Rename dwarf2 to dwarf in "set debug" and maintenance commands.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf_die_debug. */
82 static unsigned int dwarf_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 /* Non-zero if referenced by the Line Number Program. */
1034 int included_p;
1035 /* The associated symbol table, if any. */
1036 struct symtab *symtab;
1037 };
1038
1039 /* The line number information for a compilation unit (found in the
1040 .debug_line section) begins with a "statement program header",
1041 which contains the following information. */
1042 struct line_header
1043 {
1044 /* Offset of line number information in .debug_line section. */
1045 sect_offset offset;
1046
1047 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1048 unsigned offset_in_dwz : 1;
1049
1050 unsigned int total_length;
1051 unsigned short version;
1052 unsigned int header_length;
1053 unsigned char minimum_instruction_length;
1054 unsigned char maximum_ops_per_instruction;
1055 unsigned char default_is_stmt;
1056 int line_base;
1057 unsigned char line_range;
1058 unsigned char opcode_base;
1059
1060 /* standard_opcode_lengths[i] is the number of operands for the
1061 standard opcode whose value is i. This means that
1062 standard_opcode_lengths[0] is unused, and the last meaningful
1063 element is standard_opcode_lengths[opcode_base - 1]. */
1064 unsigned char *standard_opcode_lengths;
1065
1066 /* The include_directories table. NOTE! These strings are not
1067 allocated with xmalloc; instead, they are pointers into
1068 debug_line_buffer. If you try to free them, `free' will get
1069 indigestion. */
1070 unsigned int num_include_dirs, include_dirs_size;
1071 const char **include_dirs;
1072
1073 /* The file_names table. NOTE! These strings are not allocated
1074 with xmalloc; instead, they are pointers into debug_line_buffer.
1075 Don't try to free them directly. */
1076 unsigned int num_file_names, file_names_size;
1077 struct file_entry *file_names;
1078
1079 /* The start and end of the statement program following this
1080 header. These point into dwarf2_per_objfile->line_buffer. */
1081 const gdb_byte *statement_program_start, *statement_program_end;
1082 };
1083
1084 /* When we construct a partial symbol table entry we only
1085 need this much information. */
1086 struct partial_die_info
1087 {
1088 /* Offset of this DIE. */
1089 sect_offset offset;
1090
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
1094 /* Assorted flags describing the data found in this DIE. */
1095 unsigned int has_children : 1;
1096 unsigned int is_external : 1;
1097 unsigned int is_declaration : 1;
1098 unsigned int has_type : 1;
1099 unsigned int has_specification : 1;
1100 unsigned int has_pc_info : 1;
1101 unsigned int may_be_inlined : 1;
1102
1103 /* Flag set if the SCOPE field of this structure has been
1104 computed. */
1105 unsigned int scope_set : 1;
1106
1107 /* Flag set if the DIE has a byte_size attribute. */
1108 unsigned int has_byte_size : 1;
1109
1110 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1111 unsigned int has_const_value : 1;
1112
1113 /* Flag set if any of the DIE's children are template arguments. */
1114 unsigned int has_template_arguments : 1;
1115
1116 /* Flag set if fixup_partial_die has been called on this die. */
1117 unsigned int fixup_called : 1;
1118
1119 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1120 unsigned int is_dwz : 1;
1121
1122 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1123 unsigned int spec_is_dwz : 1;
1124
1125 /* The name of this DIE. Normally the value of DW_AT_name, but
1126 sometimes a default name for unnamed DIEs. */
1127 const char *name;
1128
1129 /* The linkage name, if present. */
1130 const char *linkage_name;
1131
1132 /* The scope to prepend to our children. This is generally
1133 allocated on the comp_unit_obstack, so will disappear
1134 when this compilation unit leaves the cache. */
1135 const char *scope;
1136
1137 /* Some data associated with the partial DIE. The tag determines
1138 which field is live. */
1139 union
1140 {
1141 /* The location description associated with this DIE, if any. */
1142 struct dwarf_block *locdesc;
1143 /* The offset of an import, for DW_TAG_imported_unit. */
1144 sect_offset offset;
1145 } d;
1146
1147 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1148 CORE_ADDR lowpc;
1149 CORE_ADDR highpc;
1150
1151 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1152 DW_AT_sibling, if any. */
1153 /* NOTE: This member isn't strictly necessary, read_partial_die could
1154 return DW_AT_sibling values to its caller load_partial_dies. */
1155 const gdb_byte *sibling;
1156
1157 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1158 DW_AT_specification (or DW_AT_abstract_origin or
1159 DW_AT_extension). */
1160 sect_offset spec_offset;
1161
1162 /* Pointers to this DIE's parent, first child, and next sibling,
1163 if any. */
1164 struct partial_die_info *die_parent, *die_child, *die_sibling;
1165 };
1166
1167 /* This data structure holds the information of an abbrev. */
1168 struct abbrev_info
1169 {
1170 unsigned int number; /* number identifying abbrev */
1171 enum dwarf_tag tag; /* dwarf tag */
1172 unsigned short has_children; /* boolean */
1173 unsigned short num_attrs; /* number of attributes */
1174 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1175 struct abbrev_info *next; /* next in chain */
1176 };
1177
1178 struct attr_abbrev
1179 {
1180 ENUM_BITFIELD(dwarf_attribute) name : 16;
1181 ENUM_BITFIELD(dwarf_form) form : 16;
1182 };
1183
1184 /* Size of abbrev_table.abbrev_hash_table. */
1185 #define ABBREV_HASH_SIZE 121
1186
1187 /* Top level data structure to contain an abbreviation table. */
1188
1189 struct abbrev_table
1190 {
1191 /* Where the abbrev table came from.
1192 This is used as a sanity check when the table is used. */
1193 sect_offset offset;
1194
1195 /* Storage for the abbrev table. */
1196 struct obstack abbrev_obstack;
1197
1198 /* Hash table of abbrevs.
1199 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1200 It could be statically allocated, but the previous code didn't so we
1201 don't either. */
1202 struct abbrev_info **abbrevs;
1203 };
1204
1205 /* Attributes have a name and a value. */
1206 struct attribute
1207 {
1208 ENUM_BITFIELD(dwarf_attribute) name : 16;
1209 ENUM_BITFIELD(dwarf_form) form : 15;
1210
1211 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1212 field should be in u.str (existing only for DW_STRING) but it is kept
1213 here for better struct attribute alignment. */
1214 unsigned int string_is_canonical : 1;
1215
1216 union
1217 {
1218 const char *str;
1219 struct dwarf_block *blk;
1220 ULONGEST unsnd;
1221 LONGEST snd;
1222 CORE_ADDR addr;
1223 ULONGEST signature;
1224 }
1225 u;
1226 };
1227
1228 /* This data structure holds a complete die structure. */
1229 struct die_info
1230 {
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Number of attributes */
1235 unsigned char num_attrs;
1236
1237 /* True if we're presently building the full type name for the
1238 type derived from this DIE. */
1239 unsigned char building_fullname : 1;
1240
1241 /* True if this die is in process. PR 16581. */
1242 unsigned char in_process : 1;
1243
1244 /* Abbrev number */
1245 unsigned int abbrev;
1246
1247 /* Offset in .debug_info or .debug_types section. */
1248 sect_offset offset;
1249
1250 /* The dies in a compilation unit form an n-ary tree. PARENT
1251 points to this die's parent; CHILD points to the first child of
1252 this node; and all the children of a given node are chained
1253 together via their SIBLING fields. */
1254 struct die_info *child; /* Its first child, if any. */
1255 struct die_info *sibling; /* Its next sibling, if any. */
1256 struct die_info *parent; /* Its parent, if any. */
1257
1258 /* An array of attributes, with NUM_ATTRS elements. There may be
1259 zero, but it's not common and zero-sized arrays are not
1260 sufficiently portable C. */
1261 struct attribute attrs[1];
1262 };
1263
1264 /* Get at parts of an attribute structure. */
1265
1266 #define DW_STRING(attr) ((attr)->u.str)
1267 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1268 #define DW_UNSND(attr) ((attr)->u.unsnd)
1269 #define DW_BLOCK(attr) ((attr)->u.blk)
1270 #define DW_SND(attr) ((attr)->u.snd)
1271 #define DW_ADDR(attr) ((attr)->u.addr)
1272 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1273
1274 /* Blocks are a bunch of untyped bytes. */
1275 struct dwarf_block
1276 {
1277 size_t size;
1278
1279 /* Valid only if SIZE is not zero. */
1280 const gdb_byte *data;
1281 };
1282
1283 #ifndef ATTR_ALLOC_CHUNK
1284 #define ATTR_ALLOC_CHUNK 4
1285 #endif
1286
1287 /* Allocate fields for structs, unions and enums in this size. */
1288 #ifndef DW_FIELD_ALLOC_CHUNK
1289 #define DW_FIELD_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1293 but this would require a corresponding change in unpack_field_as_long
1294 and friends. */
1295 static int bits_per_byte = 8;
1296
1297 struct nextfield
1298 {
1299 struct nextfield *next;
1300 int accessibility;
1301 int virtuality;
1302 struct field field;
1303 };
1304
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 };
1310
1311 struct fnfieldlist
1312 {
1313 const char *name;
1314 int length;
1315 struct nextfnfield *head;
1316 };
1317
1318 struct typedef_field_list
1319 {
1320 struct typedef_field field;
1321 struct typedef_field_list *next;
1322 };
1323
1324 /* The routines that read and process dies for a C struct or C++ class
1325 pass lists of data member fields and lists of member function fields
1326 in an instance of a field_info structure, as defined below. */
1327 struct field_info
1328 {
1329 /* List of data member and baseclasses fields. */
1330 struct nextfield *fields, *baseclasses;
1331
1332 /* Number of fields (including baseclasses). */
1333 int nfields;
1334
1335 /* Number of baseclasses. */
1336 int nbaseclasses;
1337
1338 /* Set if the accesibility of one of the fields is not public. */
1339 int non_public_fields;
1340
1341 /* Member function fields array, entries are allocated in the order they
1342 are encountered in the object file. */
1343 struct nextfnfield *fnfields;
1344
1345 /* Member function fieldlist array, contains name of possibly overloaded
1346 member function, number of overloaded member functions and a pointer
1347 to the head of the member function field chain. */
1348 struct fnfieldlist *fnfieldlists;
1349
1350 /* Number of entries in the fnfieldlists array. */
1351 int nfnfields;
1352
1353 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1354 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1355 struct typedef_field_list *typedef_field_list;
1356 unsigned typedef_field_list_count;
1357 };
1358
1359 /* One item on the queue of compilation units to read in full symbols
1360 for. */
1361 struct dwarf2_queue_item
1362 {
1363 struct dwarf2_per_cu_data *per_cu;
1364 enum language pretend_language;
1365 struct dwarf2_queue_item *next;
1366 };
1367
1368 /* The current queue. */
1369 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1370
1371 /* Loaded secondary compilation units are kept in memory until they
1372 have not been referenced for the processing of this many
1373 compilation units. Set this to zero to disable caching. Cache
1374 sizes of up to at least twenty will improve startup time for
1375 typical inter-CU-reference binaries, at an obvious memory cost. */
1376 static int dwarf_max_cache_age = 5;
1377 static void
1378 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
1380 {
1381 fprintf_filtered (file, _("The upper bound on the age of cached "
1382 "DWARF compilation units is %s.\n"),
1383 value);
1384 }
1385 \f
1386 /* local function prototypes */
1387
1388 static const char *get_section_name (const struct dwarf2_section_info *);
1389
1390 static const char *get_section_file_name (const struct dwarf2_section_info *);
1391
1392 static void dwarf2_locate_sections (bfd *, asection *, void *);
1393
1394 static void dwarf2_find_base_address (struct die_info *die,
1395 struct dwarf2_cu *cu);
1396
1397 static struct partial_symtab *create_partial_symtab
1398 (struct dwarf2_per_cu_data *per_cu, const char *name);
1399
1400 static void dwarf2_build_psymtabs_hard (struct objfile *);
1401
1402 static void scan_partial_symbols (struct partial_die_info *,
1403 CORE_ADDR *, CORE_ADDR *,
1404 int, struct dwarf2_cu *);
1405
1406 static void add_partial_symbol (struct partial_die_info *,
1407 struct dwarf2_cu *);
1408
1409 static void add_partial_namespace (struct partial_die_info *pdi,
1410 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1411 int set_addrmap, struct dwarf2_cu *cu);
1412
1413 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1414 CORE_ADDR *highpc, int set_addrmap,
1415 struct dwarf2_cu *cu);
1416
1417 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1418 struct dwarf2_cu *cu);
1419
1420 static void add_partial_subprogram (struct partial_die_info *pdi,
1421 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1422 int need_pc, struct dwarf2_cu *cu);
1423
1424 static void dwarf2_read_symtab (struct partial_symtab *,
1425 struct objfile *);
1426
1427 static void psymtab_to_symtab_1 (struct partial_symtab *);
1428
1429 static struct abbrev_info *abbrev_table_lookup_abbrev
1430 (const struct abbrev_table *, unsigned int);
1431
1432 static struct abbrev_table *abbrev_table_read_table
1433 (struct dwarf2_section_info *, sect_offset);
1434
1435 static void abbrev_table_free (struct abbrev_table *);
1436
1437 static void abbrev_table_free_cleanup (void *);
1438
1439 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1440 struct dwarf2_section_info *);
1441
1442 static void dwarf2_free_abbrev_table (void *);
1443
1444 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1445
1446 static struct partial_die_info *load_partial_dies
1447 (const struct die_reader_specs *, const gdb_byte *, int);
1448
1449 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1450 struct partial_die_info *,
1451 struct abbrev_info *,
1452 unsigned int,
1453 const gdb_byte *);
1454
1455 static struct partial_die_info *find_partial_die (sect_offset, int,
1456 struct dwarf2_cu *);
1457
1458 static void fixup_partial_die (struct partial_die_info *,
1459 struct dwarf2_cu *);
1460
1461 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1462 struct attribute *, struct attr_abbrev *,
1463 const gdb_byte *);
1464
1465 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1466
1467 static int read_1_signed_byte (bfd *, const gdb_byte *);
1468
1469 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1470
1471 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1472
1473 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1474
1475 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1476 unsigned int *);
1477
1478 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static LONGEST read_checked_initial_length_and_offset
1481 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1482 unsigned int *, unsigned int *);
1483
1484 static LONGEST read_offset (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
1487
1488 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1489
1490 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1491 sect_offset);
1492
1493 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1494
1495 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1496
1497 static const char *read_indirect_string (bfd *, const gdb_byte *,
1498 const struct comp_unit_head *,
1499 unsigned int *);
1500
1501 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1502
1503 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1506
1507 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1508 const gdb_byte *,
1509 unsigned int *);
1510
1511 static const char *read_str_index (const struct die_reader_specs *reader,
1512 ULONGEST str_index);
1513
1514 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1515
1516 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1517 struct dwarf2_cu *);
1518
1519 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1520 unsigned int);
1521
1522 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1523 struct dwarf2_cu *cu);
1524
1525 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1526
1527 static struct die_info *die_specification (struct die_info *die,
1528 struct dwarf2_cu **);
1529
1530 static void free_line_header (struct line_header *lh);
1531
1532 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1533 struct dwarf2_cu *cu);
1534
1535 static void dwarf_decode_lines (struct line_header *, const char *,
1536 struct dwarf2_cu *, struct partial_symtab *,
1537 CORE_ADDR, int decode_mapping);
1538
1539 static void dwarf2_start_subfile (const char *, const char *);
1540
1541 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1542 const char *, const char *,
1543 CORE_ADDR);
1544
1545 static struct symbol *new_symbol (struct die_info *, struct type *,
1546 struct dwarf2_cu *);
1547
1548 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1549 struct dwarf2_cu *, struct symbol *);
1550
1551 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1552 struct dwarf2_cu *);
1553
1554 static void dwarf2_const_value_attr (const struct attribute *attr,
1555 struct type *type,
1556 const char *name,
1557 struct obstack *obstack,
1558 struct dwarf2_cu *cu, LONGEST *value,
1559 const gdb_byte **bytes,
1560 struct dwarf2_locexpr_baton **baton);
1561
1562 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1563
1564 static int need_gnat_info (struct dwarf2_cu *);
1565
1566 static struct type *die_descriptive_type (struct die_info *,
1567 struct dwarf2_cu *);
1568
1569 static void set_descriptive_type (struct type *, struct die_info *,
1570 struct dwarf2_cu *);
1571
1572 static struct type *die_containing_type (struct die_info *,
1573 struct dwarf2_cu *);
1574
1575 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1576 struct dwarf2_cu *);
1577
1578 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1579
1580 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1581
1582 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1583
1584 static char *typename_concat (struct obstack *obs, const char *prefix,
1585 const char *suffix, int physname,
1586 struct dwarf2_cu *cu);
1587
1588 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1589
1590 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1591
1592 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1593
1594 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1595
1596 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1597
1598 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1599 struct dwarf2_cu *, struct partial_symtab *);
1600
1601 static int dwarf2_get_pc_bounds (struct die_info *,
1602 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1603 struct partial_symtab *);
1604
1605 static void get_scope_pc_bounds (struct die_info *,
1606 CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *);
1608
1609 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1610 CORE_ADDR, struct dwarf2_cu *);
1611
1612 static void dwarf2_add_field (struct field_info *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static void dwarf2_attach_fields_to_type (struct field_info *,
1616 struct type *, struct dwarf2_cu *);
1617
1618 static void dwarf2_add_member_fn (struct field_info *,
1619 struct die_info *, struct type *,
1620 struct dwarf2_cu *);
1621
1622 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1623 struct type *,
1624 struct dwarf2_cu *);
1625
1626 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1631
1632 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1633
1634 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1635
1636 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1637
1638 static struct type *read_module_type (struct die_info *die,
1639 struct dwarf2_cu *cu);
1640
1641 static const char *namespace_name (struct die_info *die,
1642 int *is_anonymous, struct dwarf2_cu *);
1643
1644 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1647
1648 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1649 struct dwarf2_cu *);
1650
1651 static struct die_info *read_die_and_siblings_1
1652 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1653 struct die_info *);
1654
1655 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1656 const gdb_byte *info_ptr,
1657 const gdb_byte **new_info_ptr,
1658 struct die_info *parent);
1659
1660 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1661 struct die_info **, const gdb_byte *,
1662 int *, int);
1663
1664 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1665 struct die_info **, const gdb_byte *,
1666 int *);
1667
1668 static void process_die (struct die_info *, struct dwarf2_cu *);
1669
1670 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1671 struct obstack *);
1672
1673 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1674
1675 static const char *dwarf2_full_name (const char *name,
1676 struct die_info *die,
1677 struct dwarf2_cu *cu);
1678
1679 static const char *dwarf2_physname (const char *name, struct die_info *die,
1680 struct dwarf2_cu *cu);
1681
1682 static struct die_info *dwarf2_extension (struct die_info *die,
1683 struct dwarf2_cu **);
1684
1685 static const char *dwarf_tag_name (unsigned int);
1686
1687 static const char *dwarf_attr_name (unsigned int);
1688
1689 static const char *dwarf_form_name (unsigned int);
1690
1691 static char *dwarf_bool_name (unsigned int);
1692
1693 static const char *dwarf_type_encoding_name (unsigned int);
1694
1695 static struct die_info *sibling_die (struct die_info *);
1696
1697 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1698
1699 static void dump_die_for_error (struct die_info *);
1700
1701 static void dump_die_1 (struct ui_file *, int level, int max_level,
1702 struct die_info *);
1703
1704 /*static*/ void dump_die (struct die_info *, int max_level);
1705
1706 static void store_in_ref_table (struct die_info *,
1707 struct dwarf2_cu *);
1708
1709 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1710
1711 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1712
1713 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1714 const struct attribute *,
1715 struct dwarf2_cu **);
1716
1717 static struct die_info *follow_die_ref (struct die_info *,
1718 const struct attribute *,
1719 struct dwarf2_cu **);
1720
1721 static struct die_info *follow_die_sig (struct die_info *,
1722 const struct attribute *,
1723 struct dwarf2_cu **);
1724
1725 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1726 struct dwarf2_cu *);
1727
1728 static struct type *get_DW_AT_signature_type (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu *);
1731
1732 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1733
1734 static void read_signatured_type (struct signatured_type *);
1735
1736 /* memory allocation interface */
1737
1738 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1739
1740 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1741
1742 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1743
1744 static int attr_form_is_block (const struct attribute *);
1745
1746 static int attr_form_is_section_offset (const struct attribute *);
1747
1748 static int attr_form_is_constant (const struct attribute *);
1749
1750 static int attr_form_is_ref (const struct attribute *);
1751
1752 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1753 struct dwarf2_loclist_baton *baton,
1754 const struct attribute *attr);
1755
1756 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1757 struct symbol *sym,
1758 struct dwarf2_cu *cu,
1759 int is_block);
1760
1761 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1762 const gdb_byte *info_ptr,
1763 struct abbrev_info *abbrev);
1764
1765 static void free_stack_comp_unit (void *);
1766
1767 static hashval_t partial_die_hash (const void *item);
1768
1769 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1770
1771 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1772 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1773
1774 static void init_one_comp_unit (struct dwarf2_cu *cu,
1775 struct dwarf2_per_cu_data *per_cu);
1776
1777 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1778 struct die_info *comp_unit_die,
1779 enum language pretend_language);
1780
1781 static void free_heap_comp_unit (void *);
1782
1783 static void free_cached_comp_units (void *);
1784
1785 static void age_cached_comp_units (void);
1786
1787 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1788
1789 static struct type *set_die_type (struct die_info *, struct type *,
1790 struct dwarf2_cu *);
1791
1792 static void create_all_comp_units (struct objfile *);
1793
1794 static int create_all_type_units (struct objfile *);
1795
1796 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1797 enum language);
1798
1799 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1800 enum language);
1801
1802 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1803 enum language);
1804
1805 static void dwarf2_add_dependence (struct dwarf2_cu *,
1806 struct dwarf2_per_cu_data *);
1807
1808 static void dwarf2_mark (struct dwarf2_cu *);
1809
1810 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1811
1812 static struct type *get_die_type_at_offset (sect_offset,
1813 struct dwarf2_per_cu_data *);
1814
1815 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1816
1817 static void dwarf2_release_queue (void *dummy);
1818
1819 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1820 enum language pretend_language);
1821
1822 static void process_queue (void);
1823
1824 static void find_file_and_directory (struct die_info *die,
1825 struct dwarf2_cu *cu,
1826 const char **name, const char **comp_dir);
1827
1828 static char *file_full_name (int file, struct line_header *lh,
1829 const char *comp_dir);
1830
1831 static const gdb_byte *read_and_check_comp_unit_head
1832 (struct comp_unit_head *header,
1833 struct dwarf2_section_info *section,
1834 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1835 int is_debug_types_section);
1836
1837 static void init_cutu_and_read_dies
1838 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1839 int use_existing_cu, int keep,
1840 die_reader_func_ftype *die_reader_func, void *data);
1841
1842 static void init_cutu_and_read_dies_simple
1843 (struct dwarf2_per_cu_data *this_cu,
1844 die_reader_func_ftype *die_reader_func, void *data);
1845
1846 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1847
1848 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1849
1850 static struct dwo_unit *lookup_dwo_unit_in_dwp
1851 (struct dwp_file *dwp_file, const char *comp_dir,
1852 ULONGEST signature, int is_debug_types);
1853
1854 static struct dwp_file *get_dwp_file (void);
1855
1856 static struct dwo_unit *lookup_dwo_comp_unit
1857 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1858
1859 static struct dwo_unit *lookup_dwo_type_unit
1860 (struct signatured_type *, const char *, const char *);
1861
1862 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1863
1864 static void free_dwo_file_cleanup (void *);
1865
1866 static void process_cu_includes (void);
1867
1868 static void check_producer (struct dwarf2_cu *cu);
1869
1870 static void free_line_header_voidp (void *arg);
1871 \f
1872 /* Various complaints about symbol reading that don't abort the process. */
1873
1874 static void
1875 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _("statement list doesn't fit in .debug_line section"));
1879 }
1880
1881 static void
1882 dwarf2_debug_line_missing_file_complaint (void)
1883 {
1884 complaint (&symfile_complaints,
1885 _(".debug_line section has line data without a file"));
1886 }
1887
1888 static void
1889 dwarf2_debug_line_missing_end_sequence_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line "
1893 "program sequence without an end"));
1894 }
1895
1896 static void
1897 dwarf2_complex_location_expr_complaint (void)
1898 {
1899 complaint (&symfile_complaints, _("location expression too complex"));
1900 }
1901
1902 static void
1903 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1904 int arg3)
1905 {
1906 complaint (&symfile_complaints,
1907 _("const value length mismatch for '%s', got %d, expected %d"),
1908 arg1, arg2, arg3);
1909 }
1910
1911 static void
1912 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1913 {
1914 complaint (&symfile_complaints,
1915 _("debug info runs off end of %s section"
1916 " [in module %s]"),
1917 get_section_name (section),
1918 get_section_file_name (section));
1919 }
1920
1921 static void
1922 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1923 {
1924 complaint (&symfile_complaints,
1925 _("macro debug info contains a "
1926 "malformed macro definition:\n`%s'"),
1927 arg1);
1928 }
1929
1930 static void
1931 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1932 {
1933 complaint (&symfile_complaints,
1934 _("invalid attribute class or form for '%s' in '%s'"),
1935 arg1, arg2);
1936 }
1937
1938 /* Hash function for line_header_hash. */
1939
1940 static hashval_t
1941 line_header_hash (const struct line_header *ofs)
1942 {
1943 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1944 }
1945
1946 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1947
1948 static hashval_t
1949 line_header_hash_voidp (const void *item)
1950 {
1951 const struct line_header *ofs = item;
1952
1953 return line_header_hash (ofs);
1954 }
1955
1956 /* Equality function for line_header_hash. */
1957
1958 static int
1959 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1960 {
1961 const struct line_header *ofs_lhs = item_lhs;
1962 const struct line_header *ofs_rhs = item_rhs;
1963
1964 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1965 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1966 }
1967
1968 \f
1969 #if WORDS_BIGENDIAN
1970
1971 /* Convert VALUE between big- and little-endian. */
1972 static offset_type
1973 byte_swap (offset_type value)
1974 {
1975 offset_type result;
1976
1977 result = (value & 0xff) << 24;
1978 result |= (value & 0xff00) << 8;
1979 result |= (value & 0xff0000) >> 8;
1980 result |= (value & 0xff000000) >> 24;
1981 return result;
1982 }
1983
1984 #define MAYBE_SWAP(V) byte_swap (V)
1985
1986 #else
1987 #define MAYBE_SWAP(V) (V)
1988 #endif /* WORDS_BIGENDIAN */
1989
1990 /* Read the given attribute value as an address, taking the attribute's
1991 form into account. */
1992
1993 static CORE_ADDR
1994 attr_value_as_address (struct attribute *attr)
1995 {
1996 CORE_ADDR addr;
1997
1998 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1999 {
2000 /* Aside from a few clearly defined exceptions, attributes that
2001 contain an address must always be in DW_FORM_addr form.
2002 Unfortunately, some compilers happen to be violating this
2003 requirement by encoding addresses using other forms, such
2004 as DW_FORM_data4 for example. For those broken compilers,
2005 we try to do our best, without any guarantee of success,
2006 to interpret the address correctly. It would also be nice
2007 to generate a complaint, but that would require us to maintain
2008 a list of legitimate cases where a non-address form is allowed,
2009 as well as update callers to pass in at least the CU's DWARF
2010 version. This is more overhead than what we're willing to
2011 expand for a pretty rare case. */
2012 addr = DW_UNSND (attr);
2013 }
2014 else
2015 addr = DW_ADDR (attr);
2016
2017 return addr;
2018 }
2019
2020 /* The suffix for an index file. */
2021 #define INDEX_SUFFIX ".gdb-index"
2022
2023 /* Try to locate the sections we need for DWARF 2 debugging
2024 information and return true if we have enough to do something.
2025 NAMES points to the dwarf2 section names, or is NULL if the standard
2026 ELF names are used. */
2027
2028 int
2029 dwarf2_has_info (struct objfile *objfile,
2030 const struct dwarf2_debug_sections *names)
2031 {
2032 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2033 if (!dwarf2_per_objfile)
2034 {
2035 /* Initialize per-objfile state. */
2036 struct dwarf2_per_objfile *data
2037 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2038
2039 memset (data, 0, sizeof (*data));
2040 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2041 dwarf2_per_objfile = data;
2042
2043 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2044 (void *) names);
2045 dwarf2_per_objfile->objfile = objfile;
2046 }
2047 return (!dwarf2_per_objfile->info.is_virtual
2048 && dwarf2_per_objfile->info.s.asection != NULL
2049 && !dwarf2_per_objfile->abbrev.is_virtual
2050 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2051 }
2052
2053 /* Return the containing section of virtual section SECTION. */
2054
2055 static struct dwarf2_section_info *
2056 get_containing_section (const struct dwarf2_section_info *section)
2057 {
2058 gdb_assert (section->is_virtual);
2059 return section->s.containing_section;
2060 }
2061
2062 /* Return the bfd owner of SECTION. */
2063
2064 static struct bfd *
2065 get_section_bfd_owner (const struct dwarf2_section_info *section)
2066 {
2067 if (section->is_virtual)
2068 {
2069 section = get_containing_section (section);
2070 gdb_assert (!section->is_virtual);
2071 }
2072 return section->s.asection->owner;
2073 }
2074
2075 /* Return the bfd section of SECTION.
2076 Returns NULL if the section is not present. */
2077
2078 static asection *
2079 get_section_bfd_section (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.asection;
2087 }
2088
2089 /* Return the name of SECTION. */
2090
2091 static const char *
2092 get_section_name (const struct dwarf2_section_info *section)
2093 {
2094 asection *sectp = get_section_bfd_section (section);
2095
2096 gdb_assert (sectp != NULL);
2097 return bfd_section_name (get_section_bfd_owner (section), sectp);
2098 }
2099
2100 /* Return the name of the file SECTION is in. */
2101
2102 static const char *
2103 get_section_file_name (const struct dwarf2_section_info *section)
2104 {
2105 bfd *abfd = get_section_bfd_owner (section);
2106
2107 return bfd_get_filename (abfd);
2108 }
2109
2110 /* Return the id of SECTION.
2111 Returns 0 if SECTION doesn't exist. */
2112
2113 static int
2114 get_section_id (const struct dwarf2_section_info *section)
2115 {
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 if (sectp == NULL)
2119 return 0;
2120 return sectp->id;
2121 }
2122
2123 /* Return the flags of SECTION.
2124 SECTION (or containing section if this is a virtual section) must exist. */
2125
2126 static int
2127 get_section_flags (const struct dwarf2_section_info *section)
2128 {
2129 asection *sectp = get_section_bfd_section (section);
2130
2131 gdb_assert (sectp != NULL);
2132 return bfd_get_section_flags (sectp->owner, sectp);
2133 }
2134
2135 /* When loading sections, we look either for uncompressed section or for
2136 compressed section names. */
2137
2138 static int
2139 section_is_p (const char *section_name,
2140 const struct dwarf2_section_names *names)
2141 {
2142 if (names->normal != NULL
2143 && strcmp (section_name, names->normal) == 0)
2144 return 1;
2145 if (names->compressed != NULL
2146 && strcmp (section_name, names->compressed) == 0)
2147 return 1;
2148 return 0;
2149 }
2150
2151 /* This function is mapped across the sections and remembers the
2152 offset and size of each of the debugging sections we are interested
2153 in. */
2154
2155 static void
2156 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2157 {
2158 const struct dwarf2_debug_sections *names;
2159 flagword aflag = bfd_get_section_flags (abfd, sectp);
2160
2161 if (vnames == NULL)
2162 names = &dwarf2_elf_names;
2163 else
2164 names = (const struct dwarf2_debug_sections *) vnames;
2165
2166 if ((aflag & SEC_HAS_CONTENTS) == 0)
2167 {
2168 }
2169 else if (section_is_p (sectp->name, &names->info))
2170 {
2171 dwarf2_per_objfile->info.s.asection = sectp;
2172 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->abbrev))
2175 {
2176 dwarf2_per_objfile->abbrev.s.asection = sectp;
2177 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->line))
2180 {
2181 dwarf2_per_objfile->line.s.asection = sectp;
2182 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &names->loc))
2185 {
2186 dwarf2_per_objfile->loc.s.asection = sectp;
2187 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->macinfo))
2190 {
2191 dwarf2_per_objfile->macinfo.s.asection = sectp;
2192 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->macro))
2195 {
2196 dwarf2_per_objfile->macro.s.asection = sectp;
2197 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->str))
2200 {
2201 dwarf2_per_objfile->str.s.asection = sectp;
2202 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->addr))
2205 {
2206 dwarf2_per_objfile->addr.s.asection = sectp;
2207 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->frame))
2210 {
2211 dwarf2_per_objfile->frame.s.asection = sectp;
2212 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->eh_frame))
2215 {
2216 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2217 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->ranges))
2220 {
2221 dwarf2_per_objfile->ranges.s.asection = sectp;
2222 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->types))
2225 {
2226 struct dwarf2_section_info type_section;
2227
2228 memset (&type_section, 0, sizeof (type_section));
2229 type_section.s.asection = sectp;
2230 type_section.size = bfd_get_section_size (sectp);
2231
2232 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2233 &type_section);
2234 }
2235 else if (section_is_p (sectp->name, &names->gdb_index))
2236 {
2237 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2238 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2239 }
2240
2241 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2242 && bfd_section_vma (abfd, sectp) == 0)
2243 dwarf2_per_objfile->has_section_at_zero = 1;
2244 }
2245
2246 /* A helper function that decides whether a section is empty,
2247 or not present. */
2248
2249 static int
2250 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 return section->size == 0;
2254 return section->s.asection == NULL || section->size == 0;
2255 }
2256
2257 /* Read the contents of the section INFO.
2258 OBJFILE is the main object file, but not necessarily the file where
2259 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2260 of the DWO file.
2261 If the section is compressed, uncompress it before returning. */
2262
2263 static void
2264 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2265 {
2266 asection *sectp;
2267 bfd *abfd;
2268 gdb_byte *buf, *retbuf;
2269
2270 if (info->readin)
2271 return;
2272 info->buffer = NULL;
2273 info->readin = 1;
2274
2275 if (dwarf2_section_empty_p (info))
2276 return;
2277
2278 sectp = get_section_bfd_section (info);
2279
2280 /* If this is a virtual section we need to read in the real one first. */
2281 if (info->is_virtual)
2282 {
2283 struct dwarf2_section_info *containing_section =
2284 get_containing_section (info);
2285
2286 gdb_assert (sectp != NULL);
2287 if ((sectp->flags & SEC_RELOC) != 0)
2288 {
2289 error (_("Dwarf Error: DWP format V2 with relocations is not"
2290 " supported in section %s [in module %s]"),
2291 get_section_name (info), get_section_file_name (info));
2292 }
2293 dwarf2_read_section (objfile, containing_section);
2294 /* Other code should have already caught virtual sections that don't
2295 fit. */
2296 gdb_assert (info->virtual_offset + info->size
2297 <= containing_section->size);
2298 /* If the real section is empty or there was a problem reading the
2299 section we shouldn't get here. */
2300 gdb_assert (containing_section->buffer != NULL);
2301 info->buffer = containing_section->buffer + info->virtual_offset;
2302 return;
2303 }
2304
2305 /* If the section has relocations, we must read it ourselves.
2306 Otherwise we attach it to the BFD. */
2307 if ((sectp->flags & SEC_RELOC) == 0)
2308 {
2309 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2310 return;
2311 }
2312
2313 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2314 info->buffer = buf;
2315
2316 /* When debugging .o files, we may need to apply relocations; see
2317 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2318 We never compress sections in .o files, so we only need to
2319 try this when the section is not compressed. */
2320 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2321 if (retbuf != NULL)
2322 {
2323 info->buffer = retbuf;
2324 return;
2325 }
2326
2327 abfd = get_section_bfd_owner (info);
2328 gdb_assert (abfd != NULL);
2329
2330 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2331 || bfd_bread (buf, info->size, abfd) != info->size)
2332 {
2333 error (_("Dwarf Error: Can't read DWARF data"
2334 " in section %s [in module %s]"),
2335 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2336 }
2337 }
2338
2339 /* A helper function that returns the size of a section in a safe way.
2340 If you are positive that the section has been read before using the
2341 size, then it is safe to refer to the dwarf2_section_info object's
2342 "size" field directly. In other cases, you must call this
2343 function, because for compressed sections the size field is not set
2344 correctly until the section has been read. */
2345
2346 static bfd_size_type
2347 dwarf2_section_size (struct objfile *objfile,
2348 struct dwarf2_section_info *info)
2349 {
2350 if (!info->readin)
2351 dwarf2_read_section (objfile, info);
2352 return info->size;
2353 }
2354
2355 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2356 SECTION_NAME. */
2357
2358 void
2359 dwarf2_get_section_info (struct objfile *objfile,
2360 enum dwarf2_section_enum sect,
2361 asection **sectp, const gdb_byte **bufp,
2362 bfd_size_type *sizep)
2363 {
2364 struct dwarf2_per_objfile *data
2365 = objfile_data (objfile, dwarf2_objfile_data_key);
2366 struct dwarf2_section_info *info;
2367
2368 /* We may see an objfile without any DWARF, in which case we just
2369 return nothing. */
2370 if (data == NULL)
2371 {
2372 *sectp = NULL;
2373 *bufp = NULL;
2374 *sizep = 0;
2375 return;
2376 }
2377 switch (sect)
2378 {
2379 case DWARF2_DEBUG_FRAME:
2380 info = &data->frame;
2381 break;
2382 case DWARF2_EH_FRAME:
2383 info = &data->eh_frame;
2384 break;
2385 default:
2386 gdb_assert_not_reached ("unexpected section");
2387 }
2388
2389 dwarf2_read_section (objfile, info);
2390
2391 *sectp = get_section_bfd_section (info);
2392 *bufp = info->buffer;
2393 *sizep = info->size;
2394 }
2395
2396 /* A helper function to find the sections for a .dwz file. */
2397
2398 static void
2399 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2400 {
2401 struct dwz_file *dwz_file = arg;
2402
2403 /* Note that we only support the standard ELF names, because .dwz
2404 is ELF-only (at the time of writing). */
2405 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2406 {
2407 dwz_file->abbrev.s.asection = sectp;
2408 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2411 {
2412 dwz_file->info.s.asection = sectp;
2413 dwz_file->info.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2416 {
2417 dwz_file->str.s.asection = sectp;
2418 dwz_file->str.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2421 {
2422 dwz_file->line.s.asection = sectp;
2423 dwz_file->line.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2426 {
2427 dwz_file->macro.s.asection = sectp;
2428 dwz_file->macro.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2431 {
2432 dwz_file->gdb_index.s.asection = sectp;
2433 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 }
2436
2437 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2438 there is no .gnu_debugaltlink section in the file. Error if there
2439 is such a section but the file cannot be found. */
2440
2441 static struct dwz_file *
2442 dwarf2_get_dwz_file (void)
2443 {
2444 bfd *dwz_bfd;
2445 char *data;
2446 struct cleanup *cleanup;
2447 const char *filename;
2448 struct dwz_file *result;
2449 bfd_size_type buildid_len_arg;
2450 size_t buildid_len;
2451 bfd_byte *buildid;
2452
2453 if (dwarf2_per_objfile->dwz_file != NULL)
2454 return dwarf2_per_objfile->dwz_file;
2455
2456 bfd_set_error (bfd_error_no_error);
2457 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2458 &buildid_len_arg, &buildid);
2459 if (data == NULL)
2460 {
2461 if (bfd_get_error () == bfd_error_no_error)
2462 return NULL;
2463 error (_("could not read '.gnu_debugaltlink' section: %s"),
2464 bfd_errmsg (bfd_get_error ()));
2465 }
2466 cleanup = make_cleanup (xfree, data);
2467 make_cleanup (xfree, buildid);
2468
2469 buildid_len = (size_t) buildid_len_arg;
2470
2471 filename = (const char *) data;
2472 if (!IS_ABSOLUTE_PATH (filename))
2473 {
2474 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2475 char *rel;
2476
2477 make_cleanup (xfree, abs);
2478 abs = ldirname (abs);
2479 make_cleanup (xfree, abs);
2480
2481 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2482 make_cleanup (xfree, rel);
2483 filename = rel;
2484 }
2485
2486 /* First try the file name given in the section. If that doesn't
2487 work, try to use the build-id instead. */
2488 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2489 if (dwz_bfd != NULL)
2490 {
2491 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2492 {
2493 gdb_bfd_unref (dwz_bfd);
2494 dwz_bfd = NULL;
2495 }
2496 }
2497
2498 if (dwz_bfd == NULL)
2499 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2500
2501 if (dwz_bfd == NULL)
2502 error (_("could not find '.gnu_debugaltlink' file for %s"),
2503 objfile_name (dwarf2_per_objfile->objfile));
2504
2505 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2506 struct dwz_file);
2507 result->dwz_bfd = dwz_bfd;
2508
2509 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2510
2511 do_cleanups (cleanup);
2512
2513 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2514 dwarf2_per_objfile->dwz_file = result;
2515 return result;
2516 }
2517 \f
2518 /* DWARF quick_symbols_functions support. */
2519
2520 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2521 unique line tables, so we maintain a separate table of all .debug_line
2522 derived entries to support the sharing.
2523 All the quick functions need is the list of file names. We discard the
2524 line_header when we're done and don't need to record it here. */
2525 struct quick_file_names
2526 {
2527 /* The data used to construct the hash key. */
2528 struct stmt_list_hash hash;
2529
2530 /* The number of entries in file_names, real_names. */
2531 unsigned int num_file_names;
2532
2533 /* The file names from the line table, after being run through
2534 file_full_name. */
2535 const char **file_names;
2536
2537 /* The file names from the line table after being run through
2538 gdb_realpath. These are computed lazily. */
2539 const char **real_names;
2540 };
2541
2542 /* When using the index (and thus not using psymtabs), each CU has an
2543 object of this type. This is used to hold information needed by
2544 the various "quick" methods. */
2545 struct dwarf2_per_cu_quick_data
2546 {
2547 /* The file table. This can be NULL if there was no file table
2548 or it's currently not read in.
2549 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2550 struct quick_file_names *file_names;
2551
2552 /* The corresponding symbol table. This is NULL if symbols for this
2553 CU have not yet been read. */
2554 struct compunit_symtab *compunit_symtab;
2555
2556 /* A temporary mark bit used when iterating over all CUs in
2557 expand_symtabs_matching. */
2558 unsigned int mark : 1;
2559
2560 /* True if we've tried to read the file table and found there isn't one.
2561 There will be no point in trying to read it again next time. */
2562 unsigned int no_file_data : 1;
2563 };
2564
2565 /* Utility hash function for a stmt_list_hash. */
2566
2567 static hashval_t
2568 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2569 {
2570 hashval_t v = 0;
2571
2572 if (stmt_list_hash->dwo_unit != NULL)
2573 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2574 v += stmt_list_hash->line_offset.sect_off;
2575 return v;
2576 }
2577
2578 /* Utility equality function for a stmt_list_hash. */
2579
2580 static int
2581 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2582 const struct stmt_list_hash *rhs)
2583 {
2584 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2585 return 0;
2586 if (lhs->dwo_unit != NULL
2587 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2588 return 0;
2589
2590 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2591 }
2592
2593 /* Hash function for a quick_file_names. */
2594
2595 static hashval_t
2596 hash_file_name_entry (const void *e)
2597 {
2598 const struct quick_file_names *file_data = e;
2599
2600 return hash_stmt_list_entry (&file_data->hash);
2601 }
2602
2603 /* Equality function for a quick_file_names. */
2604
2605 static int
2606 eq_file_name_entry (const void *a, const void *b)
2607 {
2608 const struct quick_file_names *ea = a;
2609 const struct quick_file_names *eb = b;
2610
2611 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2612 }
2613
2614 /* Delete function for a quick_file_names. */
2615
2616 static void
2617 delete_file_name_entry (void *e)
2618 {
2619 struct quick_file_names *file_data = e;
2620 int i;
2621
2622 for (i = 0; i < file_data->num_file_names; ++i)
2623 {
2624 xfree ((void*) file_data->file_names[i]);
2625 if (file_data->real_names)
2626 xfree ((void*) file_data->real_names[i]);
2627 }
2628
2629 /* The space for the struct itself lives on objfile_obstack,
2630 so we don't free it here. */
2631 }
2632
2633 /* Create a quick_file_names hash table. */
2634
2635 static htab_t
2636 create_quick_file_names_table (unsigned int nr_initial_entries)
2637 {
2638 return htab_create_alloc (nr_initial_entries,
2639 hash_file_name_entry, eq_file_name_entry,
2640 delete_file_name_entry, xcalloc, xfree);
2641 }
2642
2643 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2644 have to be created afterwards. You should call age_cached_comp_units after
2645 processing PER_CU->CU. dw2_setup must have been already called. */
2646
2647 static void
2648 load_cu (struct dwarf2_per_cu_data *per_cu)
2649 {
2650 if (per_cu->is_debug_types)
2651 load_full_type_unit (per_cu);
2652 else
2653 load_full_comp_unit (per_cu, language_minimal);
2654
2655 gdb_assert (per_cu->cu != NULL);
2656
2657 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2658 }
2659
2660 /* Read in the symbols for PER_CU. */
2661
2662 static void
2663 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2664 {
2665 struct cleanup *back_to;
2666
2667 /* Skip type_unit_groups, reading the type units they contain
2668 is handled elsewhere. */
2669 if (IS_TYPE_UNIT_GROUP (per_cu))
2670 return;
2671
2672 back_to = make_cleanup (dwarf2_release_queue, NULL);
2673
2674 if (dwarf2_per_objfile->using_index
2675 ? per_cu->v.quick->compunit_symtab == NULL
2676 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2677 {
2678 queue_comp_unit (per_cu, language_minimal);
2679 load_cu (per_cu);
2680
2681 /* If we just loaded a CU from a DWO, and we're working with an index
2682 that may badly handle TUs, load all the TUs in that DWO as well.
2683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2684 if (!per_cu->is_debug_types
2685 && per_cu->cu->dwo_unit != NULL
2686 && dwarf2_per_objfile->index_table != NULL
2687 && dwarf2_per_objfile->index_table->version <= 7
2688 /* DWP files aren't supported yet. */
2689 && get_dwp_file () == NULL)
2690 queue_and_load_all_dwo_tus (per_cu);
2691 }
2692
2693 process_queue ();
2694
2695 /* Age the cache, releasing compilation units that have not
2696 been used recently. */
2697 age_cached_comp_units ();
2698
2699 do_cleanups (back_to);
2700 }
2701
2702 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2703 the objfile from which this CU came. Returns the resulting symbol
2704 table. */
2705
2706 static struct compunit_symtab *
2707 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2708 {
2709 gdb_assert (dwarf2_per_objfile->using_index);
2710 if (!per_cu->v.quick->compunit_symtab)
2711 {
2712 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2713 increment_reading_symtab ();
2714 dw2_do_instantiate_symtab (per_cu);
2715 process_cu_includes ();
2716 do_cleanups (back_to);
2717 }
2718
2719 return per_cu->v.quick->compunit_symtab;
2720 }
2721
2722 /* Return the CU/TU given its index.
2723
2724 This is intended for loops like:
2725
2726 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2727 + dwarf2_per_objfile->n_type_units); ++i)
2728 {
2729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2730
2731 ...;
2732 }
2733 */
2734
2735 static struct dwarf2_per_cu_data *
2736 dw2_get_cutu (int index)
2737 {
2738 if (index >= dwarf2_per_objfile->n_comp_units)
2739 {
2740 index -= dwarf2_per_objfile->n_comp_units;
2741 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2742 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2743 }
2744
2745 return dwarf2_per_objfile->all_comp_units[index];
2746 }
2747
2748 /* Return the CU given its index.
2749 This differs from dw2_get_cutu in that it's for when you know INDEX
2750 refers to a CU. */
2751
2752 static struct dwarf2_per_cu_data *
2753 dw2_get_cu (int index)
2754 {
2755 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2756
2757 return dwarf2_per_objfile->all_comp_units[index];
2758 }
2759
2760 /* A helper for create_cus_from_index that handles a given list of
2761 CUs. */
2762
2763 static void
2764 create_cus_from_index_list (struct objfile *objfile,
2765 const gdb_byte *cu_list, offset_type n_elements,
2766 struct dwarf2_section_info *section,
2767 int is_dwz,
2768 int base_offset)
2769 {
2770 offset_type i;
2771
2772 for (i = 0; i < n_elements; i += 2)
2773 {
2774 struct dwarf2_per_cu_data *the_cu;
2775 ULONGEST offset, length;
2776
2777 gdb_static_assert (sizeof (ULONGEST) >= 8);
2778 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2779 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2780 cu_list += 2 * 8;
2781
2782 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2783 struct dwarf2_per_cu_data);
2784 the_cu->offset.sect_off = offset;
2785 the_cu->length = length;
2786 the_cu->objfile = objfile;
2787 the_cu->section = section;
2788 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2789 struct dwarf2_per_cu_quick_data);
2790 the_cu->is_dwz = is_dwz;
2791 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2792 }
2793 }
2794
2795 /* Read the CU list from the mapped index, and use it to create all
2796 the CU objects for this objfile. */
2797
2798 static void
2799 create_cus_from_index (struct objfile *objfile,
2800 const gdb_byte *cu_list, offset_type cu_list_elements,
2801 const gdb_byte *dwz_list, offset_type dwz_elements)
2802 {
2803 struct dwz_file *dwz;
2804
2805 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2806 dwarf2_per_objfile->all_comp_units
2807 = obstack_alloc (&objfile->objfile_obstack,
2808 dwarf2_per_objfile->n_comp_units
2809 * sizeof (struct dwarf2_per_cu_data *));
2810
2811 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2812 &dwarf2_per_objfile->info, 0, 0);
2813
2814 if (dwz_elements == 0)
2815 return;
2816
2817 dwz = dwarf2_get_dwz_file ();
2818 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2819 cu_list_elements / 2);
2820 }
2821
2822 /* Create the signatured type hash table from the index. */
2823
2824 static void
2825 create_signatured_type_table_from_index (struct objfile *objfile,
2826 struct dwarf2_section_info *section,
2827 const gdb_byte *bytes,
2828 offset_type elements)
2829 {
2830 offset_type i;
2831 htab_t sig_types_hash;
2832
2833 dwarf2_per_objfile->n_type_units
2834 = dwarf2_per_objfile->n_allocated_type_units
2835 = elements / 3;
2836 dwarf2_per_objfile->all_type_units
2837 = xmalloc (dwarf2_per_objfile->n_type_units
2838 * sizeof (struct signatured_type *));
2839
2840 sig_types_hash = allocate_signatured_type_table (objfile);
2841
2842 for (i = 0; i < elements; i += 3)
2843 {
2844 struct signatured_type *sig_type;
2845 ULONGEST offset, type_offset_in_tu, signature;
2846 void **slot;
2847
2848 gdb_static_assert (sizeof (ULONGEST) >= 8);
2849 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2850 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2851 BFD_ENDIAN_LITTLE);
2852 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2853 bytes += 3 * 8;
2854
2855 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2856 struct signatured_type);
2857 sig_type->signature = signature;
2858 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2859 sig_type->per_cu.is_debug_types = 1;
2860 sig_type->per_cu.section = section;
2861 sig_type->per_cu.offset.sect_off = offset;
2862 sig_type->per_cu.objfile = objfile;
2863 sig_type->per_cu.v.quick
2864 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_quick_data);
2866
2867 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2868 *slot = sig_type;
2869
2870 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2871 }
2872
2873 dwarf2_per_objfile->signatured_types = sig_types_hash;
2874 }
2875
2876 /* Read the address map data from the mapped index, and use it to
2877 populate the objfile's psymtabs_addrmap. */
2878
2879 static void
2880 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2881 {
2882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2883 const gdb_byte *iter, *end;
2884 struct obstack temp_obstack;
2885 struct addrmap *mutable_map;
2886 struct cleanup *cleanup;
2887 CORE_ADDR baseaddr;
2888
2889 obstack_init (&temp_obstack);
2890 cleanup = make_cleanup_obstack_free (&temp_obstack);
2891 mutable_map = addrmap_create_mutable (&temp_obstack);
2892
2893 iter = index->address_table;
2894 end = iter + index->address_table_size;
2895
2896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2897
2898 while (iter < end)
2899 {
2900 ULONGEST hi, lo, cu_index;
2901 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2902 iter += 8;
2903 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2904 iter += 8;
2905 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2906 iter += 4;
2907
2908 if (lo > hi)
2909 {
2910 complaint (&symfile_complaints,
2911 _(".gdb_index address table has invalid range (%s - %s)"),
2912 hex_string (lo), hex_string (hi));
2913 continue;
2914 }
2915
2916 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2917 {
2918 complaint (&symfile_complaints,
2919 _(".gdb_index address table has invalid CU number %u"),
2920 (unsigned) cu_index);
2921 continue;
2922 }
2923
2924 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2925 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2926 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2927 }
2928
2929 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2930 &objfile->objfile_obstack);
2931 do_cleanups (cleanup);
2932 }
2933
2934 /* The hash function for strings in the mapped index. This is the same as
2935 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2936 implementation. This is necessary because the hash function is tied to the
2937 format of the mapped index file. The hash values do not have to match with
2938 SYMBOL_HASH_NEXT.
2939
2940 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2941
2942 static hashval_t
2943 mapped_index_string_hash (int index_version, const void *p)
2944 {
2945 const unsigned char *str = (const unsigned char *) p;
2946 hashval_t r = 0;
2947 unsigned char c;
2948
2949 while ((c = *str++) != 0)
2950 {
2951 if (index_version >= 5)
2952 c = tolower (c);
2953 r = r * 67 + c - 113;
2954 }
2955
2956 return r;
2957 }
2958
2959 /* Find a slot in the mapped index INDEX for the object named NAME.
2960 If NAME is found, set *VEC_OUT to point to the CU vector in the
2961 constant pool and return 1. If NAME cannot be found, return 0. */
2962
2963 static int
2964 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2965 offset_type **vec_out)
2966 {
2967 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2968 offset_type hash;
2969 offset_type slot, step;
2970 int (*cmp) (const char *, const char *);
2971
2972 if (current_language->la_language == language_cplus
2973 || current_language->la_language == language_java
2974 || current_language->la_language == language_fortran)
2975 {
2976 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2977 not contain any. */
2978
2979 if (strchr (name, '(') != NULL)
2980 {
2981 char *without_params = cp_remove_params (name);
2982
2983 if (without_params != NULL)
2984 {
2985 make_cleanup (xfree, without_params);
2986 name = without_params;
2987 }
2988 }
2989 }
2990
2991 /* Index version 4 did not support case insensitive searches. But the
2992 indices for case insensitive languages are built in lowercase, therefore
2993 simulate our NAME being searched is also lowercased. */
2994 hash = mapped_index_string_hash ((index->version == 4
2995 && case_sensitivity == case_sensitive_off
2996 ? 5 : index->version),
2997 name);
2998
2999 slot = hash & (index->symbol_table_slots - 1);
3000 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3001 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3002
3003 for (;;)
3004 {
3005 /* Convert a slot number to an offset into the table. */
3006 offset_type i = 2 * slot;
3007 const char *str;
3008 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3009 {
3010 do_cleanups (back_to);
3011 return 0;
3012 }
3013
3014 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3015 if (!cmp (name, str))
3016 {
3017 *vec_out = (offset_type *) (index->constant_pool
3018 + MAYBE_SWAP (index->symbol_table[i + 1]));
3019 do_cleanups (back_to);
3020 return 1;
3021 }
3022
3023 slot = (slot + step) & (index->symbol_table_slots - 1);
3024 }
3025 }
3026
3027 /* A helper function that reads the .gdb_index from SECTION and fills
3028 in MAP. FILENAME is the name of the file containing the section;
3029 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3030 ok to use deprecated sections.
3031
3032 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3033 out parameters that are filled in with information about the CU and
3034 TU lists in the section.
3035
3036 Returns 1 if all went well, 0 otherwise. */
3037
3038 static int
3039 read_index_from_section (struct objfile *objfile,
3040 const char *filename,
3041 int deprecated_ok,
3042 struct dwarf2_section_info *section,
3043 struct mapped_index *map,
3044 const gdb_byte **cu_list,
3045 offset_type *cu_list_elements,
3046 const gdb_byte **types_list,
3047 offset_type *types_list_elements)
3048 {
3049 const gdb_byte *addr;
3050 offset_type version;
3051 offset_type *metadata;
3052 int i;
3053
3054 if (dwarf2_section_empty_p (section))
3055 return 0;
3056
3057 /* Older elfutils strip versions could keep the section in the main
3058 executable while splitting it for the separate debug info file. */
3059 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3060 return 0;
3061
3062 dwarf2_read_section (objfile, section);
3063
3064 addr = section->buffer;
3065 /* Version check. */
3066 version = MAYBE_SWAP (*(offset_type *) addr);
3067 /* Versions earlier than 3 emitted every copy of a psymbol. This
3068 causes the index to behave very poorly for certain requests. Version 3
3069 contained incomplete addrmap. So, it seems better to just ignore such
3070 indices. */
3071 if (version < 4)
3072 {
3073 static int warning_printed = 0;
3074 if (!warning_printed)
3075 {
3076 warning (_("Skipping obsolete .gdb_index section in %s."),
3077 filename);
3078 warning_printed = 1;
3079 }
3080 return 0;
3081 }
3082 /* Index version 4 uses a different hash function than index version
3083 5 and later.
3084
3085 Versions earlier than 6 did not emit psymbols for inlined
3086 functions. Using these files will cause GDB not to be able to
3087 set breakpoints on inlined functions by name, so we ignore these
3088 indices unless the user has done
3089 "set use-deprecated-index-sections on". */
3090 if (version < 6 && !deprecated_ok)
3091 {
3092 static int warning_printed = 0;
3093 if (!warning_printed)
3094 {
3095 warning (_("\
3096 Skipping deprecated .gdb_index section in %s.\n\
3097 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3098 to use the section anyway."),
3099 filename);
3100 warning_printed = 1;
3101 }
3102 return 0;
3103 }
3104 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3105 of the TU (for symbols coming from TUs),
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3107 Plus gold-generated indices can have duplicate entries for global symbols,
3108 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3109 These are just performance bugs, and we can't distinguish gdb-generated
3110 indices from gold-generated ones, so issue no warning here. */
3111
3112 /* Indexes with higher version than the one supported by GDB may be no
3113 longer backward compatible. */
3114 if (version > 8)
3115 return 0;
3116
3117 map->version = version;
3118 map->total_size = section->size;
3119
3120 metadata = (offset_type *) (addr + sizeof (offset_type));
3121
3122 i = 0;
3123 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3124 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3125 / 8);
3126 ++i;
3127
3128 *types_list = addr + MAYBE_SWAP (metadata[i]);
3129 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3130 - MAYBE_SWAP (metadata[i]))
3131 / 8);
3132 ++i;
3133
3134 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3135 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]));
3137 ++i;
3138
3139 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3140 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3141 - MAYBE_SWAP (metadata[i]))
3142 / (2 * sizeof (offset_type)));
3143 ++i;
3144
3145 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3146
3147 return 1;
3148 }
3149
3150
3151 /* Read the index file. If everything went ok, initialize the "quick"
3152 elements of all the CUs and return 1. Otherwise, return 0. */
3153
3154 static int
3155 dwarf2_read_index (struct objfile *objfile)
3156 {
3157 struct mapped_index local_map, *map;
3158 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3159 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3160 struct dwz_file *dwz;
3161
3162 if (!read_index_from_section (objfile, objfile_name (objfile),
3163 use_deprecated_index_sections,
3164 &dwarf2_per_objfile->gdb_index, &local_map,
3165 &cu_list, &cu_list_elements,
3166 &types_list, &types_list_elements))
3167 return 0;
3168
3169 /* Don't use the index if it's empty. */
3170 if (local_map.symbol_table_slots == 0)
3171 return 0;
3172
3173 /* If there is a .dwz file, read it so we can get its CU list as
3174 well. */
3175 dwz = dwarf2_get_dwz_file ();
3176 if (dwz != NULL)
3177 {
3178 struct mapped_index dwz_map;
3179 const gdb_byte *dwz_types_ignore;
3180 offset_type dwz_types_elements_ignore;
3181
3182 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3183 1,
3184 &dwz->gdb_index, &dwz_map,
3185 &dwz_list, &dwz_list_elements,
3186 &dwz_types_ignore,
3187 &dwz_types_elements_ignore))
3188 {
3189 warning (_("could not read '.gdb_index' section from %s; skipping"),
3190 bfd_get_filename (dwz->dwz_bfd));
3191 return 0;
3192 }
3193 }
3194
3195 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3196 dwz_list_elements);
3197
3198 if (types_list_elements)
3199 {
3200 struct dwarf2_section_info *section;
3201
3202 /* We can only handle a single .debug_types when we have an
3203 index. */
3204 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3205 return 0;
3206
3207 section = VEC_index (dwarf2_section_info_def,
3208 dwarf2_per_objfile->types, 0);
3209
3210 create_signatured_type_table_from_index (objfile, section, types_list,
3211 types_list_elements);
3212 }
3213
3214 create_addrmap_from_index (objfile, &local_map);
3215
3216 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3217 *map = local_map;
3218
3219 dwarf2_per_objfile->index_table = map;
3220 dwarf2_per_objfile->using_index = 1;
3221 dwarf2_per_objfile->quick_file_names_table =
3222 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3223
3224 return 1;
3225 }
3226
3227 /* A helper for the "quick" functions which sets the global
3228 dwarf2_per_objfile according to OBJFILE. */
3229
3230 static void
3231 dw2_setup (struct objfile *objfile)
3232 {
3233 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3234 gdb_assert (dwarf2_per_objfile);
3235 }
3236
3237 /* die_reader_func for dw2_get_file_names. */
3238
3239 static void
3240 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3241 const gdb_byte *info_ptr,
3242 struct die_info *comp_unit_die,
3243 int has_children,
3244 void *data)
3245 {
3246 struct dwarf2_cu *cu = reader->cu;
3247 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3248 struct objfile *objfile = dwarf2_per_objfile->objfile;
3249 struct dwarf2_per_cu_data *lh_cu;
3250 struct line_header *lh;
3251 struct attribute *attr;
3252 int i;
3253 const char *name, *comp_dir;
3254 void **slot;
3255 struct quick_file_names *qfn;
3256 unsigned int line_offset;
3257
3258 gdb_assert (! this_cu->is_debug_types);
3259
3260 /* Our callers never want to match partial units -- instead they
3261 will match the enclosing full CU. */
3262 if (comp_unit_die->tag == DW_TAG_partial_unit)
3263 {
3264 this_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
3268 lh_cu = this_cu;
3269 lh = NULL;
3270 slot = NULL;
3271 line_offset = 0;
3272
3273 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3274 if (attr)
3275 {
3276 struct quick_file_names find_entry;
3277
3278 line_offset = DW_UNSND (attr);
3279
3280 /* We may have already read in this line header (TU line header sharing).
3281 If we have we're done. */
3282 find_entry.hash.dwo_unit = cu->dwo_unit;
3283 find_entry.hash.line_offset.sect_off = line_offset;
3284 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3285 &find_entry, INSERT);
3286 if (*slot != NULL)
3287 {
3288 lh_cu->v.quick->file_names = *slot;
3289 return;
3290 }
3291
3292 lh = dwarf_decode_line_header (line_offset, cu);
3293 }
3294 if (lh == NULL)
3295 {
3296 lh_cu->v.quick->no_file_data = 1;
3297 return;
3298 }
3299
3300 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3301 qfn->hash.dwo_unit = cu->dwo_unit;
3302 qfn->hash.line_offset.sect_off = line_offset;
3303 gdb_assert (slot != NULL);
3304 *slot = qfn;
3305
3306 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3307
3308 qfn->num_file_names = lh->num_file_names;
3309 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3310 lh->num_file_names * sizeof (char *));
3311 for (i = 0; i < lh->num_file_names; ++i)
3312 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3313 qfn->real_names = NULL;
3314
3315 free_line_header (lh);
3316
3317 lh_cu->v.quick->file_names = qfn;
3318 }
3319
3320 /* A helper for the "quick" functions which attempts to read the line
3321 table for THIS_CU. */
3322
3323 static struct quick_file_names *
3324 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3325 {
3326 /* This should never be called for TUs. */
3327 gdb_assert (! this_cu->is_debug_types);
3328 /* Nor type unit groups. */
3329 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3330
3331 if (this_cu->v.quick->file_names != NULL)
3332 return this_cu->v.quick->file_names;
3333 /* If we know there is no line data, no point in looking again. */
3334 if (this_cu->v.quick->no_file_data)
3335 return NULL;
3336
3337 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3338
3339 if (this_cu->v.quick->no_file_data)
3340 return NULL;
3341 return this_cu->v.quick->file_names;
3342 }
3343
3344 /* A helper for the "quick" functions which computes and caches the
3345 real path for a given file name from the line table. */
3346
3347 static const char *
3348 dw2_get_real_path (struct objfile *objfile,
3349 struct quick_file_names *qfn, int index)
3350 {
3351 if (qfn->real_names == NULL)
3352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3353 qfn->num_file_names, const char *);
3354
3355 if (qfn->real_names[index] == NULL)
3356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3357
3358 return qfn->real_names[index];
3359 }
3360
3361 static struct symtab *
3362 dw2_find_last_source_symtab (struct objfile *objfile)
3363 {
3364 struct compunit_symtab *cust;
3365 int index;
3366
3367 dw2_setup (objfile);
3368 index = dwarf2_per_objfile->n_comp_units - 1;
3369 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3370 if (cust == NULL)
3371 return NULL;
3372 return compunit_primary_filetab (cust);
3373 }
3374
3375 /* Traversal function for dw2_forget_cached_source_info. */
3376
3377 static int
3378 dw2_free_cached_file_names (void **slot, void *info)
3379 {
3380 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3381
3382 if (file_data->real_names)
3383 {
3384 int i;
3385
3386 for (i = 0; i < file_data->num_file_names; ++i)
3387 {
3388 xfree ((void*) file_data->real_names[i]);
3389 file_data->real_names[i] = NULL;
3390 }
3391 }
3392
3393 return 1;
3394 }
3395
3396 static void
3397 dw2_forget_cached_source_info (struct objfile *objfile)
3398 {
3399 dw2_setup (objfile);
3400
3401 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3402 dw2_free_cached_file_names, NULL);
3403 }
3404
3405 /* Helper function for dw2_map_symtabs_matching_filename that expands
3406 the symtabs and calls the iterator. */
3407
3408 static int
3409 dw2_map_expand_apply (struct objfile *objfile,
3410 struct dwarf2_per_cu_data *per_cu,
3411 const char *name, const char *real_path,
3412 int (*callback) (struct symtab *, void *),
3413 void *data)
3414 {
3415 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3416
3417 /* Don't visit already-expanded CUs. */
3418 if (per_cu->v.quick->compunit_symtab)
3419 return 0;
3420
3421 /* This may expand more than one symtab, and we want to iterate over
3422 all of them. */
3423 dw2_instantiate_symtab (per_cu);
3424
3425 return iterate_over_some_symtabs (name, real_path, callback, data,
3426 objfile->compunit_symtabs, last_made);
3427 }
3428
3429 /* Implementation of the map_symtabs_matching_filename method. */
3430
3431 static int
3432 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3433 const char *real_path,
3434 int (*callback) (struct symtab *, void *),
3435 void *data)
3436 {
3437 int i;
3438 const char *name_basename = lbasename (name);
3439
3440 dw2_setup (objfile);
3441
3442 /* The rule is CUs specify all the files, including those used by
3443 any TU, so there's no need to scan TUs here. */
3444
3445 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3446 {
3447 int j;
3448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3449 struct quick_file_names *file_data;
3450
3451 /* We only need to look at symtabs not already expanded. */
3452 if (per_cu->v.quick->compunit_symtab)
3453 continue;
3454
3455 file_data = dw2_get_file_names (per_cu);
3456 if (file_data == NULL)
3457 continue;
3458
3459 for (j = 0; j < file_data->num_file_names; ++j)
3460 {
3461 const char *this_name = file_data->file_names[j];
3462 const char *this_real_name;
3463
3464 if (compare_filenames_for_search (this_name, name))
3465 {
3466 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3467 callback, data))
3468 return 1;
3469 continue;
3470 }
3471
3472 /* Before we invoke realpath, which can get expensive when many
3473 files are involved, do a quick comparison of the basenames. */
3474 if (! basenames_may_differ
3475 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3476 continue;
3477
3478 this_real_name = dw2_get_real_path (objfile, file_data, j);
3479 if (compare_filenames_for_search (this_real_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 if (real_path != NULL)
3488 {
3489 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3490 gdb_assert (IS_ABSOLUTE_PATH (name));
3491 if (this_real_name != NULL
3492 && FILENAME_CMP (real_path, this_real_name) == 0)
3493 {
3494 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3495 callback, data))
3496 return 1;
3497 continue;
3498 }
3499 }
3500 }
3501 }
3502
3503 return 0;
3504 }
3505
3506 /* Struct used to manage iterating over all CUs looking for a symbol. */
3507
3508 struct dw2_symtab_iterator
3509 {
3510 /* The internalized form of .gdb_index. */
3511 struct mapped_index *index;
3512 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3513 int want_specific_block;
3514 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3515 Unused if !WANT_SPECIFIC_BLOCK. */
3516 int block_index;
3517 /* The kind of symbol we're looking for. */
3518 domain_enum domain;
3519 /* The list of CUs from the index entry of the symbol,
3520 or NULL if not found. */
3521 offset_type *vec;
3522 /* The next element in VEC to look at. */
3523 int next;
3524 /* The number of elements in VEC, or zero if there is no match. */
3525 int length;
3526 /* Have we seen a global version of the symbol?
3527 If so we can ignore all further global instances.
3528 This is to work around gold/15646, inefficient gold-generated
3529 indices. */
3530 int global_seen;
3531 };
3532
3533 /* Initialize the index symtab iterator ITER.
3534 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3535 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3536
3537 static void
3538 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3539 struct mapped_index *index,
3540 int want_specific_block,
3541 int block_index,
3542 domain_enum domain,
3543 const char *name)
3544 {
3545 iter->index = index;
3546 iter->want_specific_block = want_specific_block;
3547 iter->block_index = block_index;
3548 iter->domain = domain;
3549 iter->next = 0;
3550 iter->global_seen = 0;
3551
3552 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3553 iter->length = MAYBE_SWAP (*iter->vec);
3554 else
3555 {
3556 iter->vec = NULL;
3557 iter->length = 0;
3558 }
3559 }
3560
3561 /* Return the next matching CU or NULL if there are no more. */
3562
3563 static struct dwarf2_per_cu_data *
3564 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3565 {
3566 for ( ; iter->next < iter->length; ++iter->next)
3567 {
3568 offset_type cu_index_and_attrs =
3569 MAYBE_SWAP (iter->vec[iter->next + 1]);
3570 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3571 struct dwarf2_per_cu_data *per_cu;
3572 int want_static = iter->block_index != GLOBAL_BLOCK;
3573 /* This value is only valid for index versions >= 7. */
3574 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3575 gdb_index_symbol_kind symbol_kind =
3576 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3577 /* Only check the symbol attributes if they're present.
3578 Indices prior to version 7 don't record them,
3579 and indices >= 7 may elide them for certain symbols
3580 (gold does this). */
3581 int attrs_valid =
3582 (iter->index->version >= 7
3583 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3584
3585 /* Don't crash on bad data. */
3586 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3587 + dwarf2_per_objfile->n_type_units))
3588 {
3589 complaint (&symfile_complaints,
3590 _(".gdb_index entry has bad CU index"
3591 " [in module %s]"),
3592 objfile_name (dwarf2_per_objfile->objfile));
3593 continue;
3594 }
3595
3596 per_cu = dw2_get_cutu (cu_index);
3597
3598 /* Skip if already read in. */
3599 if (per_cu->v.quick->compunit_symtab)
3600 continue;
3601
3602 /* Check static vs global. */
3603 if (attrs_valid)
3604 {
3605 if (iter->want_specific_block
3606 && want_static != is_static)
3607 continue;
3608 /* Work around gold/15646. */
3609 if (!is_static && iter->global_seen)
3610 continue;
3611 if (!is_static)
3612 iter->global_seen = 1;
3613 }
3614
3615 /* Only check the symbol's kind if it has one. */
3616 if (attrs_valid)
3617 {
3618 switch (iter->domain)
3619 {
3620 case VAR_DOMAIN:
3621 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3623 /* Some types are also in VAR_DOMAIN. */
3624 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3625 continue;
3626 break;
3627 case STRUCT_DOMAIN:
3628 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3629 continue;
3630 break;
3631 case LABEL_DOMAIN:
3632 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3633 continue;
3634 break;
3635 default:
3636 break;
3637 }
3638 }
3639
3640 ++iter->next;
3641 return per_cu;
3642 }
3643
3644 return NULL;
3645 }
3646
3647 static struct compunit_symtab *
3648 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3649 const char *name, domain_enum domain)
3650 {
3651 struct compunit_symtab *stab_best = NULL;
3652 struct mapped_index *index;
3653
3654 dw2_setup (objfile);
3655
3656 index = dwarf2_per_objfile->index_table;
3657
3658 /* index is NULL if OBJF_READNOW. */
3659 if (index)
3660 {
3661 struct dw2_symtab_iterator iter;
3662 struct dwarf2_per_cu_data *per_cu;
3663
3664 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3665
3666 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3667 {
3668 struct symbol *sym = NULL;
3669 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3670 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3671 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3672
3673 /* Some caution must be observed with overloaded functions
3674 and methods, since the index will not contain any overload
3675 information (but NAME might contain it). */
3676 sym = block_lookup_symbol (block, name, domain);
3677
3678 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3679 {
3680 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3681 return stab;
3682
3683 stab_best = stab;
3684 }
3685
3686 /* Keep looking through other CUs. */
3687 }
3688 }
3689
3690 return stab_best;
3691 }
3692
3693 static void
3694 dw2_print_stats (struct objfile *objfile)
3695 {
3696 int i, total, count;
3697
3698 dw2_setup (objfile);
3699 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3700 count = 0;
3701 for (i = 0; i < total; ++i)
3702 {
3703 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3704
3705 if (!per_cu->v.quick->compunit_symtab)
3706 ++count;
3707 }
3708 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3709 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3710 }
3711
3712 /* This dumps minimal information about the index.
3713 It is called via "mt print objfiles".
3714 One use is to verify .gdb_index has been loaded by the
3715 gdb.dwarf2/gdb-index.exp testcase. */
3716
3717 static void
3718 dw2_dump (struct objfile *objfile)
3719 {
3720 dw2_setup (objfile);
3721 gdb_assert (dwarf2_per_objfile->using_index);
3722 printf_filtered (".gdb_index:");
3723 if (dwarf2_per_objfile->index_table != NULL)
3724 {
3725 printf_filtered (" version %d\n",
3726 dwarf2_per_objfile->index_table->version);
3727 }
3728 else
3729 printf_filtered (" faked for \"readnow\"\n");
3730 printf_filtered ("\n");
3731 }
3732
3733 static void
3734 dw2_relocate (struct objfile *objfile,
3735 const struct section_offsets *new_offsets,
3736 const struct section_offsets *delta)
3737 {
3738 /* There's nothing to relocate here. */
3739 }
3740
3741 static void
3742 dw2_expand_symtabs_for_function (struct objfile *objfile,
3743 const char *func_name)
3744 {
3745 struct mapped_index *index;
3746
3747 dw2_setup (objfile);
3748
3749 index = dwarf2_per_objfile->index_table;
3750
3751 /* index is NULL if OBJF_READNOW. */
3752 if (index)
3753 {
3754 struct dw2_symtab_iterator iter;
3755 struct dwarf2_per_cu_data *per_cu;
3756
3757 /* Note: It doesn't matter what we pass for block_index here. */
3758 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3759 func_name);
3760
3761 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3762 dw2_instantiate_symtab (per_cu);
3763 }
3764 }
3765
3766 static void
3767 dw2_expand_all_symtabs (struct objfile *objfile)
3768 {
3769 int i;
3770
3771 dw2_setup (objfile);
3772
3773 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3774 + dwarf2_per_objfile->n_type_units); ++i)
3775 {
3776 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3777
3778 dw2_instantiate_symtab (per_cu);
3779 }
3780 }
3781
3782 static void
3783 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3784 const char *fullname)
3785 {
3786 int i;
3787
3788 dw2_setup (objfile);
3789
3790 /* We don't need to consider type units here.
3791 This is only called for examining code, e.g. expand_line_sal.
3792 There can be an order of magnitude (or more) more type units
3793 than comp units, and we avoid them if we can. */
3794
3795 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3796 {
3797 int j;
3798 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3799 struct quick_file_names *file_data;
3800
3801 /* We only need to look at symtabs not already expanded. */
3802 if (per_cu->v.quick->compunit_symtab)
3803 continue;
3804
3805 file_data = dw2_get_file_names (per_cu);
3806 if (file_data == NULL)
3807 continue;
3808
3809 for (j = 0; j < file_data->num_file_names; ++j)
3810 {
3811 const char *this_fullname = file_data->file_names[j];
3812
3813 if (filename_cmp (this_fullname, fullname) == 0)
3814 {
3815 dw2_instantiate_symtab (per_cu);
3816 break;
3817 }
3818 }
3819 }
3820 }
3821
3822 static void
3823 dw2_map_matching_symbols (struct objfile *objfile,
3824 const char * name, domain_enum domain,
3825 int global,
3826 int (*callback) (struct block *,
3827 struct symbol *, void *),
3828 void *data, symbol_compare_ftype *match,
3829 symbol_compare_ftype *ordered_compare)
3830 {
3831 /* Currently unimplemented; used for Ada. The function can be called if the
3832 current language is Ada for a non-Ada objfile using GNU index. As Ada
3833 does not look for non-Ada symbols this function should just return. */
3834 }
3835
3836 static void
3837 dw2_expand_symtabs_matching
3838 (struct objfile *objfile,
3839 expand_symtabs_file_matcher_ftype *file_matcher,
3840 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3841 expand_symtabs_exp_notify_ftype *expansion_notify,
3842 enum search_domain kind,
3843 void *data)
3844 {
3845 int i;
3846 offset_type iter;
3847 struct mapped_index *index;
3848
3849 dw2_setup (objfile);
3850
3851 /* index_table is NULL if OBJF_READNOW. */
3852 if (!dwarf2_per_objfile->index_table)
3853 return;
3854 index = dwarf2_per_objfile->index_table;
3855
3856 if (file_matcher != NULL)
3857 {
3858 struct cleanup *cleanup;
3859 htab_t visited_found, visited_not_found;
3860
3861 visited_found = htab_create_alloc (10,
3862 htab_hash_pointer, htab_eq_pointer,
3863 NULL, xcalloc, xfree);
3864 cleanup = make_cleanup_htab_delete (visited_found);
3865 visited_not_found = htab_create_alloc (10,
3866 htab_hash_pointer, htab_eq_pointer,
3867 NULL, xcalloc, xfree);
3868 make_cleanup_htab_delete (visited_not_found);
3869
3870 /* The rule is CUs specify all the files, including those used by
3871 any TU, so there's no need to scan TUs here. */
3872
3873 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3874 {
3875 int j;
3876 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3877 struct quick_file_names *file_data;
3878 void **slot;
3879
3880 QUIT;
3881
3882 per_cu->v.quick->mark = 0;
3883
3884 /* We only need to look at symtabs not already expanded. */
3885 if (per_cu->v.quick->compunit_symtab)
3886 continue;
3887
3888 file_data = dw2_get_file_names (per_cu);
3889 if (file_data == NULL)
3890 continue;
3891
3892 if (htab_find (visited_not_found, file_data) != NULL)
3893 continue;
3894 else if (htab_find (visited_found, file_data) != NULL)
3895 {
3896 per_cu->v.quick->mark = 1;
3897 continue;
3898 }
3899
3900 for (j = 0; j < file_data->num_file_names; ++j)
3901 {
3902 const char *this_real_name;
3903
3904 if (file_matcher (file_data->file_names[j], data, 0))
3905 {
3906 per_cu->v.quick->mark = 1;
3907 break;
3908 }
3909
3910 /* Before we invoke realpath, which can get expensive when many
3911 files are involved, do a quick comparison of the basenames. */
3912 if (!basenames_may_differ
3913 && !file_matcher (lbasename (file_data->file_names[j]),
3914 data, 1))
3915 continue;
3916
3917 this_real_name = dw2_get_real_path (objfile, file_data, j);
3918 if (file_matcher (this_real_name, data, 0))
3919 {
3920 per_cu->v.quick->mark = 1;
3921 break;
3922 }
3923 }
3924
3925 slot = htab_find_slot (per_cu->v.quick->mark
3926 ? visited_found
3927 : visited_not_found,
3928 file_data, INSERT);
3929 *slot = file_data;
3930 }
3931
3932 do_cleanups (cleanup);
3933 }
3934
3935 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3936 {
3937 offset_type idx = 2 * iter;
3938 const char *name;
3939 offset_type *vec, vec_len, vec_idx;
3940 int global_seen = 0;
3941
3942 QUIT;
3943
3944 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3945 continue;
3946
3947 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3948
3949 if (! (*symbol_matcher) (name, data))
3950 continue;
3951
3952 /* The name was matched, now expand corresponding CUs that were
3953 marked. */
3954 vec = (offset_type *) (index->constant_pool
3955 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3956 vec_len = MAYBE_SWAP (vec[0]);
3957 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3958 {
3959 struct dwarf2_per_cu_data *per_cu;
3960 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3966 /* Only check the symbol attributes if they're present.
3967 Indices prior to version 7 don't record them,
3968 and indices >= 7 may elide them for certain symbols
3969 (gold does this). */
3970 int attrs_valid =
3971 (index->version >= 7
3972 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3973
3974 /* Work around gold/15646. */
3975 if (attrs_valid)
3976 {
3977 if (!is_static && global_seen)
3978 continue;
3979 if (!is_static)
3980 global_seen = 1;
3981 }
3982
3983 /* Only check the symbol's kind if it has one. */
3984 if (attrs_valid)
3985 {
3986 switch (kind)
3987 {
3988 case VARIABLES_DOMAIN:
3989 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3990 continue;
3991 break;
3992 case FUNCTIONS_DOMAIN:
3993 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3994 continue;
3995 break;
3996 case TYPES_DOMAIN:
3997 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 default:
4001 break;
4002 }
4003 }
4004
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4007 + dwarf2_per_objfile->n_type_units))
4008 {
4009 complaint (&symfile_complaints,
4010 _(".gdb_index entry has bad CU index"
4011 " [in module %s]"), objfile_name (objfile));
4012 continue;
4013 }
4014
4015 per_cu = dw2_get_cutu (cu_index);
4016 if (file_matcher == NULL || per_cu->v.quick->mark)
4017 {
4018 int symtab_was_null =
4019 (per_cu->v.quick->compunit_symtab == NULL);
4020
4021 dw2_instantiate_symtab (per_cu);
4022
4023 if (expansion_notify != NULL
4024 && symtab_was_null
4025 && per_cu->v.quick->compunit_symtab != NULL)
4026 {
4027 expansion_notify (per_cu->v.quick->compunit_symtab,
4028 data);
4029 }
4030 }
4031 }
4032 }
4033 }
4034
4035 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4036 symtab. */
4037
4038 static struct compunit_symtab *
4039 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4040 CORE_ADDR pc)
4041 {
4042 int i;
4043
4044 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4045 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4046 return cust;
4047
4048 if (cust->includes == NULL)
4049 return NULL;
4050
4051 for (i = 0; cust->includes[i]; ++i)
4052 {
4053 struct compunit_symtab *s = cust->includes[i];
4054
4055 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4056 if (s != NULL)
4057 return s;
4058 }
4059
4060 return NULL;
4061 }
4062
4063 static struct compunit_symtab *
4064 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4065 struct bound_minimal_symbol msymbol,
4066 CORE_ADDR pc,
4067 struct obj_section *section,
4068 int warn_if_readin)
4069 {
4070 struct dwarf2_per_cu_data *data;
4071 struct compunit_symtab *result;
4072
4073 dw2_setup (objfile);
4074
4075 if (!objfile->psymtabs_addrmap)
4076 return NULL;
4077
4078 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4079 if (!data)
4080 return NULL;
4081
4082 if (warn_if_readin && data->v.quick->compunit_symtab)
4083 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4084 paddress (get_objfile_arch (objfile), pc));
4085
4086 result
4087 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4088 pc);
4089 gdb_assert (result != NULL);
4090 return result;
4091 }
4092
4093 static void
4094 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4095 void *data, int need_fullname)
4096 {
4097 int i;
4098 struct cleanup *cleanup;
4099 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4100 NULL, xcalloc, xfree);
4101
4102 cleanup = make_cleanup_htab_delete (visited);
4103 dw2_setup (objfile);
4104
4105 /* The rule is CUs specify all the files, including those used by
4106 any TU, so there's no need to scan TUs here.
4107 We can ignore file names coming from already-expanded CUs. */
4108
4109 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4110 {
4111 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4112
4113 if (per_cu->v.quick->compunit_symtab)
4114 {
4115 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4116 INSERT);
4117
4118 *slot = per_cu->v.quick->file_names;
4119 }
4120 }
4121
4122 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4123 {
4124 int j;
4125 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4126 struct quick_file_names *file_data;
4127 void **slot;
4128
4129 /* We only need to look at symtabs not already expanded. */
4130 if (per_cu->v.quick->compunit_symtab)
4131 continue;
4132
4133 file_data = dw2_get_file_names (per_cu);
4134 if (file_data == NULL)
4135 continue;
4136
4137 slot = htab_find_slot (visited, file_data, INSERT);
4138 if (*slot)
4139 {
4140 /* Already visited. */
4141 continue;
4142 }
4143 *slot = file_data;
4144
4145 for (j = 0; j < file_data->num_file_names; ++j)
4146 {
4147 const char *this_real_name;
4148
4149 if (need_fullname)
4150 this_real_name = dw2_get_real_path (objfile, file_data, j);
4151 else
4152 this_real_name = NULL;
4153 (*fun) (file_data->file_names[j], this_real_name, data);
4154 }
4155 }
4156
4157 do_cleanups (cleanup);
4158 }
4159
4160 static int
4161 dw2_has_symbols (struct objfile *objfile)
4162 {
4163 return 1;
4164 }
4165
4166 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4167 {
4168 dw2_has_symbols,
4169 dw2_find_last_source_symtab,
4170 dw2_forget_cached_source_info,
4171 dw2_map_symtabs_matching_filename,
4172 dw2_lookup_symbol,
4173 dw2_print_stats,
4174 dw2_dump,
4175 dw2_relocate,
4176 dw2_expand_symtabs_for_function,
4177 dw2_expand_all_symtabs,
4178 dw2_expand_symtabs_with_fullname,
4179 dw2_map_matching_symbols,
4180 dw2_expand_symtabs_matching,
4181 dw2_find_pc_sect_compunit_symtab,
4182 dw2_map_symbol_filenames
4183 };
4184
4185 /* Initialize for reading DWARF for this objfile. Return 0 if this
4186 file will use psymtabs, or 1 if using the GNU index. */
4187
4188 int
4189 dwarf2_initialize_objfile (struct objfile *objfile)
4190 {
4191 /* If we're about to read full symbols, don't bother with the
4192 indices. In this case we also don't care if some other debug
4193 format is making psymtabs, because they are all about to be
4194 expanded anyway. */
4195 if ((objfile->flags & OBJF_READNOW))
4196 {
4197 int i;
4198
4199 dwarf2_per_objfile->using_index = 1;
4200 create_all_comp_units (objfile);
4201 create_all_type_units (objfile);
4202 dwarf2_per_objfile->quick_file_names_table =
4203 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4204
4205 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4206 + dwarf2_per_objfile->n_type_units); ++i)
4207 {
4208 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4209
4210 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4211 struct dwarf2_per_cu_quick_data);
4212 }
4213
4214 /* Return 1 so that gdb sees the "quick" functions. However,
4215 these functions will be no-ops because we will have expanded
4216 all symtabs. */
4217 return 1;
4218 }
4219
4220 if (dwarf2_read_index (objfile))
4221 return 1;
4222
4223 return 0;
4224 }
4225
4226 \f
4227
4228 /* Build a partial symbol table. */
4229
4230 void
4231 dwarf2_build_psymtabs (struct objfile *objfile)
4232 {
4233
4234 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4235 {
4236 init_psymbol_list (objfile, 1024);
4237 }
4238
4239 TRY
4240 {
4241 /* This isn't really ideal: all the data we allocate on the
4242 objfile's obstack is still uselessly kept around. However,
4243 freeing it seems unsafe. */
4244 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4245
4246 dwarf2_build_psymtabs_hard (objfile);
4247 discard_cleanups (cleanups);
4248 }
4249 CATCH (except, RETURN_MASK_ERROR)
4250 {
4251 exception_print (gdb_stderr, except);
4252 }
4253 END_CATCH
4254 }
4255
4256 /* Return the total length of the CU described by HEADER. */
4257
4258 static unsigned int
4259 get_cu_length (const struct comp_unit_head *header)
4260 {
4261 return header->initial_length_size + header->length;
4262 }
4263
4264 /* Return TRUE if OFFSET is within CU_HEADER. */
4265
4266 static inline int
4267 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4268 {
4269 sect_offset bottom = { cu_header->offset.sect_off };
4270 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4271
4272 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4273 }
4274
4275 /* Find the base address of the compilation unit for range lists and
4276 location lists. It will normally be specified by DW_AT_low_pc.
4277 In DWARF-3 draft 4, the base address could be overridden by
4278 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4279 compilation units with discontinuous ranges. */
4280
4281 static void
4282 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4283 {
4284 struct attribute *attr;
4285
4286 cu->base_known = 0;
4287 cu->base_address = 0;
4288
4289 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4290 if (attr)
4291 {
4292 cu->base_address = attr_value_as_address (attr);
4293 cu->base_known = 1;
4294 }
4295 else
4296 {
4297 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4298 if (attr)
4299 {
4300 cu->base_address = attr_value_as_address (attr);
4301 cu->base_known = 1;
4302 }
4303 }
4304 }
4305
4306 /* Read in the comp unit header information from the debug_info at info_ptr.
4307 NOTE: This leaves members offset, first_die_offset to be filled in
4308 by the caller. */
4309
4310 static const gdb_byte *
4311 read_comp_unit_head (struct comp_unit_head *cu_header,
4312 const gdb_byte *info_ptr, bfd *abfd)
4313 {
4314 int signed_addr;
4315 unsigned int bytes_read;
4316
4317 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4318 cu_header->initial_length_size = bytes_read;
4319 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4320 info_ptr += bytes_read;
4321 cu_header->version = read_2_bytes (abfd, info_ptr);
4322 info_ptr += 2;
4323 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4324 &bytes_read);
4325 info_ptr += bytes_read;
4326 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4327 info_ptr += 1;
4328 signed_addr = bfd_get_sign_extend_vma (abfd);
4329 if (signed_addr < 0)
4330 internal_error (__FILE__, __LINE__,
4331 _("read_comp_unit_head: dwarf from non elf file"));
4332 cu_header->signed_addr_p = signed_addr;
4333
4334 return info_ptr;
4335 }
4336
4337 /* Helper function that returns the proper abbrev section for
4338 THIS_CU. */
4339
4340 static struct dwarf2_section_info *
4341 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4342 {
4343 struct dwarf2_section_info *abbrev;
4344
4345 if (this_cu->is_dwz)
4346 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4347 else
4348 abbrev = &dwarf2_per_objfile->abbrev;
4349
4350 return abbrev;
4351 }
4352
4353 /* Subroutine of read_and_check_comp_unit_head and
4354 read_and_check_type_unit_head to simplify them.
4355 Perform various error checking on the header. */
4356
4357 static void
4358 error_check_comp_unit_head (struct comp_unit_head *header,
4359 struct dwarf2_section_info *section,
4360 struct dwarf2_section_info *abbrev_section)
4361 {
4362 bfd *abfd = get_section_bfd_owner (section);
4363 const char *filename = get_section_file_name (section);
4364
4365 if (header->version != 2 && header->version != 3 && header->version != 4)
4366 error (_("Dwarf Error: wrong version in compilation unit header "
4367 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4368 filename);
4369
4370 if (header->abbrev_offset.sect_off
4371 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4372 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4373 "(offset 0x%lx + 6) [in module %s]"),
4374 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4375 filename);
4376
4377 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4378 avoid potential 32-bit overflow. */
4379 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4380 > section->size)
4381 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4382 "(offset 0x%lx + 0) [in module %s]"),
4383 (long) header->length, (long) header->offset.sect_off,
4384 filename);
4385 }
4386
4387 /* Read in a CU/TU header and perform some basic error checking.
4388 The contents of the header are stored in HEADER.
4389 The result is a pointer to the start of the first DIE. */
4390
4391 static const gdb_byte *
4392 read_and_check_comp_unit_head (struct comp_unit_head *header,
4393 struct dwarf2_section_info *section,
4394 struct dwarf2_section_info *abbrev_section,
4395 const gdb_byte *info_ptr,
4396 int is_debug_types_section)
4397 {
4398 const gdb_byte *beg_of_comp_unit = info_ptr;
4399 bfd *abfd = get_section_bfd_owner (section);
4400
4401 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4402
4403 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4404
4405 /* If we're reading a type unit, skip over the signature and
4406 type_offset fields. */
4407 if (is_debug_types_section)
4408 info_ptr += 8 /*signature*/ + header->offset_size;
4409
4410 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4411
4412 error_check_comp_unit_head (header, section, abbrev_section);
4413
4414 return info_ptr;
4415 }
4416
4417 /* Read in the types comp unit header information from .debug_types entry at
4418 types_ptr. The result is a pointer to one past the end of the header. */
4419
4420 static const gdb_byte *
4421 read_and_check_type_unit_head (struct comp_unit_head *header,
4422 struct dwarf2_section_info *section,
4423 struct dwarf2_section_info *abbrev_section,
4424 const gdb_byte *info_ptr,
4425 ULONGEST *signature,
4426 cu_offset *type_offset_in_tu)
4427 {
4428 const gdb_byte *beg_of_comp_unit = info_ptr;
4429 bfd *abfd = get_section_bfd_owner (section);
4430
4431 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4432
4433 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4434
4435 /* If we're reading a type unit, skip over the signature and
4436 type_offset fields. */
4437 if (signature != NULL)
4438 *signature = read_8_bytes (abfd, info_ptr);
4439 info_ptr += 8;
4440 if (type_offset_in_tu != NULL)
4441 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4442 header->offset_size);
4443 info_ptr += header->offset_size;
4444
4445 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4446
4447 error_check_comp_unit_head (header, section, abbrev_section);
4448
4449 return info_ptr;
4450 }
4451
4452 /* Fetch the abbreviation table offset from a comp or type unit header. */
4453
4454 static sect_offset
4455 read_abbrev_offset (struct dwarf2_section_info *section,
4456 sect_offset offset)
4457 {
4458 bfd *abfd = get_section_bfd_owner (section);
4459 const gdb_byte *info_ptr;
4460 unsigned int length, initial_length_size, offset_size;
4461 sect_offset abbrev_offset;
4462
4463 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4464 info_ptr = section->buffer + offset.sect_off;
4465 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4466 offset_size = initial_length_size == 4 ? 4 : 8;
4467 info_ptr += initial_length_size + 2 /*version*/;
4468 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4469 return abbrev_offset;
4470 }
4471
4472 /* Allocate a new partial symtab for file named NAME and mark this new
4473 partial symtab as being an include of PST. */
4474
4475 static void
4476 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4477 struct objfile *objfile)
4478 {
4479 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4480
4481 if (!IS_ABSOLUTE_PATH (subpst->filename))
4482 {
4483 /* It shares objfile->objfile_obstack. */
4484 subpst->dirname = pst->dirname;
4485 }
4486
4487 subpst->section_offsets = pst->section_offsets;
4488 subpst->textlow = 0;
4489 subpst->texthigh = 0;
4490
4491 subpst->dependencies = (struct partial_symtab **)
4492 obstack_alloc (&objfile->objfile_obstack,
4493 sizeof (struct partial_symtab *));
4494 subpst->dependencies[0] = pst;
4495 subpst->number_of_dependencies = 1;
4496
4497 subpst->globals_offset = 0;
4498 subpst->n_global_syms = 0;
4499 subpst->statics_offset = 0;
4500 subpst->n_static_syms = 0;
4501 subpst->compunit_symtab = NULL;
4502 subpst->read_symtab = pst->read_symtab;
4503 subpst->readin = 0;
4504
4505 /* No private part is necessary for include psymtabs. This property
4506 can be used to differentiate between such include psymtabs and
4507 the regular ones. */
4508 subpst->read_symtab_private = NULL;
4509 }
4510
4511 /* Read the Line Number Program data and extract the list of files
4512 included by the source file represented by PST. Build an include
4513 partial symtab for each of these included files. */
4514
4515 static void
4516 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4517 struct die_info *die,
4518 struct partial_symtab *pst)
4519 {
4520 struct line_header *lh = NULL;
4521 struct attribute *attr;
4522
4523 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4524 if (attr)
4525 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4526 if (lh == NULL)
4527 return; /* No linetable, so no includes. */
4528
4529 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4530 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4531
4532 free_line_header (lh);
4533 }
4534
4535 static hashval_t
4536 hash_signatured_type (const void *item)
4537 {
4538 const struct signatured_type *sig_type = item;
4539
4540 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4541 return sig_type->signature;
4542 }
4543
4544 static int
4545 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4546 {
4547 const struct signatured_type *lhs = item_lhs;
4548 const struct signatured_type *rhs = item_rhs;
4549
4550 return lhs->signature == rhs->signature;
4551 }
4552
4553 /* Allocate a hash table for signatured types. */
4554
4555 static htab_t
4556 allocate_signatured_type_table (struct objfile *objfile)
4557 {
4558 return htab_create_alloc_ex (41,
4559 hash_signatured_type,
4560 eq_signatured_type,
4561 NULL,
4562 &objfile->objfile_obstack,
4563 hashtab_obstack_allocate,
4564 dummy_obstack_deallocate);
4565 }
4566
4567 /* A helper function to add a signatured type CU to a table. */
4568
4569 static int
4570 add_signatured_type_cu_to_table (void **slot, void *datum)
4571 {
4572 struct signatured_type *sigt = *slot;
4573 struct signatured_type ***datap = datum;
4574
4575 **datap = sigt;
4576 ++*datap;
4577
4578 return 1;
4579 }
4580
4581 /* Create the hash table of all entries in the .debug_types
4582 (or .debug_types.dwo) section(s).
4583 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4584 otherwise it is NULL.
4585
4586 The result is a pointer to the hash table or NULL if there are no types.
4587
4588 Note: This function processes DWO files only, not DWP files. */
4589
4590 static htab_t
4591 create_debug_types_hash_table (struct dwo_file *dwo_file,
4592 VEC (dwarf2_section_info_def) *types)
4593 {
4594 struct objfile *objfile = dwarf2_per_objfile->objfile;
4595 htab_t types_htab = NULL;
4596 int ix;
4597 struct dwarf2_section_info *section;
4598 struct dwarf2_section_info *abbrev_section;
4599
4600 if (VEC_empty (dwarf2_section_info_def, types))
4601 return NULL;
4602
4603 abbrev_section = (dwo_file != NULL
4604 ? &dwo_file->sections.abbrev
4605 : &dwarf2_per_objfile->abbrev);
4606
4607 if (dwarf_read_debug)
4608 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4609 dwo_file ? ".dwo" : "",
4610 get_section_file_name (abbrev_section));
4611
4612 for (ix = 0;
4613 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4614 ++ix)
4615 {
4616 bfd *abfd;
4617 const gdb_byte *info_ptr, *end_ptr;
4618
4619 dwarf2_read_section (objfile, section);
4620 info_ptr = section->buffer;
4621
4622 if (info_ptr == NULL)
4623 continue;
4624
4625 /* We can't set abfd until now because the section may be empty or
4626 not present, in which case the bfd is unknown. */
4627 abfd = get_section_bfd_owner (section);
4628
4629 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4630 because we don't need to read any dies: the signature is in the
4631 header. */
4632
4633 end_ptr = info_ptr + section->size;
4634 while (info_ptr < end_ptr)
4635 {
4636 sect_offset offset;
4637 cu_offset type_offset_in_tu;
4638 ULONGEST signature;
4639 struct signatured_type *sig_type;
4640 struct dwo_unit *dwo_tu;
4641 void **slot;
4642 const gdb_byte *ptr = info_ptr;
4643 struct comp_unit_head header;
4644 unsigned int length;
4645
4646 offset.sect_off = ptr - section->buffer;
4647
4648 /* We need to read the type's signature in order to build the hash
4649 table, but we don't need anything else just yet. */
4650
4651 ptr = read_and_check_type_unit_head (&header, section,
4652 abbrev_section, ptr,
4653 &signature, &type_offset_in_tu);
4654
4655 length = get_cu_length (&header);
4656
4657 /* Skip dummy type units. */
4658 if (ptr >= info_ptr + length
4659 || peek_abbrev_code (abfd, ptr) == 0)
4660 {
4661 info_ptr += length;
4662 continue;
4663 }
4664
4665 if (types_htab == NULL)
4666 {
4667 if (dwo_file)
4668 types_htab = allocate_dwo_unit_table (objfile);
4669 else
4670 types_htab = allocate_signatured_type_table (objfile);
4671 }
4672
4673 if (dwo_file)
4674 {
4675 sig_type = NULL;
4676 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4677 struct dwo_unit);
4678 dwo_tu->dwo_file = dwo_file;
4679 dwo_tu->signature = signature;
4680 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4681 dwo_tu->section = section;
4682 dwo_tu->offset = offset;
4683 dwo_tu->length = length;
4684 }
4685 else
4686 {
4687 /* N.B.: type_offset is not usable if this type uses a DWO file.
4688 The real type_offset is in the DWO file. */
4689 dwo_tu = NULL;
4690 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4691 struct signatured_type);
4692 sig_type->signature = signature;
4693 sig_type->type_offset_in_tu = type_offset_in_tu;
4694 sig_type->per_cu.objfile = objfile;
4695 sig_type->per_cu.is_debug_types = 1;
4696 sig_type->per_cu.section = section;
4697 sig_type->per_cu.offset = offset;
4698 sig_type->per_cu.length = length;
4699 }
4700
4701 slot = htab_find_slot (types_htab,
4702 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4703 INSERT);
4704 gdb_assert (slot != NULL);
4705 if (*slot != NULL)
4706 {
4707 sect_offset dup_offset;
4708
4709 if (dwo_file)
4710 {
4711 const struct dwo_unit *dup_tu = *slot;
4712
4713 dup_offset = dup_tu->offset;
4714 }
4715 else
4716 {
4717 const struct signatured_type *dup_tu = *slot;
4718
4719 dup_offset = dup_tu->per_cu.offset;
4720 }
4721
4722 complaint (&symfile_complaints,
4723 _("debug type entry at offset 0x%x is duplicate to"
4724 " the entry at offset 0x%x, signature %s"),
4725 offset.sect_off, dup_offset.sect_off,
4726 hex_string (signature));
4727 }
4728 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4729
4730 if (dwarf_read_debug > 1)
4731 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4732 offset.sect_off,
4733 hex_string (signature));
4734
4735 info_ptr += length;
4736 }
4737 }
4738
4739 return types_htab;
4740 }
4741
4742 /* Create the hash table of all entries in the .debug_types section,
4743 and initialize all_type_units.
4744 The result is zero if there is an error (e.g. missing .debug_types section),
4745 otherwise non-zero. */
4746
4747 static int
4748 create_all_type_units (struct objfile *objfile)
4749 {
4750 htab_t types_htab;
4751 struct signatured_type **iter;
4752
4753 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4754 if (types_htab == NULL)
4755 {
4756 dwarf2_per_objfile->signatured_types = NULL;
4757 return 0;
4758 }
4759
4760 dwarf2_per_objfile->signatured_types = types_htab;
4761
4762 dwarf2_per_objfile->n_type_units
4763 = dwarf2_per_objfile->n_allocated_type_units
4764 = htab_elements (types_htab);
4765 dwarf2_per_objfile->all_type_units
4766 = xmalloc (dwarf2_per_objfile->n_type_units
4767 * sizeof (struct signatured_type *));
4768 iter = &dwarf2_per_objfile->all_type_units[0];
4769 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4770 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4771 == dwarf2_per_objfile->n_type_units);
4772
4773 return 1;
4774 }
4775
4776 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4777 If SLOT is non-NULL, it is the entry to use in the hash table.
4778 Otherwise we find one. */
4779
4780 static struct signatured_type *
4781 add_type_unit (ULONGEST sig, void **slot)
4782 {
4783 struct objfile *objfile = dwarf2_per_objfile->objfile;
4784 int n_type_units = dwarf2_per_objfile->n_type_units;
4785 struct signatured_type *sig_type;
4786
4787 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4788 ++n_type_units;
4789 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4790 {
4791 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4792 dwarf2_per_objfile->n_allocated_type_units = 1;
4793 dwarf2_per_objfile->n_allocated_type_units *= 2;
4794 dwarf2_per_objfile->all_type_units
4795 = xrealloc (dwarf2_per_objfile->all_type_units,
4796 dwarf2_per_objfile->n_allocated_type_units
4797 * sizeof (struct signatured_type *));
4798 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4799 }
4800 dwarf2_per_objfile->n_type_units = n_type_units;
4801
4802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4803 struct signatured_type);
4804 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4805 sig_type->signature = sig;
4806 sig_type->per_cu.is_debug_types = 1;
4807 if (dwarf2_per_objfile->using_index)
4808 {
4809 sig_type->per_cu.v.quick =
4810 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4811 struct dwarf2_per_cu_quick_data);
4812 }
4813
4814 if (slot == NULL)
4815 {
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 sig_type, INSERT);
4818 }
4819 gdb_assert (*slot == NULL);
4820 *slot = sig_type;
4821 /* The rest of sig_type must be filled in by the caller. */
4822 return sig_type;
4823 }
4824
4825 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4826 Fill in SIG_ENTRY with DWO_ENTRY. */
4827
4828 static void
4829 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4830 struct signatured_type *sig_entry,
4831 struct dwo_unit *dwo_entry)
4832 {
4833 /* Make sure we're not clobbering something we don't expect to. */
4834 gdb_assert (! sig_entry->per_cu.queued);
4835 gdb_assert (sig_entry->per_cu.cu == NULL);
4836 if (dwarf2_per_objfile->using_index)
4837 {
4838 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4839 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4840 }
4841 else
4842 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4843 gdb_assert (sig_entry->signature == dwo_entry->signature);
4844 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4845 gdb_assert (sig_entry->type_unit_group == NULL);
4846 gdb_assert (sig_entry->dwo_unit == NULL);
4847
4848 sig_entry->per_cu.section = dwo_entry->section;
4849 sig_entry->per_cu.offset = dwo_entry->offset;
4850 sig_entry->per_cu.length = dwo_entry->length;
4851 sig_entry->per_cu.reading_dwo_directly = 1;
4852 sig_entry->per_cu.objfile = objfile;
4853 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4854 sig_entry->dwo_unit = dwo_entry;
4855 }
4856
4857 /* Subroutine of lookup_signatured_type.
4858 If we haven't read the TU yet, create the signatured_type data structure
4859 for a TU to be read in directly from a DWO file, bypassing the stub.
4860 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4861 using .gdb_index, then when reading a CU we want to stay in the DWO file
4862 containing that CU. Otherwise we could end up reading several other DWO
4863 files (due to comdat folding) to process the transitive closure of all the
4864 mentioned TUs, and that can be slow. The current DWO file will have every
4865 type signature that it needs.
4866 We only do this for .gdb_index because in the psymtab case we already have
4867 to read all the DWOs to build the type unit groups. */
4868
4869 static struct signatured_type *
4870 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4871 {
4872 struct objfile *objfile = dwarf2_per_objfile->objfile;
4873 struct dwo_file *dwo_file;
4874 struct dwo_unit find_dwo_entry, *dwo_entry;
4875 struct signatured_type find_sig_entry, *sig_entry;
4876 void **slot;
4877
4878 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4879
4880 /* If TU skeletons have been removed then we may not have read in any
4881 TUs yet. */
4882 if (dwarf2_per_objfile->signatured_types == NULL)
4883 {
4884 dwarf2_per_objfile->signatured_types
4885 = allocate_signatured_type_table (objfile);
4886 }
4887
4888 /* We only ever need to read in one copy of a signatured type.
4889 Use the global signatured_types array to do our own comdat-folding
4890 of types. If this is the first time we're reading this TU, and
4891 the TU has an entry in .gdb_index, replace the recorded data from
4892 .gdb_index with this TU. */
4893
4894 find_sig_entry.signature = sig;
4895 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4896 &find_sig_entry, INSERT);
4897 sig_entry = *slot;
4898
4899 /* We can get here with the TU already read, *or* in the process of being
4900 read. Don't reassign the global entry to point to this DWO if that's
4901 the case. Also note that if the TU is already being read, it may not
4902 have come from a DWO, the program may be a mix of Fission-compiled
4903 code and non-Fission-compiled code. */
4904
4905 /* Have we already tried to read this TU?
4906 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4907 needn't exist in the global table yet). */
4908 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4909 return sig_entry;
4910
4911 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4912 dwo_unit of the TU itself. */
4913 dwo_file = cu->dwo_unit->dwo_file;
4914
4915 /* Ok, this is the first time we're reading this TU. */
4916 if (dwo_file->tus == NULL)
4917 return NULL;
4918 find_dwo_entry.signature = sig;
4919 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4920 if (dwo_entry == NULL)
4921 return NULL;
4922
4923 /* If the global table doesn't have an entry for this TU, add one. */
4924 if (sig_entry == NULL)
4925 sig_entry = add_type_unit (sig, slot);
4926
4927 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4928 sig_entry->per_cu.tu_read = 1;
4929 return sig_entry;
4930 }
4931
4932 /* Subroutine of lookup_signatured_type.
4933 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4934 then try the DWP file. If the TU stub (skeleton) has been removed then
4935 it won't be in .gdb_index. */
4936
4937 static struct signatured_type *
4938 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4939 {
4940 struct objfile *objfile = dwarf2_per_objfile->objfile;
4941 struct dwp_file *dwp_file = get_dwp_file ();
4942 struct dwo_unit *dwo_entry;
4943 struct signatured_type find_sig_entry, *sig_entry;
4944 void **slot;
4945
4946 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4947 gdb_assert (dwp_file != NULL);
4948
4949 /* If TU skeletons have been removed then we may not have read in any
4950 TUs yet. */
4951 if (dwarf2_per_objfile->signatured_types == NULL)
4952 {
4953 dwarf2_per_objfile->signatured_types
4954 = allocate_signatured_type_table (objfile);
4955 }
4956
4957 find_sig_entry.signature = sig;
4958 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4959 &find_sig_entry, INSERT);
4960 sig_entry = *slot;
4961
4962 /* Have we already tried to read this TU?
4963 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4964 needn't exist in the global table yet). */
4965 if (sig_entry != NULL)
4966 return sig_entry;
4967
4968 if (dwp_file->tus == NULL)
4969 return NULL;
4970 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4971 sig, 1 /* is_debug_types */);
4972 if (dwo_entry == NULL)
4973 return NULL;
4974
4975 sig_entry = add_type_unit (sig, slot);
4976 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4977
4978 return sig_entry;
4979 }
4980
4981 /* Lookup a signature based type for DW_FORM_ref_sig8.
4982 Returns NULL if signature SIG is not present in the table.
4983 It is up to the caller to complain about this. */
4984
4985 static struct signatured_type *
4986 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4987 {
4988 if (cu->dwo_unit
4989 && dwarf2_per_objfile->using_index)
4990 {
4991 /* We're in a DWO/DWP file, and we're using .gdb_index.
4992 These cases require special processing. */
4993 if (get_dwp_file () == NULL)
4994 return lookup_dwo_signatured_type (cu, sig);
4995 else
4996 return lookup_dwp_signatured_type (cu, sig);
4997 }
4998 else
4999 {
5000 struct signatured_type find_entry, *entry;
5001
5002 if (dwarf2_per_objfile->signatured_types == NULL)
5003 return NULL;
5004 find_entry.signature = sig;
5005 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5006 return entry;
5007 }
5008 }
5009 \f
5010 /* Low level DIE reading support. */
5011
5012 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5013
5014 static void
5015 init_cu_die_reader (struct die_reader_specs *reader,
5016 struct dwarf2_cu *cu,
5017 struct dwarf2_section_info *section,
5018 struct dwo_file *dwo_file)
5019 {
5020 gdb_assert (section->readin && section->buffer != NULL);
5021 reader->abfd = get_section_bfd_owner (section);
5022 reader->cu = cu;
5023 reader->dwo_file = dwo_file;
5024 reader->die_section = section;
5025 reader->buffer = section->buffer;
5026 reader->buffer_end = section->buffer + section->size;
5027 reader->comp_dir = NULL;
5028 }
5029
5030 /* Subroutine of init_cutu_and_read_dies to simplify it.
5031 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5032 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5033 already.
5034
5035 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5036 from it to the DIE in the DWO. If NULL we are skipping the stub.
5037 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5038 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5039 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5040 STUB_COMP_DIR may be non-NULL.
5041 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5042 are filled in with the info of the DIE from the DWO file.
5043 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5044 provided an abbrev table to use.
5045 The result is non-zero if a valid (non-dummy) DIE was found. */
5046
5047 static int
5048 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5049 struct dwo_unit *dwo_unit,
5050 int abbrev_table_provided,
5051 struct die_info *stub_comp_unit_die,
5052 const char *stub_comp_dir,
5053 struct die_reader_specs *result_reader,
5054 const gdb_byte **result_info_ptr,
5055 struct die_info **result_comp_unit_die,
5056 int *result_has_children)
5057 {
5058 struct objfile *objfile = dwarf2_per_objfile->objfile;
5059 struct dwarf2_cu *cu = this_cu->cu;
5060 struct dwarf2_section_info *section;
5061 bfd *abfd;
5062 const gdb_byte *begin_info_ptr, *info_ptr;
5063 ULONGEST signature; /* Or dwo_id. */
5064 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5065 int i,num_extra_attrs;
5066 struct dwarf2_section_info *dwo_abbrev_section;
5067 struct attribute *attr;
5068 struct die_info *comp_unit_die;
5069
5070 /* At most one of these may be provided. */
5071 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5072
5073 /* These attributes aren't processed until later:
5074 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5075 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5076 referenced later. However, these attributes are found in the stub
5077 which we won't have later. In order to not impose this complication
5078 on the rest of the code, we read them here and copy them to the
5079 DWO CU/TU die. */
5080
5081 stmt_list = NULL;
5082 low_pc = NULL;
5083 high_pc = NULL;
5084 ranges = NULL;
5085 comp_dir = NULL;
5086
5087 if (stub_comp_unit_die != NULL)
5088 {
5089 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5090 DWO file. */
5091 if (! this_cu->is_debug_types)
5092 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5093 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5094 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5095 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5096 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5097
5098 /* There should be a DW_AT_addr_base attribute here (if needed).
5099 We need the value before we can process DW_FORM_GNU_addr_index. */
5100 cu->addr_base = 0;
5101 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5102 if (attr)
5103 cu->addr_base = DW_UNSND (attr);
5104
5105 /* There should be a DW_AT_ranges_base attribute here (if needed).
5106 We need the value before we can process DW_AT_ranges. */
5107 cu->ranges_base = 0;
5108 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5109 if (attr)
5110 cu->ranges_base = DW_UNSND (attr);
5111 }
5112 else if (stub_comp_dir != NULL)
5113 {
5114 /* Reconstruct the comp_dir attribute to simplify the code below. */
5115 comp_dir = (struct attribute *)
5116 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5117 comp_dir->name = DW_AT_comp_dir;
5118 comp_dir->form = DW_FORM_string;
5119 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5120 DW_STRING (comp_dir) = stub_comp_dir;
5121 }
5122
5123 /* Set up for reading the DWO CU/TU. */
5124 cu->dwo_unit = dwo_unit;
5125 section = dwo_unit->section;
5126 dwarf2_read_section (objfile, section);
5127 abfd = get_section_bfd_owner (section);
5128 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5129 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5130 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5131
5132 if (this_cu->is_debug_types)
5133 {
5134 ULONGEST header_signature;
5135 cu_offset type_offset_in_tu;
5136 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5137
5138 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5139 dwo_abbrev_section,
5140 info_ptr,
5141 &header_signature,
5142 &type_offset_in_tu);
5143 /* This is not an assert because it can be caused by bad debug info. */
5144 if (sig_type->signature != header_signature)
5145 {
5146 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5147 " TU at offset 0x%x [in module %s]"),
5148 hex_string (sig_type->signature),
5149 hex_string (header_signature),
5150 dwo_unit->offset.sect_off,
5151 bfd_get_filename (abfd));
5152 }
5153 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5154 /* For DWOs coming from DWP files, we don't know the CU length
5155 nor the type's offset in the TU until now. */
5156 dwo_unit->length = get_cu_length (&cu->header);
5157 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5158
5159 /* Establish the type offset that can be used to lookup the type.
5160 For DWO files, we don't know it until now. */
5161 sig_type->type_offset_in_section.sect_off =
5162 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5163 }
5164 else
5165 {
5166 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5167 dwo_abbrev_section,
5168 info_ptr, 0);
5169 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5170 /* For DWOs coming from DWP files, we don't know the CU length
5171 until now. */
5172 dwo_unit->length = get_cu_length (&cu->header);
5173 }
5174
5175 /* Replace the CU's original abbrev table with the DWO's.
5176 Reminder: We can't read the abbrev table until we've read the header. */
5177 if (abbrev_table_provided)
5178 {
5179 /* Don't free the provided abbrev table, the caller of
5180 init_cutu_and_read_dies owns it. */
5181 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5182 /* Ensure the DWO abbrev table gets freed. */
5183 make_cleanup (dwarf2_free_abbrev_table, cu);
5184 }
5185 else
5186 {
5187 dwarf2_free_abbrev_table (cu);
5188 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5189 /* Leave any existing abbrev table cleanup as is. */
5190 }
5191
5192 /* Read in the die, but leave space to copy over the attributes
5193 from the stub. This has the benefit of simplifying the rest of
5194 the code - all the work to maintain the illusion of a single
5195 DW_TAG_{compile,type}_unit DIE is done here. */
5196 num_extra_attrs = ((stmt_list != NULL)
5197 + (low_pc != NULL)
5198 + (high_pc != NULL)
5199 + (ranges != NULL)
5200 + (comp_dir != NULL));
5201 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5202 result_has_children, num_extra_attrs);
5203
5204 /* Copy over the attributes from the stub to the DIE we just read in. */
5205 comp_unit_die = *result_comp_unit_die;
5206 i = comp_unit_die->num_attrs;
5207 if (stmt_list != NULL)
5208 comp_unit_die->attrs[i++] = *stmt_list;
5209 if (low_pc != NULL)
5210 comp_unit_die->attrs[i++] = *low_pc;
5211 if (high_pc != NULL)
5212 comp_unit_die->attrs[i++] = *high_pc;
5213 if (ranges != NULL)
5214 comp_unit_die->attrs[i++] = *ranges;
5215 if (comp_dir != NULL)
5216 comp_unit_die->attrs[i++] = *comp_dir;
5217 comp_unit_die->num_attrs += num_extra_attrs;
5218
5219 if (dwarf_die_debug)
5220 {
5221 fprintf_unfiltered (gdb_stdlog,
5222 "Read die from %s@0x%x of %s:\n",
5223 get_section_name (section),
5224 (unsigned) (begin_info_ptr - section->buffer),
5225 bfd_get_filename (abfd));
5226 dump_die (comp_unit_die, dwarf_die_debug);
5227 }
5228
5229 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5230 TUs by skipping the stub and going directly to the entry in the DWO file.
5231 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5232 to get it via circuitous means. Blech. */
5233 if (comp_dir != NULL)
5234 result_reader->comp_dir = DW_STRING (comp_dir);
5235
5236 /* Skip dummy compilation units. */
5237 if (info_ptr >= begin_info_ptr + dwo_unit->length
5238 || peek_abbrev_code (abfd, info_ptr) == 0)
5239 return 0;
5240
5241 *result_info_ptr = info_ptr;
5242 return 1;
5243 }
5244
5245 /* Subroutine of init_cutu_and_read_dies to simplify it.
5246 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5247 Returns NULL if the specified DWO unit cannot be found. */
5248
5249 static struct dwo_unit *
5250 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5251 struct die_info *comp_unit_die)
5252 {
5253 struct dwarf2_cu *cu = this_cu->cu;
5254 struct attribute *attr;
5255 ULONGEST signature;
5256 struct dwo_unit *dwo_unit;
5257 const char *comp_dir, *dwo_name;
5258
5259 gdb_assert (cu != NULL);
5260
5261 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5262 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5263 gdb_assert (attr != NULL);
5264 dwo_name = DW_STRING (attr);
5265 comp_dir = NULL;
5266 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5267 if (attr)
5268 comp_dir = DW_STRING (attr);
5269
5270 if (this_cu->is_debug_types)
5271 {
5272 struct signatured_type *sig_type;
5273
5274 /* Since this_cu is the first member of struct signatured_type,
5275 we can go from a pointer to one to a pointer to the other. */
5276 sig_type = (struct signatured_type *) this_cu;
5277 signature = sig_type->signature;
5278 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5279 }
5280 else
5281 {
5282 struct attribute *attr;
5283
5284 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5285 if (! attr)
5286 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5287 " [in module %s]"),
5288 dwo_name, objfile_name (this_cu->objfile));
5289 signature = DW_UNSND (attr);
5290 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5291 signature);
5292 }
5293
5294 return dwo_unit;
5295 }
5296
5297 /* Subroutine of init_cutu_and_read_dies to simplify it.
5298 See it for a description of the parameters.
5299 Read a TU directly from a DWO file, bypassing the stub.
5300
5301 Note: This function could be a little bit simpler if we shared cleanups
5302 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5303 to do, so we keep this function self-contained. Or we could move this
5304 into our caller, but it's complex enough already. */
5305
5306 static void
5307 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5308 int use_existing_cu, int keep,
5309 die_reader_func_ftype *die_reader_func,
5310 void *data)
5311 {
5312 struct dwarf2_cu *cu;
5313 struct signatured_type *sig_type;
5314 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5315 struct die_reader_specs reader;
5316 const gdb_byte *info_ptr;
5317 struct die_info *comp_unit_die;
5318 int has_children;
5319
5320 /* Verify we can do the following downcast, and that we have the
5321 data we need. */
5322 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5323 sig_type = (struct signatured_type *) this_cu;
5324 gdb_assert (sig_type->dwo_unit != NULL);
5325
5326 cleanups = make_cleanup (null_cleanup, NULL);
5327
5328 if (use_existing_cu && this_cu->cu != NULL)
5329 {
5330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5331 cu = this_cu->cu;
5332 /* There's no need to do the rereading_dwo_cu handling that
5333 init_cutu_and_read_dies does since we don't read the stub. */
5334 }
5335 else
5336 {
5337 /* If !use_existing_cu, this_cu->cu must be NULL. */
5338 gdb_assert (this_cu->cu == NULL);
5339 cu = xmalloc (sizeof (*cu));
5340 init_one_comp_unit (cu, this_cu);
5341 /* If an error occurs while loading, release our storage. */
5342 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5343 }
5344
5345 /* A future optimization, if needed, would be to use an existing
5346 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5347 could share abbrev tables. */
5348
5349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5350 0 /* abbrev_table_provided */,
5351 NULL /* stub_comp_unit_die */,
5352 sig_type->dwo_unit->dwo_file->comp_dir,
5353 &reader, &info_ptr,
5354 &comp_unit_die, &has_children) == 0)
5355 {
5356 /* Dummy die. */
5357 do_cleanups (cleanups);
5358 return;
5359 }
5360
5361 /* All the "real" work is done here. */
5362 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5363
5364 /* This duplicates the code in init_cutu_and_read_dies,
5365 but the alternative is making the latter more complex.
5366 This function is only for the special case of using DWO files directly:
5367 no point in overly complicating the general case just to handle this. */
5368 if (free_cu_cleanup != NULL)
5369 {
5370 if (keep)
5371 {
5372 /* We've successfully allocated this compilation unit. Let our
5373 caller clean it up when finished with it. */
5374 discard_cleanups (free_cu_cleanup);
5375
5376 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5377 So we have to manually free the abbrev table. */
5378 dwarf2_free_abbrev_table (cu);
5379
5380 /* Link this CU into read_in_chain. */
5381 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5382 dwarf2_per_objfile->read_in_chain = this_cu;
5383 }
5384 else
5385 do_cleanups (free_cu_cleanup);
5386 }
5387
5388 do_cleanups (cleanups);
5389 }
5390
5391 /* Initialize a CU (or TU) and read its DIEs.
5392 If the CU defers to a DWO file, read the DWO file as well.
5393
5394 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5395 Otherwise the table specified in the comp unit header is read in and used.
5396 This is an optimization for when we already have the abbrev table.
5397
5398 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5399 Otherwise, a new CU is allocated with xmalloc.
5400
5401 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5402 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5403
5404 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5405 linker) then DIE_READER_FUNC will not get called. */
5406
5407 static void
5408 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5409 struct abbrev_table *abbrev_table,
5410 int use_existing_cu, int keep,
5411 die_reader_func_ftype *die_reader_func,
5412 void *data)
5413 {
5414 struct objfile *objfile = dwarf2_per_objfile->objfile;
5415 struct dwarf2_section_info *section = this_cu->section;
5416 bfd *abfd = get_section_bfd_owner (section);
5417 struct dwarf2_cu *cu;
5418 const gdb_byte *begin_info_ptr, *info_ptr;
5419 struct die_reader_specs reader;
5420 struct die_info *comp_unit_die;
5421 int has_children;
5422 struct attribute *attr;
5423 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5424 struct signatured_type *sig_type = NULL;
5425 struct dwarf2_section_info *abbrev_section;
5426 /* Non-zero if CU currently points to a DWO file and we need to
5427 reread it. When this happens we need to reread the skeleton die
5428 before we can reread the DWO file (this only applies to CUs, not TUs). */
5429 int rereading_dwo_cu = 0;
5430
5431 if (dwarf_die_debug)
5432 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5433 this_cu->is_debug_types ? "type" : "comp",
5434 this_cu->offset.sect_off);
5435
5436 if (use_existing_cu)
5437 gdb_assert (keep);
5438
5439 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5440 file (instead of going through the stub), short-circuit all of this. */
5441 if (this_cu->reading_dwo_directly)
5442 {
5443 /* Narrow down the scope of possibilities to have to understand. */
5444 gdb_assert (this_cu->is_debug_types);
5445 gdb_assert (abbrev_table == NULL);
5446 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5447 die_reader_func, data);
5448 return;
5449 }
5450
5451 cleanups = make_cleanup (null_cleanup, NULL);
5452
5453 /* This is cheap if the section is already read in. */
5454 dwarf2_read_section (objfile, section);
5455
5456 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5457
5458 abbrev_section = get_abbrev_section_for_cu (this_cu);
5459
5460 if (use_existing_cu && this_cu->cu != NULL)
5461 {
5462 cu = this_cu->cu;
5463 /* If this CU is from a DWO file we need to start over, we need to
5464 refetch the attributes from the skeleton CU.
5465 This could be optimized by retrieving those attributes from when we
5466 were here the first time: the previous comp_unit_die was stored in
5467 comp_unit_obstack. But there's no data yet that we need this
5468 optimization. */
5469 if (cu->dwo_unit != NULL)
5470 rereading_dwo_cu = 1;
5471 }
5472 else
5473 {
5474 /* If !use_existing_cu, this_cu->cu must be NULL. */
5475 gdb_assert (this_cu->cu == NULL);
5476 cu = xmalloc (sizeof (*cu));
5477 init_one_comp_unit (cu, this_cu);
5478 /* If an error occurs while loading, release our storage. */
5479 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5480 }
5481
5482 /* Get the header. */
5483 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5484 {
5485 /* We already have the header, there's no need to read it in again. */
5486 info_ptr += cu->header.first_die_offset.cu_off;
5487 }
5488 else
5489 {
5490 if (this_cu->is_debug_types)
5491 {
5492 ULONGEST signature;
5493 cu_offset type_offset_in_tu;
5494
5495 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5496 abbrev_section, info_ptr,
5497 &signature,
5498 &type_offset_in_tu);
5499
5500 /* Since per_cu is the first member of struct signatured_type,
5501 we can go from a pointer to one to a pointer to the other. */
5502 sig_type = (struct signatured_type *) this_cu;
5503 gdb_assert (sig_type->signature == signature);
5504 gdb_assert (sig_type->type_offset_in_tu.cu_off
5505 == type_offset_in_tu.cu_off);
5506 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5507
5508 /* LENGTH has not been set yet for type units if we're
5509 using .gdb_index. */
5510 this_cu->length = get_cu_length (&cu->header);
5511
5512 /* Establish the type offset that can be used to lookup the type. */
5513 sig_type->type_offset_in_section.sect_off =
5514 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5515 }
5516 else
5517 {
5518 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5519 abbrev_section,
5520 info_ptr, 0);
5521
5522 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5524 }
5525 }
5526
5527 /* Skip dummy compilation units. */
5528 if (info_ptr >= begin_info_ptr + this_cu->length
5529 || peek_abbrev_code (abfd, info_ptr) == 0)
5530 {
5531 do_cleanups (cleanups);
5532 return;
5533 }
5534
5535 /* If we don't have them yet, read the abbrevs for this compilation unit.
5536 And if we need to read them now, make sure they're freed when we're
5537 done. Note that it's important that if the CU had an abbrev table
5538 on entry we don't free it when we're done: Somewhere up the call stack
5539 it may be in use. */
5540 if (abbrev_table != NULL)
5541 {
5542 gdb_assert (cu->abbrev_table == NULL);
5543 gdb_assert (cu->header.abbrev_offset.sect_off
5544 == abbrev_table->offset.sect_off);
5545 cu->abbrev_table = abbrev_table;
5546 }
5547 else if (cu->abbrev_table == NULL)
5548 {
5549 dwarf2_read_abbrevs (cu, abbrev_section);
5550 make_cleanup (dwarf2_free_abbrev_table, cu);
5551 }
5552 else if (rereading_dwo_cu)
5553 {
5554 dwarf2_free_abbrev_table (cu);
5555 dwarf2_read_abbrevs (cu, abbrev_section);
5556 }
5557
5558 /* Read the top level CU/TU die. */
5559 init_cu_die_reader (&reader, cu, section, NULL);
5560 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5561
5562 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5563 from the DWO file.
5564 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5565 DWO CU, that this test will fail (the attribute will not be present). */
5566 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5567 if (attr)
5568 {
5569 struct dwo_unit *dwo_unit;
5570 struct die_info *dwo_comp_unit_die;
5571
5572 if (has_children)
5573 {
5574 complaint (&symfile_complaints,
5575 _("compilation unit with DW_AT_GNU_dwo_name"
5576 " has children (offset 0x%x) [in module %s]"),
5577 this_cu->offset.sect_off, bfd_get_filename (abfd));
5578 }
5579 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5580 if (dwo_unit != NULL)
5581 {
5582 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5583 abbrev_table != NULL,
5584 comp_unit_die, NULL,
5585 &reader, &info_ptr,
5586 &dwo_comp_unit_die, &has_children) == 0)
5587 {
5588 /* Dummy die. */
5589 do_cleanups (cleanups);
5590 return;
5591 }
5592 comp_unit_die = dwo_comp_unit_die;
5593 }
5594 else
5595 {
5596 /* Yikes, we couldn't find the rest of the DIE, we only have
5597 the stub. A complaint has already been logged. There's
5598 not much more we can do except pass on the stub DIE to
5599 die_reader_func. We don't want to throw an error on bad
5600 debug info. */
5601 }
5602 }
5603
5604 /* All of the above is setup for this call. Yikes. */
5605 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5606
5607 /* Done, clean up. */
5608 if (free_cu_cleanup != NULL)
5609 {
5610 if (keep)
5611 {
5612 /* We've successfully allocated this compilation unit. Let our
5613 caller clean it up when finished with it. */
5614 discard_cleanups (free_cu_cleanup);
5615
5616 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5617 So we have to manually free the abbrev table. */
5618 dwarf2_free_abbrev_table (cu);
5619
5620 /* Link this CU into read_in_chain. */
5621 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5622 dwarf2_per_objfile->read_in_chain = this_cu;
5623 }
5624 else
5625 do_cleanups (free_cu_cleanup);
5626 }
5627
5628 do_cleanups (cleanups);
5629 }
5630
5631 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5632 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5633 to have already done the lookup to find the DWO file).
5634
5635 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5636 THIS_CU->is_debug_types, but nothing else.
5637
5638 We fill in THIS_CU->length.
5639
5640 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5641 linker) then DIE_READER_FUNC will not get called.
5642
5643 THIS_CU->cu is always freed when done.
5644 This is done in order to not leave THIS_CU->cu in a state where we have
5645 to care whether it refers to the "main" CU or the DWO CU. */
5646
5647 static void
5648 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5649 struct dwo_file *dwo_file,
5650 die_reader_func_ftype *die_reader_func,
5651 void *data)
5652 {
5653 struct objfile *objfile = dwarf2_per_objfile->objfile;
5654 struct dwarf2_section_info *section = this_cu->section;
5655 bfd *abfd = get_section_bfd_owner (section);
5656 struct dwarf2_section_info *abbrev_section;
5657 struct dwarf2_cu cu;
5658 const gdb_byte *begin_info_ptr, *info_ptr;
5659 struct die_reader_specs reader;
5660 struct cleanup *cleanups;
5661 struct die_info *comp_unit_die;
5662 int has_children;
5663
5664 if (dwarf_die_debug)
5665 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5666 this_cu->is_debug_types ? "type" : "comp",
5667 this_cu->offset.sect_off);
5668
5669 gdb_assert (this_cu->cu == NULL);
5670
5671 abbrev_section = (dwo_file != NULL
5672 ? &dwo_file->sections.abbrev
5673 : get_abbrev_section_for_cu (this_cu));
5674
5675 /* This is cheap if the section is already read in. */
5676 dwarf2_read_section (objfile, section);
5677
5678 init_one_comp_unit (&cu, this_cu);
5679
5680 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5681
5682 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5683 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5684 abbrev_section, info_ptr,
5685 this_cu->is_debug_types);
5686
5687 this_cu->length = get_cu_length (&cu.header);
5688
5689 /* Skip dummy compilation units. */
5690 if (info_ptr >= begin_info_ptr + this_cu->length
5691 || peek_abbrev_code (abfd, info_ptr) == 0)
5692 {
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696
5697 dwarf2_read_abbrevs (&cu, abbrev_section);
5698 make_cleanup (dwarf2_free_abbrev_table, &cu);
5699
5700 init_cu_die_reader (&reader, &cu, section, dwo_file);
5701 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5702
5703 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5704
5705 do_cleanups (cleanups);
5706 }
5707
5708 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5709 does not lookup the specified DWO file.
5710 This cannot be used to read DWO files.
5711
5712 THIS_CU->cu is always freed when done.
5713 This is done in order to not leave THIS_CU->cu in a state where we have
5714 to care whether it refers to the "main" CU or the DWO CU.
5715 We can revisit this if the data shows there's a performance issue. */
5716
5717 static void
5718 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5719 die_reader_func_ftype *die_reader_func,
5720 void *data)
5721 {
5722 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5723 }
5724 \f
5725 /* Type Unit Groups.
5726
5727 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5728 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5729 so that all types coming from the same compilation (.o file) are grouped
5730 together. A future step could be to put the types in the same symtab as
5731 the CU the types ultimately came from. */
5732
5733 static hashval_t
5734 hash_type_unit_group (const void *item)
5735 {
5736 const struct type_unit_group *tu_group = item;
5737
5738 return hash_stmt_list_entry (&tu_group->hash);
5739 }
5740
5741 static int
5742 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5743 {
5744 const struct type_unit_group *lhs = item_lhs;
5745 const struct type_unit_group *rhs = item_rhs;
5746
5747 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5748 }
5749
5750 /* Allocate a hash table for type unit groups. */
5751
5752 static htab_t
5753 allocate_type_unit_groups_table (void)
5754 {
5755 return htab_create_alloc_ex (3,
5756 hash_type_unit_group,
5757 eq_type_unit_group,
5758 NULL,
5759 &dwarf2_per_objfile->objfile->objfile_obstack,
5760 hashtab_obstack_allocate,
5761 dummy_obstack_deallocate);
5762 }
5763
5764 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5765 partial symtabs. We combine several TUs per psymtab to not let the size
5766 of any one psymtab grow too big. */
5767 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5768 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5769
5770 /* Helper routine for get_type_unit_group.
5771 Create the type_unit_group object used to hold one or more TUs. */
5772
5773 static struct type_unit_group *
5774 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5775 {
5776 struct objfile *objfile = dwarf2_per_objfile->objfile;
5777 struct dwarf2_per_cu_data *per_cu;
5778 struct type_unit_group *tu_group;
5779
5780 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5781 struct type_unit_group);
5782 per_cu = &tu_group->per_cu;
5783 per_cu->objfile = objfile;
5784
5785 if (dwarf2_per_objfile->using_index)
5786 {
5787 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5788 struct dwarf2_per_cu_quick_data);
5789 }
5790 else
5791 {
5792 unsigned int line_offset = line_offset_struct.sect_off;
5793 struct partial_symtab *pst;
5794 char *name;
5795
5796 /* Give the symtab a useful name for debug purposes. */
5797 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5798 name = xstrprintf ("<type_units_%d>",
5799 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5800 else
5801 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5802
5803 pst = create_partial_symtab (per_cu, name);
5804 pst->anonymous = 1;
5805
5806 xfree (name);
5807 }
5808
5809 tu_group->hash.dwo_unit = cu->dwo_unit;
5810 tu_group->hash.line_offset = line_offset_struct;
5811
5812 return tu_group;
5813 }
5814
5815 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5816 STMT_LIST is a DW_AT_stmt_list attribute. */
5817
5818 static struct type_unit_group *
5819 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5820 {
5821 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5822 struct type_unit_group *tu_group;
5823 void **slot;
5824 unsigned int line_offset;
5825 struct type_unit_group type_unit_group_for_lookup;
5826
5827 if (dwarf2_per_objfile->type_unit_groups == NULL)
5828 {
5829 dwarf2_per_objfile->type_unit_groups =
5830 allocate_type_unit_groups_table ();
5831 }
5832
5833 /* Do we need to create a new group, or can we use an existing one? */
5834
5835 if (stmt_list)
5836 {
5837 line_offset = DW_UNSND (stmt_list);
5838 ++tu_stats->nr_symtab_sharers;
5839 }
5840 else
5841 {
5842 /* Ugh, no stmt_list. Rare, but we have to handle it.
5843 We can do various things here like create one group per TU or
5844 spread them over multiple groups to split up the expansion work.
5845 To avoid worst case scenarios (too many groups or too large groups)
5846 we, umm, group them in bunches. */
5847 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5848 | (tu_stats->nr_stmt_less_type_units
5849 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5850 ++tu_stats->nr_stmt_less_type_units;
5851 }
5852
5853 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5854 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5855 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5856 &type_unit_group_for_lookup, INSERT);
5857 if (*slot != NULL)
5858 {
5859 tu_group = *slot;
5860 gdb_assert (tu_group != NULL);
5861 }
5862 else
5863 {
5864 sect_offset line_offset_struct;
5865
5866 line_offset_struct.sect_off = line_offset;
5867 tu_group = create_type_unit_group (cu, line_offset_struct);
5868 *slot = tu_group;
5869 ++tu_stats->nr_symtabs;
5870 }
5871
5872 return tu_group;
5873 }
5874 \f
5875 /* Partial symbol tables. */
5876
5877 /* Create a psymtab named NAME and assign it to PER_CU.
5878
5879 The caller must fill in the following details:
5880 dirname, textlow, texthigh. */
5881
5882 static struct partial_symtab *
5883 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5884 {
5885 struct objfile *objfile = per_cu->objfile;
5886 struct partial_symtab *pst;
5887
5888 pst = start_psymtab_common (objfile, objfile->section_offsets,
5889 name, 0,
5890 objfile->global_psymbols.next,
5891 objfile->static_psymbols.next);
5892
5893 pst->psymtabs_addrmap_supported = 1;
5894
5895 /* This is the glue that links PST into GDB's symbol API. */
5896 pst->read_symtab_private = per_cu;
5897 pst->read_symtab = dwarf2_read_symtab;
5898 per_cu->v.psymtab = pst;
5899
5900 return pst;
5901 }
5902
5903 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5904 type. */
5905
5906 struct process_psymtab_comp_unit_data
5907 {
5908 /* True if we are reading a DW_TAG_partial_unit. */
5909
5910 int want_partial_unit;
5911
5912 /* The "pretend" language that is used if the CU doesn't declare a
5913 language. */
5914
5915 enum language pretend_language;
5916 };
5917
5918 /* die_reader_func for process_psymtab_comp_unit. */
5919
5920 static void
5921 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5922 const gdb_byte *info_ptr,
5923 struct die_info *comp_unit_die,
5924 int has_children,
5925 void *data)
5926 {
5927 struct dwarf2_cu *cu = reader->cu;
5928 struct objfile *objfile = cu->objfile;
5929 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5930 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5931 struct attribute *attr;
5932 CORE_ADDR baseaddr;
5933 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5934 struct partial_symtab *pst;
5935 int has_pc_info;
5936 const char *filename;
5937 struct process_psymtab_comp_unit_data *info = data;
5938
5939 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5940 return;
5941
5942 gdb_assert (! per_cu->is_debug_types);
5943
5944 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5945
5946 cu->list_in_scope = &file_symbols;
5947
5948 /* Allocate a new partial symbol table structure. */
5949 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5950 if (attr == NULL || !DW_STRING (attr))
5951 filename = "";
5952 else
5953 filename = DW_STRING (attr);
5954
5955 pst = create_partial_symtab (per_cu, filename);
5956
5957 /* This must be done before calling dwarf2_build_include_psymtabs. */
5958 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5959 if (attr != NULL)
5960 pst->dirname = DW_STRING (attr);
5961
5962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5963
5964 dwarf2_find_base_address (comp_unit_die, cu);
5965
5966 /* Possibly set the default values of LOWPC and HIGHPC from
5967 `DW_AT_ranges'. */
5968 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5969 &best_highpc, cu, pst);
5970 if (has_pc_info == 1 && best_lowpc < best_highpc)
5971 /* Store the contiguous range if it is not empty; it can be empty for
5972 CUs with no code. */
5973 addrmap_set_empty (objfile->psymtabs_addrmap,
5974 gdbarch_adjust_dwarf2_addr (gdbarch,
5975 best_lowpc + baseaddr),
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_highpc + baseaddr) - 1,
5978 pst);
5979
5980 /* Check if comp unit has_children.
5981 If so, read the rest of the partial symbols from this comp unit.
5982 If not, there's no more debug_info for this comp unit. */
5983 if (has_children)
5984 {
5985 struct partial_die_info *first_die;
5986 CORE_ADDR lowpc, highpc;
5987
5988 lowpc = ((CORE_ADDR) -1);
5989 highpc = ((CORE_ADDR) 0);
5990
5991 first_die = load_partial_dies (reader, info_ptr, 1);
5992
5993 scan_partial_symbols (first_die, &lowpc, &highpc,
5994 ! has_pc_info, cu);
5995
5996 /* If we didn't find a lowpc, set it to highpc to avoid
5997 complaints from `maint check'. */
5998 if (lowpc == ((CORE_ADDR) -1))
5999 lowpc = highpc;
6000
6001 /* If the compilation unit didn't have an explicit address range,
6002 then use the information extracted from its child dies. */
6003 if (! has_pc_info)
6004 {
6005 best_lowpc = lowpc;
6006 best_highpc = highpc;
6007 }
6008 }
6009 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6010 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6011
6012 pst->n_global_syms = objfile->global_psymbols.next -
6013 (objfile->global_psymbols.list + pst->globals_offset);
6014 pst->n_static_syms = objfile->static_psymbols.next -
6015 (objfile->static_psymbols.list + pst->statics_offset);
6016 sort_pst_symbols (objfile, pst);
6017
6018 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6019 {
6020 int i;
6021 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6022 struct dwarf2_per_cu_data *iter;
6023
6024 /* Fill in 'dependencies' here; we fill in 'users' in a
6025 post-pass. */
6026 pst->number_of_dependencies = len;
6027 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6028 len * sizeof (struct symtab *));
6029 for (i = 0;
6030 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6031 i, iter);
6032 ++i)
6033 pst->dependencies[i] = iter->v.psymtab;
6034
6035 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6036 }
6037
6038 /* Get the list of files included in the current compilation unit,
6039 and build a psymtab for each of them. */
6040 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6041
6042 if (dwarf_read_debug)
6043 {
6044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6045
6046 fprintf_unfiltered (gdb_stdlog,
6047 "Psymtab for %s unit @0x%x: %s - %s"
6048 ", %d global, %d static syms\n",
6049 per_cu->is_debug_types ? "type" : "comp",
6050 per_cu->offset.sect_off,
6051 paddress (gdbarch, pst->textlow),
6052 paddress (gdbarch, pst->texthigh),
6053 pst->n_global_syms, pst->n_static_syms);
6054 }
6055 }
6056
6057 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6058 Process compilation unit THIS_CU for a psymtab. */
6059
6060 static void
6061 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6062 int want_partial_unit,
6063 enum language pretend_language)
6064 {
6065 struct process_psymtab_comp_unit_data info;
6066
6067 /* If this compilation unit was already read in, free the
6068 cached copy in order to read it in again. This is
6069 necessary because we skipped some symbols when we first
6070 read in the compilation unit (see load_partial_dies).
6071 This problem could be avoided, but the benefit is unclear. */
6072 if (this_cu->cu != NULL)
6073 free_one_cached_comp_unit (this_cu);
6074
6075 gdb_assert (! this_cu->is_debug_types);
6076 info.want_partial_unit = want_partial_unit;
6077 info.pretend_language = pretend_language;
6078 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6079 process_psymtab_comp_unit_reader,
6080 &info);
6081
6082 /* Age out any secondary CUs. */
6083 age_cached_comp_units ();
6084 }
6085
6086 /* Reader function for build_type_psymtabs. */
6087
6088 static void
6089 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6090 const gdb_byte *info_ptr,
6091 struct die_info *type_unit_die,
6092 int has_children,
6093 void *data)
6094 {
6095 struct objfile *objfile = dwarf2_per_objfile->objfile;
6096 struct dwarf2_cu *cu = reader->cu;
6097 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6098 struct signatured_type *sig_type;
6099 struct type_unit_group *tu_group;
6100 struct attribute *attr;
6101 struct partial_die_info *first_die;
6102 CORE_ADDR lowpc, highpc;
6103 struct partial_symtab *pst;
6104
6105 gdb_assert (data == NULL);
6106 gdb_assert (per_cu->is_debug_types);
6107 sig_type = (struct signatured_type *) per_cu;
6108
6109 if (! has_children)
6110 return;
6111
6112 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6113 tu_group = get_type_unit_group (cu, attr);
6114
6115 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6116
6117 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6118 cu->list_in_scope = &file_symbols;
6119 pst = create_partial_symtab (per_cu, "");
6120 pst->anonymous = 1;
6121
6122 first_die = load_partial_dies (reader, info_ptr, 1);
6123
6124 lowpc = (CORE_ADDR) -1;
6125 highpc = (CORE_ADDR) 0;
6126 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6127
6128 pst->n_global_syms = objfile->global_psymbols.next -
6129 (objfile->global_psymbols.list + pst->globals_offset);
6130 pst->n_static_syms = objfile->static_psymbols.next -
6131 (objfile->static_psymbols.list + pst->statics_offset);
6132 sort_pst_symbols (objfile, pst);
6133 }
6134
6135 /* Struct used to sort TUs by their abbreviation table offset. */
6136
6137 struct tu_abbrev_offset
6138 {
6139 struct signatured_type *sig_type;
6140 sect_offset abbrev_offset;
6141 };
6142
6143 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6144
6145 static int
6146 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6147 {
6148 const struct tu_abbrev_offset * const *a = ap;
6149 const struct tu_abbrev_offset * const *b = bp;
6150 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6151 unsigned int boff = (*b)->abbrev_offset.sect_off;
6152
6153 return (aoff > boff) - (aoff < boff);
6154 }
6155
6156 /* Efficiently read all the type units.
6157 This does the bulk of the work for build_type_psymtabs.
6158
6159 The efficiency is because we sort TUs by the abbrev table they use and
6160 only read each abbrev table once. In one program there are 200K TUs
6161 sharing 8K abbrev tables.
6162
6163 The main purpose of this function is to support building the
6164 dwarf2_per_objfile->type_unit_groups table.
6165 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6166 can collapse the search space by grouping them by stmt_list.
6167 The savings can be significant, in the same program from above the 200K TUs
6168 share 8K stmt_list tables.
6169
6170 FUNC is expected to call get_type_unit_group, which will create the
6171 struct type_unit_group if necessary and add it to
6172 dwarf2_per_objfile->type_unit_groups. */
6173
6174 static void
6175 build_type_psymtabs_1 (void)
6176 {
6177 struct objfile *objfile = dwarf2_per_objfile->objfile;
6178 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6179 struct cleanup *cleanups;
6180 struct abbrev_table *abbrev_table;
6181 sect_offset abbrev_offset;
6182 struct tu_abbrev_offset *sorted_by_abbrev;
6183 struct type_unit_group **iter;
6184 int i;
6185
6186 /* It's up to the caller to not call us multiple times. */
6187 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6188
6189 if (dwarf2_per_objfile->n_type_units == 0)
6190 return;
6191
6192 /* TUs typically share abbrev tables, and there can be way more TUs than
6193 abbrev tables. Sort by abbrev table to reduce the number of times we
6194 read each abbrev table in.
6195 Alternatives are to punt or to maintain a cache of abbrev tables.
6196 This is simpler and efficient enough for now.
6197
6198 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6199 symtab to use). Typically TUs with the same abbrev offset have the same
6200 stmt_list value too so in practice this should work well.
6201
6202 The basic algorithm here is:
6203
6204 sort TUs by abbrev table
6205 for each TU with same abbrev table:
6206 read abbrev table if first user
6207 read TU top level DIE
6208 [IWBN if DWO skeletons had DW_AT_stmt_list]
6209 call FUNC */
6210
6211 if (dwarf_read_debug)
6212 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6213
6214 /* Sort in a separate table to maintain the order of all_type_units
6215 for .gdb_index: TU indices directly index all_type_units. */
6216 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6217 dwarf2_per_objfile->n_type_units);
6218 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6219 {
6220 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6221
6222 sorted_by_abbrev[i].sig_type = sig_type;
6223 sorted_by_abbrev[i].abbrev_offset =
6224 read_abbrev_offset (sig_type->per_cu.section,
6225 sig_type->per_cu.offset);
6226 }
6227 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6228 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6229 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6230
6231 abbrev_offset.sect_off = ~(unsigned) 0;
6232 abbrev_table = NULL;
6233 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6234
6235 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6236 {
6237 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6238
6239 /* Switch to the next abbrev table if necessary. */
6240 if (abbrev_table == NULL
6241 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6242 {
6243 if (abbrev_table != NULL)
6244 {
6245 abbrev_table_free (abbrev_table);
6246 /* Reset to NULL in case abbrev_table_read_table throws
6247 an error: abbrev_table_free_cleanup will get called. */
6248 abbrev_table = NULL;
6249 }
6250 abbrev_offset = tu->abbrev_offset;
6251 abbrev_table =
6252 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6253 abbrev_offset);
6254 ++tu_stats->nr_uniq_abbrev_tables;
6255 }
6256
6257 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6258 build_type_psymtabs_reader, NULL);
6259 }
6260
6261 do_cleanups (cleanups);
6262 }
6263
6264 /* Print collected type unit statistics. */
6265
6266 static void
6267 print_tu_stats (void)
6268 {
6269 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6270
6271 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6272 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6273 dwarf2_per_objfile->n_type_units);
6274 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6275 tu_stats->nr_uniq_abbrev_tables);
6276 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6277 tu_stats->nr_symtabs);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6279 tu_stats->nr_symtab_sharers);
6280 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6281 tu_stats->nr_stmt_less_type_units);
6282 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6283 tu_stats->nr_all_type_units_reallocs);
6284 }
6285
6286 /* Traversal function for build_type_psymtabs. */
6287
6288 static int
6289 build_type_psymtab_dependencies (void **slot, void *info)
6290 {
6291 struct objfile *objfile = dwarf2_per_objfile->objfile;
6292 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6293 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6294 struct partial_symtab *pst = per_cu->v.psymtab;
6295 int len = VEC_length (sig_type_ptr, tu_group->tus);
6296 struct signatured_type *iter;
6297 int i;
6298
6299 gdb_assert (len > 0);
6300 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6301
6302 pst->number_of_dependencies = len;
6303 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6304 len * sizeof (struct psymtab *));
6305 for (i = 0;
6306 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6307 ++i)
6308 {
6309 gdb_assert (iter->per_cu.is_debug_types);
6310 pst->dependencies[i] = iter->per_cu.v.psymtab;
6311 iter->type_unit_group = tu_group;
6312 }
6313
6314 VEC_free (sig_type_ptr, tu_group->tus);
6315
6316 return 1;
6317 }
6318
6319 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6320 Build partial symbol tables for the .debug_types comp-units. */
6321
6322 static void
6323 build_type_psymtabs (struct objfile *objfile)
6324 {
6325 if (! create_all_type_units (objfile))
6326 return;
6327
6328 build_type_psymtabs_1 ();
6329 }
6330
6331 /* Traversal function for process_skeletonless_type_unit.
6332 Read a TU in a DWO file and build partial symbols for it. */
6333
6334 static int
6335 process_skeletonless_type_unit (void **slot, void *info)
6336 {
6337 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6338 struct objfile *objfile = info;
6339 struct signatured_type find_entry, *entry;
6340
6341 /* If this TU doesn't exist in the global table, add it and read it in. */
6342
6343 if (dwarf2_per_objfile->signatured_types == NULL)
6344 {
6345 dwarf2_per_objfile->signatured_types
6346 = allocate_signatured_type_table (objfile);
6347 }
6348
6349 find_entry.signature = dwo_unit->signature;
6350 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6351 INSERT);
6352 /* If we've already seen this type there's nothing to do. What's happening
6353 is we're doing our own version of comdat-folding here. */
6354 if (*slot != NULL)
6355 return 1;
6356
6357 /* This does the job that create_all_type_units would have done for
6358 this TU. */
6359 entry = add_type_unit (dwo_unit->signature, slot);
6360 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6361 *slot = entry;
6362
6363 /* This does the job that build_type_psymtabs_1 would have done. */
6364 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6365 build_type_psymtabs_reader, NULL);
6366
6367 return 1;
6368 }
6369
6370 /* Traversal function for process_skeletonless_type_units. */
6371
6372 static int
6373 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6374 {
6375 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6376
6377 if (dwo_file->tus != NULL)
6378 {
6379 htab_traverse_noresize (dwo_file->tus,
6380 process_skeletonless_type_unit, info);
6381 }
6382
6383 return 1;
6384 }
6385
6386 /* Scan all TUs of DWO files, verifying we've processed them.
6387 This is needed in case a TU was emitted without its skeleton.
6388 Note: This can't be done until we know what all the DWO files are. */
6389
6390 static void
6391 process_skeletonless_type_units (struct objfile *objfile)
6392 {
6393 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6394 if (get_dwp_file () == NULL
6395 && dwarf2_per_objfile->dwo_files != NULL)
6396 {
6397 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6398 process_dwo_file_for_skeletonless_type_units,
6399 objfile);
6400 }
6401 }
6402
6403 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6404
6405 static void
6406 psymtabs_addrmap_cleanup (void *o)
6407 {
6408 struct objfile *objfile = o;
6409
6410 objfile->psymtabs_addrmap = NULL;
6411 }
6412
6413 /* Compute the 'user' field for each psymtab in OBJFILE. */
6414
6415 static void
6416 set_partial_user (struct objfile *objfile)
6417 {
6418 int i;
6419
6420 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6421 {
6422 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6423 struct partial_symtab *pst = per_cu->v.psymtab;
6424 int j;
6425
6426 if (pst == NULL)
6427 continue;
6428
6429 for (j = 0; j < pst->number_of_dependencies; ++j)
6430 {
6431 /* Set the 'user' field only if it is not already set. */
6432 if (pst->dependencies[j]->user == NULL)
6433 pst->dependencies[j]->user = pst;
6434 }
6435 }
6436 }
6437
6438 /* Build the partial symbol table by doing a quick pass through the
6439 .debug_info and .debug_abbrev sections. */
6440
6441 static void
6442 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6443 {
6444 struct cleanup *back_to, *addrmap_cleanup;
6445 struct obstack temp_obstack;
6446 int i;
6447
6448 if (dwarf_read_debug)
6449 {
6450 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6451 objfile_name (objfile));
6452 }
6453
6454 dwarf2_per_objfile->reading_partial_symbols = 1;
6455
6456 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6457
6458 /* Any cached compilation units will be linked by the per-objfile
6459 read_in_chain. Make sure to free them when we're done. */
6460 back_to = make_cleanup (free_cached_comp_units, NULL);
6461
6462 build_type_psymtabs (objfile);
6463
6464 create_all_comp_units (objfile);
6465
6466 /* Create a temporary address map on a temporary obstack. We later
6467 copy this to the final obstack. */
6468 obstack_init (&temp_obstack);
6469 make_cleanup_obstack_free (&temp_obstack);
6470 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6471 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6472
6473 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6474 {
6475 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6476
6477 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6478 }
6479
6480 /* This has to wait until we read the CUs, we need the list of DWOs. */
6481 process_skeletonless_type_units (objfile);
6482
6483 /* Now that all TUs have been processed we can fill in the dependencies. */
6484 if (dwarf2_per_objfile->type_unit_groups != NULL)
6485 {
6486 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6487 build_type_psymtab_dependencies, NULL);
6488 }
6489
6490 if (dwarf_read_debug)
6491 print_tu_stats ();
6492
6493 set_partial_user (objfile);
6494
6495 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6496 &objfile->objfile_obstack);
6497 discard_cleanups (addrmap_cleanup);
6498
6499 do_cleanups (back_to);
6500
6501 if (dwarf_read_debug)
6502 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6503 objfile_name (objfile));
6504 }
6505
6506 /* die_reader_func for load_partial_comp_unit. */
6507
6508 static void
6509 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6510 const gdb_byte *info_ptr,
6511 struct die_info *comp_unit_die,
6512 int has_children,
6513 void *data)
6514 {
6515 struct dwarf2_cu *cu = reader->cu;
6516
6517 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6518
6519 /* Check if comp unit has_children.
6520 If so, read the rest of the partial symbols from this comp unit.
6521 If not, there's no more debug_info for this comp unit. */
6522 if (has_children)
6523 load_partial_dies (reader, info_ptr, 0);
6524 }
6525
6526 /* Load the partial DIEs for a secondary CU into memory.
6527 This is also used when rereading a primary CU with load_all_dies. */
6528
6529 static void
6530 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6531 {
6532 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6533 load_partial_comp_unit_reader, NULL);
6534 }
6535
6536 static void
6537 read_comp_units_from_section (struct objfile *objfile,
6538 struct dwarf2_section_info *section,
6539 unsigned int is_dwz,
6540 int *n_allocated,
6541 int *n_comp_units,
6542 struct dwarf2_per_cu_data ***all_comp_units)
6543 {
6544 const gdb_byte *info_ptr;
6545 bfd *abfd = get_section_bfd_owner (section);
6546
6547 if (dwarf_read_debug)
6548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6549 get_section_name (section),
6550 get_section_file_name (section));
6551
6552 dwarf2_read_section (objfile, section);
6553
6554 info_ptr = section->buffer;
6555
6556 while (info_ptr < section->buffer + section->size)
6557 {
6558 unsigned int length, initial_length_size;
6559 struct dwarf2_per_cu_data *this_cu;
6560 sect_offset offset;
6561
6562 offset.sect_off = info_ptr - section->buffer;
6563
6564 /* Read just enough information to find out where the next
6565 compilation unit is. */
6566 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6567
6568 /* Save the compilation unit for later lookup. */
6569 this_cu = obstack_alloc (&objfile->objfile_obstack,
6570 sizeof (struct dwarf2_per_cu_data));
6571 memset (this_cu, 0, sizeof (*this_cu));
6572 this_cu->offset = offset;
6573 this_cu->length = length + initial_length_size;
6574 this_cu->is_dwz = is_dwz;
6575 this_cu->objfile = objfile;
6576 this_cu->section = section;
6577
6578 if (*n_comp_units == *n_allocated)
6579 {
6580 *n_allocated *= 2;
6581 *all_comp_units = xrealloc (*all_comp_units,
6582 *n_allocated
6583 * sizeof (struct dwarf2_per_cu_data *));
6584 }
6585 (*all_comp_units)[*n_comp_units] = this_cu;
6586 ++*n_comp_units;
6587
6588 info_ptr = info_ptr + this_cu->length;
6589 }
6590 }
6591
6592 /* Create a list of all compilation units in OBJFILE.
6593 This is only done for -readnow and building partial symtabs. */
6594
6595 static void
6596 create_all_comp_units (struct objfile *objfile)
6597 {
6598 int n_allocated;
6599 int n_comp_units;
6600 struct dwarf2_per_cu_data **all_comp_units;
6601 struct dwz_file *dwz;
6602
6603 n_comp_units = 0;
6604 n_allocated = 10;
6605 all_comp_units = xmalloc (n_allocated
6606 * sizeof (struct dwarf2_per_cu_data *));
6607
6608 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6609 &n_allocated, &n_comp_units, &all_comp_units);
6610
6611 dwz = dwarf2_get_dwz_file ();
6612 if (dwz != NULL)
6613 read_comp_units_from_section (objfile, &dwz->info, 1,
6614 &n_allocated, &n_comp_units,
6615 &all_comp_units);
6616
6617 dwarf2_per_objfile->all_comp_units
6618 = obstack_alloc (&objfile->objfile_obstack,
6619 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6620 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 xfree (all_comp_units);
6623 dwarf2_per_objfile->n_comp_units = n_comp_units;
6624 }
6625
6626 /* Process all loaded DIEs for compilation unit CU, starting at
6627 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6628 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6629 DW_AT_ranges). See the comments of add_partial_subprogram on how
6630 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6631
6632 static void
6633 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6634 CORE_ADDR *highpc, int set_addrmap,
6635 struct dwarf2_cu *cu)
6636 {
6637 struct partial_die_info *pdi;
6638
6639 /* Now, march along the PDI's, descending into ones which have
6640 interesting children but skipping the children of the other ones,
6641 until we reach the end of the compilation unit. */
6642
6643 pdi = first_die;
6644
6645 while (pdi != NULL)
6646 {
6647 fixup_partial_die (pdi, cu);
6648
6649 /* Anonymous namespaces or modules have no name but have interesting
6650 children, so we need to look at them. Ditto for anonymous
6651 enums. */
6652
6653 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6654 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6655 || pdi->tag == DW_TAG_imported_unit)
6656 {
6657 switch (pdi->tag)
6658 {
6659 case DW_TAG_subprogram:
6660 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6661 break;
6662 case DW_TAG_constant:
6663 case DW_TAG_variable:
6664 case DW_TAG_typedef:
6665 case DW_TAG_union_type:
6666 if (!pdi->is_declaration)
6667 {
6668 add_partial_symbol (pdi, cu);
6669 }
6670 break;
6671 case DW_TAG_class_type:
6672 case DW_TAG_interface_type:
6673 case DW_TAG_structure_type:
6674 if (!pdi->is_declaration)
6675 {
6676 add_partial_symbol (pdi, cu);
6677 }
6678 break;
6679 case DW_TAG_enumeration_type:
6680 if (!pdi->is_declaration)
6681 add_partial_enumeration (pdi, cu);
6682 break;
6683 case DW_TAG_base_type:
6684 case DW_TAG_subrange_type:
6685 /* File scope base type definitions are added to the partial
6686 symbol table. */
6687 add_partial_symbol (pdi, cu);
6688 break;
6689 case DW_TAG_namespace:
6690 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6691 break;
6692 case DW_TAG_module:
6693 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6694 break;
6695 case DW_TAG_imported_unit:
6696 {
6697 struct dwarf2_per_cu_data *per_cu;
6698
6699 /* For now we don't handle imported units in type units. */
6700 if (cu->per_cu->is_debug_types)
6701 {
6702 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6703 " supported in type units [in module %s]"),
6704 objfile_name (cu->objfile));
6705 }
6706
6707 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6708 pdi->is_dwz,
6709 cu->objfile);
6710
6711 /* Go read the partial unit, if needed. */
6712 if (per_cu->v.psymtab == NULL)
6713 process_psymtab_comp_unit (per_cu, 1, cu->language);
6714
6715 VEC_safe_push (dwarf2_per_cu_ptr,
6716 cu->per_cu->imported_symtabs, per_cu);
6717 }
6718 break;
6719 case DW_TAG_imported_declaration:
6720 add_partial_symbol (pdi, cu);
6721 break;
6722 default:
6723 break;
6724 }
6725 }
6726
6727 /* If the die has a sibling, skip to the sibling. */
6728
6729 pdi = pdi->die_sibling;
6730 }
6731 }
6732
6733 /* Functions used to compute the fully scoped name of a partial DIE.
6734
6735 Normally, this is simple. For C++, the parent DIE's fully scoped
6736 name is concatenated with "::" and the partial DIE's name. For
6737 Java, the same thing occurs except that "." is used instead of "::".
6738 Enumerators are an exception; they use the scope of their parent
6739 enumeration type, i.e. the name of the enumeration type is not
6740 prepended to the enumerator.
6741
6742 There are two complexities. One is DW_AT_specification; in this
6743 case "parent" means the parent of the target of the specification,
6744 instead of the direct parent of the DIE. The other is compilers
6745 which do not emit DW_TAG_namespace; in this case we try to guess
6746 the fully qualified name of structure types from their members'
6747 linkage names. This must be done using the DIE's children rather
6748 than the children of any DW_AT_specification target. We only need
6749 to do this for structures at the top level, i.e. if the target of
6750 any DW_AT_specification (if any; otherwise the DIE itself) does not
6751 have a parent. */
6752
6753 /* Compute the scope prefix associated with PDI's parent, in
6754 compilation unit CU. The result will be allocated on CU's
6755 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6756 field. NULL is returned if no prefix is necessary. */
6757 static const char *
6758 partial_die_parent_scope (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760 {
6761 const char *grandparent_scope;
6762 struct partial_die_info *parent, *real_pdi;
6763
6764 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6765 then this means the parent of the specification DIE. */
6766
6767 real_pdi = pdi;
6768 while (real_pdi->has_specification)
6769 real_pdi = find_partial_die (real_pdi->spec_offset,
6770 real_pdi->spec_is_dwz, cu);
6771
6772 parent = real_pdi->die_parent;
6773 if (parent == NULL)
6774 return NULL;
6775
6776 if (parent->scope_set)
6777 return parent->scope;
6778
6779 fixup_partial_die (parent, cu);
6780
6781 grandparent_scope = partial_die_parent_scope (parent, cu);
6782
6783 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6784 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6785 Work around this problem here. */
6786 if (cu->language == language_cplus
6787 && parent->tag == DW_TAG_namespace
6788 && strcmp (parent->name, "::") == 0
6789 && grandparent_scope == NULL)
6790 {
6791 parent->scope = NULL;
6792 parent->scope_set = 1;
6793 return NULL;
6794 }
6795
6796 if (pdi->tag == DW_TAG_enumerator)
6797 /* Enumerators should not get the name of the enumeration as a prefix. */
6798 parent->scope = grandparent_scope;
6799 else if (parent->tag == DW_TAG_namespace
6800 || parent->tag == DW_TAG_module
6801 || parent->tag == DW_TAG_structure_type
6802 || parent->tag == DW_TAG_class_type
6803 || parent->tag == DW_TAG_interface_type
6804 || parent->tag == DW_TAG_union_type
6805 || parent->tag == DW_TAG_enumeration_type)
6806 {
6807 if (grandparent_scope == NULL)
6808 parent->scope = parent->name;
6809 else
6810 parent->scope = typename_concat (&cu->comp_unit_obstack,
6811 grandparent_scope,
6812 parent->name, 0, cu);
6813 }
6814 else
6815 {
6816 /* FIXME drow/2004-04-01: What should we be doing with
6817 function-local names? For partial symbols, we should probably be
6818 ignoring them. */
6819 complaint (&symfile_complaints,
6820 _("unhandled containing DIE tag %d for DIE at %d"),
6821 parent->tag, pdi->offset.sect_off);
6822 parent->scope = grandparent_scope;
6823 }
6824
6825 parent->scope_set = 1;
6826 return parent->scope;
6827 }
6828
6829 /* Return the fully scoped name associated with PDI, from compilation unit
6830 CU. The result will be allocated with malloc. */
6831
6832 static char *
6833 partial_die_full_name (struct partial_die_info *pdi,
6834 struct dwarf2_cu *cu)
6835 {
6836 const char *parent_scope;
6837
6838 /* If this is a template instantiation, we can not work out the
6839 template arguments from partial DIEs. So, unfortunately, we have
6840 to go through the full DIEs. At least any work we do building
6841 types here will be reused if full symbols are loaded later. */
6842 if (pdi->has_template_arguments)
6843 {
6844 fixup_partial_die (pdi, cu);
6845
6846 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6847 {
6848 struct die_info *die;
6849 struct attribute attr;
6850 struct dwarf2_cu *ref_cu = cu;
6851
6852 /* DW_FORM_ref_addr is using section offset. */
6853 attr.name = 0;
6854 attr.form = DW_FORM_ref_addr;
6855 attr.u.unsnd = pdi->offset.sect_off;
6856 die = follow_die_ref (NULL, &attr, &ref_cu);
6857
6858 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6859 }
6860 }
6861
6862 parent_scope = partial_die_parent_scope (pdi, cu);
6863 if (parent_scope == NULL)
6864 return NULL;
6865 else
6866 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6867 }
6868
6869 static void
6870 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6871 {
6872 struct objfile *objfile = cu->objfile;
6873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6874 CORE_ADDR addr = 0;
6875 const char *actual_name = NULL;
6876 CORE_ADDR baseaddr;
6877 char *built_actual_name;
6878
6879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6880
6881 built_actual_name = partial_die_full_name (pdi, cu);
6882 if (built_actual_name != NULL)
6883 actual_name = built_actual_name;
6884
6885 if (actual_name == NULL)
6886 actual_name = pdi->name;
6887
6888 switch (pdi->tag)
6889 {
6890 case DW_TAG_subprogram:
6891 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6892 if (pdi->is_external || cu->language == language_ada)
6893 {
6894 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6895 of the global scope. But in Ada, we want to be able to access
6896 nested procedures globally. So all Ada subprograms are stored
6897 in the global scope. */
6898 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6899 objfile); */
6900 add_psymbol_to_list (actual_name, strlen (actual_name),
6901 built_actual_name != NULL,
6902 VAR_DOMAIN, LOC_BLOCK,
6903 &objfile->global_psymbols,
6904 0, addr, cu->language, objfile);
6905 }
6906 else
6907 {
6908 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6909 objfile); */
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 0, addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 0, addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6979 mst_file_data, objfile); */
6980 add_psymbol_to_list (actual_name, strlen (actual_name),
6981 built_actual_name != NULL,
6982 VAR_DOMAIN, LOC_STATIC,
6983 &objfile->static_psymbols,
6984 0,
6985 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6986 cu->language, objfile);
6987 }
6988 break;
6989 case DW_TAG_typedef:
6990 case DW_TAG_base_type:
6991 case DW_TAG_subrange_type:
6992 add_psymbol_to_list (actual_name, strlen (actual_name),
6993 built_actual_name != NULL,
6994 VAR_DOMAIN, LOC_TYPEDEF,
6995 &objfile->static_psymbols,
6996 0, (CORE_ADDR) 0, cu->language, objfile);
6997 break;
6998 case DW_TAG_imported_declaration:
6999 case DW_TAG_namespace:
7000 add_psymbol_to_list (actual_name, strlen (actual_name),
7001 built_actual_name != NULL,
7002 VAR_DOMAIN, LOC_TYPEDEF,
7003 &objfile->global_psymbols,
7004 0, (CORE_ADDR) 0, cu->language, objfile);
7005 break;
7006 case DW_TAG_module:
7007 add_psymbol_to_list (actual_name, strlen (actual_name),
7008 built_actual_name != NULL,
7009 MODULE_DOMAIN, LOC_TYPEDEF,
7010 &objfile->global_psymbols,
7011 0, (CORE_ADDR) 0, cu->language, objfile);
7012 break;
7013 case DW_TAG_class_type:
7014 case DW_TAG_interface_type:
7015 case DW_TAG_structure_type:
7016 case DW_TAG_union_type:
7017 case DW_TAG_enumeration_type:
7018 /* Skip external references. The DWARF standard says in the section
7019 about "Structure, Union, and Class Type Entries": "An incomplete
7020 structure, union or class type is represented by a structure,
7021 union or class entry that does not have a byte size attribute
7022 and that has a DW_AT_declaration attribute." */
7023 if (!pdi->has_byte_size && pdi->is_declaration)
7024 {
7025 xfree (built_actual_name);
7026 return;
7027 }
7028
7029 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7030 static vs. global. */
7031 add_psymbol_to_list (actual_name, strlen (actual_name),
7032 built_actual_name != NULL,
7033 STRUCT_DOMAIN, LOC_TYPEDEF,
7034 (cu->language == language_cplus
7035 || cu->language == language_java)
7036 ? &objfile->global_psymbols
7037 : &objfile->static_psymbols,
7038 0, (CORE_ADDR) 0, cu->language, objfile);
7039
7040 break;
7041 case DW_TAG_enumerator:
7042 add_psymbol_to_list (actual_name, strlen (actual_name),
7043 built_actual_name != NULL,
7044 VAR_DOMAIN, LOC_CONST,
7045 (cu->language == language_cplus
7046 || cu->language == language_java)
7047 ? &objfile->global_psymbols
7048 : &objfile->static_psymbols,
7049 0, (CORE_ADDR) 0, cu->language, objfile);
7050 break;
7051 default:
7052 break;
7053 }
7054
7055 xfree (built_actual_name);
7056 }
7057
7058 /* Read a partial die corresponding to a namespace; also, add a symbol
7059 corresponding to that namespace to the symbol table. NAMESPACE is
7060 the name of the enclosing namespace. */
7061
7062 static void
7063 add_partial_namespace (struct partial_die_info *pdi,
7064 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7065 int set_addrmap, struct dwarf2_cu *cu)
7066 {
7067 /* Add a symbol for the namespace. */
7068
7069 add_partial_symbol (pdi, cu);
7070
7071 /* Now scan partial symbols in that namespace. */
7072
7073 if (pdi->has_children)
7074 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7075 }
7076
7077 /* Read a partial die corresponding to a Fortran module. */
7078
7079 static void
7080 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7081 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7082 {
7083 /* Add a symbol for the namespace. */
7084
7085 add_partial_symbol (pdi, cu);
7086
7087 /* Now scan partial symbols in that module. */
7088
7089 if (pdi->has_children)
7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7091 }
7092
7093 /* Read a partial die corresponding to a subprogram and create a partial
7094 symbol for that subprogram. When the CU language allows it, this
7095 routine also defines a partial symbol for each nested subprogram
7096 that this subprogram contains. If SET_ADDRMAP is true, record the
7097 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7098 and highest PC values found in PDI.
7099
7100 PDI may also be a lexical block, in which case we simply search
7101 recursively for subprograms defined inside that lexical block.
7102 Again, this is only performed when the CU language allows this
7103 type of definitions. */
7104
7105 static void
7106 add_partial_subprogram (struct partial_die_info *pdi,
7107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7108 int set_addrmap, struct dwarf2_cu *cu)
7109 {
7110 if (pdi->tag == DW_TAG_subprogram)
7111 {
7112 if (pdi->has_pc_info)
7113 {
7114 if (pdi->lowpc < *lowpc)
7115 *lowpc = pdi->lowpc;
7116 if (pdi->highpc > *highpc)
7117 *highpc = pdi->highpc;
7118 if (set_addrmap)
7119 {
7120 struct objfile *objfile = cu->objfile;
7121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7122 CORE_ADDR baseaddr;
7123 CORE_ADDR highpc;
7124 CORE_ADDR lowpc;
7125
7126 baseaddr = ANOFFSET (objfile->section_offsets,
7127 SECT_OFF_TEXT (objfile));
7128 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7129 pdi->lowpc + baseaddr);
7130 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->highpc + baseaddr);
7132 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7133 cu->per_cu->v.psymtab);
7134 }
7135 }
7136
7137 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7138 {
7139 if (!pdi->is_declaration)
7140 /* Ignore subprogram DIEs that do not have a name, they are
7141 illegal. Do not emit a complaint at this point, we will
7142 do so when we convert this psymtab into a symtab. */
7143 if (pdi->name)
7144 add_partial_symbol (pdi, cu);
7145 }
7146 }
7147
7148 if (! pdi->has_children)
7149 return;
7150
7151 if (cu->language == language_ada)
7152 {
7153 pdi = pdi->die_child;
7154 while (pdi != NULL)
7155 {
7156 fixup_partial_die (pdi, cu);
7157 if (pdi->tag == DW_TAG_subprogram
7158 || pdi->tag == DW_TAG_lexical_block)
7159 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7160 pdi = pdi->die_sibling;
7161 }
7162 }
7163 }
7164
7165 /* Read a partial die corresponding to an enumeration type. */
7166
7167 static void
7168 add_partial_enumeration (struct partial_die_info *enum_pdi,
7169 struct dwarf2_cu *cu)
7170 {
7171 struct partial_die_info *pdi;
7172
7173 if (enum_pdi->name != NULL)
7174 add_partial_symbol (enum_pdi, cu);
7175
7176 pdi = enum_pdi->die_child;
7177 while (pdi)
7178 {
7179 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7180 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7181 else
7182 add_partial_symbol (pdi, cu);
7183 pdi = pdi->die_sibling;
7184 }
7185 }
7186
7187 /* Return the initial uleb128 in the die at INFO_PTR. */
7188
7189 static unsigned int
7190 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7191 {
7192 unsigned int bytes_read;
7193
7194 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7195 }
7196
7197 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7198 Return the corresponding abbrev, or NULL if the number is zero (indicating
7199 an empty DIE). In either case *BYTES_READ will be set to the length of
7200 the initial number. */
7201
7202 static struct abbrev_info *
7203 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7204 struct dwarf2_cu *cu)
7205 {
7206 bfd *abfd = cu->objfile->obfd;
7207 unsigned int abbrev_number;
7208 struct abbrev_info *abbrev;
7209
7210 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7211
7212 if (abbrev_number == 0)
7213 return NULL;
7214
7215 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7216 if (!abbrev)
7217 {
7218 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7219 " at offset 0x%x [in module %s]"),
7220 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7221 cu->header.offset.sect_off, bfd_get_filename (abfd));
7222 }
7223
7224 return abbrev;
7225 }
7226
7227 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7228 Returns a pointer to the end of a series of DIEs, terminated by an empty
7229 DIE. Any children of the skipped DIEs will also be skipped. */
7230
7231 static const gdb_byte *
7232 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7233 {
7234 struct dwarf2_cu *cu = reader->cu;
7235 struct abbrev_info *abbrev;
7236 unsigned int bytes_read;
7237
7238 while (1)
7239 {
7240 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7241 if (abbrev == NULL)
7242 return info_ptr + bytes_read;
7243 else
7244 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7245 }
7246 }
7247
7248 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7249 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7250 abbrev corresponding to that skipped uleb128 should be passed in
7251 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7252 children. */
7253
7254 static const gdb_byte *
7255 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7256 struct abbrev_info *abbrev)
7257 {
7258 unsigned int bytes_read;
7259 struct attribute attr;
7260 bfd *abfd = reader->abfd;
7261 struct dwarf2_cu *cu = reader->cu;
7262 const gdb_byte *buffer = reader->buffer;
7263 const gdb_byte *buffer_end = reader->buffer_end;
7264 const gdb_byte *start_info_ptr = info_ptr;
7265 unsigned int form, i;
7266
7267 for (i = 0; i < abbrev->num_attrs; i++)
7268 {
7269 /* The only abbrev we care about is DW_AT_sibling. */
7270 if (abbrev->attrs[i].name == DW_AT_sibling)
7271 {
7272 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7273 if (attr.form == DW_FORM_ref_addr)
7274 complaint (&symfile_complaints,
7275 _("ignoring absolute DW_AT_sibling"));
7276 else
7277 {
7278 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7279 const gdb_byte *sibling_ptr = buffer + off;
7280
7281 if (sibling_ptr < info_ptr)
7282 complaint (&symfile_complaints,
7283 _("DW_AT_sibling points backwards"));
7284 else if (sibling_ptr > reader->buffer_end)
7285 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7286 else
7287 return sibling_ptr;
7288 }
7289 }
7290
7291 /* If it isn't DW_AT_sibling, skip this attribute. */
7292 form = abbrev->attrs[i].form;
7293 skip_attribute:
7294 switch (form)
7295 {
7296 case DW_FORM_ref_addr:
7297 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7298 and later it is offset sized. */
7299 if (cu->header.version == 2)
7300 info_ptr += cu->header.addr_size;
7301 else
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_GNU_ref_alt:
7305 info_ptr += cu->header.offset_size;
7306 break;
7307 case DW_FORM_addr:
7308 info_ptr += cu->header.addr_size;
7309 break;
7310 case DW_FORM_data1:
7311 case DW_FORM_ref1:
7312 case DW_FORM_flag:
7313 info_ptr += 1;
7314 break;
7315 case DW_FORM_flag_present:
7316 break;
7317 case DW_FORM_data2:
7318 case DW_FORM_ref2:
7319 info_ptr += 2;
7320 break;
7321 case DW_FORM_data4:
7322 case DW_FORM_ref4:
7323 info_ptr += 4;
7324 break;
7325 case DW_FORM_data8:
7326 case DW_FORM_ref8:
7327 case DW_FORM_ref_sig8:
7328 info_ptr += 8;
7329 break;
7330 case DW_FORM_string:
7331 read_direct_string (abfd, info_ptr, &bytes_read);
7332 info_ptr += bytes_read;
7333 break;
7334 case DW_FORM_sec_offset:
7335 case DW_FORM_strp:
7336 case DW_FORM_GNU_strp_alt:
7337 info_ptr += cu->header.offset_size;
7338 break;
7339 case DW_FORM_exprloc:
7340 case DW_FORM_block:
7341 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7342 info_ptr += bytes_read;
7343 break;
7344 case DW_FORM_block1:
7345 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block2:
7348 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_block4:
7351 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7352 break;
7353 case DW_FORM_sdata:
7354 case DW_FORM_udata:
7355 case DW_FORM_ref_udata:
7356 case DW_FORM_GNU_addr_index:
7357 case DW_FORM_GNU_str_index:
7358 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7359 break;
7360 case DW_FORM_indirect:
7361 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7362 info_ptr += bytes_read;
7363 /* We need to continue parsing from here, so just go back to
7364 the top. */
7365 goto skip_attribute;
7366
7367 default:
7368 error (_("Dwarf Error: Cannot handle %s "
7369 "in DWARF reader [in module %s]"),
7370 dwarf_form_name (form),
7371 bfd_get_filename (abfd));
7372 }
7373 }
7374
7375 if (abbrev->has_children)
7376 return skip_children (reader, info_ptr);
7377 else
7378 return info_ptr;
7379 }
7380
7381 /* Locate ORIG_PDI's sibling.
7382 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7383
7384 static const gdb_byte *
7385 locate_pdi_sibling (const struct die_reader_specs *reader,
7386 struct partial_die_info *orig_pdi,
7387 const gdb_byte *info_ptr)
7388 {
7389 /* Do we know the sibling already? */
7390
7391 if (orig_pdi->sibling)
7392 return orig_pdi->sibling;
7393
7394 /* Are there any children to deal with? */
7395
7396 if (!orig_pdi->has_children)
7397 return info_ptr;
7398
7399 /* Skip the children the long way. */
7400
7401 return skip_children (reader, info_ptr);
7402 }
7403
7404 /* Expand this partial symbol table into a full symbol table. SELF is
7405 not NULL. */
7406
7407 static void
7408 dwarf2_read_symtab (struct partial_symtab *self,
7409 struct objfile *objfile)
7410 {
7411 if (self->readin)
7412 {
7413 warning (_("bug: psymtab for %s is already read in."),
7414 self->filename);
7415 }
7416 else
7417 {
7418 if (info_verbose)
7419 {
7420 printf_filtered (_("Reading in symbols for %s..."),
7421 self->filename);
7422 gdb_flush (gdb_stdout);
7423 }
7424
7425 /* Restore our global data. */
7426 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7427
7428 /* If this psymtab is constructed from a debug-only objfile, the
7429 has_section_at_zero flag will not necessarily be correct. We
7430 can get the correct value for this flag by looking at the data
7431 associated with the (presumably stripped) associated objfile. */
7432 if (objfile->separate_debug_objfile_backlink)
7433 {
7434 struct dwarf2_per_objfile *dpo_backlink
7435 = objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key);
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = xmalloc (sizeof (*item));
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if (dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 {
7547 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7548 unsigned int debug_print_threshold;
7549 char buf[100];
7550
7551 if (per_cu->is_debug_types)
7552 {
7553 struct signatured_type *sig_type =
7554 (struct signatured_type *) per_cu;
7555
7556 sprintf (buf, "TU %s at offset 0x%x",
7557 hex_string (sig_type->signature),
7558 per_cu->offset.sect_off);
7559 /* There can be 100s of TUs.
7560 Only print them in verbose mode. */
7561 debug_print_threshold = 2;
7562 }
7563 else
7564 {
7565 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7566 debug_print_threshold = 1;
7567 }
7568
7569 if (dwarf_read_debug >= debug_print_threshold)
7570 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7571
7572 if (per_cu->is_debug_types)
7573 process_full_type_unit (per_cu, item->pretend_language);
7574 else
7575 process_full_comp_unit (per_cu, item->pretend_language);
7576
7577 if (dwarf_read_debug >= debug_print_threshold)
7578 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7579 }
7580
7581 item->per_cu->queued = 0;
7582 next_item = item->next;
7583 xfree (item);
7584 }
7585
7586 dwarf2_queue_tail = NULL;
7587
7588 if (dwarf_read_debug)
7589 {
7590 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7591 objfile_name (dwarf2_per_objfile->objfile));
7592 }
7593 }
7594
7595 /* Free all allocated queue entries. This function only releases anything if
7596 an error was thrown; if the queue was processed then it would have been
7597 freed as we went along. */
7598
7599 static void
7600 dwarf2_release_queue (void *dummy)
7601 {
7602 struct dwarf2_queue_item *item, *last;
7603
7604 item = dwarf2_queue;
7605 while (item)
7606 {
7607 /* Anything still marked queued is likely to be in an
7608 inconsistent state, so discard it. */
7609 if (item->per_cu->queued)
7610 {
7611 if (item->per_cu->cu != NULL)
7612 free_one_cached_comp_unit (item->per_cu);
7613 item->per_cu->queued = 0;
7614 }
7615
7616 last = item;
7617 item = item->next;
7618 xfree (last);
7619 }
7620
7621 dwarf2_queue = dwarf2_queue_tail = NULL;
7622 }
7623
7624 /* Read in full symbols for PST, and anything it depends on. */
7625
7626 static void
7627 psymtab_to_symtab_1 (struct partial_symtab *pst)
7628 {
7629 struct dwarf2_per_cu_data *per_cu;
7630 int i;
7631
7632 if (pst->readin)
7633 return;
7634
7635 for (i = 0; i < pst->number_of_dependencies; i++)
7636 if (!pst->dependencies[i]->readin
7637 && pst->dependencies[i]->user == NULL)
7638 {
7639 /* Inform about additional files that need to be read in. */
7640 if (info_verbose)
7641 {
7642 /* FIXME: i18n: Need to make this a single string. */
7643 fputs_filtered (" ", gdb_stdout);
7644 wrap_here ("");
7645 fputs_filtered ("and ", gdb_stdout);
7646 wrap_here ("");
7647 printf_filtered ("%s...", pst->dependencies[i]->filename);
7648 wrap_here (""); /* Flush output. */
7649 gdb_flush (gdb_stdout);
7650 }
7651 psymtab_to_symtab_1 (pst->dependencies[i]);
7652 }
7653
7654 per_cu = pst->read_symtab_private;
7655
7656 if (per_cu == NULL)
7657 {
7658 /* It's an include file, no symbols to read for it.
7659 Everything is in the parent symtab. */
7660 pst->readin = 1;
7661 return;
7662 }
7663
7664 dw2_do_instantiate_symtab (per_cu);
7665 }
7666
7667 /* Trivial hash function for die_info: the hash value of a DIE
7668 is its offset in .debug_info for this objfile. */
7669
7670 static hashval_t
7671 die_hash (const void *item)
7672 {
7673 const struct die_info *die = item;
7674
7675 return die->offset.sect_off;
7676 }
7677
7678 /* Trivial comparison function for die_info structures: two DIEs
7679 are equal if they have the same offset. */
7680
7681 static int
7682 die_eq (const void *item_lhs, const void *item_rhs)
7683 {
7684 const struct die_info *die_lhs = item_lhs;
7685 const struct die_info *die_rhs = item_rhs;
7686
7687 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7688 }
7689
7690 /* die_reader_func for load_full_comp_unit.
7691 This is identical to read_signatured_type_reader,
7692 but is kept separate for now. */
7693
7694 static void
7695 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7696 const gdb_byte *info_ptr,
7697 struct die_info *comp_unit_die,
7698 int has_children,
7699 void *data)
7700 {
7701 struct dwarf2_cu *cu = reader->cu;
7702 enum language *language_ptr = data;
7703
7704 gdb_assert (cu->die_hash == NULL);
7705 cu->die_hash =
7706 htab_create_alloc_ex (cu->header.length / 12,
7707 die_hash,
7708 die_eq,
7709 NULL,
7710 &cu->comp_unit_obstack,
7711 hashtab_obstack_allocate,
7712 dummy_obstack_deallocate);
7713
7714 if (has_children)
7715 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7716 &info_ptr, comp_unit_die);
7717 cu->dies = comp_unit_die;
7718 /* comp_unit_die is not stored in die_hash, no need. */
7719
7720 /* We try not to read any attributes in this function, because not
7721 all CUs needed for references have been loaded yet, and symbol
7722 table processing isn't initialized. But we have to set the CU language,
7723 or we won't be able to build types correctly.
7724 Similarly, if we do not read the producer, we can not apply
7725 producer-specific interpretation. */
7726 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7727 }
7728
7729 /* Load the DIEs associated with PER_CU into memory. */
7730
7731 static void
7732 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7733 enum language pretend_language)
7734 {
7735 gdb_assert (! this_cu->is_debug_types);
7736
7737 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7738 load_full_comp_unit_reader, &pretend_language);
7739 }
7740
7741 /* Add a DIE to the delayed physname list. */
7742
7743 static void
7744 add_to_method_list (struct type *type, int fnfield_index, int index,
7745 const char *name, struct die_info *die,
7746 struct dwarf2_cu *cu)
7747 {
7748 struct delayed_method_info mi;
7749 mi.type = type;
7750 mi.fnfield_index = fnfield_index;
7751 mi.index = index;
7752 mi.name = name;
7753 mi.die = die;
7754 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7755 }
7756
7757 /* A cleanup for freeing the delayed method list. */
7758
7759 static void
7760 free_delayed_list (void *ptr)
7761 {
7762 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7763 if (cu->method_list != NULL)
7764 {
7765 VEC_free (delayed_method_info, cu->method_list);
7766 cu->method_list = NULL;
7767 }
7768 }
7769
7770 /* Compute the physnames of any methods on the CU's method list.
7771
7772 The computation of method physnames is delayed in order to avoid the
7773 (bad) condition that one of the method's formal parameters is of an as yet
7774 incomplete type. */
7775
7776 static void
7777 compute_delayed_physnames (struct dwarf2_cu *cu)
7778 {
7779 int i;
7780 struct delayed_method_info *mi;
7781 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7782 {
7783 const char *physname;
7784 struct fn_fieldlist *fn_flp
7785 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7786 physname = dwarf2_physname (mi->name, mi->die, cu);
7787 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7788 = physname ? physname : "";
7789 }
7790 }
7791
7792 /* Go objects should be embedded in a DW_TAG_module DIE,
7793 and it's not clear if/how imported objects will appear.
7794 To keep Go support simple until that's worked out,
7795 go back through what we've read and create something usable.
7796 We could do this while processing each DIE, and feels kinda cleaner,
7797 but that way is more invasive.
7798 This is to, for example, allow the user to type "p var" or "b main"
7799 without having to specify the package name, and allow lookups
7800 of module.object to work in contexts that use the expression
7801 parser. */
7802
7803 static void
7804 fixup_go_packaging (struct dwarf2_cu *cu)
7805 {
7806 char *package_name = NULL;
7807 struct pending *list;
7808 int i;
7809
7810 for (list = global_symbols; list != NULL; list = list->next)
7811 {
7812 for (i = 0; i < list->nsyms; ++i)
7813 {
7814 struct symbol *sym = list->symbol[i];
7815
7816 if (SYMBOL_LANGUAGE (sym) == language_go
7817 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7818 {
7819 char *this_package_name = go_symbol_package_name (sym);
7820
7821 if (this_package_name == NULL)
7822 continue;
7823 if (package_name == NULL)
7824 package_name = this_package_name;
7825 else
7826 {
7827 if (strcmp (package_name, this_package_name) != 0)
7828 complaint (&symfile_complaints,
7829 _("Symtab %s has objects from two different Go packages: %s and %s"),
7830 (symbol_symtab (sym) != NULL
7831 ? symtab_to_filename_for_display
7832 (symbol_symtab (sym))
7833 : objfile_name (cu->objfile)),
7834 this_package_name, package_name);
7835 xfree (this_package_name);
7836 }
7837 }
7838 }
7839 }
7840
7841 if (package_name != NULL)
7842 {
7843 struct objfile *objfile = cu->objfile;
7844 const char *saved_package_name
7845 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7846 package_name,
7847 strlen (package_name));
7848 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7849 saved_package_name, objfile);
7850 struct symbol *sym;
7851
7852 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7853
7854 sym = allocate_symbol (objfile);
7855 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7856 SYMBOL_SET_NAMES (sym, saved_package_name,
7857 strlen (saved_package_name), 0, objfile);
7858 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7859 e.g., "main" finds the "main" module and not C's main(). */
7860 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7861 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7862 SYMBOL_TYPE (sym) = type;
7863
7864 add_symbol_to_list (sym, &global_symbols);
7865
7866 xfree (package_name);
7867 }
7868 }
7869
7870 /* Return the symtab for PER_CU. This works properly regardless of
7871 whether we're using the index or psymtabs. */
7872
7873 static struct compunit_symtab *
7874 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7875 {
7876 return (dwarf2_per_objfile->using_index
7877 ? per_cu->v.quick->compunit_symtab
7878 : per_cu->v.psymtab->compunit_symtab);
7879 }
7880
7881 /* A helper function for computing the list of all symbol tables
7882 included by PER_CU. */
7883
7884 static void
7885 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7886 htab_t all_children, htab_t all_type_symtabs,
7887 struct dwarf2_per_cu_data *per_cu,
7888 struct compunit_symtab *immediate_parent)
7889 {
7890 void **slot;
7891 int ix;
7892 struct compunit_symtab *cust;
7893 struct dwarf2_per_cu_data *iter;
7894
7895 slot = htab_find_slot (all_children, per_cu, INSERT);
7896 if (*slot != NULL)
7897 {
7898 /* This inclusion and its children have been processed. */
7899 return;
7900 }
7901
7902 *slot = per_cu;
7903 /* Only add a CU if it has a symbol table. */
7904 cust = get_compunit_symtab (per_cu);
7905 if (cust != NULL)
7906 {
7907 /* If this is a type unit only add its symbol table if we haven't
7908 seen it yet (type unit per_cu's can share symtabs). */
7909 if (per_cu->is_debug_types)
7910 {
7911 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7912 if (*slot == NULL)
7913 {
7914 *slot = cust;
7915 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7916 if (cust->user == NULL)
7917 cust->user = immediate_parent;
7918 }
7919 }
7920 else
7921 {
7922 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7923 if (cust->user == NULL)
7924 cust->user = immediate_parent;
7925 }
7926 }
7927
7928 for (ix = 0;
7929 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7930 ++ix)
7931 {
7932 recursively_compute_inclusions (result, all_children,
7933 all_type_symtabs, iter, cust);
7934 }
7935 }
7936
7937 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7938 PER_CU. */
7939
7940 static void
7941 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7942 {
7943 gdb_assert (! per_cu->is_debug_types);
7944
7945 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7946 {
7947 int ix, len;
7948 struct dwarf2_per_cu_data *per_cu_iter;
7949 struct compunit_symtab *compunit_symtab_iter;
7950 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7951 htab_t all_children, all_type_symtabs;
7952 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7953
7954 /* If we don't have a symtab, we can just skip this case. */
7955 if (cust == NULL)
7956 return;
7957
7958 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962
7963 for (ix = 0;
7964 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7965 ix, per_cu_iter);
7966 ++ix)
7967 {
7968 recursively_compute_inclusions (&result_symtabs, all_children,
7969 all_type_symtabs, per_cu_iter,
7970 cust);
7971 }
7972
7973 /* Now we have a transitive closure of all the included symtabs. */
7974 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7975 cust->includes
7976 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7977 (len + 1) * sizeof (struct symtab *));
7978 for (ix = 0;
7979 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7980 compunit_symtab_iter);
7981 ++ix)
7982 cust->includes[ix] = compunit_symtab_iter;
7983 cust->includes[len] = NULL;
7984
7985 VEC_free (compunit_symtab_ptr, result_symtabs);
7986 htab_delete (all_children);
7987 htab_delete (all_type_symtabs);
7988 }
7989 }
7990
7991 /* Compute the 'includes' field for the symtabs of all the CUs we just
7992 read. */
7993
7994 static void
7995 process_cu_includes (void)
7996 {
7997 int ix;
7998 struct dwarf2_per_cu_data *iter;
7999
8000 for (ix = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8002 ix, iter);
8003 ++ix)
8004 {
8005 if (! iter->is_debug_types)
8006 compute_compunit_symtab_includes (iter);
8007 }
8008
8009 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8010 }
8011
8012 /* Generate full symbol information for PER_CU, whose DIEs have
8013 already been loaded into memory. */
8014
8015 static void
8016 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8017 enum language pretend_language)
8018 {
8019 struct dwarf2_cu *cu = per_cu->cu;
8020 struct objfile *objfile = per_cu->objfile;
8021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8022 CORE_ADDR lowpc, highpc;
8023 struct compunit_symtab *cust;
8024 struct cleanup *back_to, *delayed_list_cleanup;
8025 CORE_ADDR baseaddr;
8026 struct block *static_block;
8027 CORE_ADDR addr;
8028
8029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8030
8031 buildsym_init ();
8032 back_to = make_cleanup (really_free_pendings, NULL);
8033 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8034
8035 cu->list_in_scope = &file_symbols;
8036
8037 cu->language = pretend_language;
8038 cu->language_defn = language_def (cu->language);
8039
8040 /* Do line number decoding in read_file_scope () */
8041 process_die (cu->dies, cu);
8042
8043 /* For now fudge the Go package. */
8044 if (cu->language == language_go)
8045 fixup_go_packaging (cu);
8046
8047 /* Now that we have processed all the DIEs in the CU, all the types
8048 should be complete, and it should now be safe to compute all of the
8049 physnames. */
8050 compute_delayed_physnames (cu);
8051 do_cleanups (delayed_list_cleanup);
8052
8053 /* Some compilers don't define a DW_AT_high_pc attribute for the
8054 compilation unit. If the DW_AT_high_pc is missing, synthesize
8055 it, by scanning the DIE's below the compilation unit. */
8056 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8057
8058 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8059 static_block = end_symtab_get_static_block (addr, 0, 1);
8060
8061 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8062 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8063 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8064 addrmap to help ensure it has an accurate map of pc values belonging to
8065 this comp unit. */
8066 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8067
8068 cust = end_symtab_from_static_block (static_block,
8069 SECT_OFF_TEXT (objfile), 0);
8070
8071 if (cust != NULL)
8072 {
8073 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8074
8075 /* Set symtab language to language from DW_AT_language. If the
8076 compilation is from a C file generated by language preprocessors, do
8077 not set the language if it was already deduced by start_subfile. */
8078 if (!(cu->language == language_c
8079 && COMPUNIT_FILETABS (cust)->language != language_c))
8080 COMPUNIT_FILETABS (cust)->language = cu->language;
8081
8082 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8083 produce DW_AT_location with location lists but it can be possibly
8084 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8085 there were bugs in prologue debug info, fixed later in GCC-4.5
8086 by "unwind info for epilogues" patch (which is not directly related).
8087
8088 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8089 needed, it would be wrong due to missing DW_AT_producer there.
8090
8091 Still one can confuse GDB by using non-standard GCC compilation
8092 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8093 */
8094 if (cu->has_loclist && gcc_4_minor >= 5)
8095 cust->locations_valid = 1;
8096
8097 if (gcc_4_minor >= 5)
8098 cust->epilogue_unwind_valid = 1;
8099
8100 cust->call_site_htab = cu->call_site_htab;
8101 }
8102
8103 if (dwarf2_per_objfile->using_index)
8104 per_cu->v.quick->compunit_symtab = cust;
8105 else
8106 {
8107 struct partial_symtab *pst = per_cu->v.psymtab;
8108 pst->compunit_symtab = cust;
8109 pst->readin = 1;
8110 }
8111
8112 /* Push it for inclusion processing later. */
8113 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8114
8115 do_cleanups (back_to);
8116 }
8117
8118 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8119 already been loaded into memory. */
8120
8121 static void
8122 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8123 enum language pretend_language)
8124 {
8125 struct dwarf2_cu *cu = per_cu->cu;
8126 struct objfile *objfile = per_cu->objfile;
8127 struct compunit_symtab *cust;
8128 struct cleanup *back_to, *delayed_list_cleanup;
8129 struct signatured_type *sig_type;
8130
8131 gdb_assert (per_cu->is_debug_types);
8132 sig_type = (struct signatured_type *) per_cu;
8133
8134 buildsym_init ();
8135 back_to = make_cleanup (really_free_pendings, NULL);
8136 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8137
8138 cu->list_in_scope = &file_symbols;
8139
8140 cu->language = pretend_language;
8141 cu->language_defn = language_def (cu->language);
8142
8143 /* The symbol tables are set up in read_type_unit_scope. */
8144 process_die (cu->dies, cu);
8145
8146 /* For now fudge the Go package. */
8147 if (cu->language == language_go)
8148 fixup_go_packaging (cu);
8149
8150 /* Now that we have processed all the DIEs in the CU, all the types
8151 should be complete, and it should now be safe to compute all of the
8152 physnames. */
8153 compute_delayed_physnames (cu);
8154 do_cleanups (delayed_list_cleanup);
8155
8156 /* TUs share symbol tables.
8157 If this is the first TU to use this symtab, complete the construction
8158 of it with end_expandable_symtab. Otherwise, complete the addition of
8159 this TU's symbols to the existing symtab. */
8160 if (sig_type->type_unit_group->compunit_symtab == NULL)
8161 {
8162 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8163 sig_type->type_unit_group->compunit_symtab = cust;
8164
8165 if (cust != NULL)
8166 {
8167 /* Set symtab language to language from DW_AT_language. If the
8168 compilation is from a C file generated by language preprocessors,
8169 do not set the language if it was already deduced by
8170 start_subfile. */
8171 if (!(cu->language == language_c
8172 && COMPUNIT_FILETABS (cust)->language != language_c))
8173 COMPUNIT_FILETABS (cust)->language = cu->language;
8174 }
8175 }
8176 else
8177 {
8178 augment_type_symtab ();
8179 cust = sig_type->type_unit_group->compunit_symtab;
8180 }
8181
8182 if (dwarf2_per_objfile->using_index)
8183 per_cu->v.quick->compunit_symtab = cust;
8184 else
8185 {
8186 struct partial_symtab *pst = per_cu->v.psymtab;
8187 pst->compunit_symtab = cust;
8188 pst->readin = 1;
8189 }
8190
8191 do_cleanups (back_to);
8192 }
8193
8194 /* Process an imported unit DIE. */
8195
8196 static void
8197 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8198 {
8199 struct attribute *attr;
8200
8201 /* For now we don't handle imported units in type units. */
8202 if (cu->per_cu->is_debug_types)
8203 {
8204 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8205 " supported in type units [in module %s]"),
8206 objfile_name (cu->objfile));
8207 }
8208
8209 attr = dwarf2_attr (die, DW_AT_import, cu);
8210 if (attr != NULL)
8211 {
8212 struct dwarf2_per_cu_data *per_cu;
8213 struct symtab *imported_symtab;
8214 sect_offset offset;
8215 int is_dwz;
8216
8217 offset = dwarf2_get_ref_die_offset (attr);
8218 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8219 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8220
8221 /* If necessary, add it to the queue and load its DIEs. */
8222 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8223 load_full_comp_unit (per_cu, cu->language);
8224
8225 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8226 per_cu);
8227 }
8228 }
8229
8230 /* Reset the in_process bit of a die. */
8231
8232 static void
8233 reset_die_in_process (void *arg)
8234 {
8235 struct die_info *die = arg;
8236
8237 die->in_process = 0;
8238 }
8239
8240 /* Process a die and its children. */
8241
8242 static void
8243 process_die (struct die_info *die, struct dwarf2_cu *cu)
8244 {
8245 struct cleanup *in_process;
8246
8247 /* We should only be processing those not already in process. */
8248 gdb_assert (!die->in_process);
8249
8250 die->in_process = 1;
8251 in_process = make_cleanup (reset_die_in_process,die);
8252
8253 switch (die->tag)
8254 {
8255 case DW_TAG_padding:
8256 break;
8257 case DW_TAG_compile_unit:
8258 case DW_TAG_partial_unit:
8259 read_file_scope (die, cu);
8260 break;
8261 case DW_TAG_type_unit:
8262 read_type_unit_scope (die, cu);
8263 break;
8264 case DW_TAG_subprogram:
8265 case DW_TAG_inlined_subroutine:
8266 read_func_scope (die, cu);
8267 break;
8268 case DW_TAG_lexical_block:
8269 case DW_TAG_try_block:
8270 case DW_TAG_catch_block:
8271 read_lexical_block_scope (die, cu);
8272 break;
8273 case DW_TAG_GNU_call_site:
8274 read_call_site_scope (die, cu);
8275 break;
8276 case DW_TAG_class_type:
8277 case DW_TAG_interface_type:
8278 case DW_TAG_structure_type:
8279 case DW_TAG_union_type:
8280 process_structure_scope (die, cu);
8281 break;
8282 case DW_TAG_enumeration_type:
8283 process_enumeration_scope (die, cu);
8284 break;
8285
8286 /* These dies have a type, but processing them does not create
8287 a symbol or recurse to process the children. Therefore we can
8288 read them on-demand through read_type_die. */
8289 case DW_TAG_subroutine_type:
8290 case DW_TAG_set_type:
8291 case DW_TAG_array_type:
8292 case DW_TAG_pointer_type:
8293 case DW_TAG_ptr_to_member_type:
8294 case DW_TAG_reference_type:
8295 case DW_TAG_string_type:
8296 break;
8297
8298 case DW_TAG_base_type:
8299 case DW_TAG_subrange_type:
8300 case DW_TAG_typedef:
8301 /* Add a typedef symbol for the type definition, if it has a
8302 DW_AT_name. */
8303 new_symbol (die, read_type_die (die, cu), cu);
8304 break;
8305 case DW_TAG_common_block:
8306 read_common_block (die, cu);
8307 break;
8308 case DW_TAG_common_inclusion:
8309 break;
8310 case DW_TAG_namespace:
8311 cu->processing_has_namespace_info = 1;
8312 read_namespace (die, cu);
8313 break;
8314 case DW_TAG_module:
8315 cu->processing_has_namespace_info = 1;
8316 read_module (die, cu);
8317 break;
8318 case DW_TAG_imported_declaration:
8319 cu->processing_has_namespace_info = 1;
8320 if (read_namespace_alias (die, cu))
8321 break;
8322 /* The declaration is not a global namespace alias: fall through. */
8323 case DW_TAG_imported_module:
8324 cu->processing_has_namespace_info = 1;
8325 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8326 || cu->language != language_fortran))
8327 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8328 dwarf_tag_name (die->tag));
8329 read_import_statement (die, cu);
8330 break;
8331
8332 case DW_TAG_imported_unit:
8333 process_imported_unit_die (die, cu);
8334 break;
8335
8336 default:
8337 new_symbol (die, NULL, cu);
8338 break;
8339 }
8340
8341 do_cleanups (in_process);
8342 }
8343 \f
8344 /* DWARF name computation. */
8345
8346 /* A helper function for dwarf2_compute_name which determines whether DIE
8347 needs to have the name of the scope prepended to the name listed in the
8348 die. */
8349
8350 static int
8351 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8352 {
8353 struct attribute *attr;
8354
8355 switch (die->tag)
8356 {
8357 case DW_TAG_namespace:
8358 case DW_TAG_typedef:
8359 case DW_TAG_class_type:
8360 case DW_TAG_interface_type:
8361 case DW_TAG_structure_type:
8362 case DW_TAG_union_type:
8363 case DW_TAG_enumeration_type:
8364 case DW_TAG_enumerator:
8365 case DW_TAG_subprogram:
8366 case DW_TAG_inlined_subroutine:
8367 case DW_TAG_member:
8368 case DW_TAG_imported_declaration:
8369 return 1;
8370
8371 case DW_TAG_variable:
8372 case DW_TAG_constant:
8373 /* We only need to prefix "globally" visible variables. These include
8374 any variable marked with DW_AT_external or any variable that
8375 lives in a namespace. [Variables in anonymous namespaces
8376 require prefixing, but they are not DW_AT_external.] */
8377
8378 if (dwarf2_attr (die, DW_AT_specification, cu))
8379 {
8380 struct dwarf2_cu *spec_cu = cu;
8381
8382 return die_needs_namespace (die_specification (die, &spec_cu),
8383 spec_cu);
8384 }
8385
8386 attr = dwarf2_attr (die, DW_AT_external, cu);
8387 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8388 && die->parent->tag != DW_TAG_module)
8389 return 0;
8390 /* A variable in a lexical block of some kind does not need a
8391 namespace, even though in C++ such variables may be external
8392 and have a mangled name. */
8393 if (die->parent->tag == DW_TAG_lexical_block
8394 || die->parent->tag == DW_TAG_try_block
8395 || die->parent->tag == DW_TAG_catch_block
8396 || die->parent->tag == DW_TAG_subprogram)
8397 return 0;
8398 return 1;
8399
8400 default:
8401 return 0;
8402 }
8403 }
8404
8405 /* Retrieve the last character from a mem_file. */
8406
8407 static void
8408 do_ui_file_peek_last (void *object, const char *buffer, long length)
8409 {
8410 char *last_char_p = (char *) object;
8411
8412 if (length > 0)
8413 *last_char_p = buffer[length - 1];
8414 }
8415
8416 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8417 compute the physname for the object, which include a method's:
8418 - formal parameters (C++/Java),
8419 - receiver type (Go),
8420 - return type (Java).
8421
8422 The term "physname" is a bit confusing.
8423 For C++, for example, it is the demangled name.
8424 For Go, for example, it's the mangled name.
8425
8426 For Ada, return the DIE's linkage name rather than the fully qualified
8427 name. PHYSNAME is ignored..
8428
8429 The result is allocated on the objfile_obstack and canonicalized. */
8430
8431 static const char *
8432 dwarf2_compute_name (const char *name,
8433 struct die_info *die, struct dwarf2_cu *cu,
8434 int physname)
8435 {
8436 struct objfile *objfile = cu->objfile;
8437
8438 if (name == NULL)
8439 name = dwarf2_name (die, cu);
8440
8441 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8442 compute it by typename_concat inside GDB. */
8443 if (cu->language == language_ada
8444 || (cu->language == language_fortran && physname))
8445 {
8446 /* For Ada unit, we prefer the linkage name over the name, as
8447 the former contains the exported name, which the user expects
8448 to be able to reference. Ideally, we want the user to be able
8449 to reference this entity using either natural or linkage name,
8450 but we haven't started looking at this enhancement yet. */
8451 struct attribute *attr;
8452
8453 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8454 if (attr == NULL)
8455 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8456 if (attr && DW_STRING (attr))
8457 return DW_STRING (attr);
8458 }
8459
8460 /* These are the only languages we know how to qualify names in. */
8461 if (name != NULL
8462 && (cu->language == language_cplus || cu->language == language_java
8463 || cu->language == language_fortran))
8464 {
8465 if (die_needs_namespace (die, cu))
8466 {
8467 long length;
8468 const char *prefix;
8469 struct ui_file *buf;
8470 char *intermediate_name;
8471 const char *canonical_name = NULL;
8472
8473 prefix = determine_prefix (die, cu);
8474 buf = mem_fileopen ();
8475 if (*prefix != '\0')
8476 {
8477 char *prefixed_name = typename_concat (NULL, prefix, name,
8478 physname, cu);
8479
8480 fputs_unfiltered (prefixed_name, buf);
8481 xfree (prefixed_name);
8482 }
8483 else
8484 fputs_unfiltered (name, buf);
8485
8486 /* Template parameters may be specified in the DIE's DW_AT_name, or
8487 as children with DW_TAG_template_type_param or
8488 DW_TAG_value_type_param. If the latter, add them to the name
8489 here. If the name already has template parameters, then
8490 skip this step; some versions of GCC emit both, and
8491 it is more efficient to use the pre-computed name.
8492
8493 Something to keep in mind about this process: it is very
8494 unlikely, or in some cases downright impossible, to produce
8495 something that will match the mangled name of a function.
8496 If the definition of the function has the same debug info,
8497 we should be able to match up with it anyway. But fallbacks
8498 using the minimal symbol, for instance to find a method
8499 implemented in a stripped copy of libstdc++, will not work.
8500 If we do not have debug info for the definition, we will have to
8501 match them up some other way.
8502
8503 When we do name matching there is a related problem with function
8504 templates; two instantiated function templates are allowed to
8505 differ only by their return types, which we do not add here. */
8506
8507 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8508 {
8509 struct attribute *attr;
8510 struct die_info *child;
8511 int first = 1;
8512
8513 die->building_fullname = 1;
8514
8515 for (child = die->child; child != NULL; child = child->sibling)
8516 {
8517 struct type *type;
8518 LONGEST value;
8519 const gdb_byte *bytes;
8520 struct dwarf2_locexpr_baton *baton;
8521 struct value *v;
8522
8523 if (child->tag != DW_TAG_template_type_param
8524 && child->tag != DW_TAG_template_value_param)
8525 continue;
8526
8527 if (first)
8528 {
8529 fputs_unfiltered ("<", buf);
8530 first = 0;
8531 }
8532 else
8533 fputs_unfiltered (", ", buf);
8534
8535 attr = dwarf2_attr (child, DW_AT_type, cu);
8536 if (attr == NULL)
8537 {
8538 complaint (&symfile_complaints,
8539 _("template parameter missing DW_AT_type"));
8540 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8541 continue;
8542 }
8543 type = die_type (child, cu);
8544
8545 if (child->tag == DW_TAG_template_type_param)
8546 {
8547 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8548 continue;
8549 }
8550
8551 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8552 if (attr == NULL)
8553 {
8554 complaint (&symfile_complaints,
8555 _("template parameter missing "
8556 "DW_AT_const_value"));
8557 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8558 continue;
8559 }
8560
8561 dwarf2_const_value_attr (attr, type, name,
8562 &cu->comp_unit_obstack, cu,
8563 &value, &bytes, &baton);
8564
8565 if (TYPE_NOSIGN (type))
8566 /* GDB prints characters as NUMBER 'CHAR'. If that's
8567 changed, this can use value_print instead. */
8568 c_printchar (value, type, buf);
8569 else
8570 {
8571 struct value_print_options opts;
8572
8573 if (baton != NULL)
8574 v = dwarf2_evaluate_loc_desc (type, NULL,
8575 baton->data,
8576 baton->size,
8577 baton->per_cu);
8578 else if (bytes != NULL)
8579 {
8580 v = allocate_value (type);
8581 memcpy (value_contents_writeable (v), bytes,
8582 TYPE_LENGTH (type));
8583 }
8584 else
8585 v = value_from_longest (type, value);
8586
8587 /* Specify decimal so that we do not depend on
8588 the radix. */
8589 get_formatted_print_options (&opts, 'd');
8590 opts.raw = 1;
8591 value_print (v, buf, &opts);
8592 release_value (v);
8593 value_free (v);
8594 }
8595 }
8596
8597 die->building_fullname = 0;
8598
8599 if (!first)
8600 {
8601 /* Close the argument list, with a space if necessary
8602 (nested templates). */
8603 char last_char = '\0';
8604 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8605 if (last_char == '>')
8606 fputs_unfiltered (" >", buf);
8607 else
8608 fputs_unfiltered (">", buf);
8609 }
8610 }
8611
8612 /* For Java and C++ methods, append formal parameter type
8613 information, if PHYSNAME. */
8614
8615 if (physname && die->tag == DW_TAG_subprogram
8616 && (cu->language == language_cplus
8617 || cu->language == language_java))
8618 {
8619 struct type *type = read_type_die (die, cu);
8620
8621 c_type_print_args (type, buf, 1, cu->language,
8622 &type_print_raw_options);
8623
8624 if (cu->language == language_java)
8625 {
8626 /* For java, we must append the return type to method
8627 names. */
8628 if (die->tag == DW_TAG_subprogram)
8629 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8630 0, 0, &type_print_raw_options);
8631 }
8632 else if (cu->language == language_cplus)
8633 {
8634 /* Assume that an artificial first parameter is
8635 "this", but do not crash if it is not. RealView
8636 marks unnamed (and thus unused) parameters as
8637 artificial; there is no way to differentiate
8638 the two cases. */
8639 if (TYPE_NFIELDS (type) > 0
8640 && TYPE_FIELD_ARTIFICIAL (type, 0)
8641 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8642 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8643 0))))
8644 fputs_unfiltered (" const", buf);
8645 }
8646 }
8647
8648 intermediate_name = ui_file_xstrdup (buf, &length);
8649 ui_file_delete (buf);
8650
8651 if (cu->language == language_cplus)
8652 canonical_name
8653 = dwarf2_canonicalize_name (intermediate_name, cu,
8654 &objfile->per_bfd->storage_obstack);
8655
8656 /* If we only computed INTERMEDIATE_NAME, or if
8657 INTERMEDIATE_NAME is already canonical, then we need to
8658 copy it to the appropriate obstack. */
8659 if (canonical_name == NULL || canonical_name == intermediate_name)
8660 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8661 intermediate_name,
8662 strlen (intermediate_name));
8663 else
8664 name = canonical_name;
8665
8666 xfree (intermediate_name);
8667 }
8668 }
8669
8670 return name;
8671 }
8672
8673 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8674 If scope qualifiers are appropriate they will be added. The result
8675 will be allocated on the storage_obstack, or NULL if the DIE does
8676 not have a name. NAME may either be from a previous call to
8677 dwarf2_name or NULL.
8678
8679 The output string will be canonicalized (if C++/Java). */
8680
8681 static const char *
8682 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8683 {
8684 return dwarf2_compute_name (name, die, cu, 0);
8685 }
8686
8687 /* Construct a physname for the given DIE in CU. NAME may either be
8688 from a previous call to dwarf2_name or NULL. The result will be
8689 allocated on the objfile_objstack or NULL if the DIE does not have a
8690 name.
8691
8692 The output string will be canonicalized (if C++/Java). */
8693
8694 static const char *
8695 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8696 {
8697 struct objfile *objfile = cu->objfile;
8698 struct attribute *attr;
8699 const char *retval, *mangled = NULL, *canon = NULL;
8700 struct cleanup *back_to;
8701 int need_copy = 1;
8702
8703 /* In this case dwarf2_compute_name is just a shortcut not building anything
8704 on its own. */
8705 if (!die_needs_namespace (die, cu))
8706 return dwarf2_compute_name (name, die, cu, 1);
8707
8708 back_to = make_cleanup (null_cleanup, NULL);
8709
8710 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8711 if (!attr)
8712 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8713
8714 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8715 has computed. */
8716 if (attr && DW_STRING (attr))
8717 {
8718 char *demangled;
8719
8720 mangled = DW_STRING (attr);
8721
8722 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8723 type. It is easier for GDB users to search for such functions as
8724 `name(params)' than `long name(params)'. In such case the minimal
8725 symbol names do not match the full symbol names but for template
8726 functions there is never a need to look up their definition from their
8727 declaration so the only disadvantage remains the minimal symbol
8728 variant `long name(params)' does not have the proper inferior type.
8729 */
8730
8731 if (cu->language == language_go)
8732 {
8733 /* This is a lie, but we already lie to the caller new_symbol_full.
8734 new_symbol_full assumes we return the mangled name.
8735 This just undoes that lie until things are cleaned up. */
8736 demangled = NULL;
8737 }
8738 else
8739 {
8740 demangled = gdb_demangle (mangled,
8741 (DMGL_PARAMS | DMGL_ANSI
8742 | (cu->language == language_java
8743 ? DMGL_JAVA | DMGL_RET_POSTFIX
8744 : DMGL_RET_DROP)));
8745 }
8746 if (demangled)
8747 {
8748 make_cleanup (xfree, demangled);
8749 canon = demangled;
8750 }
8751 else
8752 {
8753 canon = mangled;
8754 need_copy = 0;
8755 }
8756 }
8757
8758 if (canon == NULL || check_physname)
8759 {
8760 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8761
8762 if (canon != NULL && strcmp (physname, canon) != 0)
8763 {
8764 /* It may not mean a bug in GDB. The compiler could also
8765 compute DW_AT_linkage_name incorrectly. But in such case
8766 GDB would need to be bug-to-bug compatible. */
8767
8768 complaint (&symfile_complaints,
8769 _("Computed physname <%s> does not match demangled <%s> "
8770 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8771 physname, canon, mangled, die->offset.sect_off,
8772 objfile_name (objfile));
8773
8774 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8775 is available here - over computed PHYSNAME. It is safer
8776 against both buggy GDB and buggy compilers. */
8777
8778 retval = canon;
8779 }
8780 else
8781 {
8782 retval = physname;
8783 need_copy = 0;
8784 }
8785 }
8786 else
8787 retval = canon;
8788
8789 if (need_copy)
8790 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8791 retval, strlen (retval));
8792
8793 do_cleanups (back_to);
8794 return retval;
8795 }
8796
8797 /* Inspect DIE in CU for a namespace alias. If one exists, record
8798 a new symbol for it.
8799
8800 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8801
8802 static int
8803 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8804 {
8805 struct attribute *attr;
8806
8807 /* If the die does not have a name, this is not a namespace
8808 alias. */
8809 attr = dwarf2_attr (die, DW_AT_name, cu);
8810 if (attr != NULL)
8811 {
8812 int num;
8813 struct die_info *d = die;
8814 struct dwarf2_cu *imported_cu = cu;
8815
8816 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8817 keep inspecting DIEs until we hit the underlying import. */
8818 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8819 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8820 {
8821 attr = dwarf2_attr (d, DW_AT_import, cu);
8822 if (attr == NULL)
8823 break;
8824
8825 d = follow_die_ref (d, attr, &imported_cu);
8826 if (d->tag != DW_TAG_imported_declaration)
8827 break;
8828 }
8829
8830 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8831 {
8832 complaint (&symfile_complaints,
8833 _("DIE at 0x%x has too many recursively imported "
8834 "declarations"), d->offset.sect_off);
8835 return 0;
8836 }
8837
8838 if (attr != NULL)
8839 {
8840 struct type *type;
8841 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8842
8843 type = get_die_type_at_offset (offset, cu->per_cu);
8844 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8845 {
8846 /* This declaration is a global namespace alias. Add
8847 a symbol for it whose type is the aliased namespace. */
8848 new_symbol (die, type, cu);
8849 return 1;
8850 }
8851 }
8852 }
8853
8854 return 0;
8855 }
8856
8857 /* Read the import statement specified by the given die and record it. */
8858
8859 static void
8860 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8861 {
8862 struct objfile *objfile = cu->objfile;
8863 struct attribute *import_attr;
8864 struct die_info *imported_die, *child_die;
8865 struct dwarf2_cu *imported_cu;
8866 const char *imported_name;
8867 const char *imported_name_prefix;
8868 const char *canonical_name;
8869 const char *import_alias;
8870 const char *imported_declaration = NULL;
8871 const char *import_prefix;
8872 VEC (const_char_ptr) *excludes = NULL;
8873 struct cleanup *cleanups;
8874
8875 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8876 if (import_attr == NULL)
8877 {
8878 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8879 dwarf_tag_name (die->tag));
8880 return;
8881 }
8882
8883 imported_cu = cu;
8884 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8885 imported_name = dwarf2_name (imported_die, imported_cu);
8886 if (imported_name == NULL)
8887 {
8888 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8889
8890 The import in the following code:
8891 namespace A
8892 {
8893 typedef int B;
8894 }
8895
8896 int main ()
8897 {
8898 using A::B;
8899 B b;
8900 return b;
8901 }
8902
8903 ...
8904 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8905 <52> DW_AT_decl_file : 1
8906 <53> DW_AT_decl_line : 6
8907 <54> DW_AT_import : <0x75>
8908 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8909 <59> DW_AT_name : B
8910 <5b> DW_AT_decl_file : 1
8911 <5c> DW_AT_decl_line : 2
8912 <5d> DW_AT_type : <0x6e>
8913 ...
8914 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8915 <76> DW_AT_byte_size : 4
8916 <77> DW_AT_encoding : 5 (signed)
8917
8918 imports the wrong die ( 0x75 instead of 0x58 ).
8919 This case will be ignored until the gcc bug is fixed. */
8920 return;
8921 }
8922
8923 /* Figure out the local name after import. */
8924 import_alias = dwarf2_name (die, cu);
8925
8926 /* Figure out where the statement is being imported to. */
8927 import_prefix = determine_prefix (die, cu);
8928
8929 /* Figure out what the scope of the imported die is and prepend it
8930 to the name of the imported die. */
8931 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8932
8933 if (imported_die->tag != DW_TAG_namespace
8934 && imported_die->tag != DW_TAG_module)
8935 {
8936 imported_declaration = imported_name;
8937 canonical_name = imported_name_prefix;
8938 }
8939 else if (strlen (imported_name_prefix) > 0)
8940 canonical_name = obconcat (&objfile->objfile_obstack,
8941 imported_name_prefix, "::", imported_name,
8942 (char *) NULL);
8943 else
8944 canonical_name = imported_name;
8945
8946 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8947
8948 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8949 for (child_die = die->child; child_die && child_die->tag;
8950 child_die = sibling_die (child_die))
8951 {
8952 /* DWARF-4: A Fortran use statement with a “rename list” may be
8953 represented by an imported module entry with an import attribute
8954 referring to the module and owned entries corresponding to those
8955 entities that are renamed as part of being imported. */
8956
8957 if (child_die->tag != DW_TAG_imported_declaration)
8958 {
8959 complaint (&symfile_complaints,
8960 _("child DW_TAG_imported_declaration expected "
8961 "- DIE at 0x%x [in module %s]"),
8962 child_die->offset.sect_off, objfile_name (objfile));
8963 continue;
8964 }
8965
8966 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8967 if (import_attr == NULL)
8968 {
8969 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8970 dwarf_tag_name (child_die->tag));
8971 continue;
8972 }
8973
8974 imported_cu = cu;
8975 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8976 &imported_cu);
8977 imported_name = dwarf2_name (imported_die, imported_cu);
8978 if (imported_name == NULL)
8979 {
8980 complaint (&symfile_complaints,
8981 _("child DW_TAG_imported_declaration has unknown "
8982 "imported name - DIE at 0x%x [in module %s]"),
8983 child_die->offset.sect_off, objfile_name (objfile));
8984 continue;
8985 }
8986
8987 VEC_safe_push (const_char_ptr, excludes, imported_name);
8988
8989 process_die (child_die, cu);
8990 }
8991
8992 cp_add_using_directive (import_prefix,
8993 canonical_name,
8994 import_alias,
8995 imported_declaration,
8996 excludes,
8997 0,
8998 &objfile->objfile_obstack);
8999
9000 do_cleanups (cleanups);
9001 }
9002
9003 /* Cleanup function for handle_DW_AT_stmt_list. */
9004
9005 static void
9006 free_cu_line_header (void *arg)
9007 {
9008 struct dwarf2_cu *cu = arg;
9009
9010 free_line_header (cu->line_header);
9011 cu->line_header = NULL;
9012 }
9013
9014 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9015 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9016 this, it was first present in GCC release 4.3.0. */
9017
9018 static int
9019 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9020 {
9021 if (!cu->checked_producer)
9022 check_producer (cu);
9023
9024 return cu->producer_is_gcc_lt_4_3;
9025 }
9026
9027 static void
9028 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9029 const char **name, const char **comp_dir)
9030 {
9031 struct attribute *attr;
9032
9033 *name = NULL;
9034 *comp_dir = NULL;
9035
9036 /* Find the filename. Do not use dwarf2_name here, since the filename
9037 is not a source language identifier. */
9038 attr = dwarf2_attr (die, DW_AT_name, cu);
9039 if (attr)
9040 {
9041 *name = DW_STRING (attr);
9042 }
9043
9044 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9045 if (attr)
9046 *comp_dir = DW_STRING (attr);
9047 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9048 && IS_ABSOLUTE_PATH (*name))
9049 {
9050 char *d = ldirname (*name);
9051
9052 *comp_dir = d;
9053 if (d != NULL)
9054 make_cleanup (xfree, d);
9055 }
9056 if (*comp_dir != NULL)
9057 {
9058 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9059 directory, get rid of it. */
9060 char *cp = strchr (*comp_dir, ':');
9061
9062 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9063 *comp_dir = cp + 1;
9064 }
9065
9066 if (*name == NULL)
9067 *name = "<unknown>";
9068 }
9069
9070 /* Handle DW_AT_stmt_list for a compilation unit.
9071 DIE is the DW_TAG_compile_unit die for CU.
9072 COMP_DIR is the compilation directory. LOWPC is passed to
9073 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9074
9075 static void
9076 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9077 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9078 {
9079 struct objfile *objfile = dwarf2_per_objfile->objfile;
9080 struct attribute *attr;
9081 unsigned int line_offset;
9082 struct line_header line_header_local;
9083 hashval_t line_header_local_hash;
9084 unsigned u;
9085 void **slot;
9086 int decode_mapping;
9087
9088 gdb_assert (! cu->per_cu->is_debug_types);
9089
9090 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9091 if (attr == NULL)
9092 return;
9093
9094 line_offset = DW_UNSND (attr);
9095
9096 /* The line header hash table is only created if needed (it exists to
9097 prevent redundant reading of the line table for partial_units).
9098 If we're given a partial_unit, we'll need it. If we're given a
9099 compile_unit, then use the line header hash table if it's already
9100 created, but don't create one just yet. */
9101
9102 if (dwarf2_per_objfile->line_header_hash == NULL
9103 && die->tag == DW_TAG_partial_unit)
9104 {
9105 dwarf2_per_objfile->line_header_hash
9106 = htab_create_alloc_ex (127, line_header_hash_voidp,
9107 line_header_eq_voidp,
9108 free_line_header_voidp,
9109 &objfile->objfile_obstack,
9110 hashtab_obstack_allocate,
9111 dummy_obstack_deallocate);
9112 }
9113
9114 line_header_local.offset.sect_off = line_offset;
9115 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9116 line_header_local_hash = line_header_hash (&line_header_local);
9117 if (dwarf2_per_objfile->line_header_hash != NULL)
9118 {
9119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9120 &line_header_local,
9121 line_header_local_hash, NO_INSERT);
9122
9123 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9124 is not present in *SLOT (since if there is something in *SLOT then
9125 it will be for a partial_unit). */
9126 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9127 {
9128 gdb_assert (*slot != NULL);
9129 cu->line_header = *slot;
9130 return;
9131 }
9132 }
9133
9134 /* dwarf_decode_line_header does not yet provide sufficient information.
9135 We always have to call also dwarf_decode_lines for it. */
9136 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9137 if (cu->line_header == NULL)
9138 return;
9139
9140 if (dwarf2_per_objfile->line_header_hash == NULL)
9141 slot = NULL;
9142 else
9143 {
9144 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9145 &line_header_local,
9146 line_header_local_hash, INSERT);
9147 gdb_assert (slot != NULL);
9148 }
9149 if (slot != NULL && *slot == NULL)
9150 {
9151 /* This newly decoded line number information unit will be owned
9152 by line_header_hash hash table. */
9153 *slot = cu->line_header;
9154 }
9155 else
9156 {
9157 /* We cannot free any current entry in (*slot) as that struct line_header
9158 may be already used by multiple CUs. Create only temporary decoded
9159 line_header for this CU - it may happen at most once for each line
9160 number information unit. And if we're not using line_header_hash
9161 then this is what we want as well. */
9162 gdb_assert (die->tag != DW_TAG_partial_unit);
9163 make_cleanup (free_cu_line_header, cu);
9164 }
9165 decode_mapping = (die->tag != DW_TAG_partial_unit);
9166 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9167 decode_mapping);
9168 }
9169
9170 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9171
9172 static void
9173 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9174 {
9175 struct objfile *objfile = dwarf2_per_objfile->objfile;
9176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9177 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9178 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9179 CORE_ADDR highpc = ((CORE_ADDR) 0);
9180 struct attribute *attr;
9181 const char *name = NULL;
9182 const char *comp_dir = NULL;
9183 struct die_info *child_die;
9184 bfd *abfd = objfile->obfd;
9185 CORE_ADDR baseaddr;
9186
9187 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9188
9189 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9190
9191 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9192 from finish_block. */
9193 if (lowpc == ((CORE_ADDR) -1))
9194 lowpc = highpc;
9195 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9196
9197 find_file_and_directory (die, cu, &name, &comp_dir);
9198
9199 prepare_one_comp_unit (cu, die, cu->language);
9200
9201 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9202 standardised yet. As a workaround for the language detection we fall
9203 back to the DW_AT_producer string. */
9204 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9205 cu->language = language_opencl;
9206
9207 /* Similar hack for Go. */
9208 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9209 set_cu_language (DW_LANG_Go, cu);
9210
9211 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9212
9213 /* Decode line number information if present. We do this before
9214 processing child DIEs, so that the line header table is available
9215 for DW_AT_decl_file. */
9216 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9217
9218 /* Process all dies in compilation unit. */
9219 if (die->child != NULL)
9220 {
9221 child_die = die->child;
9222 while (child_die && child_die->tag)
9223 {
9224 process_die (child_die, cu);
9225 child_die = sibling_die (child_die);
9226 }
9227 }
9228
9229 /* Decode macro information, if present. Dwarf 2 macro information
9230 refers to information in the line number info statement program
9231 header, so we can only read it if we've read the header
9232 successfully. */
9233 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9234 if (attr && cu->line_header)
9235 {
9236 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9237 complaint (&symfile_complaints,
9238 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9239
9240 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9241 }
9242 else
9243 {
9244 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9245 if (attr && cu->line_header)
9246 {
9247 unsigned int macro_offset = DW_UNSND (attr);
9248
9249 dwarf_decode_macros (cu, macro_offset, 0);
9250 }
9251 }
9252
9253 do_cleanups (back_to);
9254 }
9255
9256 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9257 Create the set of symtabs used by this TU, or if this TU is sharing
9258 symtabs with another TU and the symtabs have already been created
9259 then restore those symtabs in the line header.
9260 We don't need the pc/line-number mapping for type units. */
9261
9262 static void
9263 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9264 {
9265 struct objfile *objfile = dwarf2_per_objfile->objfile;
9266 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9267 struct type_unit_group *tu_group;
9268 int first_time;
9269 struct line_header *lh;
9270 struct attribute *attr;
9271 unsigned int i, line_offset;
9272 struct signatured_type *sig_type;
9273
9274 gdb_assert (per_cu->is_debug_types);
9275 sig_type = (struct signatured_type *) per_cu;
9276
9277 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9278
9279 /* If we're using .gdb_index (includes -readnow) then
9280 per_cu->type_unit_group may not have been set up yet. */
9281 if (sig_type->type_unit_group == NULL)
9282 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9283 tu_group = sig_type->type_unit_group;
9284
9285 /* If we've already processed this stmt_list there's no real need to
9286 do it again, we could fake it and just recreate the part we need
9287 (file name,index -> symtab mapping). If data shows this optimization
9288 is useful we can do it then. */
9289 first_time = tu_group->compunit_symtab == NULL;
9290
9291 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9292 debug info. */
9293 lh = NULL;
9294 if (attr != NULL)
9295 {
9296 line_offset = DW_UNSND (attr);
9297 lh = dwarf_decode_line_header (line_offset, cu);
9298 }
9299 if (lh == NULL)
9300 {
9301 if (first_time)
9302 dwarf2_start_symtab (cu, "", NULL, 0);
9303 else
9304 {
9305 gdb_assert (tu_group->symtabs == NULL);
9306 restart_symtab (tu_group->compunit_symtab, "", 0);
9307 }
9308 return;
9309 }
9310
9311 cu->line_header = lh;
9312 make_cleanup (free_cu_line_header, cu);
9313
9314 if (first_time)
9315 {
9316 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9317
9318 tu_group->num_symtabs = lh->num_file_names;
9319 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9320
9321 for (i = 0; i < lh->num_file_names; ++i)
9322 {
9323 const char *dir = NULL;
9324 struct file_entry *fe = &lh->file_names[i];
9325
9326 if (fe->dir_index && lh->include_dirs != NULL)
9327 dir = lh->include_dirs[fe->dir_index - 1];
9328 dwarf2_start_subfile (fe->name, dir);
9329
9330 if (current_subfile->symtab == NULL)
9331 {
9332 /* NOTE: start_subfile will recognize when it's been passed
9333 a file it has already seen. So we can't assume there's a
9334 simple mapping from lh->file_names to subfiles, plus
9335 lh->file_names may contain dups. */
9336 current_subfile->symtab
9337 = allocate_symtab (cust, current_subfile->name);
9338 }
9339
9340 fe->symtab = current_subfile->symtab;
9341 tu_group->symtabs[i] = fe->symtab;
9342 }
9343 }
9344 else
9345 {
9346 restart_symtab (tu_group->compunit_symtab, "", 0);
9347
9348 for (i = 0; i < lh->num_file_names; ++i)
9349 {
9350 struct file_entry *fe = &lh->file_names[i];
9351
9352 fe->symtab = tu_group->symtabs[i];
9353 }
9354 }
9355
9356 /* The main symtab is allocated last. Type units don't have DW_AT_name
9357 so they don't have a "real" (so to speak) symtab anyway.
9358 There is later code that will assign the main symtab to all symbols
9359 that don't have one. We need to handle the case of a symbol with a
9360 missing symtab (DW_AT_decl_file) anyway. */
9361 }
9362
9363 /* Process DW_TAG_type_unit.
9364 For TUs we want to skip the first top level sibling if it's not the
9365 actual type being defined by this TU. In this case the first top
9366 level sibling is there to provide context only. */
9367
9368 static void
9369 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9370 {
9371 struct die_info *child_die;
9372
9373 prepare_one_comp_unit (cu, die, language_minimal);
9374
9375 /* Initialize (or reinitialize) the machinery for building symtabs.
9376 We do this before processing child DIEs, so that the line header table
9377 is available for DW_AT_decl_file. */
9378 setup_type_unit_groups (die, cu);
9379
9380 if (die->child != NULL)
9381 {
9382 child_die = die->child;
9383 while (child_die && child_die->tag)
9384 {
9385 process_die (child_die, cu);
9386 child_die = sibling_die (child_die);
9387 }
9388 }
9389 }
9390 \f
9391 /* DWO/DWP files.
9392
9393 http://gcc.gnu.org/wiki/DebugFission
9394 http://gcc.gnu.org/wiki/DebugFissionDWP
9395
9396 To simplify handling of both DWO files ("object" files with the DWARF info)
9397 and DWP files (a file with the DWOs packaged up into one file), we treat
9398 DWP files as having a collection of virtual DWO files. */
9399
9400 static hashval_t
9401 hash_dwo_file (const void *item)
9402 {
9403 const struct dwo_file *dwo_file = item;
9404 hashval_t hash;
9405
9406 hash = htab_hash_string (dwo_file->dwo_name);
9407 if (dwo_file->comp_dir != NULL)
9408 hash += htab_hash_string (dwo_file->comp_dir);
9409 return hash;
9410 }
9411
9412 static int
9413 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9414 {
9415 const struct dwo_file *lhs = item_lhs;
9416 const struct dwo_file *rhs = item_rhs;
9417
9418 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9419 return 0;
9420 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9421 return lhs->comp_dir == rhs->comp_dir;
9422 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9423 }
9424
9425 /* Allocate a hash table for DWO files. */
9426
9427 static htab_t
9428 allocate_dwo_file_hash_table (void)
9429 {
9430 struct objfile *objfile = dwarf2_per_objfile->objfile;
9431
9432 return htab_create_alloc_ex (41,
9433 hash_dwo_file,
9434 eq_dwo_file,
9435 NULL,
9436 &objfile->objfile_obstack,
9437 hashtab_obstack_allocate,
9438 dummy_obstack_deallocate);
9439 }
9440
9441 /* Lookup DWO file DWO_NAME. */
9442
9443 static void **
9444 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9445 {
9446 struct dwo_file find_entry;
9447 void **slot;
9448
9449 if (dwarf2_per_objfile->dwo_files == NULL)
9450 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9451
9452 memset (&find_entry, 0, sizeof (find_entry));
9453 find_entry.dwo_name = dwo_name;
9454 find_entry.comp_dir = comp_dir;
9455 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9456
9457 return slot;
9458 }
9459
9460 static hashval_t
9461 hash_dwo_unit (const void *item)
9462 {
9463 const struct dwo_unit *dwo_unit = item;
9464
9465 /* This drops the top 32 bits of the id, but is ok for a hash. */
9466 return dwo_unit->signature;
9467 }
9468
9469 static int
9470 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9471 {
9472 const struct dwo_unit *lhs = item_lhs;
9473 const struct dwo_unit *rhs = item_rhs;
9474
9475 /* The signature is assumed to be unique within the DWO file.
9476 So while object file CU dwo_id's always have the value zero,
9477 that's OK, assuming each object file DWO file has only one CU,
9478 and that's the rule for now. */
9479 return lhs->signature == rhs->signature;
9480 }
9481
9482 /* Allocate a hash table for DWO CUs,TUs.
9483 There is one of these tables for each of CUs,TUs for each DWO file. */
9484
9485 static htab_t
9486 allocate_dwo_unit_table (struct objfile *objfile)
9487 {
9488 /* Start out with a pretty small number.
9489 Generally DWO files contain only one CU and maybe some TUs. */
9490 return htab_create_alloc_ex (3,
9491 hash_dwo_unit,
9492 eq_dwo_unit,
9493 NULL,
9494 &objfile->objfile_obstack,
9495 hashtab_obstack_allocate,
9496 dummy_obstack_deallocate);
9497 }
9498
9499 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9500
9501 struct create_dwo_cu_data
9502 {
9503 struct dwo_file *dwo_file;
9504 struct dwo_unit dwo_unit;
9505 };
9506
9507 /* die_reader_func for create_dwo_cu. */
9508
9509 static void
9510 create_dwo_cu_reader (const struct die_reader_specs *reader,
9511 const gdb_byte *info_ptr,
9512 struct die_info *comp_unit_die,
9513 int has_children,
9514 void *datap)
9515 {
9516 struct dwarf2_cu *cu = reader->cu;
9517 struct objfile *objfile = dwarf2_per_objfile->objfile;
9518 sect_offset offset = cu->per_cu->offset;
9519 struct dwarf2_section_info *section = cu->per_cu->section;
9520 struct create_dwo_cu_data *data = datap;
9521 struct dwo_file *dwo_file = data->dwo_file;
9522 struct dwo_unit *dwo_unit = &data->dwo_unit;
9523 struct attribute *attr;
9524
9525 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9526 if (attr == NULL)
9527 {
9528 complaint (&symfile_complaints,
9529 _("Dwarf Error: debug entry at offset 0x%x is missing"
9530 " its dwo_id [in module %s]"),
9531 offset.sect_off, dwo_file->dwo_name);
9532 return;
9533 }
9534
9535 dwo_unit->dwo_file = dwo_file;
9536 dwo_unit->signature = DW_UNSND (attr);
9537 dwo_unit->section = section;
9538 dwo_unit->offset = offset;
9539 dwo_unit->length = cu->per_cu->length;
9540
9541 if (dwarf_read_debug)
9542 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9543 offset.sect_off, hex_string (dwo_unit->signature));
9544 }
9545
9546 /* Create the dwo_unit for the lone CU in DWO_FILE.
9547 Note: This function processes DWO files only, not DWP files. */
9548
9549 static struct dwo_unit *
9550 create_dwo_cu (struct dwo_file *dwo_file)
9551 {
9552 struct objfile *objfile = dwarf2_per_objfile->objfile;
9553 struct dwarf2_section_info *section = &dwo_file->sections.info;
9554 bfd *abfd;
9555 htab_t cu_htab;
9556 const gdb_byte *info_ptr, *end_ptr;
9557 struct create_dwo_cu_data create_dwo_cu_data;
9558 struct dwo_unit *dwo_unit;
9559
9560 dwarf2_read_section (objfile, section);
9561 info_ptr = section->buffer;
9562
9563 if (info_ptr == NULL)
9564 return NULL;
9565
9566 /* We can't set abfd until now because the section may be empty or
9567 not present, in which case section->asection will be NULL. */
9568 abfd = get_section_bfd_owner (section);
9569
9570 if (dwarf_read_debug)
9571 {
9572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9573 get_section_name (section),
9574 get_section_file_name (section));
9575 }
9576
9577 create_dwo_cu_data.dwo_file = dwo_file;
9578 dwo_unit = NULL;
9579
9580 end_ptr = info_ptr + section->size;
9581 while (info_ptr < end_ptr)
9582 {
9583 struct dwarf2_per_cu_data per_cu;
9584
9585 memset (&create_dwo_cu_data.dwo_unit, 0,
9586 sizeof (create_dwo_cu_data.dwo_unit));
9587 memset (&per_cu, 0, sizeof (per_cu));
9588 per_cu.objfile = objfile;
9589 per_cu.is_debug_types = 0;
9590 per_cu.offset.sect_off = info_ptr - section->buffer;
9591 per_cu.section = section;
9592
9593 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9594 create_dwo_cu_reader,
9595 &create_dwo_cu_data);
9596
9597 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 {
9599 /* If we've already found one, complain. We only support one
9600 because having more than one requires hacking the dwo_name of
9601 each to match, which is highly unlikely to happen. */
9602 if (dwo_unit != NULL)
9603 {
9604 complaint (&symfile_complaints,
9605 _("Multiple CUs in DWO file %s [in module %s]"),
9606 dwo_file->dwo_name, objfile_name (objfile));
9607 break;
9608 }
9609
9610 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9611 *dwo_unit = create_dwo_cu_data.dwo_unit;
9612 }
9613
9614 info_ptr += per_cu.length;
9615 }
9616
9617 return dwo_unit;
9618 }
9619
9620 /* DWP file .debug_{cu,tu}_index section format:
9621 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622
9623 DWP Version 1:
9624
9625 Both index sections have the same format, and serve to map a 64-bit
9626 signature to a set of section numbers. Each section begins with a header,
9627 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9628 indexes, and a pool of 32-bit section numbers. The index sections will be
9629 aligned at 8-byte boundaries in the file.
9630
9631 The index section header consists of:
9632
9633 V, 32 bit version number
9634 -, 32 bits unused
9635 N, 32 bit number of compilation units or type units in the index
9636 M, 32 bit number of slots in the hash table
9637
9638 Numbers are recorded using the byte order of the application binary.
9639
9640 The hash table begins at offset 16 in the section, and consists of an array
9641 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9642 order of the application binary). Unused slots in the hash table are 0.
9643 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9644
9645 The parallel table begins immediately after the hash table
9646 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9647 array of 32-bit indexes (using the byte order of the application binary),
9648 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9649 table contains a 32-bit index into the pool of section numbers. For unused
9650 hash table slots, the corresponding entry in the parallel table will be 0.
9651
9652 The pool of section numbers begins immediately following the hash table
9653 (at offset 16 + 12 * M from the beginning of the section). The pool of
9654 section numbers consists of an array of 32-bit words (using the byte order
9655 of the application binary). Each item in the array is indexed starting
9656 from 0. The hash table entry provides the index of the first section
9657 number in the set. Additional section numbers in the set follow, and the
9658 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659
9660 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9661 section must be the first entry in the set, and the .debug_abbrev.dwo must
9662 be the second entry. Other members of the set may follow in any order.
9663
9664 ---
9665
9666 DWP Version 2:
9667
9668 DWP Version 2 combines all the .debug_info, etc. sections into one,
9669 and the entries in the index tables are now offsets into these sections.
9670 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9671 section.
9672
9673 Index Section Contents:
9674 Header
9675 Hash Table of Signatures dwp_hash_table.hash_table
9676 Parallel Table of Indices dwp_hash_table.unit_table
9677 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9678 Table of Section Sizes dwp_hash_table.v2.sizes
9679
9680 The index section header consists of:
9681
9682 V, 32 bit version number
9683 L, 32 bit number of columns in the table of section offsets
9684 N, 32 bit number of compilation units or type units in the index
9685 M, 32 bit number of slots in the hash table
9686
9687 Numbers are recorded using the byte order of the application binary.
9688
9689 The hash table has the same format as version 1.
9690 The parallel table of indices has the same format as version 1,
9691 except that the entries are origin-1 indices into the table of sections
9692 offsets and the table of section sizes.
9693
9694 The table of offsets begins immediately following the parallel table
9695 (at offset 16 + 12 * M from the beginning of the section). The table is
9696 a two-dimensional array of 32-bit words (using the byte order of the
9697 application binary), with L columns and N+1 rows, in row-major order.
9698 Each row in the array is indexed starting from 0. The first row provides
9699 a key to the remaining rows: each column in this row provides an identifier
9700 for a debug section, and the offsets in the same column of subsequent rows
9701 refer to that section. The section identifiers are:
9702
9703 DW_SECT_INFO 1 .debug_info.dwo
9704 DW_SECT_TYPES 2 .debug_types.dwo
9705 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9706 DW_SECT_LINE 4 .debug_line.dwo
9707 DW_SECT_LOC 5 .debug_loc.dwo
9708 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9709 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9710 DW_SECT_MACRO 8 .debug_macro.dwo
9711
9712 The offsets provided by the CU and TU index sections are the base offsets
9713 for the contributions made by each CU or TU to the corresponding section
9714 in the package file. Each CU and TU header contains an abbrev_offset
9715 field, used to find the abbreviations table for that CU or TU within the
9716 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9717 be interpreted as relative to the base offset given in the index section.
9718 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9719 should be interpreted as relative to the base offset for .debug_line.dwo,
9720 and offsets into other debug sections obtained from DWARF attributes should
9721 also be interpreted as relative to the corresponding base offset.
9722
9723 The table of sizes begins immediately following the table of offsets.
9724 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9725 with L columns and N rows, in row-major order. Each row in the array is
9726 indexed starting from 1 (row 0 is shared by the two tables).
9727
9728 ---
9729
9730 Hash table lookup is handled the same in version 1 and 2:
9731
9732 We assume that N and M will not exceed 2^32 - 1.
9733 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734
9735 Given a 64-bit compilation unit signature or a type signature S, an entry
9736 in the hash table is located as follows:
9737
9738 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9739 the low-order k bits all set to 1.
9740
9741 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9742
9743 3) If the hash table entry at index H matches the signature, use that
9744 entry. If the hash table entry at index H is unused (all zeroes),
9745 terminate the search: the signature is not present in the table.
9746
9747 4) Let H = (H + H') modulo M. Repeat at Step 3.
9748
9749 Because M > N and H' and M are relatively prime, the search is guaranteed
9750 to stop at an unused slot or find the match. */
9751
9752 /* Create a hash table to map DWO IDs to their CU/TU entry in
9753 .debug_{info,types}.dwo in DWP_FILE.
9754 Returns NULL if there isn't one.
9755 Note: This function processes DWP files only, not DWO files. */
9756
9757 static struct dwp_hash_table *
9758 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759 {
9760 struct objfile *objfile = dwarf2_per_objfile->objfile;
9761 bfd *dbfd = dwp_file->dbfd;
9762 const gdb_byte *index_ptr, *index_end;
9763 struct dwarf2_section_info *index;
9764 uint32_t version, nr_columns, nr_units, nr_slots;
9765 struct dwp_hash_table *htab;
9766
9767 if (is_debug_types)
9768 index = &dwp_file->sections.tu_index;
9769 else
9770 index = &dwp_file->sections.cu_index;
9771
9772 if (dwarf2_section_empty_p (index))
9773 return NULL;
9774 dwarf2_read_section (objfile, index);
9775
9776 index_ptr = index->buffer;
9777 index_end = index_ptr + index->size;
9778
9779 version = read_4_bytes (dbfd, index_ptr);
9780 index_ptr += 4;
9781 if (version == 2)
9782 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 else
9784 nr_columns = 0;
9785 index_ptr += 4;
9786 nr_units = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 nr_slots = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790
9791 if (version != 1 && version != 2)
9792 {
9793 error (_("Dwarf Error: unsupported DWP file version (%s)"
9794 " [in module %s]"),
9795 pulongest (version), dwp_file->name);
9796 }
9797 if (nr_slots != (nr_slots & -nr_slots))
9798 {
9799 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9800 " is not power of 2 [in module %s]"),
9801 pulongest (nr_slots), dwp_file->name);
9802 }
9803
9804 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9805 htab->version = version;
9806 htab->nr_columns = nr_columns;
9807 htab->nr_units = nr_units;
9808 htab->nr_slots = nr_slots;
9809 htab->hash_table = index_ptr;
9810 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9811
9812 /* Exit early if the table is empty. */
9813 if (nr_slots == 0 || nr_units == 0
9814 || (version == 2 && nr_columns == 0))
9815 {
9816 /* All must be zero. */
9817 if (nr_slots != 0 || nr_units != 0
9818 || (version == 2 && nr_columns != 0))
9819 {
9820 complaint (&symfile_complaints,
9821 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9822 " all zero [in modules %s]"),
9823 dwp_file->name);
9824 }
9825 return htab;
9826 }
9827
9828 if (version == 1)
9829 {
9830 htab->section_pool.v1.indices =
9831 htab->unit_table + sizeof (uint32_t) * nr_slots;
9832 /* It's harder to decide whether the section is too small in v1.
9833 V1 is deprecated anyway so we punt. */
9834 }
9835 else
9836 {
9837 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 int *ids = htab->section_pool.v2.section_ids;
9839 /* Reverse map for error checking. */
9840 int ids_seen[DW_SECT_MAX + 1];
9841 int i;
9842
9843 if (nr_columns < 2)
9844 {
9845 error (_("Dwarf Error: bad DWP hash table, too few columns"
9846 " in section table [in module %s]"),
9847 dwp_file->name);
9848 }
9849 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too many columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 for (i = 0; i < nr_columns; ++i)
9858 {
9859 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860
9861 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9864 " in section table [in module %s]"),
9865 id, dwp_file->name);
9866 }
9867 if (ids_seen[id] != -1)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9870 " id %d in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 ids_seen[id] = i;
9874 ids[i] = id;
9875 }
9876 /* Must have exactly one info or types section. */
9877 if (((ids_seen[DW_SECT_INFO] != -1)
9878 + (ids_seen[DW_SECT_TYPES] != -1))
9879 != 1)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9882 " DWO info/types section [in module %s]"),
9883 dwp_file->name);
9884 }
9885 /* Must have an abbrev section. */
9886 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9889 " section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9893 htab->section_pool.v2.sizes =
9894 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9895 * nr_units * nr_columns);
9896 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9897 * nr_units * nr_columns))
9898 > index_end)
9899 {
9900 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
9905
9906 return htab;
9907 }
9908
9909 /* Update SECTIONS with the data from SECTP.
9910
9911 This function is like the other "locate" section routines that are
9912 passed to bfd_map_over_sections, but in this context the sections to
9913 read comes from the DWP V1 hash table, not the full ELF section table.
9914
9915 The result is non-zero for success, or zero if an error was found. */
9916
9917 static int
9918 locate_v1_virtual_dwo_sections (asection *sectp,
9919 struct virtual_v1_dwo_sections *sections)
9920 {
9921 const struct dwop_section_names *names = &dwop_section_names;
9922
9923 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 {
9925 /* There can be only one. */
9926 if (sections->abbrev.s.asection != NULL)
9927 return 0;
9928 sections->abbrev.s.asection = sectp;
9929 sections->abbrev.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->info_dwo)
9932 || section_is_p (sectp->name, &names->types_dwo))
9933 {
9934 /* There can be only one. */
9935 if (sections->info_or_types.s.asection != NULL)
9936 return 0;
9937 sections->info_or_types.s.asection = sectp;
9938 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 }
9940 else if (section_is_p (sectp->name, &names->line_dwo))
9941 {
9942 /* There can be only one. */
9943 if (sections->line.s.asection != NULL)
9944 return 0;
9945 sections->line.s.asection = sectp;
9946 sections->line.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 {
9950 /* There can be only one. */
9951 if (sections->loc.s.asection != NULL)
9952 return 0;
9953 sections->loc.s.asection = sectp;
9954 sections->loc.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 {
9958 /* There can be only one. */
9959 if (sections->macinfo.s.asection != NULL)
9960 return 0;
9961 sections->macinfo.s.asection = sectp;
9962 sections->macinfo.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 {
9966 /* There can be only one. */
9967 if (sections->macro.s.asection != NULL)
9968 return 0;
9969 sections->macro.s.asection = sectp;
9970 sections->macro.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 {
9974 /* There can be only one. */
9975 if (sections->str_offsets.s.asection != NULL)
9976 return 0;
9977 sections->str_offsets.s.asection = sectp;
9978 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 }
9980 else
9981 {
9982 /* No other kind of section is valid. */
9983 return 0;
9984 }
9985
9986 return 1;
9987 }
9988
9989 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9990 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9991 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9992 This is for DWP version 1 files. */
9993
9994 static struct dwo_unit *
9995 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9996 uint32_t unit_index,
9997 const char *comp_dir,
9998 ULONGEST signature, int is_debug_types)
9999 {
10000 struct objfile *objfile = dwarf2_per_objfile->objfile;
10001 const struct dwp_hash_table *dwp_htab =
10002 is_debug_types ? dwp_file->tus : dwp_file->cus;
10003 bfd *dbfd = dwp_file->dbfd;
10004 const char *kind = is_debug_types ? "TU" : "CU";
10005 struct dwo_file *dwo_file;
10006 struct dwo_unit *dwo_unit;
10007 struct virtual_v1_dwo_sections sections;
10008 void **dwo_file_slot;
10009 char *virtual_dwo_name;
10010 struct dwarf2_section_info *cutu;
10011 struct cleanup *cleanups;
10012 int i;
10013
10014 gdb_assert (dwp_file->version == 1);
10015
10016 if (dwarf_read_debug)
10017 {
10018 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10019 kind,
10020 pulongest (unit_index), hex_string (signature),
10021 dwp_file->name);
10022 }
10023
10024 /* Fetch the sections of this DWO unit.
10025 Put a limit on the number of sections we look for so that bad data
10026 doesn't cause us to loop forever. */
10027
10028 #define MAX_NR_V1_DWO_SECTIONS \
10029 (1 /* .debug_info or .debug_types */ \
10030 + 1 /* .debug_abbrev */ \
10031 + 1 /* .debug_line */ \
10032 + 1 /* .debug_loc */ \
10033 + 1 /* .debug_str_offsets */ \
10034 + 1 /* .debug_macro or .debug_macinfo */ \
10035 + 1 /* trailing zero */)
10036
10037 memset (&sections, 0, sizeof (sections));
10038 cleanups = make_cleanup (null_cleanup, 0);
10039
10040 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10041 {
10042 asection *sectp;
10043 uint32_t section_nr =
10044 read_4_bytes (dbfd,
10045 dwp_htab->section_pool.v1.indices
10046 + (unit_index + i) * sizeof (uint32_t));
10047
10048 if (section_nr == 0)
10049 break;
10050 if (section_nr >= dwp_file->num_sections)
10051 {
10052 error (_("Dwarf Error: bad DWP hash table, section number too large"
10053 " [in module %s]"),
10054 dwp_file->name);
10055 }
10056
10057 sectp = dwp_file->elf_sections[section_nr];
10058 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10059 {
10060 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10061 " [in module %s]"),
10062 dwp_file->name);
10063 }
10064 }
10065
10066 if (i < 2
10067 || dwarf2_section_empty_p (&sections.info_or_types)
10068 || dwarf2_section_empty_p (&sections.abbrev))
10069 {
10070 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10071 " [in module %s]"),
10072 dwp_file->name);
10073 }
10074 if (i == MAX_NR_V1_DWO_SECTIONS)
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080
10081 /* It's easier for the rest of the code if we fake a struct dwo_file and
10082 have dwo_unit "live" in that. At least for now.
10083
10084 The DWP file can be made up of a random collection of CUs and TUs.
10085 However, for each CU + set of TUs that came from the same original DWO
10086 file, we can combine them back into a virtual DWO file to save space
10087 (fewer struct dwo_file objects to allocate). Remember that for really
10088 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10089
10090 virtual_dwo_name =
10091 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10092 get_section_id (&sections.abbrev),
10093 get_section_id (&sections.line),
10094 get_section_id (&sections.loc),
10095 get_section_id (&sections.str_offsets));
10096 make_cleanup (xfree, virtual_dwo_name);
10097 /* Can we use an existing virtual DWO file? */
10098 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10099 /* Create one if necessary. */
10100 if (*dwo_file_slot == NULL)
10101 {
10102 if (dwarf_read_debug)
10103 {
10104 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10105 virtual_dwo_name);
10106 }
10107 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10108 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10109 virtual_dwo_name,
10110 strlen (virtual_dwo_name));
10111 dwo_file->comp_dir = comp_dir;
10112 dwo_file->sections.abbrev = sections.abbrev;
10113 dwo_file->sections.line = sections.line;
10114 dwo_file->sections.loc = sections.loc;
10115 dwo_file->sections.macinfo = sections.macinfo;
10116 dwo_file->sections.macro = sections.macro;
10117 dwo_file->sections.str_offsets = sections.str_offsets;
10118 /* The "str" section is global to the entire DWP file. */
10119 dwo_file->sections.str = dwp_file->sections.str;
10120 /* The info or types section is assigned below to dwo_unit,
10121 there's no need to record it in dwo_file.
10122 Also, we can't simply record type sections in dwo_file because
10123 we record a pointer into the vector in dwo_unit. As we collect more
10124 types we'll grow the vector and eventually have to reallocate space
10125 for it, invalidating all copies of pointers into the previous
10126 contents. */
10127 *dwo_file_slot = dwo_file;
10128 }
10129 else
10130 {
10131 if (dwarf_read_debug)
10132 {
10133 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10134 virtual_dwo_name);
10135 }
10136 dwo_file = *dwo_file_slot;
10137 }
10138 do_cleanups (cleanups);
10139
10140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10141 dwo_unit->dwo_file = dwo_file;
10142 dwo_unit->signature = signature;
10143 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10144 sizeof (struct dwarf2_section_info));
10145 *dwo_unit->section = sections.info_or_types;
10146 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10147
10148 return dwo_unit;
10149 }
10150
10151 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10152 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10153 piece within that section used by a TU/CU, return a virtual section
10154 of just that piece. */
10155
10156 static struct dwarf2_section_info
10157 create_dwp_v2_section (struct dwarf2_section_info *section,
10158 bfd_size_type offset, bfd_size_type size)
10159 {
10160 struct dwarf2_section_info result;
10161 asection *sectp;
10162
10163 gdb_assert (section != NULL);
10164 gdb_assert (!section->is_virtual);
10165
10166 memset (&result, 0, sizeof (result));
10167 result.s.containing_section = section;
10168 result.is_virtual = 1;
10169
10170 if (size == 0)
10171 return result;
10172
10173 sectp = get_section_bfd_section (section);
10174
10175 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10176 bounds of the real section. This is a pretty-rare event, so just
10177 flag an error (easier) instead of a warning and trying to cope. */
10178 if (sectp == NULL
10179 || offset + size > bfd_get_section_size (sectp))
10180 {
10181 bfd *abfd = sectp->owner;
10182
10183 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10184 " in section %s [in module %s]"),
10185 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10186 objfile_name (dwarf2_per_objfile->objfile));
10187 }
10188
10189 result.virtual_offset = offset;
10190 result.size = size;
10191 return result;
10192 }
10193
10194 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10195 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10196 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10197 This is for DWP version 2 files. */
10198
10199 static struct dwo_unit *
10200 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10201 uint32_t unit_index,
10202 const char *comp_dir,
10203 ULONGEST signature, int is_debug_types)
10204 {
10205 struct objfile *objfile = dwarf2_per_objfile->objfile;
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 const char *kind = is_debug_types ? "TU" : "CU";
10210 struct dwo_file *dwo_file;
10211 struct dwo_unit *dwo_unit;
10212 struct virtual_v2_dwo_sections sections;
10213 void **dwo_file_slot;
10214 char *virtual_dwo_name;
10215 struct dwarf2_section_info *cutu;
10216 struct cleanup *cleanups;
10217 int i;
10218
10219 gdb_assert (dwp_file->version == 2);
10220
10221 if (dwarf_read_debug)
10222 {
10223 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10224 kind,
10225 pulongest (unit_index), hex_string (signature),
10226 dwp_file->name);
10227 }
10228
10229 /* Fetch the section offsets of this DWO unit. */
10230
10231 memset (&sections, 0, sizeof (sections));
10232 cleanups = make_cleanup (null_cleanup, 0);
10233
10234 for (i = 0; i < dwp_htab->nr_columns; ++i)
10235 {
10236 uint32_t offset = read_4_bytes (dbfd,
10237 dwp_htab->section_pool.v2.offsets
10238 + (((unit_index - 1) * dwp_htab->nr_columns
10239 + i)
10240 * sizeof (uint32_t)));
10241 uint32_t size = read_4_bytes (dbfd,
10242 dwp_htab->section_pool.v2.sizes
10243 + (((unit_index - 1) * dwp_htab->nr_columns
10244 + i)
10245 * sizeof (uint32_t)));
10246
10247 switch (dwp_htab->section_pool.v2.section_ids[i])
10248 {
10249 case DW_SECT_INFO:
10250 case DW_SECT_TYPES:
10251 sections.info_or_types_offset = offset;
10252 sections.info_or_types_size = size;
10253 break;
10254 case DW_SECT_ABBREV:
10255 sections.abbrev_offset = offset;
10256 sections.abbrev_size = size;
10257 break;
10258 case DW_SECT_LINE:
10259 sections.line_offset = offset;
10260 sections.line_size = size;
10261 break;
10262 case DW_SECT_LOC:
10263 sections.loc_offset = offset;
10264 sections.loc_size = size;
10265 break;
10266 case DW_SECT_STR_OFFSETS:
10267 sections.str_offsets_offset = offset;
10268 sections.str_offsets_size = size;
10269 break;
10270 case DW_SECT_MACINFO:
10271 sections.macinfo_offset = offset;
10272 sections.macinfo_size = size;
10273 break;
10274 case DW_SECT_MACRO:
10275 sections.macro_offset = offset;
10276 sections.macro_size = size;
10277 break;
10278 }
10279 }
10280
10281 /* It's easier for the rest of the code if we fake a struct dwo_file and
10282 have dwo_unit "live" in that. At least for now.
10283
10284 The DWP file can be made up of a random collection of CUs and TUs.
10285 However, for each CU + set of TUs that came from the same original DWO
10286 file, we can combine them back into a virtual DWO file to save space
10287 (fewer struct dwo_file objects to allocate). Remember that for really
10288 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10289
10290 virtual_dwo_name =
10291 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10292 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10293 (long) (sections.line_size ? sections.line_offset : 0),
10294 (long) (sections.loc_size ? sections.loc_offset : 0),
10295 (long) (sections.str_offsets_size
10296 ? sections.str_offsets_offset : 0));
10297 make_cleanup (xfree, virtual_dwo_name);
10298 /* Can we use an existing virtual DWO file? */
10299 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10300 /* Create one if necessary. */
10301 if (*dwo_file_slot == NULL)
10302 {
10303 if (dwarf_read_debug)
10304 {
10305 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10306 virtual_dwo_name);
10307 }
10308 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10309 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10310 virtual_dwo_name,
10311 strlen (virtual_dwo_name));
10312 dwo_file->comp_dir = comp_dir;
10313 dwo_file->sections.abbrev =
10314 create_dwp_v2_section (&dwp_file->sections.abbrev,
10315 sections.abbrev_offset, sections.abbrev_size);
10316 dwo_file->sections.line =
10317 create_dwp_v2_section (&dwp_file->sections.line,
10318 sections.line_offset, sections.line_size);
10319 dwo_file->sections.loc =
10320 create_dwp_v2_section (&dwp_file->sections.loc,
10321 sections.loc_offset, sections.loc_size);
10322 dwo_file->sections.macinfo =
10323 create_dwp_v2_section (&dwp_file->sections.macinfo,
10324 sections.macinfo_offset, sections.macinfo_size);
10325 dwo_file->sections.macro =
10326 create_dwp_v2_section (&dwp_file->sections.macro,
10327 sections.macro_offset, sections.macro_size);
10328 dwo_file->sections.str_offsets =
10329 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10330 sections.str_offsets_offset,
10331 sections.str_offsets_size);
10332 /* The "str" section is global to the entire DWP file. */
10333 dwo_file->sections.str = dwp_file->sections.str;
10334 /* The info or types section is assigned below to dwo_unit,
10335 there's no need to record it in dwo_file.
10336 Also, we can't simply record type sections in dwo_file because
10337 we record a pointer into the vector in dwo_unit. As we collect more
10338 types we'll grow the vector and eventually have to reallocate space
10339 for it, invalidating all copies of pointers into the previous
10340 contents. */
10341 *dwo_file_slot = dwo_file;
10342 }
10343 else
10344 {
10345 if (dwarf_read_debug)
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
10350 dwo_file = *dwo_file_slot;
10351 }
10352 do_cleanups (cleanups);
10353
10354 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10355 dwo_unit->dwo_file = dwo_file;
10356 dwo_unit->signature = signature;
10357 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10358 sizeof (struct dwarf2_section_info));
10359 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10360 ? &dwp_file->sections.types
10361 : &dwp_file->sections.info,
10362 sections.info_or_types_offset,
10363 sections.info_or_types_size);
10364 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10365
10366 return dwo_unit;
10367 }
10368
10369 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10370 Returns NULL if the signature isn't found. */
10371
10372 static struct dwo_unit *
10373 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10374 ULONGEST signature, int is_debug_types)
10375 {
10376 const struct dwp_hash_table *dwp_htab =
10377 is_debug_types ? dwp_file->tus : dwp_file->cus;
10378 bfd *dbfd = dwp_file->dbfd;
10379 uint32_t mask = dwp_htab->nr_slots - 1;
10380 uint32_t hash = signature & mask;
10381 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10382 unsigned int i;
10383 void **slot;
10384 struct dwo_unit find_dwo_cu, *dwo_cu;
10385
10386 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10387 find_dwo_cu.signature = signature;
10388 slot = htab_find_slot (is_debug_types
10389 ? dwp_file->loaded_tus
10390 : dwp_file->loaded_cus,
10391 &find_dwo_cu, INSERT);
10392
10393 if (*slot != NULL)
10394 return *slot;
10395
10396 /* Use a for loop so that we don't loop forever on bad debug info. */
10397 for (i = 0; i < dwp_htab->nr_slots; ++i)
10398 {
10399 ULONGEST signature_in_table;
10400
10401 signature_in_table =
10402 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10403 if (signature_in_table == signature)
10404 {
10405 uint32_t unit_index =
10406 read_4_bytes (dbfd,
10407 dwp_htab->unit_table + hash * sizeof (uint32_t));
10408
10409 if (dwp_file->version == 1)
10410 {
10411 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10412 comp_dir, signature,
10413 is_debug_types);
10414 }
10415 else
10416 {
10417 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
10421 return *slot;
10422 }
10423 if (signature_in_table == 0)
10424 return NULL;
10425 hash = (hash + hash2) & mask;
10426 }
10427
10428 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10429 " [in module %s]"),
10430 dwp_file->name);
10431 }
10432
10433 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10434 Open the file specified by FILE_NAME and hand it off to BFD for
10435 preliminary analysis. Return a newly initialized bfd *, which
10436 includes a canonicalized copy of FILE_NAME.
10437 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10438 SEARCH_CWD is true if the current directory is to be searched.
10439 It will be searched before debug-file-directory.
10440 If successful, the file is added to the bfd include table of the
10441 objfile's bfd (see gdb_bfd_record_inclusion).
10442 If unable to find/open the file, return NULL.
10443 NOTE: This function is derived from symfile_bfd_open. */
10444
10445 static bfd *
10446 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10447 {
10448 bfd *sym_bfd;
10449 int desc, flags;
10450 char *absolute_name;
10451 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10452 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10453 to debug_file_directory. */
10454 char *search_path;
10455 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10456
10457 if (search_cwd)
10458 {
10459 if (*debug_file_directory != '\0')
10460 search_path = concat (".", dirname_separator_string,
10461 debug_file_directory, NULL);
10462 else
10463 search_path = xstrdup (".");
10464 }
10465 else
10466 search_path = xstrdup (debug_file_directory);
10467
10468 flags = OPF_RETURN_REALPATH;
10469 if (is_dwp)
10470 flags |= OPF_SEARCH_IN_PATH;
10471 desc = openp (search_path, flags, file_name,
10472 O_RDONLY | O_BINARY, &absolute_name);
10473 xfree (search_path);
10474 if (desc < 0)
10475 return NULL;
10476
10477 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10478 xfree (absolute_name);
10479 if (sym_bfd == NULL)
10480 return NULL;
10481 bfd_set_cacheable (sym_bfd, 1);
10482
10483 if (!bfd_check_format (sym_bfd, bfd_object))
10484 {
10485 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10486 return NULL;
10487 }
10488
10489 /* Success. Record the bfd as having been included by the objfile's bfd.
10490 This is important because things like demangled_names_hash lives in the
10491 objfile's per_bfd space and may have references to things like symbol
10492 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10493 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10494
10495 return sym_bfd;
10496 }
10497
10498 /* Try to open DWO file FILE_NAME.
10499 COMP_DIR is the DW_AT_comp_dir attribute.
10500 The result is the bfd handle of the file.
10501 If there is a problem finding or opening the file, return NULL.
10502 Upon success, the canonicalized path of the file is stored in the bfd,
10503 same as symfile_bfd_open. */
10504
10505 static bfd *
10506 open_dwo_file (const char *file_name, const char *comp_dir)
10507 {
10508 bfd *abfd;
10509
10510 if (IS_ABSOLUTE_PATH (file_name))
10511 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10512
10513 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10514
10515 if (comp_dir != NULL)
10516 {
10517 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10518
10519 /* NOTE: If comp_dir is a relative path, this will also try the
10520 search path, which seems useful. */
10521 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10522 xfree (path_to_try);
10523 if (abfd != NULL)
10524 return abfd;
10525 }
10526
10527 /* That didn't work, try debug-file-directory, which, despite its name,
10528 is a list of paths. */
10529
10530 if (*debug_file_directory == '\0')
10531 return NULL;
10532
10533 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10534 }
10535
10536 /* This function is mapped across the sections and remembers the offset and
10537 size of each of the DWO debugging sections we are interested in. */
10538
10539 static void
10540 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10541 {
10542 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10543 const struct dwop_section_names *names = &dwop_section_names;
10544
10545 if (section_is_p (sectp->name, &names->abbrev_dwo))
10546 {
10547 dwo_sections->abbrev.s.asection = sectp;
10548 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->info_dwo))
10551 {
10552 dwo_sections->info.s.asection = sectp;
10553 dwo_sections->info.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->line_dwo))
10556 {
10557 dwo_sections->line.s.asection = sectp;
10558 dwo_sections->line.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->loc_dwo))
10561 {
10562 dwo_sections->loc.s.asection = sectp;
10563 dwo_sections->loc.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10566 {
10567 dwo_sections->macinfo.s.asection = sectp;
10568 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->macro_dwo))
10571 {
10572 dwo_sections->macro.s.asection = sectp;
10573 dwo_sections->macro.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->str_dwo))
10576 {
10577 dwo_sections->str.s.asection = sectp;
10578 dwo_sections->str.size = bfd_get_section_size (sectp);
10579 }
10580 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10581 {
10582 dwo_sections->str_offsets.s.asection = sectp;
10583 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10584 }
10585 else if (section_is_p (sectp->name, &names->types_dwo))
10586 {
10587 struct dwarf2_section_info type_section;
10588
10589 memset (&type_section, 0, sizeof (type_section));
10590 type_section.s.asection = sectp;
10591 type_section.size = bfd_get_section_size (sectp);
10592 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10593 &type_section);
10594 }
10595 }
10596
10597 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10598 by PER_CU. This is for the non-DWP case.
10599 The result is NULL if DWO_NAME can't be found. */
10600
10601 static struct dwo_file *
10602 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10603 const char *dwo_name, const char *comp_dir)
10604 {
10605 struct objfile *objfile = dwarf2_per_objfile->objfile;
10606 struct dwo_file *dwo_file;
10607 bfd *dbfd;
10608 struct cleanup *cleanups;
10609
10610 dbfd = open_dwo_file (dwo_name, comp_dir);
10611 if (dbfd == NULL)
10612 {
10613 if (dwarf_read_debug)
10614 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10615 return NULL;
10616 }
10617 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10618 dwo_file->dwo_name = dwo_name;
10619 dwo_file->comp_dir = comp_dir;
10620 dwo_file->dbfd = dbfd;
10621
10622 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10623
10624 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10625
10626 dwo_file->cu = create_dwo_cu (dwo_file);
10627
10628 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10629 dwo_file->sections.types);
10630
10631 discard_cleanups (cleanups);
10632
10633 if (dwarf_read_debug)
10634 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10635
10636 return dwo_file;
10637 }
10638
10639 /* This function is mapped across the sections and remembers the offset and
10640 size of each of the DWP debugging sections common to version 1 and 2 that
10641 we are interested in. */
10642
10643 static void
10644 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10645 void *dwp_file_ptr)
10646 {
10647 struct dwp_file *dwp_file = dwp_file_ptr;
10648 const struct dwop_section_names *names = &dwop_section_names;
10649 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10650
10651 /* Record the ELF section number for later lookup: this is what the
10652 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10653 gdb_assert (elf_section_nr < dwp_file->num_sections);
10654 dwp_file->elf_sections[elf_section_nr] = sectp;
10655
10656 /* Look for specific sections that we need. */
10657 if (section_is_p (sectp->name, &names->str_dwo))
10658 {
10659 dwp_file->sections.str.s.asection = sectp;
10660 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10661 }
10662 else if (section_is_p (sectp->name, &names->cu_index))
10663 {
10664 dwp_file->sections.cu_index.s.asection = sectp;
10665 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10666 }
10667 else if (section_is_p (sectp->name, &names->tu_index))
10668 {
10669 dwp_file->sections.tu_index.s.asection = sectp;
10670 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10671 }
10672 }
10673
10674 /* This function is mapped across the sections and remembers the offset and
10675 size of each of the DWP version 2 debugging sections that we are interested
10676 in. This is split into a separate function because we don't know if we
10677 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10678
10679 static void
10680 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10681 {
10682 struct dwp_file *dwp_file = dwp_file_ptr;
10683 const struct dwop_section_names *names = &dwop_section_names;
10684 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10685
10686 /* Record the ELF section number for later lookup: this is what the
10687 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10688 gdb_assert (elf_section_nr < dwp_file->num_sections);
10689 dwp_file->elf_sections[elf_section_nr] = sectp;
10690
10691 /* Look for specific sections that we need. */
10692 if (section_is_p (sectp->name, &names->abbrev_dwo))
10693 {
10694 dwp_file->sections.abbrev.s.asection = sectp;
10695 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->info_dwo))
10698 {
10699 dwp_file->sections.info.s.asection = sectp;
10700 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->line_dwo))
10703 {
10704 dwp_file->sections.line.s.asection = sectp;
10705 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10706 }
10707 else if (section_is_p (sectp->name, &names->loc_dwo))
10708 {
10709 dwp_file->sections.loc.s.asection = sectp;
10710 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10711 }
10712 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10713 {
10714 dwp_file->sections.macinfo.s.asection = sectp;
10715 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10716 }
10717 else if (section_is_p (sectp->name, &names->macro_dwo))
10718 {
10719 dwp_file->sections.macro.s.asection = sectp;
10720 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10723 {
10724 dwp_file->sections.str_offsets.s.asection = sectp;
10725 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->types_dwo))
10728 {
10729 dwp_file->sections.types.s.asection = sectp;
10730 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10731 }
10732 }
10733
10734 /* Hash function for dwp_file loaded CUs/TUs. */
10735
10736 static hashval_t
10737 hash_dwp_loaded_cutus (const void *item)
10738 {
10739 const struct dwo_unit *dwo_unit = item;
10740
10741 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10742 return dwo_unit->signature;
10743 }
10744
10745 /* Equality function for dwp_file loaded CUs/TUs. */
10746
10747 static int
10748 eq_dwp_loaded_cutus (const void *a, const void *b)
10749 {
10750 const struct dwo_unit *dua = a;
10751 const struct dwo_unit *dub = b;
10752
10753 return dua->signature == dub->signature;
10754 }
10755
10756 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10757
10758 static htab_t
10759 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10760 {
10761 return htab_create_alloc_ex (3,
10762 hash_dwp_loaded_cutus,
10763 eq_dwp_loaded_cutus,
10764 NULL,
10765 &objfile->objfile_obstack,
10766 hashtab_obstack_allocate,
10767 dummy_obstack_deallocate);
10768 }
10769
10770 /* Try to open DWP file FILE_NAME.
10771 The result is the bfd handle of the file.
10772 If there is a problem finding or opening the file, return NULL.
10773 Upon success, the canonicalized path of the file is stored in the bfd,
10774 same as symfile_bfd_open. */
10775
10776 static bfd *
10777 open_dwp_file (const char *file_name)
10778 {
10779 bfd *abfd;
10780
10781 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10782 if (abfd != NULL)
10783 return abfd;
10784
10785 /* Work around upstream bug 15652.
10786 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10787 [Whether that's a "bug" is debatable, but it is getting in our way.]
10788 We have no real idea where the dwp file is, because gdb's realpath-ing
10789 of the executable's path may have discarded the needed info.
10790 [IWBN if the dwp file name was recorded in the executable, akin to
10791 .gnu_debuglink, but that doesn't exist yet.]
10792 Strip the directory from FILE_NAME and search again. */
10793 if (*debug_file_directory != '\0')
10794 {
10795 /* Don't implicitly search the current directory here.
10796 If the user wants to search "." to handle this case,
10797 it must be added to debug-file-directory. */
10798 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10799 0 /*search_cwd*/);
10800 }
10801
10802 return NULL;
10803 }
10804
10805 /* Initialize the use of the DWP file for the current objfile.
10806 By convention the name of the DWP file is ${objfile}.dwp.
10807 The result is NULL if it can't be found. */
10808
10809 static struct dwp_file *
10810 open_and_init_dwp_file (void)
10811 {
10812 struct objfile *objfile = dwarf2_per_objfile->objfile;
10813 struct dwp_file *dwp_file;
10814 char *dwp_name;
10815 bfd *dbfd;
10816 struct cleanup *cleanups;
10817
10818 /* Try to find first .dwp for the binary file before any symbolic links
10819 resolving. */
10820 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10821 cleanups = make_cleanup (xfree, dwp_name);
10822
10823 dbfd = open_dwp_file (dwp_name);
10824 if (dbfd == NULL
10825 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10826 {
10827 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10828 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10829 make_cleanup (xfree, dwp_name);
10830 dbfd = open_dwp_file (dwp_name);
10831 }
10832
10833 if (dbfd == NULL)
10834 {
10835 if (dwarf_read_debug)
10836 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10837 do_cleanups (cleanups);
10838 return NULL;
10839 }
10840 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10841 dwp_file->name = bfd_get_filename (dbfd);
10842 dwp_file->dbfd = dbfd;
10843 do_cleanups (cleanups);
10844
10845 /* +1: section 0 is unused */
10846 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10847 dwp_file->elf_sections =
10848 OBSTACK_CALLOC (&objfile->objfile_obstack,
10849 dwp_file->num_sections, asection *);
10850
10851 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10852
10853 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10854
10855 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10856
10857 /* The DWP file version is stored in the hash table. Oh well. */
10858 if (dwp_file->cus->version != dwp_file->tus->version)
10859 {
10860 /* Technically speaking, we should try to limp along, but this is
10861 pretty bizarre. We use pulongest here because that's the established
10862 portability solution (e.g, we cannot use %u for uint32_t). */
10863 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10864 " TU version %s [in DWP file %s]"),
10865 pulongest (dwp_file->cus->version),
10866 pulongest (dwp_file->tus->version), dwp_name);
10867 }
10868 dwp_file->version = dwp_file->cus->version;
10869
10870 if (dwp_file->version == 2)
10871 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10872
10873 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10874 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10875
10876 if (dwarf_read_debug)
10877 {
10878 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10879 fprintf_unfiltered (gdb_stdlog,
10880 " %s CUs, %s TUs\n",
10881 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10882 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10883 }
10884
10885 return dwp_file;
10886 }
10887
10888 /* Wrapper around open_and_init_dwp_file, only open it once. */
10889
10890 static struct dwp_file *
10891 get_dwp_file (void)
10892 {
10893 if (! dwarf2_per_objfile->dwp_checked)
10894 {
10895 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10896 dwarf2_per_objfile->dwp_checked = 1;
10897 }
10898 return dwarf2_per_objfile->dwp_file;
10899 }
10900
10901 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10902 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10903 or in the DWP file for the objfile, referenced by THIS_UNIT.
10904 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10905 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10906
10907 This is called, for example, when wanting to read a variable with a
10908 complex location. Therefore we don't want to do file i/o for every call.
10909 Therefore we don't want to look for a DWO file on every call.
10910 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10911 then we check if we've already seen DWO_NAME, and only THEN do we check
10912 for a DWO file.
10913
10914 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10915 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10916
10917 static struct dwo_unit *
10918 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10919 const char *dwo_name, const char *comp_dir,
10920 ULONGEST signature, int is_debug_types)
10921 {
10922 struct objfile *objfile = dwarf2_per_objfile->objfile;
10923 const char *kind = is_debug_types ? "TU" : "CU";
10924 void **dwo_file_slot;
10925 struct dwo_file *dwo_file;
10926 struct dwp_file *dwp_file;
10927
10928 /* First see if there's a DWP file.
10929 If we have a DWP file but didn't find the DWO inside it, don't
10930 look for the original DWO file. It makes gdb behave differently
10931 depending on whether one is debugging in the build tree. */
10932
10933 dwp_file = get_dwp_file ();
10934 if (dwp_file != NULL)
10935 {
10936 const struct dwp_hash_table *dwp_htab =
10937 is_debug_types ? dwp_file->tus : dwp_file->cus;
10938
10939 if (dwp_htab != NULL)
10940 {
10941 struct dwo_unit *dwo_cutu =
10942 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10943 signature, is_debug_types);
10944
10945 if (dwo_cutu != NULL)
10946 {
10947 if (dwarf_read_debug)
10948 {
10949 fprintf_unfiltered (gdb_stdlog,
10950 "Virtual DWO %s %s found: @%s\n",
10951 kind, hex_string (signature),
10952 host_address_to_string (dwo_cutu));
10953 }
10954 return dwo_cutu;
10955 }
10956 }
10957 }
10958 else
10959 {
10960 /* No DWP file, look for the DWO file. */
10961
10962 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10963 if (*dwo_file_slot == NULL)
10964 {
10965 /* Read in the file and build a table of the CUs/TUs it contains. */
10966 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10967 }
10968 /* NOTE: This will be NULL if unable to open the file. */
10969 dwo_file = *dwo_file_slot;
10970
10971 if (dwo_file != NULL)
10972 {
10973 struct dwo_unit *dwo_cutu = NULL;
10974
10975 if (is_debug_types && dwo_file->tus)
10976 {
10977 struct dwo_unit find_dwo_cutu;
10978
10979 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10980 find_dwo_cutu.signature = signature;
10981 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10982 }
10983 else if (!is_debug_types && dwo_file->cu)
10984 {
10985 if (signature == dwo_file->cu->signature)
10986 dwo_cutu = dwo_file->cu;
10987 }
10988
10989 if (dwo_cutu != NULL)
10990 {
10991 if (dwarf_read_debug)
10992 {
10993 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10994 kind, dwo_name, hex_string (signature),
10995 host_address_to_string (dwo_cutu));
10996 }
10997 return dwo_cutu;
10998 }
10999 }
11000 }
11001
11002 /* We didn't find it. This could mean a dwo_id mismatch, or
11003 someone deleted the DWO/DWP file, or the search path isn't set up
11004 correctly to find the file. */
11005
11006 if (dwarf_read_debug)
11007 {
11008 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11009 kind, dwo_name, hex_string (signature));
11010 }
11011
11012 /* This is a warning and not a complaint because it can be caused by
11013 pilot error (e.g., user accidentally deleting the DWO). */
11014 {
11015 /* Print the name of the DWP file if we looked there, helps the user
11016 better diagnose the problem. */
11017 char *dwp_text = NULL;
11018 struct cleanup *cleanups;
11019
11020 if (dwp_file != NULL)
11021 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11022 cleanups = make_cleanup (xfree, dwp_text);
11023
11024 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11025 " [in module %s]"),
11026 kind, dwo_name, hex_string (signature),
11027 dwp_text != NULL ? dwp_text : "",
11028 this_unit->is_debug_types ? "TU" : "CU",
11029 this_unit->offset.sect_off, objfile_name (objfile));
11030
11031 do_cleanups (cleanups);
11032 }
11033 return NULL;
11034 }
11035
11036 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11037 See lookup_dwo_cutu_unit for details. */
11038
11039 static struct dwo_unit *
11040 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11041 const char *dwo_name, const char *comp_dir,
11042 ULONGEST signature)
11043 {
11044 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11045 }
11046
11047 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11048 See lookup_dwo_cutu_unit for details. */
11049
11050 static struct dwo_unit *
11051 lookup_dwo_type_unit (struct signatured_type *this_tu,
11052 const char *dwo_name, const char *comp_dir)
11053 {
11054 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11055 }
11056
11057 /* Traversal function for queue_and_load_all_dwo_tus. */
11058
11059 static int
11060 queue_and_load_dwo_tu (void **slot, void *info)
11061 {
11062 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11063 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11064 ULONGEST signature = dwo_unit->signature;
11065 struct signatured_type *sig_type =
11066 lookup_dwo_signatured_type (per_cu->cu, signature);
11067
11068 if (sig_type != NULL)
11069 {
11070 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11071
11072 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11073 a real dependency of PER_CU on SIG_TYPE. That is detected later
11074 while processing PER_CU. */
11075 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11076 load_full_type_unit (sig_cu);
11077 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11078 }
11079
11080 return 1;
11081 }
11082
11083 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11084 The DWO may have the only definition of the type, though it may not be
11085 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11086 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11087
11088 static void
11089 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11090 {
11091 struct dwo_unit *dwo_unit;
11092 struct dwo_file *dwo_file;
11093
11094 gdb_assert (!per_cu->is_debug_types);
11095 gdb_assert (get_dwp_file () == NULL);
11096 gdb_assert (per_cu->cu != NULL);
11097
11098 dwo_unit = per_cu->cu->dwo_unit;
11099 gdb_assert (dwo_unit != NULL);
11100
11101 dwo_file = dwo_unit->dwo_file;
11102 if (dwo_file->tus != NULL)
11103 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11104 }
11105
11106 /* Free all resources associated with DWO_FILE.
11107 Close the DWO file and munmap the sections.
11108 All memory should be on the objfile obstack. */
11109
11110 static void
11111 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11112 {
11113 int ix;
11114 struct dwarf2_section_info *section;
11115
11116 /* Note: dbfd is NULL for virtual DWO files. */
11117 gdb_bfd_unref (dwo_file->dbfd);
11118
11119 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11120 }
11121
11122 /* Wrapper for free_dwo_file for use in cleanups. */
11123
11124 static void
11125 free_dwo_file_cleanup (void *arg)
11126 {
11127 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11128 struct objfile *objfile = dwarf2_per_objfile->objfile;
11129
11130 free_dwo_file (dwo_file, objfile);
11131 }
11132
11133 /* Traversal function for free_dwo_files. */
11134
11135 static int
11136 free_dwo_file_from_slot (void **slot, void *info)
11137 {
11138 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11139 struct objfile *objfile = (struct objfile *) info;
11140
11141 free_dwo_file (dwo_file, objfile);
11142
11143 return 1;
11144 }
11145
11146 /* Free all resources associated with DWO_FILES. */
11147
11148 static void
11149 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11150 {
11151 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11152 }
11153 \f
11154 /* Read in various DIEs. */
11155
11156 /* qsort helper for inherit_abstract_dies. */
11157
11158 static int
11159 unsigned_int_compar (const void *ap, const void *bp)
11160 {
11161 unsigned int a = *(unsigned int *) ap;
11162 unsigned int b = *(unsigned int *) bp;
11163
11164 return (a > b) - (b > a);
11165 }
11166
11167 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11168 Inherit only the children of the DW_AT_abstract_origin DIE not being
11169 already referenced by DW_AT_abstract_origin from the children of the
11170 current DIE. */
11171
11172 static void
11173 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11174 {
11175 struct die_info *child_die;
11176 unsigned die_children_count;
11177 /* CU offsets which were referenced by children of the current DIE. */
11178 sect_offset *offsets;
11179 sect_offset *offsets_end, *offsetp;
11180 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11181 struct die_info *origin_die;
11182 /* Iterator of the ORIGIN_DIE children. */
11183 struct die_info *origin_child_die;
11184 struct cleanup *cleanups;
11185 struct attribute *attr;
11186 struct dwarf2_cu *origin_cu;
11187 struct pending **origin_previous_list_in_scope;
11188
11189 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11190 if (!attr)
11191 return;
11192
11193 /* Note that following die references may follow to a die in a
11194 different cu. */
11195
11196 origin_cu = cu;
11197 origin_die = follow_die_ref (die, attr, &origin_cu);
11198
11199 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11200 symbols in. */
11201 origin_previous_list_in_scope = origin_cu->list_in_scope;
11202 origin_cu->list_in_scope = cu->list_in_scope;
11203
11204 if (die->tag != origin_die->tag
11205 && !(die->tag == DW_TAG_inlined_subroutine
11206 && origin_die->tag == DW_TAG_subprogram))
11207 complaint (&symfile_complaints,
11208 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11209 die->offset.sect_off, origin_die->offset.sect_off);
11210
11211 child_die = die->child;
11212 die_children_count = 0;
11213 while (child_die && child_die->tag)
11214 {
11215 child_die = sibling_die (child_die);
11216 die_children_count++;
11217 }
11218 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11219 cleanups = make_cleanup (xfree, offsets);
11220
11221 offsets_end = offsets;
11222 for (child_die = die->child;
11223 child_die && child_die->tag;
11224 child_die = sibling_die (child_die))
11225 {
11226 struct die_info *child_origin_die;
11227 struct dwarf2_cu *child_origin_cu;
11228
11229 /* We are trying to process concrete instance entries:
11230 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11231 it's not relevant to our analysis here. i.e. detecting DIEs that are
11232 present in the abstract instance but not referenced in the concrete
11233 one. */
11234 if (child_die->tag == DW_TAG_GNU_call_site)
11235 continue;
11236
11237 /* For each CHILD_DIE, find the corresponding child of
11238 ORIGIN_DIE. If there is more than one layer of
11239 DW_AT_abstract_origin, follow them all; there shouldn't be,
11240 but GCC versions at least through 4.4 generate this (GCC PR
11241 40573). */
11242 child_origin_die = child_die;
11243 child_origin_cu = cu;
11244 while (1)
11245 {
11246 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11247 child_origin_cu);
11248 if (attr == NULL)
11249 break;
11250 child_origin_die = follow_die_ref (child_origin_die, attr,
11251 &child_origin_cu);
11252 }
11253
11254 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11255 counterpart may exist. */
11256 if (child_origin_die != child_die)
11257 {
11258 if (child_die->tag != child_origin_die->tag
11259 && !(child_die->tag == DW_TAG_inlined_subroutine
11260 && child_origin_die->tag == DW_TAG_subprogram))
11261 complaint (&symfile_complaints,
11262 _("Child DIE 0x%x and its abstract origin 0x%x have "
11263 "different tags"), child_die->offset.sect_off,
11264 child_origin_die->offset.sect_off);
11265 if (child_origin_die->parent != origin_die)
11266 complaint (&symfile_complaints,
11267 _("Child DIE 0x%x and its abstract origin 0x%x have "
11268 "different parents"), child_die->offset.sect_off,
11269 child_origin_die->offset.sect_off);
11270 else
11271 *offsets_end++ = child_origin_die->offset;
11272 }
11273 }
11274 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11275 unsigned_int_compar);
11276 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11277 if (offsetp[-1].sect_off == offsetp->sect_off)
11278 complaint (&symfile_complaints,
11279 _("Multiple children of DIE 0x%x refer "
11280 "to DIE 0x%x as their abstract origin"),
11281 die->offset.sect_off, offsetp->sect_off);
11282
11283 offsetp = offsets;
11284 origin_child_die = origin_die->child;
11285 while (origin_child_die && origin_child_die->tag)
11286 {
11287 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11288 while (offsetp < offsets_end
11289 && offsetp->sect_off < origin_child_die->offset.sect_off)
11290 offsetp++;
11291 if (offsetp >= offsets_end
11292 || offsetp->sect_off > origin_child_die->offset.sect_off)
11293 {
11294 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11295 Check whether we're already processing ORIGIN_CHILD_DIE.
11296 This can happen with mutually referenced abstract_origins.
11297 PR 16581. */
11298 if (!origin_child_die->in_process)
11299 process_die (origin_child_die, origin_cu);
11300 }
11301 origin_child_die = sibling_die (origin_child_die);
11302 }
11303 origin_cu->list_in_scope = origin_previous_list_in_scope;
11304
11305 do_cleanups (cleanups);
11306 }
11307
11308 static void
11309 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11310 {
11311 struct objfile *objfile = cu->objfile;
11312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11313 struct context_stack *newobj;
11314 CORE_ADDR lowpc;
11315 CORE_ADDR highpc;
11316 struct die_info *child_die;
11317 struct attribute *attr, *call_line, *call_file;
11318 const char *name;
11319 CORE_ADDR baseaddr;
11320 struct block *block;
11321 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11322 VEC (symbolp) *template_args = NULL;
11323 struct template_symbol *templ_func = NULL;
11324
11325 if (inlined_func)
11326 {
11327 /* If we do not have call site information, we can't show the
11328 caller of this inlined function. That's too confusing, so
11329 only use the scope for local variables. */
11330 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11331 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11332 if (call_line == NULL || call_file == NULL)
11333 {
11334 read_lexical_block_scope (die, cu);
11335 return;
11336 }
11337 }
11338
11339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11340
11341 name = dwarf2_name (die, cu);
11342
11343 /* Ignore functions with missing or empty names. These are actually
11344 illegal according to the DWARF standard. */
11345 if (name == NULL)
11346 {
11347 complaint (&symfile_complaints,
11348 _("missing name for subprogram DIE at %d"),
11349 die->offset.sect_off);
11350 return;
11351 }
11352
11353 /* Ignore functions with missing or invalid low and high pc attributes. */
11354 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11355 {
11356 attr = dwarf2_attr (die, DW_AT_external, cu);
11357 if (!attr || !DW_UNSND (attr))
11358 complaint (&symfile_complaints,
11359 _("cannot get low and high bounds "
11360 "for subprogram DIE at %d"),
11361 die->offset.sect_off);
11362 return;
11363 }
11364
11365 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11366 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11367
11368 /* If we have any template arguments, then we must allocate a
11369 different sort of symbol. */
11370 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11371 {
11372 if (child_die->tag == DW_TAG_template_type_param
11373 || child_die->tag == DW_TAG_template_value_param)
11374 {
11375 templ_func = allocate_template_symbol (objfile);
11376 templ_func->base.is_cplus_template_function = 1;
11377 break;
11378 }
11379 }
11380
11381 newobj = push_context (0, lowpc);
11382 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11383 (struct symbol *) templ_func);
11384
11385 /* If there is a location expression for DW_AT_frame_base, record
11386 it. */
11387 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11388 if (attr)
11389 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11390
11391 cu->list_in_scope = &local_symbols;
11392
11393 if (die->child != NULL)
11394 {
11395 child_die = die->child;
11396 while (child_die && child_die->tag)
11397 {
11398 if (child_die->tag == DW_TAG_template_type_param
11399 || child_die->tag == DW_TAG_template_value_param)
11400 {
11401 struct symbol *arg = new_symbol (child_die, NULL, cu);
11402
11403 if (arg != NULL)
11404 VEC_safe_push (symbolp, template_args, arg);
11405 }
11406 else
11407 process_die (child_die, cu);
11408 child_die = sibling_die (child_die);
11409 }
11410 }
11411
11412 inherit_abstract_dies (die, cu);
11413
11414 /* If we have a DW_AT_specification, we might need to import using
11415 directives from the context of the specification DIE. See the
11416 comment in determine_prefix. */
11417 if (cu->language == language_cplus
11418 && dwarf2_attr (die, DW_AT_specification, cu))
11419 {
11420 struct dwarf2_cu *spec_cu = cu;
11421 struct die_info *spec_die = die_specification (die, &spec_cu);
11422
11423 while (spec_die)
11424 {
11425 child_die = spec_die->child;
11426 while (child_die && child_die->tag)
11427 {
11428 if (child_die->tag == DW_TAG_imported_module)
11429 process_die (child_die, spec_cu);
11430 child_die = sibling_die (child_die);
11431 }
11432
11433 /* In some cases, GCC generates specification DIEs that
11434 themselves contain DW_AT_specification attributes. */
11435 spec_die = die_specification (spec_die, &spec_cu);
11436 }
11437 }
11438
11439 newobj = pop_context ();
11440 /* Make a block for the local symbols within. */
11441 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11442 lowpc, highpc);
11443
11444 /* For C++, set the block's scope. */
11445 if ((cu->language == language_cplus || cu->language == language_fortran)
11446 && cu->processing_has_namespace_info)
11447 block_set_scope (block, determine_prefix (die, cu),
11448 &objfile->objfile_obstack);
11449
11450 /* If we have address ranges, record them. */
11451 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11452
11453 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11454
11455 /* Attach template arguments to function. */
11456 if (! VEC_empty (symbolp, template_args))
11457 {
11458 gdb_assert (templ_func != NULL);
11459
11460 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11461 templ_func->template_arguments
11462 = obstack_alloc (&objfile->objfile_obstack,
11463 (templ_func->n_template_arguments
11464 * sizeof (struct symbol *)));
11465 memcpy (templ_func->template_arguments,
11466 VEC_address (symbolp, template_args),
11467 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11468 VEC_free (symbolp, template_args);
11469 }
11470
11471 /* In C++, we can have functions nested inside functions (e.g., when
11472 a function declares a class that has methods). This means that
11473 when we finish processing a function scope, we may need to go
11474 back to building a containing block's symbol lists. */
11475 local_symbols = newobj->locals;
11476 using_directives = newobj->using_directives;
11477
11478 /* If we've finished processing a top-level function, subsequent
11479 symbols go in the file symbol list. */
11480 if (outermost_context_p ())
11481 cu->list_in_scope = &file_symbols;
11482 }
11483
11484 /* Process all the DIES contained within a lexical block scope. Start
11485 a new scope, process the dies, and then close the scope. */
11486
11487 static void
11488 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11489 {
11490 struct objfile *objfile = cu->objfile;
11491 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11492 struct context_stack *newobj;
11493 CORE_ADDR lowpc, highpc;
11494 struct die_info *child_die;
11495 CORE_ADDR baseaddr;
11496
11497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11498
11499 /* Ignore blocks with missing or invalid low and high pc attributes. */
11500 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11501 as multiple lexical blocks? Handling children in a sane way would
11502 be nasty. Might be easier to properly extend generic blocks to
11503 describe ranges. */
11504 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11505 return;
11506 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11507 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11508
11509 push_context (0, lowpc);
11510 if (die->child != NULL)
11511 {
11512 child_die = die->child;
11513 while (child_die && child_die->tag)
11514 {
11515 process_die (child_die, cu);
11516 child_die = sibling_die (child_die);
11517 }
11518 }
11519 inherit_abstract_dies (die, cu);
11520 newobj = pop_context ();
11521
11522 if (local_symbols != NULL || using_directives != NULL)
11523 {
11524 struct block *block
11525 = finish_block (0, &local_symbols, newobj->old_blocks,
11526 newobj->start_addr, highpc);
11527
11528 /* Note that recording ranges after traversing children, as we
11529 do here, means that recording a parent's ranges entails
11530 walking across all its children's ranges as they appear in
11531 the address map, which is quadratic behavior.
11532
11533 It would be nicer to record the parent's ranges before
11534 traversing its children, simply overriding whatever you find
11535 there. But since we don't even decide whether to create a
11536 block until after we've traversed its children, that's hard
11537 to do. */
11538 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11539 }
11540 local_symbols = newobj->locals;
11541 using_directives = newobj->using_directives;
11542 }
11543
11544 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11545
11546 static void
11547 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11548 {
11549 struct objfile *objfile = cu->objfile;
11550 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11551 CORE_ADDR pc, baseaddr;
11552 struct attribute *attr;
11553 struct call_site *call_site, call_site_local;
11554 void **slot;
11555 int nparams;
11556 struct die_info *child_die;
11557
11558 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11559
11560 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11561 if (!attr)
11562 {
11563 complaint (&symfile_complaints,
11564 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11565 "DIE 0x%x [in module %s]"),
11566 die->offset.sect_off, objfile_name (objfile));
11567 return;
11568 }
11569 pc = attr_value_as_address (attr) + baseaddr;
11570 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11571
11572 if (cu->call_site_htab == NULL)
11573 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11574 NULL, &objfile->objfile_obstack,
11575 hashtab_obstack_allocate, NULL);
11576 call_site_local.pc = pc;
11577 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11578 if (*slot != NULL)
11579 {
11580 complaint (&symfile_complaints,
11581 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11582 "DIE 0x%x [in module %s]"),
11583 paddress (gdbarch, pc), die->offset.sect_off,
11584 objfile_name (objfile));
11585 return;
11586 }
11587
11588 /* Count parameters at the caller. */
11589
11590 nparams = 0;
11591 for (child_die = die->child; child_die && child_die->tag;
11592 child_die = sibling_die (child_die))
11593 {
11594 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11595 {
11596 complaint (&symfile_complaints,
11597 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11598 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11599 child_die->tag, child_die->offset.sect_off,
11600 objfile_name (objfile));
11601 continue;
11602 }
11603
11604 nparams++;
11605 }
11606
11607 call_site = obstack_alloc (&objfile->objfile_obstack,
11608 (sizeof (*call_site)
11609 + (sizeof (*call_site->parameter)
11610 * (nparams - 1))));
11611 *slot = call_site;
11612 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11613 call_site->pc = pc;
11614
11615 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11616 {
11617 struct die_info *func_die;
11618
11619 /* Skip also over DW_TAG_inlined_subroutine. */
11620 for (func_die = die->parent;
11621 func_die && func_die->tag != DW_TAG_subprogram
11622 && func_die->tag != DW_TAG_subroutine_type;
11623 func_die = func_die->parent);
11624
11625 /* DW_AT_GNU_all_call_sites is a superset
11626 of DW_AT_GNU_all_tail_call_sites. */
11627 if (func_die
11628 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11629 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11630 {
11631 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11632 not complete. But keep CALL_SITE for look ups via call_site_htab,
11633 both the initial caller containing the real return address PC and
11634 the final callee containing the current PC of a chain of tail
11635 calls do not need to have the tail call list complete. But any
11636 function candidate for a virtual tail call frame searched via
11637 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11638 determined unambiguously. */
11639 }
11640 else
11641 {
11642 struct type *func_type = NULL;
11643
11644 if (func_die)
11645 func_type = get_die_type (func_die, cu);
11646 if (func_type != NULL)
11647 {
11648 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11649
11650 /* Enlist this call site to the function. */
11651 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11652 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11653 }
11654 else
11655 complaint (&symfile_complaints,
11656 _("Cannot find function owning DW_TAG_GNU_call_site "
11657 "DIE 0x%x [in module %s]"),
11658 die->offset.sect_off, objfile_name (objfile));
11659 }
11660 }
11661
11662 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11663 if (attr == NULL)
11664 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11665 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11666 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11667 /* Keep NULL DWARF_BLOCK. */;
11668 else if (attr_form_is_block (attr))
11669 {
11670 struct dwarf2_locexpr_baton *dlbaton;
11671
11672 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11673 dlbaton->data = DW_BLOCK (attr)->data;
11674 dlbaton->size = DW_BLOCK (attr)->size;
11675 dlbaton->per_cu = cu->per_cu;
11676
11677 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11678 }
11679 else if (attr_form_is_ref (attr))
11680 {
11681 struct dwarf2_cu *target_cu = cu;
11682 struct die_info *target_die;
11683
11684 target_die = follow_die_ref (die, attr, &target_cu);
11685 gdb_assert (target_cu->objfile == objfile);
11686 if (die_is_declaration (target_die, target_cu))
11687 {
11688 const char *target_physname = NULL;
11689 struct attribute *target_attr;
11690
11691 /* Prefer the mangled name; otherwise compute the demangled one. */
11692 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11693 if (target_attr == NULL)
11694 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11695 target_cu);
11696 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11697 target_physname = DW_STRING (target_attr);
11698 else
11699 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11700 if (target_physname == NULL)
11701 complaint (&symfile_complaints,
11702 _("DW_AT_GNU_call_site_target target DIE has invalid "
11703 "physname, for referencing DIE 0x%x [in module %s]"),
11704 die->offset.sect_off, objfile_name (objfile));
11705 else
11706 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11707 }
11708 else
11709 {
11710 CORE_ADDR lowpc;
11711
11712 /* DW_AT_entry_pc should be preferred. */
11713 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11714 complaint (&symfile_complaints,
11715 _("DW_AT_GNU_call_site_target target DIE has invalid "
11716 "low pc, for referencing DIE 0x%x [in module %s]"),
11717 die->offset.sect_off, objfile_name (objfile));
11718 else
11719 {
11720 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11721 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11722 }
11723 }
11724 }
11725 else
11726 complaint (&symfile_complaints,
11727 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11728 "block nor reference, for DIE 0x%x [in module %s]"),
11729 die->offset.sect_off, objfile_name (objfile));
11730
11731 call_site->per_cu = cu->per_cu;
11732
11733 for (child_die = die->child;
11734 child_die && child_die->tag;
11735 child_die = sibling_die (child_die))
11736 {
11737 struct call_site_parameter *parameter;
11738 struct attribute *loc, *origin;
11739
11740 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11741 {
11742 /* Already printed the complaint above. */
11743 continue;
11744 }
11745
11746 gdb_assert (call_site->parameter_count < nparams);
11747 parameter = &call_site->parameter[call_site->parameter_count];
11748
11749 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11750 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11751 register is contained in DW_AT_GNU_call_site_value. */
11752
11753 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11754 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11755 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11756 {
11757 sect_offset offset;
11758
11759 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11760 offset = dwarf2_get_ref_die_offset (origin);
11761 if (!offset_in_cu_p (&cu->header, offset))
11762 {
11763 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11764 binding can be done only inside one CU. Such referenced DIE
11765 therefore cannot be even moved to DW_TAG_partial_unit. */
11766 complaint (&symfile_complaints,
11767 _("DW_AT_abstract_origin offset is not in CU for "
11768 "DW_TAG_GNU_call_site child DIE 0x%x "
11769 "[in module %s]"),
11770 child_die->offset.sect_off, objfile_name (objfile));
11771 continue;
11772 }
11773 parameter->u.param_offset.cu_off = (offset.sect_off
11774 - cu->header.offset.sect_off);
11775 }
11776 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11777 {
11778 complaint (&symfile_complaints,
11779 _("No DW_FORM_block* DW_AT_location for "
11780 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11781 child_die->offset.sect_off, objfile_name (objfile));
11782 continue;
11783 }
11784 else
11785 {
11786 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11787 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11788 if (parameter->u.dwarf_reg != -1)
11789 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11790 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11791 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11792 &parameter->u.fb_offset))
11793 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11794 else
11795 {
11796 complaint (&symfile_complaints,
11797 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11798 "for DW_FORM_block* DW_AT_location is supported for "
11799 "DW_TAG_GNU_call_site child DIE 0x%x "
11800 "[in module %s]"),
11801 child_die->offset.sect_off, objfile_name (objfile));
11802 continue;
11803 }
11804 }
11805
11806 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11807 if (!attr_form_is_block (attr))
11808 {
11809 complaint (&symfile_complaints,
11810 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11811 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11812 child_die->offset.sect_off, objfile_name (objfile));
11813 continue;
11814 }
11815 parameter->value = DW_BLOCK (attr)->data;
11816 parameter->value_size = DW_BLOCK (attr)->size;
11817
11818 /* Parameters are not pre-cleared by memset above. */
11819 parameter->data_value = NULL;
11820 parameter->data_value_size = 0;
11821 call_site->parameter_count++;
11822
11823 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11824 if (attr)
11825 {
11826 if (!attr_form_is_block (attr))
11827 complaint (&symfile_complaints,
11828 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11829 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11830 child_die->offset.sect_off, objfile_name (objfile));
11831 else
11832 {
11833 parameter->data_value = DW_BLOCK (attr)->data;
11834 parameter->data_value_size = DW_BLOCK (attr)->size;
11835 }
11836 }
11837 }
11838 }
11839
11840 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11841 Return 1 if the attributes are present and valid, otherwise, return 0.
11842 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11843
11844 static int
11845 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11846 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11847 struct partial_symtab *ranges_pst)
11848 {
11849 struct objfile *objfile = cu->objfile;
11850 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11851 struct comp_unit_head *cu_header = &cu->header;
11852 bfd *obfd = objfile->obfd;
11853 unsigned int addr_size = cu_header->addr_size;
11854 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11855 /* Base address selection entry. */
11856 CORE_ADDR base;
11857 int found_base;
11858 unsigned int dummy;
11859 const gdb_byte *buffer;
11860 CORE_ADDR marker;
11861 int low_set;
11862 CORE_ADDR low = 0;
11863 CORE_ADDR high = 0;
11864 CORE_ADDR baseaddr;
11865
11866 found_base = cu->base_known;
11867 base = cu->base_address;
11868
11869 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11870 if (offset >= dwarf2_per_objfile->ranges.size)
11871 {
11872 complaint (&symfile_complaints,
11873 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11874 offset);
11875 return 0;
11876 }
11877 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11878
11879 /* Read in the largest possible address. */
11880 marker = read_address (obfd, buffer, cu, &dummy);
11881 if ((marker & mask) == mask)
11882 {
11883 /* If we found the largest possible address, then
11884 read the base address. */
11885 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11886 buffer += 2 * addr_size;
11887 offset += 2 * addr_size;
11888 found_base = 1;
11889 }
11890
11891 low_set = 0;
11892
11893 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11894
11895 while (1)
11896 {
11897 CORE_ADDR range_beginning, range_end;
11898
11899 range_beginning = read_address (obfd, buffer, cu, &dummy);
11900 buffer += addr_size;
11901 range_end = read_address (obfd, buffer, cu, &dummy);
11902 buffer += addr_size;
11903 offset += 2 * addr_size;
11904
11905 /* An end of list marker is a pair of zero addresses. */
11906 if (range_beginning == 0 && range_end == 0)
11907 /* Found the end of list entry. */
11908 break;
11909
11910 /* Each base address selection entry is a pair of 2 values.
11911 The first is the largest possible address, the second is
11912 the base address. Check for a base address here. */
11913 if ((range_beginning & mask) == mask)
11914 {
11915 /* If we found the largest possible address, then
11916 read the base address. */
11917 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11918 found_base = 1;
11919 continue;
11920 }
11921
11922 if (!found_base)
11923 {
11924 /* We have no valid base address for the ranges
11925 data. */
11926 complaint (&symfile_complaints,
11927 _("Invalid .debug_ranges data (no base address)"));
11928 return 0;
11929 }
11930
11931 if (range_beginning > range_end)
11932 {
11933 /* Inverted range entries are invalid. */
11934 complaint (&symfile_complaints,
11935 _("Invalid .debug_ranges data (inverted range)"));
11936 return 0;
11937 }
11938
11939 /* Empty range entries have no effect. */
11940 if (range_beginning == range_end)
11941 continue;
11942
11943 range_beginning += base;
11944 range_end += base;
11945
11946 /* A not-uncommon case of bad debug info.
11947 Don't pollute the addrmap with bad data. */
11948 if (range_beginning + baseaddr == 0
11949 && !dwarf2_per_objfile->has_section_at_zero)
11950 {
11951 complaint (&symfile_complaints,
11952 _(".debug_ranges entry has start address of zero"
11953 " [in module %s]"), objfile_name (objfile));
11954 continue;
11955 }
11956
11957 if (ranges_pst != NULL)
11958 {
11959 CORE_ADDR lowpc;
11960 CORE_ADDR highpc;
11961
11962 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11963 range_beginning + baseaddr);
11964 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11965 range_end + baseaddr);
11966 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11967 ranges_pst);
11968 }
11969
11970 /* FIXME: This is recording everything as a low-high
11971 segment of consecutive addresses. We should have a
11972 data structure for discontiguous block ranges
11973 instead. */
11974 if (! low_set)
11975 {
11976 low = range_beginning;
11977 high = range_end;
11978 low_set = 1;
11979 }
11980 else
11981 {
11982 if (range_beginning < low)
11983 low = range_beginning;
11984 if (range_end > high)
11985 high = range_end;
11986 }
11987 }
11988
11989 if (! low_set)
11990 /* If the first entry is an end-of-list marker, the range
11991 describes an empty scope, i.e. no instructions. */
11992 return 0;
11993
11994 if (low_return)
11995 *low_return = low;
11996 if (high_return)
11997 *high_return = high;
11998 return 1;
11999 }
12000
12001 /* Get low and high pc attributes from a die. Return 1 if the attributes
12002 are present and valid, otherwise, return 0. Return -1 if the range is
12003 discontinuous, i.e. derived from DW_AT_ranges information. */
12004
12005 static int
12006 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12007 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12008 struct partial_symtab *pst)
12009 {
12010 struct attribute *attr;
12011 struct attribute *attr_high;
12012 CORE_ADDR low = 0;
12013 CORE_ADDR high = 0;
12014 int ret = 0;
12015
12016 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12017 if (attr_high)
12018 {
12019 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12020 if (attr)
12021 {
12022 low = attr_value_as_address (attr);
12023 high = attr_value_as_address (attr_high);
12024 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12025 high += low;
12026 }
12027 else
12028 /* Found high w/o low attribute. */
12029 return 0;
12030
12031 /* Found consecutive range of addresses. */
12032 ret = 1;
12033 }
12034 else
12035 {
12036 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12037 if (attr != NULL)
12038 {
12039 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12040 We take advantage of the fact that DW_AT_ranges does not appear
12041 in DW_TAG_compile_unit of DWO files. */
12042 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12043 unsigned int ranges_offset = (DW_UNSND (attr)
12044 + (need_ranges_base
12045 ? cu->ranges_base
12046 : 0));
12047
12048 /* Value of the DW_AT_ranges attribute is the offset in the
12049 .debug_ranges section. */
12050 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12051 return 0;
12052 /* Found discontinuous range of addresses. */
12053 ret = -1;
12054 }
12055 }
12056
12057 /* read_partial_die has also the strict LOW < HIGH requirement. */
12058 if (high <= low)
12059 return 0;
12060
12061 /* When using the GNU linker, .gnu.linkonce. sections are used to
12062 eliminate duplicate copies of functions and vtables and such.
12063 The linker will arbitrarily choose one and discard the others.
12064 The AT_*_pc values for such functions refer to local labels in
12065 these sections. If the section from that file was discarded, the
12066 labels are not in the output, so the relocs get a value of 0.
12067 If this is a discarded function, mark the pc bounds as invalid,
12068 so that GDB will ignore it. */
12069 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12070 return 0;
12071
12072 *lowpc = low;
12073 if (highpc)
12074 *highpc = high;
12075 return ret;
12076 }
12077
12078 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12079 its low and high PC addresses. Do nothing if these addresses could not
12080 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12081 and HIGHPC to the high address if greater than HIGHPC. */
12082
12083 static void
12084 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12086 struct dwarf2_cu *cu)
12087 {
12088 CORE_ADDR low, high;
12089 struct die_info *child = die->child;
12090
12091 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12092 {
12093 *lowpc = min (*lowpc, low);
12094 *highpc = max (*highpc, high);
12095 }
12096
12097 /* If the language does not allow nested subprograms (either inside
12098 subprograms or lexical blocks), we're done. */
12099 if (cu->language != language_ada)
12100 return;
12101
12102 /* Check all the children of the given DIE. If it contains nested
12103 subprograms, then check their pc bounds. Likewise, we need to
12104 check lexical blocks as well, as they may also contain subprogram
12105 definitions. */
12106 while (child && child->tag)
12107 {
12108 if (child->tag == DW_TAG_subprogram
12109 || child->tag == DW_TAG_lexical_block)
12110 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12111 child = sibling_die (child);
12112 }
12113 }
12114
12115 /* Get the low and high pc's represented by the scope DIE, and store
12116 them in *LOWPC and *HIGHPC. If the correct values can't be
12117 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12118
12119 static void
12120 get_scope_pc_bounds (struct die_info *die,
12121 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12122 struct dwarf2_cu *cu)
12123 {
12124 CORE_ADDR best_low = (CORE_ADDR) -1;
12125 CORE_ADDR best_high = (CORE_ADDR) 0;
12126 CORE_ADDR current_low, current_high;
12127
12128 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12129 {
12130 best_low = current_low;
12131 best_high = current_high;
12132 }
12133 else
12134 {
12135 struct die_info *child = die->child;
12136
12137 while (child && child->tag)
12138 {
12139 switch (child->tag) {
12140 case DW_TAG_subprogram:
12141 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12142 break;
12143 case DW_TAG_namespace:
12144 case DW_TAG_module:
12145 /* FIXME: carlton/2004-01-16: Should we do this for
12146 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12147 that current GCC's always emit the DIEs corresponding
12148 to definitions of methods of classes as children of a
12149 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12150 the DIEs giving the declarations, which could be
12151 anywhere). But I don't see any reason why the
12152 standards says that they have to be there. */
12153 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12154
12155 if (current_low != ((CORE_ADDR) -1))
12156 {
12157 best_low = min (best_low, current_low);
12158 best_high = max (best_high, current_high);
12159 }
12160 break;
12161 default:
12162 /* Ignore. */
12163 break;
12164 }
12165
12166 child = sibling_die (child);
12167 }
12168 }
12169
12170 *lowpc = best_low;
12171 *highpc = best_high;
12172 }
12173
12174 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12175 in DIE. */
12176
12177 static void
12178 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12179 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12180 {
12181 struct objfile *objfile = cu->objfile;
12182 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12183 struct attribute *attr;
12184 struct attribute *attr_high;
12185
12186 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12187 if (attr_high)
12188 {
12189 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12190 if (attr)
12191 {
12192 CORE_ADDR low = attr_value_as_address (attr);
12193 CORE_ADDR high = attr_value_as_address (attr_high);
12194
12195 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12196 high += low;
12197
12198 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12199 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12200 record_block_range (block, low, high - 1);
12201 }
12202 }
12203
12204 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12205 if (attr)
12206 {
12207 bfd *obfd = objfile->obfd;
12208 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12209 We take advantage of the fact that DW_AT_ranges does not appear
12210 in DW_TAG_compile_unit of DWO files. */
12211 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12212
12213 /* The value of the DW_AT_ranges attribute is the offset of the
12214 address range list in the .debug_ranges section. */
12215 unsigned long offset = (DW_UNSND (attr)
12216 + (need_ranges_base ? cu->ranges_base : 0));
12217 const gdb_byte *buffer;
12218
12219 /* For some target architectures, but not others, the
12220 read_address function sign-extends the addresses it returns.
12221 To recognize base address selection entries, we need a
12222 mask. */
12223 unsigned int addr_size = cu->header.addr_size;
12224 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12225
12226 /* The base address, to which the next pair is relative. Note
12227 that this 'base' is a DWARF concept: most entries in a range
12228 list are relative, to reduce the number of relocs against the
12229 debugging information. This is separate from this function's
12230 'baseaddr' argument, which GDB uses to relocate debugging
12231 information from a shared library based on the address at
12232 which the library was loaded. */
12233 CORE_ADDR base = cu->base_address;
12234 int base_known = cu->base_known;
12235
12236 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12237 if (offset >= dwarf2_per_objfile->ranges.size)
12238 {
12239 complaint (&symfile_complaints,
12240 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12241 offset);
12242 return;
12243 }
12244 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12245
12246 for (;;)
12247 {
12248 unsigned int bytes_read;
12249 CORE_ADDR start, end;
12250
12251 start = read_address (obfd, buffer, cu, &bytes_read);
12252 buffer += bytes_read;
12253 end = read_address (obfd, buffer, cu, &bytes_read);
12254 buffer += bytes_read;
12255
12256 /* Did we find the end of the range list? */
12257 if (start == 0 && end == 0)
12258 break;
12259
12260 /* Did we find a base address selection entry? */
12261 else if ((start & base_select_mask) == base_select_mask)
12262 {
12263 base = end;
12264 base_known = 1;
12265 }
12266
12267 /* We found an ordinary address range. */
12268 else
12269 {
12270 if (!base_known)
12271 {
12272 complaint (&symfile_complaints,
12273 _("Invalid .debug_ranges data "
12274 "(no base address)"));
12275 return;
12276 }
12277
12278 if (start > end)
12279 {
12280 /* Inverted range entries are invalid. */
12281 complaint (&symfile_complaints,
12282 _("Invalid .debug_ranges data "
12283 "(inverted range)"));
12284 return;
12285 }
12286
12287 /* Empty range entries have no effect. */
12288 if (start == end)
12289 continue;
12290
12291 start += base + baseaddr;
12292 end += base + baseaddr;
12293
12294 /* A not-uncommon case of bad debug info.
12295 Don't pollute the addrmap with bad data. */
12296 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12297 {
12298 complaint (&symfile_complaints,
12299 _(".debug_ranges entry has start address of zero"
12300 " [in module %s]"), objfile_name (objfile));
12301 continue;
12302 }
12303
12304 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12305 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12306 record_block_range (block, start, end - 1);
12307 }
12308 }
12309 }
12310 }
12311
12312 /* Check whether the producer field indicates either of GCC < 4.6, or the
12313 Intel C/C++ compiler, and cache the result in CU. */
12314
12315 static void
12316 check_producer (struct dwarf2_cu *cu)
12317 {
12318 const char *cs;
12319 int major, minor;
12320
12321 if (cu->producer == NULL)
12322 {
12323 /* For unknown compilers expect their behavior is DWARF version
12324 compliant.
12325
12326 GCC started to support .debug_types sections by -gdwarf-4 since
12327 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12328 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12329 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12330 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12331 }
12332 else if (producer_is_gcc (cu->producer, &major, &minor))
12333 {
12334 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12335 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12336 }
12337 else if (startswith (cu->producer, "Intel(R) C"))
12338 cu->producer_is_icc = 1;
12339 else
12340 {
12341 /* For other non-GCC compilers, expect their behavior is DWARF version
12342 compliant. */
12343 }
12344
12345 cu->checked_producer = 1;
12346 }
12347
12348 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12349 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12350 during 4.6.0 experimental. */
12351
12352 static int
12353 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12354 {
12355 if (!cu->checked_producer)
12356 check_producer (cu);
12357
12358 return cu->producer_is_gxx_lt_4_6;
12359 }
12360
12361 /* Return the default accessibility type if it is not overriden by
12362 DW_AT_accessibility. */
12363
12364 static enum dwarf_access_attribute
12365 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12366 {
12367 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12368 {
12369 /* The default DWARF 2 accessibility for members is public, the default
12370 accessibility for inheritance is private. */
12371
12372 if (die->tag != DW_TAG_inheritance)
12373 return DW_ACCESS_public;
12374 else
12375 return DW_ACCESS_private;
12376 }
12377 else
12378 {
12379 /* DWARF 3+ defines the default accessibility a different way. The same
12380 rules apply now for DW_TAG_inheritance as for the members and it only
12381 depends on the container kind. */
12382
12383 if (die->parent->tag == DW_TAG_class_type)
12384 return DW_ACCESS_private;
12385 else
12386 return DW_ACCESS_public;
12387 }
12388 }
12389
12390 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12391 offset. If the attribute was not found return 0, otherwise return
12392 1. If it was found but could not properly be handled, set *OFFSET
12393 to 0. */
12394
12395 static int
12396 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12397 LONGEST *offset)
12398 {
12399 struct attribute *attr;
12400
12401 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12402 if (attr != NULL)
12403 {
12404 *offset = 0;
12405
12406 /* Note that we do not check for a section offset first here.
12407 This is because DW_AT_data_member_location is new in DWARF 4,
12408 so if we see it, we can assume that a constant form is really
12409 a constant and not a section offset. */
12410 if (attr_form_is_constant (attr))
12411 *offset = dwarf2_get_attr_constant_value (attr, 0);
12412 else if (attr_form_is_section_offset (attr))
12413 dwarf2_complex_location_expr_complaint ();
12414 else if (attr_form_is_block (attr))
12415 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12416 else
12417 dwarf2_complex_location_expr_complaint ();
12418
12419 return 1;
12420 }
12421
12422 return 0;
12423 }
12424
12425 /* Add an aggregate field to the field list. */
12426
12427 static void
12428 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12429 struct dwarf2_cu *cu)
12430 {
12431 struct objfile *objfile = cu->objfile;
12432 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12433 struct nextfield *new_field;
12434 struct attribute *attr;
12435 struct field *fp;
12436 const char *fieldname = "";
12437
12438 /* Allocate a new field list entry and link it in. */
12439 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12440 make_cleanup (xfree, new_field);
12441 memset (new_field, 0, sizeof (struct nextfield));
12442
12443 if (die->tag == DW_TAG_inheritance)
12444 {
12445 new_field->next = fip->baseclasses;
12446 fip->baseclasses = new_field;
12447 }
12448 else
12449 {
12450 new_field->next = fip->fields;
12451 fip->fields = new_field;
12452 }
12453 fip->nfields++;
12454
12455 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12456 if (attr)
12457 new_field->accessibility = DW_UNSND (attr);
12458 else
12459 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12460 if (new_field->accessibility != DW_ACCESS_public)
12461 fip->non_public_fields = 1;
12462
12463 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12464 if (attr)
12465 new_field->virtuality = DW_UNSND (attr);
12466 else
12467 new_field->virtuality = DW_VIRTUALITY_none;
12468
12469 fp = &new_field->field;
12470
12471 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12472 {
12473 LONGEST offset;
12474
12475 /* Data member other than a C++ static data member. */
12476
12477 /* Get type of field. */
12478 fp->type = die_type (die, cu);
12479
12480 SET_FIELD_BITPOS (*fp, 0);
12481
12482 /* Get bit size of field (zero if none). */
12483 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12484 if (attr)
12485 {
12486 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12487 }
12488 else
12489 {
12490 FIELD_BITSIZE (*fp) = 0;
12491 }
12492
12493 /* Get bit offset of field. */
12494 if (handle_data_member_location (die, cu, &offset))
12495 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12496 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12497 if (attr)
12498 {
12499 if (gdbarch_bits_big_endian (gdbarch))
12500 {
12501 /* For big endian bits, the DW_AT_bit_offset gives the
12502 additional bit offset from the MSB of the containing
12503 anonymous object to the MSB of the field. We don't
12504 have to do anything special since we don't need to
12505 know the size of the anonymous object. */
12506 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12507 }
12508 else
12509 {
12510 /* For little endian bits, compute the bit offset to the
12511 MSB of the anonymous object, subtract off the number of
12512 bits from the MSB of the field to the MSB of the
12513 object, and then subtract off the number of bits of
12514 the field itself. The result is the bit offset of
12515 the LSB of the field. */
12516 int anonymous_size;
12517 int bit_offset = DW_UNSND (attr);
12518
12519 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12520 if (attr)
12521 {
12522 /* The size of the anonymous object containing
12523 the bit field is explicit, so use the
12524 indicated size (in bytes). */
12525 anonymous_size = DW_UNSND (attr);
12526 }
12527 else
12528 {
12529 /* The size of the anonymous object containing
12530 the bit field must be inferred from the type
12531 attribute of the data member containing the
12532 bit field. */
12533 anonymous_size = TYPE_LENGTH (fp->type);
12534 }
12535 SET_FIELD_BITPOS (*fp,
12536 (FIELD_BITPOS (*fp)
12537 + anonymous_size * bits_per_byte
12538 - bit_offset - FIELD_BITSIZE (*fp)));
12539 }
12540 }
12541
12542 /* Get name of field. */
12543 fieldname = dwarf2_name (die, cu);
12544 if (fieldname == NULL)
12545 fieldname = "";
12546
12547 /* The name is already allocated along with this objfile, so we don't
12548 need to duplicate it for the type. */
12549 fp->name = fieldname;
12550
12551 /* Change accessibility for artificial fields (e.g. virtual table
12552 pointer or virtual base class pointer) to private. */
12553 if (dwarf2_attr (die, DW_AT_artificial, cu))
12554 {
12555 FIELD_ARTIFICIAL (*fp) = 1;
12556 new_field->accessibility = DW_ACCESS_private;
12557 fip->non_public_fields = 1;
12558 }
12559 }
12560 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12561 {
12562 /* C++ static member. */
12563
12564 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12565 is a declaration, but all versions of G++ as of this writing
12566 (so through at least 3.2.1) incorrectly generate
12567 DW_TAG_variable tags. */
12568
12569 const char *physname;
12570
12571 /* Get name of field. */
12572 fieldname = dwarf2_name (die, cu);
12573 if (fieldname == NULL)
12574 return;
12575
12576 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12577 if (attr
12578 /* Only create a symbol if this is an external value.
12579 new_symbol checks this and puts the value in the global symbol
12580 table, which we want. If it is not external, new_symbol
12581 will try to put the value in cu->list_in_scope which is wrong. */
12582 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12583 {
12584 /* A static const member, not much different than an enum as far as
12585 we're concerned, except that we can support more types. */
12586 new_symbol (die, NULL, cu);
12587 }
12588
12589 /* Get physical name. */
12590 physname = dwarf2_physname (fieldname, die, cu);
12591
12592 /* The name is already allocated along with this objfile, so we don't
12593 need to duplicate it for the type. */
12594 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12595 FIELD_TYPE (*fp) = die_type (die, cu);
12596 FIELD_NAME (*fp) = fieldname;
12597 }
12598 else if (die->tag == DW_TAG_inheritance)
12599 {
12600 LONGEST offset;
12601
12602 /* C++ base class field. */
12603 if (handle_data_member_location (die, cu, &offset))
12604 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12605 FIELD_BITSIZE (*fp) = 0;
12606 FIELD_TYPE (*fp) = die_type (die, cu);
12607 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12608 fip->nbaseclasses++;
12609 }
12610 }
12611
12612 /* Add a typedef defined in the scope of the FIP's class. */
12613
12614 static void
12615 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12616 struct dwarf2_cu *cu)
12617 {
12618 struct objfile *objfile = cu->objfile;
12619 struct typedef_field_list *new_field;
12620 struct attribute *attr;
12621 struct typedef_field *fp;
12622 char *fieldname = "";
12623
12624 /* Allocate a new field list entry and link it in. */
12625 new_field = xzalloc (sizeof (*new_field));
12626 make_cleanup (xfree, new_field);
12627
12628 gdb_assert (die->tag == DW_TAG_typedef);
12629
12630 fp = &new_field->field;
12631
12632 /* Get name of field. */
12633 fp->name = dwarf2_name (die, cu);
12634 if (fp->name == NULL)
12635 return;
12636
12637 fp->type = read_type_die (die, cu);
12638
12639 new_field->next = fip->typedef_field_list;
12640 fip->typedef_field_list = new_field;
12641 fip->typedef_field_list_count++;
12642 }
12643
12644 /* Create the vector of fields, and attach it to the type. */
12645
12646 static void
12647 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12648 struct dwarf2_cu *cu)
12649 {
12650 int nfields = fip->nfields;
12651
12652 /* Record the field count, allocate space for the array of fields,
12653 and create blank accessibility bitfields if necessary. */
12654 TYPE_NFIELDS (type) = nfields;
12655 TYPE_FIELDS (type) = (struct field *)
12656 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12657 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12658
12659 if (fip->non_public_fields && cu->language != language_ada)
12660 {
12661 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12662
12663 TYPE_FIELD_PRIVATE_BITS (type) =
12664 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12665 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12666
12667 TYPE_FIELD_PROTECTED_BITS (type) =
12668 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12669 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12670
12671 TYPE_FIELD_IGNORE_BITS (type) =
12672 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12673 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12674 }
12675
12676 /* If the type has baseclasses, allocate and clear a bit vector for
12677 TYPE_FIELD_VIRTUAL_BITS. */
12678 if (fip->nbaseclasses && cu->language != language_ada)
12679 {
12680 int num_bytes = B_BYTES (fip->nbaseclasses);
12681 unsigned char *pointer;
12682
12683 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12684 pointer = TYPE_ALLOC (type, num_bytes);
12685 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12686 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12687 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12688 }
12689
12690 /* Copy the saved-up fields into the field vector. Start from the head of
12691 the list, adding to the tail of the field array, so that they end up in
12692 the same order in the array in which they were added to the list. */
12693 while (nfields-- > 0)
12694 {
12695 struct nextfield *fieldp;
12696
12697 if (fip->fields)
12698 {
12699 fieldp = fip->fields;
12700 fip->fields = fieldp->next;
12701 }
12702 else
12703 {
12704 fieldp = fip->baseclasses;
12705 fip->baseclasses = fieldp->next;
12706 }
12707
12708 TYPE_FIELD (type, nfields) = fieldp->field;
12709 switch (fieldp->accessibility)
12710 {
12711 case DW_ACCESS_private:
12712 if (cu->language != language_ada)
12713 SET_TYPE_FIELD_PRIVATE (type, nfields);
12714 break;
12715
12716 case DW_ACCESS_protected:
12717 if (cu->language != language_ada)
12718 SET_TYPE_FIELD_PROTECTED (type, nfields);
12719 break;
12720
12721 case DW_ACCESS_public:
12722 break;
12723
12724 default:
12725 /* Unknown accessibility. Complain and treat it as public. */
12726 {
12727 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12728 fieldp->accessibility);
12729 }
12730 break;
12731 }
12732 if (nfields < fip->nbaseclasses)
12733 {
12734 switch (fieldp->virtuality)
12735 {
12736 case DW_VIRTUALITY_virtual:
12737 case DW_VIRTUALITY_pure_virtual:
12738 if (cu->language == language_ada)
12739 error (_("unexpected virtuality in component of Ada type"));
12740 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12741 break;
12742 }
12743 }
12744 }
12745 }
12746
12747 /* Return true if this member function is a constructor, false
12748 otherwise. */
12749
12750 static int
12751 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12752 {
12753 const char *fieldname;
12754 const char *type_name;
12755 int len;
12756
12757 if (die->parent == NULL)
12758 return 0;
12759
12760 if (die->parent->tag != DW_TAG_structure_type
12761 && die->parent->tag != DW_TAG_union_type
12762 && die->parent->tag != DW_TAG_class_type)
12763 return 0;
12764
12765 fieldname = dwarf2_name (die, cu);
12766 type_name = dwarf2_name (die->parent, cu);
12767 if (fieldname == NULL || type_name == NULL)
12768 return 0;
12769
12770 len = strlen (fieldname);
12771 return (strncmp (fieldname, type_name, len) == 0
12772 && (type_name[len] == '\0' || type_name[len] == '<'));
12773 }
12774
12775 /* Add a member function to the proper fieldlist. */
12776
12777 static void
12778 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12779 struct type *type, struct dwarf2_cu *cu)
12780 {
12781 struct objfile *objfile = cu->objfile;
12782 struct attribute *attr;
12783 struct fnfieldlist *flp;
12784 int i;
12785 struct fn_field *fnp;
12786 const char *fieldname;
12787 struct nextfnfield *new_fnfield;
12788 struct type *this_type;
12789 enum dwarf_access_attribute accessibility;
12790
12791 if (cu->language == language_ada)
12792 error (_("unexpected member function in Ada type"));
12793
12794 /* Get name of member function. */
12795 fieldname = dwarf2_name (die, cu);
12796 if (fieldname == NULL)
12797 return;
12798
12799 /* Look up member function name in fieldlist. */
12800 for (i = 0; i < fip->nfnfields; i++)
12801 {
12802 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12803 break;
12804 }
12805
12806 /* Create new list element if necessary. */
12807 if (i < fip->nfnfields)
12808 flp = &fip->fnfieldlists[i];
12809 else
12810 {
12811 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12812 {
12813 fip->fnfieldlists = (struct fnfieldlist *)
12814 xrealloc (fip->fnfieldlists,
12815 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12816 * sizeof (struct fnfieldlist));
12817 if (fip->nfnfields == 0)
12818 make_cleanup (free_current_contents, &fip->fnfieldlists);
12819 }
12820 flp = &fip->fnfieldlists[fip->nfnfields];
12821 flp->name = fieldname;
12822 flp->length = 0;
12823 flp->head = NULL;
12824 i = fip->nfnfields++;
12825 }
12826
12827 /* Create a new member function field and chain it to the field list
12828 entry. */
12829 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12830 make_cleanup (xfree, new_fnfield);
12831 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12832 new_fnfield->next = flp->head;
12833 flp->head = new_fnfield;
12834 flp->length++;
12835
12836 /* Fill in the member function field info. */
12837 fnp = &new_fnfield->fnfield;
12838
12839 /* Delay processing of the physname until later. */
12840 if (cu->language == language_cplus || cu->language == language_java)
12841 {
12842 add_to_method_list (type, i, flp->length - 1, fieldname,
12843 die, cu);
12844 }
12845 else
12846 {
12847 const char *physname = dwarf2_physname (fieldname, die, cu);
12848 fnp->physname = physname ? physname : "";
12849 }
12850
12851 fnp->type = alloc_type (objfile);
12852 this_type = read_type_die (die, cu);
12853 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12854 {
12855 int nparams = TYPE_NFIELDS (this_type);
12856
12857 /* TYPE is the domain of this method, and THIS_TYPE is the type
12858 of the method itself (TYPE_CODE_METHOD). */
12859 smash_to_method_type (fnp->type, type,
12860 TYPE_TARGET_TYPE (this_type),
12861 TYPE_FIELDS (this_type),
12862 TYPE_NFIELDS (this_type),
12863 TYPE_VARARGS (this_type));
12864
12865 /* Handle static member functions.
12866 Dwarf2 has no clean way to discern C++ static and non-static
12867 member functions. G++ helps GDB by marking the first
12868 parameter for non-static member functions (which is the this
12869 pointer) as artificial. We obtain this information from
12870 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12871 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12872 fnp->voffset = VOFFSET_STATIC;
12873 }
12874 else
12875 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12876 dwarf2_full_name (fieldname, die, cu));
12877
12878 /* Get fcontext from DW_AT_containing_type if present. */
12879 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12880 fnp->fcontext = die_containing_type (die, cu);
12881
12882 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12883 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12884
12885 /* Get accessibility. */
12886 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12887 if (attr)
12888 accessibility = DW_UNSND (attr);
12889 else
12890 accessibility = dwarf2_default_access_attribute (die, cu);
12891 switch (accessibility)
12892 {
12893 case DW_ACCESS_private:
12894 fnp->is_private = 1;
12895 break;
12896 case DW_ACCESS_protected:
12897 fnp->is_protected = 1;
12898 break;
12899 }
12900
12901 /* Check for artificial methods. */
12902 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12903 if (attr && DW_UNSND (attr) != 0)
12904 fnp->is_artificial = 1;
12905
12906 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12907
12908 /* Get index in virtual function table if it is a virtual member
12909 function. For older versions of GCC, this is an offset in the
12910 appropriate virtual table, as specified by DW_AT_containing_type.
12911 For everyone else, it is an expression to be evaluated relative
12912 to the object address. */
12913
12914 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12915 if (attr)
12916 {
12917 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12918 {
12919 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12920 {
12921 /* Old-style GCC. */
12922 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12923 }
12924 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12925 || (DW_BLOCK (attr)->size > 1
12926 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12927 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12928 {
12929 struct dwarf_block blk;
12930 int offset;
12931
12932 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12933 ? 1 : 2);
12934 blk.size = DW_BLOCK (attr)->size - offset;
12935 blk.data = DW_BLOCK (attr)->data + offset;
12936 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12937 if ((fnp->voffset % cu->header.addr_size) != 0)
12938 dwarf2_complex_location_expr_complaint ();
12939 else
12940 fnp->voffset /= cu->header.addr_size;
12941 fnp->voffset += 2;
12942 }
12943 else
12944 dwarf2_complex_location_expr_complaint ();
12945
12946 if (!fnp->fcontext)
12947 {
12948 /* If there is no `this' field and no DW_AT_containing_type,
12949 we cannot actually find a base class context for the
12950 vtable! */
12951 if (TYPE_NFIELDS (this_type) == 0
12952 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12953 {
12954 complaint (&symfile_complaints,
12955 _("cannot determine context for virtual member "
12956 "function \"%s\" (offset %d)"),
12957 fieldname, die->offset.sect_off);
12958 }
12959 else
12960 {
12961 fnp->fcontext
12962 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12963 }
12964 }
12965 }
12966 else if (attr_form_is_section_offset (attr))
12967 {
12968 dwarf2_complex_location_expr_complaint ();
12969 }
12970 else
12971 {
12972 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12973 fieldname);
12974 }
12975 }
12976 else
12977 {
12978 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12979 if (attr && DW_UNSND (attr))
12980 {
12981 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12982 complaint (&symfile_complaints,
12983 _("Member function \"%s\" (offset %d) is virtual "
12984 "but the vtable offset is not specified"),
12985 fieldname, die->offset.sect_off);
12986 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12987 TYPE_CPLUS_DYNAMIC (type) = 1;
12988 }
12989 }
12990 }
12991
12992 /* Create the vector of member function fields, and attach it to the type. */
12993
12994 static void
12995 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12996 struct dwarf2_cu *cu)
12997 {
12998 struct fnfieldlist *flp;
12999 int i;
13000
13001 if (cu->language == language_ada)
13002 error (_("unexpected member functions in Ada type"));
13003
13004 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13005 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13006 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13007
13008 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13009 {
13010 struct nextfnfield *nfp = flp->head;
13011 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13012 int k;
13013
13014 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13015 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13016 fn_flp->fn_fields = (struct fn_field *)
13017 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13018 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13019 fn_flp->fn_fields[k] = nfp->fnfield;
13020 }
13021
13022 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13023 }
13024
13025 /* Returns non-zero if NAME is the name of a vtable member in CU's
13026 language, zero otherwise. */
13027 static int
13028 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13029 {
13030 static const char vptr[] = "_vptr";
13031 static const char vtable[] = "vtable";
13032
13033 /* Look for the C++ and Java forms of the vtable. */
13034 if ((cu->language == language_java
13035 && startswith (name, vtable))
13036 || (startswith (name, vptr)
13037 && is_cplus_marker (name[sizeof (vptr) - 1])))
13038 return 1;
13039
13040 return 0;
13041 }
13042
13043 /* GCC outputs unnamed structures that are really pointers to member
13044 functions, with the ABI-specified layout. If TYPE describes
13045 such a structure, smash it into a member function type.
13046
13047 GCC shouldn't do this; it should just output pointer to member DIEs.
13048 This is GCC PR debug/28767. */
13049
13050 static void
13051 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13052 {
13053 struct type *pfn_type, *self_type, *new_type;
13054
13055 /* Check for a structure with no name and two children. */
13056 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13057 return;
13058
13059 /* Check for __pfn and __delta members. */
13060 if (TYPE_FIELD_NAME (type, 0) == NULL
13061 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13062 || TYPE_FIELD_NAME (type, 1) == NULL
13063 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13064 return;
13065
13066 /* Find the type of the method. */
13067 pfn_type = TYPE_FIELD_TYPE (type, 0);
13068 if (pfn_type == NULL
13069 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13070 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13071 return;
13072
13073 /* Look for the "this" argument. */
13074 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13075 if (TYPE_NFIELDS (pfn_type) == 0
13076 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13077 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13078 return;
13079
13080 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13081 new_type = alloc_type (objfile);
13082 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13083 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13084 TYPE_VARARGS (pfn_type));
13085 smash_to_methodptr_type (type, new_type);
13086 }
13087
13088 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13089 (icc). */
13090
13091 static int
13092 producer_is_icc (struct dwarf2_cu *cu)
13093 {
13094 if (!cu->checked_producer)
13095 check_producer (cu);
13096
13097 return cu->producer_is_icc;
13098 }
13099
13100 /* Called when we find the DIE that starts a structure or union scope
13101 (definition) to create a type for the structure or union. Fill in
13102 the type's name and general properties; the members will not be
13103 processed until process_structure_scope. A symbol table entry for
13104 the type will also not be done until process_structure_scope (assuming
13105 the type has a name).
13106
13107 NOTE: we need to call these functions regardless of whether or not the
13108 DIE has a DW_AT_name attribute, since it might be an anonymous
13109 structure or union. This gets the type entered into our set of
13110 user defined types. */
13111
13112 static struct type *
13113 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13114 {
13115 struct objfile *objfile = cu->objfile;
13116 struct type *type;
13117 struct attribute *attr;
13118 const char *name;
13119
13120 /* If the definition of this type lives in .debug_types, read that type.
13121 Don't follow DW_AT_specification though, that will take us back up
13122 the chain and we want to go down. */
13123 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13124 if (attr)
13125 {
13126 type = get_DW_AT_signature_type (die, attr, cu);
13127
13128 /* The type's CU may not be the same as CU.
13129 Ensure TYPE is recorded with CU in die_type_hash. */
13130 return set_die_type (die, type, cu);
13131 }
13132
13133 type = alloc_type (objfile);
13134 INIT_CPLUS_SPECIFIC (type);
13135
13136 name = dwarf2_name (die, cu);
13137 if (name != NULL)
13138 {
13139 if (cu->language == language_cplus
13140 || cu->language == language_java)
13141 {
13142 const char *full_name = dwarf2_full_name (name, die, cu);
13143
13144 /* dwarf2_full_name might have already finished building the DIE's
13145 type. If so, there is no need to continue. */
13146 if (get_die_type (die, cu) != NULL)
13147 return get_die_type (die, cu);
13148
13149 TYPE_TAG_NAME (type) = full_name;
13150 if (die->tag == DW_TAG_structure_type
13151 || die->tag == DW_TAG_class_type)
13152 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13153 }
13154 else
13155 {
13156 /* The name is already allocated along with this objfile, so
13157 we don't need to duplicate it for the type. */
13158 TYPE_TAG_NAME (type) = name;
13159 if (die->tag == DW_TAG_class_type)
13160 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13161 }
13162 }
13163
13164 if (die->tag == DW_TAG_structure_type)
13165 {
13166 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13167 }
13168 else if (die->tag == DW_TAG_union_type)
13169 {
13170 TYPE_CODE (type) = TYPE_CODE_UNION;
13171 }
13172 else
13173 {
13174 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13175 }
13176
13177 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13178 TYPE_DECLARED_CLASS (type) = 1;
13179
13180 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13181 if (attr)
13182 {
13183 TYPE_LENGTH (type) = DW_UNSND (attr);
13184 }
13185 else
13186 {
13187 TYPE_LENGTH (type) = 0;
13188 }
13189
13190 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13191 {
13192 /* ICC does not output the required DW_AT_declaration
13193 on incomplete types, but gives them a size of zero. */
13194 TYPE_STUB (type) = 1;
13195 }
13196 else
13197 TYPE_STUB_SUPPORTED (type) = 1;
13198
13199 if (die_is_declaration (die, cu))
13200 TYPE_STUB (type) = 1;
13201 else if (attr == NULL && die->child == NULL
13202 && producer_is_realview (cu->producer))
13203 /* RealView does not output the required DW_AT_declaration
13204 on incomplete types. */
13205 TYPE_STUB (type) = 1;
13206
13207 /* We need to add the type field to the die immediately so we don't
13208 infinitely recurse when dealing with pointers to the structure
13209 type within the structure itself. */
13210 set_die_type (die, type, cu);
13211
13212 /* set_die_type should be already done. */
13213 set_descriptive_type (type, die, cu);
13214
13215 return type;
13216 }
13217
13218 /* Finish creating a structure or union type, including filling in
13219 its members and creating a symbol for it. */
13220
13221 static void
13222 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13223 {
13224 struct objfile *objfile = cu->objfile;
13225 struct die_info *child_die;
13226 struct type *type;
13227
13228 type = get_die_type (die, cu);
13229 if (type == NULL)
13230 type = read_structure_type (die, cu);
13231
13232 if (die->child != NULL && ! die_is_declaration (die, cu))
13233 {
13234 struct field_info fi;
13235 VEC (symbolp) *template_args = NULL;
13236 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13237
13238 memset (&fi, 0, sizeof (struct field_info));
13239
13240 child_die = die->child;
13241
13242 while (child_die && child_die->tag)
13243 {
13244 if (child_die->tag == DW_TAG_member
13245 || child_die->tag == DW_TAG_variable)
13246 {
13247 /* NOTE: carlton/2002-11-05: A C++ static data member
13248 should be a DW_TAG_member that is a declaration, but
13249 all versions of G++ as of this writing (so through at
13250 least 3.2.1) incorrectly generate DW_TAG_variable
13251 tags for them instead. */
13252 dwarf2_add_field (&fi, child_die, cu);
13253 }
13254 else if (child_die->tag == DW_TAG_subprogram)
13255 {
13256 /* C++ member function. */
13257 dwarf2_add_member_fn (&fi, child_die, type, cu);
13258 }
13259 else if (child_die->tag == DW_TAG_inheritance)
13260 {
13261 /* C++ base class field. */
13262 dwarf2_add_field (&fi, child_die, cu);
13263 }
13264 else if (child_die->tag == DW_TAG_typedef)
13265 dwarf2_add_typedef (&fi, child_die, cu);
13266 else if (child_die->tag == DW_TAG_template_type_param
13267 || child_die->tag == DW_TAG_template_value_param)
13268 {
13269 struct symbol *arg = new_symbol (child_die, NULL, cu);
13270
13271 if (arg != NULL)
13272 VEC_safe_push (symbolp, template_args, arg);
13273 }
13274
13275 child_die = sibling_die (child_die);
13276 }
13277
13278 /* Attach template arguments to type. */
13279 if (! VEC_empty (symbolp, template_args))
13280 {
13281 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13282 TYPE_N_TEMPLATE_ARGUMENTS (type)
13283 = VEC_length (symbolp, template_args);
13284 TYPE_TEMPLATE_ARGUMENTS (type)
13285 = obstack_alloc (&objfile->objfile_obstack,
13286 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13287 * sizeof (struct symbol *)));
13288 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13289 VEC_address (symbolp, template_args),
13290 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13291 * sizeof (struct symbol *)));
13292 VEC_free (symbolp, template_args);
13293 }
13294
13295 /* Attach fields and member functions to the type. */
13296 if (fi.nfields)
13297 dwarf2_attach_fields_to_type (&fi, type, cu);
13298 if (fi.nfnfields)
13299 {
13300 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13301
13302 /* Get the type which refers to the base class (possibly this
13303 class itself) which contains the vtable pointer for the current
13304 class from the DW_AT_containing_type attribute. This use of
13305 DW_AT_containing_type is a GNU extension. */
13306
13307 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13308 {
13309 struct type *t = die_containing_type (die, cu);
13310
13311 set_type_vptr_basetype (type, t);
13312 if (type == t)
13313 {
13314 int i;
13315
13316 /* Our own class provides vtbl ptr. */
13317 for (i = TYPE_NFIELDS (t) - 1;
13318 i >= TYPE_N_BASECLASSES (t);
13319 --i)
13320 {
13321 const char *fieldname = TYPE_FIELD_NAME (t, i);
13322
13323 if (is_vtable_name (fieldname, cu))
13324 {
13325 set_type_vptr_fieldno (type, i);
13326 break;
13327 }
13328 }
13329
13330 /* Complain if virtual function table field not found. */
13331 if (i < TYPE_N_BASECLASSES (t))
13332 complaint (&symfile_complaints,
13333 _("virtual function table pointer "
13334 "not found when defining class '%s'"),
13335 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13336 "");
13337 }
13338 else
13339 {
13340 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13341 }
13342 }
13343 else if (cu->producer
13344 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13345 {
13346 /* The IBM XLC compiler does not provide direct indication
13347 of the containing type, but the vtable pointer is
13348 always named __vfp. */
13349
13350 int i;
13351
13352 for (i = TYPE_NFIELDS (type) - 1;
13353 i >= TYPE_N_BASECLASSES (type);
13354 --i)
13355 {
13356 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13357 {
13358 set_type_vptr_fieldno (type, i);
13359 set_type_vptr_basetype (type, type);
13360 break;
13361 }
13362 }
13363 }
13364 }
13365
13366 /* Copy fi.typedef_field_list linked list elements content into the
13367 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13368 if (fi.typedef_field_list)
13369 {
13370 int i = fi.typedef_field_list_count;
13371
13372 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13373 TYPE_TYPEDEF_FIELD_ARRAY (type)
13374 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13375 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13376
13377 /* Reverse the list order to keep the debug info elements order. */
13378 while (--i >= 0)
13379 {
13380 struct typedef_field *dest, *src;
13381
13382 dest = &TYPE_TYPEDEF_FIELD (type, i);
13383 src = &fi.typedef_field_list->field;
13384 fi.typedef_field_list = fi.typedef_field_list->next;
13385 *dest = *src;
13386 }
13387 }
13388
13389 do_cleanups (back_to);
13390
13391 if (HAVE_CPLUS_STRUCT (type))
13392 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13393 }
13394
13395 quirk_gcc_member_function_pointer (type, objfile);
13396
13397 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13398 snapshots) has been known to create a die giving a declaration
13399 for a class that has, as a child, a die giving a definition for a
13400 nested class. So we have to process our children even if the
13401 current die is a declaration. Normally, of course, a declaration
13402 won't have any children at all. */
13403
13404 child_die = die->child;
13405
13406 while (child_die != NULL && child_die->tag)
13407 {
13408 if (child_die->tag == DW_TAG_member
13409 || child_die->tag == DW_TAG_variable
13410 || child_die->tag == DW_TAG_inheritance
13411 || child_die->tag == DW_TAG_template_value_param
13412 || child_die->tag == DW_TAG_template_type_param)
13413 {
13414 /* Do nothing. */
13415 }
13416 else
13417 process_die (child_die, cu);
13418
13419 child_die = sibling_die (child_die);
13420 }
13421
13422 /* Do not consider external references. According to the DWARF standard,
13423 these DIEs are identified by the fact that they have no byte_size
13424 attribute, and a declaration attribute. */
13425 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13426 || !die_is_declaration (die, cu))
13427 new_symbol (die, type, cu);
13428 }
13429
13430 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13431 update TYPE using some information only available in DIE's children. */
13432
13433 static void
13434 update_enumeration_type_from_children (struct die_info *die,
13435 struct type *type,
13436 struct dwarf2_cu *cu)
13437 {
13438 struct obstack obstack;
13439 struct die_info *child_die;
13440 int unsigned_enum = 1;
13441 int flag_enum = 1;
13442 ULONGEST mask = 0;
13443 struct cleanup *old_chain;
13444
13445 obstack_init (&obstack);
13446 old_chain = make_cleanup_obstack_free (&obstack);
13447
13448 for (child_die = die->child;
13449 child_die != NULL && child_die->tag;
13450 child_die = sibling_die (child_die))
13451 {
13452 struct attribute *attr;
13453 LONGEST value;
13454 const gdb_byte *bytes;
13455 struct dwarf2_locexpr_baton *baton;
13456 const char *name;
13457
13458 if (child_die->tag != DW_TAG_enumerator)
13459 continue;
13460
13461 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13462 if (attr == NULL)
13463 continue;
13464
13465 name = dwarf2_name (child_die, cu);
13466 if (name == NULL)
13467 name = "<anonymous enumerator>";
13468
13469 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13470 &value, &bytes, &baton);
13471 if (value < 0)
13472 {
13473 unsigned_enum = 0;
13474 flag_enum = 0;
13475 }
13476 else if ((mask & value) != 0)
13477 flag_enum = 0;
13478 else
13479 mask |= value;
13480
13481 /* If we already know that the enum type is neither unsigned, nor
13482 a flag type, no need to look at the rest of the enumerates. */
13483 if (!unsigned_enum && !flag_enum)
13484 break;
13485 }
13486
13487 if (unsigned_enum)
13488 TYPE_UNSIGNED (type) = 1;
13489 if (flag_enum)
13490 TYPE_FLAG_ENUM (type) = 1;
13491
13492 do_cleanups (old_chain);
13493 }
13494
13495 /* Given a DW_AT_enumeration_type die, set its type. We do not
13496 complete the type's fields yet, or create any symbols. */
13497
13498 static struct type *
13499 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13500 {
13501 struct objfile *objfile = cu->objfile;
13502 struct type *type;
13503 struct attribute *attr;
13504 const char *name;
13505
13506 /* If the definition of this type lives in .debug_types, read that type.
13507 Don't follow DW_AT_specification though, that will take us back up
13508 the chain and we want to go down. */
13509 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13510 if (attr)
13511 {
13512 type = get_DW_AT_signature_type (die, attr, cu);
13513
13514 /* The type's CU may not be the same as CU.
13515 Ensure TYPE is recorded with CU in die_type_hash. */
13516 return set_die_type (die, type, cu);
13517 }
13518
13519 type = alloc_type (objfile);
13520
13521 TYPE_CODE (type) = TYPE_CODE_ENUM;
13522 name = dwarf2_full_name (NULL, die, cu);
13523 if (name != NULL)
13524 TYPE_TAG_NAME (type) = name;
13525
13526 attr = dwarf2_attr (die, DW_AT_type, cu);
13527 if (attr != NULL)
13528 {
13529 struct type *underlying_type = die_type (die, cu);
13530
13531 TYPE_TARGET_TYPE (type) = underlying_type;
13532 }
13533
13534 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13535 if (attr)
13536 {
13537 TYPE_LENGTH (type) = DW_UNSND (attr);
13538 }
13539 else
13540 {
13541 TYPE_LENGTH (type) = 0;
13542 }
13543
13544 /* The enumeration DIE can be incomplete. In Ada, any type can be
13545 declared as private in the package spec, and then defined only
13546 inside the package body. Such types are known as Taft Amendment
13547 Types. When another package uses such a type, an incomplete DIE
13548 may be generated by the compiler. */
13549 if (die_is_declaration (die, cu))
13550 TYPE_STUB (type) = 1;
13551
13552 /* Finish the creation of this type by using the enum's children.
13553 We must call this even when the underlying type has been provided
13554 so that we can determine if we're looking at a "flag" enum. */
13555 update_enumeration_type_from_children (die, type, cu);
13556
13557 /* If this type has an underlying type that is not a stub, then we
13558 may use its attributes. We always use the "unsigned" attribute
13559 in this situation, because ordinarily we guess whether the type
13560 is unsigned -- but the guess can be wrong and the underlying type
13561 can tell us the reality. However, we defer to a local size
13562 attribute if one exists, because this lets the compiler override
13563 the underlying type if needed. */
13564 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13565 {
13566 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13567 if (TYPE_LENGTH (type) == 0)
13568 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13569 }
13570
13571 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13572
13573 return set_die_type (die, type, cu);
13574 }
13575
13576 /* Given a pointer to a die which begins an enumeration, process all
13577 the dies that define the members of the enumeration, and create the
13578 symbol for the enumeration type.
13579
13580 NOTE: We reverse the order of the element list. */
13581
13582 static void
13583 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13584 {
13585 struct type *this_type;
13586
13587 this_type = get_die_type (die, cu);
13588 if (this_type == NULL)
13589 this_type = read_enumeration_type (die, cu);
13590
13591 if (die->child != NULL)
13592 {
13593 struct die_info *child_die;
13594 struct symbol *sym;
13595 struct field *fields = NULL;
13596 int num_fields = 0;
13597 const char *name;
13598
13599 child_die = die->child;
13600 while (child_die && child_die->tag)
13601 {
13602 if (child_die->tag != DW_TAG_enumerator)
13603 {
13604 process_die (child_die, cu);
13605 }
13606 else
13607 {
13608 name = dwarf2_name (child_die, cu);
13609 if (name)
13610 {
13611 sym = new_symbol (child_die, this_type, cu);
13612
13613 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13614 {
13615 fields = (struct field *)
13616 xrealloc (fields,
13617 (num_fields + DW_FIELD_ALLOC_CHUNK)
13618 * sizeof (struct field));
13619 }
13620
13621 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13622 FIELD_TYPE (fields[num_fields]) = NULL;
13623 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13624 FIELD_BITSIZE (fields[num_fields]) = 0;
13625
13626 num_fields++;
13627 }
13628 }
13629
13630 child_die = sibling_die (child_die);
13631 }
13632
13633 if (num_fields)
13634 {
13635 TYPE_NFIELDS (this_type) = num_fields;
13636 TYPE_FIELDS (this_type) = (struct field *)
13637 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13638 memcpy (TYPE_FIELDS (this_type), fields,
13639 sizeof (struct field) * num_fields);
13640 xfree (fields);
13641 }
13642 }
13643
13644 /* If we are reading an enum from a .debug_types unit, and the enum
13645 is a declaration, and the enum is not the signatured type in the
13646 unit, then we do not want to add a symbol for it. Adding a
13647 symbol would in some cases obscure the true definition of the
13648 enum, giving users an incomplete type when the definition is
13649 actually available. Note that we do not want to do this for all
13650 enums which are just declarations, because C++0x allows forward
13651 enum declarations. */
13652 if (cu->per_cu->is_debug_types
13653 && die_is_declaration (die, cu))
13654 {
13655 struct signatured_type *sig_type;
13656
13657 sig_type = (struct signatured_type *) cu->per_cu;
13658 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13659 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13660 return;
13661 }
13662
13663 new_symbol (die, this_type, cu);
13664 }
13665
13666 /* Extract all information from a DW_TAG_array_type DIE and put it in
13667 the DIE's type field. For now, this only handles one dimensional
13668 arrays. */
13669
13670 static struct type *
13671 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13672 {
13673 struct objfile *objfile = cu->objfile;
13674 struct die_info *child_die;
13675 struct type *type;
13676 struct type *element_type, *range_type, *index_type;
13677 struct type **range_types = NULL;
13678 struct attribute *attr;
13679 int ndim = 0;
13680 struct cleanup *back_to;
13681 const char *name;
13682 unsigned int bit_stride = 0;
13683
13684 element_type = die_type (die, cu);
13685
13686 /* The die_type call above may have already set the type for this DIE. */
13687 type = get_die_type (die, cu);
13688 if (type)
13689 return type;
13690
13691 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13692 if (attr != NULL)
13693 bit_stride = DW_UNSND (attr) * 8;
13694
13695 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13696 if (attr != NULL)
13697 bit_stride = DW_UNSND (attr);
13698
13699 /* Irix 6.2 native cc creates array types without children for
13700 arrays with unspecified length. */
13701 if (die->child == NULL)
13702 {
13703 index_type = objfile_type (objfile)->builtin_int;
13704 range_type = create_static_range_type (NULL, index_type, 0, -1);
13705 type = create_array_type_with_stride (NULL, element_type, range_type,
13706 bit_stride);
13707 return set_die_type (die, type, cu);
13708 }
13709
13710 back_to = make_cleanup (null_cleanup, NULL);
13711 child_die = die->child;
13712 while (child_die && child_die->tag)
13713 {
13714 if (child_die->tag == DW_TAG_subrange_type)
13715 {
13716 struct type *child_type = read_type_die (child_die, cu);
13717
13718 if (child_type != NULL)
13719 {
13720 /* The range type was succesfully read. Save it for the
13721 array type creation. */
13722 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13723 {
13724 range_types = (struct type **)
13725 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13726 * sizeof (struct type *));
13727 if (ndim == 0)
13728 make_cleanup (free_current_contents, &range_types);
13729 }
13730 range_types[ndim++] = child_type;
13731 }
13732 }
13733 child_die = sibling_die (child_die);
13734 }
13735
13736 /* Dwarf2 dimensions are output from left to right, create the
13737 necessary array types in backwards order. */
13738
13739 type = element_type;
13740
13741 if (read_array_order (die, cu) == DW_ORD_col_major)
13742 {
13743 int i = 0;
13744
13745 while (i < ndim)
13746 type = create_array_type_with_stride (NULL, type, range_types[i++],
13747 bit_stride);
13748 }
13749 else
13750 {
13751 while (ndim-- > 0)
13752 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13753 bit_stride);
13754 }
13755
13756 /* Understand Dwarf2 support for vector types (like they occur on
13757 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13758 array type. This is not part of the Dwarf2/3 standard yet, but a
13759 custom vendor extension. The main difference between a regular
13760 array and the vector variant is that vectors are passed by value
13761 to functions. */
13762 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13763 if (attr)
13764 make_vector_type (type);
13765
13766 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13767 implementation may choose to implement triple vectors using this
13768 attribute. */
13769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13770 if (attr)
13771 {
13772 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13773 TYPE_LENGTH (type) = DW_UNSND (attr);
13774 else
13775 complaint (&symfile_complaints,
13776 _("DW_AT_byte_size for array type smaller "
13777 "than the total size of elements"));
13778 }
13779
13780 name = dwarf2_name (die, cu);
13781 if (name)
13782 TYPE_NAME (type) = name;
13783
13784 /* Install the type in the die. */
13785 set_die_type (die, type, cu);
13786
13787 /* set_die_type should be already done. */
13788 set_descriptive_type (type, die, cu);
13789
13790 do_cleanups (back_to);
13791
13792 return type;
13793 }
13794
13795 static enum dwarf_array_dim_ordering
13796 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13797 {
13798 struct attribute *attr;
13799
13800 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13801
13802 if (attr) return DW_SND (attr);
13803
13804 /* GNU F77 is a special case, as at 08/2004 array type info is the
13805 opposite order to the dwarf2 specification, but data is still
13806 laid out as per normal fortran.
13807
13808 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13809 version checking. */
13810
13811 if (cu->language == language_fortran
13812 && cu->producer && strstr (cu->producer, "GNU F77"))
13813 {
13814 return DW_ORD_row_major;
13815 }
13816
13817 switch (cu->language_defn->la_array_ordering)
13818 {
13819 case array_column_major:
13820 return DW_ORD_col_major;
13821 case array_row_major:
13822 default:
13823 return DW_ORD_row_major;
13824 };
13825 }
13826
13827 /* Extract all information from a DW_TAG_set_type DIE and put it in
13828 the DIE's type field. */
13829
13830 static struct type *
13831 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13832 {
13833 struct type *domain_type, *set_type;
13834 struct attribute *attr;
13835
13836 domain_type = die_type (die, cu);
13837
13838 /* The die_type call above may have already set the type for this DIE. */
13839 set_type = get_die_type (die, cu);
13840 if (set_type)
13841 return set_type;
13842
13843 set_type = create_set_type (NULL, domain_type);
13844
13845 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13846 if (attr)
13847 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13848
13849 return set_die_type (die, set_type, cu);
13850 }
13851
13852 /* A helper for read_common_block that creates a locexpr baton.
13853 SYM is the symbol which we are marking as computed.
13854 COMMON_DIE is the DIE for the common block.
13855 COMMON_LOC is the location expression attribute for the common
13856 block itself.
13857 MEMBER_LOC is the location expression attribute for the particular
13858 member of the common block that we are processing.
13859 CU is the CU from which the above come. */
13860
13861 static void
13862 mark_common_block_symbol_computed (struct symbol *sym,
13863 struct die_info *common_die,
13864 struct attribute *common_loc,
13865 struct attribute *member_loc,
13866 struct dwarf2_cu *cu)
13867 {
13868 struct objfile *objfile = dwarf2_per_objfile->objfile;
13869 struct dwarf2_locexpr_baton *baton;
13870 gdb_byte *ptr;
13871 unsigned int cu_off;
13872 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13873 LONGEST offset = 0;
13874
13875 gdb_assert (common_loc && member_loc);
13876 gdb_assert (attr_form_is_block (common_loc));
13877 gdb_assert (attr_form_is_block (member_loc)
13878 || attr_form_is_constant (member_loc));
13879
13880 baton = obstack_alloc (&objfile->objfile_obstack,
13881 sizeof (struct dwarf2_locexpr_baton));
13882 baton->per_cu = cu->per_cu;
13883 gdb_assert (baton->per_cu);
13884
13885 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13886
13887 if (attr_form_is_constant (member_loc))
13888 {
13889 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13890 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13891 }
13892 else
13893 baton->size += DW_BLOCK (member_loc)->size;
13894
13895 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13896 baton->data = ptr;
13897
13898 *ptr++ = DW_OP_call4;
13899 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13900 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13901 ptr += 4;
13902
13903 if (attr_form_is_constant (member_loc))
13904 {
13905 *ptr++ = DW_OP_addr;
13906 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13907 ptr += cu->header.addr_size;
13908 }
13909 else
13910 {
13911 /* We have to copy the data here, because DW_OP_call4 will only
13912 use a DW_AT_location attribute. */
13913 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13914 ptr += DW_BLOCK (member_loc)->size;
13915 }
13916
13917 *ptr++ = DW_OP_plus;
13918 gdb_assert (ptr - baton->data == baton->size);
13919
13920 SYMBOL_LOCATION_BATON (sym) = baton;
13921 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13922 }
13923
13924 /* Create appropriate locally-scoped variables for all the
13925 DW_TAG_common_block entries. Also create a struct common_block
13926 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13927 is used to sepate the common blocks name namespace from regular
13928 variable names. */
13929
13930 static void
13931 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13932 {
13933 struct attribute *attr;
13934
13935 attr = dwarf2_attr (die, DW_AT_location, cu);
13936 if (attr)
13937 {
13938 /* Support the .debug_loc offsets. */
13939 if (attr_form_is_block (attr))
13940 {
13941 /* Ok. */
13942 }
13943 else if (attr_form_is_section_offset (attr))
13944 {
13945 dwarf2_complex_location_expr_complaint ();
13946 attr = NULL;
13947 }
13948 else
13949 {
13950 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13951 "common block member");
13952 attr = NULL;
13953 }
13954 }
13955
13956 if (die->child != NULL)
13957 {
13958 struct objfile *objfile = cu->objfile;
13959 struct die_info *child_die;
13960 size_t n_entries = 0, size;
13961 struct common_block *common_block;
13962 struct symbol *sym;
13963
13964 for (child_die = die->child;
13965 child_die && child_die->tag;
13966 child_die = sibling_die (child_die))
13967 ++n_entries;
13968
13969 size = (sizeof (struct common_block)
13970 + (n_entries - 1) * sizeof (struct symbol *));
13971 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13972 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13973 common_block->n_entries = 0;
13974
13975 for (child_die = die->child;
13976 child_die && child_die->tag;
13977 child_die = sibling_die (child_die))
13978 {
13979 /* Create the symbol in the DW_TAG_common_block block in the current
13980 symbol scope. */
13981 sym = new_symbol (child_die, NULL, cu);
13982 if (sym != NULL)
13983 {
13984 struct attribute *member_loc;
13985
13986 common_block->contents[common_block->n_entries++] = sym;
13987
13988 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13989 cu);
13990 if (member_loc)
13991 {
13992 /* GDB has handled this for a long time, but it is
13993 not specified by DWARF. It seems to have been
13994 emitted by gfortran at least as recently as:
13995 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13996 complaint (&symfile_complaints,
13997 _("Variable in common block has "
13998 "DW_AT_data_member_location "
13999 "- DIE at 0x%x [in module %s]"),
14000 child_die->offset.sect_off,
14001 objfile_name (cu->objfile));
14002
14003 if (attr_form_is_section_offset (member_loc))
14004 dwarf2_complex_location_expr_complaint ();
14005 else if (attr_form_is_constant (member_loc)
14006 || attr_form_is_block (member_loc))
14007 {
14008 if (attr)
14009 mark_common_block_symbol_computed (sym, die, attr,
14010 member_loc, cu);
14011 }
14012 else
14013 dwarf2_complex_location_expr_complaint ();
14014 }
14015 }
14016 }
14017
14018 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14019 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14020 }
14021 }
14022
14023 /* Create a type for a C++ namespace. */
14024
14025 static struct type *
14026 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14027 {
14028 struct objfile *objfile = cu->objfile;
14029 const char *previous_prefix, *name;
14030 int is_anonymous;
14031 struct type *type;
14032
14033 /* For extensions, reuse the type of the original namespace. */
14034 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14035 {
14036 struct die_info *ext_die;
14037 struct dwarf2_cu *ext_cu = cu;
14038
14039 ext_die = dwarf2_extension (die, &ext_cu);
14040 type = read_type_die (ext_die, ext_cu);
14041
14042 /* EXT_CU may not be the same as CU.
14043 Ensure TYPE is recorded with CU in die_type_hash. */
14044 return set_die_type (die, type, cu);
14045 }
14046
14047 name = namespace_name (die, &is_anonymous, cu);
14048
14049 /* Now build the name of the current namespace. */
14050
14051 previous_prefix = determine_prefix (die, cu);
14052 if (previous_prefix[0] != '\0')
14053 name = typename_concat (&objfile->objfile_obstack,
14054 previous_prefix, name, 0, cu);
14055
14056 /* Create the type. */
14057 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14058 objfile);
14059 TYPE_NAME (type) = name;
14060 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14061
14062 return set_die_type (die, type, cu);
14063 }
14064
14065 /* Read a C++ namespace. */
14066
14067 static void
14068 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14069 {
14070 struct objfile *objfile = cu->objfile;
14071 int is_anonymous;
14072
14073 /* Add a symbol associated to this if we haven't seen the namespace
14074 before. Also, add a using directive if it's an anonymous
14075 namespace. */
14076
14077 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14078 {
14079 struct type *type;
14080
14081 type = read_type_die (die, cu);
14082 new_symbol (die, type, cu);
14083
14084 namespace_name (die, &is_anonymous, cu);
14085 if (is_anonymous)
14086 {
14087 const char *previous_prefix = determine_prefix (die, cu);
14088
14089 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14090 NULL, NULL, 0, &objfile->objfile_obstack);
14091 }
14092 }
14093
14094 if (die->child != NULL)
14095 {
14096 struct die_info *child_die = die->child;
14097
14098 while (child_die && child_die->tag)
14099 {
14100 process_die (child_die, cu);
14101 child_die = sibling_die (child_die);
14102 }
14103 }
14104 }
14105
14106 /* Read a Fortran module as type. This DIE can be only a declaration used for
14107 imported module. Still we need that type as local Fortran "use ... only"
14108 declaration imports depend on the created type in determine_prefix. */
14109
14110 static struct type *
14111 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14112 {
14113 struct objfile *objfile = cu->objfile;
14114 const char *module_name;
14115 struct type *type;
14116
14117 module_name = dwarf2_name (die, cu);
14118 if (!module_name)
14119 complaint (&symfile_complaints,
14120 _("DW_TAG_module has no name, offset 0x%x"),
14121 die->offset.sect_off);
14122 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14123
14124 /* determine_prefix uses TYPE_TAG_NAME. */
14125 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14126
14127 return set_die_type (die, type, cu);
14128 }
14129
14130 /* Read a Fortran module. */
14131
14132 static void
14133 read_module (struct die_info *die, struct dwarf2_cu *cu)
14134 {
14135 struct die_info *child_die = die->child;
14136 struct type *type;
14137
14138 type = read_type_die (die, cu);
14139 new_symbol (die, type, cu);
14140
14141 while (child_die && child_die->tag)
14142 {
14143 process_die (child_die, cu);
14144 child_die = sibling_die (child_die);
14145 }
14146 }
14147
14148 /* Return the name of the namespace represented by DIE. Set
14149 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14150 namespace. */
14151
14152 static const char *
14153 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14154 {
14155 struct die_info *current_die;
14156 const char *name = NULL;
14157
14158 /* Loop through the extensions until we find a name. */
14159
14160 for (current_die = die;
14161 current_die != NULL;
14162 current_die = dwarf2_extension (die, &cu))
14163 {
14164 /* We don't use dwarf2_name here so that we can detect the absence
14165 of a name -> anonymous namespace. */
14166 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14167
14168 if (attr != NULL)
14169 name = DW_STRING (attr);
14170 if (name != NULL)
14171 break;
14172 }
14173
14174 /* Is it an anonymous namespace? */
14175
14176 *is_anonymous = (name == NULL);
14177 if (*is_anonymous)
14178 name = CP_ANONYMOUS_NAMESPACE_STR;
14179
14180 return name;
14181 }
14182
14183 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14184 the user defined type vector. */
14185
14186 static struct type *
14187 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14188 {
14189 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14190 struct comp_unit_head *cu_header = &cu->header;
14191 struct type *type;
14192 struct attribute *attr_byte_size;
14193 struct attribute *attr_address_class;
14194 int byte_size, addr_class;
14195 struct type *target_type;
14196
14197 target_type = die_type (die, cu);
14198
14199 /* The die_type call above may have already set the type for this DIE. */
14200 type = get_die_type (die, cu);
14201 if (type)
14202 return type;
14203
14204 type = lookup_pointer_type (target_type);
14205
14206 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14207 if (attr_byte_size)
14208 byte_size = DW_UNSND (attr_byte_size);
14209 else
14210 byte_size = cu_header->addr_size;
14211
14212 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14213 if (attr_address_class)
14214 addr_class = DW_UNSND (attr_address_class);
14215 else
14216 addr_class = DW_ADDR_none;
14217
14218 /* If the pointer size or address class is different than the
14219 default, create a type variant marked as such and set the
14220 length accordingly. */
14221 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14222 {
14223 if (gdbarch_address_class_type_flags_p (gdbarch))
14224 {
14225 int type_flags;
14226
14227 type_flags = gdbarch_address_class_type_flags
14228 (gdbarch, byte_size, addr_class);
14229 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14230 == 0);
14231 type = make_type_with_address_space (type, type_flags);
14232 }
14233 else if (TYPE_LENGTH (type) != byte_size)
14234 {
14235 complaint (&symfile_complaints,
14236 _("invalid pointer size %d"), byte_size);
14237 }
14238 else
14239 {
14240 /* Should we also complain about unhandled address classes? */
14241 }
14242 }
14243
14244 TYPE_LENGTH (type) = byte_size;
14245 return set_die_type (die, type, cu);
14246 }
14247
14248 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14249 the user defined type vector. */
14250
14251 static struct type *
14252 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14253 {
14254 struct type *type;
14255 struct type *to_type;
14256 struct type *domain;
14257
14258 to_type = die_type (die, cu);
14259 domain = die_containing_type (die, cu);
14260
14261 /* The calls above may have already set the type for this DIE. */
14262 type = get_die_type (die, cu);
14263 if (type)
14264 return type;
14265
14266 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14267 type = lookup_methodptr_type (to_type);
14268 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14269 {
14270 struct type *new_type = alloc_type (cu->objfile);
14271
14272 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14273 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14274 TYPE_VARARGS (to_type));
14275 type = lookup_methodptr_type (new_type);
14276 }
14277 else
14278 type = lookup_memberptr_type (to_type, domain);
14279
14280 return set_die_type (die, type, cu);
14281 }
14282
14283 /* Extract all information from a DW_TAG_reference_type DIE and add to
14284 the user defined type vector. */
14285
14286 static struct type *
14287 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14288 {
14289 struct comp_unit_head *cu_header = &cu->header;
14290 struct type *type, *target_type;
14291 struct attribute *attr;
14292
14293 target_type = die_type (die, cu);
14294
14295 /* The die_type call above may have already set the type for this DIE. */
14296 type = get_die_type (die, cu);
14297 if (type)
14298 return type;
14299
14300 type = lookup_reference_type (target_type);
14301 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14302 if (attr)
14303 {
14304 TYPE_LENGTH (type) = DW_UNSND (attr);
14305 }
14306 else
14307 {
14308 TYPE_LENGTH (type) = cu_header->addr_size;
14309 }
14310 return set_die_type (die, type, cu);
14311 }
14312
14313 /* Add the given cv-qualifiers to the element type of the array. GCC
14314 outputs DWARF type qualifiers that apply to an array, not the
14315 element type. But GDB relies on the array element type to carry
14316 the cv-qualifiers. This mimics section 6.7.3 of the C99
14317 specification. */
14318
14319 static struct type *
14320 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14321 struct type *base_type, int cnst, int voltl)
14322 {
14323 struct type *el_type, *inner_array;
14324
14325 base_type = copy_type (base_type);
14326 inner_array = base_type;
14327
14328 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14329 {
14330 TYPE_TARGET_TYPE (inner_array) =
14331 copy_type (TYPE_TARGET_TYPE (inner_array));
14332 inner_array = TYPE_TARGET_TYPE (inner_array);
14333 }
14334
14335 el_type = TYPE_TARGET_TYPE (inner_array);
14336 cnst |= TYPE_CONST (el_type);
14337 voltl |= TYPE_VOLATILE (el_type);
14338 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14339
14340 return set_die_type (die, base_type, cu);
14341 }
14342
14343 static struct type *
14344 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14345 {
14346 struct type *base_type, *cv_type;
14347
14348 base_type = die_type (die, cu);
14349
14350 /* The die_type call above may have already set the type for this DIE. */
14351 cv_type = get_die_type (die, cu);
14352 if (cv_type)
14353 return cv_type;
14354
14355 /* In case the const qualifier is applied to an array type, the element type
14356 is so qualified, not the array type (section 6.7.3 of C99). */
14357 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14358 return add_array_cv_type (die, cu, base_type, 1, 0);
14359
14360 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14361 return set_die_type (die, cv_type, cu);
14362 }
14363
14364 static struct type *
14365 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14366 {
14367 struct type *base_type, *cv_type;
14368
14369 base_type = die_type (die, cu);
14370
14371 /* The die_type call above may have already set the type for this DIE. */
14372 cv_type = get_die_type (die, cu);
14373 if (cv_type)
14374 return cv_type;
14375
14376 /* In case the volatile qualifier is applied to an array type, the
14377 element type is so qualified, not the array type (section 6.7.3
14378 of C99). */
14379 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14380 return add_array_cv_type (die, cu, base_type, 0, 1);
14381
14382 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14383 return set_die_type (die, cv_type, cu);
14384 }
14385
14386 /* Handle DW_TAG_restrict_type. */
14387
14388 static struct type *
14389 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14390 {
14391 struct type *base_type, *cv_type;
14392
14393 base_type = die_type (die, cu);
14394
14395 /* The die_type call above may have already set the type for this DIE. */
14396 cv_type = get_die_type (die, cu);
14397 if (cv_type)
14398 return cv_type;
14399
14400 cv_type = make_restrict_type (base_type);
14401 return set_die_type (die, cv_type, cu);
14402 }
14403
14404 /* Handle DW_TAG_atomic_type. */
14405
14406 static struct type *
14407 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14408 {
14409 struct type *base_type, *cv_type;
14410
14411 base_type = die_type (die, cu);
14412
14413 /* The die_type call above may have already set the type for this DIE. */
14414 cv_type = get_die_type (die, cu);
14415 if (cv_type)
14416 return cv_type;
14417
14418 cv_type = make_atomic_type (base_type);
14419 return set_die_type (die, cv_type, cu);
14420 }
14421
14422 /* Extract all information from a DW_TAG_string_type DIE and add to
14423 the user defined type vector. It isn't really a user defined type,
14424 but it behaves like one, with other DIE's using an AT_user_def_type
14425 attribute to reference it. */
14426
14427 static struct type *
14428 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14429 {
14430 struct objfile *objfile = cu->objfile;
14431 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14432 struct type *type, *range_type, *index_type, *char_type;
14433 struct attribute *attr;
14434 unsigned int length;
14435
14436 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14437 if (attr)
14438 {
14439 length = DW_UNSND (attr);
14440 }
14441 else
14442 {
14443 /* Check for the DW_AT_byte_size attribute. */
14444 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14445 if (attr)
14446 {
14447 length = DW_UNSND (attr);
14448 }
14449 else
14450 {
14451 length = 1;
14452 }
14453 }
14454
14455 index_type = objfile_type (objfile)->builtin_int;
14456 range_type = create_static_range_type (NULL, index_type, 1, length);
14457 char_type = language_string_char_type (cu->language_defn, gdbarch);
14458 type = create_string_type (NULL, char_type, range_type);
14459
14460 return set_die_type (die, type, cu);
14461 }
14462
14463 /* Assuming that DIE corresponds to a function, returns nonzero
14464 if the function is prototyped. */
14465
14466 static int
14467 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14468 {
14469 struct attribute *attr;
14470
14471 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14472 if (attr && (DW_UNSND (attr) != 0))
14473 return 1;
14474
14475 /* The DWARF standard implies that the DW_AT_prototyped attribute
14476 is only meaninful for C, but the concept also extends to other
14477 languages that allow unprototyped functions (Eg: Objective C).
14478 For all other languages, assume that functions are always
14479 prototyped. */
14480 if (cu->language != language_c
14481 && cu->language != language_objc
14482 && cu->language != language_opencl)
14483 return 1;
14484
14485 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14486 prototyped and unprototyped functions; default to prototyped,
14487 since that is more common in modern code (and RealView warns
14488 about unprototyped functions). */
14489 if (producer_is_realview (cu->producer))
14490 return 1;
14491
14492 return 0;
14493 }
14494
14495 /* Handle DIES due to C code like:
14496
14497 struct foo
14498 {
14499 int (*funcp)(int a, long l);
14500 int b;
14501 };
14502
14503 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14504
14505 static struct type *
14506 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14507 {
14508 struct objfile *objfile = cu->objfile;
14509 struct type *type; /* Type that this function returns. */
14510 struct type *ftype; /* Function that returns above type. */
14511 struct attribute *attr;
14512
14513 type = die_type (die, cu);
14514
14515 /* The die_type call above may have already set the type for this DIE. */
14516 ftype = get_die_type (die, cu);
14517 if (ftype)
14518 return ftype;
14519
14520 ftype = lookup_function_type (type);
14521
14522 if (prototyped_function_p (die, cu))
14523 TYPE_PROTOTYPED (ftype) = 1;
14524
14525 /* Store the calling convention in the type if it's available in
14526 the subroutine die. Otherwise set the calling convention to
14527 the default value DW_CC_normal. */
14528 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14529 if (attr)
14530 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14531 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14532 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14533 else
14534 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14535
14536 /* Record whether the function returns normally to its caller or not
14537 if the DWARF producer set that information. */
14538 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14539 if (attr && (DW_UNSND (attr) != 0))
14540 TYPE_NO_RETURN (ftype) = 1;
14541
14542 /* We need to add the subroutine type to the die immediately so
14543 we don't infinitely recurse when dealing with parameters
14544 declared as the same subroutine type. */
14545 set_die_type (die, ftype, cu);
14546
14547 if (die->child != NULL)
14548 {
14549 struct type *void_type = objfile_type (objfile)->builtin_void;
14550 struct die_info *child_die;
14551 int nparams, iparams;
14552
14553 /* Count the number of parameters.
14554 FIXME: GDB currently ignores vararg functions, but knows about
14555 vararg member functions. */
14556 nparams = 0;
14557 child_die = die->child;
14558 while (child_die && child_die->tag)
14559 {
14560 if (child_die->tag == DW_TAG_formal_parameter)
14561 nparams++;
14562 else if (child_die->tag == DW_TAG_unspecified_parameters)
14563 TYPE_VARARGS (ftype) = 1;
14564 child_die = sibling_die (child_die);
14565 }
14566
14567 /* Allocate storage for parameters and fill them in. */
14568 TYPE_NFIELDS (ftype) = nparams;
14569 TYPE_FIELDS (ftype) = (struct field *)
14570 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14571
14572 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14573 even if we error out during the parameters reading below. */
14574 for (iparams = 0; iparams < nparams; iparams++)
14575 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14576
14577 iparams = 0;
14578 child_die = die->child;
14579 while (child_die && child_die->tag)
14580 {
14581 if (child_die->tag == DW_TAG_formal_parameter)
14582 {
14583 struct type *arg_type;
14584
14585 /* DWARF version 2 has no clean way to discern C++
14586 static and non-static member functions. G++ helps
14587 GDB by marking the first parameter for non-static
14588 member functions (which is the this pointer) as
14589 artificial. We pass this information to
14590 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14591
14592 DWARF version 3 added DW_AT_object_pointer, which GCC
14593 4.5 does not yet generate. */
14594 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14595 if (attr)
14596 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14597 else
14598 {
14599 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14600
14601 /* GCC/43521: In java, the formal parameter
14602 "this" is sometimes not marked with DW_AT_artificial. */
14603 if (cu->language == language_java)
14604 {
14605 const char *name = dwarf2_name (child_die, cu);
14606
14607 if (name && !strcmp (name, "this"))
14608 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14609 }
14610 }
14611 arg_type = die_type (child_die, cu);
14612
14613 /* RealView does not mark THIS as const, which the testsuite
14614 expects. GCC marks THIS as const in method definitions,
14615 but not in the class specifications (GCC PR 43053). */
14616 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14617 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14618 {
14619 int is_this = 0;
14620 struct dwarf2_cu *arg_cu = cu;
14621 const char *name = dwarf2_name (child_die, cu);
14622
14623 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14624 if (attr)
14625 {
14626 /* If the compiler emits this, use it. */
14627 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14628 is_this = 1;
14629 }
14630 else if (name && strcmp (name, "this") == 0)
14631 /* Function definitions will have the argument names. */
14632 is_this = 1;
14633 else if (name == NULL && iparams == 0)
14634 /* Declarations may not have the names, so like
14635 elsewhere in GDB, assume an artificial first
14636 argument is "this". */
14637 is_this = 1;
14638
14639 if (is_this)
14640 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14641 arg_type, 0);
14642 }
14643
14644 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14645 iparams++;
14646 }
14647 child_die = sibling_die (child_die);
14648 }
14649 }
14650
14651 return ftype;
14652 }
14653
14654 static struct type *
14655 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14656 {
14657 struct objfile *objfile = cu->objfile;
14658 const char *name = NULL;
14659 struct type *this_type, *target_type;
14660
14661 name = dwarf2_full_name (NULL, die, cu);
14662 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14663 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14664 TYPE_NAME (this_type) = name;
14665 set_die_type (die, this_type, cu);
14666 target_type = die_type (die, cu);
14667 if (target_type != this_type)
14668 TYPE_TARGET_TYPE (this_type) = target_type;
14669 else
14670 {
14671 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14672 spec and cause infinite loops in GDB. */
14673 complaint (&symfile_complaints,
14674 _("Self-referential DW_TAG_typedef "
14675 "- DIE at 0x%x [in module %s]"),
14676 die->offset.sect_off, objfile_name (objfile));
14677 TYPE_TARGET_TYPE (this_type) = NULL;
14678 }
14679 return this_type;
14680 }
14681
14682 /* Find a representation of a given base type and install
14683 it in the TYPE field of the die. */
14684
14685 static struct type *
14686 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14687 {
14688 struct objfile *objfile = cu->objfile;
14689 struct type *type;
14690 struct attribute *attr;
14691 int encoding = 0, size = 0;
14692 const char *name;
14693 enum type_code code = TYPE_CODE_INT;
14694 int type_flags = 0;
14695 struct type *target_type = NULL;
14696
14697 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14698 if (attr)
14699 {
14700 encoding = DW_UNSND (attr);
14701 }
14702 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14703 if (attr)
14704 {
14705 size = DW_UNSND (attr);
14706 }
14707 name = dwarf2_name (die, cu);
14708 if (!name)
14709 {
14710 complaint (&symfile_complaints,
14711 _("DW_AT_name missing from DW_TAG_base_type"));
14712 }
14713
14714 switch (encoding)
14715 {
14716 case DW_ATE_address:
14717 /* Turn DW_ATE_address into a void * pointer. */
14718 code = TYPE_CODE_PTR;
14719 type_flags |= TYPE_FLAG_UNSIGNED;
14720 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14721 break;
14722 case DW_ATE_boolean:
14723 code = TYPE_CODE_BOOL;
14724 type_flags |= TYPE_FLAG_UNSIGNED;
14725 break;
14726 case DW_ATE_complex_float:
14727 code = TYPE_CODE_COMPLEX;
14728 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14729 break;
14730 case DW_ATE_decimal_float:
14731 code = TYPE_CODE_DECFLOAT;
14732 break;
14733 case DW_ATE_float:
14734 code = TYPE_CODE_FLT;
14735 break;
14736 case DW_ATE_signed:
14737 break;
14738 case DW_ATE_unsigned:
14739 type_flags |= TYPE_FLAG_UNSIGNED;
14740 if (cu->language == language_fortran
14741 && name
14742 && startswith (name, "character("))
14743 code = TYPE_CODE_CHAR;
14744 break;
14745 case DW_ATE_signed_char:
14746 if (cu->language == language_ada || cu->language == language_m2
14747 || cu->language == language_pascal
14748 || cu->language == language_fortran)
14749 code = TYPE_CODE_CHAR;
14750 break;
14751 case DW_ATE_unsigned_char:
14752 if (cu->language == language_ada || cu->language == language_m2
14753 || cu->language == language_pascal
14754 || cu->language == language_fortran)
14755 code = TYPE_CODE_CHAR;
14756 type_flags |= TYPE_FLAG_UNSIGNED;
14757 break;
14758 case DW_ATE_UTF:
14759 /* We just treat this as an integer and then recognize the
14760 type by name elsewhere. */
14761 break;
14762
14763 default:
14764 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14765 dwarf_type_encoding_name (encoding));
14766 break;
14767 }
14768
14769 type = init_type (code, size, type_flags, NULL, objfile);
14770 TYPE_NAME (type) = name;
14771 TYPE_TARGET_TYPE (type) = target_type;
14772
14773 if (name && strcmp (name, "char") == 0)
14774 TYPE_NOSIGN (type) = 1;
14775
14776 return set_die_type (die, type, cu);
14777 }
14778
14779 /* Parse dwarf attribute if it's a block, reference or constant and put the
14780 resulting value of the attribute into struct bound_prop.
14781 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14782
14783 static int
14784 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14785 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14786 {
14787 struct dwarf2_property_baton *baton;
14788 struct obstack *obstack = &cu->objfile->objfile_obstack;
14789
14790 if (attr == NULL || prop == NULL)
14791 return 0;
14792
14793 if (attr_form_is_block (attr))
14794 {
14795 baton = obstack_alloc (obstack, sizeof (*baton));
14796 baton->referenced_type = NULL;
14797 baton->locexpr.per_cu = cu->per_cu;
14798 baton->locexpr.size = DW_BLOCK (attr)->size;
14799 baton->locexpr.data = DW_BLOCK (attr)->data;
14800 prop->data.baton = baton;
14801 prop->kind = PROP_LOCEXPR;
14802 gdb_assert (prop->data.baton != NULL);
14803 }
14804 else if (attr_form_is_ref (attr))
14805 {
14806 struct dwarf2_cu *target_cu = cu;
14807 struct die_info *target_die;
14808 struct attribute *target_attr;
14809
14810 target_die = follow_die_ref (die, attr, &target_cu);
14811 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14812 if (target_attr == NULL)
14813 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14814 target_cu);
14815 if (target_attr == NULL)
14816 return 0;
14817
14818 switch (target_attr->name)
14819 {
14820 case DW_AT_location:
14821 if (attr_form_is_section_offset (target_attr))
14822 {
14823 baton = obstack_alloc (obstack, sizeof (*baton));
14824 baton->referenced_type = die_type (target_die, target_cu);
14825 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14826 prop->data.baton = baton;
14827 prop->kind = PROP_LOCLIST;
14828 gdb_assert (prop->data.baton != NULL);
14829 }
14830 else if (attr_form_is_block (target_attr))
14831 {
14832 baton = obstack_alloc (obstack, sizeof (*baton));
14833 baton->referenced_type = die_type (target_die, target_cu);
14834 baton->locexpr.per_cu = cu->per_cu;
14835 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14836 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCEXPR;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else
14842 {
14843 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14844 "dynamic property");
14845 return 0;
14846 }
14847 break;
14848 case DW_AT_data_member_location:
14849 {
14850 LONGEST offset;
14851
14852 if (!handle_data_member_location (target_die, target_cu,
14853 &offset))
14854 return 0;
14855
14856 baton = obstack_alloc (obstack, sizeof (*baton));
14857 baton->referenced_type = read_type_die (target_die->parent,
14858 target_cu);
14859 baton->offset_info.offset = offset;
14860 baton->offset_info.type = die_type (target_die, target_cu);
14861 prop->data.baton = baton;
14862 prop->kind = PROP_ADDR_OFFSET;
14863 break;
14864 }
14865 }
14866 }
14867 else if (attr_form_is_constant (attr))
14868 {
14869 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14870 prop->kind = PROP_CONST;
14871 }
14872 else
14873 {
14874 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14875 dwarf2_name (die, cu));
14876 return 0;
14877 }
14878
14879 return 1;
14880 }
14881
14882 /* Read the given DW_AT_subrange DIE. */
14883
14884 static struct type *
14885 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14886 {
14887 struct type *base_type, *orig_base_type;
14888 struct type *range_type;
14889 struct attribute *attr;
14890 struct dynamic_prop low, high;
14891 int low_default_is_valid;
14892 int high_bound_is_count = 0;
14893 const char *name;
14894 LONGEST negative_mask;
14895
14896 orig_base_type = die_type (die, cu);
14897 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14898 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14899 creating the range type, but we use the result of check_typedef
14900 when examining properties of the type. */
14901 base_type = check_typedef (orig_base_type);
14902
14903 /* The die_type call above may have already set the type for this DIE. */
14904 range_type = get_die_type (die, cu);
14905 if (range_type)
14906 return range_type;
14907
14908 low.kind = PROP_CONST;
14909 high.kind = PROP_CONST;
14910 high.data.const_val = 0;
14911
14912 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14913 omitting DW_AT_lower_bound. */
14914 switch (cu->language)
14915 {
14916 case language_c:
14917 case language_cplus:
14918 low.data.const_val = 0;
14919 low_default_is_valid = 1;
14920 break;
14921 case language_fortran:
14922 low.data.const_val = 1;
14923 low_default_is_valid = 1;
14924 break;
14925 case language_d:
14926 case language_java:
14927 case language_objc:
14928 low.data.const_val = 0;
14929 low_default_is_valid = (cu->header.version >= 4);
14930 break;
14931 case language_ada:
14932 case language_m2:
14933 case language_pascal:
14934 low.data.const_val = 1;
14935 low_default_is_valid = (cu->header.version >= 4);
14936 break;
14937 default:
14938 low.data.const_val = 0;
14939 low_default_is_valid = 0;
14940 break;
14941 }
14942
14943 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14944 if (attr)
14945 attr_to_dynamic_prop (attr, die, cu, &low);
14946 else if (!low_default_is_valid)
14947 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14948 "- DIE at 0x%x [in module %s]"),
14949 die->offset.sect_off, objfile_name (cu->objfile));
14950
14951 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14952 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14953 {
14954 attr = dwarf2_attr (die, DW_AT_count, cu);
14955 if (attr_to_dynamic_prop (attr, die, cu, &high))
14956 {
14957 /* If bounds are constant do the final calculation here. */
14958 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14959 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14960 else
14961 high_bound_is_count = 1;
14962 }
14963 }
14964
14965 /* Dwarf-2 specifications explicitly allows to create subrange types
14966 without specifying a base type.
14967 In that case, the base type must be set to the type of
14968 the lower bound, upper bound or count, in that order, if any of these
14969 three attributes references an object that has a type.
14970 If no base type is found, the Dwarf-2 specifications say that
14971 a signed integer type of size equal to the size of an address should
14972 be used.
14973 For the following C code: `extern char gdb_int [];'
14974 GCC produces an empty range DIE.
14975 FIXME: muller/2010-05-28: Possible references to object for low bound,
14976 high bound or count are not yet handled by this code. */
14977 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14978 {
14979 struct objfile *objfile = cu->objfile;
14980 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14981 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14982 struct type *int_type = objfile_type (objfile)->builtin_int;
14983
14984 /* Test "int", "long int", and "long long int" objfile types,
14985 and select the first one having a size above or equal to the
14986 architecture address size. */
14987 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14988 base_type = int_type;
14989 else
14990 {
14991 int_type = objfile_type (objfile)->builtin_long;
14992 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14993 base_type = int_type;
14994 else
14995 {
14996 int_type = objfile_type (objfile)->builtin_long_long;
14997 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14998 base_type = int_type;
14999 }
15000 }
15001 }
15002
15003 /* Normally, the DWARF producers are expected to use a signed
15004 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15005 But this is unfortunately not always the case, as witnessed
15006 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15007 is used instead. To work around that ambiguity, we treat
15008 the bounds as signed, and thus sign-extend their values, when
15009 the base type is signed. */
15010 negative_mask =
15011 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15012 if (low.kind == PROP_CONST
15013 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15014 low.data.const_val |= negative_mask;
15015 if (high.kind == PROP_CONST
15016 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15017 high.data.const_val |= negative_mask;
15018
15019 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15020
15021 if (high_bound_is_count)
15022 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15023
15024 /* Ada expects an empty array on no boundary attributes. */
15025 if (attr == NULL && cu->language != language_ada)
15026 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15027
15028 name = dwarf2_name (die, cu);
15029 if (name)
15030 TYPE_NAME (range_type) = name;
15031
15032 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15033 if (attr)
15034 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15035
15036 set_die_type (die, range_type, cu);
15037
15038 /* set_die_type should be already done. */
15039 set_descriptive_type (range_type, die, cu);
15040
15041 return range_type;
15042 }
15043
15044 static struct type *
15045 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15046 {
15047 struct type *type;
15048
15049 /* For now, we only support the C meaning of an unspecified type: void. */
15050
15051 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15052 TYPE_NAME (type) = dwarf2_name (die, cu);
15053
15054 return set_die_type (die, type, cu);
15055 }
15056
15057 /* Read a single die and all its descendents. Set the die's sibling
15058 field to NULL; set other fields in the die correctly, and set all
15059 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15060 location of the info_ptr after reading all of those dies. PARENT
15061 is the parent of the die in question. */
15062
15063 static struct die_info *
15064 read_die_and_children (const struct die_reader_specs *reader,
15065 const gdb_byte *info_ptr,
15066 const gdb_byte **new_info_ptr,
15067 struct die_info *parent)
15068 {
15069 struct die_info *die;
15070 const gdb_byte *cur_ptr;
15071 int has_children;
15072
15073 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15074 if (die == NULL)
15075 {
15076 *new_info_ptr = cur_ptr;
15077 return NULL;
15078 }
15079 store_in_ref_table (die, reader->cu);
15080
15081 if (has_children)
15082 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15083 else
15084 {
15085 die->child = NULL;
15086 *new_info_ptr = cur_ptr;
15087 }
15088
15089 die->sibling = NULL;
15090 die->parent = parent;
15091 return die;
15092 }
15093
15094 /* Read a die, all of its descendents, and all of its siblings; set
15095 all of the fields of all of the dies correctly. Arguments are as
15096 in read_die_and_children. */
15097
15098 static struct die_info *
15099 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15100 const gdb_byte *info_ptr,
15101 const gdb_byte **new_info_ptr,
15102 struct die_info *parent)
15103 {
15104 struct die_info *first_die, *last_sibling;
15105 const gdb_byte *cur_ptr;
15106
15107 cur_ptr = info_ptr;
15108 first_die = last_sibling = NULL;
15109
15110 while (1)
15111 {
15112 struct die_info *die
15113 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15114
15115 if (die == NULL)
15116 {
15117 *new_info_ptr = cur_ptr;
15118 return first_die;
15119 }
15120
15121 if (!first_die)
15122 first_die = die;
15123 else
15124 last_sibling->sibling = die;
15125
15126 last_sibling = die;
15127 }
15128 }
15129
15130 /* Read a die, all of its descendents, and all of its siblings; set
15131 all of the fields of all of the dies correctly. Arguments are as
15132 in read_die_and_children.
15133 This the main entry point for reading a DIE and all its children. */
15134
15135 static struct die_info *
15136 read_die_and_siblings (const struct die_reader_specs *reader,
15137 const gdb_byte *info_ptr,
15138 const gdb_byte **new_info_ptr,
15139 struct die_info *parent)
15140 {
15141 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15142 new_info_ptr, parent);
15143
15144 if (dwarf_die_debug)
15145 {
15146 fprintf_unfiltered (gdb_stdlog,
15147 "Read die from %s@0x%x of %s:\n",
15148 get_section_name (reader->die_section),
15149 (unsigned) (info_ptr - reader->die_section->buffer),
15150 bfd_get_filename (reader->abfd));
15151 dump_die (die, dwarf_die_debug);
15152 }
15153
15154 return die;
15155 }
15156
15157 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15158 attributes.
15159 The caller is responsible for filling in the extra attributes
15160 and updating (*DIEP)->num_attrs.
15161 Set DIEP to point to a newly allocated die with its information,
15162 except for its child, sibling, and parent fields.
15163 Set HAS_CHILDREN to tell whether the die has children or not. */
15164
15165 static const gdb_byte *
15166 read_full_die_1 (const struct die_reader_specs *reader,
15167 struct die_info **diep, const gdb_byte *info_ptr,
15168 int *has_children, int num_extra_attrs)
15169 {
15170 unsigned int abbrev_number, bytes_read, i;
15171 sect_offset offset;
15172 struct abbrev_info *abbrev;
15173 struct die_info *die;
15174 struct dwarf2_cu *cu = reader->cu;
15175 bfd *abfd = reader->abfd;
15176
15177 offset.sect_off = info_ptr - reader->buffer;
15178 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15179 info_ptr += bytes_read;
15180 if (!abbrev_number)
15181 {
15182 *diep = NULL;
15183 *has_children = 0;
15184 return info_ptr;
15185 }
15186
15187 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15188 if (!abbrev)
15189 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15190 abbrev_number,
15191 bfd_get_filename (abfd));
15192
15193 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15194 die->offset = offset;
15195 die->tag = abbrev->tag;
15196 die->abbrev = abbrev_number;
15197
15198 /* Make the result usable.
15199 The caller needs to update num_attrs after adding the extra
15200 attributes. */
15201 die->num_attrs = abbrev->num_attrs;
15202
15203 for (i = 0; i < abbrev->num_attrs; ++i)
15204 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15205 info_ptr);
15206
15207 *diep = die;
15208 *has_children = abbrev->has_children;
15209 return info_ptr;
15210 }
15211
15212 /* Read a die and all its attributes.
15213 Set DIEP to point to a newly allocated die with its information,
15214 except for its child, sibling, and parent fields.
15215 Set HAS_CHILDREN to tell whether the die has children or not. */
15216
15217 static const gdb_byte *
15218 read_full_die (const struct die_reader_specs *reader,
15219 struct die_info **diep, const gdb_byte *info_ptr,
15220 int *has_children)
15221 {
15222 const gdb_byte *result;
15223
15224 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15225
15226 if (dwarf_die_debug)
15227 {
15228 fprintf_unfiltered (gdb_stdlog,
15229 "Read die from %s@0x%x of %s:\n",
15230 get_section_name (reader->die_section),
15231 (unsigned) (info_ptr - reader->die_section->buffer),
15232 bfd_get_filename (reader->abfd));
15233 dump_die (*diep, dwarf_die_debug);
15234 }
15235
15236 return result;
15237 }
15238 \f
15239 /* Abbreviation tables.
15240
15241 In DWARF version 2, the description of the debugging information is
15242 stored in a separate .debug_abbrev section. Before we read any
15243 dies from a section we read in all abbreviations and install them
15244 in a hash table. */
15245
15246 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15247
15248 static struct abbrev_info *
15249 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15250 {
15251 struct abbrev_info *abbrev;
15252
15253 abbrev = (struct abbrev_info *)
15254 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15255 memset (abbrev, 0, sizeof (struct abbrev_info));
15256 return abbrev;
15257 }
15258
15259 /* Add an abbreviation to the table. */
15260
15261 static void
15262 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15263 unsigned int abbrev_number,
15264 struct abbrev_info *abbrev)
15265 {
15266 unsigned int hash_number;
15267
15268 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15269 abbrev->next = abbrev_table->abbrevs[hash_number];
15270 abbrev_table->abbrevs[hash_number] = abbrev;
15271 }
15272
15273 /* Look up an abbrev in the table.
15274 Returns NULL if the abbrev is not found. */
15275
15276 static struct abbrev_info *
15277 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15278 unsigned int abbrev_number)
15279 {
15280 unsigned int hash_number;
15281 struct abbrev_info *abbrev;
15282
15283 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15284 abbrev = abbrev_table->abbrevs[hash_number];
15285
15286 while (abbrev)
15287 {
15288 if (abbrev->number == abbrev_number)
15289 return abbrev;
15290 abbrev = abbrev->next;
15291 }
15292 return NULL;
15293 }
15294
15295 /* Read in an abbrev table. */
15296
15297 static struct abbrev_table *
15298 abbrev_table_read_table (struct dwarf2_section_info *section,
15299 sect_offset offset)
15300 {
15301 struct objfile *objfile = dwarf2_per_objfile->objfile;
15302 bfd *abfd = get_section_bfd_owner (section);
15303 struct abbrev_table *abbrev_table;
15304 const gdb_byte *abbrev_ptr;
15305 struct abbrev_info *cur_abbrev;
15306 unsigned int abbrev_number, bytes_read, abbrev_name;
15307 unsigned int abbrev_form;
15308 struct attr_abbrev *cur_attrs;
15309 unsigned int allocated_attrs;
15310
15311 abbrev_table = XNEW (struct abbrev_table);
15312 abbrev_table->offset = offset;
15313 obstack_init (&abbrev_table->abbrev_obstack);
15314 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15315 (ABBREV_HASH_SIZE
15316 * sizeof (struct abbrev_info *)));
15317 memset (abbrev_table->abbrevs, 0,
15318 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15319
15320 dwarf2_read_section (objfile, section);
15321 abbrev_ptr = section->buffer + offset.sect_off;
15322 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15323 abbrev_ptr += bytes_read;
15324
15325 allocated_attrs = ATTR_ALLOC_CHUNK;
15326 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15327
15328 /* Loop until we reach an abbrev number of 0. */
15329 while (abbrev_number)
15330 {
15331 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15332
15333 /* read in abbrev header */
15334 cur_abbrev->number = abbrev_number;
15335 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15336 abbrev_ptr += bytes_read;
15337 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15338 abbrev_ptr += 1;
15339
15340 /* now read in declarations */
15341 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15342 abbrev_ptr += bytes_read;
15343 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15344 abbrev_ptr += bytes_read;
15345 while (abbrev_name)
15346 {
15347 if (cur_abbrev->num_attrs == allocated_attrs)
15348 {
15349 allocated_attrs += ATTR_ALLOC_CHUNK;
15350 cur_attrs
15351 = xrealloc (cur_attrs, (allocated_attrs
15352 * sizeof (struct attr_abbrev)));
15353 }
15354
15355 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15356 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15357 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15358 abbrev_ptr += bytes_read;
15359 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15360 abbrev_ptr += bytes_read;
15361 }
15362
15363 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15364 (cur_abbrev->num_attrs
15365 * sizeof (struct attr_abbrev)));
15366 memcpy (cur_abbrev->attrs, cur_attrs,
15367 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15368
15369 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15370
15371 /* Get next abbreviation.
15372 Under Irix6 the abbreviations for a compilation unit are not
15373 always properly terminated with an abbrev number of 0.
15374 Exit loop if we encounter an abbreviation which we have
15375 already read (which means we are about to read the abbreviations
15376 for the next compile unit) or if the end of the abbreviation
15377 table is reached. */
15378 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15379 break;
15380 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15381 abbrev_ptr += bytes_read;
15382 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15383 break;
15384 }
15385
15386 xfree (cur_attrs);
15387 return abbrev_table;
15388 }
15389
15390 /* Free the resources held by ABBREV_TABLE. */
15391
15392 static void
15393 abbrev_table_free (struct abbrev_table *abbrev_table)
15394 {
15395 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15396 xfree (abbrev_table);
15397 }
15398
15399 /* Same as abbrev_table_free but as a cleanup.
15400 We pass in a pointer to the pointer to the table so that we can
15401 set the pointer to NULL when we're done. It also simplifies
15402 build_type_psymtabs_1. */
15403
15404 static void
15405 abbrev_table_free_cleanup (void *table_ptr)
15406 {
15407 struct abbrev_table **abbrev_table_ptr = table_ptr;
15408
15409 if (*abbrev_table_ptr != NULL)
15410 abbrev_table_free (*abbrev_table_ptr);
15411 *abbrev_table_ptr = NULL;
15412 }
15413
15414 /* Read the abbrev table for CU from ABBREV_SECTION. */
15415
15416 static void
15417 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15418 struct dwarf2_section_info *abbrev_section)
15419 {
15420 cu->abbrev_table =
15421 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15422 }
15423
15424 /* Release the memory used by the abbrev table for a compilation unit. */
15425
15426 static void
15427 dwarf2_free_abbrev_table (void *ptr_to_cu)
15428 {
15429 struct dwarf2_cu *cu = ptr_to_cu;
15430
15431 if (cu->abbrev_table != NULL)
15432 abbrev_table_free (cu->abbrev_table);
15433 /* Set this to NULL so that we SEGV if we try to read it later,
15434 and also because free_comp_unit verifies this is NULL. */
15435 cu->abbrev_table = NULL;
15436 }
15437 \f
15438 /* Returns nonzero if TAG represents a type that we might generate a partial
15439 symbol for. */
15440
15441 static int
15442 is_type_tag_for_partial (int tag)
15443 {
15444 switch (tag)
15445 {
15446 #if 0
15447 /* Some types that would be reasonable to generate partial symbols for,
15448 that we don't at present. */
15449 case DW_TAG_array_type:
15450 case DW_TAG_file_type:
15451 case DW_TAG_ptr_to_member_type:
15452 case DW_TAG_set_type:
15453 case DW_TAG_string_type:
15454 case DW_TAG_subroutine_type:
15455 #endif
15456 case DW_TAG_base_type:
15457 case DW_TAG_class_type:
15458 case DW_TAG_interface_type:
15459 case DW_TAG_enumeration_type:
15460 case DW_TAG_structure_type:
15461 case DW_TAG_subrange_type:
15462 case DW_TAG_typedef:
15463 case DW_TAG_union_type:
15464 return 1;
15465 default:
15466 return 0;
15467 }
15468 }
15469
15470 /* Load all DIEs that are interesting for partial symbols into memory. */
15471
15472 static struct partial_die_info *
15473 load_partial_dies (const struct die_reader_specs *reader,
15474 const gdb_byte *info_ptr, int building_psymtab)
15475 {
15476 struct dwarf2_cu *cu = reader->cu;
15477 struct objfile *objfile = cu->objfile;
15478 struct partial_die_info *part_die;
15479 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15480 struct abbrev_info *abbrev;
15481 unsigned int bytes_read;
15482 unsigned int load_all = 0;
15483 int nesting_level = 1;
15484
15485 parent_die = NULL;
15486 last_die = NULL;
15487
15488 gdb_assert (cu->per_cu != NULL);
15489 if (cu->per_cu->load_all_dies)
15490 load_all = 1;
15491
15492 cu->partial_dies
15493 = htab_create_alloc_ex (cu->header.length / 12,
15494 partial_die_hash,
15495 partial_die_eq,
15496 NULL,
15497 &cu->comp_unit_obstack,
15498 hashtab_obstack_allocate,
15499 dummy_obstack_deallocate);
15500
15501 part_die = obstack_alloc (&cu->comp_unit_obstack,
15502 sizeof (struct partial_die_info));
15503
15504 while (1)
15505 {
15506 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15507
15508 /* A NULL abbrev means the end of a series of children. */
15509 if (abbrev == NULL)
15510 {
15511 if (--nesting_level == 0)
15512 {
15513 /* PART_DIE was probably the last thing allocated on the
15514 comp_unit_obstack, so we could call obstack_free
15515 here. We don't do that because the waste is small,
15516 and will be cleaned up when we're done with this
15517 compilation unit. This way, we're also more robust
15518 against other users of the comp_unit_obstack. */
15519 return first_die;
15520 }
15521 info_ptr += bytes_read;
15522 last_die = parent_die;
15523 parent_die = parent_die->die_parent;
15524 continue;
15525 }
15526
15527 /* Check for template arguments. We never save these; if
15528 they're seen, we just mark the parent, and go on our way. */
15529 if (parent_die != NULL
15530 && cu->language == language_cplus
15531 && (abbrev->tag == DW_TAG_template_type_param
15532 || abbrev->tag == DW_TAG_template_value_param))
15533 {
15534 parent_die->has_template_arguments = 1;
15535
15536 if (!load_all)
15537 {
15538 /* We don't need a partial DIE for the template argument. */
15539 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15540 continue;
15541 }
15542 }
15543
15544 /* We only recurse into c++ subprograms looking for template arguments.
15545 Skip their other children. */
15546 if (!load_all
15547 && cu->language == language_cplus
15548 && parent_die != NULL
15549 && parent_die->tag == DW_TAG_subprogram)
15550 {
15551 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15552 continue;
15553 }
15554
15555 /* Check whether this DIE is interesting enough to save. Normally
15556 we would not be interested in members here, but there may be
15557 later variables referencing them via DW_AT_specification (for
15558 static members). */
15559 if (!load_all
15560 && !is_type_tag_for_partial (abbrev->tag)
15561 && abbrev->tag != DW_TAG_constant
15562 && abbrev->tag != DW_TAG_enumerator
15563 && abbrev->tag != DW_TAG_subprogram
15564 && abbrev->tag != DW_TAG_lexical_block
15565 && abbrev->tag != DW_TAG_variable
15566 && abbrev->tag != DW_TAG_namespace
15567 && abbrev->tag != DW_TAG_module
15568 && abbrev->tag != DW_TAG_member
15569 && abbrev->tag != DW_TAG_imported_unit
15570 && abbrev->tag != DW_TAG_imported_declaration)
15571 {
15572 /* Otherwise we skip to the next sibling, if any. */
15573 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15574 continue;
15575 }
15576
15577 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15578 info_ptr);
15579
15580 /* This two-pass algorithm for processing partial symbols has a
15581 high cost in cache pressure. Thus, handle some simple cases
15582 here which cover the majority of C partial symbols. DIEs
15583 which neither have specification tags in them, nor could have
15584 specification tags elsewhere pointing at them, can simply be
15585 processed and discarded.
15586
15587 This segment is also optional; scan_partial_symbols and
15588 add_partial_symbol will handle these DIEs if we chain
15589 them in normally. When compilers which do not emit large
15590 quantities of duplicate debug information are more common,
15591 this code can probably be removed. */
15592
15593 /* Any complete simple types at the top level (pretty much all
15594 of them, for a language without namespaces), can be processed
15595 directly. */
15596 if (parent_die == NULL
15597 && part_die->has_specification == 0
15598 && part_die->is_declaration == 0
15599 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15600 || part_die->tag == DW_TAG_base_type
15601 || part_die->tag == DW_TAG_subrange_type))
15602 {
15603 if (building_psymtab && part_die->name != NULL)
15604 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15605 VAR_DOMAIN, LOC_TYPEDEF,
15606 &objfile->static_psymbols,
15607 0, (CORE_ADDR) 0, cu->language, objfile);
15608 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15609 continue;
15610 }
15611
15612 /* The exception for DW_TAG_typedef with has_children above is
15613 a workaround of GCC PR debug/47510. In the case of this complaint
15614 type_name_no_tag_or_error will error on such types later.
15615
15616 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15617 it could not find the child DIEs referenced later, this is checked
15618 above. In correct DWARF DW_TAG_typedef should have no children. */
15619
15620 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15621 complaint (&symfile_complaints,
15622 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15623 "- DIE at 0x%x [in module %s]"),
15624 part_die->offset.sect_off, objfile_name (objfile));
15625
15626 /* If we're at the second level, and we're an enumerator, and
15627 our parent has no specification (meaning possibly lives in a
15628 namespace elsewhere), then we can add the partial symbol now
15629 instead of queueing it. */
15630 if (part_die->tag == DW_TAG_enumerator
15631 && parent_die != NULL
15632 && parent_die->die_parent == NULL
15633 && parent_die->tag == DW_TAG_enumeration_type
15634 && parent_die->has_specification == 0)
15635 {
15636 if (part_die->name == NULL)
15637 complaint (&symfile_complaints,
15638 _("malformed enumerator DIE ignored"));
15639 else if (building_psymtab)
15640 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15641 VAR_DOMAIN, LOC_CONST,
15642 (cu->language == language_cplus
15643 || cu->language == language_java)
15644 ? &objfile->global_psymbols
15645 : &objfile->static_psymbols,
15646 0, (CORE_ADDR) 0, cu->language, objfile);
15647
15648 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15649 continue;
15650 }
15651
15652 /* We'll save this DIE so link it in. */
15653 part_die->die_parent = parent_die;
15654 part_die->die_sibling = NULL;
15655 part_die->die_child = NULL;
15656
15657 if (last_die && last_die == parent_die)
15658 last_die->die_child = part_die;
15659 else if (last_die)
15660 last_die->die_sibling = part_die;
15661
15662 last_die = part_die;
15663
15664 if (first_die == NULL)
15665 first_die = part_die;
15666
15667 /* Maybe add the DIE to the hash table. Not all DIEs that we
15668 find interesting need to be in the hash table, because we
15669 also have the parent/sibling/child chains; only those that we
15670 might refer to by offset later during partial symbol reading.
15671
15672 For now this means things that might have be the target of a
15673 DW_AT_specification, DW_AT_abstract_origin, or
15674 DW_AT_extension. DW_AT_extension will refer only to
15675 namespaces; DW_AT_abstract_origin refers to functions (and
15676 many things under the function DIE, but we do not recurse
15677 into function DIEs during partial symbol reading) and
15678 possibly variables as well; DW_AT_specification refers to
15679 declarations. Declarations ought to have the DW_AT_declaration
15680 flag. It happens that GCC forgets to put it in sometimes, but
15681 only for functions, not for types.
15682
15683 Adding more things than necessary to the hash table is harmless
15684 except for the performance cost. Adding too few will result in
15685 wasted time in find_partial_die, when we reread the compilation
15686 unit with load_all_dies set. */
15687
15688 if (load_all
15689 || abbrev->tag == DW_TAG_constant
15690 || abbrev->tag == DW_TAG_subprogram
15691 || abbrev->tag == DW_TAG_variable
15692 || abbrev->tag == DW_TAG_namespace
15693 || part_die->is_declaration)
15694 {
15695 void **slot;
15696
15697 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15698 part_die->offset.sect_off, INSERT);
15699 *slot = part_die;
15700 }
15701
15702 part_die = obstack_alloc (&cu->comp_unit_obstack,
15703 sizeof (struct partial_die_info));
15704
15705 /* For some DIEs we want to follow their children (if any). For C
15706 we have no reason to follow the children of structures; for other
15707 languages we have to, so that we can get at method physnames
15708 to infer fully qualified class names, for DW_AT_specification,
15709 and for C++ template arguments. For C++, we also look one level
15710 inside functions to find template arguments (if the name of the
15711 function does not already contain the template arguments).
15712
15713 For Ada, we need to scan the children of subprograms and lexical
15714 blocks as well because Ada allows the definition of nested
15715 entities that could be interesting for the debugger, such as
15716 nested subprograms for instance. */
15717 if (last_die->has_children
15718 && (load_all
15719 || last_die->tag == DW_TAG_namespace
15720 || last_die->tag == DW_TAG_module
15721 || last_die->tag == DW_TAG_enumeration_type
15722 || (cu->language == language_cplus
15723 && last_die->tag == DW_TAG_subprogram
15724 && (last_die->name == NULL
15725 || strchr (last_die->name, '<') == NULL))
15726 || (cu->language != language_c
15727 && (last_die->tag == DW_TAG_class_type
15728 || last_die->tag == DW_TAG_interface_type
15729 || last_die->tag == DW_TAG_structure_type
15730 || last_die->tag == DW_TAG_union_type))
15731 || (cu->language == language_ada
15732 && (last_die->tag == DW_TAG_subprogram
15733 || last_die->tag == DW_TAG_lexical_block))))
15734 {
15735 nesting_level++;
15736 parent_die = last_die;
15737 continue;
15738 }
15739
15740 /* Otherwise we skip to the next sibling, if any. */
15741 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15742
15743 /* Back to the top, do it again. */
15744 }
15745 }
15746
15747 /* Read a minimal amount of information into the minimal die structure. */
15748
15749 static const gdb_byte *
15750 read_partial_die (const struct die_reader_specs *reader,
15751 struct partial_die_info *part_die,
15752 struct abbrev_info *abbrev, unsigned int abbrev_len,
15753 const gdb_byte *info_ptr)
15754 {
15755 struct dwarf2_cu *cu = reader->cu;
15756 struct objfile *objfile = cu->objfile;
15757 const gdb_byte *buffer = reader->buffer;
15758 unsigned int i;
15759 struct attribute attr;
15760 int has_low_pc_attr = 0;
15761 int has_high_pc_attr = 0;
15762 int high_pc_relative = 0;
15763
15764 memset (part_die, 0, sizeof (struct partial_die_info));
15765
15766 part_die->offset.sect_off = info_ptr - buffer;
15767
15768 info_ptr += abbrev_len;
15769
15770 if (abbrev == NULL)
15771 return info_ptr;
15772
15773 part_die->tag = abbrev->tag;
15774 part_die->has_children = abbrev->has_children;
15775
15776 for (i = 0; i < abbrev->num_attrs; ++i)
15777 {
15778 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15779
15780 /* Store the data if it is of an attribute we want to keep in a
15781 partial symbol table. */
15782 switch (attr.name)
15783 {
15784 case DW_AT_name:
15785 switch (part_die->tag)
15786 {
15787 case DW_TAG_compile_unit:
15788 case DW_TAG_partial_unit:
15789 case DW_TAG_type_unit:
15790 /* Compilation units have a DW_AT_name that is a filename, not
15791 a source language identifier. */
15792 case DW_TAG_enumeration_type:
15793 case DW_TAG_enumerator:
15794 /* These tags always have simple identifiers already; no need
15795 to canonicalize them. */
15796 part_die->name = DW_STRING (&attr);
15797 break;
15798 default:
15799 part_die->name
15800 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15801 &objfile->per_bfd->storage_obstack);
15802 break;
15803 }
15804 break;
15805 case DW_AT_linkage_name:
15806 case DW_AT_MIPS_linkage_name:
15807 /* Note that both forms of linkage name might appear. We
15808 assume they will be the same, and we only store the last
15809 one we see. */
15810 if (cu->language == language_ada)
15811 part_die->name = DW_STRING (&attr);
15812 part_die->linkage_name = DW_STRING (&attr);
15813 break;
15814 case DW_AT_low_pc:
15815 has_low_pc_attr = 1;
15816 part_die->lowpc = attr_value_as_address (&attr);
15817 break;
15818 case DW_AT_high_pc:
15819 has_high_pc_attr = 1;
15820 part_die->highpc = attr_value_as_address (&attr);
15821 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15822 high_pc_relative = 1;
15823 break;
15824 case DW_AT_location:
15825 /* Support the .debug_loc offsets. */
15826 if (attr_form_is_block (&attr))
15827 {
15828 part_die->d.locdesc = DW_BLOCK (&attr);
15829 }
15830 else if (attr_form_is_section_offset (&attr))
15831 {
15832 dwarf2_complex_location_expr_complaint ();
15833 }
15834 else
15835 {
15836 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15837 "partial symbol information");
15838 }
15839 break;
15840 case DW_AT_external:
15841 part_die->is_external = DW_UNSND (&attr);
15842 break;
15843 case DW_AT_declaration:
15844 part_die->is_declaration = DW_UNSND (&attr);
15845 break;
15846 case DW_AT_type:
15847 part_die->has_type = 1;
15848 break;
15849 case DW_AT_abstract_origin:
15850 case DW_AT_specification:
15851 case DW_AT_extension:
15852 part_die->has_specification = 1;
15853 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15854 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15855 || cu->per_cu->is_dwz);
15856 break;
15857 case DW_AT_sibling:
15858 /* Ignore absolute siblings, they might point outside of
15859 the current compile unit. */
15860 if (attr.form == DW_FORM_ref_addr)
15861 complaint (&symfile_complaints,
15862 _("ignoring absolute DW_AT_sibling"));
15863 else
15864 {
15865 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15866 const gdb_byte *sibling_ptr = buffer + off;
15867
15868 if (sibling_ptr < info_ptr)
15869 complaint (&symfile_complaints,
15870 _("DW_AT_sibling points backwards"));
15871 else if (sibling_ptr > reader->buffer_end)
15872 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15873 else
15874 part_die->sibling = sibling_ptr;
15875 }
15876 break;
15877 case DW_AT_byte_size:
15878 part_die->has_byte_size = 1;
15879 break;
15880 case DW_AT_const_value:
15881 part_die->has_const_value = 1;
15882 break;
15883 case DW_AT_calling_convention:
15884 /* DWARF doesn't provide a way to identify a program's source-level
15885 entry point. DW_AT_calling_convention attributes are only meant
15886 to describe functions' calling conventions.
15887
15888 However, because it's a necessary piece of information in
15889 Fortran, and because DW_CC_program is the only piece of debugging
15890 information whose definition refers to a 'main program' at all,
15891 several compilers have begun marking Fortran main programs with
15892 DW_CC_program --- even when those functions use the standard
15893 calling conventions.
15894
15895 So until DWARF specifies a way to provide this information and
15896 compilers pick up the new representation, we'll support this
15897 practice. */
15898 if (DW_UNSND (&attr) == DW_CC_program
15899 && cu->language == language_fortran)
15900 set_objfile_main_name (objfile, part_die->name, language_fortran);
15901 break;
15902 case DW_AT_inline:
15903 if (DW_UNSND (&attr) == DW_INL_inlined
15904 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15905 part_die->may_be_inlined = 1;
15906 break;
15907
15908 case DW_AT_import:
15909 if (part_die->tag == DW_TAG_imported_unit)
15910 {
15911 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15912 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15913 || cu->per_cu->is_dwz);
15914 }
15915 break;
15916
15917 default:
15918 break;
15919 }
15920 }
15921
15922 if (high_pc_relative)
15923 part_die->highpc += part_die->lowpc;
15924
15925 if (has_low_pc_attr && has_high_pc_attr)
15926 {
15927 /* When using the GNU linker, .gnu.linkonce. sections are used to
15928 eliminate duplicate copies of functions and vtables and such.
15929 The linker will arbitrarily choose one and discard the others.
15930 The AT_*_pc values for such functions refer to local labels in
15931 these sections. If the section from that file was discarded, the
15932 labels are not in the output, so the relocs get a value of 0.
15933 If this is a discarded function, mark the pc bounds as invalid,
15934 so that GDB will ignore it. */
15935 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15936 {
15937 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15938
15939 complaint (&symfile_complaints,
15940 _("DW_AT_low_pc %s is zero "
15941 "for DIE at 0x%x [in module %s]"),
15942 paddress (gdbarch, part_die->lowpc),
15943 part_die->offset.sect_off, objfile_name (objfile));
15944 }
15945 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15946 else if (part_die->lowpc >= part_die->highpc)
15947 {
15948 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15949
15950 complaint (&symfile_complaints,
15951 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15952 "for DIE at 0x%x [in module %s]"),
15953 paddress (gdbarch, part_die->lowpc),
15954 paddress (gdbarch, part_die->highpc),
15955 part_die->offset.sect_off, objfile_name (objfile));
15956 }
15957 else
15958 part_die->has_pc_info = 1;
15959 }
15960
15961 return info_ptr;
15962 }
15963
15964 /* Find a cached partial DIE at OFFSET in CU. */
15965
15966 static struct partial_die_info *
15967 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15968 {
15969 struct partial_die_info *lookup_die = NULL;
15970 struct partial_die_info part_die;
15971
15972 part_die.offset = offset;
15973 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15974 offset.sect_off);
15975
15976 return lookup_die;
15977 }
15978
15979 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15980 except in the case of .debug_types DIEs which do not reference
15981 outside their CU (they do however referencing other types via
15982 DW_FORM_ref_sig8). */
15983
15984 static struct partial_die_info *
15985 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15986 {
15987 struct objfile *objfile = cu->objfile;
15988 struct dwarf2_per_cu_data *per_cu = NULL;
15989 struct partial_die_info *pd = NULL;
15990
15991 if (offset_in_dwz == cu->per_cu->is_dwz
15992 && offset_in_cu_p (&cu->header, offset))
15993 {
15994 pd = find_partial_die_in_comp_unit (offset, cu);
15995 if (pd != NULL)
15996 return pd;
15997 /* We missed recording what we needed.
15998 Load all dies and try again. */
15999 per_cu = cu->per_cu;
16000 }
16001 else
16002 {
16003 /* TUs don't reference other CUs/TUs (except via type signatures). */
16004 if (cu->per_cu->is_debug_types)
16005 {
16006 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16007 " external reference to offset 0x%lx [in module %s].\n"),
16008 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16009 bfd_get_filename (objfile->obfd));
16010 }
16011 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16012 objfile);
16013
16014 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16015 load_partial_comp_unit (per_cu);
16016
16017 per_cu->cu->last_used = 0;
16018 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16019 }
16020
16021 /* If we didn't find it, and not all dies have been loaded,
16022 load them all and try again. */
16023
16024 if (pd == NULL && per_cu->load_all_dies == 0)
16025 {
16026 per_cu->load_all_dies = 1;
16027
16028 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16029 THIS_CU->cu may already be in use. So we can't just free it and
16030 replace its DIEs with the ones we read in. Instead, we leave those
16031 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16032 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16033 set. */
16034 load_partial_comp_unit (per_cu);
16035
16036 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16037 }
16038
16039 if (pd == NULL)
16040 internal_error (__FILE__, __LINE__,
16041 _("could not find partial DIE 0x%x "
16042 "in cache [from module %s]\n"),
16043 offset.sect_off, bfd_get_filename (objfile->obfd));
16044 return pd;
16045 }
16046
16047 /* See if we can figure out if the class lives in a namespace. We do
16048 this by looking for a member function; its demangled name will
16049 contain namespace info, if there is any. */
16050
16051 static void
16052 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16053 struct dwarf2_cu *cu)
16054 {
16055 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16056 what template types look like, because the demangler
16057 frequently doesn't give the same name as the debug info. We
16058 could fix this by only using the demangled name to get the
16059 prefix (but see comment in read_structure_type). */
16060
16061 struct partial_die_info *real_pdi;
16062 struct partial_die_info *child_pdi;
16063
16064 /* If this DIE (this DIE's specification, if any) has a parent, then
16065 we should not do this. We'll prepend the parent's fully qualified
16066 name when we create the partial symbol. */
16067
16068 real_pdi = struct_pdi;
16069 while (real_pdi->has_specification)
16070 real_pdi = find_partial_die (real_pdi->spec_offset,
16071 real_pdi->spec_is_dwz, cu);
16072
16073 if (real_pdi->die_parent != NULL)
16074 return;
16075
16076 for (child_pdi = struct_pdi->die_child;
16077 child_pdi != NULL;
16078 child_pdi = child_pdi->die_sibling)
16079 {
16080 if (child_pdi->tag == DW_TAG_subprogram
16081 && child_pdi->linkage_name != NULL)
16082 {
16083 char *actual_class_name
16084 = language_class_name_from_physname (cu->language_defn,
16085 child_pdi->linkage_name);
16086 if (actual_class_name != NULL)
16087 {
16088 struct_pdi->name
16089 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16090 actual_class_name,
16091 strlen (actual_class_name));
16092 xfree (actual_class_name);
16093 }
16094 break;
16095 }
16096 }
16097 }
16098
16099 /* Adjust PART_DIE before generating a symbol for it. This function
16100 may set the is_external flag or change the DIE's name. */
16101
16102 static void
16103 fixup_partial_die (struct partial_die_info *part_die,
16104 struct dwarf2_cu *cu)
16105 {
16106 /* Once we've fixed up a die, there's no point in doing so again.
16107 This also avoids a memory leak if we were to call
16108 guess_partial_die_structure_name multiple times. */
16109 if (part_die->fixup_called)
16110 return;
16111
16112 /* If we found a reference attribute and the DIE has no name, try
16113 to find a name in the referred to DIE. */
16114
16115 if (part_die->name == NULL && part_die->has_specification)
16116 {
16117 struct partial_die_info *spec_die;
16118
16119 spec_die = find_partial_die (part_die->spec_offset,
16120 part_die->spec_is_dwz, cu);
16121
16122 fixup_partial_die (spec_die, cu);
16123
16124 if (spec_die->name)
16125 {
16126 part_die->name = spec_die->name;
16127
16128 /* Copy DW_AT_external attribute if it is set. */
16129 if (spec_die->is_external)
16130 part_die->is_external = spec_die->is_external;
16131 }
16132 }
16133
16134 /* Set default names for some unnamed DIEs. */
16135
16136 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16137 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16138
16139 /* If there is no parent die to provide a namespace, and there are
16140 children, see if we can determine the namespace from their linkage
16141 name. */
16142 if (cu->language == language_cplus
16143 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16144 && part_die->die_parent == NULL
16145 && part_die->has_children
16146 && (part_die->tag == DW_TAG_class_type
16147 || part_die->tag == DW_TAG_structure_type
16148 || part_die->tag == DW_TAG_union_type))
16149 guess_partial_die_structure_name (part_die, cu);
16150
16151 /* GCC might emit a nameless struct or union that has a linkage
16152 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16153 if (part_die->name == NULL
16154 && (part_die->tag == DW_TAG_class_type
16155 || part_die->tag == DW_TAG_interface_type
16156 || part_die->tag == DW_TAG_structure_type
16157 || part_die->tag == DW_TAG_union_type)
16158 && part_die->linkage_name != NULL)
16159 {
16160 char *demangled;
16161
16162 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16163 if (demangled)
16164 {
16165 const char *base;
16166
16167 /* Strip any leading namespaces/classes, keep only the base name.
16168 DW_AT_name for named DIEs does not contain the prefixes. */
16169 base = strrchr (demangled, ':');
16170 if (base && base > demangled && base[-1] == ':')
16171 base++;
16172 else
16173 base = demangled;
16174
16175 part_die->name
16176 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16177 base, strlen (base));
16178 xfree (demangled);
16179 }
16180 }
16181
16182 part_die->fixup_called = 1;
16183 }
16184
16185 /* Read an attribute value described by an attribute form. */
16186
16187 static const gdb_byte *
16188 read_attribute_value (const struct die_reader_specs *reader,
16189 struct attribute *attr, unsigned form,
16190 const gdb_byte *info_ptr)
16191 {
16192 struct dwarf2_cu *cu = reader->cu;
16193 struct objfile *objfile = cu->objfile;
16194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16195 bfd *abfd = reader->abfd;
16196 struct comp_unit_head *cu_header = &cu->header;
16197 unsigned int bytes_read;
16198 struct dwarf_block *blk;
16199
16200 attr->form = form;
16201 switch (form)
16202 {
16203 case DW_FORM_ref_addr:
16204 if (cu->header.version == 2)
16205 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16206 else
16207 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16208 &cu->header, &bytes_read);
16209 info_ptr += bytes_read;
16210 break;
16211 case DW_FORM_GNU_ref_alt:
16212 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16213 info_ptr += bytes_read;
16214 break;
16215 case DW_FORM_addr:
16216 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16217 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16218 info_ptr += bytes_read;
16219 break;
16220 case DW_FORM_block2:
16221 blk = dwarf_alloc_block (cu);
16222 blk->size = read_2_bytes (abfd, info_ptr);
16223 info_ptr += 2;
16224 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16225 info_ptr += blk->size;
16226 DW_BLOCK (attr) = blk;
16227 break;
16228 case DW_FORM_block4:
16229 blk = dwarf_alloc_block (cu);
16230 blk->size = read_4_bytes (abfd, info_ptr);
16231 info_ptr += 4;
16232 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16233 info_ptr += blk->size;
16234 DW_BLOCK (attr) = blk;
16235 break;
16236 case DW_FORM_data2:
16237 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16238 info_ptr += 2;
16239 break;
16240 case DW_FORM_data4:
16241 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16242 info_ptr += 4;
16243 break;
16244 case DW_FORM_data8:
16245 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16246 info_ptr += 8;
16247 break;
16248 case DW_FORM_sec_offset:
16249 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16250 info_ptr += bytes_read;
16251 break;
16252 case DW_FORM_string:
16253 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16254 DW_STRING_IS_CANONICAL (attr) = 0;
16255 info_ptr += bytes_read;
16256 break;
16257 case DW_FORM_strp:
16258 if (!cu->per_cu->is_dwz)
16259 {
16260 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16261 &bytes_read);
16262 DW_STRING_IS_CANONICAL (attr) = 0;
16263 info_ptr += bytes_read;
16264 break;
16265 }
16266 /* FALLTHROUGH */
16267 case DW_FORM_GNU_strp_alt:
16268 {
16269 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16270 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16271 &bytes_read);
16272
16273 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16274 DW_STRING_IS_CANONICAL (attr) = 0;
16275 info_ptr += bytes_read;
16276 }
16277 break;
16278 case DW_FORM_exprloc:
16279 case DW_FORM_block:
16280 blk = dwarf_alloc_block (cu);
16281 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16282 info_ptr += bytes_read;
16283 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16284 info_ptr += blk->size;
16285 DW_BLOCK (attr) = blk;
16286 break;
16287 case DW_FORM_block1:
16288 blk = dwarf_alloc_block (cu);
16289 blk->size = read_1_byte (abfd, info_ptr);
16290 info_ptr += 1;
16291 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16292 info_ptr += blk->size;
16293 DW_BLOCK (attr) = blk;
16294 break;
16295 case DW_FORM_data1:
16296 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16297 info_ptr += 1;
16298 break;
16299 case DW_FORM_flag:
16300 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16301 info_ptr += 1;
16302 break;
16303 case DW_FORM_flag_present:
16304 DW_UNSND (attr) = 1;
16305 break;
16306 case DW_FORM_sdata:
16307 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16308 info_ptr += bytes_read;
16309 break;
16310 case DW_FORM_udata:
16311 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16312 info_ptr += bytes_read;
16313 break;
16314 case DW_FORM_ref1:
16315 DW_UNSND (attr) = (cu->header.offset.sect_off
16316 + read_1_byte (abfd, info_ptr));
16317 info_ptr += 1;
16318 break;
16319 case DW_FORM_ref2:
16320 DW_UNSND (attr) = (cu->header.offset.sect_off
16321 + read_2_bytes (abfd, info_ptr));
16322 info_ptr += 2;
16323 break;
16324 case DW_FORM_ref4:
16325 DW_UNSND (attr) = (cu->header.offset.sect_off
16326 + read_4_bytes (abfd, info_ptr));
16327 info_ptr += 4;
16328 break;
16329 case DW_FORM_ref8:
16330 DW_UNSND (attr) = (cu->header.offset.sect_off
16331 + read_8_bytes (abfd, info_ptr));
16332 info_ptr += 8;
16333 break;
16334 case DW_FORM_ref_sig8:
16335 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16336 info_ptr += 8;
16337 break;
16338 case DW_FORM_ref_udata:
16339 DW_UNSND (attr) = (cu->header.offset.sect_off
16340 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16341 info_ptr += bytes_read;
16342 break;
16343 case DW_FORM_indirect:
16344 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16345 info_ptr += bytes_read;
16346 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16347 break;
16348 case DW_FORM_GNU_addr_index:
16349 if (reader->dwo_file == NULL)
16350 {
16351 /* For now flag a hard error.
16352 Later we can turn this into a complaint. */
16353 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16354 dwarf_form_name (form),
16355 bfd_get_filename (abfd));
16356 }
16357 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16358 info_ptr += bytes_read;
16359 break;
16360 case DW_FORM_GNU_str_index:
16361 if (reader->dwo_file == NULL)
16362 {
16363 /* For now flag a hard error.
16364 Later we can turn this into a complaint if warranted. */
16365 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16366 dwarf_form_name (form),
16367 bfd_get_filename (abfd));
16368 }
16369 {
16370 ULONGEST str_index =
16371 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16372
16373 DW_STRING (attr) = read_str_index (reader, str_index);
16374 DW_STRING_IS_CANONICAL (attr) = 0;
16375 info_ptr += bytes_read;
16376 }
16377 break;
16378 default:
16379 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16380 dwarf_form_name (form),
16381 bfd_get_filename (abfd));
16382 }
16383
16384 /* Super hack. */
16385 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16386 attr->form = DW_FORM_GNU_ref_alt;
16387
16388 /* We have seen instances where the compiler tried to emit a byte
16389 size attribute of -1 which ended up being encoded as an unsigned
16390 0xffffffff. Although 0xffffffff is technically a valid size value,
16391 an object of this size seems pretty unlikely so we can relatively
16392 safely treat these cases as if the size attribute was invalid and
16393 treat them as zero by default. */
16394 if (attr->name == DW_AT_byte_size
16395 && form == DW_FORM_data4
16396 && DW_UNSND (attr) >= 0xffffffff)
16397 {
16398 complaint
16399 (&symfile_complaints,
16400 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16401 hex_string (DW_UNSND (attr)));
16402 DW_UNSND (attr) = 0;
16403 }
16404
16405 return info_ptr;
16406 }
16407
16408 /* Read an attribute described by an abbreviated attribute. */
16409
16410 static const gdb_byte *
16411 read_attribute (const struct die_reader_specs *reader,
16412 struct attribute *attr, struct attr_abbrev *abbrev,
16413 const gdb_byte *info_ptr)
16414 {
16415 attr->name = abbrev->name;
16416 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16417 }
16418
16419 /* Read dwarf information from a buffer. */
16420
16421 static unsigned int
16422 read_1_byte (bfd *abfd, const gdb_byte *buf)
16423 {
16424 return bfd_get_8 (abfd, buf);
16425 }
16426
16427 static int
16428 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16429 {
16430 return bfd_get_signed_8 (abfd, buf);
16431 }
16432
16433 static unsigned int
16434 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16435 {
16436 return bfd_get_16 (abfd, buf);
16437 }
16438
16439 static int
16440 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16441 {
16442 return bfd_get_signed_16 (abfd, buf);
16443 }
16444
16445 static unsigned int
16446 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16447 {
16448 return bfd_get_32 (abfd, buf);
16449 }
16450
16451 static int
16452 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16453 {
16454 return bfd_get_signed_32 (abfd, buf);
16455 }
16456
16457 static ULONGEST
16458 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16459 {
16460 return bfd_get_64 (abfd, buf);
16461 }
16462
16463 static CORE_ADDR
16464 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16465 unsigned int *bytes_read)
16466 {
16467 struct comp_unit_head *cu_header = &cu->header;
16468 CORE_ADDR retval = 0;
16469
16470 if (cu_header->signed_addr_p)
16471 {
16472 switch (cu_header->addr_size)
16473 {
16474 case 2:
16475 retval = bfd_get_signed_16 (abfd, buf);
16476 break;
16477 case 4:
16478 retval = bfd_get_signed_32 (abfd, buf);
16479 break;
16480 case 8:
16481 retval = bfd_get_signed_64 (abfd, buf);
16482 break;
16483 default:
16484 internal_error (__FILE__, __LINE__,
16485 _("read_address: bad switch, signed [in module %s]"),
16486 bfd_get_filename (abfd));
16487 }
16488 }
16489 else
16490 {
16491 switch (cu_header->addr_size)
16492 {
16493 case 2:
16494 retval = bfd_get_16 (abfd, buf);
16495 break;
16496 case 4:
16497 retval = bfd_get_32 (abfd, buf);
16498 break;
16499 case 8:
16500 retval = bfd_get_64 (abfd, buf);
16501 break;
16502 default:
16503 internal_error (__FILE__, __LINE__,
16504 _("read_address: bad switch, "
16505 "unsigned [in module %s]"),
16506 bfd_get_filename (abfd));
16507 }
16508 }
16509
16510 *bytes_read = cu_header->addr_size;
16511 return retval;
16512 }
16513
16514 /* Read the initial length from a section. The (draft) DWARF 3
16515 specification allows the initial length to take up either 4 bytes
16516 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16517 bytes describe the length and all offsets will be 8 bytes in length
16518 instead of 4.
16519
16520 An older, non-standard 64-bit format is also handled by this
16521 function. The older format in question stores the initial length
16522 as an 8-byte quantity without an escape value. Lengths greater
16523 than 2^32 aren't very common which means that the initial 4 bytes
16524 is almost always zero. Since a length value of zero doesn't make
16525 sense for the 32-bit format, this initial zero can be considered to
16526 be an escape value which indicates the presence of the older 64-bit
16527 format. As written, the code can't detect (old format) lengths
16528 greater than 4GB. If it becomes necessary to handle lengths
16529 somewhat larger than 4GB, we could allow other small values (such
16530 as the non-sensical values of 1, 2, and 3) to also be used as
16531 escape values indicating the presence of the old format.
16532
16533 The value returned via bytes_read should be used to increment the
16534 relevant pointer after calling read_initial_length().
16535
16536 [ Note: read_initial_length() and read_offset() are based on the
16537 document entitled "DWARF Debugging Information Format", revision
16538 3, draft 8, dated November 19, 2001. This document was obtained
16539 from:
16540
16541 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16542
16543 This document is only a draft and is subject to change. (So beware.)
16544
16545 Details regarding the older, non-standard 64-bit format were
16546 determined empirically by examining 64-bit ELF files produced by
16547 the SGI toolchain on an IRIX 6.5 machine.
16548
16549 - Kevin, July 16, 2002
16550 ] */
16551
16552 static LONGEST
16553 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16554 {
16555 LONGEST length = bfd_get_32 (abfd, buf);
16556
16557 if (length == 0xffffffff)
16558 {
16559 length = bfd_get_64 (abfd, buf + 4);
16560 *bytes_read = 12;
16561 }
16562 else if (length == 0)
16563 {
16564 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16565 length = bfd_get_64 (abfd, buf);
16566 *bytes_read = 8;
16567 }
16568 else
16569 {
16570 *bytes_read = 4;
16571 }
16572
16573 return length;
16574 }
16575
16576 /* Cover function for read_initial_length.
16577 Returns the length of the object at BUF, and stores the size of the
16578 initial length in *BYTES_READ and stores the size that offsets will be in
16579 *OFFSET_SIZE.
16580 If the initial length size is not equivalent to that specified in
16581 CU_HEADER then issue a complaint.
16582 This is useful when reading non-comp-unit headers. */
16583
16584 static LONGEST
16585 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16586 const struct comp_unit_head *cu_header,
16587 unsigned int *bytes_read,
16588 unsigned int *offset_size)
16589 {
16590 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16591
16592 gdb_assert (cu_header->initial_length_size == 4
16593 || cu_header->initial_length_size == 8
16594 || cu_header->initial_length_size == 12);
16595
16596 if (cu_header->initial_length_size != *bytes_read)
16597 complaint (&symfile_complaints,
16598 _("intermixed 32-bit and 64-bit DWARF sections"));
16599
16600 *offset_size = (*bytes_read == 4) ? 4 : 8;
16601 return length;
16602 }
16603
16604 /* Read an offset from the data stream. The size of the offset is
16605 given by cu_header->offset_size. */
16606
16607 static LONGEST
16608 read_offset (bfd *abfd, const gdb_byte *buf,
16609 const struct comp_unit_head *cu_header,
16610 unsigned int *bytes_read)
16611 {
16612 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16613
16614 *bytes_read = cu_header->offset_size;
16615 return offset;
16616 }
16617
16618 /* Read an offset from the data stream. */
16619
16620 static LONGEST
16621 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16622 {
16623 LONGEST retval = 0;
16624
16625 switch (offset_size)
16626 {
16627 case 4:
16628 retval = bfd_get_32 (abfd, buf);
16629 break;
16630 case 8:
16631 retval = bfd_get_64 (abfd, buf);
16632 break;
16633 default:
16634 internal_error (__FILE__, __LINE__,
16635 _("read_offset_1: bad switch [in module %s]"),
16636 bfd_get_filename (abfd));
16637 }
16638
16639 return retval;
16640 }
16641
16642 static const gdb_byte *
16643 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16644 {
16645 /* If the size of a host char is 8 bits, we can return a pointer
16646 to the buffer, otherwise we have to copy the data to a buffer
16647 allocated on the temporary obstack. */
16648 gdb_assert (HOST_CHAR_BIT == 8);
16649 return buf;
16650 }
16651
16652 static const char *
16653 read_direct_string (bfd *abfd, const gdb_byte *buf,
16654 unsigned int *bytes_read_ptr)
16655 {
16656 /* If the size of a host char is 8 bits, we can return a pointer
16657 to the string, otherwise we have to copy the string to a buffer
16658 allocated on the temporary obstack. */
16659 gdb_assert (HOST_CHAR_BIT == 8);
16660 if (*buf == '\0')
16661 {
16662 *bytes_read_ptr = 1;
16663 return NULL;
16664 }
16665 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16666 return (const char *) buf;
16667 }
16668
16669 static const char *
16670 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16671 {
16672 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16673 if (dwarf2_per_objfile->str.buffer == NULL)
16674 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16675 bfd_get_filename (abfd));
16676 if (str_offset >= dwarf2_per_objfile->str.size)
16677 error (_("DW_FORM_strp pointing outside of "
16678 ".debug_str section [in module %s]"),
16679 bfd_get_filename (abfd));
16680 gdb_assert (HOST_CHAR_BIT == 8);
16681 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16682 return NULL;
16683 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16684 }
16685
16686 /* Read a string at offset STR_OFFSET in the .debug_str section from
16687 the .dwz file DWZ. Throw an error if the offset is too large. If
16688 the string consists of a single NUL byte, return NULL; otherwise
16689 return a pointer to the string. */
16690
16691 static const char *
16692 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16693 {
16694 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16695
16696 if (dwz->str.buffer == NULL)
16697 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16698 "section [in module %s]"),
16699 bfd_get_filename (dwz->dwz_bfd));
16700 if (str_offset >= dwz->str.size)
16701 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16702 ".debug_str section [in module %s]"),
16703 bfd_get_filename (dwz->dwz_bfd));
16704 gdb_assert (HOST_CHAR_BIT == 8);
16705 if (dwz->str.buffer[str_offset] == '\0')
16706 return NULL;
16707 return (const char *) (dwz->str.buffer + str_offset);
16708 }
16709
16710 static const char *
16711 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16712 const struct comp_unit_head *cu_header,
16713 unsigned int *bytes_read_ptr)
16714 {
16715 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16716
16717 return read_indirect_string_at_offset (abfd, str_offset);
16718 }
16719
16720 static ULONGEST
16721 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16722 unsigned int *bytes_read_ptr)
16723 {
16724 ULONGEST result;
16725 unsigned int num_read;
16726 int i, shift;
16727 unsigned char byte;
16728
16729 result = 0;
16730 shift = 0;
16731 num_read = 0;
16732 i = 0;
16733 while (1)
16734 {
16735 byte = bfd_get_8 (abfd, buf);
16736 buf++;
16737 num_read++;
16738 result |= ((ULONGEST) (byte & 127) << shift);
16739 if ((byte & 128) == 0)
16740 {
16741 break;
16742 }
16743 shift += 7;
16744 }
16745 *bytes_read_ptr = num_read;
16746 return result;
16747 }
16748
16749 static LONGEST
16750 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16751 unsigned int *bytes_read_ptr)
16752 {
16753 LONGEST result;
16754 int i, shift, num_read;
16755 unsigned char byte;
16756
16757 result = 0;
16758 shift = 0;
16759 num_read = 0;
16760 i = 0;
16761 while (1)
16762 {
16763 byte = bfd_get_8 (abfd, buf);
16764 buf++;
16765 num_read++;
16766 result |= ((LONGEST) (byte & 127) << shift);
16767 shift += 7;
16768 if ((byte & 128) == 0)
16769 {
16770 break;
16771 }
16772 }
16773 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16774 result |= -(((LONGEST) 1) << shift);
16775 *bytes_read_ptr = num_read;
16776 return result;
16777 }
16778
16779 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16780 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16781 ADDR_SIZE is the size of addresses from the CU header. */
16782
16783 static CORE_ADDR
16784 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16785 {
16786 struct objfile *objfile = dwarf2_per_objfile->objfile;
16787 bfd *abfd = objfile->obfd;
16788 const gdb_byte *info_ptr;
16789
16790 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16791 if (dwarf2_per_objfile->addr.buffer == NULL)
16792 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16793 objfile_name (objfile));
16794 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16795 error (_("DW_FORM_addr_index pointing outside of "
16796 ".debug_addr section [in module %s]"),
16797 objfile_name (objfile));
16798 info_ptr = (dwarf2_per_objfile->addr.buffer
16799 + addr_base + addr_index * addr_size);
16800 if (addr_size == 4)
16801 return bfd_get_32 (abfd, info_ptr);
16802 else
16803 return bfd_get_64 (abfd, info_ptr);
16804 }
16805
16806 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16807
16808 static CORE_ADDR
16809 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16810 {
16811 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16812 }
16813
16814 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16815
16816 static CORE_ADDR
16817 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16818 unsigned int *bytes_read)
16819 {
16820 bfd *abfd = cu->objfile->obfd;
16821 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16822
16823 return read_addr_index (cu, addr_index);
16824 }
16825
16826 /* Data structure to pass results from dwarf2_read_addr_index_reader
16827 back to dwarf2_read_addr_index. */
16828
16829 struct dwarf2_read_addr_index_data
16830 {
16831 ULONGEST addr_base;
16832 int addr_size;
16833 };
16834
16835 /* die_reader_func for dwarf2_read_addr_index. */
16836
16837 static void
16838 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16839 const gdb_byte *info_ptr,
16840 struct die_info *comp_unit_die,
16841 int has_children,
16842 void *data)
16843 {
16844 struct dwarf2_cu *cu = reader->cu;
16845 struct dwarf2_read_addr_index_data *aidata =
16846 (struct dwarf2_read_addr_index_data *) data;
16847
16848 aidata->addr_base = cu->addr_base;
16849 aidata->addr_size = cu->header.addr_size;
16850 }
16851
16852 /* Given an index in .debug_addr, fetch the value.
16853 NOTE: This can be called during dwarf expression evaluation,
16854 long after the debug information has been read, and thus per_cu->cu
16855 may no longer exist. */
16856
16857 CORE_ADDR
16858 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16859 unsigned int addr_index)
16860 {
16861 struct objfile *objfile = per_cu->objfile;
16862 struct dwarf2_cu *cu = per_cu->cu;
16863 ULONGEST addr_base;
16864 int addr_size;
16865
16866 /* This is intended to be called from outside this file. */
16867 dw2_setup (objfile);
16868
16869 /* We need addr_base and addr_size.
16870 If we don't have PER_CU->cu, we have to get it.
16871 Nasty, but the alternative is storing the needed info in PER_CU,
16872 which at this point doesn't seem justified: it's not clear how frequently
16873 it would get used and it would increase the size of every PER_CU.
16874 Entry points like dwarf2_per_cu_addr_size do a similar thing
16875 so we're not in uncharted territory here.
16876 Alas we need to be a bit more complicated as addr_base is contained
16877 in the DIE.
16878
16879 We don't need to read the entire CU(/TU).
16880 We just need the header and top level die.
16881
16882 IWBN to use the aging mechanism to let us lazily later discard the CU.
16883 For now we skip this optimization. */
16884
16885 if (cu != NULL)
16886 {
16887 addr_base = cu->addr_base;
16888 addr_size = cu->header.addr_size;
16889 }
16890 else
16891 {
16892 struct dwarf2_read_addr_index_data aidata;
16893
16894 /* Note: We can't use init_cutu_and_read_dies_simple here,
16895 we need addr_base. */
16896 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16897 dwarf2_read_addr_index_reader, &aidata);
16898 addr_base = aidata.addr_base;
16899 addr_size = aidata.addr_size;
16900 }
16901
16902 return read_addr_index_1 (addr_index, addr_base, addr_size);
16903 }
16904
16905 /* Given a DW_FORM_GNU_str_index, fetch the string.
16906 This is only used by the Fission support. */
16907
16908 static const char *
16909 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16910 {
16911 struct objfile *objfile = dwarf2_per_objfile->objfile;
16912 const char *objf_name = objfile_name (objfile);
16913 bfd *abfd = objfile->obfd;
16914 struct dwarf2_cu *cu = reader->cu;
16915 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16916 struct dwarf2_section_info *str_offsets_section =
16917 &reader->dwo_file->sections.str_offsets;
16918 const gdb_byte *info_ptr;
16919 ULONGEST str_offset;
16920 static const char form_name[] = "DW_FORM_GNU_str_index";
16921
16922 dwarf2_read_section (objfile, str_section);
16923 dwarf2_read_section (objfile, str_offsets_section);
16924 if (str_section->buffer == NULL)
16925 error (_("%s used without .debug_str.dwo section"
16926 " in CU at offset 0x%lx [in module %s]"),
16927 form_name, (long) cu->header.offset.sect_off, objf_name);
16928 if (str_offsets_section->buffer == NULL)
16929 error (_("%s used without .debug_str_offsets.dwo section"
16930 " in CU at offset 0x%lx [in module %s]"),
16931 form_name, (long) cu->header.offset.sect_off, objf_name);
16932 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16933 error (_("%s pointing outside of .debug_str_offsets.dwo"
16934 " section in CU at offset 0x%lx [in module %s]"),
16935 form_name, (long) cu->header.offset.sect_off, objf_name);
16936 info_ptr = (str_offsets_section->buffer
16937 + str_index * cu->header.offset_size);
16938 if (cu->header.offset_size == 4)
16939 str_offset = bfd_get_32 (abfd, info_ptr);
16940 else
16941 str_offset = bfd_get_64 (abfd, info_ptr);
16942 if (str_offset >= str_section->size)
16943 error (_("Offset from %s pointing outside of"
16944 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16945 form_name, (long) cu->header.offset.sect_off, objf_name);
16946 return (const char *) (str_section->buffer + str_offset);
16947 }
16948
16949 /* Return the length of an LEB128 number in BUF. */
16950
16951 static int
16952 leb128_size (const gdb_byte *buf)
16953 {
16954 const gdb_byte *begin = buf;
16955 gdb_byte byte;
16956
16957 while (1)
16958 {
16959 byte = *buf++;
16960 if ((byte & 128) == 0)
16961 return buf - begin;
16962 }
16963 }
16964
16965 static void
16966 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16967 {
16968 switch (lang)
16969 {
16970 case DW_LANG_C89:
16971 case DW_LANG_C99:
16972 case DW_LANG_C11:
16973 case DW_LANG_C:
16974 case DW_LANG_UPC:
16975 cu->language = language_c;
16976 break;
16977 case DW_LANG_C_plus_plus:
16978 case DW_LANG_C_plus_plus_11:
16979 case DW_LANG_C_plus_plus_14:
16980 cu->language = language_cplus;
16981 break;
16982 case DW_LANG_D:
16983 cu->language = language_d;
16984 break;
16985 case DW_LANG_Fortran77:
16986 case DW_LANG_Fortran90:
16987 case DW_LANG_Fortran95:
16988 case DW_LANG_Fortran03:
16989 case DW_LANG_Fortran08:
16990 cu->language = language_fortran;
16991 break;
16992 case DW_LANG_Go:
16993 cu->language = language_go;
16994 break;
16995 case DW_LANG_Mips_Assembler:
16996 cu->language = language_asm;
16997 break;
16998 case DW_LANG_Java:
16999 cu->language = language_java;
17000 break;
17001 case DW_LANG_Ada83:
17002 case DW_LANG_Ada95:
17003 cu->language = language_ada;
17004 break;
17005 case DW_LANG_Modula2:
17006 cu->language = language_m2;
17007 break;
17008 case DW_LANG_Pascal83:
17009 cu->language = language_pascal;
17010 break;
17011 case DW_LANG_ObjC:
17012 cu->language = language_objc;
17013 break;
17014 case DW_LANG_Cobol74:
17015 case DW_LANG_Cobol85:
17016 default:
17017 cu->language = language_minimal;
17018 break;
17019 }
17020 cu->language_defn = language_def (cu->language);
17021 }
17022
17023 /* Return the named attribute or NULL if not there. */
17024
17025 static struct attribute *
17026 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17027 {
17028 for (;;)
17029 {
17030 unsigned int i;
17031 struct attribute *spec = NULL;
17032
17033 for (i = 0; i < die->num_attrs; ++i)
17034 {
17035 if (die->attrs[i].name == name)
17036 return &die->attrs[i];
17037 if (die->attrs[i].name == DW_AT_specification
17038 || die->attrs[i].name == DW_AT_abstract_origin)
17039 spec = &die->attrs[i];
17040 }
17041
17042 if (!spec)
17043 break;
17044
17045 die = follow_die_ref (die, spec, &cu);
17046 }
17047
17048 return NULL;
17049 }
17050
17051 /* Return the named attribute or NULL if not there,
17052 but do not follow DW_AT_specification, etc.
17053 This is for use in contexts where we're reading .debug_types dies.
17054 Following DW_AT_specification, DW_AT_abstract_origin will take us
17055 back up the chain, and we want to go down. */
17056
17057 static struct attribute *
17058 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17059 {
17060 unsigned int i;
17061
17062 for (i = 0; i < die->num_attrs; ++i)
17063 if (die->attrs[i].name == name)
17064 return &die->attrs[i];
17065
17066 return NULL;
17067 }
17068
17069 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17070 and holds a non-zero value. This function should only be used for
17071 DW_FORM_flag or DW_FORM_flag_present attributes. */
17072
17073 static int
17074 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17075 {
17076 struct attribute *attr = dwarf2_attr (die, name, cu);
17077
17078 return (attr && DW_UNSND (attr));
17079 }
17080
17081 static int
17082 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17083 {
17084 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17085 which value is non-zero. However, we have to be careful with
17086 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17087 (via dwarf2_flag_true_p) follows this attribute. So we may
17088 end up accidently finding a declaration attribute that belongs
17089 to a different DIE referenced by the specification attribute,
17090 even though the given DIE does not have a declaration attribute. */
17091 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17092 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17093 }
17094
17095 /* Return the die giving the specification for DIE, if there is
17096 one. *SPEC_CU is the CU containing DIE on input, and the CU
17097 containing the return value on output. If there is no
17098 specification, but there is an abstract origin, that is
17099 returned. */
17100
17101 static struct die_info *
17102 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17103 {
17104 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17105 *spec_cu);
17106
17107 if (spec_attr == NULL)
17108 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17109
17110 if (spec_attr == NULL)
17111 return NULL;
17112 else
17113 return follow_die_ref (die, spec_attr, spec_cu);
17114 }
17115
17116 /* Free the line_header structure *LH, and any arrays and strings it
17117 refers to.
17118 NOTE: This is also used as a "cleanup" function. */
17119
17120 static void
17121 free_line_header (struct line_header *lh)
17122 {
17123 if (lh->standard_opcode_lengths)
17124 xfree (lh->standard_opcode_lengths);
17125
17126 /* Remember that all the lh->file_names[i].name pointers are
17127 pointers into debug_line_buffer, and don't need to be freed. */
17128 if (lh->file_names)
17129 xfree (lh->file_names);
17130
17131 /* Similarly for the include directory names. */
17132 if (lh->include_dirs)
17133 xfree (lh->include_dirs);
17134
17135 xfree (lh);
17136 }
17137
17138 /* Stub for free_line_header to match void * callback types. */
17139
17140 static void
17141 free_line_header_voidp (void *arg)
17142 {
17143 struct line_header *lh = arg;
17144
17145 free_line_header (lh);
17146 }
17147
17148 /* Add an entry to LH's include directory table. */
17149
17150 static void
17151 add_include_dir (struct line_header *lh, const char *include_dir)
17152 {
17153 /* Grow the array if necessary. */
17154 if (lh->include_dirs_size == 0)
17155 {
17156 lh->include_dirs_size = 1; /* for testing */
17157 lh->include_dirs = xmalloc (lh->include_dirs_size
17158 * sizeof (*lh->include_dirs));
17159 }
17160 else if (lh->num_include_dirs >= lh->include_dirs_size)
17161 {
17162 lh->include_dirs_size *= 2;
17163 lh->include_dirs = xrealloc (lh->include_dirs,
17164 (lh->include_dirs_size
17165 * sizeof (*lh->include_dirs)));
17166 }
17167
17168 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17169 }
17170
17171 /* Add an entry to LH's file name table. */
17172
17173 static void
17174 add_file_name (struct line_header *lh,
17175 const char *name,
17176 unsigned int dir_index,
17177 unsigned int mod_time,
17178 unsigned int length)
17179 {
17180 struct file_entry *fe;
17181
17182 /* Grow the array if necessary. */
17183 if (lh->file_names_size == 0)
17184 {
17185 lh->file_names_size = 1; /* for testing */
17186 lh->file_names = xmalloc (lh->file_names_size
17187 * sizeof (*lh->file_names));
17188 }
17189 else if (lh->num_file_names >= lh->file_names_size)
17190 {
17191 lh->file_names_size *= 2;
17192 lh->file_names = xrealloc (lh->file_names,
17193 (lh->file_names_size
17194 * sizeof (*lh->file_names)));
17195 }
17196
17197 fe = &lh->file_names[lh->num_file_names++];
17198 fe->name = name;
17199 fe->dir_index = dir_index;
17200 fe->mod_time = mod_time;
17201 fe->length = length;
17202 fe->included_p = 0;
17203 fe->symtab = NULL;
17204 }
17205
17206 /* A convenience function to find the proper .debug_line section for a CU. */
17207
17208 static struct dwarf2_section_info *
17209 get_debug_line_section (struct dwarf2_cu *cu)
17210 {
17211 struct dwarf2_section_info *section;
17212
17213 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17214 DWO file. */
17215 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17216 section = &cu->dwo_unit->dwo_file->sections.line;
17217 else if (cu->per_cu->is_dwz)
17218 {
17219 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17220
17221 section = &dwz->line;
17222 }
17223 else
17224 section = &dwarf2_per_objfile->line;
17225
17226 return section;
17227 }
17228
17229 /* Read the statement program header starting at OFFSET in
17230 .debug_line, or .debug_line.dwo. Return a pointer
17231 to a struct line_header, allocated using xmalloc.
17232 Returns NULL if there is a problem reading the header, e.g., if it
17233 has a version we don't understand.
17234
17235 NOTE: the strings in the include directory and file name tables of
17236 the returned object point into the dwarf line section buffer,
17237 and must not be freed. */
17238
17239 static struct line_header *
17240 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17241 {
17242 struct cleanup *back_to;
17243 struct line_header *lh;
17244 const gdb_byte *line_ptr;
17245 unsigned int bytes_read, offset_size;
17246 int i;
17247 const char *cur_dir, *cur_file;
17248 struct dwarf2_section_info *section;
17249 bfd *abfd;
17250
17251 section = get_debug_line_section (cu);
17252 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17253 if (section->buffer == NULL)
17254 {
17255 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17256 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17257 else
17258 complaint (&symfile_complaints, _("missing .debug_line section"));
17259 return 0;
17260 }
17261
17262 /* We can't do this until we know the section is non-empty.
17263 Only then do we know we have such a section. */
17264 abfd = get_section_bfd_owner (section);
17265
17266 /* Make sure that at least there's room for the total_length field.
17267 That could be 12 bytes long, but we're just going to fudge that. */
17268 if (offset + 4 >= section->size)
17269 {
17270 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17271 return 0;
17272 }
17273
17274 lh = xmalloc (sizeof (*lh));
17275 memset (lh, 0, sizeof (*lh));
17276 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17277 (void *) lh);
17278
17279 lh->offset.sect_off = offset;
17280 lh->offset_in_dwz = cu->per_cu->is_dwz;
17281
17282 line_ptr = section->buffer + offset;
17283
17284 /* Read in the header. */
17285 lh->total_length =
17286 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17287 &bytes_read, &offset_size);
17288 line_ptr += bytes_read;
17289 if (line_ptr + lh->total_length > (section->buffer + section->size))
17290 {
17291 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17292 do_cleanups (back_to);
17293 return 0;
17294 }
17295 lh->statement_program_end = line_ptr + lh->total_length;
17296 lh->version = read_2_bytes (abfd, line_ptr);
17297 line_ptr += 2;
17298 if (lh->version > 4)
17299 {
17300 /* This is a version we don't understand. The format could have
17301 changed in ways we don't handle properly so just punt. */
17302 complaint (&symfile_complaints,
17303 _("unsupported version in .debug_line section"));
17304 return NULL;
17305 }
17306 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17307 line_ptr += offset_size;
17308 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17309 line_ptr += 1;
17310 if (lh->version >= 4)
17311 {
17312 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17313 line_ptr += 1;
17314 }
17315 else
17316 lh->maximum_ops_per_instruction = 1;
17317
17318 if (lh->maximum_ops_per_instruction == 0)
17319 {
17320 lh->maximum_ops_per_instruction = 1;
17321 complaint (&symfile_complaints,
17322 _("invalid maximum_ops_per_instruction "
17323 "in `.debug_line' section"));
17324 }
17325
17326 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17327 line_ptr += 1;
17328 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17329 line_ptr += 1;
17330 lh->line_range = read_1_byte (abfd, line_ptr);
17331 line_ptr += 1;
17332 lh->opcode_base = read_1_byte (abfd, line_ptr);
17333 line_ptr += 1;
17334 lh->standard_opcode_lengths
17335 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17336
17337 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17338 for (i = 1; i < lh->opcode_base; ++i)
17339 {
17340 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17341 line_ptr += 1;
17342 }
17343
17344 /* Read directory table. */
17345 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17346 {
17347 line_ptr += bytes_read;
17348 add_include_dir (lh, cur_dir);
17349 }
17350 line_ptr += bytes_read;
17351
17352 /* Read file name table. */
17353 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17354 {
17355 unsigned int dir_index, mod_time, length;
17356
17357 line_ptr += bytes_read;
17358 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17359 line_ptr += bytes_read;
17360 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17361 line_ptr += bytes_read;
17362 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17363 line_ptr += bytes_read;
17364
17365 add_file_name (lh, cur_file, dir_index, mod_time, length);
17366 }
17367 line_ptr += bytes_read;
17368 lh->statement_program_start = line_ptr;
17369
17370 if (line_ptr > (section->buffer + section->size))
17371 complaint (&symfile_complaints,
17372 _("line number info header doesn't "
17373 "fit in `.debug_line' section"));
17374
17375 discard_cleanups (back_to);
17376 return lh;
17377 }
17378
17379 /* Subroutine of dwarf_decode_lines to simplify it.
17380 Return the file name of the psymtab for included file FILE_INDEX
17381 in line header LH of PST.
17382 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17383 If space for the result is malloc'd, it will be freed by a cleanup.
17384 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17385
17386 The function creates dangling cleanup registration. */
17387
17388 static const char *
17389 psymtab_include_file_name (const struct line_header *lh, int file_index,
17390 const struct partial_symtab *pst,
17391 const char *comp_dir)
17392 {
17393 const struct file_entry fe = lh->file_names [file_index];
17394 const char *include_name = fe.name;
17395 const char *include_name_to_compare = include_name;
17396 const char *dir_name = NULL;
17397 const char *pst_filename;
17398 char *copied_name = NULL;
17399 int file_is_pst;
17400
17401 if (fe.dir_index && lh->include_dirs != NULL)
17402 dir_name = lh->include_dirs[fe.dir_index - 1];
17403
17404 if (!IS_ABSOLUTE_PATH (include_name)
17405 && (dir_name != NULL || comp_dir != NULL))
17406 {
17407 /* Avoid creating a duplicate psymtab for PST.
17408 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17409 Before we do the comparison, however, we need to account
17410 for DIR_NAME and COMP_DIR.
17411 First prepend dir_name (if non-NULL). If we still don't
17412 have an absolute path prepend comp_dir (if non-NULL).
17413 However, the directory we record in the include-file's
17414 psymtab does not contain COMP_DIR (to match the
17415 corresponding symtab(s)).
17416
17417 Example:
17418
17419 bash$ cd /tmp
17420 bash$ gcc -g ./hello.c
17421 include_name = "hello.c"
17422 dir_name = "."
17423 DW_AT_comp_dir = comp_dir = "/tmp"
17424 DW_AT_name = "./hello.c"
17425
17426 */
17427
17428 if (dir_name != NULL)
17429 {
17430 char *tem = concat (dir_name, SLASH_STRING,
17431 include_name, (char *)NULL);
17432
17433 make_cleanup (xfree, tem);
17434 include_name = tem;
17435 include_name_to_compare = include_name;
17436 }
17437 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17438 {
17439 char *tem = concat (comp_dir, SLASH_STRING,
17440 include_name, (char *)NULL);
17441
17442 make_cleanup (xfree, tem);
17443 include_name_to_compare = tem;
17444 }
17445 }
17446
17447 pst_filename = pst->filename;
17448 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17449 {
17450 copied_name = concat (pst->dirname, SLASH_STRING,
17451 pst_filename, (char *)NULL);
17452 pst_filename = copied_name;
17453 }
17454
17455 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17456
17457 if (copied_name != NULL)
17458 xfree (copied_name);
17459
17460 if (file_is_pst)
17461 return NULL;
17462 return include_name;
17463 }
17464
17465 /* Ignore this record_line request. */
17466
17467 static void
17468 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17469 {
17470 return;
17471 }
17472
17473 /* Return non-zero if we should add LINE to the line number table.
17474 LINE is the line to add, LAST_LINE is the last line that was added,
17475 LAST_SUBFILE is the subfile for LAST_LINE.
17476 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17477 had a non-zero discriminator.
17478
17479 We have to be careful in the presence of discriminators.
17480 E.g., for this line:
17481
17482 for (i = 0; i < 100000; i++);
17483
17484 clang can emit four line number entries for that one line,
17485 each with a different discriminator.
17486 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17487
17488 However, we want gdb to coalesce all four entries into one.
17489 Otherwise the user could stepi into the middle of the line and
17490 gdb would get confused about whether the pc really was in the
17491 middle of the line.
17492
17493 Things are further complicated by the fact that two consecutive
17494 line number entries for the same line is a heuristic used by gcc
17495 to denote the end of the prologue. So we can't just discard duplicate
17496 entries, we have to be selective about it. The heuristic we use is
17497 that we only collapse consecutive entries for the same line if at least
17498 one of those entries has a non-zero discriminator. PR 17276.
17499
17500 Note: Addresses in the line number state machine can never go backwards
17501 within one sequence, thus this coalescing is ok. */
17502
17503 static int
17504 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17505 int line_has_non_zero_discriminator,
17506 struct subfile *last_subfile)
17507 {
17508 if (current_subfile != last_subfile)
17509 return 1;
17510 if (line != last_line)
17511 return 1;
17512 /* Same line for the same file that we've seen already.
17513 As a last check, for pr 17276, only record the line if the line
17514 has never had a non-zero discriminator. */
17515 if (!line_has_non_zero_discriminator)
17516 return 1;
17517 return 0;
17518 }
17519
17520 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17521 in the line table of subfile SUBFILE. */
17522
17523 static void
17524 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17525 unsigned int line, CORE_ADDR address,
17526 record_line_ftype p_record_line)
17527 {
17528 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17529
17530 (*p_record_line) (subfile, line, addr);
17531 }
17532
17533 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17534 Mark the end of a set of line number records.
17535 The arguments are the same as for dwarf_record_line.
17536 If SUBFILE is NULL the request is ignored. */
17537
17538 static void
17539 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17540 CORE_ADDR address, record_line_ftype p_record_line)
17541 {
17542 if (subfile != NULL)
17543 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17544 }
17545
17546 /* Subroutine of dwarf_decode_lines to simplify it.
17547 Process the line number information in LH. */
17548
17549 static void
17550 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17551 const int decode_for_pst_p, CORE_ADDR lowpc)
17552 {
17553 const gdb_byte *line_ptr, *extended_end;
17554 const gdb_byte *line_end;
17555 unsigned int bytes_read, extended_len;
17556 unsigned char op_code, extended_op;
17557 CORE_ADDR baseaddr;
17558 struct objfile *objfile = cu->objfile;
17559 bfd *abfd = objfile->obfd;
17560 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17561 struct subfile *last_subfile = NULL;
17562 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17563 = record_line;
17564
17565 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17566
17567 line_ptr = lh->statement_program_start;
17568 line_end = lh->statement_program_end;
17569
17570 /* Read the statement sequences until there's nothing left. */
17571 while (line_ptr < line_end)
17572 {
17573 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17574 on the initial 0 address as if there was a line entry for it
17575 so that the backend has a chance to adjust it and also record
17576 it in case it needs it. This is currently used by MIPS code,
17577 cf. `mips_adjust_dwarf2_line'. */
17578 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17579 unsigned int file = 1;
17580 unsigned int line = 1;
17581 int is_stmt = lh->default_is_stmt;
17582 int end_sequence = 0;
17583 unsigned char op_index = 0;
17584 unsigned int discriminator = 0;
17585 /* The last line number that was recorded, used to coalesce
17586 consecutive entries for the same line. This can happen, for
17587 example, when discriminators are present. PR 17276. */
17588 unsigned int last_line = 0;
17589 int line_has_non_zero_discriminator = 0;
17590
17591 if (!decode_for_pst_p && lh->num_file_names >= file)
17592 {
17593 /* Start a subfile for the current file of the state machine. */
17594 /* lh->include_dirs and lh->file_names are 0-based, but the
17595 directory and file name numbers in the statement program
17596 are 1-based. */
17597 struct file_entry *fe = &lh->file_names[file - 1];
17598 const char *dir = NULL;
17599
17600 if (fe->dir_index && lh->include_dirs != NULL)
17601 dir = lh->include_dirs[fe->dir_index - 1];
17602
17603 dwarf2_start_subfile (fe->name, dir);
17604 }
17605
17606 /* Decode the table. */
17607 while (!end_sequence)
17608 {
17609 op_code = read_1_byte (abfd, line_ptr);
17610 line_ptr += 1;
17611 if (line_ptr > line_end)
17612 {
17613 dwarf2_debug_line_missing_end_sequence_complaint ();
17614 break;
17615 }
17616
17617 if (op_code >= lh->opcode_base)
17618 {
17619 /* Special opcode. */
17620 unsigned char adj_opcode;
17621 CORE_ADDR addr_adj;
17622 int line_delta;
17623
17624 adj_opcode = op_code - lh->opcode_base;
17625 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17626 / lh->maximum_ops_per_instruction)
17627 * lh->minimum_instruction_length);
17628 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17629 op_index = ((op_index + (adj_opcode / lh->line_range))
17630 % lh->maximum_ops_per_instruction);
17631 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17632 line += line_delta;
17633 if (line_delta != 0)
17634 line_has_non_zero_discriminator = discriminator != 0;
17635 if (lh->num_file_names < file || file == 0)
17636 dwarf2_debug_line_missing_file_complaint ();
17637 /* For now we ignore lines not starting on an
17638 instruction boundary. */
17639 else if (op_index == 0)
17640 {
17641 lh->file_names[file - 1].included_p = 1;
17642 if (!decode_for_pst_p && is_stmt)
17643 {
17644 if (last_subfile != current_subfile)
17645 {
17646 dwarf_finish_line (gdbarch, last_subfile,
17647 address, p_record_line);
17648 }
17649 if (dwarf_record_line_p (line, last_line,
17650 line_has_non_zero_discriminator,
17651 last_subfile))
17652 {
17653 dwarf_record_line (gdbarch, current_subfile,
17654 line, address, p_record_line);
17655 }
17656 last_subfile = current_subfile;
17657 last_line = line;
17658 }
17659 }
17660 discriminator = 0;
17661 }
17662 else switch (op_code)
17663 {
17664 case DW_LNS_extended_op:
17665 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17666 &bytes_read);
17667 line_ptr += bytes_read;
17668 extended_end = line_ptr + extended_len;
17669 extended_op = read_1_byte (abfd, line_ptr);
17670 line_ptr += 1;
17671 switch (extended_op)
17672 {
17673 case DW_LNE_end_sequence:
17674 p_record_line = record_line;
17675 end_sequence = 1;
17676 break;
17677 case DW_LNE_set_address:
17678 address = read_address (abfd, line_ptr, cu, &bytes_read);
17679
17680 /* If address < lowpc then it's not a usable value, it's
17681 outside the pc range of the CU. However, we restrict
17682 the test to only address values of zero to preserve
17683 GDB's previous behaviour which is to handle the specific
17684 case of a function being GC'd by the linker. */
17685 if (address == 0 && address < lowpc)
17686 {
17687 /* This line table is for a function which has been
17688 GCd by the linker. Ignore it. PR gdb/12528 */
17689
17690 long line_offset
17691 = line_ptr - get_debug_line_section (cu)->buffer;
17692
17693 complaint (&symfile_complaints,
17694 _(".debug_line address at offset 0x%lx is 0 "
17695 "[in module %s]"),
17696 line_offset, objfile_name (objfile));
17697 p_record_line = noop_record_line;
17698 /* Note: p_record_line is left as noop_record_line
17699 until we see DW_LNE_end_sequence. */
17700 }
17701
17702 op_index = 0;
17703 line_ptr += bytes_read;
17704 address += baseaddr;
17705 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17706 break;
17707 case DW_LNE_define_file:
17708 {
17709 const char *cur_file;
17710 unsigned int dir_index, mod_time, length;
17711
17712 cur_file = read_direct_string (abfd, line_ptr,
17713 &bytes_read);
17714 line_ptr += bytes_read;
17715 dir_index =
17716 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17717 line_ptr += bytes_read;
17718 mod_time =
17719 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17720 line_ptr += bytes_read;
17721 length =
17722 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17723 line_ptr += bytes_read;
17724 add_file_name (lh, cur_file, dir_index, mod_time, length);
17725 }
17726 break;
17727 case DW_LNE_set_discriminator:
17728 /* The discriminator is not interesting to the debugger;
17729 just ignore it. We still need to check its value though:
17730 if there are consecutive entries for the same
17731 (non-prologue) line we want to coalesce them.
17732 PR 17276. */
17733 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17734 &bytes_read);
17735 line_has_non_zero_discriminator |= discriminator != 0;
17736 line_ptr += bytes_read;
17737 break;
17738 default:
17739 complaint (&symfile_complaints,
17740 _("mangled .debug_line section"));
17741 return;
17742 }
17743 /* Make sure that we parsed the extended op correctly. If e.g.
17744 we expected a different address size than the producer used,
17745 we may have read the wrong number of bytes. */
17746 if (line_ptr != extended_end)
17747 {
17748 complaint (&symfile_complaints,
17749 _("mangled .debug_line section"));
17750 return;
17751 }
17752 break;
17753 case DW_LNS_copy:
17754 if (lh->num_file_names < file || file == 0)
17755 dwarf2_debug_line_missing_file_complaint ();
17756 else
17757 {
17758 lh->file_names[file - 1].included_p = 1;
17759 if (!decode_for_pst_p && is_stmt)
17760 {
17761 if (last_subfile != current_subfile)
17762 {
17763 dwarf_finish_line (gdbarch, last_subfile,
17764 address, p_record_line);
17765 }
17766 if (dwarf_record_line_p (line, last_line,
17767 line_has_non_zero_discriminator,
17768 last_subfile))
17769 {
17770 dwarf_record_line (gdbarch, current_subfile,
17771 line, address, p_record_line);
17772 }
17773 last_subfile = current_subfile;
17774 last_line = line;
17775 }
17776 }
17777 discriminator = 0;
17778 break;
17779 case DW_LNS_advance_pc:
17780 {
17781 CORE_ADDR adjust
17782 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17783 CORE_ADDR addr_adj;
17784
17785 addr_adj = (((op_index + adjust)
17786 / lh->maximum_ops_per_instruction)
17787 * lh->minimum_instruction_length);
17788 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17789 op_index = ((op_index + adjust)
17790 % lh->maximum_ops_per_instruction);
17791 line_ptr += bytes_read;
17792 }
17793 break;
17794 case DW_LNS_advance_line:
17795 {
17796 int line_delta
17797 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17798
17799 line += line_delta;
17800 if (line_delta != 0)
17801 line_has_non_zero_discriminator = discriminator != 0;
17802 line_ptr += bytes_read;
17803 }
17804 break;
17805 case DW_LNS_set_file:
17806 {
17807 /* The arrays lh->include_dirs and lh->file_names are
17808 0-based, but the directory and file name numbers in
17809 the statement program are 1-based. */
17810 struct file_entry *fe;
17811 const char *dir = NULL;
17812
17813 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17814 line_ptr += bytes_read;
17815 if (lh->num_file_names < file || file == 0)
17816 dwarf2_debug_line_missing_file_complaint ();
17817 else
17818 {
17819 fe = &lh->file_names[file - 1];
17820 if (fe->dir_index && lh->include_dirs != NULL)
17821 dir = lh->include_dirs[fe->dir_index - 1];
17822 if (!decode_for_pst_p)
17823 {
17824 last_subfile = current_subfile;
17825 line_has_non_zero_discriminator = discriminator != 0;
17826 dwarf2_start_subfile (fe->name, dir);
17827 }
17828 }
17829 }
17830 break;
17831 case DW_LNS_set_column:
17832 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17833 line_ptr += bytes_read;
17834 break;
17835 case DW_LNS_negate_stmt:
17836 is_stmt = (!is_stmt);
17837 break;
17838 case DW_LNS_set_basic_block:
17839 break;
17840 /* Add to the address register of the state machine the
17841 address increment value corresponding to special opcode
17842 255. I.e., this value is scaled by the minimum
17843 instruction length since special opcode 255 would have
17844 scaled the increment. */
17845 case DW_LNS_const_add_pc:
17846 {
17847 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17848 CORE_ADDR addr_adj;
17849
17850 addr_adj = (((op_index + adjust)
17851 / lh->maximum_ops_per_instruction)
17852 * lh->minimum_instruction_length);
17853 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17854 op_index = ((op_index + adjust)
17855 % lh->maximum_ops_per_instruction);
17856 }
17857 break;
17858 case DW_LNS_fixed_advance_pc:
17859 {
17860 CORE_ADDR addr_adj;
17861
17862 addr_adj = read_2_bytes (abfd, line_ptr);
17863 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17864 op_index = 0;
17865 line_ptr += 2;
17866 }
17867 break;
17868 default:
17869 {
17870 /* Unknown standard opcode, ignore it. */
17871 int i;
17872
17873 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17874 {
17875 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17876 line_ptr += bytes_read;
17877 }
17878 }
17879 }
17880 }
17881 if (lh->num_file_names < file || file == 0)
17882 dwarf2_debug_line_missing_file_complaint ();
17883 else
17884 {
17885 lh->file_names[file - 1].included_p = 1;
17886 if (!decode_for_pst_p)
17887 {
17888 dwarf_finish_line (gdbarch, current_subfile, address,
17889 p_record_line);
17890 }
17891 }
17892 }
17893 }
17894
17895 /* Decode the Line Number Program (LNP) for the given line_header
17896 structure and CU. The actual information extracted and the type
17897 of structures created from the LNP depends on the value of PST.
17898
17899 1. If PST is NULL, then this procedure uses the data from the program
17900 to create all necessary symbol tables, and their linetables.
17901
17902 2. If PST is not NULL, this procedure reads the program to determine
17903 the list of files included by the unit represented by PST, and
17904 builds all the associated partial symbol tables.
17905
17906 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17907 It is used for relative paths in the line table.
17908 NOTE: When processing partial symtabs (pst != NULL),
17909 comp_dir == pst->dirname.
17910
17911 NOTE: It is important that psymtabs have the same file name (via strcmp)
17912 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17913 symtab we don't use it in the name of the psymtabs we create.
17914 E.g. expand_line_sal requires this when finding psymtabs to expand.
17915 A good testcase for this is mb-inline.exp.
17916
17917 LOWPC is the lowest address in CU (or 0 if not known).
17918
17919 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17920 for its PC<->lines mapping information. Otherwise only the filename
17921 table is read in. */
17922
17923 static void
17924 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17925 struct dwarf2_cu *cu, struct partial_symtab *pst,
17926 CORE_ADDR lowpc, int decode_mapping)
17927 {
17928 struct objfile *objfile = cu->objfile;
17929 const int decode_for_pst_p = (pst != NULL);
17930
17931 if (decode_mapping)
17932 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17933
17934 if (decode_for_pst_p)
17935 {
17936 int file_index;
17937
17938 /* Now that we're done scanning the Line Header Program, we can
17939 create the psymtab of each included file. */
17940 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17941 if (lh->file_names[file_index].included_p == 1)
17942 {
17943 const char *include_name =
17944 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17945 if (include_name != NULL)
17946 dwarf2_create_include_psymtab (include_name, pst, objfile);
17947 }
17948 }
17949 else
17950 {
17951 /* Make sure a symtab is created for every file, even files
17952 which contain only variables (i.e. no code with associated
17953 line numbers). */
17954 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17955 int i;
17956
17957 for (i = 0; i < lh->num_file_names; i++)
17958 {
17959 const char *dir = NULL;
17960 struct file_entry *fe;
17961
17962 fe = &lh->file_names[i];
17963 if (fe->dir_index && lh->include_dirs != NULL)
17964 dir = lh->include_dirs[fe->dir_index - 1];
17965 dwarf2_start_subfile (fe->name, dir);
17966
17967 if (current_subfile->symtab == NULL)
17968 {
17969 current_subfile->symtab
17970 = allocate_symtab (cust, current_subfile->name);
17971 }
17972 fe->symtab = current_subfile->symtab;
17973 }
17974 }
17975 }
17976
17977 /* Start a subfile for DWARF. FILENAME is the name of the file and
17978 DIRNAME the name of the source directory which contains FILENAME
17979 or NULL if not known.
17980 This routine tries to keep line numbers from identical absolute and
17981 relative file names in a common subfile.
17982
17983 Using the `list' example from the GDB testsuite, which resides in
17984 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17985 of /srcdir/list0.c yields the following debugging information for list0.c:
17986
17987 DW_AT_name: /srcdir/list0.c
17988 DW_AT_comp_dir: /compdir
17989 files.files[0].name: list0.h
17990 files.files[0].dir: /srcdir
17991 files.files[1].name: list0.c
17992 files.files[1].dir: /srcdir
17993
17994 The line number information for list0.c has to end up in a single
17995 subfile, so that `break /srcdir/list0.c:1' works as expected.
17996 start_subfile will ensure that this happens provided that we pass the
17997 concatenation of files.files[1].dir and files.files[1].name as the
17998 subfile's name. */
17999
18000 static void
18001 dwarf2_start_subfile (const char *filename, const char *dirname)
18002 {
18003 char *copy = NULL;
18004
18005 /* In order not to lose the line information directory,
18006 we concatenate it to the filename when it makes sense.
18007 Note that the Dwarf3 standard says (speaking of filenames in line
18008 information): ``The directory index is ignored for file names
18009 that represent full path names''. Thus ignoring dirname in the
18010 `else' branch below isn't an issue. */
18011
18012 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18013 {
18014 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18015 filename = copy;
18016 }
18017
18018 start_subfile (filename);
18019
18020 if (copy != NULL)
18021 xfree (copy);
18022 }
18023
18024 /* Start a symtab for DWARF.
18025 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18026
18027 static struct compunit_symtab *
18028 dwarf2_start_symtab (struct dwarf2_cu *cu,
18029 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18030 {
18031 struct compunit_symtab *cust
18032 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18033
18034 record_debugformat ("DWARF 2");
18035 record_producer (cu->producer);
18036
18037 /* We assume that we're processing GCC output. */
18038 processing_gcc_compilation = 2;
18039
18040 cu->processing_has_namespace_info = 0;
18041
18042 return cust;
18043 }
18044
18045 static void
18046 var_decode_location (struct attribute *attr, struct symbol *sym,
18047 struct dwarf2_cu *cu)
18048 {
18049 struct objfile *objfile = cu->objfile;
18050 struct comp_unit_head *cu_header = &cu->header;
18051
18052 /* NOTE drow/2003-01-30: There used to be a comment and some special
18053 code here to turn a symbol with DW_AT_external and a
18054 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18055 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18056 with some versions of binutils) where shared libraries could have
18057 relocations against symbols in their debug information - the
18058 minimal symbol would have the right address, but the debug info
18059 would not. It's no longer necessary, because we will explicitly
18060 apply relocations when we read in the debug information now. */
18061
18062 /* A DW_AT_location attribute with no contents indicates that a
18063 variable has been optimized away. */
18064 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18065 {
18066 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18067 return;
18068 }
18069
18070 /* Handle one degenerate form of location expression specially, to
18071 preserve GDB's previous behavior when section offsets are
18072 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18073 then mark this symbol as LOC_STATIC. */
18074
18075 if (attr_form_is_block (attr)
18076 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18077 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18078 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18079 && (DW_BLOCK (attr)->size
18080 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18081 {
18082 unsigned int dummy;
18083
18084 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18085 SYMBOL_VALUE_ADDRESS (sym) =
18086 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18087 else
18088 SYMBOL_VALUE_ADDRESS (sym) =
18089 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18090 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18091 fixup_symbol_section (sym, objfile);
18092 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18093 SYMBOL_SECTION (sym));
18094 return;
18095 }
18096
18097 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18098 expression evaluator, and use LOC_COMPUTED only when necessary
18099 (i.e. when the value of a register or memory location is
18100 referenced, or a thread-local block, etc.). Then again, it might
18101 not be worthwhile. I'm assuming that it isn't unless performance
18102 or memory numbers show me otherwise. */
18103
18104 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18105
18106 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18107 cu->has_loclist = 1;
18108 }
18109
18110 /* Given a pointer to a DWARF information entry, figure out if we need
18111 to make a symbol table entry for it, and if so, create a new entry
18112 and return a pointer to it.
18113 If TYPE is NULL, determine symbol type from the die, otherwise
18114 used the passed type.
18115 If SPACE is not NULL, use it to hold the new symbol. If it is
18116 NULL, allocate a new symbol on the objfile's obstack. */
18117
18118 static struct symbol *
18119 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18120 struct symbol *space)
18121 {
18122 struct objfile *objfile = cu->objfile;
18123 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18124 struct symbol *sym = NULL;
18125 const char *name;
18126 struct attribute *attr = NULL;
18127 struct attribute *attr2 = NULL;
18128 CORE_ADDR baseaddr;
18129 struct pending **list_to_add = NULL;
18130
18131 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18132
18133 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18134
18135 name = dwarf2_name (die, cu);
18136 if (name)
18137 {
18138 const char *linkagename;
18139 int suppress_add = 0;
18140
18141 if (space)
18142 sym = space;
18143 else
18144 sym = allocate_symbol (objfile);
18145 OBJSTAT (objfile, n_syms++);
18146
18147 /* Cache this symbol's name and the name's demangled form (if any). */
18148 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18149 linkagename = dwarf2_physname (name, die, cu);
18150 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18151
18152 /* Fortran does not have mangling standard and the mangling does differ
18153 between gfortran, iFort etc. */
18154 if (cu->language == language_fortran
18155 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18156 symbol_set_demangled_name (&(sym->ginfo),
18157 dwarf2_full_name (name, die, cu),
18158 NULL);
18159
18160 /* Default assumptions.
18161 Use the passed type or decode it from the die. */
18162 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18163 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18164 if (type != NULL)
18165 SYMBOL_TYPE (sym) = type;
18166 else
18167 SYMBOL_TYPE (sym) = die_type (die, cu);
18168 attr = dwarf2_attr (die,
18169 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18170 cu);
18171 if (attr)
18172 {
18173 SYMBOL_LINE (sym) = DW_UNSND (attr);
18174 }
18175
18176 attr = dwarf2_attr (die,
18177 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18178 cu);
18179 if (attr)
18180 {
18181 int file_index = DW_UNSND (attr);
18182
18183 if (cu->line_header == NULL
18184 || file_index > cu->line_header->num_file_names)
18185 complaint (&symfile_complaints,
18186 _("file index out of range"));
18187 else if (file_index > 0)
18188 {
18189 struct file_entry *fe;
18190
18191 fe = &cu->line_header->file_names[file_index - 1];
18192 symbol_set_symtab (sym, fe->symtab);
18193 }
18194 }
18195
18196 switch (die->tag)
18197 {
18198 case DW_TAG_label:
18199 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18200 if (attr)
18201 {
18202 CORE_ADDR addr;
18203
18204 addr = attr_value_as_address (attr);
18205 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18206 SYMBOL_VALUE_ADDRESS (sym) = addr;
18207 }
18208 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18209 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18210 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18211 add_symbol_to_list (sym, cu->list_in_scope);
18212 break;
18213 case DW_TAG_subprogram:
18214 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18215 finish_block. */
18216 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18217 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18218 if ((attr2 && (DW_UNSND (attr2) != 0))
18219 || cu->language == language_ada)
18220 {
18221 /* Subprograms marked external are stored as a global symbol.
18222 Ada subprograms, whether marked external or not, are always
18223 stored as a global symbol, because we want to be able to
18224 access them globally. For instance, we want to be able
18225 to break on a nested subprogram without having to
18226 specify the context. */
18227 list_to_add = &global_symbols;
18228 }
18229 else
18230 {
18231 list_to_add = cu->list_in_scope;
18232 }
18233 break;
18234 case DW_TAG_inlined_subroutine:
18235 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18236 finish_block. */
18237 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18238 SYMBOL_INLINED (sym) = 1;
18239 list_to_add = cu->list_in_scope;
18240 break;
18241 case DW_TAG_template_value_param:
18242 suppress_add = 1;
18243 /* Fall through. */
18244 case DW_TAG_constant:
18245 case DW_TAG_variable:
18246 case DW_TAG_member:
18247 /* Compilation with minimal debug info may result in
18248 variables with missing type entries. Change the
18249 misleading `void' type to something sensible. */
18250 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18251 SYMBOL_TYPE (sym)
18252 = objfile_type (objfile)->nodebug_data_symbol;
18253
18254 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18255 /* In the case of DW_TAG_member, we should only be called for
18256 static const members. */
18257 if (die->tag == DW_TAG_member)
18258 {
18259 /* dwarf2_add_field uses die_is_declaration,
18260 so we do the same. */
18261 gdb_assert (die_is_declaration (die, cu));
18262 gdb_assert (attr);
18263 }
18264 if (attr)
18265 {
18266 dwarf2_const_value (attr, sym, cu);
18267 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18268 if (!suppress_add)
18269 {
18270 if (attr2 && (DW_UNSND (attr2) != 0))
18271 list_to_add = &global_symbols;
18272 else
18273 list_to_add = cu->list_in_scope;
18274 }
18275 break;
18276 }
18277 attr = dwarf2_attr (die, DW_AT_location, cu);
18278 if (attr)
18279 {
18280 var_decode_location (attr, sym, cu);
18281 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18282
18283 /* Fortran explicitly imports any global symbols to the local
18284 scope by DW_TAG_common_block. */
18285 if (cu->language == language_fortran && die->parent
18286 && die->parent->tag == DW_TAG_common_block)
18287 attr2 = NULL;
18288
18289 if (SYMBOL_CLASS (sym) == LOC_STATIC
18290 && SYMBOL_VALUE_ADDRESS (sym) == 0
18291 && !dwarf2_per_objfile->has_section_at_zero)
18292 {
18293 /* When a static variable is eliminated by the linker,
18294 the corresponding debug information is not stripped
18295 out, but the variable address is set to null;
18296 do not add such variables into symbol table. */
18297 }
18298 else if (attr2 && (DW_UNSND (attr2) != 0))
18299 {
18300 /* Workaround gfortran PR debug/40040 - it uses
18301 DW_AT_location for variables in -fPIC libraries which may
18302 get overriden by other libraries/executable and get
18303 a different address. Resolve it by the minimal symbol
18304 which may come from inferior's executable using copy
18305 relocation. Make this workaround only for gfortran as for
18306 other compilers GDB cannot guess the minimal symbol
18307 Fortran mangling kind. */
18308 if (cu->language == language_fortran && die->parent
18309 && die->parent->tag == DW_TAG_module
18310 && cu->producer
18311 && startswith (cu->producer, "GNU Fortran "))
18312 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18313
18314 /* A variable with DW_AT_external is never static,
18315 but it may be block-scoped. */
18316 list_to_add = (cu->list_in_scope == &file_symbols
18317 ? &global_symbols : cu->list_in_scope);
18318 }
18319 else
18320 list_to_add = cu->list_in_scope;
18321 }
18322 else
18323 {
18324 /* We do not know the address of this symbol.
18325 If it is an external symbol and we have type information
18326 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18327 The address of the variable will then be determined from
18328 the minimal symbol table whenever the variable is
18329 referenced. */
18330 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18331
18332 /* Fortran explicitly imports any global symbols to the local
18333 scope by DW_TAG_common_block. */
18334 if (cu->language == language_fortran && die->parent
18335 && die->parent->tag == DW_TAG_common_block)
18336 {
18337 /* SYMBOL_CLASS doesn't matter here because
18338 read_common_block is going to reset it. */
18339 if (!suppress_add)
18340 list_to_add = cu->list_in_scope;
18341 }
18342 else if (attr2 && (DW_UNSND (attr2) != 0)
18343 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18344 {
18345 /* A variable with DW_AT_external is never static, but it
18346 may be block-scoped. */
18347 list_to_add = (cu->list_in_scope == &file_symbols
18348 ? &global_symbols : cu->list_in_scope);
18349
18350 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18351 }
18352 else if (!die_is_declaration (die, cu))
18353 {
18354 /* Use the default LOC_OPTIMIZED_OUT class. */
18355 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18356 if (!suppress_add)
18357 list_to_add = cu->list_in_scope;
18358 }
18359 }
18360 break;
18361 case DW_TAG_formal_parameter:
18362 /* If we are inside a function, mark this as an argument. If
18363 not, we might be looking at an argument to an inlined function
18364 when we do not have enough information to show inlined frames;
18365 pretend it's a local variable in that case so that the user can
18366 still see it. */
18367 if (context_stack_depth > 0
18368 && context_stack[context_stack_depth - 1].name != NULL)
18369 SYMBOL_IS_ARGUMENT (sym) = 1;
18370 attr = dwarf2_attr (die, DW_AT_location, cu);
18371 if (attr)
18372 {
18373 var_decode_location (attr, sym, cu);
18374 }
18375 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18376 if (attr)
18377 {
18378 dwarf2_const_value (attr, sym, cu);
18379 }
18380
18381 list_to_add = cu->list_in_scope;
18382 break;
18383 case DW_TAG_unspecified_parameters:
18384 /* From varargs functions; gdb doesn't seem to have any
18385 interest in this information, so just ignore it for now.
18386 (FIXME?) */
18387 break;
18388 case DW_TAG_template_type_param:
18389 suppress_add = 1;
18390 /* Fall through. */
18391 case DW_TAG_class_type:
18392 case DW_TAG_interface_type:
18393 case DW_TAG_structure_type:
18394 case DW_TAG_union_type:
18395 case DW_TAG_set_type:
18396 case DW_TAG_enumeration_type:
18397 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18398 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18399
18400 {
18401 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18402 really ever be static objects: otherwise, if you try
18403 to, say, break of a class's method and you're in a file
18404 which doesn't mention that class, it won't work unless
18405 the check for all static symbols in lookup_symbol_aux
18406 saves you. See the OtherFileClass tests in
18407 gdb.c++/namespace.exp. */
18408
18409 if (!suppress_add)
18410 {
18411 list_to_add = (cu->list_in_scope == &file_symbols
18412 && (cu->language == language_cplus
18413 || cu->language == language_java)
18414 ? &global_symbols : cu->list_in_scope);
18415
18416 /* The semantics of C++ state that "struct foo {
18417 ... }" also defines a typedef for "foo". A Java
18418 class declaration also defines a typedef for the
18419 class. */
18420 if (cu->language == language_cplus
18421 || cu->language == language_java
18422 || cu->language == language_ada)
18423 {
18424 /* The symbol's name is already allocated along
18425 with this objfile, so we don't need to
18426 duplicate it for the type. */
18427 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18428 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18429 }
18430 }
18431 }
18432 break;
18433 case DW_TAG_typedef:
18434 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18435 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18436 list_to_add = cu->list_in_scope;
18437 break;
18438 case DW_TAG_base_type:
18439 case DW_TAG_subrange_type:
18440 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18441 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18442 list_to_add = cu->list_in_scope;
18443 break;
18444 case DW_TAG_enumerator:
18445 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18446 if (attr)
18447 {
18448 dwarf2_const_value (attr, sym, cu);
18449 }
18450 {
18451 /* NOTE: carlton/2003-11-10: See comment above in the
18452 DW_TAG_class_type, etc. block. */
18453
18454 list_to_add = (cu->list_in_scope == &file_symbols
18455 && (cu->language == language_cplus
18456 || cu->language == language_java)
18457 ? &global_symbols : cu->list_in_scope);
18458 }
18459 break;
18460 case DW_TAG_imported_declaration:
18461 case DW_TAG_namespace:
18462 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18463 list_to_add = &global_symbols;
18464 break;
18465 case DW_TAG_module:
18466 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18467 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18468 list_to_add = &global_symbols;
18469 break;
18470 case DW_TAG_common_block:
18471 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18472 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18473 add_symbol_to_list (sym, cu->list_in_scope);
18474 break;
18475 default:
18476 /* Not a tag we recognize. Hopefully we aren't processing
18477 trash data, but since we must specifically ignore things
18478 we don't recognize, there is nothing else we should do at
18479 this point. */
18480 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18481 dwarf_tag_name (die->tag));
18482 break;
18483 }
18484
18485 if (suppress_add)
18486 {
18487 sym->hash_next = objfile->template_symbols;
18488 objfile->template_symbols = sym;
18489 list_to_add = NULL;
18490 }
18491
18492 if (list_to_add != NULL)
18493 add_symbol_to_list (sym, list_to_add);
18494
18495 /* For the benefit of old versions of GCC, check for anonymous
18496 namespaces based on the demangled name. */
18497 if (!cu->processing_has_namespace_info
18498 && cu->language == language_cplus)
18499 cp_scan_for_anonymous_namespaces (sym, objfile);
18500 }
18501 return (sym);
18502 }
18503
18504 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18505
18506 static struct symbol *
18507 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18508 {
18509 return new_symbol_full (die, type, cu, NULL);
18510 }
18511
18512 /* Given an attr with a DW_FORM_dataN value in host byte order,
18513 zero-extend it as appropriate for the symbol's type. The DWARF
18514 standard (v4) is not entirely clear about the meaning of using
18515 DW_FORM_dataN for a constant with a signed type, where the type is
18516 wider than the data. The conclusion of a discussion on the DWARF
18517 list was that this is unspecified. We choose to always zero-extend
18518 because that is the interpretation long in use by GCC. */
18519
18520 static gdb_byte *
18521 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18522 struct dwarf2_cu *cu, LONGEST *value, int bits)
18523 {
18524 struct objfile *objfile = cu->objfile;
18525 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18526 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18527 LONGEST l = DW_UNSND (attr);
18528
18529 if (bits < sizeof (*value) * 8)
18530 {
18531 l &= ((LONGEST) 1 << bits) - 1;
18532 *value = l;
18533 }
18534 else if (bits == sizeof (*value) * 8)
18535 *value = l;
18536 else
18537 {
18538 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18539 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18540 return bytes;
18541 }
18542
18543 return NULL;
18544 }
18545
18546 /* Read a constant value from an attribute. Either set *VALUE, or if
18547 the value does not fit in *VALUE, set *BYTES - either already
18548 allocated on the objfile obstack, or newly allocated on OBSTACK,
18549 or, set *BATON, if we translated the constant to a location
18550 expression. */
18551
18552 static void
18553 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18554 const char *name, struct obstack *obstack,
18555 struct dwarf2_cu *cu,
18556 LONGEST *value, const gdb_byte **bytes,
18557 struct dwarf2_locexpr_baton **baton)
18558 {
18559 struct objfile *objfile = cu->objfile;
18560 struct comp_unit_head *cu_header = &cu->header;
18561 struct dwarf_block *blk;
18562 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18563 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18564
18565 *value = 0;
18566 *bytes = NULL;
18567 *baton = NULL;
18568
18569 switch (attr->form)
18570 {
18571 case DW_FORM_addr:
18572 case DW_FORM_GNU_addr_index:
18573 {
18574 gdb_byte *data;
18575
18576 if (TYPE_LENGTH (type) != cu_header->addr_size)
18577 dwarf2_const_value_length_mismatch_complaint (name,
18578 cu_header->addr_size,
18579 TYPE_LENGTH (type));
18580 /* Symbols of this form are reasonably rare, so we just
18581 piggyback on the existing location code rather than writing
18582 a new implementation of symbol_computed_ops. */
18583 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18584 (*baton)->per_cu = cu->per_cu;
18585 gdb_assert ((*baton)->per_cu);
18586
18587 (*baton)->size = 2 + cu_header->addr_size;
18588 data = obstack_alloc (obstack, (*baton)->size);
18589 (*baton)->data = data;
18590
18591 data[0] = DW_OP_addr;
18592 store_unsigned_integer (&data[1], cu_header->addr_size,
18593 byte_order, DW_ADDR (attr));
18594 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18595 }
18596 break;
18597 case DW_FORM_string:
18598 case DW_FORM_strp:
18599 case DW_FORM_GNU_str_index:
18600 case DW_FORM_GNU_strp_alt:
18601 /* DW_STRING is already allocated on the objfile obstack, point
18602 directly to it. */
18603 *bytes = (const gdb_byte *) DW_STRING (attr);
18604 break;
18605 case DW_FORM_block1:
18606 case DW_FORM_block2:
18607 case DW_FORM_block4:
18608 case DW_FORM_block:
18609 case DW_FORM_exprloc:
18610 blk = DW_BLOCK (attr);
18611 if (TYPE_LENGTH (type) != blk->size)
18612 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18613 TYPE_LENGTH (type));
18614 *bytes = blk->data;
18615 break;
18616
18617 /* The DW_AT_const_value attributes are supposed to carry the
18618 symbol's value "represented as it would be on the target
18619 architecture." By the time we get here, it's already been
18620 converted to host endianness, so we just need to sign- or
18621 zero-extend it as appropriate. */
18622 case DW_FORM_data1:
18623 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18624 break;
18625 case DW_FORM_data2:
18626 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18627 break;
18628 case DW_FORM_data4:
18629 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18630 break;
18631 case DW_FORM_data8:
18632 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18633 break;
18634
18635 case DW_FORM_sdata:
18636 *value = DW_SND (attr);
18637 break;
18638
18639 case DW_FORM_udata:
18640 *value = DW_UNSND (attr);
18641 break;
18642
18643 default:
18644 complaint (&symfile_complaints,
18645 _("unsupported const value attribute form: '%s'"),
18646 dwarf_form_name (attr->form));
18647 *value = 0;
18648 break;
18649 }
18650 }
18651
18652
18653 /* Copy constant value from an attribute to a symbol. */
18654
18655 static void
18656 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18657 struct dwarf2_cu *cu)
18658 {
18659 struct objfile *objfile = cu->objfile;
18660 struct comp_unit_head *cu_header = &cu->header;
18661 LONGEST value;
18662 const gdb_byte *bytes;
18663 struct dwarf2_locexpr_baton *baton;
18664
18665 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18666 SYMBOL_PRINT_NAME (sym),
18667 &objfile->objfile_obstack, cu,
18668 &value, &bytes, &baton);
18669
18670 if (baton != NULL)
18671 {
18672 SYMBOL_LOCATION_BATON (sym) = baton;
18673 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18674 }
18675 else if (bytes != NULL)
18676 {
18677 SYMBOL_VALUE_BYTES (sym) = bytes;
18678 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18679 }
18680 else
18681 {
18682 SYMBOL_VALUE (sym) = value;
18683 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18684 }
18685 }
18686
18687 /* Return the type of the die in question using its DW_AT_type attribute. */
18688
18689 static struct type *
18690 die_type (struct die_info *die, struct dwarf2_cu *cu)
18691 {
18692 struct attribute *type_attr;
18693
18694 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18695 if (!type_attr)
18696 {
18697 /* A missing DW_AT_type represents a void type. */
18698 return objfile_type (cu->objfile)->builtin_void;
18699 }
18700
18701 return lookup_die_type (die, type_attr, cu);
18702 }
18703
18704 /* True iff CU's producer generates GNAT Ada auxiliary information
18705 that allows to find parallel types through that information instead
18706 of having to do expensive parallel lookups by type name. */
18707
18708 static int
18709 need_gnat_info (struct dwarf2_cu *cu)
18710 {
18711 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18712 of GNAT produces this auxiliary information, without any indication
18713 that it is produced. Part of enhancing the FSF version of GNAT
18714 to produce that information will be to put in place an indicator
18715 that we can use in order to determine whether the descriptive type
18716 info is available or not. One suggestion that has been made is
18717 to use a new attribute, attached to the CU die. For now, assume
18718 that the descriptive type info is not available. */
18719 return 0;
18720 }
18721
18722 /* Return the auxiliary type of the die in question using its
18723 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18724 attribute is not present. */
18725
18726 static struct type *
18727 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18728 {
18729 struct attribute *type_attr;
18730
18731 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18732 if (!type_attr)
18733 return NULL;
18734
18735 return lookup_die_type (die, type_attr, cu);
18736 }
18737
18738 /* If DIE has a descriptive_type attribute, then set the TYPE's
18739 descriptive type accordingly. */
18740
18741 static void
18742 set_descriptive_type (struct type *type, struct die_info *die,
18743 struct dwarf2_cu *cu)
18744 {
18745 struct type *descriptive_type = die_descriptive_type (die, cu);
18746
18747 if (descriptive_type)
18748 {
18749 ALLOCATE_GNAT_AUX_TYPE (type);
18750 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18751 }
18752 }
18753
18754 /* Return the containing type of the die in question using its
18755 DW_AT_containing_type attribute. */
18756
18757 static struct type *
18758 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18759 {
18760 struct attribute *type_attr;
18761
18762 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18763 if (!type_attr)
18764 error (_("Dwarf Error: Problem turning containing type into gdb type "
18765 "[in module %s]"), objfile_name (cu->objfile));
18766
18767 return lookup_die_type (die, type_attr, cu);
18768 }
18769
18770 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18771
18772 static struct type *
18773 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18774 {
18775 struct objfile *objfile = dwarf2_per_objfile->objfile;
18776 char *message, *saved;
18777
18778 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18779 objfile_name (objfile),
18780 cu->header.offset.sect_off,
18781 die->offset.sect_off);
18782 saved = obstack_copy0 (&objfile->objfile_obstack,
18783 message, strlen (message));
18784 xfree (message);
18785
18786 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18787 }
18788
18789 /* Look up the type of DIE in CU using its type attribute ATTR.
18790 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18791 DW_AT_containing_type.
18792 If there is no type substitute an error marker. */
18793
18794 static struct type *
18795 lookup_die_type (struct die_info *die, const struct attribute *attr,
18796 struct dwarf2_cu *cu)
18797 {
18798 struct objfile *objfile = cu->objfile;
18799 struct type *this_type;
18800
18801 gdb_assert (attr->name == DW_AT_type
18802 || attr->name == DW_AT_GNAT_descriptive_type
18803 || attr->name == DW_AT_containing_type);
18804
18805 /* First see if we have it cached. */
18806
18807 if (attr->form == DW_FORM_GNU_ref_alt)
18808 {
18809 struct dwarf2_per_cu_data *per_cu;
18810 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18811
18812 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18813 this_type = get_die_type_at_offset (offset, per_cu);
18814 }
18815 else if (attr_form_is_ref (attr))
18816 {
18817 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18818
18819 this_type = get_die_type_at_offset (offset, cu->per_cu);
18820 }
18821 else if (attr->form == DW_FORM_ref_sig8)
18822 {
18823 ULONGEST signature = DW_SIGNATURE (attr);
18824
18825 return get_signatured_type (die, signature, cu);
18826 }
18827 else
18828 {
18829 complaint (&symfile_complaints,
18830 _("Dwarf Error: Bad type attribute %s in DIE"
18831 " at 0x%x [in module %s]"),
18832 dwarf_attr_name (attr->name), die->offset.sect_off,
18833 objfile_name (objfile));
18834 return build_error_marker_type (cu, die);
18835 }
18836
18837 /* If not cached we need to read it in. */
18838
18839 if (this_type == NULL)
18840 {
18841 struct die_info *type_die = NULL;
18842 struct dwarf2_cu *type_cu = cu;
18843
18844 if (attr_form_is_ref (attr))
18845 type_die = follow_die_ref (die, attr, &type_cu);
18846 if (type_die == NULL)
18847 return build_error_marker_type (cu, die);
18848 /* If we find the type now, it's probably because the type came
18849 from an inter-CU reference and the type's CU got expanded before
18850 ours. */
18851 this_type = read_type_die (type_die, type_cu);
18852 }
18853
18854 /* If we still don't have a type use an error marker. */
18855
18856 if (this_type == NULL)
18857 return build_error_marker_type (cu, die);
18858
18859 return this_type;
18860 }
18861
18862 /* Return the type in DIE, CU.
18863 Returns NULL for invalid types.
18864
18865 This first does a lookup in die_type_hash,
18866 and only reads the die in if necessary.
18867
18868 NOTE: This can be called when reading in partial or full symbols. */
18869
18870 static struct type *
18871 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18872 {
18873 struct type *this_type;
18874
18875 this_type = get_die_type (die, cu);
18876 if (this_type)
18877 return this_type;
18878
18879 return read_type_die_1 (die, cu);
18880 }
18881
18882 /* Read the type in DIE, CU.
18883 Returns NULL for invalid types. */
18884
18885 static struct type *
18886 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18887 {
18888 struct type *this_type = NULL;
18889
18890 switch (die->tag)
18891 {
18892 case DW_TAG_class_type:
18893 case DW_TAG_interface_type:
18894 case DW_TAG_structure_type:
18895 case DW_TAG_union_type:
18896 this_type = read_structure_type (die, cu);
18897 break;
18898 case DW_TAG_enumeration_type:
18899 this_type = read_enumeration_type (die, cu);
18900 break;
18901 case DW_TAG_subprogram:
18902 case DW_TAG_subroutine_type:
18903 case DW_TAG_inlined_subroutine:
18904 this_type = read_subroutine_type (die, cu);
18905 break;
18906 case DW_TAG_array_type:
18907 this_type = read_array_type (die, cu);
18908 break;
18909 case DW_TAG_set_type:
18910 this_type = read_set_type (die, cu);
18911 break;
18912 case DW_TAG_pointer_type:
18913 this_type = read_tag_pointer_type (die, cu);
18914 break;
18915 case DW_TAG_ptr_to_member_type:
18916 this_type = read_tag_ptr_to_member_type (die, cu);
18917 break;
18918 case DW_TAG_reference_type:
18919 this_type = read_tag_reference_type (die, cu);
18920 break;
18921 case DW_TAG_const_type:
18922 this_type = read_tag_const_type (die, cu);
18923 break;
18924 case DW_TAG_volatile_type:
18925 this_type = read_tag_volatile_type (die, cu);
18926 break;
18927 case DW_TAG_restrict_type:
18928 this_type = read_tag_restrict_type (die, cu);
18929 break;
18930 case DW_TAG_string_type:
18931 this_type = read_tag_string_type (die, cu);
18932 break;
18933 case DW_TAG_typedef:
18934 this_type = read_typedef (die, cu);
18935 break;
18936 case DW_TAG_subrange_type:
18937 this_type = read_subrange_type (die, cu);
18938 break;
18939 case DW_TAG_base_type:
18940 this_type = read_base_type (die, cu);
18941 break;
18942 case DW_TAG_unspecified_type:
18943 this_type = read_unspecified_type (die, cu);
18944 break;
18945 case DW_TAG_namespace:
18946 this_type = read_namespace_type (die, cu);
18947 break;
18948 case DW_TAG_module:
18949 this_type = read_module_type (die, cu);
18950 break;
18951 case DW_TAG_atomic_type:
18952 this_type = read_tag_atomic_type (die, cu);
18953 break;
18954 default:
18955 complaint (&symfile_complaints,
18956 _("unexpected tag in read_type_die: '%s'"),
18957 dwarf_tag_name (die->tag));
18958 break;
18959 }
18960
18961 return this_type;
18962 }
18963
18964 /* See if we can figure out if the class lives in a namespace. We do
18965 this by looking for a member function; its demangled name will
18966 contain namespace info, if there is any.
18967 Return the computed name or NULL.
18968 Space for the result is allocated on the objfile's obstack.
18969 This is the full-die version of guess_partial_die_structure_name.
18970 In this case we know DIE has no useful parent. */
18971
18972 static char *
18973 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18974 {
18975 struct die_info *spec_die;
18976 struct dwarf2_cu *spec_cu;
18977 struct die_info *child;
18978
18979 spec_cu = cu;
18980 spec_die = die_specification (die, &spec_cu);
18981 if (spec_die != NULL)
18982 {
18983 die = spec_die;
18984 cu = spec_cu;
18985 }
18986
18987 for (child = die->child;
18988 child != NULL;
18989 child = child->sibling)
18990 {
18991 if (child->tag == DW_TAG_subprogram)
18992 {
18993 struct attribute *attr;
18994
18995 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18996 if (attr == NULL)
18997 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18998 if (attr != NULL)
18999 {
19000 char *actual_name
19001 = language_class_name_from_physname (cu->language_defn,
19002 DW_STRING (attr));
19003 char *name = NULL;
19004
19005 if (actual_name != NULL)
19006 {
19007 const char *die_name = dwarf2_name (die, cu);
19008
19009 if (die_name != NULL
19010 && strcmp (die_name, actual_name) != 0)
19011 {
19012 /* Strip off the class name from the full name.
19013 We want the prefix. */
19014 int die_name_len = strlen (die_name);
19015 int actual_name_len = strlen (actual_name);
19016
19017 /* Test for '::' as a sanity check. */
19018 if (actual_name_len > die_name_len + 2
19019 && actual_name[actual_name_len
19020 - die_name_len - 1] == ':')
19021 name =
19022 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19023 actual_name,
19024 actual_name_len - die_name_len - 2);
19025 }
19026 }
19027 xfree (actual_name);
19028 return name;
19029 }
19030 }
19031 }
19032
19033 return NULL;
19034 }
19035
19036 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19037 prefix part in such case. See
19038 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19039
19040 static char *
19041 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19042 {
19043 struct attribute *attr;
19044 char *base;
19045
19046 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19047 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19048 return NULL;
19049
19050 attr = dwarf2_attr (die, DW_AT_name, cu);
19051 if (attr != NULL && DW_STRING (attr) != NULL)
19052 return NULL;
19053
19054 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19055 if (attr == NULL)
19056 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19057 if (attr == NULL || DW_STRING (attr) == NULL)
19058 return NULL;
19059
19060 /* dwarf2_name had to be already called. */
19061 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19062
19063 /* Strip the base name, keep any leading namespaces/classes. */
19064 base = strrchr (DW_STRING (attr), ':');
19065 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19066 return "";
19067
19068 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19069 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19070 }
19071
19072 /* Return the name of the namespace/class that DIE is defined within,
19073 or "" if we can't tell. The caller should not xfree the result.
19074
19075 For example, if we're within the method foo() in the following
19076 code:
19077
19078 namespace N {
19079 class C {
19080 void foo () {
19081 }
19082 };
19083 }
19084
19085 then determine_prefix on foo's die will return "N::C". */
19086
19087 static const char *
19088 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19089 {
19090 struct die_info *parent, *spec_die;
19091 struct dwarf2_cu *spec_cu;
19092 struct type *parent_type;
19093 char *retval;
19094
19095 if (cu->language != language_cplus && cu->language != language_java
19096 && cu->language != language_fortran)
19097 return "";
19098
19099 retval = anonymous_struct_prefix (die, cu);
19100 if (retval)
19101 return retval;
19102
19103 /* We have to be careful in the presence of DW_AT_specification.
19104 For example, with GCC 3.4, given the code
19105
19106 namespace N {
19107 void foo() {
19108 // Definition of N::foo.
19109 }
19110 }
19111
19112 then we'll have a tree of DIEs like this:
19113
19114 1: DW_TAG_compile_unit
19115 2: DW_TAG_namespace // N
19116 3: DW_TAG_subprogram // declaration of N::foo
19117 4: DW_TAG_subprogram // definition of N::foo
19118 DW_AT_specification // refers to die #3
19119
19120 Thus, when processing die #4, we have to pretend that we're in
19121 the context of its DW_AT_specification, namely the contex of die
19122 #3. */
19123 spec_cu = cu;
19124 spec_die = die_specification (die, &spec_cu);
19125 if (spec_die == NULL)
19126 parent = die->parent;
19127 else
19128 {
19129 parent = spec_die->parent;
19130 cu = spec_cu;
19131 }
19132
19133 if (parent == NULL)
19134 return "";
19135 else if (parent->building_fullname)
19136 {
19137 const char *name;
19138 const char *parent_name;
19139
19140 /* It has been seen on RealView 2.2 built binaries,
19141 DW_TAG_template_type_param types actually _defined_ as
19142 children of the parent class:
19143
19144 enum E {};
19145 template class <class Enum> Class{};
19146 Class<enum E> class_e;
19147
19148 1: DW_TAG_class_type (Class)
19149 2: DW_TAG_enumeration_type (E)
19150 3: DW_TAG_enumerator (enum1:0)
19151 3: DW_TAG_enumerator (enum2:1)
19152 ...
19153 2: DW_TAG_template_type_param
19154 DW_AT_type DW_FORM_ref_udata (E)
19155
19156 Besides being broken debug info, it can put GDB into an
19157 infinite loop. Consider:
19158
19159 When we're building the full name for Class<E>, we'll start
19160 at Class, and go look over its template type parameters,
19161 finding E. We'll then try to build the full name of E, and
19162 reach here. We're now trying to build the full name of E,
19163 and look over the parent DIE for containing scope. In the
19164 broken case, if we followed the parent DIE of E, we'd again
19165 find Class, and once again go look at its template type
19166 arguments, etc., etc. Simply don't consider such parent die
19167 as source-level parent of this die (it can't be, the language
19168 doesn't allow it), and break the loop here. */
19169 name = dwarf2_name (die, cu);
19170 parent_name = dwarf2_name (parent, cu);
19171 complaint (&symfile_complaints,
19172 _("template param type '%s' defined within parent '%s'"),
19173 name ? name : "<unknown>",
19174 parent_name ? parent_name : "<unknown>");
19175 return "";
19176 }
19177 else
19178 switch (parent->tag)
19179 {
19180 case DW_TAG_namespace:
19181 parent_type = read_type_die (parent, cu);
19182 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19183 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19184 Work around this problem here. */
19185 if (cu->language == language_cplus
19186 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19187 return "";
19188 /* We give a name to even anonymous namespaces. */
19189 return TYPE_TAG_NAME (parent_type);
19190 case DW_TAG_class_type:
19191 case DW_TAG_interface_type:
19192 case DW_TAG_structure_type:
19193 case DW_TAG_union_type:
19194 case DW_TAG_module:
19195 parent_type = read_type_die (parent, cu);
19196 if (TYPE_TAG_NAME (parent_type) != NULL)
19197 return TYPE_TAG_NAME (parent_type);
19198 else
19199 /* An anonymous structure is only allowed non-static data
19200 members; no typedefs, no member functions, et cetera.
19201 So it does not need a prefix. */
19202 return "";
19203 case DW_TAG_compile_unit:
19204 case DW_TAG_partial_unit:
19205 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19206 if (cu->language == language_cplus
19207 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19208 && die->child != NULL
19209 && (die->tag == DW_TAG_class_type
19210 || die->tag == DW_TAG_structure_type
19211 || die->tag == DW_TAG_union_type))
19212 {
19213 char *name = guess_full_die_structure_name (die, cu);
19214 if (name != NULL)
19215 return name;
19216 }
19217 return "";
19218 case DW_TAG_enumeration_type:
19219 parent_type = read_type_die (parent, cu);
19220 if (TYPE_DECLARED_CLASS (parent_type))
19221 {
19222 if (TYPE_TAG_NAME (parent_type) != NULL)
19223 return TYPE_TAG_NAME (parent_type);
19224 return "";
19225 }
19226 /* Fall through. */
19227 default:
19228 return determine_prefix (parent, cu);
19229 }
19230 }
19231
19232 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19233 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19234 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19235 an obconcat, otherwise allocate storage for the result. The CU argument is
19236 used to determine the language and hence, the appropriate separator. */
19237
19238 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19239
19240 static char *
19241 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19242 int physname, struct dwarf2_cu *cu)
19243 {
19244 const char *lead = "";
19245 const char *sep;
19246
19247 if (suffix == NULL || suffix[0] == '\0'
19248 || prefix == NULL || prefix[0] == '\0')
19249 sep = "";
19250 else if (cu->language == language_java)
19251 sep = ".";
19252 else if (cu->language == language_fortran && physname)
19253 {
19254 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19255 DW_AT_MIPS_linkage_name is preferred and used instead. */
19256
19257 lead = "__";
19258 sep = "_MOD_";
19259 }
19260 else
19261 sep = "::";
19262
19263 if (prefix == NULL)
19264 prefix = "";
19265 if (suffix == NULL)
19266 suffix = "";
19267
19268 if (obs == NULL)
19269 {
19270 char *retval
19271 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19272
19273 strcpy (retval, lead);
19274 strcat (retval, prefix);
19275 strcat (retval, sep);
19276 strcat (retval, suffix);
19277 return retval;
19278 }
19279 else
19280 {
19281 /* We have an obstack. */
19282 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19283 }
19284 }
19285
19286 /* Return sibling of die, NULL if no sibling. */
19287
19288 static struct die_info *
19289 sibling_die (struct die_info *die)
19290 {
19291 return die->sibling;
19292 }
19293
19294 /* Get name of a die, return NULL if not found. */
19295
19296 static const char *
19297 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19298 struct obstack *obstack)
19299 {
19300 if (name && cu->language == language_cplus)
19301 {
19302 char *canon_name = cp_canonicalize_string (name);
19303
19304 if (canon_name != NULL)
19305 {
19306 if (strcmp (canon_name, name) != 0)
19307 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19308 xfree (canon_name);
19309 }
19310 }
19311
19312 return name;
19313 }
19314
19315 /* Get name of a die, return NULL if not found.
19316 Anonymous namespaces are converted to their magic string. */
19317
19318 static const char *
19319 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19320 {
19321 struct attribute *attr;
19322
19323 attr = dwarf2_attr (die, DW_AT_name, cu);
19324 if ((!attr || !DW_STRING (attr))
19325 && die->tag != DW_TAG_namespace
19326 && die->tag != DW_TAG_class_type
19327 && die->tag != DW_TAG_interface_type
19328 && die->tag != DW_TAG_structure_type
19329 && die->tag != DW_TAG_union_type)
19330 return NULL;
19331
19332 switch (die->tag)
19333 {
19334 case DW_TAG_compile_unit:
19335 case DW_TAG_partial_unit:
19336 /* Compilation units have a DW_AT_name that is a filename, not
19337 a source language identifier. */
19338 case DW_TAG_enumeration_type:
19339 case DW_TAG_enumerator:
19340 /* These tags always have simple identifiers already; no need
19341 to canonicalize them. */
19342 return DW_STRING (attr);
19343
19344 case DW_TAG_namespace:
19345 if (attr != NULL && DW_STRING (attr) != NULL)
19346 return DW_STRING (attr);
19347 return CP_ANONYMOUS_NAMESPACE_STR;
19348
19349 case DW_TAG_subprogram:
19350 /* Java constructors will all be named "<init>", so return
19351 the class name when we see this special case. */
19352 if (cu->language == language_java
19353 && DW_STRING (attr) != NULL
19354 && strcmp (DW_STRING (attr), "<init>") == 0)
19355 {
19356 struct dwarf2_cu *spec_cu = cu;
19357 struct die_info *spec_die;
19358
19359 /* GCJ will output '<init>' for Java constructor names.
19360 For this special case, return the name of the parent class. */
19361
19362 /* GCJ may output subprogram DIEs with AT_specification set.
19363 If so, use the name of the specified DIE. */
19364 spec_die = die_specification (die, &spec_cu);
19365 if (spec_die != NULL)
19366 return dwarf2_name (spec_die, spec_cu);
19367
19368 do
19369 {
19370 die = die->parent;
19371 if (die->tag == DW_TAG_class_type)
19372 return dwarf2_name (die, cu);
19373 }
19374 while (die->tag != DW_TAG_compile_unit
19375 && die->tag != DW_TAG_partial_unit);
19376 }
19377 break;
19378
19379 case DW_TAG_class_type:
19380 case DW_TAG_interface_type:
19381 case DW_TAG_structure_type:
19382 case DW_TAG_union_type:
19383 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19384 structures or unions. These were of the form "._%d" in GCC 4.1,
19385 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19386 and GCC 4.4. We work around this problem by ignoring these. */
19387 if (attr && DW_STRING (attr)
19388 && (startswith (DW_STRING (attr), "._")
19389 || startswith (DW_STRING (attr), "<anonymous")))
19390 return NULL;
19391
19392 /* GCC might emit a nameless typedef that has a linkage name. See
19393 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19394 if (!attr || DW_STRING (attr) == NULL)
19395 {
19396 char *demangled = NULL;
19397
19398 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19399 if (attr == NULL)
19400 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19401
19402 if (attr == NULL || DW_STRING (attr) == NULL)
19403 return NULL;
19404
19405 /* Avoid demangling DW_STRING (attr) the second time on a second
19406 call for the same DIE. */
19407 if (!DW_STRING_IS_CANONICAL (attr))
19408 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19409
19410 if (demangled)
19411 {
19412 char *base;
19413
19414 /* FIXME: we already did this for the partial symbol... */
19415 DW_STRING (attr)
19416 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19417 demangled, strlen (demangled));
19418 DW_STRING_IS_CANONICAL (attr) = 1;
19419 xfree (demangled);
19420
19421 /* Strip any leading namespaces/classes, keep only the base name.
19422 DW_AT_name for named DIEs does not contain the prefixes. */
19423 base = strrchr (DW_STRING (attr), ':');
19424 if (base && base > DW_STRING (attr) && base[-1] == ':')
19425 return &base[1];
19426 else
19427 return DW_STRING (attr);
19428 }
19429 }
19430 break;
19431
19432 default:
19433 break;
19434 }
19435
19436 if (!DW_STRING_IS_CANONICAL (attr))
19437 {
19438 DW_STRING (attr)
19439 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19440 &cu->objfile->per_bfd->storage_obstack);
19441 DW_STRING_IS_CANONICAL (attr) = 1;
19442 }
19443 return DW_STRING (attr);
19444 }
19445
19446 /* Return the die that this die in an extension of, or NULL if there
19447 is none. *EXT_CU is the CU containing DIE on input, and the CU
19448 containing the return value on output. */
19449
19450 static struct die_info *
19451 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19452 {
19453 struct attribute *attr;
19454
19455 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19456 if (attr == NULL)
19457 return NULL;
19458
19459 return follow_die_ref (die, attr, ext_cu);
19460 }
19461
19462 /* Convert a DIE tag into its string name. */
19463
19464 static const char *
19465 dwarf_tag_name (unsigned tag)
19466 {
19467 const char *name = get_DW_TAG_name (tag);
19468
19469 if (name == NULL)
19470 return "DW_TAG_<unknown>";
19471
19472 return name;
19473 }
19474
19475 /* Convert a DWARF attribute code into its string name. */
19476
19477 static const char *
19478 dwarf_attr_name (unsigned attr)
19479 {
19480 const char *name;
19481
19482 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19483 if (attr == DW_AT_MIPS_fde)
19484 return "DW_AT_MIPS_fde";
19485 #else
19486 if (attr == DW_AT_HP_block_index)
19487 return "DW_AT_HP_block_index";
19488 #endif
19489
19490 name = get_DW_AT_name (attr);
19491
19492 if (name == NULL)
19493 return "DW_AT_<unknown>";
19494
19495 return name;
19496 }
19497
19498 /* Convert a DWARF value form code into its string name. */
19499
19500 static const char *
19501 dwarf_form_name (unsigned form)
19502 {
19503 const char *name = get_DW_FORM_name (form);
19504
19505 if (name == NULL)
19506 return "DW_FORM_<unknown>";
19507
19508 return name;
19509 }
19510
19511 static char *
19512 dwarf_bool_name (unsigned mybool)
19513 {
19514 if (mybool)
19515 return "TRUE";
19516 else
19517 return "FALSE";
19518 }
19519
19520 /* Convert a DWARF type code into its string name. */
19521
19522 static const char *
19523 dwarf_type_encoding_name (unsigned enc)
19524 {
19525 const char *name = get_DW_ATE_name (enc);
19526
19527 if (name == NULL)
19528 return "DW_ATE_<unknown>";
19529
19530 return name;
19531 }
19532
19533 static void
19534 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19535 {
19536 unsigned int i;
19537
19538 print_spaces (indent, f);
19539 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19540 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19541
19542 if (die->parent != NULL)
19543 {
19544 print_spaces (indent, f);
19545 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19546 die->parent->offset.sect_off);
19547 }
19548
19549 print_spaces (indent, f);
19550 fprintf_unfiltered (f, " has children: %s\n",
19551 dwarf_bool_name (die->child != NULL));
19552
19553 print_spaces (indent, f);
19554 fprintf_unfiltered (f, " attributes:\n");
19555
19556 for (i = 0; i < die->num_attrs; ++i)
19557 {
19558 print_spaces (indent, f);
19559 fprintf_unfiltered (f, " %s (%s) ",
19560 dwarf_attr_name (die->attrs[i].name),
19561 dwarf_form_name (die->attrs[i].form));
19562
19563 switch (die->attrs[i].form)
19564 {
19565 case DW_FORM_addr:
19566 case DW_FORM_GNU_addr_index:
19567 fprintf_unfiltered (f, "address: ");
19568 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19569 break;
19570 case DW_FORM_block2:
19571 case DW_FORM_block4:
19572 case DW_FORM_block:
19573 case DW_FORM_block1:
19574 fprintf_unfiltered (f, "block: size %s",
19575 pulongest (DW_BLOCK (&die->attrs[i])->size));
19576 break;
19577 case DW_FORM_exprloc:
19578 fprintf_unfiltered (f, "expression: size %s",
19579 pulongest (DW_BLOCK (&die->attrs[i])->size));
19580 break;
19581 case DW_FORM_ref_addr:
19582 fprintf_unfiltered (f, "ref address: ");
19583 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19584 break;
19585 case DW_FORM_GNU_ref_alt:
19586 fprintf_unfiltered (f, "alt ref address: ");
19587 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19588 break;
19589 case DW_FORM_ref1:
19590 case DW_FORM_ref2:
19591 case DW_FORM_ref4:
19592 case DW_FORM_ref8:
19593 case DW_FORM_ref_udata:
19594 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19595 (long) (DW_UNSND (&die->attrs[i])));
19596 break;
19597 case DW_FORM_data1:
19598 case DW_FORM_data2:
19599 case DW_FORM_data4:
19600 case DW_FORM_data8:
19601 case DW_FORM_udata:
19602 case DW_FORM_sdata:
19603 fprintf_unfiltered (f, "constant: %s",
19604 pulongest (DW_UNSND (&die->attrs[i])));
19605 break;
19606 case DW_FORM_sec_offset:
19607 fprintf_unfiltered (f, "section offset: %s",
19608 pulongest (DW_UNSND (&die->attrs[i])));
19609 break;
19610 case DW_FORM_ref_sig8:
19611 fprintf_unfiltered (f, "signature: %s",
19612 hex_string (DW_SIGNATURE (&die->attrs[i])));
19613 break;
19614 case DW_FORM_string:
19615 case DW_FORM_strp:
19616 case DW_FORM_GNU_str_index:
19617 case DW_FORM_GNU_strp_alt:
19618 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19619 DW_STRING (&die->attrs[i])
19620 ? DW_STRING (&die->attrs[i]) : "",
19621 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19622 break;
19623 case DW_FORM_flag:
19624 if (DW_UNSND (&die->attrs[i]))
19625 fprintf_unfiltered (f, "flag: TRUE");
19626 else
19627 fprintf_unfiltered (f, "flag: FALSE");
19628 break;
19629 case DW_FORM_flag_present:
19630 fprintf_unfiltered (f, "flag: TRUE");
19631 break;
19632 case DW_FORM_indirect:
19633 /* The reader will have reduced the indirect form to
19634 the "base form" so this form should not occur. */
19635 fprintf_unfiltered (f,
19636 "unexpected attribute form: DW_FORM_indirect");
19637 break;
19638 default:
19639 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19640 die->attrs[i].form);
19641 break;
19642 }
19643 fprintf_unfiltered (f, "\n");
19644 }
19645 }
19646
19647 static void
19648 dump_die_for_error (struct die_info *die)
19649 {
19650 dump_die_shallow (gdb_stderr, 0, die);
19651 }
19652
19653 static void
19654 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19655 {
19656 int indent = level * 4;
19657
19658 gdb_assert (die != NULL);
19659
19660 if (level >= max_level)
19661 return;
19662
19663 dump_die_shallow (f, indent, die);
19664
19665 if (die->child != NULL)
19666 {
19667 print_spaces (indent, f);
19668 fprintf_unfiltered (f, " Children:");
19669 if (level + 1 < max_level)
19670 {
19671 fprintf_unfiltered (f, "\n");
19672 dump_die_1 (f, level + 1, max_level, die->child);
19673 }
19674 else
19675 {
19676 fprintf_unfiltered (f,
19677 " [not printed, max nesting level reached]\n");
19678 }
19679 }
19680
19681 if (die->sibling != NULL && level > 0)
19682 {
19683 dump_die_1 (f, level, max_level, die->sibling);
19684 }
19685 }
19686
19687 /* This is called from the pdie macro in gdbinit.in.
19688 It's not static so gcc will keep a copy callable from gdb. */
19689
19690 void
19691 dump_die (struct die_info *die, int max_level)
19692 {
19693 dump_die_1 (gdb_stdlog, 0, max_level, die);
19694 }
19695
19696 static void
19697 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19698 {
19699 void **slot;
19700
19701 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19702 INSERT);
19703
19704 *slot = die;
19705 }
19706
19707 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19708 required kind. */
19709
19710 static sect_offset
19711 dwarf2_get_ref_die_offset (const struct attribute *attr)
19712 {
19713 sect_offset retval = { DW_UNSND (attr) };
19714
19715 if (attr_form_is_ref (attr))
19716 return retval;
19717
19718 retval.sect_off = 0;
19719 complaint (&symfile_complaints,
19720 _("unsupported die ref attribute form: '%s'"),
19721 dwarf_form_name (attr->form));
19722 return retval;
19723 }
19724
19725 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19726 * the value held by the attribute is not constant. */
19727
19728 static LONGEST
19729 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19730 {
19731 if (attr->form == DW_FORM_sdata)
19732 return DW_SND (attr);
19733 else if (attr->form == DW_FORM_udata
19734 || attr->form == DW_FORM_data1
19735 || attr->form == DW_FORM_data2
19736 || attr->form == DW_FORM_data4
19737 || attr->form == DW_FORM_data8)
19738 return DW_UNSND (attr);
19739 else
19740 {
19741 complaint (&symfile_complaints,
19742 _("Attribute value is not a constant (%s)"),
19743 dwarf_form_name (attr->form));
19744 return default_value;
19745 }
19746 }
19747
19748 /* Follow reference or signature attribute ATTR of SRC_DIE.
19749 On entry *REF_CU is the CU of SRC_DIE.
19750 On exit *REF_CU is the CU of the result. */
19751
19752 static struct die_info *
19753 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19754 struct dwarf2_cu **ref_cu)
19755 {
19756 struct die_info *die;
19757
19758 if (attr_form_is_ref (attr))
19759 die = follow_die_ref (src_die, attr, ref_cu);
19760 else if (attr->form == DW_FORM_ref_sig8)
19761 die = follow_die_sig (src_die, attr, ref_cu);
19762 else
19763 {
19764 dump_die_for_error (src_die);
19765 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19766 objfile_name ((*ref_cu)->objfile));
19767 }
19768
19769 return die;
19770 }
19771
19772 /* Follow reference OFFSET.
19773 On entry *REF_CU is the CU of the source die referencing OFFSET.
19774 On exit *REF_CU is the CU of the result.
19775 Returns NULL if OFFSET is invalid. */
19776
19777 static struct die_info *
19778 follow_die_offset (sect_offset offset, int offset_in_dwz,
19779 struct dwarf2_cu **ref_cu)
19780 {
19781 struct die_info temp_die;
19782 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19783
19784 gdb_assert (cu->per_cu != NULL);
19785
19786 target_cu = cu;
19787
19788 if (cu->per_cu->is_debug_types)
19789 {
19790 /* .debug_types CUs cannot reference anything outside their CU.
19791 If they need to, they have to reference a signatured type via
19792 DW_FORM_ref_sig8. */
19793 if (! offset_in_cu_p (&cu->header, offset))
19794 return NULL;
19795 }
19796 else if (offset_in_dwz != cu->per_cu->is_dwz
19797 || ! offset_in_cu_p (&cu->header, offset))
19798 {
19799 struct dwarf2_per_cu_data *per_cu;
19800
19801 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19802 cu->objfile);
19803
19804 /* If necessary, add it to the queue and load its DIEs. */
19805 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19806 load_full_comp_unit (per_cu, cu->language);
19807
19808 target_cu = per_cu->cu;
19809 }
19810 else if (cu->dies == NULL)
19811 {
19812 /* We're loading full DIEs during partial symbol reading. */
19813 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19814 load_full_comp_unit (cu->per_cu, language_minimal);
19815 }
19816
19817 *ref_cu = target_cu;
19818 temp_die.offset = offset;
19819 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19820 }
19821
19822 /* Follow reference attribute ATTR of SRC_DIE.
19823 On entry *REF_CU is the CU of SRC_DIE.
19824 On exit *REF_CU is the CU of the result. */
19825
19826 static struct die_info *
19827 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19828 struct dwarf2_cu **ref_cu)
19829 {
19830 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19831 struct dwarf2_cu *cu = *ref_cu;
19832 struct die_info *die;
19833
19834 die = follow_die_offset (offset,
19835 (attr->form == DW_FORM_GNU_ref_alt
19836 || cu->per_cu->is_dwz),
19837 ref_cu);
19838 if (!die)
19839 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19840 "at 0x%x [in module %s]"),
19841 offset.sect_off, src_die->offset.sect_off,
19842 objfile_name (cu->objfile));
19843
19844 return die;
19845 }
19846
19847 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19848 Returned value is intended for DW_OP_call*. Returned
19849 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19850
19851 struct dwarf2_locexpr_baton
19852 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19853 struct dwarf2_per_cu_data *per_cu,
19854 CORE_ADDR (*get_frame_pc) (void *baton),
19855 void *baton)
19856 {
19857 struct dwarf2_cu *cu;
19858 struct die_info *die;
19859 struct attribute *attr;
19860 struct dwarf2_locexpr_baton retval;
19861
19862 dw2_setup (per_cu->objfile);
19863
19864 if (per_cu->cu == NULL)
19865 load_cu (per_cu);
19866 cu = per_cu->cu;
19867
19868 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19869 if (!die)
19870 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19871 offset.sect_off, objfile_name (per_cu->objfile));
19872
19873 attr = dwarf2_attr (die, DW_AT_location, cu);
19874 if (!attr)
19875 {
19876 /* DWARF: "If there is no such attribute, then there is no effect.".
19877 DATA is ignored if SIZE is 0. */
19878
19879 retval.data = NULL;
19880 retval.size = 0;
19881 }
19882 else if (attr_form_is_section_offset (attr))
19883 {
19884 struct dwarf2_loclist_baton loclist_baton;
19885 CORE_ADDR pc = (*get_frame_pc) (baton);
19886 size_t size;
19887
19888 fill_in_loclist_baton (cu, &loclist_baton, attr);
19889
19890 retval.data = dwarf2_find_location_expression (&loclist_baton,
19891 &size, pc);
19892 retval.size = size;
19893 }
19894 else
19895 {
19896 if (!attr_form_is_block (attr))
19897 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19898 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19899 offset.sect_off, objfile_name (per_cu->objfile));
19900
19901 retval.data = DW_BLOCK (attr)->data;
19902 retval.size = DW_BLOCK (attr)->size;
19903 }
19904 retval.per_cu = cu->per_cu;
19905
19906 age_cached_comp_units ();
19907
19908 return retval;
19909 }
19910
19911 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19912 offset. */
19913
19914 struct dwarf2_locexpr_baton
19915 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19916 struct dwarf2_per_cu_data *per_cu,
19917 CORE_ADDR (*get_frame_pc) (void *baton),
19918 void *baton)
19919 {
19920 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19921
19922 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19923 }
19924
19925 /* Write a constant of a given type as target-ordered bytes into
19926 OBSTACK. */
19927
19928 static const gdb_byte *
19929 write_constant_as_bytes (struct obstack *obstack,
19930 enum bfd_endian byte_order,
19931 struct type *type,
19932 ULONGEST value,
19933 LONGEST *len)
19934 {
19935 gdb_byte *result;
19936
19937 *len = TYPE_LENGTH (type);
19938 result = obstack_alloc (obstack, *len);
19939 store_unsigned_integer (result, *len, byte_order, value);
19940
19941 return result;
19942 }
19943
19944 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19945 pointer to the constant bytes and set LEN to the length of the
19946 data. If memory is needed, allocate it on OBSTACK. If the DIE
19947 does not have a DW_AT_const_value, return NULL. */
19948
19949 const gdb_byte *
19950 dwarf2_fetch_constant_bytes (sect_offset offset,
19951 struct dwarf2_per_cu_data *per_cu,
19952 struct obstack *obstack,
19953 LONGEST *len)
19954 {
19955 struct dwarf2_cu *cu;
19956 struct die_info *die;
19957 struct attribute *attr;
19958 const gdb_byte *result = NULL;
19959 struct type *type;
19960 LONGEST value;
19961 enum bfd_endian byte_order;
19962
19963 dw2_setup (per_cu->objfile);
19964
19965 if (per_cu->cu == NULL)
19966 load_cu (per_cu);
19967 cu = per_cu->cu;
19968
19969 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19970 if (!die)
19971 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19972 offset.sect_off, objfile_name (per_cu->objfile));
19973
19974
19975 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19976 if (attr == NULL)
19977 return NULL;
19978
19979 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19980 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19981
19982 switch (attr->form)
19983 {
19984 case DW_FORM_addr:
19985 case DW_FORM_GNU_addr_index:
19986 {
19987 gdb_byte *tem;
19988
19989 *len = cu->header.addr_size;
19990 tem = obstack_alloc (obstack, *len);
19991 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19992 result = tem;
19993 }
19994 break;
19995 case DW_FORM_string:
19996 case DW_FORM_strp:
19997 case DW_FORM_GNU_str_index:
19998 case DW_FORM_GNU_strp_alt:
19999 /* DW_STRING is already allocated on the objfile obstack, point
20000 directly to it. */
20001 result = (const gdb_byte *) DW_STRING (attr);
20002 *len = strlen (DW_STRING (attr));
20003 break;
20004 case DW_FORM_block1:
20005 case DW_FORM_block2:
20006 case DW_FORM_block4:
20007 case DW_FORM_block:
20008 case DW_FORM_exprloc:
20009 result = DW_BLOCK (attr)->data;
20010 *len = DW_BLOCK (attr)->size;
20011 break;
20012
20013 /* The DW_AT_const_value attributes are supposed to carry the
20014 symbol's value "represented as it would be on the target
20015 architecture." By the time we get here, it's already been
20016 converted to host endianness, so we just need to sign- or
20017 zero-extend it as appropriate. */
20018 case DW_FORM_data1:
20019 type = die_type (die, cu);
20020 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20021 if (result == NULL)
20022 result = write_constant_as_bytes (obstack, byte_order,
20023 type, value, len);
20024 break;
20025 case DW_FORM_data2:
20026 type = die_type (die, cu);
20027 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20028 if (result == NULL)
20029 result = write_constant_as_bytes (obstack, byte_order,
20030 type, value, len);
20031 break;
20032 case DW_FORM_data4:
20033 type = die_type (die, cu);
20034 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20035 if (result == NULL)
20036 result = write_constant_as_bytes (obstack, byte_order,
20037 type, value, len);
20038 break;
20039 case DW_FORM_data8:
20040 type = die_type (die, cu);
20041 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20042 if (result == NULL)
20043 result = write_constant_as_bytes (obstack, byte_order,
20044 type, value, len);
20045 break;
20046
20047 case DW_FORM_sdata:
20048 type = die_type (die, cu);
20049 result = write_constant_as_bytes (obstack, byte_order,
20050 type, DW_SND (attr), len);
20051 break;
20052
20053 case DW_FORM_udata:
20054 type = die_type (die, cu);
20055 result = write_constant_as_bytes (obstack, byte_order,
20056 type, DW_UNSND (attr), len);
20057 break;
20058
20059 default:
20060 complaint (&symfile_complaints,
20061 _("unsupported const value attribute form: '%s'"),
20062 dwarf_form_name (attr->form));
20063 break;
20064 }
20065
20066 return result;
20067 }
20068
20069 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20070 PER_CU. */
20071
20072 struct type *
20073 dwarf2_get_die_type (cu_offset die_offset,
20074 struct dwarf2_per_cu_data *per_cu)
20075 {
20076 sect_offset die_offset_sect;
20077
20078 dw2_setup (per_cu->objfile);
20079
20080 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20081 return get_die_type_at_offset (die_offset_sect, per_cu);
20082 }
20083
20084 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20085 On entry *REF_CU is the CU of SRC_DIE.
20086 On exit *REF_CU is the CU of the result.
20087 Returns NULL if the referenced DIE isn't found. */
20088
20089 static struct die_info *
20090 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20091 struct dwarf2_cu **ref_cu)
20092 {
20093 struct objfile *objfile = (*ref_cu)->objfile;
20094 struct die_info temp_die;
20095 struct dwarf2_cu *sig_cu;
20096 struct die_info *die;
20097
20098 /* While it might be nice to assert sig_type->type == NULL here,
20099 we can get here for DW_AT_imported_declaration where we need
20100 the DIE not the type. */
20101
20102 /* If necessary, add it to the queue and load its DIEs. */
20103
20104 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20105 read_signatured_type (sig_type);
20106
20107 sig_cu = sig_type->per_cu.cu;
20108 gdb_assert (sig_cu != NULL);
20109 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20110 temp_die.offset = sig_type->type_offset_in_section;
20111 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20112 temp_die.offset.sect_off);
20113 if (die)
20114 {
20115 /* For .gdb_index version 7 keep track of included TUs.
20116 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20117 if (dwarf2_per_objfile->index_table != NULL
20118 && dwarf2_per_objfile->index_table->version <= 7)
20119 {
20120 VEC_safe_push (dwarf2_per_cu_ptr,
20121 (*ref_cu)->per_cu->imported_symtabs,
20122 sig_cu->per_cu);
20123 }
20124
20125 *ref_cu = sig_cu;
20126 return die;
20127 }
20128
20129 return NULL;
20130 }
20131
20132 /* Follow signatured type referenced by ATTR in SRC_DIE.
20133 On entry *REF_CU is the CU of SRC_DIE.
20134 On exit *REF_CU is the CU of the result.
20135 The result is the DIE of the type.
20136 If the referenced type cannot be found an error is thrown. */
20137
20138 static struct die_info *
20139 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20140 struct dwarf2_cu **ref_cu)
20141 {
20142 ULONGEST signature = DW_SIGNATURE (attr);
20143 struct signatured_type *sig_type;
20144 struct die_info *die;
20145
20146 gdb_assert (attr->form == DW_FORM_ref_sig8);
20147
20148 sig_type = lookup_signatured_type (*ref_cu, signature);
20149 /* sig_type will be NULL if the signatured type is missing from
20150 the debug info. */
20151 if (sig_type == NULL)
20152 {
20153 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20154 " from DIE at 0x%x [in module %s]"),
20155 hex_string (signature), src_die->offset.sect_off,
20156 objfile_name ((*ref_cu)->objfile));
20157 }
20158
20159 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20160 if (die == NULL)
20161 {
20162 dump_die_for_error (src_die);
20163 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20164 " from DIE at 0x%x [in module %s]"),
20165 hex_string (signature), src_die->offset.sect_off,
20166 objfile_name ((*ref_cu)->objfile));
20167 }
20168
20169 return die;
20170 }
20171
20172 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20173 reading in and processing the type unit if necessary. */
20174
20175 static struct type *
20176 get_signatured_type (struct die_info *die, ULONGEST signature,
20177 struct dwarf2_cu *cu)
20178 {
20179 struct signatured_type *sig_type;
20180 struct dwarf2_cu *type_cu;
20181 struct die_info *type_die;
20182 struct type *type;
20183
20184 sig_type = lookup_signatured_type (cu, signature);
20185 /* sig_type will be NULL if the signatured type is missing from
20186 the debug info. */
20187 if (sig_type == NULL)
20188 {
20189 complaint (&symfile_complaints,
20190 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20191 " from DIE at 0x%x [in module %s]"),
20192 hex_string (signature), die->offset.sect_off,
20193 objfile_name (dwarf2_per_objfile->objfile));
20194 return build_error_marker_type (cu, die);
20195 }
20196
20197 /* If we already know the type we're done. */
20198 if (sig_type->type != NULL)
20199 return sig_type->type;
20200
20201 type_cu = cu;
20202 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20203 if (type_die != NULL)
20204 {
20205 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20206 is created. This is important, for example, because for c++ classes
20207 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20208 type = read_type_die (type_die, type_cu);
20209 if (type == NULL)
20210 {
20211 complaint (&symfile_complaints,
20212 _("Dwarf Error: Cannot build signatured type %s"
20213 " referenced from DIE at 0x%x [in module %s]"),
20214 hex_string (signature), die->offset.sect_off,
20215 objfile_name (dwarf2_per_objfile->objfile));
20216 type = build_error_marker_type (cu, die);
20217 }
20218 }
20219 else
20220 {
20221 complaint (&symfile_complaints,
20222 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20223 " from DIE at 0x%x [in module %s]"),
20224 hex_string (signature), die->offset.sect_off,
20225 objfile_name (dwarf2_per_objfile->objfile));
20226 type = build_error_marker_type (cu, die);
20227 }
20228 sig_type->type = type;
20229
20230 return type;
20231 }
20232
20233 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20234 reading in and processing the type unit if necessary. */
20235
20236 static struct type *
20237 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20238 struct dwarf2_cu *cu) /* ARI: editCase function */
20239 {
20240 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20241 if (attr_form_is_ref (attr))
20242 {
20243 struct dwarf2_cu *type_cu = cu;
20244 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20245
20246 return read_type_die (type_die, type_cu);
20247 }
20248 else if (attr->form == DW_FORM_ref_sig8)
20249 {
20250 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20251 }
20252 else
20253 {
20254 complaint (&symfile_complaints,
20255 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20256 " at 0x%x [in module %s]"),
20257 dwarf_form_name (attr->form), die->offset.sect_off,
20258 objfile_name (dwarf2_per_objfile->objfile));
20259 return build_error_marker_type (cu, die);
20260 }
20261 }
20262
20263 /* Load the DIEs associated with type unit PER_CU into memory. */
20264
20265 static void
20266 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20267 {
20268 struct signatured_type *sig_type;
20269
20270 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20271 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20272
20273 /* We have the per_cu, but we need the signatured_type.
20274 Fortunately this is an easy translation. */
20275 gdb_assert (per_cu->is_debug_types);
20276 sig_type = (struct signatured_type *) per_cu;
20277
20278 gdb_assert (per_cu->cu == NULL);
20279
20280 read_signatured_type (sig_type);
20281
20282 gdb_assert (per_cu->cu != NULL);
20283 }
20284
20285 /* die_reader_func for read_signatured_type.
20286 This is identical to load_full_comp_unit_reader,
20287 but is kept separate for now. */
20288
20289 static void
20290 read_signatured_type_reader (const struct die_reader_specs *reader,
20291 const gdb_byte *info_ptr,
20292 struct die_info *comp_unit_die,
20293 int has_children,
20294 void *data)
20295 {
20296 struct dwarf2_cu *cu = reader->cu;
20297
20298 gdb_assert (cu->die_hash == NULL);
20299 cu->die_hash =
20300 htab_create_alloc_ex (cu->header.length / 12,
20301 die_hash,
20302 die_eq,
20303 NULL,
20304 &cu->comp_unit_obstack,
20305 hashtab_obstack_allocate,
20306 dummy_obstack_deallocate);
20307
20308 if (has_children)
20309 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20310 &info_ptr, comp_unit_die);
20311 cu->dies = comp_unit_die;
20312 /* comp_unit_die is not stored in die_hash, no need. */
20313
20314 /* We try not to read any attributes in this function, because not
20315 all CUs needed for references have been loaded yet, and symbol
20316 table processing isn't initialized. But we have to set the CU language,
20317 or we won't be able to build types correctly.
20318 Similarly, if we do not read the producer, we can not apply
20319 producer-specific interpretation. */
20320 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20321 }
20322
20323 /* Read in a signatured type and build its CU and DIEs.
20324 If the type is a stub for the real type in a DWO file,
20325 read in the real type from the DWO file as well. */
20326
20327 static void
20328 read_signatured_type (struct signatured_type *sig_type)
20329 {
20330 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20331
20332 gdb_assert (per_cu->is_debug_types);
20333 gdb_assert (per_cu->cu == NULL);
20334
20335 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20336 read_signatured_type_reader, NULL);
20337 sig_type->per_cu.tu_read = 1;
20338 }
20339
20340 /* Decode simple location descriptions.
20341 Given a pointer to a dwarf block that defines a location, compute
20342 the location and return the value.
20343
20344 NOTE drow/2003-11-18: This function is called in two situations
20345 now: for the address of static or global variables (partial symbols
20346 only) and for offsets into structures which are expected to be
20347 (more or less) constant. The partial symbol case should go away,
20348 and only the constant case should remain. That will let this
20349 function complain more accurately. A few special modes are allowed
20350 without complaint for global variables (for instance, global
20351 register values and thread-local values).
20352
20353 A location description containing no operations indicates that the
20354 object is optimized out. The return value is 0 for that case.
20355 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20356 callers will only want a very basic result and this can become a
20357 complaint.
20358
20359 Note that stack[0] is unused except as a default error return. */
20360
20361 static CORE_ADDR
20362 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20363 {
20364 struct objfile *objfile = cu->objfile;
20365 size_t i;
20366 size_t size = blk->size;
20367 const gdb_byte *data = blk->data;
20368 CORE_ADDR stack[64];
20369 int stacki;
20370 unsigned int bytes_read, unsnd;
20371 gdb_byte op;
20372
20373 i = 0;
20374 stacki = 0;
20375 stack[stacki] = 0;
20376 stack[++stacki] = 0;
20377
20378 while (i < size)
20379 {
20380 op = data[i++];
20381 switch (op)
20382 {
20383 case DW_OP_lit0:
20384 case DW_OP_lit1:
20385 case DW_OP_lit2:
20386 case DW_OP_lit3:
20387 case DW_OP_lit4:
20388 case DW_OP_lit5:
20389 case DW_OP_lit6:
20390 case DW_OP_lit7:
20391 case DW_OP_lit8:
20392 case DW_OP_lit9:
20393 case DW_OP_lit10:
20394 case DW_OP_lit11:
20395 case DW_OP_lit12:
20396 case DW_OP_lit13:
20397 case DW_OP_lit14:
20398 case DW_OP_lit15:
20399 case DW_OP_lit16:
20400 case DW_OP_lit17:
20401 case DW_OP_lit18:
20402 case DW_OP_lit19:
20403 case DW_OP_lit20:
20404 case DW_OP_lit21:
20405 case DW_OP_lit22:
20406 case DW_OP_lit23:
20407 case DW_OP_lit24:
20408 case DW_OP_lit25:
20409 case DW_OP_lit26:
20410 case DW_OP_lit27:
20411 case DW_OP_lit28:
20412 case DW_OP_lit29:
20413 case DW_OP_lit30:
20414 case DW_OP_lit31:
20415 stack[++stacki] = op - DW_OP_lit0;
20416 break;
20417
20418 case DW_OP_reg0:
20419 case DW_OP_reg1:
20420 case DW_OP_reg2:
20421 case DW_OP_reg3:
20422 case DW_OP_reg4:
20423 case DW_OP_reg5:
20424 case DW_OP_reg6:
20425 case DW_OP_reg7:
20426 case DW_OP_reg8:
20427 case DW_OP_reg9:
20428 case DW_OP_reg10:
20429 case DW_OP_reg11:
20430 case DW_OP_reg12:
20431 case DW_OP_reg13:
20432 case DW_OP_reg14:
20433 case DW_OP_reg15:
20434 case DW_OP_reg16:
20435 case DW_OP_reg17:
20436 case DW_OP_reg18:
20437 case DW_OP_reg19:
20438 case DW_OP_reg20:
20439 case DW_OP_reg21:
20440 case DW_OP_reg22:
20441 case DW_OP_reg23:
20442 case DW_OP_reg24:
20443 case DW_OP_reg25:
20444 case DW_OP_reg26:
20445 case DW_OP_reg27:
20446 case DW_OP_reg28:
20447 case DW_OP_reg29:
20448 case DW_OP_reg30:
20449 case DW_OP_reg31:
20450 stack[++stacki] = op - DW_OP_reg0;
20451 if (i < size)
20452 dwarf2_complex_location_expr_complaint ();
20453 break;
20454
20455 case DW_OP_regx:
20456 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20457 i += bytes_read;
20458 stack[++stacki] = unsnd;
20459 if (i < size)
20460 dwarf2_complex_location_expr_complaint ();
20461 break;
20462
20463 case DW_OP_addr:
20464 stack[++stacki] = read_address (objfile->obfd, &data[i],
20465 cu, &bytes_read);
20466 i += bytes_read;
20467 break;
20468
20469 case DW_OP_const1u:
20470 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20471 i += 1;
20472 break;
20473
20474 case DW_OP_const1s:
20475 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20476 i += 1;
20477 break;
20478
20479 case DW_OP_const2u:
20480 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20481 i += 2;
20482 break;
20483
20484 case DW_OP_const2s:
20485 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20486 i += 2;
20487 break;
20488
20489 case DW_OP_const4u:
20490 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20491 i += 4;
20492 break;
20493
20494 case DW_OP_const4s:
20495 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20496 i += 4;
20497 break;
20498
20499 case DW_OP_const8u:
20500 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20501 i += 8;
20502 break;
20503
20504 case DW_OP_constu:
20505 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20506 &bytes_read);
20507 i += bytes_read;
20508 break;
20509
20510 case DW_OP_consts:
20511 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20512 i += bytes_read;
20513 break;
20514
20515 case DW_OP_dup:
20516 stack[stacki + 1] = stack[stacki];
20517 stacki++;
20518 break;
20519
20520 case DW_OP_plus:
20521 stack[stacki - 1] += stack[stacki];
20522 stacki--;
20523 break;
20524
20525 case DW_OP_plus_uconst:
20526 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20527 &bytes_read);
20528 i += bytes_read;
20529 break;
20530
20531 case DW_OP_minus:
20532 stack[stacki - 1] -= stack[stacki];
20533 stacki--;
20534 break;
20535
20536 case DW_OP_deref:
20537 /* If we're not the last op, then we definitely can't encode
20538 this using GDB's address_class enum. This is valid for partial
20539 global symbols, although the variable's address will be bogus
20540 in the psymtab. */
20541 if (i < size)
20542 dwarf2_complex_location_expr_complaint ();
20543 break;
20544
20545 case DW_OP_GNU_push_tls_address:
20546 /* The top of the stack has the offset from the beginning
20547 of the thread control block at which the variable is located. */
20548 /* Nothing should follow this operator, so the top of stack would
20549 be returned. */
20550 /* This is valid for partial global symbols, but the variable's
20551 address will be bogus in the psymtab. Make it always at least
20552 non-zero to not look as a variable garbage collected by linker
20553 which have DW_OP_addr 0. */
20554 if (i < size)
20555 dwarf2_complex_location_expr_complaint ();
20556 stack[stacki]++;
20557 break;
20558
20559 case DW_OP_GNU_uninit:
20560 break;
20561
20562 case DW_OP_GNU_addr_index:
20563 case DW_OP_GNU_const_index:
20564 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20565 &bytes_read);
20566 i += bytes_read;
20567 break;
20568
20569 default:
20570 {
20571 const char *name = get_DW_OP_name (op);
20572
20573 if (name)
20574 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20575 name);
20576 else
20577 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20578 op);
20579 }
20580
20581 return (stack[stacki]);
20582 }
20583
20584 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20585 outside of the allocated space. Also enforce minimum>0. */
20586 if (stacki >= ARRAY_SIZE (stack) - 1)
20587 {
20588 complaint (&symfile_complaints,
20589 _("location description stack overflow"));
20590 return 0;
20591 }
20592
20593 if (stacki <= 0)
20594 {
20595 complaint (&symfile_complaints,
20596 _("location description stack underflow"));
20597 return 0;
20598 }
20599 }
20600 return (stack[stacki]);
20601 }
20602
20603 /* memory allocation interface */
20604
20605 static struct dwarf_block *
20606 dwarf_alloc_block (struct dwarf2_cu *cu)
20607 {
20608 struct dwarf_block *blk;
20609
20610 blk = (struct dwarf_block *)
20611 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20612 return (blk);
20613 }
20614
20615 static struct die_info *
20616 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20617 {
20618 struct die_info *die;
20619 size_t size = sizeof (struct die_info);
20620
20621 if (num_attrs > 1)
20622 size += (num_attrs - 1) * sizeof (struct attribute);
20623
20624 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20625 memset (die, 0, sizeof (struct die_info));
20626 return (die);
20627 }
20628
20629 \f
20630 /* Macro support. */
20631
20632 /* Return file name relative to the compilation directory of file number I in
20633 *LH's file name table. The result is allocated using xmalloc; the caller is
20634 responsible for freeing it. */
20635
20636 static char *
20637 file_file_name (int file, struct line_header *lh)
20638 {
20639 /* Is the file number a valid index into the line header's file name
20640 table? Remember that file numbers start with one, not zero. */
20641 if (1 <= file && file <= lh->num_file_names)
20642 {
20643 struct file_entry *fe = &lh->file_names[file - 1];
20644
20645 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20646 || lh->include_dirs == NULL)
20647 return xstrdup (fe->name);
20648 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20649 fe->name, NULL);
20650 }
20651 else
20652 {
20653 /* The compiler produced a bogus file number. We can at least
20654 record the macro definitions made in the file, even if we
20655 won't be able to find the file by name. */
20656 char fake_name[80];
20657
20658 xsnprintf (fake_name, sizeof (fake_name),
20659 "<bad macro file number %d>", file);
20660
20661 complaint (&symfile_complaints,
20662 _("bad file number in macro information (%d)"),
20663 file);
20664
20665 return xstrdup (fake_name);
20666 }
20667 }
20668
20669 /* Return the full name of file number I in *LH's file name table.
20670 Use COMP_DIR as the name of the current directory of the
20671 compilation. The result is allocated using xmalloc; the caller is
20672 responsible for freeing it. */
20673 static char *
20674 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20675 {
20676 /* Is the file number a valid index into the line header's file name
20677 table? Remember that file numbers start with one, not zero. */
20678 if (1 <= file && file <= lh->num_file_names)
20679 {
20680 char *relative = file_file_name (file, lh);
20681
20682 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20683 return relative;
20684 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20685 }
20686 else
20687 return file_file_name (file, lh);
20688 }
20689
20690
20691 static struct macro_source_file *
20692 macro_start_file (int file, int line,
20693 struct macro_source_file *current_file,
20694 struct line_header *lh)
20695 {
20696 /* File name relative to the compilation directory of this source file. */
20697 char *file_name = file_file_name (file, lh);
20698
20699 if (! current_file)
20700 {
20701 /* Note: We don't create a macro table for this compilation unit
20702 at all until we actually get a filename. */
20703 struct macro_table *macro_table = get_macro_table ();
20704
20705 /* If we have no current file, then this must be the start_file
20706 directive for the compilation unit's main source file. */
20707 current_file = macro_set_main (macro_table, file_name);
20708 macro_define_special (macro_table);
20709 }
20710 else
20711 current_file = macro_include (current_file, line, file_name);
20712
20713 xfree (file_name);
20714
20715 return current_file;
20716 }
20717
20718
20719 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20720 followed by a null byte. */
20721 static char *
20722 copy_string (const char *buf, int len)
20723 {
20724 char *s = xmalloc (len + 1);
20725
20726 memcpy (s, buf, len);
20727 s[len] = '\0';
20728 return s;
20729 }
20730
20731
20732 static const char *
20733 consume_improper_spaces (const char *p, const char *body)
20734 {
20735 if (*p == ' ')
20736 {
20737 complaint (&symfile_complaints,
20738 _("macro definition contains spaces "
20739 "in formal argument list:\n`%s'"),
20740 body);
20741
20742 while (*p == ' ')
20743 p++;
20744 }
20745
20746 return p;
20747 }
20748
20749
20750 static void
20751 parse_macro_definition (struct macro_source_file *file, int line,
20752 const char *body)
20753 {
20754 const char *p;
20755
20756 /* The body string takes one of two forms. For object-like macro
20757 definitions, it should be:
20758
20759 <macro name> " " <definition>
20760
20761 For function-like macro definitions, it should be:
20762
20763 <macro name> "() " <definition>
20764 or
20765 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20766
20767 Spaces may appear only where explicitly indicated, and in the
20768 <definition>.
20769
20770 The Dwarf 2 spec says that an object-like macro's name is always
20771 followed by a space, but versions of GCC around March 2002 omit
20772 the space when the macro's definition is the empty string.
20773
20774 The Dwarf 2 spec says that there should be no spaces between the
20775 formal arguments in a function-like macro's formal argument list,
20776 but versions of GCC around March 2002 include spaces after the
20777 commas. */
20778
20779
20780 /* Find the extent of the macro name. The macro name is terminated
20781 by either a space or null character (for an object-like macro) or
20782 an opening paren (for a function-like macro). */
20783 for (p = body; *p; p++)
20784 if (*p == ' ' || *p == '(')
20785 break;
20786
20787 if (*p == ' ' || *p == '\0')
20788 {
20789 /* It's an object-like macro. */
20790 int name_len = p - body;
20791 char *name = copy_string (body, name_len);
20792 const char *replacement;
20793
20794 if (*p == ' ')
20795 replacement = body + name_len + 1;
20796 else
20797 {
20798 dwarf2_macro_malformed_definition_complaint (body);
20799 replacement = body + name_len;
20800 }
20801
20802 macro_define_object (file, line, name, replacement);
20803
20804 xfree (name);
20805 }
20806 else if (*p == '(')
20807 {
20808 /* It's a function-like macro. */
20809 char *name = copy_string (body, p - body);
20810 int argc = 0;
20811 int argv_size = 1;
20812 char **argv = xmalloc (argv_size * sizeof (*argv));
20813
20814 p++;
20815
20816 p = consume_improper_spaces (p, body);
20817
20818 /* Parse the formal argument list. */
20819 while (*p && *p != ')')
20820 {
20821 /* Find the extent of the current argument name. */
20822 const char *arg_start = p;
20823
20824 while (*p && *p != ',' && *p != ')' && *p != ' ')
20825 p++;
20826
20827 if (! *p || p == arg_start)
20828 dwarf2_macro_malformed_definition_complaint (body);
20829 else
20830 {
20831 /* Make sure argv has room for the new argument. */
20832 if (argc >= argv_size)
20833 {
20834 argv_size *= 2;
20835 argv = xrealloc (argv, argv_size * sizeof (*argv));
20836 }
20837
20838 argv[argc++] = copy_string (arg_start, p - arg_start);
20839 }
20840
20841 p = consume_improper_spaces (p, body);
20842
20843 /* Consume the comma, if present. */
20844 if (*p == ',')
20845 {
20846 p++;
20847
20848 p = consume_improper_spaces (p, body);
20849 }
20850 }
20851
20852 if (*p == ')')
20853 {
20854 p++;
20855
20856 if (*p == ' ')
20857 /* Perfectly formed definition, no complaints. */
20858 macro_define_function (file, line, name,
20859 argc, (const char **) argv,
20860 p + 1);
20861 else if (*p == '\0')
20862 {
20863 /* Complain, but do define it. */
20864 dwarf2_macro_malformed_definition_complaint (body);
20865 macro_define_function (file, line, name,
20866 argc, (const char **) argv,
20867 p);
20868 }
20869 else
20870 /* Just complain. */
20871 dwarf2_macro_malformed_definition_complaint (body);
20872 }
20873 else
20874 /* Just complain. */
20875 dwarf2_macro_malformed_definition_complaint (body);
20876
20877 xfree (name);
20878 {
20879 int i;
20880
20881 for (i = 0; i < argc; i++)
20882 xfree (argv[i]);
20883 }
20884 xfree (argv);
20885 }
20886 else
20887 dwarf2_macro_malformed_definition_complaint (body);
20888 }
20889
20890 /* Skip some bytes from BYTES according to the form given in FORM.
20891 Returns the new pointer. */
20892
20893 static const gdb_byte *
20894 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20895 enum dwarf_form form,
20896 unsigned int offset_size,
20897 struct dwarf2_section_info *section)
20898 {
20899 unsigned int bytes_read;
20900
20901 switch (form)
20902 {
20903 case DW_FORM_data1:
20904 case DW_FORM_flag:
20905 ++bytes;
20906 break;
20907
20908 case DW_FORM_data2:
20909 bytes += 2;
20910 break;
20911
20912 case DW_FORM_data4:
20913 bytes += 4;
20914 break;
20915
20916 case DW_FORM_data8:
20917 bytes += 8;
20918 break;
20919
20920 case DW_FORM_string:
20921 read_direct_string (abfd, bytes, &bytes_read);
20922 bytes += bytes_read;
20923 break;
20924
20925 case DW_FORM_sec_offset:
20926 case DW_FORM_strp:
20927 case DW_FORM_GNU_strp_alt:
20928 bytes += offset_size;
20929 break;
20930
20931 case DW_FORM_block:
20932 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20933 bytes += bytes_read;
20934 break;
20935
20936 case DW_FORM_block1:
20937 bytes += 1 + read_1_byte (abfd, bytes);
20938 break;
20939 case DW_FORM_block2:
20940 bytes += 2 + read_2_bytes (abfd, bytes);
20941 break;
20942 case DW_FORM_block4:
20943 bytes += 4 + read_4_bytes (abfd, bytes);
20944 break;
20945
20946 case DW_FORM_sdata:
20947 case DW_FORM_udata:
20948 case DW_FORM_GNU_addr_index:
20949 case DW_FORM_GNU_str_index:
20950 bytes = gdb_skip_leb128 (bytes, buffer_end);
20951 if (bytes == NULL)
20952 {
20953 dwarf2_section_buffer_overflow_complaint (section);
20954 return NULL;
20955 }
20956 break;
20957
20958 default:
20959 {
20960 complain:
20961 complaint (&symfile_complaints,
20962 _("invalid form 0x%x in `%s'"),
20963 form, get_section_name (section));
20964 return NULL;
20965 }
20966 }
20967
20968 return bytes;
20969 }
20970
20971 /* A helper for dwarf_decode_macros that handles skipping an unknown
20972 opcode. Returns an updated pointer to the macro data buffer; or,
20973 on error, issues a complaint and returns NULL. */
20974
20975 static const gdb_byte *
20976 skip_unknown_opcode (unsigned int opcode,
20977 const gdb_byte **opcode_definitions,
20978 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20979 bfd *abfd,
20980 unsigned int offset_size,
20981 struct dwarf2_section_info *section)
20982 {
20983 unsigned int bytes_read, i;
20984 unsigned long arg;
20985 const gdb_byte *defn;
20986
20987 if (opcode_definitions[opcode] == NULL)
20988 {
20989 complaint (&symfile_complaints,
20990 _("unrecognized DW_MACFINO opcode 0x%x"),
20991 opcode);
20992 return NULL;
20993 }
20994
20995 defn = opcode_definitions[opcode];
20996 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20997 defn += bytes_read;
20998
20999 for (i = 0; i < arg; ++i)
21000 {
21001 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21002 section);
21003 if (mac_ptr == NULL)
21004 {
21005 /* skip_form_bytes already issued the complaint. */
21006 return NULL;
21007 }
21008 }
21009
21010 return mac_ptr;
21011 }
21012
21013 /* A helper function which parses the header of a macro section.
21014 If the macro section is the extended (for now called "GNU") type,
21015 then this updates *OFFSET_SIZE. Returns a pointer to just after
21016 the header, or issues a complaint and returns NULL on error. */
21017
21018 static const gdb_byte *
21019 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21020 bfd *abfd,
21021 const gdb_byte *mac_ptr,
21022 unsigned int *offset_size,
21023 int section_is_gnu)
21024 {
21025 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21026
21027 if (section_is_gnu)
21028 {
21029 unsigned int version, flags;
21030
21031 version = read_2_bytes (abfd, mac_ptr);
21032 if (version != 4)
21033 {
21034 complaint (&symfile_complaints,
21035 _("unrecognized version `%d' in .debug_macro section"),
21036 version);
21037 return NULL;
21038 }
21039 mac_ptr += 2;
21040
21041 flags = read_1_byte (abfd, mac_ptr);
21042 ++mac_ptr;
21043 *offset_size = (flags & 1) ? 8 : 4;
21044
21045 if ((flags & 2) != 0)
21046 /* We don't need the line table offset. */
21047 mac_ptr += *offset_size;
21048
21049 /* Vendor opcode descriptions. */
21050 if ((flags & 4) != 0)
21051 {
21052 unsigned int i, count;
21053
21054 count = read_1_byte (abfd, mac_ptr);
21055 ++mac_ptr;
21056 for (i = 0; i < count; ++i)
21057 {
21058 unsigned int opcode, bytes_read;
21059 unsigned long arg;
21060
21061 opcode = read_1_byte (abfd, mac_ptr);
21062 ++mac_ptr;
21063 opcode_definitions[opcode] = mac_ptr;
21064 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21065 mac_ptr += bytes_read;
21066 mac_ptr += arg;
21067 }
21068 }
21069 }
21070
21071 return mac_ptr;
21072 }
21073
21074 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21075 including DW_MACRO_GNU_transparent_include. */
21076
21077 static void
21078 dwarf_decode_macro_bytes (bfd *abfd,
21079 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21080 struct macro_source_file *current_file,
21081 struct line_header *lh,
21082 struct dwarf2_section_info *section,
21083 int section_is_gnu, int section_is_dwz,
21084 unsigned int offset_size,
21085 htab_t include_hash)
21086 {
21087 struct objfile *objfile = dwarf2_per_objfile->objfile;
21088 enum dwarf_macro_record_type macinfo_type;
21089 int at_commandline;
21090 const gdb_byte *opcode_definitions[256];
21091
21092 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21093 &offset_size, section_is_gnu);
21094 if (mac_ptr == NULL)
21095 {
21096 /* We already issued a complaint. */
21097 return;
21098 }
21099
21100 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21101 GDB is still reading the definitions from command line. First
21102 DW_MACINFO_start_file will need to be ignored as it was already executed
21103 to create CURRENT_FILE for the main source holding also the command line
21104 definitions. On first met DW_MACINFO_start_file this flag is reset to
21105 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21106
21107 at_commandline = 1;
21108
21109 do
21110 {
21111 /* Do we at least have room for a macinfo type byte? */
21112 if (mac_ptr >= mac_end)
21113 {
21114 dwarf2_section_buffer_overflow_complaint (section);
21115 break;
21116 }
21117
21118 macinfo_type = read_1_byte (abfd, mac_ptr);
21119 mac_ptr++;
21120
21121 /* Note that we rely on the fact that the corresponding GNU and
21122 DWARF constants are the same. */
21123 switch (macinfo_type)
21124 {
21125 /* A zero macinfo type indicates the end of the macro
21126 information. */
21127 case 0:
21128 break;
21129
21130 case DW_MACRO_GNU_define:
21131 case DW_MACRO_GNU_undef:
21132 case DW_MACRO_GNU_define_indirect:
21133 case DW_MACRO_GNU_undef_indirect:
21134 case DW_MACRO_GNU_define_indirect_alt:
21135 case DW_MACRO_GNU_undef_indirect_alt:
21136 {
21137 unsigned int bytes_read;
21138 int line;
21139 const char *body;
21140 int is_define;
21141
21142 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21143 mac_ptr += bytes_read;
21144
21145 if (macinfo_type == DW_MACRO_GNU_define
21146 || macinfo_type == DW_MACRO_GNU_undef)
21147 {
21148 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21149 mac_ptr += bytes_read;
21150 }
21151 else
21152 {
21153 LONGEST str_offset;
21154
21155 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21156 mac_ptr += offset_size;
21157
21158 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21159 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21160 || section_is_dwz)
21161 {
21162 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21163
21164 body = read_indirect_string_from_dwz (dwz, str_offset);
21165 }
21166 else
21167 body = read_indirect_string_at_offset (abfd, str_offset);
21168 }
21169
21170 is_define = (macinfo_type == DW_MACRO_GNU_define
21171 || macinfo_type == DW_MACRO_GNU_define_indirect
21172 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21173 if (! current_file)
21174 {
21175 /* DWARF violation as no main source is present. */
21176 complaint (&symfile_complaints,
21177 _("debug info with no main source gives macro %s "
21178 "on line %d: %s"),
21179 is_define ? _("definition") : _("undefinition"),
21180 line, body);
21181 break;
21182 }
21183 if ((line == 0 && !at_commandline)
21184 || (line != 0 && at_commandline))
21185 complaint (&symfile_complaints,
21186 _("debug info gives %s macro %s with %s line %d: %s"),
21187 at_commandline ? _("command-line") : _("in-file"),
21188 is_define ? _("definition") : _("undefinition"),
21189 line == 0 ? _("zero") : _("non-zero"), line, body);
21190
21191 if (is_define)
21192 parse_macro_definition (current_file, line, body);
21193 else
21194 {
21195 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21196 || macinfo_type == DW_MACRO_GNU_undef_indirect
21197 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21198 macro_undef (current_file, line, body);
21199 }
21200 }
21201 break;
21202
21203 case DW_MACRO_GNU_start_file:
21204 {
21205 unsigned int bytes_read;
21206 int line, file;
21207
21208 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21209 mac_ptr += bytes_read;
21210 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21211 mac_ptr += bytes_read;
21212
21213 if ((line == 0 && !at_commandline)
21214 || (line != 0 && at_commandline))
21215 complaint (&symfile_complaints,
21216 _("debug info gives source %d included "
21217 "from %s at %s line %d"),
21218 file, at_commandline ? _("command-line") : _("file"),
21219 line == 0 ? _("zero") : _("non-zero"), line);
21220
21221 if (at_commandline)
21222 {
21223 /* This DW_MACRO_GNU_start_file was executed in the
21224 pass one. */
21225 at_commandline = 0;
21226 }
21227 else
21228 current_file = macro_start_file (file, line, current_file, lh);
21229 }
21230 break;
21231
21232 case DW_MACRO_GNU_end_file:
21233 if (! current_file)
21234 complaint (&symfile_complaints,
21235 _("macro debug info has an unmatched "
21236 "`close_file' directive"));
21237 else
21238 {
21239 current_file = current_file->included_by;
21240 if (! current_file)
21241 {
21242 enum dwarf_macro_record_type next_type;
21243
21244 /* GCC circa March 2002 doesn't produce the zero
21245 type byte marking the end of the compilation
21246 unit. Complain if it's not there, but exit no
21247 matter what. */
21248
21249 /* Do we at least have room for a macinfo type byte? */
21250 if (mac_ptr >= mac_end)
21251 {
21252 dwarf2_section_buffer_overflow_complaint (section);
21253 return;
21254 }
21255
21256 /* We don't increment mac_ptr here, so this is just
21257 a look-ahead. */
21258 next_type = read_1_byte (abfd, mac_ptr);
21259 if (next_type != 0)
21260 complaint (&symfile_complaints,
21261 _("no terminating 0-type entry for "
21262 "macros in `.debug_macinfo' section"));
21263
21264 return;
21265 }
21266 }
21267 break;
21268
21269 case DW_MACRO_GNU_transparent_include:
21270 case DW_MACRO_GNU_transparent_include_alt:
21271 {
21272 LONGEST offset;
21273 void **slot;
21274 bfd *include_bfd = abfd;
21275 struct dwarf2_section_info *include_section = section;
21276 struct dwarf2_section_info alt_section;
21277 const gdb_byte *include_mac_end = mac_end;
21278 int is_dwz = section_is_dwz;
21279 const gdb_byte *new_mac_ptr;
21280
21281 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21282 mac_ptr += offset_size;
21283
21284 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21285 {
21286 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21287
21288 dwarf2_read_section (objfile, &dwz->macro);
21289
21290 include_section = &dwz->macro;
21291 include_bfd = get_section_bfd_owner (include_section);
21292 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21293 is_dwz = 1;
21294 }
21295
21296 new_mac_ptr = include_section->buffer + offset;
21297 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21298
21299 if (*slot != NULL)
21300 {
21301 /* This has actually happened; see
21302 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21303 complaint (&symfile_complaints,
21304 _("recursive DW_MACRO_GNU_transparent_include in "
21305 ".debug_macro section"));
21306 }
21307 else
21308 {
21309 *slot = (void *) new_mac_ptr;
21310
21311 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21312 include_mac_end, current_file, lh,
21313 section, section_is_gnu, is_dwz,
21314 offset_size, include_hash);
21315
21316 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21317 }
21318 }
21319 break;
21320
21321 case DW_MACINFO_vendor_ext:
21322 if (!section_is_gnu)
21323 {
21324 unsigned int bytes_read;
21325 int constant;
21326
21327 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21328 mac_ptr += bytes_read;
21329 read_direct_string (abfd, mac_ptr, &bytes_read);
21330 mac_ptr += bytes_read;
21331
21332 /* We don't recognize any vendor extensions. */
21333 break;
21334 }
21335 /* FALLTHROUGH */
21336
21337 default:
21338 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21339 mac_ptr, mac_end, abfd, offset_size,
21340 section);
21341 if (mac_ptr == NULL)
21342 return;
21343 break;
21344 }
21345 } while (macinfo_type != 0);
21346 }
21347
21348 static void
21349 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21350 int section_is_gnu)
21351 {
21352 struct objfile *objfile = dwarf2_per_objfile->objfile;
21353 struct line_header *lh = cu->line_header;
21354 bfd *abfd;
21355 const gdb_byte *mac_ptr, *mac_end;
21356 struct macro_source_file *current_file = 0;
21357 enum dwarf_macro_record_type macinfo_type;
21358 unsigned int offset_size = cu->header.offset_size;
21359 const gdb_byte *opcode_definitions[256];
21360 struct cleanup *cleanup;
21361 htab_t include_hash;
21362 void **slot;
21363 struct dwarf2_section_info *section;
21364 const char *section_name;
21365
21366 if (cu->dwo_unit != NULL)
21367 {
21368 if (section_is_gnu)
21369 {
21370 section = &cu->dwo_unit->dwo_file->sections.macro;
21371 section_name = ".debug_macro.dwo";
21372 }
21373 else
21374 {
21375 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21376 section_name = ".debug_macinfo.dwo";
21377 }
21378 }
21379 else
21380 {
21381 if (section_is_gnu)
21382 {
21383 section = &dwarf2_per_objfile->macro;
21384 section_name = ".debug_macro";
21385 }
21386 else
21387 {
21388 section = &dwarf2_per_objfile->macinfo;
21389 section_name = ".debug_macinfo";
21390 }
21391 }
21392
21393 dwarf2_read_section (objfile, section);
21394 if (section->buffer == NULL)
21395 {
21396 complaint (&symfile_complaints, _("missing %s section"), section_name);
21397 return;
21398 }
21399 abfd = get_section_bfd_owner (section);
21400
21401 /* First pass: Find the name of the base filename.
21402 This filename is needed in order to process all macros whose definition
21403 (or undefinition) comes from the command line. These macros are defined
21404 before the first DW_MACINFO_start_file entry, and yet still need to be
21405 associated to the base file.
21406
21407 To determine the base file name, we scan the macro definitions until we
21408 reach the first DW_MACINFO_start_file entry. We then initialize
21409 CURRENT_FILE accordingly so that any macro definition found before the
21410 first DW_MACINFO_start_file can still be associated to the base file. */
21411
21412 mac_ptr = section->buffer + offset;
21413 mac_end = section->buffer + section->size;
21414
21415 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21416 &offset_size, section_is_gnu);
21417 if (mac_ptr == NULL)
21418 {
21419 /* We already issued a complaint. */
21420 return;
21421 }
21422
21423 do
21424 {
21425 /* Do we at least have room for a macinfo type byte? */
21426 if (mac_ptr >= mac_end)
21427 {
21428 /* Complaint is printed during the second pass as GDB will probably
21429 stop the first pass earlier upon finding
21430 DW_MACINFO_start_file. */
21431 break;
21432 }
21433
21434 macinfo_type = read_1_byte (abfd, mac_ptr);
21435 mac_ptr++;
21436
21437 /* Note that we rely on the fact that the corresponding GNU and
21438 DWARF constants are the same. */
21439 switch (macinfo_type)
21440 {
21441 /* A zero macinfo type indicates the end of the macro
21442 information. */
21443 case 0:
21444 break;
21445
21446 case DW_MACRO_GNU_define:
21447 case DW_MACRO_GNU_undef:
21448 /* Only skip the data by MAC_PTR. */
21449 {
21450 unsigned int bytes_read;
21451
21452 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21453 mac_ptr += bytes_read;
21454 read_direct_string (abfd, mac_ptr, &bytes_read);
21455 mac_ptr += bytes_read;
21456 }
21457 break;
21458
21459 case DW_MACRO_GNU_start_file:
21460 {
21461 unsigned int bytes_read;
21462 int line, file;
21463
21464 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21465 mac_ptr += bytes_read;
21466 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21467 mac_ptr += bytes_read;
21468
21469 current_file = macro_start_file (file, line, current_file, lh);
21470 }
21471 break;
21472
21473 case DW_MACRO_GNU_end_file:
21474 /* No data to skip by MAC_PTR. */
21475 break;
21476
21477 case DW_MACRO_GNU_define_indirect:
21478 case DW_MACRO_GNU_undef_indirect:
21479 case DW_MACRO_GNU_define_indirect_alt:
21480 case DW_MACRO_GNU_undef_indirect_alt:
21481 {
21482 unsigned int bytes_read;
21483
21484 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21485 mac_ptr += bytes_read;
21486 mac_ptr += offset_size;
21487 }
21488 break;
21489
21490 case DW_MACRO_GNU_transparent_include:
21491 case DW_MACRO_GNU_transparent_include_alt:
21492 /* Note that, according to the spec, a transparent include
21493 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21494 skip this opcode. */
21495 mac_ptr += offset_size;
21496 break;
21497
21498 case DW_MACINFO_vendor_ext:
21499 /* Only skip the data by MAC_PTR. */
21500 if (!section_is_gnu)
21501 {
21502 unsigned int bytes_read;
21503
21504 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21505 mac_ptr += bytes_read;
21506 read_direct_string (abfd, mac_ptr, &bytes_read);
21507 mac_ptr += bytes_read;
21508 }
21509 /* FALLTHROUGH */
21510
21511 default:
21512 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21513 mac_ptr, mac_end, abfd, offset_size,
21514 section);
21515 if (mac_ptr == NULL)
21516 return;
21517 break;
21518 }
21519 } while (macinfo_type != 0 && current_file == NULL);
21520
21521 /* Second pass: Process all entries.
21522
21523 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21524 command-line macro definitions/undefinitions. This flag is unset when we
21525 reach the first DW_MACINFO_start_file entry. */
21526
21527 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21528 NULL, xcalloc, xfree);
21529 cleanup = make_cleanup_htab_delete (include_hash);
21530 mac_ptr = section->buffer + offset;
21531 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21532 *slot = (void *) mac_ptr;
21533 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21534 current_file, lh, section,
21535 section_is_gnu, 0, offset_size, include_hash);
21536 do_cleanups (cleanup);
21537 }
21538
21539 /* Check if the attribute's form is a DW_FORM_block*
21540 if so return true else false. */
21541
21542 static int
21543 attr_form_is_block (const struct attribute *attr)
21544 {
21545 return (attr == NULL ? 0 :
21546 attr->form == DW_FORM_block1
21547 || attr->form == DW_FORM_block2
21548 || attr->form == DW_FORM_block4
21549 || attr->form == DW_FORM_block
21550 || attr->form == DW_FORM_exprloc);
21551 }
21552
21553 /* Return non-zero if ATTR's value is a section offset --- classes
21554 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21555 You may use DW_UNSND (attr) to retrieve such offsets.
21556
21557 Section 7.5.4, "Attribute Encodings", explains that no attribute
21558 may have a value that belongs to more than one of these classes; it
21559 would be ambiguous if we did, because we use the same forms for all
21560 of them. */
21561
21562 static int
21563 attr_form_is_section_offset (const struct attribute *attr)
21564 {
21565 return (attr->form == DW_FORM_data4
21566 || attr->form == DW_FORM_data8
21567 || attr->form == DW_FORM_sec_offset);
21568 }
21569
21570 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21571 zero otherwise. When this function returns true, you can apply
21572 dwarf2_get_attr_constant_value to it.
21573
21574 However, note that for some attributes you must check
21575 attr_form_is_section_offset before using this test. DW_FORM_data4
21576 and DW_FORM_data8 are members of both the constant class, and of
21577 the classes that contain offsets into other debug sections
21578 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21579 that, if an attribute's can be either a constant or one of the
21580 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21581 taken as section offsets, not constants. */
21582
21583 static int
21584 attr_form_is_constant (const struct attribute *attr)
21585 {
21586 switch (attr->form)
21587 {
21588 case DW_FORM_sdata:
21589 case DW_FORM_udata:
21590 case DW_FORM_data1:
21591 case DW_FORM_data2:
21592 case DW_FORM_data4:
21593 case DW_FORM_data8:
21594 return 1;
21595 default:
21596 return 0;
21597 }
21598 }
21599
21600
21601 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21602 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21603
21604 static int
21605 attr_form_is_ref (const struct attribute *attr)
21606 {
21607 switch (attr->form)
21608 {
21609 case DW_FORM_ref_addr:
21610 case DW_FORM_ref1:
21611 case DW_FORM_ref2:
21612 case DW_FORM_ref4:
21613 case DW_FORM_ref8:
21614 case DW_FORM_ref_udata:
21615 case DW_FORM_GNU_ref_alt:
21616 return 1;
21617 default:
21618 return 0;
21619 }
21620 }
21621
21622 /* Return the .debug_loc section to use for CU.
21623 For DWO files use .debug_loc.dwo. */
21624
21625 static struct dwarf2_section_info *
21626 cu_debug_loc_section (struct dwarf2_cu *cu)
21627 {
21628 if (cu->dwo_unit)
21629 return &cu->dwo_unit->dwo_file->sections.loc;
21630 return &dwarf2_per_objfile->loc;
21631 }
21632
21633 /* A helper function that fills in a dwarf2_loclist_baton. */
21634
21635 static void
21636 fill_in_loclist_baton (struct dwarf2_cu *cu,
21637 struct dwarf2_loclist_baton *baton,
21638 const struct attribute *attr)
21639 {
21640 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21641
21642 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21643
21644 baton->per_cu = cu->per_cu;
21645 gdb_assert (baton->per_cu);
21646 /* We don't know how long the location list is, but make sure we
21647 don't run off the edge of the section. */
21648 baton->size = section->size - DW_UNSND (attr);
21649 baton->data = section->buffer + DW_UNSND (attr);
21650 baton->base_address = cu->base_address;
21651 baton->from_dwo = cu->dwo_unit != NULL;
21652 }
21653
21654 static void
21655 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21656 struct dwarf2_cu *cu, int is_block)
21657 {
21658 struct objfile *objfile = dwarf2_per_objfile->objfile;
21659 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21660
21661 if (attr_form_is_section_offset (attr)
21662 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21663 the section. If so, fall through to the complaint in the
21664 other branch. */
21665 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21666 {
21667 struct dwarf2_loclist_baton *baton;
21668
21669 baton = obstack_alloc (&objfile->objfile_obstack,
21670 sizeof (struct dwarf2_loclist_baton));
21671
21672 fill_in_loclist_baton (cu, baton, attr);
21673
21674 if (cu->base_known == 0)
21675 complaint (&symfile_complaints,
21676 _("Location list used without "
21677 "specifying the CU base address."));
21678
21679 SYMBOL_ACLASS_INDEX (sym) = (is_block
21680 ? dwarf2_loclist_block_index
21681 : dwarf2_loclist_index);
21682 SYMBOL_LOCATION_BATON (sym) = baton;
21683 }
21684 else
21685 {
21686 struct dwarf2_locexpr_baton *baton;
21687
21688 baton = obstack_alloc (&objfile->objfile_obstack,
21689 sizeof (struct dwarf2_locexpr_baton));
21690 baton->per_cu = cu->per_cu;
21691 gdb_assert (baton->per_cu);
21692
21693 if (attr_form_is_block (attr))
21694 {
21695 /* Note that we're just copying the block's data pointer
21696 here, not the actual data. We're still pointing into the
21697 info_buffer for SYM's objfile; right now we never release
21698 that buffer, but when we do clean up properly this may
21699 need to change. */
21700 baton->size = DW_BLOCK (attr)->size;
21701 baton->data = DW_BLOCK (attr)->data;
21702 }
21703 else
21704 {
21705 dwarf2_invalid_attrib_class_complaint ("location description",
21706 SYMBOL_NATURAL_NAME (sym));
21707 baton->size = 0;
21708 }
21709
21710 SYMBOL_ACLASS_INDEX (sym) = (is_block
21711 ? dwarf2_locexpr_block_index
21712 : dwarf2_locexpr_index);
21713 SYMBOL_LOCATION_BATON (sym) = baton;
21714 }
21715 }
21716
21717 /* Return the OBJFILE associated with the compilation unit CU. If CU
21718 came from a separate debuginfo file, then the master objfile is
21719 returned. */
21720
21721 struct objfile *
21722 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21723 {
21724 struct objfile *objfile = per_cu->objfile;
21725
21726 /* Return the master objfile, so that we can report and look up the
21727 correct file containing this variable. */
21728 if (objfile->separate_debug_objfile_backlink)
21729 objfile = objfile->separate_debug_objfile_backlink;
21730
21731 return objfile;
21732 }
21733
21734 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21735 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21736 CU_HEADERP first. */
21737
21738 static const struct comp_unit_head *
21739 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21740 struct dwarf2_per_cu_data *per_cu)
21741 {
21742 const gdb_byte *info_ptr;
21743
21744 if (per_cu->cu)
21745 return &per_cu->cu->header;
21746
21747 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21748
21749 memset (cu_headerp, 0, sizeof (*cu_headerp));
21750 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21751
21752 return cu_headerp;
21753 }
21754
21755 /* Return the address size given in the compilation unit header for CU. */
21756
21757 int
21758 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21759 {
21760 struct comp_unit_head cu_header_local;
21761 const struct comp_unit_head *cu_headerp;
21762
21763 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21764
21765 return cu_headerp->addr_size;
21766 }
21767
21768 /* Return the offset size given in the compilation unit header for CU. */
21769
21770 int
21771 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21772 {
21773 struct comp_unit_head cu_header_local;
21774 const struct comp_unit_head *cu_headerp;
21775
21776 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21777
21778 return cu_headerp->offset_size;
21779 }
21780
21781 /* See its dwarf2loc.h declaration. */
21782
21783 int
21784 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21785 {
21786 struct comp_unit_head cu_header_local;
21787 const struct comp_unit_head *cu_headerp;
21788
21789 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21790
21791 if (cu_headerp->version == 2)
21792 return cu_headerp->addr_size;
21793 else
21794 return cu_headerp->offset_size;
21795 }
21796
21797 /* Return the text offset of the CU. The returned offset comes from
21798 this CU's objfile. If this objfile came from a separate debuginfo
21799 file, then the offset may be different from the corresponding
21800 offset in the parent objfile. */
21801
21802 CORE_ADDR
21803 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21804 {
21805 struct objfile *objfile = per_cu->objfile;
21806
21807 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21808 }
21809
21810 /* Locate the .debug_info compilation unit from CU's objfile which contains
21811 the DIE at OFFSET. Raises an error on failure. */
21812
21813 static struct dwarf2_per_cu_data *
21814 dwarf2_find_containing_comp_unit (sect_offset offset,
21815 unsigned int offset_in_dwz,
21816 struct objfile *objfile)
21817 {
21818 struct dwarf2_per_cu_data *this_cu;
21819 int low, high;
21820 const sect_offset *cu_off;
21821
21822 low = 0;
21823 high = dwarf2_per_objfile->n_comp_units - 1;
21824 while (high > low)
21825 {
21826 struct dwarf2_per_cu_data *mid_cu;
21827 int mid = low + (high - low) / 2;
21828
21829 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21830 cu_off = &mid_cu->offset;
21831 if (mid_cu->is_dwz > offset_in_dwz
21832 || (mid_cu->is_dwz == offset_in_dwz
21833 && cu_off->sect_off >= offset.sect_off))
21834 high = mid;
21835 else
21836 low = mid + 1;
21837 }
21838 gdb_assert (low == high);
21839 this_cu = dwarf2_per_objfile->all_comp_units[low];
21840 cu_off = &this_cu->offset;
21841 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21842 {
21843 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21844 error (_("Dwarf Error: could not find partial DIE containing "
21845 "offset 0x%lx [in module %s]"),
21846 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21847
21848 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21849 <= offset.sect_off);
21850 return dwarf2_per_objfile->all_comp_units[low-1];
21851 }
21852 else
21853 {
21854 this_cu = dwarf2_per_objfile->all_comp_units[low];
21855 if (low == dwarf2_per_objfile->n_comp_units - 1
21856 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21857 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21858 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21859 return this_cu;
21860 }
21861 }
21862
21863 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21864
21865 static void
21866 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21867 {
21868 memset (cu, 0, sizeof (*cu));
21869 per_cu->cu = cu;
21870 cu->per_cu = per_cu;
21871 cu->objfile = per_cu->objfile;
21872 obstack_init (&cu->comp_unit_obstack);
21873 }
21874
21875 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21876
21877 static void
21878 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21879 enum language pretend_language)
21880 {
21881 struct attribute *attr;
21882
21883 /* Set the language we're debugging. */
21884 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21885 if (attr)
21886 set_cu_language (DW_UNSND (attr), cu);
21887 else
21888 {
21889 cu->language = pretend_language;
21890 cu->language_defn = language_def (cu->language);
21891 }
21892
21893 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21894 if (attr)
21895 cu->producer = DW_STRING (attr);
21896 }
21897
21898 /* Release one cached compilation unit, CU. We unlink it from the tree
21899 of compilation units, but we don't remove it from the read_in_chain;
21900 the caller is responsible for that.
21901 NOTE: DATA is a void * because this function is also used as a
21902 cleanup routine. */
21903
21904 static void
21905 free_heap_comp_unit (void *data)
21906 {
21907 struct dwarf2_cu *cu = data;
21908
21909 gdb_assert (cu->per_cu != NULL);
21910 cu->per_cu->cu = NULL;
21911 cu->per_cu = NULL;
21912
21913 obstack_free (&cu->comp_unit_obstack, NULL);
21914
21915 xfree (cu);
21916 }
21917
21918 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21919 when we're finished with it. We can't free the pointer itself, but be
21920 sure to unlink it from the cache. Also release any associated storage. */
21921
21922 static void
21923 free_stack_comp_unit (void *data)
21924 {
21925 struct dwarf2_cu *cu = data;
21926
21927 gdb_assert (cu->per_cu != NULL);
21928 cu->per_cu->cu = NULL;
21929 cu->per_cu = NULL;
21930
21931 obstack_free (&cu->comp_unit_obstack, NULL);
21932 cu->partial_dies = NULL;
21933 }
21934
21935 /* Free all cached compilation units. */
21936
21937 static void
21938 free_cached_comp_units (void *data)
21939 {
21940 struct dwarf2_per_cu_data *per_cu, **last_chain;
21941
21942 per_cu = dwarf2_per_objfile->read_in_chain;
21943 last_chain = &dwarf2_per_objfile->read_in_chain;
21944 while (per_cu != NULL)
21945 {
21946 struct dwarf2_per_cu_data *next_cu;
21947
21948 next_cu = per_cu->cu->read_in_chain;
21949
21950 free_heap_comp_unit (per_cu->cu);
21951 *last_chain = next_cu;
21952
21953 per_cu = next_cu;
21954 }
21955 }
21956
21957 /* Increase the age counter on each cached compilation unit, and free
21958 any that are too old. */
21959
21960 static void
21961 age_cached_comp_units (void)
21962 {
21963 struct dwarf2_per_cu_data *per_cu, **last_chain;
21964
21965 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21966 per_cu = dwarf2_per_objfile->read_in_chain;
21967 while (per_cu != NULL)
21968 {
21969 per_cu->cu->last_used ++;
21970 if (per_cu->cu->last_used <= dwarf_max_cache_age)
21971 dwarf2_mark (per_cu->cu);
21972 per_cu = per_cu->cu->read_in_chain;
21973 }
21974
21975 per_cu = dwarf2_per_objfile->read_in_chain;
21976 last_chain = &dwarf2_per_objfile->read_in_chain;
21977 while (per_cu != NULL)
21978 {
21979 struct dwarf2_per_cu_data *next_cu;
21980
21981 next_cu = per_cu->cu->read_in_chain;
21982
21983 if (!per_cu->cu->mark)
21984 {
21985 free_heap_comp_unit (per_cu->cu);
21986 *last_chain = next_cu;
21987 }
21988 else
21989 last_chain = &per_cu->cu->read_in_chain;
21990
21991 per_cu = next_cu;
21992 }
21993 }
21994
21995 /* Remove a single compilation unit from the cache. */
21996
21997 static void
21998 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21999 {
22000 struct dwarf2_per_cu_data *per_cu, **last_chain;
22001
22002 per_cu = dwarf2_per_objfile->read_in_chain;
22003 last_chain = &dwarf2_per_objfile->read_in_chain;
22004 while (per_cu != NULL)
22005 {
22006 struct dwarf2_per_cu_data *next_cu;
22007
22008 next_cu = per_cu->cu->read_in_chain;
22009
22010 if (per_cu == target_per_cu)
22011 {
22012 free_heap_comp_unit (per_cu->cu);
22013 per_cu->cu = NULL;
22014 *last_chain = next_cu;
22015 break;
22016 }
22017 else
22018 last_chain = &per_cu->cu->read_in_chain;
22019
22020 per_cu = next_cu;
22021 }
22022 }
22023
22024 /* Release all extra memory associated with OBJFILE. */
22025
22026 void
22027 dwarf2_free_objfile (struct objfile *objfile)
22028 {
22029 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22030
22031 if (dwarf2_per_objfile == NULL)
22032 return;
22033
22034 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22035 free_cached_comp_units (NULL);
22036
22037 if (dwarf2_per_objfile->quick_file_names_table)
22038 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22039
22040 if (dwarf2_per_objfile->line_header_hash)
22041 htab_delete (dwarf2_per_objfile->line_header_hash);
22042
22043 /* Everything else should be on the objfile obstack. */
22044 }
22045
22046 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22047 We store these in a hash table separate from the DIEs, and preserve them
22048 when the DIEs are flushed out of cache.
22049
22050 The CU "per_cu" pointer is needed because offset alone is not enough to
22051 uniquely identify the type. A file may have multiple .debug_types sections,
22052 or the type may come from a DWO file. Furthermore, while it's more logical
22053 to use per_cu->section+offset, with Fission the section with the data is in
22054 the DWO file but we don't know that section at the point we need it.
22055 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22056 because we can enter the lookup routine, get_die_type_at_offset, from
22057 outside this file, and thus won't necessarily have PER_CU->cu.
22058 Fortunately, PER_CU is stable for the life of the objfile. */
22059
22060 struct dwarf2_per_cu_offset_and_type
22061 {
22062 const struct dwarf2_per_cu_data *per_cu;
22063 sect_offset offset;
22064 struct type *type;
22065 };
22066
22067 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22068
22069 static hashval_t
22070 per_cu_offset_and_type_hash (const void *item)
22071 {
22072 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22073
22074 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22075 }
22076
22077 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22078
22079 static int
22080 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22081 {
22082 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22083 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22084
22085 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22086 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22087 }
22088
22089 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22090 table if necessary. For convenience, return TYPE.
22091
22092 The DIEs reading must have careful ordering to:
22093 * Not cause infite loops trying to read in DIEs as a prerequisite for
22094 reading current DIE.
22095 * Not trying to dereference contents of still incompletely read in types
22096 while reading in other DIEs.
22097 * Enable referencing still incompletely read in types just by a pointer to
22098 the type without accessing its fields.
22099
22100 Therefore caller should follow these rules:
22101 * Try to fetch any prerequisite types we may need to build this DIE type
22102 before building the type and calling set_die_type.
22103 * After building type call set_die_type for current DIE as soon as
22104 possible before fetching more types to complete the current type.
22105 * Make the type as complete as possible before fetching more types. */
22106
22107 static struct type *
22108 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22109 {
22110 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22111 struct objfile *objfile = cu->objfile;
22112 struct attribute *attr;
22113 struct dynamic_prop prop;
22114
22115 /* For Ada types, make sure that the gnat-specific data is always
22116 initialized (if not already set). There are a few types where
22117 we should not be doing so, because the type-specific area is
22118 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22119 where the type-specific area is used to store the floatformat).
22120 But this is not a problem, because the gnat-specific information
22121 is actually not needed for these types. */
22122 if (need_gnat_info (cu)
22123 && TYPE_CODE (type) != TYPE_CODE_FUNC
22124 && TYPE_CODE (type) != TYPE_CODE_FLT
22125 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22126 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22127 && TYPE_CODE (type) != TYPE_CODE_METHOD
22128 && !HAVE_GNAT_AUX_INFO (type))
22129 INIT_GNAT_SPECIFIC (type);
22130
22131 /* Read DW_AT_data_location and set in type. */
22132 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22133 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22134 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22135
22136 if (dwarf2_per_objfile->die_type_hash == NULL)
22137 {
22138 dwarf2_per_objfile->die_type_hash =
22139 htab_create_alloc_ex (127,
22140 per_cu_offset_and_type_hash,
22141 per_cu_offset_and_type_eq,
22142 NULL,
22143 &objfile->objfile_obstack,
22144 hashtab_obstack_allocate,
22145 dummy_obstack_deallocate);
22146 }
22147
22148 ofs.per_cu = cu->per_cu;
22149 ofs.offset = die->offset;
22150 ofs.type = type;
22151 slot = (struct dwarf2_per_cu_offset_and_type **)
22152 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22153 if (*slot)
22154 complaint (&symfile_complaints,
22155 _("A problem internal to GDB: DIE 0x%x has type already set"),
22156 die->offset.sect_off);
22157 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22158 **slot = ofs;
22159 return type;
22160 }
22161
22162 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22163 or return NULL if the die does not have a saved type. */
22164
22165 static struct type *
22166 get_die_type_at_offset (sect_offset offset,
22167 struct dwarf2_per_cu_data *per_cu)
22168 {
22169 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22170
22171 if (dwarf2_per_objfile->die_type_hash == NULL)
22172 return NULL;
22173
22174 ofs.per_cu = per_cu;
22175 ofs.offset = offset;
22176 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22177 if (slot)
22178 return slot->type;
22179 else
22180 return NULL;
22181 }
22182
22183 /* Look up the type for DIE in CU in die_type_hash,
22184 or return NULL if DIE does not have a saved type. */
22185
22186 static struct type *
22187 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22188 {
22189 return get_die_type_at_offset (die->offset, cu->per_cu);
22190 }
22191
22192 /* Add a dependence relationship from CU to REF_PER_CU. */
22193
22194 static void
22195 dwarf2_add_dependence (struct dwarf2_cu *cu,
22196 struct dwarf2_per_cu_data *ref_per_cu)
22197 {
22198 void **slot;
22199
22200 if (cu->dependencies == NULL)
22201 cu->dependencies
22202 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22203 NULL, &cu->comp_unit_obstack,
22204 hashtab_obstack_allocate,
22205 dummy_obstack_deallocate);
22206
22207 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22208 if (*slot == NULL)
22209 *slot = ref_per_cu;
22210 }
22211
22212 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22213 Set the mark field in every compilation unit in the
22214 cache that we must keep because we are keeping CU. */
22215
22216 static int
22217 dwarf2_mark_helper (void **slot, void *data)
22218 {
22219 struct dwarf2_per_cu_data *per_cu;
22220
22221 per_cu = (struct dwarf2_per_cu_data *) *slot;
22222
22223 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22224 reading of the chain. As such dependencies remain valid it is not much
22225 useful to track and undo them during QUIT cleanups. */
22226 if (per_cu->cu == NULL)
22227 return 1;
22228
22229 if (per_cu->cu->mark)
22230 return 1;
22231 per_cu->cu->mark = 1;
22232
22233 if (per_cu->cu->dependencies != NULL)
22234 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22235
22236 return 1;
22237 }
22238
22239 /* Set the mark field in CU and in every other compilation unit in the
22240 cache that we must keep because we are keeping CU. */
22241
22242 static void
22243 dwarf2_mark (struct dwarf2_cu *cu)
22244 {
22245 if (cu->mark)
22246 return;
22247 cu->mark = 1;
22248 if (cu->dependencies != NULL)
22249 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22250 }
22251
22252 static void
22253 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22254 {
22255 while (per_cu)
22256 {
22257 per_cu->cu->mark = 0;
22258 per_cu = per_cu->cu->read_in_chain;
22259 }
22260 }
22261
22262 /* Trivial hash function for partial_die_info: the hash value of a DIE
22263 is its offset in .debug_info for this objfile. */
22264
22265 static hashval_t
22266 partial_die_hash (const void *item)
22267 {
22268 const struct partial_die_info *part_die = item;
22269
22270 return part_die->offset.sect_off;
22271 }
22272
22273 /* Trivial comparison function for partial_die_info structures: two DIEs
22274 are equal if they have the same offset. */
22275
22276 static int
22277 partial_die_eq (const void *item_lhs, const void *item_rhs)
22278 {
22279 const struct partial_die_info *part_die_lhs = item_lhs;
22280 const struct partial_die_info *part_die_rhs = item_rhs;
22281
22282 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22283 }
22284
22285 static struct cmd_list_element *set_dwarf_cmdlist;
22286 static struct cmd_list_element *show_dwarf_cmdlist;
22287
22288 static void
22289 set_dwarf_cmd (char *args, int from_tty)
22290 {
22291 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
22292 gdb_stdout);
22293 }
22294
22295 static void
22296 show_dwarf_cmd (char *args, int from_tty)
22297 {
22298 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
22299 }
22300
22301 /* Free data associated with OBJFILE, if necessary. */
22302
22303 static void
22304 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22305 {
22306 struct dwarf2_per_objfile *data = d;
22307 int ix;
22308
22309 /* Make sure we don't accidentally use dwarf2_per_objfile while
22310 cleaning up. */
22311 dwarf2_per_objfile = NULL;
22312
22313 for (ix = 0; ix < data->n_comp_units; ++ix)
22314 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22315
22316 for (ix = 0; ix < data->n_type_units; ++ix)
22317 VEC_free (dwarf2_per_cu_ptr,
22318 data->all_type_units[ix]->per_cu.imported_symtabs);
22319 xfree (data->all_type_units);
22320
22321 VEC_free (dwarf2_section_info_def, data->types);
22322
22323 if (data->dwo_files)
22324 free_dwo_files (data->dwo_files, objfile);
22325 if (data->dwp_file)
22326 gdb_bfd_unref (data->dwp_file->dbfd);
22327
22328 if (data->dwz_file && data->dwz_file->dwz_bfd)
22329 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22330 }
22331
22332 \f
22333 /* The "save gdb-index" command. */
22334
22335 /* The contents of the hash table we create when building the string
22336 table. */
22337 struct strtab_entry
22338 {
22339 offset_type offset;
22340 const char *str;
22341 };
22342
22343 /* Hash function for a strtab_entry.
22344
22345 Function is used only during write_hash_table so no index format backward
22346 compatibility is needed. */
22347
22348 static hashval_t
22349 hash_strtab_entry (const void *e)
22350 {
22351 const struct strtab_entry *entry = e;
22352 return mapped_index_string_hash (INT_MAX, entry->str);
22353 }
22354
22355 /* Equality function for a strtab_entry. */
22356
22357 static int
22358 eq_strtab_entry (const void *a, const void *b)
22359 {
22360 const struct strtab_entry *ea = a;
22361 const struct strtab_entry *eb = b;
22362 return !strcmp (ea->str, eb->str);
22363 }
22364
22365 /* Create a strtab_entry hash table. */
22366
22367 static htab_t
22368 create_strtab (void)
22369 {
22370 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22371 xfree, xcalloc, xfree);
22372 }
22373
22374 /* Add a string to the constant pool. Return the string's offset in
22375 host order. */
22376
22377 static offset_type
22378 add_string (htab_t table, struct obstack *cpool, const char *str)
22379 {
22380 void **slot;
22381 struct strtab_entry entry;
22382 struct strtab_entry *result;
22383
22384 entry.str = str;
22385 slot = htab_find_slot (table, &entry, INSERT);
22386 if (*slot)
22387 result = *slot;
22388 else
22389 {
22390 result = XNEW (struct strtab_entry);
22391 result->offset = obstack_object_size (cpool);
22392 result->str = str;
22393 obstack_grow_str0 (cpool, str);
22394 *slot = result;
22395 }
22396 return result->offset;
22397 }
22398
22399 /* An entry in the symbol table. */
22400 struct symtab_index_entry
22401 {
22402 /* The name of the symbol. */
22403 const char *name;
22404 /* The offset of the name in the constant pool. */
22405 offset_type index_offset;
22406 /* A sorted vector of the indices of all the CUs that hold an object
22407 of this name. */
22408 VEC (offset_type) *cu_indices;
22409 };
22410
22411 /* The symbol table. This is a power-of-2-sized hash table. */
22412 struct mapped_symtab
22413 {
22414 offset_type n_elements;
22415 offset_type size;
22416 struct symtab_index_entry **data;
22417 };
22418
22419 /* Hash function for a symtab_index_entry. */
22420
22421 static hashval_t
22422 hash_symtab_entry (const void *e)
22423 {
22424 const struct symtab_index_entry *entry = e;
22425 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22426 sizeof (offset_type) * VEC_length (offset_type,
22427 entry->cu_indices),
22428 0);
22429 }
22430
22431 /* Equality function for a symtab_index_entry. */
22432
22433 static int
22434 eq_symtab_entry (const void *a, const void *b)
22435 {
22436 const struct symtab_index_entry *ea = a;
22437 const struct symtab_index_entry *eb = b;
22438 int len = VEC_length (offset_type, ea->cu_indices);
22439 if (len != VEC_length (offset_type, eb->cu_indices))
22440 return 0;
22441 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22442 VEC_address (offset_type, eb->cu_indices),
22443 sizeof (offset_type) * len);
22444 }
22445
22446 /* Destroy a symtab_index_entry. */
22447
22448 static void
22449 delete_symtab_entry (void *p)
22450 {
22451 struct symtab_index_entry *entry = p;
22452 VEC_free (offset_type, entry->cu_indices);
22453 xfree (entry);
22454 }
22455
22456 /* Create a hash table holding symtab_index_entry objects. */
22457
22458 static htab_t
22459 create_symbol_hash_table (void)
22460 {
22461 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22462 delete_symtab_entry, xcalloc, xfree);
22463 }
22464
22465 /* Create a new mapped symtab object. */
22466
22467 static struct mapped_symtab *
22468 create_mapped_symtab (void)
22469 {
22470 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22471 symtab->n_elements = 0;
22472 symtab->size = 1024;
22473 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22474 return symtab;
22475 }
22476
22477 /* Destroy a mapped_symtab. */
22478
22479 static void
22480 cleanup_mapped_symtab (void *p)
22481 {
22482 struct mapped_symtab *symtab = p;
22483 /* The contents of the array are freed when the other hash table is
22484 destroyed. */
22485 xfree (symtab->data);
22486 xfree (symtab);
22487 }
22488
22489 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22490 the slot.
22491
22492 Function is used only during write_hash_table so no index format backward
22493 compatibility is needed. */
22494
22495 static struct symtab_index_entry **
22496 find_slot (struct mapped_symtab *symtab, const char *name)
22497 {
22498 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22499
22500 index = hash & (symtab->size - 1);
22501 step = ((hash * 17) & (symtab->size - 1)) | 1;
22502
22503 for (;;)
22504 {
22505 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22506 return &symtab->data[index];
22507 index = (index + step) & (symtab->size - 1);
22508 }
22509 }
22510
22511 /* Expand SYMTAB's hash table. */
22512
22513 static void
22514 hash_expand (struct mapped_symtab *symtab)
22515 {
22516 offset_type old_size = symtab->size;
22517 offset_type i;
22518 struct symtab_index_entry **old_entries = symtab->data;
22519
22520 symtab->size *= 2;
22521 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22522
22523 for (i = 0; i < old_size; ++i)
22524 {
22525 if (old_entries[i])
22526 {
22527 struct symtab_index_entry **slot = find_slot (symtab,
22528 old_entries[i]->name);
22529 *slot = old_entries[i];
22530 }
22531 }
22532
22533 xfree (old_entries);
22534 }
22535
22536 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22537 CU_INDEX is the index of the CU in which the symbol appears.
22538 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22539
22540 static void
22541 add_index_entry (struct mapped_symtab *symtab, const char *name,
22542 int is_static, gdb_index_symbol_kind kind,
22543 offset_type cu_index)
22544 {
22545 struct symtab_index_entry **slot;
22546 offset_type cu_index_and_attrs;
22547
22548 ++symtab->n_elements;
22549 if (4 * symtab->n_elements / 3 >= symtab->size)
22550 hash_expand (symtab);
22551
22552 slot = find_slot (symtab, name);
22553 if (!*slot)
22554 {
22555 *slot = XNEW (struct symtab_index_entry);
22556 (*slot)->name = name;
22557 /* index_offset is set later. */
22558 (*slot)->cu_indices = NULL;
22559 }
22560
22561 cu_index_and_attrs = 0;
22562 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22563 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22564 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22565
22566 /* We don't want to record an index value twice as we want to avoid the
22567 duplication.
22568 We process all global symbols and then all static symbols
22569 (which would allow us to avoid the duplication by only having to check
22570 the last entry pushed), but a symbol could have multiple kinds in one CU.
22571 To keep things simple we don't worry about the duplication here and
22572 sort and uniqufy the list after we've processed all symbols. */
22573 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22574 }
22575
22576 /* qsort helper routine for uniquify_cu_indices. */
22577
22578 static int
22579 offset_type_compare (const void *ap, const void *bp)
22580 {
22581 offset_type a = *(offset_type *) ap;
22582 offset_type b = *(offset_type *) bp;
22583
22584 return (a > b) - (b > a);
22585 }
22586
22587 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22588
22589 static void
22590 uniquify_cu_indices (struct mapped_symtab *symtab)
22591 {
22592 int i;
22593
22594 for (i = 0; i < symtab->size; ++i)
22595 {
22596 struct symtab_index_entry *entry = symtab->data[i];
22597
22598 if (entry
22599 && entry->cu_indices != NULL)
22600 {
22601 unsigned int next_to_insert, next_to_check;
22602 offset_type last_value;
22603
22604 qsort (VEC_address (offset_type, entry->cu_indices),
22605 VEC_length (offset_type, entry->cu_indices),
22606 sizeof (offset_type), offset_type_compare);
22607
22608 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22609 next_to_insert = 1;
22610 for (next_to_check = 1;
22611 next_to_check < VEC_length (offset_type, entry->cu_indices);
22612 ++next_to_check)
22613 {
22614 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22615 != last_value)
22616 {
22617 last_value = VEC_index (offset_type, entry->cu_indices,
22618 next_to_check);
22619 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22620 last_value);
22621 ++next_to_insert;
22622 }
22623 }
22624 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22625 }
22626 }
22627 }
22628
22629 /* Add a vector of indices to the constant pool. */
22630
22631 static offset_type
22632 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22633 struct symtab_index_entry *entry)
22634 {
22635 void **slot;
22636
22637 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22638 if (!*slot)
22639 {
22640 offset_type len = VEC_length (offset_type, entry->cu_indices);
22641 offset_type val = MAYBE_SWAP (len);
22642 offset_type iter;
22643 int i;
22644
22645 *slot = entry;
22646 entry->index_offset = obstack_object_size (cpool);
22647
22648 obstack_grow (cpool, &val, sizeof (val));
22649 for (i = 0;
22650 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22651 ++i)
22652 {
22653 val = MAYBE_SWAP (iter);
22654 obstack_grow (cpool, &val, sizeof (val));
22655 }
22656 }
22657 else
22658 {
22659 struct symtab_index_entry *old_entry = *slot;
22660 entry->index_offset = old_entry->index_offset;
22661 entry = old_entry;
22662 }
22663 return entry->index_offset;
22664 }
22665
22666 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22667 constant pool entries going into the obstack CPOOL. */
22668
22669 static void
22670 write_hash_table (struct mapped_symtab *symtab,
22671 struct obstack *output, struct obstack *cpool)
22672 {
22673 offset_type i;
22674 htab_t symbol_hash_table;
22675 htab_t str_table;
22676
22677 symbol_hash_table = create_symbol_hash_table ();
22678 str_table = create_strtab ();
22679
22680 /* We add all the index vectors to the constant pool first, to
22681 ensure alignment is ok. */
22682 for (i = 0; i < symtab->size; ++i)
22683 {
22684 if (symtab->data[i])
22685 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22686 }
22687
22688 /* Now write out the hash table. */
22689 for (i = 0; i < symtab->size; ++i)
22690 {
22691 offset_type str_off, vec_off;
22692
22693 if (symtab->data[i])
22694 {
22695 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22696 vec_off = symtab->data[i]->index_offset;
22697 }
22698 else
22699 {
22700 /* While 0 is a valid constant pool index, it is not valid
22701 to have 0 for both offsets. */
22702 str_off = 0;
22703 vec_off = 0;
22704 }
22705
22706 str_off = MAYBE_SWAP (str_off);
22707 vec_off = MAYBE_SWAP (vec_off);
22708
22709 obstack_grow (output, &str_off, sizeof (str_off));
22710 obstack_grow (output, &vec_off, sizeof (vec_off));
22711 }
22712
22713 htab_delete (str_table);
22714 htab_delete (symbol_hash_table);
22715 }
22716
22717 /* Struct to map psymtab to CU index in the index file. */
22718 struct psymtab_cu_index_map
22719 {
22720 struct partial_symtab *psymtab;
22721 unsigned int cu_index;
22722 };
22723
22724 static hashval_t
22725 hash_psymtab_cu_index (const void *item)
22726 {
22727 const struct psymtab_cu_index_map *map = item;
22728
22729 return htab_hash_pointer (map->psymtab);
22730 }
22731
22732 static int
22733 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22734 {
22735 const struct psymtab_cu_index_map *lhs = item_lhs;
22736 const struct psymtab_cu_index_map *rhs = item_rhs;
22737
22738 return lhs->psymtab == rhs->psymtab;
22739 }
22740
22741 /* Helper struct for building the address table. */
22742 struct addrmap_index_data
22743 {
22744 struct objfile *objfile;
22745 struct obstack *addr_obstack;
22746 htab_t cu_index_htab;
22747
22748 /* Non-zero if the previous_* fields are valid.
22749 We can't write an entry until we see the next entry (since it is only then
22750 that we know the end of the entry). */
22751 int previous_valid;
22752 /* Index of the CU in the table of all CUs in the index file. */
22753 unsigned int previous_cu_index;
22754 /* Start address of the CU. */
22755 CORE_ADDR previous_cu_start;
22756 };
22757
22758 /* Write an address entry to OBSTACK. */
22759
22760 static void
22761 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22762 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22763 {
22764 offset_type cu_index_to_write;
22765 gdb_byte addr[8];
22766 CORE_ADDR baseaddr;
22767
22768 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22769
22770 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22771 obstack_grow (obstack, addr, 8);
22772 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22773 obstack_grow (obstack, addr, 8);
22774 cu_index_to_write = MAYBE_SWAP (cu_index);
22775 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22776 }
22777
22778 /* Worker function for traversing an addrmap to build the address table. */
22779
22780 static int
22781 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22782 {
22783 struct addrmap_index_data *data = datap;
22784 struct partial_symtab *pst = obj;
22785
22786 if (data->previous_valid)
22787 add_address_entry (data->objfile, data->addr_obstack,
22788 data->previous_cu_start, start_addr,
22789 data->previous_cu_index);
22790
22791 data->previous_cu_start = start_addr;
22792 if (pst != NULL)
22793 {
22794 struct psymtab_cu_index_map find_map, *map;
22795 find_map.psymtab = pst;
22796 map = htab_find (data->cu_index_htab, &find_map);
22797 gdb_assert (map != NULL);
22798 data->previous_cu_index = map->cu_index;
22799 data->previous_valid = 1;
22800 }
22801 else
22802 data->previous_valid = 0;
22803
22804 return 0;
22805 }
22806
22807 /* Write OBJFILE's address map to OBSTACK.
22808 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22809 in the index file. */
22810
22811 static void
22812 write_address_map (struct objfile *objfile, struct obstack *obstack,
22813 htab_t cu_index_htab)
22814 {
22815 struct addrmap_index_data addrmap_index_data;
22816
22817 /* When writing the address table, we have to cope with the fact that
22818 the addrmap iterator only provides the start of a region; we have to
22819 wait until the next invocation to get the start of the next region. */
22820
22821 addrmap_index_data.objfile = objfile;
22822 addrmap_index_data.addr_obstack = obstack;
22823 addrmap_index_data.cu_index_htab = cu_index_htab;
22824 addrmap_index_data.previous_valid = 0;
22825
22826 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22827 &addrmap_index_data);
22828
22829 /* It's highly unlikely the last entry (end address = 0xff...ff)
22830 is valid, but we should still handle it.
22831 The end address is recorded as the start of the next region, but that
22832 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22833 anyway. */
22834 if (addrmap_index_data.previous_valid)
22835 add_address_entry (objfile, obstack,
22836 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22837 addrmap_index_data.previous_cu_index);
22838 }
22839
22840 /* Return the symbol kind of PSYM. */
22841
22842 static gdb_index_symbol_kind
22843 symbol_kind (struct partial_symbol *psym)
22844 {
22845 domain_enum domain = PSYMBOL_DOMAIN (psym);
22846 enum address_class aclass = PSYMBOL_CLASS (psym);
22847
22848 switch (domain)
22849 {
22850 case VAR_DOMAIN:
22851 switch (aclass)
22852 {
22853 case LOC_BLOCK:
22854 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22855 case LOC_TYPEDEF:
22856 return GDB_INDEX_SYMBOL_KIND_TYPE;
22857 case LOC_COMPUTED:
22858 case LOC_CONST_BYTES:
22859 case LOC_OPTIMIZED_OUT:
22860 case LOC_STATIC:
22861 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22862 case LOC_CONST:
22863 /* Note: It's currently impossible to recognize psyms as enum values
22864 short of reading the type info. For now punt. */
22865 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22866 default:
22867 /* There are other LOC_FOO values that one might want to classify
22868 as variables, but dwarf2read.c doesn't currently use them. */
22869 return GDB_INDEX_SYMBOL_KIND_OTHER;
22870 }
22871 case STRUCT_DOMAIN:
22872 return GDB_INDEX_SYMBOL_KIND_TYPE;
22873 default:
22874 return GDB_INDEX_SYMBOL_KIND_OTHER;
22875 }
22876 }
22877
22878 /* Add a list of partial symbols to SYMTAB. */
22879
22880 static void
22881 write_psymbols (struct mapped_symtab *symtab,
22882 htab_t psyms_seen,
22883 struct partial_symbol **psymp,
22884 int count,
22885 offset_type cu_index,
22886 int is_static)
22887 {
22888 for (; count-- > 0; ++psymp)
22889 {
22890 struct partial_symbol *psym = *psymp;
22891 void **slot;
22892
22893 if (SYMBOL_LANGUAGE (psym) == language_ada)
22894 error (_("Ada is not currently supported by the index"));
22895
22896 /* Only add a given psymbol once. */
22897 slot = htab_find_slot (psyms_seen, psym, INSERT);
22898 if (!*slot)
22899 {
22900 gdb_index_symbol_kind kind = symbol_kind (psym);
22901
22902 *slot = psym;
22903 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22904 is_static, kind, cu_index);
22905 }
22906 }
22907 }
22908
22909 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22910 exception if there is an error. */
22911
22912 static void
22913 write_obstack (FILE *file, struct obstack *obstack)
22914 {
22915 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22916 file)
22917 != obstack_object_size (obstack))
22918 error (_("couldn't data write to file"));
22919 }
22920
22921 /* Unlink a file if the argument is not NULL. */
22922
22923 static void
22924 unlink_if_set (void *p)
22925 {
22926 char **filename = p;
22927 if (*filename)
22928 unlink (*filename);
22929 }
22930
22931 /* A helper struct used when iterating over debug_types. */
22932 struct signatured_type_index_data
22933 {
22934 struct objfile *objfile;
22935 struct mapped_symtab *symtab;
22936 struct obstack *types_list;
22937 htab_t psyms_seen;
22938 int cu_index;
22939 };
22940
22941 /* A helper function that writes a single signatured_type to an
22942 obstack. */
22943
22944 static int
22945 write_one_signatured_type (void **slot, void *d)
22946 {
22947 struct signatured_type_index_data *info = d;
22948 struct signatured_type *entry = (struct signatured_type *) *slot;
22949 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22950 gdb_byte val[8];
22951
22952 write_psymbols (info->symtab,
22953 info->psyms_seen,
22954 info->objfile->global_psymbols.list
22955 + psymtab->globals_offset,
22956 psymtab->n_global_syms, info->cu_index,
22957 0);
22958 write_psymbols (info->symtab,
22959 info->psyms_seen,
22960 info->objfile->static_psymbols.list
22961 + psymtab->statics_offset,
22962 psymtab->n_static_syms, info->cu_index,
22963 1);
22964
22965 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22966 entry->per_cu.offset.sect_off);
22967 obstack_grow (info->types_list, val, 8);
22968 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22969 entry->type_offset_in_tu.cu_off);
22970 obstack_grow (info->types_list, val, 8);
22971 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22972 obstack_grow (info->types_list, val, 8);
22973
22974 ++info->cu_index;
22975
22976 return 1;
22977 }
22978
22979 /* Recurse into all "included" dependencies and write their symbols as
22980 if they appeared in this psymtab. */
22981
22982 static void
22983 recursively_write_psymbols (struct objfile *objfile,
22984 struct partial_symtab *psymtab,
22985 struct mapped_symtab *symtab,
22986 htab_t psyms_seen,
22987 offset_type cu_index)
22988 {
22989 int i;
22990
22991 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22992 if (psymtab->dependencies[i]->user != NULL)
22993 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22994 symtab, psyms_seen, cu_index);
22995
22996 write_psymbols (symtab,
22997 psyms_seen,
22998 objfile->global_psymbols.list + psymtab->globals_offset,
22999 psymtab->n_global_syms, cu_index,
23000 0);
23001 write_psymbols (symtab,
23002 psyms_seen,
23003 objfile->static_psymbols.list + psymtab->statics_offset,
23004 psymtab->n_static_syms, cu_index,
23005 1);
23006 }
23007
23008 /* Create an index file for OBJFILE in the directory DIR. */
23009
23010 static void
23011 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23012 {
23013 struct cleanup *cleanup;
23014 char *filename, *cleanup_filename;
23015 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23016 struct obstack cu_list, types_cu_list;
23017 int i;
23018 FILE *out_file;
23019 struct mapped_symtab *symtab;
23020 offset_type val, size_of_contents, total_len;
23021 struct stat st;
23022 htab_t psyms_seen;
23023 htab_t cu_index_htab;
23024 struct psymtab_cu_index_map *psymtab_cu_index_map;
23025
23026 if (dwarf2_per_objfile->using_index)
23027 error (_("Cannot use an index to create the index"));
23028
23029 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23030 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23031
23032 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23033 return;
23034
23035 if (stat (objfile_name (objfile), &st) < 0)
23036 perror_with_name (objfile_name (objfile));
23037
23038 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23039 INDEX_SUFFIX, (char *) NULL);
23040 cleanup = make_cleanup (xfree, filename);
23041
23042 out_file = gdb_fopen_cloexec (filename, "wb");
23043 if (!out_file)
23044 error (_("Can't open `%s' for writing"), filename);
23045
23046 cleanup_filename = filename;
23047 make_cleanup (unlink_if_set, &cleanup_filename);
23048
23049 symtab = create_mapped_symtab ();
23050 make_cleanup (cleanup_mapped_symtab, symtab);
23051
23052 obstack_init (&addr_obstack);
23053 make_cleanup_obstack_free (&addr_obstack);
23054
23055 obstack_init (&cu_list);
23056 make_cleanup_obstack_free (&cu_list);
23057
23058 obstack_init (&types_cu_list);
23059 make_cleanup_obstack_free (&types_cu_list);
23060
23061 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23062 NULL, xcalloc, xfree);
23063 make_cleanup_htab_delete (psyms_seen);
23064
23065 /* While we're scanning CU's create a table that maps a psymtab pointer
23066 (which is what addrmap records) to its index (which is what is recorded
23067 in the index file). This will later be needed to write the address
23068 table. */
23069 cu_index_htab = htab_create_alloc (100,
23070 hash_psymtab_cu_index,
23071 eq_psymtab_cu_index,
23072 NULL, xcalloc, xfree);
23073 make_cleanup_htab_delete (cu_index_htab);
23074 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23075 xmalloc (sizeof (struct psymtab_cu_index_map)
23076 * dwarf2_per_objfile->n_comp_units);
23077 make_cleanup (xfree, psymtab_cu_index_map);
23078
23079 /* The CU list is already sorted, so we don't need to do additional
23080 work here. Also, the debug_types entries do not appear in
23081 all_comp_units, but only in their own hash table. */
23082 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23083 {
23084 struct dwarf2_per_cu_data *per_cu
23085 = dwarf2_per_objfile->all_comp_units[i];
23086 struct partial_symtab *psymtab = per_cu->v.psymtab;
23087 gdb_byte val[8];
23088 struct psymtab_cu_index_map *map;
23089 void **slot;
23090
23091 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23092 It may be referenced from a local scope but in such case it does not
23093 need to be present in .gdb_index. */
23094 if (psymtab == NULL)
23095 continue;
23096
23097 if (psymtab->user == NULL)
23098 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23099
23100 map = &psymtab_cu_index_map[i];
23101 map->psymtab = psymtab;
23102 map->cu_index = i;
23103 slot = htab_find_slot (cu_index_htab, map, INSERT);
23104 gdb_assert (slot != NULL);
23105 gdb_assert (*slot == NULL);
23106 *slot = map;
23107
23108 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23109 per_cu->offset.sect_off);
23110 obstack_grow (&cu_list, val, 8);
23111 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23112 obstack_grow (&cu_list, val, 8);
23113 }
23114
23115 /* Dump the address map. */
23116 write_address_map (objfile, &addr_obstack, cu_index_htab);
23117
23118 /* Write out the .debug_type entries, if any. */
23119 if (dwarf2_per_objfile->signatured_types)
23120 {
23121 struct signatured_type_index_data sig_data;
23122
23123 sig_data.objfile = objfile;
23124 sig_data.symtab = symtab;
23125 sig_data.types_list = &types_cu_list;
23126 sig_data.psyms_seen = psyms_seen;
23127 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23128 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23129 write_one_signatured_type, &sig_data);
23130 }
23131
23132 /* Now that we've processed all symbols we can shrink their cu_indices
23133 lists. */
23134 uniquify_cu_indices (symtab);
23135
23136 obstack_init (&constant_pool);
23137 make_cleanup_obstack_free (&constant_pool);
23138 obstack_init (&symtab_obstack);
23139 make_cleanup_obstack_free (&symtab_obstack);
23140 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23141
23142 obstack_init (&contents);
23143 make_cleanup_obstack_free (&contents);
23144 size_of_contents = 6 * sizeof (offset_type);
23145 total_len = size_of_contents;
23146
23147 /* The version number. */
23148 val = MAYBE_SWAP (8);
23149 obstack_grow (&contents, &val, sizeof (val));
23150
23151 /* The offset of the CU list from the start of the file. */
23152 val = MAYBE_SWAP (total_len);
23153 obstack_grow (&contents, &val, sizeof (val));
23154 total_len += obstack_object_size (&cu_list);
23155
23156 /* The offset of the types CU list from the start of the file. */
23157 val = MAYBE_SWAP (total_len);
23158 obstack_grow (&contents, &val, sizeof (val));
23159 total_len += obstack_object_size (&types_cu_list);
23160
23161 /* The offset of the address table from the start of the file. */
23162 val = MAYBE_SWAP (total_len);
23163 obstack_grow (&contents, &val, sizeof (val));
23164 total_len += obstack_object_size (&addr_obstack);
23165
23166 /* The offset of the symbol table from the start of the file. */
23167 val = MAYBE_SWAP (total_len);
23168 obstack_grow (&contents, &val, sizeof (val));
23169 total_len += obstack_object_size (&symtab_obstack);
23170
23171 /* The offset of the constant pool from the start of the file. */
23172 val = MAYBE_SWAP (total_len);
23173 obstack_grow (&contents, &val, sizeof (val));
23174 total_len += obstack_object_size (&constant_pool);
23175
23176 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23177
23178 write_obstack (out_file, &contents);
23179 write_obstack (out_file, &cu_list);
23180 write_obstack (out_file, &types_cu_list);
23181 write_obstack (out_file, &addr_obstack);
23182 write_obstack (out_file, &symtab_obstack);
23183 write_obstack (out_file, &constant_pool);
23184
23185 fclose (out_file);
23186
23187 /* We want to keep the file, so we set cleanup_filename to NULL
23188 here. See unlink_if_set. */
23189 cleanup_filename = NULL;
23190
23191 do_cleanups (cleanup);
23192 }
23193
23194 /* Implementation of the `save gdb-index' command.
23195
23196 Note that the file format used by this command is documented in the
23197 GDB manual. Any changes here must be documented there. */
23198
23199 static void
23200 save_gdb_index_command (char *arg, int from_tty)
23201 {
23202 struct objfile *objfile;
23203
23204 if (!arg || !*arg)
23205 error (_("usage: save gdb-index DIRECTORY"));
23206
23207 ALL_OBJFILES (objfile)
23208 {
23209 struct stat st;
23210
23211 /* If the objfile does not correspond to an actual file, skip it. */
23212 if (stat (objfile_name (objfile), &st) < 0)
23213 continue;
23214
23215 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23216 if (dwarf2_per_objfile)
23217 {
23218
23219 TRY
23220 {
23221 write_psymtabs_to_index (objfile, arg);
23222 }
23223 CATCH (except, RETURN_MASK_ERROR)
23224 {
23225 exception_fprintf (gdb_stderr, except,
23226 _("Error while writing index for `%s': "),
23227 objfile_name (objfile));
23228 }
23229 END_CATCH
23230 }
23231 }
23232 }
23233
23234 \f
23235
23236 int dwarf_always_disassemble;
23237
23238 static void
23239 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23240 struct cmd_list_element *c, const char *value)
23241 {
23242 fprintf_filtered (file,
23243 _("Whether to always disassemble "
23244 "DWARF expressions is %s.\n"),
23245 value);
23246 }
23247
23248 static void
23249 show_check_physname (struct ui_file *file, int from_tty,
23250 struct cmd_list_element *c, const char *value)
23251 {
23252 fprintf_filtered (file,
23253 _("Whether to check \"physname\" is %s.\n"),
23254 value);
23255 }
23256
23257 void _initialize_dwarf2_read (void);
23258
23259 void
23260 _initialize_dwarf2_read (void)
23261 {
23262 struct cmd_list_element *c;
23263
23264 dwarf2_objfile_data_key
23265 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23266
23267 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23268 Set DWARF specific variables.\n\
23269 Configure DWARF variables such as the cache size"),
23270 &set_dwarf_cmdlist, "maintenance set dwarf ",
23271 0/*allow-unknown*/, &maintenance_set_cmdlist);
23272
23273 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23274 Show DWARF specific variables\n\
23275 Show DWARF variables such as the cache size"),
23276 &show_dwarf_cmdlist, "maintenance show dwarf ",
23277 0/*allow-unknown*/, &maintenance_show_cmdlist);
23278
23279 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23280 &dwarf_max_cache_age, _("\
23281 Set the upper bound on the age of cached DWARF compilation units."), _("\
23282 Show the upper bound on the age of cached DWARF compilation units."), _("\
23283 A higher limit means that cached compilation units will be stored\n\
23284 in memory longer, and more total memory will be used. Zero disables\n\
23285 caching, which can slow down startup."),
23286 NULL,
23287 show_dwarf_max_cache_age,
23288 &set_dwarf_cmdlist,
23289 &show_dwarf_cmdlist);
23290
23291 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23292 &dwarf_always_disassemble, _("\
23293 Set whether `info address' always disassembles DWARF expressions."), _("\
23294 Show whether `info address' always disassembles DWARF expressions."), _("\
23295 When enabled, DWARF expressions are always printed in an assembly-like\n\
23296 syntax. When disabled, expressions will be printed in a more\n\
23297 conversational style, when possible."),
23298 NULL,
23299 show_dwarf_always_disassemble,
23300 &set_dwarf_cmdlist,
23301 &show_dwarf_cmdlist);
23302
23303 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23304 Set debugging of the DWARF reader."), _("\
23305 Show debugging of the DWARF reader."), _("\
23306 When enabled (non-zero), debugging messages are printed during DWARF\n\
23307 reading and symtab expansion. A value of 1 (one) provides basic\n\
23308 information. A value greater than 1 provides more verbose information."),
23309 NULL,
23310 NULL,
23311 &setdebuglist, &showdebuglist);
23312
23313 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23314 Set debugging of the DWARF DIE reader."), _("\
23315 Show debugging of the DWARF DIE reader."), _("\
23316 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23317 The value is the maximum depth to print."),
23318 NULL,
23319 NULL,
23320 &setdebuglist, &showdebuglist);
23321
23322 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23323 Set cross-checking of \"physname\" code against demangler."), _("\
23324 Show cross-checking of \"physname\" code against demangler."), _("\
23325 When enabled, GDB's internal \"physname\" code is checked against\n\
23326 the demangler."),
23327 NULL, show_check_physname,
23328 &setdebuglist, &showdebuglist);
23329
23330 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23331 no_class, &use_deprecated_index_sections, _("\
23332 Set whether to use deprecated gdb_index sections."), _("\
23333 Show whether to use deprecated gdb_index sections."), _("\
23334 When enabled, deprecated .gdb_index sections are used anyway.\n\
23335 Normally they are ignored either because of a missing feature or\n\
23336 performance issue.\n\
23337 Warning: This option must be enabled before gdb reads the file."),
23338 NULL,
23339 NULL,
23340 &setlist, &showlist);
23341
23342 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23343 _("\
23344 Save a gdb-index file.\n\
23345 Usage: save gdb-index DIRECTORY"),
23346 &save_cmdlist);
23347 set_cmd_completer (c, filename_completer);
23348
23349 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23350 &dwarf2_locexpr_funcs);
23351 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23352 &dwarf2_loclist_funcs);
23353
23354 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23355 &dwarf2_block_frame_base_locexpr_funcs);
23356 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23357 &dwarf2_block_frame_base_loclist_funcs);
23358 }
This page took 0.703809 seconds and 4 git commands to generate.