Enable -Wsuggest-override
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-common.h"
34 #include "bfd.h"
35 #include "elf-bfd.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "objfiles.h"
39 #include "dwarf2.h"
40 #include "buildsym.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "expression.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "bcache.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 /* The name_component table (a sorted vector). See name_component's
151 description above. */
152 std::vector<name_component> name_components;
153
154 /* How NAME_COMPONENTS is sorted. */
155 enum case_sensitivity name_components_casing;
156
157 /* Return the number of names in the symbol table. */
158 virtual size_t symbol_name_count () const = 0;
159
160 /* Get the name of the symbol at IDX in the symbol table. */
161 virtual const char *symbol_name_at (offset_type idx) const = 0;
162
163 /* Return whether the name at IDX in the symbol table should be
164 ignored. */
165 virtual bool symbol_name_slot_invalid (offset_type idx) const
166 {
167 return false;
168 }
169
170 /* Build the symbol name component sorted vector, if we haven't
171 yet. */
172 void build_name_components ();
173
174 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
175 possible matches for LN_NO_PARAMS in the name component
176 vector. */
177 std::pair<std::vector<name_component>::const_iterator,
178 std::vector<name_component>::const_iterator>
179 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
180
181 /* Prevent deleting/destroying via a base class pointer. */
182 protected:
183 ~mapped_index_base() = default;
184 };
185
186 /* A description of the mapped index. The file format is described in
187 a comment by the code that writes the index. */
188 struct mapped_index final : public mapped_index_base
189 {
190 /* A slot/bucket in the symbol table hash. */
191 struct symbol_table_slot
192 {
193 const offset_type name;
194 const offset_type vec;
195 };
196
197 /* Index data format version. */
198 int version;
199
200 /* The total length of the buffer. */
201 off_t total_size;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
428
429 /* Non-zero if base_address has been set. */
430 int base_known = 0;
431
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
435
436 const char *producer = nullptr;
437
438 /* The generic symbol table building routines have separate lists for
439 file scope symbols and all all other scopes (local scopes). So
440 we need to select the right one to pass to add_symbol_to_list().
441 We do it by keeping a pointer to the correct list in list_in_scope.
442
443 FIXME: The original dwarf code just treated the file scope as the
444 first local scope, and all other local scopes as nested local
445 scopes, and worked fine. Check to see if we really need to
446 distinguish these in buildsym.c. */
447 struct pending **list_in_scope = nullptr;
448
449 /* Hash table holding all the loaded partial DIEs
450 with partial_die->offset.SECT_OFF as hash. */
451 htab_t partial_dies = nullptr;
452
453 /* Storage for things with the same lifetime as this read-in compilation
454 unit, including partial DIEs. */
455 auto_obstack comp_unit_obstack;
456
457 /* When multiple dwarf2_cu structures are living in memory, this field
458 chains them all together, so that they can be released efficiently.
459 We will probably also want a generation counter so that most-recently-used
460 compilation units are cached... */
461 struct dwarf2_per_cu_data *read_in_chain = nullptr;
462
463 /* Backlink to our per_cu entry. */
464 struct dwarf2_per_cu_data *per_cu;
465
466 /* How many compilation units ago was this CU last referenced? */
467 int last_used = 0;
468
469 /* A hash table of DIE cu_offset for following references with
470 die_info->offset.sect_off as hash. */
471 htab_t die_hash = nullptr;
472
473 /* Full DIEs if read in. */
474 struct die_info *dies = nullptr;
475
476 /* A set of pointers to dwarf2_per_cu_data objects for compilation
477 units referenced by this one. Only set during full symbol processing;
478 partial symbol tables do not have dependencies. */
479 htab_t dependencies = nullptr;
480
481 /* Header data from the line table, during full symbol processing. */
482 struct line_header *line_header = nullptr;
483 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
484 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
485 this is the DW_TAG_compile_unit die for this CU. We'll hold on
486 to the line header as long as this DIE is being processed. See
487 process_die_scope. */
488 die_info *line_header_die_owner = nullptr;
489
490 /* A list of methods which need to have physnames computed
491 after all type information has been read. */
492 std::vector<delayed_method_info> method_list;
493
494 /* To be copied to symtab->call_site_htab. */
495 htab_t call_site_htab = nullptr;
496
497 /* Non-NULL if this CU came from a DWO file.
498 There is an invariant here that is important to remember:
499 Except for attributes copied from the top level DIE in the "main"
500 (or "stub") file in preparation for reading the DWO file
501 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
502 Either there isn't a DWO file (in which case this is NULL and the point
503 is moot), or there is and either we're not going to read it (in which
504 case this is NULL) or there is and we are reading it (in which case this
505 is non-NULL). */
506 struct dwo_unit *dwo_unit = nullptr;
507
508 /* The DW_AT_addr_base attribute if present, zero otherwise
509 (zero is a valid value though).
510 Note this value comes from the Fission stub CU/TU's DIE. */
511 ULONGEST addr_base = 0;
512
513 /* The DW_AT_ranges_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE.
516 Also note that the value is zero in the non-DWO case so this value can
517 be used without needing to know whether DWO files are in use or not.
518 N.B. This does not apply to DW_AT_ranges appearing in
519 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
520 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
521 DW_AT_ranges_base *would* have to be applied, and we'd have to care
522 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
523 ULONGEST ranges_base = 0;
524
525 /* When reading debug info generated by older versions of rustc, we
526 have to rewrite some union types to be struct types with a
527 variant part. This rewriting must be done after the CU is fully
528 read in, because otherwise at the point of rewriting some struct
529 type might not have been fully processed. So, we keep a list of
530 all such types here and process them after expansion. */
531 std::vector<struct type *> rust_unions;
532
533 /* Mark used when releasing cached dies. */
534 unsigned int mark : 1;
535
536 /* This CU references .debug_loc. See the symtab->locations_valid field.
537 This test is imperfect as there may exist optimized debug code not using
538 any location list and still facing inlining issues if handled as
539 unoptimized code. For a future better test see GCC PR other/32998. */
540 unsigned int has_loclist : 1;
541
542 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
543 if all the producer_is_* fields are valid. This information is cached
544 because profiling CU expansion showed excessive time spent in
545 producer_is_gxx_lt_4_6. */
546 unsigned int checked_producer : 1;
547 unsigned int producer_is_gxx_lt_4_6 : 1;
548 unsigned int producer_is_gcc_lt_4_3 : 1;
549 unsigned int producer_is_icc_lt_14 : 1;
550
551 /* When set, the file that we're processing is known to have
552 debugging info for C++ namespaces. GCC 3.3.x did not produce
553 this information, but later versions do. */
554
555 unsigned int processing_has_namespace_info : 1;
556
557 struct partial_die_info *find_partial_die (sect_offset sect_off);
558 };
559
560 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
561 This includes type_unit_group and quick_file_names. */
562
563 struct stmt_list_hash
564 {
565 /* The DWO unit this table is from or NULL if there is none. */
566 struct dwo_unit *dwo_unit;
567
568 /* Offset in .debug_line or .debug_line.dwo. */
569 sect_offset line_sect_off;
570 };
571
572 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
573 an object of this type. */
574
575 struct type_unit_group
576 {
577 /* dwarf2read.c's main "handle" on a TU symtab.
578 To simplify things we create an artificial CU that "includes" all the
579 type units using this stmt_list so that the rest of the code still has
580 a "per_cu" handle on the symtab.
581 This PER_CU is recognized by having no section. */
582 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
583 struct dwarf2_per_cu_data per_cu;
584
585 /* The TUs that share this DW_AT_stmt_list entry.
586 This is added to while parsing type units to build partial symtabs,
587 and is deleted afterwards and not used again. */
588 VEC (sig_type_ptr) *tus;
589
590 /* The compunit symtab.
591 Type units in a group needn't all be defined in the same source file,
592 so we create an essentially anonymous symtab as the compunit symtab. */
593 struct compunit_symtab *compunit_symtab;
594
595 /* The data used to construct the hash key. */
596 struct stmt_list_hash hash;
597
598 /* The number of symtabs from the line header.
599 The value here must match line_header.num_file_names. */
600 unsigned int num_symtabs;
601
602 /* The symbol tables for this TU (obtained from the files listed in
603 DW_AT_stmt_list).
604 WARNING: The order of entries here must match the order of entries
605 in the line header. After the first TU using this type_unit_group, the
606 line header for the subsequent TUs is recreated from this. This is done
607 because we need to use the same symtabs for each TU using the same
608 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
609 there's no guarantee the line header doesn't have duplicate entries. */
610 struct symtab **symtabs;
611 };
612
613 /* These sections are what may appear in a (real or virtual) DWO file. */
614
615 struct dwo_sections
616 {
617 struct dwarf2_section_info abbrev;
618 struct dwarf2_section_info line;
619 struct dwarf2_section_info loc;
620 struct dwarf2_section_info loclists;
621 struct dwarf2_section_info macinfo;
622 struct dwarf2_section_info macro;
623 struct dwarf2_section_info str;
624 struct dwarf2_section_info str_offsets;
625 /* In the case of a virtual DWO file, these two are unused. */
626 struct dwarf2_section_info info;
627 VEC (dwarf2_section_info_def) *types;
628 };
629
630 /* CUs/TUs in DWP/DWO files. */
631
632 struct dwo_unit
633 {
634 /* Backlink to the containing struct dwo_file. */
635 struct dwo_file *dwo_file;
636
637 /* The "id" that distinguishes this CU/TU.
638 .debug_info calls this "dwo_id", .debug_types calls this "signature".
639 Since signatures came first, we stick with it for consistency. */
640 ULONGEST signature;
641
642 /* The section this CU/TU lives in, in the DWO file. */
643 struct dwarf2_section_info *section;
644
645 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
646 sect_offset sect_off;
647 unsigned int length;
648
649 /* For types, offset in the type's DIE of the type defined by this TU. */
650 cu_offset type_offset_in_tu;
651 };
652
653 /* include/dwarf2.h defines the DWP section codes.
654 It defines a max value but it doesn't define a min value, which we
655 use for error checking, so provide one. */
656
657 enum dwp_v2_section_ids
658 {
659 DW_SECT_MIN = 1
660 };
661
662 /* Data for one DWO file.
663
664 This includes virtual DWO files (a virtual DWO file is a DWO file as it
665 appears in a DWP file). DWP files don't really have DWO files per se -
666 comdat folding of types "loses" the DWO file they came from, and from
667 a high level view DWP files appear to contain a mass of random types.
668 However, to maintain consistency with the non-DWP case we pretend DWP
669 files contain virtual DWO files, and we assign each TU with one virtual
670 DWO file (generally based on the line and abbrev section offsets -
671 a heuristic that seems to work in practice). */
672
673 struct dwo_file
674 {
675 /* The DW_AT_GNU_dwo_name attribute.
676 For virtual DWO files the name is constructed from the section offsets
677 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
678 from related CU+TUs. */
679 const char *dwo_name;
680
681 /* The DW_AT_comp_dir attribute. */
682 const char *comp_dir;
683
684 /* The bfd, when the file is open. Otherwise this is NULL.
685 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
686 bfd *dbfd;
687
688 /* The sections that make up this DWO file.
689 Remember that for virtual DWO files in DWP V2, these are virtual
690 sections (for lack of a better name). */
691 struct dwo_sections sections;
692
693 /* The CUs in the file.
694 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
695 an extension to handle LLVM's Link Time Optimization output (where
696 multiple source files may be compiled into a single object/dwo pair). */
697 htab_t cus;
698
699 /* Table of TUs in the file.
700 Each element is a struct dwo_unit. */
701 htab_t tus;
702 };
703
704 /* These sections are what may appear in a DWP file. */
705
706 struct dwp_sections
707 {
708 /* These are used by both DWP version 1 and 2. */
709 struct dwarf2_section_info str;
710 struct dwarf2_section_info cu_index;
711 struct dwarf2_section_info tu_index;
712
713 /* These are only used by DWP version 2 files.
714 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
715 sections are referenced by section number, and are not recorded here.
716 In DWP version 2 there is at most one copy of all these sections, each
717 section being (effectively) comprised of the concatenation of all of the
718 individual sections that exist in the version 1 format.
719 To keep the code simple we treat each of these concatenated pieces as a
720 section itself (a virtual section?). */
721 struct dwarf2_section_info abbrev;
722 struct dwarf2_section_info info;
723 struct dwarf2_section_info line;
724 struct dwarf2_section_info loc;
725 struct dwarf2_section_info macinfo;
726 struct dwarf2_section_info macro;
727 struct dwarf2_section_info str_offsets;
728 struct dwarf2_section_info types;
729 };
730
731 /* These sections are what may appear in a virtual DWO file in DWP version 1.
732 A virtual DWO file is a DWO file as it appears in a DWP file. */
733
734 struct virtual_v1_dwo_sections
735 {
736 struct dwarf2_section_info abbrev;
737 struct dwarf2_section_info line;
738 struct dwarf2_section_info loc;
739 struct dwarf2_section_info macinfo;
740 struct dwarf2_section_info macro;
741 struct dwarf2_section_info str_offsets;
742 /* Each DWP hash table entry records one CU or one TU.
743 That is recorded here, and copied to dwo_unit.section. */
744 struct dwarf2_section_info info_or_types;
745 };
746
747 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
748 In version 2, the sections of the DWO files are concatenated together
749 and stored in one section of that name. Thus each ELF section contains
750 several "virtual" sections. */
751
752 struct virtual_v2_dwo_sections
753 {
754 bfd_size_type abbrev_offset;
755 bfd_size_type abbrev_size;
756
757 bfd_size_type line_offset;
758 bfd_size_type line_size;
759
760 bfd_size_type loc_offset;
761 bfd_size_type loc_size;
762
763 bfd_size_type macinfo_offset;
764 bfd_size_type macinfo_size;
765
766 bfd_size_type macro_offset;
767 bfd_size_type macro_size;
768
769 bfd_size_type str_offsets_offset;
770 bfd_size_type str_offsets_size;
771
772 /* Each DWP hash table entry records one CU or one TU.
773 That is recorded here, and copied to dwo_unit.section. */
774 bfd_size_type info_or_types_offset;
775 bfd_size_type info_or_types_size;
776 };
777
778 /* Contents of DWP hash tables. */
779
780 struct dwp_hash_table
781 {
782 uint32_t version, nr_columns;
783 uint32_t nr_units, nr_slots;
784 const gdb_byte *hash_table, *unit_table;
785 union
786 {
787 struct
788 {
789 const gdb_byte *indices;
790 } v1;
791 struct
792 {
793 /* This is indexed by column number and gives the id of the section
794 in that column. */
795 #define MAX_NR_V2_DWO_SECTIONS \
796 (1 /* .debug_info or .debug_types */ \
797 + 1 /* .debug_abbrev */ \
798 + 1 /* .debug_line */ \
799 + 1 /* .debug_loc */ \
800 + 1 /* .debug_str_offsets */ \
801 + 1 /* .debug_macro or .debug_macinfo */)
802 int section_ids[MAX_NR_V2_DWO_SECTIONS];
803 const gdb_byte *offsets;
804 const gdb_byte *sizes;
805 } v2;
806 } section_pool;
807 };
808
809 /* Data for one DWP file. */
810
811 struct dwp_file
812 {
813 /* Name of the file. */
814 const char *name;
815
816 /* File format version. */
817 int version;
818
819 /* The bfd. */
820 bfd *dbfd;
821
822 /* Section info for this file. */
823 struct dwp_sections sections;
824
825 /* Table of CUs in the file. */
826 const struct dwp_hash_table *cus;
827
828 /* Table of TUs in the file. */
829 const struct dwp_hash_table *tus;
830
831 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
832 htab_t loaded_cus;
833 htab_t loaded_tus;
834
835 /* Table to map ELF section numbers to their sections.
836 This is only needed for the DWP V1 file format. */
837 unsigned int num_sections;
838 asection **elf_sections;
839 };
840
841 /* This represents a '.dwz' file. */
842
843 struct dwz_file
844 {
845 /* A dwz file can only contain a few sections. */
846 struct dwarf2_section_info abbrev;
847 struct dwarf2_section_info info;
848 struct dwarf2_section_info str;
849 struct dwarf2_section_info line;
850 struct dwarf2_section_info macro;
851 struct dwarf2_section_info gdb_index;
852 struct dwarf2_section_info debug_names;
853
854 /* The dwz's BFD. */
855 bfd *dwz_bfd;
856 };
857
858 /* Struct used to pass misc. parameters to read_die_and_children, et
859 al. which are used for both .debug_info and .debug_types dies.
860 All parameters here are unchanging for the life of the call. This
861 struct exists to abstract away the constant parameters of die reading. */
862
863 struct die_reader_specs
864 {
865 /* The bfd of die_section. */
866 bfd* abfd;
867
868 /* The CU of the DIE we are parsing. */
869 struct dwarf2_cu *cu;
870
871 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
872 struct dwo_file *dwo_file;
873
874 /* The section the die comes from.
875 This is either .debug_info or .debug_types, or the .dwo variants. */
876 struct dwarf2_section_info *die_section;
877
878 /* die_section->buffer. */
879 const gdb_byte *buffer;
880
881 /* The end of the buffer. */
882 const gdb_byte *buffer_end;
883
884 /* The value of the DW_AT_comp_dir attribute. */
885 const char *comp_dir;
886
887 /* The abbreviation table to use when reading the DIEs. */
888 struct abbrev_table *abbrev_table;
889 };
890
891 /* Type of function passed to init_cutu_and_read_dies, et.al. */
892 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
893 const gdb_byte *info_ptr,
894 struct die_info *comp_unit_die,
895 int has_children,
896 void *data);
897
898 /* A 1-based directory index. This is a strong typedef to prevent
899 accidentally using a directory index as a 0-based index into an
900 array/vector. */
901 enum class dir_index : unsigned int {};
902
903 /* Likewise, a 1-based file name index. */
904 enum class file_name_index : unsigned int {};
905
906 struct file_entry
907 {
908 file_entry () = default;
909
910 file_entry (const char *name_, dir_index d_index_,
911 unsigned int mod_time_, unsigned int length_)
912 : name (name_),
913 d_index (d_index_),
914 mod_time (mod_time_),
915 length (length_)
916 {}
917
918 /* Return the include directory at D_INDEX stored in LH. Returns
919 NULL if D_INDEX is out of bounds. */
920 const char *include_dir (const line_header *lh) const;
921
922 /* The file name. Note this is an observing pointer. The memory is
923 owned by debug_line_buffer. */
924 const char *name {};
925
926 /* The directory index (1-based). */
927 dir_index d_index {};
928
929 unsigned int mod_time {};
930
931 unsigned int length {};
932
933 /* True if referenced by the Line Number Program. */
934 bool included_p {};
935
936 /* The associated symbol table, if any. */
937 struct symtab *symtab {};
938 };
939
940 /* The line number information for a compilation unit (found in the
941 .debug_line section) begins with a "statement program header",
942 which contains the following information. */
943 struct line_header
944 {
945 line_header ()
946 : offset_in_dwz {}
947 {}
948
949 /* Add an entry to the include directory table. */
950 void add_include_dir (const char *include_dir);
951
952 /* Add an entry to the file name table. */
953 void add_file_name (const char *name, dir_index d_index,
954 unsigned int mod_time, unsigned int length);
955
956 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
957 is out of bounds. */
958 const char *include_dir_at (dir_index index) const
959 {
960 /* Convert directory index number (1-based) to vector index
961 (0-based). */
962 size_t vec_index = to_underlying (index) - 1;
963
964 if (vec_index >= include_dirs.size ())
965 return NULL;
966 return include_dirs[vec_index];
967 }
968
969 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
970 is out of bounds. */
971 file_entry *file_name_at (file_name_index index)
972 {
973 /* Convert file name index number (1-based) to vector index
974 (0-based). */
975 size_t vec_index = to_underlying (index) - 1;
976
977 if (vec_index >= file_names.size ())
978 return NULL;
979 return &file_names[vec_index];
980 }
981
982 /* Const version of the above. */
983 const file_entry *file_name_at (unsigned int index) const
984 {
985 if (index >= file_names.size ())
986 return NULL;
987 return &file_names[index];
988 }
989
990 /* Offset of line number information in .debug_line section. */
991 sect_offset sect_off {};
992
993 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
994 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
995
996 unsigned int total_length {};
997 unsigned short version {};
998 unsigned int header_length {};
999 unsigned char minimum_instruction_length {};
1000 unsigned char maximum_ops_per_instruction {};
1001 unsigned char default_is_stmt {};
1002 int line_base {};
1003 unsigned char line_range {};
1004 unsigned char opcode_base {};
1005
1006 /* standard_opcode_lengths[i] is the number of operands for the
1007 standard opcode whose value is i. This means that
1008 standard_opcode_lengths[0] is unused, and the last meaningful
1009 element is standard_opcode_lengths[opcode_base - 1]. */
1010 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1011
1012 /* The include_directories table. Note these are observing
1013 pointers. The memory is owned by debug_line_buffer. */
1014 std::vector<const char *> include_dirs;
1015
1016 /* The file_names table. */
1017 std::vector<file_entry> file_names;
1018
1019 /* The start and end of the statement program following this
1020 header. These point into dwarf2_per_objfile->line_buffer. */
1021 const gdb_byte *statement_program_start {}, *statement_program_end {};
1022 };
1023
1024 typedef std::unique_ptr<line_header> line_header_up;
1025
1026 const char *
1027 file_entry::include_dir (const line_header *lh) const
1028 {
1029 return lh->include_dir_at (d_index);
1030 }
1031
1032 /* When we construct a partial symbol table entry we only
1033 need this much information. */
1034 struct partial_die_info : public allocate_on_obstack
1035 {
1036 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1037
1038 /* Disable assign but still keep copy ctor, which is needed
1039 load_partial_dies. */
1040 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1041
1042 /* Adjust the partial die before generating a symbol for it. This
1043 function may set the is_external flag or change the DIE's
1044 name. */
1045 void fixup (struct dwarf2_cu *cu);
1046
1047 /* Read a minimal amount of information into the minimal die
1048 structure. */
1049 const gdb_byte *read (const struct die_reader_specs *reader,
1050 const struct abbrev_info &abbrev,
1051 const gdb_byte *info_ptr);
1052
1053 /* Offset of this DIE. */
1054 const sect_offset sect_off;
1055
1056 /* DWARF-2 tag for this DIE. */
1057 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1058
1059 /* Assorted flags describing the data found in this DIE. */
1060 const unsigned int has_children : 1;
1061
1062 unsigned int is_external : 1;
1063 unsigned int is_declaration : 1;
1064 unsigned int has_type : 1;
1065 unsigned int has_specification : 1;
1066 unsigned int has_pc_info : 1;
1067 unsigned int may_be_inlined : 1;
1068
1069 /* This DIE has been marked DW_AT_main_subprogram. */
1070 unsigned int main_subprogram : 1;
1071
1072 /* Flag set if the SCOPE field of this structure has been
1073 computed. */
1074 unsigned int scope_set : 1;
1075
1076 /* Flag set if the DIE has a byte_size attribute. */
1077 unsigned int has_byte_size : 1;
1078
1079 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1080 unsigned int has_const_value : 1;
1081
1082 /* Flag set if any of the DIE's children are template arguments. */
1083 unsigned int has_template_arguments : 1;
1084
1085 /* Flag set if fixup has been called on this die. */
1086 unsigned int fixup_called : 1;
1087
1088 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1089 unsigned int is_dwz : 1;
1090
1091 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1092 unsigned int spec_is_dwz : 1;
1093
1094 /* The name of this DIE. Normally the value of DW_AT_name, but
1095 sometimes a default name for unnamed DIEs. */
1096 const char *name = nullptr;
1097
1098 /* The linkage name, if present. */
1099 const char *linkage_name = nullptr;
1100
1101 /* The scope to prepend to our children. This is generally
1102 allocated on the comp_unit_obstack, so will disappear
1103 when this compilation unit leaves the cache. */
1104 const char *scope = nullptr;
1105
1106 /* Some data associated with the partial DIE. The tag determines
1107 which field is live. */
1108 union
1109 {
1110 /* The location description associated with this DIE, if any. */
1111 struct dwarf_block *locdesc;
1112 /* The offset of an import, for DW_TAG_imported_unit. */
1113 sect_offset sect_off;
1114 } d {};
1115
1116 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1117 CORE_ADDR lowpc = 0;
1118 CORE_ADDR highpc = 0;
1119
1120 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1121 DW_AT_sibling, if any. */
1122 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1123 could return DW_AT_sibling values to its caller load_partial_dies. */
1124 const gdb_byte *sibling = nullptr;
1125
1126 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1127 DW_AT_specification (or DW_AT_abstract_origin or
1128 DW_AT_extension). */
1129 sect_offset spec_offset {};
1130
1131 /* Pointers to this DIE's parent, first child, and next sibling,
1132 if any. */
1133 struct partial_die_info *die_parent = nullptr;
1134 struct partial_die_info *die_child = nullptr;
1135 struct partial_die_info *die_sibling = nullptr;
1136
1137 friend struct partial_die_info *
1138 dwarf2_cu::find_partial_die (sect_offset sect_off);
1139
1140 private:
1141 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1142 partial_die_info (sect_offset sect_off)
1143 : partial_die_info (sect_off, DW_TAG_padding, 0)
1144 {
1145 }
1146
1147 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1148 int has_children_)
1149 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1150 {
1151 is_external = 0;
1152 is_declaration = 0;
1153 has_type = 0;
1154 has_specification = 0;
1155 has_pc_info = 0;
1156 may_be_inlined = 0;
1157 main_subprogram = 0;
1158 scope_set = 0;
1159 has_byte_size = 0;
1160 has_const_value = 0;
1161 has_template_arguments = 0;
1162 fixup_called = 0;
1163 is_dwz = 0;
1164 spec_is_dwz = 0;
1165 }
1166 };
1167
1168 /* This data structure holds the information of an abbrev. */
1169 struct abbrev_info
1170 {
1171 unsigned int number; /* number identifying abbrev */
1172 enum dwarf_tag tag; /* dwarf tag */
1173 unsigned short has_children; /* boolean */
1174 unsigned short num_attrs; /* number of attributes */
1175 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1176 struct abbrev_info *next; /* next in chain */
1177 };
1178
1179 struct attr_abbrev
1180 {
1181 ENUM_BITFIELD(dwarf_attribute) name : 16;
1182 ENUM_BITFIELD(dwarf_form) form : 16;
1183
1184 /* It is valid only if FORM is DW_FORM_implicit_const. */
1185 LONGEST implicit_const;
1186 };
1187
1188 /* Size of abbrev_table.abbrev_hash_table. */
1189 #define ABBREV_HASH_SIZE 121
1190
1191 /* Top level data structure to contain an abbreviation table. */
1192
1193 struct abbrev_table
1194 {
1195 explicit abbrev_table (sect_offset off)
1196 : sect_off (off)
1197 {
1198 m_abbrevs =
1199 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1200 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1201 }
1202
1203 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1204
1205 /* Allocate space for a struct abbrev_info object in
1206 ABBREV_TABLE. */
1207 struct abbrev_info *alloc_abbrev ();
1208
1209 /* Add an abbreviation to the table. */
1210 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1211
1212 /* Look up an abbrev in the table.
1213 Returns NULL if the abbrev is not found. */
1214
1215 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1216
1217
1218 /* Where the abbrev table came from.
1219 This is used as a sanity check when the table is used. */
1220 const sect_offset sect_off;
1221
1222 /* Storage for the abbrev table. */
1223 auto_obstack abbrev_obstack;
1224
1225 private:
1226
1227 /* Hash table of abbrevs.
1228 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1229 It could be statically allocated, but the previous code didn't so we
1230 don't either. */
1231 struct abbrev_info **m_abbrevs;
1232 };
1233
1234 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1235
1236 /* Attributes have a name and a value. */
1237 struct attribute
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 15;
1241
1242 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1243 field should be in u.str (existing only for DW_STRING) but it is kept
1244 here for better struct attribute alignment. */
1245 unsigned int string_is_canonical : 1;
1246
1247 union
1248 {
1249 const char *str;
1250 struct dwarf_block *blk;
1251 ULONGEST unsnd;
1252 LONGEST snd;
1253 CORE_ADDR addr;
1254 ULONGEST signature;
1255 }
1256 u;
1257 };
1258
1259 /* This data structure holds a complete die structure. */
1260 struct die_info
1261 {
1262 /* DWARF-2 tag for this DIE. */
1263 ENUM_BITFIELD(dwarf_tag) tag : 16;
1264
1265 /* Number of attributes */
1266 unsigned char num_attrs;
1267
1268 /* True if we're presently building the full type name for the
1269 type derived from this DIE. */
1270 unsigned char building_fullname : 1;
1271
1272 /* True if this die is in process. PR 16581. */
1273 unsigned char in_process : 1;
1274
1275 /* Abbrev number */
1276 unsigned int abbrev;
1277
1278 /* Offset in .debug_info or .debug_types section. */
1279 sect_offset sect_off;
1280
1281 /* The dies in a compilation unit form an n-ary tree. PARENT
1282 points to this die's parent; CHILD points to the first child of
1283 this node; and all the children of a given node are chained
1284 together via their SIBLING fields. */
1285 struct die_info *child; /* Its first child, if any. */
1286 struct die_info *sibling; /* Its next sibling, if any. */
1287 struct die_info *parent; /* Its parent, if any. */
1288
1289 /* An array of attributes, with NUM_ATTRS elements. There may be
1290 zero, but it's not common and zero-sized arrays are not
1291 sufficiently portable C. */
1292 struct attribute attrs[1];
1293 };
1294
1295 /* Get at parts of an attribute structure. */
1296
1297 #define DW_STRING(attr) ((attr)->u.str)
1298 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1299 #define DW_UNSND(attr) ((attr)->u.unsnd)
1300 #define DW_BLOCK(attr) ((attr)->u.blk)
1301 #define DW_SND(attr) ((attr)->u.snd)
1302 #define DW_ADDR(attr) ((attr)->u.addr)
1303 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1304
1305 /* Blocks are a bunch of untyped bytes. */
1306 struct dwarf_block
1307 {
1308 size_t size;
1309
1310 /* Valid only if SIZE is not zero. */
1311 const gdb_byte *data;
1312 };
1313
1314 #ifndef ATTR_ALLOC_CHUNK
1315 #define ATTR_ALLOC_CHUNK 4
1316 #endif
1317
1318 /* Allocate fields for structs, unions and enums in this size. */
1319 #ifndef DW_FIELD_ALLOC_CHUNK
1320 #define DW_FIELD_ALLOC_CHUNK 4
1321 #endif
1322
1323 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1324 but this would require a corresponding change in unpack_field_as_long
1325 and friends. */
1326 static int bits_per_byte = 8;
1327
1328 /* When reading a variant or variant part, we track a bit more
1329 information about the field, and store it in an object of this
1330 type. */
1331
1332 struct variant_field
1333 {
1334 /* If we see a DW_TAG_variant, then this will be the discriminant
1335 value. */
1336 ULONGEST discriminant_value;
1337 /* If we see a DW_TAG_variant, then this will be set if this is the
1338 default branch. */
1339 bool default_branch;
1340 /* While reading a DW_TAG_variant_part, this will be set if this
1341 field is the discriminant. */
1342 bool is_discriminant;
1343 };
1344
1345 struct nextfield
1346 {
1347 int accessibility = 0;
1348 int virtuality = 0;
1349 /* Extra information to describe a variant or variant part. */
1350 struct variant_field variant {};
1351 struct field field {};
1352 };
1353
1354 struct fnfieldlist
1355 {
1356 const char *name = nullptr;
1357 std::vector<struct fn_field> fnfields;
1358 };
1359
1360 /* The routines that read and process dies for a C struct or C++ class
1361 pass lists of data member fields and lists of member function fields
1362 in an instance of a field_info structure, as defined below. */
1363 struct field_info
1364 {
1365 /* List of data member and baseclasses fields. */
1366 std::vector<struct nextfield> fields;
1367 std::vector<struct nextfield> baseclasses;
1368
1369 /* Number of fields (including baseclasses). */
1370 int nfields = 0;
1371
1372 /* Set if the accesibility of one of the fields is not public. */
1373 int non_public_fields = 0;
1374
1375 /* Member function fieldlist array, contains name of possibly overloaded
1376 member function, number of overloaded member functions and a pointer
1377 to the head of the member function field chain. */
1378 std::vector<struct fnfieldlist> fnfieldlists;
1379
1380 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1381 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1382 std::vector<struct decl_field> typedef_field_list;
1383
1384 /* Nested types defined by this class and the number of elements in this
1385 list. */
1386 std::vector<struct decl_field> nested_types_list;
1387 };
1388
1389 /* One item on the queue of compilation units to read in full symbols
1390 for. */
1391 struct dwarf2_queue_item
1392 {
1393 struct dwarf2_per_cu_data *per_cu;
1394 enum language pretend_language;
1395 struct dwarf2_queue_item *next;
1396 };
1397
1398 /* The current queue. */
1399 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1400
1401 /* Loaded secondary compilation units are kept in memory until they
1402 have not been referenced for the processing of this many
1403 compilation units. Set this to zero to disable caching. Cache
1404 sizes of up to at least twenty will improve startup time for
1405 typical inter-CU-reference binaries, at an obvious memory cost. */
1406 static int dwarf_max_cache_age = 5;
1407 static void
1408 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file, _("The upper bound on the age of cached "
1412 "DWARF compilation units is %s.\n"),
1413 value);
1414 }
1415 \f
1416 /* local function prototypes */
1417
1418 static const char *get_section_name (const struct dwarf2_section_info *);
1419
1420 static const char *get_section_file_name (const struct dwarf2_section_info *);
1421
1422 static void dwarf2_find_base_address (struct die_info *die,
1423 struct dwarf2_cu *cu);
1424
1425 static struct partial_symtab *create_partial_symtab
1426 (struct dwarf2_per_cu_data *per_cu, const char *name);
1427
1428 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1429 const gdb_byte *info_ptr,
1430 struct die_info *type_unit_die,
1431 int has_children, void *data);
1432
1433 static void dwarf2_build_psymtabs_hard
1434 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1435
1436 static void scan_partial_symbols (struct partial_die_info *,
1437 CORE_ADDR *, CORE_ADDR *,
1438 int, struct dwarf2_cu *);
1439
1440 static void add_partial_symbol (struct partial_die_info *,
1441 struct dwarf2_cu *);
1442
1443 static void add_partial_namespace (struct partial_die_info *pdi,
1444 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1445 int set_addrmap, struct dwarf2_cu *cu);
1446
1447 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1448 CORE_ADDR *highpc, int set_addrmap,
1449 struct dwarf2_cu *cu);
1450
1451 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1452 struct dwarf2_cu *cu);
1453
1454 static void add_partial_subprogram (struct partial_die_info *pdi,
1455 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1456 int need_pc, struct dwarf2_cu *cu);
1457
1458 static void dwarf2_read_symtab (struct partial_symtab *,
1459 struct objfile *);
1460
1461 static void psymtab_to_symtab_1 (struct partial_symtab *);
1462
1463 static abbrev_table_up abbrev_table_read_table
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1465 sect_offset);
1466
1467 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1468
1469 static struct partial_die_info *load_partial_dies
1470 (const struct die_reader_specs *, const gdb_byte *, int);
1471
1472 static struct partial_die_info *find_partial_die (sect_offset, int,
1473 struct dwarf2_cu *);
1474
1475 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1476 struct attribute *, struct attr_abbrev *,
1477 const gdb_byte *);
1478
1479 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1480
1481 static int read_1_signed_byte (bfd *, const gdb_byte *);
1482
1483 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1484
1485 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1486
1487 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1488
1489 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1490 unsigned int *);
1491
1492 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1493
1494 static LONGEST read_checked_initial_length_and_offset
1495 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1496 unsigned int *, unsigned int *);
1497
1498 static LONGEST read_offset (bfd *, const gdb_byte *,
1499 const struct comp_unit_head *,
1500 unsigned int *);
1501
1502 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1503
1504 static sect_offset read_abbrev_offset
1505 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1506 struct dwarf2_section_info *, sect_offset);
1507
1508 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1509
1510 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1511
1512 static const char *read_indirect_string
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1514 const struct comp_unit_head *, unsigned int *);
1515
1516 static const char *read_indirect_line_string
1517 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1518 const struct comp_unit_head *, unsigned int *);
1519
1520 static const char *read_indirect_string_at_offset
1521 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1522 LONGEST str_offset);
1523
1524 static const char *read_indirect_string_from_dwz
1525 (struct objfile *objfile, struct dwz_file *, LONGEST);
1526
1527 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1530 const gdb_byte *,
1531 unsigned int *);
1532
1533 static const char *read_str_index (const struct die_reader_specs *reader,
1534 ULONGEST str_index);
1535
1536 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1537
1538 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1539 struct dwarf2_cu *);
1540
1541 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1542 unsigned int);
1543
1544 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1545 struct dwarf2_cu *cu);
1546
1547 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1548 struct dwarf2_cu *cu);
1549
1550 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1551
1552 static struct die_info *die_specification (struct die_info *die,
1553 struct dwarf2_cu **);
1554
1555 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1556 struct dwarf2_cu *cu);
1557
1558 static void dwarf_decode_lines (struct line_header *, const char *,
1559 struct dwarf2_cu *, struct partial_symtab *,
1560 CORE_ADDR, int decode_mapping);
1561
1562 static void dwarf2_start_subfile (const char *, const char *);
1563
1564 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1565 const char *, const char *,
1566 CORE_ADDR);
1567
1568 static struct symbol *new_symbol (struct die_info *, struct type *,
1569 struct dwarf2_cu *, struct symbol * = NULL);
1570
1571 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1572 struct dwarf2_cu *);
1573
1574 static void dwarf2_const_value_attr (const struct attribute *attr,
1575 struct type *type,
1576 const char *name,
1577 struct obstack *obstack,
1578 struct dwarf2_cu *cu, LONGEST *value,
1579 const gdb_byte **bytes,
1580 struct dwarf2_locexpr_baton **baton);
1581
1582 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1583
1584 static int need_gnat_info (struct dwarf2_cu *);
1585
1586 static struct type *die_descriptive_type (struct die_info *,
1587 struct dwarf2_cu *);
1588
1589 static void set_descriptive_type (struct type *, struct die_info *,
1590 struct dwarf2_cu *);
1591
1592 static struct type *die_containing_type (struct die_info *,
1593 struct dwarf2_cu *);
1594
1595 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1596 struct dwarf2_cu *);
1597
1598 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1599
1600 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1601
1602 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1603
1604 static char *typename_concat (struct obstack *obs, const char *prefix,
1605 const char *suffix, int physname,
1606 struct dwarf2_cu *cu);
1607
1608 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1613
1614 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1615
1616 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1617
1618 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1621 struct dwarf2_cu *, struct partial_symtab *);
1622
1623 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1624 values. Keep the items ordered with increasing constraints compliance. */
1625 enum pc_bounds_kind
1626 {
1627 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1628 PC_BOUNDS_NOT_PRESENT,
1629
1630 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1631 were present but they do not form a valid range of PC addresses. */
1632 PC_BOUNDS_INVALID,
1633
1634 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1635 PC_BOUNDS_RANGES,
1636
1637 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1638 PC_BOUNDS_HIGH_LOW,
1639 };
1640
1641 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1642 CORE_ADDR *, CORE_ADDR *,
1643 struct dwarf2_cu *,
1644 struct partial_symtab *);
1645
1646 static void get_scope_pc_bounds (struct die_info *,
1647 CORE_ADDR *, CORE_ADDR *,
1648 struct dwarf2_cu *);
1649
1650 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1651 CORE_ADDR, struct dwarf2_cu *);
1652
1653 static void dwarf2_add_field (struct field_info *, struct die_info *,
1654 struct dwarf2_cu *);
1655
1656 static void dwarf2_attach_fields_to_type (struct field_info *,
1657 struct type *, struct dwarf2_cu *);
1658
1659 static void dwarf2_add_member_fn (struct field_info *,
1660 struct die_info *, struct type *,
1661 struct dwarf2_cu *);
1662
1663 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1664 struct type *,
1665 struct dwarf2_cu *);
1666
1667 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1672
1673 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static struct using_direct **using_directives (enum language);
1676
1677 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1678
1679 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1680
1681 static struct type *read_module_type (struct die_info *die,
1682 struct dwarf2_cu *cu);
1683
1684 static const char *namespace_name (struct die_info *die,
1685 int *is_anonymous, struct dwarf2_cu *);
1686
1687 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1688
1689 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1690
1691 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1692 struct dwarf2_cu *);
1693
1694 static struct die_info *read_die_and_siblings_1
1695 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1696 struct die_info *);
1697
1698 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1699 const gdb_byte *info_ptr,
1700 const gdb_byte **new_info_ptr,
1701 struct die_info *parent);
1702
1703 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1704 struct die_info **, const gdb_byte *,
1705 int *, int);
1706
1707 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1708 struct die_info **, const gdb_byte *,
1709 int *);
1710
1711 static void process_die (struct die_info *, struct dwarf2_cu *);
1712
1713 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1714 struct obstack *);
1715
1716 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1717
1718 static const char *dwarf2_full_name (const char *name,
1719 struct die_info *die,
1720 struct dwarf2_cu *cu);
1721
1722 static const char *dwarf2_physname (const char *name, struct die_info *die,
1723 struct dwarf2_cu *cu);
1724
1725 static struct die_info *dwarf2_extension (struct die_info *die,
1726 struct dwarf2_cu **);
1727
1728 static const char *dwarf_tag_name (unsigned int);
1729
1730 static const char *dwarf_attr_name (unsigned int);
1731
1732 static const char *dwarf_form_name (unsigned int);
1733
1734 static const char *dwarf_bool_name (unsigned int);
1735
1736 static const char *dwarf_type_encoding_name (unsigned int);
1737
1738 static struct die_info *sibling_die (struct die_info *);
1739
1740 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1741
1742 static void dump_die_for_error (struct die_info *);
1743
1744 static void dump_die_1 (struct ui_file *, int level, int max_level,
1745 struct die_info *);
1746
1747 /*static*/ void dump_die (struct die_info *, int max_level);
1748
1749 static void store_in_ref_table (struct die_info *,
1750 struct dwarf2_cu *);
1751
1752 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1753
1754 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1755
1756 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1757 const struct attribute *,
1758 struct dwarf2_cu **);
1759
1760 static struct die_info *follow_die_ref (struct die_info *,
1761 const struct attribute *,
1762 struct dwarf2_cu **);
1763
1764 static struct die_info *follow_die_sig (struct die_info *,
1765 const struct attribute *,
1766 struct dwarf2_cu **);
1767
1768 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1769 struct dwarf2_cu *);
1770
1771 static struct type *get_DW_AT_signature_type (struct die_info *,
1772 const struct attribute *,
1773 struct dwarf2_cu *);
1774
1775 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1776
1777 static void read_signatured_type (struct signatured_type *);
1778
1779 static int attr_to_dynamic_prop (const struct attribute *attr,
1780 struct die_info *die, struct dwarf2_cu *cu,
1781 struct dynamic_prop *prop);
1782
1783 /* memory allocation interface */
1784
1785 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1786
1787 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1788
1789 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1790
1791 static int attr_form_is_block (const struct attribute *);
1792
1793 static int attr_form_is_section_offset (const struct attribute *);
1794
1795 static int attr_form_is_constant (const struct attribute *);
1796
1797 static int attr_form_is_ref (const struct attribute *);
1798
1799 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1800 struct dwarf2_loclist_baton *baton,
1801 const struct attribute *attr);
1802
1803 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1804 struct symbol *sym,
1805 struct dwarf2_cu *cu,
1806 int is_block);
1807
1808 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1809 const gdb_byte *info_ptr,
1810 struct abbrev_info *abbrev);
1811
1812 static hashval_t partial_die_hash (const void *item);
1813
1814 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1815
1816 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1817 (sect_offset sect_off, unsigned int offset_in_dwz,
1818 struct dwarf2_per_objfile *dwarf2_per_objfile);
1819
1820 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1821 struct die_info *comp_unit_die,
1822 enum language pretend_language);
1823
1824 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1825
1826 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1827
1828 static struct type *set_die_type (struct die_info *, struct type *,
1829 struct dwarf2_cu *);
1830
1831 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1832
1833 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1834
1835 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
1838 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1839 enum language);
1840
1841 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1842 enum language);
1843
1844 static void dwarf2_add_dependence (struct dwarf2_cu *,
1845 struct dwarf2_per_cu_data *);
1846
1847 static void dwarf2_mark (struct dwarf2_cu *);
1848
1849 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1850
1851 static struct type *get_die_type_at_offset (sect_offset,
1852 struct dwarf2_per_cu_data *);
1853
1854 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1855
1856 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1857 enum language pretend_language);
1858
1859 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 /* Class, the destructor of which frees all allocated queue entries. This
1862 will only have work to do if an error was thrown while processing the
1863 dwarf. If no error was thrown then the queue entries should have all
1864 been processed, and freed, as we went along. */
1865
1866 class dwarf2_queue_guard
1867 {
1868 public:
1869 dwarf2_queue_guard () = default;
1870
1871 /* Free any entries remaining on the queue. There should only be
1872 entries left if we hit an error while processing the dwarf. */
1873 ~dwarf2_queue_guard ()
1874 {
1875 struct dwarf2_queue_item *item, *last;
1876
1877 item = dwarf2_queue;
1878 while (item)
1879 {
1880 /* Anything still marked queued is likely to be in an
1881 inconsistent state, so discard it. */
1882 if (item->per_cu->queued)
1883 {
1884 if (item->per_cu->cu != NULL)
1885 free_one_cached_comp_unit (item->per_cu);
1886 item->per_cu->queued = 0;
1887 }
1888
1889 last = item;
1890 item = item->next;
1891 xfree (last);
1892 }
1893
1894 dwarf2_queue = dwarf2_queue_tail = NULL;
1895 }
1896 };
1897
1898 /* The return type of find_file_and_directory. Note, the enclosed
1899 string pointers are only valid while this object is valid. */
1900
1901 struct file_and_directory
1902 {
1903 /* The filename. This is never NULL. */
1904 const char *name;
1905
1906 /* The compilation directory. NULL if not known. If we needed to
1907 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1908 points directly to the DW_AT_comp_dir string attribute owned by
1909 the obstack that owns the DIE. */
1910 const char *comp_dir;
1911
1912 /* If we needed to build a new string for comp_dir, this is what
1913 owns the storage. */
1914 std::string comp_dir_storage;
1915 };
1916
1917 static file_and_directory find_file_and_directory (struct die_info *die,
1918 struct dwarf2_cu *cu);
1919
1920 static char *file_full_name (int file, struct line_header *lh,
1921 const char *comp_dir);
1922
1923 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1924 enum class rcuh_kind { COMPILE, TYPE };
1925
1926 static const gdb_byte *read_and_check_comp_unit_head
1927 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1928 struct comp_unit_head *header,
1929 struct dwarf2_section_info *section,
1930 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1931 rcuh_kind section_kind);
1932
1933 static void init_cutu_and_read_dies
1934 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1935 int use_existing_cu, int keep,
1936 die_reader_func_ftype *die_reader_func, void *data);
1937
1938 static void init_cutu_and_read_dies_simple
1939 (struct dwarf2_per_cu_data *this_cu,
1940 die_reader_func_ftype *die_reader_func, void *data);
1941
1942 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1943
1944 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1945
1946 static struct dwo_unit *lookup_dwo_unit_in_dwp
1947 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1948 struct dwp_file *dwp_file, const char *comp_dir,
1949 ULONGEST signature, int is_debug_types);
1950
1951 static struct dwp_file *get_dwp_file
1952 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1953
1954 static struct dwo_unit *lookup_dwo_comp_unit
1955 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1956
1957 static struct dwo_unit *lookup_dwo_type_unit
1958 (struct signatured_type *, const char *, const char *);
1959
1960 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1961
1962 static void free_dwo_file (struct dwo_file *);
1963
1964 /* A unique_ptr helper to free a dwo_file. */
1965
1966 struct dwo_file_deleter
1967 {
1968 void operator() (struct dwo_file *df) const
1969 {
1970 free_dwo_file (df);
1971 }
1972 };
1973
1974 /* A unique pointer to a dwo_file. */
1975
1976 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1977
1978 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1979
1980 static void check_producer (struct dwarf2_cu *cu);
1981
1982 static void free_line_header_voidp (void *arg);
1983 \f
1984 /* Various complaints about symbol reading that don't abort the process. */
1985
1986 static void
1987 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1988 {
1989 complaint (&symfile_complaints,
1990 _("statement list doesn't fit in .debug_line section"));
1991 }
1992
1993 static void
1994 dwarf2_debug_line_missing_file_complaint (void)
1995 {
1996 complaint (&symfile_complaints,
1997 _(".debug_line section has line data without a file"));
1998 }
1999
2000 static void
2001 dwarf2_debug_line_missing_end_sequence_complaint (void)
2002 {
2003 complaint (&symfile_complaints,
2004 _(".debug_line section has line "
2005 "program sequence without an end"));
2006 }
2007
2008 static void
2009 dwarf2_complex_location_expr_complaint (void)
2010 {
2011 complaint (&symfile_complaints, _("location expression too complex"));
2012 }
2013
2014 static void
2015 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2016 int arg3)
2017 {
2018 complaint (&symfile_complaints,
2019 _("const value length mismatch for '%s', got %d, expected %d"),
2020 arg1, arg2, arg3);
2021 }
2022
2023 static void
2024 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2025 {
2026 complaint (&symfile_complaints,
2027 _("debug info runs off end of %s section"
2028 " [in module %s]"),
2029 get_section_name (section),
2030 get_section_file_name (section));
2031 }
2032
2033 static void
2034 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2035 {
2036 complaint (&symfile_complaints,
2037 _("macro debug info contains a "
2038 "malformed macro definition:\n`%s'"),
2039 arg1);
2040 }
2041
2042 static void
2043 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2044 {
2045 complaint (&symfile_complaints,
2046 _("invalid attribute class or form for '%s' in '%s'"),
2047 arg1, arg2);
2048 }
2049
2050 /* Hash function for line_header_hash. */
2051
2052 static hashval_t
2053 line_header_hash (const struct line_header *ofs)
2054 {
2055 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2056 }
2057
2058 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2059
2060 static hashval_t
2061 line_header_hash_voidp (const void *item)
2062 {
2063 const struct line_header *ofs = (const struct line_header *) item;
2064
2065 return line_header_hash (ofs);
2066 }
2067
2068 /* Equality function for line_header_hash. */
2069
2070 static int
2071 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2072 {
2073 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2074 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2075
2076 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2077 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2078 }
2079
2080 \f
2081
2082 /* Read the given attribute value as an address, taking the attribute's
2083 form into account. */
2084
2085 static CORE_ADDR
2086 attr_value_as_address (struct attribute *attr)
2087 {
2088 CORE_ADDR addr;
2089
2090 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2091 {
2092 /* Aside from a few clearly defined exceptions, attributes that
2093 contain an address must always be in DW_FORM_addr form.
2094 Unfortunately, some compilers happen to be violating this
2095 requirement by encoding addresses using other forms, such
2096 as DW_FORM_data4 for example. For those broken compilers,
2097 we try to do our best, without any guarantee of success,
2098 to interpret the address correctly. It would also be nice
2099 to generate a complaint, but that would require us to maintain
2100 a list of legitimate cases where a non-address form is allowed,
2101 as well as update callers to pass in at least the CU's DWARF
2102 version. This is more overhead than what we're willing to
2103 expand for a pretty rare case. */
2104 addr = DW_UNSND (attr);
2105 }
2106 else
2107 addr = DW_ADDR (attr);
2108
2109 return addr;
2110 }
2111
2112 /* See declaration. */
2113
2114 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2115 const dwarf2_debug_sections *names)
2116 : objfile (objfile_)
2117 {
2118 if (names == NULL)
2119 names = &dwarf2_elf_names;
2120
2121 bfd *obfd = objfile->obfd;
2122
2123 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2124 locate_sections (obfd, sec, *names);
2125 }
2126
2127 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2128
2129 dwarf2_per_objfile::~dwarf2_per_objfile ()
2130 {
2131 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2132 free_cached_comp_units ();
2133
2134 if (quick_file_names_table)
2135 htab_delete (quick_file_names_table);
2136
2137 if (line_header_hash)
2138 htab_delete (line_header_hash);
2139
2140 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2141 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2142
2143 for (signatured_type *sig_type : all_type_units)
2144 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2145
2146 VEC_free (dwarf2_section_info_def, types);
2147
2148 if (dwo_files != NULL)
2149 free_dwo_files (dwo_files, objfile);
2150 if (dwp_file != NULL)
2151 gdb_bfd_unref (dwp_file->dbfd);
2152
2153 if (dwz_file != NULL && dwz_file->dwz_bfd)
2154 gdb_bfd_unref (dwz_file->dwz_bfd);
2155
2156 if (index_table != NULL)
2157 index_table->~mapped_index ();
2158
2159 /* Everything else should be on the objfile obstack. */
2160 }
2161
2162 /* See declaration. */
2163
2164 void
2165 dwarf2_per_objfile::free_cached_comp_units ()
2166 {
2167 dwarf2_per_cu_data *per_cu = read_in_chain;
2168 dwarf2_per_cu_data **last_chain = &read_in_chain;
2169 while (per_cu != NULL)
2170 {
2171 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2172
2173 delete per_cu->cu;
2174 *last_chain = next_cu;
2175 per_cu = next_cu;
2176 }
2177 }
2178
2179 /* A helper class that calls free_cached_comp_units on
2180 destruction. */
2181
2182 class free_cached_comp_units
2183 {
2184 public:
2185
2186 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2187 : m_per_objfile (per_objfile)
2188 {
2189 }
2190
2191 ~free_cached_comp_units ()
2192 {
2193 m_per_objfile->free_cached_comp_units ();
2194 }
2195
2196 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2197
2198 private:
2199
2200 dwarf2_per_objfile *m_per_objfile;
2201 };
2202
2203 /* Try to locate the sections we need for DWARF 2 debugging
2204 information and return true if we have enough to do something.
2205 NAMES points to the dwarf2 section names, or is NULL if the standard
2206 ELF names are used. */
2207
2208 int
2209 dwarf2_has_info (struct objfile *objfile,
2210 const struct dwarf2_debug_sections *names)
2211 {
2212 if (objfile->flags & OBJF_READNEVER)
2213 return 0;
2214
2215 struct dwarf2_per_objfile *dwarf2_per_objfile
2216 = get_dwarf2_per_objfile (objfile);
2217
2218 if (dwarf2_per_objfile == NULL)
2219 {
2220 /* Initialize per-objfile state. */
2221 dwarf2_per_objfile
2222 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2223 names);
2224 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2225 }
2226 return (!dwarf2_per_objfile->info.is_virtual
2227 && dwarf2_per_objfile->info.s.section != NULL
2228 && !dwarf2_per_objfile->abbrev.is_virtual
2229 && dwarf2_per_objfile->abbrev.s.section != NULL);
2230 }
2231
2232 /* Return the containing section of virtual section SECTION. */
2233
2234 static struct dwarf2_section_info *
2235 get_containing_section (const struct dwarf2_section_info *section)
2236 {
2237 gdb_assert (section->is_virtual);
2238 return section->s.containing_section;
2239 }
2240
2241 /* Return the bfd owner of SECTION. */
2242
2243 static struct bfd *
2244 get_section_bfd_owner (const struct dwarf2_section_info *section)
2245 {
2246 if (section->is_virtual)
2247 {
2248 section = get_containing_section (section);
2249 gdb_assert (!section->is_virtual);
2250 }
2251 return section->s.section->owner;
2252 }
2253
2254 /* Return the bfd section of SECTION.
2255 Returns NULL if the section is not present. */
2256
2257 static asection *
2258 get_section_bfd_section (const struct dwarf2_section_info *section)
2259 {
2260 if (section->is_virtual)
2261 {
2262 section = get_containing_section (section);
2263 gdb_assert (!section->is_virtual);
2264 }
2265 return section->s.section;
2266 }
2267
2268 /* Return the name of SECTION. */
2269
2270 static const char *
2271 get_section_name (const struct dwarf2_section_info *section)
2272 {
2273 asection *sectp = get_section_bfd_section (section);
2274
2275 gdb_assert (sectp != NULL);
2276 return bfd_section_name (get_section_bfd_owner (section), sectp);
2277 }
2278
2279 /* Return the name of the file SECTION is in. */
2280
2281 static const char *
2282 get_section_file_name (const struct dwarf2_section_info *section)
2283 {
2284 bfd *abfd = get_section_bfd_owner (section);
2285
2286 return bfd_get_filename (abfd);
2287 }
2288
2289 /* Return the id of SECTION.
2290 Returns 0 if SECTION doesn't exist. */
2291
2292 static int
2293 get_section_id (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 if (sectp == NULL)
2298 return 0;
2299 return sectp->id;
2300 }
2301
2302 /* Return the flags of SECTION.
2303 SECTION (or containing section if this is a virtual section) must exist. */
2304
2305 static int
2306 get_section_flags (const struct dwarf2_section_info *section)
2307 {
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_get_section_flags (sectp->owner, sectp);
2312 }
2313
2314 /* When loading sections, we look either for uncompressed section or for
2315 compressed section names. */
2316
2317 static int
2318 section_is_p (const char *section_name,
2319 const struct dwarf2_section_names *names)
2320 {
2321 if (names->normal != NULL
2322 && strcmp (section_name, names->normal) == 0)
2323 return 1;
2324 if (names->compressed != NULL
2325 && strcmp (section_name, names->compressed) == 0)
2326 return 1;
2327 return 0;
2328 }
2329
2330 /* See declaration. */
2331
2332 void
2333 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2334 const dwarf2_debug_sections &names)
2335 {
2336 flagword aflag = bfd_get_section_flags (abfd, sectp);
2337
2338 if ((aflag & SEC_HAS_CONTENTS) == 0)
2339 {
2340 }
2341 else if (section_is_p (sectp->name, &names.info))
2342 {
2343 this->info.s.section = sectp;
2344 this->info.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.abbrev))
2347 {
2348 this->abbrev.s.section = sectp;
2349 this->abbrev.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.line))
2352 {
2353 this->line.s.section = sectp;
2354 this->line.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loc))
2357 {
2358 this->loc.s.section = sectp;
2359 this->loc.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.loclists))
2362 {
2363 this->loclists.s.section = sectp;
2364 this->loclists.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macinfo))
2367 {
2368 this->macinfo.s.section = sectp;
2369 this->macinfo.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.macro))
2372 {
2373 this->macro.s.section = sectp;
2374 this->macro.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.str))
2377 {
2378 this->str.s.section = sectp;
2379 this->str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.line_str))
2382 {
2383 this->line_str.s.section = sectp;
2384 this->line_str.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.addr))
2387 {
2388 this->addr.s.section = sectp;
2389 this->addr.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.frame))
2392 {
2393 this->frame.s.section = sectp;
2394 this->frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.eh_frame))
2397 {
2398 this->eh_frame.s.section = sectp;
2399 this->eh_frame.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.ranges))
2402 {
2403 this->ranges.s.section = sectp;
2404 this->ranges.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.rnglists))
2407 {
2408 this->rnglists.s.section = sectp;
2409 this->rnglists.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.types))
2412 {
2413 struct dwarf2_section_info type_section;
2414
2415 memset (&type_section, 0, sizeof (type_section));
2416 type_section.s.section = sectp;
2417 type_section.size = bfd_get_section_size (sectp);
2418
2419 VEC_safe_push (dwarf2_section_info_def, this->types,
2420 &type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_get_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_get_section_size (sectp);
2436 }
2437
2438 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (abfd, sectp) == 0)
2440 this->has_section_at_zero = true;
2441 }
2442
2443 /* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446 static int
2447 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448 {
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452 }
2453
2454 /* See dwarf2read.h. */
2455
2456 void
2457 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458 {
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = 1;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2529 }
2530 }
2531
2532 /* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539 static bfd_size_type
2540 dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542 {
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546 }
2547
2548 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551 void
2552 dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556 {
2557 struct dwarf2_per_objfile *data
2558 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2559 dwarf2_objfile_data_key);
2560 struct dwarf2_section_info *info;
2561
2562 /* We may see an objfile without any DWARF, in which case we just
2563 return nothing. */
2564 if (data == NULL)
2565 {
2566 *sectp = NULL;
2567 *bufp = NULL;
2568 *sizep = 0;
2569 return;
2570 }
2571 switch (sect)
2572 {
2573 case DWARF2_DEBUG_FRAME:
2574 info = &data->frame;
2575 break;
2576 case DWARF2_EH_FRAME:
2577 info = &data->eh_frame;
2578 break;
2579 default:
2580 gdb_assert_not_reached ("unexpected section");
2581 }
2582
2583 dwarf2_read_section (objfile, info);
2584
2585 *sectp = get_section_bfd_section (info);
2586 *bufp = info->buffer;
2587 *sizep = info->size;
2588 }
2589
2590 /* A helper function to find the sections for a .dwz file. */
2591
2592 static void
2593 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2594 {
2595 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2596
2597 /* Note that we only support the standard ELF names, because .dwz
2598 is ELF-only (at the time of writing). */
2599 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2600 {
2601 dwz_file->abbrev.s.section = sectp;
2602 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2603 }
2604 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2605 {
2606 dwz_file->info.s.section = sectp;
2607 dwz_file->info.size = bfd_get_section_size (sectp);
2608 }
2609 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2610 {
2611 dwz_file->str.s.section = sectp;
2612 dwz_file->str.size = bfd_get_section_size (sectp);
2613 }
2614 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2615 {
2616 dwz_file->line.s.section = sectp;
2617 dwz_file->line.size = bfd_get_section_size (sectp);
2618 }
2619 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2620 {
2621 dwz_file->macro.s.section = sectp;
2622 dwz_file->macro.size = bfd_get_section_size (sectp);
2623 }
2624 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2625 {
2626 dwz_file->gdb_index.s.section = sectp;
2627 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2628 }
2629 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2630 {
2631 dwz_file->debug_names.s.section = sectp;
2632 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2633 }
2634 }
2635
2636 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2637 there is no .gnu_debugaltlink section in the file. Error if there
2638 is such a section but the file cannot be found. */
2639
2640 static struct dwz_file *
2641 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2642 {
2643 const char *filename;
2644 struct dwz_file *result;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file;
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.release ();
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2697 struct dwz_file);
2698 result->dwz_bfd = dwz_bfd.release ();
2699
2700 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
2703 dwarf2_per_objfile->dwz_file = result;
2704 return result;
2705 }
2706 \f
2707 /* DWARF quick_symbols_functions support. */
2708
2709 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2710 unique line tables, so we maintain a separate table of all .debug_line
2711 derived entries to support the sharing.
2712 All the quick functions need is the list of file names. We discard the
2713 line_header when we're done and don't need to record it here. */
2714 struct quick_file_names
2715 {
2716 /* The data used to construct the hash key. */
2717 struct stmt_list_hash hash;
2718
2719 /* The number of entries in file_names, real_names. */
2720 unsigned int num_file_names;
2721
2722 /* The file names from the line table, after being run through
2723 file_full_name. */
2724 const char **file_names;
2725
2726 /* The file names from the line table after being run through
2727 gdb_realpath. These are computed lazily. */
2728 const char **real_names;
2729 };
2730
2731 /* When using the index (and thus not using psymtabs), each CU has an
2732 object of this type. This is used to hold information needed by
2733 the various "quick" methods. */
2734 struct dwarf2_per_cu_quick_data
2735 {
2736 /* The file table. This can be NULL if there was no file table
2737 or it's currently not read in.
2738 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2739 struct quick_file_names *file_names;
2740
2741 /* The corresponding symbol table. This is NULL if symbols for this
2742 CU have not yet been read. */
2743 struct compunit_symtab *compunit_symtab;
2744
2745 /* A temporary mark bit used when iterating over all CUs in
2746 expand_symtabs_matching. */
2747 unsigned int mark : 1;
2748
2749 /* True if we've tried to read the file table and found there isn't one.
2750 There will be no point in trying to read it again next time. */
2751 unsigned int no_file_data : 1;
2752 };
2753
2754 /* Utility hash function for a stmt_list_hash. */
2755
2756 static hashval_t
2757 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2758 {
2759 hashval_t v = 0;
2760
2761 if (stmt_list_hash->dwo_unit != NULL)
2762 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2763 v += to_underlying (stmt_list_hash->line_sect_off);
2764 return v;
2765 }
2766
2767 /* Utility equality function for a stmt_list_hash. */
2768
2769 static int
2770 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2771 const struct stmt_list_hash *rhs)
2772 {
2773 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2774 return 0;
2775 if (lhs->dwo_unit != NULL
2776 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2777 return 0;
2778
2779 return lhs->line_sect_off == rhs->line_sect_off;
2780 }
2781
2782 /* Hash function for a quick_file_names. */
2783
2784 static hashval_t
2785 hash_file_name_entry (const void *e)
2786 {
2787 const struct quick_file_names *file_data
2788 = (const struct quick_file_names *) e;
2789
2790 return hash_stmt_list_entry (&file_data->hash);
2791 }
2792
2793 /* Equality function for a quick_file_names. */
2794
2795 static int
2796 eq_file_name_entry (const void *a, const void *b)
2797 {
2798 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2799 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2800
2801 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2802 }
2803
2804 /* Delete function for a quick_file_names. */
2805
2806 static void
2807 delete_file_name_entry (void *e)
2808 {
2809 struct quick_file_names *file_data = (struct quick_file_names *) e;
2810 int i;
2811
2812 for (i = 0; i < file_data->num_file_names; ++i)
2813 {
2814 xfree ((void*) file_data->file_names[i]);
2815 if (file_data->real_names)
2816 xfree ((void*) file_data->real_names[i]);
2817 }
2818
2819 /* The space for the struct itself lives on objfile_obstack,
2820 so we don't free it here. */
2821 }
2822
2823 /* Create a quick_file_names hash table. */
2824
2825 static htab_t
2826 create_quick_file_names_table (unsigned int nr_initial_entries)
2827 {
2828 return htab_create_alloc (nr_initial_entries,
2829 hash_file_name_entry, eq_file_name_entry,
2830 delete_file_name_entry, xcalloc, xfree);
2831 }
2832
2833 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2834 have to be created afterwards. You should call age_cached_comp_units after
2835 processing PER_CU->CU. dw2_setup must have been already called. */
2836
2837 static void
2838 load_cu (struct dwarf2_per_cu_data *per_cu)
2839 {
2840 if (per_cu->is_debug_types)
2841 load_full_type_unit (per_cu);
2842 else
2843 load_full_comp_unit (per_cu, language_minimal);
2844
2845 if (per_cu->cu == NULL)
2846 return; /* Dummy CU. */
2847
2848 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2849 }
2850
2851 /* Read in the symbols for PER_CU. */
2852
2853 static void
2854 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2855 {
2856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2857
2858 /* Skip type_unit_groups, reading the type units they contain
2859 is handled elsewhere. */
2860 if (IS_TYPE_UNIT_GROUP (per_cu))
2861 return;
2862
2863 /* The destructor of dwarf2_queue_guard frees any entries left on
2864 the queue. After this point we're guaranteed to leave this function
2865 with the dwarf queue empty. */
2866 dwarf2_queue_guard q_guard;
2867
2868 if (dwarf2_per_objfile->using_index
2869 ? per_cu->v.quick->compunit_symtab == NULL
2870 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2871 {
2872 queue_comp_unit (per_cu, language_minimal);
2873 load_cu (per_cu);
2874
2875 /* If we just loaded a CU from a DWO, and we're working with an index
2876 that may badly handle TUs, load all the TUs in that DWO as well.
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2878 if (!per_cu->is_debug_types
2879 && per_cu->cu != NULL
2880 && per_cu->cu->dwo_unit != NULL
2881 && dwarf2_per_objfile->index_table != NULL
2882 && dwarf2_per_objfile->index_table->version <= 7
2883 /* DWP files aren't supported yet. */
2884 && get_dwp_file (dwarf2_per_objfile) == NULL)
2885 queue_and_load_all_dwo_tus (per_cu);
2886 }
2887
2888 process_queue (dwarf2_per_objfile);
2889
2890 /* Age the cache, releasing compilation units that have not
2891 been used recently. */
2892 age_cached_comp_units (dwarf2_per_objfile);
2893 }
2894
2895 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2896 the objfile from which this CU came. Returns the resulting symbol
2897 table. */
2898
2899 static struct compunit_symtab *
2900 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2901 {
2902 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2903
2904 gdb_assert (dwarf2_per_objfile->using_index);
2905 if (!per_cu->v.quick->compunit_symtab)
2906 {
2907 free_cached_comp_units freer (dwarf2_per_objfile);
2908 scoped_restore decrementer = increment_reading_symtab ();
2909 dw2_do_instantiate_symtab (per_cu);
2910 process_cu_includes (dwarf2_per_objfile);
2911 }
2912
2913 return per_cu->v.quick->compunit_symtab;
2914 }
2915
2916 /* See declaration. */
2917
2918 dwarf2_per_cu_data *
2919 dwarf2_per_objfile::get_cutu (int index)
2920 {
2921 if (index >= this->all_comp_units.size ())
2922 {
2923 index -= this->all_comp_units.size ();
2924 gdb_assert (index < this->all_type_units.size ());
2925 return &this->all_type_units[index]->per_cu;
2926 }
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 dwarf2_per_cu_data *
2934 dwarf2_per_objfile::get_cu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2937
2938 return this->all_comp_units[index];
2939 }
2940
2941 /* See declaration. */
2942
2943 signatured_type *
2944 dwarf2_per_objfile::get_tu (int index)
2945 {
2946 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2947
2948 return this->all_type_units[index];
2949 }
2950
2951 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2952 objfile_obstack, and constructed with the specified field
2953 values. */
2954
2955 static dwarf2_per_cu_data *
2956 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2957 struct dwarf2_section_info *section,
2958 int is_dwz,
2959 sect_offset sect_off, ULONGEST length)
2960 {
2961 struct objfile *objfile = dwarf2_per_objfile->objfile;
2962 dwarf2_per_cu_data *the_cu
2963 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_data);
2965 the_cu->sect_off = sect_off;
2966 the_cu->length = length;
2967 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2968 the_cu->section = section;
2969 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_quick_data);
2971 the_cu->is_dwz = is_dwz;
2972 return the_cu;
2973 }
2974
2975 /* A helper for create_cus_from_index that handles a given list of
2976 CUs. */
2977
2978 static void
2979 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2980 const gdb_byte *cu_list, offset_type n_elements,
2981 struct dwarf2_section_info *section,
2982 int is_dwz)
2983 {
2984 for (offset_type i = 0; i < n_elements; i += 2)
2985 {
2986 gdb_static_assert (sizeof (ULONGEST) >= 8);
2987
2988 sect_offset sect_off
2989 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2990 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2991 cu_list += 2 * 8;
2992
2993 dwarf2_per_cu_data *per_cu
2994 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2995 sect_off, length);
2996 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2997 }
2998 }
2999
3000 /* Read the CU list from the mapped index, and use it to create all
3001 the CU objects for this objfile. */
3002
3003 static void
3004 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3005 const gdb_byte *cu_list, offset_type cu_list_elements,
3006 const gdb_byte *dwz_list, offset_type dwz_elements)
3007 {
3008 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3009 dwarf2_per_objfile->all_comp_units.reserve
3010 ((cu_list_elements + dwz_elements) / 2);
3011
3012 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3013 &dwarf2_per_objfile->info, 0);
3014
3015 if (dwz_elements == 0)
3016 return;
3017
3018 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3019 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3020 &dwz->info, 1);
3021 }
3022
3023 /* Create the signatured type hash table from the index. */
3024
3025 static void
3026 create_signatured_type_table_from_index
3027 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3028 struct dwarf2_section_info *section,
3029 const gdb_byte *bytes,
3030 offset_type elements)
3031 {
3032 struct objfile *objfile = dwarf2_per_objfile->objfile;
3033
3034 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3035 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3036
3037 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3038
3039 for (offset_type i = 0; i < elements; i += 3)
3040 {
3041 struct signatured_type *sig_type;
3042 ULONGEST signature;
3043 void **slot;
3044 cu_offset type_offset_in_tu;
3045
3046 gdb_static_assert (sizeof (ULONGEST) >= 8);
3047 sect_offset sect_off
3048 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3049 type_offset_in_tu
3050 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3051 BFD_ENDIAN_LITTLE);
3052 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3053 bytes += 3 * 8;
3054
3055 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3056 struct signatured_type);
3057 sig_type->signature = signature;
3058 sig_type->type_offset_in_tu = type_offset_in_tu;
3059 sig_type->per_cu.is_debug_types = 1;
3060 sig_type->per_cu.section = section;
3061 sig_type->per_cu.sect_off = sect_off;
3062 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3063 sig_type->per_cu.v.quick
3064 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3065 struct dwarf2_per_cu_quick_data);
3066
3067 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3068 *slot = sig_type;
3069
3070 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3071 }
3072
3073 dwarf2_per_objfile->signatured_types = sig_types_hash;
3074 }
3075
3076 /* Create the signatured type hash table from .debug_names. */
3077
3078 static void
3079 create_signatured_type_table_from_debug_names
3080 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3081 const mapped_debug_names &map,
3082 struct dwarf2_section_info *section,
3083 struct dwarf2_section_info *abbrev_section)
3084 {
3085 struct objfile *objfile = dwarf2_per_objfile->objfile;
3086
3087 dwarf2_read_section (objfile, section);
3088 dwarf2_read_section (objfile, abbrev_section);
3089
3090 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3091 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3092
3093 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3094
3095 for (uint32_t i = 0; i < map.tu_count; ++i)
3096 {
3097 struct signatured_type *sig_type;
3098 void **slot;
3099
3100 sect_offset sect_off
3101 = (sect_offset) (extract_unsigned_integer
3102 (map.tu_table_reordered + i * map.offset_size,
3103 map.offset_size,
3104 map.dwarf5_byte_order));
3105
3106 comp_unit_head cu_header;
3107 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3108 abbrev_section,
3109 section->buffer + to_underlying (sect_off),
3110 rcuh_kind::TYPE);
3111
3112 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3113 struct signatured_type);
3114 sig_type->signature = cu_header.signature;
3115 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3116 sig_type->per_cu.is_debug_types = 1;
3117 sig_type->per_cu.section = section;
3118 sig_type->per_cu.sect_off = sect_off;
3119 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3120 sig_type->per_cu.v.quick
3121 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3122 struct dwarf2_per_cu_quick_data);
3123
3124 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3125 *slot = sig_type;
3126
3127 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3128 }
3129
3130 dwarf2_per_objfile->signatured_types = sig_types_hash;
3131 }
3132
3133 /* Read the address map data from the mapped index, and use it to
3134 populate the objfile's psymtabs_addrmap. */
3135
3136 static void
3137 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3138 struct mapped_index *index)
3139 {
3140 struct objfile *objfile = dwarf2_per_objfile->objfile;
3141 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3142 const gdb_byte *iter, *end;
3143 struct addrmap *mutable_map;
3144 CORE_ADDR baseaddr;
3145
3146 auto_obstack temp_obstack;
3147
3148 mutable_map = addrmap_create_mutable (&temp_obstack);
3149
3150 iter = index->address_table.data ();
3151 end = iter + index->address_table.size ();
3152
3153 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3154
3155 while (iter < end)
3156 {
3157 ULONGEST hi, lo, cu_index;
3158 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3159 iter += 8;
3160 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3161 iter += 8;
3162 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3163 iter += 4;
3164
3165 if (lo > hi)
3166 {
3167 complaint (&symfile_complaints,
3168 _(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (&symfile_complaints,
3176 _(".gdb_index address table has invalid CU number %u"),
3177 (unsigned) cu_index);
3178 continue;
3179 }
3180
3181 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3182 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3183 addrmap_set_empty (mutable_map, lo, hi - 1,
3184 dwarf2_per_objfile->get_cu (cu_index));
3185 }
3186
3187 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3188 &objfile->objfile_obstack);
3189 }
3190
3191 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3192 populate the objfile's psymtabs_addrmap. */
3193
3194 static void
3195 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3196 struct dwarf2_section_info *section)
3197 {
3198 struct objfile *objfile = dwarf2_per_objfile->objfile;
3199 bfd *abfd = objfile->obfd;
3200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3201 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3202 SECT_OFF_TEXT (objfile));
3203
3204 auto_obstack temp_obstack;
3205 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3206
3207 std::unordered_map<sect_offset,
3208 dwarf2_per_cu_data *,
3209 gdb::hash_enum<sect_offset>>
3210 debug_info_offset_to_per_cu;
3211 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3212 {
3213 const auto insertpair
3214 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3215 if (!insertpair.second)
3216 {
3217 warning (_("Section .debug_aranges in %s has duplicate "
3218 "debug_info_offset %s, ignoring .debug_aranges."),
3219 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3220 return;
3221 }
3222 }
3223
3224 dwarf2_read_section (objfile, section);
3225
3226 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3227
3228 const gdb_byte *addr = section->buffer;
3229
3230 while (addr < section->buffer + section->size)
3231 {
3232 const gdb_byte *const entry_addr = addr;
3233 unsigned int bytes_read;
3234
3235 const LONGEST entry_length = read_initial_length (abfd, addr,
3236 &bytes_read);
3237 addr += bytes_read;
3238
3239 const gdb_byte *const entry_end = addr + entry_length;
3240 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3241 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3242 if (addr + entry_length > section->buffer + section->size)
3243 {
3244 warning (_("Section .debug_aranges in %s entry at offset %zu "
3245 "length %s exceeds section length %s, "
3246 "ignoring .debug_aranges."),
3247 objfile_name (objfile), entry_addr - section->buffer,
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %zu "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile), entry_addr - section->buffer,
3261 version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile), entry_addr - section->buffer,
3276 pulongest (debug_info_offset));
3277 return;
3278 }
3279 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3280
3281 const uint8_t address_size = *addr++;
3282 if (address_size < 1 || address_size > 8)
3283 {
3284 warning (_("Section .debug_aranges in %s entry at offset %zu "
3285 "address_size %u is invalid, ignoring .debug_aranges."),
3286 objfile_name (objfile), entry_addr - section->buffer,
3287 address_size);
3288 return;
3289 }
3290
3291 const uint8_t segment_selector_size = *addr++;
3292 if (segment_selector_size != 0)
3293 {
3294 warning (_("Section .debug_aranges in %s entry at offset %zu "
3295 "segment_selector_size %u is not supported, "
3296 "ignoring .debug_aranges."),
3297 objfile_name (objfile), entry_addr - section->buffer,
3298 segment_selector_size);
3299 return;
3300 }
3301
3302 /* Must pad to an alignment boundary that is twice the address
3303 size. It is undocumented by the DWARF standard but GCC does
3304 use it. */
3305 for (size_t padding = ((-(addr - section->buffer))
3306 & (2 * address_size - 1));
3307 padding > 0; padding--)
3308 if (*addr++ != 0)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "padding is not zero, ignoring .debug_aranges."),
3312 objfile_name (objfile), entry_addr - section->buffer);
3313 return;
3314 }
3315
3316 for (;;)
3317 {
3318 if (addr + 2 * address_size > entry_end)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %zu "
3321 "address list is not properly terminated, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile), entry_addr - section->buffer);
3324 return;
3325 }
3326 ULONGEST start = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 ULONGEST length = extract_unsigned_integer (addr, address_size,
3330 dwarf5_byte_order);
3331 addr += address_size;
3332 if (start == 0 && length == 0)
3333 break;
3334 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3335 {
3336 /* Symbol was eliminated due to a COMDAT group. */
3337 continue;
3338 }
3339 ULONGEST end = start + length;
3340 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3341 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3342 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3343 }
3344 }
3345
3346 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3347 &objfile->objfile_obstack);
3348 }
3349
3350 /* Find a slot in the mapped index INDEX for the object named NAME.
3351 If NAME is found, set *VEC_OUT to point to the CU vector in the
3352 constant pool and return true. If NAME cannot be found, return
3353 false. */
3354
3355 static bool
3356 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3357 offset_type **vec_out)
3358 {
3359 offset_type hash;
3360 offset_type slot, step;
3361 int (*cmp) (const char *, const char *);
3362
3363 gdb::unique_xmalloc_ptr<char> without_params;
3364 if (current_language->la_language == language_cplus
3365 || current_language->la_language == language_fortran
3366 || current_language->la_language == language_d)
3367 {
3368 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3369 not contain any. */
3370
3371 if (strchr (name, '(') != NULL)
3372 {
3373 without_params = cp_remove_params (name);
3374
3375 if (without_params != NULL)
3376 name = without_params.get ();
3377 }
3378 }
3379
3380 /* Index version 4 did not support case insensitive searches. But the
3381 indices for case insensitive languages are built in lowercase, therefore
3382 simulate our NAME being searched is also lowercased. */
3383 hash = mapped_index_string_hash ((index->version == 4
3384 && case_sensitivity == case_sensitive_off
3385 ? 5 : index->version),
3386 name);
3387
3388 slot = hash & (index->symbol_table.size () - 1);
3389 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3390 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3391
3392 for (;;)
3393 {
3394 const char *str;
3395
3396 const auto &bucket = index->symbol_table[slot];
3397 if (bucket.name == 0 && bucket.vec == 0)
3398 return false;
3399
3400 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3401 if (!cmp (name, str))
3402 {
3403 *vec_out = (offset_type *) (index->constant_pool
3404 + MAYBE_SWAP (bucket.vec));
3405 return true;
3406 }
3407
3408 slot = (slot + step) & (index->symbol_table.size () - 1);
3409 }
3410 }
3411
3412 /* A helper function that reads the .gdb_index from SECTION and fills
3413 in MAP. FILENAME is the name of the file containing the section;
3414 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3415 ok to use deprecated sections.
3416
3417 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3418 out parameters that are filled in with information about the CU and
3419 TU lists in the section.
3420
3421 Returns 1 if all went well, 0 otherwise. */
3422
3423 static int
3424 read_index_from_section (struct objfile *objfile,
3425 const char *filename,
3426 int deprecated_ok,
3427 struct dwarf2_section_info *section,
3428 struct mapped_index *map,
3429 const gdb_byte **cu_list,
3430 offset_type *cu_list_elements,
3431 const gdb_byte **types_list,
3432 offset_type *types_list_elements)
3433 {
3434 const gdb_byte *addr;
3435 offset_type version;
3436 offset_type *metadata;
3437 int i;
3438
3439 if (dwarf2_section_empty_p (section))
3440 return 0;
3441
3442 /* Older elfutils strip versions could keep the section in the main
3443 executable while splitting it for the separate debug info file. */
3444 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3445 return 0;
3446
3447 dwarf2_read_section (objfile, section);
3448
3449 addr = section->buffer;
3450 /* Version check. */
3451 version = MAYBE_SWAP (*(offset_type *) addr);
3452 /* Versions earlier than 3 emitted every copy of a psymbol. This
3453 causes the index to behave very poorly for certain requests. Version 3
3454 contained incomplete addrmap. So, it seems better to just ignore such
3455 indices. */
3456 if (version < 4)
3457 {
3458 static int warning_printed = 0;
3459 if (!warning_printed)
3460 {
3461 warning (_("Skipping obsolete .gdb_index section in %s."),
3462 filename);
3463 warning_printed = 1;
3464 }
3465 return 0;
3466 }
3467 /* Index version 4 uses a different hash function than index version
3468 5 and later.
3469
3470 Versions earlier than 6 did not emit psymbols for inlined
3471 functions. Using these files will cause GDB not to be able to
3472 set breakpoints on inlined functions by name, so we ignore these
3473 indices unless the user has done
3474 "set use-deprecated-index-sections on". */
3475 if (version < 6 && !deprecated_ok)
3476 {
3477 static int warning_printed = 0;
3478 if (!warning_printed)
3479 {
3480 warning (_("\
3481 Skipping deprecated .gdb_index section in %s.\n\
3482 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3483 to use the section anyway."),
3484 filename);
3485 warning_printed = 1;
3486 }
3487 return 0;
3488 }
3489 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3490 of the TU (for symbols coming from TUs),
3491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3492 Plus gold-generated indices can have duplicate entries for global symbols,
3493 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3494 These are just performance bugs, and we can't distinguish gdb-generated
3495 indices from gold-generated ones, so issue no warning here. */
3496
3497 /* Indexes with higher version than the one supported by GDB may be no
3498 longer backward compatible. */
3499 if (version > 8)
3500 return 0;
3501
3502 map->version = version;
3503 map->total_size = section->size;
3504
3505 metadata = (offset_type *) (addr + sizeof (offset_type));
3506
3507 i = 0;
3508 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3509 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3510 / 8);
3511 ++i;
3512
3513 *types_list = addr + MAYBE_SWAP (metadata[i]);
3514 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3515 - MAYBE_SWAP (metadata[i]))
3516 / 8);
3517 ++i;
3518
3519 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3520 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3521 map->address_table
3522 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3523 ++i;
3524
3525 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3526 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3527 map->symbol_table
3528 = gdb::array_view<mapped_index::symbol_table_slot>
3529 ((mapped_index::symbol_table_slot *) symbol_table,
3530 (mapped_index::symbol_table_slot *) symbol_table_end);
3531
3532 ++i;
3533 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3534
3535 return 1;
3536 }
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_index (struct dwarf2_per_objfile *dwarf2_per_objfile)
3543 {
3544 struct mapped_index local_map, *map;
3545 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3546 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3547 struct dwz_file *dwz;
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549
3550 if (!read_index_from_section (objfile, objfile_name (objfile),
3551 use_deprecated_index_sections,
3552 &dwarf2_per_objfile->gdb_index, &local_map,
3553 &cu_list, &cu_list_elements,
3554 &types_list, &types_list_elements))
3555 return 0;
3556
3557 /* Don't use the index if it's empty. */
3558 if (local_map.symbol_table.empty ())
3559 return 0;
3560
3561 /* If there is a .dwz file, read it so we can get its CU list as
3562 well. */
3563 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3564 if (dwz != NULL)
3565 {
3566 struct mapped_index dwz_map;
3567 const gdb_byte *dwz_types_ignore;
3568 offset_type dwz_types_elements_ignore;
3569
3570 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3571 1,
3572 &dwz->gdb_index, &dwz_map,
3573 &dwz_list, &dwz_list_elements,
3574 &dwz_types_ignore,
3575 &dwz_types_elements_ignore))
3576 {
3577 warning (_("could not read '.gdb_index' section from %s; skipping"),
3578 bfd_get_filename (dwz->dwz_bfd));
3579 return 0;
3580 }
3581 }
3582
3583 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3584 dwz_list, dwz_list_elements);
3585
3586 if (types_list_elements)
3587 {
3588 struct dwarf2_section_info *section;
3589
3590 /* We can only handle a single .debug_types when we have an
3591 index. */
3592 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3593 return 0;
3594
3595 section = VEC_index (dwarf2_section_info_def,
3596 dwarf2_per_objfile->types, 0);
3597
3598 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3599 types_list, types_list_elements);
3600 }
3601
3602 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
3603
3604 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
3605 map = new (map) mapped_index ();
3606 *map = local_map;
3607
3608 dwarf2_per_objfile->index_table = map;
3609 dwarf2_per_objfile->using_index = 1;
3610 dwarf2_per_objfile->quick_file_names_table =
3611 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3612
3613 return 1;
3614 }
3615
3616 /* die_reader_func for dw2_get_file_names. */
3617
3618 static void
3619 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3620 const gdb_byte *info_ptr,
3621 struct die_info *comp_unit_die,
3622 int has_children,
3623 void *data)
3624 {
3625 struct dwarf2_cu *cu = reader->cu;
3626 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3627 struct dwarf2_per_objfile *dwarf2_per_objfile
3628 = cu->per_cu->dwarf2_per_objfile;
3629 struct objfile *objfile = dwarf2_per_objfile->objfile;
3630 struct dwarf2_per_cu_data *lh_cu;
3631 struct attribute *attr;
3632 int i;
3633 void **slot;
3634 struct quick_file_names *qfn;
3635
3636 gdb_assert (! this_cu->is_debug_types);
3637
3638 /* Our callers never want to match partial units -- instead they
3639 will match the enclosing full CU. */
3640 if (comp_unit_die->tag == DW_TAG_partial_unit)
3641 {
3642 this_cu->v.quick->no_file_data = 1;
3643 return;
3644 }
3645
3646 lh_cu = this_cu;
3647 slot = NULL;
3648
3649 line_header_up lh;
3650 sect_offset line_offset {};
3651
3652 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3653 if (attr)
3654 {
3655 struct quick_file_names find_entry;
3656
3657 line_offset = (sect_offset) DW_UNSND (attr);
3658
3659 /* We may have already read in this line header (TU line header sharing).
3660 If we have we're done. */
3661 find_entry.hash.dwo_unit = cu->dwo_unit;
3662 find_entry.hash.line_sect_off = line_offset;
3663 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3664 &find_entry, INSERT);
3665 if (*slot != NULL)
3666 {
3667 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3668 return;
3669 }
3670
3671 lh = dwarf_decode_line_header (line_offset, cu);
3672 }
3673 if (lh == NULL)
3674 {
3675 lh_cu->v.quick->no_file_data = 1;
3676 return;
3677 }
3678
3679 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3680 qfn->hash.dwo_unit = cu->dwo_unit;
3681 qfn->hash.line_sect_off = line_offset;
3682 gdb_assert (slot != NULL);
3683 *slot = qfn;
3684
3685 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3686
3687 qfn->num_file_names = lh->file_names.size ();
3688 qfn->file_names =
3689 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3690 for (i = 0; i < lh->file_names.size (); ++i)
3691 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3692 qfn->real_names = NULL;
3693
3694 lh_cu->v.quick->file_names = qfn;
3695 }
3696
3697 /* A helper for the "quick" functions which attempts to read the line
3698 table for THIS_CU. */
3699
3700 static struct quick_file_names *
3701 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3702 {
3703 /* This should never be called for TUs. */
3704 gdb_assert (! this_cu->is_debug_types);
3705 /* Nor type unit groups. */
3706 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3707
3708 if (this_cu->v.quick->file_names != NULL)
3709 return this_cu->v.quick->file_names;
3710 /* If we know there is no line data, no point in looking again. */
3711 if (this_cu->v.quick->no_file_data)
3712 return NULL;
3713
3714 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3715
3716 if (this_cu->v.quick->no_file_data)
3717 return NULL;
3718 return this_cu->v.quick->file_names;
3719 }
3720
3721 /* A helper for the "quick" functions which computes and caches the
3722 real path for a given file name from the line table. */
3723
3724 static const char *
3725 dw2_get_real_path (struct objfile *objfile,
3726 struct quick_file_names *qfn, int index)
3727 {
3728 if (qfn->real_names == NULL)
3729 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3730 qfn->num_file_names, const char *);
3731
3732 if (qfn->real_names[index] == NULL)
3733 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3734
3735 return qfn->real_names[index];
3736 }
3737
3738 static struct symtab *
3739 dw2_find_last_source_symtab (struct objfile *objfile)
3740 {
3741 struct dwarf2_per_objfile *dwarf2_per_objfile
3742 = get_dwarf2_per_objfile (objfile);
3743 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3744 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
3745
3746 if (cust == NULL)
3747 return NULL;
3748
3749 return compunit_primary_filetab (cust);
3750 }
3751
3752 /* Traversal function for dw2_forget_cached_source_info. */
3753
3754 static int
3755 dw2_free_cached_file_names (void **slot, void *info)
3756 {
3757 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3758
3759 if (file_data->real_names)
3760 {
3761 int i;
3762
3763 for (i = 0; i < file_data->num_file_names; ++i)
3764 {
3765 xfree ((void*) file_data->real_names[i]);
3766 file_data->real_names[i] = NULL;
3767 }
3768 }
3769
3770 return 1;
3771 }
3772
3773 static void
3774 dw2_forget_cached_source_info (struct objfile *objfile)
3775 {
3776 struct dwarf2_per_objfile *dwarf2_per_objfile
3777 = get_dwarf2_per_objfile (objfile);
3778
3779 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3780 dw2_free_cached_file_names, NULL);
3781 }
3782
3783 /* Helper function for dw2_map_symtabs_matching_filename that expands
3784 the symtabs and calls the iterator. */
3785
3786 static int
3787 dw2_map_expand_apply (struct objfile *objfile,
3788 struct dwarf2_per_cu_data *per_cu,
3789 const char *name, const char *real_path,
3790 gdb::function_view<bool (symtab *)> callback)
3791 {
3792 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3793
3794 /* Don't visit already-expanded CUs. */
3795 if (per_cu->v.quick->compunit_symtab)
3796 return 0;
3797
3798 /* This may expand more than one symtab, and we want to iterate over
3799 all of them. */
3800 dw2_instantiate_symtab (per_cu);
3801
3802 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3803 last_made, callback);
3804 }
3805
3806 /* Implementation of the map_symtabs_matching_filename method. */
3807
3808 static bool
3809 dw2_map_symtabs_matching_filename
3810 (struct objfile *objfile, const char *name, const char *real_path,
3811 gdb::function_view<bool (symtab *)> callback)
3812 {
3813 const char *name_basename = lbasename (name);
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 /* The rule is CUs specify all the files, including those used by
3818 any TU, so there's no need to scan TUs here. */
3819
3820 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3821 {
3822 /* We only need to look at symtabs not already expanded. */
3823 if (per_cu->v.quick->compunit_symtab)
3824 continue;
3825
3826 quick_file_names *file_data = dw2_get_file_names (per_cu);
3827 if (file_data == NULL)
3828 continue;
3829
3830 for (int j = 0; j < file_data->num_file_names; ++j)
3831 {
3832 const char *this_name = file_data->file_names[j];
3833 const char *this_real_name;
3834
3835 if (compare_filenames_for_search (this_name, name))
3836 {
3837 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3838 callback))
3839 return true;
3840 continue;
3841 }
3842
3843 /* Before we invoke realpath, which can get expensive when many
3844 files are involved, do a quick comparison of the basenames. */
3845 if (! basenames_may_differ
3846 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3847 continue;
3848
3849 this_real_name = dw2_get_real_path (objfile, file_data, j);
3850 if (compare_filenames_for_search (this_real_name, name))
3851 {
3852 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3853 callback))
3854 return true;
3855 continue;
3856 }
3857
3858 if (real_path != NULL)
3859 {
3860 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3861 gdb_assert (IS_ABSOLUTE_PATH (name));
3862 if (this_real_name != NULL
3863 && FILENAME_CMP (real_path, this_real_name) == 0)
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870 }
3871 }
3872 }
3873
3874 return false;
3875 }
3876
3877 /* Struct used to manage iterating over all CUs looking for a symbol. */
3878
3879 struct dw2_symtab_iterator
3880 {
3881 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3882 struct dwarf2_per_objfile *dwarf2_per_objfile;
3883 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3884 int want_specific_block;
3885 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3886 Unused if !WANT_SPECIFIC_BLOCK. */
3887 int block_index;
3888 /* The kind of symbol we're looking for. */
3889 domain_enum domain;
3890 /* The list of CUs from the index entry of the symbol,
3891 or NULL if not found. */
3892 offset_type *vec;
3893 /* The next element in VEC to look at. */
3894 int next;
3895 /* The number of elements in VEC, or zero if there is no match. */
3896 int length;
3897 /* Have we seen a global version of the symbol?
3898 If so we can ignore all further global instances.
3899 This is to work around gold/15646, inefficient gold-generated
3900 indices. */
3901 int global_seen;
3902 };
3903
3904 /* Initialize the index symtab iterator ITER.
3905 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3906 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3907
3908 static void
3909 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3910 struct dwarf2_per_objfile *dwarf2_per_objfile,
3911 int want_specific_block,
3912 int block_index,
3913 domain_enum domain,
3914 const char *name)
3915 {
3916 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3917 iter->want_specific_block = want_specific_block;
3918 iter->block_index = block_index;
3919 iter->domain = domain;
3920 iter->next = 0;
3921 iter->global_seen = 0;
3922
3923 mapped_index *index = dwarf2_per_objfile->index_table;
3924
3925 /* index is NULL if OBJF_READNOW. */
3926 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3927 iter->length = MAYBE_SWAP (*iter->vec);
3928 else
3929 {
3930 iter->vec = NULL;
3931 iter->length = 0;
3932 }
3933 }
3934
3935 /* Return the next matching CU or NULL if there are no more. */
3936
3937 static struct dwarf2_per_cu_data *
3938 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3939 {
3940 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3941
3942 for ( ; iter->next < iter->length; ++iter->next)
3943 {
3944 offset_type cu_index_and_attrs =
3945 MAYBE_SWAP (iter->vec[iter->next + 1]);
3946 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3947 int want_static = iter->block_index != GLOBAL_BLOCK;
3948 /* This value is only valid for index versions >= 7. */
3949 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (&symfile_complaints,
3965 _(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020 }
4021
4022 static struct compunit_symtab *
4023 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025 {
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063 }
4064
4065 static void
4066 dw2_print_stats (struct objfile *objfile)
4067 {
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083 }
4084
4085 /* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090 static void
4091 dw2_dump (struct objfile *objfile)
4092 {
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106 }
4107
4108 static void
4109 dw2_relocate (struct objfile *objfile,
4110 const struct section_offsets *new_offsets,
4111 const struct section_offsets *delta)
4112 {
4113 /* There's nothing to relocate here. */
4114 }
4115
4116 static void
4117 dw2_expand_symtabs_for_function (struct objfile *objfile,
4118 const char *func_name)
4119 {
4120 struct dwarf2_per_objfile *dwarf2_per_objfile
4121 = get_dwarf2_per_objfile (objfile);
4122
4123 struct dw2_symtab_iterator iter;
4124 struct dwarf2_per_cu_data *per_cu;
4125
4126 /* Note: It doesn't matter what we pass for block_index here. */
4127 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4128 func_name);
4129
4130 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4131 dw2_instantiate_symtab (per_cu);
4132
4133 }
4134
4135 static void
4136 dw2_expand_all_symtabs (struct objfile *objfile)
4137 {
4138 struct dwarf2_per_objfile *dwarf2_per_objfile
4139 = get_dwarf2_per_objfile (objfile);
4140 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4141 + dwarf2_per_objfile->all_type_units.size ());
4142
4143 for (int i = 0; i < total_units; ++i)
4144 {
4145 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4146
4147 dw2_instantiate_symtab (per_cu);
4148 }
4149 }
4150
4151 static void
4152 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4153 const char *fullname)
4154 {
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 /* We don't need to consider type units here.
4159 This is only called for examining code, e.g. expand_line_sal.
4160 There can be an order of magnitude (or more) more type units
4161 than comp units, and we avoid them if we can. */
4162
4163 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4164 {
4165 /* We only need to look at symtabs not already expanded. */
4166 if (per_cu->v.quick->compunit_symtab)
4167 continue;
4168
4169 quick_file_names *file_data = dw2_get_file_names (per_cu);
4170 if (file_data == NULL)
4171 continue;
4172
4173 for (int j = 0; j < file_data->num_file_names; ++j)
4174 {
4175 const char *this_fullname = file_data->file_names[j];
4176
4177 if (filename_cmp (this_fullname, fullname) == 0)
4178 {
4179 dw2_instantiate_symtab (per_cu);
4180 break;
4181 }
4182 }
4183 }
4184 }
4185
4186 static void
4187 dw2_map_matching_symbols (struct objfile *objfile,
4188 const char * name, domain_enum domain,
4189 int global,
4190 int (*callback) (struct block *,
4191 struct symbol *, void *),
4192 void *data, symbol_name_match_type match,
4193 symbol_compare_ftype *ordered_compare)
4194 {
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198 }
4199
4200 /* Symbol name matcher for .gdb_index names.
4201
4202 Symbol names in .gdb_index have a few particularities:
4203
4204 - There's no indication of which is the language of each symbol.
4205
4206 Since each language has its own symbol name matching algorithm,
4207 and we don't know which language is the right one, we must match
4208 each symbol against all languages. This would be a potential
4209 performance problem if it were not mitigated by the
4210 mapped_index::name_components lookup table, which significantly
4211 reduces the number of times we need to call into this matcher,
4212 making it a non-issue.
4213
4214 - Symbol names in the index have no overload (parameter)
4215 information. I.e., in C++, "foo(int)" and "foo(long)" both
4216 appear as "foo" in the index, for example.
4217
4218 This means that the lookup names passed to the symbol name
4219 matcher functions must have no parameter information either
4220 because (e.g.) symbol search name "foo" does not match
4221 lookup-name "foo(int)" [while swapping search name for lookup
4222 name would match].
4223 */
4224 class gdb_index_symbol_name_matcher
4225 {
4226 public:
4227 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4228 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4229
4230 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4231 Returns true if any matcher matches. */
4232 bool matches (const char *symbol_name);
4233
4234 private:
4235 /* A reference to the lookup name we're matching against. */
4236 const lookup_name_info &m_lookup_name;
4237
4238 /* A vector holding all the different symbol name matchers, for all
4239 languages. */
4240 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4241 };
4242
4243 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4244 (const lookup_name_info &lookup_name)
4245 : m_lookup_name (lookup_name)
4246 {
4247 /* Prepare the vector of comparison functions upfront, to avoid
4248 doing the same work for each symbol. Care is taken to avoid
4249 matching with the same matcher more than once if/when multiple
4250 languages use the same matcher function. */
4251 auto &matchers = m_symbol_name_matcher_funcs;
4252 matchers.reserve (nr_languages);
4253
4254 matchers.push_back (default_symbol_name_matcher);
4255
4256 for (int i = 0; i < nr_languages; i++)
4257 {
4258 const language_defn *lang = language_def ((enum language) i);
4259 symbol_name_matcher_ftype *name_matcher
4260 = get_symbol_name_matcher (lang, m_lookup_name);
4261
4262 /* Don't insert the same comparison routine more than once.
4263 Note that we do this linear walk instead of a seemingly
4264 cheaper sorted insert, or use a std::set or something like
4265 that, because relative order of function addresses is not
4266 stable. This is not a problem in practice because the number
4267 of supported languages is low, and the cost here is tiny
4268 compared to the number of searches we'll do afterwards using
4269 this object. */
4270 if (name_matcher != default_symbol_name_matcher
4271 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4272 == matchers.end ()))
4273 matchers.push_back (name_matcher);
4274 }
4275 }
4276
4277 bool
4278 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4279 {
4280 for (auto matches_name : m_symbol_name_matcher_funcs)
4281 if (matches_name (symbol_name, m_lookup_name, NULL))
4282 return true;
4283
4284 return false;
4285 }
4286
4287 /* Starting from a search name, return the string that finds the upper
4288 bound of all strings that start with SEARCH_NAME in a sorted name
4289 list. Returns the empty string to indicate that the upper bound is
4290 the end of the list. */
4291
4292 static std::string
4293 make_sort_after_prefix_name (const char *search_name)
4294 {
4295 /* When looking to complete "func", we find the upper bound of all
4296 symbols that start with "func" by looking for where we'd insert
4297 the closest string that would follow "func" in lexicographical
4298 order. Usually, that's "func"-with-last-character-incremented,
4299 i.e. "fund". Mind non-ASCII characters, though. Usually those
4300 will be UTF-8 multi-byte sequences, but we can't be certain.
4301 Especially mind the 0xff character, which is a valid character in
4302 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4303 rule out compilers allowing it in identifiers. Note that
4304 conveniently, strcmp/strcasecmp are specified to compare
4305 characters interpreted as unsigned char. So what we do is treat
4306 the whole string as a base 256 number composed of a sequence of
4307 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4308 to 0, and carries 1 to the following more-significant position.
4309 If the very first character in SEARCH_NAME ends up incremented
4310 and carries/overflows, then the upper bound is the end of the
4311 list. The string after the empty string is also the empty
4312 string.
4313
4314 Some examples of this operation:
4315
4316 SEARCH_NAME => "+1" RESULT
4317
4318 "abc" => "abd"
4319 "ab\xff" => "ac"
4320 "\xff" "a" "\xff" => "\xff" "b"
4321 "\xff" => ""
4322 "\xff\xff" => ""
4323 "" => ""
4324
4325 Then, with these symbols for example:
4326
4327 func
4328 func1
4329 fund
4330
4331 completing "func" looks for symbols between "func" and
4332 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4333 which finds "func" and "func1", but not "fund".
4334
4335 And with:
4336
4337 funcÿ (Latin1 'ÿ' [0xff])
4338 funcÿ1
4339 fund
4340
4341 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4342 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4343
4344 And with:
4345
4346 ÿÿ (Latin1 'ÿ' [0xff])
4347 ÿÿ1
4348
4349 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4350 the end of the list.
4351 */
4352 std::string after = search_name;
4353 while (!after.empty () && (unsigned char) after.back () == 0xff)
4354 after.pop_back ();
4355 if (!after.empty ())
4356 after.back () = (unsigned char) after.back () + 1;
4357 return after;
4358 }
4359
4360 /* See declaration. */
4361
4362 std::pair<std::vector<name_component>::const_iterator,
4363 std::vector<name_component>::const_iterator>
4364 mapped_index_base::find_name_components_bounds
4365 (const lookup_name_info &lookup_name_without_params) const
4366 {
4367 auto *name_cmp
4368 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4369
4370 const char *cplus
4371 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4372
4373 /* Comparison function object for lower_bound that matches against a
4374 given symbol name. */
4375 auto lookup_compare_lower = [&] (const name_component &elem,
4376 const char *name)
4377 {
4378 const char *elem_qualified = this->symbol_name_at (elem.idx);
4379 const char *elem_name = elem_qualified + elem.name_offset;
4380 return name_cmp (elem_name, name) < 0;
4381 };
4382
4383 /* Comparison function object for upper_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_upper = [&] (const char *name,
4386 const name_component &elem)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (name, elem_name) < 0;
4391 };
4392
4393 auto begin = this->name_components.begin ();
4394 auto end = this->name_components.end ();
4395
4396 /* Find the lower bound. */
4397 auto lower = [&] ()
4398 {
4399 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4400 return begin;
4401 else
4402 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4403 } ();
4404
4405 /* Find the upper bound. */
4406 auto upper = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode ())
4409 {
4410 /* In completion mode, we want UPPER to point past all
4411 symbols names that have the same prefix. I.e., with
4412 these symbols, and completing "func":
4413
4414 function << lower bound
4415 function1
4416 other_function << upper bound
4417
4418 We find the upper bound by looking for the insertion
4419 point of "func"-with-last-character-incremented,
4420 i.e. "fund". */
4421 std::string after = make_sort_after_prefix_name (cplus);
4422 if (after.empty ())
4423 return end;
4424 return std::lower_bound (lower, end, after.c_str (),
4425 lookup_compare_lower);
4426 }
4427 else
4428 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4429 } ();
4430
4431 return {lower, upper};
4432 }
4433
4434 /* See declaration. */
4435
4436 void
4437 mapped_index_base::build_name_components ()
4438 {
4439 if (!this->name_components.empty ())
4440 return;
4441
4442 this->name_components_casing = case_sensitivity;
4443 auto *name_cmp
4444 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4445
4446 /* The code below only knows how to break apart components of C++
4447 symbol names (and other languages that use '::' as
4448 namespace/module separator). If we add support for wild matching
4449 to some language that uses some other operator (E.g., Ada, Go and
4450 D use '.'), then we'll need to try splitting the symbol name
4451 according to that language too. Note that Ada does support wild
4452 matching, but doesn't currently support .gdb_index. */
4453 auto count = this->symbol_name_count ();
4454 for (offset_type idx = 0; idx < count; idx++)
4455 {
4456 if (this->symbol_name_slot_invalid (idx))
4457 continue;
4458
4459 const char *name = this->symbol_name_at (idx);
4460
4461 /* Add each name component to the name component table. */
4462 unsigned int previous_len = 0;
4463 for (unsigned int current_len = cp_find_first_component (name);
4464 name[current_len] != '\0';
4465 current_len += cp_find_first_component (name + current_len))
4466 {
4467 gdb_assert (name[current_len] == ':');
4468 this->name_components.push_back ({previous_len, idx});
4469 /* Skip the '::'. */
4470 current_len += 2;
4471 previous_len = current_len;
4472 }
4473 this->name_components.push_back ({previous_len, idx});
4474 }
4475
4476 /* Sort name_components elements by name. */
4477 auto name_comp_compare = [&] (const name_component &left,
4478 const name_component &right)
4479 {
4480 const char *left_qualified = this->symbol_name_at (left.idx);
4481 const char *right_qualified = this->symbol_name_at (right.idx);
4482
4483 const char *left_name = left_qualified + left.name_offset;
4484 const char *right_name = right_qualified + right.name_offset;
4485
4486 return name_cmp (left_name, right_name) < 0;
4487 };
4488
4489 std::sort (this->name_components.begin (),
4490 this->name_components.end (),
4491 name_comp_compare);
4492 }
4493
4494 /* Helper for dw2_expand_symtabs_matching that works with a
4495 mapped_index_base instead of the containing objfile. This is split
4496 to a separate function in order to be able to unit test the
4497 name_components matching using a mock mapped_index_base. For each
4498 symbol name that matches, calls MATCH_CALLBACK, passing it the
4499 symbol's index in the mapped_index_base symbol table. */
4500
4501 static void
4502 dw2_expand_symtabs_matching_symbol
4503 (mapped_index_base &index,
4504 const lookup_name_info &lookup_name_in,
4505 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4506 enum search_domain kind,
4507 gdb::function_view<void (offset_type)> match_callback)
4508 {
4509 lookup_name_info lookup_name_without_params
4510 = lookup_name_in.make_ignore_params ();
4511 gdb_index_symbol_name_matcher lookup_name_matcher
4512 (lookup_name_without_params);
4513
4514 /* Build the symbol name component sorted vector, if we haven't
4515 yet. */
4516 index.build_name_components ();
4517
4518 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4519
4520 /* Now for each symbol name in range, check to see if we have a name
4521 match, and if so, call the MATCH_CALLBACK callback. */
4522
4523 /* The same symbol may appear more than once in the range though.
4524 E.g., if we're looking for symbols that complete "w", and we have
4525 a symbol named "w1::w2", we'll find the two name components for
4526 that same symbol in the range. To be sure we only call the
4527 callback once per symbol, we first collect the symbol name
4528 indexes that matched in a temporary vector and ignore
4529 duplicates. */
4530 std::vector<offset_type> matches;
4531 matches.reserve (std::distance (bounds.first, bounds.second));
4532
4533 for (; bounds.first != bounds.second; ++bounds.first)
4534 {
4535 const char *qualified = index.symbol_name_at (bounds.first->idx);
4536
4537 if (!lookup_name_matcher.matches (qualified)
4538 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4539 continue;
4540
4541 matches.push_back (bounds.first->idx);
4542 }
4543
4544 std::sort (matches.begin (), matches.end ());
4545
4546 /* Finally call the callback, once per match. */
4547 ULONGEST prev = -1;
4548 for (offset_type idx : matches)
4549 {
4550 if (prev != idx)
4551 {
4552 match_callback (idx);
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560 }
4561
4562 #if GDB_SELF_TEST
4563
4564 namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566 /* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570 class mock_mapped_index : public mapped_index_base
4571 {
4572 public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 size_t symbol_name_count () const override
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 const char *symbol_name_at (offset_type idx) const override
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591 private:
4592 gdb::array_view<const char *> m_symbol_table;
4593 };
4594
4595 /* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598 static const char *
4599 string_or_null (const char *str)
4600 {
4601 return str != NULL ? str : "<null>";
4602 }
4603
4604 /* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611 static bool
4612 check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617 {
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 });
4648
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651 if (expected_str != NULL)
4652 mismatch (expected_str, NULL);
4653
4654 return matched;
4655 }
4656
4657 /* The symbols added to the mock mapped_index for testing (in
4658 canonical form). */
4659 static const char *test_symbols[] = {
4660 "function",
4661 "std::bar",
4662 "std::zfunction",
4663 "std::zfunction2",
4664 "w1::w2",
4665 "ns::foo<char*>",
4666 "ns::foo<int>",
4667 "ns::foo<long>",
4668 "ns2::tmpl<int>::foo2",
4669 "(anonymous namespace)::A::B::C",
4670
4671 /* These are used to check that the increment-last-char in the
4672 matching algorithm for completion doesn't match "t1_fund" when
4673 completing "t1_func". */
4674 "t1_func",
4675 "t1_func1",
4676 "t1_fund",
4677 "t1_fund1",
4678
4679 /* A UTF-8 name with multi-byte sequences to make sure that
4680 cp-name-parser understands this as a single identifier ("função"
4681 is "function" in PT). */
4682 u8"u8função",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "yfunc\377",
4686
4687 /* \377 (0xff) is Latin1 'ÿ'. */
4688 "\377",
4689 "\377\377123",
4690
4691 /* A name with all sorts of complications. Starts with "z" to make
4692 it easier for the completion tests below. */
4693 #define Z_SYM_NAME \
4694 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4695 "::tuple<(anonymous namespace)::ui*, " \
4696 "std::default_delete<(anonymous namespace)::ui>, void>"
4697
4698 Z_SYM_NAME
4699 };
4700
4701 /* Returns true if the mapped_index_base::find_name_component_bounds
4702 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4703 in completion mode. */
4704
4705 static bool
4706 check_find_bounds_finds (mapped_index_base &index,
4707 const char *search_name,
4708 gdb::array_view<const char *> expected_syms)
4709 {
4710 lookup_name_info lookup_name (search_name,
4711 symbol_name_match_type::FULL, true);
4712
4713 auto bounds = index.find_name_components_bounds (lookup_name);
4714
4715 size_t distance = std::distance (bounds.first, bounds.second);
4716 if (distance != expected_syms.size ())
4717 return false;
4718
4719 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4720 {
4721 auto nc_elem = bounds.first + exp_elem;
4722 const char *qualified = index.symbol_name_at (nc_elem->idx);
4723 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4724 return false;
4725 }
4726
4727 return true;
4728 }
4729
4730 /* Test the lower-level mapped_index::find_name_component_bounds
4731 method. */
4732
4733 static void
4734 test_mapped_index_find_name_component_bounds ()
4735 {
4736 mock_mapped_index mock_index (test_symbols);
4737
4738 mock_index.build_name_components ();
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method in completion mode. */
4742 {
4743 static const char *expected_syms[] = {
4744 "t1_func",
4745 "t1_func1",
4746 };
4747
4748 SELF_CHECK (check_find_bounds_finds (mock_index,
4749 "t1_func", expected_syms));
4750 }
4751
4752 /* Check that the increment-last-char in the name matching algorithm
4753 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4754 {
4755 static const char *expected_syms1[] = {
4756 "\377",
4757 "\377\377123",
4758 };
4759 SELF_CHECK (check_find_bounds_finds (mock_index,
4760 "\377", expected_syms1));
4761
4762 static const char *expected_syms2[] = {
4763 "\377\377123",
4764 };
4765 SELF_CHECK (check_find_bounds_finds (mock_index,
4766 "\377\377", expected_syms2));
4767 }
4768 }
4769
4770 /* Test dw2_expand_symtabs_matching_symbol. */
4771
4772 static void
4773 test_dw2_expand_symtabs_matching_symbol ()
4774 {
4775 mock_mapped_index mock_index (test_symbols);
4776
4777 /* We let all tests run until the end even if some fails, for debug
4778 convenience. */
4779 bool any_mismatch = false;
4780
4781 /* Create the expected symbols list (an initializer_list). Needed
4782 because lists have commas, and we need to pass them to CHECK,
4783 which is a macro. */
4784 #define EXPECT(...) { __VA_ARGS__ }
4785
4786 /* Wrapper for check_match that passes down the current
4787 __FILE__/__LINE__. */
4788 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4789 any_mismatch |= !check_match (__FILE__, __LINE__, \
4790 mock_index, \
4791 NAME, MATCH_TYPE, COMPLETION_MODE, \
4792 EXPECTED_LIST)
4793
4794 /* Identity checks. */
4795 for (const char *sym : test_symbols)
4796 {
4797 /* Should be able to match all existing symbols. */
4798 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* Should be able to match all existing symbols with
4802 parameters. */
4803 std::string with_params = std::string (sym) + "(int)";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 EXPECT (sym));
4806
4807 /* Should be able to match all existing symbols with
4808 parameters and qualifiers. */
4809 with_params = std::string (sym) + " ( int ) const";
4810 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4811 EXPECT (sym));
4812
4813 /* This should really find sym, but cp-name-parser.y doesn't
4814 know about lvalue/rvalue qualifiers yet. */
4815 with_params = std::string (sym) + " ( int ) &&";
4816 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4817 {});
4818 }
4819
4820 /* Check that the name matching algorithm for completion doesn't get
4821 confused with Latin1 'ÿ' / 0xff. */
4822 {
4823 static const char str[] = "\377";
4824 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4825 EXPECT ("\377", "\377\377123"));
4826 }
4827
4828 /* Check that the increment-last-char in the matching algorithm for
4829 completion doesn't match "t1_fund" when completing "t1_func". */
4830 {
4831 static const char str[] = "t1_func";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("t1_func", "t1_func1"));
4834 }
4835
4836 /* Check that completion mode works at each prefix of the expected
4837 symbol name. */
4838 {
4839 static const char str[] = "function(int)";
4840 size_t len = strlen (str);
4841 std::string lookup;
4842
4843 for (size_t i = 1; i < len; i++)
4844 {
4845 lookup.assign (str, i);
4846 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4847 EXPECT ("function"));
4848 }
4849 }
4850
4851 /* While "w" is a prefix of both components, the match function
4852 should still only be called once. */
4853 {
4854 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4855 EXPECT ("w1::w2"));
4856 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4857 EXPECT ("w1::w2"));
4858 }
4859
4860 /* Same, with a "complicated" symbol. */
4861 {
4862 static const char str[] = Z_SYM_NAME;
4863 size_t len = strlen (str);
4864 std::string lookup;
4865
4866 for (size_t i = 1; i < len; i++)
4867 {
4868 lookup.assign (str, i);
4869 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4870 EXPECT (Z_SYM_NAME));
4871 }
4872 }
4873
4874 /* In FULL mode, an incomplete symbol doesn't match. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4877 {});
4878 }
4879
4880 /* A complete symbol with parameters matches any overload, since the
4881 index has no overload info. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 }
4890
4891 /* Check that whitespace is ignored appropriately. A symbol with a
4892 template argument list. */
4893 {
4894 static const char expected[] = "ns::foo<int>";
4895 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4896 EXPECT (expected));
4897 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4898 EXPECT (expected));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list that includes a pointer. */
4903 {
4904 static const char expected[] = "ns::foo<char*>";
4905 /* Try both completion and non-completion modes. */
4906 static const bool completion_mode[2] = {false, true};
4907 for (size_t i = 0; i < 2; i++)
4908 {
4909 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913
4914 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918 }
4919 }
4920
4921 {
4922 /* Check method qualifiers are ignored. */
4923 static const char expected[] = "ns::foo<char*>";
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) const",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) &&",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 }
4933
4934 /* Test lookup names that don't match anything. */
4935 {
4936 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4937 {});
4938
4939 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4940 {});
4941 }
4942
4943 /* Some wild matching tests, exercising "(anonymous namespace)",
4944 which should not be confused with a parameter list. */
4945 {
4946 static const char *syms[] = {
4947 "A::B::C",
4948 "B::C",
4949 "C",
4950 "A :: B :: C ( int )",
4951 "B :: C ( int )",
4952 "C ( int )",
4953 };
4954
4955 for (const char *s : syms)
4956 {
4957 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4958 EXPECT ("(anonymous namespace)::A::B::C"));
4959 }
4960 }
4961
4962 {
4963 static const char expected[] = "ns2::tmpl<int>::foo2";
4964 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 }
4969
4970 SELF_CHECK (!any_mismatch);
4971
4972 #undef EXPECT
4973 #undef CHECK_MATCH
4974 }
4975
4976 static void
4977 run_test ()
4978 {
4979 test_mapped_index_find_name_component_bounds ();
4980 test_dw2_expand_symtabs_matching_symbol ();
4981 }
4982
4983 }} // namespace selftests::dw2_expand_symtabs_matching
4984
4985 #endif /* GDB_SELF_TEST */
4986
4987 /* If FILE_MATCHER is NULL or if PER_CU has
4988 dwarf2_per_cu_quick_data::MARK set (see
4989 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4990 EXPANSION_NOTIFY on it. */
4991
4992 static void
4993 dw2_expand_symtabs_matching_one
4994 (struct dwarf2_per_cu_data *per_cu,
4995 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4996 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4997 {
4998 if (file_matcher == NULL || per_cu->v.quick->mark)
4999 {
5000 bool symtab_was_null
5001 = (per_cu->v.quick->compunit_symtab == NULL);
5002
5003 dw2_instantiate_symtab (per_cu);
5004
5005 if (expansion_notify != NULL
5006 && symtab_was_null
5007 && per_cu->v.quick->compunit_symtab != NULL)
5008 expansion_notify (per_cu->v.quick->compunit_symtab);
5009 }
5010 }
5011
5012 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5013 matched, to expand corresponding CUs that were marked. IDX is the
5014 index of the symbol name that matched. */
5015
5016 static void
5017 dw2_expand_marked_cus
5018 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5019 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5020 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5021 search_domain kind)
5022 {
5023 offset_type *vec, vec_len, vec_idx;
5024 bool global_seen = false;
5025 mapped_index &index = *dwarf2_per_objfile->index_table;
5026
5027 vec = (offset_type *) (index.constant_pool
5028 + MAYBE_SWAP (index.symbol_table[idx].vec));
5029 vec_len = MAYBE_SWAP (vec[0]);
5030 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5031 {
5032 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5033 /* This value is only valid for index versions >= 7. */
5034 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5035 gdb_index_symbol_kind symbol_kind =
5036 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5037 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5038 /* Only check the symbol attributes if they're present.
5039 Indices prior to version 7 don't record them,
5040 and indices >= 7 may elide them for certain symbols
5041 (gold does this). */
5042 int attrs_valid =
5043 (index.version >= 7
5044 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5045
5046 /* Work around gold/15646. */
5047 if (attrs_valid)
5048 {
5049 if (!is_static && global_seen)
5050 continue;
5051 if (!is_static)
5052 global_seen = true;
5053 }
5054
5055 /* Only check the symbol's kind if it has one. */
5056 if (attrs_valid)
5057 {
5058 switch (kind)
5059 {
5060 case VARIABLES_DOMAIN:
5061 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5062 continue;
5063 break;
5064 case FUNCTIONS_DOMAIN:
5065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5066 continue;
5067 break;
5068 case TYPES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 continue;
5071 break;
5072 default:
5073 break;
5074 }
5075 }
5076
5077 /* Don't crash on bad data. */
5078 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5079 + dwarf2_per_objfile->all_type_units.size ()))
5080 {
5081 complaint (&symfile_complaints,
5082 _(".gdb_index entry has bad CU index"
5083 " [in module %s]"),
5084 objfile_name (dwarf2_per_objfile->objfile));
5085 continue;
5086 }
5087
5088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5089 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5090 expansion_notify);
5091 }
5092 }
5093
5094 /* If FILE_MATCHER is non-NULL, set all the
5095 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5096 that match FILE_MATCHER. */
5097
5098 static void
5099 dw_expand_symtabs_matching_file_matcher
5100 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5101 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5102 {
5103 if (file_matcher == NULL)
5104 return;
5105
5106 objfile *const objfile = dwarf2_per_objfile->objfile;
5107
5108 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5109 htab_eq_pointer,
5110 NULL, xcalloc, xfree));
5111 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5112 htab_eq_pointer,
5113 NULL, xcalloc, xfree));
5114
5115 /* The rule is CUs specify all the files, including those used by
5116 any TU, so there's no need to scan TUs here. */
5117
5118 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5119 {
5120 QUIT;
5121
5122 per_cu->v.quick->mark = 0;
5123
5124 /* We only need to look at symtabs not already expanded. */
5125 if (per_cu->v.quick->compunit_symtab)
5126 continue;
5127
5128 quick_file_names *file_data = dw2_get_file_names (per_cu);
5129 if (file_data == NULL)
5130 continue;
5131
5132 if (htab_find (visited_not_found.get (), file_data) != NULL)
5133 continue;
5134 else if (htab_find (visited_found.get (), file_data) != NULL)
5135 {
5136 per_cu->v.quick->mark = 1;
5137 continue;
5138 }
5139
5140 for (int j = 0; j < file_data->num_file_names; ++j)
5141 {
5142 const char *this_real_name;
5143
5144 if (file_matcher (file_data->file_names[j], false))
5145 {
5146 per_cu->v.quick->mark = 1;
5147 break;
5148 }
5149
5150 /* Before we invoke realpath, which can get expensive when many
5151 files are involved, do a quick comparison of the basenames. */
5152 if (!basenames_may_differ
5153 && !file_matcher (lbasename (file_data->file_names[j]),
5154 true))
5155 continue;
5156
5157 this_real_name = dw2_get_real_path (objfile, file_data, j);
5158 if (file_matcher (this_real_name, false))
5159 {
5160 per_cu->v.quick->mark = 1;
5161 break;
5162 }
5163 }
5164
5165 void **slot = htab_find_slot (per_cu->v.quick->mark
5166 ? visited_found.get ()
5167 : visited_not_found.get (),
5168 file_data, INSERT);
5169 *slot = file_data;
5170 }
5171 }
5172
5173 static void
5174 dw2_expand_symtabs_matching
5175 (struct objfile *objfile,
5176 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5177 const lookup_name_info &lookup_name,
5178 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5179 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5180 enum search_domain kind)
5181 {
5182 struct dwarf2_per_objfile *dwarf2_per_objfile
5183 = get_dwarf2_per_objfile (objfile);
5184
5185 /* index_table is NULL if OBJF_READNOW. */
5186 if (!dwarf2_per_objfile->index_table)
5187 return;
5188
5189 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5190
5191 mapped_index &index = *dwarf2_per_objfile->index_table;
5192
5193 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5194 symbol_matcher,
5195 kind, [&] (offset_type idx)
5196 {
5197 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5198 expansion_notify, kind);
5199 });
5200 }
5201
5202 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5203 symtab. */
5204
5205 static struct compunit_symtab *
5206 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5207 CORE_ADDR pc)
5208 {
5209 int i;
5210
5211 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5212 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5213 return cust;
5214
5215 if (cust->includes == NULL)
5216 return NULL;
5217
5218 for (i = 0; cust->includes[i]; ++i)
5219 {
5220 struct compunit_symtab *s = cust->includes[i];
5221
5222 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5223 if (s != NULL)
5224 return s;
5225 }
5226
5227 return NULL;
5228 }
5229
5230 static struct compunit_symtab *
5231 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5232 struct bound_minimal_symbol msymbol,
5233 CORE_ADDR pc,
5234 struct obj_section *section,
5235 int warn_if_readin)
5236 {
5237 struct dwarf2_per_cu_data *data;
5238 struct compunit_symtab *result;
5239
5240 if (!objfile->psymtabs_addrmap)
5241 return NULL;
5242
5243 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5244 pc);
5245 if (!data)
5246 return NULL;
5247
5248 if (warn_if_readin && data->v.quick->compunit_symtab)
5249 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5250 paddress (get_objfile_arch (objfile), pc));
5251
5252 result
5253 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5254 pc);
5255 gdb_assert (result != NULL);
5256 return result;
5257 }
5258
5259 static void
5260 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5261 void *data, int need_fullname)
5262 {
5263 struct dwarf2_per_objfile *dwarf2_per_objfile
5264 = get_dwarf2_per_objfile (objfile);
5265
5266 if (!dwarf2_per_objfile->filenames_cache)
5267 {
5268 dwarf2_per_objfile->filenames_cache.emplace ();
5269
5270 htab_up visited (htab_create_alloc (10,
5271 htab_hash_pointer, htab_eq_pointer,
5272 NULL, xcalloc, xfree));
5273
5274 /* The rule is CUs specify all the files, including those used
5275 by any TU, so there's no need to scan TUs here. We can
5276 ignore file names coming from already-expanded CUs. */
5277
5278 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5279 {
5280 if (per_cu->v.quick->compunit_symtab)
5281 {
5282 void **slot = htab_find_slot (visited.get (),
5283 per_cu->v.quick->file_names,
5284 INSERT);
5285
5286 *slot = per_cu->v.quick->file_names;
5287 }
5288 }
5289
5290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5291 {
5292 /* We only need to look at symtabs not already expanded. */
5293 if (per_cu->v.quick->compunit_symtab)
5294 continue;
5295
5296 quick_file_names *file_data = dw2_get_file_names (per_cu);
5297 if (file_data == NULL)
5298 continue;
5299
5300 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5301 if (*slot)
5302 {
5303 /* Already visited. */
5304 continue;
5305 }
5306 *slot = file_data;
5307
5308 for (int j = 0; j < file_data->num_file_names; ++j)
5309 {
5310 const char *filename = file_data->file_names[j];
5311 dwarf2_per_objfile->filenames_cache->seen (filename);
5312 }
5313 }
5314 }
5315
5316 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5317 {
5318 gdb::unique_xmalloc_ptr<char> this_real_name;
5319
5320 if (need_fullname)
5321 this_real_name = gdb_realpath (filename);
5322 (*fun) (filename, this_real_name.get (), data);
5323 });
5324 }
5325
5326 static int
5327 dw2_has_symbols (struct objfile *objfile)
5328 {
5329 return 1;
5330 }
5331
5332 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5333 {
5334 dw2_has_symbols,
5335 dw2_find_last_source_symtab,
5336 dw2_forget_cached_source_info,
5337 dw2_map_symtabs_matching_filename,
5338 dw2_lookup_symbol,
5339 dw2_print_stats,
5340 dw2_dump,
5341 dw2_relocate,
5342 dw2_expand_symtabs_for_function,
5343 dw2_expand_all_symtabs,
5344 dw2_expand_symtabs_with_fullname,
5345 dw2_map_matching_symbols,
5346 dw2_expand_symtabs_matching,
5347 dw2_find_pc_sect_compunit_symtab,
5348 NULL,
5349 dw2_map_symbol_filenames
5350 };
5351
5352 /* DWARF-5 debug_names reader. */
5353
5354 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5355 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5356
5357 /* A helper function that reads the .debug_names section in SECTION
5358 and fills in MAP. FILENAME is the name of the file containing the
5359 section; it is used for error reporting.
5360
5361 Returns true if all went well, false otherwise. */
5362
5363 static bool
5364 read_debug_names_from_section (struct objfile *objfile,
5365 const char *filename,
5366 struct dwarf2_section_info *section,
5367 mapped_debug_names &map)
5368 {
5369 if (dwarf2_section_empty_p (section))
5370 return false;
5371
5372 /* Older elfutils strip versions could keep the section in the main
5373 executable while splitting it for the separate debug info file. */
5374 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5375 return false;
5376
5377 dwarf2_read_section (objfile, section);
5378
5379 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5380
5381 const gdb_byte *addr = section->buffer;
5382
5383 bfd *const abfd = get_section_bfd_owner (section);
5384
5385 unsigned int bytes_read;
5386 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5387 addr += bytes_read;
5388
5389 map.dwarf5_is_dwarf64 = bytes_read != 4;
5390 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5391 if (bytes_read + length != section->size)
5392 {
5393 /* There may be multiple per-CU indices. */
5394 warning (_("Section .debug_names in %s length %s does not match "
5395 "section length %s, ignoring .debug_names."),
5396 filename, plongest (bytes_read + length),
5397 pulongest (section->size));
5398 return false;
5399 }
5400
5401 /* The version number. */
5402 uint16_t version = read_2_bytes (abfd, addr);
5403 addr += 2;
5404 if (version != 5)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported version %d, "
5407 "ignoring .debug_names."),
5408 filename, version);
5409 return false;
5410 }
5411
5412 /* Padding. */
5413 uint16_t padding = read_2_bytes (abfd, addr);
5414 addr += 2;
5415 if (padding != 0)
5416 {
5417 warning (_("Section .debug_names in %s has unsupported padding %d, "
5418 "ignoring .debug_names."),
5419 filename, padding);
5420 return false;
5421 }
5422
5423 /* comp_unit_count - The number of CUs in the CU list. */
5424 map.cu_count = read_4_bytes (abfd, addr);
5425 addr += 4;
5426
5427 /* local_type_unit_count - The number of TUs in the local TU
5428 list. */
5429 map.tu_count = read_4_bytes (abfd, addr);
5430 addr += 4;
5431
5432 /* foreign_type_unit_count - The number of TUs in the foreign TU
5433 list. */
5434 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436 if (foreign_tu_count != 0)
5437 {
5438 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5439 "ignoring .debug_names."),
5440 filename, static_cast<unsigned long> (foreign_tu_count));
5441 return false;
5442 }
5443
5444 /* bucket_count - The number of hash buckets in the hash lookup
5445 table. */
5446 map.bucket_count = read_4_bytes (abfd, addr);
5447 addr += 4;
5448
5449 /* name_count - The number of unique names in the index. */
5450 map.name_count = read_4_bytes (abfd, addr);
5451 addr += 4;
5452
5453 /* abbrev_table_size - The size in bytes of the abbreviations
5454 table. */
5455 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5456 addr += 4;
5457
5458 /* augmentation_string_size - The size in bytes of the augmentation
5459 string. This value is rounded up to a multiple of 4. */
5460 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5461 addr += 4;
5462 map.augmentation_is_gdb = ((augmentation_string_size
5463 == sizeof (dwarf5_augmentation))
5464 && memcmp (addr, dwarf5_augmentation,
5465 sizeof (dwarf5_augmentation)) == 0);
5466 augmentation_string_size += (-augmentation_string_size) & 3;
5467 addr += augmentation_string_size;
5468
5469 /* List of CUs */
5470 map.cu_table_reordered = addr;
5471 addr += map.cu_count * map.offset_size;
5472
5473 /* List of Local TUs */
5474 map.tu_table_reordered = addr;
5475 addr += map.tu_count * map.offset_size;
5476
5477 /* Hash Lookup Table */
5478 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.bucket_count * 4;
5480 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5481 addr += map.name_count * 4;
5482
5483 /* Name Table */
5484 map.name_table_string_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486 map.name_table_entry_offs_reordered = addr;
5487 addr += map.name_count * map.offset_size;
5488
5489 const gdb_byte *abbrev_table_start = addr;
5490 for (;;)
5491 {
5492 unsigned int bytes_read;
5493 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 if (index_num == 0)
5496 break;
5497
5498 const auto insertpair
5499 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5500 if (!insertpair.second)
5501 {
5502 warning (_("Section .debug_names in %s has duplicate index %s, "
5503 "ignoring .debug_names."),
5504 filename, pulongest (index_num));
5505 return false;
5506 }
5507 mapped_debug_names::index_val &indexval = insertpair.first->second;
5508 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 addr += bytes_read;
5510
5511 for (;;)
5512 {
5513 mapped_debug_names::index_val::attr attr;
5514 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518 if (attr.form == DW_FORM_implicit_const)
5519 {
5520 attr.implicit_const = read_signed_leb128 (abfd, addr,
5521 &bytes_read);
5522 addr += bytes_read;
5523 }
5524 if (attr.dw_idx == 0 && attr.form == 0)
5525 break;
5526 indexval.attr_vec.push_back (std::move (attr));
5527 }
5528 }
5529 if (addr != abbrev_table_start + abbrev_table_size)
5530 {
5531 warning (_("Section .debug_names in %s has abbreviation_table "
5532 "of size %zu vs. written as %u, ignoring .debug_names."),
5533 filename, addr - abbrev_table_start, abbrev_table_size);
5534 return false;
5535 }
5536 map.entry_pool = addr;
5537
5538 return true;
5539 }
5540
5541 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5542 list. */
5543
5544 static void
5545 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5546 const mapped_debug_names &map,
5547 dwarf2_section_info &section,
5548 bool is_dwz)
5549 {
5550 sect_offset sect_off_prev;
5551 for (uint32_t i = 0; i <= map.cu_count; ++i)
5552 {
5553 sect_offset sect_off_next;
5554 if (i < map.cu_count)
5555 {
5556 sect_off_next
5557 = (sect_offset) (extract_unsigned_integer
5558 (map.cu_table_reordered + i * map.offset_size,
5559 map.offset_size,
5560 map.dwarf5_byte_order));
5561 }
5562 else
5563 sect_off_next = (sect_offset) section.size;
5564 if (i >= 1)
5565 {
5566 const ULONGEST length = sect_off_next - sect_off_prev;
5567 dwarf2_per_cu_data *per_cu
5568 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5569 sect_off_prev, length);
5570 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5571 }
5572 sect_off_prev = sect_off_next;
5573 }
5574 }
5575
5576 /* Read the CU list from the mapped index, and use it to create all
5577 the CU objects for this dwarf2_per_objfile. */
5578
5579 static void
5580 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5581 const mapped_debug_names &map,
5582 const mapped_debug_names &dwz_map)
5583 {
5584 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5585 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5586
5587 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5588 dwarf2_per_objfile->info,
5589 false /* is_dwz */);
5590
5591 if (dwz_map.cu_count == 0)
5592 return;
5593
5594 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5596 true /* is_dwz */);
5597 }
5598
5599 /* Read .debug_names. If everything went ok, initialize the "quick"
5600 elements of all the CUs and return true. Otherwise, return false. */
5601
5602 static bool
5603 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5604 {
5605 mapped_debug_names local_map (dwarf2_per_objfile);
5606 mapped_debug_names dwz_map (dwarf2_per_objfile);
5607 struct objfile *objfile = dwarf2_per_objfile->objfile;
5608
5609 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5610 &dwarf2_per_objfile->debug_names,
5611 local_map))
5612 return false;
5613
5614 /* Don't use the index if it's empty. */
5615 if (local_map.name_count == 0)
5616 return false;
5617
5618 /* If there is a .dwz file, read it so we can get its CU list as
5619 well. */
5620 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5621 if (dwz != NULL)
5622 {
5623 if (!read_debug_names_from_section (objfile,
5624 bfd_get_filename (dwz->dwz_bfd),
5625 &dwz->debug_names, dwz_map))
5626 {
5627 warning (_("could not read '.debug_names' section from %s; skipping"),
5628 bfd_get_filename (dwz->dwz_bfd));
5629 return false;
5630 }
5631 }
5632
5633 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
5634
5635 if (local_map.tu_count != 0)
5636 {
5637 /* We can only handle a single .debug_types when we have an
5638 index. */
5639 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5640 return false;
5641
5642 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5643 dwarf2_per_objfile->types, 0);
5644
5645 create_signatured_type_table_from_debug_names
5646 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
5647 }
5648
5649 create_addrmap_from_aranges (dwarf2_per_objfile,
5650 &dwarf2_per_objfile->debug_aranges);
5651
5652 dwarf2_per_objfile->debug_names_table.reset
5653 (new mapped_debug_names (dwarf2_per_objfile));
5654 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
5655 dwarf2_per_objfile->using_index = 1;
5656 dwarf2_per_objfile->quick_file_names_table =
5657 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5658
5659 return true;
5660 }
5661
5662 /* Type used to manage iterating over all CUs looking for a symbol for
5663 .debug_names. */
5664
5665 class dw2_debug_names_iterator
5666 {
5667 public:
5668 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5669 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5670 dw2_debug_names_iterator (const mapped_debug_names &map,
5671 bool want_specific_block,
5672 block_enum block_index, domain_enum domain,
5673 const char *name)
5674 : m_map (map), m_want_specific_block (want_specific_block),
5675 m_block_index (block_index), m_domain (domain),
5676 m_addr (find_vec_in_debug_names (map, name))
5677 {}
5678
5679 dw2_debug_names_iterator (const mapped_debug_names &map,
5680 search_domain search, uint32_t namei)
5681 : m_map (map),
5682 m_search (search),
5683 m_addr (find_vec_in_debug_names (map, namei))
5684 {}
5685
5686 /* Return the next matching CU or NULL if there are no more. */
5687 dwarf2_per_cu_data *next ();
5688
5689 private:
5690 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5691 const char *name);
5692 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5693 uint32_t namei);
5694
5695 /* The internalized form of .debug_names. */
5696 const mapped_debug_names &m_map;
5697
5698 /* If true, only look for symbols that match BLOCK_INDEX. */
5699 const bool m_want_specific_block = false;
5700
5701 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5702 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5703 value. */
5704 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5705
5706 /* The kind of symbol we're looking for. */
5707 const domain_enum m_domain = UNDEF_DOMAIN;
5708 const search_domain m_search = ALL_DOMAIN;
5709
5710 /* The list of CUs from the index entry of the symbol, or NULL if
5711 not found. */
5712 const gdb_byte *m_addr;
5713 };
5714
5715 const char *
5716 mapped_debug_names::namei_to_name (uint32_t namei) const
5717 {
5718 const ULONGEST namei_string_offs
5719 = extract_unsigned_integer ((name_table_string_offs_reordered
5720 + namei * offset_size),
5721 offset_size,
5722 dwarf5_byte_order);
5723 return read_indirect_string_at_offset
5724 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5725 }
5726
5727 /* Find a slot in .debug_names for the object named NAME. If NAME is
5728 found, return pointer to its pool data. If NAME cannot be found,
5729 return NULL. */
5730
5731 const gdb_byte *
5732 dw2_debug_names_iterator::find_vec_in_debug_names
5733 (const mapped_debug_names &map, const char *name)
5734 {
5735 int (*cmp) (const char *, const char *);
5736
5737 if (current_language->la_language == language_cplus
5738 || current_language->la_language == language_fortran
5739 || current_language->la_language == language_d)
5740 {
5741 /* NAME is already canonical. Drop any qualifiers as
5742 .debug_names does not contain any. */
5743
5744 if (strchr (name, '(') != NULL)
5745 {
5746 gdb::unique_xmalloc_ptr<char> without_params
5747 = cp_remove_params (name);
5748
5749 if (without_params != NULL)
5750 {
5751 name = without_params.get();
5752 }
5753 }
5754 }
5755
5756 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5757
5758 const uint32_t full_hash = dwarf5_djb_hash (name);
5759 uint32_t namei
5760 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5761 (map.bucket_table_reordered
5762 + (full_hash % map.bucket_count)), 4,
5763 map.dwarf5_byte_order);
5764 if (namei == 0)
5765 return NULL;
5766 --namei;
5767 if (namei >= map.name_count)
5768 {
5769 complaint (&symfile_complaints,
5770 _("Wrong .debug_names with name index %u but name_count=%u "
5771 "[in module %s]"),
5772 namei, map.name_count,
5773 objfile_name (map.dwarf2_per_objfile->objfile));
5774 return NULL;
5775 }
5776
5777 for (;;)
5778 {
5779 const uint32_t namei_full_hash
5780 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5781 (map.hash_table_reordered + namei), 4,
5782 map.dwarf5_byte_order);
5783 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5784 return NULL;
5785
5786 if (full_hash == namei_full_hash)
5787 {
5788 const char *const namei_string = map.namei_to_name (namei);
5789
5790 #if 0 /* An expensive sanity check. */
5791 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5792 {
5793 complaint (&symfile_complaints,
5794 _("Wrong .debug_names hash for string at index %u "
5795 "[in module %s]"),
5796 namei, objfile_name (dwarf2_per_objfile->objfile));
5797 return NULL;
5798 }
5799 #endif
5800
5801 if (cmp (namei_string, name) == 0)
5802 {
5803 const ULONGEST namei_entry_offs
5804 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5805 + namei * map.offset_size),
5806 map.offset_size, map.dwarf5_byte_order);
5807 return map.entry_pool + namei_entry_offs;
5808 }
5809 }
5810
5811 ++namei;
5812 if (namei >= map.name_count)
5813 return NULL;
5814 }
5815 }
5816
5817 const gdb_byte *
5818 dw2_debug_names_iterator::find_vec_in_debug_names
5819 (const mapped_debug_names &map, uint32_t namei)
5820 {
5821 if (namei >= map.name_count)
5822 {
5823 complaint (&symfile_complaints,
5824 _("Wrong .debug_names with name index %u but name_count=%u "
5825 "[in module %s]"),
5826 namei, map.name_count,
5827 objfile_name (map.dwarf2_per_objfile->objfile));
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836 }
5837
5838 /* See dw2_debug_names_iterator. */
5839
5840 dwarf2_per_cu_data *
5841 dw2_debug_names_iterator::next ()
5842 {
5843 if (m_addr == NULL)
5844 return NULL;
5845
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
5861 complaint (&symfile_complaints,
5862 _("Wrong .debug_names undefined abbrev code %s "
5863 "[in module %s]"),
5864 pulongest (abbrev), objfile_name (objfile));
5865 return NULL;
5866 }
5867 const mapped_debug_names::index_val &indexval = indexval_it->second;
5868 bool have_is_static = false;
5869 bool is_static;
5870 dwarf2_per_cu_data *per_cu = NULL;
5871 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5872 {
5873 ULONGEST ull;
5874 switch (attr.form)
5875 {
5876 case DW_FORM_implicit_const:
5877 ull = attr.implicit_const;
5878 break;
5879 case DW_FORM_flag_present:
5880 ull = 1;
5881 break;
5882 case DW_FORM_udata:
5883 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5884 m_addr += bytes_read;
5885 break;
5886 default:
5887 complaint (&symfile_complaints,
5888 _("Unsupported .debug_names form %s [in module %s]"),
5889 dwarf_form_name (attr.form),
5890 objfile_name (objfile));
5891 return NULL;
5892 }
5893 switch (attr.dw_idx)
5894 {
5895 case DW_IDX_compile_unit:
5896 /* Don't crash on bad data. */
5897 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5898 {
5899 complaint (&symfile_complaints,
5900 _(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (&symfile_complaints,
5913 _(".debug_names entry has bad TU index %s"
5914 " [in module %s]"),
5915 pulongest (ull),
5916 objfile_name (dwarf2_per_objfile->objfile));
5917 continue;
5918 }
5919 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5920 break;
5921 case DW_IDX_GNU_internal:
5922 if (!m_map.augmentation_is_gdb)
5923 break;
5924 have_is_static = true;
5925 is_static = true;
5926 break;
5927 case DW_IDX_GNU_external:
5928 if (!m_map.augmentation_is_gdb)
5929 break;
5930 have_is_static = true;
5931 is_static = false;
5932 break;
5933 }
5934 }
5935
5936 /* Skip if already read in. */
5937 if (per_cu->v.quick->compunit_symtab)
5938 goto again;
5939
5940 /* Check static vs global. */
5941 if (have_is_static)
5942 {
5943 const bool want_static = m_block_index != GLOBAL_BLOCK;
5944 if (m_want_specific_block && want_static != is_static)
5945 goto again;
5946 }
5947
5948 /* Match dw2_symtab_iter_next, symbol_kind
5949 and debug_names::psymbol_tag. */
5950 switch (m_domain)
5951 {
5952 case VAR_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 case DW_TAG_subprogram:
5957 /* Some types are also in VAR_DOMAIN. */
5958 case DW_TAG_typedef:
5959 case DW_TAG_structure_type:
5960 break;
5961 default:
5962 goto again;
5963 }
5964 break;
5965 case STRUCT_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_typedef:
5969 case DW_TAG_structure_type:
5970 break;
5971 default:
5972 goto again;
5973 }
5974 break;
5975 case LABEL_DOMAIN:
5976 switch (indexval.dwarf_tag)
5977 {
5978 case 0:
5979 case DW_TAG_variable:
5980 break;
5981 default:
5982 goto again;
5983 }
5984 break;
5985 default:
5986 break;
5987 }
5988
5989 /* Match dw2_expand_symtabs_matching, symbol_kind and
5990 debug_names::psymbol_tag. */
5991 switch (m_search)
5992 {
5993 case VARIABLES_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_variable:
5997 break;
5998 default:
5999 goto again;
6000 }
6001 break;
6002 case FUNCTIONS_DOMAIN:
6003 switch (indexval.dwarf_tag)
6004 {
6005 case DW_TAG_subprogram:
6006 break;
6007 default:
6008 goto again;
6009 }
6010 break;
6011 case TYPES_DOMAIN:
6012 switch (indexval.dwarf_tag)
6013 {
6014 case DW_TAG_typedef:
6015 case DW_TAG_structure_type:
6016 break;
6017 default:
6018 goto again;
6019 }
6020 break;
6021 default:
6022 break;
6023 }
6024
6025 return per_cu;
6026 }
6027
6028 static struct compunit_symtab *
6029 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6030 const char *name, domain_enum domain)
6031 {
6032 const block_enum block_index = static_cast<block_enum> (block_index_int);
6033 struct dwarf2_per_objfile *dwarf2_per_objfile
6034 = get_dwarf2_per_objfile (objfile);
6035
6036 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6037 if (!mapp)
6038 {
6039 /* index is NULL if OBJF_READNOW. */
6040 return NULL;
6041 }
6042 const auto &map = *mapp;
6043
6044 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6045 block_index, domain, name);
6046
6047 struct compunit_symtab *stab_best = NULL;
6048 struct dwarf2_per_cu_data *per_cu;
6049 while ((per_cu = iter.next ()) != NULL)
6050 {
6051 struct symbol *sym, *with_opaque = NULL;
6052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6055
6056 sym = block_find_symbol (block, name, domain,
6057 block_find_non_opaque_type_preferred,
6058 &with_opaque);
6059
6060 /* Some caution must be observed with overloaded functions and
6061 methods, since the index will not contain any overload
6062 information (but NAME might contain it). */
6063
6064 if (sym != NULL
6065 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6066 return stab;
6067 if (with_opaque != NULL
6068 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6069 stab_best = stab;
6070
6071 /* Keep looking through other CUs. */
6072 }
6073
6074 return stab_best;
6075 }
6076
6077 /* This dumps minimal information about .debug_names. It is called
6078 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6079 uses this to verify that .debug_names has been loaded. */
6080
6081 static void
6082 dw2_debug_names_dump (struct objfile *objfile)
6083 {
6084 struct dwarf2_per_objfile *dwarf2_per_objfile
6085 = get_dwarf2_per_objfile (objfile);
6086
6087 gdb_assert (dwarf2_per_objfile->using_index);
6088 printf_filtered (".debug_names:");
6089 if (dwarf2_per_objfile->debug_names_table)
6090 printf_filtered (" exists\n");
6091 else
6092 printf_filtered (" faked for \"readnow\"\n");
6093 printf_filtered ("\n");
6094 }
6095
6096 static void
6097 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6098 const char *func_name)
6099 {
6100 struct dwarf2_per_objfile *dwarf2_per_objfile
6101 = get_dwarf2_per_objfile (objfile);
6102
6103 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6104 if (dwarf2_per_objfile->debug_names_table)
6105 {
6106 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6107
6108 /* Note: It doesn't matter what we pass for block_index here. */
6109 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6110 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6111
6112 struct dwarf2_per_cu_data *per_cu;
6113 while ((per_cu = iter.next ()) != NULL)
6114 dw2_instantiate_symtab (per_cu);
6115 }
6116 }
6117
6118 static void
6119 dw2_debug_names_expand_symtabs_matching
6120 (struct objfile *objfile,
6121 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6122 const lookup_name_info &lookup_name,
6123 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6124 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6125 enum search_domain kind)
6126 {
6127 struct dwarf2_per_objfile *dwarf2_per_objfile
6128 = get_dwarf2_per_objfile (objfile);
6129
6130 /* debug_names_table is NULL if OBJF_READNOW. */
6131 if (!dwarf2_per_objfile->debug_names_table)
6132 return;
6133
6134 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6135
6136 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6137
6138 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6139 symbol_matcher,
6140 kind, [&] (offset_type namei)
6141 {
6142 /* The name was matched, now expand corresponding CUs that were
6143 marked. */
6144 dw2_debug_names_iterator iter (map, kind, namei);
6145
6146 struct dwarf2_per_cu_data *per_cu;
6147 while ((per_cu = iter.next ()) != NULL)
6148 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6149 expansion_notify);
6150 });
6151 }
6152
6153 const struct quick_symbol_functions dwarf2_debug_names_functions =
6154 {
6155 dw2_has_symbols,
6156 dw2_find_last_source_symtab,
6157 dw2_forget_cached_source_info,
6158 dw2_map_symtabs_matching_filename,
6159 dw2_debug_names_lookup_symbol,
6160 dw2_print_stats,
6161 dw2_debug_names_dump,
6162 dw2_relocate,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* See symfile.h. */
6174
6175 bool
6176 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6177 {
6178 struct dwarf2_per_objfile *dwarf2_per_objfile
6179 = get_dwarf2_per_objfile (objfile);
6180
6181 /* If we're about to read full symbols, don't bother with the
6182 indices. In this case we also don't care if some other debug
6183 format is making psymtabs, because they are all about to be
6184 expanded anyway. */
6185 if ((objfile->flags & OBJF_READNOW))
6186 {
6187 dwarf2_per_objfile->using_index = 1;
6188 create_all_comp_units (dwarf2_per_objfile);
6189 create_all_type_units (dwarf2_per_objfile);
6190 dwarf2_per_objfile->quick_file_names_table
6191 = create_quick_file_names_table
6192 (dwarf2_per_objfile->all_comp_units.size ());
6193
6194 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6195 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6196 {
6197 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6198
6199 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6200 struct dwarf2_per_cu_quick_data);
6201 }
6202
6203 /* Return 1 so that gdb sees the "quick" functions. However,
6204 these functions will be no-ops because we will have expanded
6205 all symtabs. */
6206 *index_kind = dw_index_kind::GDB_INDEX;
6207 return true;
6208 }
6209
6210 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6211 {
6212 *index_kind = dw_index_kind::DEBUG_NAMES;
6213 return true;
6214 }
6215
6216 if (dwarf2_read_index (dwarf2_per_objfile))
6217 {
6218 *index_kind = dw_index_kind::GDB_INDEX;
6219 return true;
6220 }
6221
6222 return false;
6223 }
6224
6225 \f
6226
6227 /* Build a partial symbol table. */
6228
6229 void
6230 dwarf2_build_psymtabs (struct objfile *objfile)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 if (objfile->global_psymbols.capacity () == 0
6236 && objfile->static_psymbols.capacity () == 0)
6237 init_psymbol_list (objfile, 1024);
6238
6239 TRY
6240 {
6241 /* This isn't really ideal: all the data we allocate on the
6242 objfile's obstack is still uselessly kept around. However,
6243 freeing it seems unsafe. */
6244 psymtab_discarder psymtabs (objfile);
6245 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6246 psymtabs.keep ();
6247 }
6248 CATCH (except, RETURN_MASK_ERROR)
6249 {
6250 exception_print (gdb_stderr, except);
6251 }
6252 END_CATCH
6253 }
6254
6255 /* Return the total length of the CU described by HEADER. */
6256
6257 static unsigned int
6258 get_cu_length (const struct comp_unit_head *header)
6259 {
6260 return header->initial_length_size + header->length;
6261 }
6262
6263 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6264
6265 static inline bool
6266 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6267 {
6268 sect_offset bottom = cu_header->sect_off;
6269 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6270
6271 return sect_off >= bottom && sect_off < top;
6272 }
6273
6274 /* Find the base address of the compilation unit for range lists and
6275 location lists. It will normally be specified by DW_AT_low_pc.
6276 In DWARF-3 draft 4, the base address could be overridden by
6277 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6278 compilation units with discontinuous ranges. */
6279
6280 static void
6281 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6282 {
6283 struct attribute *attr;
6284
6285 cu->base_known = 0;
6286 cu->base_address = 0;
6287
6288 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6289 if (attr)
6290 {
6291 cu->base_address = attr_value_as_address (attr);
6292 cu->base_known = 1;
6293 }
6294 else
6295 {
6296 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6297 if (attr)
6298 {
6299 cu->base_address = attr_value_as_address (attr);
6300 cu->base_known = 1;
6301 }
6302 }
6303 }
6304
6305 /* Read in the comp unit header information from the debug_info at info_ptr.
6306 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6307 NOTE: This leaves members offset, first_die_offset to be filled in
6308 by the caller. */
6309
6310 static const gdb_byte *
6311 read_comp_unit_head (struct comp_unit_head *cu_header,
6312 const gdb_byte *info_ptr,
6313 struct dwarf2_section_info *section,
6314 rcuh_kind section_kind)
6315 {
6316 int signed_addr;
6317 unsigned int bytes_read;
6318 const char *filename = get_section_file_name (section);
6319 bfd *abfd = get_section_bfd_owner (section);
6320
6321 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6322 cu_header->initial_length_size = bytes_read;
6323 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6324 info_ptr += bytes_read;
6325 cu_header->version = read_2_bytes (abfd, info_ptr);
6326 info_ptr += 2;
6327 if (cu_header->version < 5)
6328 switch (section_kind)
6329 {
6330 case rcuh_kind::COMPILE:
6331 cu_header->unit_type = DW_UT_compile;
6332 break;
6333 case rcuh_kind::TYPE:
6334 cu_header->unit_type = DW_UT_type;
6335 break;
6336 default:
6337 internal_error (__FILE__, __LINE__,
6338 _("read_comp_unit_head: invalid section_kind"));
6339 }
6340 else
6341 {
6342 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6343 (read_1_byte (abfd, info_ptr));
6344 info_ptr += 1;
6345 switch (cu_header->unit_type)
6346 {
6347 case DW_UT_compile:
6348 if (section_kind != rcuh_kind::COMPILE)
6349 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6350 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6351 filename);
6352 break;
6353 case DW_UT_type:
6354 section_kind = rcuh_kind::TYPE;
6355 break;
6356 default:
6357 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6358 "(is %d, should be %d or %d) [in module %s]"),
6359 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6360 }
6361
6362 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6363 info_ptr += 1;
6364 }
6365 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6366 cu_header,
6367 &bytes_read);
6368 info_ptr += bytes_read;
6369 if (cu_header->version < 5)
6370 {
6371 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6372 info_ptr += 1;
6373 }
6374 signed_addr = bfd_get_sign_extend_vma (abfd);
6375 if (signed_addr < 0)
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: dwarf from non elf file"));
6378 cu_header->signed_addr_p = signed_addr;
6379
6380 if (section_kind == rcuh_kind::TYPE)
6381 {
6382 LONGEST type_offset;
6383
6384 cu_header->signature = read_8_bytes (abfd, info_ptr);
6385 info_ptr += 8;
6386
6387 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6388 info_ptr += bytes_read;
6389 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6390 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6391 error (_("Dwarf Error: Too big type_offset in compilation unit "
6392 "header (is %s) [in module %s]"), plongest (type_offset),
6393 filename);
6394 }
6395
6396 return info_ptr;
6397 }
6398
6399 /* Helper function that returns the proper abbrev section for
6400 THIS_CU. */
6401
6402 static struct dwarf2_section_info *
6403 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6404 {
6405 struct dwarf2_section_info *abbrev;
6406 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6407
6408 if (this_cu->is_dwz)
6409 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6410 else
6411 abbrev = &dwarf2_per_objfile->abbrev;
6412
6413 return abbrev;
6414 }
6415
6416 /* Subroutine of read_and_check_comp_unit_head and
6417 read_and_check_type_unit_head to simplify them.
6418 Perform various error checking on the header. */
6419
6420 static void
6421 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6422 struct comp_unit_head *header,
6423 struct dwarf2_section_info *section,
6424 struct dwarf2_section_info *abbrev_section)
6425 {
6426 const char *filename = get_section_file_name (section);
6427
6428 if (header->version < 2 || header->version > 5)
6429 error (_("Dwarf Error: wrong version in compilation unit header "
6430 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6431 filename);
6432
6433 if (to_underlying (header->abbrev_sect_off)
6434 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6435 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6436 "(offset %s + 6) [in module %s]"),
6437 sect_offset_str (header->abbrev_sect_off),
6438 sect_offset_str (header->sect_off),
6439 filename);
6440
6441 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6442 avoid potential 32-bit overflow. */
6443 if (((ULONGEST) header->sect_off + get_cu_length (header))
6444 > section->size)
6445 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6446 "(offset %s + 0) [in module %s]"),
6447 header->length, sect_offset_str (header->sect_off),
6448 filename);
6449 }
6450
6451 /* Read in a CU/TU header and perform some basic error checking.
6452 The contents of the header are stored in HEADER.
6453 The result is a pointer to the start of the first DIE. */
6454
6455 static const gdb_byte *
6456 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6457 struct comp_unit_head *header,
6458 struct dwarf2_section_info *section,
6459 struct dwarf2_section_info *abbrev_section,
6460 const gdb_byte *info_ptr,
6461 rcuh_kind section_kind)
6462 {
6463 const gdb_byte *beg_of_comp_unit = info_ptr;
6464
6465 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6466
6467 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6468
6469 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6470
6471 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6472 abbrev_section);
6473
6474 return info_ptr;
6475 }
6476
6477 /* Fetch the abbreviation table offset from a comp or type unit header. */
6478
6479 static sect_offset
6480 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6481 struct dwarf2_section_info *section,
6482 sect_offset sect_off)
6483 {
6484 bfd *abfd = get_section_bfd_owner (section);
6485 const gdb_byte *info_ptr;
6486 unsigned int initial_length_size, offset_size;
6487 uint16_t version;
6488
6489 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6490 info_ptr = section->buffer + to_underlying (sect_off);
6491 read_initial_length (abfd, info_ptr, &initial_length_size);
6492 offset_size = initial_length_size == 4 ? 4 : 8;
6493 info_ptr += initial_length_size;
6494
6495 version = read_2_bytes (abfd, info_ptr);
6496 info_ptr += 2;
6497 if (version >= 5)
6498 {
6499 /* Skip unit type and address size. */
6500 info_ptr += 2;
6501 }
6502
6503 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6504 }
6505
6506 /* Allocate a new partial symtab for file named NAME and mark this new
6507 partial symtab as being an include of PST. */
6508
6509 static void
6510 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6511 struct objfile *objfile)
6512 {
6513 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6514
6515 if (!IS_ABSOLUTE_PATH (subpst->filename))
6516 {
6517 /* It shares objfile->objfile_obstack. */
6518 subpst->dirname = pst->dirname;
6519 }
6520
6521 subpst->textlow = 0;
6522 subpst->texthigh = 0;
6523
6524 subpst->dependencies
6525 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6526 subpst->dependencies[0] = pst;
6527 subpst->number_of_dependencies = 1;
6528
6529 subpst->globals_offset = 0;
6530 subpst->n_global_syms = 0;
6531 subpst->statics_offset = 0;
6532 subpst->n_static_syms = 0;
6533 subpst->compunit_symtab = NULL;
6534 subpst->read_symtab = pst->read_symtab;
6535 subpst->readin = 0;
6536
6537 /* No private part is necessary for include psymtabs. This property
6538 can be used to differentiate between such include psymtabs and
6539 the regular ones. */
6540 subpst->read_symtab_private = NULL;
6541 }
6542
6543 /* Read the Line Number Program data and extract the list of files
6544 included by the source file represented by PST. Build an include
6545 partial symtab for each of these included files. */
6546
6547 static void
6548 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6549 struct die_info *die,
6550 struct partial_symtab *pst)
6551 {
6552 line_header_up lh;
6553 struct attribute *attr;
6554
6555 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6556 if (attr)
6557 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6558 if (lh == NULL)
6559 return; /* No linetable, so no includes. */
6560
6561 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
6562 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
6563 }
6564
6565 static hashval_t
6566 hash_signatured_type (const void *item)
6567 {
6568 const struct signatured_type *sig_type
6569 = (const struct signatured_type *) item;
6570
6571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6572 return sig_type->signature;
6573 }
6574
6575 static int
6576 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6577 {
6578 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6579 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6580
6581 return lhs->signature == rhs->signature;
6582 }
6583
6584 /* Allocate a hash table for signatured types. */
6585
6586 static htab_t
6587 allocate_signatured_type_table (struct objfile *objfile)
6588 {
6589 return htab_create_alloc_ex (41,
6590 hash_signatured_type,
6591 eq_signatured_type,
6592 NULL,
6593 &objfile->objfile_obstack,
6594 hashtab_obstack_allocate,
6595 dummy_obstack_deallocate);
6596 }
6597
6598 /* A helper function to add a signatured type CU to a table. */
6599
6600 static int
6601 add_signatured_type_cu_to_table (void **slot, void *datum)
6602 {
6603 struct signatured_type *sigt = (struct signatured_type *) *slot;
6604 std::vector<signatured_type *> *all_type_units
6605 = (std::vector<signatured_type *> *) datum;
6606
6607 all_type_units->push_back (sigt);
6608
6609 return 1;
6610 }
6611
6612 /* A helper for create_debug_types_hash_table. Read types from SECTION
6613 and fill them into TYPES_HTAB. It will process only type units,
6614 therefore DW_UT_type. */
6615
6616 static void
6617 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6618 struct dwo_file *dwo_file,
6619 dwarf2_section_info *section, htab_t &types_htab,
6620 rcuh_kind section_kind)
6621 {
6622 struct objfile *objfile = dwarf2_per_objfile->objfile;
6623 struct dwarf2_section_info *abbrev_section;
6624 bfd *abfd;
6625 const gdb_byte *info_ptr, *end_ptr;
6626
6627 abbrev_section = (dwo_file != NULL
6628 ? &dwo_file->sections.abbrev
6629 : &dwarf2_per_objfile->abbrev);
6630
6631 if (dwarf_read_debug)
6632 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6633 get_section_name (section),
6634 get_section_file_name (abbrev_section));
6635
6636 dwarf2_read_section (objfile, section);
6637 info_ptr = section->buffer;
6638
6639 if (info_ptr == NULL)
6640 return;
6641
6642 /* We can't set abfd until now because the section may be empty or
6643 not present, in which case the bfd is unknown. */
6644 abfd = get_section_bfd_owner (section);
6645
6646 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6647 because we don't need to read any dies: the signature is in the
6648 header. */
6649
6650 end_ptr = info_ptr + section->size;
6651 while (info_ptr < end_ptr)
6652 {
6653 struct signatured_type *sig_type;
6654 struct dwo_unit *dwo_tu;
6655 void **slot;
6656 const gdb_byte *ptr = info_ptr;
6657 struct comp_unit_head header;
6658 unsigned int length;
6659
6660 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6661
6662 /* Initialize it due to a false compiler warning. */
6663 header.signature = -1;
6664 header.type_cu_offset_in_tu = (cu_offset) -1;
6665
6666 /* We need to read the type's signature in order to build the hash
6667 table, but we don't need anything else just yet. */
6668
6669 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6670 abbrev_section, ptr, section_kind);
6671
6672 length = get_cu_length (&header);
6673
6674 /* Skip dummy type units. */
6675 if (ptr >= info_ptr + length
6676 || peek_abbrev_code (abfd, ptr) == 0
6677 || header.unit_type != DW_UT_type)
6678 {
6679 info_ptr += length;
6680 continue;
6681 }
6682
6683 if (types_htab == NULL)
6684 {
6685 if (dwo_file)
6686 types_htab = allocate_dwo_unit_table (objfile);
6687 else
6688 types_htab = allocate_signatured_type_table (objfile);
6689 }
6690
6691 if (dwo_file)
6692 {
6693 sig_type = NULL;
6694 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6695 struct dwo_unit);
6696 dwo_tu->dwo_file = dwo_file;
6697 dwo_tu->signature = header.signature;
6698 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6699 dwo_tu->section = section;
6700 dwo_tu->sect_off = sect_off;
6701 dwo_tu->length = length;
6702 }
6703 else
6704 {
6705 /* N.B.: type_offset is not usable if this type uses a DWO file.
6706 The real type_offset is in the DWO file. */
6707 dwo_tu = NULL;
6708 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6709 struct signatured_type);
6710 sig_type->signature = header.signature;
6711 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6712 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6713 sig_type->per_cu.is_debug_types = 1;
6714 sig_type->per_cu.section = section;
6715 sig_type->per_cu.sect_off = sect_off;
6716 sig_type->per_cu.length = length;
6717 }
6718
6719 slot = htab_find_slot (types_htab,
6720 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6721 INSERT);
6722 gdb_assert (slot != NULL);
6723 if (*slot != NULL)
6724 {
6725 sect_offset dup_sect_off;
6726
6727 if (dwo_file)
6728 {
6729 const struct dwo_unit *dup_tu
6730 = (const struct dwo_unit *) *slot;
6731
6732 dup_sect_off = dup_tu->sect_off;
6733 }
6734 else
6735 {
6736 const struct signatured_type *dup_tu
6737 = (const struct signatured_type *) *slot;
6738
6739 dup_sect_off = dup_tu->per_cu.sect_off;
6740 }
6741
6742 complaint (&symfile_complaints,
6743 _("debug type entry at offset %s is duplicate to"
6744 " the entry at offset %s, signature %s"),
6745 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6746 hex_string (header.signature));
6747 }
6748 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6749
6750 if (dwarf_read_debug > 1)
6751 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6752 sect_offset_str (sect_off),
6753 hex_string (header.signature));
6754
6755 info_ptr += length;
6756 }
6757 }
6758
6759 /* Create the hash table of all entries in the .debug_types
6760 (or .debug_types.dwo) section(s).
6761 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6762 otherwise it is NULL.
6763
6764 The result is a pointer to the hash table or NULL if there are no types.
6765
6766 Note: This function processes DWO files only, not DWP files. */
6767
6768 static void
6769 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6770 struct dwo_file *dwo_file,
6771 VEC (dwarf2_section_info_def) *types,
6772 htab_t &types_htab)
6773 {
6774 int ix;
6775 struct dwarf2_section_info *section;
6776
6777 if (VEC_empty (dwarf2_section_info_def, types))
6778 return;
6779
6780 for (ix = 0;
6781 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6782 ++ix)
6783 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6784 types_htab, rcuh_kind::TYPE);
6785 }
6786
6787 /* Create the hash table of all entries in the .debug_types section,
6788 and initialize all_type_units.
6789 The result is zero if there is an error (e.g. missing .debug_types section),
6790 otherwise non-zero. */
6791
6792 static int
6793 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6794 {
6795 htab_t types_htab = NULL;
6796
6797 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6798 &dwarf2_per_objfile->info, types_htab,
6799 rcuh_kind::COMPILE);
6800 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6801 dwarf2_per_objfile->types, types_htab);
6802 if (types_htab == NULL)
6803 {
6804 dwarf2_per_objfile->signatured_types = NULL;
6805 return 0;
6806 }
6807
6808 dwarf2_per_objfile->signatured_types = types_htab;
6809
6810 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6811 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6812
6813 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6814 &dwarf2_per_objfile->all_type_units);
6815
6816 return 1;
6817 }
6818
6819 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6820 If SLOT is non-NULL, it is the entry to use in the hash table.
6821 Otherwise we find one. */
6822
6823 static struct signatured_type *
6824 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6825 void **slot)
6826 {
6827 struct objfile *objfile = dwarf2_per_objfile->objfile;
6828
6829 if (dwarf2_per_objfile->all_type_units.size ()
6830 == dwarf2_per_objfile->all_type_units.capacity ())
6831 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6832
6833 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6834 struct signatured_type);
6835
6836 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6837 sig_type->signature = sig;
6838 sig_type->per_cu.is_debug_types = 1;
6839 if (dwarf2_per_objfile->using_index)
6840 {
6841 sig_type->per_cu.v.quick =
6842 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6843 struct dwarf2_per_cu_quick_data);
6844 }
6845
6846 if (slot == NULL)
6847 {
6848 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6849 sig_type, INSERT);
6850 }
6851 gdb_assert (*slot == NULL);
6852 *slot = sig_type;
6853 /* The rest of sig_type must be filled in by the caller. */
6854 return sig_type;
6855 }
6856
6857 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6858 Fill in SIG_ENTRY with DWO_ENTRY. */
6859
6860 static void
6861 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct signatured_type *sig_entry,
6863 struct dwo_unit *dwo_entry)
6864 {
6865 /* Make sure we're not clobbering something we don't expect to. */
6866 gdb_assert (! sig_entry->per_cu.queued);
6867 gdb_assert (sig_entry->per_cu.cu == NULL);
6868 if (dwarf2_per_objfile->using_index)
6869 {
6870 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6871 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6872 }
6873 else
6874 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6875 gdb_assert (sig_entry->signature == dwo_entry->signature);
6876 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6877 gdb_assert (sig_entry->type_unit_group == NULL);
6878 gdb_assert (sig_entry->dwo_unit == NULL);
6879
6880 sig_entry->per_cu.section = dwo_entry->section;
6881 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6882 sig_entry->per_cu.length = dwo_entry->length;
6883 sig_entry->per_cu.reading_dwo_directly = 1;
6884 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6885 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6886 sig_entry->dwo_unit = dwo_entry;
6887 }
6888
6889 /* Subroutine of lookup_signatured_type.
6890 If we haven't read the TU yet, create the signatured_type data structure
6891 for a TU to be read in directly from a DWO file, bypassing the stub.
6892 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6893 using .gdb_index, then when reading a CU we want to stay in the DWO file
6894 containing that CU. Otherwise we could end up reading several other DWO
6895 files (due to comdat folding) to process the transitive closure of all the
6896 mentioned TUs, and that can be slow. The current DWO file will have every
6897 type signature that it needs.
6898 We only do this for .gdb_index because in the psymtab case we already have
6899 to read all the DWOs to build the type unit groups. */
6900
6901 static struct signatured_type *
6902 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6903 {
6904 struct dwarf2_per_objfile *dwarf2_per_objfile
6905 = cu->per_cu->dwarf2_per_objfile;
6906 struct objfile *objfile = dwarf2_per_objfile->objfile;
6907 struct dwo_file *dwo_file;
6908 struct dwo_unit find_dwo_entry, *dwo_entry;
6909 struct signatured_type find_sig_entry, *sig_entry;
6910 void **slot;
6911
6912 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6913
6914 /* If TU skeletons have been removed then we may not have read in any
6915 TUs yet. */
6916 if (dwarf2_per_objfile->signatured_types == NULL)
6917 {
6918 dwarf2_per_objfile->signatured_types
6919 = allocate_signatured_type_table (objfile);
6920 }
6921
6922 /* We only ever need to read in one copy of a signatured type.
6923 Use the global signatured_types array to do our own comdat-folding
6924 of types. If this is the first time we're reading this TU, and
6925 the TU has an entry in .gdb_index, replace the recorded data from
6926 .gdb_index with this TU. */
6927
6928 find_sig_entry.signature = sig;
6929 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6930 &find_sig_entry, INSERT);
6931 sig_entry = (struct signatured_type *) *slot;
6932
6933 /* We can get here with the TU already read, *or* in the process of being
6934 read. Don't reassign the global entry to point to this DWO if that's
6935 the case. Also note that if the TU is already being read, it may not
6936 have come from a DWO, the program may be a mix of Fission-compiled
6937 code and non-Fission-compiled code. */
6938
6939 /* Have we already tried to read this TU?
6940 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6941 needn't exist in the global table yet). */
6942 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6943 return sig_entry;
6944
6945 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6946 dwo_unit of the TU itself. */
6947 dwo_file = cu->dwo_unit->dwo_file;
6948
6949 /* Ok, this is the first time we're reading this TU. */
6950 if (dwo_file->tus == NULL)
6951 return NULL;
6952 find_dwo_entry.signature = sig;
6953 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6954 if (dwo_entry == NULL)
6955 return NULL;
6956
6957 /* If the global table doesn't have an entry for this TU, add one. */
6958 if (sig_entry == NULL)
6959 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6960
6961 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6962 sig_entry->per_cu.tu_read = 1;
6963 return sig_entry;
6964 }
6965
6966 /* Subroutine of lookup_signatured_type.
6967 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6968 then try the DWP file. If the TU stub (skeleton) has been removed then
6969 it won't be in .gdb_index. */
6970
6971 static struct signatured_type *
6972 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6973 {
6974 struct dwarf2_per_objfile *dwarf2_per_objfile
6975 = cu->per_cu->dwarf2_per_objfile;
6976 struct objfile *objfile = dwarf2_per_objfile->objfile;
6977 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6978 struct dwo_unit *dwo_entry;
6979 struct signatured_type find_sig_entry, *sig_entry;
6980 void **slot;
6981
6982 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6983 gdb_assert (dwp_file != NULL);
6984
6985 /* If TU skeletons have been removed then we may not have read in any
6986 TUs yet. */
6987 if (dwarf2_per_objfile->signatured_types == NULL)
6988 {
6989 dwarf2_per_objfile->signatured_types
6990 = allocate_signatured_type_table (objfile);
6991 }
6992
6993 find_sig_entry.signature = sig;
6994 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6995 &find_sig_entry, INSERT);
6996 sig_entry = (struct signatured_type *) *slot;
6997
6998 /* Have we already tried to read this TU?
6999 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7000 needn't exist in the global table yet). */
7001 if (sig_entry != NULL)
7002 return sig_entry;
7003
7004 if (dwp_file->tus == NULL)
7005 return NULL;
7006 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7007 sig, 1 /* is_debug_types */);
7008 if (dwo_entry == NULL)
7009 return NULL;
7010
7011 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7012 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7013
7014 return sig_entry;
7015 }
7016
7017 /* Lookup a signature based type for DW_FORM_ref_sig8.
7018 Returns NULL if signature SIG is not present in the table.
7019 It is up to the caller to complain about this. */
7020
7021 static struct signatured_type *
7022 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7023 {
7024 struct dwarf2_per_objfile *dwarf2_per_objfile
7025 = cu->per_cu->dwarf2_per_objfile;
7026
7027 if (cu->dwo_unit
7028 && dwarf2_per_objfile->using_index)
7029 {
7030 /* We're in a DWO/DWP file, and we're using .gdb_index.
7031 These cases require special processing. */
7032 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7033 return lookup_dwo_signatured_type (cu, sig);
7034 else
7035 return lookup_dwp_signatured_type (cu, sig);
7036 }
7037 else
7038 {
7039 struct signatured_type find_entry, *entry;
7040
7041 if (dwarf2_per_objfile->signatured_types == NULL)
7042 return NULL;
7043 find_entry.signature = sig;
7044 entry = ((struct signatured_type *)
7045 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7046 return entry;
7047 }
7048 }
7049 \f
7050 /* Low level DIE reading support. */
7051
7052 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7053
7054 static void
7055 init_cu_die_reader (struct die_reader_specs *reader,
7056 struct dwarf2_cu *cu,
7057 struct dwarf2_section_info *section,
7058 struct dwo_file *dwo_file,
7059 struct abbrev_table *abbrev_table)
7060 {
7061 gdb_assert (section->readin && section->buffer != NULL);
7062 reader->abfd = get_section_bfd_owner (section);
7063 reader->cu = cu;
7064 reader->dwo_file = dwo_file;
7065 reader->die_section = section;
7066 reader->buffer = section->buffer;
7067 reader->buffer_end = section->buffer + section->size;
7068 reader->comp_dir = NULL;
7069 reader->abbrev_table = abbrev_table;
7070 }
7071
7072 /* Subroutine of init_cutu_and_read_dies to simplify it.
7073 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7074 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7075 already.
7076
7077 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7078 from it to the DIE in the DWO. If NULL we are skipping the stub.
7079 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7080 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7081 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7082 STUB_COMP_DIR may be non-NULL.
7083 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7084 are filled in with the info of the DIE from the DWO file.
7085 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7086 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7087 kept around for at least as long as *RESULT_READER.
7088
7089 The result is non-zero if a valid (non-dummy) DIE was found. */
7090
7091 static int
7092 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7093 struct dwo_unit *dwo_unit,
7094 struct die_info *stub_comp_unit_die,
7095 const char *stub_comp_dir,
7096 struct die_reader_specs *result_reader,
7097 const gdb_byte **result_info_ptr,
7098 struct die_info **result_comp_unit_die,
7099 int *result_has_children,
7100 abbrev_table_up *result_dwo_abbrev_table)
7101 {
7102 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_cu *cu = this_cu->cu;
7105 bfd *abfd;
7106 const gdb_byte *begin_info_ptr, *info_ptr;
7107 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7108 int i,num_extra_attrs;
7109 struct dwarf2_section_info *dwo_abbrev_section;
7110 struct attribute *attr;
7111 struct die_info *comp_unit_die;
7112
7113 /* At most one of these may be provided. */
7114 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7115
7116 /* These attributes aren't processed until later:
7117 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7118 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7119 referenced later. However, these attributes are found in the stub
7120 which we won't have later. In order to not impose this complication
7121 on the rest of the code, we read them here and copy them to the
7122 DWO CU/TU die. */
7123
7124 stmt_list = NULL;
7125 low_pc = NULL;
7126 high_pc = NULL;
7127 ranges = NULL;
7128 comp_dir = NULL;
7129
7130 if (stub_comp_unit_die != NULL)
7131 {
7132 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7133 DWO file. */
7134 if (! this_cu->is_debug_types)
7135 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7136 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7137 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7138 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7139 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7140
7141 /* There should be a DW_AT_addr_base attribute here (if needed).
7142 We need the value before we can process DW_FORM_GNU_addr_index. */
7143 cu->addr_base = 0;
7144 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7145 if (attr)
7146 cu->addr_base = DW_UNSND (attr);
7147
7148 /* There should be a DW_AT_ranges_base attribute here (if needed).
7149 We need the value before we can process DW_AT_ranges. */
7150 cu->ranges_base = 0;
7151 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7152 if (attr)
7153 cu->ranges_base = DW_UNSND (attr);
7154 }
7155 else if (stub_comp_dir != NULL)
7156 {
7157 /* Reconstruct the comp_dir attribute to simplify the code below. */
7158 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7159 comp_dir->name = DW_AT_comp_dir;
7160 comp_dir->form = DW_FORM_string;
7161 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7162 DW_STRING (comp_dir) = stub_comp_dir;
7163 }
7164
7165 /* Set up for reading the DWO CU/TU. */
7166 cu->dwo_unit = dwo_unit;
7167 dwarf2_section_info *section = dwo_unit->section;
7168 dwarf2_read_section (objfile, section);
7169 abfd = get_section_bfd_owner (section);
7170 begin_info_ptr = info_ptr = (section->buffer
7171 + to_underlying (dwo_unit->sect_off));
7172 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7173
7174 if (this_cu->is_debug_types)
7175 {
7176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7177
7178 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7179 &cu->header, section,
7180 dwo_abbrev_section,
7181 info_ptr, rcuh_kind::TYPE);
7182 /* This is not an assert because it can be caused by bad debug info. */
7183 if (sig_type->signature != cu->header.signature)
7184 {
7185 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7186 " TU at offset %s [in module %s]"),
7187 hex_string (sig_type->signature),
7188 hex_string (cu->header.signature),
7189 sect_offset_str (dwo_unit->sect_off),
7190 bfd_get_filename (abfd));
7191 }
7192 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7193 /* For DWOs coming from DWP files, we don't know the CU length
7194 nor the type's offset in the TU until now. */
7195 dwo_unit->length = get_cu_length (&cu->header);
7196 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7197
7198 /* Establish the type offset that can be used to lookup the type.
7199 For DWO files, we don't know it until now. */
7200 sig_type->type_offset_in_section
7201 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7202 }
7203 else
7204 {
7205 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7206 &cu->header, section,
7207 dwo_abbrev_section,
7208 info_ptr, rcuh_kind::COMPILE);
7209 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7210 /* For DWOs coming from DWP files, we don't know the CU length
7211 until now. */
7212 dwo_unit->length = get_cu_length (&cu->header);
7213 }
7214
7215 *result_dwo_abbrev_table
7216 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7217 cu->header.abbrev_sect_off);
7218 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7219 result_dwo_abbrev_table->get ());
7220
7221 /* Read in the die, but leave space to copy over the attributes
7222 from the stub. This has the benefit of simplifying the rest of
7223 the code - all the work to maintain the illusion of a single
7224 DW_TAG_{compile,type}_unit DIE is done here. */
7225 num_extra_attrs = ((stmt_list != NULL)
7226 + (low_pc != NULL)
7227 + (high_pc != NULL)
7228 + (ranges != NULL)
7229 + (comp_dir != NULL));
7230 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7231 result_has_children, num_extra_attrs);
7232
7233 /* Copy over the attributes from the stub to the DIE we just read in. */
7234 comp_unit_die = *result_comp_unit_die;
7235 i = comp_unit_die->num_attrs;
7236 if (stmt_list != NULL)
7237 comp_unit_die->attrs[i++] = *stmt_list;
7238 if (low_pc != NULL)
7239 comp_unit_die->attrs[i++] = *low_pc;
7240 if (high_pc != NULL)
7241 comp_unit_die->attrs[i++] = *high_pc;
7242 if (ranges != NULL)
7243 comp_unit_die->attrs[i++] = *ranges;
7244 if (comp_dir != NULL)
7245 comp_unit_die->attrs[i++] = *comp_dir;
7246 comp_unit_die->num_attrs += num_extra_attrs;
7247
7248 if (dwarf_die_debug)
7249 {
7250 fprintf_unfiltered (gdb_stdlog,
7251 "Read die from %s@0x%x of %s:\n",
7252 get_section_name (section),
7253 (unsigned) (begin_info_ptr - section->buffer),
7254 bfd_get_filename (abfd));
7255 dump_die (comp_unit_die, dwarf_die_debug);
7256 }
7257
7258 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7259 TUs by skipping the stub and going directly to the entry in the DWO file.
7260 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7261 to get it via circuitous means. Blech. */
7262 if (comp_dir != NULL)
7263 result_reader->comp_dir = DW_STRING (comp_dir);
7264
7265 /* Skip dummy compilation units. */
7266 if (info_ptr >= begin_info_ptr + dwo_unit->length
7267 || peek_abbrev_code (abfd, info_ptr) == 0)
7268 return 0;
7269
7270 *result_info_ptr = info_ptr;
7271 return 1;
7272 }
7273
7274 /* Subroutine of init_cutu_and_read_dies to simplify it.
7275 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7276 Returns NULL if the specified DWO unit cannot be found. */
7277
7278 static struct dwo_unit *
7279 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7280 struct die_info *comp_unit_die)
7281 {
7282 struct dwarf2_cu *cu = this_cu->cu;
7283 ULONGEST signature;
7284 struct dwo_unit *dwo_unit;
7285 const char *comp_dir, *dwo_name;
7286
7287 gdb_assert (cu != NULL);
7288
7289 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7290 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7291 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7292
7293 if (this_cu->is_debug_types)
7294 {
7295 struct signatured_type *sig_type;
7296
7297 /* Since this_cu is the first member of struct signatured_type,
7298 we can go from a pointer to one to a pointer to the other. */
7299 sig_type = (struct signatured_type *) this_cu;
7300 signature = sig_type->signature;
7301 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7302 }
7303 else
7304 {
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7308 if (! attr)
7309 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7310 " [in module %s]"),
7311 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7312 signature = DW_UNSND (attr);
7313 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7314 signature);
7315 }
7316
7317 return dwo_unit;
7318 }
7319
7320 /* Subroutine of init_cutu_and_read_dies to simplify it.
7321 See it for a description of the parameters.
7322 Read a TU directly from a DWO file, bypassing the stub. */
7323
7324 static void
7325 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7326 int use_existing_cu, int keep,
7327 die_reader_func_ftype *die_reader_func,
7328 void *data)
7329 {
7330 std::unique_ptr<dwarf2_cu> new_cu;
7331 struct signatured_type *sig_type;
7332 struct die_reader_specs reader;
7333 const gdb_byte *info_ptr;
7334 struct die_info *comp_unit_die;
7335 int has_children;
7336 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7337
7338 /* Verify we can do the following downcast, and that we have the
7339 data we need. */
7340 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7341 sig_type = (struct signatured_type *) this_cu;
7342 gdb_assert (sig_type->dwo_unit != NULL);
7343
7344 if (use_existing_cu && this_cu->cu != NULL)
7345 {
7346 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7347 /* There's no need to do the rereading_dwo_cu handling that
7348 init_cutu_and_read_dies does since we don't read the stub. */
7349 }
7350 else
7351 {
7352 /* If !use_existing_cu, this_cu->cu must be NULL. */
7353 gdb_assert (this_cu->cu == NULL);
7354 new_cu.reset (new dwarf2_cu (this_cu));
7355 }
7356
7357 /* A future optimization, if needed, would be to use an existing
7358 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7359 could share abbrev tables. */
7360
7361 /* The abbreviation table used by READER, this must live at least as long as
7362 READER. */
7363 abbrev_table_up dwo_abbrev_table;
7364
7365 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7366 NULL /* stub_comp_unit_die */,
7367 sig_type->dwo_unit->dwo_file->comp_dir,
7368 &reader, &info_ptr,
7369 &comp_unit_die, &has_children,
7370 &dwo_abbrev_table) == 0)
7371 {
7372 /* Dummy die. */
7373 return;
7374 }
7375
7376 /* All the "real" work is done here. */
7377 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7378
7379 /* This duplicates the code in init_cutu_and_read_dies,
7380 but the alternative is making the latter more complex.
7381 This function is only for the special case of using DWO files directly:
7382 no point in overly complicating the general case just to handle this. */
7383 if (new_cu != NULL && keep)
7384 {
7385 /* Link this CU into read_in_chain. */
7386 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7387 dwarf2_per_objfile->read_in_chain = this_cu;
7388 /* The chain owns it now. */
7389 new_cu.release ();
7390 }
7391 }
7392
7393 /* Initialize a CU (or TU) and read its DIEs.
7394 If the CU defers to a DWO file, read the DWO file as well.
7395
7396 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7397 Otherwise the table specified in the comp unit header is read in and used.
7398 This is an optimization for when we already have the abbrev table.
7399
7400 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7401 Otherwise, a new CU is allocated with xmalloc.
7402
7403 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7404 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7405
7406 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7407 linker) then DIE_READER_FUNC will not get called. */
7408
7409 static void
7410 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7411 struct abbrev_table *abbrev_table,
7412 int use_existing_cu, int keep,
7413 die_reader_func_ftype *die_reader_func,
7414 void *data)
7415 {
7416 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7417 struct objfile *objfile = dwarf2_per_objfile->objfile;
7418 struct dwarf2_section_info *section = this_cu->section;
7419 bfd *abfd = get_section_bfd_owner (section);
7420 struct dwarf2_cu *cu;
7421 const gdb_byte *begin_info_ptr, *info_ptr;
7422 struct die_reader_specs reader;
7423 struct die_info *comp_unit_die;
7424 int has_children;
7425 struct attribute *attr;
7426 struct signatured_type *sig_type = NULL;
7427 struct dwarf2_section_info *abbrev_section;
7428 /* Non-zero if CU currently points to a DWO file and we need to
7429 reread it. When this happens we need to reread the skeleton die
7430 before we can reread the DWO file (this only applies to CUs, not TUs). */
7431 int rereading_dwo_cu = 0;
7432
7433 if (dwarf_die_debug)
7434 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7435 this_cu->is_debug_types ? "type" : "comp",
7436 sect_offset_str (this_cu->sect_off));
7437
7438 if (use_existing_cu)
7439 gdb_assert (keep);
7440
7441 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7442 file (instead of going through the stub), short-circuit all of this. */
7443 if (this_cu->reading_dwo_directly)
7444 {
7445 /* Narrow down the scope of possibilities to have to understand. */
7446 gdb_assert (this_cu->is_debug_types);
7447 gdb_assert (abbrev_table == NULL);
7448 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7449 die_reader_func, data);
7450 return;
7451 }
7452
7453 /* This is cheap if the section is already read in. */
7454 dwarf2_read_section (objfile, section);
7455
7456 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7457
7458 abbrev_section = get_abbrev_section_for_cu (this_cu);
7459
7460 std::unique_ptr<dwarf2_cu> new_cu;
7461 if (use_existing_cu && this_cu->cu != NULL)
7462 {
7463 cu = this_cu->cu;
7464 /* If this CU is from a DWO file we need to start over, we need to
7465 refetch the attributes from the skeleton CU.
7466 This could be optimized by retrieving those attributes from when we
7467 were here the first time: the previous comp_unit_die was stored in
7468 comp_unit_obstack. But there's no data yet that we need this
7469 optimization. */
7470 if (cu->dwo_unit != NULL)
7471 rereading_dwo_cu = 1;
7472 }
7473 else
7474 {
7475 /* If !use_existing_cu, this_cu->cu must be NULL. */
7476 gdb_assert (this_cu->cu == NULL);
7477 new_cu.reset (new dwarf2_cu (this_cu));
7478 cu = new_cu.get ();
7479 }
7480
7481 /* Get the header. */
7482 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7483 {
7484 /* We already have the header, there's no need to read it in again. */
7485 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7486 }
7487 else
7488 {
7489 if (this_cu->is_debug_types)
7490 {
7491 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7492 &cu->header, section,
7493 abbrev_section, info_ptr,
7494 rcuh_kind::TYPE);
7495
7496 /* Since per_cu is the first member of struct signatured_type,
7497 we can go from a pointer to one to a pointer to the other. */
7498 sig_type = (struct signatured_type *) this_cu;
7499 gdb_assert (sig_type->signature == cu->header.signature);
7500 gdb_assert (sig_type->type_offset_in_tu
7501 == cu->header.type_cu_offset_in_tu);
7502 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7503
7504 /* LENGTH has not been set yet for type units if we're
7505 using .gdb_index. */
7506 this_cu->length = get_cu_length (&cu->header);
7507
7508 /* Establish the type offset that can be used to lookup the type. */
7509 sig_type->type_offset_in_section =
7510 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7511
7512 this_cu->dwarf_version = cu->header.version;
7513 }
7514 else
7515 {
7516 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7517 &cu->header, section,
7518 abbrev_section,
7519 info_ptr,
7520 rcuh_kind::COMPILE);
7521
7522 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7524 this_cu->dwarf_version = cu->header.version;
7525 }
7526 }
7527
7528 /* Skip dummy compilation units. */
7529 if (info_ptr >= begin_info_ptr + this_cu->length
7530 || peek_abbrev_code (abfd, info_ptr) == 0)
7531 return;
7532
7533 /* If we don't have them yet, read the abbrevs for this compilation unit.
7534 And if we need to read them now, make sure they're freed when we're
7535 done (own the table through ABBREV_TABLE_HOLDER). */
7536 abbrev_table_up abbrev_table_holder;
7537 if (abbrev_table != NULL)
7538 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7539 else
7540 {
7541 abbrev_table_holder
7542 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7543 cu->header.abbrev_sect_off);
7544 abbrev_table = abbrev_table_holder.get ();
7545 }
7546
7547 /* Read the top level CU/TU die. */
7548 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7549 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7550
7551 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7552 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7553 table from the DWO file and pass the ownership over to us. It will be
7554 referenced from READER, so we must make sure to free it after we're done
7555 with READER.
7556
7557 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7558 DWO CU, that this test will fail (the attribute will not be present). */
7559 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7560 abbrev_table_up dwo_abbrev_table;
7561 if (attr)
7562 {
7563 struct dwo_unit *dwo_unit;
7564 struct die_info *dwo_comp_unit_die;
7565
7566 if (has_children)
7567 {
7568 complaint (&symfile_complaints,
7569 _("compilation unit with DW_AT_GNU_dwo_name"
7570 " has children (offset %s) [in module %s]"),
7571 sect_offset_str (this_cu->sect_off),
7572 bfd_get_filename (abfd));
7573 }
7574 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7575 if (dwo_unit != NULL)
7576 {
7577 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7578 comp_unit_die, NULL,
7579 &reader, &info_ptr,
7580 &dwo_comp_unit_die, &has_children,
7581 &dwo_abbrev_table) == 0)
7582 {
7583 /* Dummy die. */
7584 return;
7585 }
7586 comp_unit_die = dwo_comp_unit_die;
7587 }
7588 else
7589 {
7590 /* Yikes, we couldn't find the rest of the DIE, we only have
7591 the stub. A complaint has already been logged. There's
7592 not much more we can do except pass on the stub DIE to
7593 die_reader_func. We don't want to throw an error on bad
7594 debug info. */
7595 }
7596 }
7597
7598 /* All of the above is setup for this call. Yikes. */
7599 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7600
7601 /* Done, clean up. */
7602 if (new_cu != NULL && keep)
7603 {
7604 /* Link this CU into read_in_chain. */
7605 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7606 dwarf2_per_objfile->read_in_chain = this_cu;
7607 /* The chain owns it now. */
7608 new_cu.release ();
7609 }
7610 }
7611
7612 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7613 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7614 to have already done the lookup to find the DWO file).
7615
7616 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7617 THIS_CU->is_debug_types, but nothing else.
7618
7619 We fill in THIS_CU->length.
7620
7621 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7622 linker) then DIE_READER_FUNC will not get called.
7623
7624 THIS_CU->cu is always freed when done.
7625 This is done in order to not leave THIS_CU->cu in a state where we have
7626 to care whether it refers to the "main" CU or the DWO CU. */
7627
7628 static void
7629 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7630 struct dwo_file *dwo_file,
7631 die_reader_func_ftype *die_reader_func,
7632 void *data)
7633 {
7634 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7635 struct objfile *objfile = dwarf2_per_objfile->objfile;
7636 struct dwarf2_section_info *section = this_cu->section;
7637 bfd *abfd = get_section_bfd_owner (section);
7638 struct dwarf2_section_info *abbrev_section;
7639 const gdb_byte *begin_info_ptr, *info_ptr;
7640 struct die_reader_specs reader;
7641 struct die_info *comp_unit_die;
7642 int has_children;
7643
7644 if (dwarf_die_debug)
7645 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7646 this_cu->is_debug_types ? "type" : "comp",
7647 sect_offset_str (this_cu->sect_off));
7648
7649 gdb_assert (this_cu->cu == NULL);
7650
7651 abbrev_section = (dwo_file != NULL
7652 ? &dwo_file->sections.abbrev
7653 : get_abbrev_section_for_cu (this_cu));
7654
7655 /* This is cheap if the section is already read in. */
7656 dwarf2_read_section (objfile, section);
7657
7658 struct dwarf2_cu cu (this_cu);
7659
7660 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7661 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7662 &cu.header, section,
7663 abbrev_section, info_ptr,
7664 (this_cu->is_debug_types
7665 ? rcuh_kind::TYPE
7666 : rcuh_kind::COMPILE));
7667
7668 this_cu->length = get_cu_length (&cu.header);
7669
7670 /* Skip dummy compilation units. */
7671 if (info_ptr >= begin_info_ptr + this_cu->length
7672 || peek_abbrev_code (abfd, info_ptr) == 0)
7673 return;
7674
7675 abbrev_table_up abbrev_table
7676 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7677 cu.header.abbrev_sect_off);
7678
7679 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7680 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7681
7682 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7683 }
7684
7685 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7686 does not lookup the specified DWO file.
7687 This cannot be used to read DWO files.
7688
7689 THIS_CU->cu is always freed when done.
7690 This is done in order to not leave THIS_CU->cu in a state where we have
7691 to care whether it refers to the "main" CU or the DWO CU.
7692 We can revisit this if the data shows there's a performance issue. */
7693
7694 static void
7695 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7696 die_reader_func_ftype *die_reader_func,
7697 void *data)
7698 {
7699 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7700 }
7701 \f
7702 /* Type Unit Groups.
7703
7704 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7705 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7706 so that all types coming from the same compilation (.o file) are grouped
7707 together. A future step could be to put the types in the same symtab as
7708 the CU the types ultimately came from. */
7709
7710 static hashval_t
7711 hash_type_unit_group (const void *item)
7712 {
7713 const struct type_unit_group *tu_group
7714 = (const struct type_unit_group *) item;
7715
7716 return hash_stmt_list_entry (&tu_group->hash);
7717 }
7718
7719 static int
7720 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7721 {
7722 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7723 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7724
7725 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7726 }
7727
7728 /* Allocate a hash table for type unit groups. */
7729
7730 static htab_t
7731 allocate_type_unit_groups_table (struct objfile *objfile)
7732 {
7733 return htab_create_alloc_ex (3,
7734 hash_type_unit_group,
7735 eq_type_unit_group,
7736 NULL,
7737 &objfile->objfile_obstack,
7738 hashtab_obstack_allocate,
7739 dummy_obstack_deallocate);
7740 }
7741
7742 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7743 partial symtabs. We combine several TUs per psymtab to not let the size
7744 of any one psymtab grow too big. */
7745 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7746 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7747
7748 /* Helper routine for get_type_unit_group.
7749 Create the type_unit_group object used to hold one or more TUs. */
7750
7751 static struct type_unit_group *
7752 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7753 {
7754 struct dwarf2_per_objfile *dwarf2_per_objfile
7755 = cu->per_cu->dwarf2_per_objfile;
7756 struct objfile *objfile = dwarf2_per_objfile->objfile;
7757 struct dwarf2_per_cu_data *per_cu;
7758 struct type_unit_group *tu_group;
7759
7760 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7761 struct type_unit_group);
7762 per_cu = &tu_group->per_cu;
7763 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7764
7765 if (dwarf2_per_objfile->using_index)
7766 {
7767 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7768 struct dwarf2_per_cu_quick_data);
7769 }
7770 else
7771 {
7772 unsigned int line_offset = to_underlying (line_offset_struct);
7773 struct partial_symtab *pst;
7774 char *name;
7775
7776 /* Give the symtab a useful name for debug purposes. */
7777 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7778 name = xstrprintf ("<type_units_%d>",
7779 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7780 else
7781 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
7782
7783 pst = create_partial_symtab (per_cu, name);
7784 pst->anonymous = 1;
7785
7786 xfree (name);
7787 }
7788
7789 tu_group->hash.dwo_unit = cu->dwo_unit;
7790 tu_group->hash.line_sect_off = line_offset_struct;
7791
7792 return tu_group;
7793 }
7794
7795 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7796 STMT_LIST is a DW_AT_stmt_list attribute. */
7797
7798 static struct type_unit_group *
7799 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7800 {
7801 struct dwarf2_per_objfile *dwarf2_per_objfile
7802 = cu->per_cu->dwarf2_per_objfile;
7803 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7804 struct type_unit_group *tu_group;
7805 void **slot;
7806 unsigned int line_offset;
7807 struct type_unit_group type_unit_group_for_lookup;
7808
7809 if (dwarf2_per_objfile->type_unit_groups == NULL)
7810 {
7811 dwarf2_per_objfile->type_unit_groups =
7812 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7813 }
7814
7815 /* Do we need to create a new group, or can we use an existing one? */
7816
7817 if (stmt_list)
7818 {
7819 line_offset = DW_UNSND (stmt_list);
7820 ++tu_stats->nr_symtab_sharers;
7821 }
7822 else
7823 {
7824 /* Ugh, no stmt_list. Rare, but we have to handle it.
7825 We can do various things here like create one group per TU or
7826 spread them over multiple groups to split up the expansion work.
7827 To avoid worst case scenarios (too many groups or too large groups)
7828 we, umm, group them in bunches. */
7829 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7830 | (tu_stats->nr_stmt_less_type_units
7831 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7832 ++tu_stats->nr_stmt_less_type_units;
7833 }
7834
7835 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7836 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7837 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7838 &type_unit_group_for_lookup, INSERT);
7839 if (*slot != NULL)
7840 {
7841 tu_group = (struct type_unit_group *) *slot;
7842 gdb_assert (tu_group != NULL);
7843 }
7844 else
7845 {
7846 sect_offset line_offset_struct = (sect_offset) line_offset;
7847 tu_group = create_type_unit_group (cu, line_offset_struct);
7848 *slot = tu_group;
7849 ++tu_stats->nr_symtabs;
7850 }
7851
7852 return tu_group;
7853 }
7854 \f
7855 /* Partial symbol tables. */
7856
7857 /* Create a psymtab named NAME and assign it to PER_CU.
7858
7859 The caller must fill in the following details:
7860 dirname, textlow, texthigh. */
7861
7862 static struct partial_symtab *
7863 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7864 {
7865 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7866 struct partial_symtab *pst;
7867
7868 pst = start_psymtab_common (objfile, name, 0,
7869 objfile->global_psymbols,
7870 objfile->static_psymbols);
7871
7872 pst->psymtabs_addrmap_supported = 1;
7873
7874 /* This is the glue that links PST into GDB's symbol API. */
7875 pst->read_symtab_private = per_cu;
7876 pst->read_symtab = dwarf2_read_symtab;
7877 per_cu->v.psymtab = pst;
7878
7879 return pst;
7880 }
7881
7882 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7883 type. */
7884
7885 struct process_psymtab_comp_unit_data
7886 {
7887 /* True if we are reading a DW_TAG_partial_unit. */
7888
7889 int want_partial_unit;
7890
7891 /* The "pretend" language that is used if the CU doesn't declare a
7892 language. */
7893
7894 enum language pretend_language;
7895 };
7896
7897 /* die_reader_func for process_psymtab_comp_unit. */
7898
7899 static void
7900 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7901 const gdb_byte *info_ptr,
7902 struct die_info *comp_unit_die,
7903 int has_children,
7904 void *data)
7905 {
7906 struct dwarf2_cu *cu = reader->cu;
7907 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7909 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7910 CORE_ADDR baseaddr;
7911 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7912 struct partial_symtab *pst;
7913 enum pc_bounds_kind cu_bounds_kind;
7914 const char *filename;
7915 struct process_psymtab_comp_unit_data *info
7916 = (struct process_psymtab_comp_unit_data *) data;
7917
7918 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7919 return;
7920
7921 gdb_assert (! per_cu->is_debug_types);
7922
7923 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7924
7925 cu->list_in_scope = &file_symbols;
7926
7927 /* Allocate a new partial symbol table structure. */
7928 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7929 if (filename == NULL)
7930 filename = "";
7931
7932 pst = create_partial_symtab (per_cu, filename);
7933
7934 /* This must be done before calling dwarf2_build_include_psymtabs. */
7935 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7936
7937 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7938
7939 dwarf2_find_base_address (comp_unit_die, cu);
7940
7941 /* Possibly set the default values of LOWPC and HIGHPC from
7942 `DW_AT_ranges'. */
7943 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7944 &best_highpc, cu, pst);
7945 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7946 /* Store the contiguous range if it is not empty; it can be empty for
7947 CUs with no code. */
7948 addrmap_set_empty (objfile->psymtabs_addrmap,
7949 gdbarch_adjust_dwarf2_addr (gdbarch,
7950 best_lowpc + baseaddr),
7951 gdbarch_adjust_dwarf2_addr (gdbarch,
7952 best_highpc + baseaddr) - 1,
7953 pst);
7954
7955 /* Check if comp unit has_children.
7956 If so, read the rest of the partial symbols from this comp unit.
7957 If not, there's no more debug_info for this comp unit. */
7958 if (has_children)
7959 {
7960 struct partial_die_info *first_die;
7961 CORE_ADDR lowpc, highpc;
7962
7963 lowpc = ((CORE_ADDR) -1);
7964 highpc = ((CORE_ADDR) 0);
7965
7966 first_die = load_partial_dies (reader, info_ptr, 1);
7967
7968 scan_partial_symbols (first_die, &lowpc, &highpc,
7969 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7970
7971 /* If we didn't find a lowpc, set it to highpc to avoid
7972 complaints from `maint check'. */
7973 if (lowpc == ((CORE_ADDR) -1))
7974 lowpc = highpc;
7975
7976 /* If the compilation unit didn't have an explicit address range,
7977 then use the information extracted from its child dies. */
7978 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7979 {
7980 best_lowpc = lowpc;
7981 best_highpc = highpc;
7982 }
7983 }
7984 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
7985 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
7986
7987 end_psymtab_common (objfile, pst);
7988
7989 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
7990 {
7991 int i;
7992 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
7993 struct dwarf2_per_cu_data *iter;
7994
7995 /* Fill in 'dependencies' here; we fill in 'users' in a
7996 post-pass. */
7997 pst->number_of_dependencies = len;
7998 pst->dependencies =
7999 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8000 for (i = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8002 i, iter);
8003 ++i)
8004 pst->dependencies[i] = iter->v.psymtab;
8005
8006 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8007 }
8008
8009 /* Get the list of files included in the current compilation unit,
8010 and build a psymtab for each of them. */
8011 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8012
8013 if (dwarf_read_debug)
8014 {
8015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8016
8017 fprintf_unfiltered (gdb_stdlog,
8018 "Psymtab for %s unit @%s: %s - %s"
8019 ", %d global, %d static syms\n",
8020 per_cu->is_debug_types ? "type" : "comp",
8021 sect_offset_str (per_cu->sect_off),
8022 paddress (gdbarch, pst->textlow),
8023 paddress (gdbarch, pst->texthigh),
8024 pst->n_global_syms, pst->n_static_syms);
8025 }
8026 }
8027
8028 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8029 Process compilation unit THIS_CU for a psymtab. */
8030
8031 static void
8032 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8033 int want_partial_unit,
8034 enum language pretend_language)
8035 {
8036 /* If this compilation unit was already read in, free the
8037 cached copy in order to read it in again. This is
8038 necessary because we skipped some symbols when we first
8039 read in the compilation unit (see load_partial_dies).
8040 This problem could be avoided, but the benefit is unclear. */
8041 if (this_cu->cu != NULL)
8042 free_one_cached_comp_unit (this_cu);
8043
8044 if (this_cu->is_debug_types)
8045 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8046 NULL);
8047 else
8048 {
8049 process_psymtab_comp_unit_data info;
8050 info.want_partial_unit = want_partial_unit;
8051 info.pretend_language = pretend_language;
8052 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8053 process_psymtab_comp_unit_reader, &info);
8054 }
8055
8056 /* Age out any secondary CUs. */
8057 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8058 }
8059
8060 /* Reader function for build_type_psymtabs. */
8061
8062 static void
8063 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8064 const gdb_byte *info_ptr,
8065 struct die_info *type_unit_die,
8066 int has_children,
8067 void *data)
8068 {
8069 struct dwarf2_per_objfile *dwarf2_per_objfile
8070 = reader->cu->per_cu->dwarf2_per_objfile;
8071 struct objfile *objfile = dwarf2_per_objfile->objfile;
8072 struct dwarf2_cu *cu = reader->cu;
8073 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8074 struct signatured_type *sig_type;
8075 struct type_unit_group *tu_group;
8076 struct attribute *attr;
8077 struct partial_die_info *first_die;
8078 CORE_ADDR lowpc, highpc;
8079 struct partial_symtab *pst;
8080
8081 gdb_assert (data == NULL);
8082 gdb_assert (per_cu->is_debug_types);
8083 sig_type = (struct signatured_type *) per_cu;
8084
8085 if (! has_children)
8086 return;
8087
8088 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8089 tu_group = get_type_unit_group (cu, attr);
8090
8091 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8092
8093 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8094 cu->list_in_scope = &file_symbols;
8095 pst = create_partial_symtab (per_cu, "");
8096 pst->anonymous = 1;
8097
8098 first_die = load_partial_dies (reader, info_ptr, 1);
8099
8100 lowpc = (CORE_ADDR) -1;
8101 highpc = (CORE_ADDR) 0;
8102 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8103
8104 end_psymtab_common (objfile, pst);
8105 }
8106
8107 /* Struct used to sort TUs by their abbreviation table offset. */
8108
8109 struct tu_abbrev_offset
8110 {
8111 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8112 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8113 {}
8114
8115 signatured_type *sig_type;
8116 sect_offset abbrev_offset;
8117 };
8118
8119 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8120
8121 static bool
8122 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8123 const struct tu_abbrev_offset &b)
8124 {
8125 return a.abbrev_offset < b.abbrev_offset;
8126 }
8127
8128 /* Efficiently read all the type units.
8129 This does the bulk of the work for build_type_psymtabs.
8130
8131 The efficiency is because we sort TUs by the abbrev table they use and
8132 only read each abbrev table once. In one program there are 200K TUs
8133 sharing 8K abbrev tables.
8134
8135 The main purpose of this function is to support building the
8136 dwarf2_per_objfile->type_unit_groups table.
8137 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8138 can collapse the search space by grouping them by stmt_list.
8139 The savings can be significant, in the same program from above the 200K TUs
8140 share 8K stmt_list tables.
8141
8142 FUNC is expected to call get_type_unit_group, which will create the
8143 struct type_unit_group if necessary and add it to
8144 dwarf2_per_objfile->type_unit_groups. */
8145
8146 static void
8147 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8148 {
8149 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8150 abbrev_table_up abbrev_table;
8151 sect_offset abbrev_offset;
8152
8153 /* It's up to the caller to not call us multiple times. */
8154 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8155
8156 if (dwarf2_per_objfile->all_type_units.empty ())
8157 return;
8158
8159 /* TUs typically share abbrev tables, and there can be way more TUs than
8160 abbrev tables. Sort by abbrev table to reduce the number of times we
8161 read each abbrev table in.
8162 Alternatives are to punt or to maintain a cache of abbrev tables.
8163 This is simpler and efficient enough for now.
8164
8165 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8166 symtab to use). Typically TUs with the same abbrev offset have the same
8167 stmt_list value too so in practice this should work well.
8168
8169 The basic algorithm here is:
8170
8171 sort TUs by abbrev table
8172 for each TU with same abbrev table:
8173 read abbrev table if first user
8174 read TU top level DIE
8175 [IWBN if DWO skeletons had DW_AT_stmt_list]
8176 call FUNC */
8177
8178 if (dwarf_read_debug)
8179 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8180
8181 /* Sort in a separate table to maintain the order of all_type_units
8182 for .gdb_index: TU indices directly index all_type_units. */
8183 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8184 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8185
8186 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8187 sorted_by_abbrev.emplace_back
8188 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8189 sig_type->per_cu.section,
8190 sig_type->per_cu.sect_off));
8191
8192 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8193 sort_tu_by_abbrev_offset);
8194
8195 abbrev_offset = (sect_offset) ~(unsigned) 0;
8196
8197 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8198 {
8199 /* Switch to the next abbrev table if necessary. */
8200 if (abbrev_table == NULL
8201 || tu.abbrev_offset != abbrev_offset)
8202 {
8203 abbrev_offset = tu.abbrev_offset;
8204 abbrev_table =
8205 abbrev_table_read_table (dwarf2_per_objfile,
8206 &dwarf2_per_objfile->abbrev,
8207 abbrev_offset);
8208 ++tu_stats->nr_uniq_abbrev_tables;
8209 }
8210
8211 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8212 0, 0, build_type_psymtabs_reader, NULL);
8213 }
8214 }
8215
8216 /* Print collected type unit statistics. */
8217
8218 static void
8219 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8220 {
8221 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8222
8223 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8224 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8225 dwarf2_per_objfile->all_type_units.size ());
8226 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8227 tu_stats->nr_uniq_abbrev_tables);
8228 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8229 tu_stats->nr_symtabs);
8230 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8231 tu_stats->nr_symtab_sharers);
8232 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8233 tu_stats->nr_stmt_less_type_units);
8234 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8235 tu_stats->nr_all_type_units_reallocs);
8236 }
8237
8238 /* Traversal function for build_type_psymtabs. */
8239
8240 static int
8241 build_type_psymtab_dependencies (void **slot, void *info)
8242 {
8243 struct dwarf2_per_objfile *dwarf2_per_objfile
8244 = (struct dwarf2_per_objfile *) info;
8245 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8247 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8248 struct partial_symtab *pst = per_cu->v.psymtab;
8249 int len = VEC_length (sig_type_ptr, tu_group->tus);
8250 struct signatured_type *iter;
8251 int i;
8252
8253 gdb_assert (len > 0);
8254 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8255
8256 pst->number_of_dependencies = len;
8257 pst->dependencies =
8258 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8259 for (i = 0;
8260 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8261 ++i)
8262 {
8263 gdb_assert (iter->per_cu.is_debug_types);
8264 pst->dependencies[i] = iter->per_cu.v.psymtab;
8265 iter->type_unit_group = tu_group;
8266 }
8267
8268 VEC_free (sig_type_ptr, tu_group->tus);
8269
8270 return 1;
8271 }
8272
8273 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8274 Build partial symbol tables for the .debug_types comp-units. */
8275
8276 static void
8277 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8278 {
8279 if (! create_all_type_units (dwarf2_per_objfile))
8280 return;
8281
8282 build_type_psymtabs_1 (dwarf2_per_objfile);
8283 }
8284
8285 /* Traversal function for process_skeletonless_type_unit.
8286 Read a TU in a DWO file and build partial symbols for it. */
8287
8288 static int
8289 process_skeletonless_type_unit (void **slot, void *info)
8290 {
8291 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8292 struct dwarf2_per_objfile *dwarf2_per_objfile
8293 = (struct dwarf2_per_objfile *) info;
8294 struct signatured_type find_entry, *entry;
8295
8296 /* If this TU doesn't exist in the global table, add it and read it in. */
8297
8298 if (dwarf2_per_objfile->signatured_types == NULL)
8299 {
8300 dwarf2_per_objfile->signatured_types
8301 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8302 }
8303
8304 find_entry.signature = dwo_unit->signature;
8305 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8306 INSERT);
8307 /* If we've already seen this type there's nothing to do. What's happening
8308 is we're doing our own version of comdat-folding here. */
8309 if (*slot != NULL)
8310 return 1;
8311
8312 /* This does the job that create_all_type_units would have done for
8313 this TU. */
8314 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8315 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8316 *slot = entry;
8317
8318 /* This does the job that build_type_psymtabs_1 would have done. */
8319 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8320 build_type_psymtabs_reader, NULL);
8321
8322 return 1;
8323 }
8324
8325 /* Traversal function for process_skeletonless_type_units. */
8326
8327 static int
8328 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8329 {
8330 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8331
8332 if (dwo_file->tus != NULL)
8333 {
8334 htab_traverse_noresize (dwo_file->tus,
8335 process_skeletonless_type_unit, info);
8336 }
8337
8338 return 1;
8339 }
8340
8341 /* Scan all TUs of DWO files, verifying we've processed them.
8342 This is needed in case a TU was emitted without its skeleton.
8343 Note: This can't be done until we know what all the DWO files are. */
8344
8345 static void
8346 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8347 {
8348 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8349 if (get_dwp_file (dwarf2_per_objfile) == NULL
8350 && dwarf2_per_objfile->dwo_files != NULL)
8351 {
8352 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8353 process_dwo_file_for_skeletonless_type_units,
8354 dwarf2_per_objfile);
8355 }
8356 }
8357
8358 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8359
8360 static void
8361 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8362 {
8363 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8364 {
8365 struct partial_symtab *pst = per_cu->v.psymtab;
8366
8367 if (pst == NULL)
8368 continue;
8369
8370 for (int j = 0; j < pst->number_of_dependencies; ++j)
8371 {
8372 /* Set the 'user' field only if it is not already set. */
8373 if (pst->dependencies[j]->user == NULL)
8374 pst->dependencies[j]->user = pst;
8375 }
8376 }
8377 }
8378
8379 /* Build the partial symbol table by doing a quick pass through the
8380 .debug_info and .debug_abbrev sections. */
8381
8382 static void
8383 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8384 {
8385 struct objfile *objfile = dwarf2_per_objfile->objfile;
8386
8387 if (dwarf_read_debug)
8388 {
8389 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8390 objfile_name (objfile));
8391 }
8392
8393 dwarf2_per_objfile->reading_partial_symbols = 1;
8394
8395 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8396
8397 /* Any cached compilation units will be linked by the per-objfile
8398 read_in_chain. Make sure to free them when we're done. */
8399 free_cached_comp_units freer (dwarf2_per_objfile);
8400
8401 build_type_psymtabs (dwarf2_per_objfile);
8402
8403 create_all_comp_units (dwarf2_per_objfile);
8404
8405 /* Create a temporary address map on a temporary obstack. We later
8406 copy this to the final obstack. */
8407 auto_obstack temp_obstack;
8408
8409 scoped_restore save_psymtabs_addrmap
8410 = make_scoped_restore (&objfile->psymtabs_addrmap,
8411 addrmap_create_mutable (&temp_obstack));
8412
8413 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8414 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8415
8416 /* This has to wait until we read the CUs, we need the list of DWOs. */
8417 process_skeletonless_type_units (dwarf2_per_objfile);
8418
8419 /* Now that all TUs have been processed we can fill in the dependencies. */
8420 if (dwarf2_per_objfile->type_unit_groups != NULL)
8421 {
8422 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8423 build_type_psymtab_dependencies, dwarf2_per_objfile);
8424 }
8425
8426 if (dwarf_read_debug)
8427 print_tu_stats (dwarf2_per_objfile);
8428
8429 set_partial_user (dwarf2_per_objfile);
8430
8431 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8432 &objfile->objfile_obstack);
8433 /* At this point we want to keep the address map. */
8434 save_psymtabs_addrmap.release ();
8435
8436 if (dwarf_read_debug)
8437 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8438 objfile_name (objfile));
8439 }
8440
8441 /* die_reader_func for load_partial_comp_unit. */
8442
8443 static void
8444 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8445 const gdb_byte *info_ptr,
8446 struct die_info *comp_unit_die,
8447 int has_children,
8448 void *data)
8449 {
8450 struct dwarf2_cu *cu = reader->cu;
8451
8452 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8453
8454 /* Check if comp unit has_children.
8455 If so, read the rest of the partial symbols from this comp unit.
8456 If not, there's no more debug_info for this comp unit. */
8457 if (has_children)
8458 load_partial_dies (reader, info_ptr, 0);
8459 }
8460
8461 /* Load the partial DIEs for a secondary CU into memory.
8462 This is also used when rereading a primary CU with load_all_dies. */
8463
8464 static void
8465 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8466 {
8467 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8468 load_partial_comp_unit_reader, NULL);
8469 }
8470
8471 static void
8472 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8473 struct dwarf2_section_info *section,
8474 struct dwarf2_section_info *abbrev_section,
8475 unsigned int is_dwz)
8476 {
8477 const gdb_byte *info_ptr;
8478 struct objfile *objfile = dwarf2_per_objfile->objfile;
8479
8480 if (dwarf_read_debug)
8481 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8482 get_section_name (section),
8483 get_section_file_name (section));
8484
8485 dwarf2_read_section (objfile, section);
8486
8487 info_ptr = section->buffer;
8488
8489 while (info_ptr < section->buffer + section->size)
8490 {
8491 struct dwarf2_per_cu_data *this_cu;
8492
8493 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8494
8495 comp_unit_head cu_header;
8496 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8497 abbrev_section, info_ptr,
8498 rcuh_kind::COMPILE);
8499
8500 /* Save the compilation unit for later lookup. */
8501 if (cu_header.unit_type != DW_UT_type)
8502 {
8503 this_cu = XOBNEW (&objfile->objfile_obstack,
8504 struct dwarf2_per_cu_data);
8505 memset (this_cu, 0, sizeof (*this_cu));
8506 }
8507 else
8508 {
8509 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8510 struct signatured_type);
8511 memset (sig_type, 0, sizeof (*sig_type));
8512 sig_type->signature = cu_header.signature;
8513 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8514 this_cu = &sig_type->per_cu;
8515 }
8516 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8517 this_cu->sect_off = sect_off;
8518 this_cu->length = cu_header.length + cu_header.initial_length_size;
8519 this_cu->is_dwz = is_dwz;
8520 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8521 this_cu->section = section;
8522
8523 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8524
8525 info_ptr = info_ptr + this_cu->length;
8526 }
8527 }
8528
8529 /* Create a list of all compilation units in OBJFILE.
8530 This is only done for -readnow and building partial symtabs. */
8531
8532 static void
8533 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8534 {
8535 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8536 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8537 &dwarf2_per_objfile->abbrev, 0);
8538
8539 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8540 if (dwz != NULL)
8541 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8542 1);
8543 }
8544
8545 /* Process all loaded DIEs for compilation unit CU, starting at
8546 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8547 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8548 DW_AT_ranges). See the comments of add_partial_subprogram on how
8549 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8550
8551 static void
8552 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8553 CORE_ADDR *highpc, int set_addrmap,
8554 struct dwarf2_cu *cu)
8555 {
8556 struct partial_die_info *pdi;
8557
8558 /* Now, march along the PDI's, descending into ones which have
8559 interesting children but skipping the children of the other ones,
8560 until we reach the end of the compilation unit. */
8561
8562 pdi = first_die;
8563
8564 while (pdi != NULL)
8565 {
8566 pdi->fixup (cu);
8567
8568 /* Anonymous namespaces or modules have no name but have interesting
8569 children, so we need to look at them. Ditto for anonymous
8570 enums. */
8571
8572 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8573 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8574 || pdi->tag == DW_TAG_imported_unit
8575 || pdi->tag == DW_TAG_inlined_subroutine)
8576 {
8577 switch (pdi->tag)
8578 {
8579 case DW_TAG_subprogram:
8580 case DW_TAG_inlined_subroutine:
8581 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8582 break;
8583 case DW_TAG_constant:
8584 case DW_TAG_variable:
8585 case DW_TAG_typedef:
8586 case DW_TAG_union_type:
8587 if (!pdi->is_declaration)
8588 {
8589 add_partial_symbol (pdi, cu);
8590 }
8591 break;
8592 case DW_TAG_class_type:
8593 case DW_TAG_interface_type:
8594 case DW_TAG_structure_type:
8595 if (!pdi->is_declaration)
8596 {
8597 add_partial_symbol (pdi, cu);
8598 }
8599 if ((cu->language == language_rust
8600 || cu->language == language_cplus) && pdi->has_children)
8601 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8602 set_addrmap, cu);
8603 break;
8604 case DW_TAG_enumeration_type:
8605 if (!pdi->is_declaration)
8606 add_partial_enumeration (pdi, cu);
8607 break;
8608 case DW_TAG_base_type:
8609 case DW_TAG_subrange_type:
8610 /* File scope base type definitions are added to the partial
8611 symbol table. */
8612 add_partial_symbol (pdi, cu);
8613 break;
8614 case DW_TAG_namespace:
8615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8616 break;
8617 case DW_TAG_module:
8618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8619 break;
8620 case DW_TAG_imported_unit:
8621 {
8622 struct dwarf2_per_cu_data *per_cu;
8623
8624 /* For now we don't handle imported units in type units. */
8625 if (cu->per_cu->is_debug_types)
8626 {
8627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8628 " supported in type units [in module %s]"),
8629 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8630 }
8631
8632 per_cu = dwarf2_find_containing_comp_unit
8633 (pdi->d.sect_off, pdi->is_dwz,
8634 cu->per_cu->dwarf2_per_objfile);
8635
8636 /* Go read the partial unit, if needed. */
8637 if (per_cu->v.psymtab == NULL)
8638 process_psymtab_comp_unit (per_cu, 1, cu->language);
8639
8640 VEC_safe_push (dwarf2_per_cu_ptr,
8641 cu->per_cu->imported_symtabs, per_cu);
8642 }
8643 break;
8644 case DW_TAG_imported_declaration:
8645 add_partial_symbol (pdi, cu);
8646 break;
8647 default:
8648 break;
8649 }
8650 }
8651
8652 /* If the die has a sibling, skip to the sibling. */
8653
8654 pdi = pdi->die_sibling;
8655 }
8656 }
8657
8658 /* Functions used to compute the fully scoped name of a partial DIE.
8659
8660 Normally, this is simple. For C++, the parent DIE's fully scoped
8661 name is concatenated with "::" and the partial DIE's name.
8662 Enumerators are an exception; they use the scope of their parent
8663 enumeration type, i.e. the name of the enumeration type is not
8664 prepended to the enumerator.
8665
8666 There are two complexities. One is DW_AT_specification; in this
8667 case "parent" means the parent of the target of the specification,
8668 instead of the direct parent of the DIE. The other is compilers
8669 which do not emit DW_TAG_namespace; in this case we try to guess
8670 the fully qualified name of structure types from their members'
8671 linkage names. This must be done using the DIE's children rather
8672 than the children of any DW_AT_specification target. We only need
8673 to do this for structures at the top level, i.e. if the target of
8674 any DW_AT_specification (if any; otherwise the DIE itself) does not
8675 have a parent. */
8676
8677 /* Compute the scope prefix associated with PDI's parent, in
8678 compilation unit CU. The result will be allocated on CU's
8679 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8680 field. NULL is returned if no prefix is necessary. */
8681 static const char *
8682 partial_die_parent_scope (struct partial_die_info *pdi,
8683 struct dwarf2_cu *cu)
8684 {
8685 const char *grandparent_scope;
8686 struct partial_die_info *parent, *real_pdi;
8687
8688 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8689 then this means the parent of the specification DIE. */
8690
8691 real_pdi = pdi;
8692 while (real_pdi->has_specification)
8693 real_pdi = find_partial_die (real_pdi->spec_offset,
8694 real_pdi->spec_is_dwz, cu);
8695
8696 parent = real_pdi->die_parent;
8697 if (parent == NULL)
8698 return NULL;
8699
8700 if (parent->scope_set)
8701 return parent->scope;
8702
8703 parent->fixup (cu);
8704
8705 grandparent_scope = partial_die_parent_scope (parent, cu);
8706
8707 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8708 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8709 Work around this problem here. */
8710 if (cu->language == language_cplus
8711 && parent->tag == DW_TAG_namespace
8712 && strcmp (parent->name, "::") == 0
8713 && grandparent_scope == NULL)
8714 {
8715 parent->scope = NULL;
8716 parent->scope_set = 1;
8717 return NULL;
8718 }
8719
8720 if (pdi->tag == DW_TAG_enumerator)
8721 /* Enumerators should not get the name of the enumeration as a prefix. */
8722 parent->scope = grandparent_scope;
8723 else if (parent->tag == DW_TAG_namespace
8724 || parent->tag == DW_TAG_module
8725 || parent->tag == DW_TAG_structure_type
8726 || parent->tag == DW_TAG_class_type
8727 || parent->tag == DW_TAG_interface_type
8728 || parent->tag == DW_TAG_union_type
8729 || parent->tag == DW_TAG_enumeration_type)
8730 {
8731 if (grandparent_scope == NULL)
8732 parent->scope = parent->name;
8733 else
8734 parent->scope = typename_concat (&cu->comp_unit_obstack,
8735 grandparent_scope,
8736 parent->name, 0, cu);
8737 }
8738 else
8739 {
8740 /* FIXME drow/2004-04-01: What should we be doing with
8741 function-local names? For partial symbols, we should probably be
8742 ignoring them. */
8743 complaint (&symfile_complaints,
8744 _("unhandled containing DIE tag %d for DIE at %s"),
8745 parent->tag, sect_offset_str (pdi->sect_off));
8746 parent->scope = grandparent_scope;
8747 }
8748
8749 parent->scope_set = 1;
8750 return parent->scope;
8751 }
8752
8753 /* Return the fully scoped name associated with PDI, from compilation unit
8754 CU. The result will be allocated with malloc. */
8755
8756 static char *
8757 partial_die_full_name (struct partial_die_info *pdi,
8758 struct dwarf2_cu *cu)
8759 {
8760 const char *parent_scope;
8761
8762 /* If this is a template instantiation, we can not work out the
8763 template arguments from partial DIEs. So, unfortunately, we have
8764 to go through the full DIEs. At least any work we do building
8765 types here will be reused if full symbols are loaded later. */
8766 if (pdi->has_template_arguments)
8767 {
8768 pdi->fixup (cu);
8769
8770 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8771 {
8772 struct die_info *die;
8773 struct attribute attr;
8774 struct dwarf2_cu *ref_cu = cu;
8775
8776 /* DW_FORM_ref_addr is using section offset. */
8777 attr.name = (enum dwarf_attribute) 0;
8778 attr.form = DW_FORM_ref_addr;
8779 attr.u.unsnd = to_underlying (pdi->sect_off);
8780 die = follow_die_ref (NULL, &attr, &ref_cu);
8781
8782 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8783 }
8784 }
8785
8786 parent_scope = partial_die_parent_scope (pdi, cu);
8787 if (parent_scope == NULL)
8788 return NULL;
8789 else
8790 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8791 }
8792
8793 static void
8794 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8795 {
8796 struct dwarf2_per_objfile *dwarf2_per_objfile
8797 = cu->per_cu->dwarf2_per_objfile;
8798 struct objfile *objfile = dwarf2_per_objfile->objfile;
8799 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8800 CORE_ADDR addr = 0;
8801 const char *actual_name = NULL;
8802 CORE_ADDR baseaddr;
8803 char *built_actual_name;
8804
8805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8806
8807 built_actual_name = partial_die_full_name (pdi, cu);
8808 if (built_actual_name != NULL)
8809 actual_name = built_actual_name;
8810
8811 if (actual_name == NULL)
8812 actual_name = pdi->name;
8813
8814 switch (pdi->tag)
8815 {
8816 case DW_TAG_inlined_subroutine:
8817 case DW_TAG_subprogram:
8818 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
8819 if (pdi->is_external || cu->language == language_ada)
8820 {
8821 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8822 of the global scope. But in Ada, we want to be able to access
8823 nested procedures globally. So all Ada subprograms are stored
8824 in the global scope. */
8825 add_psymbol_to_list (actual_name, strlen (actual_name),
8826 built_actual_name != NULL,
8827 VAR_DOMAIN, LOC_BLOCK,
8828 &objfile->global_psymbols,
8829 addr, cu->language, objfile);
8830 }
8831 else
8832 {
8833 add_psymbol_to_list (actual_name, strlen (actual_name),
8834 built_actual_name != NULL,
8835 VAR_DOMAIN, LOC_BLOCK,
8836 &objfile->static_psymbols,
8837 addr, cu->language, objfile);
8838 }
8839
8840 if (pdi->main_subprogram && actual_name != NULL)
8841 set_objfile_main_name (objfile, actual_name, cu->language);
8842 break;
8843 case DW_TAG_constant:
8844 {
8845 std::vector<partial_symbol *> *list;
8846
8847 if (pdi->is_external)
8848 list = &objfile->global_psymbols;
8849 else
8850 list = &objfile->static_psymbols;
8851 add_psymbol_to_list (actual_name, strlen (actual_name),
8852 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8853 list, 0, cu->language, objfile);
8854 }
8855 break;
8856 case DW_TAG_variable:
8857 if (pdi->d.locdesc)
8858 addr = decode_locdesc (pdi->d.locdesc, cu);
8859
8860 if (pdi->d.locdesc
8861 && addr == 0
8862 && !dwarf2_per_objfile->has_section_at_zero)
8863 {
8864 /* A global or static variable may also have been stripped
8865 out by the linker if unused, in which case its address
8866 will be nullified; do not add such variables into partial
8867 symbol table then. */
8868 }
8869 else if (pdi->is_external)
8870 {
8871 /* Global Variable.
8872 Don't enter into the minimal symbol tables as there is
8873 a minimal symbol table entry from the ELF symbols already.
8874 Enter into partial symbol table if it has a location
8875 descriptor or a type.
8876 If the location descriptor is missing, new_symbol will create
8877 a LOC_UNRESOLVED symbol, the address of the variable will then
8878 be determined from the minimal symbol table whenever the variable
8879 is referenced.
8880 The address for the partial symbol table entry is not
8881 used by GDB, but it comes in handy for debugging partial symbol
8882 table building. */
8883
8884 if (pdi->d.locdesc || pdi->has_type)
8885 add_psymbol_to_list (actual_name, strlen (actual_name),
8886 built_actual_name != NULL,
8887 VAR_DOMAIN, LOC_STATIC,
8888 &objfile->global_psymbols,
8889 addr + baseaddr,
8890 cu->language, objfile);
8891 }
8892 else
8893 {
8894 int has_loc = pdi->d.locdesc != NULL;
8895
8896 /* Static Variable. Skip symbols whose value we cannot know (those
8897 without location descriptors or constant values). */
8898 if (!has_loc && !pdi->has_const_value)
8899 {
8900 xfree (built_actual_name);
8901 return;
8902 }
8903
8904 add_psymbol_to_list (actual_name, strlen (actual_name),
8905 built_actual_name != NULL,
8906 VAR_DOMAIN, LOC_STATIC,
8907 &objfile->static_psymbols,
8908 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
8909 cu->language, objfile);
8910 }
8911 break;
8912 case DW_TAG_typedef:
8913 case DW_TAG_base_type:
8914 case DW_TAG_subrange_type:
8915 add_psymbol_to_list (actual_name, strlen (actual_name),
8916 built_actual_name != NULL,
8917 VAR_DOMAIN, LOC_TYPEDEF,
8918 &objfile->static_psymbols,
8919 0, cu->language, objfile);
8920 break;
8921 case DW_TAG_imported_declaration:
8922 case DW_TAG_namespace:
8923 add_psymbol_to_list (actual_name, strlen (actual_name),
8924 built_actual_name != NULL,
8925 VAR_DOMAIN, LOC_TYPEDEF,
8926 &objfile->global_psymbols,
8927 0, cu->language, objfile);
8928 break;
8929 case DW_TAG_module:
8930 add_psymbol_to_list (actual_name, strlen (actual_name),
8931 built_actual_name != NULL,
8932 MODULE_DOMAIN, LOC_TYPEDEF,
8933 &objfile->global_psymbols,
8934 0, cu->language, objfile);
8935 break;
8936 case DW_TAG_class_type:
8937 case DW_TAG_interface_type:
8938 case DW_TAG_structure_type:
8939 case DW_TAG_union_type:
8940 case DW_TAG_enumeration_type:
8941 /* Skip external references. The DWARF standard says in the section
8942 about "Structure, Union, and Class Type Entries": "An incomplete
8943 structure, union or class type is represented by a structure,
8944 union or class entry that does not have a byte size attribute
8945 and that has a DW_AT_declaration attribute." */
8946 if (!pdi->has_byte_size && pdi->is_declaration)
8947 {
8948 xfree (built_actual_name);
8949 return;
8950 }
8951
8952 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8953 static vs. global. */
8954 add_psymbol_to_list (actual_name, strlen (actual_name),
8955 built_actual_name != NULL,
8956 STRUCT_DOMAIN, LOC_TYPEDEF,
8957 cu->language == language_cplus
8958 ? &objfile->global_psymbols
8959 : &objfile->static_psymbols,
8960 0, cu->language, objfile);
8961
8962 break;
8963 case DW_TAG_enumerator:
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_CONST,
8967 cu->language == language_cplus
8968 ? &objfile->global_psymbols
8969 : &objfile->static_psymbols,
8970 0, cu->language, objfile);
8971 break;
8972 default:
8973 break;
8974 }
8975
8976 xfree (built_actual_name);
8977 }
8978
8979 /* Read a partial die corresponding to a namespace; also, add a symbol
8980 corresponding to that namespace to the symbol table. NAMESPACE is
8981 the name of the enclosing namespace. */
8982
8983 static void
8984 add_partial_namespace (struct partial_die_info *pdi,
8985 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8986 int set_addrmap, struct dwarf2_cu *cu)
8987 {
8988 /* Add a symbol for the namespace. */
8989
8990 add_partial_symbol (pdi, cu);
8991
8992 /* Now scan partial symbols in that namespace. */
8993
8994 if (pdi->has_children)
8995 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8996 }
8997
8998 /* Read a partial die corresponding to a Fortran module. */
8999
9000 static void
9001 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9002 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9003 {
9004 /* Add a symbol for the namespace. */
9005
9006 add_partial_symbol (pdi, cu);
9007
9008 /* Now scan partial symbols in that module. */
9009
9010 if (pdi->has_children)
9011 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9012 }
9013
9014 /* Read a partial die corresponding to a subprogram or an inlined
9015 subprogram and create a partial symbol for that subprogram.
9016 When the CU language allows it, this routine also defines a partial
9017 symbol for each nested subprogram that this subprogram contains.
9018 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9019 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9020
9021 PDI may also be a lexical block, in which case we simply search
9022 recursively for subprograms defined inside that lexical block.
9023 Again, this is only performed when the CU language allows this
9024 type of definitions. */
9025
9026 static void
9027 add_partial_subprogram (struct partial_die_info *pdi,
9028 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9029 int set_addrmap, struct dwarf2_cu *cu)
9030 {
9031 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9032 {
9033 if (pdi->has_pc_info)
9034 {
9035 if (pdi->lowpc < *lowpc)
9036 *lowpc = pdi->lowpc;
9037 if (pdi->highpc > *highpc)
9038 *highpc = pdi->highpc;
9039 if (set_addrmap)
9040 {
9041 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9043 CORE_ADDR baseaddr;
9044 CORE_ADDR highpc;
9045 CORE_ADDR lowpc;
9046
9047 baseaddr = ANOFFSET (objfile->section_offsets,
9048 SECT_OFF_TEXT (objfile));
9049 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9050 pdi->lowpc + baseaddr);
9051 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9052 pdi->highpc + baseaddr);
9053 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9054 cu->per_cu->v.psymtab);
9055 }
9056 }
9057
9058 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9059 {
9060 if (!pdi->is_declaration)
9061 /* Ignore subprogram DIEs that do not have a name, they are
9062 illegal. Do not emit a complaint at this point, we will
9063 do so when we convert this psymtab into a symtab. */
9064 if (pdi->name)
9065 add_partial_symbol (pdi, cu);
9066 }
9067 }
9068
9069 if (! pdi->has_children)
9070 return;
9071
9072 if (cu->language == language_ada)
9073 {
9074 pdi = pdi->die_child;
9075 while (pdi != NULL)
9076 {
9077 pdi->fixup (cu);
9078 if (pdi->tag == DW_TAG_subprogram
9079 || pdi->tag == DW_TAG_inlined_subroutine
9080 || pdi->tag == DW_TAG_lexical_block)
9081 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9082 pdi = pdi->die_sibling;
9083 }
9084 }
9085 }
9086
9087 /* Read a partial die corresponding to an enumeration type. */
9088
9089 static void
9090 add_partial_enumeration (struct partial_die_info *enum_pdi,
9091 struct dwarf2_cu *cu)
9092 {
9093 struct partial_die_info *pdi;
9094
9095 if (enum_pdi->name != NULL)
9096 add_partial_symbol (enum_pdi, cu);
9097
9098 pdi = enum_pdi->die_child;
9099 while (pdi)
9100 {
9101 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9102 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9103 else
9104 add_partial_symbol (pdi, cu);
9105 pdi = pdi->die_sibling;
9106 }
9107 }
9108
9109 /* Return the initial uleb128 in the die at INFO_PTR. */
9110
9111 static unsigned int
9112 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9113 {
9114 unsigned int bytes_read;
9115
9116 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9117 }
9118
9119 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9120 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9121
9122 Return the corresponding abbrev, or NULL if the number is zero (indicating
9123 an empty DIE). In either case *BYTES_READ will be set to the length of
9124 the initial number. */
9125
9126 static struct abbrev_info *
9127 peek_die_abbrev (const die_reader_specs &reader,
9128 const gdb_byte *info_ptr, unsigned int *bytes_read)
9129 {
9130 dwarf2_cu *cu = reader.cu;
9131 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9132 unsigned int abbrev_number
9133 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9134
9135 if (abbrev_number == 0)
9136 return NULL;
9137
9138 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9139 if (!abbrev)
9140 {
9141 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9142 " at offset %s [in module %s]"),
9143 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9144 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9145 }
9146
9147 return abbrev;
9148 }
9149
9150 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9151 Returns a pointer to the end of a series of DIEs, terminated by an empty
9152 DIE. Any children of the skipped DIEs will also be skipped. */
9153
9154 static const gdb_byte *
9155 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9156 {
9157 while (1)
9158 {
9159 unsigned int bytes_read;
9160 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9161
9162 if (abbrev == NULL)
9163 return info_ptr + bytes_read;
9164 else
9165 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9166 }
9167 }
9168
9169 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9170 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9171 abbrev corresponding to that skipped uleb128 should be passed in
9172 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9173 children. */
9174
9175 static const gdb_byte *
9176 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9177 struct abbrev_info *abbrev)
9178 {
9179 unsigned int bytes_read;
9180 struct attribute attr;
9181 bfd *abfd = reader->abfd;
9182 struct dwarf2_cu *cu = reader->cu;
9183 const gdb_byte *buffer = reader->buffer;
9184 const gdb_byte *buffer_end = reader->buffer_end;
9185 unsigned int form, i;
9186
9187 for (i = 0; i < abbrev->num_attrs; i++)
9188 {
9189 /* The only abbrev we care about is DW_AT_sibling. */
9190 if (abbrev->attrs[i].name == DW_AT_sibling)
9191 {
9192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9193 if (attr.form == DW_FORM_ref_addr)
9194 complaint (&symfile_complaints,
9195 _("ignoring absolute DW_AT_sibling"));
9196 else
9197 {
9198 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9199 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9200
9201 if (sibling_ptr < info_ptr)
9202 complaint (&symfile_complaints,
9203 _("DW_AT_sibling points backwards"));
9204 else if (sibling_ptr > reader->buffer_end)
9205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9206 else
9207 return sibling_ptr;
9208 }
9209 }
9210
9211 /* If it isn't DW_AT_sibling, skip this attribute. */
9212 form = abbrev->attrs[i].form;
9213 skip_attribute:
9214 switch (form)
9215 {
9216 case DW_FORM_ref_addr:
9217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9218 and later it is offset sized. */
9219 if (cu->header.version == 2)
9220 info_ptr += cu->header.addr_size;
9221 else
9222 info_ptr += cu->header.offset_size;
9223 break;
9224 case DW_FORM_GNU_ref_alt:
9225 info_ptr += cu->header.offset_size;
9226 break;
9227 case DW_FORM_addr:
9228 info_ptr += cu->header.addr_size;
9229 break;
9230 case DW_FORM_data1:
9231 case DW_FORM_ref1:
9232 case DW_FORM_flag:
9233 info_ptr += 1;
9234 break;
9235 case DW_FORM_flag_present:
9236 case DW_FORM_implicit_const:
9237 break;
9238 case DW_FORM_data2:
9239 case DW_FORM_ref2:
9240 info_ptr += 2;
9241 break;
9242 case DW_FORM_data4:
9243 case DW_FORM_ref4:
9244 info_ptr += 4;
9245 break;
9246 case DW_FORM_data8:
9247 case DW_FORM_ref8:
9248 case DW_FORM_ref_sig8:
9249 info_ptr += 8;
9250 break;
9251 case DW_FORM_data16:
9252 info_ptr += 16;
9253 break;
9254 case DW_FORM_string:
9255 read_direct_string (abfd, info_ptr, &bytes_read);
9256 info_ptr += bytes_read;
9257 break;
9258 case DW_FORM_sec_offset:
9259 case DW_FORM_strp:
9260 case DW_FORM_GNU_strp_alt:
9261 info_ptr += cu->header.offset_size;
9262 break;
9263 case DW_FORM_exprloc:
9264 case DW_FORM_block:
9265 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9266 info_ptr += bytes_read;
9267 break;
9268 case DW_FORM_block1:
9269 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9270 break;
9271 case DW_FORM_block2:
9272 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9273 break;
9274 case DW_FORM_block4:
9275 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9276 break;
9277 case DW_FORM_sdata:
9278 case DW_FORM_udata:
9279 case DW_FORM_ref_udata:
9280 case DW_FORM_GNU_addr_index:
9281 case DW_FORM_GNU_str_index:
9282 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9283 break;
9284 case DW_FORM_indirect:
9285 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9286 info_ptr += bytes_read;
9287 /* We need to continue parsing from here, so just go back to
9288 the top. */
9289 goto skip_attribute;
9290
9291 default:
9292 error (_("Dwarf Error: Cannot handle %s "
9293 "in DWARF reader [in module %s]"),
9294 dwarf_form_name (form),
9295 bfd_get_filename (abfd));
9296 }
9297 }
9298
9299 if (abbrev->has_children)
9300 return skip_children (reader, info_ptr);
9301 else
9302 return info_ptr;
9303 }
9304
9305 /* Locate ORIG_PDI's sibling.
9306 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9307
9308 static const gdb_byte *
9309 locate_pdi_sibling (const struct die_reader_specs *reader,
9310 struct partial_die_info *orig_pdi,
9311 const gdb_byte *info_ptr)
9312 {
9313 /* Do we know the sibling already? */
9314
9315 if (orig_pdi->sibling)
9316 return orig_pdi->sibling;
9317
9318 /* Are there any children to deal with? */
9319
9320 if (!orig_pdi->has_children)
9321 return info_ptr;
9322
9323 /* Skip the children the long way. */
9324
9325 return skip_children (reader, info_ptr);
9326 }
9327
9328 /* Expand this partial symbol table into a full symbol table. SELF is
9329 not NULL. */
9330
9331 static void
9332 dwarf2_read_symtab (struct partial_symtab *self,
9333 struct objfile *objfile)
9334 {
9335 struct dwarf2_per_objfile *dwarf2_per_objfile
9336 = get_dwarf2_per_objfile (objfile);
9337
9338 if (self->readin)
9339 {
9340 warning (_("bug: psymtab for %s is already read in."),
9341 self->filename);
9342 }
9343 else
9344 {
9345 if (info_verbose)
9346 {
9347 printf_filtered (_("Reading in symbols for %s..."),
9348 self->filename);
9349 gdb_flush (gdb_stdout);
9350 }
9351
9352 /* If this psymtab is constructed from a debug-only objfile, the
9353 has_section_at_zero flag will not necessarily be correct. We
9354 can get the correct value for this flag by looking at the data
9355 associated with the (presumably stripped) associated objfile. */
9356 if (objfile->separate_debug_objfile_backlink)
9357 {
9358 struct dwarf2_per_objfile *dpo_backlink
9359 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9360
9361 dwarf2_per_objfile->has_section_at_zero
9362 = dpo_backlink->has_section_at_zero;
9363 }
9364
9365 dwarf2_per_objfile->reading_partial_symbols = 0;
9366
9367 psymtab_to_symtab_1 (self);
9368
9369 /* Finish up the debug error message. */
9370 if (info_verbose)
9371 printf_filtered (_("done.\n"));
9372 }
9373
9374 process_cu_includes (dwarf2_per_objfile);
9375 }
9376 \f
9377 /* Reading in full CUs. */
9378
9379 /* Add PER_CU to the queue. */
9380
9381 static void
9382 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9383 enum language pretend_language)
9384 {
9385 struct dwarf2_queue_item *item;
9386
9387 per_cu->queued = 1;
9388 item = XNEW (struct dwarf2_queue_item);
9389 item->per_cu = per_cu;
9390 item->pretend_language = pretend_language;
9391 item->next = NULL;
9392
9393 if (dwarf2_queue == NULL)
9394 dwarf2_queue = item;
9395 else
9396 dwarf2_queue_tail->next = item;
9397
9398 dwarf2_queue_tail = item;
9399 }
9400
9401 /* If PER_CU is not yet queued, add it to the queue.
9402 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9403 dependency.
9404 The result is non-zero if PER_CU was queued, otherwise the result is zero
9405 meaning either PER_CU is already queued or it is already loaded.
9406
9407 N.B. There is an invariant here that if a CU is queued then it is loaded.
9408 The caller is required to load PER_CU if we return non-zero. */
9409
9410 static int
9411 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9412 struct dwarf2_per_cu_data *per_cu,
9413 enum language pretend_language)
9414 {
9415 /* We may arrive here during partial symbol reading, if we need full
9416 DIEs to process an unusual case (e.g. template arguments). Do
9417 not queue PER_CU, just tell our caller to load its DIEs. */
9418 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9419 {
9420 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9421 return 1;
9422 return 0;
9423 }
9424
9425 /* Mark the dependence relation so that we don't flush PER_CU
9426 too early. */
9427 if (dependent_cu != NULL)
9428 dwarf2_add_dependence (dependent_cu, per_cu);
9429
9430 /* If it's already on the queue, we have nothing to do. */
9431 if (per_cu->queued)
9432 return 0;
9433
9434 /* If the compilation unit is already loaded, just mark it as
9435 used. */
9436 if (per_cu->cu != NULL)
9437 {
9438 per_cu->cu->last_used = 0;
9439 return 0;
9440 }
9441
9442 /* Add it to the queue. */
9443 queue_comp_unit (per_cu, pretend_language);
9444
9445 return 1;
9446 }
9447
9448 /* Process the queue. */
9449
9450 static void
9451 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9452 {
9453 struct dwarf2_queue_item *item, *next_item;
9454
9455 if (dwarf_read_debug)
9456 {
9457 fprintf_unfiltered (gdb_stdlog,
9458 "Expanding one or more symtabs of objfile %s ...\n",
9459 objfile_name (dwarf2_per_objfile->objfile));
9460 }
9461
9462 /* The queue starts out with one item, but following a DIE reference
9463 may load a new CU, adding it to the end of the queue. */
9464 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9465 {
9466 if ((dwarf2_per_objfile->using_index
9467 ? !item->per_cu->v.quick->compunit_symtab
9468 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9469 /* Skip dummy CUs. */
9470 && item->per_cu->cu != NULL)
9471 {
9472 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9473 unsigned int debug_print_threshold;
9474 char buf[100];
9475
9476 if (per_cu->is_debug_types)
9477 {
9478 struct signatured_type *sig_type =
9479 (struct signatured_type *) per_cu;
9480
9481 sprintf (buf, "TU %s at offset %s",
9482 hex_string (sig_type->signature),
9483 sect_offset_str (per_cu->sect_off));
9484 /* There can be 100s of TUs.
9485 Only print them in verbose mode. */
9486 debug_print_threshold = 2;
9487 }
9488 else
9489 {
9490 sprintf (buf, "CU at offset %s",
9491 sect_offset_str (per_cu->sect_off));
9492 debug_print_threshold = 1;
9493 }
9494
9495 if (dwarf_read_debug >= debug_print_threshold)
9496 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9497
9498 if (per_cu->is_debug_types)
9499 process_full_type_unit (per_cu, item->pretend_language);
9500 else
9501 process_full_comp_unit (per_cu, item->pretend_language);
9502
9503 if (dwarf_read_debug >= debug_print_threshold)
9504 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9505 }
9506
9507 item->per_cu->queued = 0;
9508 next_item = item->next;
9509 xfree (item);
9510 }
9511
9512 dwarf2_queue_tail = NULL;
9513
9514 if (dwarf_read_debug)
9515 {
9516 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9517 objfile_name (dwarf2_per_objfile->objfile));
9518 }
9519 }
9520
9521 /* Read in full symbols for PST, and anything it depends on. */
9522
9523 static void
9524 psymtab_to_symtab_1 (struct partial_symtab *pst)
9525 {
9526 struct dwarf2_per_cu_data *per_cu;
9527 int i;
9528
9529 if (pst->readin)
9530 return;
9531
9532 for (i = 0; i < pst->number_of_dependencies; i++)
9533 if (!pst->dependencies[i]->readin
9534 && pst->dependencies[i]->user == NULL)
9535 {
9536 /* Inform about additional files that need to be read in. */
9537 if (info_verbose)
9538 {
9539 /* FIXME: i18n: Need to make this a single string. */
9540 fputs_filtered (" ", gdb_stdout);
9541 wrap_here ("");
9542 fputs_filtered ("and ", gdb_stdout);
9543 wrap_here ("");
9544 printf_filtered ("%s...", pst->dependencies[i]->filename);
9545 wrap_here (""); /* Flush output. */
9546 gdb_flush (gdb_stdout);
9547 }
9548 psymtab_to_symtab_1 (pst->dependencies[i]);
9549 }
9550
9551 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9552
9553 if (per_cu == NULL)
9554 {
9555 /* It's an include file, no symbols to read for it.
9556 Everything is in the parent symtab. */
9557 pst->readin = 1;
9558 return;
9559 }
9560
9561 dw2_do_instantiate_symtab (per_cu);
9562 }
9563
9564 /* Trivial hash function for die_info: the hash value of a DIE
9565 is its offset in .debug_info for this objfile. */
9566
9567 static hashval_t
9568 die_hash (const void *item)
9569 {
9570 const struct die_info *die = (const struct die_info *) item;
9571
9572 return to_underlying (die->sect_off);
9573 }
9574
9575 /* Trivial comparison function for die_info structures: two DIEs
9576 are equal if they have the same offset. */
9577
9578 static int
9579 die_eq (const void *item_lhs, const void *item_rhs)
9580 {
9581 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9582 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9583
9584 return die_lhs->sect_off == die_rhs->sect_off;
9585 }
9586
9587 /* die_reader_func for load_full_comp_unit.
9588 This is identical to read_signatured_type_reader,
9589 but is kept separate for now. */
9590
9591 static void
9592 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9593 const gdb_byte *info_ptr,
9594 struct die_info *comp_unit_die,
9595 int has_children,
9596 void *data)
9597 {
9598 struct dwarf2_cu *cu = reader->cu;
9599 enum language *language_ptr = (enum language *) data;
9600
9601 gdb_assert (cu->die_hash == NULL);
9602 cu->die_hash =
9603 htab_create_alloc_ex (cu->header.length / 12,
9604 die_hash,
9605 die_eq,
9606 NULL,
9607 &cu->comp_unit_obstack,
9608 hashtab_obstack_allocate,
9609 dummy_obstack_deallocate);
9610
9611 if (has_children)
9612 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9613 &info_ptr, comp_unit_die);
9614 cu->dies = comp_unit_die;
9615 /* comp_unit_die is not stored in die_hash, no need. */
9616
9617 /* We try not to read any attributes in this function, because not
9618 all CUs needed for references have been loaded yet, and symbol
9619 table processing isn't initialized. But we have to set the CU language,
9620 or we won't be able to build types correctly.
9621 Similarly, if we do not read the producer, we can not apply
9622 producer-specific interpretation. */
9623 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9624 }
9625
9626 /* Load the DIEs associated with PER_CU into memory. */
9627
9628 static void
9629 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9630 enum language pretend_language)
9631 {
9632 gdb_assert (! this_cu->is_debug_types);
9633
9634 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
9635 load_full_comp_unit_reader, &pretend_language);
9636 }
9637
9638 /* Add a DIE to the delayed physname list. */
9639
9640 static void
9641 add_to_method_list (struct type *type, int fnfield_index, int index,
9642 const char *name, struct die_info *die,
9643 struct dwarf2_cu *cu)
9644 {
9645 struct delayed_method_info mi;
9646 mi.type = type;
9647 mi.fnfield_index = fnfield_index;
9648 mi.index = index;
9649 mi.name = name;
9650 mi.die = die;
9651 cu->method_list.push_back (mi);
9652 }
9653
9654 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9655 "const" / "volatile". If so, decrements LEN by the length of the
9656 modifier and return true. Otherwise return false. */
9657
9658 template<size_t N>
9659 static bool
9660 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9661 {
9662 size_t mod_len = sizeof (mod) - 1;
9663 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9664 {
9665 len -= mod_len;
9666 return true;
9667 }
9668 return false;
9669 }
9670
9671 /* Compute the physnames of any methods on the CU's method list.
9672
9673 The computation of method physnames is delayed in order to avoid the
9674 (bad) condition that one of the method's formal parameters is of an as yet
9675 incomplete type. */
9676
9677 static void
9678 compute_delayed_physnames (struct dwarf2_cu *cu)
9679 {
9680 /* Only C++ delays computing physnames. */
9681 if (cu->method_list.empty ())
9682 return;
9683 gdb_assert (cu->language == language_cplus);
9684
9685 for (struct delayed_method_info &mi : cu->method_list)
9686 {
9687 const char *physname;
9688 struct fn_fieldlist *fn_flp
9689 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9690 physname = dwarf2_physname (mi.name, mi.die, cu);
9691 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9692 = physname ? physname : "";
9693
9694 /* Since there's no tag to indicate whether a method is a
9695 const/volatile overload, extract that information out of the
9696 demangled name. */
9697 if (physname != NULL)
9698 {
9699 size_t len = strlen (physname);
9700
9701 while (1)
9702 {
9703 if (physname[len] == ')') /* shortcut */
9704 break;
9705 else if (check_modifier (physname, len, " const"))
9706 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9707 else if (check_modifier (physname, len, " volatile"))
9708 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9709 else
9710 break;
9711 }
9712 }
9713 }
9714
9715 /* The list is no longer needed. */
9716 cu->method_list.clear ();
9717 }
9718
9719 /* Go objects should be embedded in a DW_TAG_module DIE,
9720 and it's not clear if/how imported objects will appear.
9721 To keep Go support simple until that's worked out,
9722 go back through what we've read and create something usable.
9723 We could do this while processing each DIE, and feels kinda cleaner,
9724 but that way is more invasive.
9725 This is to, for example, allow the user to type "p var" or "b main"
9726 without having to specify the package name, and allow lookups
9727 of module.object to work in contexts that use the expression
9728 parser. */
9729
9730 static void
9731 fixup_go_packaging (struct dwarf2_cu *cu)
9732 {
9733 char *package_name = NULL;
9734 struct pending *list;
9735 int i;
9736
9737 for (list = global_symbols; list != NULL; list = list->next)
9738 {
9739 for (i = 0; i < list->nsyms; ++i)
9740 {
9741 struct symbol *sym = list->symbol[i];
9742
9743 if (SYMBOL_LANGUAGE (sym) == language_go
9744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9745 {
9746 char *this_package_name = go_symbol_package_name (sym);
9747
9748 if (this_package_name == NULL)
9749 continue;
9750 if (package_name == NULL)
9751 package_name = this_package_name;
9752 else
9753 {
9754 struct objfile *objfile
9755 = cu->per_cu->dwarf2_per_objfile->objfile;
9756 if (strcmp (package_name, this_package_name) != 0)
9757 complaint (&symfile_complaints,
9758 _("Symtab %s has objects from two different Go packages: %s and %s"),
9759 (symbol_symtab (sym) != NULL
9760 ? symtab_to_filename_for_display
9761 (symbol_symtab (sym))
9762 : objfile_name (objfile)),
9763 this_package_name, package_name);
9764 xfree (this_package_name);
9765 }
9766 }
9767 }
9768 }
9769
9770 if (package_name != NULL)
9771 {
9772 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9773 const char *saved_package_name
9774 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9775 package_name,
9776 strlen (package_name));
9777 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9778 saved_package_name);
9779 struct symbol *sym;
9780
9781 TYPE_TAG_NAME (type) = TYPE_NAME (type);
9782
9783 sym = allocate_symbol (objfile);
9784 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9785 SYMBOL_SET_NAMES (sym, saved_package_name,
9786 strlen (saved_package_name), 0, objfile);
9787 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9788 e.g., "main" finds the "main" module and not C's main(). */
9789 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9791 SYMBOL_TYPE (sym) = type;
9792
9793 add_symbol_to_list (sym, &global_symbols);
9794
9795 xfree (package_name);
9796 }
9797 }
9798
9799 /* Allocate a fully-qualified name consisting of the two parts on the
9800 obstack. */
9801
9802 static const char *
9803 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9804 {
9805 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9806 }
9807
9808 /* A helper that allocates a struct discriminant_info to attach to a
9809 union type. */
9810
9811 static struct discriminant_info *
9812 alloc_discriminant_info (struct type *type, int discriminant_index,
9813 int default_index)
9814 {
9815 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9816 gdb_assert (discriminant_index == -1
9817 || (discriminant_index >= 0
9818 && discriminant_index < TYPE_NFIELDS (type)));
9819 gdb_assert (default_index == -1
9820 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9821
9822 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9823
9824 struct discriminant_info *disc
9825 = ((struct discriminant_info *)
9826 TYPE_ZALLOC (type,
9827 offsetof (struct discriminant_info, discriminants)
9828 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9829 disc->default_index = default_index;
9830 disc->discriminant_index = discriminant_index;
9831
9832 struct dynamic_prop prop;
9833 prop.kind = PROP_UNDEFINED;
9834 prop.data.baton = disc;
9835
9836 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9837
9838 return disc;
9839 }
9840
9841 /* Some versions of rustc emitted enums in an unusual way.
9842
9843 Ordinary enums were emitted as unions. The first element of each
9844 structure in the union was named "RUST$ENUM$DISR". This element
9845 held the discriminant.
9846
9847 These versions of Rust also implemented the "non-zero"
9848 optimization. When the enum had two values, and one is empty and
9849 the other holds a pointer that cannot be zero, the pointer is used
9850 as the discriminant, with a zero value meaning the empty variant.
9851 Here, the union's first member is of the form
9852 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9853 where the fieldnos are the indices of the fields that should be
9854 traversed in order to find the field (which may be several fields deep)
9855 and the variantname is the name of the variant of the case when the
9856 field is zero.
9857
9858 This function recognizes whether TYPE is of one of these forms,
9859 and, if so, smashes it to be a variant type. */
9860
9861 static void
9862 quirk_rust_enum (struct type *type, struct objfile *objfile)
9863 {
9864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9865
9866 /* We don't need to deal with empty enums. */
9867 if (TYPE_NFIELDS (type) == 0)
9868 return;
9869
9870 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9871 if (TYPE_NFIELDS (type) == 1
9872 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9873 {
9874 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9875
9876 /* Decode the field name to find the offset of the
9877 discriminant. */
9878 ULONGEST bit_offset = 0;
9879 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9880 while (name[0] >= '0' && name[0] <= '9')
9881 {
9882 char *tail;
9883 unsigned long index = strtoul (name, &tail, 10);
9884 name = tail;
9885 if (*name != '$'
9886 || index >= TYPE_NFIELDS (field_type)
9887 || (TYPE_FIELD_LOC_KIND (field_type, index)
9888 != FIELD_LOC_KIND_BITPOS))
9889 {
9890 complaint (&symfile_complaints,
9891 _("Could not parse Rust enum encoding string \"%s\""
9892 "[in module %s]"),
9893 TYPE_FIELD_NAME (type, 0),
9894 objfile_name (objfile));
9895 return;
9896 }
9897 ++name;
9898
9899 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9900 field_type = TYPE_FIELD_TYPE (field_type, index);
9901 }
9902
9903 /* Make a union to hold the variants. */
9904 struct type *union_type = alloc_type (objfile);
9905 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9906 TYPE_NFIELDS (union_type) = 3;
9907 TYPE_FIELDS (union_type)
9908 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9909 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9910
9911 /* Put the discriminant must at index 0. */
9912 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9913 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9914 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9915 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9916
9917 /* The order of fields doesn't really matter, so put the real
9918 field at index 1 and the data-less field at index 2. */
9919 struct discriminant_info *disc
9920 = alloc_discriminant_info (union_type, 0, 1);
9921 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9922 TYPE_FIELD_NAME (union_type, 1)
9923 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9924 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9925 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9926 TYPE_FIELD_NAME (union_type, 1));
9927
9928 const char *dataless_name
9929 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9930 name);
9931 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9932 dataless_name);
9933 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9934 /* NAME points into the original discriminant name, which
9935 already has the correct lifetime. */
9936 TYPE_FIELD_NAME (union_type, 2) = name;
9937 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9938 disc->discriminants[2] = 0;
9939
9940 /* Smash this type to be a structure type. We have to do this
9941 because the type has already been recorded. */
9942 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9943 TYPE_NFIELDS (type) = 1;
9944 TYPE_FIELDS (type)
9945 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9946
9947 /* Install the variant part. */
9948 TYPE_FIELD_TYPE (type, 0) = union_type;
9949 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9950 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9951 }
9952 else if (TYPE_NFIELDS (type) == 1)
9953 {
9954 /* We assume that a union with a single field is a univariant
9955 enum. */
9956 /* Smash this type to be a structure type. We have to do this
9957 because the type has already been recorded. */
9958 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9959
9960 /* Make a union to hold the variants. */
9961 struct type *union_type = alloc_type (objfile);
9962 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9963 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9964 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9965 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9966
9967 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9968 const char *variant_name
9969 = rust_last_path_segment (TYPE_NAME (field_type));
9970 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9971 TYPE_NAME (field_type)
9972 = rust_fully_qualify (&objfile->objfile_obstack,
9973 TYPE_NAME (type), variant_name);
9974
9975 /* Install the union in the outer struct type. */
9976 TYPE_NFIELDS (type) = 1;
9977 TYPE_FIELDS (type)
9978 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9979 TYPE_FIELD_TYPE (type, 0) = union_type;
9980 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9981 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9982
9983 alloc_discriminant_info (union_type, -1, 0);
9984 }
9985 else
9986 {
9987 struct type *disr_type = nullptr;
9988 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9989 {
9990 disr_type = TYPE_FIELD_TYPE (type, i);
9991
9992 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9993 {
9994 /* All fields of a true enum will be structs. */
9995 return;
9996 }
9997 else if (TYPE_NFIELDS (disr_type) == 0)
9998 {
9999 /* Could be data-less variant, so keep going. */
10000 disr_type = nullptr;
10001 }
10002 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10003 "RUST$ENUM$DISR") != 0)
10004 {
10005 /* Not a Rust enum. */
10006 return;
10007 }
10008 else
10009 {
10010 /* Found one. */
10011 break;
10012 }
10013 }
10014
10015 /* If we got here without a discriminant, then it's probably
10016 just a union. */
10017 if (disr_type == nullptr)
10018 return;
10019
10020 /* Smash this type to be a structure type. We have to do this
10021 because the type has already been recorded. */
10022 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10023
10024 /* Make a union to hold the variants. */
10025 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10026 struct type *union_type = alloc_type (objfile);
10027 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10028 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10029 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10030 TYPE_FIELDS (union_type)
10031 = (struct field *) TYPE_ZALLOC (union_type,
10032 (TYPE_NFIELDS (union_type)
10033 * sizeof (struct field)));
10034
10035 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10036 TYPE_NFIELDS (type) * sizeof (struct field));
10037
10038 /* Install the discriminant at index 0 in the union. */
10039 TYPE_FIELD (union_type, 0) = *disr_field;
10040 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10041 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10042
10043 /* Install the union in the outer struct type. */
10044 TYPE_FIELD_TYPE (type, 0) = union_type;
10045 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10046 TYPE_NFIELDS (type) = 1;
10047
10048 /* Set the size and offset of the union type. */
10049 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10050
10051 /* We need a way to find the correct discriminant given a
10052 variant name. For convenience we build a map here. */
10053 struct type *enum_type = FIELD_TYPE (*disr_field);
10054 std::unordered_map<std::string, ULONGEST> discriminant_map;
10055 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10056 {
10057 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10058 {
10059 const char *name
10060 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10061 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10062 }
10063 }
10064
10065 int n_fields = TYPE_NFIELDS (union_type);
10066 struct discriminant_info *disc
10067 = alloc_discriminant_info (union_type, 0, -1);
10068 /* Skip the discriminant here. */
10069 for (int i = 1; i < n_fields; ++i)
10070 {
10071 /* Find the final word in the name of this variant's type.
10072 That name can be used to look up the correct
10073 discriminant. */
10074 const char *variant_name
10075 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10076 i)));
10077
10078 auto iter = discriminant_map.find (variant_name);
10079 if (iter != discriminant_map.end ())
10080 disc->discriminants[i] = iter->second;
10081
10082 /* Remove the discriminant field, if it exists. */
10083 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10084 if (TYPE_NFIELDS (sub_type) > 0)
10085 {
10086 --TYPE_NFIELDS (sub_type);
10087 ++TYPE_FIELDS (sub_type);
10088 }
10089 TYPE_FIELD_NAME (union_type, i) = variant_name;
10090 TYPE_NAME (sub_type)
10091 = rust_fully_qualify (&objfile->objfile_obstack,
10092 TYPE_NAME (type), variant_name);
10093 }
10094 }
10095 }
10096
10097 /* Rewrite some Rust unions to be structures with variants parts. */
10098
10099 static void
10100 rust_union_quirks (struct dwarf2_cu *cu)
10101 {
10102 gdb_assert (cu->language == language_rust);
10103 for (struct type *type : cu->rust_unions)
10104 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10105 }
10106
10107 /* Return the symtab for PER_CU. This works properly regardless of
10108 whether we're using the index or psymtabs. */
10109
10110 static struct compunit_symtab *
10111 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10112 {
10113 return (per_cu->dwarf2_per_objfile->using_index
10114 ? per_cu->v.quick->compunit_symtab
10115 : per_cu->v.psymtab->compunit_symtab);
10116 }
10117
10118 /* A helper function for computing the list of all symbol tables
10119 included by PER_CU. */
10120
10121 static void
10122 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10123 htab_t all_children, htab_t all_type_symtabs,
10124 struct dwarf2_per_cu_data *per_cu,
10125 struct compunit_symtab *immediate_parent)
10126 {
10127 void **slot;
10128 int ix;
10129 struct compunit_symtab *cust;
10130 struct dwarf2_per_cu_data *iter;
10131
10132 slot = htab_find_slot (all_children, per_cu, INSERT);
10133 if (*slot != NULL)
10134 {
10135 /* This inclusion and its children have been processed. */
10136 return;
10137 }
10138
10139 *slot = per_cu;
10140 /* Only add a CU if it has a symbol table. */
10141 cust = get_compunit_symtab (per_cu);
10142 if (cust != NULL)
10143 {
10144 /* If this is a type unit only add its symbol table if we haven't
10145 seen it yet (type unit per_cu's can share symtabs). */
10146 if (per_cu->is_debug_types)
10147 {
10148 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10149 if (*slot == NULL)
10150 {
10151 *slot = cust;
10152 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10153 if (cust->user == NULL)
10154 cust->user = immediate_parent;
10155 }
10156 }
10157 else
10158 {
10159 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10160 if (cust->user == NULL)
10161 cust->user = immediate_parent;
10162 }
10163 }
10164
10165 for (ix = 0;
10166 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10167 ++ix)
10168 {
10169 recursively_compute_inclusions (result, all_children,
10170 all_type_symtabs, iter, cust);
10171 }
10172 }
10173
10174 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10175 PER_CU. */
10176
10177 static void
10178 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10179 {
10180 gdb_assert (! per_cu->is_debug_types);
10181
10182 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10183 {
10184 int ix, len;
10185 struct dwarf2_per_cu_data *per_cu_iter;
10186 struct compunit_symtab *compunit_symtab_iter;
10187 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10188 htab_t all_children, all_type_symtabs;
10189 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10190
10191 /* If we don't have a symtab, we can just skip this case. */
10192 if (cust == NULL)
10193 return;
10194
10195 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10196 NULL, xcalloc, xfree);
10197 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10198 NULL, xcalloc, xfree);
10199
10200 for (ix = 0;
10201 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10202 ix, per_cu_iter);
10203 ++ix)
10204 {
10205 recursively_compute_inclusions (&result_symtabs, all_children,
10206 all_type_symtabs, per_cu_iter,
10207 cust);
10208 }
10209
10210 /* Now we have a transitive closure of all the included symtabs. */
10211 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10212 cust->includes
10213 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10214 struct compunit_symtab *, len + 1);
10215 for (ix = 0;
10216 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10217 compunit_symtab_iter);
10218 ++ix)
10219 cust->includes[ix] = compunit_symtab_iter;
10220 cust->includes[len] = NULL;
10221
10222 VEC_free (compunit_symtab_ptr, result_symtabs);
10223 htab_delete (all_children);
10224 htab_delete (all_type_symtabs);
10225 }
10226 }
10227
10228 /* Compute the 'includes' field for the symtabs of all the CUs we just
10229 read. */
10230
10231 static void
10232 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10233 {
10234 int ix;
10235 struct dwarf2_per_cu_data *iter;
10236
10237 for (ix = 0;
10238 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10239 ix, iter);
10240 ++ix)
10241 {
10242 if (! iter->is_debug_types)
10243 compute_compunit_symtab_includes (iter);
10244 }
10245
10246 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10247 }
10248
10249 /* Generate full symbol information for PER_CU, whose DIEs have
10250 already been loaded into memory. */
10251
10252 static void
10253 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10254 enum language pretend_language)
10255 {
10256 struct dwarf2_cu *cu = per_cu->cu;
10257 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10258 struct objfile *objfile = dwarf2_per_objfile->objfile;
10259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10260 CORE_ADDR lowpc, highpc;
10261 struct compunit_symtab *cust;
10262 CORE_ADDR baseaddr;
10263 struct block *static_block;
10264 CORE_ADDR addr;
10265
10266 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10267
10268 buildsym_init ();
10269 scoped_free_pendings free_pending;
10270
10271 /* Clear the list here in case something was left over. */
10272 cu->method_list.clear ();
10273
10274 cu->list_in_scope = &file_symbols;
10275
10276 cu->language = pretend_language;
10277 cu->language_defn = language_def (cu->language);
10278
10279 /* Do line number decoding in read_file_scope () */
10280 process_die (cu->dies, cu);
10281
10282 /* For now fudge the Go package. */
10283 if (cu->language == language_go)
10284 fixup_go_packaging (cu);
10285
10286 /* Now that we have processed all the DIEs in the CU, all the types
10287 should be complete, and it should now be safe to compute all of the
10288 physnames. */
10289 compute_delayed_physnames (cu);
10290
10291 if (cu->language == language_rust)
10292 rust_union_quirks (cu);
10293
10294 /* Some compilers don't define a DW_AT_high_pc attribute for the
10295 compilation unit. If the DW_AT_high_pc is missing, synthesize
10296 it, by scanning the DIE's below the compilation unit. */
10297 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10298
10299 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10300 static_block = end_symtab_get_static_block (addr, 0, 1);
10301
10302 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10303 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10304 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10305 addrmap to help ensure it has an accurate map of pc values belonging to
10306 this comp unit. */
10307 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10308
10309 cust = end_symtab_from_static_block (static_block,
10310 SECT_OFF_TEXT (objfile), 0);
10311
10312 if (cust != NULL)
10313 {
10314 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10315
10316 /* Set symtab language to language from DW_AT_language. If the
10317 compilation is from a C file generated by language preprocessors, do
10318 not set the language if it was already deduced by start_subfile. */
10319 if (!(cu->language == language_c
10320 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10321 COMPUNIT_FILETABS (cust)->language = cu->language;
10322
10323 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10324 produce DW_AT_location with location lists but it can be possibly
10325 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10326 there were bugs in prologue debug info, fixed later in GCC-4.5
10327 by "unwind info for epilogues" patch (which is not directly related).
10328
10329 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10330 needed, it would be wrong due to missing DW_AT_producer there.
10331
10332 Still one can confuse GDB by using non-standard GCC compilation
10333 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10334 */
10335 if (cu->has_loclist && gcc_4_minor >= 5)
10336 cust->locations_valid = 1;
10337
10338 if (gcc_4_minor >= 5)
10339 cust->epilogue_unwind_valid = 1;
10340
10341 cust->call_site_htab = cu->call_site_htab;
10342 }
10343
10344 if (dwarf2_per_objfile->using_index)
10345 per_cu->v.quick->compunit_symtab = cust;
10346 else
10347 {
10348 struct partial_symtab *pst = per_cu->v.psymtab;
10349 pst->compunit_symtab = cust;
10350 pst->readin = 1;
10351 }
10352
10353 /* Push it for inclusion processing later. */
10354 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10355 }
10356
10357 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10358 already been loaded into memory. */
10359
10360 static void
10361 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10362 enum language pretend_language)
10363 {
10364 struct dwarf2_cu *cu = per_cu->cu;
10365 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10366 struct objfile *objfile = dwarf2_per_objfile->objfile;
10367 struct compunit_symtab *cust;
10368 struct signatured_type *sig_type;
10369
10370 gdb_assert (per_cu->is_debug_types);
10371 sig_type = (struct signatured_type *) per_cu;
10372
10373 buildsym_init ();
10374 scoped_free_pendings free_pending;
10375
10376 /* Clear the list here in case something was left over. */
10377 cu->method_list.clear ();
10378
10379 cu->list_in_scope = &file_symbols;
10380
10381 cu->language = pretend_language;
10382 cu->language_defn = language_def (cu->language);
10383
10384 /* The symbol tables are set up in read_type_unit_scope. */
10385 process_die (cu->dies, cu);
10386
10387 /* For now fudge the Go package. */
10388 if (cu->language == language_go)
10389 fixup_go_packaging (cu);
10390
10391 /* Now that we have processed all the DIEs in the CU, all the types
10392 should be complete, and it should now be safe to compute all of the
10393 physnames. */
10394 compute_delayed_physnames (cu);
10395
10396 if (cu->language == language_rust)
10397 rust_union_quirks (cu);
10398
10399 /* TUs share symbol tables.
10400 If this is the first TU to use this symtab, complete the construction
10401 of it with end_expandable_symtab. Otherwise, complete the addition of
10402 this TU's symbols to the existing symtab. */
10403 if (sig_type->type_unit_group->compunit_symtab == NULL)
10404 {
10405 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10406 sig_type->type_unit_group->compunit_symtab = cust;
10407
10408 if (cust != NULL)
10409 {
10410 /* Set symtab language to language from DW_AT_language. If the
10411 compilation is from a C file generated by language preprocessors,
10412 do not set the language if it was already deduced by
10413 start_subfile. */
10414 if (!(cu->language == language_c
10415 && COMPUNIT_FILETABS (cust)->language != language_c))
10416 COMPUNIT_FILETABS (cust)->language = cu->language;
10417 }
10418 }
10419 else
10420 {
10421 augment_type_symtab ();
10422 cust = sig_type->type_unit_group->compunit_symtab;
10423 }
10424
10425 if (dwarf2_per_objfile->using_index)
10426 per_cu->v.quick->compunit_symtab = cust;
10427 else
10428 {
10429 struct partial_symtab *pst = per_cu->v.psymtab;
10430 pst->compunit_symtab = cust;
10431 pst->readin = 1;
10432 }
10433 }
10434
10435 /* Process an imported unit DIE. */
10436
10437 static void
10438 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10439 {
10440 struct attribute *attr;
10441
10442 /* For now we don't handle imported units in type units. */
10443 if (cu->per_cu->is_debug_types)
10444 {
10445 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10446 " supported in type units [in module %s]"),
10447 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10448 }
10449
10450 attr = dwarf2_attr (die, DW_AT_import, cu);
10451 if (attr != NULL)
10452 {
10453 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10454 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10455 dwarf2_per_cu_data *per_cu
10456 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10457 cu->per_cu->dwarf2_per_objfile);
10458
10459 /* If necessary, add it to the queue and load its DIEs. */
10460 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10461 load_full_comp_unit (per_cu, cu->language);
10462
10463 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10464 per_cu);
10465 }
10466 }
10467
10468 /* RAII object that represents a process_die scope: i.e.,
10469 starts/finishes processing a DIE. */
10470 class process_die_scope
10471 {
10472 public:
10473 process_die_scope (die_info *die, dwarf2_cu *cu)
10474 : m_die (die), m_cu (cu)
10475 {
10476 /* We should only be processing DIEs not already in process. */
10477 gdb_assert (!m_die->in_process);
10478 m_die->in_process = true;
10479 }
10480
10481 ~process_die_scope ()
10482 {
10483 m_die->in_process = false;
10484
10485 /* If we're done processing the DIE for the CU that owns the line
10486 header, we don't need the line header anymore. */
10487 if (m_cu->line_header_die_owner == m_die)
10488 {
10489 delete m_cu->line_header;
10490 m_cu->line_header = NULL;
10491 m_cu->line_header_die_owner = NULL;
10492 }
10493 }
10494
10495 private:
10496 die_info *m_die;
10497 dwarf2_cu *m_cu;
10498 };
10499
10500 /* Process a die and its children. */
10501
10502 static void
10503 process_die (struct die_info *die, struct dwarf2_cu *cu)
10504 {
10505 process_die_scope scope (die, cu);
10506
10507 switch (die->tag)
10508 {
10509 case DW_TAG_padding:
10510 break;
10511 case DW_TAG_compile_unit:
10512 case DW_TAG_partial_unit:
10513 read_file_scope (die, cu);
10514 break;
10515 case DW_TAG_type_unit:
10516 read_type_unit_scope (die, cu);
10517 break;
10518 case DW_TAG_subprogram:
10519 case DW_TAG_inlined_subroutine:
10520 read_func_scope (die, cu);
10521 break;
10522 case DW_TAG_lexical_block:
10523 case DW_TAG_try_block:
10524 case DW_TAG_catch_block:
10525 read_lexical_block_scope (die, cu);
10526 break;
10527 case DW_TAG_call_site:
10528 case DW_TAG_GNU_call_site:
10529 read_call_site_scope (die, cu);
10530 break;
10531 case DW_TAG_class_type:
10532 case DW_TAG_interface_type:
10533 case DW_TAG_structure_type:
10534 case DW_TAG_union_type:
10535 process_structure_scope (die, cu);
10536 break;
10537 case DW_TAG_enumeration_type:
10538 process_enumeration_scope (die, cu);
10539 break;
10540
10541 /* These dies have a type, but processing them does not create
10542 a symbol or recurse to process the children. Therefore we can
10543 read them on-demand through read_type_die. */
10544 case DW_TAG_subroutine_type:
10545 case DW_TAG_set_type:
10546 case DW_TAG_array_type:
10547 case DW_TAG_pointer_type:
10548 case DW_TAG_ptr_to_member_type:
10549 case DW_TAG_reference_type:
10550 case DW_TAG_rvalue_reference_type:
10551 case DW_TAG_string_type:
10552 break;
10553
10554 case DW_TAG_base_type:
10555 case DW_TAG_subrange_type:
10556 case DW_TAG_typedef:
10557 /* Add a typedef symbol for the type definition, if it has a
10558 DW_AT_name. */
10559 new_symbol (die, read_type_die (die, cu), cu);
10560 break;
10561 case DW_TAG_common_block:
10562 read_common_block (die, cu);
10563 break;
10564 case DW_TAG_common_inclusion:
10565 break;
10566 case DW_TAG_namespace:
10567 cu->processing_has_namespace_info = 1;
10568 read_namespace (die, cu);
10569 break;
10570 case DW_TAG_module:
10571 cu->processing_has_namespace_info = 1;
10572 read_module (die, cu);
10573 break;
10574 case DW_TAG_imported_declaration:
10575 cu->processing_has_namespace_info = 1;
10576 if (read_namespace_alias (die, cu))
10577 break;
10578 /* The declaration is not a global namespace alias: fall through. */
10579 case DW_TAG_imported_module:
10580 cu->processing_has_namespace_info = 1;
10581 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10582 || cu->language != language_fortran))
10583 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
10584 dwarf_tag_name (die->tag));
10585 read_import_statement (die, cu);
10586 break;
10587
10588 case DW_TAG_imported_unit:
10589 process_imported_unit_die (die, cu);
10590 break;
10591
10592 case DW_TAG_variable:
10593 read_variable (die, cu);
10594 break;
10595
10596 default:
10597 new_symbol (die, NULL, cu);
10598 break;
10599 }
10600 }
10601 \f
10602 /* DWARF name computation. */
10603
10604 /* A helper function for dwarf2_compute_name which determines whether DIE
10605 needs to have the name of the scope prepended to the name listed in the
10606 die. */
10607
10608 static int
10609 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10610 {
10611 struct attribute *attr;
10612
10613 switch (die->tag)
10614 {
10615 case DW_TAG_namespace:
10616 case DW_TAG_typedef:
10617 case DW_TAG_class_type:
10618 case DW_TAG_interface_type:
10619 case DW_TAG_structure_type:
10620 case DW_TAG_union_type:
10621 case DW_TAG_enumeration_type:
10622 case DW_TAG_enumerator:
10623 case DW_TAG_subprogram:
10624 case DW_TAG_inlined_subroutine:
10625 case DW_TAG_member:
10626 case DW_TAG_imported_declaration:
10627 return 1;
10628
10629 case DW_TAG_variable:
10630 case DW_TAG_constant:
10631 /* We only need to prefix "globally" visible variables. These include
10632 any variable marked with DW_AT_external or any variable that
10633 lives in a namespace. [Variables in anonymous namespaces
10634 require prefixing, but they are not DW_AT_external.] */
10635
10636 if (dwarf2_attr (die, DW_AT_specification, cu))
10637 {
10638 struct dwarf2_cu *spec_cu = cu;
10639
10640 return die_needs_namespace (die_specification (die, &spec_cu),
10641 spec_cu);
10642 }
10643
10644 attr = dwarf2_attr (die, DW_AT_external, cu);
10645 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10646 && die->parent->tag != DW_TAG_module)
10647 return 0;
10648 /* A variable in a lexical block of some kind does not need a
10649 namespace, even though in C++ such variables may be external
10650 and have a mangled name. */
10651 if (die->parent->tag == DW_TAG_lexical_block
10652 || die->parent->tag == DW_TAG_try_block
10653 || die->parent->tag == DW_TAG_catch_block
10654 || die->parent->tag == DW_TAG_subprogram)
10655 return 0;
10656 return 1;
10657
10658 default:
10659 return 0;
10660 }
10661 }
10662
10663 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10664 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10665 defined for the given DIE. */
10666
10667 static struct attribute *
10668 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10669 {
10670 struct attribute *attr;
10671
10672 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10673 if (attr == NULL)
10674 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10675
10676 return attr;
10677 }
10678
10679 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10680 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10681 defined for the given DIE. */
10682
10683 static const char *
10684 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10685 {
10686 const char *linkage_name;
10687
10688 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10689 if (linkage_name == NULL)
10690 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10691
10692 return linkage_name;
10693 }
10694
10695 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10696 compute the physname for the object, which include a method's:
10697 - formal parameters (C++),
10698 - receiver type (Go),
10699
10700 The term "physname" is a bit confusing.
10701 For C++, for example, it is the demangled name.
10702 For Go, for example, it's the mangled name.
10703
10704 For Ada, return the DIE's linkage name rather than the fully qualified
10705 name. PHYSNAME is ignored..
10706
10707 The result is allocated on the objfile_obstack and canonicalized. */
10708
10709 static const char *
10710 dwarf2_compute_name (const char *name,
10711 struct die_info *die, struct dwarf2_cu *cu,
10712 int physname)
10713 {
10714 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10715
10716 if (name == NULL)
10717 name = dwarf2_name (die, cu);
10718
10719 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10720 but otherwise compute it by typename_concat inside GDB.
10721 FIXME: Actually this is not really true, or at least not always true.
10722 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10723 Fortran names because there is no mangling standard. So new_symbol
10724 will set the demangled name to the result of dwarf2_full_name, and it is
10725 the demangled name that GDB uses if it exists. */
10726 if (cu->language == language_ada
10727 || (cu->language == language_fortran && physname))
10728 {
10729 /* For Ada unit, we prefer the linkage name over the name, as
10730 the former contains the exported name, which the user expects
10731 to be able to reference. Ideally, we want the user to be able
10732 to reference this entity using either natural or linkage name,
10733 but we haven't started looking at this enhancement yet. */
10734 const char *linkage_name = dw2_linkage_name (die, cu);
10735
10736 if (linkage_name != NULL)
10737 return linkage_name;
10738 }
10739
10740 /* These are the only languages we know how to qualify names in. */
10741 if (name != NULL
10742 && (cu->language == language_cplus
10743 || cu->language == language_fortran || cu->language == language_d
10744 || cu->language == language_rust))
10745 {
10746 if (die_needs_namespace (die, cu))
10747 {
10748 const char *prefix;
10749 const char *canonical_name = NULL;
10750
10751 string_file buf;
10752
10753 prefix = determine_prefix (die, cu);
10754 if (*prefix != '\0')
10755 {
10756 char *prefixed_name = typename_concat (NULL, prefix, name,
10757 physname, cu);
10758
10759 buf.puts (prefixed_name);
10760 xfree (prefixed_name);
10761 }
10762 else
10763 buf.puts (name);
10764
10765 /* Template parameters may be specified in the DIE's DW_AT_name, or
10766 as children with DW_TAG_template_type_param or
10767 DW_TAG_value_type_param. If the latter, add them to the name
10768 here. If the name already has template parameters, then
10769 skip this step; some versions of GCC emit both, and
10770 it is more efficient to use the pre-computed name.
10771
10772 Something to keep in mind about this process: it is very
10773 unlikely, or in some cases downright impossible, to produce
10774 something that will match the mangled name of a function.
10775 If the definition of the function has the same debug info,
10776 we should be able to match up with it anyway. But fallbacks
10777 using the minimal symbol, for instance to find a method
10778 implemented in a stripped copy of libstdc++, will not work.
10779 If we do not have debug info for the definition, we will have to
10780 match them up some other way.
10781
10782 When we do name matching there is a related problem with function
10783 templates; two instantiated function templates are allowed to
10784 differ only by their return types, which we do not add here. */
10785
10786 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10787 {
10788 struct attribute *attr;
10789 struct die_info *child;
10790 int first = 1;
10791
10792 die->building_fullname = 1;
10793
10794 for (child = die->child; child != NULL; child = child->sibling)
10795 {
10796 struct type *type;
10797 LONGEST value;
10798 const gdb_byte *bytes;
10799 struct dwarf2_locexpr_baton *baton;
10800 struct value *v;
10801
10802 if (child->tag != DW_TAG_template_type_param
10803 && child->tag != DW_TAG_template_value_param)
10804 continue;
10805
10806 if (first)
10807 {
10808 buf.puts ("<");
10809 first = 0;
10810 }
10811 else
10812 buf.puts (", ");
10813
10814 attr = dwarf2_attr (child, DW_AT_type, cu);
10815 if (attr == NULL)
10816 {
10817 complaint (&symfile_complaints,
10818 _("template parameter missing DW_AT_type"));
10819 buf.puts ("UNKNOWN_TYPE");
10820 continue;
10821 }
10822 type = die_type (child, cu);
10823
10824 if (child->tag == DW_TAG_template_type_param)
10825 {
10826 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
10827 continue;
10828 }
10829
10830 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10831 if (attr == NULL)
10832 {
10833 complaint (&symfile_complaints,
10834 _("template parameter missing "
10835 "DW_AT_const_value"));
10836 buf.puts ("UNKNOWN_VALUE");
10837 continue;
10838 }
10839
10840 dwarf2_const_value_attr (attr, type, name,
10841 &cu->comp_unit_obstack, cu,
10842 &value, &bytes, &baton);
10843
10844 if (TYPE_NOSIGN (type))
10845 /* GDB prints characters as NUMBER 'CHAR'. If that's
10846 changed, this can use value_print instead. */
10847 c_printchar (value, type, &buf);
10848 else
10849 {
10850 struct value_print_options opts;
10851
10852 if (baton != NULL)
10853 v = dwarf2_evaluate_loc_desc (type, NULL,
10854 baton->data,
10855 baton->size,
10856 baton->per_cu);
10857 else if (bytes != NULL)
10858 {
10859 v = allocate_value (type);
10860 memcpy (value_contents_writeable (v), bytes,
10861 TYPE_LENGTH (type));
10862 }
10863 else
10864 v = value_from_longest (type, value);
10865
10866 /* Specify decimal so that we do not depend on
10867 the radix. */
10868 get_formatted_print_options (&opts, 'd');
10869 opts.raw = 1;
10870 value_print (v, &buf, &opts);
10871 release_value (v);
10872 }
10873 }
10874
10875 die->building_fullname = 0;
10876
10877 if (!first)
10878 {
10879 /* Close the argument list, with a space if necessary
10880 (nested templates). */
10881 if (!buf.empty () && buf.string ().back () == '>')
10882 buf.puts (" >");
10883 else
10884 buf.puts (">");
10885 }
10886 }
10887
10888 /* For C++ methods, append formal parameter type
10889 information, if PHYSNAME. */
10890
10891 if (physname && die->tag == DW_TAG_subprogram
10892 && cu->language == language_cplus)
10893 {
10894 struct type *type = read_type_die (die, cu);
10895
10896 c_type_print_args (type, &buf, 1, cu->language,
10897 &type_print_raw_options);
10898
10899 if (cu->language == language_cplus)
10900 {
10901 /* Assume that an artificial first parameter is
10902 "this", but do not crash if it is not. RealView
10903 marks unnamed (and thus unused) parameters as
10904 artificial; there is no way to differentiate
10905 the two cases. */
10906 if (TYPE_NFIELDS (type) > 0
10907 && TYPE_FIELD_ARTIFICIAL (type, 0)
10908 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10909 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10910 0))))
10911 buf.puts (" const");
10912 }
10913 }
10914
10915 const std::string &intermediate_name = buf.string ();
10916
10917 if (cu->language == language_cplus)
10918 canonical_name
10919 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10920 &objfile->per_bfd->storage_obstack);
10921
10922 /* If we only computed INTERMEDIATE_NAME, or if
10923 INTERMEDIATE_NAME is already canonical, then we need to
10924 copy it to the appropriate obstack. */
10925 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10926 name = ((const char *)
10927 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10928 intermediate_name.c_str (),
10929 intermediate_name.length ()));
10930 else
10931 name = canonical_name;
10932 }
10933 }
10934
10935 return name;
10936 }
10937
10938 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10939 If scope qualifiers are appropriate they will be added. The result
10940 will be allocated on the storage_obstack, or NULL if the DIE does
10941 not have a name. NAME may either be from a previous call to
10942 dwarf2_name or NULL.
10943
10944 The output string will be canonicalized (if C++). */
10945
10946 static const char *
10947 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10948 {
10949 return dwarf2_compute_name (name, die, cu, 0);
10950 }
10951
10952 /* Construct a physname for the given DIE in CU. NAME may either be
10953 from a previous call to dwarf2_name or NULL. The result will be
10954 allocated on the objfile_objstack or NULL if the DIE does not have a
10955 name.
10956
10957 The output string will be canonicalized (if C++). */
10958
10959 static const char *
10960 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10961 {
10962 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10963 const char *retval, *mangled = NULL, *canon = NULL;
10964 int need_copy = 1;
10965
10966 /* In this case dwarf2_compute_name is just a shortcut not building anything
10967 on its own. */
10968 if (!die_needs_namespace (die, cu))
10969 return dwarf2_compute_name (name, die, cu, 1);
10970
10971 mangled = dw2_linkage_name (die, cu);
10972
10973 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10974 See https://github.com/rust-lang/rust/issues/32925. */
10975 if (cu->language == language_rust && mangled != NULL
10976 && strchr (mangled, '{') != NULL)
10977 mangled = NULL;
10978
10979 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10980 has computed. */
10981 gdb::unique_xmalloc_ptr<char> demangled;
10982 if (mangled != NULL)
10983 {
10984
10985 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10986 {
10987 /* Do nothing (do not demangle the symbol name). */
10988 }
10989 else if (cu->language == language_go)
10990 {
10991 /* This is a lie, but we already lie to the caller new_symbol.
10992 new_symbol assumes we return the mangled name.
10993 This just undoes that lie until things are cleaned up. */
10994 }
10995 else
10996 {
10997 /* Use DMGL_RET_DROP for C++ template functions to suppress
10998 their return type. It is easier for GDB users to search
10999 for such functions as `name(params)' than `long name(params)'.
11000 In such case the minimal symbol names do not match the full
11001 symbol names but for template functions there is never a need
11002 to look up their definition from their declaration so
11003 the only disadvantage remains the minimal symbol variant
11004 `long name(params)' does not have the proper inferior type. */
11005 demangled.reset (gdb_demangle (mangled,
11006 (DMGL_PARAMS | DMGL_ANSI
11007 | DMGL_RET_DROP)));
11008 }
11009 if (demangled)
11010 canon = demangled.get ();
11011 else
11012 {
11013 canon = mangled;
11014 need_copy = 0;
11015 }
11016 }
11017
11018 if (canon == NULL || check_physname)
11019 {
11020 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11021
11022 if (canon != NULL && strcmp (physname, canon) != 0)
11023 {
11024 /* It may not mean a bug in GDB. The compiler could also
11025 compute DW_AT_linkage_name incorrectly. But in such case
11026 GDB would need to be bug-to-bug compatible. */
11027
11028 complaint (&symfile_complaints,
11029 _("Computed physname <%s> does not match demangled <%s> "
11030 "(from linkage <%s>) - DIE at %s [in module %s]"),
11031 physname, canon, mangled, sect_offset_str (die->sect_off),
11032 objfile_name (objfile));
11033
11034 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11035 is available here - over computed PHYSNAME. It is safer
11036 against both buggy GDB and buggy compilers. */
11037
11038 retval = canon;
11039 }
11040 else
11041 {
11042 retval = physname;
11043 need_copy = 0;
11044 }
11045 }
11046 else
11047 retval = canon;
11048
11049 if (need_copy)
11050 retval = ((const char *)
11051 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11052 retval, strlen (retval)));
11053
11054 return retval;
11055 }
11056
11057 /* Inspect DIE in CU for a namespace alias. If one exists, record
11058 a new symbol for it.
11059
11060 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11061
11062 static int
11063 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11064 {
11065 struct attribute *attr;
11066
11067 /* If the die does not have a name, this is not a namespace
11068 alias. */
11069 attr = dwarf2_attr (die, DW_AT_name, cu);
11070 if (attr != NULL)
11071 {
11072 int num;
11073 struct die_info *d = die;
11074 struct dwarf2_cu *imported_cu = cu;
11075
11076 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11077 keep inspecting DIEs until we hit the underlying import. */
11078 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11079 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11080 {
11081 attr = dwarf2_attr (d, DW_AT_import, cu);
11082 if (attr == NULL)
11083 break;
11084
11085 d = follow_die_ref (d, attr, &imported_cu);
11086 if (d->tag != DW_TAG_imported_declaration)
11087 break;
11088 }
11089
11090 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11091 {
11092 complaint (&symfile_complaints,
11093 _("DIE at %s has too many recursively imported "
11094 "declarations"), sect_offset_str (d->sect_off));
11095 return 0;
11096 }
11097
11098 if (attr != NULL)
11099 {
11100 struct type *type;
11101 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11102
11103 type = get_die_type_at_offset (sect_off, cu->per_cu);
11104 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11105 {
11106 /* This declaration is a global namespace alias. Add
11107 a symbol for it whose type is the aliased namespace. */
11108 new_symbol (die, type, cu);
11109 return 1;
11110 }
11111 }
11112 }
11113
11114 return 0;
11115 }
11116
11117 /* Return the using directives repository (global or local?) to use in the
11118 current context for LANGUAGE.
11119
11120 For Ada, imported declarations can materialize renamings, which *may* be
11121 global. However it is impossible (for now?) in DWARF to distinguish
11122 "external" imported declarations and "static" ones. As all imported
11123 declarations seem to be static in all other languages, make them all CU-wide
11124 global only in Ada. */
11125
11126 static struct using_direct **
11127 using_directives (enum language language)
11128 {
11129 if (language == language_ada && context_stack_depth == 0)
11130 return &global_using_directives;
11131 else
11132 return &local_using_directives;
11133 }
11134
11135 /* Read the import statement specified by the given die and record it. */
11136
11137 static void
11138 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11139 {
11140 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11141 struct attribute *import_attr;
11142 struct die_info *imported_die, *child_die;
11143 struct dwarf2_cu *imported_cu;
11144 const char *imported_name;
11145 const char *imported_name_prefix;
11146 const char *canonical_name;
11147 const char *import_alias;
11148 const char *imported_declaration = NULL;
11149 const char *import_prefix;
11150 std::vector<const char *> excludes;
11151
11152 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11153 if (import_attr == NULL)
11154 {
11155 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11156 dwarf_tag_name (die->tag));
11157 return;
11158 }
11159
11160 imported_cu = cu;
11161 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11162 imported_name = dwarf2_name (imported_die, imported_cu);
11163 if (imported_name == NULL)
11164 {
11165 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11166
11167 The import in the following code:
11168 namespace A
11169 {
11170 typedef int B;
11171 }
11172
11173 int main ()
11174 {
11175 using A::B;
11176 B b;
11177 return b;
11178 }
11179
11180 ...
11181 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11182 <52> DW_AT_decl_file : 1
11183 <53> DW_AT_decl_line : 6
11184 <54> DW_AT_import : <0x75>
11185 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11186 <59> DW_AT_name : B
11187 <5b> DW_AT_decl_file : 1
11188 <5c> DW_AT_decl_line : 2
11189 <5d> DW_AT_type : <0x6e>
11190 ...
11191 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11192 <76> DW_AT_byte_size : 4
11193 <77> DW_AT_encoding : 5 (signed)
11194
11195 imports the wrong die ( 0x75 instead of 0x58 ).
11196 This case will be ignored until the gcc bug is fixed. */
11197 return;
11198 }
11199
11200 /* Figure out the local name after import. */
11201 import_alias = dwarf2_name (die, cu);
11202
11203 /* Figure out where the statement is being imported to. */
11204 import_prefix = determine_prefix (die, cu);
11205
11206 /* Figure out what the scope of the imported die is and prepend it
11207 to the name of the imported die. */
11208 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11209
11210 if (imported_die->tag != DW_TAG_namespace
11211 && imported_die->tag != DW_TAG_module)
11212 {
11213 imported_declaration = imported_name;
11214 canonical_name = imported_name_prefix;
11215 }
11216 else if (strlen (imported_name_prefix) > 0)
11217 canonical_name = obconcat (&objfile->objfile_obstack,
11218 imported_name_prefix,
11219 (cu->language == language_d ? "." : "::"),
11220 imported_name, (char *) NULL);
11221 else
11222 canonical_name = imported_name;
11223
11224 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11225 for (child_die = die->child; child_die && child_die->tag;
11226 child_die = sibling_die (child_die))
11227 {
11228 /* DWARF-4: A Fortran use statement with a “rename list” may be
11229 represented by an imported module entry with an import attribute
11230 referring to the module and owned entries corresponding to those
11231 entities that are renamed as part of being imported. */
11232
11233 if (child_die->tag != DW_TAG_imported_declaration)
11234 {
11235 complaint (&symfile_complaints,
11236 _("child DW_TAG_imported_declaration expected "
11237 "- DIE at %s [in module %s]"),
11238 sect_offset_str (child_die->sect_off),
11239 objfile_name (objfile));
11240 continue;
11241 }
11242
11243 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11244 if (import_attr == NULL)
11245 {
11246 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11247 dwarf_tag_name (child_die->tag));
11248 continue;
11249 }
11250
11251 imported_cu = cu;
11252 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11253 &imported_cu);
11254 imported_name = dwarf2_name (imported_die, imported_cu);
11255 if (imported_name == NULL)
11256 {
11257 complaint (&symfile_complaints,
11258 _("child DW_TAG_imported_declaration has unknown "
11259 "imported name - DIE at %s [in module %s]"),
11260 sect_offset_str (child_die->sect_off),
11261 objfile_name (objfile));
11262 continue;
11263 }
11264
11265 excludes.push_back (imported_name);
11266
11267 process_die (child_die, cu);
11268 }
11269
11270 add_using_directive (using_directives (cu->language),
11271 import_prefix,
11272 canonical_name,
11273 import_alias,
11274 imported_declaration,
11275 excludes,
11276 0,
11277 &objfile->objfile_obstack);
11278 }
11279
11280 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11281 types, but gives them a size of zero. Starting with version 14,
11282 ICC is compatible with GCC. */
11283
11284 static int
11285 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11286 {
11287 if (!cu->checked_producer)
11288 check_producer (cu);
11289
11290 return cu->producer_is_icc_lt_14;
11291 }
11292
11293 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11294 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11295 this, it was first present in GCC release 4.3.0. */
11296
11297 static int
11298 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11299 {
11300 if (!cu->checked_producer)
11301 check_producer (cu);
11302
11303 return cu->producer_is_gcc_lt_4_3;
11304 }
11305
11306 static file_and_directory
11307 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11308 {
11309 file_and_directory res;
11310
11311 /* Find the filename. Do not use dwarf2_name here, since the filename
11312 is not a source language identifier. */
11313 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11314 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11315
11316 if (res.comp_dir == NULL
11317 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11318 && IS_ABSOLUTE_PATH (res.name))
11319 {
11320 res.comp_dir_storage = ldirname (res.name);
11321 if (!res.comp_dir_storage.empty ())
11322 res.comp_dir = res.comp_dir_storage.c_str ();
11323 }
11324 if (res.comp_dir != NULL)
11325 {
11326 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11327 directory, get rid of it. */
11328 const char *cp = strchr (res.comp_dir, ':');
11329
11330 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11331 res.comp_dir = cp + 1;
11332 }
11333
11334 if (res.name == NULL)
11335 res.name = "<unknown>";
11336
11337 return res;
11338 }
11339
11340 /* Handle DW_AT_stmt_list for a compilation unit.
11341 DIE is the DW_TAG_compile_unit die for CU.
11342 COMP_DIR is the compilation directory. LOWPC is passed to
11343 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11344
11345 static void
11346 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11347 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11348 {
11349 struct dwarf2_per_objfile *dwarf2_per_objfile
11350 = cu->per_cu->dwarf2_per_objfile;
11351 struct objfile *objfile = dwarf2_per_objfile->objfile;
11352 struct attribute *attr;
11353 struct line_header line_header_local;
11354 hashval_t line_header_local_hash;
11355 void **slot;
11356 int decode_mapping;
11357
11358 gdb_assert (! cu->per_cu->is_debug_types);
11359
11360 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11361 if (attr == NULL)
11362 return;
11363
11364 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11365
11366 /* The line header hash table is only created if needed (it exists to
11367 prevent redundant reading of the line table for partial_units).
11368 If we're given a partial_unit, we'll need it. If we're given a
11369 compile_unit, then use the line header hash table if it's already
11370 created, but don't create one just yet. */
11371
11372 if (dwarf2_per_objfile->line_header_hash == NULL
11373 && die->tag == DW_TAG_partial_unit)
11374 {
11375 dwarf2_per_objfile->line_header_hash
11376 = htab_create_alloc_ex (127, line_header_hash_voidp,
11377 line_header_eq_voidp,
11378 free_line_header_voidp,
11379 &objfile->objfile_obstack,
11380 hashtab_obstack_allocate,
11381 dummy_obstack_deallocate);
11382 }
11383
11384 line_header_local.sect_off = line_offset;
11385 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11386 line_header_local_hash = line_header_hash (&line_header_local);
11387 if (dwarf2_per_objfile->line_header_hash != NULL)
11388 {
11389 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11390 &line_header_local,
11391 line_header_local_hash, NO_INSERT);
11392
11393 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11394 is not present in *SLOT (since if there is something in *SLOT then
11395 it will be for a partial_unit). */
11396 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11397 {
11398 gdb_assert (*slot != NULL);
11399 cu->line_header = (struct line_header *) *slot;
11400 return;
11401 }
11402 }
11403
11404 /* dwarf_decode_line_header does not yet provide sufficient information.
11405 We always have to call also dwarf_decode_lines for it. */
11406 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11407 if (lh == NULL)
11408 return;
11409
11410 cu->line_header = lh.release ();
11411 cu->line_header_die_owner = die;
11412
11413 if (dwarf2_per_objfile->line_header_hash == NULL)
11414 slot = NULL;
11415 else
11416 {
11417 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11418 &line_header_local,
11419 line_header_local_hash, INSERT);
11420 gdb_assert (slot != NULL);
11421 }
11422 if (slot != NULL && *slot == NULL)
11423 {
11424 /* This newly decoded line number information unit will be owned
11425 by line_header_hash hash table. */
11426 *slot = cu->line_header;
11427 cu->line_header_die_owner = NULL;
11428 }
11429 else
11430 {
11431 /* We cannot free any current entry in (*slot) as that struct line_header
11432 may be already used by multiple CUs. Create only temporary decoded
11433 line_header for this CU - it may happen at most once for each line
11434 number information unit. And if we're not using line_header_hash
11435 then this is what we want as well. */
11436 gdb_assert (die->tag != DW_TAG_partial_unit);
11437 }
11438 decode_mapping = (die->tag != DW_TAG_partial_unit);
11439 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11440 decode_mapping);
11441
11442 }
11443
11444 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11445
11446 static void
11447 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11448 {
11449 struct dwarf2_per_objfile *dwarf2_per_objfile
11450 = cu->per_cu->dwarf2_per_objfile;
11451 struct objfile *objfile = dwarf2_per_objfile->objfile;
11452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11453 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11454 CORE_ADDR highpc = ((CORE_ADDR) 0);
11455 struct attribute *attr;
11456 struct die_info *child_die;
11457 CORE_ADDR baseaddr;
11458
11459 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11460
11461 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11462
11463 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11464 from finish_block. */
11465 if (lowpc == ((CORE_ADDR) -1))
11466 lowpc = highpc;
11467 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11468
11469 file_and_directory fnd = find_file_and_directory (die, cu);
11470
11471 prepare_one_comp_unit (cu, die, cu->language);
11472
11473 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11474 standardised yet. As a workaround for the language detection we fall
11475 back to the DW_AT_producer string. */
11476 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11477 cu->language = language_opencl;
11478
11479 /* Similar hack for Go. */
11480 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11481 set_cu_language (DW_LANG_Go, cu);
11482
11483 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11484
11485 /* Decode line number information if present. We do this before
11486 processing child DIEs, so that the line header table is available
11487 for DW_AT_decl_file. */
11488 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11489
11490 /* Process all dies in compilation unit. */
11491 if (die->child != NULL)
11492 {
11493 child_die = die->child;
11494 while (child_die && child_die->tag)
11495 {
11496 process_die (child_die, cu);
11497 child_die = sibling_die (child_die);
11498 }
11499 }
11500
11501 /* Decode macro information, if present. Dwarf 2 macro information
11502 refers to information in the line number info statement program
11503 header, so we can only read it if we've read the header
11504 successfully. */
11505 attr = dwarf2_attr (die, DW_AT_macros, cu);
11506 if (attr == NULL)
11507 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11508 if (attr && cu->line_header)
11509 {
11510 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11511 complaint (&symfile_complaints,
11512 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11513
11514 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11515 }
11516 else
11517 {
11518 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11519 if (attr && cu->line_header)
11520 {
11521 unsigned int macro_offset = DW_UNSND (attr);
11522
11523 dwarf_decode_macros (cu, macro_offset, 0);
11524 }
11525 }
11526 }
11527
11528 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11529 Create the set of symtabs used by this TU, or if this TU is sharing
11530 symtabs with another TU and the symtabs have already been created
11531 then restore those symtabs in the line header.
11532 We don't need the pc/line-number mapping for type units. */
11533
11534 static void
11535 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11536 {
11537 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11538 struct type_unit_group *tu_group;
11539 int first_time;
11540 struct attribute *attr;
11541 unsigned int i;
11542 struct signatured_type *sig_type;
11543
11544 gdb_assert (per_cu->is_debug_types);
11545 sig_type = (struct signatured_type *) per_cu;
11546
11547 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11548
11549 /* If we're using .gdb_index (includes -readnow) then
11550 per_cu->type_unit_group may not have been set up yet. */
11551 if (sig_type->type_unit_group == NULL)
11552 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11553 tu_group = sig_type->type_unit_group;
11554
11555 /* If we've already processed this stmt_list there's no real need to
11556 do it again, we could fake it and just recreate the part we need
11557 (file name,index -> symtab mapping). If data shows this optimization
11558 is useful we can do it then. */
11559 first_time = tu_group->compunit_symtab == NULL;
11560
11561 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11562 debug info. */
11563 line_header_up lh;
11564 if (attr != NULL)
11565 {
11566 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11567 lh = dwarf_decode_line_header (line_offset, cu);
11568 }
11569 if (lh == NULL)
11570 {
11571 if (first_time)
11572 dwarf2_start_symtab (cu, "", NULL, 0);
11573 else
11574 {
11575 gdb_assert (tu_group->symtabs == NULL);
11576 restart_symtab (tu_group->compunit_symtab, "", 0);
11577 }
11578 return;
11579 }
11580
11581 cu->line_header = lh.release ();
11582 cu->line_header_die_owner = die;
11583
11584 if (first_time)
11585 {
11586 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11587
11588 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11589 still initializing it, and our caller (a few levels up)
11590 process_full_type_unit still needs to know if this is the first
11591 time. */
11592
11593 tu_group->num_symtabs = cu->line_header->file_names.size ();
11594 tu_group->symtabs = XNEWVEC (struct symtab *,
11595 cu->line_header->file_names.size ());
11596
11597 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11598 {
11599 file_entry &fe = cu->line_header->file_names[i];
11600
11601 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
11602
11603 if (current_subfile->symtab == NULL)
11604 {
11605 /* NOTE: start_subfile will recognize when it's been
11606 passed a file it has already seen. So we can't
11607 assume there's a simple mapping from
11608 cu->line_header->file_names to subfiles, plus
11609 cu->line_header->file_names may contain dups. */
11610 current_subfile->symtab
11611 = allocate_symtab (cust, current_subfile->name);
11612 }
11613
11614 fe.symtab = current_subfile->symtab;
11615 tu_group->symtabs[i] = fe.symtab;
11616 }
11617 }
11618 else
11619 {
11620 restart_symtab (tu_group->compunit_symtab, "", 0);
11621
11622 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11623 {
11624 file_entry &fe = cu->line_header->file_names[i];
11625
11626 fe.symtab = tu_group->symtabs[i];
11627 }
11628 }
11629
11630 /* The main symtab is allocated last. Type units don't have DW_AT_name
11631 so they don't have a "real" (so to speak) symtab anyway.
11632 There is later code that will assign the main symtab to all symbols
11633 that don't have one. We need to handle the case of a symbol with a
11634 missing symtab (DW_AT_decl_file) anyway. */
11635 }
11636
11637 /* Process DW_TAG_type_unit.
11638 For TUs we want to skip the first top level sibling if it's not the
11639 actual type being defined by this TU. In this case the first top
11640 level sibling is there to provide context only. */
11641
11642 static void
11643 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11644 {
11645 struct die_info *child_die;
11646
11647 prepare_one_comp_unit (cu, die, language_minimal);
11648
11649 /* Initialize (or reinitialize) the machinery for building symtabs.
11650 We do this before processing child DIEs, so that the line header table
11651 is available for DW_AT_decl_file. */
11652 setup_type_unit_groups (die, cu);
11653
11654 if (die->child != NULL)
11655 {
11656 child_die = die->child;
11657 while (child_die && child_die->tag)
11658 {
11659 process_die (child_die, cu);
11660 child_die = sibling_die (child_die);
11661 }
11662 }
11663 }
11664 \f
11665 /* DWO/DWP files.
11666
11667 http://gcc.gnu.org/wiki/DebugFission
11668 http://gcc.gnu.org/wiki/DebugFissionDWP
11669
11670 To simplify handling of both DWO files ("object" files with the DWARF info)
11671 and DWP files (a file with the DWOs packaged up into one file), we treat
11672 DWP files as having a collection of virtual DWO files. */
11673
11674 static hashval_t
11675 hash_dwo_file (const void *item)
11676 {
11677 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11678 hashval_t hash;
11679
11680 hash = htab_hash_string (dwo_file->dwo_name);
11681 if (dwo_file->comp_dir != NULL)
11682 hash += htab_hash_string (dwo_file->comp_dir);
11683 return hash;
11684 }
11685
11686 static int
11687 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11688 {
11689 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11690 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11691
11692 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11693 return 0;
11694 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11695 return lhs->comp_dir == rhs->comp_dir;
11696 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11697 }
11698
11699 /* Allocate a hash table for DWO files. */
11700
11701 static htab_t
11702 allocate_dwo_file_hash_table (struct objfile *objfile)
11703 {
11704 return htab_create_alloc_ex (41,
11705 hash_dwo_file,
11706 eq_dwo_file,
11707 NULL,
11708 &objfile->objfile_obstack,
11709 hashtab_obstack_allocate,
11710 dummy_obstack_deallocate);
11711 }
11712
11713 /* Lookup DWO file DWO_NAME. */
11714
11715 static void **
11716 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11717 const char *dwo_name,
11718 const char *comp_dir)
11719 {
11720 struct dwo_file find_entry;
11721 void **slot;
11722
11723 if (dwarf2_per_objfile->dwo_files == NULL)
11724 dwarf2_per_objfile->dwo_files
11725 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11726
11727 memset (&find_entry, 0, sizeof (find_entry));
11728 find_entry.dwo_name = dwo_name;
11729 find_entry.comp_dir = comp_dir;
11730 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11731
11732 return slot;
11733 }
11734
11735 static hashval_t
11736 hash_dwo_unit (const void *item)
11737 {
11738 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11739
11740 /* This drops the top 32 bits of the id, but is ok for a hash. */
11741 return dwo_unit->signature;
11742 }
11743
11744 static int
11745 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11746 {
11747 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11748 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11749
11750 /* The signature is assumed to be unique within the DWO file.
11751 So while object file CU dwo_id's always have the value zero,
11752 that's OK, assuming each object file DWO file has only one CU,
11753 and that's the rule for now. */
11754 return lhs->signature == rhs->signature;
11755 }
11756
11757 /* Allocate a hash table for DWO CUs,TUs.
11758 There is one of these tables for each of CUs,TUs for each DWO file. */
11759
11760 static htab_t
11761 allocate_dwo_unit_table (struct objfile *objfile)
11762 {
11763 /* Start out with a pretty small number.
11764 Generally DWO files contain only one CU and maybe some TUs. */
11765 return htab_create_alloc_ex (3,
11766 hash_dwo_unit,
11767 eq_dwo_unit,
11768 NULL,
11769 &objfile->objfile_obstack,
11770 hashtab_obstack_allocate,
11771 dummy_obstack_deallocate);
11772 }
11773
11774 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11775
11776 struct create_dwo_cu_data
11777 {
11778 struct dwo_file *dwo_file;
11779 struct dwo_unit dwo_unit;
11780 };
11781
11782 /* die_reader_func for create_dwo_cu. */
11783
11784 static void
11785 create_dwo_cu_reader (const struct die_reader_specs *reader,
11786 const gdb_byte *info_ptr,
11787 struct die_info *comp_unit_die,
11788 int has_children,
11789 void *datap)
11790 {
11791 struct dwarf2_cu *cu = reader->cu;
11792 sect_offset sect_off = cu->per_cu->sect_off;
11793 struct dwarf2_section_info *section = cu->per_cu->section;
11794 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11795 struct dwo_file *dwo_file = data->dwo_file;
11796 struct dwo_unit *dwo_unit = &data->dwo_unit;
11797 struct attribute *attr;
11798
11799 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11800 if (attr == NULL)
11801 {
11802 complaint (&symfile_complaints,
11803 _("Dwarf Error: debug entry at offset %s is missing"
11804 " its dwo_id [in module %s]"),
11805 sect_offset_str (sect_off), dwo_file->dwo_name);
11806 return;
11807 }
11808
11809 dwo_unit->dwo_file = dwo_file;
11810 dwo_unit->signature = DW_UNSND (attr);
11811 dwo_unit->section = section;
11812 dwo_unit->sect_off = sect_off;
11813 dwo_unit->length = cu->per_cu->length;
11814
11815 if (dwarf_read_debug)
11816 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11817 sect_offset_str (sect_off),
11818 hex_string (dwo_unit->signature));
11819 }
11820
11821 /* Create the dwo_units for the CUs in a DWO_FILE.
11822 Note: This function processes DWO files only, not DWP files. */
11823
11824 static void
11825 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11826 struct dwo_file &dwo_file, dwarf2_section_info &section,
11827 htab_t &cus_htab)
11828 {
11829 struct objfile *objfile = dwarf2_per_objfile->objfile;
11830 const gdb_byte *info_ptr, *end_ptr;
11831
11832 dwarf2_read_section (objfile, &section);
11833 info_ptr = section.buffer;
11834
11835 if (info_ptr == NULL)
11836 return;
11837
11838 if (dwarf_read_debug)
11839 {
11840 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11841 get_section_name (&section),
11842 get_section_file_name (&section));
11843 }
11844
11845 end_ptr = info_ptr + section.size;
11846 while (info_ptr < end_ptr)
11847 {
11848 struct dwarf2_per_cu_data per_cu;
11849 struct create_dwo_cu_data create_dwo_cu_data;
11850 struct dwo_unit *dwo_unit;
11851 void **slot;
11852 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11853
11854 memset (&create_dwo_cu_data.dwo_unit, 0,
11855 sizeof (create_dwo_cu_data.dwo_unit));
11856 memset (&per_cu, 0, sizeof (per_cu));
11857 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11858 per_cu.is_debug_types = 0;
11859 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11860 per_cu.section = &section;
11861 create_dwo_cu_data.dwo_file = &dwo_file;
11862
11863 init_cutu_and_read_dies_no_follow (
11864 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11865 info_ptr += per_cu.length;
11866
11867 // If the unit could not be parsed, skip it.
11868 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11869 continue;
11870
11871 if (cus_htab == NULL)
11872 cus_htab = allocate_dwo_unit_table (objfile);
11873
11874 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11875 *dwo_unit = create_dwo_cu_data.dwo_unit;
11876 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11877 gdb_assert (slot != NULL);
11878 if (*slot != NULL)
11879 {
11880 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11881 sect_offset dup_sect_off = dup_cu->sect_off;
11882
11883 complaint (&symfile_complaints,
11884 _("debug cu entry at offset %s is duplicate to"
11885 " the entry at offset %s, signature %s"),
11886 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11887 hex_string (dwo_unit->signature));
11888 }
11889 *slot = (void *)dwo_unit;
11890 }
11891 }
11892
11893 /* DWP file .debug_{cu,tu}_index section format:
11894 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11895
11896 DWP Version 1:
11897
11898 Both index sections have the same format, and serve to map a 64-bit
11899 signature to a set of section numbers. Each section begins with a header,
11900 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11901 indexes, and a pool of 32-bit section numbers. The index sections will be
11902 aligned at 8-byte boundaries in the file.
11903
11904 The index section header consists of:
11905
11906 V, 32 bit version number
11907 -, 32 bits unused
11908 N, 32 bit number of compilation units or type units in the index
11909 M, 32 bit number of slots in the hash table
11910
11911 Numbers are recorded using the byte order of the application binary.
11912
11913 The hash table begins at offset 16 in the section, and consists of an array
11914 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11915 order of the application binary). Unused slots in the hash table are 0.
11916 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11917
11918 The parallel table begins immediately after the hash table
11919 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11920 array of 32-bit indexes (using the byte order of the application binary),
11921 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11922 table contains a 32-bit index into the pool of section numbers. For unused
11923 hash table slots, the corresponding entry in the parallel table will be 0.
11924
11925 The pool of section numbers begins immediately following the hash table
11926 (at offset 16 + 12 * M from the beginning of the section). The pool of
11927 section numbers consists of an array of 32-bit words (using the byte order
11928 of the application binary). Each item in the array is indexed starting
11929 from 0. The hash table entry provides the index of the first section
11930 number in the set. Additional section numbers in the set follow, and the
11931 set is terminated by a 0 entry (section number 0 is not used in ELF).
11932
11933 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11934 section must be the first entry in the set, and the .debug_abbrev.dwo must
11935 be the second entry. Other members of the set may follow in any order.
11936
11937 ---
11938
11939 DWP Version 2:
11940
11941 DWP Version 2 combines all the .debug_info, etc. sections into one,
11942 and the entries in the index tables are now offsets into these sections.
11943 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11944 section.
11945
11946 Index Section Contents:
11947 Header
11948 Hash Table of Signatures dwp_hash_table.hash_table
11949 Parallel Table of Indices dwp_hash_table.unit_table
11950 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11951 Table of Section Sizes dwp_hash_table.v2.sizes
11952
11953 The index section header consists of:
11954
11955 V, 32 bit version number
11956 L, 32 bit number of columns in the table of section offsets
11957 N, 32 bit number of compilation units or type units in the index
11958 M, 32 bit number of slots in the hash table
11959
11960 Numbers are recorded using the byte order of the application binary.
11961
11962 The hash table has the same format as version 1.
11963 The parallel table of indices has the same format as version 1,
11964 except that the entries are origin-1 indices into the table of sections
11965 offsets and the table of section sizes.
11966
11967 The table of offsets begins immediately following the parallel table
11968 (at offset 16 + 12 * M from the beginning of the section). The table is
11969 a two-dimensional array of 32-bit words (using the byte order of the
11970 application binary), with L columns and N+1 rows, in row-major order.
11971 Each row in the array is indexed starting from 0. The first row provides
11972 a key to the remaining rows: each column in this row provides an identifier
11973 for a debug section, and the offsets in the same column of subsequent rows
11974 refer to that section. The section identifiers are:
11975
11976 DW_SECT_INFO 1 .debug_info.dwo
11977 DW_SECT_TYPES 2 .debug_types.dwo
11978 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11979 DW_SECT_LINE 4 .debug_line.dwo
11980 DW_SECT_LOC 5 .debug_loc.dwo
11981 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11982 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11983 DW_SECT_MACRO 8 .debug_macro.dwo
11984
11985 The offsets provided by the CU and TU index sections are the base offsets
11986 for the contributions made by each CU or TU to the corresponding section
11987 in the package file. Each CU and TU header contains an abbrev_offset
11988 field, used to find the abbreviations table for that CU or TU within the
11989 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11990 be interpreted as relative to the base offset given in the index section.
11991 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11992 should be interpreted as relative to the base offset for .debug_line.dwo,
11993 and offsets into other debug sections obtained from DWARF attributes should
11994 also be interpreted as relative to the corresponding base offset.
11995
11996 The table of sizes begins immediately following the table of offsets.
11997 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11998 with L columns and N rows, in row-major order. Each row in the array is
11999 indexed starting from 1 (row 0 is shared by the two tables).
12000
12001 ---
12002
12003 Hash table lookup is handled the same in version 1 and 2:
12004
12005 We assume that N and M will not exceed 2^32 - 1.
12006 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12007
12008 Given a 64-bit compilation unit signature or a type signature S, an entry
12009 in the hash table is located as follows:
12010
12011 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12012 the low-order k bits all set to 1.
12013
12014 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12015
12016 3) If the hash table entry at index H matches the signature, use that
12017 entry. If the hash table entry at index H is unused (all zeroes),
12018 terminate the search: the signature is not present in the table.
12019
12020 4) Let H = (H + H') modulo M. Repeat at Step 3.
12021
12022 Because M > N and H' and M are relatively prime, the search is guaranteed
12023 to stop at an unused slot or find the match. */
12024
12025 /* Create a hash table to map DWO IDs to their CU/TU entry in
12026 .debug_{info,types}.dwo in DWP_FILE.
12027 Returns NULL if there isn't one.
12028 Note: This function processes DWP files only, not DWO files. */
12029
12030 static struct dwp_hash_table *
12031 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12032 struct dwp_file *dwp_file, int is_debug_types)
12033 {
12034 struct objfile *objfile = dwarf2_per_objfile->objfile;
12035 bfd *dbfd = dwp_file->dbfd;
12036 const gdb_byte *index_ptr, *index_end;
12037 struct dwarf2_section_info *index;
12038 uint32_t version, nr_columns, nr_units, nr_slots;
12039 struct dwp_hash_table *htab;
12040
12041 if (is_debug_types)
12042 index = &dwp_file->sections.tu_index;
12043 else
12044 index = &dwp_file->sections.cu_index;
12045
12046 if (dwarf2_section_empty_p (index))
12047 return NULL;
12048 dwarf2_read_section (objfile, index);
12049
12050 index_ptr = index->buffer;
12051 index_end = index_ptr + index->size;
12052
12053 version = read_4_bytes (dbfd, index_ptr);
12054 index_ptr += 4;
12055 if (version == 2)
12056 nr_columns = read_4_bytes (dbfd, index_ptr);
12057 else
12058 nr_columns = 0;
12059 index_ptr += 4;
12060 nr_units = read_4_bytes (dbfd, index_ptr);
12061 index_ptr += 4;
12062 nr_slots = read_4_bytes (dbfd, index_ptr);
12063 index_ptr += 4;
12064
12065 if (version != 1 && version != 2)
12066 {
12067 error (_("Dwarf Error: unsupported DWP file version (%s)"
12068 " [in module %s]"),
12069 pulongest (version), dwp_file->name);
12070 }
12071 if (nr_slots != (nr_slots & -nr_slots))
12072 {
12073 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12074 " is not power of 2 [in module %s]"),
12075 pulongest (nr_slots), dwp_file->name);
12076 }
12077
12078 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12079 htab->version = version;
12080 htab->nr_columns = nr_columns;
12081 htab->nr_units = nr_units;
12082 htab->nr_slots = nr_slots;
12083 htab->hash_table = index_ptr;
12084 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12085
12086 /* Exit early if the table is empty. */
12087 if (nr_slots == 0 || nr_units == 0
12088 || (version == 2 && nr_columns == 0))
12089 {
12090 /* All must be zero. */
12091 if (nr_slots != 0 || nr_units != 0
12092 || (version == 2 && nr_columns != 0))
12093 {
12094 complaint (&symfile_complaints,
12095 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12096 " all zero [in modules %s]"),
12097 dwp_file->name);
12098 }
12099 return htab;
12100 }
12101
12102 if (version == 1)
12103 {
12104 htab->section_pool.v1.indices =
12105 htab->unit_table + sizeof (uint32_t) * nr_slots;
12106 /* It's harder to decide whether the section is too small in v1.
12107 V1 is deprecated anyway so we punt. */
12108 }
12109 else
12110 {
12111 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12112 int *ids = htab->section_pool.v2.section_ids;
12113 /* Reverse map for error checking. */
12114 int ids_seen[DW_SECT_MAX + 1];
12115 int i;
12116
12117 if (nr_columns < 2)
12118 {
12119 error (_("Dwarf Error: bad DWP hash table, too few columns"
12120 " in section table [in module %s]"),
12121 dwp_file->name);
12122 }
12123 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12124 {
12125 error (_("Dwarf Error: bad DWP hash table, too many columns"
12126 " in section table [in module %s]"),
12127 dwp_file->name);
12128 }
12129 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12130 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12131 for (i = 0; i < nr_columns; ++i)
12132 {
12133 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12134
12135 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12136 {
12137 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12138 " in section table [in module %s]"),
12139 id, dwp_file->name);
12140 }
12141 if (ids_seen[id] != -1)
12142 {
12143 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12144 " id %d in section table [in module %s]"),
12145 id, dwp_file->name);
12146 }
12147 ids_seen[id] = i;
12148 ids[i] = id;
12149 }
12150 /* Must have exactly one info or types section. */
12151 if (((ids_seen[DW_SECT_INFO] != -1)
12152 + (ids_seen[DW_SECT_TYPES] != -1))
12153 != 1)
12154 {
12155 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12156 " DWO info/types section [in module %s]"),
12157 dwp_file->name);
12158 }
12159 /* Must have an abbrev section. */
12160 if (ids_seen[DW_SECT_ABBREV] == -1)
12161 {
12162 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12163 " section [in module %s]"),
12164 dwp_file->name);
12165 }
12166 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12167 htab->section_pool.v2.sizes =
12168 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12169 * nr_units * nr_columns);
12170 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12171 * nr_units * nr_columns))
12172 > index_end)
12173 {
12174 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12175 " [in module %s]"),
12176 dwp_file->name);
12177 }
12178 }
12179
12180 return htab;
12181 }
12182
12183 /* Update SECTIONS with the data from SECTP.
12184
12185 This function is like the other "locate" section routines that are
12186 passed to bfd_map_over_sections, but in this context the sections to
12187 read comes from the DWP V1 hash table, not the full ELF section table.
12188
12189 The result is non-zero for success, or zero if an error was found. */
12190
12191 static int
12192 locate_v1_virtual_dwo_sections (asection *sectp,
12193 struct virtual_v1_dwo_sections *sections)
12194 {
12195 const struct dwop_section_names *names = &dwop_section_names;
12196
12197 if (section_is_p (sectp->name, &names->abbrev_dwo))
12198 {
12199 /* There can be only one. */
12200 if (sections->abbrev.s.section != NULL)
12201 return 0;
12202 sections->abbrev.s.section = sectp;
12203 sections->abbrev.size = bfd_get_section_size (sectp);
12204 }
12205 else if (section_is_p (sectp->name, &names->info_dwo)
12206 || section_is_p (sectp->name, &names->types_dwo))
12207 {
12208 /* There can be only one. */
12209 if (sections->info_or_types.s.section != NULL)
12210 return 0;
12211 sections->info_or_types.s.section = sectp;
12212 sections->info_or_types.size = bfd_get_section_size (sectp);
12213 }
12214 else if (section_is_p (sectp->name, &names->line_dwo))
12215 {
12216 /* There can be only one. */
12217 if (sections->line.s.section != NULL)
12218 return 0;
12219 sections->line.s.section = sectp;
12220 sections->line.size = bfd_get_section_size (sectp);
12221 }
12222 else if (section_is_p (sectp->name, &names->loc_dwo))
12223 {
12224 /* There can be only one. */
12225 if (sections->loc.s.section != NULL)
12226 return 0;
12227 sections->loc.s.section = sectp;
12228 sections->loc.size = bfd_get_section_size (sectp);
12229 }
12230 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12231 {
12232 /* There can be only one. */
12233 if (sections->macinfo.s.section != NULL)
12234 return 0;
12235 sections->macinfo.s.section = sectp;
12236 sections->macinfo.size = bfd_get_section_size (sectp);
12237 }
12238 else if (section_is_p (sectp->name, &names->macro_dwo))
12239 {
12240 /* There can be only one. */
12241 if (sections->macro.s.section != NULL)
12242 return 0;
12243 sections->macro.s.section = sectp;
12244 sections->macro.size = bfd_get_section_size (sectp);
12245 }
12246 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12247 {
12248 /* There can be only one. */
12249 if (sections->str_offsets.s.section != NULL)
12250 return 0;
12251 sections->str_offsets.s.section = sectp;
12252 sections->str_offsets.size = bfd_get_section_size (sectp);
12253 }
12254 else
12255 {
12256 /* No other kind of section is valid. */
12257 return 0;
12258 }
12259
12260 return 1;
12261 }
12262
12263 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12264 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12265 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12266 This is for DWP version 1 files. */
12267
12268 static struct dwo_unit *
12269 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12270 struct dwp_file *dwp_file,
12271 uint32_t unit_index,
12272 const char *comp_dir,
12273 ULONGEST signature, int is_debug_types)
12274 {
12275 struct objfile *objfile = dwarf2_per_objfile->objfile;
12276 const struct dwp_hash_table *dwp_htab =
12277 is_debug_types ? dwp_file->tus : dwp_file->cus;
12278 bfd *dbfd = dwp_file->dbfd;
12279 const char *kind = is_debug_types ? "TU" : "CU";
12280 struct dwo_file *dwo_file;
12281 struct dwo_unit *dwo_unit;
12282 struct virtual_v1_dwo_sections sections;
12283 void **dwo_file_slot;
12284 int i;
12285
12286 gdb_assert (dwp_file->version == 1);
12287
12288 if (dwarf_read_debug)
12289 {
12290 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12291 kind,
12292 pulongest (unit_index), hex_string (signature),
12293 dwp_file->name);
12294 }
12295
12296 /* Fetch the sections of this DWO unit.
12297 Put a limit on the number of sections we look for so that bad data
12298 doesn't cause us to loop forever. */
12299
12300 #define MAX_NR_V1_DWO_SECTIONS \
12301 (1 /* .debug_info or .debug_types */ \
12302 + 1 /* .debug_abbrev */ \
12303 + 1 /* .debug_line */ \
12304 + 1 /* .debug_loc */ \
12305 + 1 /* .debug_str_offsets */ \
12306 + 1 /* .debug_macro or .debug_macinfo */ \
12307 + 1 /* trailing zero */)
12308
12309 memset (&sections, 0, sizeof (sections));
12310
12311 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12312 {
12313 asection *sectp;
12314 uint32_t section_nr =
12315 read_4_bytes (dbfd,
12316 dwp_htab->section_pool.v1.indices
12317 + (unit_index + i) * sizeof (uint32_t));
12318
12319 if (section_nr == 0)
12320 break;
12321 if (section_nr >= dwp_file->num_sections)
12322 {
12323 error (_("Dwarf Error: bad DWP hash table, section number too large"
12324 " [in module %s]"),
12325 dwp_file->name);
12326 }
12327
12328 sectp = dwp_file->elf_sections[section_nr];
12329 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12330 {
12331 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12332 " [in module %s]"),
12333 dwp_file->name);
12334 }
12335 }
12336
12337 if (i < 2
12338 || dwarf2_section_empty_p (&sections.info_or_types)
12339 || dwarf2_section_empty_p (&sections.abbrev))
12340 {
12341 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12342 " [in module %s]"),
12343 dwp_file->name);
12344 }
12345 if (i == MAX_NR_V1_DWO_SECTIONS)
12346 {
12347 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12348 " [in module %s]"),
12349 dwp_file->name);
12350 }
12351
12352 /* It's easier for the rest of the code if we fake a struct dwo_file and
12353 have dwo_unit "live" in that. At least for now.
12354
12355 The DWP file can be made up of a random collection of CUs and TUs.
12356 However, for each CU + set of TUs that came from the same original DWO
12357 file, we can combine them back into a virtual DWO file to save space
12358 (fewer struct dwo_file objects to allocate). Remember that for really
12359 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12360
12361 std::string virtual_dwo_name =
12362 string_printf ("virtual-dwo/%d-%d-%d-%d",
12363 get_section_id (&sections.abbrev),
12364 get_section_id (&sections.line),
12365 get_section_id (&sections.loc),
12366 get_section_id (&sections.str_offsets));
12367 /* Can we use an existing virtual DWO file? */
12368 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12369 virtual_dwo_name.c_str (),
12370 comp_dir);
12371 /* Create one if necessary. */
12372 if (*dwo_file_slot == NULL)
12373 {
12374 if (dwarf_read_debug)
12375 {
12376 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12377 virtual_dwo_name.c_str ());
12378 }
12379 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12380 dwo_file->dwo_name
12381 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12382 virtual_dwo_name.c_str (),
12383 virtual_dwo_name.size ());
12384 dwo_file->comp_dir = comp_dir;
12385 dwo_file->sections.abbrev = sections.abbrev;
12386 dwo_file->sections.line = sections.line;
12387 dwo_file->sections.loc = sections.loc;
12388 dwo_file->sections.macinfo = sections.macinfo;
12389 dwo_file->sections.macro = sections.macro;
12390 dwo_file->sections.str_offsets = sections.str_offsets;
12391 /* The "str" section is global to the entire DWP file. */
12392 dwo_file->sections.str = dwp_file->sections.str;
12393 /* The info or types section is assigned below to dwo_unit,
12394 there's no need to record it in dwo_file.
12395 Also, we can't simply record type sections in dwo_file because
12396 we record a pointer into the vector in dwo_unit. As we collect more
12397 types we'll grow the vector and eventually have to reallocate space
12398 for it, invalidating all copies of pointers into the previous
12399 contents. */
12400 *dwo_file_slot = dwo_file;
12401 }
12402 else
12403 {
12404 if (dwarf_read_debug)
12405 {
12406 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12407 virtual_dwo_name.c_str ());
12408 }
12409 dwo_file = (struct dwo_file *) *dwo_file_slot;
12410 }
12411
12412 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12413 dwo_unit->dwo_file = dwo_file;
12414 dwo_unit->signature = signature;
12415 dwo_unit->section =
12416 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12417 *dwo_unit->section = sections.info_or_types;
12418 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12419
12420 return dwo_unit;
12421 }
12422
12423 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12424 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12425 piece within that section used by a TU/CU, return a virtual section
12426 of just that piece. */
12427
12428 static struct dwarf2_section_info
12429 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12430 struct dwarf2_section_info *section,
12431 bfd_size_type offset, bfd_size_type size)
12432 {
12433 struct dwarf2_section_info result;
12434 asection *sectp;
12435
12436 gdb_assert (section != NULL);
12437 gdb_assert (!section->is_virtual);
12438
12439 memset (&result, 0, sizeof (result));
12440 result.s.containing_section = section;
12441 result.is_virtual = 1;
12442
12443 if (size == 0)
12444 return result;
12445
12446 sectp = get_section_bfd_section (section);
12447
12448 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12449 bounds of the real section. This is a pretty-rare event, so just
12450 flag an error (easier) instead of a warning and trying to cope. */
12451 if (sectp == NULL
12452 || offset + size > bfd_get_section_size (sectp))
12453 {
12454 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12455 " in section %s [in module %s]"),
12456 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12457 objfile_name (dwarf2_per_objfile->objfile));
12458 }
12459
12460 result.virtual_offset = offset;
12461 result.size = size;
12462 return result;
12463 }
12464
12465 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12466 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12467 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12468 This is for DWP version 2 files. */
12469
12470 static struct dwo_unit *
12471 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12472 struct dwp_file *dwp_file,
12473 uint32_t unit_index,
12474 const char *comp_dir,
12475 ULONGEST signature, int is_debug_types)
12476 {
12477 struct objfile *objfile = dwarf2_per_objfile->objfile;
12478 const struct dwp_hash_table *dwp_htab =
12479 is_debug_types ? dwp_file->tus : dwp_file->cus;
12480 bfd *dbfd = dwp_file->dbfd;
12481 const char *kind = is_debug_types ? "TU" : "CU";
12482 struct dwo_file *dwo_file;
12483 struct dwo_unit *dwo_unit;
12484 struct virtual_v2_dwo_sections sections;
12485 void **dwo_file_slot;
12486 int i;
12487
12488 gdb_assert (dwp_file->version == 2);
12489
12490 if (dwarf_read_debug)
12491 {
12492 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12493 kind,
12494 pulongest (unit_index), hex_string (signature),
12495 dwp_file->name);
12496 }
12497
12498 /* Fetch the section offsets of this DWO unit. */
12499
12500 memset (&sections, 0, sizeof (sections));
12501
12502 for (i = 0; i < dwp_htab->nr_columns; ++i)
12503 {
12504 uint32_t offset = read_4_bytes (dbfd,
12505 dwp_htab->section_pool.v2.offsets
12506 + (((unit_index - 1) * dwp_htab->nr_columns
12507 + i)
12508 * sizeof (uint32_t)));
12509 uint32_t size = read_4_bytes (dbfd,
12510 dwp_htab->section_pool.v2.sizes
12511 + (((unit_index - 1) * dwp_htab->nr_columns
12512 + i)
12513 * sizeof (uint32_t)));
12514
12515 switch (dwp_htab->section_pool.v2.section_ids[i])
12516 {
12517 case DW_SECT_INFO:
12518 case DW_SECT_TYPES:
12519 sections.info_or_types_offset = offset;
12520 sections.info_or_types_size = size;
12521 break;
12522 case DW_SECT_ABBREV:
12523 sections.abbrev_offset = offset;
12524 sections.abbrev_size = size;
12525 break;
12526 case DW_SECT_LINE:
12527 sections.line_offset = offset;
12528 sections.line_size = size;
12529 break;
12530 case DW_SECT_LOC:
12531 sections.loc_offset = offset;
12532 sections.loc_size = size;
12533 break;
12534 case DW_SECT_STR_OFFSETS:
12535 sections.str_offsets_offset = offset;
12536 sections.str_offsets_size = size;
12537 break;
12538 case DW_SECT_MACINFO:
12539 sections.macinfo_offset = offset;
12540 sections.macinfo_size = size;
12541 break;
12542 case DW_SECT_MACRO:
12543 sections.macro_offset = offset;
12544 sections.macro_size = size;
12545 break;
12546 }
12547 }
12548
12549 /* It's easier for the rest of the code if we fake a struct dwo_file and
12550 have dwo_unit "live" in that. At least for now.
12551
12552 The DWP file can be made up of a random collection of CUs and TUs.
12553 However, for each CU + set of TUs that came from the same original DWO
12554 file, we can combine them back into a virtual DWO file to save space
12555 (fewer struct dwo_file objects to allocate). Remember that for really
12556 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12557
12558 std::string virtual_dwo_name =
12559 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12560 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12561 (long) (sections.line_size ? sections.line_offset : 0),
12562 (long) (sections.loc_size ? sections.loc_offset : 0),
12563 (long) (sections.str_offsets_size
12564 ? sections.str_offsets_offset : 0));
12565 /* Can we use an existing virtual DWO file? */
12566 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12567 virtual_dwo_name.c_str (),
12568 comp_dir);
12569 /* Create one if necessary. */
12570 if (*dwo_file_slot == NULL)
12571 {
12572 if (dwarf_read_debug)
12573 {
12574 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12575 virtual_dwo_name.c_str ());
12576 }
12577 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12578 dwo_file->dwo_name
12579 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12580 virtual_dwo_name.c_str (),
12581 virtual_dwo_name.size ());
12582 dwo_file->comp_dir = comp_dir;
12583 dwo_file->sections.abbrev =
12584 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12585 sections.abbrev_offset, sections.abbrev_size);
12586 dwo_file->sections.line =
12587 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12588 sections.line_offset, sections.line_size);
12589 dwo_file->sections.loc =
12590 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12591 sections.loc_offset, sections.loc_size);
12592 dwo_file->sections.macinfo =
12593 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12594 sections.macinfo_offset, sections.macinfo_size);
12595 dwo_file->sections.macro =
12596 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12597 sections.macro_offset, sections.macro_size);
12598 dwo_file->sections.str_offsets =
12599 create_dwp_v2_section (dwarf2_per_objfile,
12600 &dwp_file->sections.str_offsets,
12601 sections.str_offsets_offset,
12602 sections.str_offsets_size);
12603 /* The "str" section is global to the entire DWP file. */
12604 dwo_file->sections.str = dwp_file->sections.str;
12605 /* The info or types section is assigned below to dwo_unit,
12606 there's no need to record it in dwo_file.
12607 Also, we can't simply record type sections in dwo_file because
12608 we record a pointer into the vector in dwo_unit. As we collect more
12609 types we'll grow the vector and eventually have to reallocate space
12610 for it, invalidating all copies of pointers into the previous
12611 contents. */
12612 *dwo_file_slot = dwo_file;
12613 }
12614 else
12615 {
12616 if (dwarf_read_debug)
12617 {
12618 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12619 virtual_dwo_name.c_str ());
12620 }
12621 dwo_file = (struct dwo_file *) *dwo_file_slot;
12622 }
12623
12624 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12625 dwo_unit->dwo_file = dwo_file;
12626 dwo_unit->signature = signature;
12627 dwo_unit->section =
12628 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12629 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12630 is_debug_types
12631 ? &dwp_file->sections.types
12632 : &dwp_file->sections.info,
12633 sections.info_or_types_offset,
12634 sections.info_or_types_size);
12635 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12636
12637 return dwo_unit;
12638 }
12639
12640 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12641 Returns NULL if the signature isn't found. */
12642
12643 static struct dwo_unit *
12644 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12645 struct dwp_file *dwp_file, const char *comp_dir,
12646 ULONGEST signature, int is_debug_types)
12647 {
12648 const struct dwp_hash_table *dwp_htab =
12649 is_debug_types ? dwp_file->tus : dwp_file->cus;
12650 bfd *dbfd = dwp_file->dbfd;
12651 uint32_t mask = dwp_htab->nr_slots - 1;
12652 uint32_t hash = signature & mask;
12653 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12654 unsigned int i;
12655 void **slot;
12656 struct dwo_unit find_dwo_cu;
12657
12658 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12659 find_dwo_cu.signature = signature;
12660 slot = htab_find_slot (is_debug_types
12661 ? dwp_file->loaded_tus
12662 : dwp_file->loaded_cus,
12663 &find_dwo_cu, INSERT);
12664
12665 if (*slot != NULL)
12666 return (struct dwo_unit *) *slot;
12667
12668 /* Use a for loop so that we don't loop forever on bad debug info. */
12669 for (i = 0; i < dwp_htab->nr_slots; ++i)
12670 {
12671 ULONGEST signature_in_table;
12672
12673 signature_in_table =
12674 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12675 if (signature_in_table == signature)
12676 {
12677 uint32_t unit_index =
12678 read_4_bytes (dbfd,
12679 dwp_htab->unit_table + hash * sizeof (uint32_t));
12680
12681 if (dwp_file->version == 1)
12682 {
12683 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12684 dwp_file, unit_index,
12685 comp_dir, signature,
12686 is_debug_types);
12687 }
12688 else
12689 {
12690 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12691 dwp_file, unit_index,
12692 comp_dir, signature,
12693 is_debug_types);
12694 }
12695 return (struct dwo_unit *) *slot;
12696 }
12697 if (signature_in_table == 0)
12698 return NULL;
12699 hash = (hash + hash2) & mask;
12700 }
12701
12702 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12703 " [in module %s]"),
12704 dwp_file->name);
12705 }
12706
12707 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12708 Open the file specified by FILE_NAME and hand it off to BFD for
12709 preliminary analysis. Return a newly initialized bfd *, which
12710 includes a canonicalized copy of FILE_NAME.
12711 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12712 SEARCH_CWD is true if the current directory is to be searched.
12713 It will be searched before debug-file-directory.
12714 If successful, the file is added to the bfd include table of the
12715 objfile's bfd (see gdb_bfd_record_inclusion).
12716 If unable to find/open the file, return NULL.
12717 NOTE: This function is derived from symfile_bfd_open. */
12718
12719 static gdb_bfd_ref_ptr
12720 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12721 const char *file_name, int is_dwp, int search_cwd)
12722 {
12723 int desc;
12724 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12725 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12726 to debug_file_directory. */
12727 const char *search_path;
12728 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12729
12730 gdb::unique_xmalloc_ptr<char> search_path_holder;
12731 if (search_cwd)
12732 {
12733 if (*debug_file_directory != '\0')
12734 {
12735 search_path_holder.reset (concat (".", dirname_separator_string,
12736 debug_file_directory,
12737 (char *) NULL));
12738 search_path = search_path_holder.get ();
12739 }
12740 else
12741 search_path = ".";
12742 }
12743 else
12744 search_path = debug_file_directory;
12745
12746 openp_flags flags = OPF_RETURN_REALPATH;
12747 if (is_dwp)
12748 flags |= OPF_SEARCH_IN_PATH;
12749
12750 gdb::unique_xmalloc_ptr<char> absolute_name;
12751 desc = openp (search_path, flags, file_name,
12752 O_RDONLY | O_BINARY, &absolute_name);
12753 if (desc < 0)
12754 return NULL;
12755
12756 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12757 gnutarget, desc));
12758 if (sym_bfd == NULL)
12759 return NULL;
12760 bfd_set_cacheable (sym_bfd.get (), 1);
12761
12762 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12763 return NULL;
12764
12765 /* Success. Record the bfd as having been included by the objfile's bfd.
12766 This is important because things like demangled_names_hash lives in the
12767 objfile's per_bfd space and may have references to things like symbol
12768 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12769 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12770
12771 return sym_bfd;
12772 }
12773
12774 /* Try to open DWO file FILE_NAME.
12775 COMP_DIR is the DW_AT_comp_dir attribute.
12776 The result is the bfd handle of the file.
12777 If there is a problem finding or opening the file, return NULL.
12778 Upon success, the canonicalized path of the file is stored in the bfd,
12779 same as symfile_bfd_open. */
12780
12781 static gdb_bfd_ref_ptr
12782 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12783 const char *file_name, const char *comp_dir)
12784 {
12785 if (IS_ABSOLUTE_PATH (file_name))
12786 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12787 0 /*is_dwp*/, 0 /*search_cwd*/);
12788
12789 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12790
12791 if (comp_dir != NULL)
12792 {
12793 char *path_to_try = concat (comp_dir, SLASH_STRING,
12794 file_name, (char *) NULL);
12795
12796 /* NOTE: If comp_dir is a relative path, this will also try the
12797 search path, which seems useful. */
12798 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12799 path_to_try,
12800 0 /*is_dwp*/,
12801 1 /*search_cwd*/));
12802 xfree (path_to_try);
12803 if (abfd != NULL)
12804 return abfd;
12805 }
12806
12807 /* That didn't work, try debug-file-directory, which, despite its name,
12808 is a list of paths. */
12809
12810 if (*debug_file_directory == '\0')
12811 return NULL;
12812
12813 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12814 0 /*is_dwp*/, 1 /*search_cwd*/);
12815 }
12816
12817 /* This function is mapped across the sections and remembers the offset and
12818 size of each of the DWO debugging sections we are interested in. */
12819
12820 static void
12821 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12822 {
12823 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12824 const struct dwop_section_names *names = &dwop_section_names;
12825
12826 if (section_is_p (sectp->name, &names->abbrev_dwo))
12827 {
12828 dwo_sections->abbrev.s.section = sectp;
12829 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12830 }
12831 else if (section_is_p (sectp->name, &names->info_dwo))
12832 {
12833 dwo_sections->info.s.section = sectp;
12834 dwo_sections->info.size = bfd_get_section_size (sectp);
12835 }
12836 else if (section_is_p (sectp->name, &names->line_dwo))
12837 {
12838 dwo_sections->line.s.section = sectp;
12839 dwo_sections->line.size = bfd_get_section_size (sectp);
12840 }
12841 else if (section_is_p (sectp->name, &names->loc_dwo))
12842 {
12843 dwo_sections->loc.s.section = sectp;
12844 dwo_sections->loc.size = bfd_get_section_size (sectp);
12845 }
12846 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12847 {
12848 dwo_sections->macinfo.s.section = sectp;
12849 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12850 }
12851 else if (section_is_p (sectp->name, &names->macro_dwo))
12852 {
12853 dwo_sections->macro.s.section = sectp;
12854 dwo_sections->macro.size = bfd_get_section_size (sectp);
12855 }
12856 else if (section_is_p (sectp->name, &names->str_dwo))
12857 {
12858 dwo_sections->str.s.section = sectp;
12859 dwo_sections->str.size = bfd_get_section_size (sectp);
12860 }
12861 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12862 {
12863 dwo_sections->str_offsets.s.section = sectp;
12864 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12865 }
12866 else if (section_is_p (sectp->name, &names->types_dwo))
12867 {
12868 struct dwarf2_section_info type_section;
12869
12870 memset (&type_section, 0, sizeof (type_section));
12871 type_section.s.section = sectp;
12872 type_section.size = bfd_get_section_size (sectp);
12873 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12874 &type_section);
12875 }
12876 }
12877
12878 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12879 by PER_CU. This is for the non-DWP case.
12880 The result is NULL if DWO_NAME can't be found. */
12881
12882 static struct dwo_file *
12883 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12884 const char *dwo_name, const char *comp_dir)
12885 {
12886 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12887 struct objfile *objfile = dwarf2_per_objfile->objfile;
12888
12889 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12890 if (dbfd == NULL)
12891 {
12892 if (dwarf_read_debug)
12893 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12894 return NULL;
12895 }
12896
12897 /* We use a unique pointer here, despite the obstack allocation,
12898 because a dwo_file needs some cleanup if it is abandoned. */
12899 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12900 struct dwo_file));
12901 dwo_file->dwo_name = dwo_name;
12902 dwo_file->comp_dir = comp_dir;
12903 dwo_file->dbfd = dbfd.release ();
12904
12905 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12906 &dwo_file->sections);
12907
12908 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12909 dwo_file->cus);
12910
12911 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12912 dwo_file->sections.types, dwo_file->tus);
12913
12914 if (dwarf_read_debug)
12915 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12916
12917 return dwo_file.release ();
12918 }
12919
12920 /* This function is mapped across the sections and remembers the offset and
12921 size of each of the DWP debugging sections common to version 1 and 2 that
12922 we are interested in. */
12923
12924 static void
12925 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12926 void *dwp_file_ptr)
12927 {
12928 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12929 const struct dwop_section_names *names = &dwop_section_names;
12930 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12931
12932 /* Record the ELF section number for later lookup: this is what the
12933 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12934 gdb_assert (elf_section_nr < dwp_file->num_sections);
12935 dwp_file->elf_sections[elf_section_nr] = sectp;
12936
12937 /* Look for specific sections that we need. */
12938 if (section_is_p (sectp->name, &names->str_dwo))
12939 {
12940 dwp_file->sections.str.s.section = sectp;
12941 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->cu_index))
12944 {
12945 dwp_file->sections.cu_index.s.section = sectp;
12946 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->tu_index))
12949 {
12950 dwp_file->sections.tu_index.s.section = sectp;
12951 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12952 }
12953 }
12954
12955 /* This function is mapped across the sections and remembers the offset and
12956 size of each of the DWP version 2 debugging sections that we are interested
12957 in. This is split into a separate function because we don't know if we
12958 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12959
12960 static void
12961 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12962 {
12963 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12964 const struct dwop_section_names *names = &dwop_section_names;
12965 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12966
12967 /* Record the ELF section number for later lookup: this is what the
12968 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12969 gdb_assert (elf_section_nr < dwp_file->num_sections);
12970 dwp_file->elf_sections[elf_section_nr] = sectp;
12971
12972 /* Look for specific sections that we need. */
12973 if (section_is_p (sectp->name, &names->abbrev_dwo))
12974 {
12975 dwp_file->sections.abbrev.s.section = sectp;
12976 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
12977 }
12978 else if (section_is_p (sectp->name, &names->info_dwo))
12979 {
12980 dwp_file->sections.info.s.section = sectp;
12981 dwp_file->sections.info.size = bfd_get_section_size (sectp);
12982 }
12983 else if (section_is_p (sectp->name, &names->line_dwo))
12984 {
12985 dwp_file->sections.line.s.section = sectp;
12986 dwp_file->sections.line.size = bfd_get_section_size (sectp);
12987 }
12988 else if (section_is_p (sectp->name, &names->loc_dwo))
12989 {
12990 dwp_file->sections.loc.s.section = sectp;
12991 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
12992 }
12993 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12994 {
12995 dwp_file->sections.macinfo.s.section = sectp;
12996 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
12997 }
12998 else if (section_is_p (sectp->name, &names->macro_dwo))
12999 {
13000 dwp_file->sections.macro.s.section = sectp;
13001 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13002 }
13003 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13004 {
13005 dwp_file->sections.str_offsets.s.section = sectp;
13006 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13007 }
13008 else if (section_is_p (sectp->name, &names->types_dwo))
13009 {
13010 dwp_file->sections.types.s.section = sectp;
13011 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13012 }
13013 }
13014
13015 /* Hash function for dwp_file loaded CUs/TUs. */
13016
13017 static hashval_t
13018 hash_dwp_loaded_cutus (const void *item)
13019 {
13020 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13021
13022 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13023 return dwo_unit->signature;
13024 }
13025
13026 /* Equality function for dwp_file loaded CUs/TUs. */
13027
13028 static int
13029 eq_dwp_loaded_cutus (const void *a, const void *b)
13030 {
13031 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13032 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13033
13034 return dua->signature == dub->signature;
13035 }
13036
13037 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13038
13039 static htab_t
13040 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13041 {
13042 return htab_create_alloc_ex (3,
13043 hash_dwp_loaded_cutus,
13044 eq_dwp_loaded_cutus,
13045 NULL,
13046 &objfile->objfile_obstack,
13047 hashtab_obstack_allocate,
13048 dummy_obstack_deallocate);
13049 }
13050
13051 /* Try to open DWP file FILE_NAME.
13052 The result is the bfd handle of the file.
13053 If there is a problem finding or opening the file, return NULL.
13054 Upon success, the canonicalized path of the file is stored in the bfd,
13055 same as symfile_bfd_open. */
13056
13057 static gdb_bfd_ref_ptr
13058 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13059 const char *file_name)
13060 {
13061 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13062 1 /*is_dwp*/,
13063 1 /*search_cwd*/));
13064 if (abfd != NULL)
13065 return abfd;
13066
13067 /* Work around upstream bug 15652.
13068 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13069 [Whether that's a "bug" is debatable, but it is getting in our way.]
13070 We have no real idea where the dwp file is, because gdb's realpath-ing
13071 of the executable's path may have discarded the needed info.
13072 [IWBN if the dwp file name was recorded in the executable, akin to
13073 .gnu_debuglink, but that doesn't exist yet.]
13074 Strip the directory from FILE_NAME and search again. */
13075 if (*debug_file_directory != '\0')
13076 {
13077 /* Don't implicitly search the current directory here.
13078 If the user wants to search "." to handle this case,
13079 it must be added to debug-file-directory. */
13080 return try_open_dwop_file (dwarf2_per_objfile,
13081 lbasename (file_name), 1 /*is_dwp*/,
13082 0 /*search_cwd*/);
13083 }
13084
13085 return NULL;
13086 }
13087
13088 /* Initialize the use of the DWP file for the current objfile.
13089 By convention the name of the DWP file is ${objfile}.dwp.
13090 The result is NULL if it can't be found. */
13091
13092 static struct dwp_file *
13093 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13094 {
13095 struct objfile *objfile = dwarf2_per_objfile->objfile;
13096 struct dwp_file *dwp_file;
13097
13098 /* Try to find first .dwp for the binary file before any symbolic links
13099 resolving. */
13100
13101 /* If the objfile is a debug file, find the name of the real binary
13102 file and get the name of dwp file from there. */
13103 std::string dwp_name;
13104 if (objfile->separate_debug_objfile_backlink != NULL)
13105 {
13106 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13107 const char *backlink_basename = lbasename (backlink->original_name);
13108
13109 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13110 }
13111 else
13112 dwp_name = objfile->original_name;
13113
13114 dwp_name += ".dwp";
13115
13116 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13117 if (dbfd == NULL
13118 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13119 {
13120 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13121 dwp_name = objfile_name (objfile);
13122 dwp_name += ".dwp";
13123 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13124 }
13125
13126 if (dbfd == NULL)
13127 {
13128 if (dwarf_read_debug)
13129 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13130 return NULL;
13131 }
13132 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13133 dwp_file->name = bfd_get_filename (dbfd.get ());
13134 dwp_file->dbfd = dbfd.release ();
13135
13136 /* +1: section 0 is unused */
13137 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13138 dwp_file->elf_sections =
13139 OBSTACK_CALLOC (&objfile->objfile_obstack,
13140 dwp_file->num_sections, asection *);
13141
13142 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13143 dwp_file);
13144
13145 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13146
13147 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13148
13149 /* The DWP file version is stored in the hash table. Oh well. */
13150 if (dwp_file->cus && dwp_file->tus
13151 && dwp_file->cus->version != dwp_file->tus->version)
13152 {
13153 /* Technically speaking, we should try to limp along, but this is
13154 pretty bizarre. We use pulongest here because that's the established
13155 portability solution (e.g, we cannot use %u for uint32_t). */
13156 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13157 " TU version %s [in DWP file %s]"),
13158 pulongest (dwp_file->cus->version),
13159 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13160 }
13161
13162 if (dwp_file->cus)
13163 dwp_file->version = dwp_file->cus->version;
13164 else if (dwp_file->tus)
13165 dwp_file->version = dwp_file->tus->version;
13166 else
13167 dwp_file->version = 2;
13168
13169 if (dwp_file->version == 2)
13170 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13171 dwp_file);
13172
13173 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13174 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13175
13176 if (dwarf_read_debug)
13177 {
13178 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13179 fprintf_unfiltered (gdb_stdlog,
13180 " %s CUs, %s TUs\n",
13181 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13182 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13183 }
13184
13185 return dwp_file;
13186 }
13187
13188 /* Wrapper around open_and_init_dwp_file, only open it once. */
13189
13190 static struct dwp_file *
13191 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13192 {
13193 if (! dwarf2_per_objfile->dwp_checked)
13194 {
13195 dwarf2_per_objfile->dwp_file
13196 = open_and_init_dwp_file (dwarf2_per_objfile);
13197 dwarf2_per_objfile->dwp_checked = 1;
13198 }
13199 return dwarf2_per_objfile->dwp_file;
13200 }
13201
13202 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13203 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13204 or in the DWP file for the objfile, referenced by THIS_UNIT.
13205 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13206 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13207
13208 This is called, for example, when wanting to read a variable with a
13209 complex location. Therefore we don't want to do file i/o for every call.
13210 Therefore we don't want to look for a DWO file on every call.
13211 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13212 then we check if we've already seen DWO_NAME, and only THEN do we check
13213 for a DWO file.
13214
13215 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13216 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13217
13218 static struct dwo_unit *
13219 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13220 const char *dwo_name, const char *comp_dir,
13221 ULONGEST signature, int is_debug_types)
13222 {
13223 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13224 struct objfile *objfile = dwarf2_per_objfile->objfile;
13225 const char *kind = is_debug_types ? "TU" : "CU";
13226 void **dwo_file_slot;
13227 struct dwo_file *dwo_file;
13228 struct dwp_file *dwp_file;
13229
13230 /* First see if there's a DWP file.
13231 If we have a DWP file but didn't find the DWO inside it, don't
13232 look for the original DWO file. It makes gdb behave differently
13233 depending on whether one is debugging in the build tree. */
13234
13235 dwp_file = get_dwp_file (dwarf2_per_objfile);
13236 if (dwp_file != NULL)
13237 {
13238 const struct dwp_hash_table *dwp_htab =
13239 is_debug_types ? dwp_file->tus : dwp_file->cus;
13240
13241 if (dwp_htab != NULL)
13242 {
13243 struct dwo_unit *dwo_cutu =
13244 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13245 signature, is_debug_types);
13246
13247 if (dwo_cutu != NULL)
13248 {
13249 if (dwarf_read_debug)
13250 {
13251 fprintf_unfiltered (gdb_stdlog,
13252 "Virtual DWO %s %s found: @%s\n",
13253 kind, hex_string (signature),
13254 host_address_to_string (dwo_cutu));
13255 }
13256 return dwo_cutu;
13257 }
13258 }
13259 }
13260 else
13261 {
13262 /* No DWP file, look for the DWO file. */
13263
13264 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13265 dwo_name, comp_dir);
13266 if (*dwo_file_slot == NULL)
13267 {
13268 /* Read in the file and build a table of the CUs/TUs it contains. */
13269 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13270 }
13271 /* NOTE: This will be NULL if unable to open the file. */
13272 dwo_file = (struct dwo_file *) *dwo_file_slot;
13273
13274 if (dwo_file != NULL)
13275 {
13276 struct dwo_unit *dwo_cutu = NULL;
13277
13278 if (is_debug_types && dwo_file->tus)
13279 {
13280 struct dwo_unit find_dwo_cutu;
13281
13282 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13283 find_dwo_cutu.signature = signature;
13284 dwo_cutu
13285 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13286 }
13287 else if (!is_debug_types && dwo_file->cus)
13288 {
13289 struct dwo_unit find_dwo_cutu;
13290
13291 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13292 find_dwo_cutu.signature = signature;
13293 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13294 &find_dwo_cutu);
13295 }
13296
13297 if (dwo_cutu != NULL)
13298 {
13299 if (dwarf_read_debug)
13300 {
13301 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13302 kind, dwo_name, hex_string (signature),
13303 host_address_to_string (dwo_cutu));
13304 }
13305 return dwo_cutu;
13306 }
13307 }
13308 }
13309
13310 /* We didn't find it. This could mean a dwo_id mismatch, or
13311 someone deleted the DWO/DWP file, or the search path isn't set up
13312 correctly to find the file. */
13313
13314 if (dwarf_read_debug)
13315 {
13316 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13317 kind, dwo_name, hex_string (signature));
13318 }
13319
13320 /* This is a warning and not a complaint because it can be caused by
13321 pilot error (e.g., user accidentally deleting the DWO). */
13322 {
13323 /* Print the name of the DWP file if we looked there, helps the user
13324 better diagnose the problem. */
13325 std::string dwp_text;
13326
13327 if (dwp_file != NULL)
13328 dwp_text = string_printf (" [in DWP file %s]",
13329 lbasename (dwp_file->name));
13330
13331 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13332 " [in module %s]"),
13333 kind, dwo_name, hex_string (signature),
13334 dwp_text.c_str (),
13335 this_unit->is_debug_types ? "TU" : "CU",
13336 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13337 }
13338 return NULL;
13339 }
13340
13341 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13342 See lookup_dwo_cutu_unit for details. */
13343
13344 static struct dwo_unit *
13345 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13346 const char *dwo_name, const char *comp_dir,
13347 ULONGEST signature)
13348 {
13349 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13350 }
13351
13352 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13353 See lookup_dwo_cutu_unit for details. */
13354
13355 static struct dwo_unit *
13356 lookup_dwo_type_unit (struct signatured_type *this_tu,
13357 const char *dwo_name, const char *comp_dir)
13358 {
13359 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13360 }
13361
13362 /* Traversal function for queue_and_load_all_dwo_tus. */
13363
13364 static int
13365 queue_and_load_dwo_tu (void **slot, void *info)
13366 {
13367 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13368 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13369 ULONGEST signature = dwo_unit->signature;
13370 struct signatured_type *sig_type =
13371 lookup_dwo_signatured_type (per_cu->cu, signature);
13372
13373 if (sig_type != NULL)
13374 {
13375 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13376
13377 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13378 a real dependency of PER_CU on SIG_TYPE. That is detected later
13379 while processing PER_CU. */
13380 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13381 load_full_type_unit (sig_cu);
13382 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13383 }
13384
13385 return 1;
13386 }
13387
13388 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13389 The DWO may have the only definition of the type, though it may not be
13390 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13391 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13392
13393 static void
13394 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13395 {
13396 struct dwo_unit *dwo_unit;
13397 struct dwo_file *dwo_file;
13398
13399 gdb_assert (!per_cu->is_debug_types);
13400 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13401 gdb_assert (per_cu->cu != NULL);
13402
13403 dwo_unit = per_cu->cu->dwo_unit;
13404 gdb_assert (dwo_unit != NULL);
13405
13406 dwo_file = dwo_unit->dwo_file;
13407 if (dwo_file->tus != NULL)
13408 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13409 }
13410
13411 /* Free all resources associated with DWO_FILE.
13412 Close the DWO file and munmap the sections. */
13413
13414 static void
13415 free_dwo_file (struct dwo_file *dwo_file)
13416 {
13417 /* Note: dbfd is NULL for virtual DWO files. */
13418 gdb_bfd_unref (dwo_file->dbfd);
13419
13420 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13421 }
13422
13423 /* Traversal function for free_dwo_files. */
13424
13425 static int
13426 free_dwo_file_from_slot (void **slot, void *info)
13427 {
13428 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13429
13430 free_dwo_file (dwo_file);
13431
13432 return 1;
13433 }
13434
13435 /* Free all resources associated with DWO_FILES. */
13436
13437 static void
13438 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13439 {
13440 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13441 }
13442 \f
13443 /* Read in various DIEs. */
13444
13445 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13446 Inherit only the children of the DW_AT_abstract_origin DIE not being
13447 already referenced by DW_AT_abstract_origin from the children of the
13448 current DIE. */
13449
13450 static void
13451 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13452 {
13453 struct die_info *child_die;
13454 sect_offset *offsetp;
13455 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13456 struct die_info *origin_die;
13457 /* Iterator of the ORIGIN_DIE children. */
13458 struct die_info *origin_child_die;
13459 struct attribute *attr;
13460 struct dwarf2_cu *origin_cu;
13461 struct pending **origin_previous_list_in_scope;
13462
13463 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13464 if (!attr)
13465 return;
13466
13467 /* Note that following die references may follow to a die in a
13468 different cu. */
13469
13470 origin_cu = cu;
13471 origin_die = follow_die_ref (die, attr, &origin_cu);
13472
13473 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13474 symbols in. */
13475 origin_previous_list_in_scope = origin_cu->list_in_scope;
13476 origin_cu->list_in_scope = cu->list_in_scope;
13477
13478 if (die->tag != origin_die->tag
13479 && !(die->tag == DW_TAG_inlined_subroutine
13480 && origin_die->tag == DW_TAG_subprogram))
13481 complaint (&symfile_complaints,
13482 _("DIE %s and its abstract origin %s have different tags"),
13483 sect_offset_str (die->sect_off),
13484 sect_offset_str (origin_die->sect_off));
13485
13486 std::vector<sect_offset> offsets;
13487
13488 for (child_die = die->child;
13489 child_die && child_die->tag;
13490 child_die = sibling_die (child_die))
13491 {
13492 struct die_info *child_origin_die;
13493 struct dwarf2_cu *child_origin_cu;
13494
13495 /* We are trying to process concrete instance entries:
13496 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13497 it's not relevant to our analysis here. i.e. detecting DIEs that are
13498 present in the abstract instance but not referenced in the concrete
13499 one. */
13500 if (child_die->tag == DW_TAG_call_site
13501 || child_die->tag == DW_TAG_GNU_call_site)
13502 continue;
13503
13504 /* For each CHILD_DIE, find the corresponding child of
13505 ORIGIN_DIE. If there is more than one layer of
13506 DW_AT_abstract_origin, follow them all; there shouldn't be,
13507 but GCC versions at least through 4.4 generate this (GCC PR
13508 40573). */
13509 child_origin_die = child_die;
13510 child_origin_cu = cu;
13511 while (1)
13512 {
13513 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13514 child_origin_cu);
13515 if (attr == NULL)
13516 break;
13517 child_origin_die = follow_die_ref (child_origin_die, attr,
13518 &child_origin_cu);
13519 }
13520
13521 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13522 counterpart may exist. */
13523 if (child_origin_die != child_die)
13524 {
13525 if (child_die->tag != child_origin_die->tag
13526 && !(child_die->tag == DW_TAG_inlined_subroutine
13527 && child_origin_die->tag == DW_TAG_subprogram))
13528 complaint (&symfile_complaints,
13529 _("Child DIE %s and its abstract origin %s have "
13530 "different tags"),
13531 sect_offset_str (child_die->sect_off),
13532 sect_offset_str (child_origin_die->sect_off));
13533 if (child_origin_die->parent != origin_die)
13534 complaint (&symfile_complaints,
13535 _("Child DIE %s and its abstract origin %s have "
13536 "different parents"),
13537 sect_offset_str (child_die->sect_off),
13538 sect_offset_str (child_origin_die->sect_off));
13539 else
13540 offsets.push_back (child_origin_die->sect_off);
13541 }
13542 }
13543 std::sort (offsets.begin (), offsets.end ());
13544 sect_offset *offsets_end = offsets.data () + offsets.size ();
13545 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13546 if (offsetp[-1] == *offsetp)
13547 complaint (&symfile_complaints,
13548 _("Multiple children of DIE %s refer "
13549 "to DIE %s as their abstract origin"),
13550 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13551
13552 offsetp = offsets.data ();
13553 origin_child_die = origin_die->child;
13554 while (origin_child_die && origin_child_die->tag)
13555 {
13556 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13557 while (offsetp < offsets_end
13558 && *offsetp < origin_child_die->sect_off)
13559 offsetp++;
13560 if (offsetp >= offsets_end
13561 || *offsetp > origin_child_die->sect_off)
13562 {
13563 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13564 Check whether we're already processing ORIGIN_CHILD_DIE.
13565 This can happen with mutually referenced abstract_origins.
13566 PR 16581. */
13567 if (!origin_child_die->in_process)
13568 process_die (origin_child_die, origin_cu);
13569 }
13570 origin_child_die = sibling_die (origin_child_die);
13571 }
13572 origin_cu->list_in_scope = origin_previous_list_in_scope;
13573 }
13574
13575 static void
13576 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13577 {
13578 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13579 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13580 struct context_stack *newobj;
13581 CORE_ADDR lowpc;
13582 CORE_ADDR highpc;
13583 struct die_info *child_die;
13584 struct attribute *attr, *call_line, *call_file;
13585 const char *name;
13586 CORE_ADDR baseaddr;
13587 struct block *block;
13588 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13589 std::vector<struct symbol *> template_args;
13590 struct template_symbol *templ_func = NULL;
13591
13592 if (inlined_func)
13593 {
13594 /* If we do not have call site information, we can't show the
13595 caller of this inlined function. That's too confusing, so
13596 only use the scope for local variables. */
13597 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13598 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13599 if (call_line == NULL || call_file == NULL)
13600 {
13601 read_lexical_block_scope (die, cu);
13602 return;
13603 }
13604 }
13605
13606 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13607
13608 name = dwarf2_name (die, cu);
13609
13610 /* Ignore functions with missing or empty names. These are actually
13611 illegal according to the DWARF standard. */
13612 if (name == NULL)
13613 {
13614 complaint (&symfile_complaints,
13615 _("missing name for subprogram DIE at %s"),
13616 sect_offset_str (die->sect_off));
13617 return;
13618 }
13619
13620 /* Ignore functions with missing or invalid low and high pc attributes. */
13621 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13622 <= PC_BOUNDS_INVALID)
13623 {
13624 attr = dwarf2_attr (die, DW_AT_external, cu);
13625 if (!attr || !DW_UNSND (attr))
13626 complaint (&symfile_complaints,
13627 _("cannot get low and high bounds "
13628 "for subprogram DIE at %s"),
13629 sect_offset_str (die->sect_off));
13630 return;
13631 }
13632
13633 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13634 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13635
13636 /* If we have any template arguments, then we must allocate a
13637 different sort of symbol. */
13638 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13639 {
13640 if (child_die->tag == DW_TAG_template_type_param
13641 || child_die->tag == DW_TAG_template_value_param)
13642 {
13643 templ_func = allocate_template_symbol (objfile);
13644 templ_func->subclass = SYMBOL_TEMPLATE;
13645 break;
13646 }
13647 }
13648
13649 newobj = push_context (0, lowpc);
13650 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13651 (struct symbol *) templ_func);
13652
13653 /* If there is a location expression for DW_AT_frame_base, record
13654 it. */
13655 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13656 if (attr)
13657 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13658
13659 /* If there is a location for the static link, record it. */
13660 newobj->static_link = NULL;
13661 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13662 if (attr)
13663 {
13664 newobj->static_link
13665 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13666 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13667 }
13668
13669 cu->list_in_scope = &local_symbols;
13670
13671 if (die->child != NULL)
13672 {
13673 child_die = die->child;
13674 while (child_die && child_die->tag)
13675 {
13676 if (child_die->tag == DW_TAG_template_type_param
13677 || child_die->tag == DW_TAG_template_value_param)
13678 {
13679 struct symbol *arg = new_symbol (child_die, NULL, cu);
13680
13681 if (arg != NULL)
13682 template_args.push_back (arg);
13683 }
13684 else
13685 process_die (child_die, cu);
13686 child_die = sibling_die (child_die);
13687 }
13688 }
13689
13690 inherit_abstract_dies (die, cu);
13691
13692 /* If we have a DW_AT_specification, we might need to import using
13693 directives from the context of the specification DIE. See the
13694 comment in determine_prefix. */
13695 if (cu->language == language_cplus
13696 && dwarf2_attr (die, DW_AT_specification, cu))
13697 {
13698 struct dwarf2_cu *spec_cu = cu;
13699 struct die_info *spec_die = die_specification (die, &spec_cu);
13700
13701 while (spec_die)
13702 {
13703 child_die = spec_die->child;
13704 while (child_die && child_die->tag)
13705 {
13706 if (child_die->tag == DW_TAG_imported_module)
13707 process_die (child_die, spec_cu);
13708 child_die = sibling_die (child_die);
13709 }
13710
13711 /* In some cases, GCC generates specification DIEs that
13712 themselves contain DW_AT_specification attributes. */
13713 spec_die = die_specification (spec_die, &spec_cu);
13714 }
13715 }
13716
13717 newobj = pop_context ();
13718 /* Make a block for the local symbols within. */
13719 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
13720 newobj->static_link, lowpc, highpc);
13721
13722 /* For C++, set the block's scope. */
13723 if ((cu->language == language_cplus
13724 || cu->language == language_fortran
13725 || cu->language == language_d
13726 || cu->language == language_rust)
13727 && cu->processing_has_namespace_info)
13728 block_set_scope (block, determine_prefix (die, cu),
13729 &objfile->objfile_obstack);
13730
13731 /* If we have address ranges, record them. */
13732 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13733
13734 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
13735
13736 /* Attach template arguments to function. */
13737 if (!template_args.empty ())
13738 {
13739 gdb_assert (templ_func != NULL);
13740
13741 templ_func->n_template_arguments = template_args.size ();
13742 templ_func->template_arguments
13743 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13744 templ_func->n_template_arguments);
13745 memcpy (templ_func->template_arguments,
13746 template_args.data (),
13747 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13748 }
13749
13750 /* In C++, we can have functions nested inside functions (e.g., when
13751 a function declares a class that has methods). This means that
13752 when we finish processing a function scope, we may need to go
13753 back to building a containing block's symbol lists. */
13754 local_symbols = newobj->locals;
13755 local_using_directives = newobj->local_using_directives;
13756
13757 /* If we've finished processing a top-level function, subsequent
13758 symbols go in the file symbol list. */
13759 if (outermost_context_p ())
13760 cu->list_in_scope = &file_symbols;
13761 }
13762
13763 /* Process all the DIES contained within a lexical block scope. Start
13764 a new scope, process the dies, and then close the scope. */
13765
13766 static void
13767 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13768 {
13769 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13770 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13771 struct context_stack *newobj;
13772 CORE_ADDR lowpc, highpc;
13773 struct die_info *child_die;
13774 CORE_ADDR baseaddr;
13775
13776 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13777
13778 /* Ignore blocks with missing or invalid low and high pc attributes. */
13779 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13780 as multiple lexical blocks? Handling children in a sane way would
13781 be nasty. Might be easier to properly extend generic blocks to
13782 describe ranges. */
13783 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13784 {
13785 case PC_BOUNDS_NOT_PRESENT:
13786 /* DW_TAG_lexical_block has no attributes, process its children as if
13787 there was no wrapping by that DW_TAG_lexical_block.
13788 GCC does no longer produces such DWARF since GCC r224161. */
13789 for (child_die = die->child;
13790 child_die != NULL && child_die->tag;
13791 child_die = sibling_die (child_die))
13792 process_die (child_die, cu);
13793 return;
13794 case PC_BOUNDS_INVALID:
13795 return;
13796 }
13797 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13798 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13799
13800 push_context (0, lowpc);
13801 if (die->child != NULL)
13802 {
13803 child_die = die->child;
13804 while (child_die && child_die->tag)
13805 {
13806 process_die (child_die, cu);
13807 child_die = sibling_die (child_die);
13808 }
13809 }
13810 inherit_abstract_dies (die, cu);
13811 newobj = pop_context ();
13812
13813 if (local_symbols != NULL || local_using_directives != NULL)
13814 {
13815 struct block *block
13816 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
13817 newobj->start_addr, highpc);
13818
13819 /* Note that recording ranges after traversing children, as we
13820 do here, means that recording a parent's ranges entails
13821 walking across all its children's ranges as they appear in
13822 the address map, which is quadratic behavior.
13823
13824 It would be nicer to record the parent's ranges before
13825 traversing its children, simply overriding whatever you find
13826 there. But since we don't even decide whether to create a
13827 block until after we've traversed its children, that's hard
13828 to do. */
13829 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13830 }
13831 local_symbols = newobj->locals;
13832 local_using_directives = newobj->local_using_directives;
13833 }
13834
13835 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13836
13837 static void
13838 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13839 {
13840 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13841 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13842 CORE_ADDR pc, baseaddr;
13843 struct attribute *attr;
13844 struct call_site *call_site, call_site_local;
13845 void **slot;
13846 int nparams;
13847 struct die_info *child_die;
13848
13849 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13850
13851 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13852 if (attr == NULL)
13853 {
13854 /* This was a pre-DWARF-5 GNU extension alias
13855 for DW_AT_call_return_pc. */
13856 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13857 }
13858 if (!attr)
13859 {
13860 complaint (&symfile_complaints,
13861 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
13862 "DIE %s [in module %s]"),
13863 sect_offset_str (die->sect_off), objfile_name (objfile));
13864 return;
13865 }
13866 pc = attr_value_as_address (attr) + baseaddr;
13867 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13868
13869 if (cu->call_site_htab == NULL)
13870 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13871 NULL, &objfile->objfile_obstack,
13872 hashtab_obstack_allocate, NULL);
13873 call_site_local.pc = pc;
13874 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13875 if (*slot != NULL)
13876 {
13877 complaint (&symfile_complaints,
13878 _("Duplicate PC %s for DW_TAG_call_site "
13879 "DIE %s [in module %s]"),
13880 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13881 objfile_name (objfile));
13882 return;
13883 }
13884
13885 /* Count parameters at the caller. */
13886
13887 nparams = 0;
13888 for (child_die = die->child; child_die && child_die->tag;
13889 child_die = sibling_die (child_die))
13890 {
13891 if (child_die->tag != DW_TAG_call_site_parameter
13892 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13893 {
13894 complaint (&symfile_complaints,
13895 _("Tag %d is not DW_TAG_call_site_parameter in "
13896 "DW_TAG_call_site child DIE %s [in module %s]"),
13897 child_die->tag, sect_offset_str (child_die->sect_off),
13898 objfile_name (objfile));
13899 continue;
13900 }
13901
13902 nparams++;
13903 }
13904
13905 call_site
13906 = ((struct call_site *)
13907 obstack_alloc (&objfile->objfile_obstack,
13908 sizeof (*call_site)
13909 + (sizeof (*call_site->parameter) * (nparams - 1))));
13910 *slot = call_site;
13911 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13912 call_site->pc = pc;
13913
13914 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13915 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13916 {
13917 struct die_info *func_die;
13918
13919 /* Skip also over DW_TAG_inlined_subroutine. */
13920 for (func_die = die->parent;
13921 func_die && func_die->tag != DW_TAG_subprogram
13922 && func_die->tag != DW_TAG_subroutine_type;
13923 func_die = func_die->parent);
13924
13925 /* DW_AT_call_all_calls is a superset
13926 of DW_AT_call_all_tail_calls. */
13927 if (func_die
13928 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13929 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13930 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13931 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13932 {
13933 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13934 not complete. But keep CALL_SITE for look ups via call_site_htab,
13935 both the initial caller containing the real return address PC and
13936 the final callee containing the current PC of a chain of tail
13937 calls do not need to have the tail call list complete. But any
13938 function candidate for a virtual tail call frame searched via
13939 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13940 determined unambiguously. */
13941 }
13942 else
13943 {
13944 struct type *func_type = NULL;
13945
13946 if (func_die)
13947 func_type = get_die_type (func_die, cu);
13948 if (func_type != NULL)
13949 {
13950 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13951
13952 /* Enlist this call site to the function. */
13953 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13954 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13955 }
13956 else
13957 complaint (&symfile_complaints,
13958 _("Cannot find function owning DW_TAG_call_site "
13959 "DIE %s [in module %s]"),
13960 sect_offset_str (die->sect_off), objfile_name (objfile));
13961 }
13962 }
13963
13964 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13965 if (attr == NULL)
13966 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13967 if (attr == NULL)
13968 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13969 if (attr == NULL)
13970 {
13971 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13972 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13973 }
13974 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13975 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13976 /* Keep NULL DWARF_BLOCK. */;
13977 else if (attr_form_is_block (attr))
13978 {
13979 struct dwarf2_locexpr_baton *dlbaton;
13980
13981 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13982 dlbaton->data = DW_BLOCK (attr)->data;
13983 dlbaton->size = DW_BLOCK (attr)->size;
13984 dlbaton->per_cu = cu->per_cu;
13985
13986 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13987 }
13988 else if (attr_form_is_ref (attr))
13989 {
13990 struct dwarf2_cu *target_cu = cu;
13991 struct die_info *target_die;
13992
13993 target_die = follow_die_ref (die, attr, &target_cu);
13994 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13995 if (die_is_declaration (target_die, target_cu))
13996 {
13997 const char *target_physname;
13998
13999 /* Prefer the mangled name; otherwise compute the demangled one. */
14000 target_physname = dw2_linkage_name (target_die, target_cu);
14001 if (target_physname == NULL)
14002 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14003 if (target_physname == NULL)
14004 complaint (&symfile_complaints,
14005 _("DW_AT_call_target target DIE has invalid "
14006 "physname, for referencing DIE %s [in module %s]"),
14007 sect_offset_str (die->sect_off), objfile_name (objfile));
14008 else
14009 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14010 }
14011 else
14012 {
14013 CORE_ADDR lowpc;
14014
14015 /* DW_AT_entry_pc should be preferred. */
14016 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14017 <= PC_BOUNDS_INVALID)
14018 complaint (&symfile_complaints,
14019 _("DW_AT_call_target target DIE has invalid "
14020 "low pc, for referencing DIE %s [in module %s]"),
14021 sect_offset_str (die->sect_off), objfile_name (objfile));
14022 else
14023 {
14024 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14025 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14026 }
14027 }
14028 }
14029 else
14030 complaint (&symfile_complaints,
14031 _("DW_TAG_call_site DW_AT_call_target is neither "
14032 "block nor reference, for DIE %s [in module %s]"),
14033 sect_offset_str (die->sect_off), objfile_name (objfile));
14034
14035 call_site->per_cu = cu->per_cu;
14036
14037 for (child_die = die->child;
14038 child_die && child_die->tag;
14039 child_die = sibling_die (child_die))
14040 {
14041 struct call_site_parameter *parameter;
14042 struct attribute *loc, *origin;
14043
14044 if (child_die->tag != DW_TAG_call_site_parameter
14045 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14046 {
14047 /* Already printed the complaint above. */
14048 continue;
14049 }
14050
14051 gdb_assert (call_site->parameter_count < nparams);
14052 parameter = &call_site->parameter[call_site->parameter_count];
14053
14054 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14055 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14056 register is contained in DW_AT_call_value. */
14057
14058 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14059 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14060 if (origin == NULL)
14061 {
14062 /* This was a pre-DWARF-5 GNU extension alias
14063 for DW_AT_call_parameter. */
14064 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14065 }
14066 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14067 {
14068 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14069
14070 sect_offset sect_off
14071 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14072 if (!offset_in_cu_p (&cu->header, sect_off))
14073 {
14074 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14075 binding can be done only inside one CU. Such referenced DIE
14076 therefore cannot be even moved to DW_TAG_partial_unit. */
14077 complaint (&symfile_complaints,
14078 _("DW_AT_call_parameter offset is not in CU for "
14079 "DW_TAG_call_site child DIE %s [in module %s]"),
14080 sect_offset_str (child_die->sect_off),
14081 objfile_name (objfile));
14082 continue;
14083 }
14084 parameter->u.param_cu_off
14085 = (cu_offset) (sect_off - cu->header.sect_off);
14086 }
14087 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14088 {
14089 complaint (&symfile_complaints,
14090 _("No DW_FORM_block* DW_AT_location for "
14091 "DW_TAG_call_site child DIE %s [in module %s]"),
14092 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14093 continue;
14094 }
14095 else
14096 {
14097 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14098 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14099 if (parameter->u.dwarf_reg != -1)
14100 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14101 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14102 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14103 &parameter->u.fb_offset))
14104 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14105 else
14106 {
14107 complaint (&symfile_complaints,
14108 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14109 "for DW_FORM_block* DW_AT_location is supported for "
14110 "DW_TAG_call_site child DIE %s "
14111 "[in module %s]"),
14112 sect_offset_str (child_die->sect_off),
14113 objfile_name (objfile));
14114 continue;
14115 }
14116 }
14117
14118 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14119 if (attr == NULL)
14120 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14121 if (!attr_form_is_block (attr))
14122 {
14123 complaint (&symfile_complaints,
14124 _("No DW_FORM_block* DW_AT_call_value for "
14125 "DW_TAG_call_site child DIE %s [in module %s]"),
14126 sect_offset_str (child_die->sect_off),
14127 objfile_name (objfile));
14128 continue;
14129 }
14130 parameter->value = DW_BLOCK (attr)->data;
14131 parameter->value_size = DW_BLOCK (attr)->size;
14132
14133 /* Parameters are not pre-cleared by memset above. */
14134 parameter->data_value = NULL;
14135 parameter->data_value_size = 0;
14136 call_site->parameter_count++;
14137
14138 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14139 if (attr == NULL)
14140 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14141 if (attr)
14142 {
14143 if (!attr_form_is_block (attr))
14144 complaint (&symfile_complaints,
14145 _("No DW_FORM_block* DW_AT_call_data_value for "
14146 "DW_TAG_call_site child DIE %s [in module %s]"),
14147 sect_offset_str (child_die->sect_off),
14148 objfile_name (objfile));
14149 else
14150 {
14151 parameter->data_value = DW_BLOCK (attr)->data;
14152 parameter->data_value_size = DW_BLOCK (attr)->size;
14153 }
14154 }
14155 }
14156 }
14157
14158 /* Helper function for read_variable. If DIE represents a virtual
14159 table, then return the type of the concrete object that is
14160 associated with the virtual table. Otherwise, return NULL. */
14161
14162 static struct type *
14163 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14164 {
14165 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14166 if (attr == NULL)
14167 return NULL;
14168
14169 /* Find the type DIE. */
14170 struct die_info *type_die = NULL;
14171 struct dwarf2_cu *type_cu = cu;
14172
14173 if (attr_form_is_ref (attr))
14174 type_die = follow_die_ref (die, attr, &type_cu);
14175 if (type_die == NULL)
14176 return NULL;
14177
14178 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14179 return NULL;
14180 return die_containing_type (type_die, type_cu);
14181 }
14182
14183 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14184
14185 static void
14186 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14187 {
14188 struct rust_vtable_symbol *storage = NULL;
14189
14190 if (cu->language == language_rust)
14191 {
14192 struct type *containing_type = rust_containing_type (die, cu);
14193
14194 if (containing_type != NULL)
14195 {
14196 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14197
14198 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14199 struct rust_vtable_symbol);
14200 initialize_objfile_symbol (storage);
14201 storage->concrete_type = containing_type;
14202 storage->subclass = SYMBOL_RUST_VTABLE;
14203 }
14204 }
14205
14206 new_symbol (die, NULL, cu, storage);
14207 }
14208
14209 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14210 reading .debug_rnglists.
14211 Callback's type should be:
14212 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14213 Return true if the attributes are present and valid, otherwise,
14214 return false. */
14215
14216 template <typename Callback>
14217 static bool
14218 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14219 Callback &&callback)
14220 {
14221 struct dwarf2_per_objfile *dwarf2_per_objfile
14222 = cu->per_cu->dwarf2_per_objfile;
14223 struct objfile *objfile = dwarf2_per_objfile->objfile;
14224 bfd *obfd = objfile->obfd;
14225 /* Base address selection entry. */
14226 CORE_ADDR base;
14227 int found_base;
14228 const gdb_byte *buffer;
14229 CORE_ADDR baseaddr;
14230 bool overflow = false;
14231
14232 found_base = cu->base_known;
14233 base = cu->base_address;
14234
14235 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14236 if (offset >= dwarf2_per_objfile->rnglists.size)
14237 {
14238 complaint (&symfile_complaints,
14239 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14240 offset);
14241 return false;
14242 }
14243 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14244
14245 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14246
14247 while (1)
14248 {
14249 /* Initialize it due to a false compiler warning. */
14250 CORE_ADDR range_beginning = 0, range_end = 0;
14251 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14252 + dwarf2_per_objfile->rnglists.size);
14253 unsigned int bytes_read;
14254
14255 if (buffer == buf_end)
14256 {
14257 overflow = true;
14258 break;
14259 }
14260 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14261 switch (rlet)
14262 {
14263 case DW_RLE_end_of_list:
14264 break;
14265 case DW_RLE_base_address:
14266 if (buffer + cu->header.addr_size > buf_end)
14267 {
14268 overflow = true;
14269 break;
14270 }
14271 base = read_address (obfd, buffer, cu, &bytes_read);
14272 found_base = 1;
14273 buffer += bytes_read;
14274 break;
14275 case DW_RLE_start_length:
14276 if (buffer + cu->header.addr_size > buf_end)
14277 {
14278 overflow = true;
14279 break;
14280 }
14281 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14282 buffer += bytes_read;
14283 range_end = (range_beginning
14284 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14285 buffer += bytes_read;
14286 if (buffer > buf_end)
14287 {
14288 overflow = true;
14289 break;
14290 }
14291 break;
14292 case DW_RLE_offset_pair:
14293 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14294 buffer += bytes_read;
14295 if (buffer > buf_end)
14296 {
14297 overflow = true;
14298 break;
14299 }
14300 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14301 buffer += bytes_read;
14302 if (buffer > buf_end)
14303 {
14304 overflow = true;
14305 break;
14306 }
14307 break;
14308 case DW_RLE_start_end:
14309 if (buffer + 2 * cu->header.addr_size > buf_end)
14310 {
14311 overflow = true;
14312 break;
14313 }
14314 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14315 buffer += bytes_read;
14316 range_end = read_address (obfd, buffer, cu, &bytes_read);
14317 buffer += bytes_read;
14318 break;
14319 default:
14320 complaint (&symfile_complaints,
14321 _("Invalid .debug_rnglists data (no base address)"));
14322 return false;
14323 }
14324 if (rlet == DW_RLE_end_of_list || overflow)
14325 break;
14326 if (rlet == DW_RLE_base_address)
14327 continue;
14328
14329 if (!found_base)
14330 {
14331 /* We have no valid base address for the ranges
14332 data. */
14333 complaint (&symfile_complaints,
14334 _("Invalid .debug_rnglists data (no base address)"));
14335 return false;
14336 }
14337
14338 if (range_beginning > range_end)
14339 {
14340 /* Inverted range entries are invalid. */
14341 complaint (&symfile_complaints,
14342 _("Invalid .debug_rnglists data (inverted range)"));
14343 return false;
14344 }
14345
14346 /* Empty range entries have no effect. */
14347 if (range_beginning == range_end)
14348 continue;
14349
14350 range_beginning += base;
14351 range_end += base;
14352
14353 /* A not-uncommon case of bad debug info.
14354 Don't pollute the addrmap with bad data. */
14355 if (range_beginning + baseaddr == 0
14356 && !dwarf2_per_objfile->has_section_at_zero)
14357 {
14358 complaint (&symfile_complaints,
14359 _(".debug_rnglists entry has start address of zero"
14360 " [in module %s]"), objfile_name (objfile));
14361 continue;
14362 }
14363
14364 callback (range_beginning, range_end);
14365 }
14366
14367 if (overflow)
14368 {
14369 complaint (&symfile_complaints,
14370 _("Offset %d is not terminated "
14371 "for DW_AT_ranges attribute"),
14372 offset);
14373 return false;
14374 }
14375
14376 return true;
14377 }
14378
14379 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14380 Callback's type should be:
14381 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14382 Return 1 if the attributes are present and valid, otherwise, return 0. */
14383
14384 template <typename Callback>
14385 static int
14386 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14387 Callback &&callback)
14388 {
14389 struct dwarf2_per_objfile *dwarf2_per_objfile
14390 = cu->per_cu->dwarf2_per_objfile;
14391 struct objfile *objfile = dwarf2_per_objfile->objfile;
14392 struct comp_unit_head *cu_header = &cu->header;
14393 bfd *obfd = objfile->obfd;
14394 unsigned int addr_size = cu_header->addr_size;
14395 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14396 /* Base address selection entry. */
14397 CORE_ADDR base;
14398 int found_base;
14399 unsigned int dummy;
14400 const gdb_byte *buffer;
14401 CORE_ADDR baseaddr;
14402
14403 if (cu_header->version >= 5)
14404 return dwarf2_rnglists_process (offset, cu, callback);
14405
14406 found_base = cu->base_known;
14407 base = cu->base_address;
14408
14409 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14410 if (offset >= dwarf2_per_objfile->ranges.size)
14411 {
14412 complaint (&symfile_complaints,
14413 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14414 offset);
14415 return 0;
14416 }
14417 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14418
14419 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14420
14421 while (1)
14422 {
14423 CORE_ADDR range_beginning, range_end;
14424
14425 range_beginning = read_address (obfd, buffer, cu, &dummy);
14426 buffer += addr_size;
14427 range_end = read_address (obfd, buffer, cu, &dummy);
14428 buffer += addr_size;
14429 offset += 2 * addr_size;
14430
14431 /* An end of list marker is a pair of zero addresses. */
14432 if (range_beginning == 0 && range_end == 0)
14433 /* Found the end of list entry. */
14434 break;
14435
14436 /* Each base address selection entry is a pair of 2 values.
14437 The first is the largest possible address, the second is
14438 the base address. Check for a base address here. */
14439 if ((range_beginning & mask) == mask)
14440 {
14441 /* If we found the largest possible address, then we already
14442 have the base address in range_end. */
14443 base = range_end;
14444 found_base = 1;
14445 continue;
14446 }
14447
14448 if (!found_base)
14449 {
14450 /* We have no valid base address for the ranges
14451 data. */
14452 complaint (&symfile_complaints,
14453 _("Invalid .debug_ranges data (no base address)"));
14454 return 0;
14455 }
14456
14457 if (range_beginning > range_end)
14458 {
14459 /* Inverted range entries are invalid. */
14460 complaint (&symfile_complaints,
14461 _("Invalid .debug_ranges data (inverted range)"));
14462 return 0;
14463 }
14464
14465 /* Empty range entries have no effect. */
14466 if (range_beginning == range_end)
14467 continue;
14468
14469 range_beginning += base;
14470 range_end += base;
14471
14472 /* A not-uncommon case of bad debug info.
14473 Don't pollute the addrmap with bad data. */
14474 if (range_beginning + baseaddr == 0
14475 && !dwarf2_per_objfile->has_section_at_zero)
14476 {
14477 complaint (&symfile_complaints,
14478 _(".debug_ranges entry has start address of zero"
14479 " [in module %s]"), objfile_name (objfile));
14480 continue;
14481 }
14482
14483 callback (range_beginning, range_end);
14484 }
14485
14486 return 1;
14487 }
14488
14489 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14490 Return 1 if the attributes are present and valid, otherwise, return 0.
14491 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14492
14493 static int
14494 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14495 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14496 struct partial_symtab *ranges_pst)
14497 {
14498 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14500 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14501 SECT_OFF_TEXT (objfile));
14502 int low_set = 0;
14503 CORE_ADDR low = 0;
14504 CORE_ADDR high = 0;
14505 int retval;
14506
14507 retval = dwarf2_ranges_process (offset, cu,
14508 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14509 {
14510 if (ranges_pst != NULL)
14511 {
14512 CORE_ADDR lowpc;
14513 CORE_ADDR highpc;
14514
14515 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14516 range_beginning + baseaddr);
14517 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
14518 range_end + baseaddr);
14519 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14520 ranges_pst);
14521 }
14522
14523 /* FIXME: This is recording everything as a low-high
14524 segment of consecutive addresses. We should have a
14525 data structure for discontiguous block ranges
14526 instead. */
14527 if (! low_set)
14528 {
14529 low = range_beginning;
14530 high = range_end;
14531 low_set = 1;
14532 }
14533 else
14534 {
14535 if (range_beginning < low)
14536 low = range_beginning;
14537 if (range_end > high)
14538 high = range_end;
14539 }
14540 });
14541 if (!retval)
14542 return 0;
14543
14544 if (! low_set)
14545 /* If the first entry is an end-of-list marker, the range
14546 describes an empty scope, i.e. no instructions. */
14547 return 0;
14548
14549 if (low_return)
14550 *low_return = low;
14551 if (high_return)
14552 *high_return = high;
14553 return 1;
14554 }
14555
14556 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14557 definition for the return value. *LOWPC and *HIGHPC are set iff
14558 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14559
14560 static enum pc_bounds_kind
14561 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14562 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14563 struct partial_symtab *pst)
14564 {
14565 struct dwarf2_per_objfile *dwarf2_per_objfile
14566 = cu->per_cu->dwarf2_per_objfile;
14567 struct attribute *attr;
14568 struct attribute *attr_high;
14569 CORE_ADDR low = 0;
14570 CORE_ADDR high = 0;
14571 enum pc_bounds_kind ret;
14572
14573 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14574 if (attr_high)
14575 {
14576 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14577 if (attr)
14578 {
14579 low = attr_value_as_address (attr);
14580 high = attr_value_as_address (attr_high);
14581 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14582 high += low;
14583 }
14584 else
14585 /* Found high w/o low attribute. */
14586 return PC_BOUNDS_INVALID;
14587
14588 /* Found consecutive range of addresses. */
14589 ret = PC_BOUNDS_HIGH_LOW;
14590 }
14591 else
14592 {
14593 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14594 if (attr != NULL)
14595 {
14596 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14597 We take advantage of the fact that DW_AT_ranges does not appear
14598 in DW_TAG_compile_unit of DWO files. */
14599 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14600 unsigned int ranges_offset = (DW_UNSND (attr)
14601 + (need_ranges_base
14602 ? cu->ranges_base
14603 : 0));
14604
14605 /* Value of the DW_AT_ranges attribute is the offset in the
14606 .debug_ranges section. */
14607 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14608 return PC_BOUNDS_INVALID;
14609 /* Found discontinuous range of addresses. */
14610 ret = PC_BOUNDS_RANGES;
14611 }
14612 else
14613 return PC_BOUNDS_NOT_PRESENT;
14614 }
14615
14616 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14617 if (high <= low)
14618 return PC_BOUNDS_INVALID;
14619
14620 /* When using the GNU linker, .gnu.linkonce. sections are used to
14621 eliminate duplicate copies of functions and vtables and such.
14622 The linker will arbitrarily choose one and discard the others.
14623 The AT_*_pc values for such functions refer to local labels in
14624 these sections. If the section from that file was discarded, the
14625 labels are not in the output, so the relocs get a value of 0.
14626 If this is a discarded function, mark the pc bounds as invalid,
14627 so that GDB will ignore it. */
14628 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14629 return PC_BOUNDS_INVALID;
14630
14631 *lowpc = low;
14632 if (highpc)
14633 *highpc = high;
14634 return ret;
14635 }
14636
14637 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14638 its low and high PC addresses. Do nothing if these addresses could not
14639 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14640 and HIGHPC to the high address if greater than HIGHPC. */
14641
14642 static void
14643 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14644 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14645 struct dwarf2_cu *cu)
14646 {
14647 CORE_ADDR low, high;
14648 struct die_info *child = die->child;
14649
14650 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14651 {
14652 *lowpc = std::min (*lowpc, low);
14653 *highpc = std::max (*highpc, high);
14654 }
14655
14656 /* If the language does not allow nested subprograms (either inside
14657 subprograms or lexical blocks), we're done. */
14658 if (cu->language != language_ada)
14659 return;
14660
14661 /* Check all the children of the given DIE. If it contains nested
14662 subprograms, then check their pc bounds. Likewise, we need to
14663 check lexical blocks as well, as they may also contain subprogram
14664 definitions. */
14665 while (child && child->tag)
14666 {
14667 if (child->tag == DW_TAG_subprogram
14668 || child->tag == DW_TAG_lexical_block)
14669 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14670 child = sibling_die (child);
14671 }
14672 }
14673
14674 /* Get the low and high pc's represented by the scope DIE, and store
14675 them in *LOWPC and *HIGHPC. If the correct values can't be
14676 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14677
14678 static void
14679 get_scope_pc_bounds (struct die_info *die,
14680 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14681 struct dwarf2_cu *cu)
14682 {
14683 CORE_ADDR best_low = (CORE_ADDR) -1;
14684 CORE_ADDR best_high = (CORE_ADDR) 0;
14685 CORE_ADDR current_low, current_high;
14686
14687 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14688 >= PC_BOUNDS_RANGES)
14689 {
14690 best_low = current_low;
14691 best_high = current_high;
14692 }
14693 else
14694 {
14695 struct die_info *child = die->child;
14696
14697 while (child && child->tag)
14698 {
14699 switch (child->tag) {
14700 case DW_TAG_subprogram:
14701 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14702 break;
14703 case DW_TAG_namespace:
14704 case DW_TAG_module:
14705 /* FIXME: carlton/2004-01-16: Should we do this for
14706 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14707 that current GCC's always emit the DIEs corresponding
14708 to definitions of methods of classes as children of a
14709 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14710 the DIEs giving the declarations, which could be
14711 anywhere). But I don't see any reason why the
14712 standards says that they have to be there. */
14713 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14714
14715 if (current_low != ((CORE_ADDR) -1))
14716 {
14717 best_low = std::min (best_low, current_low);
14718 best_high = std::max (best_high, current_high);
14719 }
14720 break;
14721 default:
14722 /* Ignore. */
14723 break;
14724 }
14725
14726 child = sibling_die (child);
14727 }
14728 }
14729
14730 *lowpc = best_low;
14731 *highpc = best_high;
14732 }
14733
14734 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14735 in DIE. */
14736
14737 static void
14738 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14739 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14740 {
14741 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14742 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14743 struct attribute *attr;
14744 struct attribute *attr_high;
14745
14746 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14747 if (attr_high)
14748 {
14749 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14750 if (attr)
14751 {
14752 CORE_ADDR low = attr_value_as_address (attr);
14753 CORE_ADDR high = attr_value_as_address (attr_high);
14754
14755 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14756 high += low;
14757
14758 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14759 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14760 record_block_range (block, low, high - 1);
14761 }
14762 }
14763
14764 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14765 if (attr)
14766 {
14767 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14768 We take advantage of the fact that DW_AT_ranges does not appear
14769 in DW_TAG_compile_unit of DWO files. */
14770 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14771
14772 /* The value of the DW_AT_ranges attribute is the offset of the
14773 address range list in the .debug_ranges section. */
14774 unsigned long offset = (DW_UNSND (attr)
14775 + (need_ranges_base ? cu->ranges_base : 0));
14776
14777 dwarf2_ranges_process (offset, cu,
14778 [&] (CORE_ADDR start, CORE_ADDR end)
14779 {
14780 start += baseaddr;
14781 end += baseaddr;
14782 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14783 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14784 record_block_range (block, start, end - 1);
14785 });
14786 }
14787 }
14788
14789 /* Check whether the producer field indicates either of GCC < 4.6, or the
14790 Intel C/C++ compiler, and cache the result in CU. */
14791
14792 static void
14793 check_producer (struct dwarf2_cu *cu)
14794 {
14795 int major, minor;
14796
14797 if (cu->producer == NULL)
14798 {
14799 /* For unknown compilers expect their behavior is DWARF version
14800 compliant.
14801
14802 GCC started to support .debug_types sections by -gdwarf-4 since
14803 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14804 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14805 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14806 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14807 }
14808 else if (producer_is_gcc (cu->producer, &major, &minor))
14809 {
14810 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14811 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14812 }
14813 else if (producer_is_icc (cu->producer, &major, &minor))
14814 cu->producer_is_icc_lt_14 = major < 14;
14815 else
14816 {
14817 /* For other non-GCC compilers, expect their behavior is DWARF version
14818 compliant. */
14819 }
14820
14821 cu->checked_producer = 1;
14822 }
14823
14824 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14825 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14826 during 4.6.0 experimental. */
14827
14828 static int
14829 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14830 {
14831 if (!cu->checked_producer)
14832 check_producer (cu);
14833
14834 return cu->producer_is_gxx_lt_4_6;
14835 }
14836
14837 /* Return the default accessibility type if it is not overriden by
14838 DW_AT_accessibility. */
14839
14840 static enum dwarf_access_attribute
14841 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14842 {
14843 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14844 {
14845 /* The default DWARF 2 accessibility for members is public, the default
14846 accessibility for inheritance is private. */
14847
14848 if (die->tag != DW_TAG_inheritance)
14849 return DW_ACCESS_public;
14850 else
14851 return DW_ACCESS_private;
14852 }
14853 else
14854 {
14855 /* DWARF 3+ defines the default accessibility a different way. The same
14856 rules apply now for DW_TAG_inheritance as for the members and it only
14857 depends on the container kind. */
14858
14859 if (die->parent->tag == DW_TAG_class_type)
14860 return DW_ACCESS_private;
14861 else
14862 return DW_ACCESS_public;
14863 }
14864 }
14865
14866 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14867 offset. If the attribute was not found return 0, otherwise return
14868 1. If it was found but could not properly be handled, set *OFFSET
14869 to 0. */
14870
14871 static int
14872 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14873 LONGEST *offset)
14874 {
14875 struct attribute *attr;
14876
14877 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14878 if (attr != NULL)
14879 {
14880 *offset = 0;
14881
14882 /* Note that we do not check for a section offset first here.
14883 This is because DW_AT_data_member_location is new in DWARF 4,
14884 so if we see it, we can assume that a constant form is really
14885 a constant and not a section offset. */
14886 if (attr_form_is_constant (attr))
14887 *offset = dwarf2_get_attr_constant_value (attr, 0);
14888 else if (attr_form_is_section_offset (attr))
14889 dwarf2_complex_location_expr_complaint ();
14890 else if (attr_form_is_block (attr))
14891 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14892 else
14893 dwarf2_complex_location_expr_complaint ();
14894
14895 return 1;
14896 }
14897
14898 return 0;
14899 }
14900
14901 /* Add an aggregate field to the field list. */
14902
14903 static void
14904 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14905 struct dwarf2_cu *cu)
14906 {
14907 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14909 struct nextfield *new_field;
14910 struct attribute *attr;
14911 struct field *fp;
14912 const char *fieldname = "";
14913
14914 if (die->tag == DW_TAG_inheritance)
14915 {
14916 fip->baseclasses.emplace_back ();
14917 new_field = &fip->baseclasses.back ();
14918 }
14919 else
14920 {
14921 fip->fields.emplace_back ();
14922 new_field = &fip->fields.back ();
14923 }
14924
14925 fip->nfields++;
14926
14927 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14928 if (attr)
14929 new_field->accessibility = DW_UNSND (attr);
14930 else
14931 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14932 if (new_field->accessibility != DW_ACCESS_public)
14933 fip->non_public_fields = 1;
14934
14935 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14936 if (attr)
14937 new_field->virtuality = DW_UNSND (attr);
14938 else
14939 new_field->virtuality = DW_VIRTUALITY_none;
14940
14941 fp = &new_field->field;
14942
14943 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14944 {
14945 LONGEST offset;
14946
14947 /* Data member other than a C++ static data member. */
14948
14949 /* Get type of field. */
14950 fp->type = die_type (die, cu);
14951
14952 SET_FIELD_BITPOS (*fp, 0);
14953
14954 /* Get bit size of field (zero if none). */
14955 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14956 if (attr)
14957 {
14958 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14959 }
14960 else
14961 {
14962 FIELD_BITSIZE (*fp) = 0;
14963 }
14964
14965 /* Get bit offset of field. */
14966 if (handle_data_member_location (die, cu, &offset))
14967 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14968 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14969 if (attr)
14970 {
14971 if (gdbarch_bits_big_endian (gdbarch))
14972 {
14973 /* For big endian bits, the DW_AT_bit_offset gives the
14974 additional bit offset from the MSB of the containing
14975 anonymous object to the MSB of the field. We don't
14976 have to do anything special since we don't need to
14977 know the size of the anonymous object. */
14978 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14979 }
14980 else
14981 {
14982 /* For little endian bits, compute the bit offset to the
14983 MSB of the anonymous object, subtract off the number of
14984 bits from the MSB of the field to the MSB of the
14985 object, and then subtract off the number of bits of
14986 the field itself. The result is the bit offset of
14987 the LSB of the field. */
14988 int anonymous_size;
14989 int bit_offset = DW_UNSND (attr);
14990
14991 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14992 if (attr)
14993 {
14994 /* The size of the anonymous object containing
14995 the bit field is explicit, so use the
14996 indicated size (in bytes). */
14997 anonymous_size = DW_UNSND (attr);
14998 }
14999 else
15000 {
15001 /* The size of the anonymous object containing
15002 the bit field must be inferred from the type
15003 attribute of the data member containing the
15004 bit field. */
15005 anonymous_size = TYPE_LENGTH (fp->type);
15006 }
15007 SET_FIELD_BITPOS (*fp,
15008 (FIELD_BITPOS (*fp)
15009 + anonymous_size * bits_per_byte
15010 - bit_offset - FIELD_BITSIZE (*fp)));
15011 }
15012 }
15013 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15014 if (attr != NULL)
15015 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15016 + dwarf2_get_attr_constant_value (attr, 0)));
15017
15018 /* Get name of field. */
15019 fieldname = dwarf2_name (die, cu);
15020 if (fieldname == NULL)
15021 fieldname = "";
15022
15023 /* The name is already allocated along with this objfile, so we don't
15024 need to duplicate it for the type. */
15025 fp->name = fieldname;
15026
15027 /* Change accessibility for artificial fields (e.g. virtual table
15028 pointer or virtual base class pointer) to private. */
15029 if (dwarf2_attr (die, DW_AT_artificial, cu))
15030 {
15031 FIELD_ARTIFICIAL (*fp) = 1;
15032 new_field->accessibility = DW_ACCESS_private;
15033 fip->non_public_fields = 1;
15034 }
15035 }
15036 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15037 {
15038 /* C++ static member. */
15039
15040 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15041 is a declaration, but all versions of G++ as of this writing
15042 (so through at least 3.2.1) incorrectly generate
15043 DW_TAG_variable tags. */
15044
15045 const char *physname;
15046
15047 /* Get name of field. */
15048 fieldname = dwarf2_name (die, cu);
15049 if (fieldname == NULL)
15050 return;
15051
15052 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15053 if (attr
15054 /* Only create a symbol if this is an external value.
15055 new_symbol checks this and puts the value in the global symbol
15056 table, which we want. If it is not external, new_symbol
15057 will try to put the value in cu->list_in_scope which is wrong. */
15058 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15059 {
15060 /* A static const member, not much different than an enum as far as
15061 we're concerned, except that we can support more types. */
15062 new_symbol (die, NULL, cu);
15063 }
15064
15065 /* Get physical name. */
15066 physname = dwarf2_physname (fieldname, die, cu);
15067
15068 /* The name is already allocated along with this objfile, so we don't
15069 need to duplicate it for the type. */
15070 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15071 FIELD_TYPE (*fp) = die_type (die, cu);
15072 FIELD_NAME (*fp) = fieldname;
15073 }
15074 else if (die->tag == DW_TAG_inheritance)
15075 {
15076 LONGEST offset;
15077
15078 /* C++ base class field. */
15079 if (handle_data_member_location (die, cu, &offset))
15080 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15081 FIELD_BITSIZE (*fp) = 0;
15082 FIELD_TYPE (*fp) = die_type (die, cu);
15083 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15084 }
15085 else if (die->tag == DW_TAG_variant_part)
15086 {
15087 /* process_structure_scope will treat this DIE as a union. */
15088 process_structure_scope (die, cu);
15089
15090 /* The variant part is relative to the start of the enclosing
15091 structure. */
15092 SET_FIELD_BITPOS (*fp, 0);
15093 fp->type = get_die_type (die, cu);
15094 fp->artificial = 1;
15095 fp->name = "<<variant>>";
15096 }
15097 else
15098 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15099 }
15100
15101 /* Can the type given by DIE define another type? */
15102
15103 static bool
15104 type_can_define_types (const struct die_info *die)
15105 {
15106 switch (die->tag)
15107 {
15108 case DW_TAG_typedef:
15109 case DW_TAG_class_type:
15110 case DW_TAG_structure_type:
15111 case DW_TAG_union_type:
15112 case DW_TAG_enumeration_type:
15113 return true;
15114
15115 default:
15116 return false;
15117 }
15118 }
15119
15120 /* Add a type definition defined in the scope of the FIP's class. */
15121
15122 static void
15123 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15124 struct dwarf2_cu *cu)
15125 {
15126 struct decl_field fp;
15127 memset (&fp, 0, sizeof (fp));
15128
15129 gdb_assert (type_can_define_types (die));
15130
15131 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15132 fp.name = dwarf2_name (die, cu);
15133 fp.type = read_type_die (die, cu);
15134
15135 /* Save accessibility. */
15136 enum dwarf_access_attribute accessibility;
15137 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15138 if (attr != NULL)
15139 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15140 else
15141 accessibility = dwarf2_default_access_attribute (die, cu);
15142 switch (accessibility)
15143 {
15144 case DW_ACCESS_public:
15145 /* The assumed value if neither private nor protected. */
15146 break;
15147 case DW_ACCESS_private:
15148 fp.is_private = 1;
15149 break;
15150 case DW_ACCESS_protected:
15151 fp.is_protected = 1;
15152 break;
15153 default:
15154 complaint (&symfile_complaints,
15155 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15156 }
15157
15158 if (die->tag == DW_TAG_typedef)
15159 fip->typedef_field_list.push_back (fp);
15160 else
15161 fip->nested_types_list.push_back (fp);
15162 }
15163
15164 /* Create the vector of fields, and attach it to the type. */
15165
15166 static void
15167 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15168 struct dwarf2_cu *cu)
15169 {
15170 int nfields = fip->nfields;
15171
15172 /* Record the field count, allocate space for the array of fields,
15173 and create blank accessibility bitfields if necessary. */
15174 TYPE_NFIELDS (type) = nfields;
15175 TYPE_FIELDS (type) = (struct field *)
15176 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15177
15178 if (fip->non_public_fields && cu->language != language_ada)
15179 {
15180 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15181
15182 TYPE_FIELD_PRIVATE_BITS (type) =
15183 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15184 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15185
15186 TYPE_FIELD_PROTECTED_BITS (type) =
15187 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15188 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15189
15190 TYPE_FIELD_IGNORE_BITS (type) =
15191 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15192 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15193 }
15194
15195 /* If the type has baseclasses, allocate and clear a bit vector for
15196 TYPE_FIELD_VIRTUAL_BITS. */
15197 if (!fip->baseclasses.empty () && cu->language != language_ada)
15198 {
15199 int num_bytes = B_BYTES (fip->baseclasses.size ());
15200 unsigned char *pointer;
15201
15202 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15203 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15204 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15205 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15206 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15207 }
15208
15209 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15210 {
15211 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15212
15213 for (int index = 0; index < nfields; ++index)
15214 {
15215 struct nextfield &field = fip->fields[index];
15216
15217 if (field.variant.is_discriminant)
15218 di->discriminant_index = index;
15219 else if (field.variant.default_branch)
15220 di->default_index = index;
15221 else
15222 di->discriminants[index] = field.variant.discriminant_value;
15223 }
15224 }
15225
15226 /* Copy the saved-up fields into the field vector. */
15227 for (int i = 0; i < nfields; ++i)
15228 {
15229 struct nextfield &field
15230 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15231 : fip->fields[i - fip->baseclasses.size ()]);
15232
15233 TYPE_FIELD (type, i) = field.field;
15234 switch (field.accessibility)
15235 {
15236 case DW_ACCESS_private:
15237 if (cu->language != language_ada)
15238 SET_TYPE_FIELD_PRIVATE (type, i);
15239 break;
15240
15241 case DW_ACCESS_protected:
15242 if (cu->language != language_ada)
15243 SET_TYPE_FIELD_PROTECTED (type, i);
15244 break;
15245
15246 case DW_ACCESS_public:
15247 break;
15248
15249 default:
15250 /* Unknown accessibility. Complain and treat it as public. */
15251 {
15252 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15253 field.accessibility);
15254 }
15255 break;
15256 }
15257 if (i < fip->baseclasses.size ())
15258 {
15259 switch (field.virtuality)
15260 {
15261 case DW_VIRTUALITY_virtual:
15262 case DW_VIRTUALITY_pure_virtual:
15263 if (cu->language == language_ada)
15264 error (_("unexpected virtuality in component of Ada type"));
15265 SET_TYPE_FIELD_VIRTUAL (type, i);
15266 break;
15267 }
15268 }
15269 }
15270 }
15271
15272 /* Return true if this member function is a constructor, false
15273 otherwise. */
15274
15275 static int
15276 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15277 {
15278 const char *fieldname;
15279 const char *type_name;
15280 int len;
15281
15282 if (die->parent == NULL)
15283 return 0;
15284
15285 if (die->parent->tag != DW_TAG_structure_type
15286 && die->parent->tag != DW_TAG_union_type
15287 && die->parent->tag != DW_TAG_class_type)
15288 return 0;
15289
15290 fieldname = dwarf2_name (die, cu);
15291 type_name = dwarf2_name (die->parent, cu);
15292 if (fieldname == NULL || type_name == NULL)
15293 return 0;
15294
15295 len = strlen (fieldname);
15296 return (strncmp (fieldname, type_name, len) == 0
15297 && (type_name[len] == '\0' || type_name[len] == '<'));
15298 }
15299
15300 /* Add a member function to the proper fieldlist. */
15301
15302 static void
15303 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15304 struct type *type, struct dwarf2_cu *cu)
15305 {
15306 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15307 struct attribute *attr;
15308 int i;
15309 struct fnfieldlist *flp = nullptr;
15310 struct fn_field *fnp;
15311 const char *fieldname;
15312 struct type *this_type;
15313 enum dwarf_access_attribute accessibility;
15314
15315 if (cu->language == language_ada)
15316 error (_("unexpected member function in Ada type"));
15317
15318 /* Get name of member function. */
15319 fieldname = dwarf2_name (die, cu);
15320 if (fieldname == NULL)
15321 return;
15322
15323 /* Look up member function name in fieldlist. */
15324 for (i = 0; i < fip->fnfieldlists.size (); i++)
15325 {
15326 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15327 {
15328 flp = &fip->fnfieldlists[i];
15329 break;
15330 }
15331 }
15332
15333 /* Create a new fnfieldlist if necessary. */
15334 if (flp == nullptr)
15335 {
15336 fip->fnfieldlists.emplace_back ();
15337 flp = &fip->fnfieldlists.back ();
15338 flp->name = fieldname;
15339 i = fip->fnfieldlists.size () - 1;
15340 }
15341
15342 /* Create a new member function field and add it to the vector of
15343 fnfieldlists. */
15344 flp->fnfields.emplace_back ();
15345 fnp = &flp->fnfields.back ();
15346
15347 /* Delay processing of the physname until later. */
15348 if (cu->language == language_cplus)
15349 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15350 die, cu);
15351 else
15352 {
15353 const char *physname = dwarf2_physname (fieldname, die, cu);
15354 fnp->physname = physname ? physname : "";
15355 }
15356
15357 fnp->type = alloc_type (objfile);
15358 this_type = read_type_die (die, cu);
15359 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15360 {
15361 int nparams = TYPE_NFIELDS (this_type);
15362
15363 /* TYPE is the domain of this method, and THIS_TYPE is the type
15364 of the method itself (TYPE_CODE_METHOD). */
15365 smash_to_method_type (fnp->type, type,
15366 TYPE_TARGET_TYPE (this_type),
15367 TYPE_FIELDS (this_type),
15368 TYPE_NFIELDS (this_type),
15369 TYPE_VARARGS (this_type));
15370
15371 /* Handle static member functions.
15372 Dwarf2 has no clean way to discern C++ static and non-static
15373 member functions. G++ helps GDB by marking the first
15374 parameter for non-static member functions (which is the this
15375 pointer) as artificial. We obtain this information from
15376 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15377 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15378 fnp->voffset = VOFFSET_STATIC;
15379 }
15380 else
15381 complaint (&symfile_complaints, _("member function type missing for '%s'"),
15382 dwarf2_full_name (fieldname, die, cu));
15383
15384 /* Get fcontext from DW_AT_containing_type if present. */
15385 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15386 fnp->fcontext = die_containing_type (die, cu);
15387
15388 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15389 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15390
15391 /* Get accessibility. */
15392 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15393 if (attr)
15394 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15395 else
15396 accessibility = dwarf2_default_access_attribute (die, cu);
15397 switch (accessibility)
15398 {
15399 case DW_ACCESS_private:
15400 fnp->is_private = 1;
15401 break;
15402 case DW_ACCESS_protected:
15403 fnp->is_protected = 1;
15404 break;
15405 }
15406
15407 /* Check for artificial methods. */
15408 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15409 if (attr && DW_UNSND (attr) != 0)
15410 fnp->is_artificial = 1;
15411
15412 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15413
15414 /* Get index in virtual function table if it is a virtual member
15415 function. For older versions of GCC, this is an offset in the
15416 appropriate virtual table, as specified by DW_AT_containing_type.
15417 For everyone else, it is an expression to be evaluated relative
15418 to the object address. */
15419
15420 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15421 if (attr)
15422 {
15423 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15424 {
15425 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15426 {
15427 /* Old-style GCC. */
15428 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15429 }
15430 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15431 || (DW_BLOCK (attr)->size > 1
15432 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15433 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15434 {
15435 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15436 if ((fnp->voffset % cu->header.addr_size) != 0)
15437 dwarf2_complex_location_expr_complaint ();
15438 else
15439 fnp->voffset /= cu->header.addr_size;
15440 fnp->voffset += 2;
15441 }
15442 else
15443 dwarf2_complex_location_expr_complaint ();
15444
15445 if (!fnp->fcontext)
15446 {
15447 /* If there is no `this' field and no DW_AT_containing_type,
15448 we cannot actually find a base class context for the
15449 vtable! */
15450 if (TYPE_NFIELDS (this_type) == 0
15451 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15452 {
15453 complaint (&symfile_complaints,
15454 _("cannot determine context for virtual member "
15455 "function \"%s\" (offset %s)"),
15456 fieldname, sect_offset_str (die->sect_off));
15457 }
15458 else
15459 {
15460 fnp->fcontext
15461 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15462 }
15463 }
15464 }
15465 else if (attr_form_is_section_offset (attr))
15466 {
15467 dwarf2_complex_location_expr_complaint ();
15468 }
15469 else
15470 {
15471 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15472 fieldname);
15473 }
15474 }
15475 else
15476 {
15477 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15478 if (attr && DW_UNSND (attr))
15479 {
15480 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15481 complaint (&symfile_complaints,
15482 _("Member function \"%s\" (offset %s) is virtual "
15483 "but the vtable offset is not specified"),
15484 fieldname, sect_offset_str (die->sect_off));
15485 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15486 TYPE_CPLUS_DYNAMIC (type) = 1;
15487 }
15488 }
15489 }
15490
15491 /* Create the vector of member function fields, and attach it to the type. */
15492
15493 static void
15494 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15495 struct dwarf2_cu *cu)
15496 {
15497 if (cu->language == language_ada)
15498 error (_("unexpected member functions in Ada type"));
15499
15500 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15501 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15502 TYPE_ALLOC (type,
15503 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15504
15505 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15506 {
15507 struct fnfieldlist &nf = fip->fnfieldlists[i];
15508 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15509
15510 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15511 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15512 fn_flp->fn_fields = (struct fn_field *)
15513 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15514
15515 for (int k = 0; k < nf.fnfields.size (); ++k)
15516 fn_flp->fn_fields[k] = nf.fnfields[k];
15517 }
15518
15519 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15520 }
15521
15522 /* Returns non-zero if NAME is the name of a vtable member in CU's
15523 language, zero otherwise. */
15524 static int
15525 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15526 {
15527 static const char vptr[] = "_vptr";
15528
15529 /* Look for the C++ form of the vtable. */
15530 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15531 return 1;
15532
15533 return 0;
15534 }
15535
15536 /* GCC outputs unnamed structures that are really pointers to member
15537 functions, with the ABI-specified layout. If TYPE describes
15538 such a structure, smash it into a member function type.
15539
15540 GCC shouldn't do this; it should just output pointer to member DIEs.
15541 This is GCC PR debug/28767. */
15542
15543 static void
15544 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15545 {
15546 struct type *pfn_type, *self_type, *new_type;
15547
15548 /* Check for a structure with no name and two children. */
15549 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15550 return;
15551
15552 /* Check for __pfn and __delta members. */
15553 if (TYPE_FIELD_NAME (type, 0) == NULL
15554 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15555 || TYPE_FIELD_NAME (type, 1) == NULL
15556 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15557 return;
15558
15559 /* Find the type of the method. */
15560 pfn_type = TYPE_FIELD_TYPE (type, 0);
15561 if (pfn_type == NULL
15562 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15563 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15564 return;
15565
15566 /* Look for the "this" argument. */
15567 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15568 if (TYPE_NFIELDS (pfn_type) == 0
15569 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15570 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15571 return;
15572
15573 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15574 new_type = alloc_type (objfile);
15575 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15576 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15577 TYPE_VARARGS (pfn_type));
15578 smash_to_methodptr_type (type, new_type);
15579 }
15580
15581
15582 /* Called when we find the DIE that starts a structure or union scope
15583 (definition) to create a type for the structure or union. Fill in
15584 the type's name and general properties; the members will not be
15585 processed until process_structure_scope. A symbol table entry for
15586 the type will also not be done until process_structure_scope (assuming
15587 the type has a name).
15588
15589 NOTE: we need to call these functions regardless of whether or not the
15590 DIE has a DW_AT_name attribute, since it might be an anonymous
15591 structure or union. This gets the type entered into our set of
15592 user defined types. */
15593
15594 static struct type *
15595 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15596 {
15597 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15598 struct type *type;
15599 struct attribute *attr;
15600 const char *name;
15601
15602 /* If the definition of this type lives in .debug_types, read that type.
15603 Don't follow DW_AT_specification though, that will take us back up
15604 the chain and we want to go down. */
15605 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15606 if (attr)
15607 {
15608 type = get_DW_AT_signature_type (die, attr, cu);
15609
15610 /* The type's CU may not be the same as CU.
15611 Ensure TYPE is recorded with CU in die_type_hash. */
15612 return set_die_type (die, type, cu);
15613 }
15614
15615 type = alloc_type (objfile);
15616 INIT_CPLUS_SPECIFIC (type);
15617
15618 name = dwarf2_name (die, cu);
15619 if (name != NULL)
15620 {
15621 if (cu->language == language_cplus
15622 || cu->language == language_d
15623 || cu->language == language_rust)
15624 {
15625 const char *full_name = dwarf2_full_name (name, die, cu);
15626
15627 /* dwarf2_full_name might have already finished building the DIE's
15628 type. If so, there is no need to continue. */
15629 if (get_die_type (die, cu) != NULL)
15630 return get_die_type (die, cu);
15631
15632 TYPE_TAG_NAME (type) = full_name;
15633 if (die->tag == DW_TAG_structure_type
15634 || die->tag == DW_TAG_class_type)
15635 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15636 }
15637 else
15638 {
15639 /* The name is already allocated along with this objfile, so
15640 we don't need to duplicate it for the type. */
15641 TYPE_TAG_NAME (type) = name;
15642 if (die->tag == DW_TAG_class_type)
15643 TYPE_NAME (type) = TYPE_TAG_NAME (type);
15644 }
15645 }
15646
15647 if (die->tag == DW_TAG_structure_type)
15648 {
15649 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15650 }
15651 else if (die->tag == DW_TAG_union_type)
15652 {
15653 TYPE_CODE (type) = TYPE_CODE_UNION;
15654 }
15655 else if (die->tag == DW_TAG_variant_part)
15656 {
15657 TYPE_CODE (type) = TYPE_CODE_UNION;
15658 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15659 }
15660 else
15661 {
15662 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15663 }
15664
15665 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15666 TYPE_DECLARED_CLASS (type) = 1;
15667
15668 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15669 if (attr)
15670 {
15671 if (attr_form_is_constant (attr))
15672 TYPE_LENGTH (type) = DW_UNSND (attr);
15673 else
15674 {
15675 /* For the moment, dynamic type sizes are not supported
15676 by GDB's struct type. The actual size is determined
15677 on-demand when resolving the type of a given object,
15678 so set the type's length to zero for now. Otherwise,
15679 we record an expression as the length, and that expression
15680 could lead to a very large value, which could eventually
15681 lead to us trying to allocate that much memory when creating
15682 a value of that type. */
15683 TYPE_LENGTH (type) = 0;
15684 }
15685 }
15686 else
15687 {
15688 TYPE_LENGTH (type) = 0;
15689 }
15690
15691 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15692 {
15693 /* ICC<14 does not output the required DW_AT_declaration on
15694 incomplete types, but gives them a size of zero. */
15695 TYPE_STUB (type) = 1;
15696 }
15697 else
15698 TYPE_STUB_SUPPORTED (type) = 1;
15699
15700 if (die_is_declaration (die, cu))
15701 TYPE_STUB (type) = 1;
15702 else if (attr == NULL && die->child == NULL
15703 && producer_is_realview (cu->producer))
15704 /* RealView does not output the required DW_AT_declaration
15705 on incomplete types. */
15706 TYPE_STUB (type) = 1;
15707
15708 /* We need to add the type field to the die immediately so we don't
15709 infinitely recurse when dealing with pointers to the structure
15710 type within the structure itself. */
15711 set_die_type (die, type, cu);
15712
15713 /* set_die_type should be already done. */
15714 set_descriptive_type (type, die, cu);
15715
15716 return type;
15717 }
15718
15719 /* A helper for process_structure_scope that handles a single member
15720 DIE. */
15721
15722 static void
15723 handle_struct_member_die (struct die_info *child_die, struct type *type,
15724 struct field_info *fi,
15725 std::vector<struct symbol *> *template_args,
15726 struct dwarf2_cu *cu)
15727 {
15728 if (child_die->tag == DW_TAG_member
15729 || child_die->tag == DW_TAG_variable
15730 || child_die->tag == DW_TAG_variant_part)
15731 {
15732 /* NOTE: carlton/2002-11-05: A C++ static data member
15733 should be a DW_TAG_member that is a declaration, but
15734 all versions of G++ as of this writing (so through at
15735 least 3.2.1) incorrectly generate DW_TAG_variable
15736 tags for them instead. */
15737 dwarf2_add_field (fi, child_die, cu);
15738 }
15739 else if (child_die->tag == DW_TAG_subprogram)
15740 {
15741 /* Rust doesn't have member functions in the C++ sense.
15742 However, it does emit ordinary functions as children
15743 of a struct DIE. */
15744 if (cu->language == language_rust)
15745 read_func_scope (child_die, cu);
15746 else
15747 {
15748 /* C++ member function. */
15749 dwarf2_add_member_fn (fi, child_die, type, cu);
15750 }
15751 }
15752 else if (child_die->tag == DW_TAG_inheritance)
15753 {
15754 /* C++ base class field. */
15755 dwarf2_add_field (fi, child_die, cu);
15756 }
15757 else if (type_can_define_types (child_die))
15758 dwarf2_add_type_defn (fi, child_die, cu);
15759 else if (child_die->tag == DW_TAG_template_type_param
15760 || child_die->tag == DW_TAG_template_value_param)
15761 {
15762 struct symbol *arg = new_symbol (child_die, NULL, cu);
15763
15764 if (arg != NULL)
15765 template_args->push_back (arg);
15766 }
15767 else if (child_die->tag == DW_TAG_variant)
15768 {
15769 /* In a variant we want to get the discriminant and also add a
15770 field for our sole member child. */
15771 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15772
15773 for (struct die_info *variant_child = child_die->child;
15774 variant_child != NULL;
15775 variant_child = sibling_die (variant_child))
15776 {
15777 if (variant_child->tag == DW_TAG_member)
15778 {
15779 handle_struct_member_die (variant_child, type, fi,
15780 template_args, cu);
15781 /* Only handle the one. */
15782 break;
15783 }
15784 }
15785
15786 /* We don't handle this but we might as well report it if we see
15787 it. */
15788 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15789 complaint (&symfile_complaints,
15790 _("DW_AT_discr_list is not supported yet"
15791 " - DIE at %s [in module %s]"),
15792 sect_offset_str (child_die->sect_off),
15793 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15794
15795 /* The first field was just added, so we can stash the
15796 discriminant there. */
15797 gdb_assert (!fi->fields.empty ());
15798 if (discr == NULL)
15799 fi->fields.back ().variant.default_branch = true;
15800 else
15801 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15802 }
15803 }
15804
15805 /* Finish creating a structure or union type, including filling in
15806 its members and creating a symbol for it. */
15807
15808 static void
15809 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15810 {
15811 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15812 struct die_info *child_die;
15813 struct type *type;
15814
15815 type = get_die_type (die, cu);
15816 if (type == NULL)
15817 type = read_structure_type (die, cu);
15818
15819 /* When reading a DW_TAG_variant_part, we need to notice when we
15820 read the discriminant member, so we can record it later in the
15821 discriminant_info. */
15822 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15823 sect_offset discr_offset;
15824
15825 if (is_variant_part)
15826 {
15827 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15828 if (discr == NULL)
15829 {
15830 /* Maybe it's a univariant form, an extension we support.
15831 In this case arrange not to check the offset. */
15832 is_variant_part = false;
15833 }
15834 else if (attr_form_is_ref (discr))
15835 {
15836 struct dwarf2_cu *target_cu = cu;
15837 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15838
15839 discr_offset = target_die->sect_off;
15840 }
15841 else
15842 {
15843 complaint (&symfile_complaints,
15844 _("DW_AT_discr does not have DIE reference form"
15845 " - DIE at %s [in module %s]"),
15846 sect_offset_str (die->sect_off),
15847 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15848 is_variant_part = false;
15849 }
15850 }
15851
15852 if (die->child != NULL && ! die_is_declaration (die, cu))
15853 {
15854 struct field_info fi;
15855 std::vector<struct symbol *> template_args;
15856
15857 child_die = die->child;
15858
15859 while (child_die && child_die->tag)
15860 {
15861 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15862
15863 if (is_variant_part && discr_offset == child_die->sect_off)
15864 fi.fields.back ().variant.is_discriminant = true;
15865
15866 child_die = sibling_die (child_die);
15867 }
15868
15869 /* Attach template arguments to type. */
15870 if (!template_args.empty ())
15871 {
15872 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15873 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15874 TYPE_TEMPLATE_ARGUMENTS (type)
15875 = XOBNEWVEC (&objfile->objfile_obstack,
15876 struct symbol *,
15877 TYPE_N_TEMPLATE_ARGUMENTS (type));
15878 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15879 template_args.data (),
15880 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15881 * sizeof (struct symbol *)));
15882 }
15883
15884 /* Attach fields and member functions to the type. */
15885 if (fi.nfields)
15886 dwarf2_attach_fields_to_type (&fi, type, cu);
15887 if (!fi.fnfieldlists.empty ())
15888 {
15889 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15890
15891 /* Get the type which refers to the base class (possibly this
15892 class itself) which contains the vtable pointer for the current
15893 class from the DW_AT_containing_type attribute. This use of
15894 DW_AT_containing_type is a GNU extension. */
15895
15896 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15897 {
15898 struct type *t = die_containing_type (die, cu);
15899
15900 set_type_vptr_basetype (type, t);
15901 if (type == t)
15902 {
15903 int i;
15904
15905 /* Our own class provides vtbl ptr. */
15906 for (i = TYPE_NFIELDS (t) - 1;
15907 i >= TYPE_N_BASECLASSES (t);
15908 --i)
15909 {
15910 const char *fieldname = TYPE_FIELD_NAME (t, i);
15911
15912 if (is_vtable_name (fieldname, cu))
15913 {
15914 set_type_vptr_fieldno (type, i);
15915 break;
15916 }
15917 }
15918
15919 /* Complain if virtual function table field not found. */
15920 if (i < TYPE_N_BASECLASSES (t))
15921 complaint (&symfile_complaints,
15922 _("virtual function table pointer "
15923 "not found when defining class '%s'"),
15924 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
15925 "");
15926 }
15927 else
15928 {
15929 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15930 }
15931 }
15932 else if (cu->producer
15933 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15934 {
15935 /* The IBM XLC compiler does not provide direct indication
15936 of the containing type, but the vtable pointer is
15937 always named __vfp. */
15938
15939 int i;
15940
15941 for (i = TYPE_NFIELDS (type) - 1;
15942 i >= TYPE_N_BASECLASSES (type);
15943 --i)
15944 {
15945 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15946 {
15947 set_type_vptr_fieldno (type, i);
15948 set_type_vptr_basetype (type, type);
15949 break;
15950 }
15951 }
15952 }
15953 }
15954
15955 /* Copy fi.typedef_field_list linked list elements content into the
15956 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15957 if (!fi.typedef_field_list.empty ())
15958 {
15959 int count = fi.typedef_field_list.size ();
15960
15961 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15962 TYPE_TYPEDEF_FIELD_ARRAY (type)
15963 = ((struct decl_field *)
15964 TYPE_ALLOC (type,
15965 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15966 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15967
15968 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15969 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15970 }
15971
15972 /* Copy fi.nested_types_list linked list elements content into the
15973 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15974 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15975 {
15976 int count = fi.nested_types_list.size ();
15977
15978 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15979 TYPE_NESTED_TYPES_ARRAY (type)
15980 = ((struct decl_field *)
15981 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15982 TYPE_NESTED_TYPES_COUNT (type) = count;
15983
15984 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15985 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15986 }
15987 }
15988
15989 quirk_gcc_member_function_pointer (type, objfile);
15990 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15991 cu->rust_unions.push_back (type);
15992
15993 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15994 snapshots) has been known to create a die giving a declaration
15995 for a class that has, as a child, a die giving a definition for a
15996 nested class. So we have to process our children even if the
15997 current die is a declaration. Normally, of course, a declaration
15998 won't have any children at all. */
15999
16000 child_die = die->child;
16001
16002 while (child_die != NULL && child_die->tag)
16003 {
16004 if (child_die->tag == DW_TAG_member
16005 || child_die->tag == DW_TAG_variable
16006 || child_die->tag == DW_TAG_inheritance
16007 || child_die->tag == DW_TAG_template_value_param
16008 || child_die->tag == DW_TAG_template_type_param)
16009 {
16010 /* Do nothing. */
16011 }
16012 else
16013 process_die (child_die, cu);
16014
16015 child_die = sibling_die (child_die);
16016 }
16017
16018 /* Do not consider external references. According to the DWARF standard,
16019 these DIEs are identified by the fact that they have no byte_size
16020 attribute, and a declaration attribute. */
16021 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16022 || !die_is_declaration (die, cu))
16023 new_symbol (die, type, cu);
16024 }
16025
16026 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16027 update TYPE using some information only available in DIE's children. */
16028
16029 static void
16030 update_enumeration_type_from_children (struct die_info *die,
16031 struct type *type,
16032 struct dwarf2_cu *cu)
16033 {
16034 struct die_info *child_die;
16035 int unsigned_enum = 1;
16036 int flag_enum = 1;
16037 ULONGEST mask = 0;
16038
16039 auto_obstack obstack;
16040
16041 for (child_die = die->child;
16042 child_die != NULL && child_die->tag;
16043 child_die = sibling_die (child_die))
16044 {
16045 struct attribute *attr;
16046 LONGEST value;
16047 const gdb_byte *bytes;
16048 struct dwarf2_locexpr_baton *baton;
16049 const char *name;
16050
16051 if (child_die->tag != DW_TAG_enumerator)
16052 continue;
16053
16054 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16055 if (attr == NULL)
16056 continue;
16057
16058 name = dwarf2_name (child_die, cu);
16059 if (name == NULL)
16060 name = "<anonymous enumerator>";
16061
16062 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16063 &value, &bytes, &baton);
16064 if (value < 0)
16065 {
16066 unsigned_enum = 0;
16067 flag_enum = 0;
16068 }
16069 else if ((mask & value) != 0)
16070 flag_enum = 0;
16071 else
16072 mask |= value;
16073
16074 /* If we already know that the enum type is neither unsigned, nor
16075 a flag type, no need to look at the rest of the enumerates. */
16076 if (!unsigned_enum && !flag_enum)
16077 break;
16078 }
16079
16080 if (unsigned_enum)
16081 TYPE_UNSIGNED (type) = 1;
16082 if (flag_enum)
16083 TYPE_FLAG_ENUM (type) = 1;
16084 }
16085
16086 /* Given a DW_AT_enumeration_type die, set its type. We do not
16087 complete the type's fields yet, or create any symbols. */
16088
16089 static struct type *
16090 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16091 {
16092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16093 struct type *type;
16094 struct attribute *attr;
16095 const char *name;
16096
16097 /* If the definition of this type lives in .debug_types, read that type.
16098 Don't follow DW_AT_specification though, that will take us back up
16099 the chain and we want to go down. */
16100 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16101 if (attr)
16102 {
16103 type = get_DW_AT_signature_type (die, attr, cu);
16104
16105 /* The type's CU may not be the same as CU.
16106 Ensure TYPE is recorded with CU in die_type_hash. */
16107 return set_die_type (die, type, cu);
16108 }
16109
16110 type = alloc_type (objfile);
16111
16112 TYPE_CODE (type) = TYPE_CODE_ENUM;
16113 name = dwarf2_full_name (NULL, die, cu);
16114 if (name != NULL)
16115 TYPE_TAG_NAME (type) = name;
16116
16117 attr = dwarf2_attr (die, DW_AT_type, cu);
16118 if (attr != NULL)
16119 {
16120 struct type *underlying_type = die_type (die, cu);
16121
16122 TYPE_TARGET_TYPE (type) = underlying_type;
16123 }
16124
16125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16126 if (attr)
16127 {
16128 TYPE_LENGTH (type) = DW_UNSND (attr);
16129 }
16130 else
16131 {
16132 TYPE_LENGTH (type) = 0;
16133 }
16134
16135 /* The enumeration DIE can be incomplete. In Ada, any type can be
16136 declared as private in the package spec, and then defined only
16137 inside the package body. Such types are known as Taft Amendment
16138 Types. When another package uses such a type, an incomplete DIE
16139 may be generated by the compiler. */
16140 if (die_is_declaration (die, cu))
16141 TYPE_STUB (type) = 1;
16142
16143 /* Finish the creation of this type by using the enum's children.
16144 We must call this even when the underlying type has been provided
16145 so that we can determine if we're looking at a "flag" enum. */
16146 update_enumeration_type_from_children (die, type, cu);
16147
16148 /* If this type has an underlying type that is not a stub, then we
16149 may use its attributes. We always use the "unsigned" attribute
16150 in this situation, because ordinarily we guess whether the type
16151 is unsigned -- but the guess can be wrong and the underlying type
16152 can tell us the reality. However, we defer to a local size
16153 attribute if one exists, because this lets the compiler override
16154 the underlying type if needed. */
16155 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16156 {
16157 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16158 if (TYPE_LENGTH (type) == 0)
16159 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16160 }
16161
16162 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16163
16164 return set_die_type (die, type, cu);
16165 }
16166
16167 /* Given a pointer to a die which begins an enumeration, process all
16168 the dies that define the members of the enumeration, and create the
16169 symbol for the enumeration type.
16170
16171 NOTE: We reverse the order of the element list. */
16172
16173 static void
16174 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16175 {
16176 struct type *this_type;
16177
16178 this_type = get_die_type (die, cu);
16179 if (this_type == NULL)
16180 this_type = read_enumeration_type (die, cu);
16181
16182 if (die->child != NULL)
16183 {
16184 struct die_info *child_die;
16185 struct symbol *sym;
16186 struct field *fields = NULL;
16187 int num_fields = 0;
16188 const char *name;
16189
16190 child_die = die->child;
16191 while (child_die && child_die->tag)
16192 {
16193 if (child_die->tag != DW_TAG_enumerator)
16194 {
16195 process_die (child_die, cu);
16196 }
16197 else
16198 {
16199 name = dwarf2_name (child_die, cu);
16200 if (name)
16201 {
16202 sym = new_symbol (child_die, this_type, cu);
16203
16204 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16205 {
16206 fields = (struct field *)
16207 xrealloc (fields,
16208 (num_fields + DW_FIELD_ALLOC_CHUNK)
16209 * sizeof (struct field));
16210 }
16211
16212 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16213 FIELD_TYPE (fields[num_fields]) = NULL;
16214 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16215 FIELD_BITSIZE (fields[num_fields]) = 0;
16216
16217 num_fields++;
16218 }
16219 }
16220
16221 child_die = sibling_die (child_die);
16222 }
16223
16224 if (num_fields)
16225 {
16226 TYPE_NFIELDS (this_type) = num_fields;
16227 TYPE_FIELDS (this_type) = (struct field *)
16228 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16229 memcpy (TYPE_FIELDS (this_type), fields,
16230 sizeof (struct field) * num_fields);
16231 xfree (fields);
16232 }
16233 }
16234
16235 /* If we are reading an enum from a .debug_types unit, and the enum
16236 is a declaration, and the enum is not the signatured type in the
16237 unit, then we do not want to add a symbol for it. Adding a
16238 symbol would in some cases obscure the true definition of the
16239 enum, giving users an incomplete type when the definition is
16240 actually available. Note that we do not want to do this for all
16241 enums which are just declarations, because C++0x allows forward
16242 enum declarations. */
16243 if (cu->per_cu->is_debug_types
16244 && die_is_declaration (die, cu))
16245 {
16246 struct signatured_type *sig_type;
16247
16248 sig_type = (struct signatured_type *) cu->per_cu;
16249 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16250 if (sig_type->type_offset_in_section != die->sect_off)
16251 return;
16252 }
16253
16254 new_symbol (die, this_type, cu);
16255 }
16256
16257 /* Extract all information from a DW_TAG_array_type DIE and put it in
16258 the DIE's type field. For now, this only handles one dimensional
16259 arrays. */
16260
16261 static struct type *
16262 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16263 {
16264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16265 struct die_info *child_die;
16266 struct type *type;
16267 struct type *element_type, *range_type, *index_type;
16268 struct attribute *attr;
16269 const char *name;
16270 struct dynamic_prop *byte_stride_prop = NULL;
16271 unsigned int bit_stride = 0;
16272
16273 element_type = die_type (die, cu);
16274
16275 /* The die_type call above may have already set the type for this DIE. */
16276 type = get_die_type (die, cu);
16277 if (type)
16278 return type;
16279
16280 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16281 if (attr != NULL)
16282 {
16283 int stride_ok;
16284
16285 byte_stride_prop
16286 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16287 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16288 if (!stride_ok)
16289 {
16290 complaint (&symfile_complaints,
16291 _("unable to read array DW_AT_byte_stride "
16292 " - DIE at %s [in module %s]"),
16293 sect_offset_str (die->sect_off),
16294 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16295 /* Ignore this attribute. We will likely not be able to print
16296 arrays of this type correctly, but there is little we can do
16297 to help if we cannot read the attribute's value. */
16298 byte_stride_prop = NULL;
16299 }
16300 }
16301
16302 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16303 if (attr != NULL)
16304 bit_stride = DW_UNSND (attr);
16305
16306 /* Irix 6.2 native cc creates array types without children for
16307 arrays with unspecified length. */
16308 if (die->child == NULL)
16309 {
16310 index_type = objfile_type (objfile)->builtin_int;
16311 range_type = create_static_range_type (NULL, index_type, 0, -1);
16312 type = create_array_type_with_stride (NULL, element_type, range_type,
16313 byte_stride_prop, bit_stride);
16314 return set_die_type (die, type, cu);
16315 }
16316
16317 std::vector<struct type *> range_types;
16318 child_die = die->child;
16319 while (child_die && child_die->tag)
16320 {
16321 if (child_die->tag == DW_TAG_subrange_type)
16322 {
16323 struct type *child_type = read_type_die (child_die, cu);
16324
16325 if (child_type != NULL)
16326 {
16327 /* The range type was succesfully read. Save it for the
16328 array type creation. */
16329 range_types.push_back (child_type);
16330 }
16331 }
16332 child_die = sibling_die (child_die);
16333 }
16334
16335 /* Dwarf2 dimensions are output from left to right, create the
16336 necessary array types in backwards order. */
16337
16338 type = element_type;
16339
16340 if (read_array_order (die, cu) == DW_ORD_col_major)
16341 {
16342 int i = 0;
16343
16344 while (i < range_types.size ())
16345 type = create_array_type_with_stride (NULL, type, range_types[i++],
16346 byte_stride_prop, bit_stride);
16347 }
16348 else
16349 {
16350 size_t ndim = range_types.size ();
16351 while (ndim-- > 0)
16352 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16353 byte_stride_prop, bit_stride);
16354 }
16355
16356 /* Understand Dwarf2 support for vector types (like they occur on
16357 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16358 array type. This is not part of the Dwarf2/3 standard yet, but a
16359 custom vendor extension. The main difference between a regular
16360 array and the vector variant is that vectors are passed by value
16361 to functions. */
16362 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16363 if (attr)
16364 make_vector_type (type);
16365
16366 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16367 implementation may choose to implement triple vectors using this
16368 attribute. */
16369 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16370 if (attr)
16371 {
16372 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16373 TYPE_LENGTH (type) = DW_UNSND (attr);
16374 else
16375 complaint (&symfile_complaints,
16376 _("DW_AT_byte_size for array type smaller "
16377 "than the total size of elements"));
16378 }
16379
16380 name = dwarf2_name (die, cu);
16381 if (name)
16382 TYPE_NAME (type) = name;
16383
16384 /* Install the type in the die. */
16385 set_die_type (die, type, cu);
16386
16387 /* set_die_type should be already done. */
16388 set_descriptive_type (type, die, cu);
16389
16390 return type;
16391 }
16392
16393 static enum dwarf_array_dim_ordering
16394 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16395 {
16396 struct attribute *attr;
16397
16398 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16399
16400 if (attr)
16401 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16402
16403 /* GNU F77 is a special case, as at 08/2004 array type info is the
16404 opposite order to the dwarf2 specification, but data is still
16405 laid out as per normal fortran.
16406
16407 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16408 version checking. */
16409
16410 if (cu->language == language_fortran
16411 && cu->producer && strstr (cu->producer, "GNU F77"))
16412 {
16413 return DW_ORD_row_major;
16414 }
16415
16416 switch (cu->language_defn->la_array_ordering)
16417 {
16418 case array_column_major:
16419 return DW_ORD_col_major;
16420 case array_row_major:
16421 default:
16422 return DW_ORD_row_major;
16423 };
16424 }
16425
16426 /* Extract all information from a DW_TAG_set_type DIE and put it in
16427 the DIE's type field. */
16428
16429 static struct type *
16430 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16431 {
16432 struct type *domain_type, *set_type;
16433 struct attribute *attr;
16434
16435 domain_type = die_type (die, cu);
16436
16437 /* The die_type call above may have already set the type for this DIE. */
16438 set_type = get_die_type (die, cu);
16439 if (set_type)
16440 return set_type;
16441
16442 set_type = create_set_type (NULL, domain_type);
16443
16444 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16445 if (attr)
16446 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16447
16448 return set_die_type (die, set_type, cu);
16449 }
16450
16451 /* A helper for read_common_block that creates a locexpr baton.
16452 SYM is the symbol which we are marking as computed.
16453 COMMON_DIE is the DIE for the common block.
16454 COMMON_LOC is the location expression attribute for the common
16455 block itself.
16456 MEMBER_LOC is the location expression attribute for the particular
16457 member of the common block that we are processing.
16458 CU is the CU from which the above come. */
16459
16460 static void
16461 mark_common_block_symbol_computed (struct symbol *sym,
16462 struct die_info *common_die,
16463 struct attribute *common_loc,
16464 struct attribute *member_loc,
16465 struct dwarf2_cu *cu)
16466 {
16467 struct dwarf2_per_objfile *dwarf2_per_objfile
16468 = cu->per_cu->dwarf2_per_objfile;
16469 struct objfile *objfile = dwarf2_per_objfile->objfile;
16470 struct dwarf2_locexpr_baton *baton;
16471 gdb_byte *ptr;
16472 unsigned int cu_off;
16473 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16474 LONGEST offset = 0;
16475
16476 gdb_assert (common_loc && member_loc);
16477 gdb_assert (attr_form_is_block (common_loc));
16478 gdb_assert (attr_form_is_block (member_loc)
16479 || attr_form_is_constant (member_loc));
16480
16481 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16482 baton->per_cu = cu->per_cu;
16483 gdb_assert (baton->per_cu);
16484
16485 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16486
16487 if (attr_form_is_constant (member_loc))
16488 {
16489 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16490 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16491 }
16492 else
16493 baton->size += DW_BLOCK (member_loc)->size;
16494
16495 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16496 baton->data = ptr;
16497
16498 *ptr++ = DW_OP_call4;
16499 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16500 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16501 ptr += 4;
16502
16503 if (attr_form_is_constant (member_loc))
16504 {
16505 *ptr++ = DW_OP_addr;
16506 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16507 ptr += cu->header.addr_size;
16508 }
16509 else
16510 {
16511 /* We have to copy the data here, because DW_OP_call4 will only
16512 use a DW_AT_location attribute. */
16513 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16514 ptr += DW_BLOCK (member_loc)->size;
16515 }
16516
16517 *ptr++ = DW_OP_plus;
16518 gdb_assert (ptr - baton->data == baton->size);
16519
16520 SYMBOL_LOCATION_BATON (sym) = baton;
16521 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16522 }
16523
16524 /* Create appropriate locally-scoped variables for all the
16525 DW_TAG_common_block entries. Also create a struct common_block
16526 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16527 is used to sepate the common blocks name namespace from regular
16528 variable names. */
16529
16530 static void
16531 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16532 {
16533 struct attribute *attr;
16534
16535 attr = dwarf2_attr (die, DW_AT_location, cu);
16536 if (attr)
16537 {
16538 /* Support the .debug_loc offsets. */
16539 if (attr_form_is_block (attr))
16540 {
16541 /* Ok. */
16542 }
16543 else if (attr_form_is_section_offset (attr))
16544 {
16545 dwarf2_complex_location_expr_complaint ();
16546 attr = NULL;
16547 }
16548 else
16549 {
16550 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16551 "common block member");
16552 attr = NULL;
16553 }
16554 }
16555
16556 if (die->child != NULL)
16557 {
16558 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16559 struct die_info *child_die;
16560 size_t n_entries = 0, size;
16561 struct common_block *common_block;
16562 struct symbol *sym;
16563
16564 for (child_die = die->child;
16565 child_die && child_die->tag;
16566 child_die = sibling_die (child_die))
16567 ++n_entries;
16568
16569 size = (sizeof (struct common_block)
16570 + (n_entries - 1) * sizeof (struct symbol *));
16571 common_block
16572 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16573 size);
16574 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16575 common_block->n_entries = 0;
16576
16577 for (child_die = die->child;
16578 child_die && child_die->tag;
16579 child_die = sibling_die (child_die))
16580 {
16581 /* Create the symbol in the DW_TAG_common_block block in the current
16582 symbol scope. */
16583 sym = new_symbol (child_die, NULL, cu);
16584 if (sym != NULL)
16585 {
16586 struct attribute *member_loc;
16587
16588 common_block->contents[common_block->n_entries++] = sym;
16589
16590 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16591 cu);
16592 if (member_loc)
16593 {
16594 /* GDB has handled this for a long time, but it is
16595 not specified by DWARF. It seems to have been
16596 emitted by gfortran at least as recently as:
16597 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16598 complaint (&symfile_complaints,
16599 _("Variable in common block has "
16600 "DW_AT_data_member_location "
16601 "- DIE at %s [in module %s]"),
16602 sect_offset_str (child_die->sect_off),
16603 objfile_name (objfile));
16604
16605 if (attr_form_is_section_offset (member_loc))
16606 dwarf2_complex_location_expr_complaint ();
16607 else if (attr_form_is_constant (member_loc)
16608 || attr_form_is_block (member_loc))
16609 {
16610 if (attr)
16611 mark_common_block_symbol_computed (sym, die, attr,
16612 member_loc, cu);
16613 }
16614 else
16615 dwarf2_complex_location_expr_complaint ();
16616 }
16617 }
16618 }
16619
16620 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16621 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16622 }
16623 }
16624
16625 /* Create a type for a C++ namespace. */
16626
16627 static struct type *
16628 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16629 {
16630 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16631 const char *previous_prefix, *name;
16632 int is_anonymous;
16633 struct type *type;
16634
16635 /* For extensions, reuse the type of the original namespace. */
16636 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16637 {
16638 struct die_info *ext_die;
16639 struct dwarf2_cu *ext_cu = cu;
16640
16641 ext_die = dwarf2_extension (die, &ext_cu);
16642 type = read_type_die (ext_die, ext_cu);
16643
16644 /* EXT_CU may not be the same as CU.
16645 Ensure TYPE is recorded with CU in die_type_hash. */
16646 return set_die_type (die, type, cu);
16647 }
16648
16649 name = namespace_name (die, &is_anonymous, cu);
16650
16651 /* Now build the name of the current namespace. */
16652
16653 previous_prefix = determine_prefix (die, cu);
16654 if (previous_prefix[0] != '\0')
16655 name = typename_concat (&objfile->objfile_obstack,
16656 previous_prefix, name, 0, cu);
16657
16658 /* Create the type. */
16659 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16660 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16661
16662 return set_die_type (die, type, cu);
16663 }
16664
16665 /* Read a namespace scope. */
16666
16667 static void
16668 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16669 {
16670 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16671 int is_anonymous;
16672
16673 /* Add a symbol associated to this if we haven't seen the namespace
16674 before. Also, add a using directive if it's an anonymous
16675 namespace. */
16676
16677 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16678 {
16679 struct type *type;
16680
16681 type = read_type_die (die, cu);
16682 new_symbol (die, type, cu);
16683
16684 namespace_name (die, &is_anonymous, cu);
16685 if (is_anonymous)
16686 {
16687 const char *previous_prefix = determine_prefix (die, cu);
16688
16689 std::vector<const char *> excludes;
16690 add_using_directive (using_directives (cu->language),
16691 previous_prefix, TYPE_NAME (type), NULL,
16692 NULL, excludes, 0, &objfile->objfile_obstack);
16693 }
16694 }
16695
16696 if (die->child != NULL)
16697 {
16698 struct die_info *child_die = die->child;
16699
16700 while (child_die && child_die->tag)
16701 {
16702 process_die (child_die, cu);
16703 child_die = sibling_die (child_die);
16704 }
16705 }
16706 }
16707
16708 /* Read a Fortran module as type. This DIE can be only a declaration used for
16709 imported module. Still we need that type as local Fortran "use ... only"
16710 declaration imports depend on the created type in determine_prefix. */
16711
16712 static struct type *
16713 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16714 {
16715 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16716 const char *module_name;
16717 struct type *type;
16718
16719 module_name = dwarf2_name (die, cu);
16720 if (!module_name)
16721 complaint (&symfile_complaints,
16722 _("DW_TAG_module has no name, offset %s"),
16723 sect_offset_str (die->sect_off));
16724 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16725
16726 /* determine_prefix uses TYPE_TAG_NAME. */
16727 TYPE_TAG_NAME (type) = TYPE_NAME (type);
16728
16729 return set_die_type (die, type, cu);
16730 }
16731
16732 /* Read a Fortran module. */
16733
16734 static void
16735 read_module (struct die_info *die, struct dwarf2_cu *cu)
16736 {
16737 struct die_info *child_die = die->child;
16738 struct type *type;
16739
16740 type = read_type_die (die, cu);
16741 new_symbol (die, type, cu);
16742
16743 while (child_die && child_die->tag)
16744 {
16745 process_die (child_die, cu);
16746 child_die = sibling_die (child_die);
16747 }
16748 }
16749
16750 /* Return the name of the namespace represented by DIE. Set
16751 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16752 namespace. */
16753
16754 static const char *
16755 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16756 {
16757 struct die_info *current_die;
16758 const char *name = NULL;
16759
16760 /* Loop through the extensions until we find a name. */
16761
16762 for (current_die = die;
16763 current_die != NULL;
16764 current_die = dwarf2_extension (die, &cu))
16765 {
16766 /* We don't use dwarf2_name here so that we can detect the absence
16767 of a name -> anonymous namespace. */
16768 name = dwarf2_string_attr (die, DW_AT_name, cu);
16769
16770 if (name != NULL)
16771 break;
16772 }
16773
16774 /* Is it an anonymous namespace? */
16775
16776 *is_anonymous = (name == NULL);
16777 if (*is_anonymous)
16778 name = CP_ANONYMOUS_NAMESPACE_STR;
16779
16780 return name;
16781 }
16782
16783 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16784 the user defined type vector. */
16785
16786 static struct type *
16787 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16788 {
16789 struct gdbarch *gdbarch
16790 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16791 struct comp_unit_head *cu_header = &cu->header;
16792 struct type *type;
16793 struct attribute *attr_byte_size;
16794 struct attribute *attr_address_class;
16795 int byte_size, addr_class;
16796 struct type *target_type;
16797
16798 target_type = die_type (die, cu);
16799
16800 /* The die_type call above may have already set the type for this DIE. */
16801 type = get_die_type (die, cu);
16802 if (type)
16803 return type;
16804
16805 type = lookup_pointer_type (target_type);
16806
16807 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16808 if (attr_byte_size)
16809 byte_size = DW_UNSND (attr_byte_size);
16810 else
16811 byte_size = cu_header->addr_size;
16812
16813 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16814 if (attr_address_class)
16815 addr_class = DW_UNSND (attr_address_class);
16816 else
16817 addr_class = DW_ADDR_none;
16818
16819 /* If the pointer size or address class is different than the
16820 default, create a type variant marked as such and set the
16821 length accordingly. */
16822 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
16823 {
16824 if (gdbarch_address_class_type_flags_p (gdbarch))
16825 {
16826 int type_flags;
16827
16828 type_flags = gdbarch_address_class_type_flags
16829 (gdbarch, byte_size, addr_class);
16830 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16831 == 0);
16832 type = make_type_with_address_space (type, type_flags);
16833 }
16834 else if (TYPE_LENGTH (type) != byte_size)
16835 {
16836 complaint (&symfile_complaints,
16837 _("invalid pointer size %d"), byte_size);
16838 }
16839 else
16840 {
16841 /* Should we also complain about unhandled address classes? */
16842 }
16843 }
16844
16845 TYPE_LENGTH (type) = byte_size;
16846 return set_die_type (die, type, cu);
16847 }
16848
16849 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16850 the user defined type vector. */
16851
16852 static struct type *
16853 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16854 {
16855 struct type *type;
16856 struct type *to_type;
16857 struct type *domain;
16858
16859 to_type = die_type (die, cu);
16860 domain = die_containing_type (die, cu);
16861
16862 /* The calls above may have already set the type for this DIE. */
16863 type = get_die_type (die, cu);
16864 if (type)
16865 return type;
16866
16867 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16868 type = lookup_methodptr_type (to_type);
16869 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16870 {
16871 struct type *new_type
16872 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16873
16874 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16875 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16876 TYPE_VARARGS (to_type));
16877 type = lookup_methodptr_type (new_type);
16878 }
16879 else
16880 type = lookup_memberptr_type (to_type, domain);
16881
16882 return set_die_type (die, type, cu);
16883 }
16884
16885 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16886 the user defined type vector. */
16887
16888 static struct type *
16889 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16890 enum type_code refcode)
16891 {
16892 struct comp_unit_head *cu_header = &cu->header;
16893 struct type *type, *target_type;
16894 struct attribute *attr;
16895
16896 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16897
16898 target_type = die_type (die, cu);
16899
16900 /* The die_type call above may have already set the type for this DIE. */
16901 type = get_die_type (die, cu);
16902 if (type)
16903 return type;
16904
16905 type = lookup_reference_type (target_type, refcode);
16906 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16907 if (attr)
16908 {
16909 TYPE_LENGTH (type) = DW_UNSND (attr);
16910 }
16911 else
16912 {
16913 TYPE_LENGTH (type) = cu_header->addr_size;
16914 }
16915 return set_die_type (die, type, cu);
16916 }
16917
16918 /* Add the given cv-qualifiers to the element type of the array. GCC
16919 outputs DWARF type qualifiers that apply to an array, not the
16920 element type. But GDB relies on the array element type to carry
16921 the cv-qualifiers. This mimics section 6.7.3 of the C99
16922 specification. */
16923
16924 static struct type *
16925 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16926 struct type *base_type, int cnst, int voltl)
16927 {
16928 struct type *el_type, *inner_array;
16929
16930 base_type = copy_type (base_type);
16931 inner_array = base_type;
16932
16933 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16934 {
16935 TYPE_TARGET_TYPE (inner_array) =
16936 copy_type (TYPE_TARGET_TYPE (inner_array));
16937 inner_array = TYPE_TARGET_TYPE (inner_array);
16938 }
16939
16940 el_type = TYPE_TARGET_TYPE (inner_array);
16941 cnst |= TYPE_CONST (el_type);
16942 voltl |= TYPE_VOLATILE (el_type);
16943 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16944
16945 return set_die_type (die, base_type, cu);
16946 }
16947
16948 static struct type *
16949 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16950 {
16951 struct type *base_type, *cv_type;
16952
16953 base_type = die_type (die, cu);
16954
16955 /* The die_type call above may have already set the type for this DIE. */
16956 cv_type = get_die_type (die, cu);
16957 if (cv_type)
16958 return cv_type;
16959
16960 /* In case the const qualifier is applied to an array type, the element type
16961 is so qualified, not the array type (section 6.7.3 of C99). */
16962 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16963 return add_array_cv_type (die, cu, base_type, 1, 0);
16964
16965 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16966 return set_die_type (die, cv_type, cu);
16967 }
16968
16969 static struct type *
16970 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16971 {
16972 struct type *base_type, *cv_type;
16973
16974 base_type = die_type (die, cu);
16975
16976 /* The die_type call above may have already set the type for this DIE. */
16977 cv_type = get_die_type (die, cu);
16978 if (cv_type)
16979 return cv_type;
16980
16981 /* In case the volatile qualifier is applied to an array type, the
16982 element type is so qualified, not the array type (section 6.7.3
16983 of C99). */
16984 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16985 return add_array_cv_type (die, cu, base_type, 0, 1);
16986
16987 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16988 return set_die_type (die, cv_type, cu);
16989 }
16990
16991 /* Handle DW_TAG_restrict_type. */
16992
16993 static struct type *
16994 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct type *base_type, *cv_type;
16997
16998 base_type = die_type (die, cu);
16999
17000 /* The die_type call above may have already set the type for this DIE. */
17001 cv_type = get_die_type (die, cu);
17002 if (cv_type)
17003 return cv_type;
17004
17005 cv_type = make_restrict_type (base_type);
17006 return set_die_type (die, cv_type, cu);
17007 }
17008
17009 /* Handle DW_TAG_atomic_type. */
17010
17011 static struct type *
17012 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17013 {
17014 struct type *base_type, *cv_type;
17015
17016 base_type = die_type (die, cu);
17017
17018 /* The die_type call above may have already set the type for this DIE. */
17019 cv_type = get_die_type (die, cu);
17020 if (cv_type)
17021 return cv_type;
17022
17023 cv_type = make_atomic_type (base_type);
17024 return set_die_type (die, cv_type, cu);
17025 }
17026
17027 /* Extract all information from a DW_TAG_string_type DIE and add to
17028 the user defined type vector. It isn't really a user defined type,
17029 but it behaves like one, with other DIE's using an AT_user_def_type
17030 attribute to reference it. */
17031
17032 static struct type *
17033 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17034 {
17035 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17037 struct type *type, *range_type, *index_type, *char_type;
17038 struct attribute *attr;
17039 unsigned int length;
17040
17041 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17042 if (attr)
17043 {
17044 length = DW_UNSND (attr);
17045 }
17046 else
17047 {
17048 /* Check for the DW_AT_byte_size attribute. */
17049 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17050 if (attr)
17051 {
17052 length = DW_UNSND (attr);
17053 }
17054 else
17055 {
17056 length = 1;
17057 }
17058 }
17059
17060 index_type = objfile_type (objfile)->builtin_int;
17061 range_type = create_static_range_type (NULL, index_type, 1, length);
17062 char_type = language_string_char_type (cu->language_defn, gdbarch);
17063 type = create_string_type (NULL, char_type, range_type);
17064
17065 return set_die_type (die, type, cu);
17066 }
17067
17068 /* Assuming that DIE corresponds to a function, returns nonzero
17069 if the function is prototyped. */
17070
17071 static int
17072 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17073 {
17074 struct attribute *attr;
17075
17076 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17077 if (attr && (DW_UNSND (attr) != 0))
17078 return 1;
17079
17080 /* The DWARF standard implies that the DW_AT_prototyped attribute
17081 is only meaninful for C, but the concept also extends to other
17082 languages that allow unprototyped functions (Eg: Objective C).
17083 For all other languages, assume that functions are always
17084 prototyped. */
17085 if (cu->language != language_c
17086 && cu->language != language_objc
17087 && cu->language != language_opencl)
17088 return 1;
17089
17090 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17091 prototyped and unprototyped functions; default to prototyped,
17092 since that is more common in modern code (and RealView warns
17093 about unprototyped functions). */
17094 if (producer_is_realview (cu->producer))
17095 return 1;
17096
17097 return 0;
17098 }
17099
17100 /* Handle DIES due to C code like:
17101
17102 struct foo
17103 {
17104 int (*funcp)(int a, long l);
17105 int b;
17106 };
17107
17108 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17109
17110 static struct type *
17111 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17112 {
17113 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17114 struct type *type; /* Type that this function returns. */
17115 struct type *ftype; /* Function that returns above type. */
17116 struct attribute *attr;
17117
17118 type = die_type (die, cu);
17119
17120 /* The die_type call above may have already set the type for this DIE. */
17121 ftype = get_die_type (die, cu);
17122 if (ftype)
17123 return ftype;
17124
17125 ftype = lookup_function_type (type);
17126
17127 if (prototyped_function_p (die, cu))
17128 TYPE_PROTOTYPED (ftype) = 1;
17129
17130 /* Store the calling convention in the type if it's available in
17131 the subroutine die. Otherwise set the calling convention to
17132 the default value DW_CC_normal. */
17133 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17134 if (attr)
17135 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17136 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17137 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17138 else
17139 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17140
17141 /* Record whether the function returns normally to its caller or not
17142 if the DWARF producer set that information. */
17143 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17144 if (attr && (DW_UNSND (attr) != 0))
17145 TYPE_NO_RETURN (ftype) = 1;
17146
17147 /* We need to add the subroutine type to the die immediately so
17148 we don't infinitely recurse when dealing with parameters
17149 declared as the same subroutine type. */
17150 set_die_type (die, ftype, cu);
17151
17152 if (die->child != NULL)
17153 {
17154 struct type *void_type = objfile_type (objfile)->builtin_void;
17155 struct die_info *child_die;
17156 int nparams, iparams;
17157
17158 /* Count the number of parameters.
17159 FIXME: GDB currently ignores vararg functions, but knows about
17160 vararg member functions. */
17161 nparams = 0;
17162 child_die = die->child;
17163 while (child_die && child_die->tag)
17164 {
17165 if (child_die->tag == DW_TAG_formal_parameter)
17166 nparams++;
17167 else if (child_die->tag == DW_TAG_unspecified_parameters)
17168 TYPE_VARARGS (ftype) = 1;
17169 child_die = sibling_die (child_die);
17170 }
17171
17172 /* Allocate storage for parameters and fill them in. */
17173 TYPE_NFIELDS (ftype) = nparams;
17174 TYPE_FIELDS (ftype) = (struct field *)
17175 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17176
17177 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17178 even if we error out during the parameters reading below. */
17179 for (iparams = 0; iparams < nparams; iparams++)
17180 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17181
17182 iparams = 0;
17183 child_die = die->child;
17184 while (child_die && child_die->tag)
17185 {
17186 if (child_die->tag == DW_TAG_formal_parameter)
17187 {
17188 struct type *arg_type;
17189
17190 /* DWARF version 2 has no clean way to discern C++
17191 static and non-static member functions. G++ helps
17192 GDB by marking the first parameter for non-static
17193 member functions (which is the this pointer) as
17194 artificial. We pass this information to
17195 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17196
17197 DWARF version 3 added DW_AT_object_pointer, which GCC
17198 4.5 does not yet generate. */
17199 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17200 if (attr)
17201 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17202 else
17203 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17204 arg_type = die_type (child_die, cu);
17205
17206 /* RealView does not mark THIS as const, which the testsuite
17207 expects. GCC marks THIS as const in method definitions,
17208 but not in the class specifications (GCC PR 43053). */
17209 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17210 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17211 {
17212 int is_this = 0;
17213 struct dwarf2_cu *arg_cu = cu;
17214 const char *name = dwarf2_name (child_die, cu);
17215
17216 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17217 if (attr)
17218 {
17219 /* If the compiler emits this, use it. */
17220 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17221 is_this = 1;
17222 }
17223 else if (name && strcmp (name, "this") == 0)
17224 /* Function definitions will have the argument names. */
17225 is_this = 1;
17226 else if (name == NULL && iparams == 0)
17227 /* Declarations may not have the names, so like
17228 elsewhere in GDB, assume an artificial first
17229 argument is "this". */
17230 is_this = 1;
17231
17232 if (is_this)
17233 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17234 arg_type, 0);
17235 }
17236
17237 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17238 iparams++;
17239 }
17240 child_die = sibling_die (child_die);
17241 }
17242 }
17243
17244 return ftype;
17245 }
17246
17247 static struct type *
17248 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17249 {
17250 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17251 const char *name = NULL;
17252 struct type *this_type, *target_type;
17253
17254 name = dwarf2_full_name (NULL, die, cu);
17255 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17256 TYPE_TARGET_STUB (this_type) = 1;
17257 set_die_type (die, this_type, cu);
17258 target_type = die_type (die, cu);
17259 if (target_type != this_type)
17260 TYPE_TARGET_TYPE (this_type) = target_type;
17261 else
17262 {
17263 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17264 spec and cause infinite loops in GDB. */
17265 complaint (&symfile_complaints,
17266 _("Self-referential DW_TAG_typedef "
17267 "- DIE at %s [in module %s]"),
17268 sect_offset_str (die->sect_off), objfile_name (objfile));
17269 TYPE_TARGET_TYPE (this_type) = NULL;
17270 }
17271 return this_type;
17272 }
17273
17274 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17275 (which may be different from NAME) to the architecture back-end to allow
17276 it to guess the correct format if necessary. */
17277
17278 static struct type *
17279 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17280 const char *name_hint)
17281 {
17282 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17283 const struct floatformat **format;
17284 struct type *type;
17285
17286 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17287 if (format)
17288 type = init_float_type (objfile, bits, name, format);
17289 else
17290 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17291
17292 return type;
17293 }
17294
17295 /* Find a representation of a given base type and install
17296 it in the TYPE field of the die. */
17297
17298 static struct type *
17299 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17300 {
17301 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17302 struct type *type;
17303 struct attribute *attr;
17304 int encoding = 0, bits = 0;
17305 const char *name;
17306
17307 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17308 if (attr)
17309 {
17310 encoding = DW_UNSND (attr);
17311 }
17312 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17313 if (attr)
17314 {
17315 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17316 }
17317 name = dwarf2_name (die, cu);
17318 if (!name)
17319 {
17320 complaint (&symfile_complaints,
17321 _("DW_AT_name missing from DW_TAG_base_type"));
17322 }
17323
17324 switch (encoding)
17325 {
17326 case DW_ATE_address:
17327 /* Turn DW_ATE_address into a void * pointer. */
17328 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17329 type = init_pointer_type (objfile, bits, name, type);
17330 break;
17331 case DW_ATE_boolean:
17332 type = init_boolean_type (objfile, bits, 1, name);
17333 break;
17334 case DW_ATE_complex_float:
17335 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17336 type = init_complex_type (objfile, name, type);
17337 break;
17338 case DW_ATE_decimal_float:
17339 type = init_decfloat_type (objfile, bits, name);
17340 break;
17341 case DW_ATE_float:
17342 type = dwarf2_init_float_type (objfile, bits, name, name);
17343 break;
17344 case DW_ATE_signed:
17345 type = init_integer_type (objfile, bits, 0, name);
17346 break;
17347 case DW_ATE_unsigned:
17348 if (cu->language == language_fortran
17349 && name
17350 && startswith (name, "character("))
17351 type = init_character_type (objfile, bits, 1, name);
17352 else
17353 type = init_integer_type (objfile, bits, 1, name);
17354 break;
17355 case DW_ATE_signed_char:
17356 if (cu->language == language_ada || cu->language == language_m2
17357 || cu->language == language_pascal
17358 || cu->language == language_fortran)
17359 type = init_character_type (objfile, bits, 0, name);
17360 else
17361 type = init_integer_type (objfile, bits, 0, name);
17362 break;
17363 case DW_ATE_unsigned_char:
17364 if (cu->language == language_ada || cu->language == language_m2
17365 || cu->language == language_pascal
17366 || cu->language == language_fortran
17367 || cu->language == language_rust)
17368 type = init_character_type (objfile, bits, 1, name);
17369 else
17370 type = init_integer_type (objfile, bits, 1, name);
17371 break;
17372 case DW_ATE_UTF:
17373 {
17374 gdbarch *arch = get_objfile_arch (objfile);
17375
17376 if (bits == 16)
17377 type = builtin_type (arch)->builtin_char16;
17378 else if (bits == 32)
17379 type = builtin_type (arch)->builtin_char32;
17380 else
17381 {
17382 complaint (&symfile_complaints,
17383 _("unsupported DW_ATE_UTF bit size: '%d'"),
17384 bits);
17385 type = init_integer_type (objfile, bits, 1, name);
17386 }
17387 return set_die_type (die, type, cu);
17388 }
17389 break;
17390
17391 default:
17392 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
17393 dwarf_type_encoding_name (encoding));
17394 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17395 break;
17396 }
17397
17398 if (name && strcmp (name, "char") == 0)
17399 TYPE_NOSIGN (type) = 1;
17400
17401 return set_die_type (die, type, cu);
17402 }
17403
17404 /* Parse dwarf attribute if it's a block, reference or constant and put the
17405 resulting value of the attribute into struct bound_prop.
17406 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17407
17408 static int
17409 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17410 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17411 {
17412 struct dwarf2_property_baton *baton;
17413 struct obstack *obstack
17414 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17415
17416 if (attr == NULL || prop == NULL)
17417 return 0;
17418
17419 if (attr_form_is_block (attr))
17420 {
17421 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17422 baton->referenced_type = NULL;
17423 baton->locexpr.per_cu = cu->per_cu;
17424 baton->locexpr.size = DW_BLOCK (attr)->size;
17425 baton->locexpr.data = DW_BLOCK (attr)->data;
17426 prop->data.baton = baton;
17427 prop->kind = PROP_LOCEXPR;
17428 gdb_assert (prop->data.baton != NULL);
17429 }
17430 else if (attr_form_is_ref (attr))
17431 {
17432 struct dwarf2_cu *target_cu = cu;
17433 struct die_info *target_die;
17434 struct attribute *target_attr;
17435
17436 target_die = follow_die_ref (die, attr, &target_cu);
17437 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17438 if (target_attr == NULL)
17439 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17440 target_cu);
17441 if (target_attr == NULL)
17442 return 0;
17443
17444 switch (target_attr->name)
17445 {
17446 case DW_AT_location:
17447 if (attr_form_is_section_offset (target_attr))
17448 {
17449 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17450 baton->referenced_type = die_type (target_die, target_cu);
17451 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17452 prop->data.baton = baton;
17453 prop->kind = PROP_LOCLIST;
17454 gdb_assert (prop->data.baton != NULL);
17455 }
17456 else if (attr_form_is_block (target_attr))
17457 {
17458 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17459 baton->referenced_type = die_type (target_die, target_cu);
17460 baton->locexpr.per_cu = cu->per_cu;
17461 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17462 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17463 prop->data.baton = baton;
17464 prop->kind = PROP_LOCEXPR;
17465 gdb_assert (prop->data.baton != NULL);
17466 }
17467 else
17468 {
17469 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17470 "dynamic property");
17471 return 0;
17472 }
17473 break;
17474 case DW_AT_data_member_location:
17475 {
17476 LONGEST offset;
17477
17478 if (!handle_data_member_location (target_die, target_cu,
17479 &offset))
17480 return 0;
17481
17482 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17483 baton->referenced_type = read_type_die (target_die->parent,
17484 target_cu);
17485 baton->offset_info.offset = offset;
17486 baton->offset_info.type = die_type (target_die, target_cu);
17487 prop->data.baton = baton;
17488 prop->kind = PROP_ADDR_OFFSET;
17489 break;
17490 }
17491 }
17492 }
17493 else if (attr_form_is_constant (attr))
17494 {
17495 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17496 prop->kind = PROP_CONST;
17497 }
17498 else
17499 {
17500 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17501 dwarf2_name (die, cu));
17502 return 0;
17503 }
17504
17505 return 1;
17506 }
17507
17508 /* Read the given DW_AT_subrange DIE. */
17509
17510 static struct type *
17511 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17512 {
17513 struct type *base_type, *orig_base_type;
17514 struct type *range_type;
17515 struct attribute *attr;
17516 struct dynamic_prop low, high;
17517 int low_default_is_valid;
17518 int high_bound_is_count = 0;
17519 const char *name;
17520 LONGEST negative_mask;
17521
17522 orig_base_type = die_type (die, cu);
17523 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17524 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17525 creating the range type, but we use the result of check_typedef
17526 when examining properties of the type. */
17527 base_type = check_typedef (orig_base_type);
17528
17529 /* The die_type call above may have already set the type for this DIE. */
17530 range_type = get_die_type (die, cu);
17531 if (range_type)
17532 return range_type;
17533
17534 low.kind = PROP_CONST;
17535 high.kind = PROP_CONST;
17536 high.data.const_val = 0;
17537
17538 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17539 omitting DW_AT_lower_bound. */
17540 switch (cu->language)
17541 {
17542 case language_c:
17543 case language_cplus:
17544 low.data.const_val = 0;
17545 low_default_is_valid = 1;
17546 break;
17547 case language_fortran:
17548 low.data.const_val = 1;
17549 low_default_is_valid = 1;
17550 break;
17551 case language_d:
17552 case language_objc:
17553 case language_rust:
17554 low.data.const_val = 0;
17555 low_default_is_valid = (cu->header.version >= 4);
17556 break;
17557 case language_ada:
17558 case language_m2:
17559 case language_pascal:
17560 low.data.const_val = 1;
17561 low_default_is_valid = (cu->header.version >= 4);
17562 break;
17563 default:
17564 low.data.const_val = 0;
17565 low_default_is_valid = 0;
17566 break;
17567 }
17568
17569 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17570 if (attr)
17571 attr_to_dynamic_prop (attr, die, cu, &low);
17572 else if (!low_default_is_valid)
17573 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
17574 "- DIE at %s [in module %s]"),
17575 sect_offset_str (die->sect_off),
17576 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17577
17578 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
17579 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17580 {
17581 attr = dwarf2_attr (die, DW_AT_count, cu);
17582 if (attr_to_dynamic_prop (attr, die, cu, &high))
17583 {
17584 /* If bounds are constant do the final calculation here. */
17585 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17586 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17587 else
17588 high_bound_is_count = 1;
17589 }
17590 }
17591
17592 /* Dwarf-2 specifications explicitly allows to create subrange types
17593 without specifying a base type.
17594 In that case, the base type must be set to the type of
17595 the lower bound, upper bound or count, in that order, if any of these
17596 three attributes references an object that has a type.
17597 If no base type is found, the Dwarf-2 specifications say that
17598 a signed integer type of size equal to the size of an address should
17599 be used.
17600 For the following C code: `extern char gdb_int [];'
17601 GCC produces an empty range DIE.
17602 FIXME: muller/2010-05-28: Possible references to object for low bound,
17603 high bound or count are not yet handled by this code. */
17604 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17605 {
17606 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17607 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17608 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17609 struct type *int_type = objfile_type (objfile)->builtin_int;
17610
17611 /* Test "int", "long int", and "long long int" objfile types,
17612 and select the first one having a size above or equal to the
17613 architecture address size. */
17614 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17615 base_type = int_type;
17616 else
17617 {
17618 int_type = objfile_type (objfile)->builtin_long;
17619 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17620 base_type = int_type;
17621 else
17622 {
17623 int_type = objfile_type (objfile)->builtin_long_long;
17624 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17625 base_type = int_type;
17626 }
17627 }
17628 }
17629
17630 /* Normally, the DWARF producers are expected to use a signed
17631 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17632 But this is unfortunately not always the case, as witnessed
17633 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17634 is used instead. To work around that ambiguity, we treat
17635 the bounds as signed, and thus sign-extend their values, when
17636 the base type is signed. */
17637 negative_mask =
17638 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17639 if (low.kind == PROP_CONST
17640 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17641 low.data.const_val |= negative_mask;
17642 if (high.kind == PROP_CONST
17643 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17644 high.data.const_val |= negative_mask;
17645
17646 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17647
17648 if (high_bound_is_count)
17649 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17650
17651 /* Ada expects an empty array on no boundary attributes. */
17652 if (attr == NULL && cu->language != language_ada)
17653 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17654
17655 name = dwarf2_name (die, cu);
17656 if (name)
17657 TYPE_NAME (range_type) = name;
17658
17659 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17660 if (attr)
17661 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17662
17663 set_die_type (die, range_type, cu);
17664
17665 /* set_die_type should be already done. */
17666 set_descriptive_type (range_type, die, cu);
17667
17668 return range_type;
17669 }
17670
17671 static struct type *
17672 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17673 {
17674 struct type *type;
17675
17676 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17677 NULL);
17678 TYPE_NAME (type) = dwarf2_name (die, cu);
17679
17680 /* In Ada, an unspecified type is typically used when the description
17681 of the type is defered to a different unit. When encountering
17682 such a type, we treat it as a stub, and try to resolve it later on,
17683 when needed. */
17684 if (cu->language == language_ada)
17685 TYPE_STUB (type) = 1;
17686
17687 return set_die_type (die, type, cu);
17688 }
17689
17690 /* Read a single die and all its descendents. Set the die's sibling
17691 field to NULL; set other fields in the die correctly, and set all
17692 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17693 location of the info_ptr after reading all of those dies. PARENT
17694 is the parent of the die in question. */
17695
17696 static struct die_info *
17697 read_die_and_children (const struct die_reader_specs *reader,
17698 const gdb_byte *info_ptr,
17699 const gdb_byte **new_info_ptr,
17700 struct die_info *parent)
17701 {
17702 struct die_info *die;
17703 const gdb_byte *cur_ptr;
17704 int has_children;
17705
17706 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17707 if (die == NULL)
17708 {
17709 *new_info_ptr = cur_ptr;
17710 return NULL;
17711 }
17712 store_in_ref_table (die, reader->cu);
17713
17714 if (has_children)
17715 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17716 else
17717 {
17718 die->child = NULL;
17719 *new_info_ptr = cur_ptr;
17720 }
17721
17722 die->sibling = NULL;
17723 die->parent = parent;
17724 return die;
17725 }
17726
17727 /* Read a die, all of its descendents, and all of its siblings; set
17728 all of the fields of all of the dies correctly. Arguments are as
17729 in read_die_and_children. */
17730
17731 static struct die_info *
17732 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17733 const gdb_byte *info_ptr,
17734 const gdb_byte **new_info_ptr,
17735 struct die_info *parent)
17736 {
17737 struct die_info *first_die, *last_sibling;
17738 const gdb_byte *cur_ptr;
17739
17740 cur_ptr = info_ptr;
17741 first_die = last_sibling = NULL;
17742
17743 while (1)
17744 {
17745 struct die_info *die
17746 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17747
17748 if (die == NULL)
17749 {
17750 *new_info_ptr = cur_ptr;
17751 return first_die;
17752 }
17753
17754 if (!first_die)
17755 first_die = die;
17756 else
17757 last_sibling->sibling = die;
17758
17759 last_sibling = die;
17760 }
17761 }
17762
17763 /* Read a die, all of its descendents, and all of its siblings; set
17764 all of the fields of all of the dies correctly. Arguments are as
17765 in read_die_and_children.
17766 This the main entry point for reading a DIE and all its children. */
17767
17768 static struct die_info *
17769 read_die_and_siblings (const struct die_reader_specs *reader,
17770 const gdb_byte *info_ptr,
17771 const gdb_byte **new_info_ptr,
17772 struct die_info *parent)
17773 {
17774 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17775 new_info_ptr, parent);
17776
17777 if (dwarf_die_debug)
17778 {
17779 fprintf_unfiltered (gdb_stdlog,
17780 "Read die from %s@0x%x of %s:\n",
17781 get_section_name (reader->die_section),
17782 (unsigned) (info_ptr - reader->die_section->buffer),
17783 bfd_get_filename (reader->abfd));
17784 dump_die (die, dwarf_die_debug);
17785 }
17786
17787 return die;
17788 }
17789
17790 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17791 attributes.
17792 The caller is responsible for filling in the extra attributes
17793 and updating (*DIEP)->num_attrs.
17794 Set DIEP to point to a newly allocated die with its information,
17795 except for its child, sibling, and parent fields.
17796 Set HAS_CHILDREN to tell whether the die has children or not. */
17797
17798 static const gdb_byte *
17799 read_full_die_1 (const struct die_reader_specs *reader,
17800 struct die_info **diep, const gdb_byte *info_ptr,
17801 int *has_children, int num_extra_attrs)
17802 {
17803 unsigned int abbrev_number, bytes_read, i;
17804 struct abbrev_info *abbrev;
17805 struct die_info *die;
17806 struct dwarf2_cu *cu = reader->cu;
17807 bfd *abfd = reader->abfd;
17808
17809 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17810 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17811 info_ptr += bytes_read;
17812 if (!abbrev_number)
17813 {
17814 *diep = NULL;
17815 *has_children = 0;
17816 return info_ptr;
17817 }
17818
17819 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17820 if (!abbrev)
17821 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17822 abbrev_number,
17823 bfd_get_filename (abfd));
17824
17825 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17826 die->sect_off = sect_off;
17827 die->tag = abbrev->tag;
17828 die->abbrev = abbrev_number;
17829
17830 /* Make the result usable.
17831 The caller needs to update num_attrs after adding the extra
17832 attributes. */
17833 die->num_attrs = abbrev->num_attrs;
17834
17835 for (i = 0; i < abbrev->num_attrs; ++i)
17836 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17837 info_ptr);
17838
17839 *diep = die;
17840 *has_children = abbrev->has_children;
17841 return info_ptr;
17842 }
17843
17844 /* Read a die and all its attributes.
17845 Set DIEP to point to a newly allocated die with its information,
17846 except for its child, sibling, and parent fields.
17847 Set HAS_CHILDREN to tell whether the die has children or not. */
17848
17849 static const gdb_byte *
17850 read_full_die (const struct die_reader_specs *reader,
17851 struct die_info **diep, const gdb_byte *info_ptr,
17852 int *has_children)
17853 {
17854 const gdb_byte *result;
17855
17856 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
17857
17858 if (dwarf_die_debug)
17859 {
17860 fprintf_unfiltered (gdb_stdlog,
17861 "Read die from %s@0x%x of %s:\n",
17862 get_section_name (reader->die_section),
17863 (unsigned) (info_ptr - reader->die_section->buffer),
17864 bfd_get_filename (reader->abfd));
17865 dump_die (*diep, dwarf_die_debug);
17866 }
17867
17868 return result;
17869 }
17870 \f
17871 /* Abbreviation tables.
17872
17873 In DWARF version 2, the description of the debugging information is
17874 stored in a separate .debug_abbrev section. Before we read any
17875 dies from a section we read in all abbreviations and install them
17876 in a hash table. */
17877
17878 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
17879
17880 struct abbrev_info *
17881 abbrev_table::alloc_abbrev ()
17882 {
17883 struct abbrev_info *abbrev;
17884
17885 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
17886 memset (abbrev, 0, sizeof (struct abbrev_info));
17887
17888 return abbrev;
17889 }
17890
17891 /* Add an abbreviation to the table. */
17892
17893 void
17894 abbrev_table::add_abbrev (unsigned int abbrev_number,
17895 struct abbrev_info *abbrev)
17896 {
17897 unsigned int hash_number;
17898
17899 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17900 abbrev->next = m_abbrevs[hash_number];
17901 m_abbrevs[hash_number] = abbrev;
17902 }
17903
17904 /* Look up an abbrev in the table.
17905 Returns NULL if the abbrev is not found. */
17906
17907 struct abbrev_info *
17908 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
17909 {
17910 unsigned int hash_number;
17911 struct abbrev_info *abbrev;
17912
17913 hash_number = abbrev_number % ABBREV_HASH_SIZE;
17914 abbrev = m_abbrevs[hash_number];
17915
17916 while (abbrev)
17917 {
17918 if (abbrev->number == abbrev_number)
17919 return abbrev;
17920 abbrev = abbrev->next;
17921 }
17922 return NULL;
17923 }
17924
17925 /* Read in an abbrev table. */
17926
17927 static abbrev_table_up
17928 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
17929 struct dwarf2_section_info *section,
17930 sect_offset sect_off)
17931 {
17932 struct objfile *objfile = dwarf2_per_objfile->objfile;
17933 bfd *abfd = get_section_bfd_owner (section);
17934 const gdb_byte *abbrev_ptr;
17935 struct abbrev_info *cur_abbrev;
17936 unsigned int abbrev_number, bytes_read, abbrev_name;
17937 unsigned int abbrev_form;
17938 struct attr_abbrev *cur_attrs;
17939 unsigned int allocated_attrs;
17940
17941 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
17942
17943 dwarf2_read_section (objfile, section);
17944 abbrev_ptr = section->buffer + to_underlying (sect_off);
17945 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17946 abbrev_ptr += bytes_read;
17947
17948 allocated_attrs = ATTR_ALLOC_CHUNK;
17949 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
17950
17951 /* Loop until we reach an abbrev number of 0. */
17952 while (abbrev_number)
17953 {
17954 cur_abbrev = abbrev_table->alloc_abbrev ();
17955
17956 /* read in abbrev header */
17957 cur_abbrev->number = abbrev_number;
17958 cur_abbrev->tag
17959 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17960 abbrev_ptr += bytes_read;
17961 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
17962 abbrev_ptr += 1;
17963
17964 /* now read in declarations */
17965 for (;;)
17966 {
17967 LONGEST implicit_const;
17968
17969 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17970 abbrev_ptr += bytes_read;
17971 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
17972 abbrev_ptr += bytes_read;
17973 if (abbrev_form == DW_FORM_implicit_const)
17974 {
17975 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
17976 &bytes_read);
17977 abbrev_ptr += bytes_read;
17978 }
17979 else
17980 {
17981 /* Initialize it due to a false compiler warning. */
17982 implicit_const = -1;
17983 }
17984
17985 if (abbrev_name == 0)
17986 break;
17987
17988 if (cur_abbrev->num_attrs == allocated_attrs)
17989 {
17990 allocated_attrs += ATTR_ALLOC_CHUNK;
17991 cur_attrs
17992 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
17993 }
17994
17995 cur_attrs[cur_abbrev->num_attrs].name
17996 = (enum dwarf_attribute) abbrev_name;
17997 cur_attrs[cur_abbrev->num_attrs].form
17998 = (enum dwarf_form) abbrev_form;
17999 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18000 ++cur_abbrev->num_attrs;
18001 }
18002
18003 cur_abbrev->attrs =
18004 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18005 cur_abbrev->num_attrs);
18006 memcpy (cur_abbrev->attrs, cur_attrs,
18007 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18008
18009 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18010
18011 /* Get next abbreviation.
18012 Under Irix6 the abbreviations for a compilation unit are not
18013 always properly terminated with an abbrev number of 0.
18014 Exit loop if we encounter an abbreviation which we have
18015 already read (which means we are about to read the abbreviations
18016 for the next compile unit) or if the end of the abbreviation
18017 table is reached. */
18018 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18019 break;
18020 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18021 abbrev_ptr += bytes_read;
18022 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18023 break;
18024 }
18025
18026 xfree (cur_attrs);
18027 return abbrev_table;
18028 }
18029
18030 /* Returns nonzero if TAG represents a type that we might generate a partial
18031 symbol for. */
18032
18033 static int
18034 is_type_tag_for_partial (int tag)
18035 {
18036 switch (tag)
18037 {
18038 #if 0
18039 /* Some types that would be reasonable to generate partial symbols for,
18040 that we don't at present. */
18041 case DW_TAG_array_type:
18042 case DW_TAG_file_type:
18043 case DW_TAG_ptr_to_member_type:
18044 case DW_TAG_set_type:
18045 case DW_TAG_string_type:
18046 case DW_TAG_subroutine_type:
18047 #endif
18048 case DW_TAG_base_type:
18049 case DW_TAG_class_type:
18050 case DW_TAG_interface_type:
18051 case DW_TAG_enumeration_type:
18052 case DW_TAG_structure_type:
18053 case DW_TAG_subrange_type:
18054 case DW_TAG_typedef:
18055 case DW_TAG_union_type:
18056 return 1;
18057 default:
18058 return 0;
18059 }
18060 }
18061
18062 /* Load all DIEs that are interesting for partial symbols into memory. */
18063
18064 static struct partial_die_info *
18065 load_partial_dies (const struct die_reader_specs *reader,
18066 const gdb_byte *info_ptr, int building_psymtab)
18067 {
18068 struct dwarf2_cu *cu = reader->cu;
18069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18070 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18071 unsigned int bytes_read;
18072 unsigned int load_all = 0;
18073 int nesting_level = 1;
18074
18075 parent_die = NULL;
18076 last_die = NULL;
18077
18078 gdb_assert (cu->per_cu != NULL);
18079 if (cu->per_cu->load_all_dies)
18080 load_all = 1;
18081
18082 cu->partial_dies
18083 = htab_create_alloc_ex (cu->header.length / 12,
18084 partial_die_hash,
18085 partial_die_eq,
18086 NULL,
18087 &cu->comp_unit_obstack,
18088 hashtab_obstack_allocate,
18089 dummy_obstack_deallocate);
18090
18091 while (1)
18092 {
18093 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18094
18095 /* A NULL abbrev means the end of a series of children. */
18096 if (abbrev == NULL)
18097 {
18098 if (--nesting_level == 0)
18099 return first_die;
18100
18101 info_ptr += bytes_read;
18102 last_die = parent_die;
18103 parent_die = parent_die->die_parent;
18104 continue;
18105 }
18106
18107 /* Check for template arguments. We never save these; if
18108 they're seen, we just mark the parent, and go on our way. */
18109 if (parent_die != NULL
18110 && cu->language == language_cplus
18111 && (abbrev->tag == DW_TAG_template_type_param
18112 || abbrev->tag == DW_TAG_template_value_param))
18113 {
18114 parent_die->has_template_arguments = 1;
18115
18116 if (!load_all)
18117 {
18118 /* We don't need a partial DIE for the template argument. */
18119 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18120 continue;
18121 }
18122 }
18123
18124 /* We only recurse into c++ subprograms looking for template arguments.
18125 Skip their other children. */
18126 if (!load_all
18127 && cu->language == language_cplus
18128 && parent_die != NULL
18129 && parent_die->tag == DW_TAG_subprogram)
18130 {
18131 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18132 continue;
18133 }
18134
18135 /* Check whether this DIE is interesting enough to save. Normally
18136 we would not be interested in members here, but there may be
18137 later variables referencing them via DW_AT_specification (for
18138 static members). */
18139 if (!load_all
18140 && !is_type_tag_for_partial (abbrev->tag)
18141 && abbrev->tag != DW_TAG_constant
18142 && abbrev->tag != DW_TAG_enumerator
18143 && abbrev->tag != DW_TAG_subprogram
18144 && abbrev->tag != DW_TAG_inlined_subroutine
18145 && abbrev->tag != DW_TAG_lexical_block
18146 && abbrev->tag != DW_TAG_variable
18147 && abbrev->tag != DW_TAG_namespace
18148 && abbrev->tag != DW_TAG_module
18149 && abbrev->tag != DW_TAG_member
18150 && abbrev->tag != DW_TAG_imported_unit
18151 && abbrev->tag != DW_TAG_imported_declaration)
18152 {
18153 /* Otherwise we skip to the next sibling, if any. */
18154 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18155 continue;
18156 }
18157
18158 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18159 abbrev);
18160
18161 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18162
18163 /* This two-pass algorithm for processing partial symbols has a
18164 high cost in cache pressure. Thus, handle some simple cases
18165 here which cover the majority of C partial symbols. DIEs
18166 which neither have specification tags in them, nor could have
18167 specification tags elsewhere pointing at them, can simply be
18168 processed and discarded.
18169
18170 This segment is also optional; scan_partial_symbols and
18171 add_partial_symbol will handle these DIEs if we chain
18172 them in normally. When compilers which do not emit large
18173 quantities of duplicate debug information are more common,
18174 this code can probably be removed. */
18175
18176 /* Any complete simple types at the top level (pretty much all
18177 of them, for a language without namespaces), can be processed
18178 directly. */
18179 if (parent_die == NULL
18180 && pdi.has_specification == 0
18181 && pdi.is_declaration == 0
18182 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18183 || pdi.tag == DW_TAG_base_type
18184 || pdi.tag == DW_TAG_subrange_type))
18185 {
18186 if (building_psymtab && pdi.name != NULL)
18187 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18188 VAR_DOMAIN, LOC_TYPEDEF,
18189 &objfile->static_psymbols,
18190 0, cu->language, objfile);
18191 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18192 continue;
18193 }
18194
18195 /* The exception for DW_TAG_typedef with has_children above is
18196 a workaround of GCC PR debug/47510. In the case of this complaint
18197 type_name_no_tag_or_error will error on such types later.
18198
18199 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18200 it could not find the child DIEs referenced later, this is checked
18201 above. In correct DWARF DW_TAG_typedef should have no children. */
18202
18203 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18204 complaint (&symfile_complaints,
18205 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18206 "- DIE at %s [in module %s]"),
18207 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18208
18209 /* If we're at the second level, and we're an enumerator, and
18210 our parent has no specification (meaning possibly lives in a
18211 namespace elsewhere), then we can add the partial symbol now
18212 instead of queueing it. */
18213 if (pdi.tag == DW_TAG_enumerator
18214 && parent_die != NULL
18215 && parent_die->die_parent == NULL
18216 && parent_die->tag == DW_TAG_enumeration_type
18217 && parent_die->has_specification == 0)
18218 {
18219 if (pdi.name == NULL)
18220 complaint (&symfile_complaints,
18221 _("malformed enumerator DIE ignored"));
18222 else if (building_psymtab)
18223 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18224 VAR_DOMAIN, LOC_CONST,
18225 cu->language == language_cplus
18226 ? &objfile->global_psymbols
18227 : &objfile->static_psymbols,
18228 0, cu->language, objfile);
18229
18230 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18231 continue;
18232 }
18233
18234 struct partial_die_info *part_die
18235 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18236
18237 /* We'll save this DIE so link it in. */
18238 part_die->die_parent = parent_die;
18239 part_die->die_sibling = NULL;
18240 part_die->die_child = NULL;
18241
18242 if (last_die && last_die == parent_die)
18243 last_die->die_child = part_die;
18244 else if (last_die)
18245 last_die->die_sibling = part_die;
18246
18247 last_die = part_die;
18248
18249 if (first_die == NULL)
18250 first_die = part_die;
18251
18252 /* Maybe add the DIE to the hash table. Not all DIEs that we
18253 find interesting need to be in the hash table, because we
18254 also have the parent/sibling/child chains; only those that we
18255 might refer to by offset later during partial symbol reading.
18256
18257 For now this means things that might have be the target of a
18258 DW_AT_specification, DW_AT_abstract_origin, or
18259 DW_AT_extension. DW_AT_extension will refer only to
18260 namespaces; DW_AT_abstract_origin refers to functions (and
18261 many things under the function DIE, but we do not recurse
18262 into function DIEs during partial symbol reading) and
18263 possibly variables as well; DW_AT_specification refers to
18264 declarations. Declarations ought to have the DW_AT_declaration
18265 flag. It happens that GCC forgets to put it in sometimes, but
18266 only for functions, not for types.
18267
18268 Adding more things than necessary to the hash table is harmless
18269 except for the performance cost. Adding too few will result in
18270 wasted time in find_partial_die, when we reread the compilation
18271 unit with load_all_dies set. */
18272
18273 if (load_all
18274 || abbrev->tag == DW_TAG_constant
18275 || abbrev->tag == DW_TAG_subprogram
18276 || abbrev->tag == DW_TAG_variable
18277 || abbrev->tag == DW_TAG_namespace
18278 || part_die->is_declaration)
18279 {
18280 void **slot;
18281
18282 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18283 to_underlying (part_die->sect_off),
18284 INSERT);
18285 *slot = part_die;
18286 }
18287
18288 /* For some DIEs we want to follow their children (if any). For C
18289 we have no reason to follow the children of structures; for other
18290 languages we have to, so that we can get at method physnames
18291 to infer fully qualified class names, for DW_AT_specification,
18292 and for C++ template arguments. For C++, we also look one level
18293 inside functions to find template arguments (if the name of the
18294 function does not already contain the template arguments).
18295
18296 For Ada, we need to scan the children of subprograms and lexical
18297 blocks as well because Ada allows the definition of nested
18298 entities that could be interesting for the debugger, such as
18299 nested subprograms for instance. */
18300 if (last_die->has_children
18301 && (load_all
18302 || last_die->tag == DW_TAG_namespace
18303 || last_die->tag == DW_TAG_module
18304 || last_die->tag == DW_TAG_enumeration_type
18305 || (cu->language == language_cplus
18306 && last_die->tag == DW_TAG_subprogram
18307 && (last_die->name == NULL
18308 || strchr (last_die->name, '<') == NULL))
18309 || (cu->language != language_c
18310 && (last_die->tag == DW_TAG_class_type
18311 || last_die->tag == DW_TAG_interface_type
18312 || last_die->tag == DW_TAG_structure_type
18313 || last_die->tag == DW_TAG_union_type))
18314 || (cu->language == language_ada
18315 && (last_die->tag == DW_TAG_subprogram
18316 || last_die->tag == DW_TAG_lexical_block))))
18317 {
18318 nesting_level++;
18319 parent_die = last_die;
18320 continue;
18321 }
18322
18323 /* Otherwise we skip to the next sibling, if any. */
18324 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18325
18326 /* Back to the top, do it again. */
18327 }
18328 }
18329
18330 partial_die_info::partial_die_info (sect_offset sect_off_,
18331 struct abbrev_info *abbrev)
18332 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18333 {
18334 }
18335
18336 /* Read a minimal amount of information into the minimal die structure.
18337 INFO_PTR should point just after the initial uleb128 of a DIE. */
18338
18339 const gdb_byte *
18340 partial_die_info::read (const struct die_reader_specs *reader,
18341 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18342 {
18343 struct dwarf2_cu *cu = reader->cu;
18344 struct dwarf2_per_objfile *dwarf2_per_objfile
18345 = cu->per_cu->dwarf2_per_objfile;
18346 unsigned int i;
18347 int has_low_pc_attr = 0;
18348 int has_high_pc_attr = 0;
18349 int high_pc_relative = 0;
18350
18351 for (i = 0; i < abbrev.num_attrs; ++i)
18352 {
18353 struct attribute attr;
18354
18355 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18356
18357 /* Store the data if it is of an attribute we want to keep in a
18358 partial symbol table. */
18359 switch (attr.name)
18360 {
18361 case DW_AT_name:
18362 switch (tag)
18363 {
18364 case DW_TAG_compile_unit:
18365 case DW_TAG_partial_unit:
18366 case DW_TAG_type_unit:
18367 /* Compilation units have a DW_AT_name that is a filename, not
18368 a source language identifier. */
18369 case DW_TAG_enumeration_type:
18370 case DW_TAG_enumerator:
18371 /* These tags always have simple identifiers already; no need
18372 to canonicalize them. */
18373 name = DW_STRING (&attr);
18374 break;
18375 default:
18376 {
18377 struct objfile *objfile = dwarf2_per_objfile->objfile;
18378
18379 name
18380 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18381 &objfile->per_bfd->storage_obstack);
18382 }
18383 break;
18384 }
18385 break;
18386 case DW_AT_linkage_name:
18387 case DW_AT_MIPS_linkage_name:
18388 /* Note that both forms of linkage name might appear. We
18389 assume they will be the same, and we only store the last
18390 one we see. */
18391 if (cu->language == language_ada)
18392 name = DW_STRING (&attr);
18393 linkage_name = DW_STRING (&attr);
18394 break;
18395 case DW_AT_low_pc:
18396 has_low_pc_attr = 1;
18397 lowpc = attr_value_as_address (&attr);
18398 break;
18399 case DW_AT_high_pc:
18400 has_high_pc_attr = 1;
18401 highpc = attr_value_as_address (&attr);
18402 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18403 high_pc_relative = 1;
18404 break;
18405 case DW_AT_location:
18406 /* Support the .debug_loc offsets. */
18407 if (attr_form_is_block (&attr))
18408 {
18409 d.locdesc = DW_BLOCK (&attr);
18410 }
18411 else if (attr_form_is_section_offset (&attr))
18412 {
18413 dwarf2_complex_location_expr_complaint ();
18414 }
18415 else
18416 {
18417 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18418 "partial symbol information");
18419 }
18420 break;
18421 case DW_AT_external:
18422 is_external = DW_UNSND (&attr);
18423 break;
18424 case DW_AT_declaration:
18425 is_declaration = DW_UNSND (&attr);
18426 break;
18427 case DW_AT_type:
18428 has_type = 1;
18429 break;
18430 case DW_AT_abstract_origin:
18431 case DW_AT_specification:
18432 case DW_AT_extension:
18433 has_specification = 1;
18434 spec_offset = dwarf2_get_ref_die_offset (&attr);
18435 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18436 || cu->per_cu->is_dwz);
18437 break;
18438 case DW_AT_sibling:
18439 /* Ignore absolute siblings, they might point outside of
18440 the current compile unit. */
18441 if (attr.form == DW_FORM_ref_addr)
18442 complaint (&symfile_complaints,
18443 _("ignoring absolute DW_AT_sibling"));
18444 else
18445 {
18446 const gdb_byte *buffer = reader->buffer;
18447 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18448 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18449
18450 if (sibling_ptr < info_ptr)
18451 complaint (&symfile_complaints,
18452 _("DW_AT_sibling points backwards"));
18453 else if (sibling_ptr > reader->buffer_end)
18454 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18455 else
18456 sibling = sibling_ptr;
18457 }
18458 break;
18459 case DW_AT_byte_size:
18460 has_byte_size = 1;
18461 break;
18462 case DW_AT_const_value:
18463 has_const_value = 1;
18464 break;
18465 case DW_AT_calling_convention:
18466 /* DWARF doesn't provide a way to identify a program's source-level
18467 entry point. DW_AT_calling_convention attributes are only meant
18468 to describe functions' calling conventions.
18469
18470 However, because it's a necessary piece of information in
18471 Fortran, and before DWARF 4 DW_CC_program was the only
18472 piece of debugging information whose definition refers to
18473 a 'main program' at all, several compilers marked Fortran
18474 main programs with DW_CC_program --- even when those
18475 functions use the standard calling conventions.
18476
18477 Although DWARF now specifies a way to provide this
18478 information, we support this practice for backward
18479 compatibility. */
18480 if (DW_UNSND (&attr) == DW_CC_program
18481 && cu->language == language_fortran)
18482 main_subprogram = 1;
18483 break;
18484 case DW_AT_inline:
18485 if (DW_UNSND (&attr) == DW_INL_inlined
18486 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18487 may_be_inlined = 1;
18488 break;
18489
18490 case DW_AT_import:
18491 if (tag == DW_TAG_imported_unit)
18492 {
18493 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18494 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18495 || cu->per_cu->is_dwz);
18496 }
18497 break;
18498
18499 case DW_AT_main_subprogram:
18500 main_subprogram = DW_UNSND (&attr);
18501 break;
18502
18503 default:
18504 break;
18505 }
18506 }
18507
18508 if (high_pc_relative)
18509 highpc += lowpc;
18510
18511 if (has_low_pc_attr && has_high_pc_attr)
18512 {
18513 /* When using the GNU linker, .gnu.linkonce. sections are used to
18514 eliminate duplicate copies of functions and vtables and such.
18515 The linker will arbitrarily choose one and discard the others.
18516 The AT_*_pc values for such functions refer to local labels in
18517 these sections. If the section from that file was discarded, the
18518 labels are not in the output, so the relocs get a value of 0.
18519 If this is a discarded function, mark the pc bounds as invalid,
18520 so that GDB will ignore it. */
18521 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18522 {
18523 struct objfile *objfile = dwarf2_per_objfile->objfile;
18524 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18525
18526 complaint (&symfile_complaints,
18527 _("DW_AT_low_pc %s is zero "
18528 "for DIE at %s [in module %s]"),
18529 paddress (gdbarch, lowpc),
18530 sect_offset_str (sect_off),
18531 objfile_name (objfile));
18532 }
18533 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18534 else if (lowpc >= highpc)
18535 {
18536 struct objfile *objfile = dwarf2_per_objfile->objfile;
18537 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18538
18539 complaint (&symfile_complaints,
18540 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18541 "for DIE at %s [in module %s]"),
18542 paddress (gdbarch, lowpc),
18543 paddress (gdbarch, highpc),
18544 sect_offset_str (sect_off),
18545 objfile_name (objfile));
18546 }
18547 else
18548 has_pc_info = 1;
18549 }
18550
18551 return info_ptr;
18552 }
18553
18554 /* Find a cached partial DIE at OFFSET in CU. */
18555
18556 struct partial_die_info *
18557 dwarf2_cu::find_partial_die (sect_offset sect_off)
18558 {
18559 struct partial_die_info *lookup_die = NULL;
18560 struct partial_die_info part_die (sect_off);
18561
18562 lookup_die = ((struct partial_die_info *)
18563 htab_find_with_hash (partial_dies, &part_die,
18564 to_underlying (sect_off)));
18565
18566 return lookup_die;
18567 }
18568
18569 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18570 except in the case of .debug_types DIEs which do not reference
18571 outside their CU (they do however referencing other types via
18572 DW_FORM_ref_sig8). */
18573
18574 static struct partial_die_info *
18575 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18576 {
18577 struct dwarf2_per_objfile *dwarf2_per_objfile
18578 = cu->per_cu->dwarf2_per_objfile;
18579 struct objfile *objfile = dwarf2_per_objfile->objfile;
18580 struct dwarf2_per_cu_data *per_cu = NULL;
18581 struct partial_die_info *pd = NULL;
18582
18583 if (offset_in_dwz == cu->per_cu->is_dwz
18584 && offset_in_cu_p (&cu->header, sect_off))
18585 {
18586 pd = cu->find_partial_die (sect_off);
18587 if (pd != NULL)
18588 return pd;
18589 /* We missed recording what we needed.
18590 Load all dies and try again. */
18591 per_cu = cu->per_cu;
18592 }
18593 else
18594 {
18595 /* TUs don't reference other CUs/TUs (except via type signatures). */
18596 if (cu->per_cu->is_debug_types)
18597 {
18598 error (_("Dwarf Error: Type Unit at offset %s contains"
18599 " external reference to offset %s [in module %s].\n"),
18600 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18601 bfd_get_filename (objfile->obfd));
18602 }
18603 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18604 dwarf2_per_objfile);
18605
18606 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18607 load_partial_comp_unit (per_cu);
18608
18609 per_cu->cu->last_used = 0;
18610 pd = per_cu->cu->find_partial_die (sect_off);
18611 }
18612
18613 /* If we didn't find it, and not all dies have been loaded,
18614 load them all and try again. */
18615
18616 if (pd == NULL && per_cu->load_all_dies == 0)
18617 {
18618 per_cu->load_all_dies = 1;
18619
18620 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18621 THIS_CU->cu may already be in use. So we can't just free it and
18622 replace its DIEs with the ones we read in. Instead, we leave those
18623 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18624 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18625 set. */
18626 load_partial_comp_unit (per_cu);
18627
18628 pd = per_cu->cu->find_partial_die (sect_off);
18629 }
18630
18631 if (pd == NULL)
18632 internal_error (__FILE__, __LINE__,
18633 _("could not find partial DIE %s "
18634 "in cache [from module %s]\n"),
18635 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18636 return pd;
18637 }
18638
18639 /* See if we can figure out if the class lives in a namespace. We do
18640 this by looking for a member function; its demangled name will
18641 contain namespace info, if there is any. */
18642
18643 static void
18644 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18645 struct dwarf2_cu *cu)
18646 {
18647 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18648 what template types look like, because the demangler
18649 frequently doesn't give the same name as the debug info. We
18650 could fix this by only using the demangled name to get the
18651 prefix (but see comment in read_structure_type). */
18652
18653 struct partial_die_info *real_pdi;
18654 struct partial_die_info *child_pdi;
18655
18656 /* If this DIE (this DIE's specification, if any) has a parent, then
18657 we should not do this. We'll prepend the parent's fully qualified
18658 name when we create the partial symbol. */
18659
18660 real_pdi = struct_pdi;
18661 while (real_pdi->has_specification)
18662 real_pdi = find_partial_die (real_pdi->spec_offset,
18663 real_pdi->spec_is_dwz, cu);
18664
18665 if (real_pdi->die_parent != NULL)
18666 return;
18667
18668 for (child_pdi = struct_pdi->die_child;
18669 child_pdi != NULL;
18670 child_pdi = child_pdi->die_sibling)
18671 {
18672 if (child_pdi->tag == DW_TAG_subprogram
18673 && child_pdi->linkage_name != NULL)
18674 {
18675 char *actual_class_name
18676 = language_class_name_from_physname (cu->language_defn,
18677 child_pdi->linkage_name);
18678 if (actual_class_name != NULL)
18679 {
18680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18681 struct_pdi->name
18682 = ((const char *)
18683 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18684 actual_class_name,
18685 strlen (actual_class_name)));
18686 xfree (actual_class_name);
18687 }
18688 break;
18689 }
18690 }
18691 }
18692
18693 void
18694 partial_die_info::fixup (struct dwarf2_cu *cu)
18695 {
18696 /* Once we've fixed up a die, there's no point in doing so again.
18697 This also avoids a memory leak if we were to call
18698 guess_partial_die_structure_name multiple times. */
18699 if (fixup_called)
18700 return;
18701
18702 /* If we found a reference attribute and the DIE has no name, try
18703 to find a name in the referred to DIE. */
18704
18705 if (name == NULL && has_specification)
18706 {
18707 struct partial_die_info *spec_die;
18708
18709 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18710
18711 spec_die->fixup (cu);
18712
18713 if (spec_die->name)
18714 {
18715 name = spec_die->name;
18716
18717 /* Copy DW_AT_external attribute if it is set. */
18718 if (spec_die->is_external)
18719 is_external = spec_die->is_external;
18720 }
18721 }
18722
18723 /* Set default names for some unnamed DIEs. */
18724
18725 if (name == NULL && tag == DW_TAG_namespace)
18726 name = CP_ANONYMOUS_NAMESPACE_STR;
18727
18728 /* If there is no parent die to provide a namespace, and there are
18729 children, see if we can determine the namespace from their linkage
18730 name. */
18731 if (cu->language == language_cplus
18732 && !VEC_empty (dwarf2_section_info_def,
18733 cu->per_cu->dwarf2_per_objfile->types)
18734 && die_parent == NULL
18735 && has_children
18736 && (tag == DW_TAG_class_type
18737 || tag == DW_TAG_structure_type
18738 || tag == DW_TAG_union_type))
18739 guess_partial_die_structure_name (this, cu);
18740
18741 /* GCC might emit a nameless struct or union that has a linkage
18742 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18743 if (name == NULL
18744 && (tag == DW_TAG_class_type
18745 || tag == DW_TAG_interface_type
18746 || tag == DW_TAG_structure_type
18747 || tag == DW_TAG_union_type)
18748 && linkage_name != NULL)
18749 {
18750 char *demangled;
18751
18752 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18753 if (demangled)
18754 {
18755 const char *base;
18756
18757 /* Strip any leading namespaces/classes, keep only the base name.
18758 DW_AT_name for named DIEs does not contain the prefixes. */
18759 base = strrchr (demangled, ':');
18760 if (base && base > demangled && base[-1] == ':')
18761 base++;
18762 else
18763 base = demangled;
18764
18765 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18766 name
18767 = ((const char *)
18768 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18769 base, strlen (base)));
18770 xfree (demangled);
18771 }
18772 }
18773
18774 fixup_called = 1;
18775 }
18776
18777 /* Read an attribute value described by an attribute form. */
18778
18779 static const gdb_byte *
18780 read_attribute_value (const struct die_reader_specs *reader,
18781 struct attribute *attr, unsigned form,
18782 LONGEST implicit_const, const gdb_byte *info_ptr)
18783 {
18784 struct dwarf2_cu *cu = reader->cu;
18785 struct dwarf2_per_objfile *dwarf2_per_objfile
18786 = cu->per_cu->dwarf2_per_objfile;
18787 struct objfile *objfile = dwarf2_per_objfile->objfile;
18788 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18789 bfd *abfd = reader->abfd;
18790 struct comp_unit_head *cu_header = &cu->header;
18791 unsigned int bytes_read;
18792 struct dwarf_block *blk;
18793
18794 attr->form = (enum dwarf_form) form;
18795 switch (form)
18796 {
18797 case DW_FORM_ref_addr:
18798 if (cu->header.version == 2)
18799 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18800 else
18801 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18802 &cu->header, &bytes_read);
18803 info_ptr += bytes_read;
18804 break;
18805 case DW_FORM_GNU_ref_alt:
18806 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18807 info_ptr += bytes_read;
18808 break;
18809 case DW_FORM_addr:
18810 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18811 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18812 info_ptr += bytes_read;
18813 break;
18814 case DW_FORM_block2:
18815 blk = dwarf_alloc_block (cu);
18816 blk->size = read_2_bytes (abfd, info_ptr);
18817 info_ptr += 2;
18818 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18819 info_ptr += blk->size;
18820 DW_BLOCK (attr) = blk;
18821 break;
18822 case DW_FORM_block4:
18823 blk = dwarf_alloc_block (cu);
18824 blk->size = read_4_bytes (abfd, info_ptr);
18825 info_ptr += 4;
18826 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18827 info_ptr += blk->size;
18828 DW_BLOCK (attr) = blk;
18829 break;
18830 case DW_FORM_data2:
18831 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18832 info_ptr += 2;
18833 break;
18834 case DW_FORM_data4:
18835 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18836 info_ptr += 4;
18837 break;
18838 case DW_FORM_data8:
18839 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18840 info_ptr += 8;
18841 break;
18842 case DW_FORM_data16:
18843 blk = dwarf_alloc_block (cu);
18844 blk->size = 16;
18845 blk->data = read_n_bytes (abfd, info_ptr, 16);
18846 info_ptr += 16;
18847 DW_BLOCK (attr) = blk;
18848 break;
18849 case DW_FORM_sec_offset:
18850 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18851 info_ptr += bytes_read;
18852 break;
18853 case DW_FORM_string:
18854 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18855 DW_STRING_IS_CANONICAL (attr) = 0;
18856 info_ptr += bytes_read;
18857 break;
18858 case DW_FORM_strp:
18859 if (!cu->per_cu->is_dwz)
18860 {
18861 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18862 abfd, info_ptr, cu_header,
18863 &bytes_read);
18864 DW_STRING_IS_CANONICAL (attr) = 0;
18865 info_ptr += bytes_read;
18866 break;
18867 }
18868 /* FALLTHROUGH */
18869 case DW_FORM_line_strp:
18870 if (!cu->per_cu->is_dwz)
18871 {
18872 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18873 abfd, info_ptr,
18874 cu_header, &bytes_read);
18875 DW_STRING_IS_CANONICAL (attr) = 0;
18876 info_ptr += bytes_read;
18877 break;
18878 }
18879 /* FALLTHROUGH */
18880 case DW_FORM_GNU_strp_alt:
18881 {
18882 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18883 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18884 &bytes_read);
18885
18886 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18887 dwz, str_offset);
18888 DW_STRING_IS_CANONICAL (attr) = 0;
18889 info_ptr += bytes_read;
18890 }
18891 break;
18892 case DW_FORM_exprloc:
18893 case DW_FORM_block:
18894 blk = dwarf_alloc_block (cu);
18895 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18896 info_ptr += bytes_read;
18897 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18898 info_ptr += blk->size;
18899 DW_BLOCK (attr) = blk;
18900 break;
18901 case DW_FORM_block1:
18902 blk = dwarf_alloc_block (cu);
18903 blk->size = read_1_byte (abfd, info_ptr);
18904 info_ptr += 1;
18905 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18906 info_ptr += blk->size;
18907 DW_BLOCK (attr) = blk;
18908 break;
18909 case DW_FORM_data1:
18910 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18911 info_ptr += 1;
18912 break;
18913 case DW_FORM_flag:
18914 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18915 info_ptr += 1;
18916 break;
18917 case DW_FORM_flag_present:
18918 DW_UNSND (attr) = 1;
18919 break;
18920 case DW_FORM_sdata:
18921 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18922 info_ptr += bytes_read;
18923 break;
18924 case DW_FORM_udata:
18925 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18926 info_ptr += bytes_read;
18927 break;
18928 case DW_FORM_ref1:
18929 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18930 + read_1_byte (abfd, info_ptr));
18931 info_ptr += 1;
18932 break;
18933 case DW_FORM_ref2:
18934 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18935 + read_2_bytes (abfd, info_ptr));
18936 info_ptr += 2;
18937 break;
18938 case DW_FORM_ref4:
18939 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18940 + read_4_bytes (abfd, info_ptr));
18941 info_ptr += 4;
18942 break;
18943 case DW_FORM_ref8:
18944 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18945 + read_8_bytes (abfd, info_ptr));
18946 info_ptr += 8;
18947 break;
18948 case DW_FORM_ref_sig8:
18949 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18950 info_ptr += 8;
18951 break;
18952 case DW_FORM_ref_udata:
18953 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18954 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18955 info_ptr += bytes_read;
18956 break;
18957 case DW_FORM_indirect:
18958 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18959 info_ptr += bytes_read;
18960 if (form == DW_FORM_implicit_const)
18961 {
18962 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18963 info_ptr += bytes_read;
18964 }
18965 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18966 info_ptr);
18967 break;
18968 case DW_FORM_implicit_const:
18969 DW_SND (attr) = implicit_const;
18970 break;
18971 case DW_FORM_GNU_addr_index:
18972 if (reader->dwo_file == NULL)
18973 {
18974 /* For now flag a hard error.
18975 Later we can turn this into a complaint. */
18976 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18977 dwarf_form_name (form),
18978 bfd_get_filename (abfd));
18979 }
18980 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
18981 info_ptr += bytes_read;
18982 break;
18983 case DW_FORM_GNU_str_index:
18984 if (reader->dwo_file == NULL)
18985 {
18986 /* For now flag a hard error.
18987 Later we can turn this into a complaint if warranted. */
18988 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
18989 dwarf_form_name (form),
18990 bfd_get_filename (abfd));
18991 }
18992 {
18993 ULONGEST str_index =
18994 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18995
18996 DW_STRING (attr) = read_str_index (reader, str_index);
18997 DW_STRING_IS_CANONICAL (attr) = 0;
18998 info_ptr += bytes_read;
18999 }
19000 break;
19001 default:
19002 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19003 dwarf_form_name (form),
19004 bfd_get_filename (abfd));
19005 }
19006
19007 /* Super hack. */
19008 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19009 attr->form = DW_FORM_GNU_ref_alt;
19010
19011 /* We have seen instances where the compiler tried to emit a byte
19012 size attribute of -1 which ended up being encoded as an unsigned
19013 0xffffffff. Although 0xffffffff is technically a valid size value,
19014 an object of this size seems pretty unlikely so we can relatively
19015 safely treat these cases as if the size attribute was invalid and
19016 treat them as zero by default. */
19017 if (attr->name == DW_AT_byte_size
19018 && form == DW_FORM_data4
19019 && DW_UNSND (attr) >= 0xffffffff)
19020 {
19021 complaint
19022 (&symfile_complaints,
19023 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19024 hex_string (DW_UNSND (attr)));
19025 DW_UNSND (attr) = 0;
19026 }
19027
19028 return info_ptr;
19029 }
19030
19031 /* Read an attribute described by an abbreviated attribute. */
19032
19033 static const gdb_byte *
19034 read_attribute (const struct die_reader_specs *reader,
19035 struct attribute *attr, struct attr_abbrev *abbrev,
19036 const gdb_byte *info_ptr)
19037 {
19038 attr->name = abbrev->name;
19039 return read_attribute_value (reader, attr, abbrev->form,
19040 abbrev->implicit_const, info_ptr);
19041 }
19042
19043 /* Read dwarf information from a buffer. */
19044
19045 static unsigned int
19046 read_1_byte (bfd *abfd, const gdb_byte *buf)
19047 {
19048 return bfd_get_8 (abfd, buf);
19049 }
19050
19051 static int
19052 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19053 {
19054 return bfd_get_signed_8 (abfd, buf);
19055 }
19056
19057 static unsigned int
19058 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19059 {
19060 return bfd_get_16 (abfd, buf);
19061 }
19062
19063 static int
19064 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19065 {
19066 return bfd_get_signed_16 (abfd, buf);
19067 }
19068
19069 static unsigned int
19070 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19071 {
19072 return bfd_get_32 (abfd, buf);
19073 }
19074
19075 static int
19076 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19077 {
19078 return bfd_get_signed_32 (abfd, buf);
19079 }
19080
19081 static ULONGEST
19082 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19083 {
19084 return bfd_get_64 (abfd, buf);
19085 }
19086
19087 static CORE_ADDR
19088 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19089 unsigned int *bytes_read)
19090 {
19091 struct comp_unit_head *cu_header = &cu->header;
19092 CORE_ADDR retval = 0;
19093
19094 if (cu_header->signed_addr_p)
19095 {
19096 switch (cu_header->addr_size)
19097 {
19098 case 2:
19099 retval = bfd_get_signed_16 (abfd, buf);
19100 break;
19101 case 4:
19102 retval = bfd_get_signed_32 (abfd, buf);
19103 break;
19104 case 8:
19105 retval = bfd_get_signed_64 (abfd, buf);
19106 break;
19107 default:
19108 internal_error (__FILE__, __LINE__,
19109 _("read_address: bad switch, signed [in module %s]"),
19110 bfd_get_filename (abfd));
19111 }
19112 }
19113 else
19114 {
19115 switch (cu_header->addr_size)
19116 {
19117 case 2:
19118 retval = bfd_get_16 (abfd, buf);
19119 break;
19120 case 4:
19121 retval = bfd_get_32 (abfd, buf);
19122 break;
19123 case 8:
19124 retval = bfd_get_64 (abfd, buf);
19125 break;
19126 default:
19127 internal_error (__FILE__, __LINE__,
19128 _("read_address: bad switch, "
19129 "unsigned [in module %s]"),
19130 bfd_get_filename (abfd));
19131 }
19132 }
19133
19134 *bytes_read = cu_header->addr_size;
19135 return retval;
19136 }
19137
19138 /* Read the initial length from a section. The (draft) DWARF 3
19139 specification allows the initial length to take up either 4 bytes
19140 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19141 bytes describe the length and all offsets will be 8 bytes in length
19142 instead of 4.
19143
19144 An older, non-standard 64-bit format is also handled by this
19145 function. The older format in question stores the initial length
19146 as an 8-byte quantity without an escape value. Lengths greater
19147 than 2^32 aren't very common which means that the initial 4 bytes
19148 is almost always zero. Since a length value of zero doesn't make
19149 sense for the 32-bit format, this initial zero can be considered to
19150 be an escape value which indicates the presence of the older 64-bit
19151 format. As written, the code can't detect (old format) lengths
19152 greater than 4GB. If it becomes necessary to handle lengths
19153 somewhat larger than 4GB, we could allow other small values (such
19154 as the non-sensical values of 1, 2, and 3) to also be used as
19155 escape values indicating the presence of the old format.
19156
19157 The value returned via bytes_read should be used to increment the
19158 relevant pointer after calling read_initial_length().
19159
19160 [ Note: read_initial_length() and read_offset() are based on the
19161 document entitled "DWARF Debugging Information Format", revision
19162 3, draft 8, dated November 19, 2001. This document was obtained
19163 from:
19164
19165 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19166
19167 This document is only a draft and is subject to change. (So beware.)
19168
19169 Details regarding the older, non-standard 64-bit format were
19170 determined empirically by examining 64-bit ELF files produced by
19171 the SGI toolchain on an IRIX 6.5 machine.
19172
19173 - Kevin, July 16, 2002
19174 ] */
19175
19176 static LONGEST
19177 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19178 {
19179 LONGEST length = bfd_get_32 (abfd, buf);
19180
19181 if (length == 0xffffffff)
19182 {
19183 length = bfd_get_64 (abfd, buf + 4);
19184 *bytes_read = 12;
19185 }
19186 else if (length == 0)
19187 {
19188 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19189 length = bfd_get_64 (abfd, buf);
19190 *bytes_read = 8;
19191 }
19192 else
19193 {
19194 *bytes_read = 4;
19195 }
19196
19197 return length;
19198 }
19199
19200 /* Cover function for read_initial_length.
19201 Returns the length of the object at BUF, and stores the size of the
19202 initial length in *BYTES_READ and stores the size that offsets will be in
19203 *OFFSET_SIZE.
19204 If the initial length size is not equivalent to that specified in
19205 CU_HEADER then issue a complaint.
19206 This is useful when reading non-comp-unit headers. */
19207
19208 static LONGEST
19209 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19210 const struct comp_unit_head *cu_header,
19211 unsigned int *bytes_read,
19212 unsigned int *offset_size)
19213 {
19214 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19215
19216 gdb_assert (cu_header->initial_length_size == 4
19217 || cu_header->initial_length_size == 8
19218 || cu_header->initial_length_size == 12);
19219
19220 if (cu_header->initial_length_size != *bytes_read)
19221 complaint (&symfile_complaints,
19222 _("intermixed 32-bit and 64-bit DWARF sections"));
19223
19224 *offset_size = (*bytes_read == 4) ? 4 : 8;
19225 return length;
19226 }
19227
19228 /* Read an offset from the data stream. The size of the offset is
19229 given by cu_header->offset_size. */
19230
19231 static LONGEST
19232 read_offset (bfd *abfd, const gdb_byte *buf,
19233 const struct comp_unit_head *cu_header,
19234 unsigned int *bytes_read)
19235 {
19236 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19237
19238 *bytes_read = cu_header->offset_size;
19239 return offset;
19240 }
19241
19242 /* Read an offset from the data stream. */
19243
19244 static LONGEST
19245 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19246 {
19247 LONGEST retval = 0;
19248
19249 switch (offset_size)
19250 {
19251 case 4:
19252 retval = bfd_get_32 (abfd, buf);
19253 break;
19254 case 8:
19255 retval = bfd_get_64 (abfd, buf);
19256 break;
19257 default:
19258 internal_error (__FILE__, __LINE__,
19259 _("read_offset_1: bad switch [in module %s]"),
19260 bfd_get_filename (abfd));
19261 }
19262
19263 return retval;
19264 }
19265
19266 static const gdb_byte *
19267 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19268 {
19269 /* If the size of a host char is 8 bits, we can return a pointer
19270 to the buffer, otherwise we have to copy the data to a buffer
19271 allocated on the temporary obstack. */
19272 gdb_assert (HOST_CHAR_BIT == 8);
19273 return buf;
19274 }
19275
19276 static const char *
19277 read_direct_string (bfd *abfd, const gdb_byte *buf,
19278 unsigned int *bytes_read_ptr)
19279 {
19280 /* If the size of a host char is 8 bits, we can return a pointer
19281 to the string, otherwise we have to copy the string to a buffer
19282 allocated on the temporary obstack. */
19283 gdb_assert (HOST_CHAR_BIT == 8);
19284 if (*buf == '\0')
19285 {
19286 *bytes_read_ptr = 1;
19287 return NULL;
19288 }
19289 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19290 return (const char *) buf;
19291 }
19292
19293 /* Return pointer to string at section SECT offset STR_OFFSET with error
19294 reporting strings FORM_NAME and SECT_NAME. */
19295
19296 static const char *
19297 read_indirect_string_at_offset_from (struct objfile *objfile,
19298 bfd *abfd, LONGEST str_offset,
19299 struct dwarf2_section_info *sect,
19300 const char *form_name,
19301 const char *sect_name)
19302 {
19303 dwarf2_read_section (objfile, sect);
19304 if (sect->buffer == NULL)
19305 error (_("%s used without %s section [in module %s]"),
19306 form_name, sect_name, bfd_get_filename (abfd));
19307 if (str_offset >= sect->size)
19308 error (_("%s pointing outside of %s section [in module %s]"),
19309 form_name, sect_name, bfd_get_filename (abfd));
19310 gdb_assert (HOST_CHAR_BIT == 8);
19311 if (sect->buffer[str_offset] == '\0')
19312 return NULL;
19313 return (const char *) (sect->buffer + str_offset);
19314 }
19315
19316 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19317
19318 static const char *
19319 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19320 bfd *abfd, LONGEST str_offset)
19321 {
19322 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19323 abfd, str_offset,
19324 &dwarf2_per_objfile->str,
19325 "DW_FORM_strp", ".debug_str");
19326 }
19327
19328 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19329
19330 static const char *
19331 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19332 bfd *abfd, LONGEST str_offset)
19333 {
19334 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19335 abfd, str_offset,
19336 &dwarf2_per_objfile->line_str,
19337 "DW_FORM_line_strp",
19338 ".debug_line_str");
19339 }
19340
19341 /* Read a string at offset STR_OFFSET in the .debug_str section from
19342 the .dwz file DWZ. Throw an error if the offset is too large. If
19343 the string consists of a single NUL byte, return NULL; otherwise
19344 return a pointer to the string. */
19345
19346 static const char *
19347 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19348 LONGEST str_offset)
19349 {
19350 dwarf2_read_section (objfile, &dwz->str);
19351
19352 if (dwz->str.buffer == NULL)
19353 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19354 "section [in module %s]"),
19355 bfd_get_filename (dwz->dwz_bfd));
19356 if (str_offset >= dwz->str.size)
19357 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19358 ".debug_str section [in module %s]"),
19359 bfd_get_filename (dwz->dwz_bfd));
19360 gdb_assert (HOST_CHAR_BIT == 8);
19361 if (dwz->str.buffer[str_offset] == '\0')
19362 return NULL;
19363 return (const char *) (dwz->str.buffer + str_offset);
19364 }
19365
19366 /* Return pointer to string at .debug_str offset as read from BUF.
19367 BUF is assumed to be in a compilation unit described by CU_HEADER.
19368 Return *BYTES_READ_PTR count of bytes read from BUF. */
19369
19370 static const char *
19371 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19372 const gdb_byte *buf,
19373 const struct comp_unit_head *cu_header,
19374 unsigned int *bytes_read_ptr)
19375 {
19376 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19377
19378 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19379 }
19380
19381 /* Return pointer to string at .debug_line_str offset as read from BUF.
19382 BUF is assumed to be in a compilation unit described by CU_HEADER.
19383 Return *BYTES_READ_PTR count of bytes read from BUF. */
19384
19385 static const char *
19386 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19387 bfd *abfd, const gdb_byte *buf,
19388 const struct comp_unit_head *cu_header,
19389 unsigned int *bytes_read_ptr)
19390 {
19391 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19392
19393 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19394 str_offset);
19395 }
19396
19397 ULONGEST
19398 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19399 unsigned int *bytes_read_ptr)
19400 {
19401 ULONGEST result;
19402 unsigned int num_read;
19403 int shift;
19404 unsigned char byte;
19405
19406 result = 0;
19407 shift = 0;
19408 num_read = 0;
19409 while (1)
19410 {
19411 byte = bfd_get_8 (abfd, buf);
19412 buf++;
19413 num_read++;
19414 result |= ((ULONGEST) (byte & 127) << shift);
19415 if ((byte & 128) == 0)
19416 {
19417 break;
19418 }
19419 shift += 7;
19420 }
19421 *bytes_read_ptr = num_read;
19422 return result;
19423 }
19424
19425 static LONGEST
19426 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19427 unsigned int *bytes_read_ptr)
19428 {
19429 LONGEST result;
19430 int shift, num_read;
19431 unsigned char byte;
19432
19433 result = 0;
19434 shift = 0;
19435 num_read = 0;
19436 while (1)
19437 {
19438 byte = bfd_get_8 (abfd, buf);
19439 buf++;
19440 num_read++;
19441 result |= ((LONGEST) (byte & 127) << shift);
19442 shift += 7;
19443 if ((byte & 128) == 0)
19444 {
19445 break;
19446 }
19447 }
19448 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19449 result |= -(((LONGEST) 1) << shift);
19450 *bytes_read_ptr = num_read;
19451 return result;
19452 }
19453
19454 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19455 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19456 ADDR_SIZE is the size of addresses from the CU header. */
19457
19458 static CORE_ADDR
19459 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19460 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19461 {
19462 struct objfile *objfile = dwarf2_per_objfile->objfile;
19463 bfd *abfd = objfile->obfd;
19464 const gdb_byte *info_ptr;
19465
19466 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19467 if (dwarf2_per_objfile->addr.buffer == NULL)
19468 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19469 objfile_name (objfile));
19470 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19471 error (_("DW_FORM_addr_index pointing outside of "
19472 ".debug_addr section [in module %s]"),
19473 objfile_name (objfile));
19474 info_ptr = (dwarf2_per_objfile->addr.buffer
19475 + addr_base + addr_index * addr_size);
19476 if (addr_size == 4)
19477 return bfd_get_32 (abfd, info_ptr);
19478 else
19479 return bfd_get_64 (abfd, info_ptr);
19480 }
19481
19482 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19483
19484 static CORE_ADDR
19485 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19486 {
19487 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19488 cu->addr_base, cu->header.addr_size);
19489 }
19490
19491 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19492
19493 static CORE_ADDR
19494 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19495 unsigned int *bytes_read)
19496 {
19497 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19498 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19499
19500 return read_addr_index (cu, addr_index);
19501 }
19502
19503 /* Data structure to pass results from dwarf2_read_addr_index_reader
19504 back to dwarf2_read_addr_index. */
19505
19506 struct dwarf2_read_addr_index_data
19507 {
19508 ULONGEST addr_base;
19509 int addr_size;
19510 };
19511
19512 /* die_reader_func for dwarf2_read_addr_index. */
19513
19514 static void
19515 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19516 const gdb_byte *info_ptr,
19517 struct die_info *comp_unit_die,
19518 int has_children,
19519 void *data)
19520 {
19521 struct dwarf2_cu *cu = reader->cu;
19522 struct dwarf2_read_addr_index_data *aidata =
19523 (struct dwarf2_read_addr_index_data *) data;
19524
19525 aidata->addr_base = cu->addr_base;
19526 aidata->addr_size = cu->header.addr_size;
19527 }
19528
19529 /* Given an index in .debug_addr, fetch the value.
19530 NOTE: This can be called during dwarf expression evaluation,
19531 long after the debug information has been read, and thus per_cu->cu
19532 may no longer exist. */
19533
19534 CORE_ADDR
19535 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19536 unsigned int addr_index)
19537 {
19538 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19539 struct dwarf2_cu *cu = per_cu->cu;
19540 ULONGEST addr_base;
19541 int addr_size;
19542
19543 /* We need addr_base and addr_size.
19544 If we don't have PER_CU->cu, we have to get it.
19545 Nasty, but the alternative is storing the needed info in PER_CU,
19546 which at this point doesn't seem justified: it's not clear how frequently
19547 it would get used and it would increase the size of every PER_CU.
19548 Entry points like dwarf2_per_cu_addr_size do a similar thing
19549 so we're not in uncharted territory here.
19550 Alas we need to be a bit more complicated as addr_base is contained
19551 in the DIE.
19552
19553 We don't need to read the entire CU(/TU).
19554 We just need the header and top level die.
19555
19556 IWBN to use the aging mechanism to let us lazily later discard the CU.
19557 For now we skip this optimization. */
19558
19559 if (cu != NULL)
19560 {
19561 addr_base = cu->addr_base;
19562 addr_size = cu->header.addr_size;
19563 }
19564 else
19565 {
19566 struct dwarf2_read_addr_index_data aidata;
19567
19568 /* Note: We can't use init_cutu_and_read_dies_simple here,
19569 we need addr_base. */
19570 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
19571 dwarf2_read_addr_index_reader, &aidata);
19572 addr_base = aidata.addr_base;
19573 addr_size = aidata.addr_size;
19574 }
19575
19576 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19577 addr_size);
19578 }
19579
19580 /* Given a DW_FORM_GNU_str_index, fetch the string.
19581 This is only used by the Fission support. */
19582
19583 static const char *
19584 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19585 {
19586 struct dwarf2_cu *cu = reader->cu;
19587 struct dwarf2_per_objfile *dwarf2_per_objfile
19588 = cu->per_cu->dwarf2_per_objfile;
19589 struct objfile *objfile = dwarf2_per_objfile->objfile;
19590 const char *objf_name = objfile_name (objfile);
19591 bfd *abfd = objfile->obfd;
19592 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19593 struct dwarf2_section_info *str_offsets_section =
19594 &reader->dwo_file->sections.str_offsets;
19595 const gdb_byte *info_ptr;
19596 ULONGEST str_offset;
19597 static const char form_name[] = "DW_FORM_GNU_str_index";
19598
19599 dwarf2_read_section (objfile, str_section);
19600 dwarf2_read_section (objfile, str_offsets_section);
19601 if (str_section->buffer == NULL)
19602 error (_("%s used without .debug_str.dwo section"
19603 " in CU at offset %s [in module %s]"),
19604 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19605 if (str_offsets_section->buffer == NULL)
19606 error (_("%s used without .debug_str_offsets.dwo section"
19607 " in CU at offset %s [in module %s]"),
19608 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19609 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19610 error (_("%s pointing outside of .debug_str_offsets.dwo"
19611 " section in CU at offset %s [in module %s]"),
19612 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19613 info_ptr = (str_offsets_section->buffer
19614 + str_index * cu->header.offset_size);
19615 if (cu->header.offset_size == 4)
19616 str_offset = bfd_get_32 (abfd, info_ptr);
19617 else
19618 str_offset = bfd_get_64 (abfd, info_ptr);
19619 if (str_offset >= str_section->size)
19620 error (_("Offset from %s pointing outside of"
19621 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19622 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19623 return (const char *) (str_section->buffer + str_offset);
19624 }
19625
19626 /* Return the length of an LEB128 number in BUF. */
19627
19628 static int
19629 leb128_size (const gdb_byte *buf)
19630 {
19631 const gdb_byte *begin = buf;
19632 gdb_byte byte;
19633
19634 while (1)
19635 {
19636 byte = *buf++;
19637 if ((byte & 128) == 0)
19638 return buf - begin;
19639 }
19640 }
19641
19642 static void
19643 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19644 {
19645 switch (lang)
19646 {
19647 case DW_LANG_C89:
19648 case DW_LANG_C99:
19649 case DW_LANG_C11:
19650 case DW_LANG_C:
19651 case DW_LANG_UPC:
19652 cu->language = language_c;
19653 break;
19654 case DW_LANG_Java:
19655 case DW_LANG_C_plus_plus:
19656 case DW_LANG_C_plus_plus_11:
19657 case DW_LANG_C_plus_plus_14:
19658 cu->language = language_cplus;
19659 break;
19660 case DW_LANG_D:
19661 cu->language = language_d;
19662 break;
19663 case DW_LANG_Fortran77:
19664 case DW_LANG_Fortran90:
19665 case DW_LANG_Fortran95:
19666 case DW_LANG_Fortran03:
19667 case DW_LANG_Fortran08:
19668 cu->language = language_fortran;
19669 break;
19670 case DW_LANG_Go:
19671 cu->language = language_go;
19672 break;
19673 case DW_LANG_Mips_Assembler:
19674 cu->language = language_asm;
19675 break;
19676 case DW_LANG_Ada83:
19677 case DW_LANG_Ada95:
19678 cu->language = language_ada;
19679 break;
19680 case DW_LANG_Modula2:
19681 cu->language = language_m2;
19682 break;
19683 case DW_LANG_Pascal83:
19684 cu->language = language_pascal;
19685 break;
19686 case DW_LANG_ObjC:
19687 cu->language = language_objc;
19688 break;
19689 case DW_LANG_Rust:
19690 case DW_LANG_Rust_old:
19691 cu->language = language_rust;
19692 break;
19693 case DW_LANG_Cobol74:
19694 case DW_LANG_Cobol85:
19695 default:
19696 cu->language = language_minimal;
19697 break;
19698 }
19699 cu->language_defn = language_def (cu->language);
19700 }
19701
19702 /* Return the named attribute or NULL if not there. */
19703
19704 static struct attribute *
19705 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19706 {
19707 for (;;)
19708 {
19709 unsigned int i;
19710 struct attribute *spec = NULL;
19711
19712 for (i = 0; i < die->num_attrs; ++i)
19713 {
19714 if (die->attrs[i].name == name)
19715 return &die->attrs[i];
19716 if (die->attrs[i].name == DW_AT_specification
19717 || die->attrs[i].name == DW_AT_abstract_origin)
19718 spec = &die->attrs[i];
19719 }
19720
19721 if (!spec)
19722 break;
19723
19724 die = follow_die_ref (die, spec, &cu);
19725 }
19726
19727 return NULL;
19728 }
19729
19730 /* Return the named attribute or NULL if not there,
19731 but do not follow DW_AT_specification, etc.
19732 This is for use in contexts where we're reading .debug_types dies.
19733 Following DW_AT_specification, DW_AT_abstract_origin will take us
19734 back up the chain, and we want to go down. */
19735
19736 static struct attribute *
19737 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19738 {
19739 unsigned int i;
19740
19741 for (i = 0; i < die->num_attrs; ++i)
19742 if (die->attrs[i].name == name)
19743 return &die->attrs[i];
19744
19745 return NULL;
19746 }
19747
19748 /* Return the string associated with a string-typed attribute, or NULL if it
19749 is either not found or is of an incorrect type. */
19750
19751 static const char *
19752 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19753 {
19754 struct attribute *attr;
19755 const char *str = NULL;
19756
19757 attr = dwarf2_attr (die, name, cu);
19758
19759 if (attr != NULL)
19760 {
19761 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19762 || attr->form == DW_FORM_string
19763 || attr->form == DW_FORM_GNU_str_index
19764 || attr->form == DW_FORM_GNU_strp_alt)
19765 str = DW_STRING (attr);
19766 else
19767 complaint (&symfile_complaints,
19768 _("string type expected for attribute %s for "
19769 "DIE at %s in module %s"),
19770 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19771 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19772 }
19773
19774 return str;
19775 }
19776
19777 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19778 and holds a non-zero value. This function should only be used for
19779 DW_FORM_flag or DW_FORM_flag_present attributes. */
19780
19781 static int
19782 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19783 {
19784 struct attribute *attr = dwarf2_attr (die, name, cu);
19785
19786 return (attr && DW_UNSND (attr));
19787 }
19788
19789 static int
19790 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19791 {
19792 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19793 which value is non-zero. However, we have to be careful with
19794 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19795 (via dwarf2_flag_true_p) follows this attribute. So we may
19796 end up accidently finding a declaration attribute that belongs
19797 to a different DIE referenced by the specification attribute,
19798 even though the given DIE does not have a declaration attribute. */
19799 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19800 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19801 }
19802
19803 /* Return the die giving the specification for DIE, if there is
19804 one. *SPEC_CU is the CU containing DIE on input, and the CU
19805 containing the return value on output. If there is no
19806 specification, but there is an abstract origin, that is
19807 returned. */
19808
19809 static struct die_info *
19810 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19811 {
19812 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19813 *spec_cu);
19814
19815 if (spec_attr == NULL)
19816 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19817
19818 if (spec_attr == NULL)
19819 return NULL;
19820 else
19821 return follow_die_ref (die, spec_attr, spec_cu);
19822 }
19823
19824 /* Stub for free_line_header to match void * callback types. */
19825
19826 static void
19827 free_line_header_voidp (void *arg)
19828 {
19829 struct line_header *lh = (struct line_header *) arg;
19830
19831 delete lh;
19832 }
19833
19834 void
19835 line_header::add_include_dir (const char *include_dir)
19836 {
19837 if (dwarf_line_debug >= 2)
19838 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19839 include_dirs.size () + 1, include_dir);
19840
19841 include_dirs.push_back (include_dir);
19842 }
19843
19844 void
19845 line_header::add_file_name (const char *name,
19846 dir_index d_index,
19847 unsigned int mod_time,
19848 unsigned int length)
19849 {
19850 if (dwarf_line_debug >= 2)
19851 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
19852 (unsigned) file_names.size () + 1, name);
19853
19854 file_names.emplace_back (name, d_index, mod_time, length);
19855 }
19856
19857 /* A convenience function to find the proper .debug_line section for a CU. */
19858
19859 static struct dwarf2_section_info *
19860 get_debug_line_section (struct dwarf2_cu *cu)
19861 {
19862 struct dwarf2_section_info *section;
19863 struct dwarf2_per_objfile *dwarf2_per_objfile
19864 = cu->per_cu->dwarf2_per_objfile;
19865
19866 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19867 DWO file. */
19868 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19869 section = &cu->dwo_unit->dwo_file->sections.line;
19870 else if (cu->per_cu->is_dwz)
19871 {
19872 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19873
19874 section = &dwz->line;
19875 }
19876 else
19877 section = &dwarf2_per_objfile->line;
19878
19879 return section;
19880 }
19881
19882 /* Read directory or file name entry format, starting with byte of
19883 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19884 entries count and the entries themselves in the described entry
19885 format. */
19886
19887 static void
19888 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19889 bfd *abfd, const gdb_byte **bufp,
19890 struct line_header *lh,
19891 const struct comp_unit_head *cu_header,
19892 void (*callback) (struct line_header *lh,
19893 const char *name,
19894 dir_index d_index,
19895 unsigned int mod_time,
19896 unsigned int length))
19897 {
19898 gdb_byte format_count, formati;
19899 ULONGEST data_count, datai;
19900 const gdb_byte *buf = *bufp;
19901 const gdb_byte *format_header_data;
19902 unsigned int bytes_read;
19903
19904 format_count = read_1_byte (abfd, buf);
19905 buf += 1;
19906 format_header_data = buf;
19907 for (formati = 0; formati < format_count; formati++)
19908 {
19909 read_unsigned_leb128 (abfd, buf, &bytes_read);
19910 buf += bytes_read;
19911 read_unsigned_leb128 (abfd, buf, &bytes_read);
19912 buf += bytes_read;
19913 }
19914
19915 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19916 buf += bytes_read;
19917 for (datai = 0; datai < data_count; datai++)
19918 {
19919 const gdb_byte *format = format_header_data;
19920 struct file_entry fe;
19921
19922 for (formati = 0; formati < format_count; formati++)
19923 {
19924 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19925 format += bytes_read;
19926
19927 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19928 format += bytes_read;
19929
19930 gdb::optional<const char *> string;
19931 gdb::optional<unsigned int> uint;
19932
19933 switch (form)
19934 {
19935 case DW_FORM_string:
19936 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19937 buf += bytes_read;
19938 break;
19939
19940 case DW_FORM_line_strp:
19941 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19942 abfd, buf,
19943 cu_header,
19944 &bytes_read));
19945 buf += bytes_read;
19946 break;
19947
19948 case DW_FORM_data1:
19949 uint.emplace (read_1_byte (abfd, buf));
19950 buf += 1;
19951 break;
19952
19953 case DW_FORM_data2:
19954 uint.emplace (read_2_bytes (abfd, buf));
19955 buf += 2;
19956 break;
19957
19958 case DW_FORM_data4:
19959 uint.emplace (read_4_bytes (abfd, buf));
19960 buf += 4;
19961 break;
19962
19963 case DW_FORM_data8:
19964 uint.emplace (read_8_bytes (abfd, buf));
19965 buf += 8;
19966 break;
19967
19968 case DW_FORM_udata:
19969 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
19970 buf += bytes_read;
19971 break;
19972
19973 case DW_FORM_block:
19974 /* It is valid only for DW_LNCT_timestamp which is ignored by
19975 current GDB. */
19976 break;
19977 }
19978
19979 switch (content_type)
19980 {
19981 case DW_LNCT_path:
19982 if (string.has_value ())
19983 fe.name = *string;
19984 break;
19985 case DW_LNCT_directory_index:
19986 if (uint.has_value ())
19987 fe.d_index = (dir_index) *uint;
19988 break;
19989 case DW_LNCT_timestamp:
19990 if (uint.has_value ())
19991 fe.mod_time = *uint;
19992 break;
19993 case DW_LNCT_size:
19994 if (uint.has_value ())
19995 fe.length = *uint;
19996 break;
19997 case DW_LNCT_MD5:
19998 break;
19999 default:
20000 complaint (&symfile_complaints,
20001 _("Unknown format content type %s"),
20002 pulongest (content_type));
20003 }
20004 }
20005
20006 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20007 }
20008
20009 *bufp = buf;
20010 }
20011
20012 /* Read the statement program header starting at OFFSET in
20013 .debug_line, or .debug_line.dwo. Return a pointer
20014 to a struct line_header, allocated using xmalloc.
20015 Returns NULL if there is a problem reading the header, e.g., if it
20016 has a version we don't understand.
20017
20018 NOTE: the strings in the include directory and file name tables of
20019 the returned object point into the dwarf line section buffer,
20020 and must not be freed. */
20021
20022 static line_header_up
20023 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20024 {
20025 const gdb_byte *line_ptr;
20026 unsigned int bytes_read, offset_size;
20027 int i;
20028 const char *cur_dir, *cur_file;
20029 struct dwarf2_section_info *section;
20030 bfd *abfd;
20031 struct dwarf2_per_objfile *dwarf2_per_objfile
20032 = cu->per_cu->dwarf2_per_objfile;
20033
20034 section = get_debug_line_section (cu);
20035 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20036 if (section->buffer == NULL)
20037 {
20038 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20039 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20040 else
20041 complaint (&symfile_complaints, _("missing .debug_line section"));
20042 return 0;
20043 }
20044
20045 /* We can't do this until we know the section is non-empty.
20046 Only then do we know we have such a section. */
20047 abfd = get_section_bfd_owner (section);
20048
20049 /* Make sure that at least there's room for the total_length field.
20050 That could be 12 bytes long, but we're just going to fudge that. */
20051 if (to_underlying (sect_off) + 4 >= section->size)
20052 {
20053 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20054 return 0;
20055 }
20056
20057 line_header_up lh (new line_header ());
20058
20059 lh->sect_off = sect_off;
20060 lh->offset_in_dwz = cu->per_cu->is_dwz;
20061
20062 line_ptr = section->buffer + to_underlying (sect_off);
20063
20064 /* Read in the header. */
20065 lh->total_length =
20066 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20067 &bytes_read, &offset_size);
20068 line_ptr += bytes_read;
20069 if (line_ptr + lh->total_length > (section->buffer + section->size))
20070 {
20071 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20072 return 0;
20073 }
20074 lh->statement_program_end = line_ptr + lh->total_length;
20075 lh->version = read_2_bytes (abfd, line_ptr);
20076 line_ptr += 2;
20077 if (lh->version > 5)
20078 {
20079 /* This is a version we don't understand. The format could have
20080 changed in ways we don't handle properly so just punt. */
20081 complaint (&symfile_complaints,
20082 _("unsupported version in .debug_line section"));
20083 return NULL;
20084 }
20085 if (lh->version >= 5)
20086 {
20087 gdb_byte segment_selector_size;
20088
20089 /* Skip address size. */
20090 read_1_byte (abfd, line_ptr);
20091 line_ptr += 1;
20092
20093 segment_selector_size = read_1_byte (abfd, line_ptr);
20094 line_ptr += 1;
20095 if (segment_selector_size != 0)
20096 {
20097 complaint (&symfile_complaints,
20098 _("unsupported segment selector size %u "
20099 "in .debug_line section"),
20100 segment_selector_size);
20101 return NULL;
20102 }
20103 }
20104 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20105 line_ptr += offset_size;
20106 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20107 line_ptr += 1;
20108 if (lh->version >= 4)
20109 {
20110 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20111 line_ptr += 1;
20112 }
20113 else
20114 lh->maximum_ops_per_instruction = 1;
20115
20116 if (lh->maximum_ops_per_instruction == 0)
20117 {
20118 lh->maximum_ops_per_instruction = 1;
20119 complaint (&symfile_complaints,
20120 _("invalid maximum_ops_per_instruction "
20121 "in `.debug_line' section"));
20122 }
20123
20124 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20125 line_ptr += 1;
20126 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20127 line_ptr += 1;
20128 lh->line_range = read_1_byte (abfd, line_ptr);
20129 line_ptr += 1;
20130 lh->opcode_base = read_1_byte (abfd, line_ptr);
20131 line_ptr += 1;
20132 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20133
20134 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20135 for (i = 1; i < lh->opcode_base; ++i)
20136 {
20137 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20138 line_ptr += 1;
20139 }
20140
20141 if (lh->version >= 5)
20142 {
20143 /* Read directory table. */
20144 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20145 &cu->header,
20146 [] (struct line_header *lh, const char *name,
20147 dir_index d_index, unsigned int mod_time,
20148 unsigned int length)
20149 {
20150 lh->add_include_dir (name);
20151 });
20152
20153 /* Read file name table. */
20154 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20155 &cu->header,
20156 [] (struct line_header *lh, const char *name,
20157 dir_index d_index, unsigned int mod_time,
20158 unsigned int length)
20159 {
20160 lh->add_file_name (name, d_index, mod_time, length);
20161 });
20162 }
20163 else
20164 {
20165 /* Read directory table. */
20166 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20167 {
20168 line_ptr += bytes_read;
20169 lh->add_include_dir (cur_dir);
20170 }
20171 line_ptr += bytes_read;
20172
20173 /* Read file name table. */
20174 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20175 {
20176 unsigned int mod_time, length;
20177 dir_index d_index;
20178
20179 line_ptr += bytes_read;
20180 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20181 line_ptr += bytes_read;
20182 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20183 line_ptr += bytes_read;
20184 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20185 line_ptr += bytes_read;
20186
20187 lh->add_file_name (cur_file, d_index, mod_time, length);
20188 }
20189 line_ptr += bytes_read;
20190 }
20191 lh->statement_program_start = line_ptr;
20192
20193 if (line_ptr > (section->buffer + section->size))
20194 complaint (&symfile_complaints,
20195 _("line number info header doesn't "
20196 "fit in `.debug_line' section"));
20197
20198 return lh;
20199 }
20200
20201 /* Subroutine of dwarf_decode_lines to simplify it.
20202 Return the file name of the psymtab for included file FILE_INDEX
20203 in line header LH of PST.
20204 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20205 If space for the result is malloc'd, *NAME_HOLDER will be set.
20206 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20207
20208 static const char *
20209 psymtab_include_file_name (const struct line_header *lh, int file_index,
20210 const struct partial_symtab *pst,
20211 const char *comp_dir,
20212 gdb::unique_xmalloc_ptr<char> *name_holder)
20213 {
20214 const file_entry &fe = lh->file_names[file_index];
20215 const char *include_name = fe.name;
20216 const char *include_name_to_compare = include_name;
20217 const char *pst_filename;
20218 int file_is_pst;
20219
20220 const char *dir_name = fe.include_dir (lh);
20221
20222 gdb::unique_xmalloc_ptr<char> hold_compare;
20223 if (!IS_ABSOLUTE_PATH (include_name)
20224 && (dir_name != NULL || comp_dir != NULL))
20225 {
20226 /* Avoid creating a duplicate psymtab for PST.
20227 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20228 Before we do the comparison, however, we need to account
20229 for DIR_NAME and COMP_DIR.
20230 First prepend dir_name (if non-NULL). If we still don't
20231 have an absolute path prepend comp_dir (if non-NULL).
20232 However, the directory we record in the include-file's
20233 psymtab does not contain COMP_DIR (to match the
20234 corresponding symtab(s)).
20235
20236 Example:
20237
20238 bash$ cd /tmp
20239 bash$ gcc -g ./hello.c
20240 include_name = "hello.c"
20241 dir_name = "."
20242 DW_AT_comp_dir = comp_dir = "/tmp"
20243 DW_AT_name = "./hello.c"
20244
20245 */
20246
20247 if (dir_name != NULL)
20248 {
20249 name_holder->reset (concat (dir_name, SLASH_STRING,
20250 include_name, (char *) NULL));
20251 include_name = name_holder->get ();
20252 include_name_to_compare = include_name;
20253 }
20254 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20255 {
20256 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20257 include_name, (char *) NULL));
20258 include_name_to_compare = hold_compare.get ();
20259 }
20260 }
20261
20262 pst_filename = pst->filename;
20263 gdb::unique_xmalloc_ptr<char> copied_name;
20264 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20265 {
20266 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20267 pst_filename, (char *) NULL));
20268 pst_filename = copied_name.get ();
20269 }
20270
20271 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20272
20273 if (file_is_pst)
20274 return NULL;
20275 return include_name;
20276 }
20277
20278 /* State machine to track the state of the line number program. */
20279
20280 class lnp_state_machine
20281 {
20282 public:
20283 /* Initialize a machine state for the start of a line number
20284 program. */
20285 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20286
20287 file_entry *current_file ()
20288 {
20289 /* lh->file_names is 0-based, but the file name numbers in the
20290 statement program are 1-based. */
20291 return m_line_header->file_name_at (m_file);
20292 }
20293
20294 /* Record the line in the state machine. END_SEQUENCE is true if
20295 we're processing the end of a sequence. */
20296 void record_line (bool end_sequence);
20297
20298 /* Check address and if invalid nop-out the rest of the lines in this
20299 sequence. */
20300 void check_line_address (struct dwarf2_cu *cu,
20301 const gdb_byte *line_ptr,
20302 CORE_ADDR lowpc, CORE_ADDR address);
20303
20304 void handle_set_discriminator (unsigned int discriminator)
20305 {
20306 m_discriminator = discriminator;
20307 m_line_has_non_zero_discriminator |= discriminator != 0;
20308 }
20309
20310 /* Handle DW_LNE_set_address. */
20311 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20312 {
20313 m_op_index = 0;
20314 address += baseaddr;
20315 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20316 }
20317
20318 /* Handle DW_LNS_advance_pc. */
20319 void handle_advance_pc (CORE_ADDR adjust);
20320
20321 /* Handle a special opcode. */
20322 void handle_special_opcode (unsigned char op_code);
20323
20324 /* Handle DW_LNS_advance_line. */
20325 void handle_advance_line (int line_delta)
20326 {
20327 advance_line (line_delta);
20328 }
20329
20330 /* Handle DW_LNS_set_file. */
20331 void handle_set_file (file_name_index file);
20332
20333 /* Handle DW_LNS_negate_stmt. */
20334 void handle_negate_stmt ()
20335 {
20336 m_is_stmt = !m_is_stmt;
20337 }
20338
20339 /* Handle DW_LNS_const_add_pc. */
20340 void handle_const_add_pc ();
20341
20342 /* Handle DW_LNS_fixed_advance_pc. */
20343 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20344 {
20345 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20346 m_op_index = 0;
20347 }
20348
20349 /* Handle DW_LNS_copy. */
20350 void handle_copy ()
20351 {
20352 record_line (false);
20353 m_discriminator = 0;
20354 }
20355
20356 /* Handle DW_LNE_end_sequence. */
20357 void handle_end_sequence ()
20358 {
20359 m_record_line_callback = ::record_line;
20360 }
20361
20362 private:
20363 /* Advance the line by LINE_DELTA. */
20364 void advance_line (int line_delta)
20365 {
20366 m_line += line_delta;
20367
20368 if (line_delta != 0)
20369 m_line_has_non_zero_discriminator = m_discriminator != 0;
20370 }
20371
20372 gdbarch *m_gdbarch;
20373
20374 /* True if we're recording lines.
20375 Otherwise we're building partial symtabs and are just interested in
20376 finding include files mentioned by the line number program. */
20377 bool m_record_lines_p;
20378
20379 /* The line number header. */
20380 line_header *m_line_header;
20381
20382 /* These are part of the standard DWARF line number state machine,
20383 and initialized according to the DWARF spec. */
20384
20385 unsigned char m_op_index = 0;
20386 /* The line table index (1-based) of the current file. */
20387 file_name_index m_file = (file_name_index) 1;
20388 unsigned int m_line = 1;
20389
20390 /* These are initialized in the constructor. */
20391
20392 CORE_ADDR m_address;
20393 bool m_is_stmt;
20394 unsigned int m_discriminator;
20395
20396 /* Additional bits of state we need to track. */
20397
20398 /* The last file that we called dwarf2_start_subfile for.
20399 This is only used for TLLs. */
20400 unsigned int m_last_file = 0;
20401 /* The last file a line number was recorded for. */
20402 struct subfile *m_last_subfile = NULL;
20403
20404 /* The function to call to record a line. */
20405 record_line_ftype *m_record_line_callback = NULL;
20406
20407 /* The last line number that was recorded, used to coalesce
20408 consecutive entries for the same line. This can happen, for
20409 example, when discriminators are present. PR 17276. */
20410 unsigned int m_last_line = 0;
20411 bool m_line_has_non_zero_discriminator = false;
20412 };
20413
20414 void
20415 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20416 {
20417 CORE_ADDR addr_adj = (((m_op_index + adjust)
20418 / m_line_header->maximum_ops_per_instruction)
20419 * m_line_header->minimum_instruction_length);
20420 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20421 m_op_index = ((m_op_index + adjust)
20422 % m_line_header->maximum_ops_per_instruction);
20423 }
20424
20425 void
20426 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20427 {
20428 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20429 CORE_ADDR addr_adj = (((m_op_index
20430 + (adj_opcode / m_line_header->line_range))
20431 / m_line_header->maximum_ops_per_instruction)
20432 * m_line_header->minimum_instruction_length);
20433 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20434 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20435 % m_line_header->maximum_ops_per_instruction);
20436
20437 int line_delta = (m_line_header->line_base
20438 + (adj_opcode % m_line_header->line_range));
20439 advance_line (line_delta);
20440 record_line (false);
20441 m_discriminator = 0;
20442 }
20443
20444 void
20445 lnp_state_machine::handle_set_file (file_name_index file)
20446 {
20447 m_file = file;
20448
20449 const file_entry *fe = current_file ();
20450 if (fe == NULL)
20451 dwarf2_debug_line_missing_file_complaint ();
20452 else if (m_record_lines_p)
20453 {
20454 const char *dir = fe->include_dir (m_line_header);
20455
20456 m_last_subfile = current_subfile;
20457 m_line_has_non_zero_discriminator = m_discriminator != 0;
20458 dwarf2_start_subfile (fe->name, dir);
20459 }
20460 }
20461
20462 void
20463 lnp_state_machine::handle_const_add_pc ()
20464 {
20465 CORE_ADDR adjust
20466 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20467
20468 CORE_ADDR addr_adj
20469 = (((m_op_index + adjust)
20470 / m_line_header->maximum_ops_per_instruction)
20471 * m_line_header->minimum_instruction_length);
20472
20473 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20474 m_op_index = ((m_op_index + adjust)
20475 % m_line_header->maximum_ops_per_instruction);
20476 }
20477
20478 /* Ignore this record_line request. */
20479
20480 static void
20481 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
20482 {
20483 return;
20484 }
20485
20486 /* Return non-zero if we should add LINE to the line number table.
20487 LINE is the line to add, LAST_LINE is the last line that was added,
20488 LAST_SUBFILE is the subfile for LAST_LINE.
20489 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20490 had a non-zero discriminator.
20491
20492 We have to be careful in the presence of discriminators.
20493 E.g., for this line:
20494
20495 for (i = 0; i < 100000; i++);
20496
20497 clang can emit four line number entries for that one line,
20498 each with a different discriminator.
20499 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20500
20501 However, we want gdb to coalesce all four entries into one.
20502 Otherwise the user could stepi into the middle of the line and
20503 gdb would get confused about whether the pc really was in the
20504 middle of the line.
20505
20506 Things are further complicated by the fact that two consecutive
20507 line number entries for the same line is a heuristic used by gcc
20508 to denote the end of the prologue. So we can't just discard duplicate
20509 entries, we have to be selective about it. The heuristic we use is
20510 that we only collapse consecutive entries for the same line if at least
20511 one of those entries has a non-zero discriminator. PR 17276.
20512
20513 Note: Addresses in the line number state machine can never go backwards
20514 within one sequence, thus this coalescing is ok. */
20515
20516 static int
20517 dwarf_record_line_p (unsigned int line, unsigned int last_line,
20518 int line_has_non_zero_discriminator,
20519 struct subfile *last_subfile)
20520 {
20521 if (current_subfile != last_subfile)
20522 return 1;
20523 if (line != last_line)
20524 return 1;
20525 /* Same line for the same file that we've seen already.
20526 As a last check, for pr 17276, only record the line if the line
20527 has never had a non-zero discriminator. */
20528 if (!line_has_non_zero_discriminator)
20529 return 1;
20530 return 0;
20531 }
20532
20533 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
20534 in the line table of subfile SUBFILE. */
20535
20536 static void
20537 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20538 unsigned int line, CORE_ADDR address,
20539 record_line_ftype p_record_line)
20540 {
20541 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20542
20543 if (dwarf_line_debug)
20544 {
20545 fprintf_unfiltered (gdb_stdlog,
20546 "Recording line %u, file %s, address %s\n",
20547 line, lbasename (subfile->name),
20548 paddress (gdbarch, address));
20549 }
20550
20551 (*p_record_line) (subfile, line, addr);
20552 }
20553
20554 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20555 Mark the end of a set of line number records.
20556 The arguments are the same as for dwarf_record_line_1.
20557 If SUBFILE is NULL the request is ignored. */
20558
20559 static void
20560 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20561 CORE_ADDR address, record_line_ftype p_record_line)
20562 {
20563 if (subfile == NULL)
20564 return;
20565
20566 if (dwarf_line_debug)
20567 {
20568 fprintf_unfiltered (gdb_stdlog,
20569 "Finishing current line, file %s, address %s\n",
20570 lbasename (subfile->name),
20571 paddress (gdbarch, address));
20572 }
20573
20574 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
20575 }
20576
20577 void
20578 lnp_state_machine::record_line (bool end_sequence)
20579 {
20580 if (dwarf_line_debug)
20581 {
20582 fprintf_unfiltered (gdb_stdlog,
20583 "Processing actual line %u: file %u,"
20584 " address %s, is_stmt %u, discrim %u\n",
20585 m_line, to_underlying (m_file),
20586 paddress (m_gdbarch, m_address),
20587 m_is_stmt, m_discriminator);
20588 }
20589
20590 file_entry *fe = current_file ();
20591
20592 if (fe == NULL)
20593 dwarf2_debug_line_missing_file_complaint ();
20594 /* For now we ignore lines not starting on an instruction boundary.
20595 But not when processing end_sequence for compatibility with the
20596 previous version of the code. */
20597 else if (m_op_index == 0 || end_sequence)
20598 {
20599 fe->included_p = 1;
20600 if (m_record_lines_p && m_is_stmt)
20601 {
20602 if (m_last_subfile != current_subfile || end_sequence)
20603 {
20604 dwarf_finish_line (m_gdbarch, m_last_subfile,
20605 m_address, m_record_line_callback);
20606 }
20607
20608 if (!end_sequence)
20609 {
20610 if (dwarf_record_line_p (m_line, m_last_line,
20611 m_line_has_non_zero_discriminator,
20612 m_last_subfile))
20613 {
20614 dwarf_record_line_1 (m_gdbarch, current_subfile,
20615 m_line, m_address,
20616 m_record_line_callback);
20617 }
20618 m_last_subfile = current_subfile;
20619 m_last_line = m_line;
20620 }
20621 }
20622 }
20623 }
20624
20625 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
20626 bool record_lines_p)
20627 {
20628 m_gdbarch = arch;
20629 m_record_lines_p = record_lines_p;
20630 m_line_header = lh;
20631
20632 m_record_line_callback = ::record_line;
20633
20634 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20635 was a line entry for it so that the backend has a chance to adjust it
20636 and also record it in case it needs it. This is currently used by MIPS
20637 code, cf. `mips_adjust_dwarf2_line'. */
20638 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20639 m_is_stmt = lh->default_is_stmt;
20640 m_discriminator = 0;
20641 }
20642
20643 void
20644 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20645 const gdb_byte *line_ptr,
20646 CORE_ADDR lowpc, CORE_ADDR address)
20647 {
20648 /* If address < lowpc then it's not a usable value, it's outside the
20649 pc range of the CU. However, we restrict the test to only address
20650 values of zero to preserve GDB's previous behaviour which is to
20651 handle the specific case of a function being GC'd by the linker. */
20652
20653 if (address == 0 && address < lowpc)
20654 {
20655 /* This line table is for a function which has been
20656 GCd by the linker. Ignore it. PR gdb/12528 */
20657
20658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20659 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20660
20661 complaint (&symfile_complaints,
20662 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20663 line_offset, objfile_name (objfile));
20664 m_record_line_callback = noop_record_line;
20665 /* Note: record_line_callback is left as noop_record_line until
20666 we see DW_LNE_end_sequence. */
20667 }
20668 }
20669
20670 /* Subroutine of dwarf_decode_lines to simplify it.
20671 Process the line number information in LH.
20672 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20673 program in order to set included_p for every referenced header. */
20674
20675 static void
20676 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20677 const int decode_for_pst_p, CORE_ADDR lowpc)
20678 {
20679 const gdb_byte *line_ptr, *extended_end;
20680 const gdb_byte *line_end;
20681 unsigned int bytes_read, extended_len;
20682 unsigned char op_code, extended_op;
20683 CORE_ADDR baseaddr;
20684 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20685 bfd *abfd = objfile->obfd;
20686 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20687 /* True if we're recording line info (as opposed to building partial
20688 symtabs and just interested in finding include files mentioned by
20689 the line number program). */
20690 bool record_lines_p = !decode_for_pst_p;
20691
20692 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20693
20694 line_ptr = lh->statement_program_start;
20695 line_end = lh->statement_program_end;
20696
20697 /* Read the statement sequences until there's nothing left. */
20698 while (line_ptr < line_end)
20699 {
20700 /* The DWARF line number program state machine. Reset the state
20701 machine at the start of each sequence. */
20702 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
20703 bool end_sequence = false;
20704
20705 if (record_lines_p)
20706 {
20707 /* Start a subfile for the current file of the state
20708 machine. */
20709 const file_entry *fe = state_machine.current_file ();
20710
20711 if (fe != NULL)
20712 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
20713 }
20714
20715 /* Decode the table. */
20716 while (line_ptr < line_end && !end_sequence)
20717 {
20718 op_code = read_1_byte (abfd, line_ptr);
20719 line_ptr += 1;
20720
20721 if (op_code >= lh->opcode_base)
20722 {
20723 /* Special opcode. */
20724 state_machine.handle_special_opcode (op_code);
20725 }
20726 else switch (op_code)
20727 {
20728 case DW_LNS_extended_op:
20729 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20730 &bytes_read);
20731 line_ptr += bytes_read;
20732 extended_end = line_ptr + extended_len;
20733 extended_op = read_1_byte (abfd, line_ptr);
20734 line_ptr += 1;
20735 switch (extended_op)
20736 {
20737 case DW_LNE_end_sequence:
20738 state_machine.handle_end_sequence ();
20739 end_sequence = true;
20740 break;
20741 case DW_LNE_set_address:
20742 {
20743 CORE_ADDR address
20744 = read_address (abfd, line_ptr, cu, &bytes_read);
20745 line_ptr += bytes_read;
20746
20747 state_machine.check_line_address (cu, line_ptr,
20748 lowpc, address);
20749 state_machine.handle_set_address (baseaddr, address);
20750 }
20751 break;
20752 case DW_LNE_define_file:
20753 {
20754 const char *cur_file;
20755 unsigned int mod_time, length;
20756 dir_index dindex;
20757
20758 cur_file = read_direct_string (abfd, line_ptr,
20759 &bytes_read);
20760 line_ptr += bytes_read;
20761 dindex = (dir_index)
20762 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20763 line_ptr += bytes_read;
20764 mod_time =
20765 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20766 line_ptr += bytes_read;
20767 length =
20768 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20769 line_ptr += bytes_read;
20770 lh->add_file_name (cur_file, dindex, mod_time, length);
20771 }
20772 break;
20773 case DW_LNE_set_discriminator:
20774 {
20775 /* The discriminator is not interesting to the
20776 debugger; just ignore it. We still need to
20777 check its value though:
20778 if there are consecutive entries for the same
20779 (non-prologue) line we want to coalesce them.
20780 PR 17276. */
20781 unsigned int discr
20782 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20783 line_ptr += bytes_read;
20784
20785 state_machine.handle_set_discriminator (discr);
20786 }
20787 break;
20788 default:
20789 complaint (&symfile_complaints,
20790 _("mangled .debug_line section"));
20791 return;
20792 }
20793 /* Make sure that we parsed the extended op correctly. If e.g.
20794 we expected a different address size than the producer used,
20795 we may have read the wrong number of bytes. */
20796 if (line_ptr != extended_end)
20797 {
20798 complaint (&symfile_complaints,
20799 _("mangled .debug_line section"));
20800 return;
20801 }
20802 break;
20803 case DW_LNS_copy:
20804 state_machine.handle_copy ();
20805 break;
20806 case DW_LNS_advance_pc:
20807 {
20808 CORE_ADDR adjust
20809 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20810 line_ptr += bytes_read;
20811
20812 state_machine.handle_advance_pc (adjust);
20813 }
20814 break;
20815 case DW_LNS_advance_line:
20816 {
20817 int line_delta
20818 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20819 line_ptr += bytes_read;
20820
20821 state_machine.handle_advance_line (line_delta);
20822 }
20823 break;
20824 case DW_LNS_set_file:
20825 {
20826 file_name_index file
20827 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20828 &bytes_read);
20829 line_ptr += bytes_read;
20830
20831 state_machine.handle_set_file (file);
20832 }
20833 break;
20834 case DW_LNS_set_column:
20835 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20836 line_ptr += bytes_read;
20837 break;
20838 case DW_LNS_negate_stmt:
20839 state_machine.handle_negate_stmt ();
20840 break;
20841 case DW_LNS_set_basic_block:
20842 break;
20843 /* Add to the address register of the state machine the
20844 address increment value corresponding to special opcode
20845 255. I.e., this value is scaled by the minimum
20846 instruction length since special opcode 255 would have
20847 scaled the increment. */
20848 case DW_LNS_const_add_pc:
20849 state_machine.handle_const_add_pc ();
20850 break;
20851 case DW_LNS_fixed_advance_pc:
20852 {
20853 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20854 line_ptr += 2;
20855
20856 state_machine.handle_fixed_advance_pc (addr_adj);
20857 }
20858 break;
20859 default:
20860 {
20861 /* Unknown standard opcode, ignore it. */
20862 int i;
20863
20864 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20865 {
20866 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20867 line_ptr += bytes_read;
20868 }
20869 }
20870 }
20871 }
20872
20873 if (!end_sequence)
20874 dwarf2_debug_line_missing_end_sequence_complaint ();
20875
20876 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20877 in which case we still finish recording the last line). */
20878 state_machine.record_line (true);
20879 }
20880 }
20881
20882 /* Decode the Line Number Program (LNP) for the given line_header
20883 structure and CU. The actual information extracted and the type
20884 of structures created from the LNP depends on the value of PST.
20885
20886 1. If PST is NULL, then this procedure uses the data from the program
20887 to create all necessary symbol tables, and their linetables.
20888
20889 2. If PST is not NULL, this procedure reads the program to determine
20890 the list of files included by the unit represented by PST, and
20891 builds all the associated partial symbol tables.
20892
20893 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20894 It is used for relative paths in the line table.
20895 NOTE: When processing partial symtabs (pst != NULL),
20896 comp_dir == pst->dirname.
20897
20898 NOTE: It is important that psymtabs have the same file name (via strcmp)
20899 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20900 symtab we don't use it in the name of the psymtabs we create.
20901 E.g. expand_line_sal requires this when finding psymtabs to expand.
20902 A good testcase for this is mb-inline.exp.
20903
20904 LOWPC is the lowest address in CU (or 0 if not known).
20905
20906 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20907 for its PC<->lines mapping information. Otherwise only the filename
20908 table is read in. */
20909
20910 static void
20911 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20912 struct dwarf2_cu *cu, struct partial_symtab *pst,
20913 CORE_ADDR lowpc, int decode_mapping)
20914 {
20915 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20916 const int decode_for_pst_p = (pst != NULL);
20917
20918 if (decode_mapping)
20919 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20920
20921 if (decode_for_pst_p)
20922 {
20923 int file_index;
20924
20925 /* Now that we're done scanning the Line Header Program, we can
20926 create the psymtab of each included file. */
20927 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
20928 if (lh->file_names[file_index].included_p == 1)
20929 {
20930 gdb::unique_xmalloc_ptr<char> name_holder;
20931 const char *include_name =
20932 psymtab_include_file_name (lh, file_index, pst, comp_dir,
20933 &name_holder);
20934 if (include_name != NULL)
20935 dwarf2_create_include_psymtab (include_name, pst, objfile);
20936 }
20937 }
20938 else
20939 {
20940 /* Make sure a symtab is created for every file, even files
20941 which contain only variables (i.e. no code with associated
20942 line numbers). */
20943 struct compunit_symtab *cust = buildsym_compunit_symtab ();
20944 int i;
20945
20946 for (i = 0; i < lh->file_names.size (); i++)
20947 {
20948 file_entry &fe = lh->file_names[i];
20949
20950 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
20951
20952 if (current_subfile->symtab == NULL)
20953 {
20954 current_subfile->symtab
20955 = allocate_symtab (cust, current_subfile->name);
20956 }
20957 fe.symtab = current_subfile->symtab;
20958 }
20959 }
20960 }
20961
20962 /* Start a subfile for DWARF. FILENAME is the name of the file and
20963 DIRNAME the name of the source directory which contains FILENAME
20964 or NULL if not known.
20965 This routine tries to keep line numbers from identical absolute and
20966 relative file names in a common subfile.
20967
20968 Using the `list' example from the GDB testsuite, which resides in
20969 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20970 of /srcdir/list0.c yields the following debugging information for list0.c:
20971
20972 DW_AT_name: /srcdir/list0.c
20973 DW_AT_comp_dir: /compdir
20974 files.files[0].name: list0.h
20975 files.files[0].dir: /srcdir
20976 files.files[1].name: list0.c
20977 files.files[1].dir: /srcdir
20978
20979 The line number information for list0.c has to end up in a single
20980 subfile, so that `break /srcdir/list0.c:1' works as expected.
20981 start_subfile will ensure that this happens provided that we pass the
20982 concatenation of files.files[1].dir and files.files[1].name as the
20983 subfile's name. */
20984
20985 static void
20986 dwarf2_start_subfile (const char *filename, const char *dirname)
20987 {
20988 char *copy = NULL;
20989
20990 /* In order not to lose the line information directory,
20991 we concatenate it to the filename when it makes sense.
20992 Note that the Dwarf3 standard says (speaking of filenames in line
20993 information): ``The directory index is ignored for file names
20994 that represent full path names''. Thus ignoring dirname in the
20995 `else' branch below isn't an issue. */
20996
20997 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20998 {
20999 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21000 filename = copy;
21001 }
21002
21003 start_subfile (filename);
21004
21005 if (copy != NULL)
21006 xfree (copy);
21007 }
21008
21009 /* Start a symtab for DWARF.
21010 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21011
21012 static struct compunit_symtab *
21013 dwarf2_start_symtab (struct dwarf2_cu *cu,
21014 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21015 {
21016 struct compunit_symtab *cust
21017 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21018 low_pc, cu->language);
21019
21020 record_debugformat ("DWARF 2");
21021 record_producer (cu->producer);
21022
21023 /* We assume that we're processing GCC output. */
21024 processing_gcc_compilation = 2;
21025
21026 cu->processing_has_namespace_info = 0;
21027
21028 return cust;
21029 }
21030
21031 static void
21032 var_decode_location (struct attribute *attr, struct symbol *sym,
21033 struct dwarf2_cu *cu)
21034 {
21035 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21036 struct comp_unit_head *cu_header = &cu->header;
21037
21038 /* NOTE drow/2003-01-30: There used to be a comment and some special
21039 code here to turn a symbol with DW_AT_external and a
21040 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21041 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21042 with some versions of binutils) where shared libraries could have
21043 relocations against symbols in their debug information - the
21044 minimal symbol would have the right address, but the debug info
21045 would not. It's no longer necessary, because we will explicitly
21046 apply relocations when we read in the debug information now. */
21047
21048 /* A DW_AT_location attribute with no contents indicates that a
21049 variable has been optimized away. */
21050 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21051 {
21052 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21053 return;
21054 }
21055
21056 /* Handle one degenerate form of location expression specially, to
21057 preserve GDB's previous behavior when section offsets are
21058 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21059 then mark this symbol as LOC_STATIC. */
21060
21061 if (attr_form_is_block (attr)
21062 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21063 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21064 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21065 && (DW_BLOCK (attr)->size
21066 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21067 {
21068 unsigned int dummy;
21069
21070 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21071 SYMBOL_VALUE_ADDRESS (sym) =
21072 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21073 else
21074 SYMBOL_VALUE_ADDRESS (sym) =
21075 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21076 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21077 fixup_symbol_section (sym, objfile);
21078 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21079 SYMBOL_SECTION (sym));
21080 return;
21081 }
21082
21083 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21084 expression evaluator, and use LOC_COMPUTED only when necessary
21085 (i.e. when the value of a register or memory location is
21086 referenced, or a thread-local block, etc.). Then again, it might
21087 not be worthwhile. I'm assuming that it isn't unless performance
21088 or memory numbers show me otherwise. */
21089
21090 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21091
21092 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21093 cu->has_loclist = 1;
21094 }
21095
21096 /* Given a pointer to a DWARF information entry, figure out if we need
21097 to make a symbol table entry for it, and if so, create a new entry
21098 and return a pointer to it.
21099 If TYPE is NULL, determine symbol type from the die, otherwise
21100 used the passed type.
21101 If SPACE is not NULL, use it to hold the new symbol. If it is
21102 NULL, allocate a new symbol on the objfile's obstack. */
21103
21104 static struct symbol *
21105 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21106 struct symbol *space)
21107 {
21108 struct dwarf2_per_objfile *dwarf2_per_objfile
21109 = cu->per_cu->dwarf2_per_objfile;
21110 struct objfile *objfile = dwarf2_per_objfile->objfile;
21111 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21112 struct symbol *sym = NULL;
21113 const char *name;
21114 struct attribute *attr = NULL;
21115 struct attribute *attr2 = NULL;
21116 CORE_ADDR baseaddr;
21117 struct pending **list_to_add = NULL;
21118
21119 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21120
21121 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21122
21123 name = dwarf2_name (die, cu);
21124 if (name)
21125 {
21126 const char *linkagename;
21127 int suppress_add = 0;
21128
21129 if (space)
21130 sym = space;
21131 else
21132 sym = allocate_symbol (objfile);
21133 OBJSTAT (objfile, n_syms++);
21134
21135 /* Cache this symbol's name and the name's demangled form (if any). */
21136 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21137 linkagename = dwarf2_physname (name, die, cu);
21138 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21139
21140 /* Fortran does not have mangling standard and the mangling does differ
21141 between gfortran, iFort etc. */
21142 if (cu->language == language_fortran
21143 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21144 symbol_set_demangled_name (&(sym->ginfo),
21145 dwarf2_full_name (name, die, cu),
21146 NULL);
21147
21148 /* Default assumptions.
21149 Use the passed type or decode it from the die. */
21150 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21151 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21152 if (type != NULL)
21153 SYMBOL_TYPE (sym) = type;
21154 else
21155 SYMBOL_TYPE (sym) = die_type (die, cu);
21156 attr = dwarf2_attr (die,
21157 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21158 cu);
21159 if (attr)
21160 {
21161 SYMBOL_LINE (sym) = DW_UNSND (attr);
21162 }
21163
21164 attr = dwarf2_attr (die,
21165 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21166 cu);
21167 if (attr)
21168 {
21169 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21170 struct file_entry *fe;
21171
21172 if (cu->line_header != NULL)
21173 fe = cu->line_header->file_name_at (file_index);
21174 else
21175 fe = NULL;
21176
21177 if (fe == NULL)
21178 complaint (&symfile_complaints,
21179 _("file index out of range"));
21180 else
21181 symbol_set_symtab (sym, fe->symtab);
21182 }
21183
21184 switch (die->tag)
21185 {
21186 case DW_TAG_label:
21187 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21188 if (attr)
21189 {
21190 CORE_ADDR addr;
21191
21192 addr = attr_value_as_address (attr);
21193 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21194 SYMBOL_VALUE_ADDRESS (sym) = addr;
21195 }
21196 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21197 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21198 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21199 add_symbol_to_list (sym, cu->list_in_scope);
21200 break;
21201 case DW_TAG_subprogram:
21202 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21203 finish_block. */
21204 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21205 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21206 if ((attr2 && (DW_UNSND (attr2) != 0))
21207 || cu->language == language_ada)
21208 {
21209 /* Subprograms marked external are stored as a global symbol.
21210 Ada subprograms, whether marked external or not, are always
21211 stored as a global symbol, because we want to be able to
21212 access them globally. For instance, we want to be able
21213 to break on a nested subprogram without having to
21214 specify the context. */
21215 list_to_add = &global_symbols;
21216 }
21217 else
21218 {
21219 list_to_add = cu->list_in_scope;
21220 }
21221 break;
21222 case DW_TAG_inlined_subroutine:
21223 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21224 finish_block. */
21225 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21226 SYMBOL_INLINED (sym) = 1;
21227 list_to_add = cu->list_in_scope;
21228 break;
21229 case DW_TAG_template_value_param:
21230 suppress_add = 1;
21231 /* Fall through. */
21232 case DW_TAG_constant:
21233 case DW_TAG_variable:
21234 case DW_TAG_member:
21235 /* Compilation with minimal debug info may result in
21236 variables with missing type entries. Change the
21237 misleading `void' type to something sensible. */
21238 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21239 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21240
21241 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21242 /* In the case of DW_TAG_member, we should only be called for
21243 static const members. */
21244 if (die->tag == DW_TAG_member)
21245 {
21246 /* dwarf2_add_field uses die_is_declaration,
21247 so we do the same. */
21248 gdb_assert (die_is_declaration (die, cu));
21249 gdb_assert (attr);
21250 }
21251 if (attr)
21252 {
21253 dwarf2_const_value (attr, sym, cu);
21254 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21255 if (!suppress_add)
21256 {
21257 if (attr2 && (DW_UNSND (attr2) != 0))
21258 list_to_add = &global_symbols;
21259 else
21260 list_to_add = cu->list_in_scope;
21261 }
21262 break;
21263 }
21264 attr = dwarf2_attr (die, DW_AT_location, cu);
21265 if (attr)
21266 {
21267 var_decode_location (attr, sym, cu);
21268 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21269
21270 /* Fortran explicitly imports any global symbols to the local
21271 scope by DW_TAG_common_block. */
21272 if (cu->language == language_fortran && die->parent
21273 && die->parent->tag == DW_TAG_common_block)
21274 attr2 = NULL;
21275
21276 if (SYMBOL_CLASS (sym) == LOC_STATIC
21277 && SYMBOL_VALUE_ADDRESS (sym) == 0
21278 && !dwarf2_per_objfile->has_section_at_zero)
21279 {
21280 /* When a static variable is eliminated by the linker,
21281 the corresponding debug information is not stripped
21282 out, but the variable address is set to null;
21283 do not add such variables into symbol table. */
21284 }
21285 else if (attr2 && (DW_UNSND (attr2) != 0))
21286 {
21287 /* Workaround gfortran PR debug/40040 - it uses
21288 DW_AT_location for variables in -fPIC libraries which may
21289 get overriden by other libraries/executable and get
21290 a different address. Resolve it by the minimal symbol
21291 which may come from inferior's executable using copy
21292 relocation. Make this workaround only for gfortran as for
21293 other compilers GDB cannot guess the minimal symbol
21294 Fortran mangling kind. */
21295 if (cu->language == language_fortran && die->parent
21296 && die->parent->tag == DW_TAG_module
21297 && cu->producer
21298 && startswith (cu->producer, "GNU Fortran"))
21299 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21300
21301 /* A variable with DW_AT_external is never static,
21302 but it may be block-scoped. */
21303 list_to_add = (cu->list_in_scope == &file_symbols
21304 ? &global_symbols : cu->list_in_scope);
21305 }
21306 else
21307 list_to_add = cu->list_in_scope;
21308 }
21309 else
21310 {
21311 /* We do not know the address of this symbol.
21312 If it is an external symbol and we have type information
21313 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21314 The address of the variable will then be determined from
21315 the minimal symbol table whenever the variable is
21316 referenced. */
21317 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21318
21319 /* Fortran explicitly imports any global symbols to the local
21320 scope by DW_TAG_common_block. */
21321 if (cu->language == language_fortran && die->parent
21322 && die->parent->tag == DW_TAG_common_block)
21323 {
21324 /* SYMBOL_CLASS doesn't matter here because
21325 read_common_block is going to reset it. */
21326 if (!suppress_add)
21327 list_to_add = cu->list_in_scope;
21328 }
21329 else if (attr2 && (DW_UNSND (attr2) != 0)
21330 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21331 {
21332 /* A variable with DW_AT_external is never static, but it
21333 may be block-scoped. */
21334 list_to_add = (cu->list_in_scope == &file_symbols
21335 ? &global_symbols : cu->list_in_scope);
21336
21337 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21338 }
21339 else if (!die_is_declaration (die, cu))
21340 {
21341 /* Use the default LOC_OPTIMIZED_OUT class. */
21342 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21343 if (!suppress_add)
21344 list_to_add = cu->list_in_scope;
21345 }
21346 }
21347 break;
21348 case DW_TAG_formal_parameter:
21349 /* If we are inside a function, mark this as an argument. If
21350 not, we might be looking at an argument to an inlined function
21351 when we do not have enough information to show inlined frames;
21352 pretend it's a local variable in that case so that the user can
21353 still see it. */
21354 if (context_stack_depth > 0
21355 && context_stack[context_stack_depth - 1].name != NULL)
21356 SYMBOL_IS_ARGUMENT (sym) = 1;
21357 attr = dwarf2_attr (die, DW_AT_location, cu);
21358 if (attr)
21359 {
21360 var_decode_location (attr, sym, cu);
21361 }
21362 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21363 if (attr)
21364 {
21365 dwarf2_const_value (attr, sym, cu);
21366 }
21367
21368 list_to_add = cu->list_in_scope;
21369 break;
21370 case DW_TAG_unspecified_parameters:
21371 /* From varargs functions; gdb doesn't seem to have any
21372 interest in this information, so just ignore it for now.
21373 (FIXME?) */
21374 break;
21375 case DW_TAG_template_type_param:
21376 suppress_add = 1;
21377 /* Fall through. */
21378 case DW_TAG_class_type:
21379 case DW_TAG_interface_type:
21380 case DW_TAG_structure_type:
21381 case DW_TAG_union_type:
21382 case DW_TAG_set_type:
21383 case DW_TAG_enumeration_type:
21384 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21385 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21386
21387 {
21388 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21389 really ever be static objects: otherwise, if you try
21390 to, say, break of a class's method and you're in a file
21391 which doesn't mention that class, it won't work unless
21392 the check for all static symbols in lookup_symbol_aux
21393 saves you. See the OtherFileClass tests in
21394 gdb.c++/namespace.exp. */
21395
21396 if (!suppress_add)
21397 {
21398 list_to_add = (cu->list_in_scope == &file_symbols
21399 && cu->language == language_cplus
21400 ? &global_symbols : cu->list_in_scope);
21401
21402 /* The semantics of C++ state that "struct foo {
21403 ... }" also defines a typedef for "foo". */
21404 if (cu->language == language_cplus
21405 || cu->language == language_ada
21406 || cu->language == language_d
21407 || cu->language == language_rust)
21408 {
21409 /* The symbol's name is already allocated along
21410 with this objfile, so we don't need to
21411 duplicate it for the type. */
21412 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21413 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21414 }
21415 }
21416 }
21417 break;
21418 case DW_TAG_typedef:
21419 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21420 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21421 list_to_add = cu->list_in_scope;
21422 break;
21423 case DW_TAG_base_type:
21424 case DW_TAG_subrange_type:
21425 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21426 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21427 list_to_add = cu->list_in_scope;
21428 break;
21429 case DW_TAG_enumerator:
21430 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21431 if (attr)
21432 {
21433 dwarf2_const_value (attr, sym, cu);
21434 }
21435 {
21436 /* NOTE: carlton/2003-11-10: See comment above in the
21437 DW_TAG_class_type, etc. block. */
21438
21439 list_to_add = (cu->list_in_scope == &file_symbols
21440 && cu->language == language_cplus
21441 ? &global_symbols : cu->list_in_scope);
21442 }
21443 break;
21444 case DW_TAG_imported_declaration:
21445 case DW_TAG_namespace:
21446 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21447 list_to_add = &global_symbols;
21448 break;
21449 case DW_TAG_module:
21450 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21451 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21452 list_to_add = &global_symbols;
21453 break;
21454 case DW_TAG_common_block:
21455 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21456 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21457 add_symbol_to_list (sym, cu->list_in_scope);
21458 break;
21459 default:
21460 /* Not a tag we recognize. Hopefully we aren't processing
21461 trash data, but since we must specifically ignore things
21462 we don't recognize, there is nothing else we should do at
21463 this point. */
21464 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
21465 dwarf_tag_name (die->tag));
21466 break;
21467 }
21468
21469 if (suppress_add)
21470 {
21471 sym->hash_next = objfile->template_symbols;
21472 objfile->template_symbols = sym;
21473 list_to_add = NULL;
21474 }
21475
21476 if (list_to_add != NULL)
21477 add_symbol_to_list (sym, list_to_add);
21478
21479 /* For the benefit of old versions of GCC, check for anonymous
21480 namespaces based on the demangled name. */
21481 if (!cu->processing_has_namespace_info
21482 && cu->language == language_cplus)
21483 cp_scan_for_anonymous_namespaces (sym, objfile);
21484 }
21485 return (sym);
21486 }
21487
21488 /* Given an attr with a DW_FORM_dataN value in host byte order,
21489 zero-extend it as appropriate for the symbol's type. The DWARF
21490 standard (v4) is not entirely clear about the meaning of using
21491 DW_FORM_dataN for a constant with a signed type, where the type is
21492 wider than the data. The conclusion of a discussion on the DWARF
21493 list was that this is unspecified. We choose to always zero-extend
21494 because that is the interpretation long in use by GCC. */
21495
21496 static gdb_byte *
21497 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21498 struct dwarf2_cu *cu, LONGEST *value, int bits)
21499 {
21500 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21501 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21502 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21503 LONGEST l = DW_UNSND (attr);
21504
21505 if (bits < sizeof (*value) * 8)
21506 {
21507 l &= ((LONGEST) 1 << bits) - 1;
21508 *value = l;
21509 }
21510 else if (bits == sizeof (*value) * 8)
21511 *value = l;
21512 else
21513 {
21514 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21515 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21516 return bytes;
21517 }
21518
21519 return NULL;
21520 }
21521
21522 /* Read a constant value from an attribute. Either set *VALUE, or if
21523 the value does not fit in *VALUE, set *BYTES - either already
21524 allocated on the objfile obstack, or newly allocated on OBSTACK,
21525 or, set *BATON, if we translated the constant to a location
21526 expression. */
21527
21528 static void
21529 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21530 const char *name, struct obstack *obstack,
21531 struct dwarf2_cu *cu,
21532 LONGEST *value, const gdb_byte **bytes,
21533 struct dwarf2_locexpr_baton **baton)
21534 {
21535 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21536 struct comp_unit_head *cu_header = &cu->header;
21537 struct dwarf_block *blk;
21538 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21539 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21540
21541 *value = 0;
21542 *bytes = NULL;
21543 *baton = NULL;
21544
21545 switch (attr->form)
21546 {
21547 case DW_FORM_addr:
21548 case DW_FORM_GNU_addr_index:
21549 {
21550 gdb_byte *data;
21551
21552 if (TYPE_LENGTH (type) != cu_header->addr_size)
21553 dwarf2_const_value_length_mismatch_complaint (name,
21554 cu_header->addr_size,
21555 TYPE_LENGTH (type));
21556 /* Symbols of this form are reasonably rare, so we just
21557 piggyback on the existing location code rather than writing
21558 a new implementation of symbol_computed_ops. */
21559 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21560 (*baton)->per_cu = cu->per_cu;
21561 gdb_assert ((*baton)->per_cu);
21562
21563 (*baton)->size = 2 + cu_header->addr_size;
21564 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21565 (*baton)->data = data;
21566
21567 data[0] = DW_OP_addr;
21568 store_unsigned_integer (&data[1], cu_header->addr_size,
21569 byte_order, DW_ADDR (attr));
21570 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21571 }
21572 break;
21573 case DW_FORM_string:
21574 case DW_FORM_strp:
21575 case DW_FORM_GNU_str_index:
21576 case DW_FORM_GNU_strp_alt:
21577 /* DW_STRING is already allocated on the objfile obstack, point
21578 directly to it. */
21579 *bytes = (const gdb_byte *) DW_STRING (attr);
21580 break;
21581 case DW_FORM_block1:
21582 case DW_FORM_block2:
21583 case DW_FORM_block4:
21584 case DW_FORM_block:
21585 case DW_FORM_exprloc:
21586 case DW_FORM_data16:
21587 blk = DW_BLOCK (attr);
21588 if (TYPE_LENGTH (type) != blk->size)
21589 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21590 TYPE_LENGTH (type));
21591 *bytes = blk->data;
21592 break;
21593
21594 /* The DW_AT_const_value attributes are supposed to carry the
21595 symbol's value "represented as it would be on the target
21596 architecture." By the time we get here, it's already been
21597 converted to host endianness, so we just need to sign- or
21598 zero-extend it as appropriate. */
21599 case DW_FORM_data1:
21600 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21601 break;
21602 case DW_FORM_data2:
21603 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21604 break;
21605 case DW_FORM_data4:
21606 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21607 break;
21608 case DW_FORM_data8:
21609 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21610 break;
21611
21612 case DW_FORM_sdata:
21613 case DW_FORM_implicit_const:
21614 *value = DW_SND (attr);
21615 break;
21616
21617 case DW_FORM_udata:
21618 *value = DW_UNSND (attr);
21619 break;
21620
21621 default:
21622 complaint (&symfile_complaints,
21623 _("unsupported const value attribute form: '%s'"),
21624 dwarf_form_name (attr->form));
21625 *value = 0;
21626 break;
21627 }
21628 }
21629
21630
21631 /* Copy constant value from an attribute to a symbol. */
21632
21633 static void
21634 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21635 struct dwarf2_cu *cu)
21636 {
21637 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21638 LONGEST value;
21639 const gdb_byte *bytes;
21640 struct dwarf2_locexpr_baton *baton;
21641
21642 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21643 SYMBOL_PRINT_NAME (sym),
21644 &objfile->objfile_obstack, cu,
21645 &value, &bytes, &baton);
21646
21647 if (baton != NULL)
21648 {
21649 SYMBOL_LOCATION_BATON (sym) = baton;
21650 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21651 }
21652 else if (bytes != NULL)
21653 {
21654 SYMBOL_VALUE_BYTES (sym) = bytes;
21655 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21656 }
21657 else
21658 {
21659 SYMBOL_VALUE (sym) = value;
21660 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21661 }
21662 }
21663
21664 /* Return the type of the die in question using its DW_AT_type attribute. */
21665
21666 static struct type *
21667 die_type (struct die_info *die, struct dwarf2_cu *cu)
21668 {
21669 struct attribute *type_attr;
21670
21671 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21672 if (!type_attr)
21673 {
21674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21675 /* A missing DW_AT_type represents a void type. */
21676 return objfile_type (objfile)->builtin_void;
21677 }
21678
21679 return lookup_die_type (die, type_attr, cu);
21680 }
21681
21682 /* True iff CU's producer generates GNAT Ada auxiliary information
21683 that allows to find parallel types through that information instead
21684 of having to do expensive parallel lookups by type name. */
21685
21686 static int
21687 need_gnat_info (struct dwarf2_cu *cu)
21688 {
21689 /* Assume that the Ada compiler was GNAT, which always produces
21690 the auxiliary information. */
21691 return (cu->language == language_ada);
21692 }
21693
21694 /* Return the auxiliary type of the die in question using its
21695 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21696 attribute is not present. */
21697
21698 static struct type *
21699 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21700 {
21701 struct attribute *type_attr;
21702
21703 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21704 if (!type_attr)
21705 return NULL;
21706
21707 return lookup_die_type (die, type_attr, cu);
21708 }
21709
21710 /* If DIE has a descriptive_type attribute, then set the TYPE's
21711 descriptive type accordingly. */
21712
21713 static void
21714 set_descriptive_type (struct type *type, struct die_info *die,
21715 struct dwarf2_cu *cu)
21716 {
21717 struct type *descriptive_type = die_descriptive_type (die, cu);
21718
21719 if (descriptive_type)
21720 {
21721 ALLOCATE_GNAT_AUX_TYPE (type);
21722 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21723 }
21724 }
21725
21726 /* Return the containing type of the die in question using its
21727 DW_AT_containing_type attribute. */
21728
21729 static struct type *
21730 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21731 {
21732 struct attribute *type_attr;
21733 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21734
21735 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21736 if (!type_attr)
21737 error (_("Dwarf Error: Problem turning containing type into gdb type "
21738 "[in module %s]"), objfile_name (objfile));
21739
21740 return lookup_die_type (die, type_attr, cu);
21741 }
21742
21743 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21744
21745 static struct type *
21746 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21747 {
21748 struct dwarf2_per_objfile *dwarf2_per_objfile
21749 = cu->per_cu->dwarf2_per_objfile;
21750 struct objfile *objfile = dwarf2_per_objfile->objfile;
21751 char *message, *saved;
21752
21753 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
21754 objfile_name (objfile),
21755 sect_offset_str (cu->header.sect_off),
21756 sect_offset_str (die->sect_off));
21757 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21758 message, strlen (message));
21759 xfree (message);
21760
21761 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21762 }
21763
21764 /* Look up the type of DIE in CU using its type attribute ATTR.
21765 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21766 DW_AT_containing_type.
21767 If there is no type substitute an error marker. */
21768
21769 static struct type *
21770 lookup_die_type (struct die_info *die, const struct attribute *attr,
21771 struct dwarf2_cu *cu)
21772 {
21773 struct dwarf2_per_objfile *dwarf2_per_objfile
21774 = cu->per_cu->dwarf2_per_objfile;
21775 struct objfile *objfile = dwarf2_per_objfile->objfile;
21776 struct type *this_type;
21777
21778 gdb_assert (attr->name == DW_AT_type
21779 || attr->name == DW_AT_GNAT_descriptive_type
21780 || attr->name == DW_AT_containing_type);
21781
21782 /* First see if we have it cached. */
21783
21784 if (attr->form == DW_FORM_GNU_ref_alt)
21785 {
21786 struct dwarf2_per_cu_data *per_cu;
21787 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21788
21789 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21790 dwarf2_per_objfile);
21791 this_type = get_die_type_at_offset (sect_off, per_cu);
21792 }
21793 else if (attr_form_is_ref (attr))
21794 {
21795 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21796
21797 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21798 }
21799 else if (attr->form == DW_FORM_ref_sig8)
21800 {
21801 ULONGEST signature = DW_SIGNATURE (attr);
21802
21803 return get_signatured_type (die, signature, cu);
21804 }
21805 else
21806 {
21807 complaint (&symfile_complaints,
21808 _("Dwarf Error: Bad type attribute %s in DIE"
21809 " at %s [in module %s]"),
21810 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21811 objfile_name (objfile));
21812 return build_error_marker_type (cu, die);
21813 }
21814
21815 /* If not cached we need to read it in. */
21816
21817 if (this_type == NULL)
21818 {
21819 struct die_info *type_die = NULL;
21820 struct dwarf2_cu *type_cu = cu;
21821
21822 if (attr_form_is_ref (attr))
21823 type_die = follow_die_ref (die, attr, &type_cu);
21824 if (type_die == NULL)
21825 return build_error_marker_type (cu, die);
21826 /* If we find the type now, it's probably because the type came
21827 from an inter-CU reference and the type's CU got expanded before
21828 ours. */
21829 this_type = read_type_die (type_die, type_cu);
21830 }
21831
21832 /* If we still don't have a type use an error marker. */
21833
21834 if (this_type == NULL)
21835 return build_error_marker_type (cu, die);
21836
21837 return this_type;
21838 }
21839
21840 /* Return the type in DIE, CU.
21841 Returns NULL for invalid types.
21842
21843 This first does a lookup in die_type_hash,
21844 and only reads the die in if necessary.
21845
21846 NOTE: This can be called when reading in partial or full symbols. */
21847
21848 static struct type *
21849 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21850 {
21851 struct type *this_type;
21852
21853 this_type = get_die_type (die, cu);
21854 if (this_type)
21855 return this_type;
21856
21857 return read_type_die_1 (die, cu);
21858 }
21859
21860 /* Read the type in DIE, CU.
21861 Returns NULL for invalid types. */
21862
21863 static struct type *
21864 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21865 {
21866 struct type *this_type = NULL;
21867
21868 switch (die->tag)
21869 {
21870 case DW_TAG_class_type:
21871 case DW_TAG_interface_type:
21872 case DW_TAG_structure_type:
21873 case DW_TAG_union_type:
21874 this_type = read_structure_type (die, cu);
21875 break;
21876 case DW_TAG_enumeration_type:
21877 this_type = read_enumeration_type (die, cu);
21878 break;
21879 case DW_TAG_subprogram:
21880 case DW_TAG_subroutine_type:
21881 case DW_TAG_inlined_subroutine:
21882 this_type = read_subroutine_type (die, cu);
21883 break;
21884 case DW_TAG_array_type:
21885 this_type = read_array_type (die, cu);
21886 break;
21887 case DW_TAG_set_type:
21888 this_type = read_set_type (die, cu);
21889 break;
21890 case DW_TAG_pointer_type:
21891 this_type = read_tag_pointer_type (die, cu);
21892 break;
21893 case DW_TAG_ptr_to_member_type:
21894 this_type = read_tag_ptr_to_member_type (die, cu);
21895 break;
21896 case DW_TAG_reference_type:
21897 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21898 break;
21899 case DW_TAG_rvalue_reference_type:
21900 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21901 break;
21902 case DW_TAG_const_type:
21903 this_type = read_tag_const_type (die, cu);
21904 break;
21905 case DW_TAG_volatile_type:
21906 this_type = read_tag_volatile_type (die, cu);
21907 break;
21908 case DW_TAG_restrict_type:
21909 this_type = read_tag_restrict_type (die, cu);
21910 break;
21911 case DW_TAG_string_type:
21912 this_type = read_tag_string_type (die, cu);
21913 break;
21914 case DW_TAG_typedef:
21915 this_type = read_typedef (die, cu);
21916 break;
21917 case DW_TAG_subrange_type:
21918 this_type = read_subrange_type (die, cu);
21919 break;
21920 case DW_TAG_base_type:
21921 this_type = read_base_type (die, cu);
21922 break;
21923 case DW_TAG_unspecified_type:
21924 this_type = read_unspecified_type (die, cu);
21925 break;
21926 case DW_TAG_namespace:
21927 this_type = read_namespace_type (die, cu);
21928 break;
21929 case DW_TAG_module:
21930 this_type = read_module_type (die, cu);
21931 break;
21932 case DW_TAG_atomic_type:
21933 this_type = read_tag_atomic_type (die, cu);
21934 break;
21935 default:
21936 complaint (&symfile_complaints,
21937 _("unexpected tag in read_type_die: '%s'"),
21938 dwarf_tag_name (die->tag));
21939 break;
21940 }
21941
21942 return this_type;
21943 }
21944
21945 /* See if we can figure out if the class lives in a namespace. We do
21946 this by looking for a member function; its demangled name will
21947 contain namespace info, if there is any.
21948 Return the computed name or NULL.
21949 Space for the result is allocated on the objfile's obstack.
21950 This is the full-die version of guess_partial_die_structure_name.
21951 In this case we know DIE has no useful parent. */
21952
21953 static char *
21954 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21955 {
21956 struct die_info *spec_die;
21957 struct dwarf2_cu *spec_cu;
21958 struct die_info *child;
21959 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21960
21961 spec_cu = cu;
21962 spec_die = die_specification (die, &spec_cu);
21963 if (spec_die != NULL)
21964 {
21965 die = spec_die;
21966 cu = spec_cu;
21967 }
21968
21969 for (child = die->child;
21970 child != NULL;
21971 child = child->sibling)
21972 {
21973 if (child->tag == DW_TAG_subprogram)
21974 {
21975 const char *linkage_name = dw2_linkage_name (child, cu);
21976
21977 if (linkage_name != NULL)
21978 {
21979 char *actual_name
21980 = language_class_name_from_physname (cu->language_defn,
21981 linkage_name);
21982 char *name = NULL;
21983
21984 if (actual_name != NULL)
21985 {
21986 const char *die_name = dwarf2_name (die, cu);
21987
21988 if (die_name != NULL
21989 && strcmp (die_name, actual_name) != 0)
21990 {
21991 /* Strip off the class name from the full name.
21992 We want the prefix. */
21993 int die_name_len = strlen (die_name);
21994 int actual_name_len = strlen (actual_name);
21995
21996 /* Test for '::' as a sanity check. */
21997 if (actual_name_len > die_name_len + 2
21998 && actual_name[actual_name_len
21999 - die_name_len - 1] == ':')
22000 name = (char *) obstack_copy0 (
22001 &objfile->per_bfd->storage_obstack,
22002 actual_name, actual_name_len - die_name_len - 2);
22003 }
22004 }
22005 xfree (actual_name);
22006 return name;
22007 }
22008 }
22009 }
22010
22011 return NULL;
22012 }
22013
22014 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22015 prefix part in such case. See
22016 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22017
22018 static const char *
22019 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22020 {
22021 struct attribute *attr;
22022 const char *base;
22023
22024 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22025 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22026 return NULL;
22027
22028 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22029 return NULL;
22030
22031 attr = dw2_linkage_name_attr (die, cu);
22032 if (attr == NULL || DW_STRING (attr) == NULL)
22033 return NULL;
22034
22035 /* dwarf2_name had to be already called. */
22036 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22037
22038 /* Strip the base name, keep any leading namespaces/classes. */
22039 base = strrchr (DW_STRING (attr), ':');
22040 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22041 return "";
22042
22043 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22044 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22045 DW_STRING (attr),
22046 &base[-1] - DW_STRING (attr));
22047 }
22048
22049 /* Return the name of the namespace/class that DIE is defined within,
22050 or "" if we can't tell. The caller should not xfree the result.
22051
22052 For example, if we're within the method foo() in the following
22053 code:
22054
22055 namespace N {
22056 class C {
22057 void foo () {
22058 }
22059 };
22060 }
22061
22062 then determine_prefix on foo's die will return "N::C". */
22063
22064 static const char *
22065 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22066 {
22067 struct dwarf2_per_objfile *dwarf2_per_objfile
22068 = cu->per_cu->dwarf2_per_objfile;
22069 struct die_info *parent, *spec_die;
22070 struct dwarf2_cu *spec_cu;
22071 struct type *parent_type;
22072 const char *retval;
22073
22074 if (cu->language != language_cplus
22075 && cu->language != language_fortran && cu->language != language_d
22076 && cu->language != language_rust)
22077 return "";
22078
22079 retval = anonymous_struct_prefix (die, cu);
22080 if (retval)
22081 return retval;
22082
22083 /* We have to be careful in the presence of DW_AT_specification.
22084 For example, with GCC 3.4, given the code
22085
22086 namespace N {
22087 void foo() {
22088 // Definition of N::foo.
22089 }
22090 }
22091
22092 then we'll have a tree of DIEs like this:
22093
22094 1: DW_TAG_compile_unit
22095 2: DW_TAG_namespace // N
22096 3: DW_TAG_subprogram // declaration of N::foo
22097 4: DW_TAG_subprogram // definition of N::foo
22098 DW_AT_specification // refers to die #3
22099
22100 Thus, when processing die #4, we have to pretend that we're in
22101 the context of its DW_AT_specification, namely the contex of die
22102 #3. */
22103 spec_cu = cu;
22104 spec_die = die_specification (die, &spec_cu);
22105 if (spec_die == NULL)
22106 parent = die->parent;
22107 else
22108 {
22109 parent = spec_die->parent;
22110 cu = spec_cu;
22111 }
22112
22113 if (parent == NULL)
22114 return "";
22115 else if (parent->building_fullname)
22116 {
22117 const char *name;
22118 const char *parent_name;
22119
22120 /* It has been seen on RealView 2.2 built binaries,
22121 DW_TAG_template_type_param types actually _defined_ as
22122 children of the parent class:
22123
22124 enum E {};
22125 template class <class Enum> Class{};
22126 Class<enum E> class_e;
22127
22128 1: DW_TAG_class_type (Class)
22129 2: DW_TAG_enumeration_type (E)
22130 3: DW_TAG_enumerator (enum1:0)
22131 3: DW_TAG_enumerator (enum2:1)
22132 ...
22133 2: DW_TAG_template_type_param
22134 DW_AT_type DW_FORM_ref_udata (E)
22135
22136 Besides being broken debug info, it can put GDB into an
22137 infinite loop. Consider:
22138
22139 When we're building the full name for Class<E>, we'll start
22140 at Class, and go look over its template type parameters,
22141 finding E. We'll then try to build the full name of E, and
22142 reach here. We're now trying to build the full name of E,
22143 and look over the parent DIE for containing scope. In the
22144 broken case, if we followed the parent DIE of E, we'd again
22145 find Class, and once again go look at its template type
22146 arguments, etc., etc. Simply don't consider such parent die
22147 as source-level parent of this die (it can't be, the language
22148 doesn't allow it), and break the loop here. */
22149 name = dwarf2_name (die, cu);
22150 parent_name = dwarf2_name (parent, cu);
22151 complaint (&symfile_complaints,
22152 _("template param type '%s' defined within parent '%s'"),
22153 name ? name : "<unknown>",
22154 parent_name ? parent_name : "<unknown>");
22155 return "";
22156 }
22157 else
22158 switch (parent->tag)
22159 {
22160 case DW_TAG_namespace:
22161 parent_type = read_type_die (parent, cu);
22162 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22163 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22164 Work around this problem here. */
22165 if (cu->language == language_cplus
22166 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22167 return "";
22168 /* We give a name to even anonymous namespaces. */
22169 return TYPE_TAG_NAME (parent_type);
22170 case DW_TAG_class_type:
22171 case DW_TAG_interface_type:
22172 case DW_TAG_structure_type:
22173 case DW_TAG_union_type:
22174 case DW_TAG_module:
22175 parent_type = read_type_die (parent, cu);
22176 if (TYPE_TAG_NAME (parent_type) != NULL)
22177 return TYPE_TAG_NAME (parent_type);
22178 else
22179 /* An anonymous structure is only allowed non-static data
22180 members; no typedefs, no member functions, et cetera.
22181 So it does not need a prefix. */
22182 return "";
22183 case DW_TAG_compile_unit:
22184 case DW_TAG_partial_unit:
22185 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22186 if (cu->language == language_cplus
22187 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22188 && die->child != NULL
22189 && (die->tag == DW_TAG_class_type
22190 || die->tag == DW_TAG_structure_type
22191 || die->tag == DW_TAG_union_type))
22192 {
22193 char *name = guess_full_die_structure_name (die, cu);
22194 if (name != NULL)
22195 return name;
22196 }
22197 return "";
22198 case DW_TAG_enumeration_type:
22199 parent_type = read_type_die (parent, cu);
22200 if (TYPE_DECLARED_CLASS (parent_type))
22201 {
22202 if (TYPE_TAG_NAME (parent_type) != NULL)
22203 return TYPE_TAG_NAME (parent_type);
22204 return "";
22205 }
22206 /* Fall through. */
22207 default:
22208 return determine_prefix (parent, cu);
22209 }
22210 }
22211
22212 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22213 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22214 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22215 an obconcat, otherwise allocate storage for the result. The CU argument is
22216 used to determine the language and hence, the appropriate separator. */
22217
22218 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22219
22220 static char *
22221 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22222 int physname, struct dwarf2_cu *cu)
22223 {
22224 const char *lead = "";
22225 const char *sep;
22226
22227 if (suffix == NULL || suffix[0] == '\0'
22228 || prefix == NULL || prefix[0] == '\0')
22229 sep = "";
22230 else if (cu->language == language_d)
22231 {
22232 /* For D, the 'main' function could be defined in any module, but it
22233 should never be prefixed. */
22234 if (strcmp (suffix, "D main") == 0)
22235 {
22236 prefix = "";
22237 sep = "";
22238 }
22239 else
22240 sep = ".";
22241 }
22242 else if (cu->language == language_fortran && physname)
22243 {
22244 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22245 DW_AT_MIPS_linkage_name is preferred and used instead. */
22246
22247 lead = "__";
22248 sep = "_MOD_";
22249 }
22250 else
22251 sep = "::";
22252
22253 if (prefix == NULL)
22254 prefix = "";
22255 if (suffix == NULL)
22256 suffix = "";
22257
22258 if (obs == NULL)
22259 {
22260 char *retval
22261 = ((char *)
22262 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22263
22264 strcpy (retval, lead);
22265 strcat (retval, prefix);
22266 strcat (retval, sep);
22267 strcat (retval, suffix);
22268 return retval;
22269 }
22270 else
22271 {
22272 /* We have an obstack. */
22273 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22274 }
22275 }
22276
22277 /* Return sibling of die, NULL if no sibling. */
22278
22279 static struct die_info *
22280 sibling_die (struct die_info *die)
22281 {
22282 return die->sibling;
22283 }
22284
22285 /* Get name of a die, return NULL if not found. */
22286
22287 static const char *
22288 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22289 struct obstack *obstack)
22290 {
22291 if (name && cu->language == language_cplus)
22292 {
22293 std::string canon_name = cp_canonicalize_string (name);
22294
22295 if (!canon_name.empty ())
22296 {
22297 if (canon_name != name)
22298 name = (const char *) obstack_copy0 (obstack,
22299 canon_name.c_str (),
22300 canon_name.length ());
22301 }
22302 }
22303
22304 return name;
22305 }
22306
22307 /* Get name of a die, return NULL if not found.
22308 Anonymous namespaces are converted to their magic string. */
22309
22310 static const char *
22311 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22312 {
22313 struct attribute *attr;
22314 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22315
22316 attr = dwarf2_attr (die, DW_AT_name, cu);
22317 if ((!attr || !DW_STRING (attr))
22318 && die->tag != DW_TAG_namespace
22319 && die->tag != DW_TAG_class_type
22320 && die->tag != DW_TAG_interface_type
22321 && die->tag != DW_TAG_structure_type
22322 && die->tag != DW_TAG_union_type)
22323 return NULL;
22324
22325 switch (die->tag)
22326 {
22327 case DW_TAG_compile_unit:
22328 case DW_TAG_partial_unit:
22329 /* Compilation units have a DW_AT_name that is a filename, not
22330 a source language identifier. */
22331 case DW_TAG_enumeration_type:
22332 case DW_TAG_enumerator:
22333 /* These tags always have simple identifiers already; no need
22334 to canonicalize them. */
22335 return DW_STRING (attr);
22336
22337 case DW_TAG_namespace:
22338 if (attr != NULL && DW_STRING (attr) != NULL)
22339 return DW_STRING (attr);
22340 return CP_ANONYMOUS_NAMESPACE_STR;
22341
22342 case DW_TAG_class_type:
22343 case DW_TAG_interface_type:
22344 case DW_TAG_structure_type:
22345 case DW_TAG_union_type:
22346 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22347 structures or unions. These were of the form "._%d" in GCC 4.1,
22348 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22349 and GCC 4.4. We work around this problem by ignoring these. */
22350 if (attr && DW_STRING (attr)
22351 && (startswith (DW_STRING (attr), "._")
22352 || startswith (DW_STRING (attr), "<anonymous")))
22353 return NULL;
22354
22355 /* GCC might emit a nameless typedef that has a linkage name. See
22356 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22357 if (!attr || DW_STRING (attr) == NULL)
22358 {
22359 char *demangled = NULL;
22360
22361 attr = dw2_linkage_name_attr (die, cu);
22362 if (attr == NULL || DW_STRING (attr) == NULL)
22363 return NULL;
22364
22365 /* Avoid demangling DW_STRING (attr) the second time on a second
22366 call for the same DIE. */
22367 if (!DW_STRING_IS_CANONICAL (attr))
22368 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22369
22370 if (demangled)
22371 {
22372 const char *base;
22373
22374 /* FIXME: we already did this for the partial symbol... */
22375 DW_STRING (attr)
22376 = ((const char *)
22377 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22378 demangled, strlen (demangled)));
22379 DW_STRING_IS_CANONICAL (attr) = 1;
22380 xfree (demangled);
22381
22382 /* Strip any leading namespaces/classes, keep only the base name.
22383 DW_AT_name for named DIEs does not contain the prefixes. */
22384 base = strrchr (DW_STRING (attr), ':');
22385 if (base && base > DW_STRING (attr) && base[-1] == ':')
22386 return &base[1];
22387 else
22388 return DW_STRING (attr);
22389 }
22390 }
22391 break;
22392
22393 default:
22394 break;
22395 }
22396
22397 if (!DW_STRING_IS_CANONICAL (attr))
22398 {
22399 DW_STRING (attr)
22400 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22401 &objfile->per_bfd->storage_obstack);
22402 DW_STRING_IS_CANONICAL (attr) = 1;
22403 }
22404 return DW_STRING (attr);
22405 }
22406
22407 /* Return the die that this die in an extension of, or NULL if there
22408 is none. *EXT_CU is the CU containing DIE on input, and the CU
22409 containing the return value on output. */
22410
22411 static struct die_info *
22412 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22413 {
22414 struct attribute *attr;
22415
22416 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22417 if (attr == NULL)
22418 return NULL;
22419
22420 return follow_die_ref (die, attr, ext_cu);
22421 }
22422
22423 /* Convert a DIE tag into its string name. */
22424
22425 static const char *
22426 dwarf_tag_name (unsigned tag)
22427 {
22428 const char *name = get_DW_TAG_name (tag);
22429
22430 if (name == NULL)
22431 return "DW_TAG_<unknown>";
22432
22433 return name;
22434 }
22435
22436 /* Convert a DWARF attribute code into its string name. */
22437
22438 static const char *
22439 dwarf_attr_name (unsigned attr)
22440 {
22441 const char *name;
22442
22443 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22444 if (attr == DW_AT_MIPS_fde)
22445 return "DW_AT_MIPS_fde";
22446 #else
22447 if (attr == DW_AT_HP_block_index)
22448 return "DW_AT_HP_block_index";
22449 #endif
22450
22451 name = get_DW_AT_name (attr);
22452
22453 if (name == NULL)
22454 return "DW_AT_<unknown>";
22455
22456 return name;
22457 }
22458
22459 /* Convert a DWARF value form code into its string name. */
22460
22461 static const char *
22462 dwarf_form_name (unsigned form)
22463 {
22464 const char *name = get_DW_FORM_name (form);
22465
22466 if (name == NULL)
22467 return "DW_FORM_<unknown>";
22468
22469 return name;
22470 }
22471
22472 static const char *
22473 dwarf_bool_name (unsigned mybool)
22474 {
22475 if (mybool)
22476 return "TRUE";
22477 else
22478 return "FALSE";
22479 }
22480
22481 /* Convert a DWARF type code into its string name. */
22482
22483 static const char *
22484 dwarf_type_encoding_name (unsigned enc)
22485 {
22486 const char *name = get_DW_ATE_name (enc);
22487
22488 if (name == NULL)
22489 return "DW_ATE_<unknown>";
22490
22491 return name;
22492 }
22493
22494 static void
22495 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22496 {
22497 unsigned int i;
22498
22499 print_spaces (indent, f);
22500 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22501 dwarf_tag_name (die->tag), die->abbrev,
22502 sect_offset_str (die->sect_off));
22503
22504 if (die->parent != NULL)
22505 {
22506 print_spaces (indent, f);
22507 fprintf_unfiltered (f, " parent at offset: %s\n",
22508 sect_offset_str (die->parent->sect_off));
22509 }
22510
22511 print_spaces (indent, f);
22512 fprintf_unfiltered (f, " has children: %s\n",
22513 dwarf_bool_name (die->child != NULL));
22514
22515 print_spaces (indent, f);
22516 fprintf_unfiltered (f, " attributes:\n");
22517
22518 for (i = 0; i < die->num_attrs; ++i)
22519 {
22520 print_spaces (indent, f);
22521 fprintf_unfiltered (f, " %s (%s) ",
22522 dwarf_attr_name (die->attrs[i].name),
22523 dwarf_form_name (die->attrs[i].form));
22524
22525 switch (die->attrs[i].form)
22526 {
22527 case DW_FORM_addr:
22528 case DW_FORM_GNU_addr_index:
22529 fprintf_unfiltered (f, "address: ");
22530 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22531 break;
22532 case DW_FORM_block2:
22533 case DW_FORM_block4:
22534 case DW_FORM_block:
22535 case DW_FORM_block1:
22536 fprintf_unfiltered (f, "block: size %s",
22537 pulongest (DW_BLOCK (&die->attrs[i])->size));
22538 break;
22539 case DW_FORM_exprloc:
22540 fprintf_unfiltered (f, "expression: size %s",
22541 pulongest (DW_BLOCK (&die->attrs[i])->size));
22542 break;
22543 case DW_FORM_data16:
22544 fprintf_unfiltered (f, "constant of 16 bytes");
22545 break;
22546 case DW_FORM_ref_addr:
22547 fprintf_unfiltered (f, "ref address: ");
22548 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22549 break;
22550 case DW_FORM_GNU_ref_alt:
22551 fprintf_unfiltered (f, "alt ref address: ");
22552 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22553 break;
22554 case DW_FORM_ref1:
22555 case DW_FORM_ref2:
22556 case DW_FORM_ref4:
22557 case DW_FORM_ref8:
22558 case DW_FORM_ref_udata:
22559 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22560 (long) (DW_UNSND (&die->attrs[i])));
22561 break;
22562 case DW_FORM_data1:
22563 case DW_FORM_data2:
22564 case DW_FORM_data4:
22565 case DW_FORM_data8:
22566 case DW_FORM_udata:
22567 case DW_FORM_sdata:
22568 fprintf_unfiltered (f, "constant: %s",
22569 pulongest (DW_UNSND (&die->attrs[i])));
22570 break;
22571 case DW_FORM_sec_offset:
22572 fprintf_unfiltered (f, "section offset: %s",
22573 pulongest (DW_UNSND (&die->attrs[i])));
22574 break;
22575 case DW_FORM_ref_sig8:
22576 fprintf_unfiltered (f, "signature: %s",
22577 hex_string (DW_SIGNATURE (&die->attrs[i])));
22578 break;
22579 case DW_FORM_string:
22580 case DW_FORM_strp:
22581 case DW_FORM_line_strp:
22582 case DW_FORM_GNU_str_index:
22583 case DW_FORM_GNU_strp_alt:
22584 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22585 DW_STRING (&die->attrs[i])
22586 ? DW_STRING (&die->attrs[i]) : "",
22587 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22588 break;
22589 case DW_FORM_flag:
22590 if (DW_UNSND (&die->attrs[i]))
22591 fprintf_unfiltered (f, "flag: TRUE");
22592 else
22593 fprintf_unfiltered (f, "flag: FALSE");
22594 break;
22595 case DW_FORM_flag_present:
22596 fprintf_unfiltered (f, "flag: TRUE");
22597 break;
22598 case DW_FORM_indirect:
22599 /* The reader will have reduced the indirect form to
22600 the "base form" so this form should not occur. */
22601 fprintf_unfiltered (f,
22602 "unexpected attribute form: DW_FORM_indirect");
22603 break;
22604 case DW_FORM_implicit_const:
22605 fprintf_unfiltered (f, "constant: %s",
22606 plongest (DW_SND (&die->attrs[i])));
22607 break;
22608 default:
22609 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22610 die->attrs[i].form);
22611 break;
22612 }
22613 fprintf_unfiltered (f, "\n");
22614 }
22615 }
22616
22617 static void
22618 dump_die_for_error (struct die_info *die)
22619 {
22620 dump_die_shallow (gdb_stderr, 0, die);
22621 }
22622
22623 static void
22624 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22625 {
22626 int indent = level * 4;
22627
22628 gdb_assert (die != NULL);
22629
22630 if (level >= max_level)
22631 return;
22632
22633 dump_die_shallow (f, indent, die);
22634
22635 if (die->child != NULL)
22636 {
22637 print_spaces (indent, f);
22638 fprintf_unfiltered (f, " Children:");
22639 if (level + 1 < max_level)
22640 {
22641 fprintf_unfiltered (f, "\n");
22642 dump_die_1 (f, level + 1, max_level, die->child);
22643 }
22644 else
22645 {
22646 fprintf_unfiltered (f,
22647 " [not printed, max nesting level reached]\n");
22648 }
22649 }
22650
22651 if (die->sibling != NULL && level > 0)
22652 {
22653 dump_die_1 (f, level, max_level, die->sibling);
22654 }
22655 }
22656
22657 /* This is called from the pdie macro in gdbinit.in.
22658 It's not static so gcc will keep a copy callable from gdb. */
22659
22660 void
22661 dump_die (struct die_info *die, int max_level)
22662 {
22663 dump_die_1 (gdb_stdlog, 0, max_level, die);
22664 }
22665
22666 static void
22667 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22668 {
22669 void **slot;
22670
22671 slot = htab_find_slot_with_hash (cu->die_hash, die,
22672 to_underlying (die->sect_off),
22673 INSERT);
22674
22675 *slot = die;
22676 }
22677
22678 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22679 required kind. */
22680
22681 static sect_offset
22682 dwarf2_get_ref_die_offset (const struct attribute *attr)
22683 {
22684 if (attr_form_is_ref (attr))
22685 return (sect_offset) DW_UNSND (attr);
22686
22687 complaint (&symfile_complaints,
22688 _("unsupported die ref attribute form: '%s'"),
22689 dwarf_form_name (attr->form));
22690 return {};
22691 }
22692
22693 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22694 * the value held by the attribute is not constant. */
22695
22696 static LONGEST
22697 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22698 {
22699 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22700 return DW_SND (attr);
22701 else if (attr->form == DW_FORM_udata
22702 || attr->form == DW_FORM_data1
22703 || attr->form == DW_FORM_data2
22704 || attr->form == DW_FORM_data4
22705 || attr->form == DW_FORM_data8)
22706 return DW_UNSND (attr);
22707 else
22708 {
22709 /* For DW_FORM_data16 see attr_form_is_constant. */
22710 complaint (&symfile_complaints,
22711 _("Attribute value is not a constant (%s)"),
22712 dwarf_form_name (attr->form));
22713 return default_value;
22714 }
22715 }
22716
22717 /* Follow reference or signature attribute ATTR of SRC_DIE.
22718 On entry *REF_CU is the CU of SRC_DIE.
22719 On exit *REF_CU is the CU of the result. */
22720
22721 static struct die_info *
22722 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22723 struct dwarf2_cu **ref_cu)
22724 {
22725 struct die_info *die;
22726
22727 if (attr_form_is_ref (attr))
22728 die = follow_die_ref (src_die, attr, ref_cu);
22729 else if (attr->form == DW_FORM_ref_sig8)
22730 die = follow_die_sig (src_die, attr, ref_cu);
22731 else
22732 {
22733 dump_die_for_error (src_die);
22734 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22735 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22736 }
22737
22738 return die;
22739 }
22740
22741 /* Follow reference OFFSET.
22742 On entry *REF_CU is the CU of the source die referencing OFFSET.
22743 On exit *REF_CU is the CU of the result.
22744 Returns NULL if OFFSET is invalid. */
22745
22746 static struct die_info *
22747 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22748 struct dwarf2_cu **ref_cu)
22749 {
22750 struct die_info temp_die;
22751 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22752 struct dwarf2_per_objfile *dwarf2_per_objfile
22753 = cu->per_cu->dwarf2_per_objfile;
22754
22755 gdb_assert (cu->per_cu != NULL);
22756
22757 target_cu = cu;
22758
22759 if (cu->per_cu->is_debug_types)
22760 {
22761 /* .debug_types CUs cannot reference anything outside their CU.
22762 If they need to, they have to reference a signatured type via
22763 DW_FORM_ref_sig8. */
22764 if (!offset_in_cu_p (&cu->header, sect_off))
22765 return NULL;
22766 }
22767 else if (offset_in_dwz != cu->per_cu->is_dwz
22768 || !offset_in_cu_p (&cu->header, sect_off))
22769 {
22770 struct dwarf2_per_cu_data *per_cu;
22771
22772 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22773 dwarf2_per_objfile);
22774
22775 /* If necessary, add it to the queue and load its DIEs. */
22776 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22777 load_full_comp_unit (per_cu, cu->language);
22778
22779 target_cu = per_cu->cu;
22780 }
22781 else if (cu->dies == NULL)
22782 {
22783 /* We're loading full DIEs during partial symbol reading. */
22784 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22785 load_full_comp_unit (cu->per_cu, language_minimal);
22786 }
22787
22788 *ref_cu = target_cu;
22789 temp_die.sect_off = sect_off;
22790 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22791 &temp_die,
22792 to_underlying (sect_off));
22793 }
22794
22795 /* Follow reference attribute ATTR of SRC_DIE.
22796 On entry *REF_CU is the CU of SRC_DIE.
22797 On exit *REF_CU is the CU of the result. */
22798
22799 static struct die_info *
22800 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22801 struct dwarf2_cu **ref_cu)
22802 {
22803 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22804 struct dwarf2_cu *cu = *ref_cu;
22805 struct die_info *die;
22806
22807 die = follow_die_offset (sect_off,
22808 (attr->form == DW_FORM_GNU_ref_alt
22809 || cu->per_cu->is_dwz),
22810 ref_cu);
22811 if (!die)
22812 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22813 "at %s [in module %s]"),
22814 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22815 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22816
22817 return die;
22818 }
22819
22820 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22821 Returned value is intended for DW_OP_call*. Returned
22822 dwarf2_locexpr_baton->data has lifetime of
22823 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22824
22825 struct dwarf2_locexpr_baton
22826 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22827 struct dwarf2_per_cu_data *per_cu,
22828 CORE_ADDR (*get_frame_pc) (void *baton),
22829 void *baton)
22830 {
22831 struct dwarf2_cu *cu;
22832 struct die_info *die;
22833 struct attribute *attr;
22834 struct dwarf2_locexpr_baton retval;
22835 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22836 struct objfile *objfile = dwarf2_per_objfile->objfile;
22837
22838 if (per_cu->cu == NULL)
22839 load_cu (per_cu);
22840 cu = per_cu->cu;
22841 if (cu == NULL)
22842 {
22843 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22844 Instead just throw an error, not much else we can do. */
22845 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22846 sect_offset_str (sect_off), objfile_name (objfile));
22847 }
22848
22849 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22850 if (!die)
22851 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22852 sect_offset_str (sect_off), objfile_name (objfile));
22853
22854 attr = dwarf2_attr (die, DW_AT_location, cu);
22855 if (!attr)
22856 {
22857 /* DWARF: "If there is no such attribute, then there is no effect.".
22858 DATA is ignored if SIZE is 0. */
22859
22860 retval.data = NULL;
22861 retval.size = 0;
22862 }
22863 else if (attr_form_is_section_offset (attr))
22864 {
22865 struct dwarf2_loclist_baton loclist_baton;
22866 CORE_ADDR pc = (*get_frame_pc) (baton);
22867 size_t size;
22868
22869 fill_in_loclist_baton (cu, &loclist_baton, attr);
22870
22871 retval.data = dwarf2_find_location_expression (&loclist_baton,
22872 &size, pc);
22873 retval.size = size;
22874 }
22875 else
22876 {
22877 if (!attr_form_is_block (attr))
22878 error (_("Dwarf Error: DIE at %s referenced in module %s "
22879 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22880 sect_offset_str (sect_off), objfile_name (objfile));
22881
22882 retval.data = DW_BLOCK (attr)->data;
22883 retval.size = DW_BLOCK (attr)->size;
22884 }
22885 retval.per_cu = cu->per_cu;
22886
22887 age_cached_comp_units (dwarf2_per_objfile);
22888
22889 return retval;
22890 }
22891
22892 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
22893 offset. */
22894
22895 struct dwarf2_locexpr_baton
22896 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22897 struct dwarf2_per_cu_data *per_cu,
22898 CORE_ADDR (*get_frame_pc) (void *baton),
22899 void *baton)
22900 {
22901 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22902
22903 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22904 }
22905
22906 /* Write a constant of a given type as target-ordered bytes into
22907 OBSTACK. */
22908
22909 static const gdb_byte *
22910 write_constant_as_bytes (struct obstack *obstack,
22911 enum bfd_endian byte_order,
22912 struct type *type,
22913 ULONGEST value,
22914 LONGEST *len)
22915 {
22916 gdb_byte *result;
22917
22918 *len = TYPE_LENGTH (type);
22919 result = (gdb_byte *) obstack_alloc (obstack, *len);
22920 store_unsigned_integer (result, *len, byte_order, value);
22921
22922 return result;
22923 }
22924
22925 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
22926 pointer to the constant bytes and set LEN to the length of the
22927 data. If memory is needed, allocate it on OBSTACK. If the DIE
22928 does not have a DW_AT_const_value, return NULL. */
22929
22930 const gdb_byte *
22931 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22932 struct dwarf2_per_cu_data *per_cu,
22933 struct obstack *obstack,
22934 LONGEST *len)
22935 {
22936 struct dwarf2_cu *cu;
22937 struct die_info *die;
22938 struct attribute *attr;
22939 const gdb_byte *result = NULL;
22940 struct type *type;
22941 LONGEST value;
22942 enum bfd_endian byte_order;
22943 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22944
22945 if (per_cu->cu == NULL)
22946 load_cu (per_cu);
22947 cu = per_cu->cu;
22948 if (cu == NULL)
22949 {
22950 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22951 Instead just throw an error, not much else we can do. */
22952 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22953 sect_offset_str (sect_off), objfile_name (objfile));
22954 }
22955
22956 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22957 if (!die)
22958 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22959 sect_offset_str (sect_off), objfile_name (objfile));
22960
22961 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22962 if (attr == NULL)
22963 return NULL;
22964
22965 byte_order = (bfd_big_endian (objfile->obfd)
22966 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22967
22968 switch (attr->form)
22969 {
22970 case DW_FORM_addr:
22971 case DW_FORM_GNU_addr_index:
22972 {
22973 gdb_byte *tem;
22974
22975 *len = cu->header.addr_size;
22976 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22977 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22978 result = tem;
22979 }
22980 break;
22981 case DW_FORM_string:
22982 case DW_FORM_strp:
22983 case DW_FORM_GNU_str_index:
22984 case DW_FORM_GNU_strp_alt:
22985 /* DW_STRING is already allocated on the objfile obstack, point
22986 directly to it. */
22987 result = (const gdb_byte *) DW_STRING (attr);
22988 *len = strlen (DW_STRING (attr));
22989 break;
22990 case DW_FORM_block1:
22991 case DW_FORM_block2:
22992 case DW_FORM_block4:
22993 case DW_FORM_block:
22994 case DW_FORM_exprloc:
22995 case DW_FORM_data16:
22996 result = DW_BLOCK (attr)->data;
22997 *len = DW_BLOCK (attr)->size;
22998 break;
22999
23000 /* The DW_AT_const_value attributes are supposed to carry the
23001 symbol's value "represented as it would be on the target
23002 architecture." By the time we get here, it's already been
23003 converted to host endianness, so we just need to sign- or
23004 zero-extend it as appropriate. */
23005 case DW_FORM_data1:
23006 type = die_type (die, cu);
23007 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23008 if (result == NULL)
23009 result = write_constant_as_bytes (obstack, byte_order,
23010 type, value, len);
23011 break;
23012 case DW_FORM_data2:
23013 type = die_type (die, cu);
23014 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23015 if (result == NULL)
23016 result = write_constant_as_bytes (obstack, byte_order,
23017 type, value, len);
23018 break;
23019 case DW_FORM_data4:
23020 type = die_type (die, cu);
23021 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23022 if (result == NULL)
23023 result = write_constant_as_bytes (obstack, byte_order,
23024 type, value, len);
23025 break;
23026 case DW_FORM_data8:
23027 type = die_type (die, cu);
23028 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23029 if (result == NULL)
23030 result = write_constant_as_bytes (obstack, byte_order,
23031 type, value, len);
23032 break;
23033
23034 case DW_FORM_sdata:
23035 case DW_FORM_implicit_const:
23036 type = die_type (die, cu);
23037 result = write_constant_as_bytes (obstack, byte_order,
23038 type, DW_SND (attr), len);
23039 break;
23040
23041 case DW_FORM_udata:
23042 type = die_type (die, cu);
23043 result = write_constant_as_bytes (obstack, byte_order,
23044 type, DW_UNSND (attr), len);
23045 break;
23046
23047 default:
23048 complaint (&symfile_complaints,
23049 _("unsupported const value attribute form: '%s'"),
23050 dwarf_form_name (attr->form));
23051 break;
23052 }
23053
23054 return result;
23055 }
23056
23057 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23058 valid type for this die is found. */
23059
23060 struct type *
23061 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23062 struct dwarf2_per_cu_data *per_cu)
23063 {
23064 struct dwarf2_cu *cu;
23065 struct die_info *die;
23066
23067 if (per_cu->cu == NULL)
23068 load_cu (per_cu);
23069 cu = per_cu->cu;
23070 if (!cu)
23071 return NULL;
23072
23073 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23074 if (!die)
23075 return NULL;
23076
23077 return die_type (die, cu);
23078 }
23079
23080 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23081 PER_CU. */
23082
23083 struct type *
23084 dwarf2_get_die_type (cu_offset die_offset,
23085 struct dwarf2_per_cu_data *per_cu)
23086 {
23087 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23088 return get_die_type_at_offset (die_offset_sect, per_cu);
23089 }
23090
23091 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23092 On entry *REF_CU is the CU of SRC_DIE.
23093 On exit *REF_CU is the CU of the result.
23094 Returns NULL if the referenced DIE isn't found. */
23095
23096 static struct die_info *
23097 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23098 struct dwarf2_cu **ref_cu)
23099 {
23100 struct die_info temp_die;
23101 struct dwarf2_cu *sig_cu;
23102 struct die_info *die;
23103
23104 /* While it might be nice to assert sig_type->type == NULL here,
23105 we can get here for DW_AT_imported_declaration where we need
23106 the DIE not the type. */
23107
23108 /* If necessary, add it to the queue and load its DIEs. */
23109
23110 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23111 read_signatured_type (sig_type);
23112
23113 sig_cu = sig_type->per_cu.cu;
23114 gdb_assert (sig_cu != NULL);
23115 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23116 temp_die.sect_off = sig_type->type_offset_in_section;
23117 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23118 to_underlying (temp_die.sect_off));
23119 if (die)
23120 {
23121 struct dwarf2_per_objfile *dwarf2_per_objfile
23122 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23123
23124 /* For .gdb_index version 7 keep track of included TUs.
23125 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23126 if (dwarf2_per_objfile->index_table != NULL
23127 && dwarf2_per_objfile->index_table->version <= 7)
23128 {
23129 VEC_safe_push (dwarf2_per_cu_ptr,
23130 (*ref_cu)->per_cu->imported_symtabs,
23131 sig_cu->per_cu);
23132 }
23133
23134 *ref_cu = sig_cu;
23135 return die;
23136 }
23137
23138 return NULL;
23139 }
23140
23141 /* Follow signatured type referenced by ATTR in SRC_DIE.
23142 On entry *REF_CU is the CU of SRC_DIE.
23143 On exit *REF_CU is the CU of the result.
23144 The result is the DIE of the type.
23145 If the referenced type cannot be found an error is thrown. */
23146
23147 static struct die_info *
23148 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23149 struct dwarf2_cu **ref_cu)
23150 {
23151 ULONGEST signature = DW_SIGNATURE (attr);
23152 struct signatured_type *sig_type;
23153 struct die_info *die;
23154
23155 gdb_assert (attr->form == DW_FORM_ref_sig8);
23156
23157 sig_type = lookup_signatured_type (*ref_cu, signature);
23158 /* sig_type will be NULL if the signatured type is missing from
23159 the debug info. */
23160 if (sig_type == NULL)
23161 {
23162 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23163 " from DIE at %s [in module %s]"),
23164 hex_string (signature), sect_offset_str (src_die->sect_off),
23165 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23166 }
23167
23168 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23169 if (die == NULL)
23170 {
23171 dump_die_for_error (src_die);
23172 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23173 " from DIE at %s [in module %s]"),
23174 hex_string (signature), sect_offset_str (src_die->sect_off),
23175 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23176 }
23177
23178 return die;
23179 }
23180
23181 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23182 reading in and processing the type unit if necessary. */
23183
23184 static struct type *
23185 get_signatured_type (struct die_info *die, ULONGEST signature,
23186 struct dwarf2_cu *cu)
23187 {
23188 struct dwarf2_per_objfile *dwarf2_per_objfile
23189 = cu->per_cu->dwarf2_per_objfile;
23190 struct signatured_type *sig_type;
23191 struct dwarf2_cu *type_cu;
23192 struct die_info *type_die;
23193 struct type *type;
23194
23195 sig_type = lookup_signatured_type (cu, signature);
23196 /* sig_type will be NULL if the signatured type is missing from
23197 the debug info. */
23198 if (sig_type == NULL)
23199 {
23200 complaint (&symfile_complaints,
23201 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23202 " from DIE at %s [in module %s]"),
23203 hex_string (signature), sect_offset_str (die->sect_off),
23204 objfile_name (dwarf2_per_objfile->objfile));
23205 return build_error_marker_type (cu, die);
23206 }
23207
23208 /* If we already know the type we're done. */
23209 if (sig_type->type != NULL)
23210 return sig_type->type;
23211
23212 type_cu = cu;
23213 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23214 if (type_die != NULL)
23215 {
23216 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23217 is created. This is important, for example, because for c++ classes
23218 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23219 type = read_type_die (type_die, type_cu);
23220 if (type == NULL)
23221 {
23222 complaint (&symfile_complaints,
23223 _("Dwarf Error: Cannot build signatured type %s"
23224 " referenced from DIE at %s [in module %s]"),
23225 hex_string (signature), sect_offset_str (die->sect_off),
23226 objfile_name (dwarf2_per_objfile->objfile));
23227 type = build_error_marker_type (cu, die);
23228 }
23229 }
23230 else
23231 {
23232 complaint (&symfile_complaints,
23233 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23234 " from DIE at %s [in module %s]"),
23235 hex_string (signature), sect_offset_str (die->sect_off),
23236 objfile_name (dwarf2_per_objfile->objfile));
23237 type = build_error_marker_type (cu, die);
23238 }
23239 sig_type->type = type;
23240
23241 return type;
23242 }
23243
23244 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23245 reading in and processing the type unit if necessary. */
23246
23247 static struct type *
23248 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23249 struct dwarf2_cu *cu) /* ARI: editCase function */
23250 {
23251 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23252 if (attr_form_is_ref (attr))
23253 {
23254 struct dwarf2_cu *type_cu = cu;
23255 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23256
23257 return read_type_die (type_die, type_cu);
23258 }
23259 else if (attr->form == DW_FORM_ref_sig8)
23260 {
23261 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23262 }
23263 else
23264 {
23265 struct dwarf2_per_objfile *dwarf2_per_objfile
23266 = cu->per_cu->dwarf2_per_objfile;
23267
23268 complaint (&symfile_complaints,
23269 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23270 " at %s [in module %s]"),
23271 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23272 objfile_name (dwarf2_per_objfile->objfile));
23273 return build_error_marker_type (cu, die);
23274 }
23275 }
23276
23277 /* Load the DIEs associated with type unit PER_CU into memory. */
23278
23279 static void
23280 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23281 {
23282 struct signatured_type *sig_type;
23283
23284 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23285 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23286
23287 /* We have the per_cu, but we need the signatured_type.
23288 Fortunately this is an easy translation. */
23289 gdb_assert (per_cu->is_debug_types);
23290 sig_type = (struct signatured_type *) per_cu;
23291
23292 gdb_assert (per_cu->cu == NULL);
23293
23294 read_signatured_type (sig_type);
23295
23296 gdb_assert (per_cu->cu != NULL);
23297 }
23298
23299 /* die_reader_func for read_signatured_type.
23300 This is identical to load_full_comp_unit_reader,
23301 but is kept separate for now. */
23302
23303 static void
23304 read_signatured_type_reader (const struct die_reader_specs *reader,
23305 const gdb_byte *info_ptr,
23306 struct die_info *comp_unit_die,
23307 int has_children,
23308 void *data)
23309 {
23310 struct dwarf2_cu *cu = reader->cu;
23311
23312 gdb_assert (cu->die_hash == NULL);
23313 cu->die_hash =
23314 htab_create_alloc_ex (cu->header.length / 12,
23315 die_hash,
23316 die_eq,
23317 NULL,
23318 &cu->comp_unit_obstack,
23319 hashtab_obstack_allocate,
23320 dummy_obstack_deallocate);
23321
23322 if (has_children)
23323 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23324 &info_ptr, comp_unit_die);
23325 cu->dies = comp_unit_die;
23326 /* comp_unit_die is not stored in die_hash, no need. */
23327
23328 /* We try not to read any attributes in this function, because not
23329 all CUs needed for references have been loaded yet, and symbol
23330 table processing isn't initialized. But we have to set the CU language,
23331 or we won't be able to build types correctly.
23332 Similarly, if we do not read the producer, we can not apply
23333 producer-specific interpretation. */
23334 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23335 }
23336
23337 /* Read in a signatured type and build its CU and DIEs.
23338 If the type is a stub for the real type in a DWO file,
23339 read in the real type from the DWO file as well. */
23340
23341 static void
23342 read_signatured_type (struct signatured_type *sig_type)
23343 {
23344 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23345
23346 gdb_assert (per_cu->is_debug_types);
23347 gdb_assert (per_cu->cu == NULL);
23348
23349 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
23350 read_signatured_type_reader, NULL);
23351 sig_type->per_cu.tu_read = 1;
23352 }
23353
23354 /* Decode simple location descriptions.
23355 Given a pointer to a dwarf block that defines a location, compute
23356 the location and return the value.
23357
23358 NOTE drow/2003-11-18: This function is called in two situations
23359 now: for the address of static or global variables (partial symbols
23360 only) and for offsets into structures which are expected to be
23361 (more or less) constant. The partial symbol case should go away,
23362 and only the constant case should remain. That will let this
23363 function complain more accurately. A few special modes are allowed
23364 without complaint for global variables (for instance, global
23365 register values and thread-local values).
23366
23367 A location description containing no operations indicates that the
23368 object is optimized out. The return value is 0 for that case.
23369 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23370 callers will only want a very basic result and this can become a
23371 complaint.
23372
23373 Note that stack[0] is unused except as a default error return. */
23374
23375 static CORE_ADDR
23376 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23377 {
23378 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23379 size_t i;
23380 size_t size = blk->size;
23381 const gdb_byte *data = blk->data;
23382 CORE_ADDR stack[64];
23383 int stacki;
23384 unsigned int bytes_read, unsnd;
23385 gdb_byte op;
23386
23387 i = 0;
23388 stacki = 0;
23389 stack[stacki] = 0;
23390 stack[++stacki] = 0;
23391
23392 while (i < size)
23393 {
23394 op = data[i++];
23395 switch (op)
23396 {
23397 case DW_OP_lit0:
23398 case DW_OP_lit1:
23399 case DW_OP_lit2:
23400 case DW_OP_lit3:
23401 case DW_OP_lit4:
23402 case DW_OP_lit5:
23403 case DW_OP_lit6:
23404 case DW_OP_lit7:
23405 case DW_OP_lit8:
23406 case DW_OP_lit9:
23407 case DW_OP_lit10:
23408 case DW_OP_lit11:
23409 case DW_OP_lit12:
23410 case DW_OP_lit13:
23411 case DW_OP_lit14:
23412 case DW_OP_lit15:
23413 case DW_OP_lit16:
23414 case DW_OP_lit17:
23415 case DW_OP_lit18:
23416 case DW_OP_lit19:
23417 case DW_OP_lit20:
23418 case DW_OP_lit21:
23419 case DW_OP_lit22:
23420 case DW_OP_lit23:
23421 case DW_OP_lit24:
23422 case DW_OP_lit25:
23423 case DW_OP_lit26:
23424 case DW_OP_lit27:
23425 case DW_OP_lit28:
23426 case DW_OP_lit29:
23427 case DW_OP_lit30:
23428 case DW_OP_lit31:
23429 stack[++stacki] = op - DW_OP_lit0;
23430 break;
23431
23432 case DW_OP_reg0:
23433 case DW_OP_reg1:
23434 case DW_OP_reg2:
23435 case DW_OP_reg3:
23436 case DW_OP_reg4:
23437 case DW_OP_reg5:
23438 case DW_OP_reg6:
23439 case DW_OP_reg7:
23440 case DW_OP_reg8:
23441 case DW_OP_reg9:
23442 case DW_OP_reg10:
23443 case DW_OP_reg11:
23444 case DW_OP_reg12:
23445 case DW_OP_reg13:
23446 case DW_OP_reg14:
23447 case DW_OP_reg15:
23448 case DW_OP_reg16:
23449 case DW_OP_reg17:
23450 case DW_OP_reg18:
23451 case DW_OP_reg19:
23452 case DW_OP_reg20:
23453 case DW_OP_reg21:
23454 case DW_OP_reg22:
23455 case DW_OP_reg23:
23456 case DW_OP_reg24:
23457 case DW_OP_reg25:
23458 case DW_OP_reg26:
23459 case DW_OP_reg27:
23460 case DW_OP_reg28:
23461 case DW_OP_reg29:
23462 case DW_OP_reg30:
23463 case DW_OP_reg31:
23464 stack[++stacki] = op - DW_OP_reg0;
23465 if (i < size)
23466 dwarf2_complex_location_expr_complaint ();
23467 break;
23468
23469 case DW_OP_regx:
23470 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23471 i += bytes_read;
23472 stack[++stacki] = unsnd;
23473 if (i < size)
23474 dwarf2_complex_location_expr_complaint ();
23475 break;
23476
23477 case DW_OP_addr:
23478 stack[++stacki] = read_address (objfile->obfd, &data[i],
23479 cu, &bytes_read);
23480 i += bytes_read;
23481 break;
23482
23483 case DW_OP_const1u:
23484 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23485 i += 1;
23486 break;
23487
23488 case DW_OP_const1s:
23489 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23490 i += 1;
23491 break;
23492
23493 case DW_OP_const2u:
23494 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23495 i += 2;
23496 break;
23497
23498 case DW_OP_const2s:
23499 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23500 i += 2;
23501 break;
23502
23503 case DW_OP_const4u:
23504 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23505 i += 4;
23506 break;
23507
23508 case DW_OP_const4s:
23509 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23510 i += 4;
23511 break;
23512
23513 case DW_OP_const8u:
23514 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23515 i += 8;
23516 break;
23517
23518 case DW_OP_constu:
23519 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23520 &bytes_read);
23521 i += bytes_read;
23522 break;
23523
23524 case DW_OP_consts:
23525 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23526 i += bytes_read;
23527 break;
23528
23529 case DW_OP_dup:
23530 stack[stacki + 1] = stack[stacki];
23531 stacki++;
23532 break;
23533
23534 case DW_OP_plus:
23535 stack[stacki - 1] += stack[stacki];
23536 stacki--;
23537 break;
23538
23539 case DW_OP_plus_uconst:
23540 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23541 &bytes_read);
23542 i += bytes_read;
23543 break;
23544
23545 case DW_OP_minus:
23546 stack[stacki - 1] -= stack[stacki];
23547 stacki--;
23548 break;
23549
23550 case DW_OP_deref:
23551 /* If we're not the last op, then we definitely can't encode
23552 this using GDB's address_class enum. This is valid for partial
23553 global symbols, although the variable's address will be bogus
23554 in the psymtab. */
23555 if (i < size)
23556 dwarf2_complex_location_expr_complaint ();
23557 break;
23558
23559 case DW_OP_GNU_push_tls_address:
23560 case DW_OP_form_tls_address:
23561 /* The top of the stack has the offset from the beginning
23562 of the thread control block at which the variable is located. */
23563 /* Nothing should follow this operator, so the top of stack would
23564 be returned. */
23565 /* This is valid for partial global symbols, but the variable's
23566 address will be bogus in the psymtab. Make it always at least
23567 non-zero to not look as a variable garbage collected by linker
23568 which have DW_OP_addr 0. */
23569 if (i < size)
23570 dwarf2_complex_location_expr_complaint ();
23571 stack[stacki]++;
23572 break;
23573
23574 case DW_OP_GNU_uninit:
23575 break;
23576
23577 case DW_OP_GNU_addr_index:
23578 case DW_OP_GNU_const_index:
23579 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23580 &bytes_read);
23581 i += bytes_read;
23582 break;
23583
23584 default:
23585 {
23586 const char *name = get_DW_OP_name (op);
23587
23588 if (name)
23589 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
23590 name);
23591 else
23592 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
23593 op);
23594 }
23595
23596 return (stack[stacki]);
23597 }
23598
23599 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23600 outside of the allocated space. Also enforce minimum>0. */
23601 if (stacki >= ARRAY_SIZE (stack) - 1)
23602 {
23603 complaint (&symfile_complaints,
23604 _("location description stack overflow"));
23605 return 0;
23606 }
23607
23608 if (stacki <= 0)
23609 {
23610 complaint (&symfile_complaints,
23611 _("location description stack underflow"));
23612 return 0;
23613 }
23614 }
23615 return (stack[stacki]);
23616 }
23617
23618 /* memory allocation interface */
23619
23620 static struct dwarf_block *
23621 dwarf_alloc_block (struct dwarf2_cu *cu)
23622 {
23623 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23624 }
23625
23626 static struct die_info *
23627 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23628 {
23629 struct die_info *die;
23630 size_t size = sizeof (struct die_info);
23631
23632 if (num_attrs > 1)
23633 size += (num_attrs - 1) * sizeof (struct attribute);
23634
23635 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23636 memset (die, 0, sizeof (struct die_info));
23637 return (die);
23638 }
23639
23640 \f
23641 /* Macro support. */
23642
23643 /* Return file name relative to the compilation directory of file number I in
23644 *LH's file name table. The result is allocated using xmalloc; the caller is
23645 responsible for freeing it. */
23646
23647 static char *
23648 file_file_name (int file, struct line_header *lh)
23649 {
23650 /* Is the file number a valid index into the line header's file name
23651 table? Remember that file numbers start with one, not zero. */
23652 if (1 <= file && file <= lh->file_names.size ())
23653 {
23654 const file_entry &fe = lh->file_names[file - 1];
23655
23656 if (!IS_ABSOLUTE_PATH (fe.name))
23657 {
23658 const char *dir = fe.include_dir (lh);
23659 if (dir != NULL)
23660 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23661 }
23662 return xstrdup (fe.name);
23663 }
23664 else
23665 {
23666 /* The compiler produced a bogus file number. We can at least
23667 record the macro definitions made in the file, even if we
23668 won't be able to find the file by name. */
23669 char fake_name[80];
23670
23671 xsnprintf (fake_name, sizeof (fake_name),
23672 "<bad macro file number %d>", file);
23673
23674 complaint (&symfile_complaints,
23675 _("bad file number in macro information (%d)"),
23676 file);
23677
23678 return xstrdup (fake_name);
23679 }
23680 }
23681
23682 /* Return the full name of file number I in *LH's file name table.
23683 Use COMP_DIR as the name of the current directory of the
23684 compilation. The result is allocated using xmalloc; the caller is
23685 responsible for freeing it. */
23686 static char *
23687 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23688 {
23689 /* Is the file number a valid index into the line header's file name
23690 table? Remember that file numbers start with one, not zero. */
23691 if (1 <= file && file <= lh->file_names.size ())
23692 {
23693 char *relative = file_file_name (file, lh);
23694
23695 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23696 return relative;
23697 return reconcat (relative, comp_dir, SLASH_STRING,
23698 relative, (char *) NULL);
23699 }
23700 else
23701 return file_file_name (file, lh);
23702 }
23703
23704
23705 static struct macro_source_file *
23706 macro_start_file (int file, int line,
23707 struct macro_source_file *current_file,
23708 struct line_header *lh)
23709 {
23710 /* File name relative to the compilation directory of this source file. */
23711 char *file_name = file_file_name (file, lh);
23712
23713 if (! current_file)
23714 {
23715 /* Note: We don't create a macro table for this compilation unit
23716 at all until we actually get a filename. */
23717 struct macro_table *macro_table = get_macro_table ();
23718
23719 /* If we have no current file, then this must be the start_file
23720 directive for the compilation unit's main source file. */
23721 current_file = macro_set_main (macro_table, file_name);
23722 macro_define_special (macro_table);
23723 }
23724 else
23725 current_file = macro_include (current_file, line, file_name);
23726
23727 xfree (file_name);
23728
23729 return current_file;
23730 }
23731
23732 static const char *
23733 consume_improper_spaces (const char *p, const char *body)
23734 {
23735 if (*p == ' ')
23736 {
23737 complaint (&symfile_complaints,
23738 _("macro definition contains spaces "
23739 "in formal argument list:\n`%s'"),
23740 body);
23741
23742 while (*p == ' ')
23743 p++;
23744 }
23745
23746 return p;
23747 }
23748
23749
23750 static void
23751 parse_macro_definition (struct macro_source_file *file, int line,
23752 const char *body)
23753 {
23754 const char *p;
23755
23756 /* The body string takes one of two forms. For object-like macro
23757 definitions, it should be:
23758
23759 <macro name> " " <definition>
23760
23761 For function-like macro definitions, it should be:
23762
23763 <macro name> "() " <definition>
23764 or
23765 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23766
23767 Spaces may appear only where explicitly indicated, and in the
23768 <definition>.
23769
23770 The Dwarf 2 spec says that an object-like macro's name is always
23771 followed by a space, but versions of GCC around March 2002 omit
23772 the space when the macro's definition is the empty string.
23773
23774 The Dwarf 2 spec says that there should be no spaces between the
23775 formal arguments in a function-like macro's formal argument list,
23776 but versions of GCC around March 2002 include spaces after the
23777 commas. */
23778
23779
23780 /* Find the extent of the macro name. The macro name is terminated
23781 by either a space or null character (for an object-like macro) or
23782 an opening paren (for a function-like macro). */
23783 for (p = body; *p; p++)
23784 if (*p == ' ' || *p == '(')
23785 break;
23786
23787 if (*p == ' ' || *p == '\0')
23788 {
23789 /* It's an object-like macro. */
23790 int name_len = p - body;
23791 char *name = savestring (body, name_len);
23792 const char *replacement;
23793
23794 if (*p == ' ')
23795 replacement = body + name_len + 1;
23796 else
23797 {
23798 dwarf2_macro_malformed_definition_complaint (body);
23799 replacement = body + name_len;
23800 }
23801
23802 macro_define_object (file, line, name, replacement);
23803
23804 xfree (name);
23805 }
23806 else if (*p == '(')
23807 {
23808 /* It's a function-like macro. */
23809 char *name = savestring (body, p - body);
23810 int argc = 0;
23811 int argv_size = 1;
23812 char **argv = XNEWVEC (char *, argv_size);
23813
23814 p++;
23815
23816 p = consume_improper_spaces (p, body);
23817
23818 /* Parse the formal argument list. */
23819 while (*p && *p != ')')
23820 {
23821 /* Find the extent of the current argument name. */
23822 const char *arg_start = p;
23823
23824 while (*p && *p != ',' && *p != ')' && *p != ' ')
23825 p++;
23826
23827 if (! *p || p == arg_start)
23828 dwarf2_macro_malformed_definition_complaint (body);
23829 else
23830 {
23831 /* Make sure argv has room for the new argument. */
23832 if (argc >= argv_size)
23833 {
23834 argv_size *= 2;
23835 argv = XRESIZEVEC (char *, argv, argv_size);
23836 }
23837
23838 argv[argc++] = savestring (arg_start, p - arg_start);
23839 }
23840
23841 p = consume_improper_spaces (p, body);
23842
23843 /* Consume the comma, if present. */
23844 if (*p == ',')
23845 {
23846 p++;
23847
23848 p = consume_improper_spaces (p, body);
23849 }
23850 }
23851
23852 if (*p == ')')
23853 {
23854 p++;
23855
23856 if (*p == ' ')
23857 /* Perfectly formed definition, no complaints. */
23858 macro_define_function (file, line, name,
23859 argc, (const char **) argv,
23860 p + 1);
23861 else if (*p == '\0')
23862 {
23863 /* Complain, but do define it. */
23864 dwarf2_macro_malformed_definition_complaint (body);
23865 macro_define_function (file, line, name,
23866 argc, (const char **) argv,
23867 p);
23868 }
23869 else
23870 /* Just complain. */
23871 dwarf2_macro_malformed_definition_complaint (body);
23872 }
23873 else
23874 /* Just complain. */
23875 dwarf2_macro_malformed_definition_complaint (body);
23876
23877 xfree (name);
23878 {
23879 int i;
23880
23881 for (i = 0; i < argc; i++)
23882 xfree (argv[i]);
23883 }
23884 xfree (argv);
23885 }
23886 else
23887 dwarf2_macro_malformed_definition_complaint (body);
23888 }
23889
23890 /* Skip some bytes from BYTES according to the form given in FORM.
23891 Returns the new pointer. */
23892
23893 static const gdb_byte *
23894 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23895 enum dwarf_form form,
23896 unsigned int offset_size,
23897 struct dwarf2_section_info *section)
23898 {
23899 unsigned int bytes_read;
23900
23901 switch (form)
23902 {
23903 case DW_FORM_data1:
23904 case DW_FORM_flag:
23905 ++bytes;
23906 break;
23907
23908 case DW_FORM_data2:
23909 bytes += 2;
23910 break;
23911
23912 case DW_FORM_data4:
23913 bytes += 4;
23914 break;
23915
23916 case DW_FORM_data8:
23917 bytes += 8;
23918 break;
23919
23920 case DW_FORM_data16:
23921 bytes += 16;
23922 break;
23923
23924 case DW_FORM_string:
23925 read_direct_string (abfd, bytes, &bytes_read);
23926 bytes += bytes_read;
23927 break;
23928
23929 case DW_FORM_sec_offset:
23930 case DW_FORM_strp:
23931 case DW_FORM_GNU_strp_alt:
23932 bytes += offset_size;
23933 break;
23934
23935 case DW_FORM_block:
23936 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
23937 bytes += bytes_read;
23938 break;
23939
23940 case DW_FORM_block1:
23941 bytes += 1 + read_1_byte (abfd, bytes);
23942 break;
23943 case DW_FORM_block2:
23944 bytes += 2 + read_2_bytes (abfd, bytes);
23945 break;
23946 case DW_FORM_block4:
23947 bytes += 4 + read_4_bytes (abfd, bytes);
23948 break;
23949
23950 case DW_FORM_sdata:
23951 case DW_FORM_udata:
23952 case DW_FORM_GNU_addr_index:
23953 case DW_FORM_GNU_str_index:
23954 bytes = gdb_skip_leb128 (bytes, buffer_end);
23955 if (bytes == NULL)
23956 {
23957 dwarf2_section_buffer_overflow_complaint (section);
23958 return NULL;
23959 }
23960 break;
23961
23962 case DW_FORM_implicit_const:
23963 break;
23964
23965 default:
23966 {
23967 complaint (&symfile_complaints,
23968 _("invalid form 0x%x in `%s'"),
23969 form, get_section_name (section));
23970 return NULL;
23971 }
23972 }
23973
23974 return bytes;
23975 }
23976
23977 /* A helper for dwarf_decode_macros that handles skipping an unknown
23978 opcode. Returns an updated pointer to the macro data buffer; or,
23979 on error, issues a complaint and returns NULL. */
23980
23981 static const gdb_byte *
23982 skip_unknown_opcode (unsigned int opcode,
23983 const gdb_byte **opcode_definitions,
23984 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
23985 bfd *abfd,
23986 unsigned int offset_size,
23987 struct dwarf2_section_info *section)
23988 {
23989 unsigned int bytes_read, i;
23990 unsigned long arg;
23991 const gdb_byte *defn;
23992
23993 if (opcode_definitions[opcode] == NULL)
23994 {
23995 complaint (&symfile_complaints,
23996 _("unrecognized DW_MACFINO opcode 0x%x"),
23997 opcode);
23998 return NULL;
23999 }
24000
24001 defn = opcode_definitions[opcode];
24002 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24003 defn += bytes_read;
24004
24005 for (i = 0; i < arg; ++i)
24006 {
24007 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24008 (enum dwarf_form) defn[i], offset_size,
24009 section);
24010 if (mac_ptr == NULL)
24011 {
24012 /* skip_form_bytes already issued the complaint. */
24013 return NULL;
24014 }
24015 }
24016
24017 return mac_ptr;
24018 }
24019
24020 /* A helper function which parses the header of a macro section.
24021 If the macro section is the extended (for now called "GNU") type,
24022 then this updates *OFFSET_SIZE. Returns a pointer to just after
24023 the header, or issues a complaint and returns NULL on error. */
24024
24025 static const gdb_byte *
24026 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24027 bfd *abfd,
24028 const gdb_byte *mac_ptr,
24029 unsigned int *offset_size,
24030 int section_is_gnu)
24031 {
24032 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24033
24034 if (section_is_gnu)
24035 {
24036 unsigned int version, flags;
24037
24038 version = read_2_bytes (abfd, mac_ptr);
24039 if (version != 4 && version != 5)
24040 {
24041 complaint (&symfile_complaints,
24042 _("unrecognized version `%d' in .debug_macro section"),
24043 version);
24044 return NULL;
24045 }
24046 mac_ptr += 2;
24047
24048 flags = read_1_byte (abfd, mac_ptr);
24049 ++mac_ptr;
24050 *offset_size = (flags & 1) ? 8 : 4;
24051
24052 if ((flags & 2) != 0)
24053 /* We don't need the line table offset. */
24054 mac_ptr += *offset_size;
24055
24056 /* Vendor opcode descriptions. */
24057 if ((flags & 4) != 0)
24058 {
24059 unsigned int i, count;
24060
24061 count = read_1_byte (abfd, mac_ptr);
24062 ++mac_ptr;
24063 for (i = 0; i < count; ++i)
24064 {
24065 unsigned int opcode, bytes_read;
24066 unsigned long arg;
24067
24068 opcode = read_1_byte (abfd, mac_ptr);
24069 ++mac_ptr;
24070 opcode_definitions[opcode] = mac_ptr;
24071 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24072 mac_ptr += bytes_read;
24073 mac_ptr += arg;
24074 }
24075 }
24076 }
24077
24078 return mac_ptr;
24079 }
24080
24081 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24082 including DW_MACRO_import. */
24083
24084 static void
24085 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24086 bfd *abfd,
24087 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24088 struct macro_source_file *current_file,
24089 struct line_header *lh,
24090 struct dwarf2_section_info *section,
24091 int section_is_gnu, int section_is_dwz,
24092 unsigned int offset_size,
24093 htab_t include_hash)
24094 {
24095 struct objfile *objfile = dwarf2_per_objfile->objfile;
24096 enum dwarf_macro_record_type macinfo_type;
24097 int at_commandline;
24098 const gdb_byte *opcode_definitions[256];
24099
24100 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24101 &offset_size, section_is_gnu);
24102 if (mac_ptr == NULL)
24103 {
24104 /* We already issued a complaint. */
24105 return;
24106 }
24107
24108 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24109 GDB is still reading the definitions from command line. First
24110 DW_MACINFO_start_file will need to be ignored as it was already executed
24111 to create CURRENT_FILE for the main source holding also the command line
24112 definitions. On first met DW_MACINFO_start_file this flag is reset to
24113 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24114
24115 at_commandline = 1;
24116
24117 do
24118 {
24119 /* Do we at least have room for a macinfo type byte? */
24120 if (mac_ptr >= mac_end)
24121 {
24122 dwarf2_section_buffer_overflow_complaint (section);
24123 break;
24124 }
24125
24126 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24127 mac_ptr++;
24128
24129 /* Note that we rely on the fact that the corresponding GNU and
24130 DWARF constants are the same. */
24131 DIAGNOSTIC_PUSH
24132 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24133 switch (macinfo_type)
24134 {
24135 /* A zero macinfo type indicates the end of the macro
24136 information. */
24137 case 0:
24138 break;
24139
24140 case DW_MACRO_define:
24141 case DW_MACRO_undef:
24142 case DW_MACRO_define_strp:
24143 case DW_MACRO_undef_strp:
24144 case DW_MACRO_define_sup:
24145 case DW_MACRO_undef_sup:
24146 {
24147 unsigned int bytes_read;
24148 int line;
24149 const char *body;
24150 int is_define;
24151
24152 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24153 mac_ptr += bytes_read;
24154
24155 if (macinfo_type == DW_MACRO_define
24156 || macinfo_type == DW_MACRO_undef)
24157 {
24158 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24159 mac_ptr += bytes_read;
24160 }
24161 else
24162 {
24163 LONGEST str_offset;
24164
24165 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24166 mac_ptr += offset_size;
24167
24168 if (macinfo_type == DW_MACRO_define_sup
24169 || macinfo_type == DW_MACRO_undef_sup
24170 || section_is_dwz)
24171 {
24172 struct dwz_file *dwz
24173 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24174
24175 body = read_indirect_string_from_dwz (objfile,
24176 dwz, str_offset);
24177 }
24178 else
24179 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24180 abfd, str_offset);
24181 }
24182
24183 is_define = (macinfo_type == DW_MACRO_define
24184 || macinfo_type == DW_MACRO_define_strp
24185 || macinfo_type == DW_MACRO_define_sup);
24186 if (! current_file)
24187 {
24188 /* DWARF violation as no main source is present. */
24189 complaint (&symfile_complaints,
24190 _("debug info with no main source gives macro %s "
24191 "on line %d: %s"),
24192 is_define ? _("definition") : _("undefinition"),
24193 line, body);
24194 break;
24195 }
24196 if ((line == 0 && !at_commandline)
24197 || (line != 0 && at_commandline))
24198 complaint (&symfile_complaints,
24199 _("debug info gives %s macro %s with %s line %d: %s"),
24200 at_commandline ? _("command-line") : _("in-file"),
24201 is_define ? _("definition") : _("undefinition"),
24202 line == 0 ? _("zero") : _("non-zero"), line, body);
24203
24204 if (is_define)
24205 parse_macro_definition (current_file, line, body);
24206 else
24207 {
24208 gdb_assert (macinfo_type == DW_MACRO_undef
24209 || macinfo_type == DW_MACRO_undef_strp
24210 || macinfo_type == DW_MACRO_undef_sup);
24211 macro_undef (current_file, line, body);
24212 }
24213 }
24214 break;
24215
24216 case DW_MACRO_start_file:
24217 {
24218 unsigned int bytes_read;
24219 int line, file;
24220
24221 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24222 mac_ptr += bytes_read;
24223 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24224 mac_ptr += bytes_read;
24225
24226 if ((line == 0 && !at_commandline)
24227 || (line != 0 && at_commandline))
24228 complaint (&symfile_complaints,
24229 _("debug info gives source %d included "
24230 "from %s at %s line %d"),
24231 file, at_commandline ? _("command-line") : _("file"),
24232 line == 0 ? _("zero") : _("non-zero"), line);
24233
24234 if (at_commandline)
24235 {
24236 /* This DW_MACRO_start_file was executed in the
24237 pass one. */
24238 at_commandline = 0;
24239 }
24240 else
24241 current_file = macro_start_file (file, line, current_file, lh);
24242 }
24243 break;
24244
24245 case DW_MACRO_end_file:
24246 if (! current_file)
24247 complaint (&symfile_complaints,
24248 _("macro debug info has an unmatched "
24249 "`close_file' directive"));
24250 else
24251 {
24252 current_file = current_file->included_by;
24253 if (! current_file)
24254 {
24255 enum dwarf_macro_record_type next_type;
24256
24257 /* GCC circa March 2002 doesn't produce the zero
24258 type byte marking the end of the compilation
24259 unit. Complain if it's not there, but exit no
24260 matter what. */
24261
24262 /* Do we at least have room for a macinfo type byte? */
24263 if (mac_ptr >= mac_end)
24264 {
24265 dwarf2_section_buffer_overflow_complaint (section);
24266 return;
24267 }
24268
24269 /* We don't increment mac_ptr here, so this is just
24270 a look-ahead. */
24271 next_type
24272 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24273 mac_ptr);
24274 if (next_type != 0)
24275 complaint (&symfile_complaints,
24276 _("no terminating 0-type entry for "
24277 "macros in `.debug_macinfo' section"));
24278
24279 return;
24280 }
24281 }
24282 break;
24283
24284 case DW_MACRO_import:
24285 case DW_MACRO_import_sup:
24286 {
24287 LONGEST offset;
24288 void **slot;
24289 bfd *include_bfd = abfd;
24290 struct dwarf2_section_info *include_section = section;
24291 const gdb_byte *include_mac_end = mac_end;
24292 int is_dwz = section_is_dwz;
24293 const gdb_byte *new_mac_ptr;
24294
24295 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24296 mac_ptr += offset_size;
24297
24298 if (macinfo_type == DW_MACRO_import_sup)
24299 {
24300 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24301
24302 dwarf2_read_section (objfile, &dwz->macro);
24303
24304 include_section = &dwz->macro;
24305 include_bfd = get_section_bfd_owner (include_section);
24306 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24307 is_dwz = 1;
24308 }
24309
24310 new_mac_ptr = include_section->buffer + offset;
24311 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24312
24313 if (*slot != NULL)
24314 {
24315 /* This has actually happened; see
24316 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24317 complaint (&symfile_complaints,
24318 _("recursive DW_MACRO_import in "
24319 ".debug_macro section"));
24320 }
24321 else
24322 {
24323 *slot = (void *) new_mac_ptr;
24324
24325 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24326 include_bfd, new_mac_ptr,
24327 include_mac_end, current_file, lh,
24328 section, section_is_gnu, is_dwz,
24329 offset_size, include_hash);
24330
24331 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24332 }
24333 }
24334 break;
24335
24336 case DW_MACINFO_vendor_ext:
24337 if (!section_is_gnu)
24338 {
24339 unsigned int bytes_read;
24340
24341 /* This reads the constant, but since we don't recognize
24342 any vendor extensions, we ignore it. */
24343 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24344 mac_ptr += bytes_read;
24345 read_direct_string (abfd, mac_ptr, &bytes_read);
24346 mac_ptr += bytes_read;
24347
24348 /* We don't recognize any vendor extensions. */
24349 break;
24350 }
24351 /* FALLTHROUGH */
24352
24353 default:
24354 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24355 mac_ptr, mac_end, abfd, offset_size,
24356 section);
24357 if (mac_ptr == NULL)
24358 return;
24359 break;
24360 }
24361 DIAGNOSTIC_POP
24362 } while (macinfo_type != 0);
24363 }
24364
24365 static void
24366 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24367 int section_is_gnu)
24368 {
24369 struct dwarf2_per_objfile *dwarf2_per_objfile
24370 = cu->per_cu->dwarf2_per_objfile;
24371 struct objfile *objfile = dwarf2_per_objfile->objfile;
24372 struct line_header *lh = cu->line_header;
24373 bfd *abfd;
24374 const gdb_byte *mac_ptr, *mac_end;
24375 struct macro_source_file *current_file = 0;
24376 enum dwarf_macro_record_type macinfo_type;
24377 unsigned int offset_size = cu->header.offset_size;
24378 const gdb_byte *opcode_definitions[256];
24379 void **slot;
24380 struct dwarf2_section_info *section;
24381 const char *section_name;
24382
24383 if (cu->dwo_unit != NULL)
24384 {
24385 if (section_is_gnu)
24386 {
24387 section = &cu->dwo_unit->dwo_file->sections.macro;
24388 section_name = ".debug_macro.dwo";
24389 }
24390 else
24391 {
24392 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24393 section_name = ".debug_macinfo.dwo";
24394 }
24395 }
24396 else
24397 {
24398 if (section_is_gnu)
24399 {
24400 section = &dwarf2_per_objfile->macro;
24401 section_name = ".debug_macro";
24402 }
24403 else
24404 {
24405 section = &dwarf2_per_objfile->macinfo;
24406 section_name = ".debug_macinfo";
24407 }
24408 }
24409
24410 dwarf2_read_section (objfile, section);
24411 if (section->buffer == NULL)
24412 {
24413 complaint (&symfile_complaints, _("missing %s section"), section_name);
24414 return;
24415 }
24416 abfd = get_section_bfd_owner (section);
24417
24418 /* First pass: Find the name of the base filename.
24419 This filename is needed in order to process all macros whose definition
24420 (or undefinition) comes from the command line. These macros are defined
24421 before the first DW_MACINFO_start_file entry, and yet still need to be
24422 associated to the base file.
24423
24424 To determine the base file name, we scan the macro definitions until we
24425 reach the first DW_MACINFO_start_file entry. We then initialize
24426 CURRENT_FILE accordingly so that any macro definition found before the
24427 first DW_MACINFO_start_file can still be associated to the base file. */
24428
24429 mac_ptr = section->buffer + offset;
24430 mac_end = section->buffer + section->size;
24431
24432 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24433 &offset_size, section_is_gnu);
24434 if (mac_ptr == NULL)
24435 {
24436 /* We already issued a complaint. */
24437 return;
24438 }
24439
24440 do
24441 {
24442 /* Do we at least have room for a macinfo type byte? */
24443 if (mac_ptr >= mac_end)
24444 {
24445 /* Complaint is printed during the second pass as GDB will probably
24446 stop the first pass earlier upon finding
24447 DW_MACINFO_start_file. */
24448 break;
24449 }
24450
24451 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24452 mac_ptr++;
24453
24454 /* Note that we rely on the fact that the corresponding GNU and
24455 DWARF constants are the same. */
24456 DIAGNOSTIC_PUSH
24457 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24458 switch (macinfo_type)
24459 {
24460 /* A zero macinfo type indicates the end of the macro
24461 information. */
24462 case 0:
24463 break;
24464
24465 case DW_MACRO_define:
24466 case DW_MACRO_undef:
24467 /* Only skip the data by MAC_PTR. */
24468 {
24469 unsigned int bytes_read;
24470
24471 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24472 mac_ptr += bytes_read;
24473 read_direct_string (abfd, mac_ptr, &bytes_read);
24474 mac_ptr += bytes_read;
24475 }
24476 break;
24477
24478 case DW_MACRO_start_file:
24479 {
24480 unsigned int bytes_read;
24481 int line, file;
24482
24483 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24484 mac_ptr += bytes_read;
24485 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24486 mac_ptr += bytes_read;
24487
24488 current_file = macro_start_file (file, line, current_file, lh);
24489 }
24490 break;
24491
24492 case DW_MACRO_end_file:
24493 /* No data to skip by MAC_PTR. */
24494 break;
24495
24496 case DW_MACRO_define_strp:
24497 case DW_MACRO_undef_strp:
24498 case DW_MACRO_define_sup:
24499 case DW_MACRO_undef_sup:
24500 {
24501 unsigned int bytes_read;
24502
24503 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24504 mac_ptr += bytes_read;
24505 mac_ptr += offset_size;
24506 }
24507 break;
24508
24509 case DW_MACRO_import:
24510 case DW_MACRO_import_sup:
24511 /* Note that, according to the spec, a transparent include
24512 chain cannot call DW_MACRO_start_file. So, we can just
24513 skip this opcode. */
24514 mac_ptr += offset_size;
24515 break;
24516
24517 case DW_MACINFO_vendor_ext:
24518 /* Only skip the data by MAC_PTR. */
24519 if (!section_is_gnu)
24520 {
24521 unsigned int bytes_read;
24522
24523 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24524 mac_ptr += bytes_read;
24525 read_direct_string (abfd, mac_ptr, &bytes_read);
24526 mac_ptr += bytes_read;
24527 }
24528 /* FALLTHROUGH */
24529
24530 default:
24531 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24532 mac_ptr, mac_end, abfd, offset_size,
24533 section);
24534 if (mac_ptr == NULL)
24535 return;
24536 break;
24537 }
24538 DIAGNOSTIC_POP
24539 } while (macinfo_type != 0 && current_file == NULL);
24540
24541 /* Second pass: Process all entries.
24542
24543 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24544 command-line macro definitions/undefinitions. This flag is unset when we
24545 reach the first DW_MACINFO_start_file entry. */
24546
24547 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24548 htab_eq_pointer,
24549 NULL, xcalloc, xfree));
24550 mac_ptr = section->buffer + offset;
24551 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24552 *slot = (void *) mac_ptr;
24553 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24554 abfd, mac_ptr, mac_end,
24555 current_file, lh, section,
24556 section_is_gnu, 0, offset_size,
24557 include_hash.get ());
24558 }
24559
24560 /* Check if the attribute's form is a DW_FORM_block*
24561 if so return true else false. */
24562
24563 static int
24564 attr_form_is_block (const struct attribute *attr)
24565 {
24566 return (attr == NULL ? 0 :
24567 attr->form == DW_FORM_block1
24568 || attr->form == DW_FORM_block2
24569 || attr->form == DW_FORM_block4
24570 || attr->form == DW_FORM_block
24571 || attr->form == DW_FORM_exprloc);
24572 }
24573
24574 /* Return non-zero if ATTR's value is a section offset --- classes
24575 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24576 You may use DW_UNSND (attr) to retrieve such offsets.
24577
24578 Section 7.5.4, "Attribute Encodings", explains that no attribute
24579 may have a value that belongs to more than one of these classes; it
24580 would be ambiguous if we did, because we use the same forms for all
24581 of them. */
24582
24583 static int
24584 attr_form_is_section_offset (const struct attribute *attr)
24585 {
24586 return (attr->form == DW_FORM_data4
24587 || attr->form == DW_FORM_data8
24588 || attr->form == DW_FORM_sec_offset);
24589 }
24590
24591 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24592 zero otherwise. When this function returns true, you can apply
24593 dwarf2_get_attr_constant_value to it.
24594
24595 However, note that for some attributes you must check
24596 attr_form_is_section_offset before using this test. DW_FORM_data4
24597 and DW_FORM_data8 are members of both the constant class, and of
24598 the classes that contain offsets into other debug sections
24599 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24600 that, if an attribute's can be either a constant or one of the
24601 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24602 taken as section offsets, not constants.
24603
24604 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24605 cannot handle that. */
24606
24607 static int
24608 attr_form_is_constant (const struct attribute *attr)
24609 {
24610 switch (attr->form)
24611 {
24612 case DW_FORM_sdata:
24613 case DW_FORM_udata:
24614 case DW_FORM_data1:
24615 case DW_FORM_data2:
24616 case DW_FORM_data4:
24617 case DW_FORM_data8:
24618 case DW_FORM_implicit_const:
24619 return 1;
24620 default:
24621 return 0;
24622 }
24623 }
24624
24625
24626 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24627 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24628
24629 static int
24630 attr_form_is_ref (const struct attribute *attr)
24631 {
24632 switch (attr->form)
24633 {
24634 case DW_FORM_ref_addr:
24635 case DW_FORM_ref1:
24636 case DW_FORM_ref2:
24637 case DW_FORM_ref4:
24638 case DW_FORM_ref8:
24639 case DW_FORM_ref_udata:
24640 case DW_FORM_GNU_ref_alt:
24641 return 1;
24642 default:
24643 return 0;
24644 }
24645 }
24646
24647 /* Return the .debug_loc section to use for CU.
24648 For DWO files use .debug_loc.dwo. */
24649
24650 static struct dwarf2_section_info *
24651 cu_debug_loc_section (struct dwarf2_cu *cu)
24652 {
24653 struct dwarf2_per_objfile *dwarf2_per_objfile
24654 = cu->per_cu->dwarf2_per_objfile;
24655
24656 if (cu->dwo_unit)
24657 {
24658 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24659
24660 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24661 }
24662 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24663 : &dwarf2_per_objfile->loc);
24664 }
24665
24666 /* A helper function that fills in a dwarf2_loclist_baton. */
24667
24668 static void
24669 fill_in_loclist_baton (struct dwarf2_cu *cu,
24670 struct dwarf2_loclist_baton *baton,
24671 const struct attribute *attr)
24672 {
24673 struct dwarf2_per_objfile *dwarf2_per_objfile
24674 = cu->per_cu->dwarf2_per_objfile;
24675 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24676
24677 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24678
24679 baton->per_cu = cu->per_cu;
24680 gdb_assert (baton->per_cu);
24681 /* We don't know how long the location list is, but make sure we
24682 don't run off the edge of the section. */
24683 baton->size = section->size - DW_UNSND (attr);
24684 baton->data = section->buffer + DW_UNSND (attr);
24685 baton->base_address = cu->base_address;
24686 baton->from_dwo = cu->dwo_unit != NULL;
24687 }
24688
24689 static void
24690 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24691 struct dwarf2_cu *cu, int is_block)
24692 {
24693 struct dwarf2_per_objfile *dwarf2_per_objfile
24694 = cu->per_cu->dwarf2_per_objfile;
24695 struct objfile *objfile = dwarf2_per_objfile->objfile;
24696 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24697
24698 if (attr_form_is_section_offset (attr)
24699 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24700 the section. If so, fall through to the complaint in the
24701 other branch. */
24702 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24703 {
24704 struct dwarf2_loclist_baton *baton;
24705
24706 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24707
24708 fill_in_loclist_baton (cu, baton, attr);
24709
24710 if (cu->base_known == 0)
24711 complaint (&symfile_complaints,
24712 _("Location list used without "
24713 "specifying the CU base address."));
24714
24715 SYMBOL_ACLASS_INDEX (sym) = (is_block
24716 ? dwarf2_loclist_block_index
24717 : dwarf2_loclist_index);
24718 SYMBOL_LOCATION_BATON (sym) = baton;
24719 }
24720 else
24721 {
24722 struct dwarf2_locexpr_baton *baton;
24723
24724 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24725 baton->per_cu = cu->per_cu;
24726 gdb_assert (baton->per_cu);
24727
24728 if (attr_form_is_block (attr))
24729 {
24730 /* Note that we're just copying the block's data pointer
24731 here, not the actual data. We're still pointing into the
24732 info_buffer for SYM's objfile; right now we never release
24733 that buffer, but when we do clean up properly this may
24734 need to change. */
24735 baton->size = DW_BLOCK (attr)->size;
24736 baton->data = DW_BLOCK (attr)->data;
24737 }
24738 else
24739 {
24740 dwarf2_invalid_attrib_class_complaint ("location description",
24741 SYMBOL_NATURAL_NAME (sym));
24742 baton->size = 0;
24743 }
24744
24745 SYMBOL_ACLASS_INDEX (sym) = (is_block
24746 ? dwarf2_locexpr_block_index
24747 : dwarf2_locexpr_index);
24748 SYMBOL_LOCATION_BATON (sym) = baton;
24749 }
24750 }
24751
24752 /* Return the OBJFILE associated with the compilation unit CU. If CU
24753 came from a separate debuginfo file, then the master objfile is
24754 returned. */
24755
24756 struct objfile *
24757 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24758 {
24759 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24760
24761 /* Return the master objfile, so that we can report and look up the
24762 correct file containing this variable. */
24763 if (objfile->separate_debug_objfile_backlink)
24764 objfile = objfile->separate_debug_objfile_backlink;
24765
24766 return objfile;
24767 }
24768
24769 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24770 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24771 CU_HEADERP first. */
24772
24773 static const struct comp_unit_head *
24774 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24775 struct dwarf2_per_cu_data *per_cu)
24776 {
24777 const gdb_byte *info_ptr;
24778
24779 if (per_cu->cu)
24780 return &per_cu->cu->header;
24781
24782 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24783
24784 memset (cu_headerp, 0, sizeof (*cu_headerp));
24785 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24786 rcuh_kind::COMPILE);
24787
24788 return cu_headerp;
24789 }
24790
24791 /* Return the address size given in the compilation unit header for CU. */
24792
24793 int
24794 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24795 {
24796 struct comp_unit_head cu_header_local;
24797 const struct comp_unit_head *cu_headerp;
24798
24799 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24800
24801 return cu_headerp->addr_size;
24802 }
24803
24804 /* Return the offset size given in the compilation unit header for CU. */
24805
24806 int
24807 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24808 {
24809 struct comp_unit_head cu_header_local;
24810 const struct comp_unit_head *cu_headerp;
24811
24812 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24813
24814 return cu_headerp->offset_size;
24815 }
24816
24817 /* See its dwarf2loc.h declaration. */
24818
24819 int
24820 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24821 {
24822 struct comp_unit_head cu_header_local;
24823 const struct comp_unit_head *cu_headerp;
24824
24825 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24826
24827 if (cu_headerp->version == 2)
24828 return cu_headerp->addr_size;
24829 else
24830 return cu_headerp->offset_size;
24831 }
24832
24833 /* Return the text offset of the CU. The returned offset comes from
24834 this CU's objfile. If this objfile came from a separate debuginfo
24835 file, then the offset may be different from the corresponding
24836 offset in the parent objfile. */
24837
24838 CORE_ADDR
24839 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24840 {
24841 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24842
24843 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
24844 }
24845
24846 /* Return DWARF version number of PER_CU. */
24847
24848 short
24849 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24850 {
24851 return per_cu->dwarf_version;
24852 }
24853
24854 /* Locate the .debug_info compilation unit from CU's objfile which contains
24855 the DIE at OFFSET. Raises an error on failure. */
24856
24857 static struct dwarf2_per_cu_data *
24858 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24859 unsigned int offset_in_dwz,
24860 struct dwarf2_per_objfile *dwarf2_per_objfile)
24861 {
24862 struct dwarf2_per_cu_data *this_cu;
24863 int low, high;
24864 const sect_offset *cu_off;
24865
24866 low = 0;
24867 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24868 while (high > low)
24869 {
24870 struct dwarf2_per_cu_data *mid_cu;
24871 int mid = low + (high - low) / 2;
24872
24873 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24874 cu_off = &mid_cu->sect_off;
24875 if (mid_cu->is_dwz > offset_in_dwz
24876 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
24877 high = mid;
24878 else
24879 low = mid + 1;
24880 }
24881 gdb_assert (low == high);
24882 this_cu = dwarf2_per_objfile->all_comp_units[low];
24883 cu_off = &this_cu->sect_off;
24884 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
24885 {
24886 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24887 error (_("Dwarf Error: could not find partial DIE containing "
24888 "offset %s [in module %s]"),
24889 sect_offset_str (sect_off),
24890 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24891
24892 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24893 <= sect_off);
24894 return dwarf2_per_objfile->all_comp_units[low-1];
24895 }
24896 else
24897 {
24898 this_cu = dwarf2_per_objfile->all_comp_units[low];
24899 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24900 && sect_off >= this_cu->sect_off + this_cu->length)
24901 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24902 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24903 return this_cu;
24904 }
24905 }
24906
24907 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24908
24909 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24910 : per_cu (per_cu_),
24911 mark (0),
24912 has_loclist (0),
24913 checked_producer (0),
24914 producer_is_gxx_lt_4_6 (0),
24915 producer_is_gcc_lt_4_3 (0),
24916 producer_is_icc_lt_14 (0),
24917 processing_has_namespace_info (0)
24918 {
24919 per_cu->cu = this;
24920 }
24921
24922 /* Destroy a dwarf2_cu. */
24923
24924 dwarf2_cu::~dwarf2_cu ()
24925 {
24926 per_cu->cu = NULL;
24927 }
24928
24929 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24930
24931 static void
24932 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24933 enum language pretend_language)
24934 {
24935 struct attribute *attr;
24936
24937 /* Set the language we're debugging. */
24938 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24939 if (attr)
24940 set_cu_language (DW_UNSND (attr), cu);
24941 else
24942 {
24943 cu->language = pretend_language;
24944 cu->language_defn = language_def (cu->language);
24945 }
24946
24947 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24948 }
24949
24950 /* Increase the age counter on each cached compilation unit, and free
24951 any that are too old. */
24952
24953 static void
24954 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24955 {
24956 struct dwarf2_per_cu_data *per_cu, **last_chain;
24957
24958 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24959 per_cu = dwarf2_per_objfile->read_in_chain;
24960 while (per_cu != NULL)
24961 {
24962 per_cu->cu->last_used ++;
24963 if (per_cu->cu->last_used <= dwarf_max_cache_age)
24964 dwarf2_mark (per_cu->cu);
24965 per_cu = per_cu->cu->read_in_chain;
24966 }
24967
24968 per_cu = dwarf2_per_objfile->read_in_chain;
24969 last_chain = &dwarf2_per_objfile->read_in_chain;
24970 while (per_cu != NULL)
24971 {
24972 struct dwarf2_per_cu_data *next_cu;
24973
24974 next_cu = per_cu->cu->read_in_chain;
24975
24976 if (!per_cu->cu->mark)
24977 {
24978 delete per_cu->cu;
24979 *last_chain = next_cu;
24980 }
24981 else
24982 last_chain = &per_cu->cu->read_in_chain;
24983
24984 per_cu = next_cu;
24985 }
24986 }
24987
24988 /* Remove a single compilation unit from the cache. */
24989
24990 static void
24991 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
24992 {
24993 struct dwarf2_per_cu_data *per_cu, **last_chain;
24994 struct dwarf2_per_objfile *dwarf2_per_objfile
24995 = target_per_cu->dwarf2_per_objfile;
24996
24997 per_cu = dwarf2_per_objfile->read_in_chain;
24998 last_chain = &dwarf2_per_objfile->read_in_chain;
24999 while (per_cu != NULL)
25000 {
25001 struct dwarf2_per_cu_data *next_cu;
25002
25003 next_cu = per_cu->cu->read_in_chain;
25004
25005 if (per_cu == target_per_cu)
25006 {
25007 delete per_cu->cu;
25008 per_cu->cu = NULL;
25009 *last_chain = next_cu;
25010 break;
25011 }
25012 else
25013 last_chain = &per_cu->cu->read_in_chain;
25014
25015 per_cu = next_cu;
25016 }
25017 }
25018
25019 /* Release all extra memory associated with OBJFILE. */
25020
25021 void
25022 dwarf2_free_objfile (struct objfile *objfile)
25023 {
25024 struct dwarf2_per_objfile *dwarf2_per_objfile
25025 = get_dwarf2_per_objfile (objfile);
25026
25027 delete dwarf2_per_objfile;
25028 }
25029
25030 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25031 We store these in a hash table separate from the DIEs, and preserve them
25032 when the DIEs are flushed out of cache.
25033
25034 The CU "per_cu" pointer is needed because offset alone is not enough to
25035 uniquely identify the type. A file may have multiple .debug_types sections,
25036 or the type may come from a DWO file. Furthermore, while it's more logical
25037 to use per_cu->section+offset, with Fission the section with the data is in
25038 the DWO file but we don't know that section at the point we need it.
25039 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25040 because we can enter the lookup routine, get_die_type_at_offset, from
25041 outside this file, and thus won't necessarily have PER_CU->cu.
25042 Fortunately, PER_CU is stable for the life of the objfile. */
25043
25044 struct dwarf2_per_cu_offset_and_type
25045 {
25046 const struct dwarf2_per_cu_data *per_cu;
25047 sect_offset sect_off;
25048 struct type *type;
25049 };
25050
25051 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25052
25053 static hashval_t
25054 per_cu_offset_and_type_hash (const void *item)
25055 {
25056 const struct dwarf2_per_cu_offset_and_type *ofs
25057 = (const struct dwarf2_per_cu_offset_and_type *) item;
25058
25059 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25060 }
25061
25062 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25063
25064 static int
25065 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25066 {
25067 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25068 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25069 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25070 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25071
25072 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25073 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25074 }
25075
25076 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25077 table if necessary. For convenience, return TYPE.
25078
25079 The DIEs reading must have careful ordering to:
25080 * Not cause infite loops trying to read in DIEs as a prerequisite for
25081 reading current DIE.
25082 * Not trying to dereference contents of still incompletely read in types
25083 while reading in other DIEs.
25084 * Enable referencing still incompletely read in types just by a pointer to
25085 the type without accessing its fields.
25086
25087 Therefore caller should follow these rules:
25088 * Try to fetch any prerequisite types we may need to build this DIE type
25089 before building the type and calling set_die_type.
25090 * After building type call set_die_type for current DIE as soon as
25091 possible before fetching more types to complete the current type.
25092 * Make the type as complete as possible before fetching more types. */
25093
25094 static struct type *
25095 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25096 {
25097 struct dwarf2_per_objfile *dwarf2_per_objfile
25098 = cu->per_cu->dwarf2_per_objfile;
25099 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25100 struct objfile *objfile = dwarf2_per_objfile->objfile;
25101 struct attribute *attr;
25102 struct dynamic_prop prop;
25103
25104 /* For Ada types, make sure that the gnat-specific data is always
25105 initialized (if not already set). There are a few types where
25106 we should not be doing so, because the type-specific area is
25107 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25108 where the type-specific area is used to store the floatformat).
25109 But this is not a problem, because the gnat-specific information
25110 is actually not needed for these types. */
25111 if (need_gnat_info (cu)
25112 && TYPE_CODE (type) != TYPE_CODE_FUNC
25113 && TYPE_CODE (type) != TYPE_CODE_FLT
25114 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25115 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25116 && TYPE_CODE (type) != TYPE_CODE_METHOD
25117 && !HAVE_GNAT_AUX_INFO (type))
25118 INIT_GNAT_SPECIFIC (type);
25119
25120 /* Read DW_AT_allocated and set in type. */
25121 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25122 if (attr_form_is_block (attr))
25123 {
25124 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25125 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25126 }
25127 else if (attr != NULL)
25128 {
25129 complaint (&symfile_complaints,
25130 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25131 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25132 sect_offset_str (die->sect_off));
25133 }
25134
25135 /* Read DW_AT_associated and set in type. */
25136 attr = dwarf2_attr (die, DW_AT_associated, cu);
25137 if (attr_form_is_block (attr))
25138 {
25139 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25140 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25141 }
25142 else if (attr != NULL)
25143 {
25144 complaint (&symfile_complaints,
25145 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25146 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25147 sect_offset_str (die->sect_off));
25148 }
25149
25150 /* Read DW_AT_data_location and set in type. */
25151 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25152 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25153 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25154
25155 if (dwarf2_per_objfile->die_type_hash == NULL)
25156 {
25157 dwarf2_per_objfile->die_type_hash =
25158 htab_create_alloc_ex (127,
25159 per_cu_offset_and_type_hash,
25160 per_cu_offset_and_type_eq,
25161 NULL,
25162 &objfile->objfile_obstack,
25163 hashtab_obstack_allocate,
25164 dummy_obstack_deallocate);
25165 }
25166
25167 ofs.per_cu = cu->per_cu;
25168 ofs.sect_off = die->sect_off;
25169 ofs.type = type;
25170 slot = (struct dwarf2_per_cu_offset_and_type **)
25171 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25172 if (*slot)
25173 complaint (&symfile_complaints,
25174 _("A problem internal to GDB: DIE %s has type already set"),
25175 sect_offset_str (die->sect_off));
25176 *slot = XOBNEW (&objfile->objfile_obstack,
25177 struct dwarf2_per_cu_offset_and_type);
25178 **slot = ofs;
25179 return type;
25180 }
25181
25182 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25183 or return NULL if the die does not have a saved type. */
25184
25185 static struct type *
25186 get_die_type_at_offset (sect_offset sect_off,
25187 struct dwarf2_per_cu_data *per_cu)
25188 {
25189 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25190 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25191
25192 if (dwarf2_per_objfile->die_type_hash == NULL)
25193 return NULL;
25194
25195 ofs.per_cu = per_cu;
25196 ofs.sect_off = sect_off;
25197 slot = ((struct dwarf2_per_cu_offset_and_type *)
25198 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25199 if (slot)
25200 return slot->type;
25201 else
25202 return NULL;
25203 }
25204
25205 /* Look up the type for DIE in CU in die_type_hash,
25206 or return NULL if DIE does not have a saved type. */
25207
25208 static struct type *
25209 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25210 {
25211 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25212 }
25213
25214 /* Add a dependence relationship from CU to REF_PER_CU. */
25215
25216 static void
25217 dwarf2_add_dependence (struct dwarf2_cu *cu,
25218 struct dwarf2_per_cu_data *ref_per_cu)
25219 {
25220 void **slot;
25221
25222 if (cu->dependencies == NULL)
25223 cu->dependencies
25224 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25225 NULL, &cu->comp_unit_obstack,
25226 hashtab_obstack_allocate,
25227 dummy_obstack_deallocate);
25228
25229 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25230 if (*slot == NULL)
25231 *slot = ref_per_cu;
25232 }
25233
25234 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25235 Set the mark field in every compilation unit in the
25236 cache that we must keep because we are keeping CU. */
25237
25238 static int
25239 dwarf2_mark_helper (void **slot, void *data)
25240 {
25241 struct dwarf2_per_cu_data *per_cu;
25242
25243 per_cu = (struct dwarf2_per_cu_data *) *slot;
25244
25245 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25246 reading of the chain. As such dependencies remain valid it is not much
25247 useful to track and undo them during QUIT cleanups. */
25248 if (per_cu->cu == NULL)
25249 return 1;
25250
25251 if (per_cu->cu->mark)
25252 return 1;
25253 per_cu->cu->mark = 1;
25254
25255 if (per_cu->cu->dependencies != NULL)
25256 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25257
25258 return 1;
25259 }
25260
25261 /* Set the mark field in CU and in every other compilation unit in the
25262 cache that we must keep because we are keeping CU. */
25263
25264 static void
25265 dwarf2_mark (struct dwarf2_cu *cu)
25266 {
25267 if (cu->mark)
25268 return;
25269 cu->mark = 1;
25270 if (cu->dependencies != NULL)
25271 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25272 }
25273
25274 static void
25275 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25276 {
25277 while (per_cu)
25278 {
25279 per_cu->cu->mark = 0;
25280 per_cu = per_cu->cu->read_in_chain;
25281 }
25282 }
25283
25284 /* Trivial hash function for partial_die_info: the hash value of a DIE
25285 is its offset in .debug_info for this objfile. */
25286
25287 static hashval_t
25288 partial_die_hash (const void *item)
25289 {
25290 const struct partial_die_info *part_die
25291 = (const struct partial_die_info *) item;
25292
25293 return to_underlying (part_die->sect_off);
25294 }
25295
25296 /* Trivial comparison function for partial_die_info structures: two DIEs
25297 are equal if they have the same offset. */
25298
25299 static int
25300 partial_die_eq (const void *item_lhs, const void *item_rhs)
25301 {
25302 const struct partial_die_info *part_die_lhs
25303 = (const struct partial_die_info *) item_lhs;
25304 const struct partial_die_info *part_die_rhs
25305 = (const struct partial_die_info *) item_rhs;
25306
25307 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25308 }
25309
25310 static struct cmd_list_element *set_dwarf_cmdlist;
25311 static struct cmd_list_element *show_dwarf_cmdlist;
25312
25313 static void
25314 set_dwarf_cmd (const char *args, int from_tty)
25315 {
25316 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25317 gdb_stdout);
25318 }
25319
25320 static void
25321 show_dwarf_cmd (const char *args, int from_tty)
25322 {
25323 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25324 }
25325
25326 int dwarf_always_disassemble;
25327
25328 static void
25329 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25330 struct cmd_list_element *c, const char *value)
25331 {
25332 fprintf_filtered (file,
25333 _("Whether to always disassemble "
25334 "DWARF expressions is %s.\n"),
25335 value);
25336 }
25337
25338 static void
25339 show_check_physname (struct ui_file *file, int from_tty,
25340 struct cmd_list_element *c, const char *value)
25341 {
25342 fprintf_filtered (file,
25343 _("Whether to check \"physname\" is %s.\n"),
25344 value);
25345 }
25346
25347 void
25348 _initialize_dwarf2_read (void)
25349 {
25350
25351 dwarf2_objfile_data_key = register_objfile_data ();
25352
25353 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25354 Set DWARF specific variables.\n\
25355 Configure DWARF variables such as the cache size"),
25356 &set_dwarf_cmdlist, "maintenance set dwarf ",
25357 0/*allow-unknown*/, &maintenance_set_cmdlist);
25358
25359 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25360 Show DWARF specific variables\n\
25361 Show DWARF variables such as the cache size"),
25362 &show_dwarf_cmdlist, "maintenance show dwarf ",
25363 0/*allow-unknown*/, &maintenance_show_cmdlist);
25364
25365 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25366 &dwarf_max_cache_age, _("\
25367 Set the upper bound on the age of cached DWARF compilation units."), _("\
25368 Show the upper bound on the age of cached DWARF compilation units."), _("\
25369 A higher limit means that cached compilation units will be stored\n\
25370 in memory longer, and more total memory will be used. Zero disables\n\
25371 caching, which can slow down startup."),
25372 NULL,
25373 show_dwarf_max_cache_age,
25374 &set_dwarf_cmdlist,
25375 &show_dwarf_cmdlist);
25376
25377 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25378 &dwarf_always_disassemble, _("\
25379 Set whether `info address' always disassembles DWARF expressions."), _("\
25380 Show whether `info address' always disassembles DWARF expressions."), _("\
25381 When enabled, DWARF expressions are always printed in an assembly-like\n\
25382 syntax. When disabled, expressions will be printed in a more\n\
25383 conversational style, when possible."),
25384 NULL,
25385 show_dwarf_always_disassemble,
25386 &set_dwarf_cmdlist,
25387 &show_dwarf_cmdlist);
25388
25389 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25390 Set debugging of the DWARF reader."), _("\
25391 Show debugging of the DWARF reader."), _("\
25392 When enabled (non-zero), debugging messages are printed during DWARF\n\
25393 reading and symtab expansion. A value of 1 (one) provides basic\n\
25394 information. A value greater than 1 provides more verbose information."),
25395 NULL,
25396 NULL,
25397 &setdebuglist, &showdebuglist);
25398
25399 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25400 Set debugging of the DWARF DIE reader."), _("\
25401 Show debugging of the DWARF DIE reader."), _("\
25402 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25403 The value is the maximum depth to print."),
25404 NULL,
25405 NULL,
25406 &setdebuglist, &showdebuglist);
25407
25408 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25409 Set debugging of the dwarf line reader."), _("\
25410 Show debugging of the dwarf line reader."), _("\
25411 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25412 A value of 1 (one) provides basic information.\n\
25413 A value greater than 1 provides more verbose information."),
25414 NULL,
25415 NULL,
25416 &setdebuglist, &showdebuglist);
25417
25418 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25419 Set cross-checking of \"physname\" code against demangler."), _("\
25420 Show cross-checking of \"physname\" code against demangler."), _("\
25421 When enabled, GDB's internal \"physname\" code is checked against\n\
25422 the demangler."),
25423 NULL, show_check_physname,
25424 &setdebuglist, &showdebuglist);
25425
25426 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25427 no_class, &use_deprecated_index_sections, _("\
25428 Set whether to use deprecated gdb_index sections."), _("\
25429 Show whether to use deprecated gdb_index sections."), _("\
25430 When enabled, deprecated .gdb_index sections are used anyway.\n\
25431 Normally they are ignored either because of a missing feature or\n\
25432 performance issue.\n\
25433 Warning: This option must be enabled before gdb reads the file."),
25434 NULL,
25435 NULL,
25436 &setlist, &showlist);
25437
25438 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25439 &dwarf2_locexpr_funcs);
25440 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25441 &dwarf2_loclist_funcs);
25442
25443 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25444 &dwarf2_block_frame_base_locexpr_funcs);
25445 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25446 &dwarf2_block_frame_base_loclist_funcs);
25447
25448 #if GDB_SELF_TEST
25449 selftests::register_test ("dw2_expand_symtabs_matching",
25450 selftests::dw2_expand_symtabs_matching::run_test);
25451 #endif
25452 }
This page took 0.868052 seconds and 4 git commands to generate.