16032 }
16033
16034 /* Find a partial DIE at OFFSET, which may or may not be in CU,
16035 except in the case of .debug_types DIEs which do not reference
16036 outside their CU (they do however referencing other types via
16037 DW_FORM_ref_sig8). */
16038
16039 static struct partial_die_info *
16040 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
16041 {
16042 struct objfile *objfile = cu->objfile;
16043 struct dwarf2_per_cu_data *per_cu = NULL;
16044 struct partial_die_info *pd = NULL;
16045
16046 if (offset_in_dwz == cu->per_cu->is_dwz
16047 && offset_in_cu_p (&cu->header, offset))
16048 {
16049 pd = find_partial_die_in_comp_unit (offset, cu);
16050 if (pd != NULL)
16051 return pd;
16052 /* We missed recording what we needed.
16053 Load all dies and try again. */
16054 per_cu = cu->per_cu;
16055 }
16056 else
16057 {
16058 /* TUs don't reference other CUs/TUs (except via type signatures). */
16059 if (cu->per_cu->is_debug_types)
16060 {
16061 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16062 " external reference to offset 0x%lx [in module %s].\n"),
16063 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16064 bfd_get_filename (objfile->obfd));
16065 }
16066 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16067 objfile);
16068
16069 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16070 load_partial_comp_unit (per_cu);
16071
16072 per_cu->cu->last_used = 0;
16073 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16074 }
16075
16076 /* If we didn't find it, and not all dies have been loaded,
16077 load them all and try again. */
16078
16079 if (pd == NULL && per_cu->load_all_dies == 0)
16080 {
16081 per_cu->load_all_dies = 1;
16082
16083 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16084 THIS_CU->cu may already be in use. So we can't just free it and
16085 replace its DIEs with the ones we read in. Instead, we leave those
16086 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16087 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16088 set. */
16089 load_partial_comp_unit (per_cu);
16090
16091 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16092 }
16093
16094 if (pd == NULL)
16095 internal_error (__FILE__, __LINE__,
16096 _("could not find partial DIE 0x%x "
16097 "in cache [from module %s]\n"),
16098 offset.sect_off, bfd_get_filename (objfile->obfd));
16099 return pd;
16100 }
16101
16102 /* See if we can figure out if the class lives in a namespace. We do
16103 this by looking for a member function; its demangled name will
16104 contain namespace info, if there is any. */
16105
16106 static void
16107 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16108 struct dwarf2_cu *cu)
16109 {
16110 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16111 what template types look like, because the demangler
16112 frequently doesn't give the same name as the debug info. We
16113 could fix this by only using the demangled name to get the
16114 prefix (but see comment in read_structure_type). */
16115
16116 struct partial_die_info *real_pdi;
16117 struct partial_die_info *child_pdi;
16118
16119 /* If this DIE (this DIE's specification, if any) has a parent, then
16120 we should not do this. We'll prepend the parent's fully qualified
16121 name when we create the partial symbol. */
16122
16123 real_pdi = struct_pdi;
16124 while (real_pdi->has_specification)
16125 real_pdi = find_partial_die (real_pdi->spec_offset,
16126 real_pdi->spec_is_dwz, cu);
16127
16128 if (real_pdi->die_parent != NULL)
16129 return;
16130
16131 for (child_pdi = struct_pdi->die_child;
16132 child_pdi != NULL;
16133 child_pdi = child_pdi->die_sibling)
16134 {
16135 if (child_pdi->tag == DW_TAG_subprogram
16136 && child_pdi->linkage_name != NULL)
16137 {
16138 char *actual_class_name
16139 = language_class_name_from_physname (cu->language_defn,
16140 child_pdi->linkage_name);
16141 if (actual_class_name != NULL)
16142 {
16143 struct_pdi->name
16144 = ((const char *)
16145 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16146 actual_class_name,
16147 strlen (actual_class_name)));
16148 xfree (actual_class_name);
16149 }
16150 break;
16151 }
16152 }
16153 }
16154
16155 /* Adjust PART_DIE before generating a symbol for it. This function
16156 may set the is_external flag or change the DIE's name. */
16157
16158 static void
16159 fixup_partial_die (struct partial_die_info *part_die,
16160 struct dwarf2_cu *cu)
16161 {
16162 /* Once we've fixed up a die, there's no point in doing so again.
16163 This also avoids a memory leak if we were to call
16164 guess_partial_die_structure_name multiple times. */
16165 if (part_die->fixup_called)
16166 return;
16167
16168 /* If we found a reference attribute and the DIE has no name, try
16169 to find a name in the referred to DIE. */
16170
16171 if (part_die->name == NULL && part_die->has_specification)
16172 {
16173 struct partial_die_info *spec_die;
16174
16175 spec_die = find_partial_die (part_die->spec_offset,
16176 part_die->spec_is_dwz, cu);
16177
16178 fixup_partial_die (spec_die, cu);
16179
16180 if (spec_die->name)
16181 {
16182 part_die->name = spec_die->name;
16183
16184 /* Copy DW_AT_external attribute if it is set. */
16185 if (spec_die->is_external)
16186 part_die->is_external = spec_die->is_external;
16187 }
16188 }
16189
16190 /* Set default names for some unnamed DIEs. */
16191
16192 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16193 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16194
16195 /* If there is no parent die to provide a namespace, and there are
16196 children, see if we can determine the namespace from their linkage
16197 name. */
16198 if (cu->language == language_cplus
16199 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16200 && part_die->die_parent == NULL
16201 && part_die->has_children
16202 && (part_die->tag == DW_TAG_class_type
16203 || part_die->tag == DW_TAG_structure_type
16204 || part_die->tag == DW_TAG_union_type))
16205 guess_partial_die_structure_name (part_die, cu);
16206
16207 /* GCC might emit a nameless struct or union that has a linkage
16208 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16209 if (part_die->name == NULL
16210 && (part_die->tag == DW_TAG_class_type
16211 || part_die->tag == DW_TAG_interface_type
16212 || part_die->tag == DW_TAG_structure_type
16213 || part_die->tag == DW_TAG_union_type)
16214 && part_die->linkage_name != NULL)
16215 {
16216 char *demangled;
16217
16218 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16219 if (demangled)
16220 {
16221 const char *base;
16222
16223 /* Strip any leading namespaces/classes, keep only the base name.
16224 DW_AT_name for named DIEs does not contain the prefixes. */
16225 base = strrchr (demangled, ':');
16226 if (base && base > demangled && base[-1] == ':')
16227 base++;
16228 else
16229 base = demangled;
16230
16231 part_die->name
16232 = ((const char *)
16233 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16234 base, strlen (base)));
16235 xfree (demangled);
16236 }
16237 }
16238
16239 part_die->fixup_called = 1;
16240 }
16241
16242 /* Read an attribute value described by an attribute form. */
16243
16244 static const gdb_byte *
16245 read_attribute_value (const struct die_reader_specs *reader,
16246 struct attribute *attr, unsigned form,
16247 const gdb_byte *info_ptr)
16248 {
16249 struct dwarf2_cu *cu = reader->cu;
16250 struct objfile *objfile = cu->objfile;
16251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16252 bfd *abfd = reader->abfd;
16253 struct comp_unit_head *cu_header = &cu->header;
16254 unsigned int bytes_read;
16255 struct dwarf_block *blk;
16256
16257 attr->form = (enum dwarf_form) form;
16258 switch (form)
16259 {
16260 case DW_FORM_ref_addr:
16261 if (cu->header.version == 2)
16262 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16263 else
16264 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16265 &cu->header, &bytes_read);
16266 info_ptr += bytes_read;
16267 break;
16268 case DW_FORM_GNU_ref_alt:
16269 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16270 info_ptr += bytes_read;
16271 break;
16272 case DW_FORM_addr:
16273 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16274 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16275 info_ptr += bytes_read;
16276 break;
16277 case DW_FORM_block2:
16278 blk = dwarf_alloc_block (cu);
16279 blk->size = read_2_bytes (abfd, info_ptr);
16280 info_ptr += 2;
16281 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16282 info_ptr += blk->size;
16283 DW_BLOCK (attr) = blk;
16284 break;
16285 case DW_FORM_block4:
16286 blk = dwarf_alloc_block (cu);
16287 blk->size = read_4_bytes (abfd, info_ptr);
16288 info_ptr += 4;
16289 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16290 info_ptr += blk->size;
16291 DW_BLOCK (attr) = blk;
16292 break;
16293 case DW_FORM_data2:
16294 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16295 info_ptr += 2;
16296 break;
16297 case DW_FORM_data4:
16298 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16299 info_ptr += 4;
16300 break;
16301 case DW_FORM_data8:
16302 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16303 info_ptr += 8;
16304 break;
16305 case DW_FORM_sec_offset:
16306 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16307 info_ptr += bytes_read;
16308 break;
16309 case DW_FORM_string:
16310 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16311 DW_STRING_IS_CANONICAL (attr) = 0;
16312 info_ptr += bytes_read;
16313 break;
16314 case DW_FORM_strp:
16315 if (!cu->per_cu->is_dwz)
16316 {
16317 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16318 &bytes_read);
16319 DW_STRING_IS_CANONICAL (attr) = 0;
16320 info_ptr += bytes_read;
16321 break;
16322 }
16323 /* FALLTHROUGH */
16324 case DW_FORM_GNU_strp_alt:
16325 {
16326 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16327 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16328 &bytes_read);
16329
16330 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16331 DW_STRING_IS_CANONICAL (attr) = 0;
16332 info_ptr += bytes_read;
16333 }
16334 break;
16335 case DW_FORM_exprloc:
16336 case DW_FORM_block:
16337 blk = dwarf_alloc_block (cu);
16338 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16339 info_ptr += bytes_read;
16340 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16341 info_ptr += blk->size;
16342 DW_BLOCK (attr) = blk;
16343 break;
16344 case DW_FORM_block1:
16345 blk = dwarf_alloc_block (cu);
16346 blk->size = read_1_byte (abfd, info_ptr);
16347 info_ptr += 1;
16348 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16349 info_ptr += blk->size;
16350 DW_BLOCK (attr) = blk;
16351 break;
16352 case DW_FORM_data1:
16353 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16354 info_ptr += 1;
16355 break;
16356 case DW_FORM_flag:
16357 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16358 info_ptr += 1;
16359 break;
16360 case DW_FORM_flag_present:
16361 DW_UNSND (attr) = 1;
16362 break;
16363 case DW_FORM_sdata:
16364 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16365 info_ptr += bytes_read;
16366 break;
16367 case DW_FORM_udata:
16368 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16369 info_ptr += bytes_read;
16370 break;
16371 case DW_FORM_ref1:
16372 DW_UNSND (attr) = (cu->header.offset.sect_off
16373 + read_1_byte (abfd, info_ptr));
16374 info_ptr += 1;
16375 break;
16376 case DW_FORM_ref2:
16377 DW_UNSND (attr) = (cu->header.offset.sect_off
16378 + read_2_bytes (abfd, info_ptr));
16379 info_ptr += 2;
16380 break;
16381 case DW_FORM_ref4:
16382 DW_UNSND (attr) = (cu->header.offset.sect_off
16383 + read_4_bytes (abfd, info_ptr));
16384 info_ptr += 4;
16385 break;
16386 case DW_FORM_ref8:
16387 DW_UNSND (attr) = (cu->header.offset.sect_off
16388 + read_8_bytes (abfd, info_ptr));
16389 info_ptr += 8;
16390 break;
16391 case DW_FORM_ref_sig8:
16392 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16393 info_ptr += 8;
16394 break;
16395 case DW_FORM_ref_udata:
16396 DW_UNSND (attr) = (cu->header.offset.sect_off
16397 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16398 info_ptr += bytes_read;
16399 break;
16400 case DW_FORM_indirect:
16401 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16402 info_ptr += bytes_read;
16403 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16404 break;
16405 case DW_FORM_GNU_addr_index:
16406 if (reader->dwo_file == NULL)
16407 {
16408 /* For now flag a hard error.
16409 Later we can turn this into a complaint. */
16410 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16411 dwarf_form_name (form),
16412 bfd_get_filename (abfd));
16413 }
16414 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16415 info_ptr += bytes_read;
16416 break;
16417 case DW_FORM_GNU_str_index:
16418 if (reader->dwo_file == NULL)
16419 {
16420 /* For now flag a hard error.
16421 Later we can turn this into a complaint if warranted. */
16422 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16423 dwarf_form_name (form),
16424 bfd_get_filename (abfd));
16425 }
16426 {
16427 ULONGEST str_index =
16428 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16429
16430 DW_STRING (attr) = read_str_index (reader, str_index);
16431 DW_STRING_IS_CANONICAL (attr) = 0;
16432 info_ptr += bytes_read;
16433 }
16434 break;
16435 default:
16436 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16437 dwarf_form_name (form),
16438 bfd_get_filename (abfd));
16439 }
16440
16441 /* Super hack. */
16442 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16443 attr->form = DW_FORM_GNU_ref_alt;
16444
16445 /* We have seen instances where the compiler tried to emit a byte
16446 size attribute of -1 which ended up being encoded as an unsigned
16447 0xffffffff. Although 0xffffffff is technically a valid size value,
16448 an object of this size seems pretty unlikely so we can relatively
16449 safely treat these cases as if the size attribute was invalid and
16450 treat them as zero by default. */
16451 if (attr->name == DW_AT_byte_size
16452 && form == DW_FORM_data4
16453 && DW_UNSND (attr) >= 0xffffffff)
16454 {
16455 complaint
16456 (&symfile_complaints,
16457 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16458 hex_string (DW_UNSND (attr)));
16459 DW_UNSND (attr) = 0;
16460 }
16461
16462 return info_ptr;
16463 }
16464
16465 /* Read an attribute described by an abbreviated attribute. */
16466
16467 static const gdb_byte *
16468 read_attribute (const struct die_reader_specs *reader,
16469 struct attribute *attr, struct attr_abbrev *abbrev,
16470 const gdb_byte *info_ptr)
16471 {
16472 attr->name = abbrev->name;
16473 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16474 }
16475
16476 /* Read dwarf information from a buffer. */
16477
16478 static unsigned int
16479 read_1_byte (bfd *abfd, const gdb_byte *buf)
16480 {
16481 return bfd_get_8 (abfd, buf);
16482 }
16483
16484 static int
16485 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16486 {
16487 return bfd_get_signed_8 (abfd, buf);
16488 }
16489
16490 static unsigned int
16491 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16492 {
16493 return bfd_get_16 (abfd, buf);
16494 }
16495
16496 static int
16497 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16498 {
16499 return bfd_get_signed_16 (abfd, buf);
16500 }
16501
16502 static unsigned int
16503 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16504 {
16505 return bfd_get_32 (abfd, buf);
16506 }
16507
16508 static int
16509 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16510 {
16511 return bfd_get_signed_32 (abfd, buf);
16512 }
16513
16514 static ULONGEST
16515 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16516 {
16517 return bfd_get_64 (abfd, buf);
16518 }
16519
16520 static CORE_ADDR
16521 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16522 unsigned int *bytes_read)
16523 {
16524 struct comp_unit_head *cu_header = &cu->header;
16525 CORE_ADDR retval = 0;
16526
16527 if (cu_header->signed_addr_p)
16528 {
16529 switch (cu_header->addr_size)
16530 {
16531 case 2:
16532 retval = bfd_get_signed_16 (abfd, buf);
16533 break;
16534 case 4:
16535 retval = bfd_get_signed_32 (abfd, buf);
16536 break;
16537 case 8:
16538 retval = bfd_get_signed_64 (abfd, buf);
16539 break;
16540 default:
16541 internal_error (__FILE__, __LINE__,
16542 _("read_address: bad switch, signed [in module %s]"),
16543 bfd_get_filename (abfd));
16544 }
16545 }
16546 else
16547 {
16548 switch (cu_header->addr_size)
16549 {
16550 case 2:
16551 retval = bfd_get_16 (abfd, buf);
16552 break;
16553 case 4:
16554 retval = bfd_get_32 (abfd, buf);
16555 break;
16556 case 8:
16557 retval = bfd_get_64 (abfd, buf);
16558 break;
16559 default:
16560 internal_error (__FILE__, __LINE__,
16561 _("read_address: bad switch, "
16562 "unsigned [in module %s]"),
16563 bfd_get_filename (abfd));
16564 }
16565 }
16566
16567 *bytes_read = cu_header->addr_size;
16568 return retval;
16569 }
16570
16571 /* Read the initial length from a section. The (draft) DWARF 3
16572 specification allows the initial length to take up either 4 bytes
16573 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16574 bytes describe the length and all offsets will be 8 bytes in length
16575 instead of 4.
16576
16577 An older, non-standard 64-bit format is also handled by this
16578 function. The older format in question stores the initial length
16579 as an 8-byte quantity without an escape value. Lengths greater
16580 than 2^32 aren't very common which means that the initial 4 bytes
16581 is almost always zero. Since a length value of zero doesn't make
16582 sense for the 32-bit format, this initial zero can be considered to
16583 be an escape value which indicates the presence of the older 64-bit
16584 format. As written, the code can't detect (old format) lengths
16585 greater than 4GB. If it becomes necessary to handle lengths
16586 somewhat larger than 4GB, we could allow other small values (such
16587 as the non-sensical values of 1, 2, and 3) to also be used as
16588 escape values indicating the presence of the old format.
16589
16590 The value returned via bytes_read should be used to increment the
16591 relevant pointer after calling read_initial_length().
16592
16593 [ Note: read_initial_length() and read_offset() are based on the
16594 document entitled "DWARF Debugging Information Format", revision
16595 3, draft 8, dated November 19, 2001. This document was obtained
16596 from:
16597
16598 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16599
16600 This document is only a draft and is subject to change. (So beware.)
16601
16602 Details regarding the older, non-standard 64-bit format were
16603 determined empirically by examining 64-bit ELF files produced by
16604 the SGI toolchain on an IRIX 6.5 machine.
16605
16606 - Kevin, July 16, 2002
16607 ] */
16608
16609 static LONGEST
16610 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16611 {
16612 LONGEST length = bfd_get_32 (abfd, buf);
16613
16614 if (length == 0xffffffff)
16615 {
16616 length = bfd_get_64 (abfd, buf + 4);
16617 *bytes_read = 12;
16618 }
16619 else if (length == 0)
16620 {
16621 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16622 length = bfd_get_64 (abfd, buf);
16623 *bytes_read = 8;
16624 }
16625 else
16626 {
16627 *bytes_read = 4;
16628 }
16629
16630 return length;
16631 }
16632
16633 /* Cover function for read_initial_length.
16634 Returns the length of the object at BUF, and stores the size of the
16635 initial length in *BYTES_READ and stores the size that offsets will be in
16636 *OFFSET_SIZE.
16637 If the initial length size is not equivalent to that specified in
16638 CU_HEADER then issue a complaint.
16639 This is useful when reading non-comp-unit headers. */
16640
16641 static LONGEST
16642 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16643 const struct comp_unit_head *cu_header,
16644 unsigned int *bytes_read,
16645 unsigned int *offset_size)
16646 {
16647 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16648
16649 gdb_assert (cu_header->initial_length_size == 4
16650 || cu_header->initial_length_size == 8
16651 || cu_header->initial_length_size == 12);
16652
16653 if (cu_header->initial_length_size != *bytes_read)
16654 complaint (&symfile_complaints,
16655 _("intermixed 32-bit and 64-bit DWARF sections"));
16656
16657 *offset_size = (*bytes_read == 4) ? 4 : 8;
16658 return length;
16659 }
16660
16661 /* Read an offset from the data stream. The size of the offset is
16662 given by cu_header->offset_size. */
16663
16664 static LONGEST
16665 read_offset (bfd *abfd, const gdb_byte *buf,
16666 const struct comp_unit_head *cu_header,
16667 unsigned int *bytes_read)
16668 {
16669 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16670
16671 *bytes_read = cu_header->offset_size;
16672 return offset;
16673 }
16674
16675 /* Read an offset from the data stream. */
16676
16677 static LONGEST
16678 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16679 {
16680 LONGEST retval = 0;
16681
16682 switch (offset_size)
16683 {
16684 case 4:
16685 retval = bfd_get_32 (abfd, buf);
16686 break;
16687 case 8:
16688 retval = bfd_get_64 (abfd, buf);
16689 break;
16690 default:
16691 internal_error (__FILE__, __LINE__,
16692 _("read_offset_1: bad switch [in module %s]"),
16693 bfd_get_filename (abfd));
16694 }
16695
16696 return retval;
16697 }
16698
16699 static const gdb_byte *
16700 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16701 {
16702 /* If the size of a host char is 8 bits, we can return a pointer
16703 to the buffer, otherwise we have to copy the data to a buffer
16704 allocated on the temporary obstack. */
16705 gdb_assert (HOST_CHAR_BIT == 8);
16706 return buf;
16707 }
16708
16709 static const char *
16710 read_direct_string (bfd *abfd, const gdb_byte *buf,
16711 unsigned int *bytes_read_ptr)
16712 {
16713 /* If the size of a host char is 8 bits, we can return a pointer
16714 to the string, otherwise we have to copy the string to a buffer
16715 allocated on the temporary obstack. */
16716 gdb_assert (HOST_CHAR_BIT == 8);
16717 if (*buf == '\0')
16718 {
16719 *bytes_read_ptr = 1;
16720 return NULL;
16721 }
16722 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16723 return (const char *) buf;
16724 }
16725
16726 static const char *
16727 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16728 {
16729 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16730 if (dwarf2_per_objfile->str.buffer == NULL)
16731 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16732 bfd_get_filename (abfd));
16733 if (str_offset >= dwarf2_per_objfile->str.size)
16734 error (_("DW_FORM_strp pointing outside of "
16735 ".debug_str section [in module %s]"),
16736 bfd_get_filename (abfd));
16737 gdb_assert (HOST_CHAR_BIT == 8);
16738 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16739 return NULL;
16740 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16741 }
16742
16743 /* Read a string at offset STR_OFFSET in the .debug_str section from
16744 the .dwz file DWZ. Throw an error if the offset is too large. If
16745 the string consists of a single NUL byte, return NULL; otherwise
16746 return a pointer to the string. */
16747
16748 static const char *
16749 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16750 {
16751 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16752
16753 if (dwz->str.buffer == NULL)
16754 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16755 "section [in module %s]"),
16756 bfd_get_filename (dwz->dwz_bfd));
16757 if (str_offset >= dwz->str.size)
16758 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16759 ".debug_str section [in module %s]"),
16760 bfd_get_filename (dwz->dwz_bfd));
16761 gdb_assert (HOST_CHAR_BIT == 8);
16762 if (dwz->str.buffer[str_offset] == '\0')
16763 return NULL;
16764 return (const char *) (dwz->str.buffer + str_offset);
16765 }
16766
16767 static const char *
16768 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16769 const struct comp_unit_head *cu_header,
16770 unsigned int *bytes_read_ptr)
16771 {
16772 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16773
16774 return read_indirect_string_at_offset (abfd, str_offset);
16775 }
16776
16777 static ULONGEST
16778 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16779 unsigned int *bytes_read_ptr)
16780 {
16781 ULONGEST result;
16782 unsigned int num_read;
16783 int shift;
16784 unsigned char byte;
16785
16786 result = 0;
16787 shift = 0;
16788 num_read = 0;
16789 while (1)
16790 {
16791 byte = bfd_get_8 (abfd, buf);
16792 buf++;
16793 num_read++;
16794 result |= ((ULONGEST) (byte & 127) << shift);
16795 if ((byte & 128) == 0)
16796 {
16797 break;
16798 }
16799 shift += 7;
16800 }
16801 *bytes_read_ptr = num_read;
16802 return result;
16803 }
16804
16805 static LONGEST
16806 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16807 unsigned int *bytes_read_ptr)
16808 {
16809 LONGEST result;
16810 int shift, num_read;
16811 unsigned char byte;
16812
16813 result = 0;
16814 shift = 0;
16815 num_read = 0;
16816 while (1)
16817 {
16818 byte = bfd_get_8 (abfd, buf);
16819 buf++;
16820 num_read++;
16821 result |= ((LONGEST) (byte & 127) << shift);
16822 shift += 7;
16823 if ((byte & 128) == 0)
16824 {
16825 break;
16826 }
16827 }
16828 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16829 result |= -(((LONGEST) 1) << shift);
16830 *bytes_read_ptr = num_read;
16831 return result;
16832 }
16833
16834 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16835 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16836 ADDR_SIZE is the size of addresses from the CU header. */
16837
16838 static CORE_ADDR
16839 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16840 {
16841 struct objfile *objfile = dwarf2_per_objfile->objfile;
16842 bfd *abfd = objfile->obfd;
16843 const gdb_byte *info_ptr;
16844
16845 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16846 if (dwarf2_per_objfile->addr.buffer == NULL)
16847 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16848 objfile_name (objfile));
16849 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16850 error (_("DW_FORM_addr_index pointing outside of "
16851 ".debug_addr section [in module %s]"),
16852 objfile_name (objfile));
16853 info_ptr = (dwarf2_per_objfile->addr.buffer
16854 + addr_base + addr_index * addr_size);
16855 if (addr_size == 4)
16856 return bfd_get_32 (abfd, info_ptr);
16857 else
16858 return bfd_get_64 (abfd, info_ptr);
16859 }
16860
16861 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16862
16863 static CORE_ADDR
16864 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16865 {
16866 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16867 }
16868
16869 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16870
16871 static CORE_ADDR
16872 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16873 unsigned int *bytes_read)
16874 {
16875 bfd *abfd = cu->objfile->obfd;
16876 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16877
16878 return read_addr_index (cu, addr_index);
16879 }
16880
16881 /* Data structure to pass results from dwarf2_read_addr_index_reader
16882 back to dwarf2_read_addr_index. */
16883
16884 struct dwarf2_read_addr_index_data
16885 {
16886 ULONGEST addr_base;
16887 int addr_size;
16888 };
16889
16890 /* die_reader_func for dwarf2_read_addr_index. */
16891
16892 static void
16893 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16894 const gdb_byte *info_ptr,
16895 struct die_info *comp_unit_die,
16896 int has_children,
16897 void *data)
16898 {
16899 struct dwarf2_cu *cu = reader->cu;
16900 struct dwarf2_read_addr_index_data *aidata =
16901 (struct dwarf2_read_addr_index_data *) data;
16902
16903 aidata->addr_base = cu->addr_base;
16904 aidata->addr_size = cu->header.addr_size;
16905 }
16906
16907 /* Given an index in .debug_addr, fetch the value.
16908 NOTE: This can be called during dwarf expression evaluation,
16909 long after the debug information has been read, and thus per_cu->cu
16910 may no longer exist. */
16911
16912 CORE_ADDR
16913 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16914 unsigned int addr_index)
16915 {
16916 struct objfile *objfile = per_cu->objfile;
16917 struct dwarf2_cu *cu = per_cu->cu;
16918 ULONGEST addr_base;
16919 int addr_size;
16920
16921 /* This is intended to be called from outside this file. */
16922 dw2_setup (objfile);
16923
16924 /* We need addr_base and addr_size.
16925 If we don't have PER_CU->cu, we have to get it.
16926 Nasty, but the alternative is storing the needed info in PER_CU,
16927 which at this point doesn't seem justified: it's not clear how frequently
16928 it would get used and it would increase the size of every PER_CU.
16929 Entry points like dwarf2_per_cu_addr_size do a similar thing
16930 so we're not in uncharted territory here.
16931 Alas we need to be a bit more complicated as addr_base is contained
16932 in the DIE.
16933
16934 We don't need to read the entire CU(/TU).
16935 We just need the header and top level die.
16936
16937 IWBN to use the aging mechanism to let us lazily later discard the CU.
16938 For now we skip this optimization. */
16939
16940 if (cu != NULL)
16941 {
16942 addr_base = cu->addr_base;
16943 addr_size = cu->header.addr_size;
16944 }
16945 else
16946 {
16947 struct dwarf2_read_addr_index_data aidata;
16948
16949 /* Note: We can't use init_cutu_and_read_dies_simple here,
16950 we need addr_base. */
16951 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16952 dwarf2_read_addr_index_reader, &aidata);
16953 addr_base = aidata.addr_base;
16954 addr_size = aidata.addr_size;
16955 }
16956
16957 return read_addr_index_1 (addr_index, addr_base, addr_size);
16958 }
16959
16960 /* Given a DW_FORM_GNU_str_index, fetch the string.
16961 This is only used by the Fission support. */
16962
16963 static const char *
16964 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16965 {
16966 struct objfile *objfile = dwarf2_per_objfile->objfile;
16967 const char *objf_name = objfile_name (objfile);
16968 bfd *abfd = objfile->obfd;
16969 struct dwarf2_cu *cu = reader->cu;
16970 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16971 struct dwarf2_section_info *str_offsets_section =
16972 &reader->dwo_file->sections.str_offsets;
16973 const gdb_byte *info_ptr;
16974 ULONGEST str_offset;
16975 static const char form_name[] = "DW_FORM_GNU_str_index";
16976
16977 dwarf2_read_section (objfile, str_section);
16978 dwarf2_read_section (objfile, str_offsets_section);
16979 if (str_section->buffer == NULL)
16980 error (_("%s used without .debug_str.dwo section"
16981 " in CU at offset 0x%lx [in module %s]"),
16982 form_name, (long) cu->header.offset.sect_off, objf_name);
16983 if (str_offsets_section->buffer == NULL)
16984 error (_("%s used without .debug_str_offsets.dwo section"
16985 " in CU at offset 0x%lx [in module %s]"),
16986 form_name, (long) cu->header.offset.sect_off, objf_name);
16987 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16988 error (_("%s pointing outside of .debug_str_offsets.dwo"
16989 " section in CU at offset 0x%lx [in module %s]"),
16990 form_name, (long) cu->header.offset.sect_off, objf_name);
16991 info_ptr = (str_offsets_section->buffer
16992 + str_index * cu->header.offset_size);
16993 if (cu->header.offset_size == 4)
16994 str_offset = bfd_get_32 (abfd, info_ptr);
16995 else
16996 str_offset = bfd_get_64 (abfd, info_ptr);
16997 if (str_offset >= str_section->size)
16998 error (_("Offset from %s pointing outside of"
16999 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
17000 form_name, (long) cu->header.offset.sect_off, objf_name);
17001 return (const char *) (str_section->buffer + str_offset);
17002 }
17003
17004 /* Return the length of an LEB128 number in BUF. */
17005
17006 static int
17007 leb128_size (const gdb_byte *buf)
17008 {
17009 const gdb_byte *begin = buf;
17010 gdb_byte byte;
17011
17012 while (1)
17013 {
17014 byte = *buf++;
17015 if ((byte & 128) == 0)
17016 return buf - begin;
17017 }
17018 }
17019
17020 static void
17021 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
17022 {
17023 switch (lang)
17024 {
17025 case DW_LANG_C89:
17026 case DW_LANG_C99:
17027 case DW_LANG_C11:
17028 case DW_LANG_C:
17029 case DW_LANG_UPC:
17030 cu->language = language_c;
17031 break;
17032 case DW_LANG_Java:
17033 case DW_LANG_C_plus_plus:
17034 case DW_LANG_C_plus_plus_11:
17035 case DW_LANG_C_plus_plus_14:
17036 cu->language = language_cplus;
17037 break;
17038 case DW_LANG_D:
17039 cu->language = language_d;
17040 break;
17041 case DW_LANG_Fortran77:
17042 case DW_LANG_Fortran90:
17043 case DW_LANG_Fortran95:
17044 case DW_LANG_Fortran03:
17045 case DW_LANG_Fortran08:
17046 cu->language = language_fortran;
17047 break;
17048 case DW_LANG_Go:
17049 cu->language = language_go;
17050 break;
17051 case DW_LANG_Mips_Assembler:
17052 cu->language = language_asm;
17053 break;
17054 case DW_LANG_Ada83:
17055 case DW_LANG_Ada95:
17056 cu->language = language_ada;
17057 break;
17058 case DW_LANG_Modula2:
17059 cu->language = language_m2;
17060 break;
17061 case DW_LANG_Pascal83:
17062 cu->language = language_pascal;
17063 break;
17064 case DW_LANG_ObjC:
17065 cu->language = language_objc;
17066 break;
17067 case DW_LANG_Rust:
17068 case DW_LANG_Rust_old:
17069 cu->language = language_rust;
17070 break;
17071 case DW_LANG_Cobol74:
17072 case DW_LANG_Cobol85:
17073 default:
17074 cu->language = language_minimal;
17075 break;
17076 }
17077 cu->language_defn = language_def (cu->language);
17078 }
17079
17080 /* Return the named attribute or NULL if not there. */
17081
17082 static struct attribute *
17083 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17084 {
17085 for (;;)
17086 {
17087 unsigned int i;
17088 struct attribute *spec = NULL;
17089
17090 for (i = 0; i < die->num_attrs; ++i)
17091 {
17092 if (die->attrs[i].name == name)
17093 return &die->attrs[i];
17094 if (die->attrs[i].name == DW_AT_specification
17095 || die->attrs[i].name == DW_AT_abstract_origin)
17096 spec = &die->attrs[i];
17097 }
17098
17099 if (!spec)
17100 break;
17101
17102 die = follow_die_ref (die, spec, &cu);
17103 }
17104
17105 return NULL;
17106 }
17107
17108 /* Return the named attribute or NULL if not there,
17109 but do not follow DW_AT_specification, etc.
17110 This is for use in contexts where we're reading .debug_types dies.
17111 Following DW_AT_specification, DW_AT_abstract_origin will take us
17112 back up the chain, and we want to go down. */
17113
17114 static struct attribute *
17115 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17116 {
17117 unsigned int i;
17118
17119 for (i = 0; i < die->num_attrs; ++i)
17120 if (die->attrs[i].name == name)
17121 return &die->attrs[i];
17122
17123 return NULL;
17124 }
17125
17126 /* Return the string associated with a string-typed attribute, or NULL if it
17127 is either not found or is of an incorrect type. */
17128
17129 static const char *
17130 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17131 {
17132 struct attribute *attr;
17133 const char *str = NULL;
17134
17135 attr = dwarf2_attr (die, name, cu);
17136
17137 if (attr != NULL)
17138 {
17139 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17140 || attr->form == DW_FORM_GNU_strp_alt)
17141 str = DW_STRING (attr);
17142 else
17143 complaint (&symfile_complaints,
17144 _("string type expected for attribute %s for "
17145 "DIE at 0x%x in module %s"),
17146 dwarf_attr_name (name), die->offset.sect_off,
17147 objfile_name (cu->objfile));
17148 }
17149
17150 return str;
17151 }
17152
17153 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17154 and holds a non-zero value. This function should only be used for
17155 DW_FORM_flag or DW_FORM_flag_present attributes. */
17156
17157 static int
17158 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17159 {
17160 struct attribute *attr = dwarf2_attr (die, name, cu);
17161
17162 return (attr && DW_UNSND (attr));
17163 }
17164
17165 static int
17166 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17167 {
17168 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17169 which value is non-zero. However, we have to be careful with
17170 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17171 (via dwarf2_flag_true_p) follows this attribute. So we may
17172 end up accidently finding a declaration attribute that belongs
17173 to a different DIE referenced by the specification attribute,
17174 even though the given DIE does not have a declaration attribute. */
17175 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17176 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17177 }
17178
17179 /* Return the die giving the specification for DIE, if there is
17180 one. *SPEC_CU is the CU containing DIE on input, and the CU
17181 containing the return value on output. If there is no
17182 specification, but there is an abstract origin, that is
17183 returned. */
17184
17185 static struct die_info *
17186 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17187 {
17188 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17189 *spec_cu);
17190
17191 if (spec_attr == NULL)
17192 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17193
17194 if (spec_attr == NULL)
17195 return NULL;
17196 else
17197 return follow_die_ref (die, spec_attr, spec_cu);
17198 }
17199
17200 /* Free the line_header structure *LH, and any arrays and strings it
17201 refers to.
17202 NOTE: This is also used as a "cleanup" function. */
17203
17204 static void
17205 free_line_header (struct line_header *lh)
17206 {
17207 if (lh->standard_opcode_lengths)
17208 xfree (lh->standard_opcode_lengths);
17209
17210 /* Remember that all the lh->file_names[i].name pointers are
17211 pointers into debug_line_buffer, and don't need to be freed. */
17212 if (lh->file_names)
17213 xfree (lh->file_names);
17214
17215 /* Similarly for the include directory names. */
17216 if (lh->include_dirs)
17217 xfree (lh->include_dirs);
17218
17219 xfree (lh);
17220 }
17221
17222 /* Stub for free_line_header to match void * callback types. */
17223
17224 static void
17225 free_line_header_voidp (void *arg)
17226 {
17227 struct line_header *lh = (struct line_header *) arg;
17228
17229 free_line_header (lh);
17230 }
17231
17232 /* Add an entry to LH's include directory table. */
17233
17234 static void
17235 add_include_dir (struct line_header *lh, const char *include_dir)
17236 {
17237 if (dwarf_line_debug >= 2)
17238 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17239 lh->num_include_dirs + 1, include_dir);
17240
17241 /* Grow the array if necessary. */
17242 if (lh->include_dirs_size == 0)
17243 {
17244 lh->include_dirs_size = 1; /* for testing */
17245 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
17246 }
17247 else if (lh->num_include_dirs >= lh->include_dirs_size)
17248 {
17249 lh->include_dirs_size *= 2;
17250 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17251 lh->include_dirs_size);
17252 }
17253
17254 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17255 }
17256
17257 /* Add an entry to LH's file name table. */
17258
17259 static void
17260 add_file_name (struct line_header *lh,
17261 const char *name,
17262 unsigned int dir_index,
17263 unsigned int mod_time,
17264 unsigned int length)
17265 {
17266 struct file_entry *fe;
17267
17268 if (dwarf_line_debug >= 2)
17269 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17270 lh->num_file_names + 1, name);
17271
17272 /* Grow the array if necessary. */
17273 if (lh->file_names_size == 0)
17274 {
17275 lh->file_names_size = 1; /* for testing */
17276 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
17277 }
17278 else if (lh->num_file_names >= lh->file_names_size)
17279 {
17280 lh->file_names_size *= 2;
17281 lh->file_names
17282 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
17283 }
17284
17285 fe = &lh->file_names[lh->num_file_names++];
17286 fe->name = name;
17287 fe->dir_index = dir_index;
17288 fe->mod_time = mod_time;
17289 fe->length = length;
17290 fe->included_p = 0;
17291 fe->symtab = NULL;
17292 }
17293
17294 /* A convenience function to find the proper .debug_line section for a CU. */
17295
17296 static struct dwarf2_section_info *
17297 get_debug_line_section (struct dwarf2_cu *cu)
17298 {
17299 struct dwarf2_section_info *section;
17300
17301 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17302 DWO file. */
17303 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17304 section = &cu->dwo_unit->dwo_file->sections.line;
17305 else if (cu->per_cu->is_dwz)
17306 {
17307 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17308
17309 section = &dwz->line;
17310 }
17311 else
17312 section = &dwarf2_per_objfile->line;
17313
17314 return section;
17315 }
17316
17317 /* Read the statement program header starting at OFFSET in
17318 .debug_line, or .debug_line.dwo. Return a pointer
17319 to a struct line_header, allocated using xmalloc.
17320 Returns NULL if there is a problem reading the header, e.g., if it
17321 has a version we don't understand.
17322
17323 NOTE: the strings in the include directory and file name tables of
17324 the returned object point into the dwarf line section buffer,
17325 and must not be freed. */
17326
17327 static struct line_header *
17328 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17329 {
17330 struct cleanup *back_to;
17331 struct line_header *lh;
17332 const gdb_byte *line_ptr;
17333 unsigned int bytes_read, offset_size;
17334 int i;
17335 const char *cur_dir, *cur_file;
17336 struct dwarf2_section_info *section;
17337 bfd *abfd;
17338
17339 section = get_debug_line_section (cu);
17340 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17341 if (section->buffer == NULL)
17342 {
17343 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17344 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17345 else
17346 complaint (&symfile_complaints, _("missing .debug_line section"));
17347 return 0;
17348 }
17349
17350 /* We can't do this until we know the section is non-empty.
17351 Only then do we know we have such a section. */
17352 abfd = get_section_bfd_owner (section);
17353
17354 /* Make sure that at least there's room for the total_length field.
17355 That could be 12 bytes long, but we're just going to fudge that. */
17356 if (offset + 4 >= section->size)
17357 {
17358 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17359 return 0;
17360 }
17361
17362 lh = XNEW (struct line_header);
17363 memset (lh, 0, sizeof (*lh));
17364 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17365 (void *) lh);
17366
17367 lh->offset.sect_off = offset;
17368 lh->offset_in_dwz = cu->per_cu->is_dwz;
17369
17370 line_ptr = section->buffer + offset;
17371
17372 /* Read in the header. */
17373 lh->total_length =
17374 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17375 &bytes_read, &offset_size);
17376 line_ptr += bytes_read;
17377 if (line_ptr + lh->total_length > (section->buffer + section->size))
17378 {
17379 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17380 do_cleanups (back_to);
17381 return 0;
17382 }
17383 lh->statement_program_end = line_ptr + lh->total_length;
17384 lh->version = read_2_bytes (abfd, line_ptr);
17385 line_ptr += 2;
17386 if (lh->version > 4)
17387 {
17388 /* This is a version we don't understand. The format could have
17389 changed in ways we don't handle properly so just punt. */
17390 complaint (&symfile_complaints,
17391 _("unsupported version in .debug_line section"));
17392 return NULL;
17393 }
17394 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17395 line_ptr += offset_size;
17396 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17397 line_ptr += 1;
17398 if (lh->version >= 4)
17399 {
17400 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17401 line_ptr += 1;
17402 }
17403 else
17404 lh->maximum_ops_per_instruction = 1;
17405
17406 if (lh->maximum_ops_per_instruction == 0)
17407 {
17408 lh->maximum_ops_per_instruction = 1;
17409 complaint (&symfile_complaints,
17410 _("invalid maximum_ops_per_instruction "
17411 "in `.debug_line' section"));
17412 }
17413
17414 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17415 line_ptr += 1;
17416 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17417 line_ptr += 1;
17418 lh->line_range = read_1_byte (abfd, line_ptr);
17419 line_ptr += 1;
17420 lh->opcode_base = read_1_byte (abfd, line_ptr);
17421 line_ptr += 1;
17422 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
17423
17424 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17425 for (i = 1; i < lh->opcode_base; ++i)
17426 {
17427 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17428 line_ptr += 1;
17429 }
17430
17431 /* Read directory table. */
17432 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17433 {
17434 line_ptr += bytes_read;
17435 add_include_dir (lh, cur_dir);
17436 }
17437 line_ptr += bytes_read;
17438
17439 /* Read file name table. */
17440 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17441 {
17442 unsigned int dir_index, mod_time, length;
17443
17444 line_ptr += bytes_read;
17445 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17446 line_ptr += bytes_read;
17447 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17448 line_ptr += bytes_read;
17449 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17450 line_ptr += bytes_read;
17451
17452 add_file_name (lh, cur_file, dir_index, mod_time, length);
17453 }
17454 line_ptr += bytes_read;
17455 lh->statement_program_start = line_ptr;
17456
17457 if (line_ptr > (section->buffer + section->size))
17458 complaint (&symfile_complaints,
17459 _("line number info header doesn't "
17460 "fit in `.debug_line' section"));
17461
17462 discard_cleanups (back_to);
17463 return lh;
17464 }
17465
17466 /* Subroutine of dwarf_decode_lines to simplify it.
17467 Return the file name of the psymtab for included file FILE_INDEX
17468 in line header LH of PST.
17469 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17470 If space for the result is malloc'd, it will be freed by a cleanup.
17471 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17472
17473 The function creates dangling cleanup registration. */
17474
17475 static const char *
17476 psymtab_include_file_name (const struct line_header *lh, int file_index,
17477 const struct partial_symtab *pst,
17478 const char *comp_dir)
17479 {
17480 const struct file_entry fe = lh->file_names [file_index];
17481 const char *include_name = fe.name;
17482 const char *include_name_to_compare = include_name;
17483 const char *dir_name = NULL;
17484 const char *pst_filename;
17485 char *copied_name = NULL;
17486 int file_is_pst;
17487
17488 if (fe.dir_index && lh->include_dirs != NULL)
17489 dir_name = lh->include_dirs[fe.dir_index - 1];
17490
17491 if (!IS_ABSOLUTE_PATH (include_name)
17492 && (dir_name != NULL || comp_dir != NULL))
17493 {
17494 /* Avoid creating a duplicate psymtab for PST.
17495 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17496 Before we do the comparison, however, we need to account
17497 for DIR_NAME and COMP_DIR.
17498 First prepend dir_name (if non-NULL). If we still don't
17499 have an absolute path prepend comp_dir (if non-NULL).
17500 However, the directory we record in the include-file's
17501 psymtab does not contain COMP_DIR (to match the
17502 corresponding symtab(s)).
17503
17504 Example:
17505
17506 bash$ cd /tmp
17507 bash$ gcc -g ./hello.c
17508 include_name = "hello.c"
17509 dir_name = "."
17510 DW_AT_comp_dir = comp_dir = "/tmp"
17511 DW_AT_name = "./hello.c"
17512
17513 */
17514
17515 if (dir_name != NULL)
17516 {
17517 char *tem = concat (dir_name, SLASH_STRING,
17518 include_name, (char *)NULL);
17519
17520 make_cleanup (xfree, tem);
17521 include_name = tem;
17522 include_name_to_compare = include_name;
17523 }
17524 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17525 {
17526 char *tem = concat (comp_dir, SLASH_STRING,
17527 include_name, (char *)NULL);
17528
17529 make_cleanup (xfree, tem);
17530 include_name_to_compare = tem;
17531 }
17532 }
17533
17534 pst_filename = pst->filename;
17535 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17536 {
17537 copied_name = concat (pst->dirname, SLASH_STRING,
17538 pst_filename, (char *)NULL);
17539 pst_filename = copied_name;
17540 }
17541
17542 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17543
17544 if (copied_name != NULL)
17545 xfree (copied_name);
17546
17547 if (file_is_pst)
17548 return NULL;
17549 return include_name;
17550 }
17551
17552 /* State machine to track the state of the line number program. */
17553
17554 typedef struct
17555 {
17556 /* These are part of the standard DWARF line number state machine. */
17557
17558 unsigned char op_index;
17559 unsigned int file;
17560 unsigned int line;
17561 CORE_ADDR address;
17562 int is_stmt;
17563 unsigned int discriminator;
17564
17565 /* Additional bits of state we need to track. */
17566
17567 /* The last file that we called dwarf2_start_subfile for.
17568 This is only used for TLLs. */
17569 unsigned int last_file;
17570 /* The last file a line number was recorded for. */
17571 struct subfile *last_subfile;
17572
17573 /* The function to call to record a line. */
17574 record_line_ftype *record_line;
17575
17576 /* The last line number that was recorded, used to coalesce
17577 consecutive entries for the same line. This can happen, for
17578 example, when discriminators are present. PR 17276. */
17579 unsigned int last_line;
17580 int line_has_non_zero_discriminator;
17581 } lnp_state_machine;
17582
17583 /* There's a lot of static state to pass to dwarf_record_line.
17584 This keeps it all together. */
17585
17586 typedef struct
17587 {
17588 /* The gdbarch. */
17589 struct gdbarch *gdbarch;
17590
17591 /* The line number header. */
17592 struct line_header *line_header;
17593
17594 /* Non-zero if we're recording lines.
17595 Otherwise we're building partial symtabs and are just interested in
17596 finding include files mentioned by the line number program. */
17597 int record_lines_p;
17598 } lnp_reader_state;
17599
17600 /* Ignore this record_line request. */
17601
17602 static void
17603 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17604 {
17605 return;
17606 }
17607
17608 /* Return non-zero if we should add LINE to the line number table.
17609 LINE is the line to add, LAST_LINE is the last line that was added,
17610 LAST_SUBFILE is the subfile for LAST_LINE.
17611 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17612 had a non-zero discriminator.
17613
17614 We have to be careful in the presence of discriminators.
17615 E.g., for this line:
17616
17617 for (i = 0; i < 100000; i++);
17618
17619 clang can emit four line number entries for that one line,
17620 each with a different discriminator.
17621 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17622
17623 However, we want gdb to coalesce all four entries into one.
17624 Otherwise the user could stepi into the middle of the line and
17625 gdb would get confused about whether the pc really was in the
17626 middle of the line.
17627
17628 Things are further complicated by the fact that two consecutive
17629 line number entries for the same line is a heuristic used by gcc
17630 to denote the end of the prologue. So we can't just discard duplicate
17631 entries, we have to be selective about it. The heuristic we use is
17632 that we only collapse consecutive entries for the same line if at least
17633 one of those entries has a non-zero discriminator. PR 17276.
17634
17635 Note: Addresses in the line number state machine can never go backwards
17636 within one sequence, thus this coalescing is ok. */
17637
17638 static int
17639 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17640 int line_has_non_zero_discriminator,
17641 struct subfile *last_subfile)
17642 {
17643 if (current_subfile != last_subfile)
17644 return 1;
17645 if (line != last_line)
17646 return 1;
17647 /* Same line for the same file that we've seen already.
17648 As a last check, for pr 17276, only record the line if the line
17649 has never had a non-zero discriminator. */
17650 if (!line_has_non_zero_discriminator)
17651 return 1;
17652 return 0;
17653 }
17654
17655 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17656 in the line table of subfile SUBFILE. */
17657
17658 static void
17659 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17660 unsigned int line, CORE_ADDR address,
17661 record_line_ftype p_record_line)
17662 {
17663 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17664
17665 if (dwarf_line_debug)
17666 {
17667 fprintf_unfiltered (gdb_stdlog,
17668 "Recording line %u, file %s, address %s\n",
17669 line, lbasename (subfile->name),
17670 paddress (gdbarch, address));
17671 }
17672
17673 (*p_record_line) (subfile, line, addr);
17674 }
17675
17676 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17677 Mark the end of a set of line number records.
17678 The arguments are the same as for dwarf_record_line_1.
17679 If SUBFILE is NULL the request is ignored. */
17680
17681 static void
17682 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17683 CORE_ADDR address, record_line_ftype p_record_line)
17684 {
17685 if (subfile == NULL)
17686 return;
17687
17688 if (dwarf_line_debug)
17689 {
17690 fprintf_unfiltered (gdb_stdlog,
17691 "Finishing current line, file %s, address %s\n",
17692 lbasename (subfile->name),
17693 paddress (gdbarch, address));
17694 }
17695
17696 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17697 }
17698
17699 /* Record the line in STATE.
17700 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17701
17702 static void
17703 dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17704 int end_sequence)
17705 {
17706 const struct line_header *lh = reader->line_header;
17707 unsigned int file, line, discriminator;
17708 int is_stmt;
17709
17710 file = state->file;
17711 line = state->line;
17712 is_stmt = state->is_stmt;
17713 discriminator = state->discriminator;
17714
17715 if (dwarf_line_debug)
17716 {
17717 fprintf_unfiltered (gdb_stdlog,
17718 "Processing actual line %u: file %u,"
17719 " address %s, is_stmt %u, discrim %u\n",
17720 line, file,
17721 paddress (reader->gdbarch, state->address),
17722 is_stmt, discriminator);
17723 }
17724
17725 if (file == 0 || file - 1 >= lh->num_file_names)
17726 dwarf2_debug_line_missing_file_complaint ();
17727 /* For now we ignore lines not starting on an instruction boundary.
17728 But not when processing end_sequence for compatibility with the
17729 previous version of the code. */
17730 else if (state->op_index == 0 || end_sequence)
17731 {
17732 lh->file_names[file - 1].included_p = 1;
17733 if (reader->record_lines_p && is_stmt)
17734 {
17735 if (state->last_subfile != current_subfile || end_sequence)
17736 {
17737 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17738 state->address, state->record_line);
17739 }
17740
17741 if (!end_sequence)
17742 {
17743 if (dwarf_record_line_p (line, state->last_line,
17744 state->line_has_non_zero_discriminator,
17745 state->last_subfile))
17746 {
17747 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17748 line, state->address,
17749 state->record_line);
17750 }
17751 state->last_subfile = current_subfile;
17752 state->last_line = line;
17753 }
17754 }
17755 }
17756 }
17757
17758 /* Initialize STATE for the start of a line number program. */
17759
17760 static void
17761 init_lnp_state_machine (lnp_state_machine *state,
17762 const lnp_reader_state *reader)
17763 {
17764 memset (state, 0, sizeof (*state));
17765
17766 /* Just starting, there is no "last file". */
17767 state->last_file = 0;
17768 state->last_subfile = NULL;
17769
17770 state->record_line = record_line;
17771
17772 state->last_line = 0;
17773 state->line_has_non_zero_discriminator = 0;
17774
17775 /* Initialize these according to the DWARF spec. */
17776 state->op_index = 0;
17777 state->file = 1;
17778 state->line = 1;
17779 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17780 was a line entry for it so that the backend has a chance to adjust it
17781 and also record it in case it needs it. This is currently used by MIPS
17782 code, cf. `mips_adjust_dwarf2_line'. */
17783 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17784 state->is_stmt = reader->line_header->default_is_stmt;
17785 state->discriminator = 0;
17786 }
17787
17788 /* Check address and if invalid nop-out the rest of the lines in this
17789 sequence. */
17790
17791 static void
17792 check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
17793 const gdb_byte *line_ptr,
17794 CORE_ADDR lowpc, CORE_ADDR address)
17795 {
17796 /* If address < lowpc then it's not a usable value, it's outside the
17797 pc range of the CU. However, we restrict the test to only address
17798 values of zero to preserve GDB's previous behaviour which is to
17799 handle the specific case of a function being GC'd by the linker. */
17800
17801 if (address == 0 && address < lowpc)
17802 {
17803 /* This line table is for a function which has been
17804 GCd by the linker. Ignore it. PR gdb/12528 */
17805
17806 struct objfile *objfile = cu->objfile;
17807 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17808
17809 complaint (&symfile_complaints,
17810 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17811 line_offset, objfile_name (objfile));
17812 state->record_line = noop_record_line;
17813 /* Note: sm.record_line is left as noop_record_line
17814 until we see DW_LNE_end_sequence. */
17815 }
17816 }
17817
17818 /* Subroutine of dwarf_decode_lines to simplify it.
17819 Process the line number information in LH.
17820 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17821 program in order to set included_p for every referenced header. */
17822
17823 static void
17824 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17825 const int decode_for_pst_p, CORE_ADDR lowpc)
17826 {
17827 const gdb_byte *line_ptr, *extended_end;
17828 const gdb_byte *line_end;
17829 unsigned int bytes_read, extended_len;
17830 unsigned char op_code, extended_op;
17831 CORE_ADDR baseaddr;
17832 struct objfile *objfile = cu->objfile;
17833 bfd *abfd = objfile->obfd;
17834 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17835 /* Non-zero if we're recording line info (as opposed to building partial
17836 symtabs). */
17837 int record_lines_p = !decode_for_pst_p;
17838 /* A collection of things we need to pass to dwarf_record_line. */
17839 lnp_reader_state reader_state;
17840
17841 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17842
17843 line_ptr = lh->statement_program_start;
17844 line_end = lh->statement_program_end;
17845
17846 reader_state.gdbarch = gdbarch;
17847 reader_state.line_header = lh;
17848 reader_state.record_lines_p = record_lines_p;
17849
17850 /* Read the statement sequences until there's nothing left. */
17851 while (line_ptr < line_end)
17852 {
17853 /* The DWARF line number program state machine. */
17854 lnp_state_machine state_machine;
17855 int end_sequence = 0;
17856
17857 /* Reset the state machine at the start of each sequence. */
17858 init_lnp_state_machine (&state_machine, &reader_state);
17859
17860 if (record_lines_p && lh->num_file_names >= state_machine.file)
17861 {
17862 /* Start a subfile for the current file of the state machine. */
17863 /* lh->include_dirs and lh->file_names are 0-based, but the
17864 directory and file name numbers in the statement program
17865 are 1-based. */
17866 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
17867 const char *dir = NULL;
17868
17869 if (fe->dir_index && lh->include_dirs != NULL)
17870 dir = lh->include_dirs[fe->dir_index - 1];
17871
17872 dwarf2_start_subfile (fe->name, dir);
17873 }
17874
17875 /* Decode the table. */
17876 while (line_ptr < line_end && !end_sequence)
17877 {
17878 op_code = read_1_byte (abfd, line_ptr);
17879 line_ptr += 1;
17880
17881 if (op_code >= lh->opcode_base)
17882 {
17883 /* Special opcode. */
17884 unsigned char adj_opcode;
17885 CORE_ADDR addr_adj;
17886 int line_delta;
17887
17888 adj_opcode = op_code - lh->opcode_base;
17889 addr_adj = (((state_machine.op_index
17890 + (adj_opcode / lh->line_range))
17891 / lh->maximum_ops_per_instruction)
17892 * lh->minimum_instruction_length);
17893 state_machine.address
17894 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17895 state_machine.op_index = ((state_machine.op_index
17896 + (adj_opcode / lh->line_range))
17897 % lh->maximum_ops_per_instruction);
17898 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17899 state_machine.line += line_delta;
17900 if (line_delta != 0)
17901 state_machine.line_has_non_zero_discriminator
17902 = state_machine.discriminator != 0;
17903
17904 dwarf_record_line (&reader_state, &state_machine, 0);
17905 state_machine.discriminator = 0;
17906 }
17907 else switch (op_code)
17908 {
17909 case DW_LNS_extended_op:
17910 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17911 &bytes_read);
17912 line_ptr += bytes_read;
17913 extended_end = line_ptr + extended_len;
17914 extended_op = read_1_byte (abfd, line_ptr);
17915 line_ptr += 1;
17916 switch (extended_op)
17917 {
17918 case DW_LNE_end_sequence:
17919 state_machine.record_line = record_line;
17920 end_sequence = 1;
17921 break;
17922 case DW_LNE_set_address:
17923 {
17924 CORE_ADDR address
17925 = read_address (abfd, line_ptr, cu, &bytes_read);
17926
17927 line_ptr += bytes_read;
17928 check_line_address (cu, &state_machine, line_ptr,
17929 lowpc, address);
17930 state_machine.op_index = 0;
17931 address += baseaddr;
17932 state_machine.address
17933 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17934 }
17935 break;
17936 case DW_LNE_define_file:
17937 {
17938 const char *cur_file;
17939 unsigned int dir_index, mod_time, length;
17940
17941 cur_file = read_direct_string (abfd, line_ptr,
17942 &bytes_read);
17943 line_ptr += bytes_read;
17944 dir_index =
17945 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17946 line_ptr += bytes_read;
17947 mod_time =
17948 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17949 line_ptr += bytes_read;
17950 length =
17951 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17952 line_ptr += bytes_read;
17953 add_file_name (lh, cur_file, dir_index, mod_time, length);
17954 }
17955 break;
17956 case DW_LNE_set_discriminator:
17957 /* The discriminator is not interesting to the debugger;
17958 just ignore it. We still need to check its value though:
17959 if there are consecutive entries for the same
17960 (non-prologue) line we want to coalesce them.
17961 PR 17276. */
17962 state_machine.discriminator
17963 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17964 state_machine.line_has_non_zero_discriminator
17965 |= state_machine.discriminator != 0;
17966 line_ptr += bytes_read;
17967 break;
17968 default:
17969 complaint (&symfile_complaints,
17970 _("mangled .debug_line section"));
17971 return;
17972 }
17973 /* Make sure that we parsed the extended op correctly. If e.g.
17974 we expected a different address size than the producer used,
17975 we may have read the wrong number of bytes. */
17976 if (line_ptr != extended_end)
17977 {
17978 complaint (&symfile_complaints,
17979 _("mangled .debug_line section"));
17980 return;
17981 }
17982 break;
17983 case DW_LNS_copy:
17984 dwarf_record_line (&reader_state, &state_machine, 0);
17985 state_machine.discriminator = 0;
17986 break;
17987 case DW_LNS_advance_pc:
17988 {
17989 CORE_ADDR adjust
17990 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17991 CORE_ADDR addr_adj;
17992
17993 addr_adj = (((state_machine.op_index + adjust)
17994 / lh->maximum_ops_per_instruction)
17995 * lh->minimum_instruction_length);
17996 state_machine.address
17997 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17998 state_machine.op_index = ((state_machine.op_index + adjust)
17999 % lh->maximum_ops_per_instruction);
18000 line_ptr += bytes_read;
18001 }
18002 break;
18003 case DW_LNS_advance_line:
18004 {
18005 int line_delta
18006 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18007
18008 state_machine.line += line_delta;
18009 if (line_delta != 0)
18010 state_machine.line_has_non_zero_discriminator
18011 = state_machine.discriminator != 0;
18012 line_ptr += bytes_read;
18013 }
18014 break;
18015 case DW_LNS_set_file:
18016 {
18017 /* The arrays lh->include_dirs and lh->file_names are
18018 0-based, but the directory and file name numbers in
18019 the statement program are 1-based. */
18020 struct file_entry *fe;
18021 const char *dir = NULL;
18022
18023 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18024 &bytes_read);
18025 line_ptr += bytes_read;
18026 if (state_machine.file == 0
18027 || state_machine.file - 1 >= lh->num_file_names)
18028 dwarf2_debug_line_missing_file_complaint ();
18029 else
18030 {
18031 fe = &lh->file_names[state_machine.file - 1];
18032 if (fe->dir_index && lh->include_dirs != NULL)
18033 dir = lh->include_dirs[fe->dir_index - 1];
18034 if (record_lines_p)
18035 {
18036 state_machine.last_subfile = current_subfile;
18037 state_machine.line_has_non_zero_discriminator
18038 = state_machine.discriminator != 0;
18039 dwarf2_start_subfile (fe->name, dir);
18040 }
18041 }
18042 }
18043 break;
18044 case DW_LNS_set_column:
18045 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18046 line_ptr += bytes_read;
18047 break;
18048 case DW_LNS_negate_stmt:
18049 state_machine.is_stmt = (!state_machine.is_stmt);
18050 break;
18051 case DW_LNS_set_basic_block:
18052 break;
18053 /* Add to the address register of the state machine the
18054 address increment value corresponding to special opcode
18055 255. I.e., this value is scaled by the minimum
18056 instruction length since special opcode 255 would have
18057 scaled the increment. */
18058 case DW_LNS_const_add_pc:
18059 {
18060 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
18061 CORE_ADDR addr_adj;
18062
18063 addr_adj = (((state_machine.op_index + adjust)
18064 / lh->maximum_ops_per_instruction)
18065 * lh->minimum_instruction_length);
18066 state_machine.address
18067 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18068 state_machine.op_index = ((state_machine.op_index + adjust)
18069 % lh->maximum_ops_per_instruction);
18070 }
18071 break;
18072 case DW_LNS_fixed_advance_pc:
18073 {
18074 CORE_ADDR addr_adj;
18075
18076 addr_adj = read_2_bytes (abfd, line_ptr);
18077 state_machine.address
18078 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18079 state_machine.op_index = 0;
18080 line_ptr += 2;
18081 }
18082 break;
18083 default:
18084 {
18085 /* Unknown standard opcode, ignore it. */
18086 int i;
18087
18088 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
18089 {
18090 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18091 line_ptr += bytes_read;
18092 }
18093 }
18094 }
18095 }
18096
18097 if (!end_sequence)
18098 dwarf2_debug_line_missing_end_sequence_complaint ();
18099
18100 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18101 in which case we still finish recording the last line). */
18102 dwarf_record_line (&reader_state, &state_machine, 1);
18103 }
18104 }
18105
18106 /* Decode the Line Number Program (LNP) for the given line_header
18107 structure and CU. The actual information extracted and the type
18108 of structures created from the LNP depends on the value of PST.
18109
18110 1. If PST is NULL, then this procedure uses the data from the program
18111 to create all necessary symbol tables, and their linetables.
18112
18113 2. If PST is not NULL, this procedure reads the program to determine
18114 the list of files included by the unit represented by PST, and
18115 builds all the associated partial symbol tables.
18116
18117 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18118 It is used for relative paths in the line table.
18119 NOTE: When processing partial symtabs (pst != NULL),
18120 comp_dir == pst->dirname.
18121
18122 NOTE: It is important that psymtabs have the same file name (via strcmp)
18123 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18124 symtab we don't use it in the name of the psymtabs we create.
18125 E.g. expand_line_sal requires this when finding psymtabs to expand.
18126 A good testcase for this is mb-inline.exp.
18127
18128 LOWPC is the lowest address in CU (or 0 if not known).
18129
18130 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18131 for its PC<->lines mapping information. Otherwise only the filename
18132 table is read in. */
18133
18134 static void
18135 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
18136 struct dwarf2_cu *cu, struct partial_symtab *pst,
18137 CORE_ADDR lowpc, int decode_mapping)
18138 {
18139 struct objfile *objfile = cu->objfile;
18140 const int decode_for_pst_p = (pst != NULL);
18141
18142 if (decode_mapping)
18143 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
18144
18145 if (decode_for_pst_p)
18146 {
18147 int file_index;
18148
18149 /* Now that we're done scanning the Line Header Program, we can
18150 create the psymtab of each included file. */
18151 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18152 if (lh->file_names[file_index].included_p == 1)
18153 {
18154 const char *include_name =
18155 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18156 if (include_name != NULL)
18157 dwarf2_create_include_psymtab (include_name, pst, objfile);
18158 }
18159 }
18160 else
18161 {
18162 /* Make sure a symtab is created for every file, even files
18163 which contain only variables (i.e. no code with associated
18164 line numbers). */
18165 struct compunit_symtab *cust = buildsym_compunit_symtab ();
18166 int i;
18167
18168 for (i = 0; i < lh->num_file_names; i++)
18169 {
18170 const char *dir = NULL;
18171 struct file_entry *fe;
18172
18173 fe = &lh->file_names[i];
18174 if (fe->dir_index && lh->include_dirs != NULL)
18175 dir = lh->include_dirs[fe->dir_index - 1];
18176 dwarf2_start_subfile (fe->name, dir);
18177
18178 if (current_subfile->symtab == NULL)
18179 {
18180 current_subfile->symtab
18181 = allocate_symtab (cust, current_subfile->name);
18182 }
18183 fe->symtab = current_subfile->symtab;
18184 }
18185 }
18186 }
18187
18188 /* Start a subfile for DWARF. FILENAME is the name of the file and
18189 DIRNAME the name of the source directory which contains FILENAME
18190 or NULL if not known.
18191 This routine tries to keep line numbers from identical absolute and
18192 relative file names in a common subfile.
18193
18194 Using the `list' example from the GDB testsuite, which resides in
18195 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18196 of /srcdir/list0.c yields the following debugging information for list0.c:
18197
18198 DW_AT_name: /srcdir/list0.c
18199 DW_AT_comp_dir: /compdir
18200 files.files[0].name: list0.h
18201 files.files[0].dir: /srcdir
18202 files.files[1].name: list0.c
18203 files.files[1].dir: /srcdir
18204
18205 The line number information for list0.c has to end up in a single
18206 subfile, so that `break /srcdir/list0.c:1' works as expected.
18207 start_subfile will ensure that this happens provided that we pass the
18208 concatenation of files.files[1].dir and files.files[1].name as the
18209 subfile's name. */
18210
18211 static void
18212 dwarf2_start_subfile (const char *filename, const char *dirname)
18213 {
18214 char *copy = NULL;
18215
18216 /* In order not to lose the line information directory,
18217 we concatenate it to the filename when it makes sense.
18218 Note that the Dwarf3 standard says (speaking of filenames in line
18219 information): ``The directory index is ignored for file names
18220 that represent full path names''. Thus ignoring dirname in the
18221 `else' branch below isn't an issue. */
18222
18223 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18224 {
18225 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18226 filename = copy;
18227 }
18228
18229 start_subfile (filename);
18230
18231 if (copy != NULL)
18232 xfree (copy);
18233 }
18234
18235 /* Start a symtab for DWARF.
18236 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18237
18238 static struct compunit_symtab *
18239 dwarf2_start_symtab (struct dwarf2_cu *cu,
18240 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18241 {
18242 struct compunit_symtab *cust
18243 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18244
18245 record_debugformat ("DWARF 2");
18246 record_producer (cu->producer);
18247
18248 /* We assume that we're processing GCC output. */
18249 processing_gcc_compilation = 2;
18250
18251 cu->processing_has_namespace_info = 0;
18252
18253 return cust;
18254 }
18255
18256 static void
18257 var_decode_location (struct attribute *attr, struct symbol *sym,
18258 struct dwarf2_cu *cu)
18259 {
18260 struct objfile *objfile = cu->objfile;
18261 struct comp_unit_head *cu_header = &cu->header;
18262
18263 /* NOTE drow/2003-01-30: There used to be a comment and some special
18264 code here to turn a symbol with DW_AT_external and a
18265 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18266 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18267 with some versions of binutils) where shared libraries could have
18268 relocations against symbols in their debug information - the
18269 minimal symbol would have the right address, but the debug info
18270 would not. It's no longer necessary, because we will explicitly
18271 apply relocations when we read in the debug information now. */
18272
18273 /* A DW_AT_location attribute with no contents indicates that a
18274 variable has been optimized away. */
18275 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18276 {
18277 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18278 return;
18279 }
18280
18281 /* Handle one degenerate form of location expression specially, to
18282 preserve GDB's previous behavior when section offsets are
18283 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18284 then mark this symbol as LOC_STATIC. */
18285
18286 if (attr_form_is_block (attr)
18287 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18288 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18289 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18290 && (DW_BLOCK (attr)->size
18291 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18292 {
18293 unsigned int dummy;
18294
18295 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18296 SYMBOL_VALUE_ADDRESS (sym) =
18297 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18298 else
18299 SYMBOL_VALUE_ADDRESS (sym) =
18300 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18301 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18302 fixup_symbol_section (sym, objfile);
18303 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18304 SYMBOL_SECTION (sym));
18305 return;
18306 }
18307
18308 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18309 expression evaluator, and use LOC_COMPUTED only when necessary
18310 (i.e. when the value of a register or memory location is
18311 referenced, or a thread-local block, etc.). Then again, it might
18312 not be worthwhile. I'm assuming that it isn't unless performance
18313 or memory numbers show me otherwise. */
18314
18315 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18316
18317 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18318 cu->has_loclist = 1;
18319 }
18320
18321 /* Given a pointer to a DWARF information entry, figure out if we need
18322 to make a symbol table entry for it, and if so, create a new entry
18323 and return a pointer to it.
18324 If TYPE is NULL, determine symbol type from the die, otherwise
18325 used the passed type.
18326 If SPACE is not NULL, use it to hold the new symbol. If it is
18327 NULL, allocate a new symbol on the objfile's obstack. */
18328
18329 static struct symbol *
18330 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18331 struct symbol *space)
18332 {
18333 struct objfile *objfile = cu->objfile;
18334 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18335 struct symbol *sym = NULL;
18336 const char *name;
18337 struct attribute *attr = NULL;
18338 struct attribute *attr2 = NULL;
18339 CORE_ADDR baseaddr;
18340 struct pending **list_to_add = NULL;
18341
18342 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18343
18344 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18345
18346 name = dwarf2_name (die, cu);
18347 if (name)
18348 {
18349 const char *linkagename;
18350 int suppress_add = 0;
18351
18352 if (space)
18353 sym = space;
18354 else
18355 sym = allocate_symbol (objfile);
18356 OBJSTAT (objfile, n_syms++);
18357
18358 /* Cache this symbol's name and the name's demangled form (if any). */
18359 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18360 linkagename = dwarf2_physname (name, die, cu);
18361 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18362
18363 /* Fortran does not have mangling standard and the mangling does differ
18364 between gfortran, iFort etc. */
18365 if (cu->language == language_fortran
18366 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18367 symbol_set_demangled_name (&(sym->ginfo),
18368 dwarf2_full_name (name, die, cu),
18369 NULL);
18370
18371 /* Default assumptions.
18372 Use the passed type or decode it from the die. */
18373 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18374 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18375 if (type != NULL)
18376 SYMBOL_TYPE (sym) = type;
18377 else
18378 SYMBOL_TYPE (sym) = die_type (die, cu);
18379 attr = dwarf2_attr (die,
18380 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18381 cu);
18382 if (attr)
18383 {
18384 SYMBOL_LINE (sym) = DW_UNSND (attr);
18385 }
18386
18387 attr = dwarf2_attr (die,
18388 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18389 cu);
18390 if (attr)
18391 {
18392 int file_index = DW_UNSND (attr);
18393
18394 if (cu->line_header == NULL
18395 || file_index > cu->line_header->num_file_names)
18396 complaint (&symfile_complaints,
18397 _("file index out of range"));
18398 else if (file_index > 0)
18399 {
18400 struct file_entry *fe;
18401
18402 fe = &cu->line_header->file_names[file_index - 1];
18403 symbol_set_symtab (sym, fe->symtab);
18404 }
18405 }
18406
18407 switch (die->tag)
18408 {
18409 case DW_TAG_label:
18410 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18411 if (attr)
18412 {
18413 CORE_ADDR addr;
18414
18415 addr = attr_value_as_address (attr);
18416 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18417 SYMBOL_VALUE_ADDRESS (sym) = addr;
18418 }
18419 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18420 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18421 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18422 add_symbol_to_list (sym, cu->list_in_scope);
18423 break;
18424 case DW_TAG_subprogram:
18425 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18426 finish_block. */
18427 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18428 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18429 if ((attr2 && (DW_UNSND (attr2) != 0))
18430 || cu->language == language_ada)
18431 {
18432 /* Subprograms marked external are stored as a global symbol.
18433 Ada subprograms, whether marked external or not, are always
18434 stored as a global symbol, because we want to be able to
18435 access them globally. For instance, we want to be able
18436 to break on a nested subprogram without having to
18437 specify the context. */
18438 list_to_add = &global_symbols;
18439 }
18440 else
18441 {
18442 list_to_add = cu->list_in_scope;
18443 }
18444 break;
18445 case DW_TAG_inlined_subroutine:
18446 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18447 finish_block. */
18448 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18449 SYMBOL_INLINED (sym) = 1;
18450 list_to_add = cu->list_in_scope;
18451 break;
18452 case DW_TAG_template_value_param:
18453 suppress_add = 1;
18454 /* Fall through. */
18455 case DW_TAG_constant:
18456 case DW_TAG_variable:
18457 case DW_TAG_member:
18458 /* Compilation with minimal debug info may result in
18459 variables with missing type entries. Change the
18460 misleading `void' type to something sensible. */
18461 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18462 SYMBOL_TYPE (sym)
18463 = objfile_type (objfile)->nodebug_data_symbol;
18464
18465 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18466 /* In the case of DW_TAG_member, we should only be called for
18467 static const members. */
18468 if (die->tag == DW_TAG_member)
18469 {
18470 /* dwarf2_add_field uses die_is_declaration,
18471 so we do the same. */
18472 gdb_assert (die_is_declaration (die, cu));
18473 gdb_assert (attr);
18474 }
18475 if (attr)
18476 {
18477 dwarf2_const_value (attr, sym, cu);
18478 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18479 if (!suppress_add)
18480 {
18481 if (attr2 && (DW_UNSND (attr2) != 0))
18482 list_to_add = &global_symbols;
18483 else
18484 list_to_add = cu->list_in_scope;
18485 }
18486 break;
18487 }
18488 attr = dwarf2_attr (die, DW_AT_location, cu);
18489 if (attr)
18490 {
18491 var_decode_location (attr, sym, cu);
18492 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18493
18494 /* Fortran explicitly imports any global symbols to the local
18495 scope by DW_TAG_common_block. */
18496 if (cu->language == language_fortran && die->parent
18497 && die->parent->tag == DW_TAG_common_block)
18498 attr2 = NULL;
18499
18500 if (SYMBOL_CLASS (sym) == LOC_STATIC
18501 && SYMBOL_VALUE_ADDRESS (sym) == 0
18502 && !dwarf2_per_objfile->has_section_at_zero)
18503 {
18504 /* When a static variable is eliminated by the linker,
18505 the corresponding debug information is not stripped
18506 out, but the variable address is set to null;
18507 do not add such variables into symbol table. */
18508 }
18509 else if (attr2 && (DW_UNSND (attr2) != 0))
18510 {
18511 /* Workaround gfortran PR debug/40040 - it uses
18512 DW_AT_location for variables in -fPIC libraries which may
18513 get overriden by other libraries/executable and get
18514 a different address. Resolve it by the minimal symbol
18515 which may come from inferior's executable using copy
18516 relocation. Make this workaround only for gfortran as for
18517 other compilers GDB cannot guess the minimal symbol
18518 Fortran mangling kind. */
18519 if (cu->language == language_fortran && die->parent
18520 && die->parent->tag == DW_TAG_module
18521 && cu->producer
18522 && startswith (cu->producer, "GNU Fortran"))
18523 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18524
18525 /* A variable with DW_AT_external is never static,
18526 but it may be block-scoped. */
18527 list_to_add = (cu->list_in_scope == &file_symbols
18528 ? &global_symbols : cu->list_in_scope);
18529 }
18530 else
18531 list_to_add = cu->list_in_scope;
18532 }
18533 else
18534 {
18535 /* We do not know the address of this symbol.
18536 If it is an external symbol and we have type information
18537 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18538 The address of the variable will then be determined from
18539 the minimal symbol table whenever the variable is
18540 referenced. */
18541 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18542
18543 /* Fortran explicitly imports any global symbols to the local
18544 scope by DW_TAG_common_block. */
18545 if (cu->language == language_fortran && die->parent
18546 && die->parent->tag == DW_TAG_common_block)
18547 {
18548 /* SYMBOL_CLASS doesn't matter here because
18549 read_common_block is going to reset it. */
18550 if (!suppress_add)
18551 list_to_add = cu->list_in_scope;
18552 }
18553 else if (attr2 && (DW_UNSND (attr2) != 0)
18554 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18555 {
18556 /* A variable with DW_AT_external is never static, but it
18557 may be block-scoped. */
18558 list_to_add = (cu->list_in_scope == &file_symbols
18559 ? &global_symbols : cu->list_in_scope);
18560
18561 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18562 }
18563 else if (!die_is_declaration (die, cu))
18564 {
18565 /* Use the default LOC_OPTIMIZED_OUT class. */
18566 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18567 if (!suppress_add)
18568 list_to_add = cu->list_in_scope;
18569 }
18570 }
18571 break;
18572 case DW_TAG_formal_parameter:
18573 /* If we are inside a function, mark this as an argument. If
18574 not, we might be looking at an argument to an inlined function
18575 when we do not have enough information to show inlined frames;
18576 pretend it's a local variable in that case so that the user can
18577 still see it. */
18578 if (context_stack_depth > 0
18579 && context_stack[context_stack_depth - 1].name != NULL)
18580 SYMBOL_IS_ARGUMENT (sym) = 1;
18581 attr = dwarf2_attr (die, DW_AT_location, cu);
18582 if (attr)
18583 {
18584 var_decode_location (attr, sym, cu);
18585 }
18586 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18587 if (attr)
18588 {
18589 dwarf2_const_value (attr, sym, cu);
18590 }
18591
18592 list_to_add = cu->list_in_scope;
18593 break;
18594 case DW_TAG_unspecified_parameters:
18595 /* From varargs functions; gdb doesn't seem to have any
18596 interest in this information, so just ignore it for now.
18597 (FIXME?) */
18598 break;
18599 case DW_TAG_template_type_param:
18600 suppress_add = 1;
18601 /* Fall through. */
18602 case DW_TAG_class_type:
18603 case DW_TAG_interface_type:
18604 case DW_TAG_structure_type:
18605 case DW_TAG_union_type:
18606 case DW_TAG_set_type:
18607 case DW_TAG_enumeration_type:
18608 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18609 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18610
18611 {
18612 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
18613 really ever be static objects: otherwise, if you try
18614 to, say, break of a class's method and you're in a file
18615 which doesn't mention that class, it won't work unless
18616 the check for all static symbols in lookup_symbol_aux
18617 saves you. See the OtherFileClass tests in
18618 gdb.c++/namespace.exp. */
18619
18620 if (!suppress_add)
18621 {
18622 list_to_add = (cu->list_in_scope == &file_symbols
18623 && cu->language == language_cplus
18624 ? &global_symbols : cu->list_in_scope);
18625
18626 /* The semantics of C++ state that "struct foo {
18627 ... }" also defines a typedef for "foo". */
18628 if (cu->language == language_cplus
18629 || cu->language == language_ada
18630 || cu->language == language_d
18631 || cu->language == language_rust)
18632 {
18633 /* The symbol's name is already allocated along
18634 with this objfile, so we don't need to
18635 duplicate it for the type. */
18636 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18637 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18638 }
18639 }
18640 }
18641 break;
18642 case DW_TAG_typedef:
18643 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18645 list_to_add = cu->list_in_scope;
18646 break;
18647 case DW_TAG_base_type:
18648 case DW_TAG_subrange_type:
18649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18650 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18651 list_to_add = cu->list_in_scope;
18652 break;
18653 case DW_TAG_enumerator:
18654 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18655 if (attr)
18656 {
18657 dwarf2_const_value (attr, sym, cu);
18658 }
18659 {
18660 /* NOTE: carlton/2003-11-10: See comment above in the
18661 DW_TAG_class_type, etc. block. */
18662
18663 list_to_add = (cu->list_in_scope == &file_symbols
18664 && cu->language == language_cplus
18665 ? &global_symbols : cu->list_in_scope);
18666 }
18667 break;
18668 case DW_TAG_imported_declaration:
18669 case DW_TAG_namespace:
18670 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18671 list_to_add = &global_symbols;
18672 break;
18673 case DW_TAG_module:
18674 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18675 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18676 list_to_add = &global_symbols;
18677 break;
18678 case DW_TAG_common_block:
18679 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18680 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18681 add_symbol_to_list (sym, cu->list_in_scope);
18682 break;
18683 default:
18684 /* Not a tag we recognize. Hopefully we aren't processing
18685 trash data, but since we must specifically ignore things
18686 we don't recognize, there is nothing else we should do at
18687 this point. */
18688 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18689 dwarf_tag_name (die->tag));
18690 break;
18691 }
18692
18693 if (suppress_add)
18694 {
18695 sym->hash_next = objfile->template_symbols;
18696 objfile->template_symbols = sym;
18697 list_to_add = NULL;
18698 }
18699
18700 if (list_to_add != NULL)
18701 add_symbol_to_list (sym, list_to_add);
18702
18703 /* For the benefit of old versions of GCC, check for anonymous
18704 namespaces based on the demangled name. */
18705 if (!cu->processing_has_namespace_info
18706 && cu->language == language_cplus)
18707 cp_scan_for_anonymous_namespaces (sym, objfile);
18708 }
18709 return (sym);
18710 }
18711
18712 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18713
18714 static struct symbol *
18715 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18716 {
18717 return new_symbol_full (die, type, cu, NULL);
18718 }
18719
18720 /* Given an attr with a DW_FORM_dataN value in host byte order,
18721 zero-extend it as appropriate for the symbol's type. The DWARF
18722 standard (v4) is not entirely clear about the meaning of using
18723 DW_FORM_dataN for a constant with a signed type, where the type is
18724 wider than the data. The conclusion of a discussion on the DWARF
18725 list was that this is unspecified. We choose to always zero-extend
18726 because that is the interpretation long in use by GCC. */
18727
18728 static gdb_byte *
18729 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18730 struct dwarf2_cu *cu, LONGEST *value, int bits)
18731 {
18732 struct objfile *objfile = cu->objfile;
18733 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18734 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18735 LONGEST l = DW_UNSND (attr);
18736
18737 if (bits < sizeof (*value) * 8)
18738 {
18739 l &= ((LONGEST) 1 << bits) - 1;
18740 *value = l;
18741 }
18742 else if (bits == sizeof (*value) * 8)
18743 *value = l;
18744 else
18745 {
18746 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
18747 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18748 return bytes;
18749 }
18750
18751 return NULL;
18752 }
18753
18754 /* Read a constant value from an attribute. Either set *VALUE, or if
18755 the value does not fit in *VALUE, set *BYTES - either already
18756 allocated on the objfile obstack, or newly allocated on OBSTACK,
18757 or, set *BATON, if we translated the constant to a location
18758 expression. */
18759
18760 static void
18761 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18762 const char *name, struct obstack *obstack,
18763 struct dwarf2_cu *cu,
18764 LONGEST *value, const gdb_byte **bytes,
18765 struct dwarf2_locexpr_baton **baton)
18766 {
18767 struct objfile *objfile = cu->objfile;
18768 struct comp_unit_head *cu_header = &cu->header;
18769 struct dwarf_block *blk;
18770 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18771 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18772
18773 *value = 0;
18774 *bytes = NULL;
18775 *baton = NULL;
18776
18777 switch (attr->form)
18778 {
18779 case DW_FORM_addr:
18780 case DW_FORM_GNU_addr_index:
18781 {
18782 gdb_byte *data;
18783
18784 if (TYPE_LENGTH (type) != cu_header->addr_size)
18785 dwarf2_const_value_length_mismatch_complaint (name,
18786 cu_header->addr_size,
18787 TYPE_LENGTH (type));
18788 /* Symbols of this form are reasonably rare, so we just
18789 piggyback on the existing location code rather than writing
18790 a new implementation of symbol_computed_ops. */
18791 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
18792 (*baton)->per_cu = cu->per_cu;
18793 gdb_assert ((*baton)->per_cu);
18794
18795 (*baton)->size = 2 + cu_header->addr_size;
18796 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
18797 (*baton)->data = data;
18798
18799 data[0] = DW_OP_addr;
18800 store_unsigned_integer (&data[1], cu_header->addr_size,
18801 byte_order, DW_ADDR (attr));
18802 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18803 }
18804 break;
18805 case DW_FORM_string:
18806 case DW_FORM_strp:
18807 case DW_FORM_GNU_str_index:
18808 case DW_FORM_GNU_strp_alt:
18809 /* DW_STRING is already allocated on the objfile obstack, point
18810 directly to it. */
18811 *bytes = (const gdb_byte *) DW_STRING (attr);
18812 break;
18813 case DW_FORM_block1:
18814 case DW_FORM_block2:
18815 case DW_FORM_block4:
18816 case DW_FORM_block:
18817 case DW_FORM_exprloc:
18818 blk = DW_BLOCK (attr);
18819 if (TYPE_LENGTH (type) != blk->size)
18820 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18821 TYPE_LENGTH (type));
18822 *bytes = blk->data;
18823 break;
18824
18825 /* The DW_AT_const_value attributes are supposed to carry the
18826 symbol's value "represented as it would be on the target
18827 architecture." By the time we get here, it's already been
18828 converted to host endianness, so we just need to sign- or
18829 zero-extend it as appropriate. */
18830 case DW_FORM_data1:
18831 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18832 break;
18833 case DW_FORM_data2:
18834 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18835 break;
18836 case DW_FORM_data4:
18837 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18838 break;
18839 case DW_FORM_data8:
18840 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18841 break;
18842
18843 case DW_FORM_sdata:
18844 *value = DW_SND (attr);
18845 break;
18846
18847 case DW_FORM_udata:
18848 *value = DW_UNSND (attr);
18849 break;
18850
18851 default:
18852 complaint (&symfile_complaints,
18853 _("unsupported const value attribute form: '%s'"),
18854 dwarf_form_name (attr->form));
18855 *value = 0;
18856 break;
18857 }
18858 }
18859
18860
18861 /* Copy constant value from an attribute to a symbol. */
18862
18863 static void
18864 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18865 struct dwarf2_cu *cu)
18866 {
18867 struct objfile *objfile = cu->objfile;
18868 LONGEST value;
18869 const gdb_byte *bytes;
18870 struct dwarf2_locexpr_baton *baton;
18871
18872 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18873 SYMBOL_PRINT_NAME (sym),
18874 &objfile->objfile_obstack, cu,
18875 &value, &bytes, &baton);
18876
18877 if (baton != NULL)
18878 {
18879 SYMBOL_LOCATION_BATON (sym) = baton;
18880 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18881 }
18882 else if (bytes != NULL)
18883 {
18884 SYMBOL_VALUE_BYTES (sym) = bytes;
18885 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18886 }
18887 else
18888 {
18889 SYMBOL_VALUE (sym) = value;
18890 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18891 }
18892 }
18893
18894 /* Return the type of the die in question using its DW_AT_type attribute. */
18895
18896 static struct type *
18897 die_type (struct die_info *die, struct dwarf2_cu *cu)
18898 {
18899 struct attribute *type_attr;
18900
18901 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18902 if (!type_attr)
18903 {
18904 /* A missing DW_AT_type represents a void type. */
18905 return objfile_type (cu->objfile)->builtin_void;
18906 }
18907
18908 return lookup_die_type (die, type_attr, cu);
18909 }
18910
18911 /* True iff CU's producer generates GNAT Ada auxiliary information
18912 that allows to find parallel types through that information instead
18913 of having to do expensive parallel lookups by type name. */
18914
18915 static int
18916 need_gnat_info (struct dwarf2_cu *cu)
18917 {
18918 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18919 of GNAT produces this auxiliary information, without any indication
18920 that it is produced. Part of enhancing the FSF version of GNAT
18921 to produce that information will be to put in place an indicator
18922 that we can use in order to determine whether the descriptive type
18923 info is available or not. One suggestion that has been made is
18924 to use a new attribute, attached to the CU die. For now, assume
18925 that the descriptive type info is not available. */
18926 return 0;
18927 }
18928
18929 /* Return the auxiliary type of the die in question using its
18930 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18931 attribute is not present. */
18932
18933 static struct type *
18934 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18935 {
18936 struct attribute *type_attr;
18937
18938 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18939 if (!type_attr)
18940 return NULL;
18941
18942 return lookup_die_type (die, type_attr, cu);
18943 }
18944
18945 /* If DIE has a descriptive_type attribute, then set the TYPE's
18946 descriptive type accordingly. */
18947
18948 static void
18949 set_descriptive_type (struct type *type, struct die_info *die,
18950 struct dwarf2_cu *cu)
18951 {
18952 struct type *descriptive_type = die_descriptive_type (die, cu);
18953
18954 if (descriptive_type)
18955 {
18956 ALLOCATE_GNAT_AUX_TYPE (type);
18957 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18958 }
18959 }
18960
18961 /* Return the containing type of the die in question using its
18962 DW_AT_containing_type attribute. */
18963
18964 static struct type *
18965 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18966 {
18967 struct attribute *type_attr;
18968
18969 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18970 if (!type_attr)
18971 error (_("Dwarf Error: Problem turning containing type into gdb type "
18972 "[in module %s]"), objfile_name (cu->objfile));
18973
18974 return lookup_die_type (die, type_attr, cu);
18975 }
18976
18977 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18978
18979 static struct type *
18980 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18981 {
18982 struct objfile *objfile = dwarf2_per_objfile->objfile;
18983 char *message, *saved;
18984
18985 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18986 objfile_name (objfile),
18987 cu->header.offset.sect_off,
18988 die->offset.sect_off);
18989 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18990 message, strlen (message));
18991 xfree (message);
18992
18993 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
18994 }
18995
18996 /* Look up the type of DIE in CU using its type attribute ATTR.
18997 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18998 DW_AT_containing_type.
18999 If there is no type substitute an error marker. */
19000
19001 static struct type *
19002 lookup_die_type (struct die_info *die, const struct attribute *attr,
19003 struct dwarf2_cu *cu)
19004 {
19005 struct objfile *objfile = cu->objfile;
19006 struct type *this_type;
19007
19008 gdb_assert (attr->name == DW_AT_type
19009 || attr->name == DW_AT_GNAT_descriptive_type
19010 || attr->name == DW_AT_containing_type);
19011
19012 /* First see if we have it cached. */
19013
19014 if (attr->form == DW_FORM_GNU_ref_alt)
19015 {
19016 struct dwarf2_per_cu_data *per_cu;
19017 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19018
19019 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19020 this_type = get_die_type_at_offset (offset, per_cu);
19021 }
19022 else if (attr_form_is_ref (attr))
19023 {
19024 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19025
19026 this_type = get_die_type_at_offset (offset, cu->per_cu);
19027 }
19028 else if (attr->form == DW_FORM_ref_sig8)
19029 {
19030 ULONGEST signature = DW_SIGNATURE (attr);
19031
19032 return get_signatured_type (die, signature, cu);
19033 }
19034 else
19035 {
19036 complaint (&symfile_complaints,
19037 _("Dwarf Error: Bad type attribute %s in DIE"
19038 " at 0x%x [in module %s]"),
19039 dwarf_attr_name (attr->name), die->offset.sect_off,
19040 objfile_name (objfile));
19041 return build_error_marker_type (cu, die);
19042 }
19043
19044 /* If not cached we need to read it in. */
19045
19046 if (this_type == NULL)
19047 {
19048 struct die_info *type_die = NULL;
19049 struct dwarf2_cu *type_cu = cu;
19050
19051 if (attr_form_is_ref (attr))
19052 type_die = follow_die_ref (die, attr, &type_cu);
19053 if (type_die == NULL)
19054 return build_error_marker_type (cu, die);
19055 /* If we find the type now, it's probably because the type came
19056 from an inter-CU reference and the type's CU got expanded before
19057 ours. */
19058 this_type = read_type_die (type_die, type_cu);
19059 }
19060
19061 /* If we still don't have a type use an error marker. */
19062
19063 if (this_type == NULL)
19064 return build_error_marker_type (cu, die);
19065
19066 return this_type;
19067 }
19068
19069 /* Return the type in DIE, CU.
19070 Returns NULL for invalid types.
19071
19072 This first does a lookup in die_type_hash,
19073 and only reads the die in if necessary.
19074
19075 NOTE: This can be called when reading in partial or full symbols. */
19076
19077 static struct type *
19078 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
19079 {
19080 struct type *this_type;
19081
19082 this_type = get_die_type (die, cu);
19083 if (this_type)
19084 return this_type;
19085
19086 return read_type_die_1 (die, cu);
19087 }
19088
19089 /* Read the type in DIE, CU.
19090 Returns NULL for invalid types. */
19091
19092 static struct type *
19093 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19094 {
19095 struct type *this_type = NULL;
19096
19097 switch (die->tag)
19098 {
19099 case DW_TAG_class_type:
19100 case DW_TAG_interface_type:
19101 case DW_TAG_structure_type:
19102 case DW_TAG_union_type:
19103 this_type = read_structure_type (die, cu);
19104 break;
19105 case DW_TAG_enumeration_type:
19106 this_type = read_enumeration_type (die, cu);
19107 break;
19108 case DW_TAG_subprogram:
19109 case DW_TAG_subroutine_type:
19110 case DW_TAG_inlined_subroutine:
19111 this_type = read_subroutine_type (die, cu);
19112 break;
19113 case DW_TAG_array_type:
19114 this_type = read_array_type (die, cu);
19115 break;
19116 case DW_TAG_set_type:
19117 this_type = read_set_type (die, cu);
19118 break;
19119 case DW_TAG_pointer_type:
19120 this_type = read_tag_pointer_type (die, cu);
19121 break;
19122 case DW_TAG_ptr_to_member_type:
19123 this_type = read_tag_ptr_to_member_type (die, cu);
19124 break;
19125 case DW_TAG_reference_type:
19126 this_type = read_tag_reference_type (die, cu);
19127 break;
19128 case DW_TAG_const_type:
19129 this_type = read_tag_const_type (die, cu);
19130 break;
19131 case DW_TAG_volatile_type:
19132 this_type = read_tag_volatile_type (die, cu);
19133 break;
19134 case DW_TAG_restrict_type:
19135 this_type = read_tag_restrict_type (die, cu);
19136 break;
19137 case DW_TAG_string_type:
19138 this_type = read_tag_string_type (die, cu);
19139 break;
19140 case DW_TAG_typedef:
19141 this_type = read_typedef (die, cu);
19142 break;
19143 case DW_TAG_subrange_type:
19144 this_type = read_subrange_type (die, cu);
19145 break;
19146 case DW_TAG_base_type:
19147 this_type = read_base_type (die, cu);
19148 break;
19149 case DW_TAG_unspecified_type:
19150 this_type = read_unspecified_type (die, cu);
19151 break;
19152 case DW_TAG_namespace:
19153 this_type = read_namespace_type (die, cu);
19154 break;
19155 case DW_TAG_module:
19156 this_type = read_module_type (die, cu);
19157 break;
19158 case DW_TAG_atomic_type:
19159 this_type = read_tag_atomic_type (die, cu);
19160 break;
19161 default:
19162 complaint (&symfile_complaints,
19163 _("unexpected tag in read_type_die: '%s'"),
19164 dwarf_tag_name (die->tag));
19165 break;
19166 }
19167
19168 return this_type;
19169 }
19170
19171 /* See if we can figure out if the class lives in a namespace. We do
19172 this by looking for a member function; its demangled name will
19173 contain namespace info, if there is any.
19174 Return the computed name or NULL.
19175 Space for the result is allocated on the objfile's obstack.
19176 This is the full-die version of guess_partial_die_structure_name.
19177 In this case we know DIE has no useful parent. */
19178
19179 static char *
19180 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19181 {
19182 struct die_info *spec_die;
19183 struct dwarf2_cu *spec_cu;
19184 struct die_info *child;
19185
19186 spec_cu = cu;
19187 spec_die = die_specification (die, &spec_cu);
19188 if (spec_die != NULL)
19189 {
19190 die = spec_die;
19191 cu = spec_cu;
19192 }
19193
19194 for (child = die->child;
19195 child != NULL;
19196 child = child->sibling)
19197 {
19198 if (child->tag == DW_TAG_subprogram)
19199 {
19200 const char *linkage_name;
19201
19202 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19203 if (linkage_name == NULL)
19204 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19205 cu);
19206 if (linkage_name != NULL)
19207 {
19208 char *actual_name
19209 = language_class_name_from_physname (cu->language_defn,
19210 linkage_name);
19211 char *name = NULL;
19212
19213 if (actual_name != NULL)
19214 {
19215 const char *die_name = dwarf2_name (die, cu);
19216
19217 if (die_name != NULL
19218 && strcmp (die_name, actual_name) != 0)
19219 {
19220 /* Strip off the class name from the full name.
19221 We want the prefix. */
19222 int die_name_len = strlen (die_name);
19223 int actual_name_len = strlen (actual_name);
19224
19225 /* Test for '::' as a sanity check. */
19226 if (actual_name_len > die_name_len + 2
19227 && actual_name[actual_name_len
19228 - die_name_len - 1] == ':')
19229 name = (char *) obstack_copy0 (
19230 &cu->objfile->per_bfd->storage_obstack,
19231 actual_name, actual_name_len - die_name_len - 2);
19232 }
19233 }
19234 xfree (actual_name);
19235 return name;
19236 }
19237 }
19238 }
19239
19240 return NULL;
19241 }
19242
19243 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19244 prefix part in such case. See
19245 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19246
19247 static char *
19248 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19249 {
19250 struct attribute *attr;
19251 const char *base;
19252
19253 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19254 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19255 return NULL;
19256
19257 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
19258 return NULL;
19259
19260 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19261 if (attr == NULL)
19262 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19263 if (attr == NULL || DW_STRING (attr) == NULL)
19264 return NULL;
19265
19266 /* dwarf2_name had to be already called. */
19267 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19268
19269 /* Strip the base name, keep any leading namespaces/classes. */
19270 base = strrchr (DW_STRING (attr), ':');
19271 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19272 return "";
19273
19274 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19275 DW_STRING (attr),
19276 &base[-1] - DW_STRING (attr));
19277 }
19278
19279 /* Return the name of the namespace/class that DIE is defined within,
19280 or "" if we can't tell. The caller should not xfree the result.
19281
19282 For example, if we're within the method foo() in the following
19283 code:
19284
19285 namespace N {
19286 class C {
19287 void foo () {
19288 }
19289 };
19290 }
19291
19292 then determine_prefix on foo's die will return "N::C". */
19293
19294 static const char *
19295 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19296 {
19297 struct die_info *parent, *spec_die;
19298 struct dwarf2_cu *spec_cu;
19299 struct type *parent_type;
19300 char *retval;
19301
19302 if (cu->language != language_cplus
19303 && cu->language != language_fortran && cu->language != language_d
19304 && cu->language != language_rust)
19305 return "";
19306
19307 retval = anonymous_struct_prefix (die, cu);
19308 if (retval)
19309 return retval;
19310
19311 /* We have to be careful in the presence of DW_AT_specification.
19312 For example, with GCC 3.4, given the code
19313
19314 namespace N {
19315 void foo() {
19316 // Definition of N::foo.
19317 }
19318 }
19319
19320 then we'll have a tree of DIEs like this:
19321
19322 1: DW_TAG_compile_unit
19323 2: DW_TAG_namespace // N
19324 3: DW_TAG_subprogram // declaration of N::foo
19325 4: DW_TAG_subprogram // definition of N::foo
19326 DW_AT_specification // refers to die #3
19327
19328 Thus, when processing die #4, we have to pretend that we're in
19329 the context of its DW_AT_specification, namely the contex of die
19330 #3. */
19331 spec_cu = cu;
19332 spec_die = die_specification (die, &spec_cu);
19333 if (spec_die == NULL)
19334 parent = die->parent;
19335 else
19336 {
19337 parent = spec_die->parent;
19338 cu = spec_cu;
19339 }
19340
19341 if (parent == NULL)
19342 return "";
19343 else if (parent->building_fullname)
19344 {
19345 const char *name;
19346 const char *parent_name;
19347
19348 /* It has been seen on RealView 2.2 built binaries,
19349 DW_TAG_template_type_param types actually _defined_ as
19350 children of the parent class:
19351
19352 enum E {};
19353 template class <class Enum> Class{};
19354 Class<enum E> class_e;
19355
19356 1: DW_TAG_class_type (Class)
19357 2: DW_TAG_enumeration_type (E)
19358 3: DW_TAG_enumerator (enum1:0)
19359 3: DW_TAG_enumerator (enum2:1)
19360 ...
19361 2: DW_TAG_template_type_param
19362 DW_AT_type DW_FORM_ref_udata (E)
19363
19364 Besides being broken debug info, it can put GDB into an
19365 infinite loop. Consider:
19366
19367 When we're building the full name for Class<E>, we'll start
19368 at Class, and go look over its template type parameters,
19369 finding E. We'll then try to build the full name of E, and
19370 reach here. We're now trying to build the full name of E,
19371 and look over the parent DIE for containing scope. In the
19372 broken case, if we followed the parent DIE of E, we'd again
19373 find Class, and once again go look at its template type
19374 arguments, etc., etc. Simply don't consider such parent die
19375 as source-level parent of this die (it can't be, the language
19376 doesn't allow it), and break the loop here. */
19377 name = dwarf2_name (die, cu);
19378 parent_name = dwarf2_name (parent, cu);
19379 complaint (&symfile_complaints,
19380 _("template param type '%s' defined within parent '%s'"),
19381 name ? name : "<unknown>",
19382 parent_name ? parent_name : "<unknown>");
19383 return "";
19384 }
19385 else
19386 switch (parent->tag)
19387 {
19388 case DW_TAG_namespace:
19389 parent_type = read_type_die (parent, cu);
19390 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19391 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19392 Work around this problem here. */
19393 if (cu->language == language_cplus
19394 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19395 return "";
19396 /* We give a name to even anonymous namespaces. */
19397 return TYPE_TAG_NAME (parent_type);
19398 case DW_TAG_class_type:
19399 case DW_TAG_interface_type:
19400 case DW_TAG_structure_type:
19401 case DW_TAG_union_type:
19402 case DW_TAG_module:
19403 parent_type = read_type_die (parent, cu);
19404 if (TYPE_TAG_NAME (parent_type) != NULL)
19405 return TYPE_TAG_NAME (parent_type);
19406 else
19407 /* An anonymous structure is only allowed non-static data
19408 members; no typedefs, no member functions, et cetera.
19409 So it does not need a prefix. */
19410 return "";
19411 case DW_TAG_compile_unit:
19412 case DW_TAG_partial_unit:
19413 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19414 if (cu->language == language_cplus
19415 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19416 && die->child != NULL
19417 && (die->tag == DW_TAG_class_type
19418 || die->tag == DW_TAG_structure_type
19419 || die->tag == DW_TAG_union_type))
19420 {
19421 char *name = guess_full_die_structure_name (die, cu);
19422 if (name != NULL)
19423 return name;
19424 }
19425 return "";
19426 case DW_TAG_enumeration_type:
19427 parent_type = read_type_die (parent, cu);
19428 if (TYPE_DECLARED_CLASS (parent_type))
19429 {
19430 if (TYPE_TAG_NAME (parent_type) != NULL)
19431 return TYPE_TAG_NAME (parent_type);
19432 return "";
19433 }
19434 /* Fall through. */
19435 default:
19436 return determine_prefix (parent, cu);
19437 }
19438 }
19439
19440 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19441 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19442 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19443 an obconcat, otherwise allocate storage for the result. The CU argument is
19444 used to determine the language and hence, the appropriate separator. */
19445
19446 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19447
19448 static char *
19449 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19450 int physname, struct dwarf2_cu *cu)
19451 {
19452 const char *lead = "";
19453 const char *sep;
19454
19455 if (suffix == NULL || suffix[0] == '\0'
19456 || prefix == NULL || prefix[0] == '\0')
19457 sep = "";
19458 else if (cu->language == language_d)
19459 {
19460 /* For D, the 'main' function could be defined in any module, but it
19461 should never be prefixed. */
19462 if (strcmp (suffix, "D main") == 0)
19463 {
19464 prefix = "";
19465 sep = "";
19466 }
19467 else
19468 sep = ".";
19469 }
19470 else if (cu->language == language_fortran && physname)
19471 {
19472 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19473 DW_AT_MIPS_linkage_name is preferred and used instead. */
19474
19475 lead = "__";
19476 sep = "_MOD_";
19477 }
19478 else
19479 sep = "::";
19480
19481 if (prefix == NULL)
19482 prefix = "";
19483 if (suffix == NULL)
19484 suffix = "";
19485
19486 if (obs == NULL)
19487 {
19488 char *retval
19489 = ((char *)
19490 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
19491
19492 strcpy (retval, lead);
19493 strcat (retval, prefix);
19494 strcat (retval, sep);
19495 strcat (retval, suffix);
19496 return retval;
19497 }
19498 else
19499 {
19500 /* We have an obstack. */
19501 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19502 }
19503 }
19504
19505 /* Return sibling of die, NULL if no sibling. */
19506
19507 static struct die_info *
19508 sibling_die (struct die_info *die)
19509 {
19510 return die->sibling;
19511 }
19512
19513 /* Get name of a die, return NULL if not found. */
19514
19515 static const char *
19516 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19517 struct obstack *obstack)
19518 {
19519 if (name && cu->language == language_cplus)
19520 {
19521 std::string canon_name = cp_canonicalize_string (name);
19522
19523 if (!canon_name.empty ())
19524 {
19525 if (canon_name != name)
19526 name = (const char *) obstack_copy0 (obstack,
19527 canon_name.c_str (),
19528 canon_name.length ());
19529 }
19530 }
19531
19532 return name;
19533 }
19534
19535 /* Get name of a die, return NULL if not found.
19536 Anonymous namespaces are converted to their magic string. */
19537
19538 static const char *
19539 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19540 {
19541 struct attribute *attr;
19542
19543 attr = dwarf2_attr (die, DW_AT_name, cu);
19544 if ((!attr || !DW_STRING (attr))
19545 && die->tag != DW_TAG_namespace
19546 && die->tag != DW_TAG_class_type
19547 && die->tag != DW_TAG_interface_type
19548 && die->tag != DW_TAG_structure_type
19549 && die->tag != DW_TAG_union_type)
19550 return NULL;
19551
19552 switch (die->tag)
19553 {
19554 case DW_TAG_compile_unit:
19555 case DW_TAG_partial_unit:
19556 /* Compilation units have a DW_AT_name that is a filename, not
19557 a source language identifier. */
19558 case DW_TAG_enumeration_type:
19559 case DW_TAG_enumerator:
19560 /* These tags always have simple identifiers already; no need
19561 to canonicalize them. */
19562 return DW_STRING (attr);
19563
19564 case DW_TAG_namespace:
19565 if (attr != NULL && DW_STRING (attr) != NULL)
19566 return DW_STRING (attr);
19567 return CP_ANONYMOUS_NAMESPACE_STR;
19568
19569 case DW_TAG_class_type:
19570 case DW_TAG_interface_type:
19571 case DW_TAG_structure_type:
19572 case DW_TAG_union_type:
19573 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19574 structures or unions. These were of the form "._%d" in GCC 4.1,
19575 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19576 and GCC 4.4. We work around this problem by ignoring these. */
19577 if (attr && DW_STRING (attr)
19578 && (startswith (DW_STRING (attr), "._")
19579 || startswith (DW_STRING (attr), "<anonymous")))
19580 return NULL;
19581
19582 /* GCC might emit a nameless typedef that has a linkage name. See
19583 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19584 if (!attr || DW_STRING (attr) == NULL)
19585 {
19586 char *demangled = NULL;
19587
19588 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19589 if (attr == NULL)
19590 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19591
19592 if (attr == NULL || DW_STRING (attr) == NULL)
19593 return NULL;
19594
19595 /* Avoid demangling DW_STRING (attr) the second time on a second
19596 call for the same DIE. */
19597 if (!DW_STRING_IS_CANONICAL (attr))
19598 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19599
19600 if (demangled)
19601 {
19602 const char *base;
19603
19604 /* FIXME: we already did this for the partial symbol... */
19605 DW_STRING (attr)
19606 = ((const char *)
19607 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19608 demangled, strlen (demangled)));
19609 DW_STRING_IS_CANONICAL (attr) = 1;
19610 xfree (demangled);
19611
19612 /* Strip any leading namespaces/classes, keep only the base name.
19613 DW_AT_name for named DIEs does not contain the prefixes. */
19614 base = strrchr (DW_STRING (attr), ':');
19615 if (base && base > DW_STRING (attr) && base[-1] == ':')
19616 return &base[1];
19617 else
19618 return DW_STRING (attr);
19619 }
19620 }
19621 break;
19622
19623 default:
19624 break;
19625 }
19626
19627 if (!DW_STRING_IS_CANONICAL (attr))
19628 {
19629 DW_STRING (attr)
19630 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19631 &cu->objfile->per_bfd->storage_obstack);
19632 DW_STRING_IS_CANONICAL (attr) = 1;
19633 }
19634 return DW_STRING (attr);
19635 }
19636
19637 /* Return the die that this die in an extension of, or NULL if there
19638 is none. *EXT_CU is the CU containing DIE on input, and the CU
19639 containing the return value on output. */
19640
19641 static struct die_info *
19642 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19643 {
19644 struct attribute *attr;
19645
19646 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19647 if (attr == NULL)
19648 return NULL;
19649
19650 return follow_die_ref (die, attr, ext_cu);
19651 }
19652
19653 /* Convert a DIE tag into its string name. */
19654
19655 static const char *
19656 dwarf_tag_name (unsigned tag)
19657 {
19658 const char *name = get_DW_TAG_name (tag);
19659
19660 if (name == NULL)
19661 return "DW_TAG_<unknown>";
19662
19663 return name;
19664 }
19665
19666 /* Convert a DWARF attribute code into its string name. */
19667
19668 static const char *
19669 dwarf_attr_name (unsigned attr)
19670 {
19671 const char *name;
19672
19673 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19674 if (attr == DW_AT_MIPS_fde)
19675 return "DW_AT_MIPS_fde";
19676 #else
19677 if (attr == DW_AT_HP_block_index)
19678 return "DW_AT_HP_block_index";
19679 #endif
19680
19681 name = get_DW_AT_name (attr);
19682
19683 if (name == NULL)
19684 return "DW_AT_<unknown>";
19685
19686 return name;
19687 }
19688
19689 /* Convert a DWARF value form code into its string name. */
19690
19691 static const char *
19692 dwarf_form_name (unsigned form)
19693 {
19694 const char *name = get_DW_FORM_name (form);
19695
19696 if (name == NULL)
19697 return "DW_FORM_<unknown>";
19698
19699 return name;
19700 }
19701
19702 static char *
19703 dwarf_bool_name (unsigned mybool)
19704 {
19705 if (mybool)
19706 return "TRUE";
19707 else
19708 return "FALSE";
19709 }
19710
19711 /* Convert a DWARF type code into its string name. */
19712
19713 static const char *
19714 dwarf_type_encoding_name (unsigned enc)
19715 {
19716 const char *name = get_DW_ATE_name (enc);
19717
19718 if (name == NULL)
19719 return "DW_ATE_<unknown>";
19720
19721 return name;
19722 }
19723
19724 static void
19725 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19726 {
19727 unsigned int i;
19728
19729 print_spaces (indent, f);
19730 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19731 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19732
19733 if (die->parent != NULL)
19734 {
19735 print_spaces (indent, f);
19736 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19737 die->parent->offset.sect_off);
19738 }
19739
19740 print_spaces (indent, f);
19741 fprintf_unfiltered (f, " has children: %s\n",
19742 dwarf_bool_name (die->child != NULL));
19743
19744 print_spaces (indent, f);
19745 fprintf_unfiltered (f, " attributes:\n");
19746
19747 for (i = 0; i < die->num_attrs; ++i)
19748 {
19749 print_spaces (indent, f);
19750 fprintf_unfiltered (f, " %s (%s) ",
19751 dwarf_attr_name (die->attrs[i].name),
19752 dwarf_form_name (die->attrs[i].form));
19753
19754 switch (die->attrs[i].form)
19755 {
19756 case DW_FORM_addr:
19757 case DW_FORM_GNU_addr_index:
19758 fprintf_unfiltered (f, "address: ");
19759 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19760 break;
19761 case DW_FORM_block2:
19762 case DW_FORM_block4:
19763 case DW_FORM_block:
19764 case DW_FORM_block1:
19765 fprintf_unfiltered (f, "block: size %s",
19766 pulongest (DW_BLOCK (&die->attrs[i])->size));
19767 break;
19768 case DW_FORM_exprloc:
19769 fprintf_unfiltered (f, "expression: size %s",
19770 pulongest (DW_BLOCK (&die->attrs[i])->size));
19771 break;
19772 case DW_FORM_ref_addr:
19773 fprintf_unfiltered (f, "ref address: ");
19774 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19775 break;
19776 case DW_FORM_GNU_ref_alt:
19777 fprintf_unfiltered (f, "alt ref address: ");
19778 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19779 break;
19780 case DW_FORM_ref1:
19781 case DW_FORM_ref2:
19782 case DW_FORM_ref4:
19783 case DW_FORM_ref8:
19784 case DW_FORM_ref_udata:
19785 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19786 (long) (DW_UNSND (&die->attrs[i])));
19787 break;
19788 case DW_FORM_data1:
19789 case DW_FORM_data2:
19790 case DW_FORM_data4:
19791 case DW_FORM_data8:
19792 case DW_FORM_udata:
19793 case DW_FORM_sdata:
19794 fprintf_unfiltered (f, "constant: %s",
19795 pulongest (DW_UNSND (&die->attrs[i])));
19796 break;
19797 case DW_FORM_sec_offset:
19798 fprintf_unfiltered (f, "section offset: %s",
19799 pulongest (DW_UNSND (&die->attrs[i])));
19800 break;
19801 case DW_FORM_ref_sig8:
19802 fprintf_unfiltered (f, "signature: %s",
19803 hex_string (DW_SIGNATURE (&die->attrs[i])));
19804 break;
19805 case DW_FORM_string:
19806 case DW_FORM_strp:
19807 case DW_FORM_GNU_str_index:
19808 case DW_FORM_GNU_strp_alt:
19809 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19810 DW_STRING (&die->attrs[i])
19811 ? DW_STRING (&die->attrs[i]) : "",
19812 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19813 break;
19814 case DW_FORM_flag:
19815 if (DW_UNSND (&die->attrs[i]))
19816 fprintf_unfiltered (f, "flag: TRUE");
19817 else
19818 fprintf_unfiltered (f, "flag: FALSE");
19819 break;
19820 case DW_FORM_flag_present:
19821 fprintf_unfiltered (f, "flag: TRUE");
19822 break;
19823 case DW_FORM_indirect:
19824 /* The reader will have reduced the indirect form to
19825 the "base form" so this form should not occur. */
19826 fprintf_unfiltered (f,
19827 "unexpected attribute form: DW_FORM_indirect");
19828 break;
19829 default:
19830 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19831 die->attrs[i].form);
19832 break;
19833 }
19834 fprintf_unfiltered (f, "\n");
19835 }
19836 }
19837
19838 static void
19839 dump_die_for_error (struct die_info *die)
19840 {
19841 dump_die_shallow (gdb_stderr, 0, die);
19842 }
19843
19844 static void
19845 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19846 {
19847 int indent = level * 4;
19848
19849 gdb_assert (die != NULL);
19850
19851 if (level >= max_level)
19852 return;
19853
19854 dump_die_shallow (f, indent, die);
19855
19856 if (die->child != NULL)
19857 {
19858 print_spaces (indent, f);
19859 fprintf_unfiltered (f, " Children:");
19860 if (level + 1 < max_level)
19861 {
19862 fprintf_unfiltered (f, "\n");
19863 dump_die_1 (f, level + 1, max_level, die->child);
19864 }
19865 else
19866 {
19867 fprintf_unfiltered (f,
19868 " [not printed, max nesting level reached]\n");
19869 }
19870 }
19871
19872 if (die->sibling != NULL && level > 0)
19873 {
19874 dump_die_1 (f, level, max_level, die->sibling);
19875 }
19876 }
19877
19878 /* This is called from the pdie macro in gdbinit.in.
19879 It's not static so gcc will keep a copy callable from gdb. */
19880
19881 void
19882 dump_die (struct die_info *die, int max_level)
19883 {
19884 dump_die_1 (gdb_stdlog, 0, max_level, die);
19885 }
19886
19887 static void
19888 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19889 {
19890 void **slot;
19891
19892 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19893 INSERT);
19894
19895 *slot = die;
19896 }
19897
19898 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19899 required kind. */
19900
19901 static sect_offset
19902 dwarf2_get_ref_die_offset (const struct attribute *attr)
19903 {
19904 sect_offset retval = { DW_UNSND (attr) };
19905
19906 if (attr_form_is_ref (attr))
19907 return retval;
19908
19909 retval.sect_off = 0;
19910 complaint (&symfile_complaints,
19911 _("unsupported die ref attribute form: '%s'"),
19912 dwarf_form_name (attr->form));
19913 return retval;
19914 }
19915
19916 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19917 * the value held by the attribute is not constant. */
19918
19919 static LONGEST
19920 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19921 {
19922 if (attr->form == DW_FORM_sdata)
19923 return DW_SND (attr);
19924 else if (attr->form == DW_FORM_udata
19925 || attr->form == DW_FORM_data1
19926 || attr->form == DW_FORM_data2
19927 || attr->form == DW_FORM_data4
19928 || attr->form == DW_FORM_data8)
19929 return DW_UNSND (attr);
19930 else
19931 {
19932 complaint (&symfile_complaints,
19933 _("Attribute value is not a constant (%s)"),
19934 dwarf_form_name (attr->form));
19935 return default_value;
19936 }
19937 }
19938
19939 /* Follow reference or signature attribute ATTR of SRC_DIE.
19940 On entry *REF_CU is the CU of SRC_DIE.
19941 On exit *REF_CU is the CU of the result. */
19942
19943 static struct die_info *
19944 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19945 struct dwarf2_cu **ref_cu)
19946 {
19947 struct die_info *die;
19948
19949 if (attr_form_is_ref (attr))
19950 die = follow_die_ref (src_die, attr, ref_cu);
19951 else if (attr->form == DW_FORM_ref_sig8)
19952 die = follow_die_sig (src_die, attr, ref_cu);
19953 else
19954 {
19955 dump_die_for_error (src_die);
19956 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19957 objfile_name ((*ref_cu)->objfile));
19958 }
19959
19960 return die;
19961 }
19962
19963 /* Follow reference OFFSET.
19964 On entry *REF_CU is the CU of the source die referencing OFFSET.
19965 On exit *REF_CU is the CU of the result.
19966 Returns NULL if OFFSET is invalid. */
19967
19968 static struct die_info *
19969 follow_die_offset (sect_offset offset, int offset_in_dwz,
19970 struct dwarf2_cu **ref_cu)
19971 {
19972 struct die_info temp_die;
19973 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19974
19975 gdb_assert (cu->per_cu != NULL);
19976
19977 target_cu = cu;
19978
19979 if (cu->per_cu->is_debug_types)
19980 {
19981 /* .debug_types CUs cannot reference anything outside their CU.
19982 If they need to, they have to reference a signatured type via
19983 DW_FORM_ref_sig8. */
19984 if (! offset_in_cu_p (&cu->header, offset))
19985 return NULL;
19986 }
19987 else if (offset_in_dwz != cu->per_cu->is_dwz
19988 || ! offset_in_cu_p (&cu->header, offset))
19989 {
19990 struct dwarf2_per_cu_data *per_cu;
19991
19992 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19993 cu->objfile);
19994
19995 /* If necessary, add it to the queue and load its DIEs. */
19996 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19997 load_full_comp_unit (per_cu, cu->language);
19998
19999 target_cu = per_cu->cu;
20000 }
20001 else if (cu->dies == NULL)
20002 {
20003 /* We're loading full DIEs during partial symbol reading. */
20004 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
20005 load_full_comp_unit (cu->per_cu, language_minimal);
20006 }
20007
20008 *ref_cu = target_cu;
20009 temp_die.offset = offset;
20010 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20011 &temp_die, offset.sect_off);
20012 }
20013
20014 /* Follow reference attribute ATTR of SRC_DIE.
20015 On entry *REF_CU is the CU of SRC_DIE.
20016 On exit *REF_CU is the CU of the result. */
20017
20018 static struct die_info *
20019 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
20020 struct dwarf2_cu **ref_cu)
20021 {
20022 sect_offset offset = dwarf2_get_ref_die_offset (attr);
20023 struct dwarf2_cu *cu = *ref_cu;
20024 struct die_info *die;
20025
20026 die = follow_die_offset (offset,
20027 (attr->form == DW_FORM_GNU_ref_alt
20028 || cu->per_cu->is_dwz),
20029 ref_cu);
20030 if (!die)
20031 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20032 "at 0x%x [in module %s]"),
20033 offset.sect_off, src_die->offset.sect_off,
20034 objfile_name (cu->objfile));
20035
20036 return die;
20037 }
20038
20039 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20040 Returned value is intended for DW_OP_call*. Returned
20041 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
20042
20043 struct dwarf2_locexpr_baton
20044 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20045 struct dwarf2_per_cu_data *per_cu,
20046 CORE_ADDR (*get_frame_pc) (void *baton),
20047 void *baton)
20048 {
20049 struct dwarf2_cu *cu;
20050 struct die_info *die;
20051 struct attribute *attr;
20052 struct dwarf2_locexpr_baton retval;
20053
20054 dw2_setup (per_cu->objfile);
20055
20056 if (per_cu->cu == NULL)
20057 load_cu (per_cu);
20058 cu = per_cu->cu;
20059 if (cu == NULL)
20060 {
20061 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20062 Instead just throw an error, not much else we can do. */
20063 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20064 offset.sect_off, objfile_name (per_cu->objfile));
20065 }
20066
20067 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20068 if (!die)
20069 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20070 offset.sect_off, objfile_name (per_cu->objfile));
20071
20072 attr = dwarf2_attr (die, DW_AT_location, cu);
20073 if (!attr)
20074 {
20075 /* DWARF: "If there is no such attribute, then there is no effect.".
20076 DATA is ignored if SIZE is 0. */
20077
20078 retval.data = NULL;
20079 retval.size = 0;
20080 }
20081 else if (attr_form_is_section_offset (attr))
20082 {
20083 struct dwarf2_loclist_baton loclist_baton;
20084 CORE_ADDR pc = (*get_frame_pc) (baton);
20085 size_t size;
20086
20087 fill_in_loclist_baton (cu, &loclist_baton, attr);
20088
20089 retval.data = dwarf2_find_location_expression (&loclist_baton,
20090 &size, pc);
20091 retval.size = size;
20092 }
20093 else
20094 {
20095 if (!attr_form_is_block (attr))
20096 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20097 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
20098 offset.sect_off, objfile_name (per_cu->objfile));
20099
20100 retval.data = DW_BLOCK (attr)->data;
20101 retval.size = DW_BLOCK (attr)->size;
20102 }
20103 retval.per_cu = cu->per_cu;
20104
20105 age_cached_comp_units ();
20106
20107 return retval;
20108 }
20109
20110 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20111 offset. */
20112
20113 struct dwarf2_locexpr_baton
20114 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20115 struct dwarf2_per_cu_data *per_cu,
20116 CORE_ADDR (*get_frame_pc) (void *baton),
20117 void *baton)
20118 {
20119 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20120
20121 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20122 }
20123
20124 /* Write a constant of a given type as target-ordered bytes into
20125 OBSTACK. */
20126
20127 static const gdb_byte *
20128 write_constant_as_bytes (struct obstack *obstack,
20129 enum bfd_endian byte_order,
20130 struct type *type,
20131 ULONGEST value,
20132 LONGEST *len)
20133 {
20134 gdb_byte *result;
20135
20136 *len = TYPE_LENGTH (type);
20137 result = (gdb_byte *) obstack_alloc (obstack, *len);
20138 store_unsigned_integer (result, *len, byte_order, value);
20139
20140 return result;
20141 }
20142
20143 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20144 pointer to the constant bytes and set LEN to the length of the
20145 data. If memory is needed, allocate it on OBSTACK. If the DIE
20146 does not have a DW_AT_const_value, return NULL. */
20147
20148 const gdb_byte *
20149 dwarf2_fetch_constant_bytes (sect_offset offset,
20150 struct dwarf2_per_cu_data *per_cu,
20151 struct obstack *obstack,
20152 LONGEST *len)
20153 {
20154 struct dwarf2_cu *cu;
20155 struct die_info *die;
20156 struct attribute *attr;
20157 const gdb_byte *result = NULL;
20158 struct type *type;
20159 LONGEST value;
20160 enum bfd_endian byte_order;
20161
20162 dw2_setup (per_cu->objfile);
20163
20164 if (per_cu->cu == NULL)
20165 load_cu (per_cu);
20166 cu = per_cu->cu;
20167 if (cu == NULL)
20168 {
20169 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20170 Instead just throw an error, not much else we can do. */
20171 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20172 offset.sect_off, objfile_name (per_cu->objfile));
20173 }
20174
20175 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20176 if (!die)
20177 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
20178 offset.sect_off, objfile_name (per_cu->objfile));
20179
20180
20181 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20182 if (attr == NULL)
20183 return NULL;
20184
20185 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20186 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20187
20188 switch (attr->form)
20189 {
20190 case DW_FORM_addr:
20191 case DW_FORM_GNU_addr_index:
20192 {
20193 gdb_byte *tem;
20194
20195 *len = cu->header.addr_size;
20196 tem = (gdb_byte *) obstack_alloc (obstack, *len);
20197 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20198 result = tem;
20199 }
20200 break;
20201 case DW_FORM_string:
20202 case DW_FORM_strp:
20203 case DW_FORM_GNU_str_index:
20204 case DW_FORM_GNU_strp_alt:
20205 /* DW_STRING is already allocated on the objfile obstack, point
20206 directly to it. */
20207 result = (const gdb_byte *) DW_STRING (attr);
20208 *len = strlen (DW_STRING (attr));
20209 break;
20210 case DW_FORM_block1:
20211 case DW_FORM_block2:
20212 case DW_FORM_block4:
20213 case DW_FORM_block:
20214 case DW_FORM_exprloc:
20215 result = DW_BLOCK (attr)->data;
20216 *len = DW_BLOCK (attr)->size;
20217 break;
20218
20219 /* The DW_AT_const_value attributes are supposed to carry the
20220 symbol's value "represented as it would be on the target
20221 architecture." By the time we get here, it's already been
20222 converted to host endianness, so we just need to sign- or
20223 zero-extend it as appropriate. */
20224 case DW_FORM_data1:
20225 type = die_type (die, cu);
20226 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20227 if (result == NULL)
20228 result = write_constant_as_bytes (obstack, byte_order,
20229 type, value, len);
20230 break;
20231 case DW_FORM_data2:
20232 type = die_type (die, cu);
20233 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20234 if (result == NULL)
20235 result = write_constant_as_bytes (obstack, byte_order,
20236 type, value, len);
20237 break;
20238 case DW_FORM_data4:
20239 type = die_type (die, cu);
20240 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20241 if (result == NULL)
20242 result = write_constant_as_bytes (obstack, byte_order,
20243 type, value, len);
20244 break;
20245 case DW_FORM_data8:
20246 type = die_type (die, cu);
20247 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20248 if (result == NULL)
20249 result = write_constant_as_bytes (obstack, byte_order,
20250 type, value, len);
20251 break;
20252
20253 case DW_FORM_sdata:
20254 type = die_type (die, cu);
20255 result = write_constant_as_bytes (obstack, byte_order,
20256 type, DW_SND (attr), len);
20257 break;
20258
20259 case DW_FORM_udata:
20260 type = die_type (die, cu);
20261 result = write_constant_as_bytes (obstack, byte_order,
20262 type, DW_UNSND (attr), len);
20263 break;
20264
20265 default:
20266 complaint (&symfile_complaints,
20267 _("unsupported const value attribute form: '%s'"),
20268 dwarf_form_name (attr->form));
20269 break;
20270 }
20271
20272 return result;
20273 }
20274
20275 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20276 PER_CU. */
20277
20278 struct type *
20279 dwarf2_get_die_type (cu_offset die_offset,
20280 struct dwarf2_per_cu_data *per_cu)
20281 {
20282 sect_offset die_offset_sect;
20283
20284 dw2_setup (per_cu->objfile);
20285
20286 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20287 return get_die_type_at_offset (die_offset_sect, per_cu);
20288 }
20289
20290 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20291 On entry *REF_CU is the CU of SRC_DIE.
20292 On exit *REF_CU is the CU of the result.
20293 Returns NULL if the referenced DIE isn't found. */
20294
20295 static struct die_info *
20296 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20297 struct dwarf2_cu **ref_cu)
20298 {
20299 struct die_info temp_die;
20300 struct dwarf2_cu *sig_cu;
20301 struct die_info *die;
20302
20303 /* While it might be nice to assert sig_type->type == NULL here,
20304 we can get here for DW_AT_imported_declaration where we need
20305 the DIE not the type. */
20306
20307 /* If necessary, add it to the queue and load its DIEs. */
20308
20309 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20310 read_signatured_type (sig_type);
20311
20312 sig_cu = sig_type->per_cu.cu;
20313 gdb_assert (sig_cu != NULL);
20314 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20315 temp_die.offset = sig_type->type_offset_in_section;
20316 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20317 temp_die.offset.sect_off);
20318 if (die)
20319 {
20320 /* For .gdb_index version 7 keep track of included TUs.
20321 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20322 if (dwarf2_per_objfile->index_table != NULL
20323 && dwarf2_per_objfile->index_table->version <= 7)
20324 {
20325 VEC_safe_push (dwarf2_per_cu_ptr,
20326 (*ref_cu)->per_cu->imported_symtabs,
20327 sig_cu->per_cu);
20328 }
20329
20330 *ref_cu = sig_cu;
20331 return die;
20332 }
20333
20334 return NULL;
20335 }
20336
20337 /* Follow signatured type referenced by ATTR in SRC_DIE.
20338 On entry *REF_CU is the CU of SRC_DIE.
20339 On exit *REF_CU is the CU of the result.
20340 The result is the DIE of the type.
20341 If the referenced type cannot be found an error is thrown. */
20342
20343 static struct die_info *
20344 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20345 struct dwarf2_cu **ref_cu)
20346 {
20347 ULONGEST signature = DW_SIGNATURE (attr);
20348 struct signatured_type *sig_type;
20349 struct die_info *die;
20350
20351 gdb_assert (attr->form == DW_FORM_ref_sig8);
20352
20353 sig_type = lookup_signatured_type (*ref_cu, signature);
20354 /* sig_type will be NULL if the signatured type is missing from
20355 the debug info. */
20356 if (sig_type == NULL)
20357 {
20358 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20359 " from DIE at 0x%x [in module %s]"),
20360 hex_string (signature), src_die->offset.sect_off,
20361 objfile_name ((*ref_cu)->objfile));
20362 }
20363
20364 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20365 if (die == NULL)
20366 {
20367 dump_die_for_error (src_die);
20368 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20369 " from DIE at 0x%x [in module %s]"),
20370 hex_string (signature), src_die->offset.sect_off,
20371 objfile_name ((*ref_cu)->objfile));
20372 }
20373
20374 return die;
20375 }
20376
20377 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20378 reading in and processing the type unit if necessary. */
20379
20380 static struct type *
20381 get_signatured_type (struct die_info *die, ULONGEST signature,
20382 struct dwarf2_cu *cu)
20383 {
20384 struct signatured_type *sig_type;
20385 struct dwarf2_cu *type_cu;
20386 struct die_info *type_die;
20387 struct type *type;
20388
20389 sig_type = lookup_signatured_type (cu, signature);
20390 /* sig_type will be NULL if the signatured type is missing from
20391 the debug info. */
20392 if (sig_type == NULL)
20393 {
20394 complaint (&symfile_complaints,
20395 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20396 " from DIE at 0x%x [in module %s]"),
20397 hex_string (signature), die->offset.sect_off,
20398 objfile_name (dwarf2_per_objfile->objfile));
20399 return build_error_marker_type (cu, die);
20400 }
20401
20402 /* If we already know the type we're done. */
20403 if (sig_type->type != NULL)
20404 return sig_type->type;
20405
20406 type_cu = cu;
20407 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20408 if (type_die != NULL)
20409 {
20410 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20411 is created. This is important, for example, because for c++ classes
20412 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20413 type = read_type_die (type_die, type_cu);
20414 if (type == NULL)
20415 {
20416 complaint (&symfile_complaints,
20417 _("Dwarf Error: Cannot build signatured type %s"
20418 " referenced from DIE at 0x%x [in module %s]"),
20419 hex_string (signature), die->offset.sect_off,
20420 objfile_name (dwarf2_per_objfile->objfile));
20421 type = build_error_marker_type (cu, die);
20422 }
20423 }
20424 else
20425 {
20426 complaint (&symfile_complaints,
20427 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20428 " from DIE at 0x%x [in module %s]"),
20429 hex_string (signature), die->offset.sect_off,
20430 objfile_name (dwarf2_per_objfile->objfile));
20431 type = build_error_marker_type (cu, die);
20432 }
20433 sig_type->type = type;
20434
20435 return type;
20436 }
20437
20438 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20439 reading in and processing the type unit if necessary. */
20440
20441 static struct type *
20442 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20443 struct dwarf2_cu *cu) /* ARI: editCase function */
20444 {
20445 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20446 if (attr_form_is_ref (attr))
20447 {
20448 struct dwarf2_cu *type_cu = cu;
20449 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20450
20451 return read_type_die (type_die, type_cu);
20452 }
20453 else if (attr->form == DW_FORM_ref_sig8)
20454 {
20455 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20456 }
20457 else
20458 {
20459 complaint (&symfile_complaints,
20460 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20461 " at 0x%x [in module %s]"),
20462 dwarf_form_name (attr->form), die->offset.sect_off,
20463 objfile_name (dwarf2_per_objfile->objfile));
20464 return build_error_marker_type (cu, die);
20465 }
20466 }
20467
20468 /* Load the DIEs associated with type unit PER_CU into memory. */
20469
20470 static void
20471 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20472 {
20473 struct signatured_type *sig_type;
20474
20475 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20476 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20477
20478 /* We have the per_cu, but we need the signatured_type.
20479 Fortunately this is an easy translation. */
20480 gdb_assert (per_cu->is_debug_types);
20481 sig_type = (struct signatured_type *) per_cu;
20482
20483 gdb_assert (per_cu->cu == NULL);
20484
20485 read_signatured_type (sig_type);
20486
20487 gdb_assert (per_cu->cu != NULL);
20488 }
20489
20490 /* die_reader_func for read_signatured_type.
20491 This is identical to load_full_comp_unit_reader,
20492 but is kept separate for now. */
20493
20494 static void
20495 read_signatured_type_reader (const struct die_reader_specs *reader,
20496 const gdb_byte *info_ptr,
20497 struct die_info *comp_unit_die,
20498 int has_children,
20499 void *data)
20500 {
20501 struct dwarf2_cu *cu = reader->cu;
20502
20503 gdb_assert (cu->die_hash == NULL);
20504 cu->die_hash =
20505 htab_create_alloc_ex (cu->header.length / 12,
20506 die_hash,
20507 die_eq,
20508 NULL,
20509 &cu->comp_unit_obstack,
20510 hashtab_obstack_allocate,
20511 dummy_obstack_deallocate);
20512
20513 if (has_children)
20514 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20515 &info_ptr, comp_unit_die);
20516 cu->dies = comp_unit_die;
20517 /* comp_unit_die is not stored in die_hash, no need. */
20518
20519 /* We try not to read any attributes in this function, because not
20520 all CUs needed for references have been loaded yet, and symbol
20521 table processing isn't initialized. But we have to set the CU language,
20522 or we won't be able to build types correctly.
20523 Similarly, if we do not read the producer, we can not apply
20524 producer-specific interpretation. */
20525 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20526 }
20527
20528 /* Read in a signatured type and build its CU and DIEs.
20529 If the type is a stub for the real type in a DWO file,
20530 read in the real type from the DWO file as well. */
20531
20532 static void
20533 read_signatured_type (struct signatured_type *sig_type)
20534 {
20535 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20536
20537 gdb_assert (per_cu->is_debug_types);
20538 gdb_assert (per_cu->cu == NULL);
20539
20540 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20541 read_signatured_type_reader, NULL);
20542 sig_type->per_cu.tu_read = 1;
20543 }
20544
20545 /* Decode simple location descriptions.
20546 Given a pointer to a dwarf block that defines a location, compute
20547 the location and return the value.
20548
20549 NOTE drow/2003-11-18: This function is called in two situations
20550 now: for the address of static or global variables (partial symbols
20551 only) and for offsets into structures which are expected to be
20552 (more or less) constant. The partial symbol case should go away,
20553 and only the constant case should remain. That will let this
20554 function complain more accurately. A few special modes are allowed
20555 without complaint for global variables (for instance, global
20556 register values and thread-local values).
20557
20558 A location description containing no operations indicates that the
20559 object is optimized out. The return value is 0 for that case.
20560 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20561 callers will only want a very basic result and this can become a
20562 complaint.
20563
20564 Note that stack[0] is unused except as a default error return. */
20565
20566 static CORE_ADDR
20567 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20568 {
20569 struct objfile *objfile = cu->objfile;
20570 size_t i;
20571 size_t size = blk->size;
20572 const gdb_byte *data = blk->data;
20573 CORE_ADDR stack[64];
20574 int stacki;
20575 unsigned int bytes_read, unsnd;
20576 gdb_byte op;
20577
20578 i = 0;
20579 stacki = 0;
20580 stack[stacki] = 0;
20581 stack[++stacki] = 0;
20582
20583 while (i < size)
20584 {
20585 op = data[i++];
20586 switch (op)
20587 {
20588 case DW_OP_lit0:
20589 case DW_OP_lit1:
20590 case DW_OP_lit2:
20591 case DW_OP_lit3:
20592 case DW_OP_lit4:
20593 case DW_OP_lit5:
20594 case DW_OP_lit6:
20595 case DW_OP_lit7:
20596 case DW_OP_lit8:
20597 case DW_OP_lit9:
20598 case DW_OP_lit10:
20599 case DW_OP_lit11:
20600 case DW_OP_lit12:
20601 case DW_OP_lit13:
20602 case DW_OP_lit14:
20603 case DW_OP_lit15:
20604 case DW_OP_lit16:
20605 case DW_OP_lit17:
20606 case DW_OP_lit18:
20607 case DW_OP_lit19:
20608 case DW_OP_lit20:
20609 case DW_OP_lit21:
20610 case DW_OP_lit22:
20611 case DW_OP_lit23:
20612 case DW_OP_lit24:
20613 case DW_OP_lit25:
20614 case DW_OP_lit26:
20615 case DW_OP_lit27:
20616 case DW_OP_lit28:
20617 case DW_OP_lit29:
20618 case DW_OP_lit30:
20619 case DW_OP_lit31:
20620 stack[++stacki] = op - DW_OP_lit0;
20621 break;
20622
20623 case DW_OP_reg0:
20624 case DW_OP_reg1:
20625 case DW_OP_reg2:
20626 case DW_OP_reg3:
20627 case DW_OP_reg4:
20628 case DW_OP_reg5:
20629 case DW_OP_reg6:
20630 case DW_OP_reg7:
20631 case DW_OP_reg8:
20632 case DW_OP_reg9:
20633 case DW_OP_reg10:
20634 case DW_OP_reg11:
20635 case DW_OP_reg12:
20636 case DW_OP_reg13:
20637 case DW_OP_reg14:
20638 case DW_OP_reg15:
20639 case DW_OP_reg16:
20640 case DW_OP_reg17:
20641 case DW_OP_reg18:
20642 case DW_OP_reg19:
20643 case DW_OP_reg20:
20644 case DW_OP_reg21:
20645 case DW_OP_reg22:
20646 case DW_OP_reg23:
20647 case DW_OP_reg24:
20648 case DW_OP_reg25:
20649 case DW_OP_reg26:
20650 case DW_OP_reg27:
20651 case DW_OP_reg28:
20652 case DW_OP_reg29:
20653 case DW_OP_reg30:
20654 case DW_OP_reg31:
20655 stack[++stacki] = op - DW_OP_reg0;
20656 if (i < size)
20657 dwarf2_complex_location_expr_complaint ();
20658 break;
20659
20660 case DW_OP_regx:
20661 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20662 i += bytes_read;
20663 stack[++stacki] = unsnd;
20664 if (i < size)
20665 dwarf2_complex_location_expr_complaint ();
20666 break;
20667
20668 case DW_OP_addr:
20669 stack[++stacki] = read_address (objfile->obfd, &data[i],
20670 cu, &bytes_read);
20671 i += bytes_read;
20672 break;
20673
20674 case DW_OP_const1u:
20675 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20676 i += 1;
20677 break;
20678
20679 case DW_OP_const1s:
20680 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20681 i += 1;
20682 break;
20683
20684 case DW_OP_const2u:
20685 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20686 i += 2;
20687 break;
20688
20689 case DW_OP_const2s:
20690 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20691 i += 2;
20692 break;
20693
20694 case DW_OP_const4u:
20695 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20696 i += 4;
20697 break;
20698
20699 case DW_OP_const4s:
20700 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20701 i += 4;
20702 break;
20703
20704 case DW_OP_const8u:
20705 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20706 i += 8;
20707 break;
20708
20709 case DW_OP_constu:
20710 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20711 &bytes_read);
20712 i += bytes_read;
20713 break;
20714
20715 case DW_OP_consts:
20716 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20717 i += bytes_read;
20718 break;
20719
20720 case DW_OP_dup:
20721 stack[stacki + 1] = stack[stacki];
20722 stacki++;
20723 break;
20724
20725 case DW_OP_plus:
20726 stack[stacki - 1] += stack[stacki];
20727 stacki--;
20728 break;
20729
20730 case DW_OP_plus_uconst:
20731 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20732 &bytes_read);
20733 i += bytes_read;
20734 break;
20735
20736 case DW_OP_minus:
20737 stack[stacki - 1] -= stack[stacki];
20738 stacki--;
20739 break;
20740
20741 case DW_OP_deref:
20742 /* If we're not the last op, then we definitely can't encode
20743 this using GDB's address_class enum. This is valid for partial
20744 global symbols, although the variable's address will be bogus
20745 in the psymtab. */
20746 if (i < size)
20747 dwarf2_complex_location_expr_complaint ();
20748 break;
20749
20750 case DW_OP_GNU_push_tls_address:
20751 case DW_OP_form_tls_address:
20752 /* The top of the stack has the offset from the beginning
20753 of the thread control block at which the variable is located. */
20754 /* Nothing should follow this operator, so the top of stack would
20755 be returned. */
20756 /* This is valid for partial global symbols, but the variable's
20757 address will be bogus in the psymtab. Make it always at least
20758 non-zero to not look as a variable garbage collected by linker
20759 which have DW_OP_addr 0. */
20760 if (i < size)
20761 dwarf2_complex_location_expr_complaint ();
20762 stack[stacki]++;
20763 break;
20764
20765 case DW_OP_GNU_uninit:
20766 break;
20767
20768 case DW_OP_GNU_addr_index:
20769 case DW_OP_GNU_const_index:
20770 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20771 &bytes_read);
20772 i += bytes_read;
20773 break;
20774
20775 default:
20776 {
20777 const char *name = get_DW_OP_name (op);
20778
20779 if (name)
20780 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20781 name);
20782 else
20783 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20784 op);
20785 }
20786
20787 return (stack[stacki]);
20788 }
20789
20790 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20791 outside of the allocated space. Also enforce minimum>0. */
20792 if (stacki >= ARRAY_SIZE (stack) - 1)
20793 {
20794 complaint (&symfile_complaints,
20795 _("location description stack overflow"));
20796 return 0;
20797 }
20798
20799 if (stacki <= 0)
20800 {
20801 complaint (&symfile_complaints,
20802 _("location description stack underflow"));
20803 return 0;
20804 }
20805 }
20806 return (stack[stacki]);
20807 }
20808
20809 /* memory allocation interface */
20810
20811 static struct dwarf_block *
20812 dwarf_alloc_block (struct dwarf2_cu *cu)
20813 {
20814 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
20815 }
20816
20817 static struct die_info *
20818 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20819 {
20820 struct die_info *die;
20821 size_t size = sizeof (struct die_info);
20822
20823 if (num_attrs > 1)
20824 size += (num_attrs - 1) * sizeof (struct attribute);
20825
20826 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20827 memset (die, 0, sizeof (struct die_info));
20828 return (die);
20829 }
20830
20831 \f
20832 /* Macro support. */
20833
20834 /* Return file name relative to the compilation directory of file number I in
20835 *LH's file name table. The result is allocated using xmalloc; the caller is
20836 responsible for freeing it. */
20837
20838 static char *
20839 file_file_name (int file, struct line_header *lh)
20840 {
20841 /* Is the file number a valid index into the line header's file name
20842 table? Remember that file numbers start with one, not zero. */
20843 if (1 <= file && file <= lh->num_file_names)
20844 {
20845 struct file_entry *fe = &lh->file_names[file - 1];
20846
20847 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20848 || lh->include_dirs == NULL)
20849 return xstrdup (fe->name);
20850 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20851 fe->name, (char *) NULL);
20852 }
20853 else
20854 {
20855 /* The compiler produced a bogus file number. We can at least
20856 record the macro definitions made in the file, even if we
20857 won't be able to find the file by name. */
20858 char fake_name[80];
20859
20860 xsnprintf (fake_name, sizeof (fake_name),
20861 "<bad macro file number %d>", file);
20862
20863 complaint (&symfile_complaints,
20864 _("bad file number in macro information (%d)"),
20865 file);
20866
20867 return xstrdup (fake_name);
20868 }
20869 }
20870
20871 /* Return the full name of file number I in *LH's file name table.
20872 Use COMP_DIR as the name of the current directory of the
20873 compilation. The result is allocated using xmalloc; the caller is
20874 responsible for freeing it. */
20875 static char *
20876 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20877 {
20878 /* Is the file number a valid index into the line header's file name
20879 table? Remember that file numbers start with one, not zero. */
20880 if (1 <= file && file <= lh->num_file_names)
20881 {
20882 char *relative = file_file_name (file, lh);
20883
20884 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20885 return relative;
20886 return reconcat (relative, comp_dir, SLASH_STRING,
20887 relative, (char *) NULL);
20888 }
20889 else
20890 return file_file_name (file, lh);
20891 }
20892
20893
20894 static struct macro_source_file *
20895 macro_start_file (int file, int line,
20896 struct macro_source_file *current_file,
20897 struct line_header *lh)
20898 {
20899 /* File name relative to the compilation directory of this source file. */
20900 char *file_name = file_file_name (file, lh);
20901
20902 if (! current_file)
20903 {
20904 /* Note: We don't create a macro table for this compilation unit
20905 at all until we actually get a filename. */
20906 struct macro_table *macro_table = get_macro_table ();
20907
20908 /* If we have no current file, then this must be the start_file
20909 directive for the compilation unit's main source file. */
20910 current_file = macro_set_main (macro_table, file_name);
20911 macro_define_special (macro_table);
20912 }
20913 else
20914 current_file = macro_include (current_file, line, file_name);
20915
20916 xfree (file_name);
20917
20918 return current_file;
20919 }
20920
20921
20922 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20923 followed by a null byte. */
20924 static char *
20925 copy_string (const char *buf, int len)
20926 {
20927 char *s = (char *) xmalloc (len + 1);
20928
20929 memcpy (s, buf, len);
20930 s[len] = '\0';
20931 return s;
20932 }
20933
20934
20935 static const char *
20936 consume_improper_spaces (const char *p, const char *body)
20937 {
20938 if (*p == ' ')
20939 {
20940 complaint (&symfile_complaints,
20941 _("macro definition contains spaces "
20942 "in formal argument list:\n`%s'"),
20943 body);
20944
20945 while (*p == ' ')
20946 p++;
20947 }
20948
20949 return p;
20950 }
20951
20952
20953 static void
20954 parse_macro_definition (struct macro_source_file *file, int line,
20955 const char *body)
20956 {
20957 const char *p;
20958
20959 /* The body string takes one of two forms. For object-like macro
20960 definitions, it should be:
20961
20962 <macro name> " " <definition>
20963
20964 For function-like macro definitions, it should be:
20965
20966 <macro name> "() " <definition>
20967 or
20968 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20969
20970 Spaces may appear only where explicitly indicated, and in the
20971 <definition>.
20972
20973 The Dwarf 2 spec says that an object-like macro's name is always
20974 followed by a space, but versions of GCC around March 2002 omit
20975 the space when the macro's definition is the empty string.
20976
20977 The Dwarf 2 spec says that there should be no spaces between the
20978 formal arguments in a function-like macro's formal argument list,
20979 but versions of GCC around March 2002 include spaces after the
20980 commas. */
20981
20982
20983 /* Find the extent of the macro name. The macro name is terminated
20984 by either a space or null character (for an object-like macro) or
20985 an opening paren (for a function-like macro). */
20986 for (p = body; *p; p++)
20987 if (*p == ' ' || *p == '(')
20988 break;
20989
20990 if (*p == ' ' || *p == '\0')
20991 {
20992 /* It's an object-like macro. */
20993 int name_len = p - body;
20994 char *name = copy_string (body, name_len);
20995 const char *replacement;
20996
20997 if (*p == ' ')
20998 replacement = body + name_len + 1;
20999 else
21000 {
21001 dwarf2_macro_malformed_definition_complaint (body);
21002 replacement = body + name_len;
21003 }
21004
21005 macro_define_object (file, line, name, replacement);
21006
21007 xfree (name);
21008 }
21009 else if (*p == '(')
21010 {
21011 /* It's a function-like macro. */
21012 char *name = copy_string (body, p - body);
21013 int argc = 0;
21014 int argv_size = 1;
21015 char **argv = XNEWVEC (char *, argv_size);
21016
21017 p++;
21018
21019 p = consume_improper_spaces (p, body);
21020
21021 /* Parse the formal argument list. */
21022 while (*p && *p != ')')
21023 {
21024 /* Find the extent of the current argument name. */
21025 const char *arg_start = p;
21026
21027 while (*p && *p != ',' && *p != ')' && *p != ' ')
21028 p++;
21029
21030 if (! *p || p == arg_start)
21031 dwarf2_macro_malformed_definition_complaint (body);
21032 else
21033 {
21034 /* Make sure argv has room for the new argument. */
21035 if (argc >= argv_size)
21036 {
21037 argv_size *= 2;
21038 argv = XRESIZEVEC (char *, argv, argv_size);
21039 }
21040
21041 argv[argc++] = copy_string (arg_start, p - arg_start);
21042 }
21043
21044 p = consume_improper_spaces (p, body);
21045
21046 /* Consume the comma, if present. */
21047 if (*p == ',')
21048 {
21049 p++;
21050
21051 p = consume_improper_spaces (p, body);
21052 }
21053 }
21054
21055 if (*p == ')')
21056 {
21057 p++;
21058
21059 if (*p == ' ')
21060 /* Perfectly formed definition, no complaints. */
21061 macro_define_function (file, line, name,
21062 argc, (const char **) argv,
21063 p + 1);
21064 else if (*p == '\0')
21065 {
21066 /* Complain, but do define it. */
21067 dwarf2_macro_malformed_definition_complaint (body);
21068 macro_define_function (file, line, name,
21069 argc, (const char **) argv,
21070 p);
21071 }
21072 else
21073 /* Just complain. */
21074 dwarf2_macro_malformed_definition_complaint (body);
21075 }
21076 else
21077 /* Just complain. */
21078 dwarf2_macro_malformed_definition_complaint (body);
21079
21080 xfree (name);
21081 {
21082 int i;
21083
21084 for (i = 0; i < argc; i++)
21085 xfree (argv[i]);
21086 }
21087 xfree (argv);
21088 }
21089 else
21090 dwarf2_macro_malformed_definition_complaint (body);
21091 }
21092
21093 /* Skip some bytes from BYTES according to the form given in FORM.
21094 Returns the new pointer. */
21095
21096 static const gdb_byte *
21097 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
21098 enum dwarf_form form,
21099 unsigned int offset_size,
21100 struct dwarf2_section_info *section)
21101 {
21102 unsigned int bytes_read;
21103
21104 switch (form)
21105 {
21106 case DW_FORM_data1:
21107 case DW_FORM_flag:
21108 ++bytes;
21109 break;
21110
21111 case DW_FORM_data2:
21112 bytes += 2;
21113 break;
21114
21115 case DW_FORM_data4:
21116 bytes += 4;
21117 break;
21118
21119 case DW_FORM_data8:
21120 bytes += 8;
21121 break;
21122
21123 case DW_FORM_string:
21124 read_direct_string (abfd, bytes, &bytes_read);
21125 bytes += bytes_read;
21126 break;
21127
21128 case DW_FORM_sec_offset:
21129 case DW_FORM_strp:
21130 case DW_FORM_GNU_strp_alt:
21131 bytes += offset_size;
21132 break;
21133
21134 case DW_FORM_block:
21135 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21136 bytes += bytes_read;
21137 break;
21138
21139 case DW_FORM_block1:
21140 bytes += 1 + read_1_byte (abfd, bytes);
21141 break;
21142 case DW_FORM_block2:
21143 bytes += 2 + read_2_bytes (abfd, bytes);
21144 break;
21145 case DW_FORM_block4:
21146 bytes += 4 + read_4_bytes (abfd, bytes);
21147 break;
21148
21149 case DW_FORM_sdata:
21150 case DW_FORM_udata:
21151 case DW_FORM_GNU_addr_index:
21152 case DW_FORM_GNU_str_index:
21153 bytes = gdb_skip_leb128 (bytes, buffer_end);
21154 if (bytes == NULL)
21155 {
21156 dwarf2_section_buffer_overflow_complaint (section);
21157 return NULL;
21158 }
21159 break;
21160
21161 default:
21162 {
21163 complain:
21164 complaint (&symfile_complaints,
21165 _("invalid form 0x%x in `%s'"),
21166 form, get_section_name (section));
21167 return NULL;
21168 }
21169 }
21170
21171 return bytes;
21172 }
21173
21174 /* A helper for dwarf_decode_macros that handles skipping an unknown
21175 opcode. Returns an updated pointer to the macro data buffer; or,
21176 on error, issues a complaint and returns NULL. */
21177
21178 static const gdb_byte *
21179 skip_unknown_opcode (unsigned int opcode,
21180 const gdb_byte **opcode_definitions,
21181 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21182 bfd *abfd,
21183 unsigned int offset_size,
21184 struct dwarf2_section_info *section)
21185 {
21186 unsigned int bytes_read, i;
21187 unsigned long arg;
21188 const gdb_byte *defn;
21189
21190 if (opcode_definitions[opcode] == NULL)
21191 {
21192 complaint (&symfile_complaints,
21193 _("unrecognized DW_MACFINO opcode 0x%x"),
21194 opcode);
21195 return NULL;
21196 }
21197
21198 defn = opcode_definitions[opcode];
21199 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21200 defn += bytes_read;
21201
21202 for (i = 0; i < arg; ++i)
21203 {
21204 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21205 (enum dwarf_form) defn[i], offset_size,
21206 section);
21207 if (mac_ptr == NULL)
21208 {
21209 /* skip_form_bytes already issued the complaint. */
21210 return NULL;
21211 }
21212 }
21213
21214 return mac_ptr;
21215 }
21216
21217 /* A helper function which parses the header of a macro section.
21218 If the macro section is the extended (for now called "GNU") type,
21219 then this updates *OFFSET_SIZE. Returns a pointer to just after
21220 the header, or issues a complaint and returns NULL on error. */
21221
21222 static const gdb_byte *
21223 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21224 bfd *abfd,
21225 const gdb_byte *mac_ptr,
21226 unsigned int *offset_size,
21227 int section_is_gnu)
21228 {
21229 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21230
21231 if (section_is_gnu)
21232 {
21233 unsigned int version, flags;
21234
21235 version = read_2_bytes (abfd, mac_ptr);
21236 if (version != 4)
21237 {
21238 complaint (&symfile_complaints,
21239 _("unrecognized version `%d' in .debug_macro section"),
21240 version);
21241 return NULL;
21242 }
21243 mac_ptr += 2;
21244
21245 flags = read_1_byte (abfd, mac_ptr);
21246 ++mac_ptr;
21247 *offset_size = (flags & 1) ? 8 : 4;
21248
21249 if ((flags & 2) != 0)
21250 /* We don't need the line table offset. */
21251 mac_ptr += *offset_size;
21252
21253 /* Vendor opcode descriptions. */
21254 if ((flags & 4) != 0)
21255 {
21256 unsigned int i, count;
21257
21258 count = read_1_byte (abfd, mac_ptr);
21259 ++mac_ptr;
21260 for (i = 0; i < count; ++i)
21261 {
21262 unsigned int opcode, bytes_read;
21263 unsigned long arg;
21264
21265 opcode = read_1_byte (abfd, mac_ptr);
21266 ++mac_ptr;
21267 opcode_definitions[opcode] = mac_ptr;
21268 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21269 mac_ptr += bytes_read;
21270 mac_ptr += arg;
21271 }
21272 }
21273 }
21274
21275 return mac_ptr;
21276 }
21277
21278 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21279 including DW_MACRO_GNU_transparent_include. */
21280
21281 static void
21282 dwarf_decode_macro_bytes (bfd *abfd,
21283 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21284 struct macro_source_file *current_file,
21285 struct line_header *lh,
21286 struct dwarf2_section_info *section,
21287 int section_is_gnu, int section_is_dwz,
21288 unsigned int offset_size,
21289 htab_t include_hash)
21290 {
21291 struct objfile *objfile = dwarf2_per_objfile->objfile;
21292 enum dwarf_macro_record_type macinfo_type;
21293 int at_commandline;
21294 const gdb_byte *opcode_definitions[256];
21295
21296 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21297 &offset_size, section_is_gnu);
21298 if (mac_ptr == NULL)
21299 {
21300 /* We already issued a complaint. */
21301 return;
21302 }
21303
21304 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21305 GDB is still reading the definitions from command line. First
21306 DW_MACINFO_start_file will need to be ignored as it was already executed
21307 to create CURRENT_FILE for the main source holding also the command line
21308 definitions. On first met DW_MACINFO_start_file this flag is reset to
21309 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21310
21311 at_commandline = 1;
21312
21313 do
21314 {
21315 /* Do we at least have room for a macinfo type byte? */
21316 if (mac_ptr >= mac_end)
21317 {
21318 dwarf2_section_buffer_overflow_complaint (section);
21319 break;
21320 }
21321
21322 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21323 mac_ptr++;
21324
21325 /* Note that we rely on the fact that the corresponding GNU and
21326 DWARF constants are the same. */
21327 switch (macinfo_type)
21328 {
21329 /* A zero macinfo type indicates the end of the macro
21330 information. */
21331 case 0:
21332 break;
21333
21334 case DW_MACRO_GNU_define:
21335 case DW_MACRO_GNU_undef:
21336 case DW_MACRO_GNU_define_indirect:
21337 case DW_MACRO_GNU_undef_indirect:
21338 case DW_MACRO_GNU_define_indirect_alt:
21339 case DW_MACRO_GNU_undef_indirect_alt:
21340 {
21341 unsigned int bytes_read;
21342 int line;
21343 const char *body;
21344 int is_define;
21345
21346 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21347 mac_ptr += bytes_read;
21348
21349 if (macinfo_type == DW_MACRO_GNU_define
21350 || macinfo_type == DW_MACRO_GNU_undef)
21351 {
21352 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21353 mac_ptr += bytes_read;
21354 }
21355 else
21356 {
21357 LONGEST str_offset;
21358
21359 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21360 mac_ptr += offset_size;
21361
21362 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21363 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21364 || section_is_dwz)
21365 {
21366 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21367
21368 body = read_indirect_string_from_dwz (dwz, str_offset);
21369 }
21370 else
21371 body = read_indirect_string_at_offset (abfd, str_offset);
21372 }
21373
21374 is_define = (macinfo_type == DW_MACRO_GNU_define
21375 || macinfo_type == DW_MACRO_GNU_define_indirect
21376 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21377 if (! current_file)
21378 {
21379 /* DWARF violation as no main source is present. */
21380 complaint (&symfile_complaints,
21381 _("debug info with no main source gives macro %s "
21382 "on line %d: %s"),
21383 is_define ? _("definition") : _("undefinition"),
21384 line, body);
21385 break;
21386 }
21387 if ((line == 0 && !at_commandline)
21388 || (line != 0 && at_commandline))
21389 complaint (&symfile_complaints,
21390 _("debug info gives %s macro %s with %s line %d: %s"),
21391 at_commandline ? _("command-line") : _("in-file"),
21392 is_define ? _("definition") : _("undefinition"),
21393 line == 0 ? _("zero") : _("non-zero"), line, body);
21394
21395 if (is_define)
21396 parse_macro_definition (current_file, line, body);
21397 else
21398 {
21399 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21400 || macinfo_type == DW_MACRO_GNU_undef_indirect
21401 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21402 macro_undef (current_file, line, body);
21403 }
21404 }
21405 break;
21406
21407 case DW_MACRO_GNU_start_file:
21408 {
21409 unsigned int bytes_read;
21410 int line, file;
21411
21412 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21413 mac_ptr += bytes_read;
21414 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21415 mac_ptr += bytes_read;
21416
21417 if ((line == 0 && !at_commandline)
21418 || (line != 0 && at_commandline))
21419 complaint (&symfile_complaints,
21420 _("debug info gives source %d included "
21421 "from %s at %s line %d"),
21422 file, at_commandline ? _("command-line") : _("file"),
21423 line == 0 ? _("zero") : _("non-zero"), line);
21424
21425 if (at_commandline)
21426 {
21427 /* This DW_MACRO_GNU_start_file was executed in the
21428 pass one. */
21429 at_commandline = 0;
21430 }
21431 else
21432 current_file = macro_start_file (file, line, current_file, lh);
21433 }
21434 break;
21435
21436 case DW_MACRO_GNU_end_file:
21437 if (! current_file)
21438 complaint (&symfile_complaints,
21439 _("macro debug info has an unmatched "
21440 "`close_file' directive"));
21441 else
21442 {
21443 current_file = current_file->included_by;
21444 if (! current_file)
21445 {
21446 enum dwarf_macro_record_type next_type;
21447
21448 /* GCC circa March 2002 doesn't produce the zero
21449 type byte marking the end of the compilation
21450 unit. Complain if it's not there, but exit no
21451 matter what. */
21452
21453 /* Do we at least have room for a macinfo type byte? */
21454 if (mac_ptr >= mac_end)
21455 {
21456 dwarf2_section_buffer_overflow_complaint (section);
21457 return;
21458 }
21459
21460 /* We don't increment mac_ptr here, so this is just
21461 a look-ahead. */
21462 next_type
21463 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21464 mac_ptr);
21465 if (next_type != 0)
21466 complaint (&symfile_complaints,
21467 _("no terminating 0-type entry for "
21468 "macros in `.debug_macinfo' section"));
21469
21470 return;
21471 }
21472 }
21473 break;
21474
21475 case DW_MACRO_GNU_transparent_include:
21476 case DW_MACRO_GNU_transparent_include_alt:
21477 {
21478 LONGEST offset;
21479 void **slot;
21480 bfd *include_bfd = abfd;
21481 struct dwarf2_section_info *include_section = section;
21482 const gdb_byte *include_mac_end = mac_end;
21483 int is_dwz = section_is_dwz;
21484 const gdb_byte *new_mac_ptr;
21485
21486 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21487 mac_ptr += offset_size;
21488
21489 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21490 {
21491 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21492
21493 dwarf2_read_section (objfile, &dwz->macro);
21494
21495 include_section = &dwz->macro;
21496 include_bfd = get_section_bfd_owner (include_section);
21497 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21498 is_dwz = 1;
21499 }
21500
21501 new_mac_ptr = include_section->buffer + offset;
21502 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21503
21504 if (*slot != NULL)
21505 {
21506 /* This has actually happened; see
21507 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21508 complaint (&symfile_complaints,
21509 _("recursive DW_MACRO_GNU_transparent_include in "
21510 ".debug_macro section"));
21511 }
21512 else
21513 {
21514 *slot = (void *) new_mac_ptr;
21515
21516 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21517 include_mac_end, current_file, lh,
21518 section, section_is_gnu, is_dwz,
21519 offset_size, include_hash);
21520
21521 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21522 }
21523 }
21524 break;
21525
21526 case DW_MACINFO_vendor_ext:
21527 if (!section_is_gnu)
21528 {
21529 unsigned int bytes_read;
21530
21531 /* This reads the constant, but since we don't recognize
21532 any vendor extensions, we ignore it. */
21533 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21534 mac_ptr += bytes_read;
21535 read_direct_string (abfd, mac_ptr, &bytes_read);
21536 mac_ptr += bytes_read;
21537
21538 /* We don't recognize any vendor extensions. */
21539 break;
21540 }
21541 /* FALLTHROUGH */
21542
21543 default:
21544 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21545 mac_ptr, mac_end, abfd, offset_size,
21546 section);
21547 if (mac_ptr == NULL)
21548 return;
21549 break;
21550 }
21551 } while (macinfo_type != 0);
21552 }
21553
21554 static void
21555 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21556 int section_is_gnu)
21557 {
21558 struct objfile *objfile = dwarf2_per_objfile->objfile;
21559 struct line_header *lh = cu->line_header;
21560 bfd *abfd;
21561 const gdb_byte *mac_ptr, *mac_end;
21562 struct macro_source_file *current_file = 0;
21563 enum dwarf_macro_record_type macinfo_type;
21564 unsigned int offset_size = cu->header.offset_size;
21565 const gdb_byte *opcode_definitions[256];
21566 struct cleanup *cleanup;
21567 void **slot;
21568 struct dwarf2_section_info *section;
21569 const char *section_name;
21570
21571 if (cu->dwo_unit != NULL)
21572 {
21573 if (section_is_gnu)
21574 {
21575 section = &cu->dwo_unit->dwo_file->sections.macro;
21576 section_name = ".debug_macro.dwo";
21577 }
21578 else
21579 {
21580 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21581 section_name = ".debug_macinfo.dwo";
21582 }
21583 }
21584 else
21585 {
21586 if (section_is_gnu)
21587 {
21588 section = &dwarf2_per_objfile->macro;
21589 section_name = ".debug_macro";
21590 }
21591 else
21592 {
21593 section = &dwarf2_per_objfile->macinfo;
21594 section_name = ".debug_macinfo";
21595 }
21596 }
21597
21598 dwarf2_read_section (objfile, section);
21599 if (section->buffer == NULL)
21600 {
21601 complaint (&symfile_complaints, _("missing %s section"), section_name);
21602 return;
21603 }
21604 abfd = get_section_bfd_owner (section);
21605
21606 /* First pass: Find the name of the base filename.
21607 This filename is needed in order to process all macros whose definition
21608 (or undefinition) comes from the command line. These macros are defined
21609 before the first DW_MACINFO_start_file entry, and yet still need to be
21610 associated to the base file.
21611
21612 To determine the base file name, we scan the macro definitions until we
21613 reach the first DW_MACINFO_start_file entry. We then initialize
21614 CURRENT_FILE accordingly so that any macro definition found before the
21615 first DW_MACINFO_start_file can still be associated to the base file. */
21616
21617 mac_ptr = section->buffer + offset;
21618 mac_end = section->buffer + section->size;
21619
21620 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21621 &offset_size, section_is_gnu);
21622 if (mac_ptr == NULL)
21623 {
21624 /* We already issued a complaint. */
21625 return;
21626 }
21627
21628 do
21629 {
21630 /* Do we at least have room for a macinfo type byte? */
21631 if (mac_ptr >= mac_end)
21632 {
21633 /* Complaint is printed during the second pass as GDB will probably
21634 stop the first pass earlier upon finding
21635 DW_MACINFO_start_file. */
21636 break;
21637 }
21638
21639 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
21640 mac_ptr++;
21641
21642 /* Note that we rely on the fact that the corresponding GNU and
21643 DWARF constants are the same. */
21644 switch (macinfo_type)
21645 {
21646 /* A zero macinfo type indicates the end of the macro
21647 information. */
21648 case 0:
21649 break;
21650
21651 case DW_MACRO_GNU_define:
21652 case DW_MACRO_GNU_undef:
21653 /* Only skip the data by MAC_PTR. */
21654 {
21655 unsigned int bytes_read;
21656
21657 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21658 mac_ptr += bytes_read;
21659 read_direct_string (abfd, mac_ptr, &bytes_read);
21660 mac_ptr += bytes_read;
21661 }
21662 break;
21663
21664 case DW_MACRO_GNU_start_file:
21665 {
21666 unsigned int bytes_read;
21667 int line, file;
21668
21669 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21670 mac_ptr += bytes_read;
21671 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21672 mac_ptr += bytes_read;
21673
21674 current_file = macro_start_file (file, line, current_file, lh);
21675 }
21676 break;
21677
21678 case DW_MACRO_GNU_end_file:
21679 /* No data to skip by MAC_PTR. */
21680 break;
21681
21682 case DW_MACRO_GNU_define_indirect:
21683 case DW_MACRO_GNU_undef_indirect:
21684 case DW_MACRO_GNU_define_indirect_alt:
21685 case DW_MACRO_GNU_undef_indirect_alt:
21686 {
21687 unsigned int bytes_read;
21688
21689 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21690 mac_ptr += bytes_read;
21691 mac_ptr += offset_size;
21692 }
21693 break;
21694
21695 case DW_MACRO_GNU_transparent_include:
21696 case DW_MACRO_GNU_transparent_include_alt:
21697 /* Note that, according to the spec, a transparent include
21698 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21699 skip this opcode. */
21700 mac_ptr += offset_size;
21701 break;
21702
21703 case DW_MACINFO_vendor_ext:
21704 /* Only skip the data by MAC_PTR. */
21705 if (!section_is_gnu)
21706 {
21707 unsigned int bytes_read;
21708
21709 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21710 mac_ptr += bytes_read;
21711 read_direct_string (abfd, mac_ptr, &bytes_read);
21712 mac_ptr += bytes_read;
21713 }
21714 /* FALLTHROUGH */
21715
21716 default:
21717 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21718 mac_ptr, mac_end, abfd, offset_size,
21719 section);
21720 if (mac_ptr == NULL)
21721 return;
21722 break;
21723 }
21724 } while (macinfo_type != 0 && current_file == NULL);
21725
21726 /* Second pass: Process all entries.
21727
21728 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21729 command-line macro definitions/undefinitions. This flag is unset when we
21730 reach the first DW_MACINFO_start_file entry. */
21731
21732 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
21733 htab_eq_pointer,
21734 NULL, xcalloc, xfree));
21735 mac_ptr = section->buffer + offset;
21736 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
21737 *slot = (void *) mac_ptr;
21738 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21739 current_file, lh, section,
21740 section_is_gnu, 0, offset_size,
21741 include_hash.get ());
21742 }
21743
21744 /* Check if the attribute's form is a DW_FORM_block*
21745 if so return true else false. */
21746
21747 static int
21748 attr_form_is_block (const struct attribute *attr)
21749 {
21750 return (attr == NULL ? 0 :
21751 attr->form == DW_FORM_block1
21752 || attr->form == DW_FORM_block2
21753 || attr->form == DW_FORM_block4
21754 || attr->form == DW_FORM_block
21755 || attr->form == DW_FORM_exprloc);
21756 }
21757
21758 /* Return non-zero if ATTR's value is a section offset --- classes
21759 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21760 You may use DW_UNSND (attr) to retrieve such offsets.
21761
21762 Section 7.5.4, "Attribute Encodings", explains that no attribute
21763 may have a value that belongs to more than one of these classes; it
21764 would be ambiguous if we did, because we use the same forms for all
21765 of them. */
21766
21767 static int
21768 attr_form_is_section_offset (const struct attribute *attr)
21769 {
21770 return (attr->form == DW_FORM_data4
21771 || attr->form == DW_FORM_data8
21772 || attr->form == DW_FORM_sec_offset);
21773 }
21774
21775 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21776 zero otherwise. When this function returns true, you can apply
21777 dwarf2_get_attr_constant_value to it.
21778
21779 However, note that for some attributes you must check
21780 attr_form_is_section_offset before using this test. DW_FORM_data4
21781 and DW_FORM_data8 are members of both the constant class, and of
21782 the classes that contain offsets into other debug sections
21783 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21784 that, if an attribute's can be either a constant or one of the
21785 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21786 taken as section offsets, not constants. */
21787
21788 static int
21789 attr_form_is_constant (const struct attribute *attr)
21790 {
21791 switch (attr->form)
21792 {
21793 case DW_FORM_sdata:
21794 case DW_FORM_udata:
21795 case DW_FORM_data1:
21796 case DW_FORM_data2:
21797 case DW_FORM_data4:
21798 case DW_FORM_data8:
21799 return 1;
21800 default:
21801 return 0;
21802 }
21803 }
21804
21805
21806 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21807 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21808
21809 static int
21810 attr_form_is_ref (const struct attribute *attr)
21811 {
21812 switch (attr->form)
21813 {
21814 case DW_FORM_ref_addr:
21815 case DW_FORM_ref1:
21816 case DW_FORM_ref2:
21817 case DW_FORM_ref4:
21818 case DW_FORM_ref8:
21819 case DW_FORM_ref_udata:
21820 case DW_FORM_GNU_ref_alt:
21821 return 1;
21822 default:
21823 return 0;
21824 }
21825 }
21826
21827 /* Return the .debug_loc section to use for CU.
21828 For DWO files use .debug_loc.dwo. */
21829
21830 static struct dwarf2_section_info *
21831 cu_debug_loc_section (struct dwarf2_cu *cu)
21832 {
21833 if (cu->dwo_unit)
21834 return &cu->dwo_unit->dwo_file->sections.loc;
21835 return &dwarf2_per_objfile->loc;
21836 }
21837
21838 /* A helper function that fills in a dwarf2_loclist_baton. */
21839
21840 static void
21841 fill_in_loclist_baton (struct dwarf2_cu *cu,
21842 struct dwarf2_loclist_baton *baton,
21843 const struct attribute *attr)
21844 {
21845 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21846
21847 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21848
21849 baton->per_cu = cu->per_cu;
21850 gdb_assert (baton->per_cu);
21851 /* We don't know how long the location list is, but make sure we
21852 don't run off the edge of the section. */
21853 baton->size = section->size - DW_UNSND (attr);
21854 baton->data = section->buffer + DW_UNSND (attr);
21855 baton->base_address = cu->base_address;
21856 baton->from_dwo = cu->dwo_unit != NULL;
21857 }
21858
21859 static void
21860 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21861 struct dwarf2_cu *cu, int is_block)
21862 {
21863 struct objfile *objfile = dwarf2_per_objfile->objfile;
21864 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21865
21866 if (attr_form_is_section_offset (attr)
21867 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21868 the section. If so, fall through to the complaint in the
21869 other branch. */
21870 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21871 {
21872 struct dwarf2_loclist_baton *baton;
21873
21874 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
21875
21876 fill_in_loclist_baton (cu, baton, attr);
21877
21878 if (cu->base_known == 0)
21879 complaint (&symfile_complaints,
21880 _("Location list used without "
21881 "specifying the CU base address."));
21882
21883 SYMBOL_ACLASS_INDEX (sym) = (is_block
21884 ? dwarf2_loclist_block_index
21885 : dwarf2_loclist_index);
21886 SYMBOL_LOCATION_BATON (sym) = baton;
21887 }
21888 else
21889 {
21890 struct dwarf2_locexpr_baton *baton;
21891
21892 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
21893 baton->per_cu = cu->per_cu;
21894 gdb_assert (baton->per_cu);
21895
21896 if (attr_form_is_block (attr))
21897 {
21898 /* Note that we're just copying the block's data pointer
21899 here, not the actual data. We're still pointing into the
21900 info_buffer for SYM's objfile; right now we never release
21901 that buffer, but when we do clean up properly this may
21902 need to change. */
21903 baton->size = DW_BLOCK (attr)->size;
21904 baton->data = DW_BLOCK (attr)->data;
21905 }
21906 else
21907 {
21908 dwarf2_invalid_attrib_class_complaint ("location description",
21909 SYMBOL_NATURAL_NAME (sym));
21910 baton->size = 0;
21911 }
21912
21913 SYMBOL_ACLASS_INDEX (sym) = (is_block
21914 ? dwarf2_locexpr_block_index
21915 : dwarf2_locexpr_index);
21916 SYMBOL_LOCATION_BATON (sym) = baton;
21917 }
21918 }
21919
21920 /* Return the OBJFILE associated with the compilation unit CU. If CU
21921 came from a separate debuginfo file, then the master objfile is
21922 returned. */
21923
21924 struct objfile *
21925 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21926 {
21927 struct objfile *objfile = per_cu->objfile;
21928
21929 /* Return the master objfile, so that we can report and look up the
21930 correct file containing this variable. */
21931 if (objfile->separate_debug_objfile_backlink)
21932 objfile = objfile->separate_debug_objfile_backlink;
21933
21934 return objfile;
21935 }
21936
21937 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21938 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21939 CU_HEADERP first. */
21940
21941 static const struct comp_unit_head *
21942 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21943 struct dwarf2_per_cu_data *per_cu)
21944 {
21945 const gdb_byte *info_ptr;
21946
21947 if (per_cu->cu)
21948 return &per_cu->cu->header;
21949
21950 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21951
21952 memset (cu_headerp, 0, sizeof (*cu_headerp));
21953 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21954
21955 return cu_headerp;
21956 }
21957
21958 /* Return the address size given in the compilation unit header for CU. */
21959
21960 int
21961 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21962 {
21963 struct comp_unit_head cu_header_local;
21964 const struct comp_unit_head *cu_headerp;
21965
21966 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21967
21968 return cu_headerp->addr_size;
21969 }
21970
21971 /* Return the offset size given in the compilation unit header for CU. */
21972
21973 int
21974 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21975 {
21976 struct comp_unit_head cu_header_local;
21977 const struct comp_unit_head *cu_headerp;
21978
21979 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21980
21981 return cu_headerp->offset_size;
21982 }
21983
21984 /* See its dwarf2loc.h declaration. */
21985
21986 int
21987 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21988 {
21989 struct comp_unit_head cu_header_local;
21990 const struct comp_unit_head *cu_headerp;
21991
21992 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21993
21994 if (cu_headerp->version == 2)
21995 return cu_headerp->addr_size;
21996 else
21997 return cu_headerp->offset_size;
21998 }
21999
22000 /* Return the text offset of the CU. The returned offset comes from
22001 this CU's objfile. If this objfile came from a separate debuginfo
22002 file, then the offset may be different from the corresponding
22003 offset in the parent objfile. */
22004
22005 CORE_ADDR
22006 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22007 {
22008 struct objfile *objfile = per_cu->objfile;
22009
22010 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22011 }
22012
22013 /* Locate the .debug_info compilation unit from CU's objfile which contains
22014 the DIE at OFFSET. Raises an error on failure. */
22015
22016 static struct dwarf2_per_cu_data *
22017 dwarf2_find_containing_comp_unit (sect_offset offset,
22018 unsigned int offset_in_dwz,
22019 struct objfile *objfile)
22020 {
22021 struct dwarf2_per_cu_data *this_cu;
22022 int low, high;
22023 const sect_offset *cu_off;
22024
22025 low = 0;
22026 high = dwarf2_per_objfile->n_comp_units - 1;
22027 while (high > low)
22028 {
22029 struct dwarf2_per_cu_data *mid_cu;
22030 int mid = low + (high - low) / 2;
22031
22032 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22033 cu_off = &mid_cu->offset;
22034 if (mid_cu->is_dwz > offset_in_dwz
22035 || (mid_cu->is_dwz == offset_in_dwz
22036 && cu_off->sect_off >= offset.sect_off))
22037 high = mid;
22038 else
22039 low = mid + 1;
22040 }
22041 gdb_assert (low == high);
22042 this_cu = dwarf2_per_objfile->all_comp_units[low];
22043 cu_off = &this_cu->offset;
22044 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
22045 {
22046 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
22047 error (_("Dwarf Error: could not find partial DIE containing "
22048 "offset 0x%lx [in module %s]"),
22049 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
22050
22051 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22052 <= offset.sect_off);
22053 return dwarf2_per_objfile->all_comp_units[low-1];
22054 }
22055 else
22056 {
22057 this_cu = dwarf2_per_objfile->all_comp_units[low];
22058 if (low == dwarf2_per_objfile->n_comp_units - 1
22059 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22060 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22061 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
22062 return this_cu;
22063 }
22064 }
22065
22066 /* Initialize dwarf2_cu CU, owned by PER_CU. */
22067
22068 static void
22069 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
22070 {
22071 memset (cu, 0, sizeof (*cu));
22072 per_cu->cu = cu;
22073 cu->per_cu = per_cu;
22074 cu->objfile = per_cu->objfile;
22075 obstack_init (&cu->comp_unit_obstack);
22076 }
22077
22078 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22079
22080 static void
22081 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22082 enum language pretend_language)
22083 {
22084 struct attribute *attr;
22085
22086 /* Set the language we're debugging. */
22087 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22088 if (attr)
22089 set_cu_language (DW_UNSND (attr), cu);
22090 else
22091 {
22092 cu->language = pretend_language;
22093 cu->language_defn = language_def (cu->language);
22094 }
22095
22096 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
22097 }
22098
22099 /* Release one cached compilation unit, CU. We unlink it from the tree
22100 of compilation units, but we don't remove it from the read_in_chain;
22101 the caller is responsible for that.
22102 NOTE: DATA is a void * because this function is also used as a
22103 cleanup routine. */
22104
22105 static void
22106 free_heap_comp_unit (void *data)
22107 {
22108 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22109
22110 gdb_assert (cu->per_cu != NULL);
22111 cu->per_cu->cu = NULL;
22112 cu->per_cu = NULL;
22113
22114 obstack_free (&cu->comp_unit_obstack, NULL);
22115
22116 xfree (cu);
22117 }
22118
22119 /* This cleanup function is passed the address of a dwarf2_cu on the stack
22120 when we're finished with it. We can't free the pointer itself, but be
22121 sure to unlink it from the cache. Also release any associated storage. */
22122
22123 static void
22124 free_stack_comp_unit (void *data)
22125 {
22126 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
22127
22128 gdb_assert (cu->per_cu != NULL);
22129 cu->per_cu->cu = NULL;
22130 cu->per_cu = NULL;
22131
22132 obstack_free (&cu->comp_unit_obstack, NULL);
22133 cu->partial_dies = NULL;
22134 }
22135
22136 /* Free all cached compilation units. */
22137
22138 static void
22139 free_cached_comp_units (void *data)
22140 {
22141 struct dwarf2_per_cu_data *per_cu, **last_chain;
22142
22143 per_cu = dwarf2_per_objfile->read_in_chain;
22144 last_chain = &dwarf2_per_objfile->read_in_chain;
22145 while (per_cu != NULL)
22146 {
22147 struct dwarf2_per_cu_data *next_cu;
22148
22149 next_cu = per_cu->cu->read_in_chain;
22150
22151 free_heap_comp_unit (per_cu->cu);
22152 *last_chain = next_cu;
22153
22154 per_cu = next_cu;
22155 }
22156 }
22157
22158 /* Increase the age counter on each cached compilation unit, and free
22159 any that are too old. */
22160
22161 static void
22162 age_cached_comp_units (void)
22163 {
22164 struct dwarf2_per_cu_data *per_cu, **last_chain;
22165
22166 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22167 per_cu = dwarf2_per_objfile->read_in_chain;
22168 while (per_cu != NULL)
22169 {
22170 per_cu->cu->last_used ++;
22171 if (per_cu->cu->last_used <= dwarf_max_cache_age)
22172 dwarf2_mark (per_cu->cu);
22173 per_cu = per_cu->cu->read_in_chain;
22174 }
22175
22176 per_cu = dwarf2_per_objfile->read_in_chain;
22177 last_chain = &dwarf2_per_objfile->read_in_chain;
22178 while (per_cu != NULL)
22179 {
22180 struct dwarf2_per_cu_data *next_cu;
22181
22182 next_cu = per_cu->cu->read_in_chain;
22183
22184 if (!per_cu->cu->mark)
22185 {
22186 free_heap_comp_unit (per_cu->cu);
22187 *last_chain = next_cu;
22188 }
22189 else
22190 last_chain = &per_cu->cu->read_in_chain;
22191
22192 per_cu = next_cu;
22193 }
22194 }
22195
22196 /* Remove a single compilation unit from the cache. */
22197
22198 static void
22199 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
22200 {
22201 struct dwarf2_per_cu_data *per_cu, **last_chain;
22202
22203 per_cu = dwarf2_per_objfile->read_in_chain;
22204 last_chain = &dwarf2_per_objfile->read_in_chain;
22205 while (per_cu != NULL)
22206 {
22207 struct dwarf2_per_cu_data *next_cu;
22208
22209 next_cu = per_cu->cu->read_in_chain;
22210
22211 if (per_cu == target_per_cu)
22212 {
22213 free_heap_comp_unit (per_cu->cu);
22214 per_cu->cu = NULL;
22215 *last_chain = next_cu;
22216 break;
22217 }
22218 else
22219 last_chain = &per_cu->cu->read_in_chain;
22220
22221 per_cu = next_cu;
22222 }
22223 }
22224
22225 /* Release all extra memory associated with OBJFILE. */
22226
22227 void
22228 dwarf2_free_objfile (struct objfile *objfile)
22229 {
22230 dwarf2_per_objfile
22231 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22232 dwarf2_objfile_data_key);
22233
22234 if (dwarf2_per_objfile == NULL)
22235 return;
22236
22237 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22238 free_cached_comp_units (NULL);
22239
22240 if (dwarf2_per_objfile->quick_file_names_table)
22241 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22242
22243 if (dwarf2_per_objfile->line_header_hash)
22244 htab_delete (dwarf2_per_objfile->line_header_hash);
22245
22246 /* Everything else should be on the objfile obstack. */
22247 }
22248
22249 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22250 We store these in a hash table separate from the DIEs, and preserve them
22251 when the DIEs are flushed out of cache.
22252
22253 The CU "per_cu" pointer is needed because offset alone is not enough to
22254 uniquely identify the type. A file may have multiple .debug_types sections,
22255 or the type may come from a DWO file. Furthermore, while it's more logical
22256 to use per_cu->section+offset, with Fission the section with the data is in
22257 the DWO file but we don't know that section at the point we need it.
22258 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22259 because we can enter the lookup routine, get_die_type_at_offset, from
22260 outside this file, and thus won't necessarily have PER_CU->cu.
22261 Fortunately, PER_CU is stable for the life of the objfile. */
22262
22263 struct dwarf2_per_cu_offset_and_type
22264 {
22265 const struct dwarf2_per_cu_data *per_cu;
22266 sect_offset offset;
22267 struct type *type;
22268 };
22269
22270 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22271
22272 static hashval_t
22273 per_cu_offset_and_type_hash (const void *item)
22274 {
22275 const struct dwarf2_per_cu_offset_and_type *ofs
22276 = (const struct dwarf2_per_cu_offset_and_type *) item;
22277
22278 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22279 }
22280
22281 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22282
22283 static int
22284 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22285 {
22286 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22287 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22288 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22289 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
22290
22291 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22292 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22293 }
22294
22295 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22296 table if necessary. For convenience, return TYPE.
22297
22298 The DIEs reading must have careful ordering to:
22299 * Not cause infite loops trying to read in DIEs as a prerequisite for
22300 reading current DIE.
22301 * Not trying to dereference contents of still incompletely read in types
22302 while reading in other DIEs.
22303 * Enable referencing still incompletely read in types just by a pointer to
22304 the type without accessing its fields.
22305
22306 Therefore caller should follow these rules:
22307 * Try to fetch any prerequisite types we may need to build this DIE type
22308 before building the type and calling set_die_type.
22309 * After building type call set_die_type for current DIE as soon as
22310 possible before fetching more types to complete the current type.
22311 * Make the type as complete as possible before fetching more types. */
22312
22313 static struct type *
22314 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22315 {
22316 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22317 struct objfile *objfile = cu->objfile;
22318 struct attribute *attr;
22319 struct dynamic_prop prop;
22320
22321 /* For Ada types, make sure that the gnat-specific data is always
22322 initialized (if not already set). There are a few types where
22323 we should not be doing so, because the type-specific area is
22324 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22325 where the type-specific area is used to store the floatformat).
22326 But this is not a problem, because the gnat-specific information
22327 is actually not needed for these types. */
22328 if (need_gnat_info (cu)
22329 && TYPE_CODE (type) != TYPE_CODE_FUNC
22330 && TYPE_CODE (type) != TYPE_CODE_FLT
22331 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22332 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22333 && TYPE_CODE (type) != TYPE_CODE_METHOD
22334 && !HAVE_GNAT_AUX_INFO (type))
22335 INIT_GNAT_SPECIFIC (type);
22336
22337 /* Read DW_AT_allocated and set in type. */
22338 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22339 if (attr_form_is_block (attr))
22340 {
22341 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22342 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22343 }
22344 else if (attr != NULL)
22345 {
22346 complaint (&symfile_complaints,
22347 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22348 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22349 die->offset.sect_off);
22350 }
22351
22352 /* Read DW_AT_associated and set in type. */
22353 attr = dwarf2_attr (die, DW_AT_associated, cu);
22354 if (attr_form_is_block (attr))
22355 {
22356 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22357 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22358 }
22359 else if (attr != NULL)
22360 {
22361 complaint (&symfile_complaints,
22362 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22363 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22364 die->offset.sect_off);
22365 }
22366
22367 /* Read DW_AT_data_location and set in type. */
22368 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22369 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22370 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22371
22372 if (dwarf2_per_objfile->die_type_hash == NULL)
22373 {
22374 dwarf2_per_objfile->die_type_hash =
22375 htab_create_alloc_ex (127,
22376 per_cu_offset_and_type_hash,
22377 per_cu_offset_and_type_eq,
22378 NULL,
22379 &objfile->objfile_obstack,
22380 hashtab_obstack_allocate,
22381 dummy_obstack_deallocate);
22382 }
22383
22384 ofs.per_cu = cu->per_cu;
22385 ofs.offset = die->offset;
22386 ofs.type = type;
22387 slot = (struct dwarf2_per_cu_offset_and_type **)
22388 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22389 if (*slot)
22390 complaint (&symfile_complaints,
22391 _("A problem internal to GDB: DIE 0x%x has type already set"),
22392 die->offset.sect_off);
22393 *slot = XOBNEW (&objfile->objfile_obstack,
22394 struct dwarf2_per_cu_offset_and_type);
22395 **slot = ofs;
22396 return type;
22397 }
22398
22399 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22400 or return NULL if the die does not have a saved type. */
22401
22402 static struct type *
22403 get_die_type_at_offset (sect_offset offset,
22404 struct dwarf2_per_cu_data *per_cu)
22405 {
22406 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22407
22408 if (dwarf2_per_objfile->die_type_hash == NULL)
22409 return NULL;
22410
22411 ofs.per_cu = per_cu;
22412 ofs.offset = offset;
22413 slot = ((struct dwarf2_per_cu_offset_and_type *)
22414 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
22415 if (slot)
22416 return slot->type;
22417 else
22418 return NULL;
22419 }
22420
22421 /* Look up the type for DIE in CU in die_type_hash,
22422 or return NULL if DIE does not have a saved type. */
22423
22424 static struct type *
22425 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22426 {
22427 return get_die_type_at_offset (die->offset, cu->per_cu);
22428 }
22429
22430 /* Add a dependence relationship from CU to REF_PER_CU. */
22431
22432 static void
22433 dwarf2_add_dependence (struct dwarf2_cu *cu,
22434 struct dwarf2_per_cu_data *ref_per_cu)
22435 {
22436 void **slot;
22437
22438 if (cu->dependencies == NULL)
22439 cu->dependencies
22440 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22441 NULL, &cu->comp_unit_obstack,
22442 hashtab_obstack_allocate,
22443 dummy_obstack_deallocate);
22444
22445 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22446 if (*slot == NULL)
22447 *slot = ref_per_cu;
22448 }
22449
22450 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22451 Set the mark field in every compilation unit in the
22452 cache that we must keep because we are keeping CU. */
22453
22454 static int
22455 dwarf2_mark_helper (void **slot, void *data)
22456 {
22457 struct dwarf2_per_cu_data *per_cu;
22458
22459 per_cu = (struct dwarf2_per_cu_data *) *slot;
22460
22461 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22462 reading of the chain. As such dependencies remain valid it is not much
22463 useful to track and undo them during QUIT cleanups. */
22464 if (per_cu->cu == NULL)
22465 return 1;
22466
22467 if (per_cu->cu->mark)
22468 return 1;
22469 per_cu->cu->mark = 1;
22470
22471 if (per_cu->cu->dependencies != NULL)
22472 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22473
22474 return 1;
22475 }
22476
22477 /* Set the mark field in CU and in every other compilation unit in the
22478 cache that we must keep because we are keeping CU. */
22479
22480 static void
22481 dwarf2_mark (struct dwarf2_cu *cu)
22482 {
22483 if (cu->mark)
22484 return;
22485 cu->mark = 1;
22486 if (cu->dependencies != NULL)
22487 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22488 }
22489
22490 static void
22491 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22492 {
22493 while (per_cu)
22494 {
22495 per_cu->cu->mark = 0;
22496 per_cu = per_cu->cu->read_in_chain;
22497 }
22498 }
22499
22500 /* Trivial hash function for partial_die_info: the hash value of a DIE
22501 is its offset in .debug_info for this objfile. */
22502
22503 static hashval_t
22504 partial_die_hash (const void *item)
22505 {
22506 const struct partial_die_info *part_die
22507 = (const struct partial_die_info *) item;
22508
22509 return part_die->offset.sect_off;
22510 }
22511
22512 /* Trivial comparison function for partial_die_info structures: two DIEs
22513 are equal if they have the same offset. */
22514
22515 static int
22516 partial_die_eq (const void *item_lhs, const void *item_rhs)
22517 {
22518 const struct partial_die_info *part_die_lhs
22519 = (const struct partial_die_info *) item_lhs;
22520 const struct partial_die_info *part_die_rhs
22521 = (const struct partial_die_info *) item_rhs;
22522
22523 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22524 }
22525
22526 static struct cmd_list_element *set_dwarf_cmdlist;
22527 static struct cmd_list_element *show_dwarf_cmdlist;
22528
22529 static void
22530 set_dwarf_cmd (char *args, int from_tty)
22531 {
22532 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22533 gdb_stdout);
22534 }
22535
22536 static void
22537 show_dwarf_cmd (char *args, int from_tty)
22538 {
22539 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22540 }
22541
22542 /* Free data associated with OBJFILE, if necessary. */
22543
22544 static void
22545 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22546 {
22547 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
22548 int ix;
22549
22550 /* Make sure we don't accidentally use dwarf2_per_objfile while
22551 cleaning up. */
22552 dwarf2_per_objfile = NULL;
22553
22554 for (ix = 0; ix < data->n_comp_units; ++ix)
22555 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22556
22557 for (ix = 0; ix < data->n_type_units; ++ix)
22558 VEC_free (dwarf2_per_cu_ptr,
22559 data->all_type_units[ix]->per_cu.imported_symtabs);
22560 xfree (data->all_type_units);
22561
22562 VEC_free (dwarf2_section_info_def, data->types);
22563
22564 if (data->dwo_files)
22565 free_dwo_files (data->dwo_files, objfile);
22566 if (data->dwp_file)
22567 gdb_bfd_unref (data->dwp_file->dbfd);
22568
22569 if (data->dwz_file && data->dwz_file->dwz_bfd)
22570 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22571 }
22572
22573 \f
22574 /* The "save gdb-index" command. */
22575
22576 /* The contents of the hash table we create when building the string
22577 table. */
22578 struct strtab_entry
22579 {
22580 offset_type offset;
22581 const char *str;
22582 };
22583
22584 /* Hash function for a strtab_entry.
22585
22586 Function is used only during write_hash_table so no index format backward
22587 compatibility is needed. */
22588
22589 static hashval_t
22590 hash_strtab_entry (const void *e)
22591 {
22592 const struct strtab_entry *entry = (const struct strtab_entry *) e;
22593 return mapped_index_string_hash (INT_MAX, entry->str);
22594 }
22595
22596 /* Equality function for a strtab_entry. */
22597
22598 static int
22599 eq_strtab_entry (const void *a, const void *b)
22600 {
22601 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22602 const struct strtab_entry *eb = (const struct strtab_entry *) b;
22603 return !strcmp (ea->str, eb->str);
22604 }
22605
22606 /* Create a strtab_entry hash table. */
22607
22608 static htab_t
22609 create_strtab (void)
22610 {
22611 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22612 xfree, xcalloc, xfree);
22613 }
22614
22615 /* Add a string to the constant pool. Return the string's offset in
22616 host order. */
22617
22618 static offset_type
22619 add_string (htab_t table, struct obstack *cpool, const char *str)
22620 {
22621 void **slot;
22622 struct strtab_entry entry;
22623 struct strtab_entry *result;
22624
22625 entry.str = str;
22626 slot = htab_find_slot (table, &entry, INSERT);
22627 if (*slot)
22628 result = (struct strtab_entry *) *slot;
22629 else
22630 {
22631 result = XNEW (struct strtab_entry);
22632 result->offset = obstack_object_size (cpool);
22633 result->str = str;
22634 obstack_grow_str0 (cpool, str);
22635 *slot = result;
22636 }
22637 return result->offset;
22638 }
22639
22640 /* An entry in the symbol table. */
22641 struct symtab_index_entry
22642 {
22643 /* The name of the symbol. */
22644 const char *name;
22645 /* The offset of the name in the constant pool. */
22646 offset_type index_offset;
22647 /* A sorted vector of the indices of all the CUs that hold an object
22648 of this name. */
22649 VEC (offset_type) *cu_indices;
22650 };
22651
22652 /* The symbol table. This is a power-of-2-sized hash table. */
22653 struct mapped_symtab
22654 {
22655 offset_type n_elements;
22656 offset_type size;
22657 struct symtab_index_entry **data;
22658 };
22659
22660 /* Hash function for a symtab_index_entry. */
22661
22662 static hashval_t
22663 hash_symtab_entry (const void *e)
22664 {
22665 const struct symtab_index_entry *entry
22666 = (const struct symtab_index_entry *) e;
22667 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22668 sizeof (offset_type) * VEC_length (offset_type,
22669 entry->cu_indices),
22670 0);
22671 }
22672
22673 /* Equality function for a symtab_index_entry. */
22674
22675 static int
22676 eq_symtab_entry (const void *a, const void *b)
22677 {
22678 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22679 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
22680 int len = VEC_length (offset_type, ea->cu_indices);
22681 if (len != VEC_length (offset_type, eb->cu_indices))
22682 return 0;
22683 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22684 VEC_address (offset_type, eb->cu_indices),
22685 sizeof (offset_type) * len);
22686 }
22687
22688 /* Destroy a symtab_index_entry. */
22689
22690 static void
22691 delete_symtab_entry (void *p)
22692 {
22693 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
22694 VEC_free (offset_type, entry->cu_indices);
22695 xfree (entry);
22696 }
22697
22698 /* Create a hash table holding symtab_index_entry objects. */
22699
22700 static htab_t
22701 create_symbol_hash_table (void)
22702 {
22703 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22704 delete_symtab_entry, xcalloc, xfree);
22705 }
22706
22707 /* Create a new mapped symtab object. */
22708
22709 static struct mapped_symtab *
22710 create_mapped_symtab (void)
22711 {
22712 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22713 symtab->n_elements = 0;
22714 symtab->size = 1024;
22715 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22716 return symtab;
22717 }
22718
22719 /* Destroy a mapped_symtab. */
22720
22721 static void
22722 cleanup_mapped_symtab (void *p)
22723 {
22724 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
22725 /* The contents of the array are freed when the other hash table is
22726 destroyed. */
22727 xfree (symtab->data);
22728 xfree (symtab);
22729 }
22730
22731 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22732 the slot.
22733
22734 Function is used only during write_hash_table so no index format backward
22735 compatibility is needed. */
22736
22737 static struct symtab_index_entry **
22738 find_slot (struct mapped_symtab *symtab, const char *name)
22739 {
22740 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22741
22742 index = hash & (symtab->size - 1);
22743 step = ((hash * 17) & (symtab->size - 1)) | 1;
22744
22745 for (;;)
22746 {
22747 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22748 return &symtab->data[index];
22749 index = (index + step) & (symtab->size - 1);
22750 }
22751 }
22752
22753 /* Expand SYMTAB's hash table. */
22754
22755 static void
22756 hash_expand (struct mapped_symtab *symtab)
22757 {
22758 offset_type old_size = symtab->size;
22759 offset_type i;
22760 struct symtab_index_entry **old_entries = symtab->data;
22761
22762 symtab->size *= 2;
22763 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22764
22765 for (i = 0; i < old_size; ++i)
22766 {
22767 if (old_entries[i])
22768 {
22769 struct symtab_index_entry **slot = find_slot (symtab,
22770 old_entries[i]->name);
22771 *slot = old_entries[i];
22772 }
22773 }
22774
22775 xfree (old_entries);
22776 }
22777
22778 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22779 CU_INDEX is the index of the CU in which the symbol appears.
22780 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22781
22782 static void
22783 add_index_entry (struct mapped_symtab *symtab, const char *name,
22784 int is_static, gdb_index_symbol_kind kind,
22785 offset_type cu_index)
22786 {
22787 struct symtab_index_entry **slot;
22788 offset_type cu_index_and_attrs;
22789
22790 ++symtab->n_elements;
22791 if (4 * symtab->n_elements / 3 >= symtab->size)
22792 hash_expand (symtab);
22793
22794 slot = find_slot (symtab, name);
22795 if (!*slot)
22796 {
22797 *slot = XNEW (struct symtab_index_entry);
22798 (*slot)->name = name;
22799 /* index_offset is set later. */
22800 (*slot)->cu_indices = NULL;
22801 }
22802
22803 cu_index_and_attrs = 0;
22804 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22805 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22806 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22807
22808 /* We don't want to record an index value twice as we want to avoid the
22809 duplication.
22810 We process all global symbols and then all static symbols
22811 (which would allow us to avoid the duplication by only having to check
22812 the last entry pushed), but a symbol could have multiple kinds in one CU.
22813 To keep things simple we don't worry about the duplication here and
22814 sort and uniqufy the list after we've processed all symbols. */
22815 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22816 }
22817
22818 /* qsort helper routine for uniquify_cu_indices. */
22819
22820 static int
22821 offset_type_compare (const void *ap, const void *bp)
22822 {
22823 offset_type a = *(offset_type *) ap;
22824 offset_type b = *(offset_type *) bp;
22825
22826 return (a > b) - (b > a);
22827 }
22828
22829 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22830
22831 static void
22832 uniquify_cu_indices (struct mapped_symtab *symtab)
22833 {
22834 int i;
22835
22836 for (i = 0; i < symtab->size; ++i)
22837 {
22838 struct symtab_index_entry *entry = symtab->data[i];
22839
22840 if (entry
22841 && entry->cu_indices != NULL)
22842 {
22843 unsigned int next_to_insert, next_to_check;
22844 offset_type last_value;
22845
22846 qsort (VEC_address (offset_type, entry->cu_indices),
22847 VEC_length (offset_type, entry->cu_indices),
22848 sizeof (offset_type), offset_type_compare);
22849
22850 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22851 next_to_insert = 1;
22852 for (next_to_check = 1;
22853 next_to_check < VEC_length (offset_type, entry->cu_indices);
22854 ++next_to_check)
22855 {
22856 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22857 != last_value)
22858 {
22859 last_value = VEC_index (offset_type, entry->cu_indices,
22860 next_to_check);
22861 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22862 last_value);
22863 ++next_to_insert;
22864 }
22865 }
22866 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22867 }
22868 }
22869 }
22870
22871 /* Add a vector of indices to the constant pool. */
22872
22873 static offset_type
22874 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22875 struct symtab_index_entry *entry)
22876 {
22877 void **slot;
22878
22879 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22880 if (!*slot)
22881 {
22882 offset_type len = VEC_length (offset_type, entry->cu_indices);
22883 offset_type val = MAYBE_SWAP (len);
22884 offset_type iter;
22885 int i;
22886
22887 *slot = entry;
22888 entry->index_offset = obstack_object_size (cpool);
22889
22890 obstack_grow (cpool, &val, sizeof (val));
22891 for (i = 0;
22892 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22893 ++i)
22894 {
22895 val = MAYBE_SWAP (iter);
22896 obstack_grow (cpool, &val, sizeof (val));
22897 }
22898 }
22899 else
22900 {
22901 struct symtab_index_entry *old_entry
22902 = (struct symtab_index_entry *) *slot;
22903 entry->index_offset = old_entry->index_offset;
22904 entry = old_entry;
22905 }
22906 return entry->index_offset;
22907 }
22908
22909 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22910 constant pool entries going into the obstack CPOOL. */
22911
22912 static void
22913 write_hash_table (struct mapped_symtab *symtab,
22914 struct obstack *output, struct obstack *cpool)
22915 {
22916 offset_type i;
22917 htab_t symbol_hash_table;
22918 htab_t str_table;
22919
22920 symbol_hash_table = create_symbol_hash_table ();
22921 str_table = create_strtab ();
22922
22923 /* We add all the index vectors to the constant pool first, to
22924 ensure alignment is ok. */
22925 for (i = 0; i < symtab->size; ++i)
22926 {
22927 if (symtab->data[i])
22928 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22929 }
22930
22931 /* Now write out the hash table. */
22932 for (i = 0; i < symtab->size; ++i)
22933 {
22934 offset_type str_off, vec_off;
22935
22936 if (symtab->data[i])
22937 {
22938 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22939 vec_off = symtab->data[i]->index_offset;
22940 }
22941 else
22942 {
22943 /* While 0 is a valid constant pool index, it is not valid
22944 to have 0 for both offsets. */
22945 str_off = 0;
22946 vec_off = 0;
22947 }
22948
22949 str_off = MAYBE_SWAP (str_off);
22950 vec_off = MAYBE_SWAP (vec_off);
22951
22952 obstack_grow (output, &str_off, sizeof (str_off));
22953 obstack_grow (output, &vec_off, sizeof (vec_off));
22954 }
22955
22956 htab_delete (str_table);
22957 htab_delete (symbol_hash_table);
22958 }
22959
22960 /* Struct to map psymtab to CU index in the index file. */
22961 struct psymtab_cu_index_map
22962 {
22963 struct partial_symtab *psymtab;
22964 unsigned int cu_index;
22965 };
22966
22967 static hashval_t
22968 hash_psymtab_cu_index (const void *item)
22969 {
22970 const struct psymtab_cu_index_map *map
22971 = (const struct psymtab_cu_index_map *) item;
22972
22973 return htab_hash_pointer (map->psymtab);
22974 }
22975
22976 static int
22977 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22978 {
22979 const struct psymtab_cu_index_map *lhs
22980 = (const struct psymtab_cu_index_map *) item_lhs;
22981 const struct psymtab_cu_index_map *rhs
22982 = (const struct psymtab_cu_index_map *) item_rhs;
22983
22984 return lhs->psymtab == rhs->psymtab;
22985 }
22986
22987 /* Helper struct for building the address table. */
22988 struct addrmap_index_data
22989 {
22990 struct objfile *objfile;
22991 struct obstack *addr_obstack;
22992 htab_t cu_index_htab;
22993
22994 /* Non-zero if the previous_* fields are valid.
22995 We can't write an entry until we see the next entry (since it is only then
22996 that we know the end of the entry). */
22997 int previous_valid;
22998 /* Index of the CU in the table of all CUs in the index file. */
22999 unsigned int previous_cu_index;
23000 /* Start address of the CU. */
23001 CORE_ADDR previous_cu_start;
23002 };
23003
23004 /* Write an address entry to OBSTACK. */
23005
23006 static void
23007 add_address_entry (struct objfile *objfile, struct obstack *obstack,
23008 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
23009 {
23010 offset_type cu_index_to_write;
23011 gdb_byte addr[8];
23012 CORE_ADDR baseaddr;
23013
23014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23015
23016 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23017 obstack_grow (obstack, addr, 8);
23018 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23019 obstack_grow (obstack, addr, 8);
23020 cu_index_to_write = MAYBE_SWAP (cu_index);
23021 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23022 }
23023
23024 /* Worker function for traversing an addrmap to build the address table. */
23025
23026 static int
23027 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23028 {
23029 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23030 struct partial_symtab *pst = (struct partial_symtab *) obj;
23031
23032 if (data->previous_valid)
23033 add_address_entry (data->objfile, data->addr_obstack,
23034 data->previous_cu_start, start_addr,
23035 data->previous_cu_index);
23036
23037 data->previous_cu_start = start_addr;
23038 if (pst != NULL)
23039 {
23040 struct psymtab_cu_index_map find_map, *map;
23041 find_map.psymtab = pst;
23042 map = ((struct psymtab_cu_index_map *)
23043 htab_find (data->cu_index_htab, &find_map));
23044 gdb_assert (map != NULL);
23045 data->previous_cu_index = map->cu_index;
23046 data->previous_valid = 1;
23047 }
23048 else
23049 data->previous_valid = 0;
23050
23051 return 0;
23052 }
23053
23054 /* Write OBJFILE's address map to OBSTACK.
23055 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23056 in the index file. */
23057
23058 static void
23059 write_address_map (struct objfile *objfile, struct obstack *obstack,
23060 htab_t cu_index_htab)
23061 {
23062 struct addrmap_index_data addrmap_index_data;
23063
23064 /* When writing the address table, we have to cope with the fact that
23065 the addrmap iterator only provides the start of a region; we have to
23066 wait until the next invocation to get the start of the next region. */
23067
23068 addrmap_index_data.objfile = objfile;
23069 addrmap_index_data.addr_obstack = obstack;
23070 addrmap_index_data.cu_index_htab = cu_index_htab;
23071 addrmap_index_data.previous_valid = 0;
23072
23073 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23074 &addrmap_index_data);
23075
23076 /* It's highly unlikely the last entry (end address = 0xff...ff)
23077 is valid, but we should still handle it.
23078 The end address is recorded as the start of the next region, but that
23079 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23080 anyway. */
23081 if (addrmap_index_data.previous_valid)
23082 add_address_entry (objfile, obstack,
23083 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23084 addrmap_index_data.previous_cu_index);
23085 }
23086
23087 /* Return the symbol kind of PSYM. */
23088
23089 static gdb_index_symbol_kind
23090 symbol_kind (struct partial_symbol *psym)
23091 {
23092 domain_enum domain = PSYMBOL_DOMAIN (psym);
23093 enum address_class aclass = PSYMBOL_CLASS (psym);
23094
23095 switch (domain)
23096 {
23097 case VAR_DOMAIN:
23098 switch (aclass)
23099 {
23100 case LOC_BLOCK:
23101 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23102 case LOC_TYPEDEF:
23103 return GDB_INDEX_SYMBOL_KIND_TYPE;
23104 case LOC_COMPUTED:
23105 case LOC_CONST_BYTES:
23106 case LOC_OPTIMIZED_OUT:
23107 case LOC_STATIC:
23108 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23109 case LOC_CONST:
23110 /* Note: It's currently impossible to recognize psyms as enum values
23111 short of reading the type info. For now punt. */
23112 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23113 default:
23114 /* There are other LOC_FOO values that one might want to classify
23115 as variables, but dwarf2read.c doesn't currently use them. */
23116 return GDB_INDEX_SYMBOL_KIND_OTHER;
23117 }
23118 case STRUCT_DOMAIN:
23119 return GDB_INDEX_SYMBOL_KIND_TYPE;
23120 default:
23121 return GDB_INDEX_SYMBOL_KIND_OTHER;
23122 }
23123 }
23124
23125 /* Add a list of partial symbols to SYMTAB. */
23126
23127 static void
23128 write_psymbols (struct mapped_symtab *symtab,
23129 htab_t psyms_seen,
23130 struct partial_symbol **psymp,
23131 int count,
23132 offset_type cu_index,
23133 int is_static)
23134 {
23135 for (; count-- > 0; ++psymp)
23136 {
23137 struct partial_symbol *psym = *psymp;
23138 void **slot;
23139
23140 if (SYMBOL_LANGUAGE (psym) == language_ada)
23141 error (_("Ada is not currently supported by the index"));
23142
23143 /* Only add a given psymbol once. */
23144 slot = htab_find_slot (psyms_seen, psym, INSERT);
23145 if (!*slot)
23146 {
23147 gdb_index_symbol_kind kind = symbol_kind (psym);
23148
23149 *slot = psym;
23150 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23151 is_static, kind, cu_index);
23152 }
23153 }
23154 }
23155
23156 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
23157 exception if there is an error. */
23158
23159 static void
23160 write_obstack (FILE *file, struct obstack *obstack)
23161 {
23162 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23163 file)
23164 != obstack_object_size (obstack))
23165 error (_("couldn't data write to file"));
23166 }
23167
23168 /* Unlink a file if the argument is not NULL. */
23169
23170 static void
23171 unlink_if_set (void *p)
23172 {
23173 char **filename = (char **) p;
23174 if (*filename)
23175 unlink (*filename);
23176 }
23177
23178 /* A helper struct used when iterating over debug_types. */
23179 struct signatured_type_index_data
23180 {
23181 struct objfile *objfile;
23182 struct mapped_symtab *symtab;
23183 struct obstack *types_list;
23184 htab_t psyms_seen;
23185 int cu_index;
23186 };
23187
23188 /* A helper function that writes a single signatured_type to an
23189 obstack. */
23190
23191 static int
23192 write_one_signatured_type (void **slot, void *d)
23193 {
23194 struct signatured_type_index_data *info
23195 = (struct signatured_type_index_data *) d;
23196 struct signatured_type *entry = (struct signatured_type *) *slot;
23197 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
23198 gdb_byte val[8];
23199
23200 write_psymbols (info->symtab,
23201 info->psyms_seen,
23202 info->objfile->global_psymbols.list
23203 + psymtab->globals_offset,
23204 psymtab->n_global_syms, info->cu_index,
23205 0);
23206 write_psymbols (info->symtab,
23207 info->psyms_seen,
23208 info->objfile->static_psymbols.list
23209 + psymtab->statics_offset,
23210 psymtab->n_static_syms, info->cu_index,
23211 1);
23212
23213 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23214 entry->per_cu.offset.sect_off);
23215 obstack_grow (info->types_list, val, 8);
23216 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23217 entry->type_offset_in_tu.cu_off);
23218 obstack_grow (info->types_list, val, 8);
23219 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23220 obstack_grow (info->types_list, val, 8);
23221
23222 ++info->cu_index;
23223
23224 return 1;
23225 }
23226
23227 /* Recurse into all "included" dependencies and write their symbols as
23228 if they appeared in this psymtab. */
23229
23230 static void
23231 recursively_write_psymbols (struct objfile *objfile,
23232 struct partial_symtab *psymtab,
23233 struct mapped_symtab *symtab,
23234 htab_t psyms_seen,
23235 offset_type cu_index)
23236 {
23237 int i;
23238
23239 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23240 if (psymtab->dependencies[i]->user != NULL)
23241 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23242 symtab, psyms_seen, cu_index);
23243
23244 write_psymbols (symtab,
23245 psyms_seen,
23246 objfile->global_psymbols.list + psymtab->globals_offset,
23247 psymtab->n_global_syms, cu_index,
23248 0);
23249 write_psymbols (symtab,
23250 psyms_seen,
23251 objfile->static_psymbols.list + psymtab->statics_offset,
23252 psymtab->n_static_syms, cu_index,
23253 1);
23254 }
23255
23256 /* Create an index file for OBJFILE in the directory DIR. */
23257
23258 static void
23259 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23260 {
23261 struct cleanup *cleanup;
23262 char *filename, *cleanup_filename;
23263 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23264 struct obstack cu_list, types_cu_list;
23265 int i;
23266 FILE *out_file;
23267 struct mapped_symtab *symtab;
23268 offset_type val, size_of_contents, total_len;
23269 struct stat st;
23270 struct psymtab_cu_index_map *psymtab_cu_index_map;
23271
23272 if (dwarf2_per_objfile->using_index)
23273 error (_("Cannot use an index to create the index"));
23274
23275 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23276 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23277
23278 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23279 return;
23280
23281 if (stat (objfile_name (objfile), &st) < 0)
23282 perror_with_name (objfile_name (objfile));
23283
23284 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23285 INDEX_SUFFIX, (char *) NULL);
23286 cleanup = make_cleanup (xfree, filename);
23287
23288 out_file = gdb_fopen_cloexec (filename, "wb");
23289 if (!out_file)
23290 error (_("Can't open `%s' for writing"), filename);
23291
23292 cleanup_filename = filename;
23293 make_cleanup (unlink_if_set, &cleanup_filename);
23294
23295 symtab = create_mapped_symtab ();
23296 make_cleanup (cleanup_mapped_symtab, symtab);
23297
23298 obstack_init (&addr_obstack);
23299 make_cleanup_obstack_free (&addr_obstack);
23300
23301 obstack_init (&cu_list);
23302 make_cleanup_obstack_free (&cu_list);
23303
23304 obstack_init (&types_cu_list);
23305 make_cleanup_obstack_free (&types_cu_list);
23306
23307 htab_up psyms_seen (htab_create_alloc (100, htab_hash_pointer,
23308 htab_eq_pointer,
23309 NULL, xcalloc, xfree));
23310
23311 /* While we're scanning CU's create a table that maps a psymtab pointer
23312 (which is what addrmap records) to its index (which is what is recorded
23313 in the index file). This will later be needed to write the address
23314 table. */
23315 htab_up cu_index_htab (htab_create_alloc (100,
23316 hash_psymtab_cu_index,
23317 eq_psymtab_cu_index,
23318 NULL, xcalloc, xfree));
23319 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23320 dwarf2_per_objfile->n_comp_units);
23321 make_cleanup (xfree, psymtab_cu_index_map);
23322
23323 /* The CU list is already sorted, so we don't need to do additional
23324 work here. Also, the debug_types entries do not appear in
23325 all_comp_units, but only in their own hash table. */
23326 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23327 {
23328 struct dwarf2_per_cu_data *per_cu
23329 = dwarf2_per_objfile->all_comp_units[i];
23330 struct partial_symtab *psymtab = per_cu->v.psymtab;
23331 gdb_byte val[8];
23332 struct psymtab_cu_index_map *map;
23333 void **slot;
23334
23335 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23336 It may be referenced from a local scope but in such case it does not
23337 need to be present in .gdb_index. */
23338 if (psymtab == NULL)
23339 continue;
23340
23341 if (psymtab->user == NULL)
23342 recursively_write_psymbols (objfile, psymtab, symtab,
23343 psyms_seen.get (), i);
23344
23345 map = &psymtab_cu_index_map[i];
23346 map->psymtab = psymtab;
23347 map->cu_index = i;
23348 slot = htab_find_slot (cu_index_htab.get (), map, INSERT);
23349 gdb_assert (slot != NULL);
23350 gdb_assert (*slot == NULL);
23351 *slot = map;
23352
23353 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23354 per_cu->offset.sect_off);
23355 obstack_grow (&cu_list, val, 8);
23356 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23357 obstack_grow (&cu_list, val, 8);
23358 }
23359
23360 /* Dump the address map. */
23361 write_address_map (objfile, &addr_obstack, cu_index_htab.get ());
23362
23363 /* Write out the .debug_type entries, if any. */
23364 if (dwarf2_per_objfile->signatured_types)
23365 {
23366 struct signatured_type_index_data sig_data;
23367
23368 sig_data.objfile = objfile;
23369 sig_data.symtab = symtab;
23370 sig_data.types_list = &types_cu_list;
23371 sig_data.psyms_seen = psyms_seen.get ();
23372 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23373 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23374 write_one_signatured_type, &sig_data);
23375 }
23376
23377 /* Now that we've processed all symbols we can shrink their cu_indices
23378 lists. */
23379 uniquify_cu_indices (symtab);
23380
23381 obstack_init (&constant_pool);
23382 make_cleanup_obstack_free (&constant_pool);
23383 obstack_init (&symtab_obstack);
23384 make_cleanup_obstack_free (&symtab_obstack);
23385 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23386
23387 obstack_init (&contents);
23388 make_cleanup_obstack_free (&contents);
23389 size_of_contents = 6 * sizeof (offset_type);
23390 total_len = size_of_contents;
23391
23392 /* The version number. */
23393 val = MAYBE_SWAP (8);
23394 obstack_grow (&contents, &val, sizeof (val));
23395
23396 /* The offset of the CU list from the start of the file. */
23397 val = MAYBE_SWAP (total_len);
23398 obstack_grow (&contents, &val, sizeof (val));
23399 total_len += obstack_object_size (&cu_list);
23400
23401 /* The offset of the types CU list from the start of the file. */
23402 val = MAYBE_SWAP (total_len);
23403 obstack_grow (&contents, &val, sizeof (val));
23404 total_len += obstack_object_size (&types_cu_list);
23405
23406 /* The offset of the address table from the start of the file. */
23407 val = MAYBE_SWAP (total_len);
23408 obstack_grow (&contents, &val, sizeof (val));
23409 total_len += obstack_object_size (&addr_obstack);
23410
23411 /* The offset of the symbol table from the start of the file. */
23412 val = MAYBE_SWAP (total_len);
23413 obstack_grow (&contents, &val, sizeof (val));
23414 total_len += obstack_object_size (&symtab_obstack);
23415
23416 /* The offset of the constant pool from the start of the file. */
23417 val = MAYBE_SWAP (total_len);
23418 obstack_grow (&contents, &val, sizeof (val));
23419 total_len += obstack_object_size (&constant_pool);
23420
23421 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23422
23423 write_obstack (out_file, &contents);
23424 write_obstack (out_file, &cu_list);
23425 write_obstack (out_file, &types_cu_list);
23426 write_obstack (out_file, &addr_obstack);
23427 write_obstack (out_file, &symtab_obstack);
23428 write_obstack (out_file, &constant_pool);
23429
23430 fclose (out_file);
23431
23432 /* We want to keep the file, so we set cleanup_filename to NULL
23433 here. See unlink_if_set. */
23434 cleanup_filename = NULL;
23435
23436 do_cleanups (cleanup);
23437 }
23438
23439 /* Implementation of the `save gdb-index' command.
23440
23441 Note that the file format used by this command is documented in the
23442 GDB manual. Any changes here must be documented there. */
23443
23444 static void
23445 save_gdb_index_command (char *arg, int from_tty)
23446 {
23447 struct objfile *objfile;
23448
23449 if (!arg || !*arg)
23450 error (_("usage: save gdb-index DIRECTORY"));
23451
23452 ALL_OBJFILES (objfile)
23453 {
23454 struct stat st;
23455
23456 /* If the objfile does not correspond to an actual file, skip it. */
23457 if (stat (objfile_name (objfile), &st) < 0)
23458 continue;
23459
23460 dwarf2_per_objfile
23461 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23462 dwarf2_objfile_data_key);
23463 if (dwarf2_per_objfile)
23464 {
23465
23466 TRY
23467 {
23468 write_psymtabs_to_index (objfile, arg);
23469 }
23470 CATCH (except, RETURN_MASK_ERROR)
23471 {
23472 exception_fprintf (gdb_stderr, except,
23473 _("Error while writing index for `%s': "),
23474 objfile_name (objfile));
23475 }
23476 END_CATCH
23477 }
23478 }
23479 }
23480
23481 \f
23482
23483 int dwarf_always_disassemble;
23484
23485 static void
23486 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23487 struct cmd_list_element *c, const char *value)
23488 {
23489 fprintf_filtered (file,
23490 _("Whether to always disassemble "
23491 "DWARF expressions is %s.\n"),
23492 value);
23493 }
23494
23495 static void
23496 show_check_physname (struct ui_file *file, int from_tty,
23497 struct cmd_list_element *c, const char *value)
23498 {
23499 fprintf_filtered (file,
23500 _("Whether to check \"physname\" is %s.\n"),
23501 value);
23502 }
23503
23504 void _initialize_dwarf2_read (void);
23505
23506 void
23507 _initialize_dwarf2_read (void)
23508 {
23509 struct cmd_list_element *c;
23510
23511 dwarf2_objfile_data_key
23512 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23513
23514 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23515 Set DWARF specific variables.\n\
23516 Configure DWARF variables such as the cache size"),
23517 &set_dwarf_cmdlist, "maintenance set dwarf ",
23518 0/*allow-unknown*/, &maintenance_set_cmdlist);
23519
23520 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23521 Show DWARF specific variables\n\
23522 Show DWARF variables such as the cache size"),
23523 &show_dwarf_cmdlist, "maintenance show dwarf ",
23524 0/*allow-unknown*/, &maintenance_show_cmdlist);
23525
23526 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23527 &dwarf_max_cache_age, _("\
23528 Set the upper bound on the age of cached DWARF compilation units."), _("\
23529 Show the upper bound on the age of cached DWARF compilation units."), _("\
23530 A higher limit means that cached compilation units will be stored\n\
23531 in memory longer, and more total memory will be used. Zero disables\n\
23532 caching, which can slow down startup."),
23533 NULL,
23534 show_dwarf_max_cache_age,
23535 &set_dwarf_cmdlist,
23536 &show_dwarf_cmdlist);
23537
23538 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23539 &dwarf_always_disassemble, _("\
23540 Set whether `info address' always disassembles DWARF expressions."), _("\
23541 Show whether `info address' always disassembles DWARF expressions."), _("\
23542 When enabled, DWARF expressions are always printed in an assembly-like\n\
23543 syntax. When disabled, expressions will be printed in a more\n\
23544 conversational style, when possible."),
23545 NULL,
23546 show_dwarf_always_disassemble,
23547 &set_dwarf_cmdlist,
23548 &show_dwarf_cmdlist);
23549
23550 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23551 Set debugging of the DWARF reader."), _("\
23552 Show debugging of the DWARF reader."), _("\
23553 When enabled (non-zero), debugging messages are printed during DWARF\n\
23554 reading and symtab expansion. A value of 1 (one) provides basic\n\
23555 information. A value greater than 1 provides more verbose information."),
23556 NULL,
23557 NULL,
23558 &setdebuglist, &showdebuglist);
23559
23560 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23561 Set debugging of the DWARF DIE reader."), _("\
23562 Show debugging of the DWARF DIE reader."), _("\
23563 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23564 The value is the maximum depth to print."),
23565 NULL,
23566 NULL,
23567 &setdebuglist, &showdebuglist);
23568
23569 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23570 Set debugging of the dwarf line reader."), _("\
23571 Show debugging of the dwarf line reader."), _("\
23572 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23573 A value of 1 (one) provides basic information.\n\
23574 A value greater than 1 provides more verbose information."),
23575 NULL,
23576 NULL,
23577 &setdebuglist, &showdebuglist);
23578
23579 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23580 Set cross-checking of \"physname\" code against demangler."), _("\
23581 Show cross-checking of \"physname\" code against demangler."), _("\
23582 When enabled, GDB's internal \"physname\" code is checked against\n\
23583 the demangler."),
23584 NULL, show_check_physname,
23585 &setdebuglist, &showdebuglist);
23586
23587 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23588 no_class, &use_deprecated_index_sections, _("\
23589 Set whether to use deprecated gdb_index sections."), _("\
23590 Show whether to use deprecated gdb_index sections."), _("\
23591 When enabled, deprecated .gdb_index sections are used anyway.\n\
23592 Normally they are ignored either because of a missing feature or\n\
23593 performance issue.\n\
23594 Warning: This option must be enabled before gdb reads the file."),
23595 NULL,
23596 NULL,
23597 &setlist, &showlist);
23598
23599 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23600 _("\
23601 Save a gdb-index file.\n\
23602 Usage: save gdb-index DIRECTORY"),
23603 &save_cmdlist);
23604 set_cmd_completer (c, filename_completer);
23605
23606 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23607 &dwarf2_locexpr_funcs);
23608 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23609 &dwarf2_loclist_funcs);
23610
23611 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23612 &dwarf2_block_frame_base_locexpr_funcs);
23613 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23614 &dwarf2_block_frame_base_loclist_funcs);
23615 }
This page took 0.665911 seconds and 3 git commands to generate.