Use obstack_strdup more
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If set, only look for symbols that match that block. Valid values are
3885 GLOBAL_BLOCK and STATIC_BLOCK. */
3886 gdb::optional<int> block_index;
3887 /* The kind of symbol we're looking for. */
3888 domain_enum domain;
3889 /* The list of CUs from the index entry of the symbol,
3890 or NULL if not found. */
3891 offset_type *vec;
3892 /* The next element in VEC to look at. */
3893 int next;
3894 /* The number of elements in VEC, or zero if there is no match. */
3895 int length;
3896 /* Have we seen a global version of the symbol?
3897 If so we can ignore all further global instances.
3898 This is to work around gold/15646, inefficient gold-generated
3899 indices. */
3900 int global_seen;
3901 };
3902
3903 /* Initialize the index symtab iterator ITER. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 gdb::optional<int> block_index,
3909 domain_enum domain,
3910 const char *name)
3911 {
3912 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3913 iter->block_index = block_index;
3914 iter->domain = domain;
3915 iter->next = 0;
3916 iter->global_seen = 0;
3917
3918 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3922 iter->length = MAYBE_SWAP (*iter->vec);
3923 else
3924 {
3925 iter->vec = NULL;
3926 iter->length = 0;
3927 }
3928 }
3929
3930 /* Return the next matching CU or NULL if there are no more. */
3931
3932 static struct dwarf2_per_cu_data *
3933 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3934 {
3935 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3936
3937 for ( ; iter->next < iter->length; ++iter->next)
3938 {
3939 offset_type cu_index_and_attrs =
3940 MAYBE_SWAP (iter->vec[iter->next + 1]);
3941 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3972
3973 if (iter->block_index.has_value ())
3974 {
3975 bool want_static = *iter->block_index == STATIC_BLOCK;
3976
3977 if (is_static != want_static)
3978 continue;
3979 }
3980
3981 /* Work around gold/15646. */
3982 if (!is_static && iter->global_seen)
3983 continue;
3984 if (!is_static)
3985 iter->global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (iter->domain)
3992 {
3993 case VAR_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3996 /* Some types are also in VAR_DOMAIN. */
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 case STRUCT_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4002 continue;
4003 break;
4004 case LABEL_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4006 continue;
4007 break;
4008 default:
4009 break;
4010 }
4011 }
4012
4013 ++iter->next;
4014 return per_cu;
4015 }
4016
4017 return NULL;
4018 }
4019
4020 static struct compunit_symtab *
4021 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4022 const char *name, domain_enum domain)
4023 {
4024 struct compunit_symtab *stab_best = NULL;
4025 struct dwarf2_per_objfile *dwarf2_per_objfile
4026 = get_dwarf2_per_objfile (objfile);
4027
4028 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4029
4030 struct dw2_symtab_iterator iter;
4031 struct dwarf2_per_cu_data *per_cu;
4032
4033 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4034
4035 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4036 {
4037 struct symbol *sym, *with_opaque = NULL;
4038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4041
4042 sym = block_find_symbol (block, name, domain,
4043 block_find_non_opaque_type_preferred,
4044 &with_opaque);
4045
4046 /* Some caution must be observed with overloaded functions
4047 and methods, since the index will not contain any overload
4048 information (but NAME might contain it). */
4049
4050 if (sym != NULL
4051 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4052 return stab;
4053 if (with_opaque != NULL
4054 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 stab_best = stab;
4056
4057 /* Keep looking through other CUs. */
4058 }
4059
4060 return stab_best;
4061 }
4062
4063 static void
4064 dw2_print_stats (struct objfile *objfile)
4065 {
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068 int total = (dwarf2_per_objfile->all_comp_units.size ()
4069 + dwarf2_per_objfile->all_type_units.size ());
4070 int count = 0;
4071
4072 for (int i = 0; i < total; ++i)
4073 {
4074 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4075
4076 if (!per_cu->v.quick->compunit_symtab)
4077 ++count;
4078 }
4079 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4080 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 }
4082
4083 /* This dumps minimal information about the index.
4084 It is called via "mt print objfiles".
4085 One use is to verify .gdb_index has been loaded by the
4086 gdb.dwarf2/gdb-index.exp testcase. */
4087
4088 static void
4089 dw2_dump (struct objfile *objfile)
4090 {
4091 struct dwarf2_per_objfile *dwarf2_per_objfile
4092 = get_dwarf2_per_objfile (objfile);
4093
4094 gdb_assert (dwarf2_per_objfile->using_index);
4095 printf_filtered (".gdb_index:");
4096 if (dwarf2_per_objfile->index_table != NULL)
4097 {
4098 printf_filtered (" version %d\n",
4099 dwarf2_per_objfile->index_table->version);
4100 }
4101 else
4102 printf_filtered (" faked for \"readnow\"\n");
4103 printf_filtered ("\n");
4104 }
4105
4106 static void
4107 dw2_expand_symtabs_for_function (struct objfile *objfile,
4108 const char *func_name)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112
4113 struct dw2_symtab_iterator iter;
4114 struct dwarf2_per_cu_data *per_cu;
4115
4116 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 dw2_debug_names_iterator (const mapped_debug_names &map,
5661 gdb::optional<block_enum> block_index,
5662 domain_enum domain,
5663 const char *name)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, name))
5666 {}
5667
5668 dw2_debug_names_iterator (const mapped_debug_names &map,
5669 search_domain search, uint32_t namei)
5670 : m_map (map),
5671 m_search (search),
5672 m_addr (find_vec_in_debug_names (map, namei))
5673 {}
5674
5675 /* Return the next matching CU or NULL if there are no more. */
5676 dwarf2_per_cu_data *next ();
5677
5678 private:
5679 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5680 const char *name);
5681 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5682 uint32_t namei);
5683
5684 /* The internalized form of .debug_names. */
5685 const mapped_debug_names &m_map;
5686
5687 /* If set, only look for symbols that match that block. Valid values are
5688 GLOBAL_BLOCK and STATIC_BLOCK. */
5689 const gdb::optional<block_enum> m_block_index;
5690
5691 /* The kind of symbol we're looking for. */
5692 const domain_enum m_domain = UNDEF_DOMAIN;
5693 const search_domain m_search = ALL_DOMAIN;
5694
5695 /* The list of CUs from the index entry of the symbol, or NULL if
5696 not found. */
5697 const gdb_byte *m_addr;
5698 };
5699
5700 const char *
5701 mapped_debug_names::namei_to_name (uint32_t namei) const
5702 {
5703 const ULONGEST namei_string_offs
5704 = extract_unsigned_integer ((name_table_string_offs_reordered
5705 + namei * offset_size),
5706 offset_size,
5707 dwarf5_byte_order);
5708 return read_indirect_string_at_offset
5709 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5710 }
5711
5712 /* Find a slot in .debug_names for the object named NAME. If NAME is
5713 found, return pointer to its pool data. If NAME cannot be found,
5714 return NULL. */
5715
5716 const gdb_byte *
5717 dw2_debug_names_iterator::find_vec_in_debug_names
5718 (const mapped_debug_names &map, const char *name)
5719 {
5720 int (*cmp) (const char *, const char *);
5721
5722 gdb::unique_xmalloc_ptr<char> without_params;
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 without_params = cp_remove_params (name);
5733 if (without_params != NULL)
5734 name = without_params.get ();
5735 }
5736 }
5737
5738 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5739
5740 const uint32_t full_hash = dwarf5_djb_hash (name);
5741 uint32_t namei
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.bucket_table_reordered
5744 + (full_hash % map.bucket_count)), 4,
5745 map.dwarf5_byte_order);
5746 if (namei == 0)
5747 return NULL;
5748 --namei;
5749 if (namei >= map.name_count)
5750 {
5751 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5752 "[in module %s]"),
5753 namei, map.name_count,
5754 objfile_name (map.dwarf2_per_objfile->objfile));
5755 return NULL;
5756 }
5757
5758 for (;;)
5759 {
5760 const uint32_t namei_full_hash
5761 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5762 (map.hash_table_reordered + namei), 4,
5763 map.dwarf5_byte_order);
5764 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5765 return NULL;
5766
5767 if (full_hash == namei_full_hash)
5768 {
5769 const char *const namei_string = map.namei_to_name (namei);
5770
5771 #if 0 /* An expensive sanity check. */
5772 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5773 {
5774 complaint (_("Wrong .debug_names hash for string at index %u "
5775 "[in module %s]"),
5776 namei, objfile_name (dwarf2_per_objfile->objfile));
5777 return NULL;
5778 }
5779 #endif
5780
5781 if (cmp (namei_string, name) == 0)
5782 {
5783 const ULONGEST namei_entry_offs
5784 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5785 + namei * map.offset_size),
5786 map.offset_size, map.dwarf5_byte_order);
5787 return map.entry_pool + namei_entry_offs;
5788 }
5789 }
5790
5791 ++namei;
5792 if (namei >= map.name_count)
5793 return NULL;
5794 }
5795 }
5796
5797 const gdb_byte *
5798 dw2_debug_names_iterator::find_vec_in_debug_names
5799 (const mapped_debug_names &map, uint32_t namei)
5800 {
5801 if (namei >= map.name_count)
5802 {
5803 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5804 "[in module %s]"),
5805 namei, map.name_count,
5806 objfile_name (map.dwarf2_per_objfile->objfile));
5807 return NULL;
5808 }
5809
5810 const ULONGEST namei_entry_offs
5811 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5812 + namei * map.offset_size),
5813 map.offset_size, map.dwarf5_byte_order);
5814 return map.entry_pool + namei_entry_offs;
5815 }
5816
5817 /* See dw2_debug_names_iterator. */
5818
5819 dwarf2_per_cu_data *
5820 dw2_debug_names_iterator::next ()
5821 {
5822 if (m_addr == NULL)
5823 return NULL;
5824
5825 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5826 struct objfile *objfile = dwarf2_per_objfile->objfile;
5827 bfd *const abfd = objfile->obfd;
5828
5829 again:
5830
5831 unsigned int bytes_read;
5832 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5833 m_addr += bytes_read;
5834 if (abbrev == 0)
5835 return NULL;
5836
5837 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5838 if (indexval_it == m_map.abbrev_map.cend ())
5839 {
5840 complaint (_("Wrong .debug_names undefined abbrev code %s "
5841 "[in module %s]"),
5842 pulongest (abbrev), objfile_name (objfile));
5843 return NULL;
5844 }
5845 const mapped_debug_names::index_val &indexval = indexval_it->second;
5846 gdb::optional<bool> is_static;
5847 dwarf2_per_cu_data *per_cu = NULL;
5848 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5849 {
5850 ULONGEST ull;
5851 switch (attr.form)
5852 {
5853 case DW_FORM_implicit_const:
5854 ull = attr.implicit_const;
5855 break;
5856 case DW_FORM_flag_present:
5857 ull = 1;
5858 break;
5859 case DW_FORM_udata:
5860 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5861 m_addr += bytes_read;
5862 break;
5863 default:
5864 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5865 dwarf_form_name (attr.form),
5866 objfile_name (objfile));
5867 return NULL;
5868 }
5869 switch (attr.dw_idx)
5870 {
5871 case DW_IDX_compile_unit:
5872 /* Don't crash on bad data. */
5873 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5874 {
5875 complaint (_(".debug_names entry has bad CU index %s"
5876 " [in module %s]"),
5877 pulongest (ull),
5878 objfile_name (dwarf2_per_objfile->objfile));
5879 continue;
5880 }
5881 per_cu = dwarf2_per_objfile->get_cutu (ull);
5882 break;
5883 case DW_IDX_type_unit:
5884 /* Don't crash on bad data. */
5885 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5886 {
5887 complaint (_(".debug_names entry has bad TU index %s"
5888 " [in module %s]"),
5889 pulongest (ull),
5890 objfile_name (dwarf2_per_objfile->objfile));
5891 continue;
5892 }
5893 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5894 break;
5895 case DW_IDX_GNU_internal:
5896 if (!m_map.augmentation_is_gdb)
5897 break;
5898 is_static = true;
5899 break;
5900 case DW_IDX_GNU_external:
5901 if (!m_map.augmentation_is_gdb)
5902 break;
5903 is_static = false;
5904 break;
5905 }
5906 }
5907
5908 /* Skip if already read in. */
5909 if (per_cu->v.quick->compunit_symtab)
5910 goto again;
5911
5912 /* Check static vs global. */
5913 if (is_static.has_value () && m_block_index.has_value ())
5914 {
5915 const bool want_static = *m_block_index == STATIC_BLOCK;
5916 if (want_static != *is_static)
5917 goto again;
5918 }
5919
5920 /* Match dw2_symtab_iter_next, symbol_kind
5921 and debug_names::psymbol_tag. */
5922 switch (m_domain)
5923 {
5924 case VAR_DOMAIN:
5925 switch (indexval.dwarf_tag)
5926 {
5927 case DW_TAG_variable:
5928 case DW_TAG_subprogram:
5929 /* Some types are also in VAR_DOMAIN. */
5930 case DW_TAG_typedef:
5931 case DW_TAG_structure_type:
5932 break;
5933 default:
5934 goto again;
5935 }
5936 break;
5937 case STRUCT_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_typedef:
5941 case DW_TAG_structure_type:
5942 break;
5943 default:
5944 goto again;
5945 }
5946 break;
5947 case LABEL_DOMAIN:
5948 switch (indexval.dwarf_tag)
5949 {
5950 case 0:
5951 case DW_TAG_variable:
5952 break;
5953 default:
5954 goto again;
5955 }
5956 break;
5957 default:
5958 break;
5959 }
5960
5961 /* Match dw2_expand_symtabs_matching, symbol_kind and
5962 debug_names::psymbol_tag. */
5963 switch (m_search)
5964 {
5965 case VARIABLES_DOMAIN:
5966 switch (indexval.dwarf_tag)
5967 {
5968 case DW_TAG_variable:
5969 break;
5970 default:
5971 goto again;
5972 }
5973 break;
5974 case FUNCTIONS_DOMAIN:
5975 switch (indexval.dwarf_tag)
5976 {
5977 case DW_TAG_subprogram:
5978 break;
5979 default:
5980 goto again;
5981 }
5982 break;
5983 case TYPES_DOMAIN:
5984 switch (indexval.dwarf_tag)
5985 {
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 default:
5994 break;
5995 }
5996
5997 return per_cu;
5998 }
5999
6000 static struct compunit_symtab *
6001 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6002 const char *name, domain_enum domain)
6003 {
6004 const block_enum block_index = static_cast<block_enum> (block_index_int);
6005 struct dwarf2_per_objfile *dwarf2_per_objfile
6006 = get_dwarf2_per_objfile (objfile);
6007
6008 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6009 if (!mapp)
6010 {
6011 /* index is NULL if OBJF_READNOW. */
6012 return NULL;
6013 }
6014 const auto &map = *mapp;
6015
6016 dw2_debug_names_iterator iter (map, block_index, domain, name);
6017
6018 struct compunit_symtab *stab_best = NULL;
6019 struct dwarf2_per_cu_data *per_cu;
6020 while ((per_cu = iter.next ()) != NULL)
6021 {
6022 struct symbol *sym, *with_opaque = NULL;
6023 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6024 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6025 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6026
6027 sym = block_find_symbol (block, name, domain,
6028 block_find_non_opaque_type_preferred,
6029 &with_opaque);
6030
6031 /* Some caution must be observed with overloaded functions and
6032 methods, since the index will not contain any overload
6033 information (but NAME might contain it). */
6034
6035 if (sym != NULL
6036 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6037 return stab;
6038 if (with_opaque != NULL
6039 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6040 stab_best = stab;
6041
6042 /* Keep looking through other CUs. */
6043 }
6044
6045 return stab_best;
6046 }
6047
6048 /* This dumps minimal information about .debug_names. It is called
6049 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6050 uses this to verify that .debug_names has been loaded. */
6051
6052 static void
6053 dw2_debug_names_dump (struct objfile *objfile)
6054 {
6055 struct dwarf2_per_objfile *dwarf2_per_objfile
6056 = get_dwarf2_per_objfile (objfile);
6057
6058 gdb_assert (dwarf2_per_objfile->using_index);
6059 printf_filtered (".debug_names:");
6060 if (dwarf2_per_objfile->debug_names_table)
6061 printf_filtered (" exists\n");
6062 else
6063 printf_filtered (" faked for \"readnow\"\n");
6064 printf_filtered ("\n");
6065 }
6066
6067 static void
6068 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6069 const char *func_name)
6070 {
6071 struct dwarf2_per_objfile *dwarf2_per_objfile
6072 = get_dwarf2_per_objfile (objfile);
6073
6074 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6075 if (dwarf2_per_objfile->debug_names_table)
6076 {
6077 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6078
6079 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6080
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6083 dw2_instantiate_symtab (per_cu, false);
6084 }
6085 }
6086
6087 static void
6088 dw2_debug_names_expand_symtabs_matching
6089 (struct objfile *objfile,
6090 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6091 const lookup_name_info &lookup_name,
6092 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6093 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6094 enum search_domain kind)
6095 {
6096 struct dwarf2_per_objfile *dwarf2_per_objfile
6097 = get_dwarf2_per_objfile (objfile);
6098
6099 /* debug_names_table is NULL if OBJF_READNOW. */
6100 if (!dwarf2_per_objfile->debug_names_table)
6101 return;
6102
6103 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6104
6105 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6106
6107 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6108 symbol_matcher,
6109 kind, [&] (offset_type namei)
6110 {
6111 /* The name was matched, now expand corresponding CUs that were
6112 marked. */
6113 dw2_debug_names_iterator iter (map, kind, namei);
6114
6115 struct dwarf2_per_cu_data *per_cu;
6116 while ((per_cu = iter.next ()) != NULL)
6117 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6118 expansion_notify);
6119 });
6120 }
6121
6122 const struct quick_symbol_functions dwarf2_debug_names_functions =
6123 {
6124 dw2_has_symbols,
6125 dw2_find_last_source_symtab,
6126 dw2_forget_cached_source_info,
6127 dw2_map_symtabs_matching_filename,
6128 dw2_debug_names_lookup_symbol,
6129 dw2_print_stats,
6130 dw2_debug_names_dump,
6131 dw2_debug_names_expand_symtabs_for_function,
6132 dw2_expand_all_symtabs,
6133 dw2_expand_symtabs_with_fullname,
6134 dw2_map_matching_symbols,
6135 dw2_debug_names_expand_symtabs_matching,
6136 dw2_find_pc_sect_compunit_symtab,
6137 NULL,
6138 dw2_map_symbol_filenames
6139 };
6140
6141 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6142 to either a dwarf2_per_objfile or dwz_file object. */
6143
6144 template <typename T>
6145 static gdb::array_view<const gdb_byte>
6146 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6147 {
6148 dwarf2_section_info *section = &section_owner->gdb_index;
6149
6150 if (dwarf2_section_empty_p (section))
6151 return {};
6152
6153 /* Older elfutils strip versions could keep the section in the main
6154 executable while splitting it for the separate debug info file. */
6155 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6156 return {};
6157
6158 dwarf2_read_section (obj, section);
6159
6160 /* dwarf2_section_info::size is a bfd_size_type, while
6161 gdb::array_view works with size_t. On 32-bit hosts, with
6162 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6163 is 32-bit. So we need an explicit narrowing conversion here.
6164 This is fine, because it's impossible to allocate or mmap an
6165 array/buffer larger than what size_t can represent. */
6166 return gdb::make_array_view (section->buffer, section->size);
6167 }
6168
6169 /* Lookup the index cache for the contents of the index associated to
6170 DWARF2_OBJ. */
6171
6172 static gdb::array_view<const gdb_byte>
6173 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6174 {
6175 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6176 if (build_id == nullptr)
6177 return {};
6178
6179 return global_index_cache.lookup_gdb_index (build_id,
6180 &dwarf2_obj->index_cache_res);
6181 }
6182
6183 /* Same as the above, but for DWZ. */
6184
6185 static gdb::array_view<const gdb_byte>
6186 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6187 {
6188 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6189 if (build_id == nullptr)
6190 return {};
6191
6192 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6193 }
6194
6195 /* See symfile.h. */
6196
6197 bool
6198 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6199 {
6200 struct dwarf2_per_objfile *dwarf2_per_objfile
6201 = get_dwarf2_per_objfile (objfile);
6202
6203 /* If we're about to read full symbols, don't bother with the
6204 indices. In this case we also don't care if some other debug
6205 format is making psymtabs, because they are all about to be
6206 expanded anyway. */
6207 if ((objfile->flags & OBJF_READNOW))
6208 {
6209 dwarf2_per_objfile->using_index = 1;
6210 create_all_comp_units (dwarf2_per_objfile);
6211 create_all_type_units (dwarf2_per_objfile);
6212 dwarf2_per_objfile->quick_file_names_table
6213 = create_quick_file_names_table
6214 (dwarf2_per_objfile->all_comp_units.size ());
6215
6216 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6217 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6218 {
6219 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6220
6221 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6222 struct dwarf2_per_cu_quick_data);
6223 }
6224
6225 /* Return 1 so that gdb sees the "quick" functions. However,
6226 these functions will be no-ops because we will have expanded
6227 all symtabs. */
6228 *index_kind = dw_index_kind::GDB_INDEX;
6229 return true;
6230 }
6231
6232 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6233 {
6234 *index_kind = dw_index_kind::DEBUG_NAMES;
6235 return true;
6236 }
6237
6238 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6239 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6240 get_gdb_index_contents_from_section<dwz_file>))
6241 {
6242 *index_kind = dw_index_kind::GDB_INDEX;
6243 return true;
6244 }
6245
6246 /* ... otherwise, try to find the index in the index cache. */
6247 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6248 get_gdb_index_contents_from_cache,
6249 get_gdb_index_contents_from_cache_dwz))
6250 {
6251 global_index_cache.hit ();
6252 *index_kind = dw_index_kind::GDB_INDEX;
6253 return true;
6254 }
6255
6256 global_index_cache.miss ();
6257 return false;
6258 }
6259
6260 \f
6261
6262 /* Build a partial symbol table. */
6263
6264 void
6265 dwarf2_build_psymtabs (struct objfile *objfile)
6266 {
6267 struct dwarf2_per_objfile *dwarf2_per_objfile
6268 = get_dwarf2_per_objfile (objfile);
6269
6270 init_psymbol_list (objfile, 1024);
6271
6272 try
6273 {
6274 /* This isn't really ideal: all the data we allocate on the
6275 objfile's obstack is still uselessly kept around. However,
6276 freeing it seems unsafe. */
6277 psymtab_discarder psymtabs (objfile);
6278 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6279 psymtabs.keep ();
6280
6281 /* (maybe) store an index in the cache. */
6282 global_index_cache.store (dwarf2_per_objfile);
6283 }
6284 catch (const gdb_exception_error &except)
6285 {
6286 exception_print (gdb_stderr, except);
6287 }
6288 }
6289
6290 /* Return the total length of the CU described by HEADER. */
6291
6292 static unsigned int
6293 get_cu_length (const struct comp_unit_head *header)
6294 {
6295 return header->initial_length_size + header->length;
6296 }
6297
6298 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6299
6300 static inline bool
6301 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6302 {
6303 sect_offset bottom = cu_header->sect_off;
6304 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6305
6306 return sect_off >= bottom && sect_off < top;
6307 }
6308
6309 /* Find the base address of the compilation unit for range lists and
6310 location lists. It will normally be specified by DW_AT_low_pc.
6311 In DWARF-3 draft 4, the base address could be overridden by
6312 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6313 compilation units with discontinuous ranges. */
6314
6315 static void
6316 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6317 {
6318 struct attribute *attr;
6319
6320 cu->base_known = 0;
6321 cu->base_address = 0;
6322
6323 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6324 if (attr)
6325 {
6326 cu->base_address = attr_value_as_address (attr);
6327 cu->base_known = 1;
6328 }
6329 else
6330 {
6331 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6332 if (attr)
6333 {
6334 cu->base_address = attr_value_as_address (attr);
6335 cu->base_known = 1;
6336 }
6337 }
6338 }
6339
6340 /* Read in the comp unit header information from the debug_info at info_ptr.
6341 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6342 NOTE: This leaves members offset, first_die_offset to be filled in
6343 by the caller. */
6344
6345 static const gdb_byte *
6346 read_comp_unit_head (struct comp_unit_head *cu_header,
6347 const gdb_byte *info_ptr,
6348 struct dwarf2_section_info *section,
6349 rcuh_kind section_kind)
6350 {
6351 int signed_addr;
6352 unsigned int bytes_read;
6353 const char *filename = get_section_file_name (section);
6354 bfd *abfd = get_section_bfd_owner (section);
6355
6356 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6357 cu_header->initial_length_size = bytes_read;
6358 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6359 info_ptr += bytes_read;
6360 cu_header->version = read_2_bytes (abfd, info_ptr);
6361 if (cu_header->version < 2 || cu_header->version > 5)
6362 error (_("Dwarf Error: wrong version in compilation unit header "
6363 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6364 cu_header->version, filename);
6365 info_ptr += 2;
6366 if (cu_header->version < 5)
6367 switch (section_kind)
6368 {
6369 case rcuh_kind::COMPILE:
6370 cu_header->unit_type = DW_UT_compile;
6371 break;
6372 case rcuh_kind::TYPE:
6373 cu_header->unit_type = DW_UT_type;
6374 break;
6375 default:
6376 internal_error (__FILE__, __LINE__,
6377 _("read_comp_unit_head: invalid section_kind"));
6378 }
6379 else
6380 {
6381 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6382 (read_1_byte (abfd, info_ptr));
6383 info_ptr += 1;
6384 switch (cu_header->unit_type)
6385 {
6386 case DW_UT_compile:
6387 if (section_kind != rcuh_kind::COMPILE)
6388 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6389 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6390 filename);
6391 break;
6392 case DW_UT_type:
6393 section_kind = rcuh_kind::TYPE;
6394 break;
6395 default:
6396 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6397 "(is %d, should be %d or %d) [in module %s]"),
6398 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6399 }
6400
6401 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6402 info_ptr += 1;
6403 }
6404 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6405 cu_header,
6406 &bytes_read);
6407 info_ptr += bytes_read;
6408 if (cu_header->version < 5)
6409 {
6410 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6411 info_ptr += 1;
6412 }
6413 signed_addr = bfd_get_sign_extend_vma (abfd);
6414 if (signed_addr < 0)
6415 internal_error (__FILE__, __LINE__,
6416 _("read_comp_unit_head: dwarf from non elf file"));
6417 cu_header->signed_addr_p = signed_addr;
6418
6419 if (section_kind == rcuh_kind::TYPE)
6420 {
6421 LONGEST type_offset;
6422
6423 cu_header->signature = read_8_bytes (abfd, info_ptr);
6424 info_ptr += 8;
6425
6426 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6427 info_ptr += bytes_read;
6428 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6429 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6430 error (_("Dwarf Error: Too big type_offset in compilation unit "
6431 "header (is %s) [in module %s]"), plongest (type_offset),
6432 filename);
6433 }
6434
6435 return info_ptr;
6436 }
6437
6438 /* Helper function that returns the proper abbrev section for
6439 THIS_CU. */
6440
6441 static struct dwarf2_section_info *
6442 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6443 {
6444 struct dwarf2_section_info *abbrev;
6445 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6446
6447 if (this_cu->is_dwz)
6448 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6449 else
6450 abbrev = &dwarf2_per_objfile->abbrev;
6451
6452 return abbrev;
6453 }
6454
6455 /* Subroutine of read_and_check_comp_unit_head and
6456 read_and_check_type_unit_head to simplify them.
6457 Perform various error checking on the header. */
6458
6459 static void
6460 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6461 struct comp_unit_head *header,
6462 struct dwarf2_section_info *section,
6463 struct dwarf2_section_info *abbrev_section)
6464 {
6465 const char *filename = get_section_file_name (section);
6466
6467 if (to_underlying (header->abbrev_sect_off)
6468 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6469 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6470 "(offset %s + 6) [in module %s]"),
6471 sect_offset_str (header->abbrev_sect_off),
6472 sect_offset_str (header->sect_off),
6473 filename);
6474
6475 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6476 avoid potential 32-bit overflow. */
6477 if (((ULONGEST) header->sect_off + get_cu_length (header))
6478 > section->size)
6479 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6480 "(offset %s + 0) [in module %s]"),
6481 header->length, sect_offset_str (header->sect_off),
6482 filename);
6483 }
6484
6485 /* Read in a CU/TU header and perform some basic error checking.
6486 The contents of the header are stored in HEADER.
6487 The result is a pointer to the start of the first DIE. */
6488
6489 static const gdb_byte *
6490 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6491 struct comp_unit_head *header,
6492 struct dwarf2_section_info *section,
6493 struct dwarf2_section_info *abbrev_section,
6494 const gdb_byte *info_ptr,
6495 rcuh_kind section_kind)
6496 {
6497 const gdb_byte *beg_of_comp_unit = info_ptr;
6498
6499 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6500
6501 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6502
6503 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6504
6505 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6506 abbrev_section);
6507
6508 return info_ptr;
6509 }
6510
6511 /* Fetch the abbreviation table offset from a comp or type unit header. */
6512
6513 static sect_offset
6514 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6515 struct dwarf2_section_info *section,
6516 sect_offset sect_off)
6517 {
6518 bfd *abfd = get_section_bfd_owner (section);
6519 const gdb_byte *info_ptr;
6520 unsigned int initial_length_size, offset_size;
6521 uint16_t version;
6522
6523 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6524 info_ptr = section->buffer + to_underlying (sect_off);
6525 read_initial_length (abfd, info_ptr, &initial_length_size);
6526 offset_size = initial_length_size == 4 ? 4 : 8;
6527 info_ptr += initial_length_size;
6528
6529 version = read_2_bytes (abfd, info_ptr);
6530 info_ptr += 2;
6531 if (version >= 5)
6532 {
6533 /* Skip unit type and address size. */
6534 info_ptr += 2;
6535 }
6536
6537 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6538 }
6539
6540 /* Allocate a new partial symtab for file named NAME and mark this new
6541 partial symtab as being an include of PST. */
6542
6543 static void
6544 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6545 struct objfile *objfile)
6546 {
6547 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6548
6549 if (!IS_ABSOLUTE_PATH (subpst->filename))
6550 {
6551 /* It shares objfile->objfile_obstack. */
6552 subpst->dirname = pst->dirname;
6553 }
6554
6555 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6556 subpst->dependencies[0] = pst;
6557 subpst->number_of_dependencies = 1;
6558
6559 subpst->read_symtab = pst->read_symtab;
6560
6561 /* No private part is necessary for include psymtabs. This property
6562 can be used to differentiate between such include psymtabs and
6563 the regular ones. */
6564 subpst->read_symtab_private = NULL;
6565 }
6566
6567 /* Read the Line Number Program data and extract the list of files
6568 included by the source file represented by PST. Build an include
6569 partial symtab for each of these included files. */
6570
6571 static void
6572 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6573 struct die_info *die,
6574 struct partial_symtab *pst)
6575 {
6576 line_header_up lh;
6577 struct attribute *attr;
6578
6579 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6580 if (attr)
6581 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6582 if (lh == NULL)
6583 return; /* No linetable, so no includes. */
6584
6585 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6586 that we pass in the raw text_low here; that is ok because we're
6587 only decoding the line table to make include partial symtabs, and
6588 so the addresses aren't really used. */
6589 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6590 pst->raw_text_low (), 1);
6591 }
6592
6593 static hashval_t
6594 hash_signatured_type (const void *item)
6595 {
6596 const struct signatured_type *sig_type
6597 = (const struct signatured_type *) item;
6598
6599 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6600 return sig_type->signature;
6601 }
6602
6603 static int
6604 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6605 {
6606 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6607 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6608
6609 return lhs->signature == rhs->signature;
6610 }
6611
6612 /* Allocate a hash table for signatured types. */
6613
6614 static htab_t
6615 allocate_signatured_type_table (struct objfile *objfile)
6616 {
6617 return htab_create_alloc_ex (41,
6618 hash_signatured_type,
6619 eq_signatured_type,
6620 NULL,
6621 &objfile->objfile_obstack,
6622 hashtab_obstack_allocate,
6623 dummy_obstack_deallocate);
6624 }
6625
6626 /* A helper function to add a signatured type CU to a table. */
6627
6628 static int
6629 add_signatured_type_cu_to_table (void **slot, void *datum)
6630 {
6631 struct signatured_type *sigt = (struct signatured_type *) *slot;
6632 std::vector<signatured_type *> *all_type_units
6633 = (std::vector<signatured_type *> *) datum;
6634
6635 all_type_units->push_back (sigt);
6636
6637 return 1;
6638 }
6639
6640 /* A helper for create_debug_types_hash_table. Read types from SECTION
6641 and fill them into TYPES_HTAB. It will process only type units,
6642 therefore DW_UT_type. */
6643
6644 static void
6645 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6646 struct dwo_file *dwo_file,
6647 dwarf2_section_info *section, htab_t &types_htab,
6648 rcuh_kind section_kind)
6649 {
6650 struct objfile *objfile = dwarf2_per_objfile->objfile;
6651 struct dwarf2_section_info *abbrev_section;
6652 bfd *abfd;
6653 const gdb_byte *info_ptr, *end_ptr;
6654
6655 abbrev_section = (dwo_file != NULL
6656 ? &dwo_file->sections.abbrev
6657 : &dwarf2_per_objfile->abbrev);
6658
6659 if (dwarf_read_debug)
6660 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6661 get_section_name (section),
6662 get_section_file_name (abbrev_section));
6663
6664 dwarf2_read_section (objfile, section);
6665 info_ptr = section->buffer;
6666
6667 if (info_ptr == NULL)
6668 return;
6669
6670 /* We can't set abfd until now because the section may be empty or
6671 not present, in which case the bfd is unknown. */
6672 abfd = get_section_bfd_owner (section);
6673
6674 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6675 because we don't need to read any dies: the signature is in the
6676 header. */
6677
6678 end_ptr = info_ptr + section->size;
6679 while (info_ptr < end_ptr)
6680 {
6681 struct signatured_type *sig_type;
6682 struct dwo_unit *dwo_tu;
6683 void **slot;
6684 const gdb_byte *ptr = info_ptr;
6685 struct comp_unit_head header;
6686 unsigned int length;
6687
6688 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6689
6690 /* Initialize it due to a false compiler warning. */
6691 header.signature = -1;
6692 header.type_cu_offset_in_tu = (cu_offset) -1;
6693
6694 /* We need to read the type's signature in order to build the hash
6695 table, but we don't need anything else just yet. */
6696
6697 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6698 abbrev_section, ptr, section_kind);
6699
6700 length = get_cu_length (&header);
6701
6702 /* Skip dummy type units. */
6703 if (ptr >= info_ptr + length
6704 || peek_abbrev_code (abfd, ptr) == 0
6705 || header.unit_type != DW_UT_type)
6706 {
6707 info_ptr += length;
6708 continue;
6709 }
6710
6711 if (types_htab == NULL)
6712 {
6713 if (dwo_file)
6714 types_htab = allocate_dwo_unit_table (objfile);
6715 else
6716 types_htab = allocate_signatured_type_table (objfile);
6717 }
6718
6719 if (dwo_file)
6720 {
6721 sig_type = NULL;
6722 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6723 struct dwo_unit);
6724 dwo_tu->dwo_file = dwo_file;
6725 dwo_tu->signature = header.signature;
6726 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6727 dwo_tu->section = section;
6728 dwo_tu->sect_off = sect_off;
6729 dwo_tu->length = length;
6730 }
6731 else
6732 {
6733 /* N.B.: type_offset is not usable if this type uses a DWO file.
6734 The real type_offset is in the DWO file. */
6735 dwo_tu = NULL;
6736 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6737 struct signatured_type);
6738 sig_type->signature = header.signature;
6739 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6740 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6741 sig_type->per_cu.is_debug_types = 1;
6742 sig_type->per_cu.section = section;
6743 sig_type->per_cu.sect_off = sect_off;
6744 sig_type->per_cu.length = length;
6745 }
6746
6747 slot = htab_find_slot (types_htab,
6748 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6749 INSERT);
6750 gdb_assert (slot != NULL);
6751 if (*slot != NULL)
6752 {
6753 sect_offset dup_sect_off;
6754
6755 if (dwo_file)
6756 {
6757 const struct dwo_unit *dup_tu
6758 = (const struct dwo_unit *) *slot;
6759
6760 dup_sect_off = dup_tu->sect_off;
6761 }
6762 else
6763 {
6764 const struct signatured_type *dup_tu
6765 = (const struct signatured_type *) *slot;
6766
6767 dup_sect_off = dup_tu->per_cu.sect_off;
6768 }
6769
6770 complaint (_("debug type entry at offset %s is duplicate to"
6771 " the entry at offset %s, signature %s"),
6772 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6773 hex_string (header.signature));
6774 }
6775 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6776
6777 if (dwarf_read_debug > 1)
6778 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6779 sect_offset_str (sect_off),
6780 hex_string (header.signature));
6781
6782 info_ptr += length;
6783 }
6784 }
6785
6786 /* Create the hash table of all entries in the .debug_types
6787 (or .debug_types.dwo) section(s).
6788 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6789 otherwise it is NULL.
6790
6791 The result is a pointer to the hash table or NULL if there are no types.
6792
6793 Note: This function processes DWO files only, not DWP files. */
6794
6795 static void
6796 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6797 struct dwo_file *dwo_file,
6798 gdb::array_view<dwarf2_section_info> type_sections,
6799 htab_t &types_htab)
6800 {
6801 for (dwarf2_section_info &section : type_sections)
6802 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6803 types_htab, rcuh_kind::TYPE);
6804 }
6805
6806 /* Create the hash table of all entries in the .debug_types section,
6807 and initialize all_type_units.
6808 The result is zero if there is an error (e.g. missing .debug_types section),
6809 otherwise non-zero. */
6810
6811 static int
6812 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6813 {
6814 htab_t types_htab = NULL;
6815
6816 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6817 &dwarf2_per_objfile->info, types_htab,
6818 rcuh_kind::COMPILE);
6819 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6820 dwarf2_per_objfile->types, types_htab);
6821 if (types_htab == NULL)
6822 {
6823 dwarf2_per_objfile->signatured_types = NULL;
6824 return 0;
6825 }
6826
6827 dwarf2_per_objfile->signatured_types = types_htab;
6828
6829 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6830 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6831
6832 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6833 &dwarf2_per_objfile->all_type_units);
6834
6835 return 1;
6836 }
6837
6838 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6839 If SLOT is non-NULL, it is the entry to use in the hash table.
6840 Otherwise we find one. */
6841
6842 static struct signatured_type *
6843 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6844 void **slot)
6845 {
6846 struct objfile *objfile = dwarf2_per_objfile->objfile;
6847
6848 if (dwarf2_per_objfile->all_type_units.size ()
6849 == dwarf2_per_objfile->all_type_units.capacity ())
6850 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6851
6852 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6853 struct signatured_type);
6854
6855 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6856 sig_type->signature = sig;
6857 sig_type->per_cu.is_debug_types = 1;
6858 if (dwarf2_per_objfile->using_index)
6859 {
6860 sig_type->per_cu.v.quick =
6861 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6862 struct dwarf2_per_cu_quick_data);
6863 }
6864
6865 if (slot == NULL)
6866 {
6867 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6868 sig_type, INSERT);
6869 }
6870 gdb_assert (*slot == NULL);
6871 *slot = sig_type;
6872 /* The rest of sig_type must be filled in by the caller. */
6873 return sig_type;
6874 }
6875
6876 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6877 Fill in SIG_ENTRY with DWO_ENTRY. */
6878
6879 static void
6880 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6881 struct signatured_type *sig_entry,
6882 struct dwo_unit *dwo_entry)
6883 {
6884 /* Make sure we're not clobbering something we don't expect to. */
6885 gdb_assert (! sig_entry->per_cu.queued);
6886 gdb_assert (sig_entry->per_cu.cu == NULL);
6887 if (dwarf2_per_objfile->using_index)
6888 {
6889 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6890 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6891 }
6892 else
6893 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6894 gdb_assert (sig_entry->signature == dwo_entry->signature);
6895 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6896 gdb_assert (sig_entry->type_unit_group == NULL);
6897 gdb_assert (sig_entry->dwo_unit == NULL);
6898
6899 sig_entry->per_cu.section = dwo_entry->section;
6900 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6901 sig_entry->per_cu.length = dwo_entry->length;
6902 sig_entry->per_cu.reading_dwo_directly = 1;
6903 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6904 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6905 sig_entry->dwo_unit = dwo_entry;
6906 }
6907
6908 /* Subroutine of lookup_signatured_type.
6909 If we haven't read the TU yet, create the signatured_type data structure
6910 for a TU to be read in directly from a DWO file, bypassing the stub.
6911 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6912 using .gdb_index, then when reading a CU we want to stay in the DWO file
6913 containing that CU. Otherwise we could end up reading several other DWO
6914 files (due to comdat folding) to process the transitive closure of all the
6915 mentioned TUs, and that can be slow. The current DWO file will have every
6916 type signature that it needs.
6917 We only do this for .gdb_index because in the psymtab case we already have
6918 to read all the DWOs to build the type unit groups. */
6919
6920 static struct signatured_type *
6921 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6922 {
6923 struct dwarf2_per_objfile *dwarf2_per_objfile
6924 = cu->per_cu->dwarf2_per_objfile;
6925 struct objfile *objfile = dwarf2_per_objfile->objfile;
6926 struct dwo_file *dwo_file;
6927 struct dwo_unit find_dwo_entry, *dwo_entry;
6928 struct signatured_type find_sig_entry, *sig_entry;
6929 void **slot;
6930
6931 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6932
6933 /* If TU skeletons have been removed then we may not have read in any
6934 TUs yet. */
6935 if (dwarf2_per_objfile->signatured_types == NULL)
6936 {
6937 dwarf2_per_objfile->signatured_types
6938 = allocate_signatured_type_table (objfile);
6939 }
6940
6941 /* We only ever need to read in one copy of a signatured type.
6942 Use the global signatured_types array to do our own comdat-folding
6943 of types. If this is the first time we're reading this TU, and
6944 the TU has an entry in .gdb_index, replace the recorded data from
6945 .gdb_index with this TU. */
6946
6947 find_sig_entry.signature = sig;
6948 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6949 &find_sig_entry, INSERT);
6950 sig_entry = (struct signatured_type *) *slot;
6951
6952 /* We can get here with the TU already read, *or* in the process of being
6953 read. Don't reassign the global entry to point to this DWO if that's
6954 the case. Also note that if the TU is already being read, it may not
6955 have come from a DWO, the program may be a mix of Fission-compiled
6956 code and non-Fission-compiled code. */
6957
6958 /* Have we already tried to read this TU?
6959 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6960 needn't exist in the global table yet). */
6961 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6962 return sig_entry;
6963
6964 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6965 dwo_unit of the TU itself. */
6966 dwo_file = cu->dwo_unit->dwo_file;
6967
6968 /* Ok, this is the first time we're reading this TU. */
6969 if (dwo_file->tus == NULL)
6970 return NULL;
6971 find_dwo_entry.signature = sig;
6972 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6973 if (dwo_entry == NULL)
6974 return NULL;
6975
6976 /* If the global table doesn't have an entry for this TU, add one. */
6977 if (sig_entry == NULL)
6978 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6979
6980 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6981 sig_entry->per_cu.tu_read = 1;
6982 return sig_entry;
6983 }
6984
6985 /* Subroutine of lookup_signatured_type.
6986 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6987 then try the DWP file. If the TU stub (skeleton) has been removed then
6988 it won't be in .gdb_index. */
6989
6990 static struct signatured_type *
6991 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6992 {
6993 struct dwarf2_per_objfile *dwarf2_per_objfile
6994 = cu->per_cu->dwarf2_per_objfile;
6995 struct objfile *objfile = dwarf2_per_objfile->objfile;
6996 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6997 struct dwo_unit *dwo_entry;
6998 struct signatured_type find_sig_entry, *sig_entry;
6999 void **slot;
7000
7001 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7002 gdb_assert (dwp_file != NULL);
7003
7004 /* If TU skeletons have been removed then we may not have read in any
7005 TUs yet. */
7006 if (dwarf2_per_objfile->signatured_types == NULL)
7007 {
7008 dwarf2_per_objfile->signatured_types
7009 = allocate_signatured_type_table (objfile);
7010 }
7011
7012 find_sig_entry.signature = sig;
7013 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7014 &find_sig_entry, INSERT);
7015 sig_entry = (struct signatured_type *) *slot;
7016
7017 /* Have we already tried to read this TU?
7018 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7019 needn't exist in the global table yet). */
7020 if (sig_entry != NULL)
7021 return sig_entry;
7022
7023 if (dwp_file->tus == NULL)
7024 return NULL;
7025 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7026 sig, 1 /* is_debug_types */);
7027 if (dwo_entry == NULL)
7028 return NULL;
7029
7030 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7031 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7032
7033 return sig_entry;
7034 }
7035
7036 /* Lookup a signature based type for DW_FORM_ref_sig8.
7037 Returns NULL if signature SIG is not present in the table.
7038 It is up to the caller to complain about this. */
7039
7040 static struct signatured_type *
7041 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7042 {
7043 struct dwarf2_per_objfile *dwarf2_per_objfile
7044 = cu->per_cu->dwarf2_per_objfile;
7045
7046 if (cu->dwo_unit
7047 && dwarf2_per_objfile->using_index)
7048 {
7049 /* We're in a DWO/DWP file, and we're using .gdb_index.
7050 These cases require special processing. */
7051 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7052 return lookup_dwo_signatured_type (cu, sig);
7053 else
7054 return lookup_dwp_signatured_type (cu, sig);
7055 }
7056 else
7057 {
7058 struct signatured_type find_entry, *entry;
7059
7060 if (dwarf2_per_objfile->signatured_types == NULL)
7061 return NULL;
7062 find_entry.signature = sig;
7063 entry = ((struct signatured_type *)
7064 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7065 return entry;
7066 }
7067 }
7068 \f
7069 /* Low level DIE reading support. */
7070
7071 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7072
7073 static void
7074 init_cu_die_reader (struct die_reader_specs *reader,
7075 struct dwarf2_cu *cu,
7076 struct dwarf2_section_info *section,
7077 struct dwo_file *dwo_file,
7078 struct abbrev_table *abbrev_table)
7079 {
7080 gdb_assert (section->readin && section->buffer != NULL);
7081 reader->abfd = get_section_bfd_owner (section);
7082 reader->cu = cu;
7083 reader->dwo_file = dwo_file;
7084 reader->die_section = section;
7085 reader->buffer = section->buffer;
7086 reader->buffer_end = section->buffer + section->size;
7087 reader->comp_dir = NULL;
7088 reader->abbrev_table = abbrev_table;
7089 }
7090
7091 /* Subroutine of init_cutu_and_read_dies to simplify it.
7092 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7093 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7094 already.
7095
7096 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7097 from it to the DIE in the DWO. If NULL we are skipping the stub.
7098 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7099 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7100 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7101 STUB_COMP_DIR may be non-NULL.
7102 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7103 are filled in with the info of the DIE from the DWO file.
7104 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7105 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7106 kept around for at least as long as *RESULT_READER.
7107
7108 The result is non-zero if a valid (non-dummy) DIE was found. */
7109
7110 static int
7111 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7112 struct dwo_unit *dwo_unit,
7113 struct die_info *stub_comp_unit_die,
7114 const char *stub_comp_dir,
7115 struct die_reader_specs *result_reader,
7116 const gdb_byte **result_info_ptr,
7117 struct die_info **result_comp_unit_die,
7118 int *result_has_children,
7119 abbrev_table_up *result_dwo_abbrev_table)
7120 {
7121 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7122 struct objfile *objfile = dwarf2_per_objfile->objfile;
7123 struct dwarf2_cu *cu = this_cu->cu;
7124 bfd *abfd;
7125 const gdb_byte *begin_info_ptr, *info_ptr;
7126 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7127 int i,num_extra_attrs;
7128 struct dwarf2_section_info *dwo_abbrev_section;
7129 struct attribute *attr;
7130 struct die_info *comp_unit_die;
7131
7132 /* At most one of these may be provided. */
7133 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7134
7135 /* These attributes aren't processed until later:
7136 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7137 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7138 referenced later. However, these attributes are found in the stub
7139 which we won't have later. In order to not impose this complication
7140 on the rest of the code, we read them here and copy them to the
7141 DWO CU/TU die. */
7142
7143 stmt_list = NULL;
7144 low_pc = NULL;
7145 high_pc = NULL;
7146 ranges = NULL;
7147 comp_dir = NULL;
7148
7149 if (stub_comp_unit_die != NULL)
7150 {
7151 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7152 DWO file. */
7153 if (! this_cu->is_debug_types)
7154 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7155 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7156 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7157 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7158 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7159
7160 /* There should be a DW_AT_addr_base attribute here (if needed).
7161 We need the value before we can process DW_FORM_GNU_addr_index
7162 or DW_FORM_addrx. */
7163 cu->addr_base = 0;
7164 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7165 if (attr)
7166 cu->addr_base = DW_UNSND (attr);
7167
7168 /* There should be a DW_AT_ranges_base attribute here (if needed).
7169 We need the value before we can process DW_AT_ranges. */
7170 cu->ranges_base = 0;
7171 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7172 if (attr)
7173 cu->ranges_base = DW_UNSND (attr);
7174 }
7175 else if (stub_comp_dir != NULL)
7176 {
7177 /* Reconstruct the comp_dir attribute to simplify the code below. */
7178 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7179 comp_dir->name = DW_AT_comp_dir;
7180 comp_dir->form = DW_FORM_string;
7181 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7182 DW_STRING (comp_dir) = stub_comp_dir;
7183 }
7184
7185 /* Set up for reading the DWO CU/TU. */
7186 cu->dwo_unit = dwo_unit;
7187 dwarf2_section_info *section = dwo_unit->section;
7188 dwarf2_read_section (objfile, section);
7189 abfd = get_section_bfd_owner (section);
7190 begin_info_ptr = info_ptr = (section->buffer
7191 + to_underlying (dwo_unit->sect_off));
7192 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7193
7194 if (this_cu->is_debug_types)
7195 {
7196 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7197
7198 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7199 &cu->header, section,
7200 dwo_abbrev_section,
7201 info_ptr, rcuh_kind::TYPE);
7202 /* This is not an assert because it can be caused by bad debug info. */
7203 if (sig_type->signature != cu->header.signature)
7204 {
7205 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7206 " TU at offset %s [in module %s]"),
7207 hex_string (sig_type->signature),
7208 hex_string (cu->header.signature),
7209 sect_offset_str (dwo_unit->sect_off),
7210 bfd_get_filename (abfd));
7211 }
7212 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7213 /* For DWOs coming from DWP files, we don't know the CU length
7214 nor the type's offset in the TU until now. */
7215 dwo_unit->length = get_cu_length (&cu->header);
7216 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7217
7218 /* Establish the type offset that can be used to lookup the type.
7219 For DWO files, we don't know it until now. */
7220 sig_type->type_offset_in_section
7221 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7222 }
7223 else
7224 {
7225 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7226 &cu->header, section,
7227 dwo_abbrev_section,
7228 info_ptr, rcuh_kind::COMPILE);
7229 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7230 /* For DWOs coming from DWP files, we don't know the CU length
7231 until now. */
7232 dwo_unit->length = get_cu_length (&cu->header);
7233 }
7234
7235 *result_dwo_abbrev_table
7236 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7237 cu->header.abbrev_sect_off);
7238 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7239 result_dwo_abbrev_table->get ());
7240
7241 /* Read in the die, but leave space to copy over the attributes
7242 from the stub. This has the benefit of simplifying the rest of
7243 the code - all the work to maintain the illusion of a single
7244 DW_TAG_{compile,type}_unit DIE is done here. */
7245 num_extra_attrs = ((stmt_list != NULL)
7246 + (low_pc != NULL)
7247 + (high_pc != NULL)
7248 + (ranges != NULL)
7249 + (comp_dir != NULL));
7250 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7251 result_has_children, num_extra_attrs);
7252
7253 /* Copy over the attributes from the stub to the DIE we just read in. */
7254 comp_unit_die = *result_comp_unit_die;
7255 i = comp_unit_die->num_attrs;
7256 if (stmt_list != NULL)
7257 comp_unit_die->attrs[i++] = *stmt_list;
7258 if (low_pc != NULL)
7259 comp_unit_die->attrs[i++] = *low_pc;
7260 if (high_pc != NULL)
7261 comp_unit_die->attrs[i++] = *high_pc;
7262 if (ranges != NULL)
7263 comp_unit_die->attrs[i++] = *ranges;
7264 if (comp_dir != NULL)
7265 comp_unit_die->attrs[i++] = *comp_dir;
7266 comp_unit_die->num_attrs += num_extra_attrs;
7267
7268 if (dwarf_die_debug)
7269 {
7270 fprintf_unfiltered (gdb_stdlog,
7271 "Read die from %s@0x%x of %s:\n",
7272 get_section_name (section),
7273 (unsigned) (begin_info_ptr - section->buffer),
7274 bfd_get_filename (abfd));
7275 dump_die (comp_unit_die, dwarf_die_debug);
7276 }
7277
7278 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7279 TUs by skipping the stub and going directly to the entry in the DWO file.
7280 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7281 to get it via circuitous means. Blech. */
7282 if (comp_dir != NULL)
7283 result_reader->comp_dir = DW_STRING (comp_dir);
7284
7285 /* Skip dummy compilation units. */
7286 if (info_ptr >= begin_info_ptr + dwo_unit->length
7287 || peek_abbrev_code (abfd, info_ptr) == 0)
7288 return 0;
7289
7290 *result_info_ptr = info_ptr;
7291 return 1;
7292 }
7293
7294 /* Subroutine of init_cutu_and_read_dies to simplify it.
7295 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7296 Returns NULL if the specified DWO unit cannot be found. */
7297
7298 static struct dwo_unit *
7299 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7300 struct die_info *comp_unit_die)
7301 {
7302 struct dwarf2_cu *cu = this_cu->cu;
7303 ULONGEST signature;
7304 struct dwo_unit *dwo_unit;
7305 const char *comp_dir, *dwo_name;
7306
7307 gdb_assert (cu != NULL);
7308
7309 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7310 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7311 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7312
7313 if (this_cu->is_debug_types)
7314 {
7315 struct signatured_type *sig_type;
7316
7317 /* Since this_cu is the first member of struct signatured_type,
7318 we can go from a pointer to one to a pointer to the other. */
7319 sig_type = (struct signatured_type *) this_cu;
7320 signature = sig_type->signature;
7321 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7322 }
7323 else
7324 {
7325 struct attribute *attr;
7326
7327 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7328 if (! attr)
7329 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7330 " [in module %s]"),
7331 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7332 signature = DW_UNSND (attr);
7333 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7334 signature);
7335 }
7336
7337 return dwo_unit;
7338 }
7339
7340 /* Subroutine of init_cutu_and_read_dies to simplify it.
7341 See it for a description of the parameters.
7342 Read a TU directly from a DWO file, bypassing the stub. */
7343
7344 static void
7345 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7346 int use_existing_cu, int keep,
7347 die_reader_func_ftype *die_reader_func,
7348 void *data)
7349 {
7350 std::unique_ptr<dwarf2_cu> new_cu;
7351 struct signatured_type *sig_type;
7352 struct die_reader_specs reader;
7353 const gdb_byte *info_ptr;
7354 struct die_info *comp_unit_die;
7355 int has_children;
7356 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7357
7358 /* Verify we can do the following downcast, and that we have the
7359 data we need. */
7360 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7361 sig_type = (struct signatured_type *) this_cu;
7362 gdb_assert (sig_type->dwo_unit != NULL);
7363
7364 if (use_existing_cu && this_cu->cu != NULL)
7365 {
7366 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7367 /* There's no need to do the rereading_dwo_cu handling that
7368 init_cutu_and_read_dies does since we don't read the stub. */
7369 }
7370 else
7371 {
7372 /* If !use_existing_cu, this_cu->cu must be NULL. */
7373 gdb_assert (this_cu->cu == NULL);
7374 new_cu.reset (new dwarf2_cu (this_cu));
7375 }
7376
7377 /* A future optimization, if needed, would be to use an existing
7378 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7379 could share abbrev tables. */
7380
7381 /* The abbreviation table used by READER, this must live at least as long as
7382 READER. */
7383 abbrev_table_up dwo_abbrev_table;
7384
7385 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7386 NULL /* stub_comp_unit_die */,
7387 sig_type->dwo_unit->dwo_file->comp_dir,
7388 &reader, &info_ptr,
7389 &comp_unit_die, &has_children,
7390 &dwo_abbrev_table) == 0)
7391 {
7392 /* Dummy die. */
7393 return;
7394 }
7395
7396 /* All the "real" work is done here. */
7397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7398
7399 /* This duplicates the code in init_cutu_and_read_dies,
7400 but the alternative is making the latter more complex.
7401 This function is only for the special case of using DWO files directly:
7402 no point in overly complicating the general case just to handle this. */
7403 if (new_cu != NULL && keep)
7404 {
7405 /* Link this CU into read_in_chain. */
7406 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7407 dwarf2_per_objfile->read_in_chain = this_cu;
7408 /* The chain owns it now. */
7409 new_cu.release ();
7410 }
7411 }
7412
7413 /* Initialize a CU (or TU) and read its DIEs.
7414 If the CU defers to a DWO file, read the DWO file as well.
7415
7416 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7417 Otherwise the table specified in the comp unit header is read in and used.
7418 This is an optimization for when we already have the abbrev table.
7419
7420 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7421 Otherwise, a new CU is allocated with xmalloc.
7422
7423 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7424 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7425
7426 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7427 linker) then DIE_READER_FUNC will not get called. */
7428
7429 static void
7430 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7431 struct abbrev_table *abbrev_table,
7432 int use_existing_cu, int keep,
7433 bool skip_partial,
7434 die_reader_func_ftype *die_reader_func,
7435 void *data)
7436 {
7437 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7438 struct objfile *objfile = dwarf2_per_objfile->objfile;
7439 struct dwarf2_section_info *section = this_cu->section;
7440 bfd *abfd = get_section_bfd_owner (section);
7441 struct dwarf2_cu *cu;
7442 const gdb_byte *begin_info_ptr, *info_ptr;
7443 struct die_reader_specs reader;
7444 struct die_info *comp_unit_die;
7445 int has_children;
7446 struct attribute *attr;
7447 struct signatured_type *sig_type = NULL;
7448 struct dwarf2_section_info *abbrev_section;
7449 /* Non-zero if CU currently points to a DWO file and we need to
7450 reread it. When this happens we need to reread the skeleton die
7451 before we can reread the DWO file (this only applies to CUs, not TUs). */
7452 int rereading_dwo_cu = 0;
7453
7454 if (dwarf_die_debug)
7455 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7456 this_cu->is_debug_types ? "type" : "comp",
7457 sect_offset_str (this_cu->sect_off));
7458
7459 if (use_existing_cu)
7460 gdb_assert (keep);
7461
7462 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7463 file (instead of going through the stub), short-circuit all of this. */
7464 if (this_cu->reading_dwo_directly)
7465 {
7466 /* Narrow down the scope of possibilities to have to understand. */
7467 gdb_assert (this_cu->is_debug_types);
7468 gdb_assert (abbrev_table == NULL);
7469 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7470 die_reader_func, data);
7471 return;
7472 }
7473
7474 /* This is cheap if the section is already read in. */
7475 dwarf2_read_section (objfile, section);
7476
7477 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7478
7479 abbrev_section = get_abbrev_section_for_cu (this_cu);
7480
7481 std::unique_ptr<dwarf2_cu> new_cu;
7482 if (use_existing_cu && this_cu->cu != NULL)
7483 {
7484 cu = this_cu->cu;
7485 /* If this CU is from a DWO file we need to start over, we need to
7486 refetch the attributes from the skeleton CU.
7487 This could be optimized by retrieving those attributes from when we
7488 were here the first time: the previous comp_unit_die was stored in
7489 comp_unit_obstack. But there's no data yet that we need this
7490 optimization. */
7491 if (cu->dwo_unit != NULL)
7492 rereading_dwo_cu = 1;
7493 }
7494 else
7495 {
7496 /* If !use_existing_cu, this_cu->cu must be NULL. */
7497 gdb_assert (this_cu->cu == NULL);
7498 new_cu.reset (new dwarf2_cu (this_cu));
7499 cu = new_cu.get ();
7500 }
7501
7502 /* Get the header. */
7503 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7504 {
7505 /* We already have the header, there's no need to read it in again. */
7506 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7507 }
7508 else
7509 {
7510 if (this_cu->is_debug_types)
7511 {
7512 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7513 &cu->header, section,
7514 abbrev_section, info_ptr,
7515 rcuh_kind::TYPE);
7516
7517 /* Since per_cu is the first member of struct signatured_type,
7518 we can go from a pointer to one to a pointer to the other. */
7519 sig_type = (struct signatured_type *) this_cu;
7520 gdb_assert (sig_type->signature == cu->header.signature);
7521 gdb_assert (sig_type->type_offset_in_tu
7522 == cu->header.type_cu_offset_in_tu);
7523 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7524
7525 /* LENGTH has not been set yet for type units if we're
7526 using .gdb_index. */
7527 this_cu->length = get_cu_length (&cu->header);
7528
7529 /* Establish the type offset that can be used to lookup the type. */
7530 sig_type->type_offset_in_section =
7531 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7532
7533 this_cu->dwarf_version = cu->header.version;
7534 }
7535 else
7536 {
7537 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7538 &cu->header, section,
7539 abbrev_section,
7540 info_ptr,
7541 rcuh_kind::COMPILE);
7542
7543 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7544 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7545 this_cu->dwarf_version = cu->header.version;
7546 }
7547 }
7548
7549 /* Skip dummy compilation units. */
7550 if (info_ptr >= begin_info_ptr + this_cu->length
7551 || peek_abbrev_code (abfd, info_ptr) == 0)
7552 return;
7553
7554 /* If we don't have them yet, read the abbrevs for this compilation unit.
7555 And if we need to read them now, make sure they're freed when we're
7556 done (own the table through ABBREV_TABLE_HOLDER). */
7557 abbrev_table_up abbrev_table_holder;
7558 if (abbrev_table != NULL)
7559 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7560 else
7561 {
7562 abbrev_table_holder
7563 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7564 cu->header.abbrev_sect_off);
7565 abbrev_table = abbrev_table_holder.get ();
7566 }
7567
7568 /* Read the top level CU/TU die. */
7569 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7570 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7571
7572 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7573 return;
7574
7575 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7576 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7577 table from the DWO file and pass the ownership over to us. It will be
7578 referenced from READER, so we must make sure to free it after we're done
7579 with READER.
7580
7581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7582 DWO CU, that this test will fail (the attribute will not be present). */
7583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7584 abbrev_table_up dwo_abbrev_table;
7585 if (attr)
7586 {
7587 struct dwo_unit *dwo_unit;
7588 struct die_info *dwo_comp_unit_die;
7589
7590 if (has_children)
7591 {
7592 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7593 " has children (offset %s) [in module %s]"),
7594 sect_offset_str (this_cu->sect_off),
7595 bfd_get_filename (abfd));
7596 }
7597 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7598 if (dwo_unit != NULL)
7599 {
7600 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7601 comp_unit_die, NULL,
7602 &reader, &info_ptr,
7603 &dwo_comp_unit_die, &has_children,
7604 &dwo_abbrev_table) == 0)
7605 {
7606 /* Dummy die. */
7607 return;
7608 }
7609 comp_unit_die = dwo_comp_unit_die;
7610 }
7611 else
7612 {
7613 /* Yikes, we couldn't find the rest of the DIE, we only have
7614 the stub. A complaint has already been logged. There's
7615 not much more we can do except pass on the stub DIE to
7616 die_reader_func. We don't want to throw an error on bad
7617 debug info. */
7618 }
7619 }
7620
7621 /* All of the above is setup for this call. Yikes. */
7622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7623
7624 /* Done, clean up. */
7625 if (new_cu != NULL && keep)
7626 {
7627 /* Link this CU into read_in_chain. */
7628 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7629 dwarf2_per_objfile->read_in_chain = this_cu;
7630 /* The chain owns it now. */
7631 new_cu.release ();
7632 }
7633 }
7634
7635 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7636 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7637 to have already done the lookup to find the DWO file).
7638
7639 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7640 THIS_CU->is_debug_types, but nothing else.
7641
7642 We fill in THIS_CU->length.
7643
7644 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7645 linker) then DIE_READER_FUNC will not get called.
7646
7647 THIS_CU->cu is always freed when done.
7648 This is done in order to not leave THIS_CU->cu in a state where we have
7649 to care whether it refers to the "main" CU or the DWO CU. */
7650
7651 static void
7652 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7653 struct dwo_file *dwo_file,
7654 die_reader_func_ftype *die_reader_func,
7655 void *data)
7656 {
7657 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7658 struct objfile *objfile = dwarf2_per_objfile->objfile;
7659 struct dwarf2_section_info *section = this_cu->section;
7660 bfd *abfd = get_section_bfd_owner (section);
7661 struct dwarf2_section_info *abbrev_section;
7662 const gdb_byte *begin_info_ptr, *info_ptr;
7663 struct die_reader_specs reader;
7664 struct die_info *comp_unit_die;
7665 int has_children;
7666
7667 if (dwarf_die_debug)
7668 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7669 this_cu->is_debug_types ? "type" : "comp",
7670 sect_offset_str (this_cu->sect_off));
7671
7672 gdb_assert (this_cu->cu == NULL);
7673
7674 abbrev_section = (dwo_file != NULL
7675 ? &dwo_file->sections.abbrev
7676 : get_abbrev_section_for_cu (this_cu));
7677
7678 /* This is cheap if the section is already read in. */
7679 dwarf2_read_section (objfile, section);
7680
7681 struct dwarf2_cu cu (this_cu);
7682
7683 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7684 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7685 &cu.header, section,
7686 abbrev_section, info_ptr,
7687 (this_cu->is_debug_types
7688 ? rcuh_kind::TYPE
7689 : rcuh_kind::COMPILE));
7690
7691 this_cu->length = get_cu_length (&cu.header);
7692
7693 /* Skip dummy compilation units. */
7694 if (info_ptr >= begin_info_ptr + this_cu->length
7695 || peek_abbrev_code (abfd, info_ptr) == 0)
7696 return;
7697
7698 abbrev_table_up abbrev_table
7699 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7700 cu.header.abbrev_sect_off);
7701
7702 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7703 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7704
7705 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7706 }
7707
7708 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7709 does not lookup the specified DWO file.
7710 This cannot be used to read DWO files.
7711
7712 THIS_CU->cu is always freed when done.
7713 This is done in order to not leave THIS_CU->cu in a state where we have
7714 to care whether it refers to the "main" CU or the DWO CU.
7715 We can revisit this if the data shows there's a performance issue. */
7716
7717 static void
7718 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7719 die_reader_func_ftype *die_reader_func,
7720 void *data)
7721 {
7722 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7723 }
7724 \f
7725 /* Type Unit Groups.
7726
7727 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7728 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7729 so that all types coming from the same compilation (.o file) are grouped
7730 together. A future step could be to put the types in the same symtab as
7731 the CU the types ultimately came from. */
7732
7733 static hashval_t
7734 hash_type_unit_group (const void *item)
7735 {
7736 const struct type_unit_group *tu_group
7737 = (const struct type_unit_group *) item;
7738
7739 return hash_stmt_list_entry (&tu_group->hash);
7740 }
7741
7742 static int
7743 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7744 {
7745 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7746 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7747
7748 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7749 }
7750
7751 /* Allocate a hash table for type unit groups. */
7752
7753 static htab_t
7754 allocate_type_unit_groups_table (struct objfile *objfile)
7755 {
7756 return htab_create_alloc_ex (3,
7757 hash_type_unit_group,
7758 eq_type_unit_group,
7759 NULL,
7760 &objfile->objfile_obstack,
7761 hashtab_obstack_allocate,
7762 dummy_obstack_deallocate);
7763 }
7764
7765 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7766 partial symtabs. We combine several TUs per psymtab to not let the size
7767 of any one psymtab grow too big. */
7768 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7769 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7770
7771 /* Helper routine for get_type_unit_group.
7772 Create the type_unit_group object used to hold one or more TUs. */
7773
7774 static struct type_unit_group *
7775 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7776 {
7777 struct dwarf2_per_objfile *dwarf2_per_objfile
7778 = cu->per_cu->dwarf2_per_objfile;
7779 struct objfile *objfile = dwarf2_per_objfile->objfile;
7780 struct dwarf2_per_cu_data *per_cu;
7781 struct type_unit_group *tu_group;
7782
7783 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7784 struct type_unit_group);
7785 per_cu = &tu_group->per_cu;
7786 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7787
7788 if (dwarf2_per_objfile->using_index)
7789 {
7790 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7791 struct dwarf2_per_cu_quick_data);
7792 }
7793 else
7794 {
7795 unsigned int line_offset = to_underlying (line_offset_struct);
7796 struct partial_symtab *pst;
7797 std::string name;
7798
7799 /* Give the symtab a useful name for debug purposes. */
7800 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7801 name = string_printf ("<type_units_%d>",
7802 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7803 else
7804 name = string_printf ("<type_units_at_0x%x>", line_offset);
7805
7806 pst = create_partial_symtab (per_cu, name.c_str ());
7807 pst->anonymous = 1;
7808 }
7809
7810 tu_group->hash.dwo_unit = cu->dwo_unit;
7811 tu_group->hash.line_sect_off = line_offset_struct;
7812
7813 return tu_group;
7814 }
7815
7816 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7817 STMT_LIST is a DW_AT_stmt_list attribute. */
7818
7819 static struct type_unit_group *
7820 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7821 {
7822 struct dwarf2_per_objfile *dwarf2_per_objfile
7823 = cu->per_cu->dwarf2_per_objfile;
7824 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7825 struct type_unit_group *tu_group;
7826 void **slot;
7827 unsigned int line_offset;
7828 struct type_unit_group type_unit_group_for_lookup;
7829
7830 if (dwarf2_per_objfile->type_unit_groups == NULL)
7831 {
7832 dwarf2_per_objfile->type_unit_groups =
7833 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7834 }
7835
7836 /* Do we need to create a new group, or can we use an existing one? */
7837
7838 if (stmt_list)
7839 {
7840 line_offset = DW_UNSND (stmt_list);
7841 ++tu_stats->nr_symtab_sharers;
7842 }
7843 else
7844 {
7845 /* Ugh, no stmt_list. Rare, but we have to handle it.
7846 We can do various things here like create one group per TU or
7847 spread them over multiple groups to split up the expansion work.
7848 To avoid worst case scenarios (too many groups or too large groups)
7849 we, umm, group them in bunches. */
7850 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7851 | (tu_stats->nr_stmt_less_type_units
7852 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7853 ++tu_stats->nr_stmt_less_type_units;
7854 }
7855
7856 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7857 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7858 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7859 &type_unit_group_for_lookup, INSERT);
7860 if (*slot != NULL)
7861 {
7862 tu_group = (struct type_unit_group *) *slot;
7863 gdb_assert (tu_group != NULL);
7864 }
7865 else
7866 {
7867 sect_offset line_offset_struct = (sect_offset) line_offset;
7868 tu_group = create_type_unit_group (cu, line_offset_struct);
7869 *slot = tu_group;
7870 ++tu_stats->nr_symtabs;
7871 }
7872
7873 return tu_group;
7874 }
7875 \f
7876 /* Partial symbol tables. */
7877
7878 /* Create a psymtab named NAME and assign it to PER_CU.
7879
7880 The caller must fill in the following details:
7881 dirname, textlow, texthigh. */
7882
7883 static struct partial_symtab *
7884 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7885 {
7886 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7887 struct partial_symtab *pst;
7888
7889 pst = start_psymtab_common (objfile, name, 0);
7890
7891 pst->psymtabs_addrmap_supported = 1;
7892
7893 /* This is the glue that links PST into GDB's symbol API. */
7894 pst->read_symtab_private = per_cu;
7895 pst->read_symtab = dwarf2_read_symtab;
7896 per_cu->v.psymtab = pst;
7897
7898 return pst;
7899 }
7900
7901 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7902 type. */
7903
7904 struct process_psymtab_comp_unit_data
7905 {
7906 /* True if we are reading a DW_TAG_partial_unit. */
7907
7908 int want_partial_unit;
7909
7910 /* The "pretend" language that is used if the CU doesn't declare a
7911 language. */
7912
7913 enum language pretend_language;
7914 };
7915
7916 /* die_reader_func for process_psymtab_comp_unit. */
7917
7918 static void
7919 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7920 const gdb_byte *info_ptr,
7921 struct die_info *comp_unit_die,
7922 int has_children,
7923 void *data)
7924 {
7925 struct dwarf2_cu *cu = reader->cu;
7926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7928 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7929 CORE_ADDR baseaddr;
7930 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7931 struct partial_symtab *pst;
7932 enum pc_bounds_kind cu_bounds_kind;
7933 const char *filename;
7934 struct process_psymtab_comp_unit_data *info
7935 = (struct process_psymtab_comp_unit_data *) data;
7936
7937 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7938 return;
7939
7940 gdb_assert (! per_cu->is_debug_types);
7941
7942 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7943
7944 /* Allocate a new partial symbol table structure. */
7945 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7946 if (filename == NULL)
7947 filename = "";
7948
7949 pst = create_partial_symtab (per_cu, filename);
7950
7951 /* This must be done before calling dwarf2_build_include_psymtabs. */
7952 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7953
7954 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7955
7956 dwarf2_find_base_address (comp_unit_die, cu);
7957
7958 /* Possibly set the default values of LOWPC and HIGHPC from
7959 `DW_AT_ranges'. */
7960 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7961 &best_highpc, cu, pst);
7962 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7963 {
7964 CORE_ADDR low
7965 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7966 - baseaddr);
7967 CORE_ADDR high
7968 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7969 - baseaddr - 1);
7970 /* Store the contiguous range if it is not empty; it can be
7971 empty for CUs with no code. */
7972 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7973 low, high, pst);
7974 }
7975
7976 /* Check if comp unit has_children.
7977 If so, read the rest of the partial symbols from this comp unit.
7978 If not, there's no more debug_info for this comp unit. */
7979 if (has_children)
7980 {
7981 struct partial_die_info *first_die;
7982 CORE_ADDR lowpc, highpc;
7983
7984 lowpc = ((CORE_ADDR) -1);
7985 highpc = ((CORE_ADDR) 0);
7986
7987 first_die = load_partial_dies (reader, info_ptr, 1);
7988
7989 scan_partial_symbols (first_die, &lowpc, &highpc,
7990 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7991
7992 /* If we didn't find a lowpc, set it to highpc to avoid
7993 complaints from `maint check'. */
7994 if (lowpc == ((CORE_ADDR) -1))
7995 lowpc = highpc;
7996
7997 /* If the compilation unit didn't have an explicit address range,
7998 then use the information extracted from its child dies. */
7999 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8000 {
8001 best_lowpc = lowpc;
8002 best_highpc = highpc;
8003 }
8004 }
8005 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8006 best_lowpc + baseaddr)
8007 - baseaddr);
8008 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8009 best_highpc + baseaddr)
8010 - baseaddr);
8011
8012 end_psymtab_common (objfile, pst);
8013
8014 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8015 {
8016 int i;
8017 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8018 struct dwarf2_per_cu_data *iter;
8019
8020 /* Fill in 'dependencies' here; we fill in 'users' in a
8021 post-pass. */
8022 pst->number_of_dependencies = len;
8023 pst->dependencies
8024 = objfile->partial_symtabs->allocate_dependencies (len);
8025 for (i = 0;
8026 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8027 i, iter);
8028 ++i)
8029 pst->dependencies[i] = iter->v.psymtab;
8030
8031 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8032 }
8033
8034 /* Get the list of files included in the current compilation unit,
8035 and build a psymtab for each of them. */
8036 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8037
8038 if (dwarf_read_debug)
8039 fprintf_unfiltered (gdb_stdlog,
8040 "Psymtab for %s unit @%s: %s - %s"
8041 ", %d global, %d static syms\n",
8042 per_cu->is_debug_types ? "type" : "comp",
8043 sect_offset_str (per_cu->sect_off),
8044 paddress (gdbarch, pst->text_low (objfile)),
8045 paddress (gdbarch, pst->text_high (objfile)),
8046 pst->n_global_syms, pst->n_static_syms);
8047 }
8048
8049 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8050 Process compilation unit THIS_CU for a psymtab. */
8051
8052 static void
8053 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8054 int want_partial_unit,
8055 enum language pretend_language)
8056 {
8057 /* If this compilation unit was already read in, free the
8058 cached copy in order to read it in again. This is
8059 necessary because we skipped some symbols when we first
8060 read in the compilation unit (see load_partial_dies).
8061 This problem could be avoided, but the benefit is unclear. */
8062 if (this_cu->cu != NULL)
8063 free_one_cached_comp_unit (this_cu);
8064
8065 if (this_cu->is_debug_types)
8066 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8067 build_type_psymtabs_reader, NULL);
8068 else
8069 {
8070 process_psymtab_comp_unit_data info;
8071 info.want_partial_unit = want_partial_unit;
8072 info.pretend_language = pretend_language;
8073 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8074 process_psymtab_comp_unit_reader, &info);
8075 }
8076
8077 /* Age out any secondary CUs. */
8078 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8079 }
8080
8081 /* Reader function for build_type_psymtabs. */
8082
8083 static void
8084 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8085 const gdb_byte *info_ptr,
8086 struct die_info *type_unit_die,
8087 int has_children,
8088 void *data)
8089 {
8090 struct dwarf2_per_objfile *dwarf2_per_objfile
8091 = reader->cu->per_cu->dwarf2_per_objfile;
8092 struct objfile *objfile = dwarf2_per_objfile->objfile;
8093 struct dwarf2_cu *cu = reader->cu;
8094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8095 struct signatured_type *sig_type;
8096 struct type_unit_group *tu_group;
8097 struct attribute *attr;
8098 struct partial_die_info *first_die;
8099 CORE_ADDR lowpc, highpc;
8100 struct partial_symtab *pst;
8101
8102 gdb_assert (data == NULL);
8103 gdb_assert (per_cu->is_debug_types);
8104 sig_type = (struct signatured_type *) per_cu;
8105
8106 if (! has_children)
8107 return;
8108
8109 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8110 tu_group = get_type_unit_group (cu, attr);
8111
8112 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8113
8114 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8115 pst = create_partial_symtab (per_cu, "");
8116 pst->anonymous = 1;
8117
8118 first_die = load_partial_dies (reader, info_ptr, 1);
8119
8120 lowpc = (CORE_ADDR) -1;
8121 highpc = (CORE_ADDR) 0;
8122 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8123
8124 end_psymtab_common (objfile, pst);
8125 }
8126
8127 /* Struct used to sort TUs by their abbreviation table offset. */
8128
8129 struct tu_abbrev_offset
8130 {
8131 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8132 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8133 {}
8134
8135 signatured_type *sig_type;
8136 sect_offset abbrev_offset;
8137 };
8138
8139 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8140
8141 static bool
8142 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8143 const struct tu_abbrev_offset &b)
8144 {
8145 return a.abbrev_offset < b.abbrev_offset;
8146 }
8147
8148 /* Efficiently read all the type units.
8149 This does the bulk of the work for build_type_psymtabs.
8150
8151 The efficiency is because we sort TUs by the abbrev table they use and
8152 only read each abbrev table once. In one program there are 200K TUs
8153 sharing 8K abbrev tables.
8154
8155 The main purpose of this function is to support building the
8156 dwarf2_per_objfile->type_unit_groups table.
8157 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8158 can collapse the search space by grouping them by stmt_list.
8159 The savings can be significant, in the same program from above the 200K TUs
8160 share 8K stmt_list tables.
8161
8162 FUNC is expected to call get_type_unit_group, which will create the
8163 struct type_unit_group if necessary and add it to
8164 dwarf2_per_objfile->type_unit_groups. */
8165
8166 static void
8167 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8168 {
8169 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8170 abbrev_table_up abbrev_table;
8171 sect_offset abbrev_offset;
8172
8173 /* It's up to the caller to not call us multiple times. */
8174 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8175
8176 if (dwarf2_per_objfile->all_type_units.empty ())
8177 return;
8178
8179 /* TUs typically share abbrev tables, and there can be way more TUs than
8180 abbrev tables. Sort by abbrev table to reduce the number of times we
8181 read each abbrev table in.
8182 Alternatives are to punt or to maintain a cache of abbrev tables.
8183 This is simpler and efficient enough for now.
8184
8185 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8186 symtab to use). Typically TUs with the same abbrev offset have the same
8187 stmt_list value too so in practice this should work well.
8188
8189 The basic algorithm here is:
8190
8191 sort TUs by abbrev table
8192 for each TU with same abbrev table:
8193 read abbrev table if first user
8194 read TU top level DIE
8195 [IWBN if DWO skeletons had DW_AT_stmt_list]
8196 call FUNC */
8197
8198 if (dwarf_read_debug)
8199 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8200
8201 /* Sort in a separate table to maintain the order of all_type_units
8202 for .gdb_index: TU indices directly index all_type_units. */
8203 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8204 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8205
8206 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8207 sorted_by_abbrev.emplace_back
8208 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8209 sig_type->per_cu.section,
8210 sig_type->per_cu.sect_off));
8211
8212 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8213 sort_tu_by_abbrev_offset);
8214
8215 abbrev_offset = (sect_offset) ~(unsigned) 0;
8216
8217 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8218 {
8219 /* Switch to the next abbrev table if necessary. */
8220 if (abbrev_table == NULL
8221 || tu.abbrev_offset != abbrev_offset)
8222 {
8223 abbrev_offset = tu.abbrev_offset;
8224 abbrev_table =
8225 abbrev_table_read_table (dwarf2_per_objfile,
8226 &dwarf2_per_objfile->abbrev,
8227 abbrev_offset);
8228 ++tu_stats->nr_uniq_abbrev_tables;
8229 }
8230
8231 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8232 0, 0, false, build_type_psymtabs_reader, NULL);
8233 }
8234 }
8235
8236 /* Print collected type unit statistics. */
8237
8238 static void
8239 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8240 {
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242
8243 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8244 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8245 dwarf2_per_objfile->all_type_units.size ());
8246 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8247 tu_stats->nr_uniq_abbrev_tables);
8248 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8249 tu_stats->nr_symtabs);
8250 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8251 tu_stats->nr_symtab_sharers);
8252 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8253 tu_stats->nr_stmt_less_type_units);
8254 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8255 tu_stats->nr_all_type_units_reallocs);
8256 }
8257
8258 /* Traversal function for build_type_psymtabs. */
8259
8260 static int
8261 build_type_psymtab_dependencies (void **slot, void *info)
8262 {
8263 struct dwarf2_per_objfile *dwarf2_per_objfile
8264 = (struct dwarf2_per_objfile *) info;
8265 struct objfile *objfile = dwarf2_per_objfile->objfile;
8266 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8267 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8268 struct partial_symtab *pst = per_cu->v.psymtab;
8269 int len = VEC_length (sig_type_ptr, tu_group->tus);
8270 struct signatured_type *iter;
8271 int i;
8272
8273 gdb_assert (len > 0);
8274 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8275
8276 pst->number_of_dependencies = len;
8277 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8278 for (i = 0;
8279 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8280 ++i)
8281 {
8282 gdb_assert (iter->per_cu.is_debug_types);
8283 pst->dependencies[i] = iter->per_cu.v.psymtab;
8284 iter->type_unit_group = tu_group;
8285 }
8286
8287 VEC_free (sig_type_ptr, tu_group->tus);
8288
8289 return 1;
8290 }
8291
8292 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8293 Build partial symbol tables for the .debug_types comp-units. */
8294
8295 static void
8296 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8297 {
8298 if (! create_all_type_units (dwarf2_per_objfile))
8299 return;
8300
8301 build_type_psymtabs_1 (dwarf2_per_objfile);
8302 }
8303
8304 /* Traversal function for process_skeletonless_type_unit.
8305 Read a TU in a DWO file and build partial symbols for it. */
8306
8307 static int
8308 process_skeletonless_type_unit (void **slot, void *info)
8309 {
8310 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8311 struct dwarf2_per_objfile *dwarf2_per_objfile
8312 = (struct dwarf2_per_objfile *) info;
8313 struct signatured_type find_entry, *entry;
8314
8315 /* If this TU doesn't exist in the global table, add it and read it in. */
8316
8317 if (dwarf2_per_objfile->signatured_types == NULL)
8318 {
8319 dwarf2_per_objfile->signatured_types
8320 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8321 }
8322
8323 find_entry.signature = dwo_unit->signature;
8324 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8325 INSERT);
8326 /* If we've already seen this type there's nothing to do. What's happening
8327 is we're doing our own version of comdat-folding here. */
8328 if (*slot != NULL)
8329 return 1;
8330
8331 /* This does the job that create_all_type_units would have done for
8332 this TU. */
8333 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8334 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8335 *slot = entry;
8336
8337 /* This does the job that build_type_psymtabs_1 would have done. */
8338 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8339 build_type_psymtabs_reader, NULL);
8340
8341 return 1;
8342 }
8343
8344 /* Traversal function for process_skeletonless_type_units. */
8345
8346 static int
8347 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8348 {
8349 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8350
8351 if (dwo_file->tus != NULL)
8352 {
8353 htab_traverse_noresize (dwo_file->tus,
8354 process_skeletonless_type_unit, info);
8355 }
8356
8357 return 1;
8358 }
8359
8360 /* Scan all TUs of DWO files, verifying we've processed them.
8361 This is needed in case a TU was emitted without its skeleton.
8362 Note: This can't be done until we know what all the DWO files are. */
8363
8364 static void
8365 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8366 {
8367 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8368 if (get_dwp_file (dwarf2_per_objfile) == NULL
8369 && dwarf2_per_objfile->dwo_files != NULL)
8370 {
8371 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8372 process_dwo_file_for_skeletonless_type_units,
8373 dwarf2_per_objfile);
8374 }
8375 }
8376
8377 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8378
8379 static void
8380 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8381 {
8382 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8383 {
8384 struct partial_symtab *pst = per_cu->v.psymtab;
8385
8386 if (pst == NULL)
8387 continue;
8388
8389 for (int j = 0; j < pst->number_of_dependencies; ++j)
8390 {
8391 /* Set the 'user' field only if it is not already set. */
8392 if (pst->dependencies[j]->user == NULL)
8393 pst->dependencies[j]->user = pst;
8394 }
8395 }
8396 }
8397
8398 /* Build the partial symbol table by doing a quick pass through the
8399 .debug_info and .debug_abbrev sections. */
8400
8401 static void
8402 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8403 {
8404 struct objfile *objfile = dwarf2_per_objfile->objfile;
8405
8406 if (dwarf_read_debug)
8407 {
8408 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8409 objfile_name (objfile));
8410 }
8411
8412 dwarf2_per_objfile->reading_partial_symbols = 1;
8413
8414 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8415
8416 /* Any cached compilation units will be linked by the per-objfile
8417 read_in_chain. Make sure to free them when we're done. */
8418 free_cached_comp_units freer (dwarf2_per_objfile);
8419
8420 build_type_psymtabs (dwarf2_per_objfile);
8421
8422 create_all_comp_units (dwarf2_per_objfile);
8423
8424 /* Create a temporary address map on a temporary obstack. We later
8425 copy this to the final obstack. */
8426 auto_obstack temp_obstack;
8427
8428 scoped_restore save_psymtabs_addrmap
8429 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8430 addrmap_create_mutable (&temp_obstack));
8431
8432 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8433 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8434
8435 /* This has to wait until we read the CUs, we need the list of DWOs. */
8436 process_skeletonless_type_units (dwarf2_per_objfile);
8437
8438 /* Now that all TUs have been processed we can fill in the dependencies. */
8439 if (dwarf2_per_objfile->type_unit_groups != NULL)
8440 {
8441 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8442 build_type_psymtab_dependencies, dwarf2_per_objfile);
8443 }
8444
8445 if (dwarf_read_debug)
8446 print_tu_stats (dwarf2_per_objfile);
8447
8448 set_partial_user (dwarf2_per_objfile);
8449
8450 objfile->partial_symtabs->psymtabs_addrmap
8451 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8452 objfile->partial_symtabs->obstack ());
8453 /* At this point we want to keep the address map. */
8454 save_psymtabs_addrmap.release ();
8455
8456 if (dwarf_read_debug)
8457 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8458 objfile_name (objfile));
8459 }
8460
8461 /* die_reader_func for load_partial_comp_unit. */
8462
8463 static void
8464 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8465 const gdb_byte *info_ptr,
8466 struct die_info *comp_unit_die,
8467 int has_children,
8468 void *data)
8469 {
8470 struct dwarf2_cu *cu = reader->cu;
8471
8472 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8473
8474 /* Check if comp unit has_children.
8475 If so, read the rest of the partial symbols from this comp unit.
8476 If not, there's no more debug_info for this comp unit. */
8477 if (has_children)
8478 load_partial_dies (reader, info_ptr, 0);
8479 }
8480
8481 /* Load the partial DIEs for a secondary CU into memory.
8482 This is also used when rereading a primary CU with load_all_dies. */
8483
8484 static void
8485 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8486 {
8487 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8488 load_partial_comp_unit_reader, NULL);
8489 }
8490
8491 static void
8492 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8493 struct dwarf2_section_info *section,
8494 struct dwarf2_section_info *abbrev_section,
8495 unsigned int is_dwz)
8496 {
8497 const gdb_byte *info_ptr;
8498 struct objfile *objfile = dwarf2_per_objfile->objfile;
8499
8500 if (dwarf_read_debug)
8501 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8502 get_section_name (section),
8503 get_section_file_name (section));
8504
8505 dwarf2_read_section (objfile, section);
8506
8507 info_ptr = section->buffer;
8508
8509 while (info_ptr < section->buffer + section->size)
8510 {
8511 struct dwarf2_per_cu_data *this_cu;
8512
8513 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8514
8515 comp_unit_head cu_header;
8516 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8517 abbrev_section, info_ptr,
8518 rcuh_kind::COMPILE);
8519
8520 /* Save the compilation unit for later lookup. */
8521 if (cu_header.unit_type != DW_UT_type)
8522 {
8523 this_cu = XOBNEW (&objfile->objfile_obstack,
8524 struct dwarf2_per_cu_data);
8525 memset (this_cu, 0, sizeof (*this_cu));
8526 }
8527 else
8528 {
8529 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8530 struct signatured_type);
8531 memset (sig_type, 0, sizeof (*sig_type));
8532 sig_type->signature = cu_header.signature;
8533 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8534 this_cu = &sig_type->per_cu;
8535 }
8536 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8537 this_cu->sect_off = sect_off;
8538 this_cu->length = cu_header.length + cu_header.initial_length_size;
8539 this_cu->is_dwz = is_dwz;
8540 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8541 this_cu->section = section;
8542
8543 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8544
8545 info_ptr = info_ptr + this_cu->length;
8546 }
8547 }
8548
8549 /* Create a list of all compilation units in OBJFILE.
8550 This is only done for -readnow and building partial symtabs. */
8551
8552 static void
8553 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8554 {
8555 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8556 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8557 &dwarf2_per_objfile->abbrev, 0);
8558
8559 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8560 if (dwz != NULL)
8561 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8562 1);
8563 }
8564
8565 /* Process all loaded DIEs for compilation unit CU, starting at
8566 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8567 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8568 DW_AT_ranges). See the comments of add_partial_subprogram on how
8569 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8570
8571 static void
8572 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8573 CORE_ADDR *highpc, int set_addrmap,
8574 struct dwarf2_cu *cu)
8575 {
8576 struct partial_die_info *pdi;
8577
8578 /* Now, march along the PDI's, descending into ones which have
8579 interesting children but skipping the children of the other ones,
8580 until we reach the end of the compilation unit. */
8581
8582 pdi = first_die;
8583
8584 while (pdi != NULL)
8585 {
8586 pdi->fixup (cu);
8587
8588 /* Anonymous namespaces or modules have no name but have interesting
8589 children, so we need to look at them. Ditto for anonymous
8590 enums. */
8591
8592 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8593 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8594 || pdi->tag == DW_TAG_imported_unit
8595 || pdi->tag == DW_TAG_inlined_subroutine)
8596 {
8597 switch (pdi->tag)
8598 {
8599 case DW_TAG_subprogram:
8600 case DW_TAG_inlined_subroutine:
8601 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8602 break;
8603 case DW_TAG_constant:
8604 case DW_TAG_variable:
8605 case DW_TAG_typedef:
8606 case DW_TAG_union_type:
8607 if (!pdi->is_declaration)
8608 {
8609 add_partial_symbol (pdi, cu);
8610 }
8611 break;
8612 case DW_TAG_class_type:
8613 case DW_TAG_interface_type:
8614 case DW_TAG_structure_type:
8615 if (!pdi->is_declaration)
8616 {
8617 add_partial_symbol (pdi, cu);
8618 }
8619 if ((cu->language == language_rust
8620 || cu->language == language_cplus) && pdi->has_children)
8621 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8622 set_addrmap, cu);
8623 break;
8624 case DW_TAG_enumeration_type:
8625 if (!pdi->is_declaration)
8626 add_partial_enumeration (pdi, cu);
8627 break;
8628 case DW_TAG_base_type:
8629 case DW_TAG_subrange_type:
8630 /* File scope base type definitions are added to the partial
8631 symbol table. */
8632 add_partial_symbol (pdi, cu);
8633 break;
8634 case DW_TAG_namespace:
8635 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8636 break;
8637 case DW_TAG_module:
8638 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8639 break;
8640 case DW_TAG_imported_unit:
8641 {
8642 struct dwarf2_per_cu_data *per_cu;
8643
8644 /* For now we don't handle imported units in type units. */
8645 if (cu->per_cu->is_debug_types)
8646 {
8647 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8648 " supported in type units [in module %s]"),
8649 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8650 }
8651
8652 per_cu = dwarf2_find_containing_comp_unit
8653 (pdi->d.sect_off, pdi->is_dwz,
8654 cu->per_cu->dwarf2_per_objfile);
8655
8656 /* Go read the partial unit, if needed. */
8657 if (per_cu->v.psymtab == NULL)
8658 process_psymtab_comp_unit (per_cu, 1, cu->language);
8659
8660 VEC_safe_push (dwarf2_per_cu_ptr,
8661 cu->per_cu->imported_symtabs, per_cu);
8662 }
8663 break;
8664 case DW_TAG_imported_declaration:
8665 add_partial_symbol (pdi, cu);
8666 break;
8667 default:
8668 break;
8669 }
8670 }
8671
8672 /* If the die has a sibling, skip to the sibling. */
8673
8674 pdi = pdi->die_sibling;
8675 }
8676 }
8677
8678 /* Functions used to compute the fully scoped name of a partial DIE.
8679
8680 Normally, this is simple. For C++, the parent DIE's fully scoped
8681 name is concatenated with "::" and the partial DIE's name.
8682 Enumerators are an exception; they use the scope of their parent
8683 enumeration type, i.e. the name of the enumeration type is not
8684 prepended to the enumerator.
8685
8686 There are two complexities. One is DW_AT_specification; in this
8687 case "parent" means the parent of the target of the specification,
8688 instead of the direct parent of the DIE. The other is compilers
8689 which do not emit DW_TAG_namespace; in this case we try to guess
8690 the fully qualified name of structure types from their members'
8691 linkage names. This must be done using the DIE's children rather
8692 than the children of any DW_AT_specification target. We only need
8693 to do this for structures at the top level, i.e. if the target of
8694 any DW_AT_specification (if any; otherwise the DIE itself) does not
8695 have a parent. */
8696
8697 /* Compute the scope prefix associated with PDI's parent, in
8698 compilation unit CU. The result will be allocated on CU's
8699 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8700 field. NULL is returned if no prefix is necessary. */
8701 static const char *
8702 partial_die_parent_scope (struct partial_die_info *pdi,
8703 struct dwarf2_cu *cu)
8704 {
8705 const char *grandparent_scope;
8706 struct partial_die_info *parent, *real_pdi;
8707
8708 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8709 then this means the parent of the specification DIE. */
8710
8711 real_pdi = pdi;
8712 while (real_pdi->has_specification)
8713 {
8714 auto res = find_partial_die (real_pdi->spec_offset,
8715 real_pdi->spec_is_dwz, cu);
8716 real_pdi = res.pdi;
8717 cu = res.cu;
8718 }
8719
8720 parent = real_pdi->die_parent;
8721 if (parent == NULL)
8722 return NULL;
8723
8724 if (parent->scope_set)
8725 return parent->scope;
8726
8727 parent->fixup (cu);
8728
8729 grandparent_scope = partial_die_parent_scope (parent, cu);
8730
8731 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8732 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8733 Work around this problem here. */
8734 if (cu->language == language_cplus
8735 && parent->tag == DW_TAG_namespace
8736 && strcmp (parent->name, "::") == 0
8737 && grandparent_scope == NULL)
8738 {
8739 parent->scope = NULL;
8740 parent->scope_set = 1;
8741 return NULL;
8742 }
8743
8744 if (pdi->tag == DW_TAG_enumerator)
8745 /* Enumerators should not get the name of the enumeration as a prefix. */
8746 parent->scope = grandparent_scope;
8747 else if (parent->tag == DW_TAG_namespace
8748 || parent->tag == DW_TAG_module
8749 || parent->tag == DW_TAG_structure_type
8750 || parent->tag == DW_TAG_class_type
8751 || parent->tag == DW_TAG_interface_type
8752 || parent->tag == DW_TAG_union_type
8753 || parent->tag == DW_TAG_enumeration_type)
8754 {
8755 if (grandparent_scope == NULL)
8756 parent->scope = parent->name;
8757 else
8758 parent->scope = typename_concat (&cu->comp_unit_obstack,
8759 grandparent_scope,
8760 parent->name, 0, cu);
8761 }
8762 else
8763 {
8764 /* FIXME drow/2004-04-01: What should we be doing with
8765 function-local names? For partial symbols, we should probably be
8766 ignoring them. */
8767 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8768 dwarf_tag_name (parent->tag),
8769 sect_offset_str (pdi->sect_off));
8770 parent->scope = grandparent_scope;
8771 }
8772
8773 parent->scope_set = 1;
8774 return parent->scope;
8775 }
8776
8777 /* Return the fully scoped name associated with PDI, from compilation unit
8778 CU. The result will be allocated with malloc. */
8779
8780 static char *
8781 partial_die_full_name (struct partial_die_info *pdi,
8782 struct dwarf2_cu *cu)
8783 {
8784 const char *parent_scope;
8785
8786 /* If this is a template instantiation, we can not work out the
8787 template arguments from partial DIEs. So, unfortunately, we have
8788 to go through the full DIEs. At least any work we do building
8789 types here will be reused if full symbols are loaded later. */
8790 if (pdi->has_template_arguments)
8791 {
8792 pdi->fixup (cu);
8793
8794 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8795 {
8796 struct die_info *die;
8797 struct attribute attr;
8798 struct dwarf2_cu *ref_cu = cu;
8799
8800 /* DW_FORM_ref_addr is using section offset. */
8801 attr.name = (enum dwarf_attribute) 0;
8802 attr.form = DW_FORM_ref_addr;
8803 attr.u.unsnd = to_underlying (pdi->sect_off);
8804 die = follow_die_ref (NULL, &attr, &ref_cu);
8805
8806 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8807 }
8808 }
8809
8810 parent_scope = partial_die_parent_scope (pdi, cu);
8811 if (parent_scope == NULL)
8812 return NULL;
8813 else
8814 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8815 }
8816
8817 static void
8818 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8819 {
8820 struct dwarf2_per_objfile *dwarf2_per_objfile
8821 = cu->per_cu->dwarf2_per_objfile;
8822 struct objfile *objfile = dwarf2_per_objfile->objfile;
8823 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8824 CORE_ADDR addr = 0;
8825 const char *actual_name = NULL;
8826 CORE_ADDR baseaddr;
8827 char *built_actual_name;
8828
8829 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8830
8831 built_actual_name = partial_die_full_name (pdi, cu);
8832 if (built_actual_name != NULL)
8833 actual_name = built_actual_name;
8834
8835 if (actual_name == NULL)
8836 actual_name = pdi->name;
8837
8838 switch (pdi->tag)
8839 {
8840 case DW_TAG_inlined_subroutine:
8841 case DW_TAG_subprogram:
8842 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8843 - baseaddr);
8844 if (pdi->is_external || cu->language == language_ada)
8845 {
8846 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8847 of the global scope. But in Ada, we want to be able to access
8848 nested procedures globally. So all Ada subprograms are stored
8849 in the global scope. */
8850 add_psymbol_to_list (actual_name, strlen (actual_name),
8851 built_actual_name != NULL,
8852 VAR_DOMAIN, LOC_BLOCK,
8853 SECT_OFF_TEXT (objfile),
8854 psymbol_placement::GLOBAL,
8855 addr,
8856 cu->language, objfile);
8857 }
8858 else
8859 {
8860 add_psymbol_to_list (actual_name, strlen (actual_name),
8861 built_actual_name != NULL,
8862 VAR_DOMAIN, LOC_BLOCK,
8863 SECT_OFF_TEXT (objfile),
8864 psymbol_placement::STATIC,
8865 addr, cu->language, objfile);
8866 }
8867
8868 if (pdi->main_subprogram && actual_name != NULL)
8869 set_objfile_main_name (objfile, actual_name, cu->language);
8870 break;
8871 case DW_TAG_constant:
8872 add_psymbol_to_list (actual_name, strlen (actual_name),
8873 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8874 -1, (pdi->is_external
8875 ? psymbol_placement::GLOBAL
8876 : psymbol_placement::STATIC),
8877 0, cu->language, objfile);
8878 break;
8879 case DW_TAG_variable:
8880 if (pdi->d.locdesc)
8881 addr = decode_locdesc (pdi->d.locdesc, cu);
8882
8883 if (pdi->d.locdesc
8884 && addr == 0
8885 && !dwarf2_per_objfile->has_section_at_zero)
8886 {
8887 /* A global or static variable may also have been stripped
8888 out by the linker if unused, in which case its address
8889 will be nullified; do not add such variables into partial
8890 symbol table then. */
8891 }
8892 else if (pdi->is_external)
8893 {
8894 /* Global Variable.
8895 Don't enter into the minimal symbol tables as there is
8896 a minimal symbol table entry from the ELF symbols already.
8897 Enter into partial symbol table if it has a location
8898 descriptor or a type.
8899 If the location descriptor is missing, new_symbol will create
8900 a LOC_UNRESOLVED symbol, the address of the variable will then
8901 be determined from the minimal symbol table whenever the variable
8902 is referenced.
8903 The address for the partial symbol table entry is not
8904 used by GDB, but it comes in handy for debugging partial symbol
8905 table building. */
8906
8907 if (pdi->d.locdesc || pdi->has_type)
8908 add_psymbol_to_list (actual_name, strlen (actual_name),
8909 built_actual_name != NULL,
8910 VAR_DOMAIN, LOC_STATIC,
8911 SECT_OFF_TEXT (objfile),
8912 psymbol_placement::GLOBAL,
8913 addr, cu->language, objfile);
8914 }
8915 else
8916 {
8917 int has_loc = pdi->d.locdesc != NULL;
8918
8919 /* Static Variable. Skip symbols whose value we cannot know (those
8920 without location descriptors or constant values). */
8921 if (!has_loc && !pdi->has_const_value)
8922 {
8923 xfree (built_actual_name);
8924 return;
8925 }
8926
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_STATIC,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 has_loc ? addr : 0,
8933 cu->language, objfile);
8934 }
8935 break;
8936 case DW_TAG_typedef:
8937 case DW_TAG_base_type:
8938 case DW_TAG_subrange_type:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL,
8941 VAR_DOMAIN, LOC_TYPEDEF, -1,
8942 psymbol_placement::STATIC,
8943 0, cu->language, objfile);
8944 break;
8945 case DW_TAG_imported_declaration:
8946 case DW_TAG_namespace:
8947 add_psymbol_to_list (actual_name, strlen (actual_name),
8948 built_actual_name != NULL,
8949 VAR_DOMAIN, LOC_TYPEDEF, -1,
8950 psymbol_placement::GLOBAL,
8951 0, cu->language, objfile);
8952 break;
8953 case DW_TAG_module:
8954 /* With Fortran 77 there might be a "BLOCK DATA" module
8955 available without any name. If so, we skip the module as it
8956 doesn't bring any value. */
8957 if (actual_name != nullptr)
8958 add_psymbol_to_list (actual_name, strlen (actual_name),
8959 built_actual_name != NULL,
8960 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8961 psymbol_placement::GLOBAL,
8962 0, cu->language, objfile);
8963 break;
8964 case DW_TAG_class_type:
8965 case DW_TAG_interface_type:
8966 case DW_TAG_structure_type:
8967 case DW_TAG_union_type:
8968 case DW_TAG_enumeration_type:
8969 /* Skip external references. The DWARF standard says in the section
8970 about "Structure, Union, and Class Type Entries": "An incomplete
8971 structure, union or class type is represented by a structure,
8972 union or class entry that does not have a byte size attribute
8973 and that has a DW_AT_declaration attribute." */
8974 if (!pdi->has_byte_size && pdi->is_declaration)
8975 {
8976 xfree (built_actual_name);
8977 return;
8978 }
8979
8980 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8981 static vs. global. */
8982 add_psymbol_to_list (actual_name, strlen (actual_name),
8983 built_actual_name != NULL,
8984 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8985 cu->language == language_cplus
8986 ? psymbol_placement::GLOBAL
8987 : psymbol_placement::STATIC,
8988 0, cu->language, objfile);
8989
8990 break;
8991 case DW_TAG_enumerator:
8992 add_psymbol_to_list (actual_name, strlen (actual_name),
8993 built_actual_name != NULL,
8994 VAR_DOMAIN, LOC_CONST, -1,
8995 cu->language == language_cplus
8996 ? psymbol_placement::GLOBAL
8997 : psymbol_placement::STATIC,
8998 0, cu->language, objfile);
8999 break;
9000 default:
9001 break;
9002 }
9003
9004 xfree (built_actual_name);
9005 }
9006
9007 /* Read a partial die corresponding to a namespace; also, add a symbol
9008 corresponding to that namespace to the symbol table. NAMESPACE is
9009 the name of the enclosing namespace. */
9010
9011 static void
9012 add_partial_namespace (struct partial_die_info *pdi,
9013 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9014 int set_addrmap, struct dwarf2_cu *cu)
9015 {
9016 /* Add a symbol for the namespace. */
9017
9018 add_partial_symbol (pdi, cu);
9019
9020 /* Now scan partial symbols in that namespace. */
9021
9022 if (pdi->has_children)
9023 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9024 }
9025
9026 /* Read a partial die corresponding to a Fortran module. */
9027
9028 static void
9029 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9030 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9031 {
9032 /* Add a symbol for the namespace. */
9033
9034 add_partial_symbol (pdi, cu);
9035
9036 /* Now scan partial symbols in that module. */
9037
9038 if (pdi->has_children)
9039 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9040 }
9041
9042 /* Read a partial die corresponding to a subprogram or an inlined
9043 subprogram and create a partial symbol for that subprogram.
9044 When the CU language allows it, this routine also defines a partial
9045 symbol for each nested subprogram that this subprogram contains.
9046 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9047 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9048
9049 PDI may also be a lexical block, in which case we simply search
9050 recursively for subprograms defined inside that lexical block.
9051 Again, this is only performed when the CU language allows this
9052 type of definitions. */
9053
9054 static void
9055 add_partial_subprogram (struct partial_die_info *pdi,
9056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9057 int set_addrmap, struct dwarf2_cu *cu)
9058 {
9059 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9060 {
9061 if (pdi->has_pc_info)
9062 {
9063 if (pdi->lowpc < *lowpc)
9064 *lowpc = pdi->lowpc;
9065 if (pdi->highpc > *highpc)
9066 *highpc = pdi->highpc;
9067 if (set_addrmap)
9068 {
9069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9070 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9071 CORE_ADDR baseaddr;
9072 CORE_ADDR this_highpc;
9073 CORE_ADDR this_lowpc;
9074
9075 baseaddr = ANOFFSET (objfile->section_offsets,
9076 SECT_OFF_TEXT (objfile));
9077 this_lowpc
9078 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9079 pdi->lowpc + baseaddr)
9080 - baseaddr);
9081 this_highpc
9082 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9083 pdi->highpc + baseaddr)
9084 - baseaddr);
9085 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9086 this_lowpc, this_highpc - 1,
9087 cu->per_cu->v.psymtab);
9088 }
9089 }
9090
9091 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9092 {
9093 if (!pdi->is_declaration)
9094 /* Ignore subprogram DIEs that do not have a name, they are
9095 illegal. Do not emit a complaint at this point, we will
9096 do so when we convert this psymtab into a symtab. */
9097 if (pdi->name)
9098 add_partial_symbol (pdi, cu);
9099 }
9100 }
9101
9102 if (! pdi->has_children)
9103 return;
9104
9105 if (cu->language == language_ada)
9106 {
9107 pdi = pdi->die_child;
9108 while (pdi != NULL)
9109 {
9110 pdi->fixup (cu);
9111 if (pdi->tag == DW_TAG_subprogram
9112 || pdi->tag == DW_TAG_inlined_subroutine
9113 || pdi->tag == DW_TAG_lexical_block)
9114 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9115 pdi = pdi->die_sibling;
9116 }
9117 }
9118 }
9119
9120 /* Read a partial die corresponding to an enumeration type. */
9121
9122 static void
9123 add_partial_enumeration (struct partial_die_info *enum_pdi,
9124 struct dwarf2_cu *cu)
9125 {
9126 struct partial_die_info *pdi;
9127
9128 if (enum_pdi->name != NULL)
9129 add_partial_symbol (enum_pdi, cu);
9130
9131 pdi = enum_pdi->die_child;
9132 while (pdi)
9133 {
9134 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9135 complaint (_("malformed enumerator DIE ignored"));
9136 else
9137 add_partial_symbol (pdi, cu);
9138 pdi = pdi->die_sibling;
9139 }
9140 }
9141
9142 /* Return the initial uleb128 in the die at INFO_PTR. */
9143
9144 static unsigned int
9145 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9146 {
9147 unsigned int bytes_read;
9148
9149 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9150 }
9151
9152 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9153 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9154
9155 Return the corresponding abbrev, or NULL if the number is zero (indicating
9156 an empty DIE). In either case *BYTES_READ will be set to the length of
9157 the initial number. */
9158
9159 static struct abbrev_info *
9160 peek_die_abbrev (const die_reader_specs &reader,
9161 const gdb_byte *info_ptr, unsigned int *bytes_read)
9162 {
9163 dwarf2_cu *cu = reader.cu;
9164 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9165 unsigned int abbrev_number
9166 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9167
9168 if (abbrev_number == 0)
9169 return NULL;
9170
9171 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9172 if (!abbrev)
9173 {
9174 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9175 " at offset %s [in module %s]"),
9176 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9177 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9178 }
9179
9180 return abbrev;
9181 }
9182
9183 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9184 Returns a pointer to the end of a series of DIEs, terminated by an empty
9185 DIE. Any children of the skipped DIEs will also be skipped. */
9186
9187 static const gdb_byte *
9188 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9189 {
9190 while (1)
9191 {
9192 unsigned int bytes_read;
9193 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9194
9195 if (abbrev == NULL)
9196 return info_ptr + bytes_read;
9197 else
9198 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9199 }
9200 }
9201
9202 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9203 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9204 abbrev corresponding to that skipped uleb128 should be passed in
9205 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9206 children. */
9207
9208 static const gdb_byte *
9209 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9210 struct abbrev_info *abbrev)
9211 {
9212 unsigned int bytes_read;
9213 struct attribute attr;
9214 bfd *abfd = reader->abfd;
9215 struct dwarf2_cu *cu = reader->cu;
9216 const gdb_byte *buffer = reader->buffer;
9217 const gdb_byte *buffer_end = reader->buffer_end;
9218 unsigned int form, i;
9219
9220 for (i = 0; i < abbrev->num_attrs; i++)
9221 {
9222 /* The only abbrev we care about is DW_AT_sibling. */
9223 if (abbrev->attrs[i].name == DW_AT_sibling)
9224 {
9225 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9226 if (attr.form == DW_FORM_ref_addr)
9227 complaint (_("ignoring absolute DW_AT_sibling"));
9228 else
9229 {
9230 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9231 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9232
9233 if (sibling_ptr < info_ptr)
9234 complaint (_("DW_AT_sibling points backwards"));
9235 else if (sibling_ptr > reader->buffer_end)
9236 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9237 else
9238 return sibling_ptr;
9239 }
9240 }
9241
9242 /* If it isn't DW_AT_sibling, skip this attribute. */
9243 form = abbrev->attrs[i].form;
9244 skip_attribute:
9245 switch (form)
9246 {
9247 case DW_FORM_ref_addr:
9248 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9249 and later it is offset sized. */
9250 if (cu->header.version == 2)
9251 info_ptr += cu->header.addr_size;
9252 else
9253 info_ptr += cu->header.offset_size;
9254 break;
9255 case DW_FORM_GNU_ref_alt:
9256 info_ptr += cu->header.offset_size;
9257 break;
9258 case DW_FORM_addr:
9259 info_ptr += cu->header.addr_size;
9260 break;
9261 case DW_FORM_data1:
9262 case DW_FORM_ref1:
9263 case DW_FORM_flag:
9264 info_ptr += 1;
9265 break;
9266 case DW_FORM_flag_present:
9267 case DW_FORM_implicit_const:
9268 break;
9269 case DW_FORM_data2:
9270 case DW_FORM_ref2:
9271 info_ptr += 2;
9272 break;
9273 case DW_FORM_data4:
9274 case DW_FORM_ref4:
9275 info_ptr += 4;
9276 break;
9277 case DW_FORM_data8:
9278 case DW_FORM_ref8:
9279 case DW_FORM_ref_sig8:
9280 info_ptr += 8;
9281 break;
9282 case DW_FORM_data16:
9283 info_ptr += 16;
9284 break;
9285 case DW_FORM_string:
9286 read_direct_string (abfd, info_ptr, &bytes_read);
9287 info_ptr += bytes_read;
9288 break;
9289 case DW_FORM_sec_offset:
9290 case DW_FORM_strp:
9291 case DW_FORM_GNU_strp_alt:
9292 info_ptr += cu->header.offset_size;
9293 break;
9294 case DW_FORM_exprloc:
9295 case DW_FORM_block:
9296 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9297 info_ptr += bytes_read;
9298 break;
9299 case DW_FORM_block1:
9300 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9301 break;
9302 case DW_FORM_block2:
9303 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9304 break;
9305 case DW_FORM_block4:
9306 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9307 break;
9308 case DW_FORM_addrx:
9309 case DW_FORM_strx:
9310 case DW_FORM_sdata:
9311 case DW_FORM_udata:
9312 case DW_FORM_ref_udata:
9313 case DW_FORM_GNU_addr_index:
9314 case DW_FORM_GNU_str_index:
9315 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9316 break;
9317 case DW_FORM_indirect:
9318 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9319 info_ptr += bytes_read;
9320 /* We need to continue parsing from here, so just go back to
9321 the top. */
9322 goto skip_attribute;
9323
9324 default:
9325 error (_("Dwarf Error: Cannot handle %s "
9326 "in DWARF reader [in module %s]"),
9327 dwarf_form_name (form),
9328 bfd_get_filename (abfd));
9329 }
9330 }
9331
9332 if (abbrev->has_children)
9333 return skip_children (reader, info_ptr);
9334 else
9335 return info_ptr;
9336 }
9337
9338 /* Locate ORIG_PDI's sibling.
9339 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9340
9341 static const gdb_byte *
9342 locate_pdi_sibling (const struct die_reader_specs *reader,
9343 struct partial_die_info *orig_pdi,
9344 const gdb_byte *info_ptr)
9345 {
9346 /* Do we know the sibling already? */
9347
9348 if (orig_pdi->sibling)
9349 return orig_pdi->sibling;
9350
9351 /* Are there any children to deal with? */
9352
9353 if (!orig_pdi->has_children)
9354 return info_ptr;
9355
9356 /* Skip the children the long way. */
9357
9358 return skip_children (reader, info_ptr);
9359 }
9360
9361 /* Expand this partial symbol table into a full symbol table. SELF is
9362 not NULL. */
9363
9364 static void
9365 dwarf2_read_symtab (struct partial_symtab *self,
9366 struct objfile *objfile)
9367 {
9368 struct dwarf2_per_objfile *dwarf2_per_objfile
9369 = get_dwarf2_per_objfile (objfile);
9370
9371 if (self->readin)
9372 {
9373 warning (_("bug: psymtab for %s is already read in."),
9374 self->filename);
9375 }
9376 else
9377 {
9378 if (info_verbose)
9379 {
9380 printf_filtered (_("Reading in symbols for %s..."),
9381 self->filename);
9382 gdb_flush (gdb_stdout);
9383 }
9384
9385 /* If this psymtab is constructed from a debug-only objfile, the
9386 has_section_at_zero flag will not necessarily be correct. We
9387 can get the correct value for this flag by looking at the data
9388 associated with the (presumably stripped) associated objfile. */
9389 if (objfile->separate_debug_objfile_backlink)
9390 {
9391 struct dwarf2_per_objfile *dpo_backlink
9392 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9393
9394 dwarf2_per_objfile->has_section_at_zero
9395 = dpo_backlink->has_section_at_zero;
9396 }
9397
9398 dwarf2_per_objfile->reading_partial_symbols = 0;
9399
9400 psymtab_to_symtab_1 (self);
9401
9402 /* Finish up the debug error message. */
9403 if (info_verbose)
9404 printf_filtered (_("done.\n"));
9405 }
9406
9407 process_cu_includes (dwarf2_per_objfile);
9408 }
9409 \f
9410 /* Reading in full CUs. */
9411
9412 /* Add PER_CU to the queue. */
9413
9414 static void
9415 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9416 enum language pretend_language)
9417 {
9418 struct dwarf2_queue_item *item;
9419
9420 per_cu->queued = 1;
9421 item = XNEW (struct dwarf2_queue_item);
9422 item->per_cu = per_cu;
9423 item->pretend_language = pretend_language;
9424 item->next = NULL;
9425
9426 if (dwarf2_queue == NULL)
9427 dwarf2_queue = item;
9428 else
9429 dwarf2_queue_tail->next = item;
9430
9431 dwarf2_queue_tail = item;
9432 }
9433
9434 /* If PER_CU is not yet queued, add it to the queue.
9435 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9436 dependency.
9437 The result is non-zero if PER_CU was queued, otherwise the result is zero
9438 meaning either PER_CU is already queued or it is already loaded.
9439
9440 N.B. There is an invariant here that if a CU is queued then it is loaded.
9441 The caller is required to load PER_CU if we return non-zero. */
9442
9443 static int
9444 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9445 struct dwarf2_per_cu_data *per_cu,
9446 enum language pretend_language)
9447 {
9448 /* We may arrive here during partial symbol reading, if we need full
9449 DIEs to process an unusual case (e.g. template arguments). Do
9450 not queue PER_CU, just tell our caller to load its DIEs. */
9451 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9452 {
9453 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9454 return 1;
9455 return 0;
9456 }
9457
9458 /* Mark the dependence relation so that we don't flush PER_CU
9459 too early. */
9460 if (dependent_cu != NULL)
9461 dwarf2_add_dependence (dependent_cu, per_cu);
9462
9463 /* If it's already on the queue, we have nothing to do. */
9464 if (per_cu->queued)
9465 return 0;
9466
9467 /* If the compilation unit is already loaded, just mark it as
9468 used. */
9469 if (per_cu->cu != NULL)
9470 {
9471 per_cu->cu->last_used = 0;
9472 return 0;
9473 }
9474
9475 /* Add it to the queue. */
9476 queue_comp_unit (per_cu, pretend_language);
9477
9478 return 1;
9479 }
9480
9481 /* Process the queue. */
9482
9483 static void
9484 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9485 {
9486 struct dwarf2_queue_item *item, *next_item;
9487
9488 if (dwarf_read_debug)
9489 {
9490 fprintf_unfiltered (gdb_stdlog,
9491 "Expanding one or more symtabs of objfile %s ...\n",
9492 objfile_name (dwarf2_per_objfile->objfile));
9493 }
9494
9495 /* The queue starts out with one item, but following a DIE reference
9496 may load a new CU, adding it to the end of the queue. */
9497 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9498 {
9499 if ((dwarf2_per_objfile->using_index
9500 ? !item->per_cu->v.quick->compunit_symtab
9501 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9502 /* Skip dummy CUs. */
9503 && item->per_cu->cu != NULL)
9504 {
9505 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9506 unsigned int debug_print_threshold;
9507 char buf[100];
9508
9509 if (per_cu->is_debug_types)
9510 {
9511 struct signatured_type *sig_type =
9512 (struct signatured_type *) per_cu;
9513
9514 sprintf (buf, "TU %s at offset %s",
9515 hex_string (sig_type->signature),
9516 sect_offset_str (per_cu->sect_off));
9517 /* There can be 100s of TUs.
9518 Only print them in verbose mode. */
9519 debug_print_threshold = 2;
9520 }
9521 else
9522 {
9523 sprintf (buf, "CU at offset %s",
9524 sect_offset_str (per_cu->sect_off));
9525 debug_print_threshold = 1;
9526 }
9527
9528 if (dwarf_read_debug >= debug_print_threshold)
9529 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9530
9531 if (per_cu->is_debug_types)
9532 process_full_type_unit (per_cu, item->pretend_language);
9533 else
9534 process_full_comp_unit (per_cu, item->pretend_language);
9535
9536 if (dwarf_read_debug >= debug_print_threshold)
9537 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9538 }
9539
9540 item->per_cu->queued = 0;
9541 next_item = item->next;
9542 xfree (item);
9543 }
9544
9545 dwarf2_queue_tail = NULL;
9546
9547 if (dwarf_read_debug)
9548 {
9549 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9550 objfile_name (dwarf2_per_objfile->objfile));
9551 }
9552 }
9553
9554 /* Read in full symbols for PST, and anything it depends on. */
9555
9556 static void
9557 psymtab_to_symtab_1 (struct partial_symtab *pst)
9558 {
9559 struct dwarf2_per_cu_data *per_cu;
9560 int i;
9561
9562 if (pst->readin)
9563 return;
9564
9565 for (i = 0; i < pst->number_of_dependencies; i++)
9566 if (!pst->dependencies[i]->readin
9567 && pst->dependencies[i]->user == NULL)
9568 {
9569 /* Inform about additional files that need to be read in. */
9570 if (info_verbose)
9571 {
9572 /* FIXME: i18n: Need to make this a single string. */
9573 fputs_filtered (" ", gdb_stdout);
9574 wrap_here ("");
9575 fputs_filtered ("and ", gdb_stdout);
9576 wrap_here ("");
9577 printf_filtered ("%s...", pst->dependencies[i]->filename);
9578 wrap_here (""); /* Flush output. */
9579 gdb_flush (gdb_stdout);
9580 }
9581 psymtab_to_symtab_1 (pst->dependencies[i]);
9582 }
9583
9584 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9585
9586 if (per_cu == NULL)
9587 {
9588 /* It's an include file, no symbols to read for it.
9589 Everything is in the parent symtab. */
9590 pst->readin = 1;
9591 return;
9592 }
9593
9594 dw2_do_instantiate_symtab (per_cu, false);
9595 }
9596
9597 /* Trivial hash function for die_info: the hash value of a DIE
9598 is its offset in .debug_info for this objfile. */
9599
9600 static hashval_t
9601 die_hash (const void *item)
9602 {
9603 const struct die_info *die = (const struct die_info *) item;
9604
9605 return to_underlying (die->sect_off);
9606 }
9607
9608 /* Trivial comparison function for die_info structures: two DIEs
9609 are equal if they have the same offset. */
9610
9611 static int
9612 die_eq (const void *item_lhs, const void *item_rhs)
9613 {
9614 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9615 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9616
9617 return die_lhs->sect_off == die_rhs->sect_off;
9618 }
9619
9620 /* die_reader_func for load_full_comp_unit.
9621 This is identical to read_signatured_type_reader,
9622 but is kept separate for now. */
9623
9624 static void
9625 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9626 const gdb_byte *info_ptr,
9627 struct die_info *comp_unit_die,
9628 int has_children,
9629 void *data)
9630 {
9631 struct dwarf2_cu *cu = reader->cu;
9632 enum language *language_ptr = (enum language *) data;
9633
9634 gdb_assert (cu->die_hash == NULL);
9635 cu->die_hash =
9636 htab_create_alloc_ex (cu->header.length / 12,
9637 die_hash,
9638 die_eq,
9639 NULL,
9640 &cu->comp_unit_obstack,
9641 hashtab_obstack_allocate,
9642 dummy_obstack_deallocate);
9643
9644 if (has_children)
9645 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9646 &info_ptr, comp_unit_die);
9647 cu->dies = comp_unit_die;
9648 /* comp_unit_die is not stored in die_hash, no need. */
9649
9650 /* We try not to read any attributes in this function, because not
9651 all CUs needed for references have been loaded yet, and symbol
9652 table processing isn't initialized. But we have to set the CU language,
9653 or we won't be able to build types correctly.
9654 Similarly, if we do not read the producer, we can not apply
9655 producer-specific interpretation. */
9656 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9657 }
9658
9659 /* Load the DIEs associated with PER_CU into memory. */
9660
9661 static void
9662 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9663 bool skip_partial,
9664 enum language pretend_language)
9665 {
9666 gdb_assert (! this_cu->is_debug_types);
9667
9668 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9669 load_full_comp_unit_reader, &pretend_language);
9670 }
9671
9672 /* Add a DIE to the delayed physname list. */
9673
9674 static void
9675 add_to_method_list (struct type *type, int fnfield_index, int index,
9676 const char *name, struct die_info *die,
9677 struct dwarf2_cu *cu)
9678 {
9679 struct delayed_method_info mi;
9680 mi.type = type;
9681 mi.fnfield_index = fnfield_index;
9682 mi.index = index;
9683 mi.name = name;
9684 mi.die = die;
9685 cu->method_list.push_back (mi);
9686 }
9687
9688 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9689 "const" / "volatile". If so, decrements LEN by the length of the
9690 modifier and return true. Otherwise return false. */
9691
9692 template<size_t N>
9693 static bool
9694 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9695 {
9696 size_t mod_len = sizeof (mod) - 1;
9697 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9698 {
9699 len -= mod_len;
9700 return true;
9701 }
9702 return false;
9703 }
9704
9705 /* Compute the physnames of any methods on the CU's method list.
9706
9707 The computation of method physnames is delayed in order to avoid the
9708 (bad) condition that one of the method's formal parameters is of an as yet
9709 incomplete type. */
9710
9711 static void
9712 compute_delayed_physnames (struct dwarf2_cu *cu)
9713 {
9714 /* Only C++ delays computing physnames. */
9715 if (cu->method_list.empty ())
9716 return;
9717 gdb_assert (cu->language == language_cplus);
9718
9719 for (const delayed_method_info &mi : cu->method_list)
9720 {
9721 const char *physname;
9722 struct fn_fieldlist *fn_flp
9723 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9724 physname = dwarf2_physname (mi.name, mi.die, cu);
9725 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9726 = physname ? physname : "";
9727
9728 /* Since there's no tag to indicate whether a method is a
9729 const/volatile overload, extract that information out of the
9730 demangled name. */
9731 if (physname != NULL)
9732 {
9733 size_t len = strlen (physname);
9734
9735 while (1)
9736 {
9737 if (physname[len] == ')') /* shortcut */
9738 break;
9739 else if (check_modifier (physname, len, " const"))
9740 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9741 else if (check_modifier (physname, len, " volatile"))
9742 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9743 else
9744 break;
9745 }
9746 }
9747 }
9748
9749 /* The list is no longer needed. */
9750 cu->method_list.clear ();
9751 }
9752
9753 /* Go objects should be embedded in a DW_TAG_module DIE,
9754 and it's not clear if/how imported objects will appear.
9755 To keep Go support simple until that's worked out,
9756 go back through what we've read and create something usable.
9757 We could do this while processing each DIE, and feels kinda cleaner,
9758 but that way is more invasive.
9759 This is to, for example, allow the user to type "p var" or "b main"
9760 without having to specify the package name, and allow lookups
9761 of module.object to work in contexts that use the expression
9762 parser. */
9763
9764 static void
9765 fixup_go_packaging (struct dwarf2_cu *cu)
9766 {
9767 char *package_name = NULL;
9768 struct pending *list;
9769 int i;
9770
9771 for (list = *cu->get_builder ()->get_global_symbols ();
9772 list != NULL;
9773 list = list->next)
9774 {
9775 for (i = 0; i < list->nsyms; ++i)
9776 {
9777 struct symbol *sym = list->symbol[i];
9778
9779 if (SYMBOL_LANGUAGE (sym) == language_go
9780 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9781 {
9782 char *this_package_name = go_symbol_package_name (sym);
9783
9784 if (this_package_name == NULL)
9785 continue;
9786 if (package_name == NULL)
9787 package_name = this_package_name;
9788 else
9789 {
9790 struct objfile *objfile
9791 = cu->per_cu->dwarf2_per_objfile->objfile;
9792 if (strcmp (package_name, this_package_name) != 0)
9793 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9794 (symbol_symtab (sym) != NULL
9795 ? symtab_to_filename_for_display
9796 (symbol_symtab (sym))
9797 : objfile_name (objfile)),
9798 this_package_name, package_name);
9799 xfree (this_package_name);
9800 }
9801 }
9802 }
9803 }
9804
9805 if (package_name != NULL)
9806 {
9807 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9808 const char *saved_package_name
9809 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9810 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9811 saved_package_name);
9812 struct symbol *sym;
9813
9814 sym = allocate_symbol (objfile);
9815 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9816 SYMBOL_SET_NAMES (sym, saved_package_name,
9817 strlen (saved_package_name), 0, objfile);
9818 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9819 e.g., "main" finds the "main" module and not C's main(). */
9820 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9821 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9822 SYMBOL_TYPE (sym) = type;
9823
9824 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9825
9826 xfree (package_name);
9827 }
9828 }
9829
9830 /* Allocate a fully-qualified name consisting of the two parts on the
9831 obstack. */
9832
9833 static const char *
9834 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9835 {
9836 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9837 }
9838
9839 /* A helper that allocates a struct discriminant_info to attach to a
9840 union type. */
9841
9842 static struct discriminant_info *
9843 alloc_discriminant_info (struct type *type, int discriminant_index,
9844 int default_index)
9845 {
9846 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9847 gdb_assert (discriminant_index == -1
9848 || (discriminant_index >= 0
9849 && discriminant_index < TYPE_NFIELDS (type)));
9850 gdb_assert (default_index == -1
9851 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9852
9853 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9854
9855 struct discriminant_info *disc
9856 = ((struct discriminant_info *)
9857 TYPE_ZALLOC (type,
9858 offsetof (struct discriminant_info, discriminants)
9859 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9860 disc->default_index = default_index;
9861 disc->discriminant_index = discriminant_index;
9862
9863 struct dynamic_prop prop;
9864 prop.kind = PROP_UNDEFINED;
9865 prop.data.baton = disc;
9866
9867 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9868
9869 return disc;
9870 }
9871
9872 /* Some versions of rustc emitted enums in an unusual way.
9873
9874 Ordinary enums were emitted as unions. The first element of each
9875 structure in the union was named "RUST$ENUM$DISR". This element
9876 held the discriminant.
9877
9878 These versions of Rust also implemented the "non-zero"
9879 optimization. When the enum had two values, and one is empty and
9880 the other holds a pointer that cannot be zero, the pointer is used
9881 as the discriminant, with a zero value meaning the empty variant.
9882 Here, the union's first member is of the form
9883 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9884 where the fieldnos are the indices of the fields that should be
9885 traversed in order to find the field (which may be several fields deep)
9886 and the variantname is the name of the variant of the case when the
9887 field is zero.
9888
9889 This function recognizes whether TYPE is of one of these forms,
9890 and, if so, smashes it to be a variant type. */
9891
9892 static void
9893 quirk_rust_enum (struct type *type, struct objfile *objfile)
9894 {
9895 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9896
9897 /* We don't need to deal with empty enums. */
9898 if (TYPE_NFIELDS (type) == 0)
9899 return;
9900
9901 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9902 if (TYPE_NFIELDS (type) == 1
9903 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9904 {
9905 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9906
9907 /* Decode the field name to find the offset of the
9908 discriminant. */
9909 ULONGEST bit_offset = 0;
9910 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9911 while (name[0] >= '0' && name[0] <= '9')
9912 {
9913 char *tail;
9914 unsigned long index = strtoul (name, &tail, 10);
9915 name = tail;
9916 if (*name != '$'
9917 || index >= TYPE_NFIELDS (field_type)
9918 || (TYPE_FIELD_LOC_KIND (field_type, index)
9919 != FIELD_LOC_KIND_BITPOS))
9920 {
9921 complaint (_("Could not parse Rust enum encoding string \"%s\""
9922 "[in module %s]"),
9923 TYPE_FIELD_NAME (type, 0),
9924 objfile_name (objfile));
9925 return;
9926 }
9927 ++name;
9928
9929 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9930 field_type = TYPE_FIELD_TYPE (field_type, index);
9931 }
9932
9933 /* Make a union to hold the variants. */
9934 struct type *union_type = alloc_type (objfile);
9935 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9936 TYPE_NFIELDS (union_type) = 3;
9937 TYPE_FIELDS (union_type)
9938 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9939 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9940 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9941
9942 /* Put the discriminant must at index 0. */
9943 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9944 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9945 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9946 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9947
9948 /* The order of fields doesn't really matter, so put the real
9949 field at index 1 and the data-less field at index 2. */
9950 struct discriminant_info *disc
9951 = alloc_discriminant_info (union_type, 0, 1);
9952 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9953 TYPE_FIELD_NAME (union_type, 1)
9954 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9955 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9956 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9957 TYPE_FIELD_NAME (union_type, 1));
9958
9959 const char *dataless_name
9960 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9961 name);
9962 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9963 dataless_name);
9964 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9965 /* NAME points into the original discriminant name, which
9966 already has the correct lifetime. */
9967 TYPE_FIELD_NAME (union_type, 2) = name;
9968 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9969 disc->discriminants[2] = 0;
9970
9971 /* Smash this type to be a structure type. We have to do this
9972 because the type has already been recorded. */
9973 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9974 TYPE_NFIELDS (type) = 1;
9975 TYPE_FIELDS (type)
9976 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9977
9978 /* Install the variant part. */
9979 TYPE_FIELD_TYPE (type, 0) = union_type;
9980 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9981 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9982 }
9983 else if (TYPE_NFIELDS (type) == 1)
9984 {
9985 /* We assume that a union with a single field is a univariant
9986 enum. */
9987 /* Smash this type to be a structure type. We have to do this
9988 because the type has already been recorded. */
9989 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9990
9991 /* Make a union to hold the variants. */
9992 struct type *union_type = alloc_type (objfile);
9993 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9994 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9995 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9996 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9997 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9998
9999 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10000 const char *variant_name
10001 = rust_last_path_segment (TYPE_NAME (field_type));
10002 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10003 TYPE_NAME (field_type)
10004 = rust_fully_qualify (&objfile->objfile_obstack,
10005 TYPE_NAME (type), variant_name);
10006
10007 /* Install the union in the outer struct type. */
10008 TYPE_NFIELDS (type) = 1;
10009 TYPE_FIELDS (type)
10010 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10011 TYPE_FIELD_TYPE (type, 0) = union_type;
10012 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10013 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10014
10015 alloc_discriminant_info (union_type, -1, 0);
10016 }
10017 else
10018 {
10019 struct type *disr_type = nullptr;
10020 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10021 {
10022 disr_type = TYPE_FIELD_TYPE (type, i);
10023
10024 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10025 {
10026 /* All fields of a true enum will be structs. */
10027 return;
10028 }
10029 else if (TYPE_NFIELDS (disr_type) == 0)
10030 {
10031 /* Could be data-less variant, so keep going. */
10032 disr_type = nullptr;
10033 }
10034 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10035 "RUST$ENUM$DISR") != 0)
10036 {
10037 /* Not a Rust enum. */
10038 return;
10039 }
10040 else
10041 {
10042 /* Found one. */
10043 break;
10044 }
10045 }
10046
10047 /* If we got here without a discriminant, then it's probably
10048 just a union. */
10049 if (disr_type == nullptr)
10050 return;
10051
10052 /* Smash this type to be a structure type. We have to do this
10053 because the type has already been recorded. */
10054 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10055
10056 /* Make a union to hold the variants. */
10057 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10058 struct type *union_type = alloc_type (objfile);
10059 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10060 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10061 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10062 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10063 TYPE_FIELDS (union_type)
10064 = (struct field *) TYPE_ZALLOC (union_type,
10065 (TYPE_NFIELDS (union_type)
10066 * sizeof (struct field)));
10067
10068 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10069 TYPE_NFIELDS (type) * sizeof (struct field));
10070
10071 /* Install the discriminant at index 0 in the union. */
10072 TYPE_FIELD (union_type, 0) = *disr_field;
10073 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10074 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10075
10076 /* Install the union in the outer struct type. */
10077 TYPE_FIELD_TYPE (type, 0) = union_type;
10078 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10079 TYPE_NFIELDS (type) = 1;
10080
10081 /* Set the size and offset of the union type. */
10082 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10083
10084 /* We need a way to find the correct discriminant given a
10085 variant name. For convenience we build a map here. */
10086 struct type *enum_type = FIELD_TYPE (*disr_field);
10087 std::unordered_map<std::string, ULONGEST> discriminant_map;
10088 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10089 {
10090 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10091 {
10092 const char *name
10093 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10094 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10095 }
10096 }
10097
10098 int n_fields = TYPE_NFIELDS (union_type);
10099 struct discriminant_info *disc
10100 = alloc_discriminant_info (union_type, 0, -1);
10101 /* Skip the discriminant here. */
10102 for (int i = 1; i < n_fields; ++i)
10103 {
10104 /* Find the final word in the name of this variant's type.
10105 That name can be used to look up the correct
10106 discriminant. */
10107 const char *variant_name
10108 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10109 i)));
10110
10111 auto iter = discriminant_map.find (variant_name);
10112 if (iter != discriminant_map.end ())
10113 disc->discriminants[i] = iter->second;
10114
10115 /* Remove the discriminant field, if it exists. */
10116 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10117 if (TYPE_NFIELDS (sub_type) > 0)
10118 {
10119 --TYPE_NFIELDS (sub_type);
10120 ++TYPE_FIELDS (sub_type);
10121 }
10122 TYPE_FIELD_NAME (union_type, i) = variant_name;
10123 TYPE_NAME (sub_type)
10124 = rust_fully_qualify (&objfile->objfile_obstack,
10125 TYPE_NAME (type), variant_name);
10126 }
10127 }
10128 }
10129
10130 /* Rewrite some Rust unions to be structures with variants parts. */
10131
10132 static void
10133 rust_union_quirks (struct dwarf2_cu *cu)
10134 {
10135 gdb_assert (cu->language == language_rust);
10136 for (type *type_ : cu->rust_unions)
10137 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10138 /* We don't need this any more. */
10139 cu->rust_unions.clear ();
10140 }
10141
10142 /* Return the symtab for PER_CU. This works properly regardless of
10143 whether we're using the index or psymtabs. */
10144
10145 static struct compunit_symtab *
10146 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10147 {
10148 return (per_cu->dwarf2_per_objfile->using_index
10149 ? per_cu->v.quick->compunit_symtab
10150 : per_cu->v.psymtab->compunit_symtab);
10151 }
10152
10153 /* A helper function for computing the list of all symbol tables
10154 included by PER_CU. */
10155
10156 static void
10157 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10158 htab_t all_children, htab_t all_type_symtabs,
10159 struct dwarf2_per_cu_data *per_cu,
10160 struct compunit_symtab *immediate_parent)
10161 {
10162 void **slot;
10163 int ix;
10164 struct compunit_symtab *cust;
10165 struct dwarf2_per_cu_data *iter;
10166
10167 slot = htab_find_slot (all_children, per_cu, INSERT);
10168 if (*slot != NULL)
10169 {
10170 /* This inclusion and its children have been processed. */
10171 return;
10172 }
10173
10174 *slot = per_cu;
10175 /* Only add a CU if it has a symbol table. */
10176 cust = get_compunit_symtab (per_cu);
10177 if (cust != NULL)
10178 {
10179 /* If this is a type unit only add its symbol table if we haven't
10180 seen it yet (type unit per_cu's can share symtabs). */
10181 if (per_cu->is_debug_types)
10182 {
10183 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10184 if (*slot == NULL)
10185 {
10186 *slot = cust;
10187 result->push_back (cust);
10188 if (cust->user == NULL)
10189 cust->user = immediate_parent;
10190 }
10191 }
10192 else
10193 {
10194 result->push_back (cust);
10195 if (cust->user == NULL)
10196 cust->user = immediate_parent;
10197 }
10198 }
10199
10200 for (ix = 0;
10201 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10202 ++ix)
10203 {
10204 recursively_compute_inclusions (result, all_children,
10205 all_type_symtabs, iter, cust);
10206 }
10207 }
10208
10209 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10210 PER_CU. */
10211
10212 static void
10213 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10214 {
10215 gdb_assert (! per_cu->is_debug_types);
10216
10217 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10218 {
10219 int ix, len;
10220 struct dwarf2_per_cu_data *per_cu_iter;
10221 std::vector<compunit_symtab *> result_symtabs;
10222 htab_t all_children, all_type_symtabs;
10223 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10224
10225 /* If we don't have a symtab, we can just skip this case. */
10226 if (cust == NULL)
10227 return;
10228
10229 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10230 NULL, xcalloc, xfree);
10231 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10232 NULL, xcalloc, xfree);
10233
10234 for (ix = 0;
10235 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10236 ix, per_cu_iter);
10237 ++ix)
10238 {
10239 recursively_compute_inclusions (&result_symtabs, all_children,
10240 all_type_symtabs, per_cu_iter,
10241 cust);
10242 }
10243
10244 /* Now we have a transitive closure of all the included symtabs. */
10245 len = result_symtabs.size ();
10246 cust->includes
10247 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10248 struct compunit_symtab *, len + 1);
10249 memcpy (cust->includes, result_symtabs.data (),
10250 len * sizeof (compunit_symtab *));
10251 cust->includes[len] = NULL;
10252
10253 htab_delete (all_children);
10254 htab_delete (all_type_symtabs);
10255 }
10256 }
10257
10258 /* Compute the 'includes' field for the symtabs of all the CUs we just
10259 read. */
10260
10261 static void
10262 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10263 {
10264 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10265 {
10266 if (! iter->is_debug_types)
10267 compute_compunit_symtab_includes (iter);
10268 }
10269
10270 dwarf2_per_objfile->just_read_cus.clear ();
10271 }
10272
10273 /* Generate full symbol information for PER_CU, whose DIEs have
10274 already been loaded into memory. */
10275
10276 static void
10277 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10278 enum language pretend_language)
10279 {
10280 struct dwarf2_cu *cu = per_cu->cu;
10281 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10282 struct objfile *objfile = dwarf2_per_objfile->objfile;
10283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10284 CORE_ADDR lowpc, highpc;
10285 struct compunit_symtab *cust;
10286 CORE_ADDR baseaddr;
10287 struct block *static_block;
10288 CORE_ADDR addr;
10289
10290 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10291
10292 /* Clear the list here in case something was left over. */
10293 cu->method_list.clear ();
10294
10295 cu->language = pretend_language;
10296 cu->language_defn = language_def (cu->language);
10297
10298 /* Do line number decoding in read_file_scope () */
10299 process_die (cu->dies, cu);
10300
10301 /* For now fudge the Go package. */
10302 if (cu->language == language_go)
10303 fixup_go_packaging (cu);
10304
10305 /* Now that we have processed all the DIEs in the CU, all the types
10306 should be complete, and it should now be safe to compute all of the
10307 physnames. */
10308 compute_delayed_physnames (cu);
10309
10310 if (cu->language == language_rust)
10311 rust_union_quirks (cu);
10312
10313 /* Some compilers don't define a DW_AT_high_pc attribute for the
10314 compilation unit. If the DW_AT_high_pc is missing, synthesize
10315 it, by scanning the DIE's below the compilation unit. */
10316 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10317
10318 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10319 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10320
10321 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10322 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10323 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10324 addrmap to help ensure it has an accurate map of pc values belonging to
10325 this comp unit. */
10326 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10327
10328 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10329 SECT_OFF_TEXT (objfile),
10330 0);
10331
10332 if (cust != NULL)
10333 {
10334 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10335
10336 /* Set symtab language to language from DW_AT_language. If the
10337 compilation is from a C file generated by language preprocessors, do
10338 not set the language if it was already deduced by start_subfile. */
10339 if (!(cu->language == language_c
10340 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10341 COMPUNIT_FILETABS (cust)->language = cu->language;
10342
10343 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10344 produce DW_AT_location with location lists but it can be possibly
10345 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10346 there were bugs in prologue debug info, fixed later in GCC-4.5
10347 by "unwind info for epilogues" patch (which is not directly related).
10348
10349 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10350 needed, it would be wrong due to missing DW_AT_producer there.
10351
10352 Still one can confuse GDB by using non-standard GCC compilation
10353 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10354 */
10355 if (cu->has_loclist && gcc_4_minor >= 5)
10356 cust->locations_valid = 1;
10357
10358 if (gcc_4_minor >= 5)
10359 cust->epilogue_unwind_valid = 1;
10360
10361 cust->call_site_htab = cu->call_site_htab;
10362 }
10363
10364 if (dwarf2_per_objfile->using_index)
10365 per_cu->v.quick->compunit_symtab = cust;
10366 else
10367 {
10368 struct partial_symtab *pst = per_cu->v.psymtab;
10369 pst->compunit_symtab = cust;
10370 pst->readin = 1;
10371 }
10372
10373 /* Push it for inclusion processing later. */
10374 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10375
10376 /* Not needed any more. */
10377 cu->reset_builder ();
10378 }
10379
10380 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10381 already been loaded into memory. */
10382
10383 static void
10384 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10385 enum language pretend_language)
10386 {
10387 struct dwarf2_cu *cu = per_cu->cu;
10388 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10389 struct objfile *objfile = dwarf2_per_objfile->objfile;
10390 struct compunit_symtab *cust;
10391 struct signatured_type *sig_type;
10392
10393 gdb_assert (per_cu->is_debug_types);
10394 sig_type = (struct signatured_type *) per_cu;
10395
10396 /* Clear the list here in case something was left over. */
10397 cu->method_list.clear ();
10398
10399 cu->language = pretend_language;
10400 cu->language_defn = language_def (cu->language);
10401
10402 /* The symbol tables are set up in read_type_unit_scope. */
10403 process_die (cu->dies, cu);
10404
10405 /* For now fudge the Go package. */
10406 if (cu->language == language_go)
10407 fixup_go_packaging (cu);
10408
10409 /* Now that we have processed all the DIEs in the CU, all the types
10410 should be complete, and it should now be safe to compute all of the
10411 physnames. */
10412 compute_delayed_physnames (cu);
10413
10414 if (cu->language == language_rust)
10415 rust_union_quirks (cu);
10416
10417 /* TUs share symbol tables.
10418 If this is the first TU to use this symtab, complete the construction
10419 of it with end_expandable_symtab. Otherwise, complete the addition of
10420 this TU's symbols to the existing symtab. */
10421 if (sig_type->type_unit_group->compunit_symtab == NULL)
10422 {
10423 buildsym_compunit *builder = cu->get_builder ();
10424 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10425 sig_type->type_unit_group->compunit_symtab = cust;
10426
10427 if (cust != NULL)
10428 {
10429 /* Set symtab language to language from DW_AT_language. If the
10430 compilation is from a C file generated by language preprocessors,
10431 do not set the language if it was already deduced by
10432 start_subfile. */
10433 if (!(cu->language == language_c
10434 && COMPUNIT_FILETABS (cust)->language != language_c))
10435 COMPUNIT_FILETABS (cust)->language = cu->language;
10436 }
10437 }
10438 else
10439 {
10440 cu->get_builder ()->augment_type_symtab ();
10441 cust = sig_type->type_unit_group->compunit_symtab;
10442 }
10443
10444 if (dwarf2_per_objfile->using_index)
10445 per_cu->v.quick->compunit_symtab = cust;
10446 else
10447 {
10448 struct partial_symtab *pst = per_cu->v.psymtab;
10449 pst->compunit_symtab = cust;
10450 pst->readin = 1;
10451 }
10452
10453 /* Not needed any more. */
10454 cu->reset_builder ();
10455 }
10456
10457 /* Process an imported unit DIE. */
10458
10459 static void
10460 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10461 {
10462 struct attribute *attr;
10463
10464 /* For now we don't handle imported units in type units. */
10465 if (cu->per_cu->is_debug_types)
10466 {
10467 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10468 " supported in type units [in module %s]"),
10469 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10470 }
10471
10472 attr = dwarf2_attr (die, DW_AT_import, cu);
10473 if (attr != NULL)
10474 {
10475 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10476 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10477 dwarf2_per_cu_data *per_cu
10478 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10479 cu->per_cu->dwarf2_per_objfile);
10480
10481 /* If necessary, add it to the queue and load its DIEs. */
10482 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10483 load_full_comp_unit (per_cu, false, cu->language);
10484
10485 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10486 per_cu);
10487 }
10488 }
10489
10490 /* RAII object that represents a process_die scope: i.e.,
10491 starts/finishes processing a DIE. */
10492 class process_die_scope
10493 {
10494 public:
10495 process_die_scope (die_info *die, dwarf2_cu *cu)
10496 : m_die (die), m_cu (cu)
10497 {
10498 /* We should only be processing DIEs not already in process. */
10499 gdb_assert (!m_die->in_process);
10500 m_die->in_process = true;
10501 }
10502
10503 ~process_die_scope ()
10504 {
10505 m_die->in_process = false;
10506
10507 /* If we're done processing the DIE for the CU that owns the line
10508 header, we don't need the line header anymore. */
10509 if (m_cu->line_header_die_owner == m_die)
10510 {
10511 delete m_cu->line_header;
10512 m_cu->line_header = NULL;
10513 m_cu->line_header_die_owner = NULL;
10514 }
10515 }
10516
10517 private:
10518 die_info *m_die;
10519 dwarf2_cu *m_cu;
10520 };
10521
10522 /* Process a die and its children. */
10523
10524 static void
10525 process_die (struct die_info *die, struct dwarf2_cu *cu)
10526 {
10527 process_die_scope scope (die, cu);
10528
10529 switch (die->tag)
10530 {
10531 case DW_TAG_padding:
10532 break;
10533 case DW_TAG_compile_unit:
10534 case DW_TAG_partial_unit:
10535 read_file_scope (die, cu);
10536 break;
10537 case DW_TAG_type_unit:
10538 read_type_unit_scope (die, cu);
10539 break;
10540 case DW_TAG_subprogram:
10541 case DW_TAG_inlined_subroutine:
10542 read_func_scope (die, cu);
10543 break;
10544 case DW_TAG_lexical_block:
10545 case DW_TAG_try_block:
10546 case DW_TAG_catch_block:
10547 read_lexical_block_scope (die, cu);
10548 break;
10549 case DW_TAG_call_site:
10550 case DW_TAG_GNU_call_site:
10551 read_call_site_scope (die, cu);
10552 break;
10553 case DW_TAG_class_type:
10554 case DW_TAG_interface_type:
10555 case DW_TAG_structure_type:
10556 case DW_TAG_union_type:
10557 process_structure_scope (die, cu);
10558 break;
10559 case DW_TAG_enumeration_type:
10560 process_enumeration_scope (die, cu);
10561 break;
10562
10563 /* These dies have a type, but processing them does not create
10564 a symbol or recurse to process the children. Therefore we can
10565 read them on-demand through read_type_die. */
10566 case DW_TAG_subroutine_type:
10567 case DW_TAG_set_type:
10568 case DW_TAG_array_type:
10569 case DW_TAG_pointer_type:
10570 case DW_TAG_ptr_to_member_type:
10571 case DW_TAG_reference_type:
10572 case DW_TAG_rvalue_reference_type:
10573 case DW_TAG_string_type:
10574 break;
10575
10576 case DW_TAG_base_type:
10577 case DW_TAG_subrange_type:
10578 case DW_TAG_typedef:
10579 /* Add a typedef symbol for the type definition, if it has a
10580 DW_AT_name. */
10581 new_symbol (die, read_type_die (die, cu), cu);
10582 break;
10583 case DW_TAG_common_block:
10584 read_common_block (die, cu);
10585 break;
10586 case DW_TAG_common_inclusion:
10587 break;
10588 case DW_TAG_namespace:
10589 cu->processing_has_namespace_info = true;
10590 read_namespace (die, cu);
10591 break;
10592 case DW_TAG_module:
10593 cu->processing_has_namespace_info = true;
10594 read_module (die, cu);
10595 break;
10596 case DW_TAG_imported_declaration:
10597 cu->processing_has_namespace_info = true;
10598 if (read_namespace_alias (die, cu))
10599 break;
10600 /* The declaration is not a global namespace alias. */
10601 /* Fall through. */
10602 case DW_TAG_imported_module:
10603 cu->processing_has_namespace_info = true;
10604 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10605 || cu->language != language_fortran))
10606 complaint (_("Tag '%s' has unexpected children"),
10607 dwarf_tag_name (die->tag));
10608 read_import_statement (die, cu);
10609 break;
10610
10611 case DW_TAG_imported_unit:
10612 process_imported_unit_die (die, cu);
10613 break;
10614
10615 case DW_TAG_variable:
10616 read_variable (die, cu);
10617 break;
10618
10619 default:
10620 new_symbol (die, NULL, cu);
10621 break;
10622 }
10623 }
10624 \f
10625 /* DWARF name computation. */
10626
10627 /* A helper function for dwarf2_compute_name which determines whether DIE
10628 needs to have the name of the scope prepended to the name listed in the
10629 die. */
10630
10631 static int
10632 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10633 {
10634 struct attribute *attr;
10635
10636 switch (die->tag)
10637 {
10638 case DW_TAG_namespace:
10639 case DW_TAG_typedef:
10640 case DW_TAG_class_type:
10641 case DW_TAG_interface_type:
10642 case DW_TAG_structure_type:
10643 case DW_TAG_union_type:
10644 case DW_TAG_enumeration_type:
10645 case DW_TAG_enumerator:
10646 case DW_TAG_subprogram:
10647 case DW_TAG_inlined_subroutine:
10648 case DW_TAG_member:
10649 case DW_TAG_imported_declaration:
10650 return 1;
10651
10652 case DW_TAG_variable:
10653 case DW_TAG_constant:
10654 /* We only need to prefix "globally" visible variables. These include
10655 any variable marked with DW_AT_external or any variable that
10656 lives in a namespace. [Variables in anonymous namespaces
10657 require prefixing, but they are not DW_AT_external.] */
10658
10659 if (dwarf2_attr (die, DW_AT_specification, cu))
10660 {
10661 struct dwarf2_cu *spec_cu = cu;
10662
10663 return die_needs_namespace (die_specification (die, &spec_cu),
10664 spec_cu);
10665 }
10666
10667 attr = dwarf2_attr (die, DW_AT_external, cu);
10668 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10669 && die->parent->tag != DW_TAG_module)
10670 return 0;
10671 /* A variable in a lexical block of some kind does not need a
10672 namespace, even though in C++ such variables may be external
10673 and have a mangled name. */
10674 if (die->parent->tag == DW_TAG_lexical_block
10675 || die->parent->tag == DW_TAG_try_block
10676 || die->parent->tag == DW_TAG_catch_block
10677 || die->parent->tag == DW_TAG_subprogram)
10678 return 0;
10679 return 1;
10680
10681 default:
10682 return 0;
10683 }
10684 }
10685
10686 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10687 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10688 defined for the given DIE. */
10689
10690 static struct attribute *
10691 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10692 {
10693 struct attribute *attr;
10694
10695 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10696 if (attr == NULL)
10697 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10698
10699 return attr;
10700 }
10701
10702 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10703 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10704 defined for the given DIE. */
10705
10706 static const char *
10707 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10708 {
10709 const char *linkage_name;
10710
10711 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10712 if (linkage_name == NULL)
10713 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10714
10715 return linkage_name;
10716 }
10717
10718 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10719 compute the physname for the object, which include a method's:
10720 - formal parameters (C++),
10721 - receiver type (Go),
10722
10723 The term "physname" is a bit confusing.
10724 For C++, for example, it is the demangled name.
10725 For Go, for example, it's the mangled name.
10726
10727 For Ada, return the DIE's linkage name rather than the fully qualified
10728 name. PHYSNAME is ignored..
10729
10730 The result is allocated on the objfile_obstack and canonicalized. */
10731
10732 static const char *
10733 dwarf2_compute_name (const char *name,
10734 struct die_info *die, struct dwarf2_cu *cu,
10735 int physname)
10736 {
10737 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10738
10739 if (name == NULL)
10740 name = dwarf2_name (die, cu);
10741
10742 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10743 but otherwise compute it by typename_concat inside GDB.
10744 FIXME: Actually this is not really true, or at least not always true.
10745 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10746 Fortran names because there is no mangling standard. So new_symbol
10747 will set the demangled name to the result of dwarf2_full_name, and it is
10748 the demangled name that GDB uses if it exists. */
10749 if (cu->language == language_ada
10750 || (cu->language == language_fortran && physname))
10751 {
10752 /* For Ada unit, we prefer the linkage name over the name, as
10753 the former contains the exported name, which the user expects
10754 to be able to reference. Ideally, we want the user to be able
10755 to reference this entity using either natural or linkage name,
10756 but we haven't started looking at this enhancement yet. */
10757 const char *linkage_name = dw2_linkage_name (die, cu);
10758
10759 if (linkage_name != NULL)
10760 return linkage_name;
10761 }
10762
10763 /* These are the only languages we know how to qualify names in. */
10764 if (name != NULL
10765 && (cu->language == language_cplus
10766 || cu->language == language_fortran || cu->language == language_d
10767 || cu->language == language_rust))
10768 {
10769 if (die_needs_namespace (die, cu))
10770 {
10771 const char *prefix;
10772 const char *canonical_name = NULL;
10773
10774 string_file buf;
10775
10776 prefix = determine_prefix (die, cu);
10777 if (*prefix != '\0')
10778 {
10779 char *prefixed_name = typename_concat (NULL, prefix, name,
10780 physname, cu);
10781
10782 buf.puts (prefixed_name);
10783 xfree (prefixed_name);
10784 }
10785 else
10786 buf.puts (name);
10787
10788 /* Template parameters may be specified in the DIE's DW_AT_name, or
10789 as children with DW_TAG_template_type_param or
10790 DW_TAG_value_type_param. If the latter, add them to the name
10791 here. If the name already has template parameters, then
10792 skip this step; some versions of GCC emit both, and
10793 it is more efficient to use the pre-computed name.
10794
10795 Something to keep in mind about this process: it is very
10796 unlikely, or in some cases downright impossible, to produce
10797 something that will match the mangled name of a function.
10798 If the definition of the function has the same debug info,
10799 we should be able to match up with it anyway. But fallbacks
10800 using the minimal symbol, for instance to find a method
10801 implemented in a stripped copy of libstdc++, will not work.
10802 If we do not have debug info for the definition, we will have to
10803 match them up some other way.
10804
10805 When we do name matching there is a related problem with function
10806 templates; two instantiated function templates are allowed to
10807 differ only by their return types, which we do not add here. */
10808
10809 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10810 {
10811 struct attribute *attr;
10812 struct die_info *child;
10813 int first = 1;
10814
10815 die->building_fullname = 1;
10816
10817 for (child = die->child; child != NULL; child = child->sibling)
10818 {
10819 struct type *type;
10820 LONGEST value;
10821 const gdb_byte *bytes;
10822 struct dwarf2_locexpr_baton *baton;
10823 struct value *v;
10824
10825 if (child->tag != DW_TAG_template_type_param
10826 && child->tag != DW_TAG_template_value_param)
10827 continue;
10828
10829 if (first)
10830 {
10831 buf.puts ("<");
10832 first = 0;
10833 }
10834 else
10835 buf.puts (", ");
10836
10837 attr = dwarf2_attr (child, DW_AT_type, cu);
10838 if (attr == NULL)
10839 {
10840 complaint (_("template parameter missing DW_AT_type"));
10841 buf.puts ("UNKNOWN_TYPE");
10842 continue;
10843 }
10844 type = die_type (child, cu);
10845
10846 if (child->tag == DW_TAG_template_type_param)
10847 {
10848 c_print_type (type, "", &buf, -1, 0, cu->language,
10849 &type_print_raw_options);
10850 continue;
10851 }
10852
10853 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10854 if (attr == NULL)
10855 {
10856 complaint (_("template parameter missing "
10857 "DW_AT_const_value"));
10858 buf.puts ("UNKNOWN_VALUE");
10859 continue;
10860 }
10861
10862 dwarf2_const_value_attr (attr, type, name,
10863 &cu->comp_unit_obstack, cu,
10864 &value, &bytes, &baton);
10865
10866 if (TYPE_NOSIGN (type))
10867 /* GDB prints characters as NUMBER 'CHAR'. If that's
10868 changed, this can use value_print instead. */
10869 c_printchar (value, type, &buf);
10870 else
10871 {
10872 struct value_print_options opts;
10873
10874 if (baton != NULL)
10875 v = dwarf2_evaluate_loc_desc (type, NULL,
10876 baton->data,
10877 baton->size,
10878 baton->per_cu);
10879 else if (bytes != NULL)
10880 {
10881 v = allocate_value (type);
10882 memcpy (value_contents_writeable (v), bytes,
10883 TYPE_LENGTH (type));
10884 }
10885 else
10886 v = value_from_longest (type, value);
10887
10888 /* Specify decimal so that we do not depend on
10889 the radix. */
10890 get_formatted_print_options (&opts, 'd');
10891 opts.raw = 1;
10892 value_print (v, &buf, &opts);
10893 release_value (v);
10894 }
10895 }
10896
10897 die->building_fullname = 0;
10898
10899 if (!first)
10900 {
10901 /* Close the argument list, with a space if necessary
10902 (nested templates). */
10903 if (!buf.empty () && buf.string ().back () == '>')
10904 buf.puts (" >");
10905 else
10906 buf.puts (">");
10907 }
10908 }
10909
10910 /* For C++ methods, append formal parameter type
10911 information, if PHYSNAME. */
10912
10913 if (physname && die->tag == DW_TAG_subprogram
10914 && cu->language == language_cplus)
10915 {
10916 struct type *type = read_type_die (die, cu);
10917
10918 c_type_print_args (type, &buf, 1, cu->language,
10919 &type_print_raw_options);
10920
10921 if (cu->language == language_cplus)
10922 {
10923 /* Assume that an artificial first parameter is
10924 "this", but do not crash if it is not. RealView
10925 marks unnamed (and thus unused) parameters as
10926 artificial; there is no way to differentiate
10927 the two cases. */
10928 if (TYPE_NFIELDS (type) > 0
10929 && TYPE_FIELD_ARTIFICIAL (type, 0)
10930 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10931 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10932 0))))
10933 buf.puts (" const");
10934 }
10935 }
10936
10937 const std::string &intermediate_name = buf.string ();
10938
10939 if (cu->language == language_cplus)
10940 canonical_name
10941 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10942 &objfile->per_bfd->storage_obstack);
10943
10944 /* If we only computed INTERMEDIATE_NAME, or if
10945 INTERMEDIATE_NAME is already canonical, then we need to
10946 copy it to the appropriate obstack. */
10947 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10948 name = ((const char *)
10949 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10950 intermediate_name.c_str (),
10951 intermediate_name.length ()));
10952 else
10953 name = canonical_name;
10954 }
10955 }
10956
10957 return name;
10958 }
10959
10960 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10961 If scope qualifiers are appropriate they will be added. The result
10962 will be allocated on the storage_obstack, or NULL if the DIE does
10963 not have a name. NAME may either be from a previous call to
10964 dwarf2_name or NULL.
10965
10966 The output string will be canonicalized (if C++). */
10967
10968 static const char *
10969 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10970 {
10971 return dwarf2_compute_name (name, die, cu, 0);
10972 }
10973
10974 /* Construct a physname for the given DIE in CU. NAME may either be
10975 from a previous call to dwarf2_name or NULL. The result will be
10976 allocated on the objfile_objstack or NULL if the DIE does not have a
10977 name.
10978
10979 The output string will be canonicalized (if C++). */
10980
10981 static const char *
10982 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10983 {
10984 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10985 const char *retval, *mangled = NULL, *canon = NULL;
10986 int need_copy = 1;
10987
10988 /* In this case dwarf2_compute_name is just a shortcut not building anything
10989 on its own. */
10990 if (!die_needs_namespace (die, cu))
10991 return dwarf2_compute_name (name, die, cu, 1);
10992
10993 mangled = dw2_linkage_name (die, cu);
10994
10995 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10996 See https://github.com/rust-lang/rust/issues/32925. */
10997 if (cu->language == language_rust && mangled != NULL
10998 && strchr (mangled, '{') != NULL)
10999 mangled = NULL;
11000
11001 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11002 has computed. */
11003 gdb::unique_xmalloc_ptr<char> demangled;
11004 if (mangled != NULL)
11005 {
11006
11007 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11008 {
11009 /* Do nothing (do not demangle the symbol name). */
11010 }
11011 else if (cu->language == language_go)
11012 {
11013 /* This is a lie, but we already lie to the caller new_symbol.
11014 new_symbol assumes we return the mangled name.
11015 This just undoes that lie until things are cleaned up. */
11016 }
11017 else
11018 {
11019 /* Use DMGL_RET_DROP for C++ template functions to suppress
11020 their return type. It is easier for GDB users to search
11021 for such functions as `name(params)' than `long name(params)'.
11022 In such case the minimal symbol names do not match the full
11023 symbol names but for template functions there is never a need
11024 to look up their definition from their declaration so
11025 the only disadvantage remains the minimal symbol variant
11026 `long name(params)' does not have the proper inferior type. */
11027 demangled.reset (gdb_demangle (mangled,
11028 (DMGL_PARAMS | DMGL_ANSI
11029 | DMGL_RET_DROP)));
11030 }
11031 if (demangled)
11032 canon = demangled.get ();
11033 else
11034 {
11035 canon = mangled;
11036 need_copy = 0;
11037 }
11038 }
11039
11040 if (canon == NULL || check_physname)
11041 {
11042 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11043
11044 if (canon != NULL && strcmp (physname, canon) != 0)
11045 {
11046 /* It may not mean a bug in GDB. The compiler could also
11047 compute DW_AT_linkage_name incorrectly. But in such case
11048 GDB would need to be bug-to-bug compatible. */
11049
11050 complaint (_("Computed physname <%s> does not match demangled <%s> "
11051 "(from linkage <%s>) - DIE at %s [in module %s]"),
11052 physname, canon, mangled, sect_offset_str (die->sect_off),
11053 objfile_name (objfile));
11054
11055 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11056 is available here - over computed PHYSNAME. It is safer
11057 against both buggy GDB and buggy compilers. */
11058
11059 retval = canon;
11060 }
11061 else
11062 {
11063 retval = physname;
11064 need_copy = 0;
11065 }
11066 }
11067 else
11068 retval = canon;
11069
11070 if (need_copy)
11071 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11072
11073 return retval;
11074 }
11075
11076 /* Inspect DIE in CU for a namespace alias. If one exists, record
11077 a new symbol for it.
11078
11079 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11080
11081 static int
11082 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11083 {
11084 struct attribute *attr;
11085
11086 /* If the die does not have a name, this is not a namespace
11087 alias. */
11088 attr = dwarf2_attr (die, DW_AT_name, cu);
11089 if (attr != NULL)
11090 {
11091 int num;
11092 struct die_info *d = die;
11093 struct dwarf2_cu *imported_cu = cu;
11094
11095 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11096 keep inspecting DIEs until we hit the underlying import. */
11097 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11098 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11099 {
11100 attr = dwarf2_attr (d, DW_AT_import, cu);
11101 if (attr == NULL)
11102 break;
11103
11104 d = follow_die_ref (d, attr, &imported_cu);
11105 if (d->tag != DW_TAG_imported_declaration)
11106 break;
11107 }
11108
11109 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11110 {
11111 complaint (_("DIE at %s has too many recursively imported "
11112 "declarations"), sect_offset_str (d->sect_off));
11113 return 0;
11114 }
11115
11116 if (attr != NULL)
11117 {
11118 struct type *type;
11119 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11120
11121 type = get_die_type_at_offset (sect_off, cu->per_cu);
11122 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11123 {
11124 /* This declaration is a global namespace alias. Add
11125 a symbol for it whose type is the aliased namespace. */
11126 new_symbol (die, type, cu);
11127 return 1;
11128 }
11129 }
11130 }
11131
11132 return 0;
11133 }
11134
11135 /* Return the using directives repository (global or local?) to use in the
11136 current context for CU.
11137
11138 For Ada, imported declarations can materialize renamings, which *may* be
11139 global. However it is impossible (for now?) in DWARF to distinguish
11140 "external" imported declarations and "static" ones. As all imported
11141 declarations seem to be static in all other languages, make them all CU-wide
11142 global only in Ada. */
11143
11144 static struct using_direct **
11145 using_directives (struct dwarf2_cu *cu)
11146 {
11147 if (cu->language == language_ada
11148 && cu->get_builder ()->outermost_context_p ())
11149 return cu->get_builder ()->get_global_using_directives ();
11150 else
11151 return cu->get_builder ()->get_local_using_directives ();
11152 }
11153
11154 /* Read the import statement specified by the given die and record it. */
11155
11156 static void
11157 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11158 {
11159 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11160 struct attribute *import_attr;
11161 struct die_info *imported_die, *child_die;
11162 struct dwarf2_cu *imported_cu;
11163 const char *imported_name;
11164 const char *imported_name_prefix;
11165 const char *canonical_name;
11166 const char *import_alias;
11167 const char *imported_declaration = NULL;
11168 const char *import_prefix;
11169 std::vector<const char *> excludes;
11170
11171 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11172 if (import_attr == NULL)
11173 {
11174 complaint (_("Tag '%s' has no DW_AT_import"),
11175 dwarf_tag_name (die->tag));
11176 return;
11177 }
11178
11179 imported_cu = cu;
11180 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11181 imported_name = dwarf2_name (imported_die, imported_cu);
11182 if (imported_name == NULL)
11183 {
11184 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11185
11186 The import in the following code:
11187 namespace A
11188 {
11189 typedef int B;
11190 }
11191
11192 int main ()
11193 {
11194 using A::B;
11195 B b;
11196 return b;
11197 }
11198
11199 ...
11200 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11201 <52> DW_AT_decl_file : 1
11202 <53> DW_AT_decl_line : 6
11203 <54> DW_AT_import : <0x75>
11204 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11205 <59> DW_AT_name : B
11206 <5b> DW_AT_decl_file : 1
11207 <5c> DW_AT_decl_line : 2
11208 <5d> DW_AT_type : <0x6e>
11209 ...
11210 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11211 <76> DW_AT_byte_size : 4
11212 <77> DW_AT_encoding : 5 (signed)
11213
11214 imports the wrong die ( 0x75 instead of 0x58 ).
11215 This case will be ignored until the gcc bug is fixed. */
11216 return;
11217 }
11218
11219 /* Figure out the local name after import. */
11220 import_alias = dwarf2_name (die, cu);
11221
11222 /* Figure out where the statement is being imported to. */
11223 import_prefix = determine_prefix (die, cu);
11224
11225 /* Figure out what the scope of the imported die is and prepend it
11226 to the name of the imported die. */
11227 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11228
11229 if (imported_die->tag != DW_TAG_namespace
11230 && imported_die->tag != DW_TAG_module)
11231 {
11232 imported_declaration = imported_name;
11233 canonical_name = imported_name_prefix;
11234 }
11235 else if (strlen (imported_name_prefix) > 0)
11236 canonical_name = obconcat (&objfile->objfile_obstack,
11237 imported_name_prefix,
11238 (cu->language == language_d ? "." : "::"),
11239 imported_name, (char *) NULL);
11240 else
11241 canonical_name = imported_name;
11242
11243 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11244 for (child_die = die->child; child_die && child_die->tag;
11245 child_die = sibling_die (child_die))
11246 {
11247 /* DWARF-4: A Fortran use statement with a “rename list” may be
11248 represented by an imported module entry with an import attribute
11249 referring to the module and owned entries corresponding to those
11250 entities that are renamed as part of being imported. */
11251
11252 if (child_die->tag != DW_TAG_imported_declaration)
11253 {
11254 complaint (_("child DW_TAG_imported_declaration expected "
11255 "- DIE at %s [in module %s]"),
11256 sect_offset_str (child_die->sect_off),
11257 objfile_name (objfile));
11258 continue;
11259 }
11260
11261 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11262 if (import_attr == NULL)
11263 {
11264 complaint (_("Tag '%s' has no DW_AT_import"),
11265 dwarf_tag_name (child_die->tag));
11266 continue;
11267 }
11268
11269 imported_cu = cu;
11270 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11271 &imported_cu);
11272 imported_name = dwarf2_name (imported_die, imported_cu);
11273 if (imported_name == NULL)
11274 {
11275 complaint (_("child DW_TAG_imported_declaration has unknown "
11276 "imported name - DIE at %s [in module %s]"),
11277 sect_offset_str (child_die->sect_off),
11278 objfile_name (objfile));
11279 continue;
11280 }
11281
11282 excludes.push_back (imported_name);
11283
11284 process_die (child_die, cu);
11285 }
11286
11287 add_using_directive (using_directives (cu),
11288 import_prefix,
11289 canonical_name,
11290 import_alias,
11291 imported_declaration,
11292 excludes,
11293 0,
11294 &objfile->objfile_obstack);
11295 }
11296
11297 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11298 types, but gives them a size of zero. Starting with version 14,
11299 ICC is compatible with GCC. */
11300
11301 static bool
11302 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11303 {
11304 if (!cu->checked_producer)
11305 check_producer (cu);
11306
11307 return cu->producer_is_icc_lt_14;
11308 }
11309
11310 /* ICC generates a DW_AT_type for C void functions. This was observed on
11311 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11312 which says that void functions should not have a DW_AT_type. */
11313
11314 static bool
11315 producer_is_icc (struct dwarf2_cu *cu)
11316 {
11317 if (!cu->checked_producer)
11318 check_producer (cu);
11319
11320 return cu->producer_is_icc;
11321 }
11322
11323 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11324 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11325 this, it was first present in GCC release 4.3.0. */
11326
11327 static bool
11328 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11329 {
11330 if (!cu->checked_producer)
11331 check_producer (cu);
11332
11333 return cu->producer_is_gcc_lt_4_3;
11334 }
11335
11336 static file_and_directory
11337 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11338 {
11339 file_and_directory res;
11340
11341 /* Find the filename. Do not use dwarf2_name here, since the filename
11342 is not a source language identifier. */
11343 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11344 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11345
11346 if (res.comp_dir == NULL
11347 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11348 && IS_ABSOLUTE_PATH (res.name))
11349 {
11350 res.comp_dir_storage = ldirname (res.name);
11351 if (!res.comp_dir_storage.empty ())
11352 res.comp_dir = res.comp_dir_storage.c_str ();
11353 }
11354 if (res.comp_dir != NULL)
11355 {
11356 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11357 directory, get rid of it. */
11358 const char *cp = strchr (res.comp_dir, ':');
11359
11360 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11361 res.comp_dir = cp + 1;
11362 }
11363
11364 if (res.name == NULL)
11365 res.name = "<unknown>";
11366
11367 return res;
11368 }
11369
11370 /* Handle DW_AT_stmt_list for a compilation unit.
11371 DIE is the DW_TAG_compile_unit die for CU.
11372 COMP_DIR is the compilation directory. LOWPC is passed to
11373 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11374
11375 static void
11376 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11377 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11378 {
11379 struct dwarf2_per_objfile *dwarf2_per_objfile
11380 = cu->per_cu->dwarf2_per_objfile;
11381 struct objfile *objfile = dwarf2_per_objfile->objfile;
11382 struct attribute *attr;
11383 struct line_header line_header_local;
11384 hashval_t line_header_local_hash;
11385 void **slot;
11386 int decode_mapping;
11387
11388 gdb_assert (! cu->per_cu->is_debug_types);
11389
11390 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11391 if (attr == NULL)
11392 return;
11393
11394 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11395
11396 /* The line header hash table is only created if needed (it exists to
11397 prevent redundant reading of the line table for partial_units).
11398 If we're given a partial_unit, we'll need it. If we're given a
11399 compile_unit, then use the line header hash table if it's already
11400 created, but don't create one just yet. */
11401
11402 if (dwarf2_per_objfile->line_header_hash == NULL
11403 && die->tag == DW_TAG_partial_unit)
11404 {
11405 dwarf2_per_objfile->line_header_hash
11406 = htab_create_alloc_ex (127, line_header_hash_voidp,
11407 line_header_eq_voidp,
11408 free_line_header_voidp,
11409 &objfile->objfile_obstack,
11410 hashtab_obstack_allocate,
11411 dummy_obstack_deallocate);
11412 }
11413
11414 line_header_local.sect_off = line_offset;
11415 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11416 line_header_local_hash = line_header_hash (&line_header_local);
11417 if (dwarf2_per_objfile->line_header_hash != NULL)
11418 {
11419 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11420 &line_header_local,
11421 line_header_local_hash, NO_INSERT);
11422
11423 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11424 is not present in *SLOT (since if there is something in *SLOT then
11425 it will be for a partial_unit). */
11426 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11427 {
11428 gdb_assert (*slot != NULL);
11429 cu->line_header = (struct line_header *) *slot;
11430 return;
11431 }
11432 }
11433
11434 /* dwarf_decode_line_header does not yet provide sufficient information.
11435 We always have to call also dwarf_decode_lines for it. */
11436 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11437 if (lh == NULL)
11438 return;
11439
11440 cu->line_header = lh.release ();
11441 cu->line_header_die_owner = die;
11442
11443 if (dwarf2_per_objfile->line_header_hash == NULL)
11444 slot = NULL;
11445 else
11446 {
11447 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11448 &line_header_local,
11449 line_header_local_hash, INSERT);
11450 gdb_assert (slot != NULL);
11451 }
11452 if (slot != NULL && *slot == NULL)
11453 {
11454 /* This newly decoded line number information unit will be owned
11455 by line_header_hash hash table. */
11456 *slot = cu->line_header;
11457 cu->line_header_die_owner = NULL;
11458 }
11459 else
11460 {
11461 /* We cannot free any current entry in (*slot) as that struct line_header
11462 may be already used by multiple CUs. Create only temporary decoded
11463 line_header for this CU - it may happen at most once for each line
11464 number information unit. And if we're not using line_header_hash
11465 then this is what we want as well. */
11466 gdb_assert (die->tag != DW_TAG_partial_unit);
11467 }
11468 decode_mapping = (die->tag != DW_TAG_partial_unit);
11469 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11470 decode_mapping);
11471
11472 }
11473
11474 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11475
11476 static void
11477 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11478 {
11479 struct dwarf2_per_objfile *dwarf2_per_objfile
11480 = cu->per_cu->dwarf2_per_objfile;
11481 struct objfile *objfile = dwarf2_per_objfile->objfile;
11482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11483 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11484 CORE_ADDR highpc = ((CORE_ADDR) 0);
11485 struct attribute *attr;
11486 struct die_info *child_die;
11487 CORE_ADDR baseaddr;
11488
11489 prepare_one_comp_unit (cu, die, cu->language);
11490 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11491
11492 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11493
11494 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11495 from finish_block. */
11496 if (lowpc == ((CORE_ADDR) -1))
11497 lowpc = highpc;
11498 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11499
11500 file_and_directory fnd = find_file_and_directory (die, cu);
11501
11502 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11503 standardised yet. As a workaround for the language detection we fall
11504 back to the DW_AT_producer string. */
11505 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11506 cu->language = language_opencl;
11507
11508 /* Similar hack for Go. */
11509 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11510 set_cu_language (DW_LANG_Go, cu);
11511
11512 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11513
11514 /* Decode line number information if present. We do this before
11515 processing child DIEs, so that the line header table is available
11516 for DW_AT_decl_file. */
11517 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11518
11519 /* Process all dies in compilation unit. */
11520 if (die->child != NULL)
11521 {
11522 child_die = die->child;
11523 while (child_die && child_die->tag)
11524 {
11525 process_die (child_die, cu);
11526 child_die = sibling_die (child_die);
11527 }
11528 }
11529
11530 /* Decode macro information, if present. Dwarf 2 macro information
11531 refers to information in the line number info statement program
11532 header, so we can only read it if we've read the header
11533 successfully. */
11534 attr = dwarf2_attr (die, DW_AT_macros, cu);
11535 if (attr == NULL)
11536 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11537 if (attr && cu->line_header)
11538 {
11539 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11540 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11541
11542 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11543 }
11544 else
11545 {
11546 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11547 if (attr && cu->line_header)
11548 {
11549 unsigned int macro_offset = DW_UNSND (attr);
11550
11551 dwarf_decode_macros (cu, macro_offset, 0);
11552 }
11553 }
11554 }
11555
11556 void
11557 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11558 {
11559 struct type_unit_group *tu_group;
11560 int first_time;
11561 struct attribute *attr;
11562 unsigned int i;
11563 struct signatured_type *sig_type;
11564
11565 gdb_assert (per_cu->is_debug_types);
11566 sig_type = (struct signatured_type *) per_cu;
11567
11568 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11569
11570 /* If we're using .gdb_index (includes -readnow) then
11571 per_cu->type_unit_group may not have been set up yet. */
11572 if (sig_type->type_unit_group == NULL)
11573 sig_type->type_unit_group = get_type_unit_group (this, attr);
11574 tu_group = sig_type->type_unit_group;
11575
11576 /* If we've already processed this stmt_list there's no real need to
11577 do it again, we could fake it and just recreate the part we need
11578 (file name,index -> symtab mapping). If data shows this optimization
11579 is useful we can do it then. */
11580 first_time = tu_group->compunit_symtab == NULL;
11581
11582 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11583 debug info. */
11584 line_header_up lh;
11585 if (attr != NULL)
11586 {
11587 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11588 lh = dwarf_decode_line_header (line_offset, this);
11589 }
11590 if (lh == NULL)
11591 {
11592 if (first_time)
11593 start_symtab ("", NULL, 0);
11594 else
11595 {
11596 gdb_assert (tu_group->symtabs == NULL);
11597 gdb_assert (m_builder == nullptr);
11598 struct compunit_symtab *cust = tu_group->compunit_symtab;
11599 m_builder.reset (new struct buildsym_compunit
11600 (COMPUNIT_OBJFILE (cust), "",
11601 COMPUNIT_DIRNAME (cust),
11602 compunit_language (cust),
11603 0, cust));
11604 }
11605 return;
11606 }
11607
11608 line_header = lh.release ();
11609 line_header_die_owner = die;
11610
11611 if (first_time)
11612 {
11613 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11614
11615 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11616 still initializing it, and our caller (a few levels up)
11617 process_full_type_unit still needs to know if this is the first
11618 time. */
11619
11620 tu_group->num_symtabs = line_header->file_names.size ();
11621 tu_group->symtabs = XNEWVEC (struct symtab *,
11622 line_header->file_names.size ());
11623
11624 for (i = 0; i < line_header->file_names.size (); ++i)
11625 {
11626 file_entry &fe = line_header->file_names[i];
11627
11628 dwarf2_start_subfile (this, fe.name,
11629 fe.include_dir (line_header));
11630 buildsym_compunit *b = get_builder ();
11631 if (b->get_current_subfile ()->symtab == NULL)
11632 {
11633 /* NOTE: start_subfile will recognize when it's been
11634 passed a file it has already seen. So we can't
11635 assume there's a simple mapping from
11636 cu->line_header->file_names to subfiles, plus
11637 cu->line_header->file_names may contain dups. */
11638 b->get_current_subfile ()->symtab
11639 = allocate_symtab (cust, b->get_current_subfile ()->name);
11640 }
11641
11642 fe.symtab = b->get_current_subfile ()->symtab;
11643 tu_group->symtabs[i] = fe.symtab;
11644 }
11645 }
11646 else
11647 {
11648 gdb_assert (m_builder == nullptr);
11649 struct compunit_symtab *cust = tu_group->compunit_symtab;
11650 m_builder.reset (new struct buildsym_compunit
11651 (COMPUNIT_OBJFILE (cust), "",
11652 COMPUNIT_DIRNAME (cust),
11653 compunit_language (cust),
11654 0, cust));
11655
11656 for (i = 0; i < line_header->file_names.size (); ++i)
11657 {
11658 file_entry &fe = line_header->file_names[i];
11659
11660 fe.symtab = tu_group->symtabs[i];
11661 }
11662 }
11663
11664 /* The main symtab is allocated last. Type units don't have DW_AT_name
11665 so they don't have a "real" (so to speak) symtab anyway.
11666 There is later code that will assign the main symtab to all symbols
11667 that don't have one. We need to handle the case of a symbol with a
11668 missing symtab (DW_AT_decl_file) anyway. */
11669 }
11670
11671 /* Process DW_TAG_type_unit.
11672 For TUs we want to skip the first top level sibling if it's not the
11673 actual type being defined by this TU. In this case the first top
11674 level sibling is there to provide context only. */
11675
11676 static void
11677 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11678 {
11679 struct die_info *child_die;
11680
11681 prepare_one_comp_unit (cu, die, language_minimal);
11682
11683 /* Initialize (or reinitialize) the machinery for building symtabs.
11684 We do this before processing child DIEs, so that the line header table
11685 is available for DW_AT_decl_file. */
11686 cu->setup_type_unit_groups (die);
11687
11688 if (die->child != NULL)
11689 {
11690 child_die = die->child;
11691 while (child_die && child_die->tag)
11692 {
11693 process_die (child_die, cu);
11694 child_die = sibling_die (child_die);
11695 }
11696 }
11697 }
11698 \f
11699 /* DWO/DWP files.
11700
11701 http://gcc.gnu.org/wiki/DebugFission
11702 http://gcc.gnu.org/wiki/DebugFissionDWP
11703
11704 To simplify handling of both DWO files ("object" files with the DWARF info)
11705 and DWP files (a file with the DWOs packaged up into one file), we treat
11706 DWP files as having a collection of virtual DWO files. */
11707
11708 static hashval_t
11709 hash_dwo_file (const void *item)
11710 {
11711 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11712 hashval_t hash;
11713
11714 hash = htab_hash_string (dwo_file->dwo_name);
11715 if (dwo_file->comp_dir != NULL)
11716 hash += htab_hash_string (dwo_file->comp_dir);
11717 return hash;
11718 }
11719
11720 static int
11721 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11722 {
11723 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11724 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11725
11726 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11727 return 0;
11728 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11729 return lhs->comp_dir == rhs->comp_dir;
11730 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11731 }
11732
11733 /* Allocate a hash table for DWO files. */
11734
11735 static htab_up
11736 allocate_dwo_file_hash_table (struct objfile *objfile)
11737 {
11738 auto delete_dwo_file = [] (void *item)
11739 {
11740 struct dwo_file *dwo_file = (struct dwo_file *) item;
11741
11742 delete dwo_file;
11743 };
11744
11745 return htab_up (htab_create_alloc_ex (41,
11746 hash_dwo_file,
11747 eq_dwo_file,
11748 delete_dwo_file,
11749 &objfile->objfile_obstack,
11750 hashtab_obstack_allocate,
11751 dummy_obstack_deallocate));
11752 }
11753
11754 /* Lookup DWO file DWO_NAME. */
11755
11756 static void **
11757 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11758 const char *dwo_name,
11759 const char *comp_dir)
11760 {
11761 struct dwo_file find_entry;
11762 void **slot;
11763
11764 if (dwarf2_per_objfile->dwo_files == NULL)
11765 dwarf2_per_objfile->dwo_files
11766 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11767
11768 find_entry.dwo_name = dwo_name;
11769 find_entry.comp_dir = comp_dir;
11770 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11771 INSERT);
11772
11773 return slot;
11774 }
11775
11776 static hashval_t
11777 hash_dwo_unit (const void *item)
11778 {
11779 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11780
11781 /* This drops the top 32 bits of the id, but is ok for a hash. */
11782 return dwo_unit->signature;
11783 }
11784
11785 static int
11786 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11787 {
11788 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11789 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11790
11791 /* The signature is assumed to be unique within the DWO file.
11792 So while object file CU dwo_id's always have the value zero,
11793 that's OK, assuming each object file DWO file has only one CU,
11794 and that's the rule for now. */
11795 return lhs->signature == rhs->signature;
11796 }
11797
11798 /* Allocate a hash table for DWO CUs,TUs.
11799 There is one of these tables for each of CUs,TUs for each DWO file. */
11800
11801 static htab_t
11802 allocate_dwo_unit_table (struct objfile *objfile)
11803 {
11804 /* Start out with a pretty small number.
11805 Generally DWO files contain only one CU and maybe some TUs. */
11806 return htab_create_alloc_ex (3,
11807 hash_dwo_unit,
11808 eq_dwo_unit,
11809 NULL,
11810 &objfile->objfile_obstack,
11811 hashtab_obstack_allocate,
11812 dummy_obstack_deallocate);
11813 }
11814
11815 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11816
11817 struct create_dwo_cu_data
11818 {
11819 struct dwo_file *dwo_file;
11820 struct dwo_unit dwo_unit;
11821 };
11822
11823 /* die_reader_func for create_dwo_cu. */
11824
11825 static void
11826 create_dwo_cu_reader (const struct die_reader_specs *reader,
11827 const gdb_byte *info_ptr,
11828 struct die_info *comp_unit_die,
11829 int has_children,
11830 void *datap)
11831 {
11832 struct dwarf2_cu *cu = reader->cu;
11833 sect_offset sect_off = cu->per_cu->sect_off;
11834 struct dwarf2_section_info *section = cu->per_cu->section;
11835 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11836 struct dwo_file *dwo_file = data->dwo_file;
11837 struct dwo_unit *dwo_unit = &data->dwo_unit;
11838 struct attribute *attr;
11839
11840 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11841 if (attr == NULL)
11842 {
11843 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11844 " its dwo_id [in module %s]"),
11845 sect_offset_str (sect_off), dwo_file->dwo_name);
11846 return;
11847 }
11848
11849 dwo_unit->dwo_file = dwo_file;
11850 dwo_unit->signature = DW_UNSND (attr);
11851 dwo_unit->section = section;
11852 dwo_unit->sect_off = sect_off;
11853 dwo_unit->length = cu->per_cu->length;
11854
11855 if (dwarf_read_debug)
11856 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11857 sect_offset_str (sect_off),
11858 hex_string (dwo_unit->signature));
11859 }
11860
11861 /* Create the dwo_units for the CUs in a DWO_FILE.
11862 Note: This function processes DWO files only, not DWP files. */
11863
11864 static void
11865 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11866 struct dwo_file &dwo_file, dwarf2_section_info &section,
11867 htab_t &cus_htab)
11868 {
11869 struct objfile *objfile = dwarf2_per_objfile->objfile;
11870 const gdb_byte *info_ptr, *end_ptr;
11871
11872 dwarf2_read_section (objfile, &section);
11873 info_ptr = section.buffer;
11874
11875 if (info_ptr == NULL)
11876 return;
11877
11878 if (dwarf_read_debug)
11879 {
11880 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11881 get_section_name (&section),
11882 get_section_file_name (&section));
11883 }
11884
11885 end_ptr = info_ptr + section.size;
11886 while (info_ptr < end_ptr)
11887 {
11888 struct dwarf2_per_cu_data per_cu;
11889 struct create_dwo_cu_data create_dwo_cu_data;
11890 struct dwo_unit *dwo_unit;
11891 void **slot;
11892 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11893
11894 memset (&create_dwo_cu_data.dwo_unit, 0,
11895 sizeof (create_dwo_cu_data.dwo_unit));
11896 memset (&per_cu, 0, sizeof (per_cu));
11897 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11898 per_cu.is_debug_types = 0;
11899 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11900 per_cu.section = &section;
11901 create_dwo_cu_data.dwo_file = &dwo_file;
11902
11903 init_cutu_and_read_dies_no_follow (
11904 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11905 info_ptr += per_cu.length;
11906
11907 // If the unit could not be parsed, skip it.
11908 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11909 continue;
11910
11911 if (cus_htab == NULL)
11912 cus_htab = allocate_dwo_unit_table (objfile);
11913
11914 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11915 *dwo_unit = create_dwo_cu_data.dwo_unit;
11916 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11917 gdb_assert (slot != NULL);
11918 if (*slot != NULL)
11919 {
11920 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11921 sect_offset dup_sect_off = dup_cu->sect_off;
11922
11923 complaint (_("debug cu entry at offset %s is duplicate to"
11924 " the entry at offset %s, signature %s"),
11925 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11926 hex_string (dwo_unit->signature));
11927 }
11928 *slot = (void *)dwo_unit;
11929 }
11930 }
11931
11932 /* DWP file .debug_{cu,tu}_index section format:
11933 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11934
11935 DWP Version 1:
11936
11937 Both index sections have the same format, and serve to map a 64-bit
11938 signature to a set of section numbers. Each section begins with a header,
11939 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11940 indexes, and a pool of 32-bit section numbers. The index sections will be
11941 aligned at 8-byte boundaries in the file.
11942
11943 The index section header consists of:
11944
11945 V, 32 bit version number
11946 -, 32 bits unused
11947 N, 32 bit number of compilation units or type units in the index
11948 M, 32 bit number of slots in the hash table
11949
11950 Numbers are recorded using the byte order of the application binary.
11951
11952 The hash table begins at offset 16 in the section, and consists of an array
11953 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11954 order of the application binary). Unused slots in the hash table are 0.
11955 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11956
11957 The parallel table begins immediately after the hash table
11958 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11959 array of 32-bit indexes (using the byte order of the application binary),
11960 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11961 table contains a 32-bit index into the pool of section numbers. For unused
11962 hash table slots, the corresponding entry in the parallel table will be 0.
11963
11964 The pool of section numbers begins immediately following the hash table
11965 (at offset 16 + 12 * M from the beginning of the section). The pool of
11966 section numbers consists of an array of 32-bit words (using the byte order
11967 of the application binary). Each item in the array is indexed starting
11968 from 0. The hash table entry provides the index of the first section
11969 number in the set. Additional section numbers in the set follow, and the
11970 set is terminated by a 0 entry (section number 0 is not used in ELF).
11971
11972 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11973 section must be the first entry in the set, and the .debug_abbrev.dwo must
11974 be the second entry. Other members of the set may follow in any order.
11975
11976 ---
11977
11978 DWP Version 2:
11979
11980 DWP Version 2 combines all the .debug_info, etc. sections into one,
11981 and the entries in the index tables are now offsets into these sections.
11982 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11983 section.
11984
11985 Index Section Contents:
11986 Header
11987 Hash Table of Signatures dwp_hash_table.hash_table
11988 Parallel Table of Indices dwp_hash_table.unit_table
11989 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11990 Table of Section Sizes dwp_hash_table.v2.sizes
11991
11992 The index section header consists of:
11993
11994 V, 32 bit version number
11995 L, 32 bit number of columns in the table of section offsets
11996 N, 32 bit number of compilation units or type units in the index
11997 M, 32 bit number of slots in the hash table
11998
11999 Numbers are recorded using the byte order of the application binary.
12000
12001 The hash table has the same format as version 1.
12002 The parallel table of indices has the same format as version 1,
12003 except that the entries are origin-1 indices into the table of sections
12004 offsets and the table of section sizes.
12005
12006 The table of offsets begins immediately following the parallel table
12007 (at offset 16 + 12 * M from the beginning of the section). The table is
12008 a two-dimensional array of 32-bit words (using the byte order of the
12009 application binary), with L columns and N+1 rows, in row-major order.
12010 Each row in the array is indexed starting from 0. The first row provides
12011 a key to the remaining rows: each column in this row provides an identifier
12012 for a debug section, and the offsets in the same column of subsequent rows
12013 refer to that section. The section identifiers are:
12014
12015 DW_SECT_INFO 1 .debug_info.dwo
12016 DW_SECT_TYPES 2 .debug_types.dwo
12017 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12018 DW_SECT_LINE 4 .debug_line.dwo
12019 DW_SECT_LOC 5 .debug_loc.dwo
12020 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12021 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12022 DW_SECT_MACRO 8 .debug_macro.dwo
12023
12024 The offsets provided by the CU and TU index sections are the base offsets
12025 for the contributions made by each CU or TU to the corresponding section
12026 in the package file. Each CU and TU header contains an abbrev_offset
12027 field, used to find the abbreviations table for that CU or TU within the
12028 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12029 be interpreted as relative to the base offset given in the index section.
12030 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12031 should be interpreted as relative to the base offset for .debug_line.dwo,
12032 and offsets into other debug sections obtained from DWARF attributes should
12033 also be interpreted as relative to the corresponding base offset.
12034
12035 The table of sizes begins immediately following the table of offsets.
12036 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12037 with L columns and N rows, in row-major order. Each row in the array is
12038 indexed starting from 1 (row 0 is shared by the two tables).
12039
12040 ---
12041
12042 Hash table lookup is handled the same in version 1 and 2:
12043
12044 We assume that N and M will not exceed 2^32 - 1.
12045 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12046
12047 Given a 64-bit compilation unit signature or a type signature S, an entry
12048 in the hash table is located as follows:
12049
12050 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12051 the low-order k bits all set to 1.
12052
12053 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12054
12055 3) If the hash table entry at index H matches the signature, use that
12056 entry. If the hash table entry at index H is unused (all zeroes),
12057 terminate the search: the signature is not present in the table.
12058
12059 4) Let H = (H + H') modulo M. Repeat at Step 3.
12060
12061 Because M > N and H' and M are relatively prime, the search is guaranteed
12062 to stop at an unused slot or find the match. */
12063
12064 /* Create a hash table to map DWO IDs to their CU/TU entry in
12065 .debug_{info,types}.dwo in DWP_FILE.
12066 Returns NULL if there isn't one.
12067 Note: This function processes DWP files only, not DWO files. */
12068
12069 static struct dwp_hash_table *
12070 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12071 struct dwp_file *dwp_file, int is_debug_types)
12072 {
12073 struct objfile *objfile = dwarf2_per_objfile->objfile;
12074 bfd *dbfd = dwp_file->dbfd.get ();
12075 const gdb_byte *index_ptr, *index_end;
12076 struct dwarf2_section_info *index;
12077 uint32_t version, nr_columns, nr_units, nr_slots;
12078 struct dwp_hash_table *htab;
12079
12080 if (is_debug_types)
12081 index = &dwp_file->sections.tu_index;
12082 else
12083 index = &dwp_file->sections.cu_index;
12084
12085 if (dwarf2_section_empty_p (index))
12086 return NULL;
12087 dwarf2_read_section (objfile, index);
12088
12089 index_ptr = index->buffer;
12090 index_end = index_ptr + index->size;
12091
12092 version = read_4_bytes (dbfd, index_ptr);
12093 index_ptr += 4;
12094 if (version == 2)
12095 nr_columns = read_4_bytes (dbfd, index_ptr);
12096 else
12097 nr_columns = 0;
12098 index_ptr += 4;
12099 nr_units = read_4_bytes (dbfd, index_ptr);
12100 index_ptr += 4;
12101 nr_slots = read_4_bytes (dbfd, index_ptr);
12102 index_ptr += 4;
12103
12104 if (version != 1 && version != 2)
12105 {
12106 error (_("Dwarf Error: unsupported DWP file version (%s)"
12107 " [in module %s]"),
12108 pulongest (version), dwp_file->name);
12109 }
12110 if (nr_slots != (nr_slots & -nr_slots))
12111 {
12112 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12113 " is not power of 2 [in module %s]"),
12114 pulongest (nr_slots), dwp_file->name);
12115 }
12116
12117 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12118 htab->version = version;
12119 htab->nr_columns = nr_columns;
12120 htab->nr_units = nr_units;
12121 htab->nr_slots = nr_slots;
12122 htab->hash_table = index_ptr;
12123 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12124
12125 /* Exit early if the table is empty. */
12126 if (nr_slots == 0 || nr_units == 0
12127 || (version == 2 && nr_columns == 0))
12128 {
12129 /* All must be zero. */
12130 if (nr_slots != 0 || nr_units != 0
12131 || (version == 2 && nr_columns != 0))
12132 {
12133 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12134 " all zero [in modules %s]"),
12135 dwp_file->name);
12136 }
12137 return htab;
12138 }
12139
12140 if (version == 1)
12141 {
12142 htab->section_pool.v1.indices =
12143 htab->unit_table + sizeof (uint32_t) * nr_slots;
12144 /* It's harder to decide whether the section is too small in v1.
12145 V1 is deprecated anyway so we punt. */
12146 }
12147 else
12148 {
12149 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12150 int *ids = htab->section_pool.v2.section_ids;
12151 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12152 /* Reverse map for error checking. */
12153 int ids_seen[DW_SECT_MAX + 1];
12154 int i;
12155
12156 if (nr_columns < 2)
12157 {
12158 error (_("Dwarf Error: bad DWP hash table, too few columns"
12159 " in section table [in module %s]"),
12160 dwp_file->name);
12161 }
12162 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12163 {
12164 error (_("Dwarf Error: bad DWP hash table, too many columns"
12165 " in section table [in module %s]"),
12166 dwp_file->name);
12167 }
12168 memset (ids, 255, sizeof_ids);
12169 memset (ids_seen, 255, sizeof (ids_seen));
12170 for (i = 0; i < nr_columns; ++i)
12171 {
12172 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12173
12174 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12175 {
12176 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12177 " in section table [in module %s]"),
12178 id, dwp_file->name);
12179 }
12180 if (ids_seen[id] != -1)
12181 {
12182 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12183 " id %d in section table [in module %s]"),
12184 id, dwp_file->name);
12185 }
12186 ids_seen[id] = i;
12187 ids[i] = id;
12188 }
12189 /* Must have exactly one info or types section. */
12190 if (((ids_seen[DW_SECT_INFO] != -1)
12191 + (ids_seen[DW_SECT_TYPES] != -1))
12192 != 1)
12193 {
12194 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12195 " DWO info/types section [in module %s]"),
12196 dwp_file->name);
12197 }
12198 /* Must have an abbrev section. */
12199 if (ids_seen[DW_SECT_ABBREV] == -1)
12200 {
12201 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12202 " section [in module %s]"),
12203 dwp_file->name);
12204 }
12205 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12206 htab->section_pool.v2.sizes =
12207 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12208 * nr_units * nr_columns);
12209 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12210 * nr_units * nr_columns))
12211 > index_end)
12212 {
12213 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12214 " [in module %s]"),
12215 dwp_file->name);
12216 }
12217 }
12218
12219 return htab;
12220 }
12221
12222 /* Update SECTIONS with the data from SECTP.
12223
12224 This function is like the other "locate" section routines that are
12225 passed to bfd_map_over_sections, but in this context the sections to
12226 read comes from the DWP V1 hash table, not the full ELF section table.
12227
12228 The result is non-zero for success, or zero if an error was found. */
12229
12230 static int
12231 locate_v1_virtual_dwo_sections (asection *sectp,
12232 struct virtual_v1_dwo_sections *sections)
12233 {
12234 const struct dwop_section_names *names = &dwop_section_names;
12235
12236 if (section_is_p (sectp->name, &names->abbrev_dwo))
12237 {
12238 /* There can be only one. */
12239 if (sections->abbrev.s.section != NULL)
12240 return 0;
12241 sections->abbrev.s.section = sectp;
12242 sections->abbrev.size = bfd_get_section_size (sectp);
12243 }
12244 else if (section_is_p (sectp->name, &names->info_dwo)
12245 || section_is_p (sectp->name, &names->types_dwo))
12246 {
12247 /* There can be only one. */
12248 if (sections->info_or_types.s.section != NULL)
12249 return 0;
12250 sections->info_or_types.s.section = sectp;
12251 sections->info_or_types.size = bfd_get_section_size (sectp);
12252 }
12253 else if (section_is_p (sectp->name, &names->line_dwo))
12254 {
12255 /* There can be only one. */
12256 if (sections->line.s.section != NULL)
12257 return 0;
12258 sections->line.s.section = sectp;
12259 sections->line.size = bfd_get_section_size (sectp);
12260 }
12261 else if (section_is_p (sectp->name, &names->loc_dwo))
12262 {
12263 /* There can be only one. */
12264 if (sections->loc.s.section != NULL)
12265 return 0;
12266 sections->loc.s.section = sectp;
12267 sections->loc.size = bfd_get_section_size (sectp);
12268 }
12269 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12270 {
12271 /* There can be only one. */
12272 if (sections->macinfo.s.section != NULL)
12273 return 0;
12274 sections->macinfo.s.section = sectp;
12275 sections->macinfo.size = bfd_get_section_size (sectp);
12276 }
12277 else if (section_is_p (sectp->name, &names->macro_dwo))
12278 {
12279 /* There can be only one. */
12280 if (sections->macro.s.section != NULL)
12281 return 0;
12282 sections->macro.s.section = sectp;
12283 sections->macro.size = bfd_get_section_size (sectp);
12284 }
12285 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12286 {
12287 /* There can be only one. */
12288 if (sections->str_offsets.s.section != NULL)
12289 return 0;
12290 sections->str_offsets.s.section = sectp;
12291 sections->str_offsets.size = bfd_get_section_size (sectp);
12292 }
12293 else
12294 {
12295 /* No other kind of section is valid. */
12296 return 0;
12297 }
12298
12299 return 1;
12300 }
12301
12302 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12303 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12304 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12305 This is for DWP version 1 files. */
12306
12307 static struct dwo_unit *
12308 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12309 struct dwp_file *dwp_file,
12310 uint32_t unit_index,
12311 const char *comp_dir,
12312 ULONGEST signature, int is_debug_types)
12313 {
12314 struct objfile *objfile = dwarf2_per_objfile->objfile;
12315 const struct dwp_hash_table *dwp_htab =
12316 is_debug_types ? dwp_file->tus : dwp_file->cus;
12317 bfd *dbfd = dwp_file->dbfd.get ();
12318 const char *kind = is_debug_types ? "TU" : "CU";
12319 struct dwo_file *dwo_file;
12320 struct dwo_unit *dwo_unit;
12321 struct virtual_v1_dwo_sections sections;
12322 void **dwo_file_slot;
12323 int i;
12324
12325 gdb_assert (dwp_file->version == 1);
12326
12327 if (dwarf_read_debug)
12328 {
12329 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12330 kind,
12331 pulongest (unit_index), hex_string (signature),
12332 dwp_file->name);
12333 }
12334
12335 /* Fetch the sections of this DWO unit.
12336 Put a limit on the number of sections we look for so that bad data
12337 doesn't cause us to loop forever. */
12338
12339 #define MAX_NR_V1_DWO_SECTIONS \
12340 (1 /* .debug_info or .debug_types */ \
12341 + 1 /* .debug_abbrev */ \
12342 + 1 /* .debug_line */ \
12343 + 1 /* .debug_loc */ \
12344 + 1 /* .debug_str_offsets */ \
12345 + 1 /* .debug_macro or .debug_macinfo */ \
12346 + 1 /* trailing zero */)
12347
12348 memset (&sections, 0, sizeof (sections));
12349
12350 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12351 {
12352 asection *sectp;
12353 uint32_t section_nr =
12354 read_4_bytes (dbfd,
12355 dwp_htab->section_pool.v1.indices
12356 + (unit_index + i) * sizeof (uint32_t));
12357
12358 if (section_nr == 0)
12359 break;
12360 if (section_nr >= dwp_file->num_sections)
12361 {
12362 error (_("Dwarf Error: bad DWP hash table, section number too large"
12363 " [in module %s]"),
12364 dwp_file->name);
12365 }
12366
12367 sectp = dwp_file->elf_sections[section_nr];
12368 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12369 {
12370 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12371 " [in module %s]"),
12372 dwp_file->name);
12373 }
12374 }
12375
12376 if (i < 2
12377 || dwarf2_section_empty_p (&sections.info_or_types)
12378 || dwarf2_section_empty_p (&sections.abbrev))
12379 {
12380 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12381 " [in module %s]"),
12382 dwp_file->name);
12383 }
12384 if (i == MAX_NR_V1_DWO_SECTIONS)
12385 {
12386 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12387 " [in module %s]"),
12388 dwp_file->name);
12389 }
12390
12391 /* It's easier for the rest of the code if we fake a struct dwo_file and
12392 have dwo_unit "live" in that. At least for now.
12393
12394 The DWP file can be made up of a random collection of CUs and TUs.
12395 However, for each CU + set of TUs that came from the same original DWO
12396 file, we can combine them back into a virtual DWO file to save space
12397 (fewer struct dwo_file objects to allocate). Remember that for really
12398 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12399
12400 std::string virtual_dwo_name =
12401 string_printf ("virtual-dwo/%d-%d-%d-%d",
12402 get_section_id (&sections.abbrev),
12403 get_section_id (&sections.line),
12404 get_section_id (&sections.loc),
12405 get_section_id (&sections.str_offsets));
12406 /* Can we use an existing virtual DWO file? */
12407 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12408 virtual_dwo_name.c_str (),
12409 comp_dir);
12410 /* Create one if necessary. */
12411 if (*dwo_file_slot == NULL)
12412 {
12413 if (dwarf_read_debug)
12414 {
12415 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12416 virtual_dwo_name.c_str ());
12417 }
12418 dwo_file = new struct dwo_file;
12419 dwo_file->dwo_name
12420 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12421 virtual_dwo_name.c_str (),
12422 virtual_dwo_name.size ());
12423 dwo_file->comp_dir = comp_dir;
12424 dwo_file->sections.abbrev = sections.abbrev;
12425 dwo_file->sections.line = sections.line;
12426 dwo_file->sections.loc = sections.loc;
12427 dwo_file->sections.macinfo = sections.macinfo;
12428 dwo_file->sections.macro = sections.macro;
12429 dwo_file->sections.str_offsets = sections.str_offsets;
12430 /* The "str" section is global to the entire DWP file. */
12431 dwo_file->sections.str = dwp_file->sections.str;
12432 /* The info or types section is assigned below to dwo_unit,
12433 there's no need to record it in dwo_file.
12434 Also, we can't simply record type sections in dwo_file because
12435 we record a pointer into the vector in dwo_unit. As we collect more
12436 types we'll grow the vector and eventually have to reallocate space
12437 for it, invalidating all copies of pointers into the previous
12438 contents. */
12439 *dwo_file_slot = dwo_file;
12440 }
12441 else
12442 {
12443 if (dwarf_read_debug)
12444 {
12445 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12446 virtual_dwo_name.c_str ());
12447 }
12448 dwo_file = (struct dwo_file *) *dwo_file_slot;
12449 }
12450
12451 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12452 dwo_unit->dwo_file = dwo_file;
12453 dwo_unit->signature = signature;
12454 dwo_unit->section =
12455 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12456 *dwo_unit->section = sections.info_or_types;
12457 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12458
12459 return dwo_unit;
12460 }
12461
12462 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12463 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12464 piece within that section used by a TU/CU, return a virtual section
12465 of just that piece. */
12466
12467 static struct dwarf2_section_info
12468 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12469 struct dwarf2_section_info *section,
12470 bfd_size_type offset, bfd_size_type size)
12471 {
12472 struct dwarf2_section_info result;
12473 asection *sectp;
12474
12475 gdb_assert (section != NULL);
12476 gdb_assert (!section->is_virtual);
12477
12478 memset (&result, 0, sizeof (result));
12479 result.s.containing_section = section;
12480 result.is_virtual = true;
12481
12482 if (size == 0)
12483 return result;
12484
12485 sectp = get_section_bfd_section (section);
12486
12487 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12488 bounds of the real section. This is a pretty-rare event, so just
12489 flag an error (easier) instead of a warning and trying to cope. */
12490 if (sectp == NULL
12491 || offset + size > bfd_get_section_size (sectp))
12492 {
12493 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12494 " in section %s [in module %s]"),
12495 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12496 objfile_name (dwarf2_per_objfile->objfile));
12497 }
12498
12499 result.virtual_offset = offset;
12500 result.size = size;
12501 return result;
12502 }
12503
12504 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12505 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12506 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12507 This is for DWP version 2 files. */
12508
12509 static struct dwo_unit *
12510 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12511 struct dwp_file *dwp_file,
12512 uint32_t unit_index,
12513 const char *comp_dir,
12514 ULONGEST signature, int is_debug_types)
12515 {
12516 struct objfile *objfile = dwarf2_per_objfile->objfile;
12517 const struct dwp_hash_table *dwp_htab =
12518 is_debug_types ? dwp_file->tus : dwp_file->cus;
12519 bfd *dbfd = dwp_file->dbfd.get ();
12520 const char *kind = is_debug_types ? "TU" : "CU";
12521 struct dwo_file *dwo_file;
12522 struct dwo_unit *dwo_unit;
12523 struct virtual_v2_dwo_sections sections;
12524 void **dwo_file_slot;
12525 int i;
12526
12527 gdb_assert (dwp_file->version == 2);
12528
12529 if (dwarf_read_debug)
12530 {
12531 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12532 kind,
12533 pulongest (unit_index), hex_string (signature),
12534 dwp_file->name);
12535 }
12536
12537 /* Fetch the section offsets of this DWO unit. */
12538
12539 memset (&sections, 0, sizeof (sections));
12540
12541 for (i = 0; i < dwp_htab->nr_columns; ++i)
12542 {
12543 uint32_t offset = read_4_bytes (dbfd,
12544 dwp_htab->section_pool.v2.offsets
12545 + (((unit_index - 1) * dwp_htab->nr_columns
12546 + i)
12547 * sizeof (uint32_t)));
12548 uint32_t size = read_4_bytes (dbfd,
12549 dwp_htab->section_pool.v2.sizes
12550 + (((unit_index - 1) * dwp_htab->nr_columns
12551 + i)
12552 * sizeof (uint32_t)));
12553
12554 switch (dwp_htab->section_pool.v2.section_ids[i])
12555 {
12556 case DW_SECT_INFO:
12557 case DW_SECT_TYPES:
12558 sections.info_or_types_offset = offset;
12559 sections.info_or_types_size = size;
12560 break;
12561 case DW_SECT_ABBREV:
12562 sections.abbrev_offset = offset;
12563 sections.abbrev_size = size;
12564 break;
12565 case DW_SECT_LINE:
12566 sections.line_offset = offset;
12567 sections.line_size = size;
12568 break;
12569 case DW_SECT_LOC:
12570 sections.loc_offset = offset;
12571 sections.loc_size = size;
12572 break;
12573 case DW_SECT_STR_OFFSETS:
12574 sections.str_offsets_offset = offset;
12575 sections.str_offsets_size = size;
12576 break;
12577 case DW_SECT_MACINFO:
12578 sections.macinfo_offset = offset;
12579 sections.macinfo_size = size;
12580 break;
12581 case DW_SECT_MACRO:
12582 sections.macro_offset = offset;
12583 sections.macro_size = size;
12584 break;
12585 }
12586 }
12587
12588 /* It's easier for the rest of the code if we fake a struct dwo_file and
12589 have dwo_unit "live" in that. At least for now.
12590
12591 The DWP file can be made up of a random collection of CUs and TUs.
12592 However, for each CU + set of TUs that came from the same original DWO
12593 file, we can combine them back into a virtual DWO file to save space
12594 (fewer struct dwo_file objects to allocate). Remember that for really
12595 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12596
12597 std::string virtual_dwo_name =
12598 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12599 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12600 (long) (sections.line_size ? sections.line_offset : 0),
12601 (long) (sections.loc_size ? sections.loc_offset : 0),
12602 (long) (sections.str_offsets_size
12603 ? sections.str_offsets_offset : 0));
12604 /* Can we use an existing virtual DWO file? */
12605 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12606 virtual_dwo_name.c_str (),
12607 comp_dir);
12608 /* Create one if necessary. */
12609 if (*dwo_file_slot == NULL)
12610 {
12611 if (dwarf_read_debug)
12612 {
12613 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12614 virtual_dwo_name.c_str ());
12615 }
12616 dwo_file = new struct dwo_file;
12617 dwo_file->dwo_name
12618 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12619 virtual_dwo_name.c_str (),
12620 virtual_dwo_name.size ());
12621 dwo_file->comp_dir = comp_dir;
12622 dwo_file->sections.abbrev =
12623 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12624 sections.abbrev_offset, sections.abbrev_size);
12625 dwo_file->sections.line =
12626 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12627 sections.line_offset, sections.line_size);
12628 dwo_file->sections.loc =
12629 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12630 sections.loc_offset, sections.loc_size);
12631 dwo_file->sections.macinfo =
12632 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12633 sections.macinfo_offset, sections.macinfo_size);
12634 dwo_file->sections.macro =
12635 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12636 sections.macro_offset, sections.macro_size);
12637 dwo_file->sections.str_offsets =
12638 create_dwp_v2_section (dwarf2_per_objfile,
12639 &dwp_file->sections.str_offsets,
12640 sections.str_offsets_offset,
12641 sections.str_offsets_size);
12642 /* The "str" section is global to the entire DWP file. */
12643 dwo_file->sections.str = dwp_file->sections.str;
12644 /* The info or types section is assigned below to dwo_unit,
12645 there's no need to record it in dwo_file.
12646 Also, we can't simply record type sections in dwo_file because
12647 we record a pointer into the vector in dwo_unit. As we collect more
12648 types we'll grow the vector and eventually have to reallocate space
12649 for it, invalidating all copies of pointers into the previous
12650 contents. */
12651 *dwo_file_slot = dwo_file;
12652 }
12653 else
12654 {
12655 if (dwarf_read_debug)
12656 {
12657 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12658 virtual_dwo_name.c_str ());
12659 }
12660 dwo_file = (struct dwo_file *) *dwo_file_slot;
12661 }
12662
12663 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12664 dwo_unit->dwo_file = dwo_file;
12665 dwo_unit->signature = signature;
12666 dwo_unit->section =
12667 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12668 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12669 is_debug_types
12670 ? &dwp_file->sections.types
12671 : &dwp_file->sections.info,
12672 sections.info_or_types_offset,
12673 sections.info_or_types_size);
12674 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12675
12676 return dwo_unit;
12677 }
12678
12679 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12680 Returns NULL if the signature isn't found. */
12681
12682 static struct dwo_unit *
12683 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12684 struct dwp_file *dwp_file, const char *comp_dir,
12685 ULONGEST signature, int is_debug_types)
12686 {
12687 const struct dwp_hash_table *dwp_htab =
12688 is_debug_types ? dwp_file->tus : dwp_file->cus;
12689 bfd *dbfd = dwp_file->dbfd.get ();
12690 uint32_t mask = dwp_htab->nr_slots - 1;
12691 uint32_t hash = signature & mask;
12692 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12693 unsigned int i;
12694 void **slot;
12695 struct dwo_unit find_dwo_cu;
12696
12697 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12698 find_dwo_cu.signature = signature;
12699 slot = htab_find_slot (is_debug_types
12700 ? dwp_file->loaded_tus
12701 : dwp_file->loaded_cus,
12702 &find_dwo_cu, INSERT);
12703
12704 if (*slot != NULL)
12705 return (struct dwo_unit *) *slot;
12706
12707 /* Use a for loop so that we don't loop forever on bad debug info. */
12708 for (i = 0; i < dwp_htab->nr_slots; ++i)
12709 {
12710 ULONGEST signature_in_table;
12711
12712 signature_in_table =
12713 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12714 if (signature_in_table == signature)
12715 {
12716 uint32_t unit_index =
12717 read_4_bytes (dbfd,
12718 dwp_htab->unit_table + hash * sizeof (uint32_t));
12719
12720 if (dwp_file->version == 1)
12721 {
12722 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12723 dwp_file, unit_index,
12724 comp_dir, signature,
12725 is_debug_types);
12726 }
12727 else
12728 {
12729 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12730 dwp_file, unit_index,
12731 comp_dir, signature,
12732 is_debug_types);
12733 }
12734 return (struct dwo_unit *) *slot;
12735 }
12736 if (signature_in_table == 0)
12737 return NULL;
12738 hash = (hash + hash2) & mask;
12739 }
12740
12741 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12742 " [in module %s]"),
12743 dwp_file->name);
12744 }
12745
12746 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12747 Open the file specified by FILE_NAME and hand it off to BFD for
12748 preliminary analysis. Return a newly initialized bfd *, which
12749 includes a canonicalized copy of FILE_NAME.
12750 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12751 SEARCH_CWD is true if the current directory is to be searched.
12752 It will be searched before debug-file-directory.
12753 If successful, the file is added to the bfd include table of the
12754 objfile's bfd (see gdb_bfd_record_inclusion).
12755 If unable to find/open the file, return NULL.
12756 NOTE: This function is derived from symfile_bfd_open. */
12757
12758 static gdb_bfd_ref_ptr
12759 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12760 const char *file_name, int is_dwp, int search_cwd)
12761 {
12762 int desc;
12763 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12764 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12765 to debug_file_directory. */
12766 const char *search_path;
12767 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12768
12769 gdb::unique_xmalloc_ptr<char> search_path_holder;
12770 if (search_cwd)
12771 {
12772 if (*debug_file_directory != '\0')
12773 {
12774 search_path_holder.reset (concat (".", dirname_separator_string,
12775 debug_file_directory,
12776 (char *) NULL));
12777 search_path = search_path_holder.get ();
12778 }
12779 else
12780 search_path = ".";
12781 }
12782 else
12783 search_path = debug_file_directory;
12784
12785 openp_flags flags = OPF_RETURN_REALPATH;
12786 if (is_dwp)
12787 flags |= OPF_SEARCH_IN_PATH;
12788
12789 gdb::unique_xmalloc_ptr<char> absolute_name;
12790 desc = openp (search_path, flags, file_name,
12791 O_RDONLY | O_BINARY, &absolute_name);
12792 if (desc < 0)
12793 return NULL;
12794
12795 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12796 gnutarget, desc));
12797 if (sym_bfd == NULL)
12798 return NULL;
12799 bfd_set_cacheable (sym_bfd.get (), 1);
12800
12801 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12802 return NULL;
12803
12804 /* Success. Record the bfd as having been included by the objfile's bfd.
12805 This is important because things like demangled_names_hash lives in the
12806 objfile's per_bfd space and may have references to things like symbol
12807 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12808 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12809
12810 return sym_bfd;
12811 }
12812
12813 /* Try to open DWO file FILE_NAME.
12814 COMP_DIR is the DW_AT_comp_dir attribute.
12815 The result is the bfd handle of the file.
12816 If there is a problem finding or opening the file, return NULL.
12817 Upon success, the canonicalized path of the file is stored in the bfd,
12818 same as symfile_bfd_open. */
12819
12820 static gdb_bfd_ref_ptr
12821 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12822 const char *file_name, const char *comp_dir)
12823 {
12824 if (IS_ABSOLUTE_PATH (file_name))
12825 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12826 0 /*is_dwp*/, 0 /*search_cwd*/);
12827
12828 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12829
12830 if (comp_dir != NULL)
12831 {
12832 char *path_to_try = concat (comp_dir, SLASH_STRING,
12833 file_name, (char *) NULL);
12834
12835 /* NOTE: If comp_dir is a relative path, this will also try the
12836 search path, which seems useful. */
12837 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12838 path_to_try,
12839 0 /*is_dwp*/,
12840 1 /*search_cwd*/));
12841 xfree (path_to_try);
12842 if (abfd != NULL)
12843 return abfd;
12844 }
12845
12846 /* That didn't work, try debug-file-directory, which, despite its name,
12847 is a list of paths. */
12848
12849 if (*debug_file_directory == '\0')
12850 return NULL;
12851
12852 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12853 0 /*is_dwp*/, 1 /*search_cwd*/);
12854 }
12855
12856 /* This function is mapped across the sections and remembers the offset and
12857 size of each of the DWO debugging sections we are interested in. */
12858
12859 static void
12860 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12861 {
12862 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12863 const struct dwop_section_names *names = &dwop_section_names;
12864
12865 if (section_is_p (sectp->name, &names->abbrev_dwo))
12866 {
12867 dwo_sections->abbrev.s.section = sectp;
12868 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12869 }
12870 else if (section_is_p (sectp->name, &names->info_dwo))
12871 {
12872 dwo_sections->info.s.section = sectp;
12873 dwo_sections->info.size = bfd_get_section_size (sectp);
12874 }
12875 else if (section_is_p (sectp->name, &names->line_dwo))
12876 {
12877 dwo_sections->line.s.section = sectp;
12878 dwo_sections->line.size = bfd_get_section_size (sectp);
12879 }
12880 else if (section_is_p (sectp->name, &names->loc_dwo))
12881 {
12882 dwo_sections->loc.s.section = sectp;
12883 dwo_sections->loc.size = bfd_get_section_size (sectp);
12884 }
12885 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12886 {
12887 dwo_sections->macinfo.s.section = sectp;
12888 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12889 }
12890 else if (section_is_p (sectp->name, &names->macro_dwo))
12891 {
12892 dwo_sections->macro.s.section = sectp;
12893 dwo_sections->macro.size = bfd_get_section_size (sectp);
12894 }
12895 else if (section_is_p (sectp->name, &names->str_dwo))
12896 {
12897 dwo_sections->str.s.section = sectp;
12898 dwo_sections->str.size = bfd_get_section_size (sectp);
12899 }
12900 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12901 {
12902 dwo_sections->str_offsets.s.section = sectp;
12903 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->types_dwo))
12906 {
12907 struct dwarf2_section_info type_section;
12908
12909 memset (&type_section, 0, sizeof (type_section));
12910 type_section.s.section = sectp;
12911 type_section.size = bfd_get_section_size (sectp);
12912 dwo_sections->types.push_back (type_section);
12913 }
12914 }
12915
12916 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12917 by PER_CU. This is for the non-DWP case.
12918 The result is NULL if DWO_NAME can't be found. */
12919
12920 static struct dwo_file *
12921 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12922 const char *dwo_name, const char *comp_dir)
12923 {
12924 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12925
12926 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12927 if (dbfd == NULL)
12928 {
12929 if (dwarf_read_debug)
12930 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12931 return NULL;
12932 }
12933
12934 dwo_file_up dwo_file (new struct dwo_file);
12935 dwo_file->dwo_name = dwo_name;
12936 dwo_file->comp_dir = comp_dir;
12937 dwo_file->dbfd = std::move (dbfd);
12938
12939 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12940 &dwo_file->sections);
12941
12942 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12943 dwo_file->cus);
12944
12945 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12946 dwo_file->sections.types, dwo_file->tus);
12947
12948 if (dwarf_read_debug)
12949 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12950
12951 return dwo_file.release ();
12952 }
12953
12954 /* This function is mapped across the sections and remembers the offset and
12955 size of each of the DWP debugging sections common to version 1 and 2 that
12956 we are interested in. */
12957
12958 static void
12959 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12960 void *dwp_file_ptr)
12961 {
12962 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12963 const struct dwop_section_names *names = &dwop_section_names;
12964 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12965
12966 /* Record the ELF section number for later lookup: this is what the
12967 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12968 gdb_assert (elf_section_nr < dwp_file->num_sections);
12969 dwp_file->elf_sections[elf_section_nr] = sectp;
12970
12971 /* Look for specific sections that we need. */
12972 if (section_is_p (sectp->name, &names->str_dwo))
12973 {
12974 dwp_file->sections.str.s.section = sectp;
12975 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12976 }
12977 else if (section_is_p (sectp->name, &names->cu_index))
12978 {
12979 dwp_file->sections.cu_index.s.section = sectp;
12980 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12981 }
12982 else if (section_is_p (sectp->name, &names->tu_index))
12983 {
12984 dwp_file->sections.tu_index.s.section = sectp;
12985 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12986 }
12987 }
12988
12989 /* This function is mapped across the sections and remembers the offset and
12990 size of each of the DWP version 2 debugging sections that we are interested
12991 in. This is split into a separate function because we don't know if we
12992 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12993
12994 static void
12995 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12996 {
12997 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12998 const struct dwop_section_names *names = &dwop_section_names;
12999 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13000
13001 /* Record the ELF section number for later lookup: this is what the
13002 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13003 gdb_assert (elf_section_nr < dwp_file->num_sections);
13004 dwp_file->elf_sections[elf_section_nr] = sectp;
13005
13006 /* Look for specific sections that we need. */
13007 if (section_is_p (sectp->name, &names->abbrev_dwo))
13008 {
13009 dwp_file->sections.abbrev.s.section = sectp;
13010 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13011 }
13012 else if (section_is_p (sectp->name, &names->info_dwo))
13013 {
13014 dwp_file->sections.info.s.section = sectp;
13015 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13016 }
13017 else if (section_is_p (sectp->name, &names->line_dwo))
13018 {
13019 dwp_file->sections.line.s.section = sectp;
13020 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13021 }
13022 else if (section_is_p (sectp->name, &names->loc_dwo))
13023 {
13024 dwp_file->sections.loc.s.section = sectp;
13025 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13026 }
13027 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13028 {
13029 dwp_file->sections.macinfo.s.section = sectp;
13030 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13031 }
13032 else if (section_is_p (sectp->name, &names->macro_dwo))
13033 {
13034 dwp_file->sections.macro.s.section = sectp;
13035 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13036 }
13037 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13038 {
13039 dwp_file->sections.str_offsets.s.section = sectp;
13040 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->types_dwo))
13043 {
13044 dwp_file->sections.types.s.section = sectp;
13045 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13046 }
13047 }
13048
13049 /* Hash function for dwp_file loaded CUs/TUs. */
13050
13051 static hashval_t
13052 hash_dwp_loaded_cutus (const void *item)
13053 {
13054 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13055
13056 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13057 return dwo_unit->signature;
13058 }
13059
13060 /* Equality function for dwp_file loaded CUs/TUs. */
13061
13062 static int
13063 eq_dwp_loaded_cutus (const void *a, const void *b)
13064 {
13065 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13066 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13067
13068 return dua->signature == dub->signature;
13069 }
13070
13071 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13072
13073 static htab_t
13074 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13075 {
13076 return htab_create_alloc_ex (3,
13077 hash_dwp_loaded_cutus,
13078 eq_dwp_loaded_cutus,
13079 NULL,
13080 &objfile->objfile_obstack,
13081 hashtab_obstack_allocate,
13082 dummy_obstack_deallocate);
13083 }
13084
13085 /* Try to open DWP file FILE_NAME.
13086 The result is the bfd handle of the file.
13087 If there is a problem finding or opening the file, return NULL.
13088 Upon success, the canonicalized path of the file is stored in the bfd,
13089 same as symfile_bfd_open. */
13090
13091 static gdb_bfd_ref_ptr
13092 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13093 const char *file_name)
13094 {
13095 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13096 1 /*is_dwp*/,
13097 1 /*search_cwd*/));
13098 if (abfd != NULL)
13099 return abfd;
13100
13101 /* Work around upstream bug 15652.
13102 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13103 [Whether that's a "bug" is debatable, but it is getting in our way.]
13104 We have no real idea where the dwp file is, because gdb's realpath-ing
13105 of the executable's path may have discarded the needed info.
13106 [IWBN if the dwp file name was recorded in the executable, akin to
13107 .gnu_debuglink, but that doesn't exist yet.]
13108 Strip the directory from FILE_NAME and search again. */
13109 if (*debug_file_directory != '\0')
13110 {
13111 /* Don't implicitly search the current directory here.
13112 If the user wants to search "." to handle this case,
13113 it must be added to debug-file-directory. */
13114 return try_open_dwop_file (dwarf2_per_objfile,
13115 lbasename (file_name), 1 /*is_dwp*/,
13116 0 /*search_cwd*/);
13117 }
13118
13119 return NULL;
13120 }
13121
13122 /* Initialize the use of the DWP file for the current objfile.
13123 By convention the name of the DWP file is ${objfile}.dwp.
13124 The result is NULL if it can't be found. */
13125
13126 static std::unique_ptr<struct dwp_file>
13127 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13128 {
13129 struct objfile *objfile = dwarf2_per_objfile->objfile;
13130
13131 /* Try to find first .dwp for the binary file before any symbolic links
13132 resolving. */
13133
13134 /* If the objfile is a debug file, find the name of the real binary
13135 file and get the name of dwp file from there. */
13136 std::string dwp_name;
13137 if (objfile->separate_debug_objfile_backlink != NULL)
13138 {
13139 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13140 const char *backlink_basename = lbasename (backlink->original_name);
13141
13142 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13143 }
13144 else
13145 dwp_name = objfile->original_name;
13146
13147 dwp_name += ".dwp";
13148
13149 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13150 if (dbfd == NULL
13151 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13152 {
13153 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13154 dwp_name = objfile_name (objfile);
13155 dwp_name += ".dwp";
13156 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13157 }
13158
13159 if (dbfd == NULL)
13160 {
13161 if (dwarf_read_debug)
13162 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13163 return std::unique_ptr<dwp_file> ();
13164 }
13165
13166 const char *name = bfd_get_filename (dbfd.get ());
13167 std::unique_ptr<struct dwp_file> dwp_file
13168 (new struct dwp_file (name, std::move (dbfd)));
13169
13170 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13171 dwp_file->elf_sections =
13172 OBSTACK_CALLOC (&objfile->objfile_obstack,
13173 dwp_file->num_sections, asection *);
13174
13175 bfd_map_over_sections (dwp_file->dbfd.get (),
13176 dwarf2_locate_common_dwp_sections,
13177 dwp_file.get ());
13178
13179 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13180 0);
13181
13182 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13183 1);
13184
13185 /* The DWP file version is stored in the hash table. Oh well. */
13186 if (dwp_file->cus && dwp_file->tus
13187 && dwp_file->cus->version != dwp_file->tus->version)
13188 {
13189 /* Technically speaking, we should try to limp along, but this is
13190 pretty bizarre. We use pulongest here because that's the established
13191 portability solution (e.g, we cannot use %u for uint32_t). */
13192 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13193 " TU version %s [in DWP file %s]"),
13194 pulongest (dwp_file->cus->version),
13195 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13196 }
13197
13198 if (dwp_file->cus)
13199 dwp_file->version = dwp_file->cus->version;
13200 else if (dwp_file->tus)
13201 dwp_file->version = dwp_file->tus->version;
13202 else
13203 dwp_file->version = 2;
13204
13205 if (dwp_file->version == 2)
13206 bfd_map_over_sections (dwp_file->dbfd.get (),
13207 dwarf2_locate_v2_dwp_sections,
13208 dwp_file.get ());
13209
13210 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13211 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13212
13213 if (dwarf_read_debug)
13214 {
13215 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13216 fprintf_unfiltered (gdb_stdlog,
13217 " %s CUs, %s TUs\n",
13218 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13219 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13220 }
13221
13222 return dwp_file;
13223 }
13224
13225 /* Wrapper around open_and_init_dwp_file, only open it once. */
13226
13227 static struct dwp_file *
13228 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13229 {
13230 if (! dwarf2_per_objfile->dwp_checked)
13231 {
13232 dwarf2_per_objfile->dwp_file
13233 = open_and_init_dwp_file (dwarf2_per_objfile);
13234 dwarf2_per_objfile->dwp_checked = 1;
13235 }
13236 return dwarf2_per_objfile->dwp_file.get ();
13237 }
13238
13239 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13240 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13241 or in the DWP file for the objfile, referenced by THIS_UNIT.
13242 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13243 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13244
13245 This is called, for example, when wanting to read a variable with a
13246 complex location. Therefore we don't want to do file i/o for every call.
13247 Therefore we don't want to look for a DWO file on every call.
13248 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13249 then we check if we've already seen DWO_NAME, and only THEN do we check
13250 for a DWO file.
13251
13252 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13253 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13254
13255 static struct dwo_unit *
13256 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13257 const char *dwo_name, const char *comp_dir,
13258 ULONGEST signature, int is_debug_types)
13259 {
13260 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13261 struct objfile *objfile = dwarf2_per_objfile->objfile;
13262 const char *kind = is_debug_types ? "TU" : "CU";
13263 void **dwo_file_slot;
13264 struct dwo_file *dwo_file;
13265 struct dwp_file *dwp_file;
13266
13267 /* First see if there's a DWP file.
13268 If we have a DWP file but didn't find the DWO inside it, don't
13269 look for the original DWO file. It makes gdb behave differently
13270 depending on whether one is debugging in the build tree. */
13271
13272 dwp_file = get_dwp_file (dwarf2_per_objfile);
13273 if (dwp_file != NULL)
13274 {
13275 const struct dwp_hash_table *dwp_htab =
13276 is_debug_types ? dwp_file->tus : dwp_file->cus;
13277
13278 if (dwp_htab != NULL)
13279 {
13280 struct dwo_unit *dwo_cutu =
13281 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13282 signature, is_debug_types);
13283
13284 if (dwo_cutu != NULL)
13285 {
13286 if (dwarf_read_debug)
13287 {
13288 fprintf_unfiltered (gdb_stdlog,
13289 "Virtual DWO %s %s found: @%s\n",
13290 kind, hex_string (signature),
13291 host_address_to_string (dwo_cutu));
13292 }
13293 return dwo_cutu;
13294 }
13295 }
13296 }
13297 else
13298 {
13299 /* No DWP file, look for the DWO file. */
13300
13301 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13302 dwo_name, comp_dir);
13303 if (*dwo_file_slot == NULL)
13304 {
13305 /* Read in the file and build a table of the CUs/TUs it contains. */
13306 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13307 }
13308 /* NOTE: This will be NULL if unable to open the file. */
13309 dwo_file = (struct dwo_file *) *dwo_file_slot;
13310
13311 if (dwo_file != NULL)
13312 {
13313 struct dwo_unit *dwo_cutu = NULL;
13314
13315 if (is_debug_types && dwo_file->tus)
13316 {
13317 struct dwo_unit find_dwo_cutu;
13318
13319 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13320 find_dwo_cutu.signature = signature;
13321 dwo_cutu
13322 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13323 }
13324 else if (!is_debug_types && dwo_file->cus)
13325 {
13326 struct dwo_unit find_dwo_cutu;
13327
13328 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13329 find_dwo_cutu.signature = signature;
13330 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13331 &find_dwo_cutu);
13332 }
13333
13334 if (dwo_cutu != NULL)
13335 {
13336 if (dwarf_read_debug)
13337 {
13338 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13339 kind, dwo_name, hex_string (signature),
13340 host_address_to_string (dwo_cutu));
13341 }
13342 return dwo_cutu;
13343 }
13344 }
13345 }
13346
13347 /* We didn't find it. This could mean a dwo_id mismatch, or
13348 someone deleted the DWO/DWP file, or the search path isn't set up
13349 correctly to find the file. */
13350
13351 if (dwarf_read_debug)
13352 {
13353 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13354 kind, dwo_name, hex_string (signature));
13355 }
13356
13357 /* This is a warning and not a complaint because it can be caused by
13358 pilot error (e.g., user accidentally deleting the DWO). */
13359 {
13360 /* Print the name of the DWP file if we looked there, helps the user
13361 better diagnose the problem. */
13362 std::string dwp_text;
13363
13364 if (dwp_file != NULL)
13365 dwp_text = string_printf (" [in DWP file %s]",
13366 lbasename (dwp_file->name));
13367
13368 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13369 " [in module %s]"),
13370 kind, dwo_name, hex_string (signature),
13371 dwp_text.c_str (),
13372 this_unit->is_debug_types ? "TU" : "CU",
13373 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13374 }
13375 return NULL;
13376 }
13377
13378 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13379 See lookup_dwo_cutu_unit for details. */
13380
13381 static struct dwo_unit *
13382 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13383 const char *dwo_name, const char *comp_dir,
13384 ULONGEST signature)
13385 {
13386 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13387 }
13388
13389 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13390 See lookup_dwo_cutu_unit for details. */
13391
13392 static struct dwo_unit *
13393 lookup_dwo_type_unit (struct signatured_type *this_tu,
13394 const char *dwo_name, const char *comp_dir)
13395 {
13396 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13397 }
13398
13399 /* Traversal function for queue_and_load_all_dwo_tus. */
13400
13401 static int
13402 queue_and_load_dwo_tu (void **slot, void *info)
13403 {
13404 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13405 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13406 ULONGEST signature = dwo_unit->signature;
13407 struct signatured_type *sig_type =
13408 lookup_dwo_signatured_type (per_cu->cu, signature);
13409
13410 if (sig_type != NULL)
13411 {
13412 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13413
13414 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13415 a real dependency of PER_CU on SIG_TYPE. That is detected later
13416 while processing PER_CU. */
13417 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13418 load_full_type_unit (sig_cu);
13419 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13420 }
13421
13422 return 1;
13423 }
13424
13425 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13426 The DWO may have the only definition of the type, though it may not be
13427 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13428 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13429
13430 static void
13431 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13432 {
13433 struct dwo_unit *dwo_unit;
13434 struct dwo_file *dwo_file;
13435
13436 gdb_assert (!per_cu->is_debug_types);
13437 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13438 gdb_assert (per_cu->cu != NULL);
13439
13440 dwo_unit = per_cu->cu->dwo_unit;
13441 gdb_assert (dwo_unit != NULL);
13442
13443 dwo_file = dwo_unit->dwo_file;
13444 if (dwo_file->tus != NULL)
13445 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13446 }
13447
13448 /* Read in various DIEs. */
13449
13450 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13451 Inherit only the children of the DW_AT_abstract_origin DIE not being
13452 already referenced by DW_AT_abstract_origin from the children of the
13453 current DIE. */
13454
13455 static void
13456 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13457 {
13458 struct die_info *child_die;
13459 sect_offset *offsetp;
13460 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13461 struct die_info *origin_die;
13462 /* Iterator of the ORIGIN_DIE children. */
13463 struct die_info *origin_child_die;
13464 struct attribute *attr;
13465 struct dwarf2_cu *origin_cu;
13466 struct pending **origin_previous_list_in_scope;
13467
13468 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13469 if (!attr)
13470 return;
13471
13472 /* Note that following die references may follow to a die in a
13473 different cu. */
13474
13475 origin_cu = cu;
13476 origin_die = follow_die_ref (die, attr, &origin_cu);
13477
13478 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13479 symbols in. */
13480 origin_previous_list_in_scope = origin_cu->list_in_scope;
13481 origin_cu->list_in_scope = cu->list_in_scope;
13482
13483 if (die->tag != origin_die->tag
13484 && !(die->tag == DW_TAG_inlined_subroutine
13485 && origin_die->tag == DW_TAG_subprogram))
13486 complaint (_("DIE %s and its abstract origin %s have different tags"),
13487 sect_offset_str (die->sect_off),
13488 sect_offset_str (origin_die->sect_off));
13489
13490 std::vector<sect_offset> offsets;
13491
13492 for (child_die = die->child;
13493 child_die && child_die->tag;
13494 child_die = sibling_die (child_die))
13495 {
13496 struct die_info *child_origin_die;
13497 struct dwarf2_cu *child_origin_cu;
13498
13499 /* We are trying to process concrete instance entries:
13500 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13501 it's not relevant to our analysis here. i.e. detecting DIEs that are
13502 present in the abstract instance but not referenced in the concrete
13503 one. */
13504 if (child_die->tag == DW_TAG_call_site
13505 || child_die->tag == DW_TAG_GNU_call_site)
13506 continue;
13507
13508 /* For each CHILD_DIE, find the corresponding child of
13509 ORIGIN_DIE. If there is more than one layer of
13510 DW_AT_abstract_origin, follow them all; there shouldn't be,
13511 but GCC versions at least through 4.4 generate this (GCC PR
13512 40573). */
13513 child_origin_die = child_die;
13514 child_origin_cu = cu;
13515 while (1)
13516 {
13517 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13518 child_origin_cu);
13519 if (attr == NULL)
13520 break;
13521 child_origin_die = follow_die_ref (child_origin_die, attr,
13522 &child_origin_cu);
13523 }
13524
13525 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13526 counterpart may exist. */
13527 if (child_origin_die != child_die)
13528 {
13529 if (child_die->tag != child_origin_die->tag
13530 && !(child_die->tag == DW_TAG_inlined_subroutine
13531 && child_origin_die->tag == DW_TAG_subprogram))
13532 complaint (_("Child DIE %s and its abstract origin %s have "
13533 "different tags"),
13534 sect_offset_str (child_die->sect_off),
13535 sect_offset_str (child_origin_die->sect_off));
13536 if (child_origin_die->parent != origin_die)
13537 complaint (_("Child DIE %s and its abstract origin %s have "
13538 "different parents"),
13539 sect_offset_str (child_die->sect_off),
13540 sect_offset_str (child_origin_die->sect_off));
13541 else
13542 offsets.push_back (child_origin_die->sect_off);
13543 }
13544 }
13545 std::sort (offsets.begin (), offsets.end ());
13546 sect_offset *offsets_end = offsets.data () + offsets.size ();
13547 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13548 if (offsetp[-1] == *offsetp)
13549 complaint (_("Multiple children of DIE %s refer "
13550 "to DIE %s as their abstract origin"),
13551 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13552
13553 offsetp = offsets.data ();
13554 origin_child_die = origin_die->child;
13555 while (origin_child_die && origin_child_die->tag)
13556 {
13557 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13558 while (offsetp < offsets_end
13559 && *offsetp < origin_child_die->sect_off)
13560 offsetp++;
13561 if (offsetp >= offsets_end
13562 || *offsetp > origin_child_die->sect_off)
13563 {
13564 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13565 Check whether we're already processing ORIGIN_CHILD_DIE.
13566 This can happen with mutually referenced abstract_origins.
13567 PR 16581. */
13568 if (!origin_child_die->in_process)
13569 process_die (origin_child_die, origin_cu);
13570 }
13571 origin_child_die = sibling_die (origin_child_die);
13572 }
13573 origin_cu->list_in_scope = origin_previous_list_in_scope;
13574 }
13575
13576 static void
13577 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13578 {
13579 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13580 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13581 struct context_stack *newobj;
13582 CORE_ADDR lowpc;
13583 CORE_ADDR highpc;
13584 struct die_info *child_die;
13585 struct attribute *attr, *call_line, *call_file;
13586 const char *name;
13587 CORE_ADDR baseaddr;
13588 struct block *block;
13589 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13590 std::vector<struct symbol *> template_args;
13591 struct template_symbol *templ_func = NULL;
13592
13593 if (inlined_func)
13594 {
13595 /* If we do not have call site information, we can't show the
13596 caller of this inlined function. That's too confusing, so
13597 only use the scope for local variables. */
13598 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13599 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13600 if (call_line == NULL || call_file == NULL)
13601 {
13602 read_lexical_block_scope (die, cu);
13603 return;
13604 }
13605 }
13606
13607 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13608
13609 name = dwarf2_name (die, cu);
13610
13611 /* Ignore functions with missing or empty names. These are actually
13612 illegal according to the DWARF standard. */
13613 if (name == NULL)
13614 {
13615 complaint (_("missing name for subprogram DIE at %s"),
13616 sect_offset_str (die->sect_off));
13617 return;
13618 }
13619
13620 /* Ignore functions with missing or invalid low and high pc attributes. */
13621 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13622 <= PC_BOUNDS_INVALID)
13623 {
13624 attr = dwarf2_attr (die, DW_AT_external, cu);
13625 if (!attr || !DW_UNSND (attr))
13626 complaint (_("cannot get low and high bounds "
13627 "for subprogram DIE at %s"),
13628 sect_offset_str (die->sect_off));
13629 return;
13630 }
13631
13632 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13633 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13634
13635 /* If we have any template arguments, then we must allocate a
13636 different sort of symbol. */
13637 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13638 {
13639 if (child_die->tag == DW_TAG_template_type_param
13640 || child_die->tag == DW_TAG_template_value_param)
13641 {
13642 templ_func = allocate_template_symbol (objfile);
13643 templ_func->subclass = SYMBOL_TEMPLATE;
13644 break;
13645 }
13646 }
13647
13648 newobj = cu->get_builder ()->push_context (0, lowpc);
13649 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13650 (struct symbol *) templ_func);
13651
13652 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13653 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13654 cu->language);
13655
13656 /* If there is a location expression for DW_AT_frame_base, record
13657 it. */
13658 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13659 if (attr)
13660 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13661
13662 /* If there is a location for the static link, record it. */
13663 newobj->static_link = NULL;
13664 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13665 if (attr)
13666 {
13667 newobj->static_link
13668 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13669 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13670 dwarf2_per_cu_addr_type (cu->per_cu));
13671 }
13672
13673 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13674
13675 if (die->child != NULL)
13676 {
13677 child_die = die->child;
13678 while (child_die && child_die->tag)
13679 {
13680 if (child_die->tag == DW_TAG_template_type_param
13681 || child_die->tag == DW_TAG_template_value_param)
13682 {
13683 struct symbol *arg = new_symbol (child_die, NULL, cu);
13684
13685 if (arg != NULL)
13686 template_args.push_back (arg);
13687 }
13688 else
13689 process_die (child_die, cu);
13690 child_die = sibling_die (child_die);
13691 }
13692 }
13693
13694 inherit_abstract_dies (die, cu);
13695
13696 /* If we have a DW_AT_specification, we might need to import using
13697 directives from the context of the specification DIE. See the
13698 comment in determine_prefix. */
13699 if (cu->language == language_cplus
13700 && dwarf2_attr (die, DW_AT_specification, cu))
13701 {
13702 struct dwarf2_cu *spec_cu = cu;
13703 struct die_info *spec_die = die_specification (die, &spec_cu);
13704
13705 while (spec_die)
13706 {
13707 child_die = spec_die->child;
13708 while (child_die && child_die->tag)
13709 {
13710 if (child_die->tag == DW_TAG_imported_module)
13711 process_die (child_die, spec_cu);
13712 child_die = sibling_die (child_die);
13713 }
13714
13715 /* In some cases, GCC generates specification DIEs that
13716 themselves contain DW_AT_specification attributes. */
13717 spec_die = die_specification (spec_die, &spec_cu);
13718 }
13719 }
13720
13721 struct context_stack cstk = cu->get_builder ()->pop_context ();
13722 /* Make a block for the local symbols within. */
13723 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13724 cstk.static_link, lowpc, highpc);
13725
13726 /* For C++, set the block's scope. */
13727 if ((cu->language == language_cplus
13728 || cu->language == language_fortran
13729 || cu->language == language_d
13730 || cu->language == language_rust)
13731 && cu->processing_has_namespace_info)
13732 block_set_scope (block, determine_prefix (die, cu),
13733 &objfile->objfile_obstack);
13734
13735 /* If we have address ranges, record them. */
13736 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13737
13738 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13739
13740 /* Attach template arguments to function. */
13741 if (!template_args.empty ())
13742 {
13743 gdb_assert (templ_func != NULL);
13744
13745 templ_func->n_template_arguments = template_args.size ();
13746 templ_func->template_arguments
13747 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13748 templ_func->n_template_arguments);
13749 memcpy (templ_func->template_arguments,
13750 template_args.data (),
13751 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13752
13753 /* Make sure that the symtab is set on the new symbols. Even
13754 though they don't appear in this symtab directly, other parts
13755 of gdb assume that symbols do, and this is reasonably
13756 true. */
13757 for (symbol *sym : template_args)
13758 symbol_set_symtab (sym, symbol_symtab (templ_func));
13759 }
13760
13761 /* In C++, we can have functions nested inside functions (e.g., when
13762 a function declares a class that has methods). This means that
13763 when we finish processing a function scope, we may need to go
13764 back to building a containing block's symbol lists. */
13765 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13766 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13767
13768 /* If we've finished processing a top-level function, subsequent
13769 symbols go in the file symbol list. */
13770 if (cu->get_builder ()->outermost_context_p ())
13771 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13772 }
13773
13774 /* Process all the DIES contained within a lexical block scope. Start
13775 a new scope, process the dies, and then close the scope. */
13776
13777 static void
13778 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13779 {
13780 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13781 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13782 CORE_ADDR lowpc, highpc;
13783 struct die_info *child_die;
13784 CORE_ADDR baseaddr;
13785
13786 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13787
13788 /* Ignore blocks with missing or invalid low and high pc attributes. */
13789 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13790 as multiple lexical blocks? Handling children in a sane way would
13791 be nasty. Might be easier to properly extend generic blocks to
13792 describe ranges. */
13793 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13794 {
13795 case PC_BOUNDS_NOT_PRESENT:
13796 /* DW_TAG_lexical_block has no attributes, process its children as if
13797 there was no wrapping by that DW_TAG_lexical_block.
13798 GCC does no longer produces such DWARF since GCC r224161. */
13799 for (child_die = die->child;
13800 child_die != NULL && child_die->tag;
13801 child_die = sibling_die (child_die))
13802 process_die (child_die, cu);
13803 return;
13804 case PC_BOUNDS_INVALID:
13805 return;
13806 }
13807 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13808 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13809
13810 cu->get_builder ()->push_context (0, lowpc);
13811 if (die->child != NULL)
13812 {
13813 child_die = die->child;
13814 while (child_die && child_die->tag)
13815 {
13816 process_die (child_die, cu);
13817 child_die = sibling_die (child_die);
13818 }
13819 }
13820 inherit_abstract_dies (die, cu);
13821 struct context_stack cstk = cu->get_builder ()->pop_context ();
13822
13823 if (*cu->get_builder ()->get_local_symbols () != NULL
13824 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13825 {
13826 struct block *block
13827 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13828 cstk.start_addr, highpc);
13829
13830 /* Note that recording ranges after traversing children, as we
13831 do here, means that recording a parent's ranges entails
13832 walking across all its children's ranges as they appear in
13833 the address map, which is quadratic behavior.
13834
13835 It would be nicer to record the parent's ranges before
13836 traversing its children, simply overriding whatever you find
13837 there. But since we don't even decide whether to create a
13838 block until after we've traversed its children, that's hard
13839 to do. */
13840 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13841 }
13842 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13843 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13844 }
13845
13846 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13847
13848 static void
13849 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13850 {
13851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13852 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13853 CORE_ADDR pc, baseaddr;
13854 struct attribute *attr;
13855 struct call_site *call_site, call_site_local;
13856 void **slot;
13857 int nparams;
13858 struct die_info *child_die;
13859
13860 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13861
13862 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13863 if (attr == NULL)
13864 {
13865 /* This was a pre-DWARF-5 GNU extension alias
13866 for DW_AT_call_return_pc. */
13867 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13868 }
13869 if (!attr)
13870 {
13871 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13872 "DIE %s [in module %s]"),
13873 sect_offset_str (die->sect_off), objfile_name (objfile));
13874 return;
13875 }
13876 pc = attr_value_as_address (attr) + baseaddr;
13877 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13878
13879 if (cu->call_site_htab == NULL)
13880 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13881 NULL, &objfile->objfile_obstack,
13882 hashtab_obstack_allocate, NULL);
13883 call_site_local.pc = pc;
13884 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13885 if (*slot != NULL)
13886 {
13887 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13888 "DIE %s [in module %s]"),
13889 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13890 objfile_name (objfile));
13891 return;
13892 }
13893
13894 /* Count parameters at the caller. */
13895
13896 nparams = 0;
13897 for (child_die = die->child; child_die && child_die->tag;
13898 child_die = sibling_die (child_die))
13899 {
13900 if (child_die->tag != DW_TAG_call_site_parameter
13901 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13902 {
13903 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13904 "DW_TAG_call_site child DIE %s [in module %s]"),
13905 child_die->tag, sect_offset_str (child_die->sect_off),
13906 objfile_name (objfile));
13907 continue;
13908 }
13909
13910 nparams++;
13911 }
13912
13913 call_site
13914 = ((struct call_site *)
13915 obstack_alloc (&objfile->objfile_obstack,
13916 sizeof (*call_site)
13917 + (sizeof (*call_site->parameter) * (nparams - 1))));
13918 *slot = call_site;
13919 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13920 call_site->pc = pc;
13921
13922 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13923 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13924 {
13925 struct die_info *func_die;
13926
13927 /* Skip also over DW_TAG_inlined_subroutine. */
13928 for (func_die = die->parent;
13929 func_die && func_die->tag != DW_TAG_subprogram
13930 && func_die->tag != DW_TAG_subroutine_type;
13931 func_die = func_die->parent);
13932
13933 /* DW_AT_call_all_calls is a superset
13934 of DW_AT_call_all_tail_calls. */
13935 if (func_die
13936 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13937 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13938 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13939 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13940 {
13941 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13942 not complete. But keep CALL_SITE for look ups via call_site_htab,
13943 both the initial caller containing the real return address PC and
13944 the final callee containing the current PC of a chain of tail
13945 calls do not need to have the tail call list complete. But any
13946 function candidate for a virtual tail call frame searched via
13947 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13948 determined unambiguously. */
13949 }
13950 else
13951 {
13952 struct type *func_type = NULL;
13953
13954 if (func_die)
13955 func_type = get_die_type (func_die, cu);
13956 if (func_type != NULL)
13957 {
13958 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13959
13960 /* Enlist this call site to the function. */
13961 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13962 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13963 }
13964 else
13965 complaint (_("Cannot find function owning DW_TAG_call_site "
13966 "DIE %s [in module %s]"),
13967 sect_offset_str (die->sect_off), objfile_name (objfile));
13968 }
13969 }
13970
13971 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13972 if (attr == NULL)
13973 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13974 if (attr == NULL)
13975 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13976 if (attr == NULL)
13977 {
13978 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13979 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13980 }
13981 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13982 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13983 /* Keep NULL DWARF_BLOCK. */;
13984 else if (attr_form_is_block (attr))
13985 {
13986 struct dwarf2_locexpr_baton *dlbaton;
13987
13988 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13989 dlbaton->data = DW_BLOCK (attr)->data;
13990 dlbaton->size = DW_BLOCK (attr)->size;
13991 dlbaton->per_cu = cu->per_cu;
13992
13993 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13994 }
13995 else if (attr_form_is_ref (attr))
13996 {
13997 struct dwarf2_cu *target_cu = cu;
13998 struct die_info *target_die;
13999
14000 target_die = follow_die_ref (die, attr, &target_cu);
14001 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14002 if (die_is_declaration (target_die, target_cu))
14003 {
14004 const char *target_physname;
14005
14006 /* Prefer the mangled name; otherwise compute the demangled one. */
14007 target_physname = dw2_linkage_name (target_die, target_cu);
14008 if (target_physname == NULL)
14009 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14010 if (target_physname == NULL)
14011 complaint (_("DW_AT_call_target target DIE has invalid "
14012 "physname, for referencing DIE %s [in module %s]"),
14013 sect_offset_str (die->sect_off), objfile_name (objfile));
14014 else
14015 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14016 }
14017 else
14018 {
14019 CORE_ADDR lowpc;
14020
14021 /* DW_AT_entry_pc should be preferred. */
14022 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14023 <= PC_BOUNDS_INVALID)
14024 complaint (_("DW_AT_call_target target DIE has invalid "
14025 "low pc, for referencing DIE %s [in module %s]"),
14026 sect_offset_str (die->sect_off), objfile_name (objfile));
14027 else
14028 {
14029 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14030 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14031 }
14032 }
14033 }
14034 else
14035 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14036 "block nor reference, for DIE %s [in module %s]"),
14037 sect_offset_str (die->sect_off), objfile_name (objfile));
14038
14039 call_site->per_cu = cu->per_cu;
14040
14041 for (child_die = die->child;
14042 child_die && child_die->tag;
14043 child_die = sibling_die (child_die))
14044 {
14045 struct call_site_parameter *parameter;
14046 struct attribute *loc, *origin;
14047
14048 if (child_die->tag != DW_TAG_call_site_parameter
14049 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14050 {
14051 /* Already printed the complaint above. */
14052 continue;
14053 }
14054
14055 gdb_assert (call_site->parameter_count < nparams);
14056 parameter = &call_site->parameter[call_site->parameter_count];
14057
14058 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14059 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14060 register is contained in DW_AT_call_value. */
14061
14062 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14063 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14064 if (origin == NULL)
14065 {
14066 /* This was a pre-DWARF-5 GNU extension alias
14067 for DW_AT_call_parameter. */
14068 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14069 }
14070 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14071 {
14072 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14073
14074 sect_offset sect_off
14075 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14076 if (!offset_in_cu_p (&cu->header, sect_off))
14077 {
14078 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14079 binding can be done only inside one CU. Such referenced DIE
14080 therefore cannot be even moved to DW_TAG_partial_unit. */
14081 complaint (_("DW_AT_call_parameter offset is not in CU for "
14082 "DW_TAG_call_site child DIE %s [in module %s]"),
14083 sect_offset_str (child_die->sect_off),
14084 objfile_name (objfile));
14085 continue;
14086 }
14087 parameter->u.param_cu_off
14088 = (cu_offset) (sect_off - cu->header.sect_off);
14089 }
14090 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14091 {
14092 complaint (_("No DW_FORM_block* DW_AT_location for "
14093 "DW_TAG_call_site child DIE %s [in module %s]"),
14094 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14095 continue;
14096 }
14097 else
14098 {
14099 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14100 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14101 if (parameter->u.dwarf_reg != -1)
14102 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14103 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14104 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14105 &parameter->u.fb_offset))
14106 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14107 else
14108 {
14109 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14110 "for DW_FORM_block* DW_AT_location is supported for "
14111 "DW_TAG_call_site child DIE %s "
14112 "[in module %s]"),
14113 sect_offset_str (child_die->sect_off),
14114 objfile_name (objfile));
14115 continue;
14116 }
14117 }
14118
14119 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14120 if (attr == NULL)
14121 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14122 if (!attr_form_is_block (attr))
14123 {
14124 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14125 "DW_TAG_call_site child DIE %s [in module %s]"),
14126 sect_offset_str (child_die->sect_off),
14127 objfile_name (objfile));
14128 continue;
14129 }
14130 parameter->value = DW_BLOCK (attr)->data;
14131 parameter->value_size = DW_BLOCK (attr)->size;
14132
14133 /* Parameters are not pre-cleared by memset above. */
14134 parameter->data_value = NULL;
14135 parameter->data_value_size = 0;
14136 call_site->parameter_count++;
14137
14138 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14139 if (attr == NULL)
14140 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14141 if (attr)
14142 {
14143 if (!attr_form_is_block (attr))
14144 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14145 "DW_TAG_call_site child DIE %s [in module %s]"),
14146 sect_offset_str (child_die->sect_off),
14147 objfile_name (objfile));
14148 else
14149 {
14150 parameter->data_value = DW_BLOCK (attr)->data;
14151 parameter->data_value_size = DW_BLOCK (attr)->size;
14152 }
14153 }
14154 }
14155 }
14156
14157 /* Helper function for read_variable. If DIE represents a virtual
14158 table, then return the type of the concrete object that is
14159 associated with the virtual table. Otherwise, return NULL. */
14160
14161 static struct type *
14162 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14163 {
14164 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14165 if (attr == NULL)
14166 return NULL;
14167
14168 /* Find the type DIE. */
14169 struct die_info *type_die = NULL;
14170 struct dwarf2_cu *type_cu = cu;
14171
14172 if (attr_form_is_ref (attr))
14173 type_die = follow_die_ref (die, attr, &type_cu);
14174 if (type_die == NULL)
14175 return NULL;
14176
14177 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14178 return NULL;
14179 return die_containing_type (type_die, type_cu);
14180 }
14181
14182 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14183
14184 static void
14185 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14186 {
14187 struct rust_vtable_symbol *storage = NULL;
14188
14189 if (cu->language == language_rust)
14190 {
14191 struct type *containing_type = rust_containing_type (die, cu);
14192
14193 if (containing_type != NULL)
14194 {
14195 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14196
14197 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14198 struct rust_vtable_symbol);
14199 initialize_objfile_symbol (storage);
14200 storage->concrete_type = containing_type;
14201 storage->subclass = SYMBOL_RUST_VTABLE;
14202 }
14203 }
14204
14205 struct symbol *res = new_symbol (die, NULL, cu, storage);
14206 struct attribute *abstract_origin
14207 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14208 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14209 if (res == NULL && loc && abstract_origin)
14210 {
14211 /* We have a variable without a name, but with a location and an abstract
14212 origin. This may be a concrete instance of an abstract variable
14213 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14214 later. */
14215 struct dwarf2_cu *origin_cu = cu;
14216 struct die_info *origin_die
14217 = follow_die_ref (die, abstract_origin, &origin_cu);
14218 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14219 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14220 }
14221 }
14222
14223 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14224 reading .debug_rnglists.
14225 Callback's type should be:
14226 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14227 Return true if the attributes are present and valid, otherwise,
14228 return false. */
14229
14230 template <typename Callback>
14231 static bool
14232 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14233 Callback &&callback)
14234 {
14235 struct dwarf2_per_objfile *dwarf2_per_objfile
14236 = cu->per_cu->dwarf2_per_objfile;
14237 struct objfile *objfile = dwarf2_per_objfile->objfile;
14238 bfd *obfd = objfile->obfd;
14239 /* Base address selection entry. */
14240 CORE_ADDR base;
14241 int found_base;
14242 const gdb_byte *buffer;
14243 CORE_ADDR baseaddr;
14244 bool overflow = false;
14245
14246 found_base = cu->base_known;
14247 base = cu->base_address;
14248
14249 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14250 if (offset >= dwarf2_per_objfile->rnglists.size)
14251 {
14252 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14253 offset);
14254 return false;
14255 }
14256 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14257
14258 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14259
14260 while (1)
14261 {
14262 /* Initialize it due to a false compiler warning. */
14263 CORE_ADDR range_beginning = 0, range_end = 0;
14264 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14265 + dwarf2_per_objfile->rnglists.size);
14266 unsigned int bytes_read;
14267
14268 if (buffer == buf_end)
14269 {
14270 overflow = true;
14271 break;
14272 }
14273 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14274 switch (rlet)
14275 {
14276 case DW_RLE_end_of_list:
14277 break;
14278 case DW_RLE_base_address:
14279 if (buffer + cu->header.addr_size > buf_end)
14280 {
14281 overflow = true;
14282 break;
14283 }
14284 base = read_address (obfd, buffer, cu, &bytes_read);
14285 found_base = 1;
14286 buffer += bytes_read;
14287 break;
14288 case DW_RLE_start_length:
14289 if (buffer + cu->header.addr_size > buf_end)
14290 {
14291 overflow = true;
14292 break;
14293 }
14294 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14295 buffer += bytes_read;
14296 range_end = (range_beginning
14297 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14298 buffer += bytes_read;
14299 if (buffer > buf_end)
14300 {
14301 overflow = true;
14302 break;
14303 }
14304 break;
14305 case DW_RLE_offset_pair:
14306 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14307 buffer += bytes_read;
14308 if (buffer > buf_end)
14309 {
14310 overflow = true;
14311 break;
14312 }
14313 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14314 buffer += bytes_read;
14315 if (buffer > buf_end)
14316 {
14317 overflow = true;
14318 break;
14319 }
14320 break;
14321 case DW_RLE_start_end:
14322 if (buffer + 2 * cu->header.addr_size > buf_end)
14323 {
14324 overflow = true;
14325 break;
14326 }
14327 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14328 buffer += bytes_read;
14329 range_end = read_address (obfd, buffer, cu, &bytes_read);
14330 buffer += bytes_read;
14331 break;
14332 default:
14333 complaint (_("Invalid .debug_rnglists data (no base address)"));
14334 return false;
14335 }
14336 if (rlet == DW_RLE_end_of_list || overflow)
14337 break;
14338 if (rlet == DW_RLE_base_address)
14339 continue;
14340
14341 if (!found_base)
14342 {
14343 /* We have no valid base address for the ranges
14344 data. */
14345 complaint (_("Invalid .debug_rnglists data (no base address)"));
14346 return false;
14347 }
14348
14349 if (range_beginning > range_end)
14350 {
14351 /* Inverted range entries are invalid. */
14352 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14353 return false;
14354 }
14355
14356 /* Empty range entries have no effect. */
14357 if (range_beginning == range_end)
14358 continue;
14359
14360 range_beginning += base;
14361 range_end += base;
14362
14363 /* A not-uncommon case of bad debug info.
14364 Don't pollute the addrmap with bad data. */
14365 if (range_beginning + baseaddr == 0
14366 && !dwarf2_per_objfile->has_section_at_zero)
14367 {
14368 complaint (_(".debug_rnglists entry has start address of zero"
14369 " [in module %s]"), objfile_name (objfile));
14370 continue;
14371 }
14372
14373 callback (range_beginning, range_end);
14374 }
14375
14376 if (overflow)
14377 {
14378 complaint (_("Offset %d is not terminated "
14379 "for DW_AT_ranges attribute"),
14380 offset);
14381 return false;
14382 }
14383
14384 return true;
14385 }
14386
14387 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14388 Callback's type should be:
14389 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14390 Return 1 if the attributes are present and valid, otherwise, return 0. */
14391
14392 template <typename Callback>
14393 static int
14394 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14395 Callback &&callback)
14396 {
14397 struct dwarf2_per_objfile *dwarf2_per_objfile
14398 = cu->per_cu->dwarf2_per_objfile;
14399 struct objfile *objfile = dwarf2_per_objfile->objfile;
14400 struct comp_unit_head *cu_header = &cu->header;
14401 bfd *obfd = objfile->obfd;
14402 unsigned int addr_size = cu_header->addr_size;
14403 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14404 /* Base address selection entry. */
14405 CORE_ADDR base;
14406 int found_base;
14407 unsigned int dummy;
14408 const gdb_byte *buffer;
14409 CORE_ADDR baseaddr;
14410
14411 if (cu_header->version >= 5)
14412 return dwarf2_rnglists_process (offset, cu, callback);
14413
14414 found_base = cu->base_known;
14415 base = cu->base_address;
14416
14417 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14418 if (offset >= dwarf2_per_objfile->ranges.size)
14419 {
14420 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14421 offset);
14422 return 0;
14423 }
14424 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14425
14426 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14427
14428 while (1)
14429 {
14430 CORE_ADDR range_beginning, range_end;
14431
14432 range_beginning = read_address (obfd, buffer, cu, &dummy);
14433 buffer += addr_size;
14434 range_end = read_address (obfd, buffer, cu, &dummy);
14435 buffer += addr_size;
14436 offset += 2 * addr_size;
14437
14438 /* An end of list marker is a pair of zero addresses. */
14439 if (range_beginning == 0 && range_end == 0)
14440 /* Found the end of list entry. */
14441 break;
14442
14443 /* Each base address selection entry is a pair of 2 values.
14444 The first is the largest possible address, the second is
14445 the base address. Check for a base address here. */
14446 if ((range_beginning & mask) == mask)
14447 {
14448 /* If we found the largest possible address, then we already
14449 have the base address in range_end. */
14450 base = range_end;
14451 found_base = 1;
14452 continue;
14453 }
14454
14455 if (!found_base)
14456 {
14457 /* We have no valid base address for the ranges
14458 data. */
14459 complaint (_("Invalid .debug_ranges data (no base address)"));
14460 return 0;
14461 }
14462
14463 if (range_beginning > range_end)
14464 {
14465 /* Inverted range entries are invalid. */
14466 complaint (_("Invalid .debug_ranges data (inverted range)"));
14467 return 0;
14468 }
14469
14470 /* Empty range entries have no effect. */
14471 if (range_beginning == range_end)
14472 continue;
14473
14474 range_beginning += base;
14475 range_end += base;
14476
14477 /* A not-uncommon case of bad debug info.
14478 Don't pollute the addrmap with bad data. */
14479 if (range_beginning + baseaddr == 0
14480 && !dwarf2_per_objfile->has_section_at_zero)
14481 {
14482 complaint (_(".debug_ranges entry has start address of zero"
14483 " [in module %s]"), objfile_name (objfile));
14484 continue;
14485 }
14486
14487 callback (range_beginning, range_end);
14488 }
14489
14490 return 1;
14491 }
14492
14493 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14494 Return 1 if the attributes are present and valid, otherwise, return 0.
14495 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14496
14497 static int
14498 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14499 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14500 struct partial_symtab *ranges_pst)
14501 {
14502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14504 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14505 SECT_OFF_TEXT (objfile));
14506 int low_set = 0;
14507 CORE_ADDR low = 0;
14508 CORE_ADDR high = 0;
14509 int retval;
14510
14511 retval = dwarf2_ranges_process (offset, cu,
14512 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14513 {
14514 if (ranges_pst != NULL)
14515 {
14516 CORE_ADDR lowpc;
14517 CORE_ADDR highpc;
14518
14519 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14520 range_beginning + baseaddr)
14521 - baseaddr);
14522 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14523 range_end + baseaddr)
14524 - baseaddr);
14525 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14526 lowpc, highpc - 1, ranges_pst);
14527 }
14528
14529 /* FIXME: This is recording everything as a low-high
14530 segment of consecutive addresses. We should have a
14531 data structure for discontiguous block ranges
14532 instead. */
14533 if (! low_set)
14534 {
14535 low = range_beginning;
14536 high = range_end;
14537 low_set = 1;
14538 }
14539 else
14540 {
14541 if (range_beginning < low)
14542 low = range_beginning;
14543 if (range_end > high)
14544 high = range_end;
14545 }
14546 });
14547 if (!retval)
14548 return 0;
14549
14550 if (! low_set)
14551 /* If the first entry is an end-of-list marker, the range
14552 describes an empty scope, i.e. no instructions. */
14553 return 0;
14554
14555 if (low_return)
14556 *low_return = low;
14557 if (high_return)
14558 *high_return = high;
14559 return 1;
14560 }
14561
14562 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14563 definition for the return value. *LOWPC and *HIGHPC are set iff
14564 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14565
14566 static enum pc_bounds_kind
14567 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14568 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14569 struct partial_symtab *pst)
14570 {
14571 struct dwarf2_per_objfile *dwarf2_per_objfile
14572 = cu->per_cu->dwarf2_per_objfile;
14573 struct attribute *attr;
14574 struct attribute *attr_high;
14575 CORE_ADDR low = 0;
14576 CORE_ADDR high = 0;
14577 enum pc_bounds_kind ret;
14578
14579 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14580 if (attr_high)
14581 {
14582 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14583 if (attr)
14584 {
14585 low = attr_value_as_address (attr);
14586 high = attr_value_as_address (attr_high);
14587 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14588 high += low;
14589 }
14590 else
14591 /* Found high w/o low attribute. */
14592 return PC_BOUNDS_INVALID;
14593
14594 /* Found consecutive range of addresses. */
14595 ret = PC_BOUNDS_HIGH_LOW;
14596 }
14597 else
14598 {
14599 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14600 if (attr != NULL)
14601 {
14602 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14603 We take advantage of the fact that DW_AT_ranges does not appear
14604 in DW_TAG_compile_unit of DWO files. */
14605 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14606 unsigned int ranges_offset = (DW_UNSND (attr)
14607 + (need_ranges_base
14608 ? cu->ranges_base
14609 : 0));
14610
14611 /* Value of the DW_AT_ranges attribute is the offset in the
14612 .debug_ranges section. */
14613 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14614 return PC_BOUNDS_INVALID;
14615 /* Found discontinuous range of addresses. */
14616 ret = PC_BOUNDS_RANGES;
14617 }
14618 else
14619 return PC_BOUNDS_NOT_PRESENT;
14620 }
14621
14622 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14623 if (high <= low)
14624 return PC_BOUNDS_INVALID;
14625
14626 /* When using the GNU linker, .gnu.linkonce. sections are used to
14627 eliminate duplicate copies of functions and vtables and such.
14628 The linker will arbitrarily choose one and discard the others.
14629 The AT_*_pc values for such functions refer to local labels in
14630 these sections. If the section from that file was discarded, the
14631 labels are not in the output, so the relocs get a value of 0.
14632 If this is a discarded function, mark the pc bounds as invalid,
14633 so that GDB will ignore it. */
14634 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14635 return PC_BOUNDS_INVALID;
14636
14637 *lowpc = low;
14638 if (highpc)
14639 *highpc = high;
14640 return ret;
14641 }
14642
14643 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14644 its low and high PC addresses. Do nothing if these addresses could not
14645 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14646 and HIGHPC to the high address if greater than HIGHPC. */
14647
14648 static void
14649 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14650 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14651 struct dwarf2_cu *cu)
14652 {
14653 CORE_ADDR low, high;
14654 struct die_info *child = die->child;
14655
14656 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14657 {
14658 *lowpc = std::min (*lowpc, low);
14659 *highpc = std::max (*highpc, high);
14660 }
14661
14662 /* If the language does not allow nested subprograms (either inside
14663 subprograms or lexical blocks), we're done. */
14664 if (cu->language != language_ada)
14665 return;
14666
14667 /* Check all the children of the given DIE. If it contains nested
14668 subprograms, then check their pc bounds. Likewise, we need to
14669 check lexical blocks as well, as they may also contain subprogram
14670 definitions. */
14671 while (child && child->tag)
14672 {
14673 if (child->tag == DW_TAG_subprogram
14674 || child->tag == DW_TAG_lexical_block)
14675 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14676 child = sibling_die (child);
14677 }
14678 }
14679
14680 /* Get the low and high pc's represented by the scope DIE, and store
14681 them in *LOWPC and *HIGHPC. If the correct values can't be
14682 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14683
14684 static void
14685 get_scope_pc_bounds (struct die_info *die,
14686 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14687 struct dwarf2_cu *cu)
14688 {
14689 CORE_ADDR best_low = (CORE_ADDR) -1;
14690 CORE_ADDR best_high = (CORE_ADDR) 0;
14691 CORE_ADDR current_low, current_high;
14692
14693 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14694 >= PC_BOUNDS_RANGES)
14695 {
14696 best_low = current_low;
14697 best_high = current_high;
14698 }
14699 else
14700 {
14701 struct die_info *child = die->child;
14702
14703 while (child && child->tag)
14704 {
14705 switch (child->tag) {
14706 case DW_TAG_subprogram:
14707 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14708 break;
14709 case DW_TAG_namespace:
14710 case DW_TAG_module:
14711 /* FIXME: carlton/2004-01-16: Should we do this for
14712 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14713 that current GCC's always emit the DIEs corresponding
14714 to definitions of methods of classes as children of a
14715 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14716 the DIEs giving the declarations, which could be
14717 anywhere). But I don't see any reason why the
14718 standards says that they have to be there. */
14719 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14720
14721 if (current_low != ((CORE_ADDR) -1))
14722 {
14723 best_low = std::min (best_low, current_low);
14724 best_high = std::max (best_high, current_high);
14725 }
14726 break;
14727 default:
14728 /* Ignore. */
14729 break;
14730 }
14731
14732 child = sibling_die (child);
14733 }
14734 }
14735
14736 *lowpc = best_low;
14737 *highpc = best_high;
14738 }
14739
14740 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14741 in DIE. */
14742
14743 static void
14744 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14745 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14746 {
14747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14748 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14749 struct attribute *attr;
14750 struct attribute *attr_high;
14751
14752 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14753 if (attr_high)
14754 {
14755 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14756 if (attr)
14757 {
14758 CORE_ADDR low = attr_value_as_address (attr);
14759 CORE_ADDR high = attr_value_as_address (attr_high);
14760
14761 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14762 high += low;
14763
14764 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14765 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14766 cu->get_builder ()->record_block_range (block, low, high - 1);
14767 }
14768 }
14769
14770 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14771 if (attr)
14772 {
14773 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14774 We take advantage of the fact that DW_AT_ranges does not appear
14775 in DW_TAG_compile_unit of DWO files. */
14776 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14777
14778 /* The value of the DW_AT_ranges attribute is the offset of the
14779 address range list in the .debug_ranges section. */
14780 unsigned long offset = (DW_UNSND (attr)
14781 + (need_ranges_base ? cu->ranges_base : 0));
14782
14783 std::vector<blockrange> blockvec;
14784 dwarf2_ranges_process (offset, cu,
14785 [&] (CORE_ADDR start, CORE_ADDR end)
14786 {
14787 start += baseaddr;
14788 end += baseaddr;
14789 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14790 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14791 cu->get_builder ()->record_block_range (block, start, end - 1);
14792 blockvec.emplace_back (start, end);
14793 });
14794
14795 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14796 }
14797 }
14798
14799 /* Check whether the producer field indicates either of GCC < 4.6, or the
14800 Intel C/C++ compiler, and cache the result in CU. */
14801
14802 static void
14803 check_producer (struct dwarf2_cu *cu)
14804 {
14805 int major, minor;
14806
14807 if (cu->producer == NULL)
14808 {
14809 /* For unknown compilers expect their behavior is DWARF version
14810 compliant.
14811
14812 GCC started to support .debug_types sections by -gdwarf-4 since
14813 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14814 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14815 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14816 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14817 }
14818 else if (producer_is_gcc (cu->producer, &major, &minor))
14819 {
14820 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14821 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14822 }
14823 else if (producer_is_icc (cu->producer, &major, &minor))
14824 {
14825 cu->producer_is_icc = true;
14826 cu->producer_is_icc_lt_14 = major < 14;
14827 }
14828 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14829 cu->producer_is_codewarrior = true;
14830 else
14831 {
14832 /* For other non-GCC compilers, expect their behavior is DWARF version
14833 compliant. */
14834 }
14835
14836 cu->checked_producer = true;
14837 }
14838
14839 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14840 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14841 during 4.6.0 experimental. */
14842
14843 static bool
14844 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14845 {
14846 if (!cu->checked_producer)
14847 check_producer (cu);
14848
14849 return cu->producer_is_gxx_lt_4_6;
14850 }
14851
14852
14853 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14854 with incorrect is_stmt attributes. */
14855
14856 static bool
14857 producer_is_codewarrior (struct dwarf2_cu *cu)
14858 {
14859 if (!cu->checked_producer)
14860 check_producer (cu);
14861
14862 return cu->producer_is_codewarrior;
14863 }
14864
14865 /* Return the default accessibility type if it is not overriden by
14866 DW_AT_accessibility. */
14867
14868 static enum dwarf_access_attribute
14869 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14870 {
14871 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14872 {
14873 /* The default DWARF 2 accessibility for members is public, the default
14874 accessibility for inheritance is private. */
14875
14876 if (die->tag != DW_TAG_inheritance)
14877 return DW_ACCESS_public;
14878 else
14879 return DW_ACCESS_private;
14880 }
14881 else
14882 {
14883 /* DWARF 3+ defines the default accessibility a different way. The same
14884 rules apply now for DW_TAG_inheritance as for the members and it only
14885 depends on the container kind. */
14886
14887 if (die->parent->tag == DW_TAG_class_type)
14888 return DW_ACCESS_private;
14889 else
14890 return DW_ACCESS_public;
14891 }
14892 }
14893
14894 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14895 offset. If the attribute was not found return 0, otherwise return
14896 1. If it was found but could not properly be handled, set *OFFSET
14897 to 0. */
14898
14899 static int
14900 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14901 LONGEST *offset)
14902 {
14903 struct attribute *attr;
14904
14905 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14906 if (attr != NULL)
14907 {
14908 *offset = 0;
14909
14910 /* Note that we do not check for a section offset first here.
14911 This is because DW_AT_data_member_location is new in DWARF 4,
14912 so if we see it, we can assume that a constant form is really
14913 a constant and not a section offset. */
14914 if (attr_form_is_constant (attr))
14915 *offset = dwarf2_get_attr_constant_value (attr, 0);
14916 else if (attr_form_is_section_offset (attr))
14917 dwarf2_complex_location_expr_complaint ();
14918 else if (attr_form_is_block (attr))
14919 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14920 else
14921 dwarf2_complex_location_expr_complaint ();
14922
14923 return 1;
14924 }
14925
14926 return 0;
14927 }
14928
14929 /* Add an aggregate field to the field list. */
14930
14931 static void
14932 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14933 struct dwarf2_cu *cu)
14934 {
14935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14937 struct nextfield *new_field;
14938 struct attribute *attr;
14939 struct field *fp;
14940 const char *fieldname = "";
14941
14942 if (die->tag == DW_TAG_inheritance)
14943 {
14944 fip->baseclasses.emplace_back ();
14945 new_field = &fip->baseclasses.back ();
14946 }
14947 else
14948 {
14949 fip->fields.emplace_back ();
14950 new_field = &fip->fields.back ();
14951 }
14952
14953 fip->nfields++;
14954
14955 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14956 if (attr)
14957 new_field->accessibility = DW_UNSND (attr);
14958 else
14959 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14960 if (new_field->accessibility != DW_ACCESS_public)
14961 fip->non_public_fields = 1;
14962
14963 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14964 if (attr)
14965 new_field->virtuality = DW_UNSND (attr);
14966 else
14967 new_field->virtuality = DW_VIRTUALITY_none;
14968
14969 fp = &new_field->field;
14970
14971 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14972 {
14973 LONGEST offset;
14974
14975 /* Data member other than a C++ static data member. */
14976
14977 /* Get type of field. */
14978 fp->type = die_type (die, cu);
14979
14980 SET_FIELD_BITPOS (*fp, 0);
14981
14982 /* Get bit size of field (zero if none). */
14983 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14984 if (attr)
14985 {
14986 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14987 }
14988 else
14989 {
14990 FIELD_BITSIZE (*fp) = 0;
14991 }
14992
14993 /* Get bit offset of field. */
14994 if (handle_data_member_location (die, cu, &offset))
14995 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14996 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14997 if (attr)
14998 {
14999 if (gdbarch_bits_big_endian (gdbarch))
15000 {
15001 /* For big endian bits, the DW_AT_bit_offset gives the
15002 additional bit offset from the MSB of the containing
15003 anonymous object to the MSB of the field. We don't
15004 have to do anything special since we don't need to
15005 know the size of the anonymous object. */
15006 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15007 }
15008 else
15009 {
15010 /* For little endian bits, compute the bit offset to the
15011 MSB of the anonymous object, subtract off the number of
15012 bits from the MSB of the field to the MSB of the
15013 object, and then subtract off the number of bits of
15014 the field itself. The result is the bit offset of
15015 the LSB of the field. */
15016 int anonymous_size;
15017 int bit_offset = DW_UNSND (attr);
15018
15019 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15020 if (attr)
15021 {
15022 /* The size of the anonymous object containing
15023 the bit field is explicit, so use the
15024 indicated size (in bytes). */
15025 anonymous_size = DW_UNSND (attr);
15026 }
15027 else
15028 {
15029 /* The size of the anonymous object containing
15030 the bit field must be inferred from the type
15031 attribute of the data member containing the
15032 bit field. */
15033 anonymous_size = TYPE_LENGTH (fp->type);
15034 }
15035 SET_FIELD_BITPOS (*fp,
15036 (FIELD_BITPOS (*fp)
15037 + anonymous_size * bits_per_byte
15038 - bit_offset - FIELD_BITSIZE (*fp)));
15039 }
15040 }
15041 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15042 if (attr != NULL)
15043 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15044 + dwarf2_get_attr_constant_value (attr, 0)));
15045
15046 /* Get name of field. */
15047 fieldname = dwarf2_name (die, cu);
15048 if (fieldname == NULL)
15049 fieldname = "";
15050
15051 /* The name is already allocated along with this objfile, so we don't
15052 need to duplicate it for the type. */
15053 fp->name = fieldname;
15054
15055 /* Change accessibility for artificial fields (e.g. virtual table
15056 pointer or virtual base class pointer) to private. */
15057 if (dwarf2_attr (die, DW_AT_artificial, cu))
15058 {
15059 FIELD_ARTIFICIAL (*fp) = 1;
15060 new_field->accessibility = DW_ACCESS_private;
15061 fip->non_public_fields = 1;
15062 }
15063 }
15064 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15065 {
15066 /* C++ static member. */
15067
15068 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15069 is a declaration, but all versions of G++ as of this writing
15070 (so through at least 3.2.1) incorrectly generate
15071 DW_TAG_variable tags. */
15072
15073 const char *physname;
15074
15075 /* Get name of field. */
15076 fieldname = dwarf2_name (die, cu);
15077 if (fieldname == NULL)
15078 return;
15079
15080 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15081 if (attr
15082 /* Only create a symbol if this is an external value.
15083 new_symbol checks this and puts the value in the global symbol
15084 table, which we want. If it is not external, new_symbol
15085 will try to put the value in cu->list_in_scope which is wrong. */
15086 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15087 {
15088 /* A static const member, not much different than an enum as far as
15089 we're concerned, except that we can support more types. */
15090 new_symbol (die, NULL, cu);
15091 }
15092
15093 /* Get physical name. */
15094 physname = dwarf2_physname (fieldname, die, cu);
15095
15096 /* The name is already allocated along with this objfile, so we don't
15097 need to duplicate it for the type. */
15098 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15099 FIELD_TYPE (*fp) = die_type (die, cu);
15100 FIELD_NAME (*fp) = fieldname;
15101 }
15102 else if (die->tag == DW_TAG_inheritance)
15103 {
15104 LONGEST offset;
15105
15106 /* C++ base class field. */
15107 if (handle_data_member_location (die, cu, &offset))
15108 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15109 FIELD_BITSIZE (*fp) = 0;
15110 FIELD_TYPE (*fp) = die_type (die, cu);
15111 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15112 }
15113 else if (die->tag == DW_TAG_variant_part)
15114 {
15115 /* process_structure_scope will treat this DIE as a union. */
15116 process_structure_scope (die, cu);
15117
15118 /* The variant part is relative to the start of the enclosing
15119 structure. */
15120 SET_FIELD_BITPOS (*fp, 0);
15121 fp->type = get_die_type (die, cu);
15122 fp->artificial = 1;
15123 fp->name = "<<variant>>";
15124
15125 /* Normally a DW_TAG_variant_part won't have a size, but our
15126 representation requires one, so set it to the maximum of the
15127 child sizes. */
15128 if (TYPE_LENGTH (fp->type) == 0)
15129 {
15130 unsigned max = 0;
15131 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15132 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15133 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15134 TYPE_LENGTH (fp->type) = max;
15135 }
15136 }
15137 else
15138 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15139 }
15140
15141 /* Can the type given by DIE define another type? */
15142
15143 static bool
15144 type_can_define_types (const struct die_info *die)
15145 {
15146 switch (die->tag)
15147 {
15148 case DW_TAG_typedef:
15149 case DW_TAG_class_type:
15150 case DW_TAG_structure_type:
15151 case DW_TAG_union_type:
15152 case DW_TAG_enumeration_type:
15153 return true;
15154
15155 default:
15156 return false;
15157 }
15158 }
15159
15160 /* Add a type definition defined in the scope of the FIP's class. */
15161
15162 static void
15163 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15164 struct dwarf2_cu *cu)
15165 {
15166 struct decl_field fp;
15167 memset (&fp, 0, sizeof (fp));
15168
15169 gdb_assert (type_can_define_types (die));
15170
15171 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15172 fp.name = dwarf2_name (die, cu);
15173 fp.type = read_type_die (die, cu);
15174
15175 /* Save accessibility. */
15176 enum dwarf_access_attribute accessibility;
15177 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15178 if (attr != NULL)
15179 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15180 else
15181 accessibility = dwarf2_default_access_attribute (die, cu);
15182 switch (accessibility)
15183 {
15184 case DW_ACCESS_public:
15185 /* The assumed value if neither private nor protected. */
15186 break;
15187 case DW_ACCESS_private:
15188 fp.is_private = 1;
15189 break;
15190 case DW_ACCESS_protected:
15191 fp.is_protected = 1;
15192 break;
15193 default:
15194 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15195 }
15196
15197 if (die->tag == DW_TAG_typedef)
15198 fip->typedef_field_list.push_back (fp);
15199 else
15200 fip->nested_types_list.push_back (fp);
15201 }
15202
15203 /* Create the vector of fields, and attach it to the type. */
15204
15205 static void
15206 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15207 struct dwarf2_cu *cu)
15208 {
15209 int nfields = fip->nfields;
15210
15211 /* Record the field count, allocate space for the array of fields,
15212 and create blank accessibility bitfields if necessary. */
15213 TYPE_NFIELDS (type) = nfields;
15214 TYPE_FIELDS (type) = (struct field *)
15215 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15216
15217 if (fip->non_public_fields && cu->language != language_ada)
15218 {
15219 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15220
15221 TYPE_FIELD_PRIVATE_BITS (type) =
15222 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15223 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15224
15225 TYPE_FIELD_PROTECTED_BITS (type) =
15226 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15227 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15228
15229 TYPE_FIELD_IGNORE_BITS (type) =
15230 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15231 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15232 }
15233
15234 /* If the type has baseclasses, allocate and clear a bit vector for
15235 TYPE_FIELD_VIRTUAL_BITS. */
15236 if (!fip->baseclasses.empty () && cu->language != language_ada)
15237 {
15238 int num_bytes = B_BYTES (fip->baseclasses.size ());
15239 unsigned char *pointer;
15240
15241 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15242 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15243 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15244 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15245 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15246 }
15247
15248 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15249 {
15250 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15251
15252 for (int index = 0; index < nfields; ++index)
15253 {
15254 struct nextfield &field = fip->fields[index];
15255
15256 if (field.variant.is_discriminant)
15257 di->discriminant_index = index;
15258 else if (field.variant.default_branch)
15259 di->default_index = index;
15260 else
15261 di->discriminants[index] = field.variant.discriminant_value;
15262 }
15263 }
15264
15265 /* Copy the saved-up fields into the field vector. */
15266 for (int i = 0; i < nfields; ++i)
15267 {
15268 struct nextfield &field
15269 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15270 : fip->fields[i - fip->baseclasses.size ()]);
15271
15272 TYPE_FIELD (type, i) = field.field;
15273 switch (field.accessibility)
15274 {
15275 case DW_ACCESS_private:
15276 if (cu->language != language_ada)
15277 SET_TYPE_FIELD_PRIVATE (type, i);
15278 break;
15279
15280 case DW_ACCESS_protected:
15281 if (cu->language != language_ada)
15282 SET_TYPE_FIELD_PROTECTED (type, i);
15283 break;
15284
15285 case DW_ACCESS_public:
15286 break;
15287
15288 default:
15289 /* Unknown accessibility. Complain and treat it as public. */
15290 {
15291 complaint (_("unsupported accessibility %d"),
15292 field.accessibility);
15293 }
15294 break;
15295 }
15296 if (i < fip->baseclasses.size ())
15297 {
15298 switch (field.virtuality)
15299 {
15300 case DW_VIRTUALITY_virtual:
15301 case DW_VIRTUALITY_pure_virtual:
15302 if (cu->language == language_ada)
15303 error (_("unexpected virtuality in component of Ada type"));
15304 SET_TYPE_FIELD_VIRTUAL (type, i);
15305 break;
15306 }
15307 }
15308 }
15309 }
15310
15311 /* Return true if this member function is a constructor, false
15312 otherwise. */
15313
15314 static int
15315 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15316 {
15317 const char *fieldname;
15318 const char *type_name;
15319 int len;
15320
15321 if (die->parent == NULL)
15322 return 0;
15323
15324 if (die->parent->tag != DW_TAG_structure_type
15325 && die->parent->tag != DW_TAG_union_type
15326 && die->parent->tag != DW_TAG_class_type)
15327 return 0;
15328
15329 fieldname = dwarf2_name (die, cu);
15330 type_name = dwarf2_name (die->parent, cu);
15331 if (fieldname == NULL || type_name == NULL)
15332 return 0;
15333
15334 len = strlen (fieldname);
15335 return (strncmp (fieldname, type_name, len) == 0
15336 && (type_name[len] == '\0' || type_name[len] == '<'));
15337 }
15338
15339 /* Add a member function to the proper fieldlist. */
15340
15341 static void
15342 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15343 struct type *type, struct dwarf2_cu *cu)
15344 {
15345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15346 struct attribute *attr;
15347 int i;
15348 struct fnfieldlist *flp = nullptr;
15349 struct fn_field *fnp;
15350 const char *fieldname;
15351 struct type *this_type;
15352 enum dwarf_access_attribute accessibility;
15353
15354 if (cu->language == language_ada)
15355 error (_("unexpected member function in Ada type"));
15356
15357 /* Get name of member function. */
15358 fieldname = dwarf2_name (die, cu);
15359 if (fieldname == NULL)
15360 return;
15361
15362 /* Look up member function name in fieldlist. */
15363 for (i = 0; i < fip->fnfieldlists.size (); i++)
15364 {
15365 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15366 {
15367 flp = &fip->fnfieldlists[i];
15368 break;
15369 }
15370 }
15371
15372 /* Create a new fnfieldlist if necessary. */
15373 if (flp == nullptr)
15374 {
15375 fip->fnfieldlists.emplace_back ();
15376 flp = &fip->fnfieldlists.back ();
15377 flp->name = fieldname;
15378 i = fip->fnfieldlists.size () - 1;
15379 }
15380
15381 /* Create a new member function field and add it to the vector of
15382 fnfieldlists. */
15383 flp->fnfields.emplace_back ();
15384 fnp = &flp->fnfields.back ();
15385
15386 /* Delay processing of the physname until later. */
15387 if (cu->language == language_cplus)
15388 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15389 die, cu);
15390 else
15391 {
15392 const char *physname = dwarf2_physname (fieldname, die, cu);
15393 fnp->physname = physname ? physname : "";
15394 }
15395
15396 fnp->type = alloc_type (objfile);
15397 this_type = read_type_die (die, cu);
15398 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15399 {
15400 int nparams = TYPE_NFIELDS (this_type);
15401
15402 /* TYPE is the domain of this method, and THIS_TYPE is the type
15403 of the method itself (TYPE_CODE_METHOD). */
15404 smash_to_method_type (fnp->type, type,
15405 TYPE_TARGET_TYPE (this_type),
15406 TYPE_FIELDS (this_type),
15407 TYPE_NFIELDS (this_type),
15408 TYPE_VARARGS (this_type));
15409
15410 /* Handle static member functions.
15411 Dwarf2 has no clean way to discern C++ static and non-static
15412 member functions. G++ helps GDB by marking the first
15413 parameter for non-static member functions (which is the this
15414 pointer) as artificial. We obtain this information from
15415 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15416 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15417 fnp->voffset = VOFFSET_STATIC;
15418 }
15419 else
15420 complaint (_("member function type missing for '%s'"),
15421 dwarf2_full_name (fieldname, die, cu));
15422
15423 /* Get fcontext from DW_AT_containing_type if present. */
15424 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15425 fnp->fcontext = die_containing_type (die, cu);
15426
15427 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15428 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15429
15430 /* Get accessibility. */
15431 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15432 if (attr)
15433 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15434 else
15435 accessibility = dwarf2_default_access_attribute (die, cu);
15436 switch (accessibility)
15437 {
15438 case DW_ACCESS_private:
15439 fnp->is_private = 1;
15440 break;
15441 case DW_ACCESS_protected:
15442 fnp->is_protected = 1;
15443 break;
15444 }
15445
15446 /* Check for artificial methods. */
15447 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15448 if (attr && DW_UNSND (attr) != 0)
15449 fnp->is_artificial = 1;
15450
15451 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15452
15453 /* Get index in virtual function table if it is a virtual member
15454 function. For older versions of GCC, this is an offset in the
15455 appropriate virtual table, as specified by DW_AT_containing_type.
15456 For everyone else, it is an expression to be evaluated relative
15457 to the object address. */
15458
15459 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15460 if (attr)
15461 {
15462 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15463 {
15464 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15465 {
15466 /* Old-style GCC. */
15467 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15468 }
15469 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15470 || (DW_BLOCK (attr)->size > 1
15471 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15472 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15473 {
15474 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15475 if ((fnp->voffset % cu->header.addr_size) != 0)
15476 dwarf2_complex_location_expr_complaint ();
15477 else
15478 fnp->voffset /= cu->header.addr_size;
15479 fnp->voffset += 2;
15480 }
15481 else
15482 dwarf2_complex_location_expr_complaint ();
15483
15484 if (!fnp->fcontext)
15485 {
15486 /* If there is no `this' field and no DW_AT_containing_type,
15487 we cannot actually find a base class context for the
15488 vtable! */
15489 if (TYPE_NFIELDS (this_type) == 0
15490 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15491 {
15492 complaint (_("cannot determine context for virtual member "
15493 "function \"%s\" (offset %s)"),
15494 fieldname, sect_offset_str (die->sect_off));
15495 }
15496 else
15497 {
15498 fnp->fcontext
15499 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15500 }
15501 }
15502 }
15503 else if (attr_form_is_section_offset (attr))
15504 {
15505 dwarf2_complex_location_expr_complaint ();
15506 }
15507 else
15508 {
15509 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15510 fieldname);
15511 }
15512 }
15513 else
15514 {
15515 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15516 if (attr && DW_UNSND (attr))
15517 {
15518 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15519 complaint (_("Member function \"%s\" (offset %s) is virtual "
15520 "but the vtable offset is not specified"),
15521 fieldname, sect_offset_str (die->sect_off));
15522 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15523 TYPE_CPLUS_DYNAMIC (type) = 1;
15524 }
15525 }
15526 }
15527
15528 /* Create the vector of member function fields, and attach it to the type. */
15529
15530 static void
15531 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15532 struct dwarf2_cu *cu)
15533 {
15534 if (cu->language == language_ada)
15535 error (_("unexpected member functions in Ada type"));
15536
15537 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15538 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15539 TYPE_ALLOC (type,
15540 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15541
15542 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15543 {
15544 struct fnfieldlist &nf = fip->fnfieldlists[i];
15545 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15546
15547 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15548 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15549 fn_flp->fn_fields = (struct fn_field *)
15550 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15551
15552 for (int k = 0; k < nf.fnfields.size (); ++k)
15553 fn_flp->fn_fields[k] = nf.fnfields[k];
15554 }
15555
15556 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15557 }
15558
15559 /* Returns non-zero if NAME is the name of a vtable member in CU's
15560 language, zero otherwise. */
15561 static int
15562 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15563 {
15564 static const char vptr[] = "_vptr";
15565
15566 /* Look for the C++ form of the vtable. */
15567 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15568 return 1;
15569
15570 return 0;
15571 }
15572
15573 /* GCC outputs unnamed structures that are really pointers to member
15574 functions, with the ABI-specified layout. If TYPE describes
15575 such a structure, smash it into a member function type.
15576
15577 GCC shouldn't do this; it should just output pointer to member DIEs.
15578 This is GCC PR debug/28767. */
15579
15580 static void
15581 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15582 {
15583 struct type *pfn_type, *self_type, *new_type;
15584
15585 /* Check for a structure with no name and two children. */
15586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15587 return;
15588
15589 /* Check for __pfn and __delta members. */
15590 if (TYPE_FIELD_NAME (type, 0) == NULL
15591 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15592 || TYPE_FIELD_NAME (type, 1) == NULL
15593 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15594 return;
15595
15596 /* Find the type of the method. */
15597 pfn_type = TYPE_FIELD_TYPE (type, 0);
15598 if (pfn_type == NULL
15599 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15600 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15601 return;
15602
15603 /* Look for the "this" argument. */
15604 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15605 if (TYPE_NFIELDS (pfn_type) == 0
15606 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15607 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15608 return;
15609
15610 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15611 new_type = alloc_type (objfile);
15612 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15613 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15614 TYPE_VARARGS (pfn_type));
15615 smash_to_methodptr_type (type, new_type);
15616 }
15617
15618 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15619 appropriate error checking and issuing complaints if there is a
15620 problem. */
15621
15622 static ULONGEST
15623 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15624 {
15625 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15626
15627 if (attr == nullptr)
15628 return 0;
15629
15630 if (!attr_form_is_constant (attr))
15631 {
15632 complaint (_("DW_AT_alignment must have constant form"
15633 " - DIE at %s [in module %s]"),
15634 sect_offset_str (die->sect_off),
15635 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15636 return 0;
15637 }
15638
15639 ULONGEST align;
15640 if (attr->form == DW_FORM_sdata)
15641 {
15642 LONGEST val = DW_SND (attr);
15643 if (val < 0)
15644 {
15645 complaint (_("DW_AT_alignment value must not be negative"
15646 " - DIE at %s [in module %s]"),
15647 sect_offset_str (die->sect_off),
15648 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15649 return 0;
15650 }
15651 align = val;
15652 }
15653 else
15654 align = DW_UNSND (attr);
15655
15656 if (align == 0)
15657 {
15658 complaint (_("DW_AT_alignment value must not be zero"
15659 " - DIE at %s [in module %s]"),
15660 sect_offset_str (die->sect_off),
15661 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15662 return 0;
15663 }
15664 if ((align & (align - 1)) != 0)
15665 {
15666 complaint (_("DW_AT_alignment value must be a power of 2"
15667 " - DIE at %s [in module %s]"),
15668 sect_offset_str (die->sect_off),
15669 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15670 return 0;
15671 }
15672
15673 return align;
15674 }
15675
15676 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15677 the alignment for TYPE. */
15678
15679 static void
15680 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15681 struct type *type)
15682 {
15683 if (!set_type_align (type, get_alignment (cu, die)))
15684 complaint (_("DW_AT_alignment value too large"
15685 " - DIE at %s [in module %s]"),
15686 sect_offset_str (die->sect_off),
15687 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15688 }
15689
15690 /* Called when we find the DIE that starts a structure or union scope
15691 (definition) to create a type for the structure or union. Fill in
15692 the type's name and general properties; the members will not be
15693 processed until process_structure_scope. A symbol table entry for
15694 the type will also not be done until process_structure_scope (assuming
15695 the type has a name).
15696
15697 NOTE: we need to call these functions regardless of whether or not the
15698 DIE has a DW_AT_name attribute, since it might be an anonymous
15699 structure or union. This gets the type entered into our set of
15700 user defined types. */
15701
15702 static struct type *
15703 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15704 {
15705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15706 struct type *type;
15707 struct attribute *attr;
15708 const char *name;
15709
15710 /* If the definition of this type lives in .debug_types, read that type.
15711 Don't follow DW_AT_specification though, that will take us back up
15712 the chain and we want to go down. */
15713 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15714 if (attr)
15715 {
15716 type = get_DW_AT_signature_type (die, attr, cu);
15717
15718 /* The type's CU may not be the same as CU.
15719 Ensure TYPE is recorded with CU in die_type_hash. */
15720 return set_die_type (die, type, cu);
15721 }
15722
15723 type = alloc_type (objfile);
15724 INIT_CPLUS_SPECIFIC (type);
15725
15726 name = dwarf2_name (die, cu);
15727 if (name != NULL)
15728 {
15729 if (cu->language == language_cplus
15730 || cu->language == language_d
15731 || cu->language == language_rust)
15732 {
15733 const char *full_name = dwarf2_full_name (name, die, cu);
15734
15735 /* dwarf2_full_name might have already finished building the DIE's
15736 type. If so, there is no need to continue. */
15737 if (get_die_type (die, cu) != NULL)
15738 return get_die_type (die, cu);
15739
15740 TYPE_NAME (type) = full_name;
15741 }
15742 else
15743 {
15744 /* The name is already allocated along with this objfile, so
15745 we don't need to duplicate it for the type. */
15746 TYPE_NAME (type) = name;
15747 }
15748 }
15749
15750 if (die->tag == DW_TAG_structure_type)
15751 {
15752 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15753 }
15754 else if (die->tag == DW_TAG_union_type)
15755 {
15756 TYPE_CODE (type) = TYPE_CODE_UNION;
15757 }
15758 else if (die->tag == DW_TAG_variant_part)
15759 {
15760 TYPE_CODE (type) = TYPE_CODE_UNION;
15761 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15762 }
15763 else
15764 {
15765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15766 }
15767
15768 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15769 TYPE_DECLARED_CLASS (type) = 1;
15770
15771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15772 if (attr)
15773 {
15774 if (attr_form_is_constant (attr))
15775 TYPE_LENGTH (type) = DW_UNSND (attr);
15776 else
15777 {
15778 /* For the moment, dynamic type sizes are not supported
15779 by GDB's struct type. The actual size is determined
15780 on-demand when resolving the type of a given object,
15781 so set the type's length to zero for now. Otherwise,
15782 we record an expression as the length, and that expression
15783 could lead to a very large value, which could eventually
15784 lead to us trying to allocate that much memory when creating
15785 a value of that type. */
15786 TYPE_LENGTH (type) = 0;
15787 }
15788 }
15789 else
15790 {
15791 TYPE_LENGTH (type) = 0;
15792 }
15793
15794 maybe_set_alignment (cu, die, type);
15795
15796 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15797 {
15798 /* ICC<14 does not output the required DW_AT_declaration on
15799 incomplete types, but gives them a size of zero. */
15800 TYPE_STUB (type) = 1;
15801 }
15802 else
15803 TYPE_STUB_SUPPORTED (type) = 1;
15804
15805 if (die_is_declaration (die, cu))
15806 TYPE_STUB (type) = 1;
15807 else if (attr == NULL && die->child == NULL
15808 && producer_is_realview (cu->producer))
15809 /* RealView does not output the required DW_AT_declaration
15810 on incomplete types. */
15811 TYPE_STUB (type) = 1;
15812
15813 /* We need to add the type field to the die immediately so we don't
15814 infinitely recurse when dealing with pointers to the structure
15815 type within the structure itself. */
15816 set_die_type (die, type, cu);
15817
15818 /* set_die_type should be already done. */
15819 set_descriptive_type (type, die, cu);
15820
15821 return type;
15822 }
15823
15824 /* A helper for process_structure_scope that handles a single member
15825 DIE. */
15826
15827 static void
15828 handle_struct_member_die (struct die_info *child_die, struct type *type,
15829 struct field_info *fi,
15830 std::vector<struct symbol *> *template_args,
15831 struct dwarf2_cu *cu)
15832 {
15833 if (child_die->tag == DW_TAG_member
15834 || child_die->tag == DW_TAG_variable
15835 || child_die->tag == DW_TAG_variant_part)
15836 {
15837 /* NOTE: carlton/2002-11-05: A C++ static data member
15838 should be a DW_TAG_member that is a declaration, but
15839 all versions of G++ as of this writing (so through at
15840 least 3.2.1) incorrectly generate DW_TAG_variable
15841 tags for them instead. */
15842 dwarf2_add_field (fi, child_die, cu);
15843 }
15844 else if (child_die->tag == DW_TAG_subprogram)
15845 {
15846 /* Rust doesn't have member functions in the C++ sense.
15847 However, it does emit ordinary functions as children
15848 of a struct DIE. */
15849 if (cu->language == language_rust)
15850 read_func_scope (child_die, cu);
15851 else
15852 {
15853 /* C++ member function. */
15854 dwarf2_add_member_fn (fi, child_die, type, cu);
15855 }
15856 }
15857 else if (child_die->tag == DW_TAG_inheritance)
15858 {
15859 /* C++ base class field. */
15860 dwarf2_add_field (fi, child_die, cu);
15861 }
15862 else if (type_can_define_types (child_die))
15863 dwarf2_add_type_defn (fi, child_die, cu);
15864 else if (child_die->tag == DW_TAG_template_type_param
15865 || child_die->tag == DW_TAG_template_value_param)
15866 {
15867 struct symbol *arg = new_symbol (child_die, NULL, cu);
15868
15869 if (arg != NULL)
15870 template_args->push_back (arg);
15871 }
15872 else if (child_die->tag == DW_TAG_variant)
15873 {
15874 /* In a variant we want to get the discriminant and also add a
15875 field for our sole member child. */
15876 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15877
15878 for (die_info *variant_child = child_die->child;
15879 variant_child != NULL;
15880 variant_child = sibling_die (variant_child))
15881 {
15882 if (variant_child->tag == DW_TAG_member)
15883 {
15884 handle_struct_member_die (variant_child, type, fi,
15885 template_args, cu);
15886 /* Only handle the one. */
15887 break;
15888 }
15889 }
15890
15891 /* We don't handle this but we might as well report it if we see
15892 it. */
15893 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15894 complaint (_("DW_AT_discr_list is not supported yet"
15895 " - DIE at %s [in module %s]"),
15896 sect_offset_str (child_die->sect_off),
15897 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15898
15899 /* The first field was just added, so we can stash the
15900 discriminant there. */
15901 gdb_assert (!fi->fields.empty ());
15902 if (discr == NULL)
15903 fi->fields.back ().variant.default_branch = true;
15904 else
15905 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15906 }
15907 }
15908
15909 /* Finish creating a structure or union type, including filling in
15910 its members and creating a symbol for it. */
15911
15912 static void
15913 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15914 {
15915 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15916 struct die_info *child_die;
15917 struct type *type;
15918
15919 type = get_die_type (die, cu);
15920 if (type == NULL)
15921 type = read_structure_type (die, cu);
15922
15923 /* When reading a DW_TAG_variant_part, we need to notice when we
15924 read the discriminant member, so we can record it later in the
15925 discriminant_info. */
15926 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15927 sect_offset discr_offset;
15928 bool has_template_parameters = false;
15929
15930 if (is_variant_part)
15931 {
15932 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15933 if (discr == NULL)
15934 {
15935 /* Maybe it's a univariant form, an extension we support.
15936 In this case arrange not to check the offset. */
15937 is_variant_part = false;
15938 }
15939 else if (attr_form_is_ref (discr))
15940 {
15941 struct dwarf2_cu *target_cu = cu;
15942 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15943
15944 discr_offset = target_die->sect_off;
15945 }
15946 else
15947 {
15948 complaint (_("DW_AT_discr does not have DIE reference form"
15949 " - DIE at %s [in module %s]"),
15950 sect_offset_str (die->sect_off),
15951 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15952 is_variant_part = false;
15953 }
15954 }
15955
15956 if (die->child != NULL && ! die_is_declaration (die, cu))
15957 {
15958 struct field_info fi;
15959 std::vector<struct symbol *> template_args;
15960
15961 child_die = die->child;
15962
15963 while (child_die && child_die->tag)
15964 {
15965 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15966
15967 if (is_variant_part && discr_offset == child_die->sect_off)
15968 fi.fields.back ().variant.is_discriminant = true;
15969
15970 child_die = sibling_die (child_die);
15971 }
15972
15973 /* Attach template arguments to type. */
15974 if (!template_args.empty ())
15975 {
15976 has_template_parameters = true;
15977 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15978 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15979 TYPE_TEMPLATE_ARGUMENTS (type)
15980 = XOBNEWVEC (&objfile->objfile_obstack,
15981 struct symbol *,
15982 TYPE_N_TEMPLATE_ARGUMENTS (type));
15983 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15984 template_args.data (),
15985 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15986 * sizeof (struct symbol *)));
15987 }
15988
15989 /* Attach fields and member functions to the type. */
15990 if (fi.nfields)
15991 dwarf2_attach_fields_to_type (&fi, type, cu);
15992 if (!fi.fnfieldlists.empty ())
15993 {
15994 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15995
15996 /* Get the type which refers to the base class (possibly this
15997 class itself) which contains the vtable pointer for the current
15998 class from the DW_AT_containing_type attribute. This use of
15999 DW_AT_containing_type is a GNU extension. */
16000
16001 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16002 {
16003 struct type *t = die_containing_type (die, cu);
16004
16005 set_type_vptr_basetype (type, t);
16006 if (type == t)
16007 {
16008 int i;
16009
16010 /* Our own class provides vtbl ptr. */
16011 for (i = TYPE_NFIELDS (t) - 1;
16012 i >= TYPE_N_BASECLASSES (t);
16013 --i)
16014 {
16015 const char *fieldname = TYPE_FIELD_NAME (t, i);
16016
16017 if (is_vtable_name (fieldname, cu))
16018 {
16019 set_type_vptr_fieldno (type, i);
16020 break;
16021 }
16022 }
16023
16024 /* Complain if virtual function table field not found. */
16025 if (i < TYPE_N_BASECLASSES (t))
16026 complaint (_("virtual function table pointer "
16027 "not found when defining class '%s'"),
16028 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16029 }
16030 else
16031 {
16032 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16033 }
16034 }
16035 else if (cu->producer
16036 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16037 {
16038 /* The IBM XLC compiler does not provide direct indication
16039 of the containing type, but the vtable pointer is
16040 always named __vfp. */
16041
16042 int i;
16043
16044 for (i = TYPE_NFIELDS (type) - 1;
16045 i >= TYPE_N_BASECLASSES (type);
16046 --i)
16047 {
16048 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16049 {
16050 set_type_vptr_fieldno (type, i);
16051 set_type_vptr_basetype (type, type);
16052 break;
16053 }
16054 }
16055 }
16056 }
16057
16058 /* Copy fi.typedef_field_list linked list elements content into the
16059 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16060 if (!fi.typedef_field_list.empty ())
16061 {
16062 int count = fi.typedef_field_list.size ();
16063
16064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16065 TYPE_TYPEDEF_FIELD_ARRAY (type)
16066 = ((struct decl_field *)
16067 TYPE_ALLOC (type,
16068 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16069 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16070
16071 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16072 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16073 }
16074
16075 /* Copy fi.nested_types_list linked list elements content into the
16076 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16077 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16078 {
16079 int count = fi.nested_types_list.size ();
16080
16081 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16082 TYPE_NESTED_TYPES_ARRAY (type)
16083 = ((struct decl_field *)
16084 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16085 TYPE_NESTED_TYPES_COUNT (type) = count;
16086
16087 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16088 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16089 }
16090 }
16091
16092 quirk_gcc_member_function_pointer (type, objfile);
16093 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16094 cu->rust_unions.push_back (type);
16095
16096 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16097 snapshots) has been known to create a die giving a declaration
16098 for a class that has, as a child, a die giving a definition for a
16099 nested class. So we have to process our children even if the
16100 current die is a declaration. Normally, of course, a declaration
16101 won't have any children at all. */
16102
16103 child_die = die->child;
16104
16105 while (child_die != NULL && child_die->tag)
16106 {
16107 if (child_die->tag == DW_TAG_member
16108 || child_die->tag == DW_TAG_variable
16109 || child_die->tag == DW_TAG_inheritance
16110 || child_die->tag == DW_TAG_template_value_param
16111 || child_die->tag == DW_TAG_template_type_param)
16112 {
16113 /* Do nothing. */
16114 }
16115 else
16116 process_die (child_die, cu);
16117
16118 child_die = sibling_die (child_die);
16119 }
16120
16121 /* Do not consider external references. According to the DWARF standard,
16122 these DIEs are identified by the fact that they have no byte_size
16123 attribute, and a declaration attribute. */
16124 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16125 || !die_is_declaration (die, cu))
16126 {
16127 struct symbol *sym = new_symbol (die, type, cu);
16128
16129 if (has_template_parameters)
16130 {
16131 struct symtab *symtab;
16132 if (sym != nullptr)
16133 symtab = symbol_symtab (sym);
16134 else if (cu->line_header != nullptr)
16135 {
16136 /* Any related symtab will do. */
16137 symtab
16138 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16139 }
16140 else
16141 {
16142 symtab = nullptr;
16143 complaint (_("could not find suitable "
16144 "symtab for template parameter"
16145 " - DIE at %s [in module %s]"),
16146 sect_offset_str (die->sect_off),
16147 objfile_name (objfile));
16148 }
16149
16150 if (symtab != nullptr)
16151 {
16152 /* Make sure that the symtab is set on the new symbols.
16153 Even though they don't appear in this symtab directly,
16154 other parts of gdb assume that symbols do, and this is
16155 reasonably true. */
16156 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16157 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16158 }
16159 }
16160 }
16161 }
16162
16163 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16164 update TYPE using some information only available in DIE's children. */
16165
16166 static void
16167 update_enumeration_type_from_children (struct die_info *die,
16168 struct type *type,
16169 struct dwarf2_cu *cu)
16170 {
16171 struct die_info *child_die;
16172 int unsigned_enum = 1;
16173 int flag_enum = 1;
16174 ULONGEST mask = 0;
16175
16176 auto_obstack obstack;
16177
16178 for (child_die = die->child;
16179 child_die != NULL && child_die->tag;
16180 child_die = sibling_die (child_die))
16181 {
16182 struct attribute *attr;
16183 LONGEST value;
16184 const gdb_byte *bytes;
16185 struct dwarf2_locexpr_baton *baton;
16186 const char *name;
16187
16188 if (child_die->tag != DW_TAG_enumerator)
16189 continue;
16190
16191 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16192 if (attr == NULL)
16193 continue;
16194
16195 name = dwarf2_name (child_die, cu);
16196 if (name == NULL)
16197 name = "<anonymous enumerator>";
16198
16199 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16200 &value, &bytes, &baton);
16201 if (value < 0)
16202 {
16203 unsigned_enum = 0;
16204 flag_enum = 0;
16205 }
16206 else if ((mask & value) != 0)
16207 flag_enum = 0;
16208 else
16209 mask |= value;
16210
16211 /* If we already know that the enum type is neither unsigned, nor
16212 a flag type, no need to look at the rest of the enumerates. */
16213 if (!unsigned_enum && !flag_enum)
16214 break;
16215 }
16216
16217 if (unsigned_enum)
16218 TYPE_UNSIGNED (type) = 1;
16219 if (flag_enum)
16220 TYPE_FLAG_ENUM (type) = 1;
16221 }
16222
16223 /* Given a DW_AT_enumeration_type die, set its type. We do not
16224 complete the type's fields yet, or create any symbols. */
16225
16226 static struct type *
16227 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16228 {
16229 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16230 struct type *type;
16231 struct attribute *attr;
16232 const char *name;
16233
16234 /* If the definition of this type lives in .debug_types, read that type.
16235 Don't follow DW_AT_specification though, that will take us back up
16236 the chain and we want to go down. */
16237 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16238 if (attr)
16239 {
16240 type = get_DW_AT_signature_type (die, attr, cu);
16241
16242 /* The type's CU may not be the same as CU.
16243 Ensure TYPE is recorded with CU in die_type_hash. */
16244 return set_die_type (die, type, cu);
16245 }
16246
16247 type = alloc_type (objfile);
16248
16249 TYPE_CODE (type) = TYPE_CODE_ENUM;
16250 name = dwarf2_full_name (NULL, die, cu);
16251 if (name != NULL)
16252 TYPE_NAME (type) = name;
16253
16254 attr = dwarf2_attr (die, DW_AT_type, cu);
16255 if (attr != NULL)
16256 {
16257 struct type *underlying_type = die_type (die, cu);
16258
16259 TYPE_TARGET_TYPE (type) = underlying_type;
16260 }
16261
16262 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16263 if (attr)
16264 {
16265 TYPE_LENGTH (type) = DW_UNSND (attr);
16266 }
16267 else
16268 {
16269 TYPE_LENGTH (type) = 0;
16270 }
16271
16272 maybe_set_alignment (cu, die, type);
16273
16274 /* The enumeration DIE can be incomplete. In Ada, any type can be
16275 declared as private in the package spec, and then defined only
16276 inside the package body. Such types are known as Taft Amendment
16277 Types. When another package uses such a type, an incomplete DIE
16278 may be generated by the compiler. */
16279 if (die_is_declaration (die, cu))
16280 TYPE_STUB (type) = 1;
16281
16282 /* Finish the creation of this type by using the enum's children.
16283 We must call this even when the underlying type has been provided
16284 so that we can determine if we're looking at a "flag" enum. */
16285 update_enumeration_type_from_children (die, type, cu);
16286
16287 /* If this type has an underlying type that is not a stub, then we
16288 may use its attributes. We always use the "unsigned" attribute
16289 in this situation, because ordinarily we guess whether the type
16290 is unsigned -- but the guess can be wrong and the underlying type
16291 can tell us the reality. However, we defer to a local size
16292 attribute if one exists, because this lets the compiler override
16293 the underlying type if needed. */
16294 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16295 {
16296 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16297 if (TYPE_LENGTH (type) == 0)
16298 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16299 if (TYPE_RAW_ALIGN (type) == 0
16300 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16301 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16302 }
16303
16304 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16305
16306 return set_die_type (die, type, cu);
16307 }
16308
16309 /* Given a pointer to a die which begins an enumeration, process all
16310 the dies that define the members of the enumeration, and create the
16311 symbol for the enumeration type.
16312
16313 NOTE: We reverse the order of the element list. */
16314
16315 static void
16316 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16317 {
16318 struct type *this_type;
16319
16320 this_type = get_die_type (die, cu);
16321 if (this_type == NULL)
16322 this_type = read_enumeration_type (die, cu);
16323
16324 if (die->child != NULL)
16325 {
16326 struct die_info *child_die;
16327 struct symbol *sym;
16328 struct field *fields = NULL;
16329 int num_fields = 0;
16330 const char *name;
16331
16332 child_die = die->child;
16333 while (child_die && child_die->tag)
16334 {
16335 if (child_die->tag != DW_TAG_enumerator)
16336 {
16337 process_die (child_die, cu);
16338 }
16339 else
16340 {
16341 name = dwarf2_name (child_die, cu);
16342 if (name)
16343 {
16344 sym = new_symbol (child_die, this_type, cu);
16345
16346 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16347 {
16348 fields = (struct field *)
16349 xrealloc (fields,
16350 (num_fields + DW_FIELD_ALLOC_CHUNK)
16351 * sizeof (struct field));
16352 }
16353
16354 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16355 FIELD_TYPE (fields[num_fields]) = NULL;
16356 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16357 FIELD_BITSIZE (fields[num_fields]) = 0;
16358
16359 num_fields++;
16360 }
16361 }
16362
16363 child_die = sibling_die (child_die);
16364 }
16365
16366 if (num_fields)
16367 {
16368 TYPE_NFIELDS (this_type) = num_fields;
16369 TYPE_FIELDS (this_type) = (struct field *)
16370 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16371 memcpy (TYPE_FIELDS (this_type), fields,
16372 sizeof (struct field) * num_fields);
16373 xfree (fields);
16374 }
16375 }
16376
16377 /* If we are reading an enum from a .debug_types unit, and the enum
16378 is a declaration, and the enum is not the signatured type in the
16379 unit, then we do not want to add a symbol for it. Adding a
16380 symbol would in some cases obscure the true definition of the
16381 enum, giving users an incomplete type when the definition is
16382 actually available. Note that we do not want to do this for all
16383 enums which are just declarations, because C++0x allows forward
16384 enum declarations. */
16385 if (cu->per_cu->is_debug_types
16386 && die_is_declaration (die, cu))
16387 {
16388 struct signatured_type *sig_type;
16389
16390 sig_type = (struct signatured_type *) cu->per_cu;
16391 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16392 if (sig_type->type_offset_in_section != die->sect_off)
16393 return;
16394 }
16395
16396 new_symbol (die, this_type, cu);
16397 }
16398
16399 /* Extract all information from a DW_TAG_array_type DIE and put it in
16400 the DIE's type field. For now, this only handles one dimensional
16401 arrays. */
16402
16403 static struct type *
16404 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16405 {
16406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16407 struct die_info *child_die;
16408 struct type *type;
16409 struct type *element_type, *range_type, *index_type;
16410 struct attribute *attr;
16411 const char *name;
16412 struct dynamic_prop *byte_stride_prop = NULL;
16413 unsigned int bit_stride = 0;
16414
16415 element_type = die_type (die, cu);
16416
16417 /* The die_type call above may have already set the type for this DIE. */
16418 type = get_die_type (die, cu);
16419 if (type)
16420 return type;
16421
16422 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16423 if (attr != NULL)
16424 {
16425 int stride_ok;
16426 struct type *prop_type
16427 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16428
16429 byte_stride_prop
16430 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16431 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16432 prop_type);
16433 if (!stride_ok)
16434 {
16435 complaint (_("unable to read array DW_AT_byte_stride "
16436 " - DIE at %s [in module %s]"),
16437 sect_offset_str (die->sect_off),
16438 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16439 /* Ignore this attribute. We will likely not be able to print
16440 arrays of this type correctly, but there is little we can do
16441 to help if we cannot read the attribute's value. */
16442 byte_stride_prop = NULL;
16443 }
16444 }
16445
16446 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16447 if (attr != NULL)
16448 bit_stride = DW_UNSND (attr);
16449
16450 /* Irix 6.2 native cc creates array types without children for
16451 arrays with unspecified length. */
16452 if (die->child == NULL)
16453 {
16454 index_type = objfile_type (objfile)->builtin_int;
16455 range_type = create_static_range_type (NULL, index_type, 0, -1);
16456 type = create_array_type_with_stride (NULL, element_type, range_type,
16457 byte_stride_prop, bit_stride);
16458 return set_die_type (die, type, cu);
16459 }
16460
16461 std::vector<struct type *> range_types;
16462 child_die = die->child;
16463 while (child_die && child_die->tag)
16464 {
16465 if (child_die->tag == DW_TAG_subrange_type)
16466 {
16467 struct type *child_type = read_type_die (child_die, cu);
16468
16469 if (child_type != NULL)
16470 {
16471 /* The range type was succesfully read. Save it for the
16472 array type creation. */
16473 range_types.push_back (child_type);
16474 }
16475 }
16476 child_die = sibling_die (child_die);
16477 }
16478
16479 /* Dwarf2 dimensions are output from left to right, create the
16480 necessary array types in backwards order. */
16481
16482 type = element_type;
16483
16484 if (read_array_order (die, cu) == DW_ORD_col_major)
16485 {
16486 int i = 0;
16487
16488 while (i < range_types.size ())
16489 type = create_array_type_with_stride (NULL, type, range_types[i++],
16490 byte_stride_prop, bit_stride);
16491 }
16492 else
16493 {
16494 size_t ndim = range_types.size ();
16495 while (ndim-- > 0)
16496 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16497 byte_stride_prop, bit_stride);
16498 }
16499
16500 /* Understand Dwarf2 support for vector types (like they occur on
16501 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16502 array type. This is not part of the Dwarf2/3 standard yet, but a
16503 custom vendor extension. The main difference between a regular
16504 array and the vector variant is that vectors are passed by value
16505 to functions. */
16506 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16507 if (attr)
16508 make_vector_type (type);
16509
16510 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16511 implementation may choose to implement triple vectors using this
16512 attribute. */
16513 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16514 if (attr)
16515 {
16516 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16517 TYPE_LENGTH (type) = DW_UNSND (attr);
16518 else
16519 complaint (_("DW_AT_byte_size for array type smaller "
16520 "than the total size of elements"));
16521 }
16522
16523 name = dwarf2_name (die, cu);
16524 if (name)
16525 TYPE_NAME (type) = name;
16526
16527 maybe_set_alignment (cu, die, type);
16528
16529 /* Install the type in the die. */
16530 set_die_type (die, type, cu);
16531
16532 /* set_die_type should be already done. */
16533 set_descriptive_type (type, die, cu);
16534
16535 return type;
16536 }
16537
16538 static enum dwarf_array_dim_ordering
16539 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16540 {
16541 struct attribute *attr;
16542
16543 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16544
16545 if (attr)
16546 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16547
16548 /* GNU F77 is a special case, as at 08/2004 array type info is the
16549 opposite order to the dwarf2 specification, but data is still
16550 laid out as per normal fortran.
16551
16552 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16553 version checking. */
16554
16555 if (cu->language == language_fortran
16556 && cu->producer && strstr (cu->producer, "GNU F77"))
16557 {
16558 return DW_ORD_row_major;
16559 }
16560
16561 switch (cu->language_defn->la_array_ordering)
16562 {
16563 case array_column_major:
16564 return DW_ORD_col_major;
16565 case array_row_major:
16566 default:
16567 return DW_ORD_row_major;
16568 };
16569 }
16570
16571 /* Extract all information from a DW_TAG_set_type DIE and put it in
16572 the DIE's type field. */
16573
16574 static struct type *
16575 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16576 {
16577 struct type *domain_type, *set_type;
16578 struct attribute *attr;
16579
16580 domain_type = die_type (die, cu);
16581
16582 /* The die_type call above may have already set the type for this DIE. */
16583 set_type = get_die_type (die, cu);
16584 if (set_type)
16585 return set_type;
16586
16587 set_type = create_set_type (NULL, domain_type);
16588
16589 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16590 if (attr)
16591 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16592
16593 maybe_set_alignment (cu, die, set_type);
16594
16595 return set_die_type (die, set_type, cu);
16596 }
16597
16598 /* A helper for read_common_block that creates a locexpr baton.
16599 SYM is the symbol which we are marking as computed.
16600 COMMON_DIE is the DIE for the common block.
16601 COMMON_LOC is the location expression attribute for the common
16602 block itself.
16603 MEMBER_LOC is the location expression attribute for the particular
16604 member of the common block that we are processing.
16605 CU is the CU from which the above come. */
16606
16607 static void
16608 mark_common_block_symbol_computed (struct symbol *sym,
16609 struct die_info *common_die,
16610 struct attribute *common_loc,
16611 struct attribute *member_loc,
16612 struct dwarf2_cu *cu)
16613 {
16614 struct dwarf2_per_objfile *dwarf2_per_objfile
16615 = cu->per_cu->dwarf2_per_objfile;
16616 struct objfile *objfile = dwarf2_per_objfile->objfile;
16617 struct dwarf2_locexpr_baton *baton;
16618 gdb_byte *ptr;
16619 unsigned int cu_off;
16620 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16621 LONGEST offset = 0;
16622
16623 gdb_assert (common_loc && member_loc);
16624 gdb_assert (attr_form_is_block (common_loc));
16625 gdb_assert (attr_form_is_block (member_loc)
16626 || attr_form_is_constant (member_loc));
16627
16628 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16629 baton->per_cu = cu->per_cu;
16630 gdb_assert (baton->per_cu);
16631
16632 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16633
16634 if (attr_form_is_constant (member_loc))
16635 {
16636 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16637 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16638 }
16639 else
16640 baton->size += DW_BLOCK (member_loc)->size;
16641
16642 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16643 baton->data = ptr;
16644
16645 *ptr++ = DW_OP_call4;
16646 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16647 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16648 ptr += 4;
16649
16650 if (attr_form_is_constant (member_loc))
16651 {
16652 *ptr++ = DW_OP_addr;
16653 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16654 ptr += cu->header.addr_size;
16655 }
16656 else
16657 {
16658 /* We have to copy the data here, because DW_OP_call4 will only
16659 use a DW_AT_location attribute. */
16660 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16661 ptr += DW_BLOCK (member_loc)->size;
16662 }
16663
16664 *ptr++ = DW_OP_plus;
16665 gdb_assert (ptr - baton->data == baton->size);
16666
16667 SYMBOL_LOCATION_BATON (sym) = baton;
16668 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16669 }
16670
16671 /* Create appropriate locally-scoped variables for all the
16672 DW_TAG_common_block entries. Also create a struct common_block
16673 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16674 is used to sepate the common blocks name namespace from regular
16675 variable names. */
16676
16677 static void
16678 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16679 {
16680 struct attribute *attr;
16681
16682 attr = dwarf2_attr (die, DW_AT_location, cu);
16683 if (attr)
16684 {
16685 /* Support the .debug_loc offsets. */
16686 if (attr_form_is_block (attr))
16687 {
16688 /* Ok. */
16689 }
16690 else if (attr_form_is_section_offset (attr))
16691 {
16692 dwarf2_complex_location_expr_complaint ();
16693 attr = NULL;
16694 }
16695 else
16696 {
16697 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16698 "common block member");
16699 attr = NULL;
16700 }
16701 }
16702
16703 if (die->child != NULL)
16704 {
16705 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16706 struct die_info *child_die;
16707 size_t n_entries = 0, size;
16708 struct common_block *common_block;
16709 struct symbol *sym;
16710
16711 for (child_die = die->child;
16712 child_die && child_die->tag;
16713 child_die = sibling_die (child_die))
16714 ++n_entries;
16715
16716 size = (sizeof (struct common_block)
16717 + (n_entries - 1) * sizeof (struct symbol *));
16718 common_block
16719 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16720 size);
16721 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16722 common_block->n_entries = 0;
16723
16724 for (child_die = die->child;
16725 child_die && child_die->tag;
16726 child_die = sibling_die (child_die))
16727 {
16728 /* Create the symbol in the DW_TAG_common_block block in the current
16729 symbol scope. */
16730 sym = new_symbol (child_die, NULL, cu);
16731 if (sym != NULL)
16732 {
16733 struct attribute *member_loc;
16734
16735 common_block->contents[common_block->n_entries++] = sym;
16736
16737 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16738 cu);
16739 if (member_loc)
16740 {
16741 /* GDB has handled this for a long time, but it is
16742 not specified by DWARF. It seems to have been
16743 emitted by gfortran at least as recently as:
16744 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16745 complaint (_("Variable in common block has "
16746 "DW_AT_data_member_location "
16747 "- DIE at %s [in module %s]"),
16748 sect_offset_str (child_die->sect_off),
16749 objfile_name (objfile));
16750
16751 if (attr_form_is_section_offset (member_loc))
16752 dwarf2_complex_location_expr_complaint ();
16753 else if (attr_form_is_constant (member_loc)
16754 || attr_form_is_block (member_loc))
16755 {
16756 if (attr)
16757 mark_common_block_symbol_computed (sym, die, attr,
16758 member_loc, cu);
16759 }
16760 else
16761 dwarf2_complex_location_expr_complaint ();
16762 }
16763 }
16764 }
16765
16766 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16767 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16768 }
16769 }
16770
16771 /* Create a type for a C++ namespace. */
16772
16773 static struct type *
16774 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16775 {
16776 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16777 const char *previous_prefix, *name;
16778 int is_anonymous;
16779 struct type *type;
16780
16781 /* For extensions, reuse the type of the original namespace. */
16782 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16783 {
16784 struct die_info *ext_die;
16785 struct dwarf2_cu *ext_cu = cu;
16786
16787 ext_die = dwarf2_extension (die, &ext_cu);
16788 type = read_type_die (ext_die, ext_cu);
16789
16790 /* EXT_CU may not be the same as CU.
16791 Ensure TYPE is recorded with CU in die_type_hash. */
16792 return set_die_type (die, type, cu);
16793 }
16794
16795 name = namespace_name (die, &is_anonymous, cu);
16796
16797 /* Now build the name of the current namespace. */
16798
16799 previous_prefix = determine_prefix (die, cu);
16800 if (previous_prefix[0] != '\0')
16801 name = typename_concat (&objfile->objfile_obstack,
16802 previous_prefix, name, 0, cu);
16803
16804 /* Create the type. */
16805 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16806
16807 return set_die_type (die, type, cu);
16808 }
16809
16810 /* Read a namespace scope. */
16811
16812 static void
16813 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16814 {
16815 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16816 int is_anonymous;
16817
16818 /* Add a symbol associated to this if we haven't seen the namespace
16819 before. Also, add a using directive if it's an anonymous
16820 namespace. */
16821
16822 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16823 {
16824 struct type *type;
16825
16826 type = read_type_die (die, cu);
16827 new_symbol (die, type, cu);
16828
16829 namespace_name (die, &is_anonymous, cu);
16830 if (is_anonymous)
16831 {
16832 const char *previous_prefix = determine_prefix (die, cu);
16833
16834 std::vector<const char *> excludes;
16835 add_using_directive (using_directives (cu),
16836 previous_prefix, TYPE_NAME (type), NULL,
16837 NULL, excludes, 0, &objfile->objfile_obstack);
16838 }
16839 }
16840
16841 if (die->child != NULL)
16842 {
16843 struct die_info *child_die = die->child;
16844
16845 while (child_die && child_die->tag)
16846 {
16847 process_die (child_die, cu);
16848 child_die = sibling_die (child_die);
16849 }
16850 }
16851 }
16852
16853 /* Read a Fortran module as type. This DIE can be only a declaration used for
16854 imported module. Still we need that type as local Fortran "use ... only"
16855 declaration imports depend on the created type in determine_prefix. */
16856
16857 static struct type *
16858 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16859 {
16860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16861 const char *module_name;
16862 struct type *type;
16863
16864 module_name = dwarf2_name (die, cu);
16865 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16866
16867 return set_die_type (die, type, cu);
16868 }
16869
16870 /* Read a Fortran module. */
16871
16872 static void
16873 read_module (struct die_info *die, struct dwarf2_cu *cu)
16874 {
16875 struct die_info *child_die = die->child;
16876 struct type *type;
16877
16878 type = read_type_die (die, cu);
16879 new_symbol (die, type, cu);
16880
16881 while (child_die && child_die->tag)
16882 {
16883 process_die (child_die, cu);
16884 child_die = sibling_die (child_die);
16885 }
16886 }
16887
16888 /* Return the name of the namespace represented by DIE. Set
16889 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16890 namespace. */
16891
16892 static const char *
16893 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16894 {
16895 struct die_info *current_die;
16896 const char *name = NULL;
16897
16898 /* Loop through the extensions until we find a name. */
16899
16900 for (current_die = die;
16901 current_die != NULL;
16902 current_die = dwarf2_extension (die, &cu))
16903 {
16904 /* We don't use dwarf2_name here so that we can detect the absence
16905 of a name -> anonymous namespace. */
16906 name = dwarf2_string_attr (die, DW_AT_name, cu);
16907
16908 if (name != NULL)
16909 break;
16910 }
16911
16912 /* Is it an anonymous namespace? */
16913
16914 *is_anonymous = (name == NULL);
16915 if (*is_anonymous)
16916 name = CP_ANONYMOUS_NAMESPACE_STR;
16917
16918 return name;
16919 }
16920
16921 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16922 the user defined type vector. */
16923
16924 static struct type *
16925 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16926 {
16927 struct gdbarch *gdbarch
16928 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16929 struct comp_unit_head *cu_header = &cu->header;
16930 struct type *type;
16931 struct attribute *attr_byte_size;
16932 struct attribute *attr_address_class;
16933 int byte_size, addr_class;
16934 struct type *target_type;
16935
16936 target_type = die_type (die, cu);
16937
16938 /* The die_type call above may have already set the type for this DIE. */
16939 type = get_die_type (die, cu);
16940 if (type)
16941 return type;
16942
16943 type = lookup_pointer_type (target_type);
16944
16945 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16946 if (attr_byte_size)
16947 byte_size = DW_UNSND (attr_byte_size);
16948 else
16949 byte_size = cu_header->addr_size;
16950
16951 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16952 if (attr_address_class)
16953 addr_class = DW_UNSND (attr_address_class);
16954 else
16955 addr_class = DW_ADDR_none;
16956
16957 ULONGEST alignment = get_alignment (cu, die);
16958
16959 /* If the pointer size, alignment, or address class is different
16960 than the default, create a type variant marked as such and set
16961 the length accordingly. */
16962 if (TYPE_LENGTH (type) != byte_size
16963 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16964 && alignment != TYPE_RAW_ALIGN (type))
16965 || addr_class != DW_ADDR_none)
16966 {
16967 if (gdbarch_address_class_type_flags_p (gdbarch))
16968 {
16969 int type_flags;
16970
16971 type_flags = gdbarch_address_class_type_flags
16972 (gdbarch, byte_size, addr_class);
16973 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16974 == 0);
16975 type = make_type_with_address_space (type, type_flags);
16976 }
16977 else if (TYPE_LENGTH (type) != byte_size)
16978 {
16979 complaint (_("invalid pointer size %d"), byte_size);
16980 }
16981 else if (TYPE_RAW_ALIGN (type) != alignment)
16982 {
16983 complaint (_("Invalid DW_AT_alignment"
16984 " - DIE at %s [in module %s]"),
16985 sect_offset_str (die->sect_off),
16986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16987 }
16988 else
16989 {
16990 /* Should we also complain about unhandled address classes? */
16991 }
16992 }
16993
16994 TYPE_LENGTH (type) = byte_size;
16995 set_type_align (type, alignment);
16996 return set_die_type (die, type, cu);
16997 }
16998
16999 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17000 the user defined type vector. */
17001
17002 static struct type *
17003 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17004 {
17005 struct type *type;
17006 struct type *to_type;
17007 struct type *domain;
17008
17009 to_type = die_type (die, cu);
17010 domain = die_containing_type (die, cu);
17011
17012 /* The calls above may have already set the type for this DIE. */
17013 type = get_die_type (die, cu);
17014 if (type)
17015 return type;
17016
17017 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17018 type = lookup_methodptr_type (to_type);
17019 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17020 {
17021 struct type *new_type
17022 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17023
17024 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17025 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17026 TYPE_VARARGS (to_type));
17027 type = lookup_methodptr_type (new_type);
17028 }
17029 else
17030 type = lookup_memberptr_type (to_type, domain);
17031
17032 return set_die_type (die, type, cu);
17033 }
17034
17035 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17036 the user defined type vector. */
17037
17038 static struct type *
17039 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17040 enum type_code refcode)
17041 {
17042 struct comp_unit_head *cu_header = &cu->header;
17043 struct type *type, *target_type;
17044 struct attribute *attr;
17045
17046 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17047
17048 target_type = die_type (die, cu);
17049
17050 /* The die_type call above may have already set the type for this DIE. */
17051 type = get_die_type (die, cu);
17052 if (type)
17053 return type;
17054
17055 type = lookup_reference_type (target_type, refcode);
17056 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17057 if (attr)
17058 {
17059 TYPE_LENGTH (type) = DW_UNSND (attr);
17060 }
17061 else
17062 {
17063 TYPE_LENGTH (type) = cu_header->addr_size;
17064 }
17065 maybe_set_alignment (cu, die, type);
17066 return set_die_type (die, type, cu);
17067 }
17068
17069 /* Add the given cv-qualifiers to the element type of the array. GCC
17070 outputs DWARF type qualifiers that apply to an array, not the
17071 element type. But GDB relies on the array element type to carry
17072 the cv-qualifiers. This mimics section 6.7.3 of the C99
17073 specification. */
17074
17075 static struct type *
17076 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17077 struct type *base_type, int cnst, int voltl)
17078 {
17079 struct type *el_type, *inner_array;
17080
17081 base_type = copy_type (base_type);
17082 inner_array = base_type;
17083
17084 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17085 {
17086 TYPE_TARGET_TYPE (inner_array) =
17087 copy_type (TYPE_TARGET_TYPE (inner_array));
17088 inner_array = TYPE_TARGET_TYPE (inner_array);
17089 }
17090
17091 el_type = TYPE_TARGET_TYPE (inner_array);
17092 cnst |= TYPE_CONST (el_type);
17093 voltl |= TYPE_VOLATILE (el_type);
17094 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17095
17096 return set_die_type (die, base_type, cu);
17097 }
17098
17099 static struct type *
17100 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17101 {
17102 struct type *base_type, *cv_type;
17103
17104 base_type = die_type (die, cu);
17105
17106 /* The die_type call above may have already set the type for this DIE. */
17107 cv_type = get_die_type (die, cu);
17108 if (cv_type)
17109 return cv_type;
17110
17111 /* In case the const qualifier is applied to an array type, the element type
17112 is so qualified, not the array type (section 6.7.3 of C99). */
17113 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17114 return add_array_cv_type (die, cu, base_type, 1, 0);
17115
17116 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17117 return set_die_type (die, cv_type, cu);
17118 }
17119
17120 static struct type *
17121 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 struct type *base_type, *cv_type;
17124
17125 base_type = die_type (die, cu);
17126
17127 /* The die_type call above may have already set the type for this DIE. */
17128 cv_type = get_die_type (die, cu);
17129 if (cv_type)
17130 return cv_type;
17131
17132 /* In case the volatile qualifier is applied to an array type, the
17133 element type is so qualified, not the array type (section 6.7.3
17134 of C99). */
17135 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17136 return add_array_cv_type (die, cu, base_type, 0, 1);
17137
17138 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17139 return set_die_type (die, cv_type, cu);
17140 }
17141
17142 /* Handle DW_TAG_restrict_type. */
17143
17144 static struct type *
17145 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17146 {
17147 struct type *base_type, *cv_type;
17148
17149 base_type = die_type (die, cu);
17150
17151 /* The die_type call above may have already set the type for this DIE. */
17152 cv_type = get_die_type (die, cu);
17153 if (cv_type)
17154 return cv_type;
17155
17156 cv_type = make_restrict_type (base_type);
17157 return set_die_type (die, cv_type, cu);
17158 }
17159
17160 /* Handle DW_TAG_atomic_type. */
17161
17162 static struct type *
17163 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17164 {
17165 struct type *base_type, *cv_type;
17166
17167 base_type = die_type (die, cu);
17168
17169 /* The die_type call above may have already set the type for this DIE. */
17170 cv_type = get_die_type (die, cu);
17171 if (cv_type)
17172 return cv_type;
17173
17174 cv_type = make_atomic_type (base_type);
17175 return set_die_type (die, cv_type, cu);
17176 }
17177
17178 /* Extract all information from a DW_TAG_string_type DIE and add to
17179 the user defined type vector. It isn't really a user defined type,
17180 but it behaves like one, with other DIE's using an AT_user_def_type
17181 attribute to reference it. */
17182
17183 static struct type *
17184 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17185 {
17186 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17187 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17188 struct type *type, *range_type, *index_type, *char_type;
17189 struct attribute *attr;
17190 unsigned int length;
17191
17192 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17193 if (attr)
17194 {
17195 length = DW_UNSND (attr);
17196 }
17197 else
17198 {
17199 /* Check for the DW_AT_byte_size attribute. */
17200 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17201 if (attr)
17202 {
17203 length = DW_UNSND (attr);
17204 }
17205 else
17206 {
17207 length = 1;
17208 }
17209 }
17210
17211 index_type = objfile_type (objfile)->builtin_int;
17212 range_type = create_static_range_type (NULL, index_type, 1, length);
17213 char_type = language_string_char_type (cu->language_defn, gdbarch);
17214 type = create_string_type (NULL, char_type, range_type);
17215
17216 return set_die_type (die, type, cu);
17217 }
17218
17219 /* Assuming that DIE corresponds to a function, returns nonzero
17220 if the function is prototyped. */
17221
17222 static int
17223 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17224 {
17225 struct attribute *attr;
17226
17227 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17228 if (attr && (DW_UNSND (attr) != 0))
17229 return 1;
17230
17231 /* The DWARF standard implies that the DW_AT_prototyped attribute
17232 is only meaninful for C, but the concept also extends to other
17233 languages that allow unprototyped functions (Eg: Objective C).
17234 For all other languages, assume that functions are always
17235 prototyped. */
17236 if (cu->language != language_c
17237 && cu->language != language_objc
17238 && cu->language != language_opencl)
17239 return 1;
17240
17241 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17242 prototyped and unprototyped functions; default to prototyped,
17243 since that is more common in modern code (and RealView warns
17244 about unprototyped functions). */
17245 if (producer_is_realview (cu->producer))
17246 return 1;
17247
17248 return 0;
17249 }
17250
17251 /* Handle DIES due to C code like:
17252
17253 struct foo
17254 {
17255 int (*funcp)(int a, long l);
17256 int b;
17257 };
17258
17259 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17260
17261 static struct type *
17262 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17263 {
17264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17265 struct type *type; /* Type that this function returns. */
17266 struct type *ftype; /* Function that returns above type. */
17267 struct attribute *attr;
17268
17269 type = die_type (die, cu);
17270
17271 /* The die_type call above may have already set the type for this DIE. */
17272 ftype = get_die_type (die, cu);
17273 if (ftype)
17274 return ftype;
17275
17276 ftype = lookup_function_type (type);
17277
17278 if (prototyped_function_p (die, cu))
17279 TYPE_PROTOTYPED (ftype) = 1;
17280
17281 /* Store the calling convention in the type if it's available in
17282 the subroutine die. Otherwise set the calling convention to
17283 the default value DW_CC_normal. */
17284 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17285 if (attr)
17286 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17287 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17288 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17289 else
17290 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17291
17292 /* Record whether the function returns normally to its caller or not
17293 if the DWARF producer set that information. */
17294 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17295 if (attr && (DW_UNSND (attr) != 0))
17296 TYPE_NO_RETURN (ftype) = 1;
17297
17298 /* We need to add the subroutine type to the die immediately so
17299 we don't infinitely recurse when dealing with parameters
17300 declared as the same subroutine type. */
17301 set_die_type (die, ftype, cu);
17302
17303 if (die->child != NULL)
17304 {
17305 struct type *void_type = objfile_type (objfile)->builtin_void;
17306 struct die_info *child_die;
17307 int nparams, iparams;
17308
17309 /* Count the number of parameters.
17310 FIXME: GDB currently ignores vararg functions, but knows about
17311 vararg member functions. */
17312 nparams = 0;
17313 child_die = die->child;
17314 while (child_die && child_die->tag)
17315 {
17316 if (child_die->tag == DW_TAG_formal_parameter)
17317 nparams++;
17318 else if (child_die->tag == DW_TAG_unspecified_parameters)
17319 TYPE_VARARGS (ftype) = 1;
17320 child_die = sibling_die (child_die);
17321 }
17322
17323 /* Allocate storage for parameters and fill them in. */
17324 TYPE_NFIELDS (ftype) = nparams;
17325 TYPE_FIELDS (ftype) = (struct field *)
17326 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17327
17328 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17329 even if we error out during the parameters reading below. */
17330 for (iparams = 0; iparams < nparams; iparams++)
17331 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17332
17333 iparams = 0;
17334 child_die = die->child;
17335 while (child_die && child_die->tag)
17336 {
17337 if (child_die->tag == DW_TAG_formal_parameter)
17338 {
17339 struct type *arg_type;
17340
17341 /* DWARF version 2 has no clean way to discern C++
17342 static and non-static member functions. G++ helps
17343 GDB by marking the first parameter for non-static
17344 member functions (which is the this pointer) as
17345 artificial. We pass this information to
17346 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17347
17348 DWARF version 3 added DW_AT_object_pointer, which GCC
17349 4.5 does not yet generate. */
17350 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17351 if (attr)
17352 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17353 else
17354 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17355 arg_type = die_type (child_die, cu);
17356
17357 /* RealView does not mark THIS as const, which the testsuite
17358 expects. GCC marks THIS as const in method definitions,
17359 but not in the class specifications (GCC PR 43053). */
17360 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17361 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17362 {
17363 int is_this = 0;
17364 struct dwarf2_cu *arg_cu = cu;
17365 const char *name = dwarf2_name (child_die, cu);
17366
17367 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17368 if (attr)
17369 {
17370 /* If the compiler emits this, use it. */
17371 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17372 is_this = 1;
17373 }
17374 else if (name && strcmp (name, "this") == 0)
17375 /* Function definitions will have the argument names. */
17376 is_this = 1;
17377 else if (name == NULL && iparams == 0)
17378 /* Declarations may not have the names, so like
17379 elsewhere in GDB, assume an artificial first
17380 argument is "this". */
17381 is_this = 1;
17382
17383 if (is_this)
17384 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17385 arg_type, 0);
17386 }
17387
17388 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17389 iparams++;
17390 }
17391 child_die = sibling_die (child_die);
17392 }
17393 }
17394
17395 return ftype;
17396 }
17397
17398 static struct type *
17399 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17400 {
17401 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17402 const char *name = NULL;
17403 struct type *this_type, *target_type;
17404
17405 name = dwarf2_full_name (NULL, die, cu);
17406 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17407 TYPE_TARGET_STUB (this_type) = 1;
17408 set_die_type (die, this_type, cu);
17409 target_type = die_type (die, cu);
17410 if (target_type != this_type)
17411 TYPE_TARGET_TYPE (this_type) = target_type;
17412 else
17413 {
17414 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17415 spec and cause infinite loops in GDB. */
17416 complaint (_("Self-referential DW_TAG_typedef "
17417 "- DIE at %s [in module %s]"),
17418 sect_offset_str (die->sect_off), objfile_name (objfile));
17419 TYPE_TARGET_TYPE (this_type) = NULL;
17420 }
17421 return this_type;
17422 }
17423
17424 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17425 (which may be different from NAME) to the architecture back-end to allow
17426 it to guess the correct format if necessary. */
17427
17428 static struct type *
17429 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17430 const char *name_hint)
17431 {
17432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17433 const struct floatformat **format;
17434 struct type *type;
17435
17436 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17437 if (format)
17438 type = init_float_type (objfile, bits, name, format);
17439 else
17440 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17441
17442 return type;
17443 }
17444
17445 /* Allocate an integer type of size BITS and name NAME. */
17446
17447 static struct type *
17448 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17449 int bits, int unsigned_p, const char *name)
17450 {
17451 struct type *type;
17452
17453 /* Versions of Intel's C Compiler generate an integer type called "void"
17454 instead of using DW_TAG_unspecified_type. This has been seen on
17455 at least versions 14, 17, and 18. */
17456 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17457 && strcmp (name, "void") == 0)
17458 type = objfile_type (objfile)->builtin_void;
17459 else
17460 type = init_integer_type (objfile, bits, unsigned_p, name);
17461
17462 return type;
17463 }
17464
17465 /* Initialise and return a floating point type of size BITS suitable for
17466 use as a component of a complex number. The NAME_HINT is passed through
17467 when initialising the floating point type and is the name of the complex
17468 type.
17469
17470 As DWARF doesn't currently provide an explicit name for the components
17471 of a complex number, but it can be helpful to have these components
17472 named, we try to select a suitable name based on the size of the
17473 component. */
17474 static struct type *
17475 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17476 struct objfile *objfile,
17477 int bits, const char *name_hint)
17478 {
17479 gdbarch *gdbarch = get_objfile_arch (objfile);
17480 struct type *tt = nullptr;
17481
17482 /* Try to find a suitable floating point builtin type of size BITS.
17483 We're going to use the name of this type as the name for the complex
17484 target type that we are about to create. */
17485 switch (cu->language)
17486 {
17487 case language_fortran:
17488 switch (bits)
17489 {
17490 case 32:
17491 tt = builtin_f_type (gdbarch)->builtin_real;
17492 break;
17493 case 64:
17494 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17495 break;
17496 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17497 case 128:
17498 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17499 break;
17500 }
17501 break;
17502 default:
17503 switch (bits)
17504 {
17505 case 32:
17506 tt = builtin_type (gdbarch)->builtin_float;
17507 break;
17508 case 64:
17509 tt = builtin_type (gdbarch)->builtin_double;
17510 break;
17511 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17512 case 128:
17513 tt = builtin_type (gdbarch)->builtin_long_double;
17514 break;
17515 }
17516 break;
17517 }
17518
17519 /* If the type we found doesn't match the size we were looking for, then
17520 pretend we didn't find a type at all, the complex target type we
17521 create will then be nameless. */
17522 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17523 tt = nullptr;
17524
17525 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17526 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17527 }
17528
17529 /* Find a representation of a given base type and install
17530 it in the TYPE field of the die. */
17531
17532 static struct type *
17533 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17534 {
17535 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17536 struct type *type;
17537 struct attribute *attr;
17538 int encoding = 0, bits = 0;
17539 const char *name;
17540
17541 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17542 if (attr)
17543 {
17544 encoding = DW_UNSND (attr);
17545 }
17546 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17547 if (attr)
17548 {
17549 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17550 }
17551 name = dwarf2_name (die, cu);
17552 if (!name)
17553 {
17554 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17555 }
17556
17557 switch (encoding)
17558 {
17559 case DW_ATE_address:
17560 /* Turn DW_ATE_address into a void * pointer. */
17561 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17562 type = init_pointer_type (objfile, bits, name, type);
17563 break;
17564 case DW_ATE_boolean:
17565 type = init_boolean_type (objfile, bits, 1, name);
17566 break;
17567 case DW_ATE_complex_float:
17568 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17569 type = init_complex_type (objfile, name, type);
17570 break;
17571 case DW_ATE_decimal_float:
17572 type = init_decfloat_type (objfile, bits, name);
17573 break;
17574 case DW_ATE_float:
17575 type = dwarf2_init_float_type (objfile, bits, name, name);
17576 break;
17577 case DW_ATE_signed:
17578 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17579 break;
17580 case DW_ATE_unsigned:
17581 if (cu->language == language_fortran
17582 && name
17583 && startswith (name, "character("))
17584 type = init_character_type (objfile, bits, 1, name);
17585 else
17586 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17587 break;
17588 case DW_ATE_signed_char:
17589 if (cu->language == language_ada || cu->language == language_m2
17590 || cu->language == language_pascal
17591 || cu->language == language_fortran)
17592 type = init_character_type (objfile, bits, 0, name);
17593 else
17594 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17595 break;
17596 case DW_ATE_unsigned_char:
17597 if (cu->language == language_ada || cu->language == language_m2
17598 || cu->language == language_pascal
17599 || cu->language == language_fortran
17600 || cu->language == language_rust)
17601 type = init_character_type (objfile, bits, 1, name);
17602 else
17603 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17604 break;
17605 case DW_ATE_UTF:
17606 {
17607 gdbarch *arch = get_objfile_arch (objfile);
17608
17609 if (bits == 16)
17610 type = builtin_type (arch)->builtin_char16;
17611 else if (bits == 32)
17612 type = builtin_type (arch)->builtin_char32;
17613 else
17614 {
17615 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17616 bits);
17617 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17618 }
17619 return set_die_type (die, type, cu);
17620 }
17621 break;
17622
17623 default:
17624 complaint (_("unsupported DW_AT_encoding: '%s'"),
17625 dwarf_type_encoding_name (encoding));
17626 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17627 break;
17628 }
17629
17630 if (name && strcmp (name, "char") == 0)
17631 TYPE_NOSIGN (type) = 1;
17632
17633 maybe_set_alignment (cu, die, type);
17634
17635 return set_die_type (die, type, cu);
17636 }
17637
17638 /* Parse dwarf attribute if it's a block, reference or constant and put the
17639 resulting value of the attribute into struct bound_prop.
17640 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17641
17642 static int
17643 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17644 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17645 struct type *default_type)
17646 {
17647 struct dwarf2_property_baton *baton;
17648 struct obstack *obstack
17649 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17650
17651 gdb_assert (default_type != NULL);
17652
17653 if (attr == NULL || prop == NULL)
17654 return 0;
17655
17656 if (attr_form_is_block (attr))
17657 {
17658 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17659 baton->property_type = default_type;
17660 baton->locexpr.per_cu = cu->per_cu;
17661 baton->locexpr.size = DW_BLOCK (attr)->size;
17662 baton->locexpr.data = DW_BLOCK (attr)->data;
17663 baton->locexpr.is_reference = false;
17664 prop->data.baton = baton;
17665 prop->kind = PROP_LOCEXPR;
17666 gdb_assert (prop->data.baton != NULL);
17667 }
17668 else if (attr_form_is_ref (attr))
17669 {
17670 struct dwarf2_cu *target_cu = cu;
17671 struct die_info *target_die;
17672 struct attribute *target_attr;
17673
17674 target_die = follow_die_ref (die, attr, &target_cu);
17675 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17676 if (target_attr == NULL)
17677 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17678 target_cu);
17679 if (target_attr == NULL)
17680 return 0;
17681
17682 switch (target_attr->name)
17683 {
17684 case DW_AT_location:
17685 if (attr_form_is_section_offset (target_attr))
17686 {
17687 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17688 baton->property_type = die_type (target_die, target_cu);
17689 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17690 prop->data.baton = baton;
17691 prop->kind = PROP_LOCLIST;
17692 gdb_assert (prop->data.baton != NULL);
17693 }
17694 else if (attr_form_is_block (target_attr))
17695 {
17696 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17697 baton->property_type = die_type (target_die, target_cu);
17698 baton->locexpr.per_cu = cu->per_cu;
17699 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17700 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17701 baton->locexpr.is_reference = true;
17702 prop->data.baton = baton;
17703 prop->kind = PROP_LOCEXPR;
17704 gdb_assert (prop->data.baton != NULL);
17705 }
17706 else
17707 {
17708 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17709 "dynamic property");
17710 return 0;
17711 }
17712 break;
17713 case DW_AT_data_member_location:
17714 {
17715 LONGEST offset;
17716
17717 if (!handle_data_member_location (target_die, target_cu,
17718 &offset))
17719 return 0;
17720
17721 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17722 baton->property_type = read_type_die (target_die->parent,
17723 target_cu);
17724 baton->offset_info.offset = offset;
17725 baton->offset_info.type = die_type (target_die, target_cu);
17726 prop->data.baton = baton;
17727 prop->kind = PROP_ADDR_OFFSET;
17728 break;
17729 }
17730 }
17731 }
17732 else if (attr_form_is_constant (attr))
17733 {
17734 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17735 prop->kind = PROP_CONST;
17736 }
17737 else
17738 {
17739 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17740 dwarf2_name (die, cu));
17741 return 0;
17742 }
17743
17744 return 1;
17745 }
17746
17747 /* Find an integer type the same size as the address size given in the
17748 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17749 is unsigned or not. */
17750
17751 static struct type *
17752 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17753 bool unsigned_p)
17754 {
17755 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17756 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17757 struct type *int_type;
17758
17759 /* Helper macro to examine the various builtin types. */
17760 #define TRY_TYPE(F) \
17761 int_type = (unsigned_p \
17762 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17763 : objfile_type (objfile)->builtin_ ## F); \
17764 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17765 return int_type
17766
17767 TRY_TYPE (char);
17768 TRY_TYPE (short);
17769 TRY_TYPE (int);
17770 TRY_TYPE (long);
17771 TRY_TYPE (long_long);
17772
17773 #undef TRY_TYPE
17774
17775 gdb_assert_not_reached ("unable to find suitable integer type");
17776 }
17777
17778 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17779 present (which is valid) then compute the default type based on the
17780 compilation units address size. */
17781
17782 static struct type *
17783 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17784 {
17785 struct type *index_type = die_type (die, cu);
17786
17787 /* Dwarf-2 specifications explicitly allows to create subrange types
17788 without specifying a base type.
17789 In that case, the base type must be set to the type of
17790 the lower bound, upper bound or count, in that order, if any of these
17791 three attributes references an object that has a type.
17792 If no base type is found, the Dwarf-2 specifications say that
17793 a signed integer type of size equal to the size of an address should
17794 be used.
17795 For the following C code: `extern char gdb_int [];'
17796 GCC produces an empty range DIE.
17797 FIXME: muller/2010-05-28: Possible references to object for low bound,
17798 high bound or count are not yet handled by this code. */
17799 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17800 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17801
17802 return index_type;
17803 }
17804
17805 /* Read the given DW_AT_subrange DIE. */
17806
17807 static struct type *
17808 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17809 {
17810 struct type *base_type, *orig_base_type;
17811 struct type *range_type;
17812 struct attribute *attr;
17813 struct dynamic_prop low, high;
17814 int low_default_is_valid;
17815 int high_bound_is_count = 0;
17816 const char *name;
17817 ULONGEST negative_mask;
17818
17819 orig_base_type = read_subrange_index_type (die, cu);
17820
17821 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17822 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17823 creating the range type, but we use the result of check_typedef
17824 when examining properties of the type. */
17825 base_type = check_typedef (orig_base_type);
17826
17827 /* The die_type call above may have already set the type for this DIE. */
17828 range_type = get_die_type (die, cu);
17829 if (range_type)
17830 return range_type;
17831
17832 low.kind = PROP_CONST;
17833 high.kind = PROP_CONST;
17834 high.data.const_val = 0;
17835
17836 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17837 omitting DW_AT_lower_bound. */
17838 switch (cu->language)
17839 {
17840 case language_c:
17841 case language_cplus:
17842 low.data.const_val = 0;
17843 low_default_is_valid = 1;
17844 break;
17845 case language_fortran:
17846 low.data.const_val = 1;
17847 low_default_is_valid = 1;
17848 break;
17849 case language_d:
17850 case language_objc:
17851 case language_rust:
17852 low.data.const_val = 0;
17853 low_default_is_valid = (cu->header.version >= 4);
17854 break;
17855 case language_ada:
17856 case language_m2:
17857 case language_pascal:
17858 low.data.const_val = 1;
17859 low_default_is_valid = (cu->header.version >= 4);
17860 break;
17861 default:
17862 low.data.const_val = 0;
17863 low_default_is_valid = 0;
17864 break;
17865 }
17866
17867 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17868 if (attr)
17869 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17870 else if (!low_default_is_valid)
17871 complaint (_("Missing DW_AT_lower_bound "
17872 "- DIE at %s [in module %s]"),
17873 sect_offset_str (die->sect_off),
17874 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17875
17876 struct attribute *attr_ub, *attr_count;
17877 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17878 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17879 {
17880 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17881 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17882 {
17883 /* If bounds are constant do the final calculation here. */
17884 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17885 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17886 else
17887 high_bound_is_count = 1;
17888 }
17889 else
17890 {
17891 if (attr_ub != NULL)
17892 complaint (_("Unresolved DW_AT_upper_bound "
17893 "- DIE at %s [in module %s]"),
17894 sect_offset_str (die->sect_off),
17895 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17896 if (attr_count != NULL)
17897 complaint (_("Unresolved DW_AT_count "
17898 "- DIE at %s [in module %s]"),
17899 sect_offset_str (die->sect_off),
17900 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17901 }
17902 }
17903
17904 /* Normally, the DWARF producers are expected to use a signed
17905 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17906 But this is unfortunately not always the case, as witnessed
17907 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17908 is used instead. To work around that ambiguity, we treat
17909 the bounds as signed, and thus sign-extend their values, when
17910 the base type is signed. */
17911 negative_mask =
17912 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17913 if (low.kind == PROP_CONST
17914 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17915 low.data.const_val |= negative_mask;
17916 if (high.kind == PROP_CONST
17917 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17918 high.data.const_val |= negative_mask;
17919
17920 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17921
17922 if (high_bound_is_count)
17923 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17924
17925 /* Ada expects an empty array on no boundary attributes. */
17926 if (attr == NULL && cu->language != language_ada)
17927 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17928
17929 name = dwarf2_name (die, cu);
17930 if (name)
17931 TYPE_NAME (range_type) = name;
17932
17933 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17934 if (attr)
17935 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17936
17937 maybe_set_alignment (cu, die, range_type);
17938
17939 set_die_type (die, range_type, cu);
17940
17941 /* set_die_type should be already done. */
17942 set_descriptive_type (range_type, die, cu);
17943
17944 return range_type;
17945 }
17946
17947 static struct type *
17948 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17949 {
17950 struct type *type;
17951
17952 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17953 NULL);
17954 TYPE_NAME (type) = dwarf2_name (die, cu);
17955
17956 /* In Ada, an unspecified type is typically used when the description
17957 of the type is defered to a different unit. When encountering
17958 such a type, we treat it as a stub, and try to resolve it later on,
17959 when needed. */
17960 if (cu->language == language_ada)
17961 TYPE_STUB (type) = 1;
17962
17963 return set_die_type (die, type, cu);
17964 }
17965
17966 /* Read a single die and all its descendents. Set the die's sibling
17967 field to NULL; set other fields in the die correctly, and set all
17968 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17969 location of the info_ptr after reading all of those dies. PARENT
17970 is the parent of the die in question. */
17971
17972 static struct die_info *
17973 read_die_and_children (const struct die_reader_specs *reader,
17974 const gdb_byte *info_ptr,
17975 const gdb_byte **new_info_ptr,
17976 struct die_info *parent)
17977 {
17978 struct die_info *die;
17979 const gdb_byte *cur_ptr;
17980 int has_children;
17981
17982 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17983 if (die == NULL)
17984 {
17985 *new_info_ptr = cur_ptr;
17986 return NULL;
17987 }
17988 store_in_ref_table (die, reader->cu);
17989
17990 if (has_children)
17991 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17992 else
17993 {
17994 die->child = NULL;
17995 *new_info_ptr = cur_ptr;
17996 }
17997
17998 die->sibling = NULL;
17999 die->parent = parent;
18000 return die;
18001 }
18002
18003 /* Read a die, all of its descendents, and all of its siblings; set
18004 all of the fields of all of the dies correctly. Arguments are as
18005 in read_die_and_children. */
18006
18007 static struct die_info *
18008 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18009 const gdb_byte *info_ptr,
18010 const gdb_byte **new_info_ptr,
18011 struct die_info *parent)
18012 {
18013 struct die_info *first_die, *last_sibling;
18014 const gdb_byte *cur_ptr;
18015
18016 cur_ptr = info_ptr;
18017 first_die = last_sibling = NULL;
18018
18019 while (1)
18020 {
18021 struct die_info *die
18022 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18023
18024 if (die == NULL)
18025 {
18026 *new_info_ptr = cur_ptr;
18027 return first_die;
18028 }
18029
18030 if (!first_die)
18031 first_die = die;
18032 else
18033 last_sibling->sibling = die;
18034
18035 last_sibling = die;
18036 }
18037 }
18038
18039 /* Read a die, all of its descendents, and all of its siblings; set
18040 all of the fields of all of the dies correctly. Arguments are as
18041 in read_die_and_children.
18042 This the main entry point for reading a DIE and all its children. */
18043
18044 static struct die_info *
18045 read_die_and_siblings (const struct die_reader_specs *reader,
18046 const gdb_byte *info_ptr,
18047 const gdb_byte **new_info_ptr,
18048 struct die_info *parent)
18049 {
18050 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18051 new_info_ptr, parent);
18052
18053 if (dwarf_die_debug)
18054 {
18055 fprintf_unfiltered (gdb_stdlog,
18056 "Read die from %s@0x%x of %s:\n",
18057 get_section_name (reader->die_section),
18058 (unsigned) (info_ptr - reader->die_section->buffer),
18059 bfd_get_filename (reader->abfd));
18060 dump_die (die, dwarf_die_debug);
18061 }
18062
18063 return die;
18064 }
18065
18066 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18067 attributes.
18068 The caller is responsible for filling in the extra attributes
18069 and updating (*DIEP)->num_attrs.
18070 Set DIEP to point to a newly allocated die with its information,
18071 except for its child, sibling, and parent fields.
18072 Set HAS_CHILDREN to tell whether the die has children or not. */
18073
18074 static const gdb_byte *
18075 read_full_die_1 (const struct die_reader_specs *reader,
18076 struct die_info **diep, const gdb_byte *info_ptr,
18077 int *has_children, int num_extra_attrs)
18078 {
18079 unsigned int abbrev_number, bytes_read, i;
18080 struct abbrev_info *abbrev;
18081 struct die_info *die;
18082 struct dwarf2_cu *cu = reader->cu;
18083 bfd *abfd = reader->abfd;
18084
18085 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18086 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18087 info_ptr += bytes_read;
18088 if (!abbrev_number)
18089 {
18090 *diep = NULL;
18091 *has_children = 0;
18092 return info_ptr;
18093 }
18094
18095 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18096 if (!abbrev)
18097 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18098 abbrev_number,
18099 bfd_get_filename (abfd));
18100
18101 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18102 die->sect_off = sect_off;
18103 die->tag = abbrev->tag;
18104 die->abbrev = abbrev_number;
18105
18106 /* Make the result usable.
18107 The caller needs to update num_attrs after adding the extra
18108 attributes. */
18109 die->num_attrs = abbrev->num_attrs;
18110
18111 for (i = 0; i < abbrev->num_attrs; ++i)
18112 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18113 info_ptr);
18114
18115 *diep = die;
18116 *has_children = abbrev->has_children;
18117 return info_ptr;
18118 }
18119
18120 /* Read a die and all its attributes.
18121 Set DIEP to point to a newly allocated die with its information,
18122 except for its child, sibling, and parent fields.
18123 Set HAS_CHILDREN to tell whether the die has children or not. */
18124
18125 static const gdb_byte *
18126 read_full_die (const struct die_reader_specs *reader,
18127 struct die_info **diep, const gdb_byte *info_ptr,
18128 int *has_children)
18129 {
18130 const gdb_byte *result;
18131
18132 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18133
18134 if (dwarf_die_debug)
18135 {
18136 fprintf_unfiltered (gdb_stdlog,
18137 "Read die from %s@0x%x of %s:\n",
18138 get_section_name (reader->die_section),
18139 (unsigned) (info_ptr - reader->die_section->buffer),
18140 bfd_get_filename (reader->abfd));
18141 dump_die (*diep, dwarf_die_debug);
18142 }
18143
18144 return result;
18145 }
18146 \f
18147 /* Abbreviation tables.
18148
18149 In DWARF version 2, the description of the debugging information is
18150 stored in a separate .debug_abbrev section. Before we read any
18151 dies from a section we read in all abbreviations and install them
18152 in a hash table. */
18153
18154 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18155
18156 struct abbrev_info *
18157 abbrev_table::alloc_abbrev ()
18158 {
18159 struct abbrev_info *abbrev;
18160
18161 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18162 memset (abbrev, 0, sizeof (struct abbrev_info));
18163
18164 return abbrev;
18165 }
18166
18167 /* Add an abbreviation to the table. */
18168
18169 void
18170 abbrev_table::add_abbrev (unsigned int abbrev_number,
18171 struct abbrev_info *abbrev)
18172 {
18173 unsigned int hash_number;
18174
18175 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18176 abbrev->next = m_abbrevs[hash_number];
18177 m_abbrevs[hash_number] = abbrev;
18178 }
18179
18180 /* Look up an abbrev in the table.
18181 Returns NULL if the abbrev is not found. */
18182
18183 struct abbrev_info *
18184 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18185 {
18186 unsigned int hash_number;
18187 struct abbrev_info *abbrev;
18188
18189 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18190 abbrev = m_abbrevs[hash_number];
18191
18192 while (abbrev)
18193 {
18194 if (abbrev->number == abbrev_number)
18195 return abbrev;
18196 abbrev = abbrev->next;
18197 }
18198 return NULL;
18199 }
18200
18201 /* Read in an abbrev table. */
18202
18203 static abbrev_table_up
18204 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18205 struct dwarf2_section_info *section,
18206 sect_offset sect_off)
18207 {
18208 struct objfile *objfile = dwarf2_per_objfile->objfile;
18209 bfd *abfd = get_section_bfd_owner (section);
18210 const gdb_byte *abbrev_ptr;
18211 struct abbrev_info *cur_abbrev;
18212 unsigned int abbrev_number, bytes_read, abbrev_name;
18213 unsigned int abbrev_form;
18214 struct attr_abbrev *cur_attrs;
18215 unsigned int allocated_attrs;
18216
18217 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18218
18219 dwarf2_read_section (objfile, section);
18220 abbrev_ptr = section->buffer + to_underlying (sect_off);
18221 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18222 abbrev_ptr += bytes_read;
18223
18224 allocated_attrs = ATTR_ALLOC_CHUNK;
18225 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18226
18227 /* Loop until we reach an abbrev number of 0. */
18228 while (abbrev_number)
18229 {
18230 cur_abbrev = abbrev_table->alloc_abbrev ();
18231
18232 /* read in abbrev header */
18233 cur_abbrev->number = abbrev_number;
18234 cur_abbrev->tag
18235 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18236 abbrev_ptr += bytes_read;
18237 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18238 abbrev_ptr += 1;
18239
18240 /* now read in declarations */
18241 for (;;)
18242 {
18243 LONGEST implicit_const;
18244
18245 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18246 abbrev_ptr += bytes_read;
18247 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18248 abbrev_ptr += bytes_read;
18249 if (abbrev_form == DW_FORM_implicit_const)
18250 {
18251 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18252 &bytes_read);
18253 abbrev_ptr += bytes_read;
18254 }
18255 else
18256 {
18257 /* Initialize it due to a false compiler warning. */
18258 implicit_const = -1;
18259 }
18260
18261 if (abbrev_name == 0)
18262 break;
18263
18264 if (cur_abbrev->num_attrs == allocated_attrs)
18265 {
18266 allocated_attrs += ATTR_ALLOC_CHUNK;
18267 cur_attrs
18268 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18269 }
18270
18271 cur_attrs[cur_abbrev->num_attrs].name
18272 = (enum dwarf_attribute) abbrev_name;
18273 cur_attrs[cur_abbrev->num_attrs].form
18274 = (enum dwarf_form) abbrev_form;
18275 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18276 ++cur_abbrev->num_attrs;
18277 }
18278
18279 cur_abbrev->attrs =
18280 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18281 cur_abbrev->num_attrs);
18282 memcpy (cur_abbrev->attrs, cur_attrs,
18283 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18284
18285 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18286
18287 /* Get next abbreviation.
18288 Under Irix6 the abbreviations for a compilation unit are not
18289 always properly terminated with an abbrev number of 0.
18290 Exit loop if we encounter an abbreviation which we have
18291 already read (which means we are about to read the abbreviations
18292 for the next compile unit) or if the end of the abbreviation
18293 table is reached. */
18294 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18295 break;
18296 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18297 abbrev_ptr += bytes_read;
18298 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18299 break;
18300 }
18301
18302 xfree (cur_attrs);
18303 return abbrev_table;
18304 }
18305
18306 /* Returns nonzero if TAG represents a type that we might generate a partial
18307 symbol for. */
18308
18309 static int
18310 is_type_tag_for_partial (int tag)
18311 {
18312 switch (tag)
18313 {
18314 #if 0
18315 /* Some types that would be reasonable to generate partial symbols for,
18316 that we don't at present. */
18317 case DW_TAG_array_type:
18318 case DW_TAG_file_type:
18319 case DW_TAG_ptr_to_member_type:
18320 case DW_TAG_set_type:
18321 case DW_TAG_string_type:
18322 case DW_TAG_subroutine_type:
18323 #endif
18324 case DW_TAG_base_type:
18325 case DW_TAG_class_type:
18326 case DW_TAG_interface_type:
18327 case DW_TAG_enumeration_type:
18328 case DW_TAG_structure_type:
18329 case DW_TAG_subrange_type:
18330 case DW_TAG_typedef:
18331 case DW_TAG_union_type:
18332 return 1;
18333 default:
18334 return 0;
18335 }
18336 }
18337
18338 /* Load all DIEs that are interesting for partial symbols into memory. */
18339
18340 static struct partial_die_info *
18341 load_partial_dies (const struct die_reader_specs *reader,
18342 const gdb_byte *info_ptr, int building_psymtab)
18343 {
18344 struct dwarf2_cu *cu = reader->cu;
18345 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18346 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18347 unsigned int bytes_read;
18348 unsigned int load_all = 0;
18349 int nesting_level = 1;
18350
18351 parent_die = NULL;
18352 last_die = NULL;
18353
18354 gdb_assert (cu->per_cu != NULL);
18355 if (cu->per_cu->load_all_dies)
18356 load_all = 1;
18357
18358 cu->partial_dies
18359 = htab_create_alloc_ex (cu->header.length / 12,
18360 partial_die_hash,
18361 partial_die_eq,
18362 NULL,
18363 &cu->comp_unit_obstack,
18364 hashtab_obstack_allocate,
18365 dummy_obstack_deallocate);
18366
18367 while (1)
18368 {
18369 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18370
18371 /* A NULL abbrev means the end of a series of children. */
18372 if (abbrev == NULL)
18373 {
18374 if (--nesting_level == 0)
18375 return first_die;
18376
18377 info_ptr += bytes_read;
18378 last_die = parent_die;
18379 parent_die = parent_die->die_parent;
18380 continue;
18381 }
18382
18383 /* Check for template arguments. We never save these; if
18384 they're seen, we just mark the parent, and go on our way. */
18385 if (parent_die != NULL
18386 && cu->language == language_cplus
18387 && (abbrev->tag == DW_TAG_template_type_param
18388 || abbrev->tag == DW_TAG_template_value_param))
18389 {
18390 parent_die->has_template_arguments = 1;
18391
18392 if (!load_all)
18393 {
18394 /* We don't need a partial DIE for the template argument. */
18395 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18396 continue;
18397 }
18398 }
18399
18400 /* We only recurse into c++ subprograms looking for template arguments.
18401 Skip their other children. */
18402 if (!load_all
18403 && cu->language == language_cplus
18404 && parent_die != NULL
18405 && parent_die->tag == DW_TAG_subprogram)
18406 {
18407 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18408 continue;
18409 }
18410
18411 /* Check whether this DIE is interesting enough to save. Normally
18412 we would not be interested in members here, but there may be
18413 later variables referencing them via DW_AT_specification (for
18414 static members). */
18415 if (!load_all
18416 && !is_type_tag_for_partial (abbrev->tag)
18417 && abbrev->tag != DW_TAG_constant
18418 && abbrev->tag != DW_TAG_enumerator
18419 && abbrev->tag != DW_TAG_subprogram
18420 && abbrev->tag != DW_TAG_inlined_subroutine
18421 && abbrev->tag != DW_TAG_lexical_block
18422 && abbrev->tag != DW_TAG_variable
18423 && abbrev->tag != DW_TAG_namespace
18424 && abbrev->tag != DW_TAG_module
18425 && abbrev->tag != DW_TAG_member
18426 && abbrev->tag != DW_TAG_imported_unit
18427 && abbrev->tag != DW_TAG_imported_declaration)
18428 {
18429 /* Otherwise we skip to the next sibling, if any. */
18430 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18431 continue;
18432 }
18433
18434 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18435 abbrev);
18436
18437 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18438
18439 /* This two-pass algorithm for processing partial symbols has a
18440 high cost in cache pressure. Thus, handle some simple cases
18441 here which cover the majority of C partial symbols. DIEs
18442 which neither have specification tags in them, nor could have
18443 specification tags elsewhere pointing at them, can simply be
18444 processed and discarded.
18445
18446 This segment is also optional; scan_partial_symbols and
18447 add_partial_symbol will handle these DIEs if we chain
18448 them in normally. When compilers which do not emit large
18449 quantities of duplicate debug information are more common,
18450 this code can probably be removed. */
18451
18452 /* Any complete simple types at the top level (pretty much all
18453 of them, for a language without namespaces), can be processed
18454 directly. */
18455 if (parent_die == NULL
18456 && pdi.has_specification == 0
18457 && pdi.is_declaration == 0
18458 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18459 || pdi.tag == DW_TAG_base_type
18460 || pdi.tag == DW_TAG_subrange_type))
18461 {
18462 if (building_psymtab && pdi.name != NULL)
18463 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18464 VAR_DOMAIN, LOC_TYPEDEF, -1,
18465 psymbol_placement::STATIC,
18466 0, cu->language, objfile);
18467 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18468 continue;
18469 }
18470
18471 /* The exception for DW_TAG_typedef with has_children above is
18472 a workaround of GCC PR debug/47510. In the case of this complaint
18473 type_name_or_error will error on such types later.
18474
18475 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18476 it could not find the child DIEs referenced later, this is checked
18477 above. In correct DWARF DW_TAG_typedef should have no children. */
18478
18479 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18480 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18481 "- DIE at %s [in module %s]"),
18482 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18483
18484 /* If we're at the second level, and we're an enumerator, and
18485 our parent has no specification (meaning possibly lives in a
18486 namespace elsewhere), then we can add the partial symbol now
18487 instead of queueing it. */
18488 if (pdi.tag == DW_TAG_enumerator
18489 && parent_die != NULL
18490 && parent_die->die_parent == NULL
18491 && parent_die->tag == DW_TAG_enumeration_type
18492 && parent_die->has_specification == 0)
18493 {
18494 if (pdi.name == NULL)
18495 complaint (_("malformed enumerator DIE ignored"));
18496 else if (building_psymtab)
18497 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18498 VAR_DOMAIN, LOC_CONST, -1,
18499 cu->language == language_cplus
18500 ? psymbol_placement::GLOBAL
18501 : psymbol_placement::STATIC,
18502 0, cu->language, objfile);
18503
18504 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18505 continue;
18506 }
18507
18508 struct partial_die_info *part_die
18509 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18510
18511 /* We'll save this DIE so link it in. */
18512 part_die->die_parent = parent_die;
18513 part_die->die_sibling = NULL;
18514 part_die->die_child = NULL;
18515
18516 if (last_die && last_die == parent_die)
18517 last_die->die_child = part_die;
18518 else if (last_die)
18519 last_die->die_sibling = part_die;
18520
18521 last_die = part_die;
18522
18523 if (first_die == NULL)
18524 first_die = part_die;
18525
18526 /* Maybe add the DIE to the hash table. Not all DIEs that we
18527 find interesting need to be in the hash table, because we
18528 also have the parent/sibling/child chains; only those that we
18529 might refer to by offset later during partial symbol reading.
18530
18531 For now this means things that might have be the target of a
18532 DW_AT_specification, DW_AT_abstract_origin, or
18533 DW_AT_extension. DW_AT_extension will refer only to
18534 namespaces; DW_AT_abstract_origin refers to functions (and
18535 many things under the function DIE, but we do not recurse
18536 into function DIEs during partial symbol reading) and
18537 possibly variables as well; DW_AT_specification refers to
18538 declarations. Declarations ought to have the DW_AT_declaration
18539 flag. It happens that GCC forgets to put it in sometimes, but
18540 only for functions, not for types.
18541
18542 Adding more things than necessary to the hash table is harmless
18543 except for the performance cost. Adding too few will result in
18544 wasted time in find_partial_die, when we reread the compilation
18545 unit with load_all_dies set. */
18546
18547 if (load_all
18548 || abbrev->tag == DW_TAG_constant
18549 || abbrev->tag == DW_TAG_subprogram
18550 || abbrev->tag == DW_TAG_variable
18551 || abbrev->tag == DW_TAG_namespace
18552 || part_die->is_declaration)
18553 {
18554 void **slot;
18555
18556 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18557 to_underlying (part_die->sect_off),
18558 INSERT);
18559 *slot = part_die;
18560 }
18561
18562 /* For some DIEs we want to follow their children (if any). For C
18563 we have no reason to follow the children of structures; for other
18564 languages we have to, so that we can get at method physnames
18565 to infer fully qualified class names, for DW_AT_specification,
18566 and for C++ template arguments. For C++, we also look one level
18567 inside functions to find template arguments (if the name of the
18568 function does not already contain the template arguments).
18569
18570 For Ada, we need to scan the children of subprograms and lexical
18571 blocks as well because Ada allows the definition of nested
18572 entities that could be interesting for the debugger, such as
18573 nested subprograms for instance. */
18574 if (last_die->has_children
18575 && (load_all
18576 || last_die->tag == DW_TAG_namespace
18577 || last_die->tag == DW_TAG_module
18578 || last_die->tag == DW_TAG_enumeration_type
18579 || (cu->language == language_cplus
18580 && last_die->tag == DW_TAG_subprogram
18581 && (last_die->name == NULL
18582 || strchr (last_die->name, '<') == NULL))
18583 || (cu->language != language_c
18584 && (last_die->tag == DW_TAG_class_type
18585 || last_die->tag == DW_TAG_interface_type
18586 || last_die->tag == DW_TAG_structure_type
18587 || last_die->tag == DW_TAG_union_type))
18588 || (cu->language == language_ada
18589 && (last_die->tag == DW_TAG_subprogram
18590 || last_die->tag == DW_TAG_lexical_block))))
18591 {
18592 nesting_level++;
18593 parent_die = last_die;
18594 continue;
18595 }
18596
18597 /* Otherwise we skip to the next sibling, if any. */
18598 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18599
18600 /* Back to the top, do it again. */
18601 }
18602 }
18603
18604 partial_die_info::partial_die_info (sect_offset sect_off_,
18605 struct abbrev_info *abbrev)
18606 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18607 {
18608 }
18609
18610 /* Read a minimal amount of information into the minimal die structure.
18611 INFO_PTR should point just after the initial uleb128 of a DIE. */
18612
18613 const gdb_byte *
18614 partial_die_info::read (const struct die_reader_specs *reader,
18615 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18616 {
18617 struct dwarf2_cu *cu = reader->cu;
18618 struct dwarf2_per_objfile *dwarf2_per_objfile
18619 = cu->per_cu->dwarf2_per_objfile;
18620 unsigned int i;
18621 int has_low_pc_attr = 0;
18622 int has_high_pc_attr = 0;
18623 int high_pc_relative = 0;
18624
18625 for (i = 0; i < abbrev.num_attrs; ++i)
18626 {
18627 struct attribute attr;
18628
18629 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18630
18631 /* Store the data if it is of an attribute we want to keep in a
18632 partial symbol table. */
18633 switch (attr.name)
18634 {
18635 case DW_AT_name:
18636 switch (tag)
18637 {
18638 case DW_TAG_compile_unit:
18639 case DW_TAG_partial_unit:
18640 case DW_TAG_type_unit:
18641 /* Compilation units have a DW_AT_name that is a filename, not
18642 a source language identifier. */
18643 case DW_TAG_enumeration_type:
18644 case DW_TAG_enumerator:
18645 /* These tags always have simple identifiers already; no need
18646 to canonicalize them. */
18647 name = DW_STRING (&attr);
18648 break;
18649 default:
18650 {
18651 struct objfile *objfile = dwarf2_per_objfile->objfile;
18652
18653 name
18654 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18655 &objfile->per_bfd->storage_obstack);
18656 }
18657 break;
18658 }
18659 break;
18660 case DW_AT_linkage_name:
18661 case DW_AT_MIPS_linkage_name:
18662 /* Note that both forms of linkage name might appear. We
18663 assume they will be the same, and we only store the last
18664 one we see. */
18665 linkage_name = DW_STRING (&attr);
18666 break;
18667 case DW_AT_low_pc:
18668 has_low_pc_attr = 1;
18669 lowpc = attr_value_as_address (&attr);
18670 break;
18671 case DW_AT_high_pc:
18672 has_high_pc_attr = 1;
18673 highpc = attr_value_as_address (&attr);
18674 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18675 high_pc_relative = 1;
18676 break;
18677 case DW_AT_location:
18678 /* Support the .debug_loc offsets. */
18679 if (attr_form_is_block (&attr))
18680 {
18681 d.locdesc = DW_BLOCK (&attr);
18682 }
18683 else if (attr_form_is_section_offset (&attr))
18684 {
18685 dwarf2_complex_location_expr_complaint ();
18686 }
18687 else
18688 {
18689 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18690 "partial symbol information");
18691 }
18692 break;
18693 case DW_AT_external:
18694 is_external = DW_UNSND (&attr);
18695 break;
18696 case DW_AT_declaration:
18697 is_declaration = DW_UNSND (&attr);
18698 break;
18699 case DW_AT_type:
18700 has_type = 1;
18701 break;
18702 case DW_AT_abstract_origin:
18703 case DW_AT_specification:
18704 case DW_AT_extension:
18705 has_specification = 1;
18706 spec_offset = dwarf2_get_ref_die_offset (&attr);
18707 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18708 || cu->per_cu->is_dwz);
18709 break;
18710 case DW_AT_sibling:
18711 /* Ignore absolute siblings, they might point outside of
18712 the current compile unit. */
18713 if (attr.form == DW_FORM_ref_addr)
18714 complaint (_("ignoring absolute DW_AT_sibling"));
18715 else
18716 {
18717 const gdb_byte *buffer = reader->buffer;
18718 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18719 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18720
18721 if (sibling_ptr < info_ptr)
18722 complaint (_("DW_AT_sibling points backwards"));
18723 else if (sibling_ptr > reader->buffer_end)
18724 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18725 else
18726 sibling = sibling_ptr;
18727 }
18728 break;
18729 case DW_AT_byte_size:
18730 has_byte_size = 1;
18731 break;
18732 case DW_AT_const_value:
18733 has_const_value = 1;
18734 break;
18735 case DW_AT_calling_convention:
18736 /* DWARF doesn't provide a way to identify a program's source-level
18737 entry point. DW_AT_calling_convention attributes are only meant
18738 to describe functions' calling conventions.
18739
18740 However, because it's a necessary piece of information in
18741 Fortran, and before DWARF 4 DW_CC_program was the only
18742 piece of debugging information whose definition refers to
18743 a 'main program' at all, several compilers marked Fortran
18744 main programs with DW_CC_program --- even when those
18745 functions use the standard calling conventions.
18746
18747 Although DWARF now specifies a way to provide this
18748 information, we support this practice for backward
18749 compatibility. */
18750 if (DW_UNSND (&attr) == DW_CC_program
18751 && cu->language == language_fortran)
18752 main_subprogram = 1;
18753 break;
18754 case DW_AT_inline:
18755 if (DW_UNSND (&attr) == DW_INL_inlined
18756 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18757 may_be_inlined = 1;
18758 break;
18759
18760 case DW_AT_import:
18761 if (tag == DW_TAG_imported_unit)
18762 {
18763 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18764 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18765 || cu->per_cu->is_dwz);
18766 }
18767 break;
18768
18769 case DW_AT_main_subprogram:
18770 main_subprogram = DW_UNSND (&attr);
18771 break;
18772
18773 case DW_AT_ranges:
18774 {
18775 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18776 but that requires a full DIE, so instead we just
18777 reimplement it. */
18778 int need_ranges_base = tag != DW_TAG_compile_unit;
18779 unsigned int ranges_offset = (DW_UNSND (&attr)
18780 + (need_ranges_base
18781 ? cu->ranges_base
18782 : 0));
18783
18784 /* Value of the DW_AT_ranges attribute is the offset in the
18785 .debug_ranges section. */
18786 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18787 nullptr))
18788 has_pc_info = 1;
18789 }
18790 break;
18791
18792 default:
18793 break;
18794 }
18795 }
18796
18797 /* For Ada, if both the name and the linkage name appear, we prefer
18798 the latter. This lets "catch exception" work better, regardless
18799 of the order in which the name and linkage name were emitted.
18800 Really, though, this is just a workaround for the fact that gdb
18801 doesn't store both the name and the linkage name. */
18802 if (cu->language == language_ada && linkage_name != nullptr)
18803 name = linkage_name;
18804
18805 if (high_pc_relative)
18806 highpc += lowpc;
18807
18808 if (has_low_pc_attr && has_high_pc_attr)
18809 {
18810 /* When using the GNU linker, .gnu.linkonce. sections are used to
18811 eliminate duplicate copies of functions and vtables and such.
18812 The linker will arbitrarily choose one and discard the others.
18813 The AT_*_pc values for such functions refer to local labels in
18814 these sections. If the section from that file was discarded, the
18815 labels are not in the output, so the relocs get a value of 0.
18816 If this is a discarded function, mark the pc bounds as invalid,
18817 so that GDB will ignore it. */
18818 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18819 {
18820 struct objfile *objfile = dwarf2_per_objfile->objfile;
18821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18822
18823 complaint (_("DW_AT_low_pc %s is zero "
18824 "for DIE at %s [in module %s]"),
18825 paddress (gdbarch, lowpc),
18826 sect_offset_str (sect_off),
18827 objfile_name (objfile));
18828 }
18829 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18830 else if (lowpc >= highpc)
18831 {
18832 struct objfile *objfile = dwarf2_per_objfile->objfile;
18833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18834
18835 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18836 "for DIE at %s [in module %s]"),
18837 paddress (gdbarch, lowpc),
18838 paddress (gdbarch, highpc),
18839 sect_offset_str (sect_off),
18840 objfile_name (objfile));
18841 }
18842 else
18843 has_pc_info = 1;
18844 }
18845
18846 return info_ptr;
18847 }
18848
18849 /* Find a cached partial DIE at OFFSET in CU. */
18850
18851 struct partial_die_info *
18852 dwarf2_cu::find_partial_die (sect_offset sect_off)
18853 {
18854 struct partial_die_info *lookup_die = NULL;
18855 struct partial_die_info part_die (sect_off);
18856
18857 lookup_die = ((struct partial_die_info *)
18858 htab_find_with_hash (partial_dies, &part_die,
18859 to_underlying (sect_off)));
18860
18861 return lookup_die;
18862 }
18863
18864 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18865 except in the case of .debug_types DIEs which do not reference
18866 outside their CU (they do however referencing other types via
18867 DW_FORM_ref_sig8). */
18868
18869 static const struct cu_partial_die_info
18870 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18871 {
18872 struct dwarf2_per_objfile *dwarf2_per_objfile
18873 = cu->per_cu->dwarf2_per_objfile;
18874 struct objfile *objfile = dwarf2_per_objfile->objfile;
18875 struct dwarf2_per_cu_data *per_cu = NULL;
18876 struct partial_die_info *pd = NULL;
18877
18878 if (offset_in_dwz == cu->per_cu->is_dwz
18879 && offset_in_cu_p (&cu->header, sect_off))
18880 {
18881 pd = cu->find_partial_die (sect_off);
18882 if (pd != NULL)
18883 return { cu, pd };
18884 /* We missed recording what we needed.
18885 Load all dies and try again. */
18886 per_cu = cu->per_cu;
18887 }
18888 else
18889 {
18890 /* TUs don't reference other CUs/TUs (except via type signatures). */
18891 if (cu->per_cu->is_debug_types)
18892 {
18893 error (_("Dwarf Error: Type Unit at offset %s contains"
18894 " external reference to offset %s [in module %s].\n"),
18895 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18896 bfd_get_filename (objfile->obfd));
18897 }
18898 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18899 dwarf2_per_objfile);
18900
18901 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18902 load_partial_comp_unit (per_cu);
18903
18904 per_cu->cu->last_used = 0;
18905 pd = per_cu->cu->find_partial_die (sect_off);
18906 }
18907
18908 /* If we didn't find it, and not all dies have been loaded,
18909 load them all and try again. */
18910
18911 if (pd == NULL && per_cu->load_all_dies == 0)
18912 {
18913 per_cu->load_all_dies = 1;
18914
18915 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18916 THIS_CU->cu may already be in use. So we can't just free it and
18917 replace its DIEs with the ones we read in. Instead, we leave those
18918 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18919 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18920 set. */
18921 load_partial_comp_unit (per_cu);
18922
18923 pd = per_cu->cu->find_partial_die (sect_off);
18924 }
18925
18926 if (pd == NULL)
18927 internal_error (__FILE__, __LINE__,
18928 _("could not find partial DIE %s "
18929 "in cache [from module %s]\n"),
18930 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18931 return { per_cu->cu, pd };
18932 }
18933
18934 /* See if we can figure out if the class lives in a namespace. We do
18935 this by looking for a member function; its demangled name will
18936 contain namespace info, if there is any. */
18937
18938 static void
18939 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18940 struct dwarf2_cu *cu)
18941 {
18942 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18943 what template types look like, because the demangler
18944 frequently doesn't give the same name as the debug info. We
18945 could fix this by only using the demangled name to get the
18946 prefix (but see comment in read_structure_type). */
18947
18948 struct partial_die_info *real_pdi;
18949 struct partial_die_info *child_pdi;
18950
18951 /* If this DIE (this DIE's specification, if any) has a parent, then
18952 we should not do this. We'll prepend the parent's fully qualified
18953 name when we create the partial symbol. */
18954
18955 real_pdi = struct_pdi;
18956 while (real_pdi->has_specification)
18957 {
18958 auto res = find_partial_die (real_pdi->spec_offset,
18959 real_pdi->spec_is_dwz, cu);
18960 real_pdi = res.pdi;
18961 cu = res.cu;
18962 }
18963
18964 if (real_pdi->die_parent != NULL)
18965 return;
18966
18967 for (child_pdi = struct_pdi->die_child;
18968 child_pdi != NULL;
18969 child_pdi = child_pdi->die_sibling)
18970 {
18971 if (child_pdi->tag == DW_TAG_subprogram
18972 && child_pdi->linkage_name != NULL)
18973 {
18974 char *actual_class_name
18975 = language_class_name_from_physname (cu->language_defn,
18976 child_pdi->linkage_name);
18977 if (actual_class_name != NULL)
18978 {
18979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18980 struct_pdi->name
18981 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18982 actual_class_name);
18983 xfree (actual_class_name);
18984 }
18985 break;
18986 }
18987 }
18988 }
18989
18990 void
18991 partial_die_info::fixup (struct dwarf2_cu *cu)
18992 {
18993 /* Once we've fixed up a die, there's no point in doing so again.
18994 This also avoids a memory leak if we were to call
18995 guess_partial_die_structure_name multiple times. */
18996 if (fixup_called)
18997 return;
18998
18999 /* If we found a reference attribute and the DIE has no name, try
19000 to find a name in the referred to DIE. */
19001
19002 if (name == NULL && has_specification)
19003 {
19004 struct partial_die_info *spec_die;
19005
19006 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19007 spec_die = res.pdi;
19008 cu = res.cu;
19009
19010 spec_die->fixup (cu);
19011
19012 if (spec_die->name)
19013 {
19014 name = spec_die->name;
19015
19016 /* Copy DW_AT_external attribute if it is set. */
19017 if (spec_die->is_external)
19018 is_external = spec_die->is_external;
19019 }
19020 }
19021
19022 /* Set default names for some unnamed DIEs. */
19023
19024 if (name == NULL && tag == DW_TAG_namespace)
19025 name = CP_ANONYMOUS_NAMESPACE_STR;
19026
19027 /* If there is no parent die to provide a namespace, and there are
19028 children, see if we can determine the namespace from their linkage
19029 name. */
19030 if (cu->language == language_cplus
19031 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19032 && die_parent == NULL
19033 && has_children
19034 && (tag == DW_TAG_class_type
19035 || tag == DW_TAG_structure_type
19036 || tag == DW_TAG_union_type))
19037 guess_partial_die_structure_name (this, cu);
19038
19039 /* GCC might emit a nameless struct or union that has a linkage
19040 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19041 if (name == NULL
19042 && (tag == DW_TAG_class_type
19043 || tag == DW_TAG_interface_type
19044 || tag == DW_TAG_structure_type
19045 || tag == DW_TAG_union_type)
19046 && linkage_name != NULL)
19047 {
19048 char *demangled;
19049
19050 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19051 if (demangled)
19052 {
19053 const char *base;
19054
19055 /* Strip any leading namespaces/classes, keep only the base name.
19056 DW_AT_name for named DIEs does not contain the prefixes. */
19057 base = strrchr (demangled, ':');
19058 if (base && base > demangled && base[-1] == ':')
19059 base++;
19060 else
19061 base = demangled;
19062
19063 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19064 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19065 xfree (demangled);
19066 }
19067 }
19068
19069 fixup_called = 1;
19070 }
19071
19072 /* Read an attribute value described by an attribute form. */
19073
19074 static const gdb_byte *
19075 read_attribute_value (const struct die_reader_specs *reader,
19076 struct attribute *attr, unsigned form,
19077 LONGEST implicit_const, const gdb_byte *info_ptr)
19078 {
19079 struct dwarf2_cu *cu = reader->cu;
19080 struct dwarf2_per_objfile *dwarf2_per_objfile
19081 = cu->per_cu->dwarf2_per_objfile;
19082 struct objfile *objfile = dwarf2_per_objfile->objfile;
19083 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19084 bfd *abfd = reader->abfd;
19085 struct comp_unit_head *cu_header = &cu->header;
19086 unsigned int bytes_read;
19087 struct dwarf_block *blk;
19088
19089 attr->form = (enum dwarf_form) form;
19090 switch (form)
19091 {
19092 case DW_FORM_ref_addr:
19093 if (cu->header.version == 2)
19094 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19095 else
19096 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19097 &cu->header, &bytes_read);
19098 info_ptr += bytes_read;
19099 break;
19100 case DW_FORM_GNU_ref_alt:
19101 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19102 info_ptr += bytes_read;
19103 break;
19104 case DW_FORM_addr:
19105 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19106 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19107 info_ptr += bytes_read;
19108 break;
19109 case DW_FORM_block2:
19110 blk = dwarf_alloc_block (cu);
19111 blk->size = read_2_bytes (abfd, info_ptr);
19112 info_ptr += 2;
19113 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19114 info_ptr += blk->size;
19115 DW_BLOCK (attr) = blk;
19116 break;
19117 case DW_FORM_block4:
19118 blk = dwarf_alloc_block (cu);
19119 blk->size = read_4_bytes (abfd, info_ptr);
19120 info_ptr += 4;
19121 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19122 info_ptr += blk->size;
19123 DW_BLOCK (attr) = blk;
19124 break;
19125 case DW_FORM_data2:
19126 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19127 info_ptr += 2;
19128 break;
19129 case DW_FORM_data4:
19130 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19131 info_ptr += 4;
19132 break;
19133 case DW_FORM_data8:
19134 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19135 info_ptr += 8;
19136 break;
19137 case DW_FORM_data16:
19138 blk = dwarf_alloc_block (cu);
19139 blk->size = 16;
19140 blk->data = read_n_bytes (abfd, info_ptr, 16);
19141 info_ptr += 16;
19142 DW_BLOCK (attr) = blk;
19143 break;
19144 case DW_FORM_sec_offset:
19145 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19146 info_ptr += bytes_read;
19147 break;
19148 case DW_FORM_string:
19149 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19150 DW_STRING_IS_CANONICAL (attr) = 0;
19151 info_ptr += bytes_read;
19152 break;
19153 case DW_FORM_strp:
19154 if (!cu->per_cu->is_dwz)
19155 {
19156 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19157 abfd, info_ptr, cu_header,
19158 &bytes_read);
19159 DW_STRING_IS_CANONICAL (attr) = 0;
19160 info_ptr += bytes_read;
19161 break;
19162 }
19163 /* FALLTHROUGH */
19164 case DW_FORM_line_strp:
19165 if (!cu->per_cu->is_dwz)
19166 {
19167 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19168 abfd, info_ptr,
19169 cu_header, &bytes_read);
19170 DW_STRING_IS_CANONICAL (attr) = 0;
19171 info_ptr += bytes_read;
19172 break;
19173 }
19174 /* FALLTHROUGH */
19175 case DW_FORM_GNU_strp_alt:
19176 {
19177 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19178 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19179 &bytes_read);
19180
19181 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19182 dwz, str_offset);
19183 DW_STRING_IS_CANONICAL (attr) = 0;
19184 info_ptr += bytes_read;
19185 }
19186 break;
19187 case DW_FORM_exprloc:
19188 case DW_FORM_block:
19189 blk = dwarf_alloc_block (cu);
19190 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19191 info_ptr += bytes_read;
19192 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19193 info_ptr += blk->size;
19194 DW_BLOCK (attr) = blk;
19195 break;
19196 case DW_FORM_block1:
19197 blk = dwarf_alloc_block (cu);
19198 blk->size = read_1_byte (abfd, info_ptr);
19199 info_ptr += 1;
19200 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19201 info_ptr += blk->size;
19202 DW_BLOCK (attr) = blk;
19203 break;
19204 case DW_FORM_data1:
19205 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19206 info_ptr += 1;
19207 break;
19208 case DW_FORM_flag:
19209 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19210 info_ptr += 1;
19211 break;
19212 case DW_FORM_flag_present:
19213 DW_UNSND (attr) = 1;
19214 break;
19215 case DW_FORM_sdata:
19216 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19217 info_ptr += bytes_read;
19218 break;
19219 case DW_FORM_udata:
19220 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19221 info_ptr += bytes_read;
19222 break;
19223 case DW_FORM_ref1:
19224 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19225 + read_1_byte (abfd, info_ptr));
19226 info_ptr += 1;
19227 break;
19228 case DW_FORM_ref2:
19229 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19230 + read_2_bytes (abfd, info_ptr));
19231 info_ptr += 2;
19232 break;
19233 case DW_FORM_ref4:
19234 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19235 + read_4_bytes (abfd, info_ptr));
19236 info_ptr += 4;
19237 break;
19238 case DW_FORM_ref8:
19239 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19240 + read_8_bytes (abfd, info_ptr));
19241 info_ptr += 8;
19242 break;
19243 case DW_FORM_ref_sig8:
19244 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19245 info_ptr += 8;
19246 break;
19247 case DW_FORM_ref_udata:
19248 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19249 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19250 info_ptr += bytes_read;
19251 break;
19252 case DW_FORM_indirect:
19253 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19254 info_ptr += bytes_read;
19255 if (form == DW_FORM_implicit_const)
19256 {
19257 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19258 info_ptr += bytes_read;
19259 }
19260 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19261 info_ptr);
19262 break;
19263 case DW_FORM_implicit_const:
19264 DW_SND (attr) = implicit_const;
19265 break;
19266 case DW_FORM_addrx:
19267 case DW_FORM_GNU_addr_index:
19268 if (reader->dwo_file == NULL)
19269 {
19270 /* For now flag a hard error.
19271 Later we can turn this into a complaint. */
19272 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19273 dwarf_form_name (form),
19274 bfd_get_filename (abfd));
19275 }
19276 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19278 break;
19279 case DW_FORM_strx:
19280 case DW_FORM_strx1:
19281 case DW_FORM_strx2:
19282 case DW_FORM_strx3:
19283 case DW_FORM_strx4:
19284 case DW_FORM_GNU_str_index:
19285 if (reader->dwo_file == NULL)
19286 {
19287 /* For now flag a hard error.
19288 Later we can turn this into a complaint if warranted. */
19289 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19290 dwarf_form_name (form),
19291 bfd_get_filename (abfd));
19292 }
19293 {
19294 ULONGEST str_index;
19295 if (form == DW_FORM_strx1)
19296 {
19297 str_index = read_1_byte (abfd, info_ptr);
19298 info_ptr += 1;
19299 }
19300 else if (form == DW_FORM_strx2)
19301 {
19302 str_index = read_2_bytes (abfd, info_ptr);
19303 info_ptr += 2;
19304 }
19305 else if (form == DW_FORM_strx3)
19306 {
19307 str_index = read_3_bytes (abfd, info_ptr);
19308 info_ptr += 3;
19309 }
19310 else if (form == DW_FORM_strx4)
19311 {
19312 str_index = read_4_bytes (abfd, info_ptr);
19313 info_ptr += 4;
19314 }
19315 else
19316 {
19317 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19318 info_ptr += bytes_read;
19319 }
19320 DW_STRING (attr) = read_str_index (reader, str_index);
19321 DW_STRING_IS_CANONICAL (attr) = 0;
19322 }
19323 break;
19324 default:
19325 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19326 dwarf_form_name (form),
19327 bfd_get_filename (abfd));
19328 }
19329
19330 /* Super hack. */
19331 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19332 attr->form = DW_FORM_GNU_ref_alt;
19333
19334 /* We have seen instances where the compiler tried to emit a byte
19335 size attribute of -1 which ended up being encoded as an unsigned
19336 0xffffffff. Although 0xffffffff is technically a valid size value,
19337 an object of this size seems pretty unlikely so we can relatively
19338 safely treat these cases as if the size attribute was invalid and
19339 treat them as zero by default. */
19340 if (attr->name == DW_AT_byte_size
19341 && form == DW_FORM_data4
19342 && DW_UNSND (attr) >= 0xffffffff)
19343 {
19344 complaint
19345 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19346 hex_string (DW_UNSND (attr)));
19347 DW_UNSND (attr) = 0;
19348 }
19349
19350 return info_ptr;
19351 }
19352
19353 /* Read an attribute described by an abbreviated attribute. */
19354
19355 static const gdb_byte *
19356 read_attribute (const struct die_reader_specs *reader,
19357 struct attribute *attr, struct attr_abbrev *abbrev,
19358 const gdb_byte *info_ptr)
19359 {
19360 attr->name = abbrev->name;
19361 return read_attribute_value (reader, attr, abbrev->form,
19362 abbrev->implicit_const, info_ptr);
19363 }
19364
19365 /* Read dwarf information from a buffer. */
19366
19367 static unsigned int
19368 read_1_byte (bfd *abfd, const gdb_byte *buf)
19369 {
19370 return bfd_get_8 (abfd, buf);
19371 }
19372
19373 static int
19374 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19375 {
19376 return bfd_get_signed_8 (abfd, buf);
19377 }
19378
19379 static unsigned int
19380 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19381 {
19382 return bfd_get_16 (abfd, buf);
19383 }
19384
19385 static int
19386 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19387 {
19388 return bfd_get_signed_16 (abfd, buf);
19389 }
19390
19391 static unsigned int
19392 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19393 {
19394 unsigned int result = 0;
19395 for (int i = 0; i < 3; ++i)
19396 {
19397 unsigned char byte = bfd_get_8 (abfd, buf);
19398 buf++;
19399 result |= ((unsigned int) byte << (i * 8));
19400 }
19401 return result;
19402 }
19403
19404 static unsigned int
19405 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19406 {
19407 return bfd_get_32 (abfd, buf);
19408 }
19409
19410 static int
19411 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19412 {
19413 return bfd_get_signed_32 (abfd, buf);
19414 }
19415
19416 static ULONGEST
19417 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19418 {
19419 return bfd_get_64 (abfd, buf);
19420 }
19421
19422 static CORE_ADDR
19423 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19424 unsigned int *bytes_read)
19425 {
19426 struct comp_unit_head *cu_header = &cu->header;
19427 CORE_ADDR retval = 0;
19428
19429 if (cu_header->signed_addr_p)
19430 {
19431 switch (cu_header->addr_size)
19432 {
19433 case 2:
19434 retval = bfd_get_signed_16 (abfd, buf);
19435 break;
19436 case 4:
19437 retval = bfd_get_signed_32 (abfd, buf);
19438 break;
19439 case 8:
19440 retval = bfd_get_signed_64 (abfd, buf);
19441 break;
19442 default:
19443 internal_error (__FILE__, __LINE__,
19444 _("read_address: bad switch, signed [in module %s]"),
19445 bfd_get_filename (abfd));
19446 }
19447 }
19448 else
19449 {
19450 switch (cu_header->addr_size)
19451 {
19452 case 2:
19453 retval = bfd_get_16 (abfd, buf);
19454 break;
19455 case 4:
19456 retval = bfd_get_32 (abfd, buf);
19457 break;
19458 case 8:
19459 retval = bfd_get_64 (abfd, buf);
19460 break;
19461 default:
19462 internal_error (__FILE__, __LINE__,
19463 _("read_address: bad switch, "
19464 "unsigned [in module %s]"),
19465 bfd_get_filename (abfd));
19466 }
19467 }
19468
19469 *bytes_read = cu_header->addr_size;
19470 return retval;
19471 }
19472
19473 /* Read the initial length from a section. The (draft) DWARF 3
19474 specification allows the initial length to take up either 4 bytes
19475 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19476 bytes describe the length and all offsets will be 8 bytes in length
19477 instead of 4.
19478
19479 An older, non-standard 64-bit format is also handled by this
19480 function. The older format in question stores the initial length
19481 as an 8-byte quantity without an escape value. Lengths greater
19482 than 2^32 aren't very common which means that the initial 4 bytes
19483 is almost always zero. Since a length value of zero doesn't make
19484 sense for the 32-bit format, this initial zero can be considered to
19485 be an escape value which indicates the presence of the older 64-bit
19486 format. As written, the code can't detect (old format) lengths
19487 greater than 4GB. If it becomes necessary to handle lengths
19488 somewhat larger than 4GB, we could allow other small values (such
19489 as the non-sensical values of 1, 2, and 3) to also be used as
19490 escape values indicating the presence of the old format.
19491
19492 The value returned via bytes_read should be used to increment the
19493 relevant pointer after calling read_initial_length().
19494
19495 [ Note: read_initial_length() and read_offset() are based on the
19496 document entitled "DWARF Debugging Information Format", revision
19497 3, draft 8, dated November 19, 2001. This document was obtained
19498 from:
19499
19500 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19501
19502 This document is only a draft and is subject to change. (So beware.)
19503
19504 Details regarding the older, non-standard 64-bit format were
19505 determined empirically by examining 64-bit ELF files produced by
19506 the SGI toolchain on an IRIX 6.5 machine.
19507
19508 - Kevin, July 16, 2002
19509 ] */
19510
19511 static LONGEST
19512 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19513 {
19514 LONGEST length = bfd_get_32 (abfd, buf);
19515
19516 if (length == 0xffffffff)
19517 {
19518 length = bfd_get_64 (abfd, buf + 4);
19519 *bytes_read = 12;
19520 }
19521 else if (length == 0)
19522 {
19523 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19524 length = bfd_get_64 (abfd, buf);
19525 *bytes_read = 8;
19526 }
19527 else
19528 {
19529 *bytes_read = 4;
19530 }
19531
19532 return length;
19533 }
19534
19535 /* Cover function for read_initial_length.
19536 Returns the length of the object at BUF, and stores the size of the
19537 initial length in *BYTES_READ and stores the size that offsets will be in
19538 *OFFSET_SIZE.
19539 If the initial length size is not equivalent to that specified in
19540 CU_HEADER then issue a complaint.
19541 This is useful when reading non-comp-unit headers. */
19542
19543 static LONGEST
19544 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19545 const struct comp_unit_head *cu_header,
19546 unsigned int *bytes_read,
19547 unsigned int *offset_size)
19548 {
19549 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19550
19551 gdb_assert (cu_header->initial_length_size == 4
19552 || cu_header->initial_length_size == 8
19553 || cu_header->initial_length_size == 12);
19554
19555 if (cu_header->initial_length_size != *bytes_read)
19556 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19557
19558 *offset_size = (*bytes_read == 4) ? 4 : 8;
19559 return length;
19560 }
19561
19562 /* Read an offset from the data stream. The size of the offset is
19563 given by cu_header->offset_size. */
19564
19565 static LONGEST
19566 read_offset (bfd *abfd, const gdb_byte *buf,
19567 const struct comp_unit_head *cu_header,
19568 unsigned int *bytes_read)
19569 {
19570 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19571
19572 *bytes_read = cu_header->offset_size;
19573 return offset;
19574 }
19575
19576 /* Read an offset from the data stream. */
19577
19578 static LONGEST
19579 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19580 {
19581 LONGEST retval = 0;
19582
19583 switch (offset_size)
19584 {
19585 case 4:
19586 retval = bfd_get_32 (abfd, buf);
19587 break;
19588 case 8:
19589 retval = bfd_get_64 (abfd, buf);
19590 break;
19591 default:
19592 internal_error (__FILE__, __LINE__,
19593 _("read_offset_1: bad switch [in module %s]"),
19594 bfd_get_filename (abfd));
19595 }
19596
19597 return retval;
19598 }
19599
19600 static const gdb_byte *
19601 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19602 {
19603 /* If the size of a host char is 8 bits, we can return a pointer
19604 to the buffer, otherwise we have to copy the data to a buffer
19605 allocated on the temporary obstack. */
19606 gdb_assert (HOST_CHAR_BIT == 8);
19607 return buf;
19608 }
19609
19610 static const char *
19611 read_direct_string (bfd *abfd, const gdb_byte *buf,
19612 unsigned int *bytes_read_ptr)
19613 {
19614 /* If the size of a host char is 8 bits, we can return a pointer
19615 to the string, otherwise we have to copy the string to a buffer
19616 allocated on the temporary obstack. */
19617 gdb_assert (HOST_CHAR_BIT == 8);
19618 if (*buf == '\0')
19619 {
19620 *bytes_read_ptr = 1;
19621 return NULL;
19622 }
19623 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19624 return (const char *) buf;
19625 }
19626
19627 /* Return pointer to string at section SECT offset STR_OFFSET with error
19628 reporting strings FORM_NAME and SECT_NAME. */
19629
19630 static const char *
19631 read_indirect_string_at_offset_from (struct objfile *objfile,
19632 bfd *abfd, LONGEST str_offset,
19633 struct dwarf2_section_info *sect,
19634 const char *form_name,
19635 const char *sect_name)
19636 {
19637 dwarf2_read_section (objfile, sect);
19638 if (sect->buffer == NULL)
19639 error (_("%s used without %s section [in module %s]"),
19640 form_name, sect_name, bfd_get_filename (abfd));
19641 if (str_offset >= sect->size)
19642 error (_("%s pointing outside of %s section [in module %s]"),
19643 form_name, sect_name, bfd_get_filename (abfd));
19644 gdb_assert (HOST_CHAR_BIT == 8);
19645 if (sect->buffer[str_offset] == '\0')
19646 return NULL;
19647 return (const char *) (sect->buffer + str_offset);
19648 }
19649
19650 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19651
19652 static const char *
19653 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19654 bfd *abfd, LONGEST str_offset)
19655 {
19656 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19657 abfd, str_offset,
19658 &dwarf2_per_objfile->str,
19659 "DW_FORM_strp", ".debug_str");
19660 }
19661
19662 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19663
19664 static const char *
19665 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19666 bfd *abfd, LONGEST str_offset)
19667 {
19668 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19669 abfd, str_offset,
19670 &dwarf2_per_objfile->line_str,
19671 "DW_FORM_line_strp",
19672 ".debug_line_str");
19673 }
19674
19675 /* Read a string at offset STR_OFFSET in the .debug_str section from
19676 the .dwz file DWZ. Throw an error if the offset is too large. If
19677 the string consists of a single NUL byte, return NULL; otherwise
19678 return a pointer to the string. */
19679
19680 static const char *
19681 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19682 LONGEST str_offset)
19683 {
19684 dwarf2_read_section (objfile, &dwz->str);
19685
19686 if (dwz->str.buffer == NULL)
19687 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19688 "section [in module %s]"),
19689 bfd_get_filename (dwz->dwz_bfd));
19690 if (str_offset >= dwz->str.size)
19691 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19692 ".debug_str section [in module %s]"),
19693 bfd_get_filename (dwz->dwz_bfd));
19694 gdb_assert (HOST_CHAR_BIT == 8);
19695 if (dwz->str.buffer[str_offset] == '\0')
19696 return NULL;
19697 return (const char *) (dwz->str.buffer + str_offset);
19698 }
19699
19700 /* Return pointer to string at .debug_str offset as read from BUF.
19701 BUF is assumed to be in a compilation unit described by CU_HEADER.
19702 Return *BYTES_READ_PTR count of bytes read from BUF. */
19703
19704 static const char *
19705 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19706 const gdb_byte *buf,
19707 const struct comp_unit_head *cu_header,
19708 unsigned int *bytes_read_ptr)
19709 {
19710 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19711
19712 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19713 }
19714
19715 /* Return pointer to string at .debug_line_str offset as read from BUF.
19716 BUF is assumed to be in a compilation unit described by CU_HEADER.
19717 Return *BYTES_READ_PTR count of bytes read from BUF. */
19718
19719 static const char *
19720 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19721 bfd *abfd, const gdb_byte *buf,
19722 const struct comp_unit_head *cu_header,
19723 unsigned int *bytes_read_ptr)
19724 {
19725 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19726
19727 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19728 str_offset);
19729 }
19730
19731 ULONGEST
19732 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19733 unsigned int *bytes_read_ptr)
19734 {
19735 ULONGEST result;
19736 unsigned int num_read;
19737 int shift;
19738 unsigned char byte;
19739
19740 result = 0;
19741 shift = 0;
19742 num_read = 0;
19743 while (1)
19744 {
19745 byte = bfd_get_8 (abfd, buf);
19746 buf++;
19747 num_read++;
19748 result |= ((ULONGEST) (byte & 127) << shift);
19749 if ((byte & 128) == 0)
19750 {
19751 break;
19752 }
19753 shift += 7;
19754 }
19755 *bytes_read_ptr = num_read;
19756 return result;
19757 }
19758
19759 static LONGEST
19760 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19761 unsigned int *bytes_read_ptr)
19762 {
19763 ULONGEST result;
19764 int shift, num_read;
19765 unsigned char byte;
19766
19767 result = 0;
19768 shift = 0;
19769 num_read = 0;
19770 while (1)
19771 {
19772 byte = bfd_get_8 (abfd, buf);
19773 buf++;
19774 num_read++;
19775 result |= ((ULONGEST) (byte & 127) << shift);
19776 shift += 7;
19777 if ((byte & 128) == 0)
19778 {
19779 break;
19780 }
19781 }
19782 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19783 result |= -(((ULONGEST) 1) << shift);
19784 *bytes_read_ptr = num_read;
19785 return result;
19786 }
19787
19788 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19789 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19790 ADDR_SIZE is the size of addresses from the CU header. */
19791
19792 static CORE_ADDR
19793 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19794 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19795 {
19796 struct objfile *objfile = dwarf2_per_objfile->objfile;
19797 bfd *abfd = objfile->obfd;
19798 const gdb_byte *info_ptr;
19799
19800 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19801 if (dwarf2_per_objfile->addr.buffer == NULL)
19802 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19803 objfile_name (objfile));
19804 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19805 error (_("DW_FORM_addr_index pointing outside of "
19806 ".debug_addr section [in module %s]"),
19807 objfile_name (objfile));
19808 info_ptr = (dwarf2_per_objfile->addr.buffer
19809 + addr_base + addr_index * addr_size);
19810 if (addr_size == 4)
19811 return bfd_get_32 (abfd, info_ptr);
19812 else
19813 return bfd_get_64 (abfd, info_ptr);
19814 }
19815
19816 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19817
19818 static CORE_ADDR
19819 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19820 {
19821 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19822 cu->addr_base, cu->header.addr_size);
19823 }
19824
19825 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19826
19827 static CORE_ADDR
19828 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19829 unsigned int *bytes_read)
19830 {
19831 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19832 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19833
19834 return read_addr_index (cu, addr_index);
19835 }
19836
19837 /* Data structure to pass results from dwarf2_read_addr_index_reader
19838 back to dwarf2_read_addr_index. */
19839
19840 struct dwarf2_read_addr_index_data
19841 {
19842 ULONGEST addr_base;
19843 int addr_size;
19844 };
19845
19846 /* die_reader_func for dwarf2_read_addr_index. */
19847
19848 static void
19849 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19850 const gdb_byte *info_ptr,
19851 struct die_info *comp_unit_die,
19852 int has_children,
19853 void *data)
19854 {
19855 struct dwarf2_cu *cu = reader->cu;
19856 struct dwarf2_read_addr_index_data *aidata =
19857 (struct dwarf2_read_addr_index_data *) data;
19858
19859 aidata->addr_base = cu->addr_base;
19860 aidata->addr_size = cu->header.addr_size;
19861 }
19862
19863 /* Given an index in .debug_addr, fetch the value.
19864 NOTE: This can be called during dwarf expression evaluation,
19865 long after the debug information has been read, and thus per_cu->cu
19866 may no longer exist. */
19867
19868 CORE_ADDR
19869 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19870 unsigned int addr_index)
19871 {
19872 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19873 struct dwarf2_cu *cu = per_cu->cu;
19874 ULONGEST addr_base;
19875 int addr_size;
19876
19877 /* We need addr_base and addr_size.
19878 If we don't have PER_CU->cu, we have to get it.
19879 Nasty, but the alternative is storing the needed info in PER_CU,
19880 which at this point doesn't seem justified: it's not clear how frequently
19881 it would get used and it would increase the size of every PER_CU.
19882 Entry points like dwarf2_per_cu_addr_size do a similar thing
19883 so we're not in uncharted territory here.
19884 Alas we need to be a bit more complicated as addr_base is contained
19885 in the DIE.
19886
19887 We don't need to read the entire CU(/TU).
19888 We just need the header and top level die.
19889
19890 IWBN to use the aging mechanism to let us lazily later discard the CU.
19891 For now we skip this optimization. */
19892
19893 if (cu != NULL)
19894 {
19895 addr_base = cu->addr_base;
19896 addr_size = cu->header.addr_size;
19897 }
19898 else
19899 {
19900 struct dwarf2_read_addr_index_data aidata;
19901
19902 /* Note: We can't use init_cutu_and_read_dies_simple here,
19903 we need addr_base. */
19904 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19905 dwarf2_read_addr_index_reader, &aidata);
19906 addr_base = aidata.addr_base;
19907 addr_size = aidata.addr_size;
19908 }
19909
19910 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19911 addr_size);
19912 }
19913
19914 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19915 This is only used by the Fission support. */
19916
19917 static const char *
19918 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19919 {
19920 struct dwarf2_cu *cu = reader->cu;
19921 struct dwarf2_per_objfile *dwarf2_per_objfile
19922 = cu->per_cu->dwarf2_per_objfile;
19923 struct objfile *objfile = dwarf2_per_objfile->objfile;
19924 const char *objf_name = objfile_name (objfile);
19925 bfd *abfd = objfile->obfd;
19926 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19927 struct dwarf2_section_info *str_offsets_section =
19928 &reader->dwo_file->sections.str_offsets;
19929 const gdb_byte *info_ptr;
19930 ULONGEST str_offset;
19931 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19932
19933 dwarf2_read_section (objfile, str_section);
19934 dwarf2_read_section (objfile, str_offsets_section);
19935 if (str_section->buffer == NULL)
19936 error (_("%s used without .debug_str.dwo section"
19937 " in CU at offset %s [in module %s]"),
19938 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19939 if (str_offsets_section->buffer == NULL)
19940 error (_("%s used without .debug_str_offsets.dwo section"
19941 " in CU at offset %s [in module %s]"),
19942 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19943 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19944 error (_("%s pointing outside of .debug_str_offsets.dwo"
19945 " section in CU at offset %s [in module %s]"),
19946 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19947 info_ptr = (str_offsets_section->buffer
19948 + str_index * cu->header.offset_size);
19949 if (cu->header.offset_size == 4)
19950 str_offset = bfd_get_32 (abfd, info_ptr);
19951 else
19952 str_offset = bfd_get_64 (abfd, info_ptr);
19953 if (str_offset >= str_section->size)
19954 error (_("Offset from %s pointing outside of"
19955 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19956 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19957 return (const char *) (str_section->buffer + str_offset);
19958 }
19959
19960 /* Return the length of an LEB128 number in BUF. */
19961
19962 static int
19963 leb128_size (const gdb_byte *buf)
19964 {
19965 const gdb_byte *begin = buf;
19966 gdb_byte byte;
19967
19968 while (1)
19969 {
19970 byte = *buf++;
19971 if ((byte & 128) == 0)
19972 return buf - begin;
19973 }
19974 }
19975
19976 static void
19977 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19978 {
19979 switch (lang)
19980 {
19981 case DW_LANG_C89:
19982 case DW_LANG_C99:
19983 case DW_LANG_C11:
19984 case DW_LANG_C:
19985 case DW_LANG_UPC:
19986 cu->language = language_c;
19987 break;
19988 case DW_LANG_Java:
19989 case DW_LANG_C_plus_plus:
19990 case DW_LANG_C_plus_plus_11:
19991 case DW_LANG_C_plus_plus_14:
19992 cu->language = language_cplus;
19993 break;
19994 case DW_LANG_D:
19995 cu->language = language_d;
19996 break;
19997 case DW_LANG_Fortran77:
19998 case DW_LANG_Fortran90:
19999 case DW_LANG_Fortran95:
20000 case DW_LANG_Fortran03:
20001 case DW_LANG_Fortran08:
20002 cu->language = language_fortran;
20003 break;
20004 case DW_LANG_Go:
20005 cu->language = language_go;
20006 break;
20007 case DW_LANG_Mips_Assembler:
20008 cu->language = language_asm;
20009 break;
20010 case DW_LANG_Ada83:
20011 case DW_LANG_Ada95:
20012 cu->language = language_ada;
20013 break;
20014 case DW_LANG_Modula2:
20015 cu->language = language_m2;
20016 break;
20017 case DW_LANG_Pascal83:
20018 cu->language = language_pascal;
20019 break;
20020 case DW_LANG_ObjC:
20021 cu->language = language_objc;
20022 break;
20023 case DW_LANG_Rust:
20024 case DW_LANG_Rust_old:
20025 cu->language = language_rust;
20026 break;
20027 case DW_LANG_Cobol74:
20028 case DW_LANG_Cobol85:
20029 default:
20030 cu->language = language_minimal;
20031 break;
20032 }
20033 cu->language_defn = language_def (cu->language);
20034 }
20035
20036 /* Return the named attribute or NULL if not there. */
20037
20038 static struct attribute *
20039 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20040 {
20041 for (;;)
20042 {
20043 unsigned int i;
20044 struct attribute *spec = NULL;
20045
20046 for (i = 0; i < die->num_attrs; ++i)
20047 {
20048 if (die->attrs[i].name == name)
20049 return &die->attrs[i];
20050 if (die->attrs[i].name == DW_AT_specification
20051 || die->attrs[i].name == DW_AT_abstract_origin)
20052 spec = &die->attrs[i];
20053 }
20054
20055 if (!spec)
20056 break;
20057
20058 die = follow_die_ref (die, spec, &cu);
20059 }
20060
20061 return NULL;
20062 }
20063
20064 /* Return the named attribute or NULL if not there,
20065 but do not follow DW_AT_specification, etc.
20066 This is for use in contexts where we're reading .debug_types dies.
20067 Following DW_AT_specification, DW_AT_abstract_origin will take us
20068 back up the chain, and we want to go down. */
20069
20070 static struct attribute *
20071 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20072 {
20073 unsigned int i;
20074
20075 for (i = 0; i < die->num_attrs; ++i)
20076 if (die->attrs[i].name == name)
20077 return &die->attrs[i];
20078
20079 return NULL;
20080 }
20081
20082 /* Return the string associated with a string-typed attribute, or NULL if it
20083 is either not found or is of an incorrect type. */
20084
20085 static const char *
20086 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20087 {
20088 struct attribute *attr;
20089 const char *str = NULL;
20090
20091 attr = dwarf2_attr (die, name, cu);
20092
20093 if (attr != NULL)
20094 {
20095 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20096 || attr->form == DW_FORM_string
20097 || attr->form == DW_FORM_strx
20098 || attr->form == DW_FORM_GNU_str_index
20099 || attr->form == DW_FORM_GNU_strp_alt)
20100 str = DW_STRING (attr);
20101 else
20102 complaint (_("string type expected for attribute %s for "
20103 "DIE at %s in module %s"),
20104 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20105 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20106 }
20107
20108 return str;
20109 }
20110
20111 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20112 and holds a non-zero value. This function should only be used for
20113 DW_FORM_flag or DW_FORM_flag_present attributes. */
20114
20115 static int
20116 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20117 {
20118 struct attribute *attr = dwarf2_attr (die, name, cu);
20119
20120 return (attr && DW_UNSND (attr));
20121 }
20122
20123 static int
20124 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20125 {
20126 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20127 which value is non-zero. However, we have to be careful with
20128 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20129 (via dwarf2_flag_true_p) follows this attribute. So we may
20130 end up accidently finding a declaration attribute that belongs
20131 to a different DIE referenced by the specification attribute,
20132 even though the given DIE does not have a declaration attribute. */
20133 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20134 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20135 }
20136
20137 /* Return the die giving the specification for DIE, if there is
20138 one. *SPEC_CU is the CU containing DIE on input, and the CU
20139 containing the return value on output. If there is no
20140 specification, but there is an abstract origin, that is
20141 returned. */
20142
20143 static struct die_info *
20144 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20145 {
20146 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20147 *spec_cu);
20148
20149 if (spec_attr == NULL)
20150 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20151
20152 if (spec_attr == NULL)
20153 return NULL;
20154 else
20155 return follow_die_ref (die, spec_attr, spec_cu);
20156 }
20157
20158 /* Stub for free_line_header to match void * callback types. */
20159
20160 static void
20161 free_line_header_voidp (void *arg)
20162 {
20163 struct line_header *lh = (struct line_header *) arg;
20164
20165 delete lh;
20166 }
20167
20168 void
20169 line_header::add_include_dir (const char *include_dir)
20170 {
20171 if (dwarf_line_debug >= 2)
20172 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20173 include_dirs.size () + 1, include_dir);
20174
20175 include_dirs.push_back (include_dir);
20176 }
20177
20178 void
20179 line_header::add_file_name (const char *name,
20180 dir_index d_index,
20181 unsigned int mod_time,
20182 unsigned int length)
20183 {
20184 if (dwarf_line_debug >= 2)
20185 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20186 (unsigned) file_names.size () + 1, name);
20187
20188 file_names.emplace_back (name, d_index, mod_time, length);
20189 }
20190
20191 /* A convenience function to find the proper .debug_line section for a CU. */
20192
20193 static struct dwarf2_section_info *
20194 get_debug_line_section (struct dwarf2_cu *cu)
20195 {
20196 struct dwarf2_section_info *section;
20197 struct dwarf2_per_objfile *dwarf2_per_objfile
20198 = cu->per_cu->dwarf2_per_objfile;
20199
20200 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20201 DWO file. */
20202 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20203 section = &cu->dwo_unit->dwo_file->sections.line;
20204 else if (cu->per_cu->is_dwz)
20205 {
20206 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20207
20208 section = &dwz->line;
20209 }
20210 else
20211 section = &dwarf2_per_objfile->line;
20212
20213 return section;
20214 }
20215
20216 /* Read directory or file name entry format, starting with byte of
20217 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20218 entries count and the entries themselves in the described entry
20219 format. */
20220
20221 static void
20222 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20223 bfd *abfd, const gdb_byte **bufp,
20224 struct line_header *lh,
20225 const struct comp_unit_head *cu_header,
20226 void (*callback) (struct line_header *lh,
20227 const char *name,
20228 dir_index d_index,
20229 unsigned int mod_time,
20230 unsigned int length))
20231 {
20232 gdb_byte format_count, formati;
20233 ULONGEST data_count, datai;
20234 const gdb_byte *buf = *bufp;
20235 const gdb_byte *format_header_data;
20236 unsigned int bytes_read;
20237
20238 format_count = read_1_byte (abfd, buf);
20239 buf += 1;
20240 format_header_data = buf;
20241 for (formati = 0; formati < format_count; formati++)
20242 {
20243 read_unsigned_leb128 (abfd, buf, &bytes_read);
20244 buf += bytes_read;
20245 read_unsigned_leb128 (abfd, buf, &bytes_read);
20246 buf += bytes_read;
20247 }
20248
20249 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20250 buf += bytes_read;
20251 for (datai = 0; datai < data_count; datai++)
20252 {
20253 const gdb_byte *format = format_header_data;
20254 struct file_entry fe;
20255
20256 for (formati = 0; formati < format_count; formati++)
20257 {
20258 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20259 format += bytes_read;
20260
20261 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20262 format += bytes_read;
20263
20264 gdb::optional<const char *> string;
20265 gdb::optional<unsigned int> uint;
20266
20267 switch (form)
20268 {
20269 case DW_FORM_string:
20270 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20271 buf += bytes_read;
20272 break;
20273
20274 case DW_FORM_line_strp:
20275 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20276 abfd, buf,
20277 cu_header,
20278 &bytes_read));
20279 buf += bytes_read;
20280 break;
20281
20282 case DW_FORM_data1:
20283 uint.emplace (read_1_byte (abfd, buf));
20284 buf += 1;
20285 break;
20286
20287 case DW_FORM_data2:
20288 uint.emplace (read_2_bytes (abfd, buf));
20289 buf += 2;
20290 break;
20291
20292 case DW_FORM_data4:
20293 uint.emplace (read_4_bytes (abfd, buf));
20294 buf += 4;
20295 break;
20296
20297 case DW_FORM_data8:
20298 uint.emplace (read_8_bytes (abfd, buf));
20299 buf += 8;
20300 break;
20301
20302 case DW_FORM_udata:
20303 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20304 buf += bytes_read;
20305 break;
20306
20307 case DW_FORM_block:
20308 /* It is valid only for DW_LNCT_timestamp which is ignored by
20309 current GDB. */
20310 break;
20311 }
20312
20313 switch (content_type)
20314 {
20315 case DW_LNCT_path:
20316 if (string.has_value ())
20317 fe.name = *string;
20318 break;
20319 case DW_LNCT_directory_index:
20320 if (uint.has_value ())
20321 fe.d_index = (dir_index) *uint;
20322 break;
20323 case DW_LNCT_timestamp:
20324 if (uint.has_value ())
20325 fe.mod_time = *uint;
20326 break;
20327 case DW_LNCT_size:
20328 if (uint.has_value ())
20329 fe.length = *uint;
20330 break;
20331 case DW_LNCT_MD5:
20332 break;
20333 default:
20334 complaint (_("Unknown format content type %s"),
20335 pulongest (content_type));
20336 }
20337 }
20338
20339 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20340 }
20341
20342 *bufp = buf;
20343 }
20344
20345 /* Read the statement program header starting at OFFSET in
20346 .debug_line, or .debug_line.dwo. Return a pointer
20347 to a struct line_header, allocated using xmalloc.
20348 Returns NULL if there is a problem reading the header, e.g., if it
20349 has a version we don't understand.
20350
20351 NOTE: the strings in the include directory and file name tables of
20352 the returned object point into the dwarf line section buffer,
20353 and must not be freed. */
20354
20355 static line_header_up
20356 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20357 {
20358 const gdb_byte *line_ptr;
20359 unsigned int bytes_read, offset_size;
20360 int i;
20361 const char *cur_dir, *cur_file;
20362 struct dwarf2_section_info *section;
20363 bfd *abfd;
20364 struct dwarf2_per_objfile *dwarf2_per_objfile
20365 = cu->per_cu->dwarf2_per_objfile;
20366
20367 section = get_debug_line_section (cu);
20368 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20369 if (section->buffer == NULL)
20370 {
20371 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20372 complaint (_("missing .debug_line.dwo section"));
20373 else
20374 complaint (_("missing .debug_line section"));
20375 return 0;
20376 }
20377
20378 /* We can't do this until we know the section is non-empty.
20379 Only then do we know we have such a section. */
20380 abfd = get_section_bfd_owner (section);
20381
20382 /* Make sure that at least there's room for the total_length field.
20383 That could be 12 bytes long, but we're just going to fudge that. */
20384 if (to_underlying (sect_off) + 4 >= section->size)
20385 {
20386 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20387 return 0;
20388 }
20389
20390 line_header_up lh (new line_header ());
20391
20392 lh->sect_off = sect_off;
20393 lh->offset_in_dwz = cu->per_cu->is_dwz;
20394
20395 line_ptr = section->buffer + to_underlying (sect_off);
20396
20397 /* Read in the header. */
20398 lh->total_length =
20399 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20400 &bytes_read, &offset_size);
20401 line_ptr += bytes_read;
20402 if (line_ptr + lh->total_length > (section->buffer + section->size))
20403 {
20404 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20405 return 0;
20406 }
20407 lh->statement_program_end = line_ptr + lh->total_length;
20408 lh->version = read_2_bytes (abfd, line_ptr);
20409 line_ptr += 2;
20410 if (lh->version > 5)
20411 {
20412 /* This is a version we don't understand. The format could have
20413 changed in ways we don't handle properly so just punt. */
20414 complaint (_("unsupported version in .debug_line section"));
20415 return NULL;
20416 }
20417 if (lh->version >= 5)
20418 {
20419 gdb_byte segment_selector_size;
20420
20421 /* Skip address size. */
20422 read_1_byte (abfd, line_ptr);
20423 line_ptr += 1;
20424
20425 segment_selector_size = read_1_byte (abfd, line_ptr);
20426 line_ptr += 1;
20427 if (segment_selector_size != 0)
20428 {
20429 complaint (_("unsupported segment selector size %u "
20430 "in .debug_line section"),
20431 segment_selector_size);
20432 return NULL;
20433 }
20434 }
20435 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20436 line_ptr += offset_size;
20437 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20438 line_ptr += 1;
20439 if (lh->version >= 4)
20440 {
20441 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20442 line_ptr += 1;
20443 }
20444 else
20445 lh->maximum_ops_per_instruction = 1;
20446
20447 if (lh->maximum_ops_per_instruction == 0)
20448 {
20449 lh->maximum_ops_per_instruction = 1;
20450 complaint (_("invalid maximum_ops_per_instruction "
20451 "in `.debug_line' section"));
20452 }
20453
20454 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20455 line_ptr += 1;
20456 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20457 line_ptr += 1;
20458 lh->line_range = read_1_byte (abfd, line_ptr);
20459 line_ptr += 1;
20460 lh->opcode_base = read_1_byte (abfd, line_ptr);
20461 line_ptr += 1;
20462 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20463
20464 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20465 for (i = 1; i < lh->opcode_base; ++i)
20466 {
20467 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20468 line_ptr += 1;
20469 }
20470
20471 if (lh->version >= 5)
20472 {
20473 /* Read directory table. */
20474 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20475 &cu->header,
20476 [] (struct line_header *header, const char *name,
20477 dir_index d_index, unsigned int mod_time,
20478 unsigned int length)
20479 {
20480 header->add_include_dir (name);
20481 });
20482
20483 /* Read file name table. */
20484 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20485 &cu->header,
20486 [] (struct line_header *header, const char *name,
20487 dir_index d_index, unsigned int mod_time,
20488 unsigned int length)
20489 {
20490 header->add_file_name (name, d_index, mod_time, length);
20491 });
20492 }
20493 else
20494 {
20495 /* Read directory table. */
20496 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20497 {
20498 line_ptr += bytes_read;
20499 lh->add_include_dir (cur_dir);
20500 }
20501 line_ptr += bytes_read;
20502
20503 /* Read file name table. */
20504 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20505 {
20506 unsigned int mod_time, length;
20507 dir_index d_index;
20508
20509 line_ptr += bytes_read;
20510 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20511 line_ptr += bytes_read;
20512 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20513 line_ptr += bytes_read;
20514 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20515 line_ptr += bytes_read;
20516
20517 lh->add_file_name (cur_file, d_index, mod_time, length);
20518 }
20519 line_ptr += bytes_read;
20520 }
20521 lh->statement_program_start = line_ptr;
20522
20523 if (line_ptr > (section->buffer + section->size))
20524 complaint (_("line number info header doesn't "
20525 "fit in `.debug_line' section"));
20526
20527 return lh;
20528 }
20529
20530 /* Subroutine of dwarf_decode_lines to simplify it.
20531 Return the file name of the psymtab for included file FILE_INDEX
20532 in line header LH of PST.
20533 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20534 If space for the result is malloc'd, *NAME_HOLDER will be set.
20535 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20536
20537 static const char *
20538 psymtab_include_file_name (const struct line_header *lh, int file_index,
20539 const struct partial_symtab *pst,
20540 const char *comp_dir,
20541 gdb::unique_xmalloc_ptr<char> *name_holder)
20542 {
20543 const file_entry &fe = lh->file_names[file_index];
20544 const char *include_name = fe.name;
20545 const char *include_name_to_compare = include_name;
20546 const char *pst_filename;
20547 int file_is_pst;
20548
20549 const char *dir_name = fe.include_dir (lh);
20550
20551 gdb::unique_xmalloc_ptr<char> hold_compare;
20552 if (!IS_ABSOLUTE_PATH (include_name)
20553 && (dir_name != NULL || comp_dir != NULL))
20554 {
20555 /* Avoid creating a duplicate psymtab for PST.
20556 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20557 Before we do the comparison, however, we need to account
20558 for DIR_NAME and COMP_DIR.
20559 First prepend dir_name (if non-NULL). If we still don't
20560 have an absolute path prepend comp_dir (if non-NULL).
20561 However, the directory we record in the include-file's
20562 psymtab does not contain COMP_DIR (to match the
20563 corresponding symtab(s)).
20564
20565 Example:
20566
20567 bash$ cd /tmp
20568 bash$ gcc -g ./hello.c
20569 include_name = "hello.c"
20570 dir_name = "."
20571 DW_AT_comp_dir = comp_dir = "/tmp"
20572 DW_AT_name = "./hello.c"
20573
20574 */
20575
20576 if (dir_name != NULL)
20577 {
20578 name_holder->reset (concat (dir_name, SLASH_STRING,
20579 include_name, (char *) NULL));
20580 include_name = name_holder->get ();
20581 include_name_to_compare = include_name;
20582 }
20583 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20584 {
20585 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20586 include_name, (char *) NULL));
20587 include_name_to_compare = hold_compare.get ();
20588 }
20589 }
20590
20591 pst_filename = pst->filename;
20592 gdb::unique_xmalloc_ptr<char> copied_name;
20593 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20594 {
20595 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20596 pst_filename, (char *) NULL));
20597 pst_filename = copied_name.get ();
20598 }
20599
20600 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20601
20602 if (file_is_pst)
20603 return NULL;
20604 return include_name;
20605 }
20606
20607 /* State machine to track the state of the line number program. */
20608
20609 class lnp_state_machine
20610 {
20611 public:
20612 /* Initialize a machine state for the start of a line number
20613 program. */
20614 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20615 bool record_lines_p);
20616
20617 file_entry *current_file ()
20618 {
20619 /* lh->file_names is 0-based, but the file name numbers in the
20620 statement program are 1-based. */
20621 return m_line_header->file_name_at (m_file);
20622 }
20623
20624 /* Record the line in the state machine. END_SEQUENCE is true if
20625 we're processing the end of a sequence. */
20626 void record_line (bool end_sequence);
20627
20628 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20629 nop-out rest of the lines in this sequence. */
20630 void check_line_address (struct dwarf2_cu *cu,
20631 const gdb_byte *line_ptr,
20632 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20633
20634 void handle_set_discriminator (unsigned int discriminator)
20635 {
20636 m_discriminator = discriminator;
20637 m_line_has_non_zero_discriminator |= discriminator != 0;
20638 }
20639
20640 /* Handle DW_LNE_set_address. */
20641 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20642 {
20643 m_op_index = 0;
20644 address += baseaddr;
20645 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20646 }
20647
20648 /* Handle DW_LNS_advance_pc. */
20649 void handle_advance_pc (CORE_ADDR adjust);
20650
20651 /* Handle a special opcode. */
20652 void handle_special_opcode (unsigned char op_code);
20653
20654 /* Handle DW_LNS_advance_line. */
20655 void handle_advance_line (int line_delta)
20656 {
20657 advance_line (line_delta);
20658 }
20659
20660 /* Handle DW_LNS_set_file. */
20661 void handle_set_file (file_name_index file);
20662
20663 /* Handle DW_LNS_negate_stmt. */
20664 void handle_negate_stmt ()
20665 {
20666 m_is_stmt = !m_is_stmt;
20667 }
20668
20669 /* Handle DW_LNS_const_add_pc. */
20670 void handle_const_add_pc ();
20671
20672 /* Handle DW_LNS_fixed_advance_pc. */
20673 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20674 {
20675 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20676 m_op_index = 0;
20677 }
20678
20679 /* Handle DW_LNS_copy. */
20680 void handle_copy ()
20681 {
20682 record_line (false);
20683 m_discriminator = 0;
20684 }
20685
20686 /* Handle DW_LNE_end_sequence. */
20687 void handle_end_sequence ()
20688 {
20689 m_currently_recording_lines = true;
20690 }
20691
20692 private:
20693 /* Advance the line by LINE_DELTA. */
20694 void advance_line (int line_delta)
20695 {
20696 m_line += line_delta;
20697
20698 if (line_delta != 0)
20699 m_line_has_non_zero_discriminator = m_discriminator != 0;
20700 }
20701
20702 struct dwarf2_cu *m_cu;
20703
20704 gdbarch *m_gdbarch;
20705
20706 /* True if we're recording lines.
20707 Otherwise we're building partial symtabs and are just interested in
20708 finding include files mentioned by the line number program. */
20709 bool m_record_lines_p;
20710
20711 /* The line number header. */
20712 line_header *m_line_header;
20713
20714 /* These are part of the standard DWARF line number state machine,
20715 and initialized according to the DWARF spec. */
20716
20717 unsigned char m_op_index = 0;
20718 /* The line table index (1-based) of the current file. */
20719 file_name_index m_file = (file_name_index) 1;
20720 unsigned int m_line = 1;
20721
20722 /* These are initialized in the constructor. */
20723
20724 CORE_ADDR m_address;
20725 bool m_is_stmt;
20726 unsigned int m_discriminator;
20727
20728 /* Additional bits of state we need to track. */
20729
20730 /* The last file that we called dwarf2_start_subfile for.
20731 This is only used for TLLs. */
20732 unsigned int m_last_file = 0;
20733 /* The last file a line number was recorded for. */
20734 struct subfile *m_last_subfile = NULL;
20735
20736 /* When true, record the lines we decode. */
20737 bool m_currently_recording_lines = false;
20738
20739 /* The last line number that was recorded, used to coalesce
20740 consecutive entries for the same line. This can happen, for
20741 example, when discriminators are present. PR 17276. */
20742 unsigned int m_last_line = 0;
20743 bool m_line_has_non_zero_discriminator = false;
20744 };
20745
20746 void
20747 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20748 {
20749 CORE_ADDR addr_adj = (((m_op_index + adjust)
20750 / m_line_header->maximum_ops_per_instruction)
20751 * m_line_header->minimum_instruction_length);
20752 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20753 m_op_index = ((m_op_index + adjust)
20754 % m_line_header->maximum_ops_per_instruction);
20755 }
20756
20757 void
20758 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20759 {
20760 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20761 CORE_ADDR addr_adj = (((m_op_index
20762 + (adj_opcode / m_line_header->line_range))
20763 / m_line_header->maximum_ops_per_instruction)
20764 * m_line_header->minimum_instruction_length);
20765 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20766 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20767 % m_line_header->maximum_ops_per_instruction);
20768
20769 int line_delta = (m_line_header->line_base
20770 + (adj_opcode % m_line_header->line_range));
20771 advance_line (line_delta);
20772 record_line (false);
20773 m_discriminator = 0;
20774 }
20775
20776 void
20777 lnp_state_machine::handle_set_file (file_name_index file)
20778 {
20779 m_file = file;
20780
20781 const file_entry *fe = current_file ();
20782 if (fe == NULL)
20783 dwarf2_debug_line_missing_file_complaint ();
20784 else if (m_record_lines_p)
20785 {
20786 const char *dir = fe->include_dir (m_line_header);
20787
20788 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20789 m_line_has_non_zero_discriminator = m_discriminator != 0;
20790 dwarf2_start_subfile (m_cu, fe->name, dir);
20791 }
20792 }
20793
20794 void
20795 lnp_state_machine::handle_const_add_pc ()
20796 {
20797 CORE_ADDR adjust
20798 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20799
20800 CORE_ADDR addr_adj
20801 = (((m_op_index + adjust)
20802 / m_line_header->maximum_ops_per_instruction)
20803 * m_line_header->minimum_instruction_length);
20804
20805 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20806 m_op_index = ((m_op_index + adjust)
20807 % m_line_header->maximum_ops_per_instruction);
20808 }
20809
20810 /* Return non-zero if we should add LINE to the line number table.
20811 LINE is the line to add, LAST_LINE is the last line that was added,
20812 LAST_SUBFILE is the subfile for LAST_LINE.
20813 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20814 had a non-zero discriminator.
20815
20816 We have to be careful in the presence of discriminators.
20817 E.g., for this line:
20818
20819 for (i = 0; i < 100000; i++);
20820
20821 clang can emit four line number entries for that one line,
20822 each with a different discriminator.
20823 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20824
20825 However, we want gdb to coalesce all four entries into one.
20826 Otherwise the user could stepi into the middle of the line and
20827 gdb would get confused about whether the pc really was in the
20828 middle of the line.
20829
20830 Things are further complicated by the fact that two consecutive
20831 line number entries for the same line is a heuristic used by gcc
20832 to denote the end of the prologue. So we can't just discard duplicate
20833 entries, we have to be selective about it. The heuristic we use is
20834 that we only collapse consecutive entries for the same line if at least
20835 one of those entries has a non-zero discriminator. PR 17276.
20836
20837 Note: Addresses in the line number state machine can never go backwards
20838 within one sequence, thus this coalescing is ok. */
20839
20840 static int
20841 dwarf_record_line_p (struct dwarf2_cu *cu,
20842 unsigned int line, unsigned int last_line,
20843 int line_has_non_zero_discriminator,
20844 struct subfile *last_subfile)
20845 {
20846 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20847 return 1;
20848 if (line != last_line)
20849 return 1;
20850 /* Same line for the same file that we've seen already.
20851 As a last check, for pr 17276, only record the line if the line
20852 has never had a non-zero discriminator. */
20853 if (!line_has_non_zero_discriminator)
20854 return 1;
20855 return 0;
20856 }
20857
20858 /* Use the CU's builder to record line number LINE beginning at
20859 address ADDRESS in the line table of subfile SUBFILE. */
20860
20861 static void
20862 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20863 unsigned int line, CORE_ADDR address,
20864 struct dwarf2_cu *cu)
20865 {
20866 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20867
20868 if (dwarf_line_debug)
20869 {
20870 fprintf_unfiltered (gdb_stdlog,
20871 "Recording line %u, file %s, address %s\n",
20872 line, lbasename (subfile->name),
20873 paddress (gdbarch, address));
20874 }
20875
20876 if (cu != nullptr)
20877 cu->get_builder ()->record_line (subfile, line, addr);
20878 }
20879
20880 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20881 Mark the end of a set of line number records.
20882 The arguments are the same as for dwarf_record_line_1.
20883 If SUBFILE is NULL the request is ignored. */
20884
20885 static void
20886 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20887 CORE_ADDR address, struct dwarf2_cu *cu)
20888 {
20889 if (subfile == NULL)
20890 return;
20891
20892 if (dwarf_line_debug)
20893 {
20894 fprintf_unfiltered (gdb_stdlog,
20895 "Finishing current line, file %s, address %s\n",
20896 lbasename (subfile->name),
20897 paddress (gdbarch, address));
20898 }
20899
20900 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20901 }
20902
20903 void
20904 lnp_state_machine::record_line (bool end_sequence)
20905 {
20906 if (dwarf_line_debug)
20907 {
20908 fprintf_unfiltered (gdb_stdlog,
20909 "Processing actual line %u: file %u,"
20910 " address %s, is_stmt %u, discrim %u\n",
20911 m_line, to_underlying (m_file),
20912 paddress (m_gdbarch, m_address),
20913 m_is_stmt, m_discriminator);
20914 }
20915
20916 file_entry *fe = current_file ();
20917
20918 if (fe == NULL)
20919 dwarf2_debug_line_missing_file_complaint ();
20920 /* For now we ignore lines not starting on an instruction boundary.
20921 But not when processing end_sequence for compatibility with the
20922 previous version of the code. */
20923 else if (m_op_index == 0 || end_sequence)
20924 {
20925 fe->included_p = 1;
20926 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20927 {
20928 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20929 || end_sequence)
20930 {
20931 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20932 m_currently_recording_lines ? m_cu : nullptr);
20933 }
20934
20935 if (!end_sequence)
20936 {
20937 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20938 m_line_has_non_zero_discriminator,
20939 m_last_subfile))
20940 {
20941 buildsym_compunit *builder = m_cu->get_builder ();
20942 dwarf_record_line_1 (m_gdbarch,
20943 builder->get_current_subfile (),
20944 m_line, m_address,
20945 m_currently_recording_lines ? m_cu : nullptr);
20946 }
20947 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20948 m_last_line = m_line;
20949 }
20950 }
20951 }
20952 }
20953
20954 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20955 line_header *lh, bool record_lines_p)
20956 {
20957 m_cu = cu;
20958 m_gdbarch = arch;
20959 m_record_lines_p = record_lines_p;
20960 m_line_header = lh;
20961
20962 m_currently_recording_lines = true;
20963
20964 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20965 was a line entry for it so that the backend has a chance to adjust it
20966 and also record it in case it needs it. This is currently used by MIPS
20967 code, cf. `mips_adjust_dwarf2_line'. */
20968 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20969 m_is_stmt = lh->default_is_stmt;
20970 m_discriminator = 0;
20971 }
20972
20973 void
20974 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20975 const gdb_byte *line_ptr,
20976 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20977 {
20978 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20979 the pc range of the CU. However, we restrict the test to only ADDRESS
20980 values of zero to preserve GDB's previous behaviour which is to handle
20981 the specific case of a function being GC'd by the linker. */
20982
20983 if (address == 0 && address < unrelocated_lowpc)
20984 {
20985 /* This line table is for a function which has been
20986 GCd by the linker. Ignore it. PR gdb/12528 */
20987
20988 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20989 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20990
20991 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20992 line_offset, objfile_name (objfile));
20993 m_currently_recording_lines = false;
20994 /* Note: m_currently_recording_lines is left as false until we see
20995 DW_LNE_end_sequence. */
20996 }
20997 }
20998
20999 /* Subroutine of dwarf_decode_lines to simplify it.
21000 Process the line number information in LH.
21001 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21002 program in order to set included_p for every referenced header. */
21003
21004 static void
21005 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21006 const int decode_for_pst_p, CORE_ADDR lowpc)
21007 {
21008 const gdb_byte *line_ptr, *extended_end;
21009 const gdb_byte *line_end;
21010 unsigned int bytes_read, extended_len;
21011 unsigned char op_code, extended_op;
21012 CORE_ADDR baseaddr;
21013 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21014 bfd *abfd = objfile->obfd;
21015 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21016 /* True if we're recording line info (as opposed to building partial
21017 symtabs and just interested in finding include files mentioned by
21018 the line number program). */
21019 bool record_lines_p = !decode_for_pst_p;
21020
21021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21022
21023 line_ptr = lh->statement_program_start;
21024 line_end = lh->statement_program_end;
21025
21026 /* Read the statement sequences until there's nothing left. */
21027 while (line_ptr < line_end)
21028 {
21029 /* The DWARF line number program state machine. Reset the state
21030 machine at the start of each sequence. */
21031 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21032 bool end_sequence = false;
21033
21034 if (record_lines_p)
21035 {
21036 /* Start a subfile for the current file of the state
21037 machine. */
21038 const file_entry *fe = state_machine.current_file ();
21039
21040 if (fe != NULL)
21041 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21042 }
21043
21044 /* Decode the table. */
21045 while (line_ptr < line_end && !end_sequence)
21046 {
21047 op_code = read_1_byte (abfd, line_ptr);
21048 line_ptr += 1;
21049
21050 if (op_code >= lh->opcode_base)
21051 {
21052 /* Special opcode. */
21053 state_machine.handle_special_opcode (op_code);
21054 }
21055 else switch (op_code)
21056 {
21057 case DW_LNS_extended_op:
21058 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21059 &bytes_read);
21060 line_ptr += bytes_read;
21061 extended_end = line_ptr + extended_len;
21062 extended_op = read_1_byte (abfd, line_ptr);
21063 line_ptr += 1;
21064 switch (extended_op)
21065 {
21066 case DW_LNE_end_sequence:
21067 state_machine.handle_end_sequence ();
21068 end_sequence = true;
21069 break;
21070 case DW_LNE_set_address:
21071 {
21072 CORE_ADDR address
21073 = read_address (abfd, line_ptr, cu, &bytes_read);
21074 line_ptr += bytes_read;
21075
21076 state_machine.check_line_address (cu, line_ptr,
21077 lowpc - baseaddr, address);
21078 state_machine.handle_set_address (baseaddr, address);
21079 }
21080 break;
21081 case DW_LNE_define_file:
21082 {
21083 const char *cur_file;
21084 unsigned int mod_time, length;
21085 dir_index dindex;
21086
21087 cur_file = read_direct_string (abfd, line_ptr,
21088 &bytes_read);
21089 line_ptr += bytes_read;
21090 dindex = (dir_index)
21091 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21092 line_ptr += bytes_read;
21093 mod_time =
21094 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21095 line_ptr += bytes_read;
21096 length =
21097 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21098 line_ptr += bytes_read;
21099 lh->add_file_name (cur_file, dindex, mod_time, length);
21100 }
21101 break;
21102 case DW_LNE_set_discriminator:
21103 {
21104 /* The discriminator is not interesting to the
21105 debugger; just ignore it. We still need to
21106 check its value though:
21107 if there are consecutive entries for the same
21108 (non-prologue) line we want to coalesce them.
21109 PR 17276. */
21110 unsigned int discr
21111 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21112 line_ptr += bytes_read;
21113
21114 state_machine.handle_set_discriminator (discr);
21115 }
21116 break;
21117 default:
21118 complaint (_("mangled .debug_line section"));
21119 return;
21120 }
21121 /* Make sure that we parsed the extended op correctly. If e.g.
21122 we expected a different address size than the producer used,
21123 we may have read the wrong number of bytes. */
21124 if (line_ptr != extended_end)
21125 {
21126 complaint (_("mangled .debug_line section"));
21127 return;
21128 }
21129 break;
21130 case DW_LNS_copy:
21131 state_machine.handle_copy ();
21132 break;
21133 case DW_LNS_advance_pc:
21134 {
21135 CORE_ADDR adjust
21136 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21137 line_ptr += bytes_read;
21138
21139 state_machine.handle_advance_pc (adjust);
21140 }
21141 break;
21142 case DW_LNS_advance_line:
21143 {
21144 int line_delta
21145 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21146 line_ptr += bytes_read;
21147
21148 state_machine.handle_advance_line (line_delta);
21149 }
21150 break;
21151 case DW_LNS_set_file:
21152 {
21153 file_name_index file
21154 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21155 &bytes_read);
21156 line_ptr += bytes_read;
21157
21158 state_machine.handle_set_file (file);
21159 }
21160 break;
21161 case DW_LNS_set_column:
21162 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21163 line_ptr += bytes_read;
21164 break;
21165 case DW_LNS_negate_stmt:
21166 state_machine.handle_negate_stmt ();
21167 break;
21168 case DW_LNS_set_basic_block:
21169 break;
21170 /* Add to the address register of the state machine the
21171 address increment value corresponding to special opcode
21172 255. I.e., this value is scaled by the minimum
21173 instruction length since special opcode 255 would have
21174 scaled the increment. */
21175 case DW_LNS_const_add_pc:
21176 state_machine.handle_const_add_pc ();
21177 break;
21178 case DW_LNS_fixed_advance_pc:
21179 {
21180 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21181 line_ptr += 2;
21182
21183 state_machine.handle_fixed_advance_pc (addr_adj);
21184 }
21185 break;
21186 default:
21187 {
21188 /* Unknown standard opcode, ignore it. */
21189 int i;
21190
21191 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21192 {
21193 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21194 line_ptr += bytes_read;
21195 }
21196 }
21197 }
21198 }
21199
21200 if (!end_sequence)
21201 dwarf2_debug_line_missing_end_sequence_complaint ();
21202
21203 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21204 in which case we still finish recording the last line). */
21205 state_machine.record_line (true);
21206 }
21207 }
21208
21209 /* Decode the Line Number Program (LNP) for the given line_header
21210 structure and CU. The actual information extracted and the type
21211 of structures created from the LNP depends on the value of PST.
21212
21213 1. If PST is NULL, then this procedure uses the data from the program
21214 to create all necessary symbol tables, and their linetables.
21215
21216 2. If PST is not NULL, this procedure reads the program to determine
21217 the list of files included by the unit represented by PST, and
21218 builds all the associated partial symbol tables.
21219
21220 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21221 It is used for relative paths in the line table.
21222 NOTE: When processing partial symtabs (pst != NULL),
21223 comp_dir == pst->dirname.
21224
21225 NOTE: It is important that psymtabs have the same file name (via strcmp)
21226 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21227 symtab we don't use it in the name of the psymtabs we create.
21228 E.g. expand_line_sal requires this when finding psymtabs to expand.
21229 A good testcase for this is mb-inline.exp.
21230
21231 LOWPC is the lowest address in CU (or 0 if not known).
21232
21233 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21234 for its PC<->lines mapping information. Otherwise only the filename
21235 table is read in. */
21236
21237 static void
21238 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21239 struct dwarf2_cu *cu, struct partial_symtab *pst,
21240 CORE_ADDR lowpc, int decode_mapping)
21241 {
21242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21243 const int decode_for_pst_p = (pst != NULL);
21244
21245 if (decode_mapping)
21246 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21247
21248 if (decode_for_pst_p)
21249 {
21250 int file_index;
21251
21252 /* Now that we're done scanning the Line Header Program, we can
21253 create the psymtab of each included file. */
21254 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21255 if (lh->file_names[file_index].included_p == 1)
21256 {
21257 gdb::unique_xmalloc_ptr<char> name_holder;
21258 const char *include_name =
21259 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21260 &name_holder);
21261 if (include_name != NULL)
21262 dwarf2_create_include_psymtab (include_name, pst, objfile);
21263 }
21264 }
21265 else
21266 {
21267 /* Make sure a symtab is created for every file, even files
21268 which contain only variables (i.e. no code with associated
21269 line numbers). */
21270 buildsym_compunit *builder = cu->get_builder ();
21271 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21272 int i;
21273
21274 for (i = 0; i < lh->file_names.size (); i++)
21275 {
21276 file_entry &fe = lh->file_names[i];
21277
21278 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21279
21280 if (builder->get_current_subfile ()->symtab == NULL)
21281 {
21282 builder->get_current_subfile ()->symtab
21283 = allocate_symtab (cust,
21284 builder->get_current_subfile ()->name);
21285 }
21286 fe.symtab = builder->get_current_subfile ()->symtab;
21287 }
21288 }
21289 }
21290
21291 /* Start a subfile for DWARF. FILENAME is the name of the file and
21292 DIRNAME the name of the source directory which contains FILENAME
21293 or NULL if not known.
21294 This routine tries to keep line numbers from identical absolute and
21295 relative file names in a common subfile.
21296
21297 Using the `list' example from the GDB testsuite, which resides in
21298 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21299 of /srcdir/list0.c yields the following debugging information for list0.c:
21300
21301 DW_AT_name: /srcdir/list0.c
21302 DW_AT_comp_dir: /compdir
21303 files.files[0].name: list0.h
21304 files.files[0].dir: /srcdir
21305 files.files[1].name: list0.c
21306 files.files[1].dir: /srcdir
21307
21308 The line number information for list0.c has to end up in a single
21309 subfile, so that `break /srcdir/list0.c:1' works as expected.
21310 start_subfile will ensure that this happens provided that we pass the
21311 concatenation of files.files[1].dir and files.files[1].name as the
21312 subfile's name. */
21313
21314 static void
21315 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21316 const char *dirname)
21317 {
21318 char *copy = NULL;
21319
21320 /* In order not to lose the line information directory,
21321 we concatenate it to the filename when it makes sense.
21322 Note that the Dwarf3 standard says (speaking of filenames in line
21323 information): ``The directory index is ignored for file names
21324 that represent full path names''. Thus ignoring dirname in the
21325 `else' branch below isn't an issue. */
21326
21327 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21328 {
21329 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21330 filename = copy;
21331 }
21332
21333 cu->get_builder ()->start_subfile (filename);
21334
21335 if (copy != NULL)
21336 xfree (copy);
21337 }
21338
21339 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21340 buildsym_compunit constructor. */
21341
21342 struct compunit_symtab *
21343 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21344 CORE_ADDR low_pc)
21345 {
21346 gdb_assert (m_builder == nullptr);
21347
21348 m_builder.reset (new struct buildsym_compunit
21349 (per_cu->dwarf2_per_objfile->objfile,
21350 name, comp_dir, language, low_pc));
21351
21352 list_in_scope = get_builder ()->get_file_symbols ();
21353
21354 get_builder ()->record_debugformat ("DWARF 2");
21355 get_builder ()->record_producer (producer);
21356
21357 processing_has_namespace_info = false;
21358
21359 return get_builder ()->get_compunit_symtab ();
21360 }
21361
21362 static void
21363 var_decode_location (struct attribute *attr, struct symbol *sym,
21364 struct dwarf2_cu *cu)
21365 {
21366 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21367 struct comp_unit_head *cu_header = &cu->header;
21368
21369 /* NOTE drow/2003-01-30: There used to be a comment and some special
21370 code here to turn a symbol with DW_AT_external and a
21371 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21372 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21373 with some versions of binutils) where shared libraries could have
21374 relocations against symbols in their debug information - the
21375 minimal symbol would have the right address, but the debug info
21376 would not. It's no longer necessary, because we will explicitly
21377 apply relocations when we read in the debug information now. */
21378
21379 /* A DW_AT_location attribute with no contents indicates that a
21380 variable has been optimized away. */
21381 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21382 {
21383 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21384 return;
21385 }
21386
21387 /* Handle one degenerate form of location expression specially, to
21388 preserve GDB's previous behavior when section offsets are
21389 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21390 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21391
21392 if (attr_form_is_block (attr)
21393 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21394 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21395 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21396 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21397 && (DW_BLOCK (attr)->size
21398 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21399 {
21400 unsigned int dummy;
21401
21402 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21403 SYMBOL_VALUE_ADDRESS (sym) =
21404 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21405 else
21406 SYMBOL_VALUE_ADDRESS (sym) =
21407 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21408 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21409 fixup_symbol_section (sym, objfile);
21410 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21411 SYMBOL_SECTION (sym));
21412 return;
21413 }
21414
21415 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21416 expression evaluator, and use LOC_COMPUTED only when necessary
21417 (i.e. when the value of a register or memory location is
21418 referenced, or a thread-local block, etc.). Then again, it might
21419 not be worthwhile. I'm assuming that it isn't unless performance
21420 or memory numbers show me otherwise. */
21421
21422 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21423
21424 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21425 cu->has_loclist = true;
21426 }
21427
21428 /* Given a pointer to a DWARF information entry, figure out if we need
21429 to make a symbol table entry for it, and if so, create a new entry
21430 and return a pointer to it.
21431 If TYPE is NULL, determine symbol type from the die, otherwise
21432 used the passed type.
21433 If SPACE is not NULL, use it to hold the new symbol. If it is
21434 NULL, allocate a new symbol on the objfile's obstack. */
21435
21436 static struct symbol *
21437 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21438 struct symbol *space)
21439 {
21440 struct dwarf2_per_objfile *dwarf2_per_objfile
21441 = cu->per_cu->dwarf2_per_objfile;
21442 struct objfile *objfile = dwarf2_per_objfile->objfile;
21443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21444 struct symbol *sym = NULL;
21445 const char *name;
21446 struct attribute *attr = NULL;
21447 struct attribute *attr2 = NULL;
21448 CORE_ADDR baseaddr;
21449 struct pending **list_to_add = NULL;
21450
21451 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21452
21453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21454
21455 name = dwarf2_name (die, cu);
21456 if (name)
21457 {
21458 const char *linkagename;
21459 int suppress_add = 0;
21460
21461 if (space)
21462 sym = space;
21463 else
21464 sym = allocate_symbol (objfile);
21465 OBJSTAT (objfile, n_syms++);
21466
21467 /* Cache this symbol's name and the name's demangled form (if any). */
21468 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21469 linkagename = dwarf2_physname (name, die, cu);
21470 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21471
21472 /* Fortran does not have mangling standard and the mangling does differ
21473 between gfortran, iFort etc. */
21474 if (cu->language == language_fortran
21475 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21476 symbol_set_demangled_name (&(sym->ginfo),
21477 dwarf2_full_name (name, die, cu),
21478 NULL);
21479
21480 /* Default assumptions.
21481 Use the passed type or decode it from the die. */
21482 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21483 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21484 if (type != NULL)
21485 SYMBOL_TYPE (sym) = type;
21486 else
21487 SYMBOL_TYPE (sym) = die_type (die, cu);
21488 attr = dwarf2_attr (die,
21489 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21490 cu);
21491 if (attr)
21492 {
21493 SYMBOL_LINE (sym) = DW_UNSND (attr);
21494 }
21495
21496 attr = dwarf2_attr (die,
21497 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21498 cu);
21499 if (attr)
21500 {
21501 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21502 struct file_entry *fe;
21503
21504 if (cu->line_header != NULL)
21505 fe = cu->line_header->file_name_at (file_index);
21506 else
21507 fe = NULL;
21508
21509 if (fe == NULL)
21510 complaint (_("file index out of range"));
21511 else
21512 symbol_set_symtab (sym, fe->symtab);
21513 }
21514
21515 switch (die->tag)
21516 {
21517 case DW_TAG_label:
21518 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21519 if (attr)
21520 {
21521 CORE_ADDR addr;
21522
21523 addr = attr_value_as_address (attr);
21524 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21525 SYMBOL_VALUE_ADDRESS (sym) = addr;
21526 }
21527 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21528 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21529 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21530 add_symbol_to_list (sym, cu->list_in_scope);
21531 break;
21532 case DW_TAG_subprogram:
21533 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21534 finish_block. */
21535 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21536 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21537 if ((attr2 && (DW_UNSND (attr2) != 0))
21538 || cu->language == language_ada)
21539 {
21540 /* Subprograms marked external are stored as a global symbol.
21541 Ada subprograms, whether marked external or not, are always
21542 stored as a global symbol, because we want to be able to
21543 access them globally. For instance, we want to be able
21544 to break on a nested subprogram without having to
21545 specify the context. */
21546 list_to_add = cu->get_builder ()->get_global_symbols ();
21547 }
21548 else
21549 {
21550 list_to_add = cu->list_in_scope;
21551 }
21552 break;
21553 case DW_TAG_inlined_subroutine:
21554 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21555 finish_block. */
21556 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21557 SYMBOL_INLINED (sym) = 1;
21558 list_to_add = cu->list_in_scope;
21559 break;
21560 case DW_TAG_template_value_param:
21561 suppress_add = 1;
21562 /* Fall through. */
21563 case DW_TAG_constant:
21564 case DW_TAG_variable:
21565 case DW_TAG_member:
21566 /* Compilation with minimal debug info may result in
21567 variables with missing type entries. Change the
21568 misleading `void' type to something sensible. */
21569 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21570 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21571
21572 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21573 /* In the case of DW_TAG_member, we should only be called for
21574 static const members. */
21575 if (die->tag == DW_TAG_member)
21576 {
21577 /* dwarf2_add_field uses die_is_declaration,
21578 so we do the same. */
21579 gdb_assert (die_is_declaration (die, cu));
21580 gdb_assert (attr);
21581 }
21582 if (attr)
21583 {
21584 dwarf2_const_value (attr, sym, cu);
21585 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21586 if (!suppress_add)
21587 {
21588 if (attr2 && (DW_UNSND (attr2) != 0))
21589 list_to_add = cu->get_builder ()->get_global_symbols ();
21590 else
21591 list_to_add = cu->list_in_scope;
21592 }
21593 break;
21594 }
21595 attr = dwarf2_attr (die, DW_AT_location, cu);
21596 if (attr)
21597 {
21598 var_decode_location (attr, sym, cu);
21599 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21600
21601 /* Fortran explicitly imports any global symbols to the local
21602 scope by DW_TAG_common_block. */
21603 if (cu->language == language_fortran && die->parent
21604 && die->parent->tag == DW_TAG_common_block)
21605 attr2 = NULL;
21606
21607 if (SYMBOL_CLASS (sym) == LOC_STATIC
21608 && SYMBOL_VALUE_ADDRESS (sym) == 0
21609 && !dwarf2_per_objfile->has_section_at_zero)
21610 {
21611 /* When a static variable is eliminated by the linker,
21612 the corresponding debug information is not stripped
21613 out, but the variable address is set to null;
21614 do not add such variables into symbol table. */
21615 }
21616 else if (attr2 && (DW_UNSND (attr2) != 0))
21617 {
21618 /* Workaround gfortran PR debug/40040 - it uses
21619 DW_AT_location for variables in -fPIC libraries which may
21620 get overriden by other libraries/executable and get
21621 a different address. Resolve it by the minimal symbol
21622 which may come from inferior's executable using copy
21623 relocation. Make this workaround only for gfortran as for
21624 other compilers GDB cannot guess the minimal symbol
21625 Fortran mangling kind. */
21626 if (cu->language == language_fortran && die->parent
21627 && die->parent->tag == DW_TAG_module
21628 && cu->producer
21629 && startswith (cu->producer, "GNU Fortran"))
21630 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21631
21632 /* A variable with DW_AT_external is never static,
21633 but it may be block-scoped. */
21634 list_to_add
21635 = ((cu->list_in_scope
21636 == cu->get_builder ()->get_file_symbols ())
21637 ? cu->get_builder ()->get_global_symbols ()
21638 : cu->list_in_scope);
21639 }
21640 else
21641 list_to_add = cu->list_in_scope;
21642 }
21643 else
21644 {
21645 /* We do not know the address of this symbol.
21646 If it is an external symbol and we have type information
21647 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21648 The address of the variable will then be determined from
21649 the minimal symbol table whenever the variable is
21650 referenced. */
21651 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21652
21653 /* Fortran explicitly imports any global symbols to the local
21654 scope by DW_TAG_common_block. */
21655 if (cu->language == language_fortran && die->parent
21656 && die->parent->tag == DW_TAG_common_block)
21657 {
21658 /* SYMBOL_CLASS doesn't matter here because
21659 read_common_block is going to reset it. */
21660 if (!suppress_add)
21661 list_to_add = cu->list_in_scope;
21662 }
21663 else if (attr2 && (DW_UNSND (attr2) != 0)
21664 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21665 {
21666 /* A variable with DW_AT_external is never static, but it
21667 may be block-scoped. */
21668 list_to_add
21669 = ((cu->list_in_scope
21670 == cu->get_builder ()->get_file_symbols ())
21671 ? cu->get_builder ()->get_global_symbols ()
21672 : cu->list_in_scope);
21673
21674 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21675 }
21676 else if (!die_is_declaration (die, cu))
21677 {
21678 /* Use the default LOC_OPTIMIZED_OUT class. */
21679 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21680 if (!suppress_add)
21681 list_to_add = cu->list_in_scope;
21682 }
21683 }
21684 break;
21685 case DW_TAG_formal_parameter:
21686 {
21687 /* If we are inside a function, mark this as an argument. If
21688 not, we might be looking at an argument to an inlined function
21689 when we do not have enough information to show inlined frames;
21690 pretend it's a local variable in that case so that the user can
21691 still see it. */
21692 struct context_stack *curr
21693 = cu->get_builder ()->get_current_context_stack ();
21694 if (curr != nullptr && curr->name != nullptr)
21695 SYMBOL_IS_ARGUMENT (sym) = 1;
21696 attr = dwarf2_attr (die, DW_AT_location, cu);
21697 if (attr)
21698 {
21699 var_decode_location (attr, sym, cu);
21700 }
21701 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21702 if (attr)
21703 {
21704 dwarf2_const_value (attr, sym, cu);
21705 }
21706
21707 list_to_add = cu->list_in_scope;
21708 }
21709 break;
21710 case DW_TAG_unspecified_parameters:
21711 /* From varargs functions; gdb doesn't seem to have any
21712 interest in this information, so just ignore it for now.
21713 (FIXME?) */
21714 break;
21715 case DW_TAG_template_type_param:
21716 suppress_add = 1;
21717 /* Fall through. */
21718 case DW_TAG_class_type:
21719 case DW_TAG_interface_type:
21720 case DW_TAG_structure_type:
21721 case DW_TAG_union_type:
21722 case DW_TAG_set_type:
21723 case DW_TAG_enumeration_type:
21724 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21725 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21726
21727 {
21728 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21729 really ever be static objects: otherwise, if you try
21730 to, say, break of a class's method and you're in a file
21731 which doesn't mention that class, it won't work unless
21732 the check for all static symbols in lookup_symbol_aux
21733 saves you. See the OtherFileClass tests in
21734 gdb.c++/namespace.exp. */
21735
21736 if (!suppress_add)
21737 {
21738 buildsym_compunit *builder = cu->get_builder ();
21739 list_to_add
21740 = (cu->list_in_scope == builder->get_file_symbols ()
21741 && cu->language == language_cplus
21742 ? builder->get_global_symbols ()
21743 : cu->list_in_scope);
21744
21745 /* The semantics of C++ state that "struct foo {
21746 ... }" also defines a typedef for "foo". */
21747 if (cu->language == language_cplus
21748 || cu->language == language_ada
21749 || cu->language == language_d
21750 || cu->language == language_rust)
21751 {
21752 /* The symbol's name is already allocated along
21753 with this objfile, so we don't need to
21754 duplicate it for the type. */
21755 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21756 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21757 }
21758 }
21759 }
21760 break;
21761 case DW_TAG_typedef:
21762 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21763 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21764 list_to_add = cu->list_in_scope;
21765 break;
21766 case DW_TAG_base_type:
21767 case DW_TAG_subrange_type:
21768 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21769 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21770 list_to_add = cu->list_in_scope;
21771 break;
21772 case DW_TAG_enumerator:
21773 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21774 if (attr)
21775 {
21776 dwarf2_const_value (attr, sym, cu);
21777 }
21778 {
21779 /* NOTE: carlton/2003-11-10: See comment above in the
21780 DW_TAG_class_type, etc. block. */
21781
21782 list_to_add
21783 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21784 && cu->language == language_cplus
21785 ? cu->get_builder ()->get_global_symbols ()
21786 : cu->list_in_scope);
21787 }
21788 break;
21789 case DW_TAG_imported_declaration:
21790 case DW_TAG_namespace:
21791 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21792 list_to_add = cu->get_builder ()->get_global_symbols ();
21793 break;
21794 case DW_TAG_module:
21795 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21796 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21797 list_to_add = cu->get_builder ()->get_global_symbols ();
21798 break;
21799 case DW_TAG_common_block:
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21801 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21802 add_symbol_to_list (sym, cu->list_in_scope);
21803 break;
21804 default:
21805 /* Not a tag we recognize. Hopefully we aren't processing
21806 trash data, but since we must specifically ignore things
21807 we don't recognize, there is nothing else we should do at
21808 this point. */
21809 complaint (_("unsupported tag: '%s'"),
21810 dwarf_tag_name (die->tag));
21811 break;
21812 }
21813
21814 if (suppress_add)
21815 {
21816 sym->hash_next = objfile->template_symbols;
21817 objfile->template_symbols = sym;
21818 list_to_add = NULL;
21819 }
21820
21821 if (list_to_add != NULL)
21822 add_symbol_to_list (sym, list_to_add);
21823
21824 /* For the benefit of old versions of GCC, check for anonymous
21825 namespaces based on the demangled name. */
21826 if (!cu->processing_has_namespace_info
21827 && cu->language == language_cplus)
21828 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21829 }
21830 return (sym);
21831 }
21832
21833 /* Given an attr with a DW_FORM_dataN value in host byte order,
21834 zero-extend it as appropriate for the symbol's type. The DWARF
21835 standard (v4) is not entirely clear about the meaning of using
21836 DW_FORM_dataN for a constant with a signed type, where the type is
21837 wider than the data. The conclusion of a discussion on the DWARF
21838 list was that this is unspecified. We choose to always zero-extend
21839 because that is the interpretation long in use by GCC. */
21840
21841 static gdb_byte *
21842 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21843 struct dwarf2_cu *cu, LONGEST *value, int bits)
21844 {
21845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21846 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21847 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21848 LONGEST l = DW_UNSND (attr);
21849
21850 if (bits < sizeof (*value) * 8)
21851 {
21852 l &= ((LONGEST) 1 << bits) - 1;
21853 *value = l;
21854 }
21855 else if (bits == sizeof (*value) * 8)
21856 *value = l;
21857 else
21858 {
21859 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21860 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21861 return bytes;
21862 }
21863
21864 return NULL;
21865 }
21866
21867 /* Read a constant value from an attribute. Either set *VALUE, or if
21868 the value does not fit in *VALUE, set *BYTES - either already
21869 allocated on the objfile obstack, or newly allocated on OBSTACK,
21870 or, set *BATON, if we translated the constant to a location
21871 expression. */
21872
21873 static void
21874 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21875 const char *name, struct obstack *obstack,
21876 struct dwarf2_cu *cu,
21877 LONGEST *value, const gdb_byte **bytes,
21878 struct dwarf2_locexpr_baton **baton)
21879 {
21880 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21881 struct comp_unit_head *cu_header = &cu->header;
21882 struct dwarf_block *blk;
21883 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21884 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21885
21886 *value = 0;
21887 *bytes = NULL;
21888 *baton = NULL;
21889
21890 switch (attr->form)
21891 {
21892 case DW_FORM_addr:
21893 case DW_FORM_addrx:
21894 case DW_FORM_GNU_addr_index:
21895 {
21896 gdb_byte *data;
21897
21898 if (TYPE_LENGTH (type) != cu_header->addr_size)
21899 dwarf2_const_value_length_mismatch_complaint (name,
21900 cu_header->addr_size,
21901 TYPE_LENGTH (type));
21902 /* Symbols of this form are reasonably rare, so we just
21903 piggyback on the existing location code rather than writing
21904 a new implementation of symbol_computed_ops. */
21905 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21906 (*baton)->per_cu = cu->per_cu;
21907 gdb_assert ((*baton)->per_cu);
21908
21909 (*baton)->size = 2 + cu_header->addr_size;
21910 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21911 (*baton)->data = data;
21912
21913 data[0] = DW_OP_addr;
21914 store_unsigned_integer (&data[1], cu_header->addr_size,
21915 byte_order, DW_ADDR (attr));
21916 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21917 }
21918 break;
21919 case DW_FORM_string:
21920 case DW_FORM_strp:
21921 case DW_FORM_strx:
21922 case DW_FORM_GNU_str_index:
21923 case DW_FORM_GNU_strp_alt:
21924 /* DW_STRING is already allocated on the objfile obstack, point
21925 directly to it. */
21926 *bytes = (const gdb_byte *) DW_STRING (attr);
21927 break;
21928 case DW_FORM_block1:
21929 case DW_FORM_block2:
21930 case DW_FORM_block4:
21931 case DW_FORM_block:
21932 case DW_FORM_exprloc:
21933 case DW_FORM_data16:
21934 blk = DW_BLOCK (attr);
21935 if (TYPE_LENGTH (type) != blk->size)
21936 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21937 TYPE_LENGTH (type));
21938 *bytes = blk->data;
21939 break;
21940
21941 /* The DW_AT_const_value attributes are supposed to carry the
21942 symbol's value "represented as it would be on the target
21943 architecture." By the time we get here, it's already been
21944 converted to host endianness, so we just need to sign- or
21945 zero-extend it as appropriate. */
21946 case DW_FORM_data1:
21947 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21948 break;
21949 case DW_FORM_data2:
21950 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21951 break;
21952 case DW_FORM_data4:
21953 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21954 break;
21955 case DW_FORM_data8:
21956 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21957 break;
21958
21959 case DW_FORM_sdata:
21960 case DW_FORM_implicit_const:
21961 *value = DW_SND (attr);
21962 break;
21963
21964 case DW_FORM_udata:
21965 *value = DW_UNSND (attr);
21966 break;
21967
21968 default:
21969 complaint (_("unsupported const value attribute form: '%s'"),
21970 dwarf_form_name (attr->form));
21971 *value = 0;
21972 break;
21973 }
21974 }
21975
21976
21977 /* Copy constant value from an attribute to a symbol. */
21978
21979 static void
21980 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21981 struct dwarf2_cu *cu)
21982 {
21983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21984 LONGEST value;
21985 const gdb_byte *bytes;
21986 struct dwarf2_locexpr_baton *baton;
21987
21988 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21989 SYMBOL_PRINT_NAME (sym),
21990 &objfile->objfile_obstack, cu,
21991 &value, &bytes, &baton);
21992
21993 if (baton != NULL)
21994 {
21995 SYMBOL_LOCATION_BATON (sym) = baton;
21996 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21997 }
21998 else if (bytes != NULL)
21999 {
22000 SYMBOL_VALUE_BYTES (sym) = bytes;
22001 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22002 }
22003 else
22004 {
22005 SYMBOL_VALUE (sym) = value;
22006 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22007 }
22008 }
22009
22010 /* Return the type of the die in question using its DW_AT_type attribute. */
22011
22012 static struct type *
22013 die_type (struct die_info *die, struct dwarf2_cu *cu)
22014 {
22015 struct attribute *type_attr;
22016
22017 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22018 if (!type_attr)
22019 {
22020 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22021 /* A missing DW_AT_type represents a void type. */
22022 return objfile_type (objfile)->builtin_void;
22023 }
22024
22025 return lookup_die_type (die, type_attr, cu);
22026 }
22027
22028 /* True iff CU's producer generates GNAT Ada auxiliary information
22029 that allows to find parallel types through that information instead
22030 of having to do expensive parallel lookups by type name. */
22031
22032 static int
22033 need_gnat_info (struct dwarf2_cu *cu)
22034 {
22035 /* Assume that the Ada compiler was GNAT, which always produces
22036 the auxiliary information. */
22037 return (cu->language == language_ada);
22038 }
22039
22040 /* Return the auxiliary type of the die in question using its
22041 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22042 attribute is not present. */
22043
22044 static struct type *
22045 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22046 {
22047 struct attribute *type_attr;
22048
22049 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22050 if (!type_attr)
22051 return NULL;
22052
22053 return lookup_die_type (die, type_attr, cu);
22054 }
22055
22056 /* If DIE has a descriptive_type attribute, then set the TYPE's
22057 descriptive type accordingly. */
22058
22059 static void
22060 set_descriptive_type (struct type *type, struct die_info *die,
22061 struct dwarf2_cu *cu)
22062 {
22063 struct type *descriptive_type = die_descriptive_type (die, cu);
22064
22065 if (descriptive_type)
22066 {
22067 ALLOCATE_GNAT_AUX_TYPE (type);
22068 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22069 }
22070 }
22071
22072 /* Return the containing type of the die in question using its
22073 DW_AT_containing_type attribute. */
22074
22075 static struct type *
22076 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22077 {
22078 struct attribute *type_attr;
22079 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22080
22081 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22082 if (!type_attr)
22083 error (_("Dwarf Error: Problem turning containing type into gdb type "
22084 "[in module %s]"), objfile_name (objfile));
22085
22086 return lookup_die_type (die, type_attr, cu);
22087 }
22088
22089 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22090
22091 static struct type *
22092 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22093 {
22094 struct dwarf2_per_objfile *dwarf2_per_objfile
22095 = cu->per_cu->dwarf2_per_objfile;
22096 struct objfile *objfile = dwarf2_per_objfile->objfile;
22097 char *saved;
22098
22099 std::string message
22100 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22101 objfile_name (objfile),
22102 sect_offset_str (cu->header.sect_off),
22103 sect_offset_str (die->sect_off));
22104 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22105 message.c_str (), message.length ());
22106
22107 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22108 }
22109
22110 /* Look up the type of DIE in CU using its type attribute ATTR.
22111 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22112 DW_AT_containing_type.
22113 If there is no type substitute an error marker. */
22114
22115 static struct type *
22116 lookup_die_type (struct die_info *die, const struct attribute *attr,
22117 struct dwarf2_cu *cu)
22118 {
22119 struct dwarf2_per_objfile *dwarf2_per_objfile
22120 = cu->per_cu->dwarf2_per_objfile;
22121 struct objfile *objfile = dwarf2_per_objfile->objfile;
22122 struct type *this_type;
22123
22124 gdb_assert (attr->name == DW_AT_type
22125 || attr->name == DW_AT_GNAT_descriptive_type
22126 || attr->name == DW_AT_containing_type);
22127
22128 /* First see if we have it cached. */
22129
22130 if (attr->form == DW_FORM_GNU_ref_alt)
22131 {
22132 struct dwarf2_per_cu_data *per_cu;
22133 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22134
22135 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22136 dwarf2_per_objfile);
22137 this_type = get_die_type_at_offset (sect_off, per_cu);
22138 }
22139 else if (attr_form_is_ref (attr))
22140 {
22141 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22142
22143 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22144 }
22145 else if (attr->form == DW_FORM_ref_sig8)
22146 {
22147 ULONGEST signature = DW_SIGNATURE (attr);
22148
22149 return get_signatured_type (die, signature, cu);
22150 }
22151 else
22152 {
22153 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22154 " at %s [in module %s]"),
22155 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22156 objfile_name (objfile));
22157 return build_error_marker_type (cu, die);
22158 }
22159
22160 /* If not cached we need to read it in. */
22161
22162 if (this_type == NULL)
22163 {
22164 struct die_info *type_die = NULL;
22165 struct dwarf2_cu *type_cu = cu;
22166
22167 if (attr_form_is_ref (attr))
22168 type_die = follow_die_ref (die, attr, &type_cu);
22169 if (type_die == NULL)
22170 return build_error_marker_type (cu, die);
22171 /* If we find the type now, it's probably because the type came
22172 from an inter-CU reference and the type's CU got expanded before
22173 ours. */
22174 this_type = read_type_die (type_die, type_cu);
22175 }
22176
22177 /* If we still don't have a type use an error marker. */
22178
22179 if (this_type == NULL)
22180 return build_error_marker_type (cu, die);
22181
22182 return this_type;
22183 }
22184
22185 /* Return the type in DIE, CU.
22186 Returns NULL for invalid types.
22187
22188 This first does a lookup in die_type_hash,
22189 and only reads the die in if necessary.
22190
22191 NOTE: This can be called when reading in partial or full symbols. */
22192
22193 static struct type *
22194 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22195 {
22196 struct type *this_type;
22197
22198 this_type = get_die_type (die, cu);
22199 if (this_type)
22200 return this_type;
22201
22202 return read_type_die_1 (die, cu);
22203 }
22204
22205 /* Read the type in DIE, CU.
22206 Returns NULL for invalid types. */
22207
22208 static struct type *
22209 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22210 {
22211 struct type *this_type = NULL;
22212
22213 switch (die->tag)
22214 {
22215 case DW_TAG_class_type:
22216 case DW_TAG_interface_type:
22217 case DW_TAG_structure_type:
22218 case DW_TAG_union_type:
22219 this_type = read_structure_type (die, cu);
22220 break;
22221 case DW_TAG_enumeration_type:
22222 this_type = read_enumeration_type (die, cu);
22223 break;
22224 case DW_TAG_subprogram:
22225 case DW_TAG_subroutine_type:
22226 case DW_TAG_inlined_subroutine:
22227 this_type = read_subroutine_type (die, cu);
22228 break;
22229 case DW_TAG_array_type:
22230 this_type = read_array_type (die, cu);
22231 break;
22232 case DW_TAG_set_type:
22233 this_type = read_set_type (die, cu);
22234 break;
22235 case DW_TAG_pointer_type:
22236 this_type = read_tag_pointer_type (die, cu);
22237 break;
22238 case DW_TAG_ptr_to_member_type:
22239 this_type = read_tag_ptr_to_member_type (die, cu);
22240 break;
22241 case DW_TAG_reference_type:
22242 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22243 break;
22244 case DW_TAG_rvalue_reference_type:
22245 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22246 break;
22247 case DW_TAG_const_type:
22248 this_type = read_tag_const_type (die, cu);
22249 break;
22250 case DW_TAG_volatile_type:
22251 this_type = read_tag_volatile_type (die, cu);
22252 break;
22253 case DW_TAG_restrict_type:
22254 this_type = read_tag_restrict_type (die, cu);
22255 break;
22256 case DW_TAG_string_type:
22257 this_type = read_tag_string_type (die, cu);
22258 break;
22259 case DW_TAG_typedef:
22260 this_type = read_typedef (die, cu);
22261 break;
22262 case DW_TAG_subrange_type:
22263 this_type = read_subrange_type (die, cu);
22264 break;
22265 case DW_TAG_base_type:
22266 this_type = read_base_type (die, cu);
22267 break;
22268 case DW_TAG_unspecified_type:
22269 this_type = read_unspecified_type (die, cu);
22270 break;
22271 case DW_TAG_namespace:
22272 this_type = read_namespace_type (die, cu);
22273 break;
22274 case DW_TAG_module:
22275 this_type = read_module_type (die, cu);
22276 break;
22277 case DW_TAG_atomic_type:
22278 this_type = read_tag_atomic_type (die, cu);
22279 break;
22280 default:
22281 complaint (_("unexpected tag in read_type_die: '%s'"),
22282 dwarf_tag_name (die->tag));
22283 break;
22284 }
22285
22286 return this_type;
22287 }
22288
22289 /* See if we can figure out if the class lives in a namespace. We do
22290 this by looking for a member function; its demangled name will
22291 contain namespace info, if there is any.
22292 Return the computed name or NULL.
22293 Space for the result is allocated on the objfile's obstack.
22294 This is the full-die version of guess_partial_die_structure_name.
22295 In this case we know DIE has no useful parent. */
22296
22297 static char *
22298 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22299 {
22300 struct die_info *spec_die;
22301 struct dwarf2_cu *spec_cu;
22302 struct die_info *child;
22303 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22304
22305 spec_cu = cu;
22306 spec_die = die_specification (die, &spec_cu);
22307 if (spec_die != NULL)
22308 {
22309 die = spec_die;
22310 cu = spec_cu;
22311 }
22312
22313 for (child = die->child;
22314 child != NULL;
22315 child = child->sibling)
22316 {
22317 if (child->tag == DW_TAG_subprogram)
22318 {
22319 const char *linkage_name = dw2_linkage_name (child, cu);
22320
22321 if (linkage_name != NULL)
22322 {
22323 char *actual_name
22324 = language_class_name_from_physname (cu->language_defn,
22325 linkage_name);
22326 char *name = NULL;
22327
22328 if (actual_name != NULL)
22329 {
22330 const char *die_name = dwarf2_name (die, cu);
22331
22332 if (die_name != NULL
22333 && strcmp (die_name, actual_name) != 0)
22334 {
22335 /* Strip off the class name from the full name.
22336 We want the prefix. */
22337 int die_name_len = strlen (die_name);
22338 int actual_name_len = strlen (actual_name);
22339
22340 /* Test for '::' as a sanity check. */
22341 if (actual_name_len > die_name_len + 2
22342 && actual_name[actual_name_len
22343 - die_name_len - 1] == ':')
22344 name = (char *) obstack_copy0 (
22345 &objfile->per_bfd->storage_obstack,
22346 actual_name, actual_name_len - die_name_len - 2);
22347 }
22348 }
22349 xfree (actual_name);
22350 return name;
22351 }
22352 }
22353 }
22354
22355 return NULL;
22356 }
22357
22358 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22359 prefix part in such case. See
22360 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22361
22362 static const char *
22363 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22364 {
22365 struct attribute *attr;
22366 const char *base;
22367
22368 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22369 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22370 return NULL;
22371
22372 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22373 return NULL;
22374
22375 attr = dw2_linkage_name_attr (die, cu);
22376 if (attr == NULL || DW_STRING (attr) == NULL)
22377 return NULL;
22378
22379 /* dwarf2_name had to be already called. */
22380 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22381
22382 /* Strip the base name, keep any leading namespaces/classes. */
22383 base = strrchr (DW_STRING (attr), ':');
22384 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22385 return "";
22386
22387 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22388 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22389 DW_STRING (attr),
22390 &base[-1] - DW_STRING (attr));
22391 }
22392
22393 /* Return the name of the namespace/class that DIE is defined within,
22394 or "" if we can't tell. The caller should not xfree the result.
22395
22396 For example, if we're within the method foo() in the following
22397 code:
22398
22399 namespace N {
22400 class C {
22401 void foo () {
22402 }
22403 };
22404 }
22405
22406 then determine_prefix on foo's die will return "N::C". */
22407
22408 static const char *
22409 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22410 {
22411 struct dwarf2_per_objfile *dwarf2_per_objfile
22412 = cu->per_cu->dwarf2_per_objfile;
22413 struct die_info *parent, *spec_die;
22414 struct dwarf2_cu *spec_cu;
22415 struct type *parent_type;
22416 const char *retval;
22417
22418 if (cu->language != language_cplus
22419 && cu->language != language_fortran && cu->language != language_d
22420 && cu->language != language_rust)
22421 return "";
22422
22423 retval = anonymous_struct_prefix (die, cu);
22424 if (retval)
22425 return retval;
22426
22427 /* We have to be careful in the presence of DW_AT_specification.
22428 For example, with GCC 3.4, given the code
22429
22430 namespace N {
22431 void foo() {
22432 // Definition of N::foo.
22433 }
22434 }
22435
22436 then we'll have a tree of DIEs like this:
22437
22438 1: DW_TAG_compile_unit
22439 2: DW_TAG_namespace // N
22440 3: DW_TAG_subprogram // declaration of N::foo
22441 4: DW_TAG_subprogram // definition of N::foo
22442 DW_AT_specification // refers to die #3
22443
22444 Thus, when processing die #4, we have to pretend that we're in
22445 the context of its DW_AT_specification, namely the contex of die
22446 #3. */
22447 spec_cu = cu;
22448 spec_die = die_specification (die, &spec_cu);
22449 if (spec_die == NULL)
22450 parent = die->parent;
22451 else
22452 {
22453 parent = spec_die->parent;
22454 cu = spec_cu;
22455 }
22456
22457 if (parent == NULL)
22458 return "";
22459 else if (parent->building_fullname)
22460 {
22461 const char *name;
22462 const char *parent_name;
22463
22464 /* It has been seen on RealView 2.2 built binaries,
22465 DW_TAG_template_type_param types actually _defined_ as
22466 children of the parent class:
22467
22468 enum E {};
22469 template class <class Enum> Class{};
22470 Class<enum E> class_e;
22471
22472 1: DW_TAG_class_type (Class)
22473 2: DW_TAG_enumeration_type (E)
22474 3: DW_TAG_enumerator (enum1:0)
22475 3: DW_TAG_enumerator (enum2:1)
22476 ...
22477 2: DW_TAG_template_type_param
22478 DW_AT_type DW_FORM_ref_udata (E)
22479
22480 Besides being broken debug info, it can put GDB into an
22481 infinite loop. Consider:
22482
22483 When we're building the full name for Class<E>, we'll start
22484 at Class, and go look over its template type parameters,
22485 finding E. We'll then try to build the full name of E, and
22486 reach here. We're now trying to build the full name of E,
22487 and look over the parent DIE for containing scope. In the
22488 broken case, if we followed the parent DIE of E, we'd again
22489 find Class, and once again go look at its template type
22490 arguments, etc., etc. Simply don't consider such parent die
22491 as source-level parent of this die (it can't be, the language
22492 doesn't allow it), and break the loop here. */
22493 name = dwarf2_name (die, cu);
22494 parent_name = dwarf2_name (parent, cu);
22495 complaint (_("template param type '%s' defined within parent '%s'"),
22496 name ? name : "<unknown>",
22497 parent_name ? parent_name : "<unknown>");
22498 return "";
22499 }
22500 else
22501 switch (parent->tag)
22502 {
22503 case DW_TAG_namespace:
22504 parent_type = read_type_die (parent, cu);
22505 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22506 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22507 Work around this problem here. */
22508 if (cu->language == language_cplus
22509 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22510 return "";
22511 /* We give a name to even anonymous namespaces. */
22512 return TYPE_NAME (parent_type);
22513 case DW_TAG_class_type:
22514 case DW_TAG_interface_type:
22515 case DW_TAG_structure_type:
22516 case DW_TAG_union_type:
22517 case DW_TAG_module:
22518 parent_type = read_type_die (parent, cu);
22519 if (TYPE_NAME (parent_type) != NULL)
22520 return TYPE_NAME (parent_type);
22521 else
22522 /* An anonymous structure is only allowed non-static data
22523 members; no typedefs, no member functions, et cetera.
22524 So it does not need a prefix. */
22525 return "";
22526 case DW_TAG_compile_unit:
22527 case DW_TAG_partial_unit:
22528 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22529 if (cu->language == language_cplus
22530 && !dwarf2_per_objfile->types.empty ()
22531 && die->child != NULL
22532 && (die->tag == DW_TAG_class_type
22533 || die->tag == DW_TAG_structure_type
22534 || die->tag == DW_TAG_union_type))
22535 {
22536 char *name = guess_full_die_structure_name (die, cu);
22537 if (name != NULL)
22538 return name;
22539 }
22540 return "";
22541 case DW_TAG_enumeration_type:
22542 parent_type = read_type_die (parent, cu);
22543 if (TYPE_DECLARED_CLASS (parent_type))
22544 {
22545 if (TYPE_NAME (parent_type) != NULL)
22546 return TYPE_NAME (parent_type);
22547 return "";
22548 }
22549 /* Fall through. */
22550 default:
22551 return determine_prefix (parent, cu);
22552 }
22553 }
22554
22555 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22556 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22557 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22558 an obconcat, otherwise allocate storage for the result. The CU argument is
22559 used to determine the language and hence, the appropriate separator. */
22560
22561 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22562
22563 static char *
22564 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22565 int physname, struct dwarf2_cu *cu)
22566 {
22567 const char *lead = "";
22568 const char *sep;
22569
22570 if (suffix == NULL || suffix[0] == '\0'
22571 || prefix == NULL || prefix[0] == '\0')
22572 sep = "";
22573 else if (cu->language == language_d)
22574 {
22575 /* For D, the 'main' function could be defined in any module, but it
22576 should never be prefixed. */
22577 if (strcmp (suffix, "D main") == 0)
22578 {
22579 prefix = "";
22580 sep = "";
22581 }
22582 else
22583 sep = ".";
22584 }
22585 else if (cu->language == language_fortran && physname)
22586 {
22587 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22588 DW_AT_MIPS_linkage_name is preferred and used instead. */
22589
22590 lead = "__";
22591 sep = "_MOD_";
22592 }
22593 else
22594 sep = "::";
22595
22596 if (prefix == NULL)
22597 prefix = "";
22598 if (suffix == NULL)
22599 suffix = "";
22600
22601 if (obs == NULL)
22602 {
22603 char *retval
22604 = ((char *)
22605 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22606
22607 strcpy (retval, lead);
22608 strcat (retval, prefix);
22609 strcat (retval, sep);
22610 strcat (retval, suffix);
22611 return retval;
22612 }
22613 else
22614 {
22615 /* We have an obstack. */
22616 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22617 }
22618 }
22619
22620 /* Return sibling of die, NULL if no sibling. */
22621
22622 static struct die_info *
22623 sibling_die (struct die_info *die)
22624 {
22625 return die->sibling;
22626 }
22627
22628 /* Get name of a die, return NULL if not found. */
22629
22630 static const char *
22631 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22632 struct obstack *obstack)
22633 {
22634 if (name && cu->language == language_cplus)
22635 {
22636 std::string canon_name = cp_canonicalize_string (name);
22637
22638 if (!canon_name.empty ())
22639 {
22640 if (canon_name != name)
22641 name = (const char *) obstack_copy0 (obstack,
22642 canon_name.c_str (),
22643 canon_name.length ());
22644 }
22645 }
22646
22647 return name;
22648 }
22649
22650 /* Get name of a die, return NULL if not found.
22651 Anonymous namespaces are converted to their magic string. */
22652
22653 static const char *
22654 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22655 {
22656 struct attribute *attr;
22657 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22658
22659 attr = dwarf2_attr (die, DW_AT_name, cu);
22660 if ((!attr || !DW_STRING (attr))
22661 && die->tag != DW_TAG_namespace
22662 && die->tag != DW_TAG_class_type
22663 && die->tag != DW_TAG_interface_type
22664 && die->tag != DW_TAG_structure_type
22665 && die->tag != DW_TAG_union_type)
22666 return NULL;
22667
22668 switch (die->tag)
22669 {
22670 case DW_TAG_compile_unit:
22671 case DW_TAG_partial_unit:
22672 /* Compilation units have a DW_AT_name that is a filename, not
22673 a source language identifier. */
22674 case DW_TAG_enumeration_type:
22675 case DW_TAG_enumerator:
22676 /* These tags always have simple identifiers already; no need
22677 to canonicalize them. */
22678 return DW_STRING (attr);
22679
22680 case DW_TAG_namespace:
22681 if (attr != NULL && DW_STRING (attr) != NULL)
22682 return DW_STRING (attr);
22683 return CP_ANONYMOUS_NAMESPACE_STR;
22684
22685 case DW_TAG_class_type:
22686 case DW_TAG_interface_type:
22687 case DW_TAG_structure_type:
22688 case DW_TAG_union_type:
22689 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22690 structures or unions. These were of the form "._%d" in GCC 4.1,
22691 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22692 and GCC 4.4. We work around this problem by ignoring these. */
22693 if (attr && DW_STRING (attr)
22694 && (startswith (DW_STRING (attr), "._")
22695 || startswith (DW_STRING (attr), "<anonymous")))
22696 return NULL;
22697
22698 /* GCC might emit a nameless typedef that has a linkage name. See
22699 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22700 if (!attr || DW_STRING (attr) == NULL)
22701 {
22702 char *demangled = NULL;
22703
22704 attr = dw2_linkage_name_attr (die, cu);
22705 if (attr == NULL || DW_STRING (attr) == NULL)
22706 return NULL;
22707
22708 /* Avoid demangling DW_STRING (attr) the second time on a second
22709 call for the same DIE. */
22710 if (!DW_STRING_IS_CANONICAL (attr))
22711 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22712
22713 if (demangled)
22714 {
22715 const char *base;
22716
22717 /* FIXME: we already did this for the partial symbol... */
22718 DW_STRING (attr)
22719 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22720 demangled);
22721 DW_STRING_IS_CANONICAL (attr) = 1;
22722 xfree (demangled);
22723
22724 /* Strip any leading namespaces/classes, keep only the base name.
22725 DW_AT_name for named DIEs does not contain the prefixes. */
22726 base = strrchr (DW_STRING (attr), ':');
22727 if (base && base > DW_STRING (attr) && base[-1] == ':')
22728 return &base[1];
22729 else
22730 return DW_STRING (attr);
22731 }
22732 }
22733 break;
22734
22735 default:
22736 break;
22737 }
22738
22739 if (!DW_STRING_IS_CANONICAL (attr))
22740 {
22741 DW_STRING (attr)
22742 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22743 &objfile->per_bfd->storage_obstack);
22744 DW_STRING_IS_CANONICAL (attr) = 1;
22745 }
22746 return DW_STRING (attr);
22747 }
22748
22749 /* Return the die that this die in an extension of, or NULL if there
22750 is none. *EXT_CU is the CU containing DIE on input, and the CU
22751 containing the return value on output. */
22752
22753 static struct die_info *
22754 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22755 {
22756 struct attribute *attr;
22757
22758 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22759 if (attr == NULL)
22760 return NULL;
22761
22762 return follow_die_ref (die, attr, ext_cu);
22763 }
22764
22765 /* A convenience function that returns an "unknown" DWARF name,
22766 including the value of V. STR is the name of the entity being
22767 printed, e.g., "TAG". */
22768
22769 static const char *
22770 dwarf_unknown (const char *str, unsigned v)
22771 {
22772 char *cell = get_print_cell ();
22773 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22774 return cell;
22775 }
22776
22777 /* Convert a DIE tag into its string name. */
22778
22779 static const char *
22780 dwarf_tag_name (unsigned tag)
22781 {
22782 const char *name = get_DW_TAG_name (tag);
22783
22784 if (name == NULL)
22785 return dwarf_unknown ("TAG", tag);
22786
22787 return name;
22788 }
22789
22790 /* Convert a DWARF attribute code into its string name. */
22791
22792 static const char *
22793 dwarf_attr_name (unsigned attr)
22794 {
22795 const char *name;
22796
22797 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22798 if (attr == DW_AT_MIPS_fde)
22799 return "DW_AT_MIPS_fde";
22800 #else
22801 if (attr == DW_AT_HP_block_index)
22802 return "DW_AT_HP_block_index";
22803 #endif
22804
22805 name = get_DW_AT_name (attr);
22806
22807 if (name == NULL)
22808 return dwarf_unknown ("AT", attr);
22809
22810 return name;
22811 }
22812
22813 /* Convert a DWARF value form code into its string name. */
22814
22815 static const char *
22816 dwarf_form_name (unsigned form)
22817 {
22818 const char *name = get_DW_FORM_name (form);
22819
22820 if (name == NULL)
22821 return dwarf_unknown ("FORM", form);
22822
22823 return name;
22824 }
22825
22826 static const char *
22827 dwarf_bool_name (unsigned mybool)
22828 {
22829 if (mybool)
22830 return "TRUE";
22831 else
22832 return "FALSE";
22833 }
22834
22835 /* Convert a DWARF type code into its string name. */
22836
22837 static const char *
22838 dwarf_type_encoding_name (unsigned enc)
22839 {
22840 const char *name = get_DW_ATE_name (enc);
22841
22842 if (name == NULL)
22843 return dwarf_unknown ("ATE", enc);
22844
22845 return name;
22846 }
22847
22848 static void
22849 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22850 {
22851 unsigned int i;
22852
22853 print_spaces (indent, f);
22854 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22855 dwarf_tag_name (die->tag), die->abbrev,
22856 sect_offset_str (die->sect_off));
22857
22858 if (die->parent != NULL)
22859 {
22860 print_spaces (indent, f);
22861 fprintf_unfiltered (f, " parent at offset: %s\n",
22862 sect_offset_str (die->parent->sect_off));
22863 }
22864
22865 print_spaces (indent, f);
22866 fprintf_unfiltered (f, " has children: %s\n",
22867 dwarf_bool_name (die->child != NULL));
22868
22869 print_spaces (indent, f);
22870 fprintf_unfiltered (f, " attributes:\n");
22871
22872 for (i = 0; i < die->num_attrs; ++i)
22873 {
22874 print_spaces (indent, f);
22875 fprintf_unfiltered (f, " %s (%s) ",
22876 dwarf_attr_name (die->attrs[i].name),
22877 dwarf_form_name (die->attrs[i].form));
22878
22879 switch (die->attrs[i].form)
22880 {
22881 case DW_FORM_addr:
22882 case DW_FORM_addrx:
22883 case DW_FORM_GNU_addr_index:
22884 fprintf_unfiltered (f, "address: ");
22885 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22886 break;
22887 case DW_FORM_block2:
22888 case DW_FORM_block4:
22889 case DW_FORM_block:
22890 case DW_FORM_block1:
22891 fprintf_unfiltered (f, "block: size %s",
22892 pulongest (DW_BLOCK (&die->attrs[i])->size));
22893 break;
22894 case DW_FORM_exprloc:
22895 fprintf_unfiltered (f, "expression: size %s",
22896 pulongest (DW_BLOCK (&die->attrs[i])->size));
22897 break;
22898 case DW_FORM_data16:
22899 fprintf_unfiltered (f, "constant of 16 bytes");
22900 break;
22901 case DW_FORM_ref_addr:
22902 fprintf_unfiltered (f, "ref address: ");
22903 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22904 break;
22905 case DW_FORM_GNU_ref_alt:
22906 fprintf_unfiltered (f, "alt ref address: ");
22907 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22908 break;
22909 case DW_FORM_ref1:
22910 case DW_FORM_ref2:
22911 case DW_FORM_ref4:
22912 case DW_FORM_ref8:
22913 case DW_FORM_ref_udata:
22914 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22915 (long) (DW_UNSND (&die->attrs[i])));
22916 break;
22917 case DW_FORM_data1:
22918 case DW_FORM_data2:
22919 case DW_FORM_data4:
22920 case DW_FORM_data8:
22921 case DW_FORM_udata:
22922 case DW_FORM_sdata:
22923 fprintf_unfiltered (f, "constant: %s",
22924 pulongest (DW_UNSND (&die->attrs[i])));
22925 break;
22926 case DW_FORM_sec_offset:
22927 fprintf_unfiltered (f, "section offset: %s",
22928 pulongest (DW_UNSND (&die->attrs[i])));
22929 break;
22930 case DW_FORM_ref_sig8:
22931 fprintf_unfiltered (f, "signature: %s",
22932 hex_string (DW_SIGNATURE (&die->attrs[i])));
22933 break;
22934 case DW_FORM_string:
22935 case DW_FORM_strp:
22936 case DW_FORM_line_strp:
22937 case DW_FORM_strx:
22938 case DW_FORM_GNU_str_index:
22939 case DW_FORM_GNU_strp_alt:
22940 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22941 DW_STRING (&die->attrs[i])
22942 ? DW_STRING (&die->attrs[i]) : "",
22943 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22944 break;
22945 case DW_FORM_flag:
22946 if (DW_UNSND (&die->attrs[i]))
22947 fprintf_unfiltered (f, "flag: TRUE");
22948 else
22949 fprintf_unfiltered (f, "flag: FALSE");
22950 break;
22951 case DW_FORM_flag_present:
22952 fprintf_unfiltered (f, "flag: TRUE");
22953 break;
22954 case DW_FORM_indirect:
22955 /* The reader will have reduced the indirect form to
22956 the "base form" so this form should not occur. */
22957 fprintf_unfiltered (f,
22958 "unexpected attribute form: DW_FORM_indirect");
22959 break;
22960 case DW_FORM_implicit_const:
22961 fprintf_unfiltered (f, "constant: %s",
22962 plongest (DW_SND (&die->attrs[i])));
22963 break;
22964 default:
22965 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22966 die->attrs[i].form);
22967 break;
22968 }
22969 fprintf_unfiltered (f, "\n");
22970 }
22971 }
22972
22973 static void
22974 dump_die_for_error (struct die_info *die)
22975 {
22976 dump_die_shallow (gdb_stderr, 0, die);
22977 }
22978
22979 static void
22980 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22981 {
22982 int indent = level * 4;
22983
22984 gdb_assert (die != NULL);
22985
22986 if (level >= max_level)
22987 return;
22988
22989 dump_die_shallow (f, indent, die);
22990
22991 if (die->child != NULL)
22992 {
22993 print_spaces (indent, f);
22994 fprintf_unfiltered (f, " Children:");
22995 if (level + 1 < max_level)
22996 {
22997 fprintf_unfiltered (f, "\n");
22998 dump_die_1 (f, level + 1, max_level, die->child);
22999 }
23000 else
23001 {
23002 fprintf_unfiltered (f,
23003 " [not printed, max nesting level reached]\n");
23004 }
23005 }
23006
23007 if (die->sibling != NULL && level > 0)
23008 {
23009 dump_die_1 (f, level, max_level, die->sibling);
23010 }
23011 }
23012
23013 /* This is called from the pdie macro in gdbinit.in.
23014 It's not static so gcc will keep a copy callable from gdb. */
23015
23016 void
23017 dump_die (struct die_info *die, int max_level)
23018 {
23019 dump_die_1 (gdb_stdlog, 0, max_level, die);
23020 }
23021
23022 static void
23023 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23024 {
23025 void **slot;
23026
23027 slot = htab_find_slot_with_hash (cu->die_hash, die,
23028 to_underlying (die->sect_off),
23029 INSERT);
23030
23031 *slot = die;
23032 }
23033
23034 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23035 required kind. */
23036
23037 static sect_offset
23038 dwarf2_get_ref_die_offset (const struct attribute *attr)
23039 {
23040 if (attr_form_is_ref (attr))
23041 return (sect_offset) DW_UNSND (attr);
23042
23043 complaint (_("unsupported die ref attribute form: '%s'"),
23044 dwarf_form_name (attr->form));
23045 return {};
23046 }
23047
23048 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23049 * the value held by the attribute is not constant. */
23050
23051 static LONGEST
23052 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23053 {
23054 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23055 return DW_SND (attr);
23056 else if (attr->form == DW_FORM_udata
23057 || attr->form == DW_FORM_data1
23058 || attr->form == DW_FORM_data2
23059 || attr->form == DW_FORM_data4
23060 || attr->form == DW_FORM_data8)
23061 return DW_UNSND (attr);
23062 else
23063 {
23064 /* For DW_FORM_data16 see attr_form_is_constant. */
23065 complaint (_("Attribute value is not a constant (%s)"),
23066 dwarf_form_name (attr->form));
23067 return default_value;
23068 }
23069 }
23070
23071 /* Follow reference or signature attribute ATTR of SRC_DIE.
23072 On entry *REF_CU is the CU of SRC_DIE.
23073 On exit *REF_CU is the CU of the result. */
23074
23075 static struct die_info *
23076 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23077 struct dwarf2_cu **ref_cu)
23078 {
23079 struct die_info *die;
23080
23081 if (attr_form_is_ref (attr))
23082 die = follow_die_ref (src_die, attr, ref_cu);
23083 else if (attr->form == DW_FORM_ref_sig8)
23084 die = follow_die_sig (src_die, attr, ref_cu);
23085 else
23086 {
23087 dump_die_for_error (src_die);
23088 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23089 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23090 }
23091
23092 return die;
23093 }
23094
23095 /* Follow reference OFFSET.
23096 On entry *REF_CU is the CU of the source die referencing OFFSET.
23097 On exit *REF_CU is the CU of the result.
23098 Returns NULL if OFFSET is invalid. */
23099
23100 static struct die_info *
23101 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23102 struct dwarf2_cu **ref_cu)
23103 {
23104 struct die_info temp_die;
23105 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23106 struct dwarf2_per_objfile *dwarf2_per_objfile
23107 = cu->per_cu->dwarf2_per_objfile;
23108
23109 gdb_assert (cu->per_cu != NULL);
23110
23111 target_cu = cu;
23112
23113 if (cu->per_cu->is_debug_types)
23114 {
23115 /* .debug_types CUs cannot reference anything outside their CU.
23116 If they need to, they have to reference a signatured type via
23117 DW_FORM_ref_sig8. */
23118 if (!offset_in_cu_p (&cu->header, sect_off))
23119 return NULL;
23120 }
23121 else if (offset_in_dwz != cu->per_cu->is_dwz
23122 || !offset_in_cu_p (&cu->header, sect_off))
23123 {
23124 struct dwarf2_per_cu_data *per_cu;
23125
23126 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23127 dwarf2_per_objfile);
23128
23129 /* If necessary, add it to the queue and load its DIEs. */
23130 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23131 load_full_comp_unit (per_cu, false, cu->language);
23132
23133 target_cu = per_cu->cu;
23134 }
23135 else if (cu->dies == NULL)
23136 {
23137 /* We're loading full DIEs during partial symbol reading. */
23138 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23139 load_full_comp_unit (cu->per_cu, false, language_minimal);
23140 }
23141
23142 *ref_cu = target_cu;
23143 temp_die.sect_off = sect_off;
23144
23145 if (target_cu != cu)
23146 target_cu->ancestor = cu;
23147
23148 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23149 &temp_die,
23150 to_underlying (sect_off));
23151 }
23152
23153 /* Follow reference attribute ATTR of SRC_DIE.
23154 On entry *REF_CU is the CU of SRC_DIE.
23155 On exit *REF_CU is the CU of the result. */
23156
23157 static struct die_info *
23158 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23159 struct dwarf2_cu **ref_cu)
23160 {
23161 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23162 struct dwarf2_cu *cu = *ref_cu;
23163 struct die_info *die;
23164
23165 die = follow_die_offset (sect_off,
23166 (attr->form == DW_FORM_GNU_ref_alt
23167 || cu->per_cu->is_dwz),
23168 ref_cu);
23169 if (!die)
23170 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23171 "at %s [in module %s]"),
23172 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23173 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23174
23175 return die;
23176 }
23177
23178 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23179 Returned value is intended for DW_OP_call*. Returned
23180 dwarf2_locexpr_baton->data has lifetime of
23181 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23182
23183 struct dwarf2_locexpr_baton
23184 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23185 struct dwarf2_per_cu_data *per_cu,
23186 CORE_ADDR (*get_frame_pc) (void *baton),
23187 void *baton, bool resolve_abstract_p)
23188 {
23189 struct dwarf2_cu *cu;
23190 struct die_info *die;
23191 struct attribute *attr;
23192 struct dwarf2_locexpr_baton retval;
23193 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23194 struct objfile *objfile = dwarf2_per_objfile->objfile;
23195
23196 if (per_cu->cu == NULL)
23197 load_cu (per_cu, false);
23198 cu = per_cu->cu;
23199 if (cu == NULL)
23200 {
23201 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23202 Instead just throw an error, not much else we can do. */
23203 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23204 sect_offset_str (sect_off), objfile_name (objfile));
23205 }
23206
23207 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23208 if (!die)
23209 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23210 sect_offset_str (sect_off), objfile_name (objfile));
23211
23212 attr = dwarf2_attr (die, DW_AT_location, cu);
23213 if (!attr && resolve_abstract_p
23214 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23215 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23216 {
23217 CORE_ADDR pc = (*get_frame_pc) (baton);
23218
23219 for (const auto &cand_off
23220 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23221 {
23222 struct dwarf2_cu *cand_cu = cu;
23223 struct die_info *cand
23224 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23225 if (!cand
23226 || !cand->parent
23227 || cand->parent->tag != DW_TAG_subprogram)
23228 continue;
23229
23230 CORE_ADDR pc_low, pc_high;
23231 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23232 if (pc_low == ((CORE_ADDR) -1)
23233 || !(pc_low <= pc && pc < pc_high))
23234 continue;
23235
23236 die = cand;
23237 attr = dwarf2_attr (die, DW_AT_location, cu);
23238 break;
23239 }
23240 }
23241
23242 if (!attr)
23243 {
23244 /* DWARF: "If there is no such attribute, then there is no effect.".
23245 DATA is ignored if SIZE is 0. */
23246
23247 retval.data = NULL;
23248 retval.size = 0;
23249 }
23250 else if (attr_form_is_section_offset (attr))
23251 {
23252 struct dwarf2_loclist_baton loclist_baton;
23253 CORE_ADDR pc = (*get_frame_pc) (baton);
23254 size_t size;
23255
23256 fill_in_loclist_baton (cu, &loclist_baton, attr);
23257
23258 retval.data = dwarf2_find_location_expression (&loclist_baton,
23259 &size, pc);
23260 retval.size = size;
23261 }
23262 else
23263 {
23264 if (!attr_form_is_block (attr))
23265 error (_("Dwarf Error: DIE at %s referenced in module %s "
23266 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23267 sect_offset_str (sect_off), objfile_name (objfile));
23268
23269 retval.data = DW_BLOCK (attr)->data;
23270 retval.size = DW_BLOCK (attr)->size;
23271 }
23272 retval.per_cu = cu->per_cu;
23273
23274 age_cached_comp_units (dwarf2_per_objfile);
23275
23276 return retval;
23277 }
23278
23279 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23280 offset. */
23281
23282 struct dwarf2_locexpr_baton
23283 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23284 struct dwarf2_per_cu_data *per_cu,
23285 CORE_ADDR (*get_frame_pc) (void *baton),
23286 void *baton)
23287 {
23288 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23289
23290 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23291 }
23292
23293 /* Write a constant of a given type as target-ordered bytes into
23294 OBSTACK. */
23295
23296 static const gdb_byte *
23297 write_constant_as_bytes (struct obstack *obstack,
23298 enum bfd_endian byte_order,
23299 struct type *type,
23300 ULONGEST value,
23301 LONGEST *len)
23302 {
23303 gdb_byte *result;
23304
23305 *len = TYPE_LENGTH (type);
23306 result = (gdb_byte *) obstack_alloc (obstack, *len);
23307 store_unsigned_integer (result, *len, byte_order, value);
23308
23309 return result;
23310 }
23311
23312 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23313 pointer to the constant bytes and set LEN to the length of the
23314 data. If memory is needed, allocate it on OBSTACK. If the DIE
23315 does not have a DW_AT_const_value, return NULL. */
23316
23317 const gdb_byte *
23318 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23319 struct dwarf2_per_cu_data *per_cu,
23320 struct obstack *obstack,
23321 LONGEST *len)
23322 {
23323 struct dwarf2_cu *cu;
23324 struct die_info *die;
23325 struct attribute *attr;
23326 const gdb_byte *result = NULL;
23327 struct type *type;
23328 LONGEST value;
23329 enum bfd_endian byte_order;
23330 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23331
23332 if (per_cu->cu == NULL)
23333 load_cu (per_cu, false);
23334 cu = per_cu->cu;
23335 if (cu == NULL)
23336 {
23337 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23338 Instead just throw an error, not much else we can do. */
23339 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23340 sect_offset_str (sect_off), objfile_name (objfile));
23341 }
23342
23343 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23344 if (!die)
23345 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23346 sect_offset_str (sect_off), objfile_name (objfile));
23347
23348 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23349 if (attr == NULL)
23350 return NULL;
23351
23352 byte_order = (bfd_big_endian (objfile->obfd)
23353 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23354
23355 switch (attr->form)
23356 {
23357 case DW_FORM_addr:
23358 case DW_FORM_addrx:
23359 case DW_FORM_GNU_addr_index:
23360 {
23361 gdb_byte *tem;
23362
23363 *len = cu->header.addr_size;
23364 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23365 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23366 result = tem;
23367 }
23368 break;
23369 case DW_FORM_string:
23370 case DW_FORM_strp:
23371 case DW_FORM_strx:
23372 case DW_FORM_GNU_str_index:
23373 case DW_FORM_GNU_strp_alt:
23374 /* DW_STRING is already allocated on the objfile obstack, point
23375 directly to it. */
23376 result = (const gdb_byte *) DW_STRING (attr);
23377 *len = strlen (DW_STRING (attr));
23378 break;
23379 case DW_FORM_block1:
23380 case DW_FORM_block2:
23381 case DW_FORM_block4:
23382 case DW_FORM_block:
23383 case DW_FORM_exprloc:
23384 case DW_FORM_data16:
23385 result = DW_BLOCK (attr)->data;
23386 *len = DW_BLOCK (attr)->size;
23387 break;
23388
23389 /* The DW_AT_const_value attributes are supposed to carry the
23390 symbol's value "represented as it would be on the target
23391 architecture." By the time we get here, it's already been
23392 converted to host endianness, so we just need to sign- or
23393 zero-extend it as appropriate. */
23394 case DW_FORM_data1:
23395 type = die_type (die, cu);
23396 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23397 if (result == NULL)
23398 result = write_constant_as_bytes (obstack, byte_order,
23399 type, value, len);
23400 break;
23401 case DW_FORM_data2:
23402 type = die_type (die, cu);
23403 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23404 if (result == NULL)
23405 result = write_constant_as_bytes (obstack, byte_order,
23406 type, value, len);
23407 break;
23408 case DW_FORM_data4:
23409 type = die_type (die, cu);
23410 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23411 if (result == NULL)
23412 result = write_constant_as_bytes (obstack, byte_order,
23413 type, value, len);
23414 break;
23415 case DW_FORM_data8:
23416 type = die_type (die, cu);
23417 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23418 if (result == NULL)
23419 result = write_constant_as_bytes (obstack, byte_order,
23420 type, value, len);
23421 break;
23422
23423 case DW_FORM_sdata:
23424 case DW_FORM_implicit_const:
23425 type = die_type (die, cu);
23426 result = write_constant_as_bytes (obstack, byte_order,
23427 type, DW_SND (attr), len);
23428 break;
23429
23430 case DW_FORM_udata:
23431 type = die_type (die, cu);
23432 result = write_constant_as_bytes (obstack, byte_order,
23433 type, DW_UNSND (attr), len);
23434 break;
23435
23436 default:
23437 complaint (_("unsupported const value attribute form: '%s'"),
23438 dwarf_form_name (attr->form));
23439 break;
23440 }
23441
23442 return result;
23443 }
23444
23445 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23446 valid type for this die is found. */
23447
23448 struct type *
23449 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23450 struct dwarf2_per_cu_data *per_cu)
23451 {
23452 struct dwarf2_cu *cu;
23453 struct die_info *die;
23454
23455 if (per_cu->cu == NULL)
23456 load_cu (per_cu, false);
23457 cu = per_cu->cu;
23458 if (!cu)
23459 return NULL;
23460
23461 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23462 if (!die)
23463 return NULL;
23464
23465 return die_type (die, cu);
23466 }
23467
23468 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23469 PER_CU. */
23470
23471 struct type *
23472 dwarf2_get_die_type (cu_offset die_offset,
23473 struct dwarf2_per_cu_data *per_cu)
23474 {
23475 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23476 return get_die_type_at_offset (die_offset_sect, per_cu);
23477 }
23478
23479 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23480 On entry *REF_CU is the CU of SRC_DIE.
23481 On exit *REF_CU is the CU of the result.
23482 Returns NULL if the referenced DIE isn't found. */
23483
23484 static struct die_info *
23485 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23486 struct dwarf2_cu **ref_cu)
23487 {
23488 struct die_info temp_die;
23489 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23490 struct die_info *die;
23491
23492 /* While it might be nice to assert sig_type->type == NULL here,
23493 we can get here for DW_AT_imported_declaration where we need
23494 the DIE not the type. */
23495
23496 /* If necessary, add it to the queue and load its DIEs. */
23497
23498 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23499 read_signatured_type (sig_type);
23500
23501 sig_cu = sig_type->per_cu.cu;
23502 gdb_assert (sig_cu != NULL);
23503 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23504 temp_die.sect_off = sig_type->type_offset_in_section;
23505 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23506 to_underlying (temp_die.sect_off));
23507 if (die)
23508 {
23509 struct dwarf2_per_objfile *dwarf2_per_objfile
23510 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23511
23512 /* For .gdb_index version 7 keep track of included TUs.
23513 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23514 if (dwarf2_per_objfile->index_table != NULL
23515 && dwarf2_per_objfile->index_table->version <= 7)
23516 {
23517 VEC_safe_push (dwarf2_per_cu_ptr,
23518 (*ref_cu)->per_cu->imported_symtabs,
23519 sig_cu->per_cu);
23520 }
23521
23522 *ref_cu = sig_cu;
23523 if (sig_cu != cu)
23524 sig_cu->ancestor = cu;
23525
23526 return die;
23527 }
23528
23529 return NULL;
23530 }
23531
23532 /* Follow signatured type referenced by ATTR in SRC_DIE.
23533 On entry *REF_CU is the CU of SRC_DIE.
23534 On exit *REF_CU is the CU of the result.
23535 The result is the DIE of the type.
23536 If the referenced type cannot be found an error is thrown. */
23537
23538 static struct die_info *
23539 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23540 struct dwarf2_cu **ref_cu)
23541 {
23542 ULONGEST signature = DW_SIGNATURE (attr);
23543 struct signatured_type *sig_type;
23544 struct die_info *die;
23545
23546 gdb_assert (attr->form == DW_FORM_ref_sig8);
23547
23548 sig_type = lookup_signatured_type (*ref_cu, signature);
23549 /* sig_type will be NULL if the signatured type is missing from
23550 the debug info. */
23551 if (sig_type == NULL)
23552 {
23553 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23554 " from DIE at %s [in module %s]"),
23555 hex_string (signature), sect_offset_str (src_die->sect_off),
23556 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23557 }
23558
23559 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23560 if (die == NULL)
23561 {
23562 dump_die_for_error (src_die);
23563 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23564 " from DIE at %s [in module %s]"),
23565 hex_string (signature), sect_offset_str (src_die->sect_off),
23566 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23567 }
23568
23569 return die;
23570 }
23571
23572 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23573 reading in and processing the type unit if necessary. */
23574
23575 static struct type *
23576 get_signatured_type (struct die_info *die, ULONGEST signature,
23577 struct dwarf2_cu *cu)
23578 {
23579 struct dwarf2_per_objfile *dwarf2_per_objfile
23580 = cu->per_cu->dwarf2_per_objfile;
23581 struct signatured_type *sig_type;
23582 struct dwarf2_cu *type_cu;
23583 struct die_info *type_die;
23584 struct type *type;
23585
23586 sig_type = lookup_signatured_type (cu, signature);
23587 /* sig_type will be NULL if the signatured type is missing from
23588 the debug info. */
23589 if (sig_type == NULL)
23590 {
23591 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23592 " from DIE at %s [in module %s]"),
23593 hex_string (signature), sect_offset_str (die->sect_off),
23594 objfile_name (dwarf2_per_objfile->objfile));
23595 return build_error_marker_type (cu, die);
23596 }
23597
23598 /* If we already know the type we're done. */
23599 if (sig_type->type != NULL)
23600 return sig_type->type;
23601
23602 type_cu = cu;
23603 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23604 if (type_die != NULL)
23605 {
23606 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23607 is created. This is important, for example, because for c++ classes
23608 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23609 type = read_type_die (type_die, type_cu);
23610 if (type == NULL)
23611 {
23612 complaint (_("Dwarf Error: Cannot build signatured type %s"
23613 " referenced from DIE at %s [in module %s]"),
23614 hex_string (signature), sect_offset_str (die->sect_off),
23615 objfile_name (dwarf2_per_objfile->objfile));
23616 type = build_error_marker_type (cu, die);
23617 }
23618 }
23619 else
23620 {
23621 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23622 " from DIE at %s [in module %s]"),
23623 hex_string (signature), sect_offset_str (die->sect_off),
23624 objfile_name (dwarf2_per_objfile->objfile));
23625 type = build_error_marker_type (cu, die);
23626 }
23627 sig_type->type = type;
23628
23629 return type;
23630 }
23631
23632 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23633 reading in and processing the type unit if necessary. */
23634
23635 static struct type *
23636 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23637 struct dwarf2_cu *cu) /* ARI: editCase function */
23638 {
23639 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23640 if (attr_form_is_ref (attr))
23641 {
23642 struct dwarf2_cu *type_cu = cu;
23643 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23644
23645 return read_type_die (type_die, type_cu);
23646 }
23647 else if (attr->form == DW_FORM_ref_sig8)
23648 {
23649 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23650 }
23651 else
23652 {
23653 struct dwarf2_per_objfile *dwarf2_per_objfile
23654 = cu->per_cu->dwarf2_per_objfile;
23655
23656 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23657 " at %s [in module %s]"),
23658 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23659 objfile_name (dwarf2_per_objfile->objfile));
23660 return build_error_marker_type (cu, die);
23661 }
23662 }
23663
23664 /* Load the DIEs associated with type unit PER_CU into memory. */
23665
23666 static void
23667 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23668 {
23669 struct signatured_type *sig_type;
23670
23671 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23672 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23673
23674 /* We have the per_cu, but we need the signatured_type.
23675 Fortunately this is an easy translation. */
23676 gdb_assert (per_cu->is_debug_types);
23677 sig_type = (struct signatured_type *) per_cu;
23678
23679 gdb_assert (per_cu->cu == NULL);
23680
23681 read_signatured_type (sig_type);
23682
23683 gdb_assert (per_cu->cu != NULL);
23684 }
23685
23686 /* die_reader_func for read_signatured_type.
23687 This is identical to load_full_comp_unit_reader,
23688 but is kept separate for now. */
23689
23690 static void
23691 read_signatured_type_reader (const struct die_reader_specs *reader,
23692 const gdb_byte *info_ptr,
23693 struct die_info *comp_unit_die,
23694 int has_children,
23695 void *data)
23696 {
23697 struct dwarf2_cu *cu = reader->cu;
23698
23699 gdb_assert (cu->die_hash == NULL);
23700 cu->die_hash =
23701 htab_create_alloc_ex (cu->header.length / 12,
23702 die_hash,
23703 die_eq,
23704 NULL,
23705 &cu->comp_unit_obstack,
23706 hashtab_obstack_allocate,
23707 dummy_obstack_deallocate);
23708
23709 if (has_children)
23710 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23711 &info_ptr, comp_unit_die);
23712 cu->dies = comp_unit_die;
23713 /* comp_unit_die is not stored in die_hash, no need. */
23714
23715 /* We try not to read any attributes in this function, because not
23716 all CUs needed for references have been loaded yet, and symbol
23717 table processing isn't initialized. But we have to set the CU language,
23718 or we won't be able to build types correctly.
23719 Similarly, if we do not read the producer, we can not apply
23720 producer-specific interpretation. */
23721 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23722 }
23723
23724 /* Read in a signatured type and build its CU and DIEs.
23725 If the type is a stub for the real type in a DWO file,
23726 read in the real type from the DWO file as well. */
23727
23728 static void
23729 read_signatured_type (struct signatured_type *sig_type)
23730 {
23731 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23732
23733 gdb_assert (per_cu->is_debug_types);
23734 gdb_assert (per_cu->cu == NULL);
23735
23736 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23737 read_signatured_type_reader, NULL);
23738 sig_type->per_cu.tu_read = 1;
23739 }
23740
23741 /* Decode simple location descriptions.
23742 Given a pointer to a dwarf block that defines a location, compute
23743 the location and return the value.
23744
23745 NOTE drow/2003-11-18: This function is called in two situations
23746 now: for the address of static or global variables (partial symbols
23747 only) and for offsets into structures which are expected to be
23748 (more or less) constant. The partial symbol case should go away,
23749 and only the constant case should remain. That will let this
23750 function complain more accurately. A few special modes are allowed
23751 without complaint for global variables (for instance, global
23752 register values and thread-local values).
23753
23754 A location description containing no operations indicates that the
23755 object is optimized out. The return value is 0 for that case.
23756 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23757 callers will only want a very basic result and this can become a
23758 complaint.
23759
23760 Note that stack[0] is unused except as a default error return. */
23761
23762 static CORE_ADDR
23763 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23764 {
23765 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23766 size_t i;
23767 size_t size = blk->size;
23768 const gdb_byte *data = blk->data;
23769 CORE_ADDR stack[64];
23770 int stacki;
23771 unsigned int bytes_read, unsnd;
23772 gdb_byte op;
23773
23774 i = 0;
23775 stacki = 0;
23776 stack[stacki] = 0;
23777 stack[++stacki] = 0;
23778
23779 while (i < size)
23780 {
23781 op = data[i++];
23782 switch (op)
23783 {
23784 case DW_OP_lit0:
23785 case DW_OP_lit1:
23786 case DW_OP_lit2:
23787 case DW_OP_lit3:
23788 case DW_OP_lit4:
23789 case DW_OP_lit5:
23790 case DW_OP_lit6:
23791 case DW_OP_lit7:
23792 case DW_OP_lit8:
23793 case DW_OP_lit9:
23794 case DW_OP_lit10:
23795 case DW_OP_lit11:
23796 case DW_OP_lit12:
23797 case DW_OP_lit13:
23798 case DW_OP_lit14:
23799 case DW_OP_lit15:
23800 case DW_OP_lit16:
23801 case DW_OP_lit17:
23802 case DW_OP_lit18:
23803 case DW_OP_lit19:
23804 case DW_OP_lit20:
23805 case DW_OP_lit21:
23806 case DW_OP_lit22:
23807 case DW_OP_lit23:
23808 case DW_OP_lit24:
23809 case DW_OP_lit25:
23810 case DW_OP_lit26:
23811 case DW_OP_lit27:
23812 case DW_OP_lit28:
23813 case DW_OP_lit29:
23814 case DW_OP_lit30:
23815 case DW_OP_lit31:
23816 stack[++stacki] = op - DW_OP_lit0;
23817 break;
23818
23819 case DW_OP_reg0:
23820 case DW_OP_reg1:
23821 case DW_OP_reg2:
23822 case DW_OP_reg3:
23823 case DW_OP_reg4:
23824 case DW_OP_reg5:
23825 case DW_OP_reg6:
23826 case DW_OP_reg7:
23827 case DW_OP_reg8:
23828 case DW_OP_reg9:
23829 case DW_OP_reg10:
23830 case DW_OP_reg11:
23831 case DW_OP_reg12:
23832 case DW_OP_reg13:
23833 case DW_OP_reg14:
23834 case DW_OP_reg15:
23835 case DW_OP_reg16:
23836 case DW_OP_reg17:
23837 case DW_OP_reg18:
23838 case DW_OP_reg19:
23839 case DW_OP_reg20:
23840 case DW_OP_reg21:
23841 case DW_OP_reg22:
23842 case DW_OP_reg23:
23843 case DW_OP_reg24:
23844 case DW_OP_reg25:
23845 case DW_OP_reg26:
23846 case DW_OP_reg27:
23847 case DW_OP_reg28:
23848 case DW_OP_reg29:
23849 case DW_OP_reg30:
23850 case DW_OP_reg31:
23851 stack[++stacki] = op - DW_OP_reg0;
23852 if (i < size)
23853 dwarf2_complex_location_expr_complaint ();
23854 break;
23855
23856 case DW_OP_regx:
23857 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23858 i += bytes_read;
23859 stack[++stacki] = unsnd;
23860 if (i < size)
23861 dwarf2_complex_location_expr_complaint ();
23862 break;
23863
23864 case DW_OP_addr:
23865 stack[++stacki] = read_address (objfile->obfd, &data[i],
23866 cu, &bytes_read);
23867 i += bytes_read;
23868 break;
23869
23870 case DW_OP_const1u:
23871 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23872 i += 1;
23873 break;
23874
23875 case DW_OP_const1s:
23876 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23877 i += 1;
23878 break;
23879
23880 case DW_OP_const2u:
23881 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23882 i += 2;
23883 break;
23884
23885 case DW_OP_const2s:
23886 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23887 i += 2;
23888 break;
23889
23890 case DW_OP_const4u:
23891 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23892 i += 4;
23893 break;
23894
23895 case DW_OP_const4s:
23896 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23897 i += 4;
23898 break;
23899
23900 case DW_OP_const8u:
23901 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23902 i += 8;
23903 break;
23904
23905 case DW_OP_constu:
23906 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23907 &bytes_read);
23908 i += bytes_read;
23909 break;
23910
23911 case DW_OP_consts:
23912 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23913 i += bytes_read;
23914 break;
23915
23916 case DW_OP_dup:
23917 stack[stacki + 1] = stack[stacki];
23918 stacki++;
23919 break;
23920
23921 case DW_OP_plus:
23922 stack[stacki - 1] += stack[stacki];
23923 stacki--;
23924 break;
23925
23926 case DW_OP_plus_uconst:
23927 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23928 &bytes_read);
23929 i += bytes_read;
23930 break;
23931
23932 case DW_OP_minus:
23933 stack[stacki - 1] -= stack[stacki];
23934 stacki--;
23935 break;
23936
23937 case DW_OP_deref:
23938 /* If we're not the last op, then we definitely can't encode
23939 this using GDB's address_class enum. This is valid for partial
23940 global symbols, although the variable's address will be bogus
23941 in the psymtab. */
23942 if (i < size)
23943 dwarf2_complex_location_expr_complaint ();
23944 break;
23945
23946 case DW_OP_GNU_push_tls_address:
23947 case DW_OP_form_tls_address:
23948 /* The top of the stack has the offset from the beginning
23949 of the thread control block at which the variable is located. */
23950 /* Nothing should follow this operator, so the top of stack would
23951 be returned. */
23952 /* This is valid for partial global symbols, but the variable's
23953 address will be bogus in the psymtab. Make it always at least
23954 non-zero to not look as a variable garbage collected by linker
23955 which have DW_OP_addr 0. */
23956 if (i < size)
23957 dwarf2_complex_location_expr_complaint ();
23958 stack[stacki]++;
23959 break;
23960
23961 case DW_OP_GNU_uninit:
23962 break;
23963
23964 case DW_OP_addrx:
23965 case DW_OP_GNU_addr_index:
23966 case DW_OP_GNU_const_index:
23967 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23968 &bytes_read);
23969 i += bytes_read;
23970 break;
23971
23972 default:
23973 {
23974 const char *name = get_DW_OP_name (op);
23975
23976 if (name)
23977 complaint (_("unsupported stack op: '%s'"),
23978 name);
23979 else
23980 complaint (_("unsupported stack op: '%02x'"),
23981 op);
23982 }
23983
23984 return (stack[stacki]);
23985 }
23986
23987 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23988 outside of the allocated space. Also enforce minimum>0. */
23989 if (stacki >= ARRAY_SIZE (stack) - 1)
23990 {
23991 complaint (_("location description stack overflow"));
23992 return 0;
23993 }
23994
23995 if (stacki <= 0)
23996 {
23997 complaint (_("location description stack underflow"));
23998 return 0;
23999 }
24000 }
24001 return (stack[stacki]);
24002 }
24003
24004 /* memory allocation interface */
24005
24006 static struct dwarf_block *
24007 dwarf_alloc_block (struct dwarf2_cu *cu)
24008 {
24009 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24010 }
24011
24012 static struct die_info *
24013 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24014 {
24015 struct die_info *die;
24016 size_t size = sizeof (struct die_info);
24017
24018 if (num_attrs > 1)
24019 size += (num_attrs - 1) * sizeof (struct attribute);
24020
24021 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24022 memset (die, 0, sizeof (struct die_info));
24023 return (die);
24024 }
24025
24026 \f
24027 /* Macro support. */
24028
24029 /* Return file name relative to the compilation directory of file number I in
24030 *LH's file name table. The result is allocated using xmalloc; the caller is
24031 responsible for freeing it. */
24032
24033 static char *
24034 file_file_name (int file, struct line_header *lh)
24035 {
24036 /* Is the file number a valid index into the line header's file name
24037 table? Remember that file numbers start with one, not zero. */
24038 if (1 <= file && file <= lh->file_names.size ())
24039 {
24040 const file_entry &fe = lh->file_names[file - 1];
24041
24042 if (!IS_ABSOLUTE_PATH (fe.name))
24043 {
24044 const char *dir = fe.include_dir (lh);
24045 if (dir != NULL)
24046 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24047 }
24048 return xstrdup (fe.name);
24049 }
24050 else
24051 {
24052 /* The compiler produced a bogus file number. We can at least
24053 record the macro definitions made in the file, even if we
24054 won't be able to find the file by name. */
24055 char fake_name[80];
24056
24057 xsnprintf (fake_name, sizeof (fake_name),
24058 "<bad macro file number %d>", file);
24059
24060 complaint (_("bad file number in macro information (%d)"),
24061 file);
24062
24063 return xstrdup (fake_name);
24064 }
24065 }
24066
24067 /* Return the full name of file number I in *LH's file name table.
24068 Use COMP_DIR as the name of the current directory of the
24069 compilation. The result is allocated using xmalloc; the caller is
24070 responsible for freeing it. */
24071 static char *
24072 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24073 {
24074 /* Is the file number a valid index into the line header's file name
24075 table? Remember that file numbers start with one, not zero. */
24076 if (1 <= file && file <= lh->file_names.size ())
24077 {
24078 char *relative = file_file_name (file, lh);
24079
24080 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24081 return relative;
24082 return reconcat (relative, comp_dir, SLASH_STRING,
24083 relative, (char *) NULL);
24084 }
24085 else
24086 return file_file_name (file, lh);
24087 }
24088
24089
24090 static struct macro_source_file *
24091 macro_start_file (struct dwarf2_cu *cu,
24092 int file, int line,
24093 struct macro_source_file *current_file,
24094 struct line_header *lh)
24095 {
24096 /* File name relative to the compilation directory of this source file. */
24097 char *file_name = file_file_name (file, lh);
24098
24099 if (! current_file)
24100 {
24101 /* Note: We don't create a macro table for this compilation unit
24102 at all until we actually get a filename. */
24103 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24104
24105 /* If we have no current file, then this must be the start_file
24106 directive for the compilation unit's main source file. */
24107 current_file = macro_set_main (macro_table, file_name);
24108 macro_define_special (macro_table);
24109 }
24110 else
24111 current_file = macro_include (current_file, line, file_name);
24112
24113 xfree (file_name);
24114
24115 return current_file;
24116 }
24117
24118 static const char *
24119 consume_improper_spaces (const char *p, const char *body)
24120 {
24121 if (*p == ' ')
24122 {
24123 complaint (_("macro definition contains spaces "
24124 "in formal argument list:\n`%s'"),
24125 body);
24126
24127 while (*p == ' ')
24128 p++;
24129 }
24130
24131 return p;
24132 }
24133
24134
24135 static void
24136 parse_macro_definition (struct macro_source_file *file, int line,
24137 const char *body)
24138 {
24139 const char *p;
24140
24141 /* The body string takes one of two forms. For object-like macro
24142 definitions, it should be:
24143
24144 <macro name> " " <definition>
24145
24146 For function-like macro definitions, it should be:
24147
24148 <macro name> "() " <definition>
24149 or
24150 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24151
24152 Spaces may appear only where explicitly indicated, and in the
24153 <definition>.
24154
24155 The Dwarf 2 spec says that an object-like macro's name is always
24156 followed by a space, but versions of GCC around March 2002 omit
24157 the space when the macro's definition is the empty string.
24158
24159 The Dwarf 2 spec says that there should be no spaces between the
24160 formal arguments in a function-like macro's formal argument list,
24161 but versions of GCC around March 2002 include spaces after the
24162 commas. */
24163
24164
24165 /* Find the extent of the macro name. The macro name is terminated
24166 by either a space or null character (for an object-like macro) or
24167 an opening paren (for a function-like macro). */
24168 for (p = body; *p; p++)
24169 if (*p == ' ' || *p == '(')
24170 break;
24171
24172 if (*p == ' ' || *p == '\0')
24173 {
24174 /* It's an object-like macro. */
24175 int name_len = p - body;
24176 char *name = savestring (body, name_len);
24177 const char *replacement;
24178
24179 if (*p == ' ')
24180 replacement = body + name_len + 1;
24181 else
24182 {
24183 dwarf2_macro_malformed_definition_complaint (body);
24184 replacement = body + name_len;
24185 }
24186
24187 macro_define_object (file, line, name, replacement);
24188
24189 xfree (name);
24190 }
24191 else if (*p == '(')
24192 {
24193 /* It's a function-like macro. */
24194 char *name = savestring (body, p - body);
24195 int argc = 0;
24196 int argv_size = 1;
24197 char **argv = XNEWVEC (char *, argv_size);
24198
24199 p++;
24200
24201 p = consume_improper_spaces (p, body);
24202
24203 /* Parse the formal argument list. */
24204 while (*p && *p != ')')
24205 {
24206 /* Find the extent of the current argument name. */
24207 const char *arg_start = p;
24208
24209 while (*p && *p != ',' && *p != ')' && *p != ' ')
24210 p++;
24211
24212 if (! *p || p == arg_start)
24213 dwarf2_macro_malformed_definition_complaint (body);
24214 else
24215 {
24216 /* Make sure argv has room for the new argument. */
24217 if (argc >= argv_size)
24218 {
24219 argv_size *= 2;
24220 argv = XRESIZEVEC (char *, argv, argv_size);
24221 }
24222
24223 argv[argc++] = savestring (arg_start, p - arg_start);
24224 }
24225
24226 p = consume_improper_spaces (p, body);
24227
24228 /* Consume the comma, if present. */
24229 if (*p == ',')
24230 {
24231 p++;
24232
24233 p = consume_improper_spaces (p, body);
24234 }
24235 }
24236
24237 if (*p == ')')
24238 {
24239 p++;
24240
24241 if (*p == ' ')
24242 /* Perfectly formed definition, no complaints. */
24243 macro_define_function (file, line, name,
24244 argc, (const char **) argv,
24245 p + 1);
24246 else if (*p == '\0')
24247 {
24248 /* Complain, but do define it. */
24249 dwarf2_macro_malformed_definition_complaint (body);
24250 macro_define_function (file, line, name,
24251 argc, (const char **) argv,
24252 p);
24253 }
24254 else
24255 /* Just complain. */
24256 dwarf2_macro_malformed_definition_complaint (body);
24257 }
24258 else
24259 /* Just complain. */
24260 dwarf2_macro_malformed_definition_complaint (body);
24261
24262 xfree (name);
24263 {
24264 int i;
24265
24266 for (i = 0; i < argc; i++)
24267 xfree (argv[i]);
24268 }
24269 xfree (argv);
24270 }
24271 else
24272 dwarf2_macro_malformed_definition_complaint (body);
24273 }
24274
24275 /* Skip some bytes from BYTES according to the form given in FORM.
24276 Returns the new pointer. */
24277
24278 static const gdb_byte *
24279 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24280 enum dwarf_form form,
24281 unsigned int offset_size,
24282 struct dwarf2_section_info *section)
24283 {
24284 unsigned int bytes_read;
24285
24286 switch (form)
24287 {
24288 case DW_FORM_data1:
24289 case DW_FORM_flag:
24290 ++bytes;
24291 break;
24292
24293 case DW_FORM_data2:
24294 bytes += 2;
24295 break;
24296
24297 case DW_FORM_data4:
24298 bytes += 4;
24299 break;
24300
24301 case DW_FORM_data8:
24302 bytes += 8;
24303 break;
24304
24305 case DW_FORM_data16:
24306 bytes += 16;
24307 break;
24308
24309 case DW_FORM_string:
24310 read_direct_string (abfd, bytes, &bytes_read);
24311 bytes += bytes_read;
24312 break;
24313
24314 case DW_FORM_sec_offset:
24315 case DW_FORM_strp:
24316 case DW_FORM_GNU_strp_alt:
24317 bytes += offset_size;
24318 break;
24319
24320 case DW_FORM_block:
24321 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24322 bytes += bytes_read;
24323 break;
24324
24325 case DW_FORM_block1:
24326 bytes += 1 + read_1_byte (abfd, bytes);
24327 break;
24328 case DW_FORM_block2:
24329 bytes += 2 + read_2_bytes (abfd, bytes);
24330 break;
24331 case DW_FORM_block4:
24332 bytes += 4 + read_4_bytes (abfd, bytes);
24333 break;
24334
24335 case DW_FORM_addrx:
24336 case DW_FORM_sdata:
24337 case DW_FORM_strx:
24338 case DW_FORM_udata:
24339 case DW_FORM_GNU_addr_index:
24340 case DW_FORM_GNU_str_index:
24341 bytes = gdb_skip_leb128 (bytes, buffer_end);
24342 if (bytes == NULL)
24343 {
24344 dwarf2_section_buffer_overflow_complaint (section);
24345 return NULL;
24346 }
24347 break;
24348
24349 case DW_FORM_implicit_const:
24350 break;
24351
24352 default:
24353 {
24354 complaint (_("invalid form 0x%x in `%s'"),
24355 form, get_section_name (section));
24356 return NULL;
24357 }
24358 }
24359
24360 return bytes;
24361 }
24362
24363 /* A helper for dwarf_decode_macros that handles skipping an unknown
24364 opcode. Returns an updated pointer to the macro data buffer; or,
24365 on error, issues a complaint and returns NULL. */
24366
24367 static const gdb_byte *
24368 skip_unknown_opcode (unsigned int opcode,
24369 const gdb_byte **opcode_definitions,
24370 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24371 bfd *abfd,
24372 unsigned int offset_size,
24373 struct dwarf2_section_info *section)
24374 {
24375 unsigned int bytes_read, i;
24376 unsigned long arg;
24377 const gdb_byte *defn;
24378
24379 if (opcode_definitions[opcode] == NULL)
24380 {
24381 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24382 opcode);
24383 return NULL;
24384 }
24385
24386 defn = opcode_definitions[opcode];
24387 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24388 defn += bytes_read;
24389
24390 for (i = 0; i < arg; ++i)
24391 {
24392 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24393 (enum dwarf_form) defn[i], offset_size,
24394 section);
24395 if (mac_ptr == NULL)
24396 {
24397 /* skip_form_bytes already issued the complaint. */
24398 return NULL;
24399 }
24400 }
24401
24402 return mac_ptr;
24403 }
24404
24405 /* A helper function which parses the header of a macro section.
24406 If the macro section is the extended (for now called "GNU") type,
24407 then this updates *OFFSET_SIZE. Returns a pointer to just after
24408 the header, or issues a complaint and returns NULL on error. */
24409
24410 static const gdb_byte *
24411 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24412 bfd *abfd,
24413 const gdb_byte *mac_ptr,
24414 unsigned int *offset_size,
24415 int section_is_gnu)
24416 {
24417 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24418
24419 if (section_is_gnu)
24420 {
24421 unsigned int version, flags;
24422
24423 version = read_2_bytes (abfd, mac_ptr);
24424 if (version != 4 && version != 5)
24425 {
24426 complaint (_("unrecognized version `%d' in .debug_macro section"),
24427 version);
24428 return NULL;
24429 }
24430 mac_ptr += 2;
24431
24432 flags = read_1_byte (abfd, mac_ptr);
24433 ++mac_ptr;
24434 *offset_size = (flags & 1) ? 8 : 4;
24435
24436 if ((flags & 2) != 0)
24437 /* We don't need the line table offset. */
24438 mac_ptr += *offset_size;
24439
24440 /* Vendor opcode descriptions. */
24441 if ((flags & 4) != 0)
24442 {
24443 unsigned int i, count;
24444
24445 count = read_1_byte (abfd, mac_ptr);
24446 ++mac_ptr;
24447 for (i = 0; i < count; ++i)
24448 {
24449 unsigned int opcode, bytes_read;
24450 unsigned long arg;
24451
24452 opcode = read_1_byte (abfd, mac_ptr);
24453 ++mac_ptr;
24454 opcode_definitions[opcode] = mac_ptr;
24455 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24456 mac_ptr += bytes_read;
24457 mac_ptr += arg;
24458 }
24459 }
24460 }
24461
24462 return mac_ptr;
24463 }
24464
24465 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24466 including DW_MACRO_import. */
24467
24468 static void
24469 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24470 bfd *abfd,
24471 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24472 struct macro_source_file *current_file,
24473 struct line_header *lh,
24474 struct dwarf2_section_info *section,
24475 int section_is_gnu, int section_is_dwz,
24476 unsigned int offset_size,
24477 htab_t include_hash)
24478 {
24479 struct dwarf2_per_objfile *dwarf2_per_objfile
24480 = cu->per_cu->dwarf2_per_objfile;
24481 struct objfile *objfile = dwarf2_per_objfile->objfile;
24482 enum dwarf_macro_record_type macinfo_type;
24483 int at_commandline;
24484 const gdb_byte *opcode_definitions[256];
24485
24486 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24487 &offset_size, section_is_gnu);
24488 if (mac_ptr == NULL)
24489 {
24490 /* We already issued a complaint. */
24491 return;
24492 }
24493
24494 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24495 GDB is still reading the definitions from command line. First
24496 DW_MACINFO_start_file will need to be ignored as it was already executed
24497 to create CURRENT_FILE for the main source holding also the command line
24498 definitions. On first met DW_MACINFO_start_file this flag is reset to
24499 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24500
24501 at_commandline = 1;
24502
24503 do
24504 {
24505 /* Do we at least have room for a macinfo type byte? */
24506 if (mac_ptr >= mac_end)
24507 {
24508 dwarf2_section_buffer_overflow_complaint (section);
24509 break;
24510 }
24511
24512 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24513 mac_ptr++;
24514
24515 /* Note that we rely on the fact that the corresponding GNU and
24516 DWARF constants are the same. */
24517 DIAGNOSTIC_PUSH
24518 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24519 switch (macinfo_type)
24520 {
24521 /* A zero macinfo type indicates the end of the macro
24522 information. */
24523 case 0:
24524 break;
24525
24526 case DW_MACRO_define:
24527 case DW_MACRO_undef:
24528 case DW_MACRO_define_strp:
24529 case DW_MACRO_undef_strp:
24530 case DW_MACRO_define_sup:
24531 case DW_MACRO_undef_sup:
24532 {
24533 unsigned int bytes_read;
24534 int line;
24535 const char *body;
24536 int is_define;
24537
24538 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24539 mac_ptr += bytes_read;
24540
24541 if (macinfo_type == DW_MACRO_define
24542 || macinfo_type == DW_MACRO_undef)
24543 {
24544 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24545 mac_ptr += bytes_read;
24546 }
24547 else
24548 {
24549 LONGEST str_offset;
24550
24551 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24552 mac_ptr += offset_size;
24553
24554 if (macinfo_type == DW_MACRO_define_sup
24555 || macinfo_type == DW_MACRO_undef_sup
24556 || section_is_dwz)
24557 {
24558 struct dwz_file *dwz
24559 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24560
24561 body = read_indirect_string_from_dwz (objfile,
24562 dwz, str_offset);
24563 }
24564 else
24565 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24566 abfd, str_offset);
24567 }
24568
24569 is_define = (macinfo_type == DW_MACRO_define
24570 || macinfo_type == DW_MACRO_define_strp
24571 || macinfo_type == DW_MACRO_define_sup);
24572 if (! current_file)
24573 {
24574 /* DWARF violation as no main source is present. */
24575 complaint (_("debug info with no main source gives macro %s "
24576 "on line %d: %s"),
24577 is_define ? _("definition") : _("undefinition"),
24578 line, body);
24579 break;
24580 }
24581 if ((line == 0 && !at_commandline)
24582 || (line != 0 && at_commandline))
24583 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24584 at_commandline ? _("command-line") : _("in-file"),
24585 is_define ? _("definition") : _("undefinition"),
24586 line == 0 ? _("zero") : _("non-zero"), line, body);
24587
24588 if (body == NULL)
24589 {
24590 /* Fedora's rpm-build's "debugedit" binary
24591 corrupted .debug_macro sections.
24592
24593 For more info, see
24594 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24595 complaint (_("debug info gives %s invalid macro %s "
24596 "without body (corrupted?) at line %d "
24597 "on file %s"),
24598 at_commandline ? _("command-line") : _("in-file"),
24599 is_define ? _("definition") : _("undefinition"),
24600 line, current_file->filename);
24601 }
24602 else if (is_define)
24603 parse_macro_definition (current_file, line, body);
24604 else
24605 {
24606 gdb_assert (macinfo_type == DW_MACRO_undef
24607 || macinfo_type == DW_MACRO_undef_strp
24608 || macinfo_type == DW_MACRO_undef_sup);
24609 macro_undef (current_file, line, body);
24610 }
24611 }
24612 break;
24613
24614 case DW_MACRO_start_file:
24615 {
24616 unsigned int bytes_read;
24617 int line, file;
24618
24619 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24620 mac_ptr += bytes_read;
24621 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24622 mac_ptr += bytes_read;
24623
24624 if ((line == 0 && !at_commandline)
24625 || (line != 0 && at_commandline))
24626 complaint (_("debug info gives source %d included "
24627 "from %s at %s line %d"),
24628 file, at_commandline ? _("command-line") : _("file"),
24629 line == 0 ? _("zero") : _("non-zero"), line);
24630
24631 if (at_commandline)
24632 {
24633 /* This DW_MACRO_start_file was executed in the
24634 pass one. */
24635 at_commandline = 0;
24636 }
24637 else
24638 current_file = macro_start_file (cu, file, line, current_file,
24639 lh);
24640 }
24641 break;
24642
24643 case DW_MACRO_end_file:
24644 if (! current_file)
24645 complaint (_("macro debug info has an unmatched "
24646 "`close_file' directive"));
24647 else
24648 {
24649 current_file = current_file->included_by;
24650 if (! current_file)
24651 {
24652 enum dwarf_macro_record_type next_type;
24653
24654 /* GCC circa March 2002 doesn't produce the zero
24655 type byte marking the end of the compilation
24656 unit. Complain if it's not there, but exit no
24657 matter what. */
24658
24659 /* Do we at least have room for a macinfo type byte? */
24660 if (mac_ptr >= mac_end)
24661 {
24662 dwarf2_section_buffer_overflow_complaint (section);
24663 return;
24664 }
24665
24666 /* We don't increment mac_ptr here, so this is just
24667 a look-ahead. */
24668 next_type
24669 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24670 mac_ptr);
24671 if (next_type != 0)
24672 complaint (_("no terminating 0-type entry for "
24673 "macros in `.debug_macinfo' section"));
24674
24675 return;
24676 }
24677 }
24678 break;
24679
24680 case DW_MACRO_import:
24681 case DW_MACRO_import_sup:
24682 {
24683 LONGEST offset;
24684 void **slot;
24685 bfd *include_bfd = abfd;
24686 struct dwarf2_section_info *include_section = section;
24687 const gdb_byte *include_mac_end = mac_end;
24688 int is_dwz = section_is_dwz;
24689 const gdb_byte *new_mac_ptr;
24690
24691 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24692 mac_ptr += offset_size;
24693
24694 if (macinfo_type == DW_MACRO_import_sup)
24695 {
24696 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24697
24698 dwarf2_read_section (objfile, &dwz->macro);
24699
24700 include_section = &dwz->macro;
24701 include_bfd = get_section_bfd_owner (include_section);
24702 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24703 is_dwz = 1;
24704 }
24705
24706 new_mac_ptr = include_section->buffer + offset;
24707 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24708
24709 if (*slot != NULL)
24710 {
24711 /* This has actually happened; see
24712 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24713 complaint (_("recursive DW_MACRO_import in "
24714 ".debug_macro section"));
24715 }
24716 else
24717 {
24718 *slot = (void *) new_mac_ptr;
24719
24720 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24721 include_mac_end, current_file, lh,
24722 section, section_is_gnu, is_dwz,
24723 offset_size, include_hash);
24724
24725 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24726 }
24727 }
24728 break;
24729
24730 case DW_MACINFO_vendor_ext:
24731 if (!section_is_gnu)
24732 {
24733 unsigned int bytes_read;
24734
24735 /* This reads the constant, but since we don't recognize
24736 any vendor extensions, we ignore it. */
24737 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24738 mac_ptr += bytes_read;
24739 read_direct_string (abfd, mac_ptr, &bytes_read);
24740 mac_ptr += bytes_read;
24741
24742 /* We don't recognize any vendor extensions. */
24743 break;
24744 }
24745 /* FALLTHROUGH */
24746
24747 default:
24748 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24749 mac_ptr, mac_end, abfd, offset_size,
24750 section);
24751 if (mac_ptr == NULL)
24752 return;
24753 break;
24754 }
24755 DIAGNOSTIC_POP
24756 } while (macinfo_type != 0);
24757 }
24758
24759 static void
24760 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24761 int section_is_gnu)
24762 {
24763 struct dwarf2_per_objfile *dwarf2_per_objfile
24764 = cu->per_cu->dwarf2_per_objfile;
24765 struct objfile *objfile = dwarf2_per_objfile->objfile;
24766 struct line_header *lh = cu->line_header;
24767 bfd *abfd;
24768 const gdb_byte *mac_ptr, *mac_end;
24769 struct macro_source_file *current_file = 0;
24770 enum dwarf_macro_record_type macinfo_type;
24771 unsigned int offset_size = cu->header.offset_size;
24772 const gdb_byte *opcode_definitions[256];
24773 void **slot;
24774 struct dwarf2_section_info *section;
24775 const char *section_name;
24776
24777 if (cu->dwo_unit != NULL)
24778 {
24779 if (section_is_gnu)
24780 {
24781 section = &cu->dwo_unit->dwo_file->sections.macro;
24782 section_name = ".debug_macro.dwo";
24783 }
24784 else
24785 {
24786 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24787 section_name = ".debug_macinfo.dwo";
24788 }
24789 }
24790 else
24791 {
24792 if (section_is_gnu)
24793 {
24794 section = &dwarf2_per_objfile->macro;
24795 section_name = ".debug_macro";
24796 }
24797 else
24798 {
24799 section = &dwarf2_per_objfile->macinfo;
24800 section_name = ".debug_macinfo";
24801 }
24802 }
24803
24804 dwarf2_read_section (objfile, section);
24805 if (section->buffer == NULL)
24806 {
24807 complaint (_("missing %s section"), section_name);
24808 return;
24809 }
24810 abfd = get_section_bfd_owner (section);
24811
24812 /* First pass: Find the name of the base filename.
24813 This filename is needed in order to process all macros whose definition
24814 (or undefinition) comes from the command line. These macros are defined
24815 before the first DW_MACINFO_start_file entry, and yet still need to be
24816 associated to the base file.
24817
24818 To determine the base file name, we scan the macro definitions until we
24819 reach the first DW_MACINFO_start_file entry. We then initialize
24820 CURRENT_FILE accordingly so that any macro definition found before the
24821 first DW_MACINFO_start_file can still be associated to the base file. */
24822
24823 mac_ptr = section->buffer + offset;
24824 mac_end = section->buffer + section->size;
24825
24826 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24827 &offset_size, section_is_gnu);
24828 if (mac_ptr == NULL)
24829 {
24830 /* We already issued a complaint. */
24831 return;
24832 }
24833
24834 do
24835 {
24836 /* Do we at least have room for a macinfo type byte? */
24837 if (mac_ptr >= mac_end)
24838 {
24839 /* Complaint is printed during the second pass as GDB will probably
24840 stop the first pass earlier upon finding
24841 DW_MACINFO_start_file. */
24842 break;
24843 }
24844
24845 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24846 mac_ptr++;
24847
24848 /* Note that we rely on the fact that the corresponding GNU and
24849 DWARF constants are the same. */
24850 DIAGNOSTIC_PUSH
24851 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24852 switch (macinfo_type)
24853 {
24854 /* A zero macinfo type indicates the end of the macro
24855 information. */
24856 case 0:
24857 break;
24858
24859 case DW_MACRO_define:
24860 case DW_MACRO_undef:
24861 /* Only skip the data by MAC_PTR. */
24862 {
24863 unsigned int bytes_read;
24864
24865 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24866 mac_ptr += bytes_read;
24867 read_direct_string (abfd, mac_ptr, &bytes_read);
24868 mac_ptr += bytes_read;
24869 }
24870 break;
24871
24872 case DW_MACRO_start_file:
24873 {
24874 unsigned int bytes_read;
24875 int line, file;
24876
24877 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24878 mac_ptr += bytes_read;
24879 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24880 mac_ptr += bytes_read;
24881
24882 current_file = macro_start_file (cu, file, line, current_file, lh);
24883 }
24884 break;
24885
24886 case DW_MACRO_end_file:
24887 /* No data to skip by MAC_PTR. */
24888 break;
24889
24890 case DW_MACRO_define_strp:
24891 case DW_MACRO_undef_strp:
24892 case DW_MACRO_define_sup:
24893 case DW_MACRO_undef_sup:
24894 {
24895 unsigned int bytes_read;
24896
24897 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24898 mac_ptr += bytes_read;
24899 mac_ptr += offset_size;
24900 }
24901 break;
24902
24903 case DW_MACRO_import:
24904 case DW_MACRO_import_sup:
24905 /* Note that, according to the spec, a transparent include
24906 chain cannot call DW_MACRO_start_file. So, we can just
24907 skip this opcode. */
24908 mac_ptr += offset_size;
24909 break;
24910
24911 case DW_MACINFO_vendor_ext:
24912 /* Only skip the data by MAC_PTR. */
24913 if (!section_is_gnu)
24914 {
24915 unsigned int bytes_read;
24916
24917 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24918 mac_ptr += bytes_read;
24919 read_direct_string (abfd, mac_ptr, &bytes_read);
24920 mac_ptr += bytes_read;
24921 }
24922 /* FALLTHROUGH */
24923
24924 default:
24925 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24926 mac_ptr, mac_end, abfd, offset_size,
24927 section);
24928 if (mac_ptr == NULL)
24929 return;
24930 break;
24931 }
24932 DIAGNOSTIC_POP
24933 } while (macinfo_type != 0 && current_file == NULL);
24934
24935 /* Second pass: Process all entries.
24936
24937 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24938 command-line macro definitions/undefinitions. This flag is unset when we
24939 reach the first DW_MACINFO_start_file entry. */
24940
24941 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24942 htab_eq_pointer,
24943 NULL, xcalloc, xfree));
24944 mac_ptr = section->buffer + offset;
24945 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24946 *slot = (void *) mac_ptr;
24947 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24948 current_file, lh, section,
24949 section_is_gnu, 0, offset_size,
24950 include_hash.get ());
24951 }
24952
24953 /* Check if the attribute's form is a DW_FORM_block*
24954 if so return true else false. */
24955
24956 static int
24957 attr_form_is_block (const struct attribute *attr)
24958 {
24959 return (attr == NULL ? 0 :
24960 attr->form == DW_FORM_block1
24961 || attr->form == DW_FORM_block2
24962 || attr->form == DW_FORM_block4
24963 || attr->form == DW_FORM_block
24964 || attr->form == DW_FORM_exprloc);
24965 }
24966
24967 /* Return non-zero if ATTR's value is a section offset --- classes
24968 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24969 You may use DW_UNSND (attr) to retrieve such offsets.
24970
24971 Section 7.5.4, "Attribute Encodings", explains that no attribute
24972 may have a value that belongs to more than one of these classes; it
24973 would be ambiguous if we did, because we use the same forms for all
24974 of them. */
24975
24976 static int
24977 attr_form_is_section_offset (const struct attribute *attr)
24978 {
24979 return (attr->form == DW_FORM_data4
24980 || attr->form == DW_FORM_data8
24981 || attr->form == DW_FORM_sec_offset);
24982 }
24983
24984 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24985 zero otherwise. When this function returns true, you can apply
24986 dwarf2_get_attr_constant_value to it.
24987
24988 However, note that for some attributes you must check
24989 attr_form_is_section_offset before using this test. DW_FORM_data4
24990 and DW_FORM_data8 are members of both the constant class, and of
24991 the classes that contain offsets into other debug sections
24992 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24993 that, if an attribute's can be either a constant or one of the
24994 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24995 taken as section offsets, not constants.
24996
24997 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24998 cannot handle that. */
24999
25000 static int
25001 attr_form_is_constant (const struct attribute *attr)
25002 {
25003 switch (attr->form)
25004 {
25005 case DW_FORM_sdata:
25006 case DW_FORM_udata:
25007 case DW_FORM_data1:
25008 case DW_FORM_data2:
25009 case DW_FORM_data4:
25010 case DW_FORM_data8:
25011 case DW_FORM_implicit_const:
25012 return 1;
25013 default:
25014 return 0;
25015 }
25016 }
25017
25018
25019 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25020 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25021
25022 static int
25023 attr_form_is_ref (const struct attribute *attr)
25024 {
25025 switch (attr->form)
25026 {
25027 case DW_FORM_ref_addr:
25028 case DW_FORM_ref1:
25029 case DW_FORM_ref2:
25030 case DW_FORM_ref4:
25031 case DW_FORM_ref8:
25032 case DW_FORM_ref_udata:
25033 case DW_FORM_GNU_ref_alt:
25034 return 1;
25035 default:
25036 return 0;
25037 }
25038 }
25039
25040 /* Return the .debug_loc section to use for CU.
25041 For DWO files use .debug_loc.dwo. */
25042
25043 static struct dwarf2_section_info *
25044 cu_debug_loc_section (struct dwarf2_cu *cu)
25045 {
25046 struct dwarf2_per_objfile *dwarf2_per_objfile
25047 = cu->per_cu->dwarf2_per_objfile;
25048
25049 if (cu->dwo_unit)
25050 {
25051 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25052
25053 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25054 }
25055 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25056 : &dwarf2_per_objfile->loc);
25057 }
25058
25059 /* A helper function that fills in a dwarf2_loclist_baton. */
25060
25061 static void
25062 fill_in_loclist_baton (struct dwarf2_cu *cu,
25063 struct dwarf2_loclist_baton *baton,
25064 const struct attribute *attr)
25065 {
25066 struct dwarf2_per_objfile *dwarf2_per_objfile
25067 = cu->per_cu->dwarf2_per_objfile;
25068 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25069
25070 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25071
25072 baton->per_cu = cu->per_cu;
25073 gdb_assert (baton->per_cu);
25074 /* We don't know how long the location list is, but make sure we
25075 don't run off the edge of the section. */
25076 baton->size = section->size - DW_UNSND (attr);
25077 baton->data = section->buffer + DW_UNSND (attr);
25078 baton->base_address = cu->base_address;
25079 baton->from_dwo = cu->dwo_unit != NULL;
25080 }
25081
25082 static void
25083 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25084 struct dwarf2_cu *cu, int is_block)
25085 {
25086 struct dwarf2_per_objfile *dwarf2_per_objfile
25087 = cu->per_cu->dwarf2_per_objfile;
25088 struct objfile *objfile = dwarf2_per_objfile->objfile;
25089 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25090
25091 if (attr_form_is_section_offset (attr)
25092 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25093 the section. If so, fall through to the complaint in the
25094 other branch. */
25095 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25096 {
25097 struct dwarf2_loclist_baton *baton;
25098
25099 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25100
25101 fill_in_loclist_baton (cu, baton, attr);
25102
25103 if (cu->base_known == 0)
25104 complaint (_("Location list used without "
25105 "specifying the CU base address."));
25106
25107 SYMBOL_ACLASS_INDEX (sym) = (is_block
25108 ? dwarf2_loclist_block_index
25109 : dwarf2_loclist_index);
25110 SYMBOL_LOCATION_BATON (sym) = baton;
25111 }
25112 else
25113 {
25114 struct dwarf2_locexpr_baton *baton;
25115
25116 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25117 baton->per_cu = cu->per_cu;
25118 gdb_assert (baton->per_cu);
25119
25120 if (attr_form_is_block (attr))
25121 {
25122 /* Note that we're just copying the block's data pointer
25123 here, not the actual data. We're still pointing into the
25124 info_buffer for SYM's objfile; right now we never release
25125 that buffer, but when we do clean up properly this may
25126 need to change. */
25127 baton->size = DW_BLOCK (attr)->size;
25128 baton->data = DW_BLOCK (attr)->data;
25129 }
25130 else
25131 {
25132 dwarf2_invalid_attrib_class_complaint ("location description",
25133 SYMBOL_NATURAL_NAME (sym));
25134 baton->size = 0;
25135 }
25136
25137 SYMBOL_ACLASS_INDEX (sym) = (is_block
25138 ? dwarf2_locexpr_block_index
25139 : dwarf2_locexpr_index);
25140 SYMBOL_LOCATION_BATON (sym) = baton;
25141 }
25142 }
25143
25144 /* Return the OBJFILE associated with the compilation unit CU. If CU
25145 came from a separate debuginfo file, then the master objfile is
25146 returned. */
25147
25148 struct objfile *
25149 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25150 {
25151 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25152
25153 /* Return the master objfile, so that we can report and look up the
25154 correct file containing this variable. */
25155 if (objfile->separate_debug_objfile_backlink)
25156 objfile = objfile->separate_debug_objfile_backlink;
25157
25158 return objfile;
25159 }
25160
25161 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25162 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25163 CU_HEADERP first. */
25164
25165 static const struct comp_unit_head *
25166 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25167 struct dwarf2_per_cu_data *per_cu)
25168 {
25169 const gdb_byte *info_ptr;
25170
25171 if (per_cu->cu)
25172 return &per_cu->cu->header;
25173
25174 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25175
25176 memset (cu_headerp, 0, sizeof (*cu_headerp));
25177 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25178 rcuh_kind::COMPILE);
25179
25180 return cu_headerp;
25181 }
25182
25183 /* Return the address size given in the compilation unit header for CU. */
25184
25185 int
25186 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25187 {
25188 struct comp_unit_head cu_header_local;
25189 const struct comp_unit_head *cu_headerp;
25190
25191 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25192
25193 return cu_headerp->addr_size;
25194 }
25195
25196 /* Return the offset size given in the compilation unit header for CU. */
25197
25198 int
25199 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25200 {
25201 struct comp_unit_head cu_header_local;
25202 const struct comp_unit_head *cu_headerp;
25203
25204 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25205
25206 return cu_headerp->offset_size;
25207 }
25208
25209 /* See its dwarf2loc.h declaration. */
25210
25211 int
25212 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25213 {
25214 struct comp_unit_head cu_header_local;
25215 const struct comp_unit_head *cu_headerp;
25216
25217 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25218
25219 if (cu_headerp->version == 2)
25220 return cu_headerp->addr_size;
25221 else
25222 return cu_headerp->offset_size;
25223 }
25224
25225 /* Return the text offset of the CU. The returned offset comes from
25226 this CU's objfile. If this objfile came from a separate debuginfo
25227 file, then the offset may be different from the corresponding
25228 offset in the parent objfile. */
25229
25230 CORE_ADDR
25231 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25232 {
25233 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25234
25235 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25236 }
25237
25238 /* Return a type that is a generic pointer type, the size of which matches
25239 the address size given in the compilation unit header for PER_CU. */
25240 static struct type *
25241 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25242 {
25243 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25244 struct type *void_type = objfile_type (objfile)->builtin_void;
25245 struct type *addr_type = lookup_pointer_type (void_type);
25246 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25247
25248 if (TYPE_LENGTH (addr_type) == addr_size)
25249 return addr_type;
25250
25251 addr_type
25252 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25253 return addr_type;
25254 }
25255
25256 /* Return DWARF version number of PER_CU. */
25257
25258 short
25259 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25260 {
25261 return per_cu->dwarf_version;
25262 }
25263
25264 /* Locate the .debug_info compilation unit from CU's objfile which contains
25265 the DIE at OFFSET. Raises an error on failure. */
25266
25267 static struct dwarf2_per_cu_data *
25268 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25269 unsigned int offset_in_dwz,
25270 struct dwarf2_per_objfile *dwarf2_per_objfile)
25271 {
25272 struct dwarf2_per_cu_data *this_cu;
25273 int low, high;
25274
25275 low = 0;
25276 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25277 while (high > low)
25278 {
25279 struct dwarf2_per_cu_data *mid_cu;
25280 int mid = low + (high - low) / 2;
25281
25282 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25283 if (mid_cu->is_dwz > offset_in_dwz
25284 || (mid_cu->is_dwz == offset_in_dwz
25285 && mid_cu->sect_off + mid_cu->length >= sect_off))
25286 high = mid;
25287 else
25288 low = mid + 1;
25289 }
25290 gdb_assert (low == high);
25291 this_cu = dwarf2_per_objfile->all_comp_units[low];
25292 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25293 {
25294 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25295 error (_("Dwarf Error: could not find partial DIE containing "
25296 "offset %s [in module %s]"),
25297 sect_offset_str (sect_off),
25298 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25299
25300 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25301 <= sect_off);
25302 return dwarf2_per_objfile->all_comp_units[low-1];
25303 }
25304 else
25305 {
25306 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25307 && sect_off >= this_cu->sect_off + this_cu->length)
25308 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25309 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25310 return this_cu;
25311 }
25312 }
25313
25314 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25315
25316 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25317 : per_cu (per_cu_),
25318 mark (false),
25319 has_loclist (false),
25320 checked_producer (false),
25321 producer_is_gxx_lt_4_6 (false),
25322 producer_is_gcc_lt_4_3 (false),
25323 producer_is_icc (false),
25324 producer_is_icc_lt_14 (false),
25325 producer_is_codewarrior (false),
25326 processing_has_namespace_info (false)
25327 {
25328 per_cu->cu = this;
25329 }
25330
25331 /* Destroy a dwarf2_cu. */
25332
25333 dwarf2_cu::~dwarf2_cu ()
25334 {
25335 per_cu->cu = NULL;
25336 }
25337
25338 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25339
25340 static void
25341 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25342 enum language pretend_language)
25343 {
25344 struct attribute *attr;
25345
25346 /* Set the language we're debugging. */
25347 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25348 if (attr)
25349 set_cu_language (DW_UNSND (attr), cu);
25350 else
25351 {
25352 cu->language = pretend_language;
25353 cu->language_defn = language_def (cu->language);
25354 }
25355
25356 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25357 }
25358
25359 /* Increase the age counter on each cached compilation unit, and free
25360 any that are too old. */
25361
25362 static void
25363 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25364 {
25365 struct dwarf2_per_cu_data *per_cu, **last_chain;
25366
25367 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25368 per_cu = dwarf2_per_objfile->read_in_chain;
25369 while (per_cu != NULL)
25370 {
25371 per_cu->cu->last_used ++;
25372 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25373 dwarf2_mark (per_cu->cu);
25374 per_cu = per_cu->cu->read_in_chain;
25375 }
25376
25377 per_cu = dwarf2_per_objfile->read_in_chain;
25378 last_chain = &dwarf2_per_objfile->read_in_chain;
25379 while (per_cu != NULL)
25380 {
25381 struct dwarf2_per_cu_data *next_cu;
25382
25383 next_cu = per_cu->cu->read_in_chain;
25384
25385 if (!per_cu->cu->mark)
25386 {
25387 delete per_cu->cu;
25388 *last_chain = next_cu;
25389 }
25390 else
25391 last_chain = &per_cu->cu->read_in_chain;
25392
25393 per_cu = next_cu;
25394 }
25395 }
25396
25397 /* Remove a single compilation unit from the cache. */
25398
25399 static void
25400 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25401 {
25402 struct dwarf2_per_cu_data *per_cu, **last_chain;
25403 struct dwarf2_per_objfile *dwarf2_per_objfile
25404 = target_per_cu->dwarf2_per_objfile;
25405
25406 per_cu = dwarf2_per_objfile->read_in_chain;
25407 last_chain = &dwarf2_per_objfile->read_in_chain;
25408 while (per_cu != NULL)
25409 {
25410 struct dwarf2_per_cu_data *next_cu;
25411
25412 next_cu = per_cu->cu->read_in_chain;
25413
25414 if (per_cu == target_per_cu)
25415 {
25416 delete per_cu->cu;
25417 per_cu->cu = NULL;
25418 *last_chain = next_cu;
25419 break;
25420 }
25421 else
25422 last_chain = &per_cu->cu->read_in_chain;
25423
25424 per_cu = next_cu;
25425 }
25426 }
25427
25428 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25429 We store these in a hash table separate from the DIEs, and preserve them
25430 when the DIEs are flushed out of cache.
25431
25432 The CU "per_cu" pointer is needed because offset alone is not enough to
25433 uniquely identify the type. A file may have multiple .debug_types sections,
25434 or the type may come from a DWO file. Furthermore, while it's more logical
25435 to use per_cu->section+offset, with Fission the section with the data is in
25436 the DWO file but we don't know that section at the point we need it.
25437 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25438 because we can enter the lookup routine, get_die_type_at_offset, from
25439 outside this file, and thus won't necessarily have PER_CU->cu.
25440 Fortunately, PER_CU is stable for the life of the objfile. */
25441
25442 struct dwarf2_per_cu_offset_and_type
25443 {
25444 const struct dwarf2_per_cu_data *per_cu;
25445 sect_offset sect_off;
25446 struct type *type;
25447 };
25448
25449 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25450
25451 static hashval_t
25452 per_cu_offset_and_type_hash (const void *item)
25453 {
25454 const struct dwarf2_per_cu_offset_and_type *ofs
25455 = (const struct dwarf2_per_cu_offset_and_type *) item;
25456
25457 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25458 }
25459
25460 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25461
25462 static int
25463 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25464 {
25465 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25466 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25467 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25468 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25469
25470 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25471 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25472 }
25473
25474 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25475 table if necessary. For convenience, return TYPE.
25476
25477 The DIEs reading must have careful ordering to:
25478 * Not cause infite loops trying to read in DIEs as a prerequisite for
25479 reading current DIE.
25480 * Not trying to dereference contents of still incompletely read in types
25481 while reading in other DIEs.
25482 * Enable referencing still incompletely read in types just by a pointer to
25483 the type without accessing its fields.
25484
25485 Therefore caller should follow these rules:
25486 * Try to fetch any prerequisite types we may need to build this DIE type
25487 before building the type and calling set_die_type.
25488 * After building type call set_die_type for current DIE as soon as
25489 possible before fetching more types to complete the current type.
25490 * Make the type as complete as possible before fetching more types. */
25491
25492 static struct type *
25493 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25494 {
25495 struct dwarf2_per_objfile *dwarf2_per_objfile
25496 = cu->per_cu->dwarf2_per_objfile;
25497 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25498 struct objfile *objfile = dwarf2_per_objfile->objfile;
25499 struct attribute *attr;
25500 struct dynamic_prop prop;
25501
25502 /* For Ada types, make sure that the gnat-specific data is always
25503 initialized (if not already set). There are a few types where
25504 we should not be doing so, because the type-specific area is
25505 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25506 where the type-specific area is used to store the floatformat).
25507 But this is not a problem, because the gnat-specific information
25508 is actually not needed for these types. */
25509 if (need_gnat_info (cu)
25510 && TYPE_CODE (type) != TYPE_CODE_FUNC
25511 && TYPE_CODE (type) != TYPE_CODE_FLT
25512 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25513 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25514 && TYPE_CODE (type) != TYPE_CODE_METHOD
25515 && !HAVE_GNAT_AUX_INFO (type))
25516 INIT_GNAT_SPECIFIC (type);
25517
25518 /* Read DW_AT_allocated and set in type. */
25519 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25520 if (attr_form_is_block (attr))
25521 {
25522 struct type *prop_type
25523 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25524 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25525 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25526 }
25527 else if (attr != NULL)
25528 {
25529 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25530 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25531 sect_offset_str (die->sect_off));
25532 }
25533
25534 /* Read DW_AT_associated and set in type. */
25535 attr = dwarf2_attr (die, DW_AT_associated, cu);
25536 if (attr_form_is_block (attr))
25537 {
25538 struct type *prop_type
25539 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25540 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25541 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25542 }
25543 else if (attr != NULL)
25544 {
25545 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25546 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25547 sect_offset_str (die->sect_off));
25548 }
25549
25550 /* Read DW_AT_data_location and set in type. */
25551 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25552 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25553 dwarf2_per_cu_addr_type (cu->per_cu)))
25554 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25555
25556 if (dwarf2_per_objfile->die_type_hash == NULL)
25557 {
25558 dwarf2_per_objfile->die_type_hash =
25559 htab_create_alloc_ex (127,
25560 per_cu_offset_and_type_hash,
25561 per_cu_offset_and_type_eq,
25562 NULL,
25563 &objfile->objfile_obstack,
25564 hashtab_obstack_allocate,
25565 dummy_obstack_deallocate);
25566 }
25567
25568 ofs.per_cu = cu->per_cu;
25569 ofs.sect_off = die->sect_off;
25570 ofs.type = type;
25571 slot = (struct dwarf2_per_cu_offset_and_type **)
25572 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25573 if (*slot)
25574 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25575 sect_offset_str (die->sect_off));
25576 *slot = XOBNEW (&objfile->objfile_obstack,
25577 struct dwarf2_per_cu_offset_and_type);
25578 **slot = ofs;
25579 return type;
25580 }
25581
25582 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25583 or return NULL if the die does not have a saved type. */
25584
25585 static struct type *
25586 get_die_type_at_offset (sect_offset sect_off,
25587 struct dwarf2_per_cu_data *per_cu)
25588 {
25589 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25590 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25591
25592 if (dwarf2_per_objfile->die_type_hash == NULL)
25593 return NULL;
25594
25595 ofs.per_cu = per_cu;
25596 ofs.sect_off = sect_off;
25597 slot = ((struct dwarf2_per_cu_offset_and_type *)
25598 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25599 if (slot)
25600 return slot->type;
25601 else
25602 return NULL;
25603 }
25604
25605 /* Look up the type for DIE in CU in die_type_hash,
25606 or return NULL if DIE does not have a saved type. */
25607
25608 static struct type *
25609 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25610 {
25611 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25612 }
25613
25614 /* Add a dependence relationship from CU to REF_PER_CU. */
25615
25616 static void
25617 dwarf2_add_dependence (struct dwarf2_cu *cu,
25618 struct dwarf2_per_cu_data *ref_per_cu)
25619 {
25620 void **slot;
25621
25622 if (cu->dependencies == NULL)
25623 cu->dependencies
25624 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25625 NULL, &cu->comp_unit_obstack,
25626 hashtab_obstack_allocate,
25627 dummy_obstack_deallocate);
25628
25629 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25630 if (*slot == NULL)
25631 *slot = ref_per_cu;
25632 }
25633
25634 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25635 Set the mark field in every compilation unit in the
25636 cache that we must keep because we are keeping CU. */
25637
25638 static int
25639 dwarf2_mark_helper (void **slot, void *data)
25640 {
25641 struct dwarf2_per_cu_data *per_cu;
25642
25643 per_cu = (struct dwarf2_per_cu_data *) *slot;
25644
25645 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25646 reading of the chain. As such dependencies remain valid it is not much
25647 useful to track and undo them during QUIT cleanups. */
25648 if (per_cu->cu == NULL)
25649 return 1;
25650
25651 if (per_cu->cu->mark)
25652 return 1;
25653 per_cu->cu->mark = true;
25654
25655 if (per_cu->cu->dependencies != NULL)
25656 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25657
25658 return 1;
25659 }
25660
25661 /* Set the mark field in CU and in every other compilation unit in the
25662 cache that we must keep because we are keeping CU. */
25663
25664 static void
25665 dwarf2_mark (struct dwarf2_cu *cu)
25666 {
25667 if (cu->mark)
25668 return;
25669 cu->mark = true;
25670 if (cu->dependencies != NULL)
25671 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25672 }
25673
25674 static void
25675 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25676 {
25677 while (per_cu)
25678 {
25679 per_cu->cu->mark = false;
25680 per_cu = per_cu->cu->read_in_chain;
25681 }
25682 }
25683
25684 /* Trivial hash function for partial_die_info: the hash value of a DIE
25685 is its offset in .debug_info for this objfile. */
25686
25687 static hashval_t
25688 partial_die_hash (const void *item)
25689 {
25690 const struct partial_die_info *part_die
25691 = (const struct partial_die_info *) item;
25692
25693 return to_underlying (part_die->sect_off);
25694 }
25695
25696 /* Trivial comparison function for partial_die_info structures: two DIEs
25697 are equal if they have the same offset. */
25698
25699 static int
25700 partial_die_eq (const void *item_lhs, const void *item_rhs)
25701 {
25702 const struct partial_die_info *part_die_lhs
25703 = (const struct partial_die_info *) item_lhs;
25704 const struct partial_die_info *part_die_rhs
25705 = (const struct partial_die_info *) item_rhs;
25706
25707 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25708 }
25709
25710 struct cmd_list_element *set_dwarf_cmdlist;
25711 struct cmd_list_element *show_dwarf_cmdlist;
25712
25713 static void
25714 set_dwarf_cmd (const char *args, int from_tty)
25715 {
25716 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25717 gdb_stdout);
25718 }
25719
25720 static void
25721 show_dwarf_cmd (const char *args, int from_tty)
25722 {
25723 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25724 }
25725
25726 int dwarf_always_disassemble;
25727
25728 static void
25729 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25730 struct cmd_list_element *c, const char *value)
25731 {
25732 fprintf_filtered (file,
25733 _("Whether to always disassemble "
25734 "DWARF expressions is %s.\n"),
25735 value);
25736 }
25737
25738 static void
25739 show_check_physname (struct ui_file *file, int from_tty,
25740 struct cmd_list_element *c, const char *value)
25741 {
25742 fprintf_filtered (file,
25743 _("Whether to check \"physname\" is %s.\n"),
25744 value);
25745 }
25746
25747 void
25748 _initialize_dwarf2_read (void)
25749 {
25750 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25751 Set DWARF specific variables.\n\
25752 Configure DWARF variables such as the cache size."),
25753 &set_dwarf_cmdlist, "maintenance set dwarf ",
25754 0/*allow-unknown*/, &maintenance_set_cmdlist);
25755
25756 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25757 Show DWARF specific variables.\n\
25758 Show DWARF variables such as the cache size."),
25759 &show_dwarf_cmdlist, "maintenance show dwarf ",
25760 0/*allow-unknown*/, &maintenance_show_cmdlist);
25761
25762 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25763 &dwarf_max_cache_age, _("\
25764 Set the upper bound on the age of cached DWARF compilation units."), _("\
25765 Show the upper bound on the age of cached DWARF compilation units."), _("\
25766 A higher limit means that cached compilation units will be stored\n\
25767 in memory longer, and more total memory will be used. Zero disables\n\
25768 caching, which can slow down startup."),
25769 NULL,
25770 show_dwarf_max_cache_age,
25771 &set_dwarf_cmdlist,
25772 &show_dwarf_cmdlist);
25773
25774 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25775 &dwarf_always_disassemble, _("\
25776 Set whether `info address' always disassembles DWARF expressions."), _("\
25777 Show whether `info address' always disassembles DWARF expressions."), _("\
25778 When enabled, DWARF expressions are always printed in an assembly-like\n\
25779 syntax. When disabled, expressions will be printed in a more\n\
25780 conversational style, when possible."),
25781 NULL,
25782 show_dwarf_always_disassemble,
25783 &set_dwarf_cmdlist,
25784 &show_dwarf_cmdlist);
25785
25786 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25787 Set debugging of the DWARF reader."), _("\
25788 Show debugging of the DWARF reader."), _("\
25789 When enabled (non-zero), debugging messages are printed during DWARF\n\
25790 reading and symtab expansion. A value of 1 (one) provides basic\n\
25791 information. A value greater than 1 provides more verbose information."),
25792 NULL,
25793 NULL,
25794 &setdebuglist, &showdebuglist);
25795
25796 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25797 Set debugging of the DWARF DIE reader."), _("\
25798 Show debugging of the DWARF DIE reader."), _("\
25799 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25800 The value is the maximum depth to print."),
25801 NULL,
25802 NULL,
25803 &setdebuglist, &showdebuglist);
25804
25805 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25806 Set debugging of the dwarf line reader."), _("\
25807 Show debugging of the dwarf line reader."), _("\
25808 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25809 A value of 1 (one) provides basic information.\n\
25810 A value greater than 1 provides more verbose information."),
25811 NULL,
25812 NULL,
25813 &setdebuglist, &showdebuglist);
25814
25815 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25816 Set cross-checking of \"physname\" code against demangler."), _("\
25817 Show cross-checking of \"physname\" code against demangler."), _("\
25818 When enabled, GDB's internal \"physname\" code is checked against\n\
25819 the demangler."),
25820 NULL, show_check_physname,
25821 &setdebuglist, &showdebuglist);
25822
25823 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25824 no_class, &use_deprecated_index_sections, _("\
25825 Set whether to use deprecated gdb_index sections."), _("\
25826 Show whether to use deprecated gdb_index sections."), _("\
25827 When enabled, deprecated .gdb_index sections are used anyway.\n\
25828 Normally they are ignored either because of a missing feature or\n\
25829 performance issue.\n\
25830 Warning: This option must be enabled before gdb reads the file."),
25831 NULL,
25832 NULL,
25833 &setlist, &showlist);
25834
25835 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25836 &dwarf2_locexpr_funcs);
25837 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25838 &dwarf2_loclist_funcs);
25839
25840 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25841 &dwarf2_block_frame_base_locexpr_funcs);
25842 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25843 &dwarf2_block_frame_base_loclist_funcs);
25844
25845 #if GDB_SELF_TEST
25846 selftests::register_test ("dw2_expand_symtabs_matching",
25847 selftests::dw2_expand_symtabs_matching::run_test);
25848 #endif
25849 }
This page took 2.322293 seconds and 4 git commands to generate.